ESP32-S3 esp-dev-kits 文档

Table of contents

Ta	ible of	contents	5																j
1	ESP:	32-S3-De	evKitC-1																3
	1.1	ESP32-	S3-DevKit	C-1 v1.	1		 			 			 			 		 	. 3
		1.1.1	入门指南				 			 			 			 		 	. 3
		1.1.2	硬件参考				 			 			 			 		 	. 6
		1.1.3	硬件版本																
		1.1.4	相关文档				 			 			 			 		 	
•	ECD	22 C2 D	TZ UN Æ d																1.5
2	2.1		e vKitM-1 S3-DevKitl	M 1															15 15
	2.1	2.1.1	35-DevKii. 入门指南																
		2.1.1	八 万 行 行 行 移 考																
		2.1.2	硬件多多																
		2.1.3	要件版本 相关文档																
		2.1.4	相大人相			• •	 	• •	• •	 • •	• •	• •	 •	•	• •	 • •	 •	 	
3	ESP.	32-S3-US	SB-OTG																23
	3.1	ESP32-	S3-USB-O	TG			 			 			 			 		 	. 23
		3.1.1	快速入门				 			 			 			 		 	23
		3.1.2	硬件参考				 			 			 			 		 	. 28
		3.1.3	相关文档				 			 			 			 		 	35
4	ESP:	32-S3-L0	CD-EV-Bo	ard															37
	4.1		S3-LCD-E		d v1	5													
		4.1.1	开发板概																
		4.1.2	应用程序																
		4.1.3	硬件参考																
		4.1.4	硬件版本																
		4.1.5	样品获取																
		4.1.6	相关文档																
	4.2		S3-LCD-E																
		4.2.1	开发板概																
		4.2.2	应用程序																
		4.2.3	硬件参考																
		4.2.4	硬件版本																
		4.2.5	样品获取																
		4.2.6	相关文档																
5			SB-Bridge																69
	5.1		S3-USB-B1																
		5.1.1	开发板概																
		5.1.2	应用程序																
		5.1.3	硬件参考																
		5.1.4	硬件版本																
		5.1.5	样品获取				 			 			 			 		 	
		5 1 6	相关文料																76

6	相关文档和资源	77
	6.1 相关文档	. 77
	6.2 开发者社区	. 77
	6.3 产品	. 77
	6.4 联系我们	. 78
7	免责声明和版权公告	79

该文档详细介绍了 ESP32-S3 系列开发板的用户指南和示例。

备注: 如需获取乐鑫全部系列开发板的有关信息,请访问 乐鑫开发板概览。

Chapter 1

ESP32-S3-DevKitC-1

ESP32-S3-DevKitC-1 是一款人门级开发板, 搭载 Wi-Fi+Bluetooth® LE 模组 ESP32-S3-WROOM-1、ESP32-S3-WROOM-1U 或 ESP32-S3-WROOM-2。

板上模组的大部分管脚均已引出至开发板两侧排针,开发人员可根据实际需求,轻松通过跳线连接多种外围设备,也可将开发板插在面包板上使用。

1.1 ESP32-S3-DevKitC-1 v1.1

更早版本: ESP32-S3-DevKitC-1

本指南将帮助你快速上手 ESP32-S3-DevKitC-1,并提供该款开发板的详细信息。

ESP32-S3-DevKitC-1 是一款人门级开发板, 搭载 Wi-Fi + Bluetooth® LE 模组 ESP32-S3-WROOM-1、ESP32-S3-WROOM-1U 或 ESP32-S3-WROOM-2。

板上模组的大部分管脚均已引出至开发板两侧排针,开发人员可根据实际需求,轻松通过跳线连接多种外围设备,也可将开发板插在面包板上使用。

-

图 1: ESP32-S3-DevKitC-1(板载 ESP32-S3-WROOM-1 模组)

本指南包括如下内容:

- 入门指南: 简要介绍了开发板和硬件、软件设置指南。
- 硬件参考: 详细介绍了开发板的硬件。
- 硬件版本:介绍硬件历史版本和已知问题,并提供链接至历史版本开发板的入门指南(如有)。
- 相关文档: 列出了相关文档的链接。

1.1.1 人门指南

本小节将简要介绍 ESP32-S3-DevKitC-1, 说明如何在 ESP32-S3-DevKitC-1 上烧录固件及相关准备工作。

组件介绍

以下按照逆时针的顺序依次介绍开发板上的主要组件。

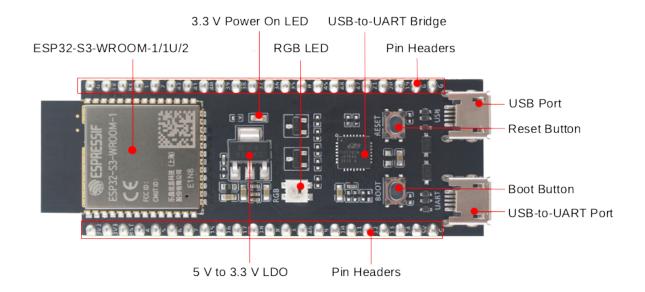


图 2: ESP32-S3-DevKitC-1 - 正面

主要组件	介绍
ESP32-S3-WROOM-1/1U/2	ESP32-S3-WROOM-1、ESP32-S3-WROOM-1U和ESP32-S3-WROOM-2
	是通用型 Wi-Fi + 低功耗蓝牙 MCU 模组,具有丰富的外设接口、强大
	的神经网络运算能力和信号处理能力,专为人工智能和 AIoT 市场打
	造。ESP32-S3-WROOM-1 和 ESP32-S3-WROOM-2 采用 PCB 板载天线,
	ESP32-S3-WROOM-1U 采用连接器连接外部天线。
5 V to 3.3 V LDO (5 V 转 3.3	电源转换器,输入5V,输出3.3V。
V LDO)	
Pin Headers (排针)	所有可用 GPIO 管脚(除 flash 的 SPI 总线)均已引出至开发板的排针。
	请查看排针获取更多信息。
USB-to-UART Port (USB 转	Micro-USB 接口,可用作开发板的供电接口,可烧录固件至芯片,也可
UART 接口)	作为通信接口,通过板载 USB 转 UART 桥接器与芯片通信。
Boot Button (Boot 键)	下载按键。按住 Boot 键的同时按一下 Reset 键进入"固件下载"模式,
	通过串口下载固件。
Reset Button (Reset 键)	复位按键。
USB Port(USB 接口)	ESP32-S3 USB OTG 接口,支持全速 USB 1.1 标准。ESP32-S3 USB 接
	口可用作开发板的供电接口,可烧录固件至芯片,可通过 USB 协议与
	芯片通信,也可用于 JTAG 调试。
USB-to-UART Bridge(USB转	单芯片 USB 至 UART 桥接器,可提供高达 3 Mbps 的传输速率。
UART 桥接器)	
RGB LED	可寻址 RGB 发光二极管,由 GPIO38 驱动。
3.3 V Power On LED (3.3 V 电	开发板连接 USB 电源后,该指示灯亮起。
源指示灯)	

备注: 在板载 ESP32-S3-WROOM-1/1U 模组系列(使用 8 线 SPI flash/PSRAM)的开发板和板载 ESP32-S3-WROOM-2 模组系列的开发板中,管脚 GPIO35、GPIO36 和 GPIO37 已用于内部 ESP32-S3 芯片与 SPI flash/PSRAM 之间的通信,外部不可使用。

开始开发应用

通电前,请确保开发板完好无损。

必备硬件

- ESP32-S3-DevKitC-1
- USB 2.0 数据线 (标准 A 型转 Micro-B 型)
- 电脑(Windows、Linux 或 macOS)

备注: 请确保使用适当的 USB 数据线。部分数据线仅可用于充电,无法用于数据传输和编程。

硬件设置 通过 USB 转 UART 接口或 ESP32-S3 USB 接口连接开发板与电脑。在后续步骤中,默认使用 USB 转 UART 接口。

软件设置 请前往 快速入门,在 详细安装步骤 小节查看如何快速设置开发环境,将应用程序烧录至你的开发板。

内含组件和包装

订购信息 该开发板有多种型号可供选择,详见下表。

订购代码	搭载模组	Flash	PSRAM	SPI电压
ESP32-S3-DevKitC-1-N8	ESP32-S3-WROOM-1-N8	8 MB QD	_	3.3 V
ESP32-S3-DevKitC-1-	ESP32-S3-WROOM-1-	8 MB QD	2 MB QD	3.3 V
N8R2	N8R2			
ESP32-S3-DevKitC-1-	ESP32-S3-WROOM-1-	8 MB QD	8 MB OT	3.3 V
N8R8	N8R8			
ESP32-S3-DevKitC-1-	ESP32-S3-WROOM-2-	16 MB OT	8 MB OT	1.8 V
N16R8V	N16R8V			
ESP32-S3-DevKitC-1-	ESP32-S3-WROOM-2-	32 MB OT	8 MB OT	1.8 V
N32R8V	N32R8V			
ESP32-S3-DevKitC-1U-	ESP32-S3-WROOM-1U-	8 MB QD	_	3.3 V
N8	N8			
ESP32-S3-DevKitC-1U-	ESP32-S3-WROOM-1U-	8 MB QD	2 MB QD	3.3 V
N8R2	N8R2			
ESP32-S3-DevKitC-1U-	ESP32-S3-WROOM-1U-	8 MB QD	8 MB OT	3.3 V
N8R8	N8R8			

备注: 上表中, QD 指代 Quad SPI, OT 指代 Octal SPI。

零售订单 如购买样品,每个开发板将以防静电袋或零售商选择的其他方式包装。

零售订单请前往 https://www.espressif.com/zh-hans/company/contact/buy-a-sample。

批量订单 如批量购买,开发板将以大纸板箱包装。

批量订单请前往 https://www.espressif.com/zh-hans/contact-us/sales-questions。

1.1.2 硬件参考

功能框图

ESP32-S3-DevKitC-1 的主要组件和连接方式如下图所示。

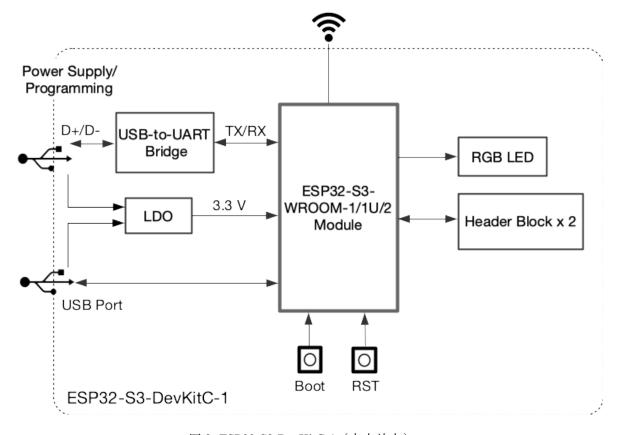


图 3: ESP32-S3-DevKitC-1 (点击放大)

电源选项 以下任一供电方式均可给开发板供电:

- USB 转 UART 接口供电或 ESP32-S3 USB 接口供电(选择其一或同时供电), 默认供电方式(推荐)
- 5V 和 G (GND) 排针供电
- 3V3 和 G (GND) 排针供电

排针

下表列出了开发板两侧排针(J1 和 J3)的 **名称**和 **功能**,排针的名称如图ESP32-S3-DevKitC-1- 正面 所示,排针的序号与 开发板原理图 (PDF) 一致。

