ESP32-C5

系列芯片勘误表 Version v1.0

目录

目录			i	
1	芯片版	本标识	1	
	1.1	芯片版本编号	1	
	1.2	主要标识方式	1	
	1.3	其他标识方式	3	
	1.4	ESP-IDF 支持版本	4	
	1.5	相关文档	4	
2	勘误表			
3	所有错	误描述	5	
	3.1	[CPU-718] PSRAM 先写后读一致性问题	5	
4	修订历	史	6	
5	相关文档和资源			
	5.1	相关文档	6	
	5.2	开发者社区	6	
	5.3	产品	7	
	5.4	联系我们	7	
6	免害害	明和版权公告	7	

1 芯片版本标识

乐鑫引入了新的 vM.X 编号方案来表示芯片的修订版本。本指南概述了该编号方案的含义,并介绍了芯片版本的其他各类标识。

1.1 芯片版本编号

乐鑫使用 vM.X 编码方式表示芯片版本 (Chip Revision)。

 \mathbf{M} -主版本号,表示芯片修订的主要版本。该号码变更表示在旧版芯片上使用的软件与新版芯片不兼容,需要升级软件方可使用。

X-次版本号,表示芯片修订的次要版本。该号码变更表示在旧版芯片上使用的软件与新版芯片兼容,无需升级软件。

vM.X 编码方式将取代旧的编码方式,包括 ECO 编码、Vxxx 编码等。

1.2 主要标识方式

eFuse 衍

芯片版本使用两个 eFuse 字段编码:

- EFUSE_RD_MAC_SYS2_REG[5:4]
- EFUSE_RD_MAC_SYS2_REG[3:0]

芯片版本 标示位 v0.0 v0.1 v1.0 主版本号 EFUSE_RD_MAC_SYS2_REG[5] 0 EFUSE_RD_MAC_SYS2_REG[4] 次版本号 EFUSE_RD_MAC_SYS2_REG[3] 0 0 0 EFUSE_RD_MAC_SYS2_REG[2] 0 0 0 EFUSE_RD_MAC_SYS2_REG[1] EFUSE_RD_MAC_SYS2_REG[0] 0

表 1.1: eFuse 版本标示位

芯片标识

• 芯片丝印的 Manufacturing Code (生产编码) 行

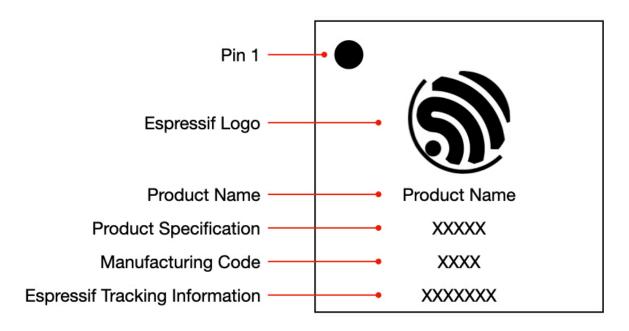


图 1.1: 芯片丝印示意图

表 1.2: 芯片丝印芯片版本标识

芯片版本	生产编码
v0.0	X A XX
v0.1	X B XX
v1.0	$X \subset XX$

模组标识

• 模组丝印的 规格标识码行

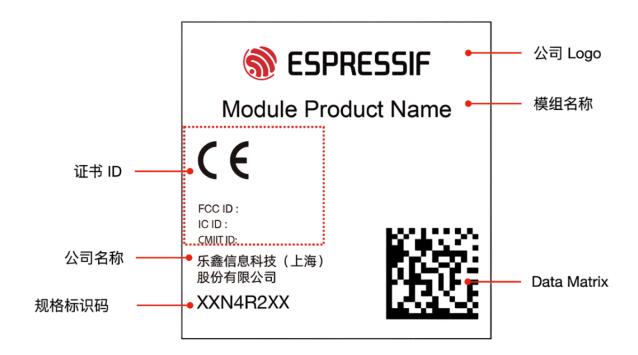


图 1.2: 模组丝印示意图

表 1.3: 模组丝印芯片版本标识

芯片版本	规格标识码
v0.0	XA XXXX
v0.1	MB XXXX
v1.0	MC XXXX

1.3 其他标识方式

日期代码

有些芯片错误不需要在晶圆片上修复,即不需要引入新的芯片版本。

此时,芯片可通过丝印中的 **Date Code (日期代码)** 来识别,如图芯片标识。更多信息,请参考 ESP32-C5 芯片包装信息 > 芯片丝印。

生产工单

内置芯片的模组可通过物料标签中的 **生产工单** (**PW Number**) 来识别,如图模组物料标签。更多信息,请参考 **ESP32-C5** 模组包装信息 > 披萨盒。

图 1.3: 模组物料标签

备注:注意,仅装在铝箔袋中的模组卷盘含有 生产工单 (PW Number)信息。

1.4 ESP-IDF 支持版本

关于特定芯片版本的 ESP-IDF 支持版本,请参考 ESP-IDF 版本与乐鑫芯片版本兼容性。

1.5 相关文档

• 更多关于芯片版本升级及识别系列产品版本的信息,请参考 ESP32-C5 产品/工艺变更通知 (PCN)。

• 芯片版本的编码策略,请参考关于芯片版本 (Chip Revision)编码方式的兼容性公告。

2 勘误表

表 2.1: 勘误表

类别	勘误编号	描述	影响版本		
			v0.0	v0.1	v1.0
RISC-V CPU	CPU-718	[CPU-718] PSRAM 先写后读一致性问题	Y	Y	Y