J1

序	名	类	功能
号	称	型 Page 7, 1	
1	3V3	P	3.3 V 电源
2	3V3	P	3.3 V 电源
3	RST	I	EN
4	4	I/O/T	RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3
5	5	I/O/T	RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4
6	6	I/O/T	RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5
7	7	I/O/T	RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6
8	15	I/O/T	RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P
9	16	I/O/T	RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N
10	17	I/O/T	RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6
11	18	I/O/T	RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, CLK_OUT3
12	8	I/O/T	RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7, SUBSPICS1
13	3	I/O/T	RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2
14	46	I/O/T	GPIO46
15	9	I/O/T	RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD, SUBSPIHD
16	10	I/O/T	RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4, SUB-
			SPICS0
17	11	I/O/T	RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5, SUBSPID
18	12	I/O/T	RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6, SUB-
			SPICLK
19	13	I/O/T	RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7, SUBSPIQ
20	14	I/O/T	RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS, SUB-
			SPIWP
21	5V	P	5 V 电源
22	G	G	接地

J3

序号	名称	类型	功能
1	G	G	接地
2	TX	I/O/T	U0TXD, GPIO43, CLK_OUT1
3	RX	I/O/T	U0RXD, GPIO44, CLK_OUT2
4	1	I/O/T	RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0
5	2	I/O/T	RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1
6	42	I/O/T	MTMS, GPIO42
7	41	I/O/T	MTDI, GPIO41, CLK_OUT1
8	40	I/O/T	MTDO, GPIO40, CLK_OUT2
9	39	I/O/T	MTCK, GPIO39, CLK_OUT3, SUBSPICS1
10	38	I/O/T	GPIO38, FSPIWP, SUBSPIWP, RGB LED
11	37	I/O/T	SPIDQS, GPIO37, FSPIQ, SUBSPIQ
12	36	I/O/T	SPIIO7, GPIO36, FSPICLK, SUBSPICLK
13	35	I/O/T	SPIIO6, GPIO35, FSPID, SUBSPID
14	0	I/O/T	RTC_GPIO0, GPIO0
15	45	I/O/T	GPIO45
16	48	I/O/T	GPIO48, SPICLK_N, SUBSPICLK_N_DIFF
17	47	I/O/T	GPIO47, SPICLK_P, SUBSPICLK_P_DIFF
18	21	I/O/T	RTC_GPIO21, GPIO21
19	20	I/O/T	RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+
20	19	I/O/T	RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-
21	G	G	接地
22	G	G	接地

有关管脚功能名称的解释,请参考 ESP32-S3 技术规格书 (PDF)。

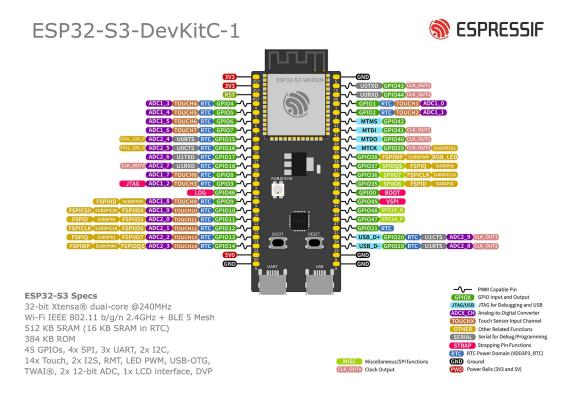


图 4: ESP32-S3-DevKitC-1 管脚布局 (点击放大)

管脚布局

1.1.3 硬件版本

首次发布

备注: 目前首次发布和 v1.1 版本的开发板均可订购,两个版本的主要差异在于 RGB LED 所连接的管脚不同。首次发布版本的 RGB LED 连接到 GPIO48,而 v1.1 版本的 RGB LED 连接到 GPIO38。

1.1.4 相关文档

- ESP32-S3 技术规格书 (PDF)
- ESP32-S3-WROOM-1 & ESP32-S3-WROOM-1U 技术规格书 (PDF)
- ESP32-S3-WROOM-2 技术规格书 (PDF)
- ESP32-S3-DevKitC-1 原理图 (PDF)
- ESP32-S3-DevKitC-1 PCB 布局图 (PDF)
- ESP32-S3-DevKitC-1 尺寸图 (PDF)
- ESP32-S3-DevKitC-1 尺寸图源文件 (DXF) 可使用 Autodesk Viewer 查看

有关本开发板的更多设计文档,请联系我们的商务部门 sales@espressif.com。

ESP32-S3-DevKitC-1

最新版本: ESP32-S3-DevKitC-1 v1.1

本指南将帮助你快速上手 ESP32-S3-DevKitC-1, 并提供该款开发板的详细信息。

ESP32-S3-DevKitC-1 是一款人门级开发板, 搭载 Wi-Fi+Bluetooth® LE 模组 ESP32-S3-WROOM-1、ESP32-S3-WROOM-1U 或 ESP32-S3-WROOM-2。

板上模组的大部分管脚均已引出至开发板两侧排针,开发人员可根据实际需求,轻松通过跳线连接多种外围设备,也可将开发板插在面包板上使用。

图 5: ESP32-S3-DevKitC-1 (板载 ESP32-S3-WROOM-1 模组)

本指南包括如下内容:

- 入门指南: 简要介绍了开发板和硬件、软件设置指南。
- 硬件参考: 详细介绍了开发板的硬件。
- 硬件版本:介绍硬件历史版本和已知问题,并提供链接至历史版本开发板的入门指南(如有)。
- 相关文档: 列出了相关文档的链接。

人门指南 本小节将简要介绍 ESP32-S3-DevKitC-1, 说明如何在 ESP32-S3-DevKitC-1 上烧录固件及相关准备工作。

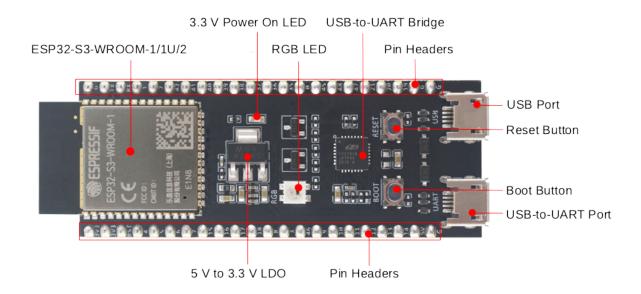


图 6: ESP32-S3-DevKitC-1 - 正面

组件介绍 以下按照逆时针的顺序依次介绍开发板上的主要组件。

主要组件	介绍
ESP32-S3-WROOM-1/1U/2	ESP32-S3-WROOM-1、ESP32-S3-WROOM-1U和ESP32-S3-WROOM-2
	是通用型 Wi-Fi + 低功耗蓝牙 MCU 模组,具有丰富的外设接口、强大
	的神经网络运算能力和信号处理能力,专为人工智能和 AIoT 市场打
	造。ESP32-S3-WROOM-1 和 ESP32-S3-WROOM-2 采用 PCB 板载天线,
	ESP32-S3-WROOM-1U 采用连接器连接外部天线。
5 V to 3.3 V LDO (5 V 转 3.3	电源转换器,输入5V,输出3.3V。
V LDO)	
Pin Headers (排针)	所有可用 GPIO 管脚(除 flash 的 SPI 总线)均已引出至开发板的排针。
	请查看排针 获取更多信息。
USB-to-UART Port (USB 转	Micro-USB 接口,可用作开发板的供电接口,可烧录固件至芯片,也可
UART 接口)	作为通信接口,通过板载 USB 转 UART 桥接器与芯片通信。
Boot Button (Boot 键)	下载按键。按住 Boot 键的同时按一下 Reset 键进入"固件下载"模式,
	通过串口下载固件。
Reset Button (Reset 键)	复位按键。
ESP32-S3 USB Port (ESP32-	ESP32-S3 USB OTG 接口,支持全速 USB 1.1 标准。ESP32-S3 USB 接
S3 USB 接口)	口可用作开发板的供电接口,可烧录固件至芯片,可通过 USB 协议与
	芯片通信,也可用于 JTAG 调试。
USB-to-UART Bridge(USB转	单芯片 USB 至 UART 桥接器,可提供高达 3 Mbps 的传输速率。
UART 桥接器)	
RGB LED	可寻址 RGB 发光二极管,由 GPIO48 驱动。
3.3 V Power On LED (3.3 V 电	开发板连接 USB 电源后,该指示灯亮起。
源指示灯)	

备注: 在板载 ESP32-S3-WROOM-1/1U 模组系列(使用 8 线 SPI flash/PSRAM)的开发板和板载 ESP32-S3-WROOM-2 模组系列的开发板中,管脚 GPIO35、GPIO36 和 GPIO37 已用于内部 ESP32-S3 芯片与 SPI flash/PSRAM 之间的通信,外部不可使用。

开始开发应用 通电前,请确保开发板完好无损。

必备硬件

- ESP32-S3-DevKitC-1
- USB 2.0 数据线 (标准 A 型转 Micro-B 型)
- 电脑 (Windows、Linux 或 macOS)

备注: 请确保使用适当的 USB 数据线。部分数据线仅可用于充电,无法用于数据传输和编程。

硬件设置 通过 USB 转 UART 接口连接开发板与电脑。软件暂不支持通过 ESP32-S3 USB 接口连接。在后续步骤中,默认使用 USB 转 UART 接口。

软件设置 请前往 快速入门,在 详细安装步骤 小节查看如何快速设置开发环境,将应用程序烧录至你的开发板。

内含组件和包装

订购信息 该开发板有多种型号可供选择,详见下表。

订购代码	搭载模组	Flash	PSRAM	SPI电压
ESP32-S3-DevKitC-1-N8	ESP32-S3-WROOM-1-N8	8 MB QD	_	3.3 V
ESP32-S3-DevKitC-1-	ESP32-S3-WROOM-1-	8 MB QD	2 MB QD	3.3 V
N8R2	N8R2			
ESP32-S3-DevKitC-1-	ESP32-S3-WROOM-1-	8 MB QD	8 MB OT	3.3 V
N8R8	N8R8			
ESP32-S3-DevKitC-1-	ESP32-S3-WROOM-2-	16 MB OT	8 MB OT	1.8 V
N16R8V	N16R8V			
ESP32-S3-DevKitC-1-	ESP32-S3-WROOM-2-	32 MB OT	8 MB OT	1.8 V
N32R8V	N32R8V			
ESP32-S3-DevKitC-1U-	ESP32-S3-WROOM-1U-	8 MB QD	_	3.3 V
N8	N8			
ESP32-S3-DevKitC-1U-	ESP32-S3-WROOM-1U-	8 MB QD	2 MB QD	3.3 V
N8R2	N8R2			
ESP32-S3-DevKitC-1U-	ESP32-S3-WROOM-1U-	8 MB QD	8 MB OT	3.3 V
N8R8	N8R8			

备注: 上表中, QD 指代 Quad SPI, OT 指代 Octal SPI。

零售订单 如购买样品,每个开发板将以防静电袋或零售商选择的其他方式包装。

零售订单请前往 https://www.espressif.com/zh-hans/company/contact/buy-a-sample。

批量订单 如批量购买,开发板将以大纸板箱包装。

批量订单请前往 https://www.espressif.com/zh-hans/contact-us/sales-questions。

硬件参考

功能框图 ESP32-S3-DevKitC-1 的主要组件和连接方式如下图所示。

电源选项 以下任一供电方式均可给开发板供电:

- USB 转 UART 接口供电或 ESP32-S3 USB 接口供电(选择其一或同时供电), 默认供电方式(推荐)
- 5V 和 G (GND) 排针供电
- 3V3 和 G (GND) 排针供电

排针 下表列出了开发板两侧排针(J1 和 J3)的 **名称**和 **功能**,排针的名称如图ESP32-S3-DevKitC-1- 正面 所示,排针的序号与 开发板原理图 (PDF) 一致。

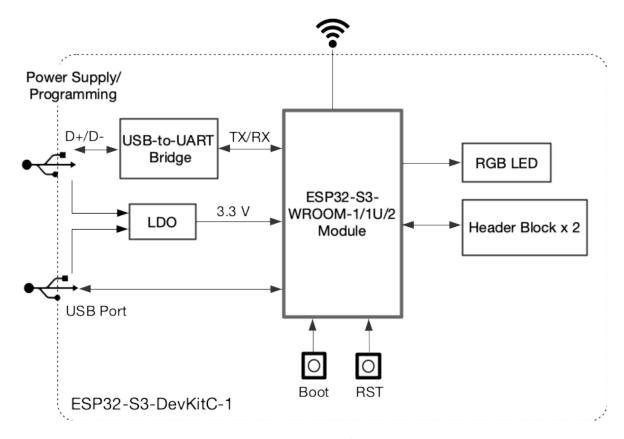


图 7: ESP32-S3-DevKitC-1 (点击放大)

J1

序	名	类	功能
号	称	型Page 13, 1	
1	3V3	P	3.3 V 电源
2	3V3	P	3.3 V 电源
3	RST	I	EN
4	4	I/O/T	RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3
5	5	I/O/T	RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4
6	6	I/O/T	RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5
7	7	I/O/T	RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6
8	15	I/O/T	RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P
9	16	I/O/T	RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N
10	17	I/O/T	RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6
11	18	I/O/T	RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, CLK_OUT3
12	8	I/O/T	RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7, SUBSPICS1
13	3	I/O/T	RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2
14	46	I/O/T	GPIO46
15	9	I/O/T	RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD, SUBSPIHD
16	10	I/O/T	RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4, SUB-
			SPICS0
17	11	I/O/T	RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5, SUBSPID
18	12	I/O/T	RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6, SUB-
			SPICLK
19	13	I/O/T	RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7, SUBSPIQ
20	14	I/O/T	RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS, SUB-
			SPIWP
21	5V	P	5 V 电源
22	G	G	接地

J3

序号	名称	类型	功能
1	G	G	接地
2	TX	I/O/T	U0TXD, GPIO43, CLK_OUT1
3	RX	I/O/T	U0RXD, GPIO44, CLK_OUT2
4	1	I/O/T	RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0
5	2	I/O/T	RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1
6	42	I/O/T	MTMS, GPIO42
7	41	I/O/T	MTDI, GPIO41, CLK_OUT1
8	40	I/O/T	MTDO, GPIO40, CLK_OUT2
9	39	I/O/T	MTCK, GPIO39, CLK_OUT3, SUBSPICS1
10	38	I/O/T	GPIO38, FSPIWP, SUBSPIWP
11	37	I/O/T	SPIDQS, GPIO37, FSPIQ, SUBSPIQ
12	36	I/O/T	SPIIO7, GPIO36, FSPICLK, SUBSPICLK
13	35	I/O/T	SPIIO6, GPIO35, FSPID, SUBSPID
14	0	I/O/T	RTC_GPIO0, GPIO0
15	45	I/O/T	GPIO45
16	48	I/O/T	GPIO48, SPICLK_N, SUBSPICLK_N_DIFF, RGB LED
17	47	I/O/T	GPIO47, SPICLK_P, SUBSPICLK_P_DIFF
18	21	I/O/T	RTC_GPIO21, GPIO21
19	20	I/O/T	RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+
20	19	I/O/T	RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-
21	G	G	接地
22	G	G	接地

有关管脚功能名称的解释,请参考芯片规格书(PDF)。

ESP32-S3-DevKitC-1

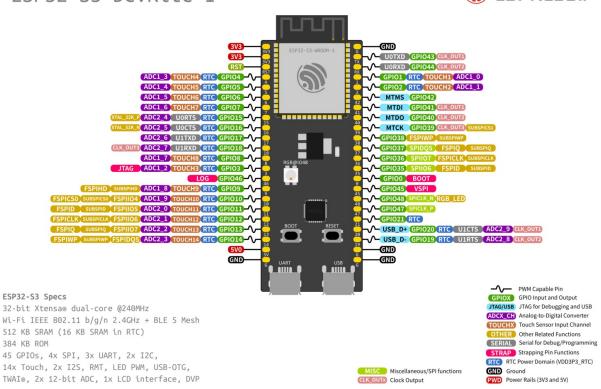


图 8: ESP32-S3-DevKitC-1 管脚布局 (点击放大)

¹ P: 电源; I: 输入; O: 输出; T: 可设置为高阻。

管脚布局

硬件版本 无历史版本。

相关文档

- ESP32-S3 技术规格书 (PDF)
- ESP32-S3-WROOM-1 & ESP32-S3-WROOM-1U 技术规格书 (PDF)
- ESP32-S3-WROOM-2 技术规格书 (PDF)
- ESP32-S3-DevKitC-1 原理图 (PDF)
- ESP32-S3-DevKitC-1 PCB 布局图 (PDF)
- ESP32-S3-DevKitC-1 尺寸图 (PDF)
- ESP32-S3-DevKitC-1 尺寸图源文件 (DXF) 可使用 Autodesk Viewer 查看

有关本开发板的更多设计文档,请联系我们的商务部门 sales@espressif.com。

Chapter 2

ESP32-S3-DevKitM-1

ESP32-S3-DevKitM-1 是一款入门级开发板,搭载的是 Wi-Fi+ 蓝牙 LE 模组 ESP32-S3-MINI-1 或 ESP32-S3-MINI-1U,该款模组因小尺寸而得名。

板上模组的大部分管脚均已引出至开发板两侧排针,开发人员可根据实际需求,轻松通过跳线连接多种外围设备,也可将开发板插在面包板上使用。

2.1 ESP32-S3-DevKitM-1

本指南将帮助你快速上手 ESP32-S3-DevKitM-1, 并提供该款开发板的详细信息。

ESP32-S3-DevKitM-1 是一款入门级开发板,搭载的是 Wi-Fi+ 蓝牙 LE 模组 ESP32-S3-MINI-1 或 ESP32-S3-MINI-1U,该款模组因小尺寸而得名。

板上模组的大部分管脚均已引出至开发板两侧排针,开发人员可根据实际需求,轻松通过跳线连接多种外围设备,也可将开发板插在面包板上使用。

本指南包括如下内容:

- 入门指南: 简要介绍了开发板和硬件、软件设置指南。
- 硬件参考:详细介绍了开发板的硬件。
- 相关文档: 列出了相关文档的链接。

2.1.1 人门指南

本小节将简要介绍 ESP32-S3-DevKitM-1, 说明如何在 ESP32-S3-DevKitM-1 上烧录固件及相关准备工作。

组件介绍

以下按照逆时针的顺序依次介绍开发板上的主要组件。

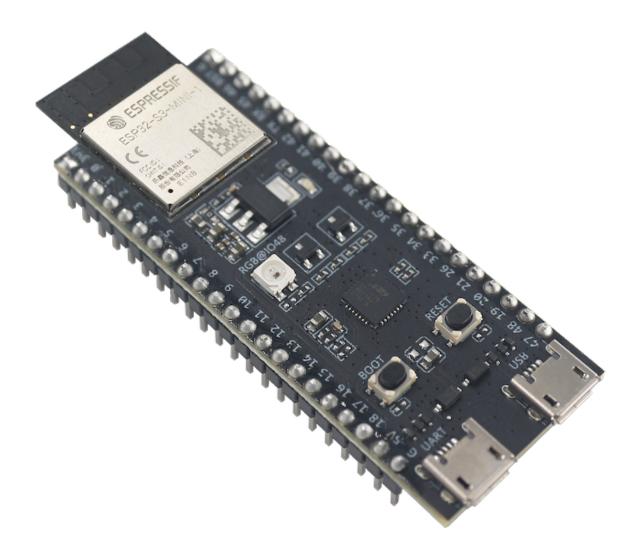


图 1: ESP32-S3-DevKitM-1(板载 ESP32-S3-MINI-1 模组)

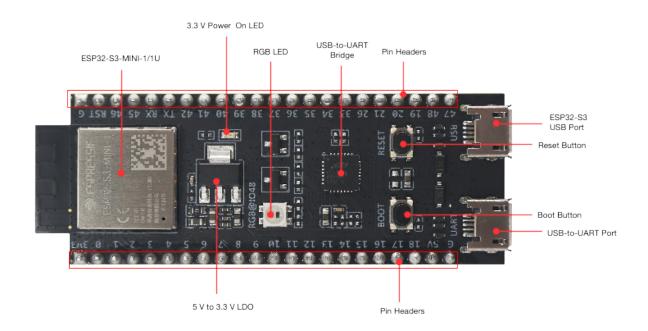


图 2: ESP32-S3-DevKitM-1 - 正面

	A //II
主要组件	介绍
ESP32-S3-MINI-1/1U	ESP32-S3-MINI-1 和 ESP32-S3-MINI-1U 是通用型 Wi-Fi + 低功耗蓝牙
	MCU 模组,具有丰富的外设接口。ESP32-S3-MINI-1 采用 PCB 板载天
	线,ESP32-S3-MINI-1U 采用连接器连接外部天线。两款模组的核心是
	ESP32-S3FN8 芯片。该芯片带有 8 MB flash,由于 flash 直接封装在芯
	片中,因此 ESP32-S3-MINI-1/1U 模组具有较小的封装尺寸。
5 V to 3.3 V LDO (5 V 转 3.3	电源转换器,输入5V,输出3.3V。
V LDO)	
Pin Headers (排针)	所有可用 GPIO 管脚(除 flash 的 SPI 总线)均已引出至开发板的排针。
	请查看排针 获取更多信息。
USB-to-UART Port (USB 转	Micro-USB 接口,可用作开发板的供电接口,可烧录固件至芯片,也可
UART 接口)	作为通信接口,通过板载 USB 转 UART 桥接器与芯片通信。
Boot Button (Boot 键)	下载按键。按住 Boot 键的同时按一下 Reset 键进入"固件下载"模式,
	通过串口下载固件。
Reset Button (Reset 键)	复位按键。
ESP32-S3 USB Port (ESP32-	ESP32-S3 USB OTG 接口,支持全速 USB 1.1 标准。ESP32-S3 USB 接
S3 USB 接口)	口可用作开发板的供电接口,可烧录固件至芯片,可通过 USB 协议与
	芯片通信,也可用于 JTAG 调试。
USB-to-UART Bridge(USB转	单芯片 USB 至 UART 桥接器,可提供高达 3 Mbps 的传输速率。
UART 桥接器)	
RGB LED	可寻址 RGB 发光二极管,由 GPIO48 驱动。
3.3 V Power On LED (3.3 V 电	开发板连接 USB 电源后,该指示灯亮起。
源指示灯)	