3 所有错误描述

3.1 [CPU-718] PSRAM 先写后读一致性问题

影响版本: v0.0 v0.1 v1.0

描述

当 CPU 通过 CACHE 或 DMA 对 PSRAM 进行随机读写时,如果满足以下任一条件,可能会出现 CPU 访问 PSRAM 的数据一致性问题:

- PSRAM 加密或解密已启用,或
- 通过 DMA 访问 PSRAM 时, AHB_DMA_OUT_DATA_BURST_MODE_SEL_CHn 配置为 0 或 1

原因 MSPI 硬件负责管理 CPU 对 PSRAM 的读写请求,并且内部存在缓存。因此,MSPI 接收到的 CPU 读写请求并不一定会立即作为 SPI 事务提交到 PSRAM。

如果 CPU 在很短时间内先对某一 PSRAM 物理地址执行写操作,又立即对相同地址执行读操作,先发出的写操作可能因 MSPI 内部缓存或加解密延迟而尚未完成;结果 MSPI 可能先执行后发出的读操作,导致读取到过期或不一致的数据。

示例

- 当 CACHE 从启用加解密的 PSRAM 区间读取且发生 cache miss 时,回写的数据可能不一致。
- 在 DMA 写入 PSRAM 完成后,随即进行的 DMA 读或 CACHE 读同一 PSRAM 区域可能返回不一致的数据。

变通方法

- 针对因加解密导致的 cache miss 引起的数据一致性问题:在存在随机读写访问的场景下,不建议启用 PSRAM 加密功能。
- 针对 CPU 通过 DMA 访问时出现的数据一致性问题:在 DMA 写入完成后,或在 CPU 读取相同物理地址之前,增加延时,以确保 MSPI 已实际完成对 PSRAM 的写入操作。

解决方案

预计将在 下个芯片版本中修复。

4 修订历史

表 4.1: 修订历史

日期	版本	发布说明
2025-11-05	v1.0	首次发布

5 相关文档和资源

5.1 相关文档

- 《ESP32-C5 技术规格书》 -提供 ESP32-C5 芯片的硬件技术规格。
- 《ESP32-C5 技术参考手册》 -提供 ESP32-C5 芯片的存储器和外设的详细使用说明。
- 《ESP32-C5 硬件设计指南》 -提供基于 ESP32-C5 芯片的产品设计规范。
- 证书

https://espressif.com/zh-hans/support/documents/certificates

- ESP32-C5 产品/工艺变更通知 (PCN)
 - https://espressif.com/zh-hans/support/documents/pcns?keys=ESP32-C5
- ESP32-C5 公告—提供有关安全、bug、兼容性、器件可靠性的信息。 https://espressif.com/zh-hans/support/documents/advisories?keys=ESP32-C5
- 文档更新和订阅通知

https://espressif.com/zh-hans/support/download/documents

5.2 开发者社区

- ESP32-C5 ESP-IDF 编程指南 -ESP-IDF 开发框架的文档中心。
- ESP-IDF 及 GitHub 上的其它开发框架 https://github.com/espressif

• ESP32 论坛-工程师对工程师 (E2E) 的社区, 您可以在这里提出问题、解决问题、分享知识、探索观点。

https://esp32.com/

- The ESP Journal -分享乐鑫工程师的最佳实践、技术文章和工作随笔。 https://blog.espressif.com/
- SDK 和演示、App、工具、AT 等下载资源 https://espressif.com/zh-hans/support/download/sdks-demos

5.3 产品

- ESP32-C5 系列芯片-ESP32-C5 全系列芯片。
 https://espressif.com/zh-hans/products/socs?id=ESP32-C5
- ESP32-C5 系列模组-ESP32-C5 全系列模组。 https://espressif.com/zh-hans/products/modules?id=ESP32-C5
- ESP32-C5 系列开发板-ESP32-C5 全系列开发板。
 https://espressif.com/zh-hans/products/devkits?id=ESP32-C5
- ESP Product Selector(乐鑫产品选型工具)—通过筛选性能参数、进行产品对比快速定位您所需要的产品。

https://products.espressif.com/#/product-selector

5.4 联系我们

• 商务问题、技术支持、电路原理图 & PCB 设计审阅、购买样品(线上商店)、成为供应商、意见与 建议

https://espressif.com/zh-hans/contact-us/sales-questions

6 免责声明和版权公告

本文档中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

本文档可能引用了第三方的信息,所有引用的信息均为"按现状"提供,乐鑫不对信息的准确性、真实性做任何保证。

乐鑫不对本文档的内容做任何保证,包括内容的适销性、是否适用于特定用途,也不提供任何其他乐鑫 提案、规格书或样品在他处提到的任何保证。

乐鑫不对本文档是否侵犯第三方权利做任何保证,也不对使用本文档内信息导致的任何侵犯知识产权的 行为负责。本文档在此未以禁止反言或其他方式授予任何知识产权许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文档中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。