开始开发应用

通电前,请确保开发板完好无损。

必备硬件

- ESP32-S3-DevKitM-1
- USB 2.0 数据线 (标准 A 型转 Micro-B 型)

• 电脑 (Windows、Linux 或 macOS)

备注: 请确保使用适当的 USB 数据线。部分数据线仅可用于充电,无法用于数据传输和编程。

硬件设置 通过 USB 转 UART 接口或 ESP32-S3 USB 接口连接开发板与电脑。在后续步骤中, 默认使用 USB 转 UART 接口。

软件设置 请前往 快速入门,在 详细安装步骤 小节查看如何快速设置开发环境,将应用程序烧录至你的开发板。

内含组件和包装

零售订单 如购买样品,每个开发板将以防静电袋或零售商选择的其他方式包装。

零售订单请前往 https://www.espressif.com/zh-hans/company/contact/buy-a-sample。

批量订单 如批量购买,开发板将以大纸板箱包装。

批量订单请前往 https://www.espressif.com/zh-hans/contact-us/sales-questions。

2.1.2 硬件参考

功能框图

ESP32-S3-DevKitM-1的主要组件和连接方式如下图所示。

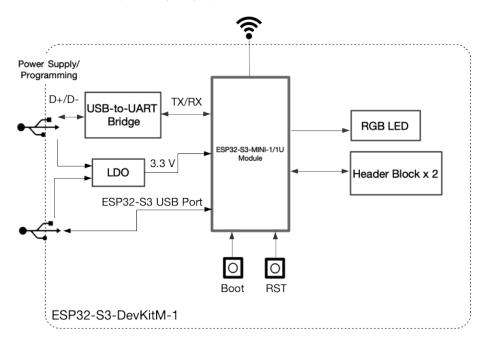


图 3: ESP32-S3-DevKitM-1 (点击放大)

电源选项 以下任一供电方式均可给开发板供电:

- USB 转 UART 接口供电或 ESP32-S3 USB 接口供电(选择其一或同时供电), 默认供电方式(推荐)
- 5V 和 G (GND) 排针供电
- 3V3 和 G (GND) 排针供电

排针

下表列出了开发板两侧排针(J1 和 J3)的 **名称**和 **功能**,排针的名称如图ESP32-S3-DevKitM-1 - 正面 所示,排针的序号与 开发板原理图 (PDF) 一致。

J1

序号	名	类	功能
	称	型 ¹	
1	3V3	P	3.3 V 电源
2	0	I/O/T	RTC_GPIO0, GPIO0
3	1	I/O/T	RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0
4	2	I/O/T	RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1
5	3	I/O/T	RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2
6	4	I/O/T	RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3
7	5	I/O/T	RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4
8	6	I/O/T	RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5
9	7	I/O/T	RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6
10	8	I/O/T	RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7, SUBSPICS1
11	9	I/O/T	RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD, SUBSPIHD
12	10	I/O/T	RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4, SUBSPICS0
13	11	I/O/T	RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5, SUBSPID
14	12	I/O/T	RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6, SUBSPI-
			CLK
15	13	I/O/T	RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7, SUBSPIQ
16	14	I/O/T	RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS, SUBSPIWP
17	15	I/O/T	RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P
18	16	I/O/T	RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N
19	17	I/O/T	RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6
20	18	I/O/T	RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, CLK_OUT3
21	5V	P	5 V 电源
22	G	G	接地

¹ P: 电源; I: 输入; O: 输出; T: 可设置为高阻。

J3

序号	名称	类型	功能
1	G	G	接地
2	RST	I	EN
3	46	I/O/T	GPIO46
4	45	I/O/T	GPIO45
5	RX	I/O/T	U0RXD, GPIO44, CLK_OUT2
6	TX	I/O/T	U0TXD, GPIO43, CLK_OUT1
7	42	I/O/T	MTMS, GPIO42
8	41	I/O/T	MTDI, GPIO41, CLK_OUT1
9	40	I/O/T	MTDO, GPIO40, CLK_OUT2
10	39	I/O/T	MTCK, GPIO39, CLK_OUT3, SUBSPICS1
11	38	I/O/T	GPIO38, FSPIWP, SUBSPIWP
12	37	I/O/T	SPIDQS, GPIO37, FSPIQ, SUBSPIQ
13	36	I/O/T	SPIIO7, GPIO36, FSPICLK, SUBSPICLK
14	35	I/O/T	SPIIO6, GPIO35, FSPID, SUBSPID
15	34	I/O/T	SPIIO5, GPIO34, FSPICS0, SUBSPICS0
16	33	I/O/T	SPIIO4, GPIO33, FSPIHD, SUBSPIHD
17	26	I/O/T	SPICS1, GPIO26
18	21	I/O/T	RTC_GPIO21, GPIO21
19	20	I/O/T	RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+
20	19	I/O/T	RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-
21	48	I/O/T	SPICLK_N, GPIO48, SUBSPICLK_N_DIFF, RGB LED
22	47	I/O/T	SPICLK_P, GPIO47, SUBSPICLK_P_DIFF

有关管脚功能名称的解释,请参考 ESP32-S3 技术规格书 (PDF)。

ESP32-S3-DevKitM-1

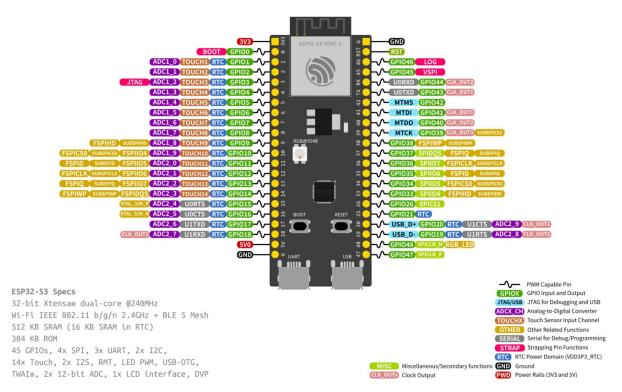


图 4: ESP32-S3-DevKitM-1 管脚布局(点击放大)

管脚布局

2.1.3 硬件版本

无历史版本。

2.1.4 相关文档

- ESP32-S3 技术规格书 (PDF)
- ESP32-S3-MINI-1 & ESP32-S3-MINI-1U 技术规格书 (PDF)
- ESP32-S3-DevKitM-1 原理图 (PDF)
- ESP32-S3-DevKitM-1 PCB 布局图 (PDF)
- ESP32-S3-DevKitM-1 尺寸图 (PDF)
- ESP32-S3-DevKitM-1 尺寸图源文件 (DXF) 可使用 Autodesk Viewer 查看

有关本开发板的更多设计文档,请联系我们的商务部门 sales@espressif.com。

Chapter 3

ESP32-S3-USB-OTG

ESP32-S3-USB-OTG 是一款侧重于 USB-OTG 功能验证和应用开发的开发板。 开发板的应用示例存放在 Examples 文件夹中。

3.1 ESP32-S3-USB-OTG

ESP32-S3-USB-OTG 是一款侧重于 USB-OTG 功能验证和应用开发的开发板,基于 ESP32-S3 SoC,支持 Wi-Fi 和 BLE 5.0 无线功能,支持 USB 主机和 USB 从机功能。可用于开发无线存储设备、Wi-Fi 网卡、LTE MiFi、多媒体设备、虚拟键鼠等应用。该开发板具有以下特性:

- 板载 ESP32-S3-MINI-1-N8 模组,内置 8 MB flash
- 板载 USB Type-A 主机和从机接口, 内置接口切换电路
- 板载 USB 转串口调试芯片 (micro USB 接口)
- 板载 1.3 英寸 LCD 彩屏, 支持 GUI
- 板载 SD 卡接口,兼容 SDIO 和 SPI 接口
- 板载充电 IC, 可外接锂电池

本指南包括:

- 快速入门: 提供 ESP32-S3-USB-OTG 的简要概述及必须了解的硬件和软件信息。
- 硬件参考: 提供 ESP32-S3-USB-OTG 的详细硬件信息。
- 相关文档: 提供相关文档的链接。

3.1.1 快速入门

本节介绍如何开始使用 ESP32-S3-USB-OTG。首先,介绍一些关于 ESP32-S3-USB-OTG 的基本信息,然后在应用程序开发章节介绍如何开始使用该开发板进行开发,最后介绍该开发板包装和零售信息。

组件介绍

ESP32-S3-USB-OTG 开发板包括以下两部分:

• **主板**: ESP32-S3-USB-OTG 主板是整个套件的核心,该主板集成了 ESP32-S3-MINI-1 模组,并提供 一个与 1.3 英寸 LCD 屏连接的接口。

下表将从左边的 USB_HOST 接口开始,以逆时针顺序介绍上图中的主要组件。

图 1: ESP32-S3-USB-OTG (点击图片放大)

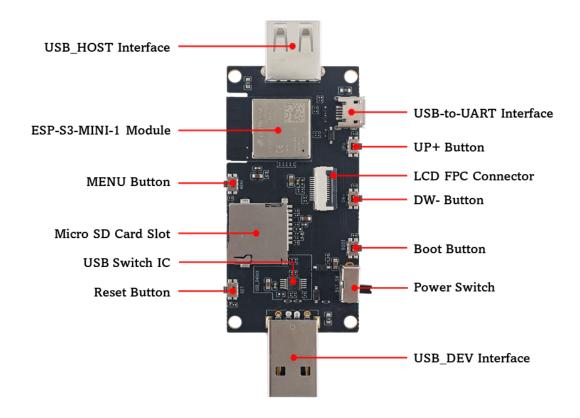


图 2: ESP32-S3-USB-OTG 正面图 (点击图片放大)

主要组件	描述
USB_HOST 接口	USB Type-A 母口,用来连接其它 USB 设备。
ESP32-S3-MINI-1 模组	ESP32-S3-MINI-1 是通用型 Wi-Fi + 低功耗蓝牙 MCU 模组,具有丰
	富的外设接口、强大的神经网络运算能力和信号处理能力,专为人
	工智能和 AIoT 市场打造。ESP32-S3-MINI-1 采用 PCB 板载天线,与
	ESP32-S2-MINI-1 pin-to-pin 兼容。
MENU 按键	菜单按键。
Micro SD 卡槽	可插入 Micro SD 卡。支持 4-线 SDIO 和 SPI 模式。
USB Switch IC	通过设置 USB_SEL 的电平,可以切换 USB 外设连接到 USB_DEV 或
	USB_HOST 接口,默认连接到 USB_DEV。
Reset 按钮	用于重启系统。
USB_DEV 接口	USB Type-A 公口,可连接其它 USB 主机,也作为锂电池充电。
电池供电开关	拨向 ON 按键一侧,使用电池供电;拨向 GND 按键一侧,通过其它方
	式供电。
Boot 按键	按键 Boot 键并保持,同时按一下 Reset 键,进入"固件下载"模式,通
	过串口下载固件。正常使用中可以作为确认按钮。
DW- 按键	向下按键。
屏幕排座	用于连接 1.3 英寸 LCD 屏。
UP+ 按键	向上按键。
USB 转 UART 接口	Micro-USB 接口,可用作开发板的供电接口,可烧录固件至芯片,也可
	作为通信接口,通过板载 USB 转 UART 桥接器与芯片通信。

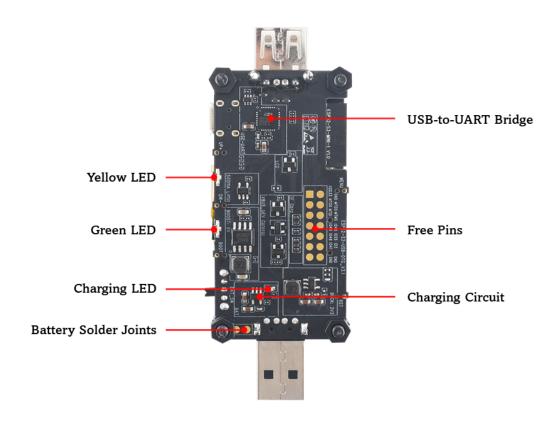


图 3: ESP32-S3-USB-OTG 背面图(点击图片放大)

下表将从左边的 USB_HOST 接口开始,以逆时针顺序介绍上图中的主要组件。

主要组件	描述
黄色指示灯	设置 GPIO16 为高电平,指示灯亮。
绿色指示灯	设置 GPIO15 为高电平,指示灯亮。
充电指示灯	当为电池充电时,亮起红灯,充电完成红灯熄灭。
电池焊点	可焊接 3.6 V 锂电池,为主板供电。
充电电路	用于为锂电池充电。
空闲管脚	可自定义的空闲管脚。
USB 转 UART 桥接器	单芯片 USB 至 UART 桥接器,可提供高达 3 Mbps 的传输速率。

• 子板: ESP32-S3-USB-OTG-SUB - 贴装 1.3 英寸 LCD 屏

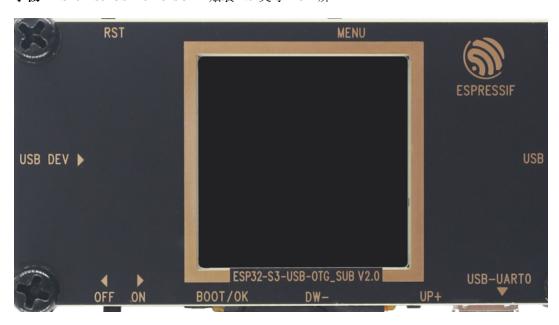


图 4: ESP32-S3-USB-OTG 子板(点击图片放大)

应用程序开发

ESP32-S3-USB-OTG 上电前,请首先确认开发板完好无损。

硬件准备

- ESP32-S3-USB-OTG
- 一根 USB 2.0 数据线 (标准 A 转 Micro-B)
- 电脑 (Windows、Linux 或 macOS)

软件设置 请前往快速入门中详细安装步骤一节查看如何快速设置开发环境。

工程选项 我们为 ESP32-S3-USB-OTG 开发板提供了应用示例,存放在 Examples 文件夹中。 您可以在示例目录下,输入 idf.py menuconfig 配置工程选项。

内容和包装

零售订单 每一个零售 ESP32-S3-USB-OTG 开发套件均有独立包装。 包含以下部分:

• 主板:

图 5: ESP32-S3-USB-OTG 包装 (click to enlarge)

- ESP32-S3-USB-OTG
- 子板:
 - ESP32-S3-USB-OTG_SUB
- 紧固件
 - 安装螺栓 (x4)
 - 螺丝 (x4)
 - 螺母 (x4)

零售订单请前往 https://www.espressif.com/zh-hans/company/contact/buy-a-sample。

批量订单 如批量购买,开发板将以大纸板箱包装。

批量订单请前往 https://www.espressif.com/zh-hans/contact-us/sales-questions。

3.1.2 硬件参考

功能框图

ESP32-S3-USB-OTG 的主要组件和连接方式如下图所示。

请注意,功能框图中的 USB_HOST D+ D- 信号对应的外部接口是 USB DEV,是指 ESP32-S3 作为设备接收其它 USB 主机的信号。USB_DEV D+ D- 信号对应的外部接口是 USB HOST,是指 ESP32-S3 作为主机控制其它设备。

开发板供电选择

开发板有三种供电方式:

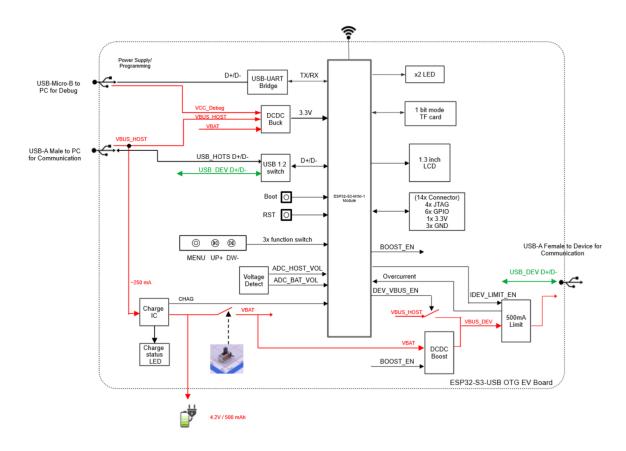


图 6: ESP32-S3-USB-OTG 功能框图 (click to enlarge)

- 1. 通过 Micro_USB 接口供电
 - 使用方法 1 供电时,应使用一根 USB 电缆 (标准 A 转 Micro-B) 将主控板连接至供电设备,将电源开关置于 OFF。请注意,该供电模式仅有主板和显示屏被供电。
- 2. 通过 USB_DEV 接口供电
 - 使用方法 2 供电时,应将 DEV_VBUS_EN 设置为高电平,并将电源开关设置为 OFF。该供电模式可同时向 USB HOST 接口供电,如已安装锂电池,会同时对锂电池进行充电。
- 3. 通过电池接口,使用外部锂电池供电
 - 使用方法 3 供电时,应将 BOOST_EN 设置为高电平,将电源开关设置为 ON,并将 1S 锂电池 (3.7 V~4.2 V) 焊接于主控板背面预留的电源焊点。该供电模式可同时向 USB HOST 接口供电。电池接口说明如下图:

USB HOST 接口供电选择

USB HOST接口(Type-A母口)可向已连接的USB设备供电,供电电压为5V,最大电流为500mA。

- 供电电源有以下两个:
 - 1. 通过 USB_DEV 接口供电, 5 V 电源直接来自该接口连接的电源
 - 2. 通过锂电池接口供电,锂电池 3.6 V ~ 4.2 V 电压通过 Boost 电路升压到 5 V。Boost IC 的工作 状态可通过 BOOST_EN/GPIO13 控制,GPIO13 为高电平是使能 Boost。
- 供电电源选择:

BOOST_EN	DEV_VBUS_EN	Power Source
0	1	USB_DEV
1	0	Battery
0	0	No output
1	1	Undefined

• 500 mA 限流电路

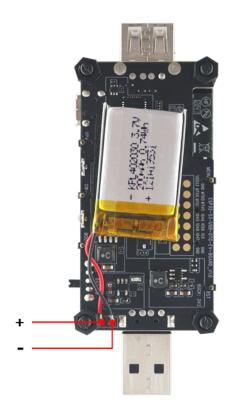


图 7: 电池连接图 (click to enlarge)

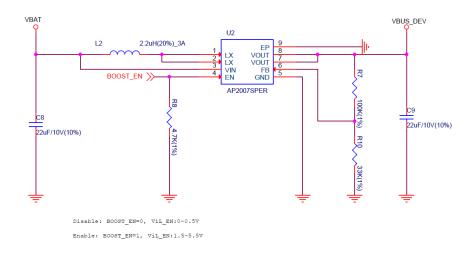
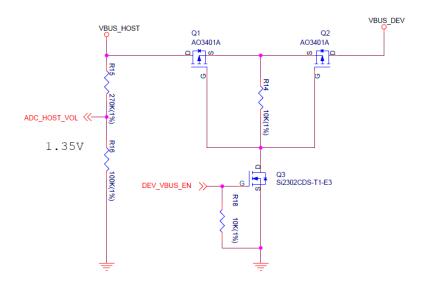



图 8: Boost 电路图 (click to enlarge)

Switch to VBUS_HOST power mode: Step1: set BOOST_EN=0 & Step2: set DEV_VBUS_EN=1 Switch to VBAT boost power mode: Step1: set DEV_VBUS_EN=0 & Step2: set BOOST_EN=1

图 9: 供电切换电路图

1. 限流 IC MIC2005A 可将 USB HOST 接口最大输出电流限制为 500 mA。必须设置 IDEV_LIMIT_EN (GPIO17) 为高电平, 使能限流 IC, USB HOST 接口才有电压输出。

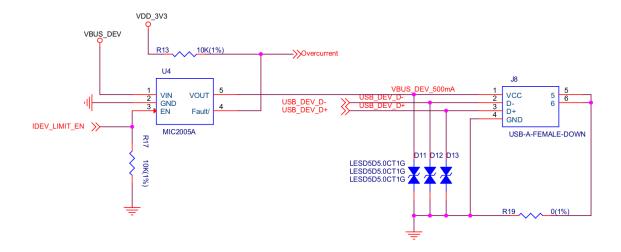


图 10: 500 mA 限流电路图

USB 接口选择电路

- 当 USB_SEL (GPIO18) 引脚为高电平时, USB D+/D- (GPIO19, 20) 信号将连通到 USB_DEV D+ D-, 这时可通过 USB HOST 接口 (Type-A 母口) 连接其它 USB 设备;
- 当 USB_SEL (GPIO18) 引脚为低电平时, USB D+/D- (GPIO19, 20) 信号将连通到 USB_HOST D+D-, 这时可通过 USB DEV 接口(Type-A 公口)连接到其它 USB 主机;
- 默认 USB_SEL 为低电平。

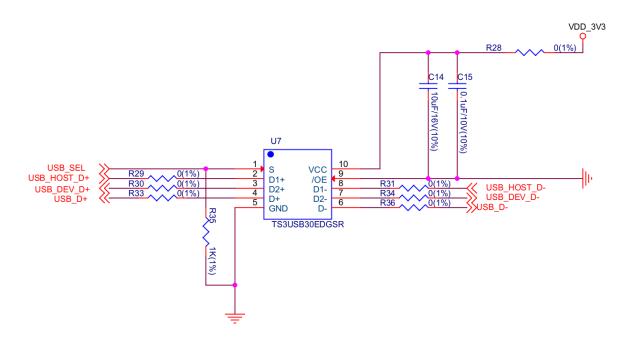


图 11: USB 接口切换电路图

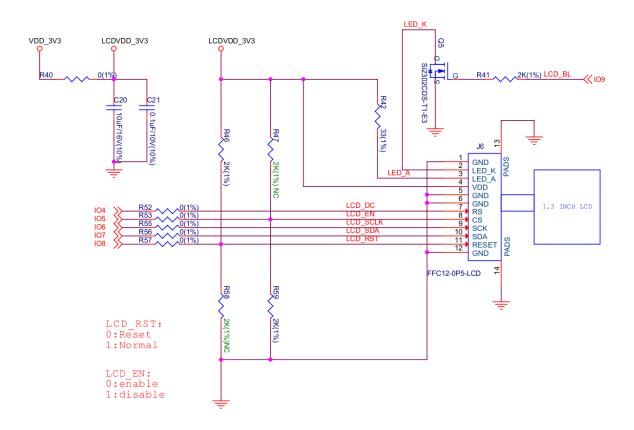


图 12: LCD 接口电路图

LCD 接口

请注意,该接口支持连接 SPI 接口屏幕,该开发板使用的屏幕型号为:project:'ST7789 <esp32-s3-usb-otg/datasheet/ST7789VW_datasheet.pdf>',LCD_BL (GPIO9)可用于控制屏幕背光。

SD 卡接口

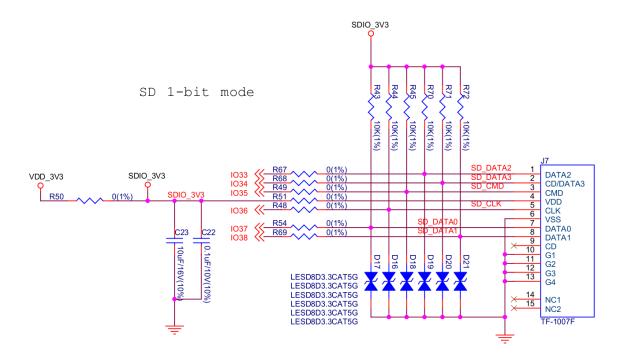


图 13: SD 卡接口电路图

请注意,SD卡接口同时兼容 1-线,4-线 SDIO 模式和 SPI 模式。上电后,卡会处于 3.3 V signaling 模式下。发送第一个 CMD0 命令选择 bus 模式:SD 模式或者 SPI 模式。

充电电路

请注意,可将 Type-A 公口接入输出为 5 V 的电源适配器,为电池充电时,充电电路上的红色指示灯亮,电池充电完成,红色指示灯熄灭。在使用充电电路时,请将电源开关置于 OFF。充电电流为 212.7 mA。

GPIO 分配

功能引脚:

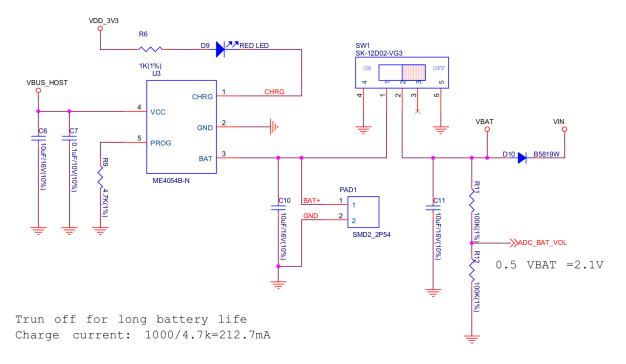


图 14: 充电电路图

No.	ESP32-S3-MINI-	说明
	1 管脚	
1	GPIO18	USB_SEL:用于切换 USB 接口,高电平时,USB_HOST 接口使能。低
		电平时 (默认),USB_DEV 接口使能。
2	GPIO19	与 USB_D- 接口相连。
3	GPIO20	与 USB_D+ 接口相连。
4	GPIO15	LED_GREEN: 用于控制绿色 LED 灯,高电平时,灯被点亮。
5	GPIO16	LED_YELLOW:用于控制黄色 LED 灯,高电平时,灯被点亮。
6	GPIO0	BUTTON_OK: OK 按键,按下为低电平。
7	GPIO11	BUTTON_DW: Down 按键,按下为低电平。
8	GPIO10	BUTTON_UP: UP 按键,按下为低电平。
9	GPIO14	BUTTON_MENU: MENU 按键,按下为低电平。
10	GPIO8	LCD_RET:用于复位 LCD,低电平时复位。
11	GPIO5	LCD_EN: 用于使能 LCD, 低电平时使能。
12	GPIO4	LCD_DC: 用于切换数据和命令状态。
13	GPIO6	LCD_SCLK: LCD SPI 时钟信号。
14	GPIO7	LCD_SDA: LCD SPI MOSI 信号。
15	GPIO9	LCD_BL: LCD 背光控制信号。
16	GPIO36	SD_SCK: SD SPI CLK / SDIO CLK。
17	GPIO37	SD_DO: SD SPI MISO / SDIO Data0。
18	GPIO38	SD_D1: SDIO Data1。
19	GPIO33	SD_D2: SDIO Data2。
20	GPIO34	SD_D3: SD SPI CS / SDIO Data3。
21	GPIO1	HOST_VOL: USB_DEV 电压监测,ADC1 通道 0。
22	GPIO2	BAT_VOL: 电池电压监测,ADC1 通道 1。
23	GPIO17	LIMIT_EN: 使能限流芯片,高电平使能。
24	GPIO21	0VER_CURRENT: 电流超限信号, 高电平代表超限。
25	GPIO12	DEV_VBUS_EN:高电平选择 DEV_VBUS 电源。
26	GPIO13	BOOST_EN:高电平使能 Boost 升压电路。

扩展功能引脚:

No.	ESP32-S3-MINI-1 管脚	说明
1	GPIO45	FREE_1: 空闲,可自定义。
2	GPIO46	FREE_2: 空闲,可自定义。
3	GPIO48	FREE_3: 空闲,可自定义。
4	GPIO26	FREE_4: 空闲,可自定义。
5	GPIO47	FREE_5: 空闲,可自定义。
6	GPIO3	FREE_6: 空闲,可自定义。

3.1.3 相关文档

- ESP32-S3 技术规格书 (PDF)
- ESP32-S3-MINI-1/1U 技术规格书 (PDF)
- 乐鑫产品选型工具
- ESP32-S3-USB-OTG 原理图 (PDF)
- ESP32-S3-USB-OTG PCB 布局图 (PDF)
- ST7789VW 规格书 (PDF)

Chapter 4

ESP32-S3-LCD-EV-Board

ESP32-S3-LCD-EV-Board 是用于评估和验证 ESP32-S3 屏幕应用的开发板,其由主板和子板构成,通过更换子板可方便接入不同的屏幕。

备注: 请查看主板 ESP32-S3-LCD-EV-Board-MB 背面的丝印版本号,以确认您的开发板版本。对于 v1.5 版本的开发板,请参考*ESP32-S3-LCD-EV-Board v1.5*; 对于 v1.4 及以下版本的开发板,请参考*ESP32-S3-LCD-EV-Board v1.4*。

除非另有说明,本文中的 ESP32-S3-LCD-EV-Board 同时指 **ESP32-S3-LCD-EV-Board** 和 **ESP32-S3-EV-Board** 和 **ESP32-ESP3-EV-Board** 和 **ESP32-ESP3-ESP3-**

4.1 ESP32-S3-LCD-EV-Board v1.5

备注: 请查看主板 ESP32-S3-LCD-EV-Board-MB 背面的丝印版本号,以确认您的开发板版本。对于 v1.5 版本的开发板,请参考当前用户指南;对于 v1.4 及以下版本的开发板,请参考*ESP32-S3-LCD-EV-Board* v1.4。

除非另有说明,本文中的 ESP32-S3-LCD-EV-Board 同时指 **ESP32-S3-LCD-EV-Board** 和 **ESP32-S3-EV-Board**

本指南将帮助您快速上手 ESP32-S3-LCD-EV-Board, 并提供该款开发板的详细信息。

本指南包括如下内容:

- 开发板概述: 简要介绍了开发板的软件和硬件。
- 应用程序开发:介绍了应用程序开发过程中的软硬件设置。
- 硬件参考:详细介绍了开发板的硬件。
- 硬件版本: 暂无历史版本。 样品获取: 如何获取样品。
- 相关文档: 列出了相关文档的链接。

4.1.1 开发板概述

ESP32-S3-LCD-EV-Board 是一款基于 ESP32-S3 芯片的屏幕交互开发板,通过搭配不同类型的 LCD 子板,可以驱动 IIC、SPI、8080 以及 RGB 接口的 LCD 显示屏。同时它还搭载双麦克风阵列,支持语音识别和

近/远场语音唤醒,具有触摸屏交互和语音交互功能,满足用户对多种不同分辨率以及接口的触摸屏应用产品的开发需求。

目前支持两款开发板:

- 搭配 480x480 LCD 的 ESP32-S3-LCD-EV-Board
- 搭配 800x480 LCD 的 ESP32-S3-LCD-EV-Board-2

图 1: 搭配 480x480 LCD 的 ESP32-S3-LCD-EV-Board

特性列表

该开发板具有以下特性:

- 嵌入式模组: 板载 ESP32-S3-WROOM-1 模组,内置 16 MB flash 以及 16 MB PSRAM
- **屏幕**: 可搭配不同屏幕子板使用,支持 RGB、8080、SPI 以及 I2C 接口屏幕,请查看*LCD* 子板 了解更多信息
- 音频: 板载音频 Codec + ADC 功放, 支持双麦克风拾音
- USB: 板载 USB 转串口芯片,并且支持 USB Type-C 接口下载调试

功能框图

ESP32-S3-LCD-EV-Board 的主要组件和连接方式如下图所示。

图 2: 搭配 800x480 LCD 的 ESP32-S3-LCD-EV-Board-2

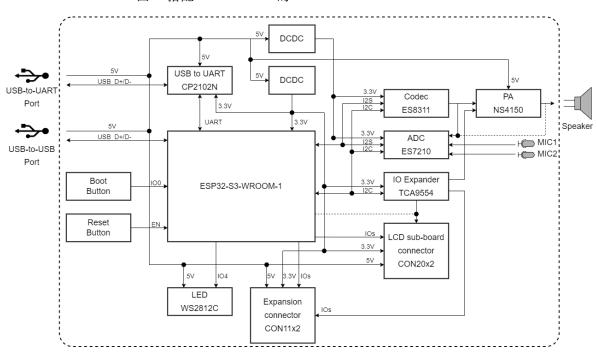


图 3: ESP32-S3-LCD-EV-Board 功能框图 (点击放大)

组件介绍

ESP32-S3-LCD-EV-Board 开发板由主板和子板(子板类型请查看*LCD* 子板)组成,此外还可以选配一块 USB Type-A 转接板。

主板 ESP32-S3-LCD-EV-Board-MB 主板是整个套件的核心,该主板集成了 ESP32-S3-WROOM-1 模组,并提供与 LCD 子板连接的端口。

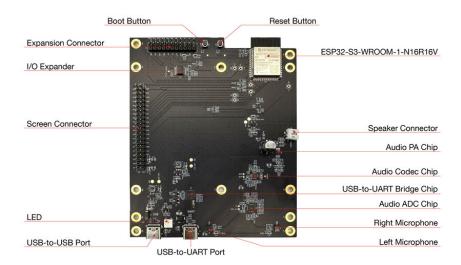


图 4: ESP32-S3-LCD-EV-Board-MB - 正面(点击放大)

以下按照逆时针顺序依次介绍开发板上的主要组件。

主要组件	介绍
ESP32-S3-WROOM-1-	ESP32-S3-WROOM-1-N16R16V 模组是一款通用型 Wi-Fi+低功耗蓝牙
N16R16V 模组	MCU 模组,搭载 ESP32-S3 系列芯片,内置 16 MB flash 以及 16 MB
	PSRAM。除具有丰富的外设接口外,模组还拥有强大的神经网络运算
	能力和信号处理能力,适用于 AIoT 领域的多种应用场景。
Reset 按键	单独按下此按键会重置系统。
Boot 按键	长按 Boot 键时,再按 Reset 键可启动固件上传模式,然后便可通过串
	口或 USB 上传固件。
扩展连接器	可供连接所有的 IO 扩展芯片管脚、系统电源管脚以及部分模组管脚。
I/O 扩展芯片	TCA9554 是一款 8 位通用并行输入和输出 I/O 扩展芯片,它通过两线
	I2C 通信控制 IO 口的模式以及输出电平,丰富了系统的 IO 应用场景。
LCD 子板连接器	通过 2.54 mm 间距的连接器可以连接三种不同类型的 LCD 子板。
LED	具有 RGB 三色显示功能,可供用户配置用来做状态行为指示。
USB-to-USB 端口	为整个系统提供电源(USB-to-USB 端口和 USB-to-UART 端口两者选
	一)。建议使用至少 5V/2A 电源适配器供电,保证供电稳定。该端口用
	于 PC 端与 ESP32-S3-WROOM-1 模组的 USB 通信。
USB-to-UART 端口	为整个系统提供电源(USB-to-USB 端口和 USB-to-UART 端口两者选
	一)。建议使用至少 5V/2A 电源适配器供电,保证供电稳定。该端口用
	于 PC 端与 ESP32-S3-WROOM-1 模组的串口通信。
左侧麦克风	板载麦克风,连接至音频模数转换器。
右侧麦克风	板载麦克风,连接至音频模数转换器。
音频模数转换器	ES7210 是一款用于麦克风阵列应用的高性能、低功耗 4 通道音频模数
	转换器,同时具备声学回声消除 (AEC) 功能,非常适合音乐和语音应
	用。
USB-to-UART 桥接器	单芯片 USB-UART 桥接器 CP2102N 为软件下载和调试提供高达 3
	Mbps 的传输速率。
音频编解码芯片	ES8311 是一种低功耗单声道音频编解码器,包含单通道 ADC、单通道
	DAC、低噪声前置放大器、耳机驱动器、数字音效、模拟混音和增益
	功能。它通过 I2S 和 I2C 总线与 ESP32-S3-WROOM-1 模组连接,以提供对于工产证的
立路中变补上明	供独立于音频应用程序的硬件音频处理。
音频功率放大器	NS4150 是一款低 EMI、3 W 单声道 D 类音频功率放大器,用于放大来
松丰明连拉明	自音频编解码芯片的音频信号,以驱动扬声器。
扬声器连接器	可通过音频功率放大器的支持,实现外部扬声器播放功能。

LCD 子板 主板可搭配以下三种不同类型的子板使用:

子板名称	屏幕(英	分辨率	LCD 驱动	触摸驱动	在售开发板
	寸)	(px)	芯片(接	芯片	
			口)		
ESP32-S3-LCD-EV-	0.96	128 x 64	SSD1315	N/A	无
Board-SUB1 v1.0			(I2C)		
	2.40	320 x 240	ST7789V	XTP2046	无
			(SPI)		
ESP32-S3-LCD-EV-	3.50	480 x 320	ST7796S	GT911	无
Board-SUB2 v1.5			(8080)		
	3.95	480 x 480	GC9503CV	FT5x06	ESP32-S3-LCD-EV-
			(RGB)		Board
ESP32-S3-LCD-EV-	4.30	800 x 480	ST7262E43	GT1151	ESP32-S3-LCD-EV-
Board-SUB3 v1.3			(RGB)		Board-2

- ESP32-S3-LCD-EV-Board-SUB1 子板提供了两种屏幕接口,分别支持连接一块 2.4 英寸 SPI 接口 屏或者一块 0.96 英寸 I2C 接口屏。该子板暂未做适配,此处不做进一步讲解。
- ESP32-S3-LCD-EV-Board-SUB2 子板提供了两种屏幕接口,分别支持连接一块 RGB 接口屏或者一块 8080 并口屏。当前子板贴装了一块 3.95 英寸、RGB565 接口、分辨率为 480x480 的触摸屏,该屏使用的 LCD 驱动芯片型号为 GC9503CV,触摸驱动芯片型号为 FT5x06。

图 5: ESP32-S3-LCD-EV-Board-SUB2 - 正面(点击放大)

图 6: ESP32-S3-LCD-EV-Board-SUB2 - 反面(点击放大)

• **ESP32-S3-LCD-EV-Board-SUB3** 子板仅支持 4.3 英寸、RGB565 接口、分辨率为 800x480 的触摸屏, 该屏使用的 LCD 驱动芯片型号为 ST7262E43, 触摸驱动芯片型号为 GT1151。

USB Type-A 转接板 通过连接 USB Type-A 转接板, 主板可作为 USB Host 连接 USB 设备。

4.1.2 应用程序开发

本节介绍硬件和软件的设置方法,以及烧录固件至开发板以开发应用程序的说明。

必备硬件

- 1 x ESP32-S3-LCD-EV-Board-MB
- 1 x LCD 子板
- 1 x USB 2.0 数据线 (标准 A 型转 Type-C 型)
- 1 x 电脑(Windows、Linux 或 macOS)

备注: 请确保使用适当的 USB 数据线。部分数据线仅可用于充电,无法用于数据传输和程序烧录。

可选硬件

• 1 x 扬声器

图 7: ESP32-S3-LCD-EV-Board-SUB3 - 正面(点击放大)

图 8: ESP32-S3-LCD-EV-Board-SUB3 - 反面(点击放大)



图 9: USB Type-A 转接板 v1.1 - 正面(点击放大)

图 10: USB Type-A 转接板 v1.1 - 与主板连接(点击放大)

图 11: USB Type-A 转接板 v1.1 - 连接 USB 设备(点击放大)

硬件设置

准备开发板,加载第一个示例应用程序:

- 1. 连接 LCD 子板至 LCD 子板连接器端口。
- 2. 插入 USB 数据线,分别连接 PC 与开发板的两个 USB 端口之一。
- 3. LCD 屏幕亮起,可以用手指与触摸屏进行交互。

硬件设置完成,接下来可以进行软件设置。

软件设置

ESP32-S3-LCD-EV-Board 的开发框架为 ESP-IDF。ESP-IDF 是基于 FreeRTOS 的乐鑫 SoC 开发框架,具有众多组件,包括 LCD、ADC、RMT、SPI 等。开发板应用示例存放在 Examples 中,在示例目录下输入idf.py menuconfig 可以配置工程选项。

了解如何快速设置开发环境,请前往快速入门>安装。

备注:

- ESP-IDF 的版本要求在 v5.0.1 及以上,推荐使用最新的 release/v5.1 分支开发。
- 关于如何开发 LCD 应用的更多信息,请参考 ESP-IoT-Solution 编程指南。

4.1.3 硬件参考

本节提供关于开发板硬件的更多信息。

GPIO 分配列表

下表为 ESP32-S3-WROOM-1 模组管脚的 GPIO 分配列表,用于控制开发板的特定组件或功能。

表 1: ESP32-S3-WROOM-1 GPIO 分配

管脚	管脚名称	功能
1	GND	接地
2	3V3	供电
3	EN	RESET
4	IO4	LED
5	IO5	I2S_MCLK
6	IO6	I2S_CODEC_DSDIN
7	IO7	I2S_LRCK
8	IO15	I2S_ADC_SDOUT
9	IO16	I2S_SCLK
10	IO17	LCD_DE
11	IO18	LCD_DATA7
12	IO8	LCD_DATA6
13	IO19	USB_D-
14	IO20	USB_D+
15	IO3	LCD_VSYNC
16	IO46	LCD_HSYNC
17	IO9	LCD_PCLK
18	IO10	LCD_DATA0
19	IO11	LCD_DATA1
20	IO12	LCD_DATA2
21	IO13	LCD_DATA3

下页继续

表 1 - 续上页

管脚	管脚名称	功能
22	IO14	LCD_DATA4
23	IO21	LCD_DATA5
24	IO47	I2C_SDA
25	IO48	I2C_SCL
26	IO45	LCD_DATA8
27	IO0	BOOT
28	IO35	未连接
29	IO36	未连接
30	IO37	未连接
31	IO38	LCD_DATA9
32	IO39	LCD_DATA10
33	IO40	LCD_DATA11
34	IO41	LCD_DATA12
35	IO42	LCD_DATA13
36	RXD0	UART_RXD0
37	TXD0	UART_TXD0
38	IO2	LCD_DATA14
39	IO1	LCD_DATA15
40	GND	接地
41	EPAD	接地

分配给 IO 扩展芯片的 GPIO 被进一步分配为多个 GPIO。

表 2: IO 扩展芯片 GPIO 分配

IO 扩展器管脚	管脚名称	功能
1	A0	接地
2	A1	接地
3	A2	接地
4	P0	PA_CTRL
5	P1	LCD_SPI_CS
6	P2	LCD_SPI_SCK
7	P3	LCD_SPI_MOSI
8	GND	接地
9	P4	可做任意用途
10	P5	可做任意用途
11	P6	可做任意用途
12	P7	可做任意用途
13	INT	未连接
14	SCL	I2C_SCL
15	SDA	I2C_SDA
16	VCC	供电电压

供电说明

USB 供电 开发板有两种 USB 供电方式:

- 通过 USB-to-USB 端口供电
- 通过 USB-to-UART 端口供电

<mark>音频和数字独立供电</mark> ESP32-S3-LCD-EV-Board 可为音频组件和 ESP 模组提供相互独立的电源,可降低数字组件给音频信号带来的噪声并提高组件的整体性能。

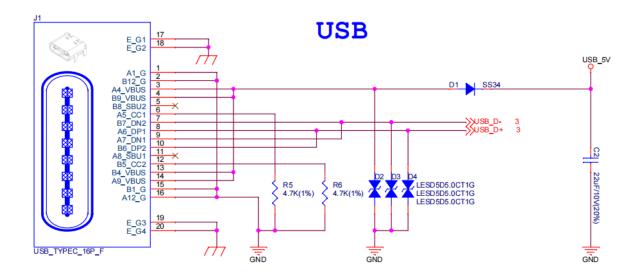


图 12: ESP32-S3-LCD-EV-Board - USB-to-USB 电源供电

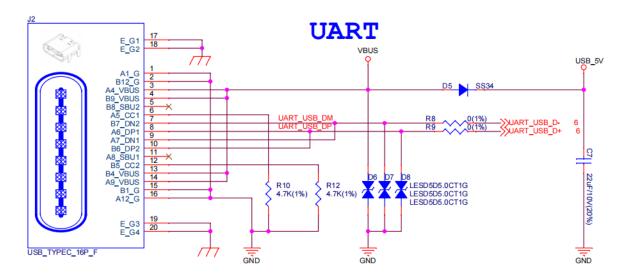


图 13: ESP32-S3-LCD-EV-Board - USB-to-UART 电源供电

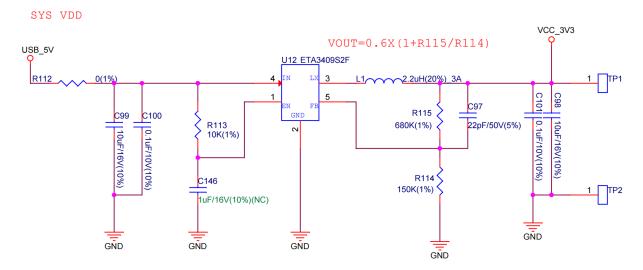


图 14: ESP32-S3-LCD-EV-Board - 数字供电

Audio VDD

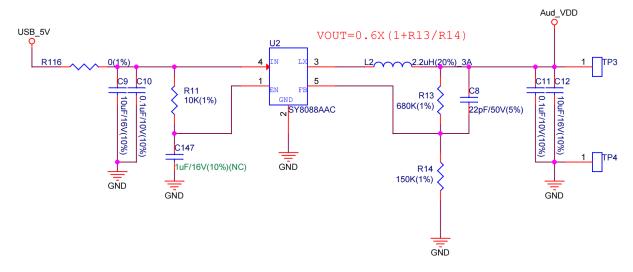


图 15: ESP32-S3-LCD-EV-Board - 音频供电

AEC 电路

AEC 电路为 AEC 算法提供参考信号。

ESP32-S3-LCD-EV-Board 回声参考信号源有两路兼容设计,一路是 Codec (ES8311) DAC 输出 (DAC_AOUTLN/DAC_AOUTLP),一路是 PA (NS4150) 输出 (PA_OUTL+/PA_OUTL-)。推荐将默认 Codec (ES8311) DAC 输出 (DAC_AOUTLN/DAC_AOUTLP) 作为回声参考信号,下图中电阻 R54、R56 无需连接。

回声参考信号通过 ADC (ES7210) 的 ADC_MIC3P/ADC_MIC3N 采集后送回给 ESP32-S3 用于 AEC 算法。

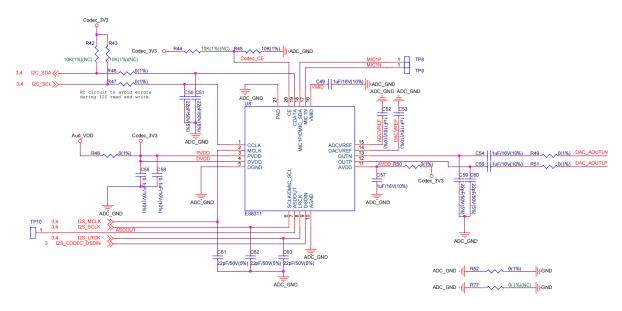


图 16: ESP32-S3-LCD-EV-Board - AEC Codec DAC 输出(点击放大)

硬件设置选项

自动下载 可以通过两种方式使开发板进入下载模式:

• 按下 Boot 和 Reset 键, 然后先松开 Reset 键, 再松开 Boot 键。

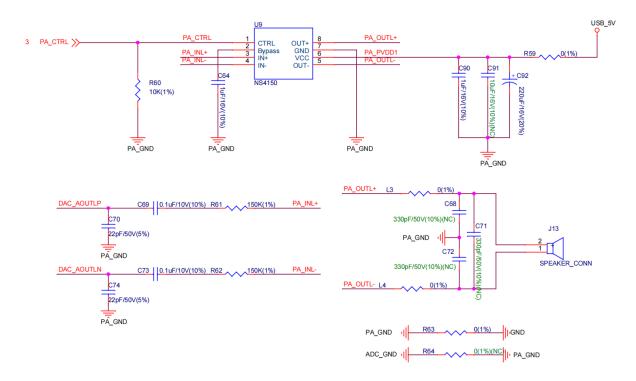


图 17: ESP32-S3-LCD-EV-Board - AEC PA 输出(点击放大)

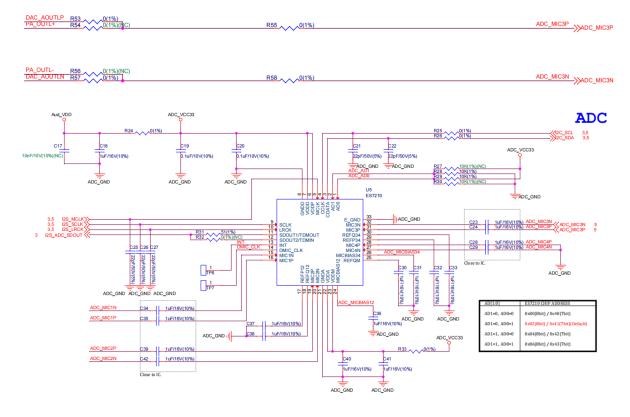


图 18: ESP32-S3-LCD-EV-Board - 参考信号采集(点击放大)

• 由软件自动执行下载。软件利用串口的 DTR 和 RTS 信号来控制开发板 EN、IOO 管脚的状态。

4.1.4 硬件版本

ESP32-S3-LCD-EV-Board v1.5

- 以下管脚已重新分配,以适用于 ESP32-S3-WROOM-1-N16R16V 模组:
 - I2C_SCL: 由 I018 改为 I048
 - I2C_SDA: 由 IO8 改为 IO47
 - LCD_DATA6: 由 IO47 改为 IO8
 - LCD_DATA7: 由 IO48 改为 IO18
- IO47 和 IO48 新增电平转换电路,用于将 1.8 V 电平转换为 3.3 V 电平。

ESP32-S3-LCD-EV-Board v1.4

• 首次发布

4.1.5 样品获取

此开发板及转接板适用于评估高性能的 智能屏方案。如有需要,请前往 乐鑫官方淘宝商城 进行采购。

4.1.6 相关文档

- ESP32-S3 技术规格书
- ESP32-S3-WROOM-1 技术规格书
- 乐鑫产品选型工具
- ESP32-S3-LCD-EV-Board-MB 原理图
- ESP32-S3-LCD-EV-Board-MB PCB 布局图
- ESP32-S3-LCD-EV-Board-SUB1 原理图
- ESP32-S3-LCD-EV-Board-SUB1 PCB 布局图
- ESP32-S3-LCD-EV-Board-SUB2 原理图
- ESP32-S3-LCD-EV-Board-SUB2 PCB 布局图
- 3.95_480x480_RGB_Display 屏幕规格书
- ESP32-S3-LCD-EV-Board-SUB3 原理图
- ESP32-S3-LCD-EV-Board-SUB3 PCB 布局图
- ESP32-S3-LCD-EV-Board USB 转接板原理图
- ESP32-S3-LCD-EV-Board USB 转接板 PCB 布局图
- TCA9554 规格书
- 4.3_800x480_RGB_Display 屏幕规格书

有关本开发板的更多设计文档,请联系我们的商务部门 sales@espressif.com。

4.2 ESP32-S3-LCD-EV-Board v1.4

备注: 请查看主板 ESP32-S3-LCD-EV-Board-MB 背面的丝印版本号,以确认您的开发板版本。对于 v1.4 及以下版本的开发板,请参考当前用户指南;对于 v1.5 版本的开发板,请参考*ESP32-S3-LCD-EV-Board v1.5*。

除非另有说明,本文中的 ESP32-S3-LCD-EV-Board 同时指 **ESP32-S3-LCD-EV-Board** 和 **ESP32-S3-EV-Board** 和 **ESP32-ESP3-EV-Board** 和 **ESP32-ESP3-EV-Bo**

本指南将帮助您快速上手 ESP32-S3-LCD-EV-Board, 并提供该款开发板的详细信息。

本指南包括如下内容:

- 开发板概述: 简要介绍了开发板的软件和硬件。
- 应用程序开发:介绍了应用程序开发过程中的软硬件设置。
- 硬件参考: 详细介绍了开发板的硬件。
- 硬件版本: 暂无历史版本。 样品获取: 如何获取样品。
- 相关文档: 列出了相关文档的链接。

4.2.1 开发板概述

ESP32-S3-LCD-EV-Board 是一款基于 ESP32-S3 芯片的屏幕交互开发板,通过搭配不同类型的 LCD 子板,可以驱动 IIC、SPI、8080 以及 RGB 接口的 LCD 显示屏。同时它还搭载双麦克风阵列,支持语音识别和近/远场语音唤醒,具有触摸屏交互和语音交互功能,满足用户对多种不同分辨率以及接口的触摸屏应用产品的开发需求。

目前支持两款开发板:

- 搭配 480x480 LCD 的 ESP32-S3-LCD-EV-Board
- 搭配 800x480 LCD 的 ESP32-S3-LCD-EV-Board-2

图 19: 搭配 480x480 LCD 的 ESP32-S3-LCD-EV-Board

图 20: 搭配 800x480 LCD 的 ESP32-S3-LCD-EV-Board-2

特性列表

该开发板具有以下特性:

- 嵌入式模组: 板载 ESP32-S3-WROOM-1 模组, 内置 16 MB flash 以及 8 MB PSRAM
- **屏幕**: 可搭配不同屏幕子板使用,支持 RGB、8080、SPI 以及 I2C 接口屏幕,请查看*LCD* 子板 了解更多信息
- **音频**: 板载音频 Codec + ADC 功放, 支持双麦克风拾音
- USB: 板载 USB 转串口芯片,并且支持 USB Type-C 接口下载调试

功能框图

ESP32-S3-LCD-EV-Board 的主要组件和连接方式如下图所示。

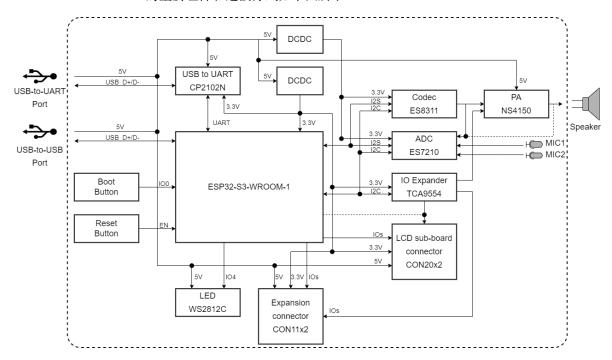


图 21: ESP32-S3-LCD-EV-Board 功能框图 (点击放大)

组件介绍

ESP32-S3-LCD-EV-Board 开发板由主板和子板(子板类型请查看*LCD* 子板)组成,此外还可以选配一块 USB Type-A 转接板。

主板 ESP32-S3-LCD-EV-Board-MB 主板是整个套件的核心,该主板集成了 ESP32-S3-WROOM-1 模组,并提供与 LCD 子板连接的端口。

以下按照逆时针顺序依次介绍开发板上的主要组件。

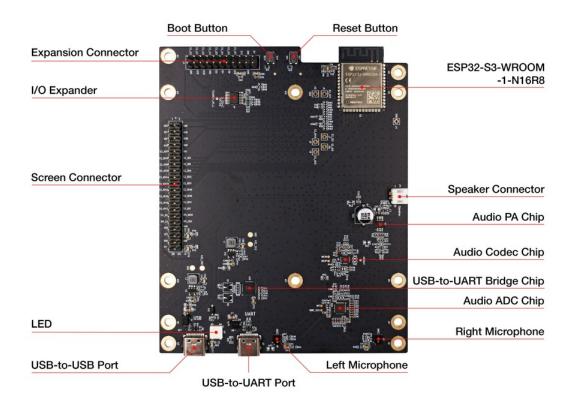


图 22: ESP32-S3-LCD-EV-Board-MB - 正面(点击放大)

主要组件	介绍
ESP32-S3-WROOM-1-	ESP32-S3-WROOM-1-N16R8 模组是一款通用型 Wi-Fi + 低功耗蓝牙
N16R8 模组	MCU 模组,搭载 ESP32-S3 系列芯片,内置 16 MB flash 以及 8 MB
	PSRAM。除具有丰富的外设接口外,模组还拥有强大的神经网络运算
	能力和信号处理能力,适用于 AIoT 领域的多种应用场景。
Reset 按键	单独按下此按键会重置系统。
Boot 按键	长按 Boot 键时,再按 Reset 键可启动固件上传模式,然后便可通过串
	口或 USB 上传固件。
扩展连接器	可供连接所有的 IO 扩展芯片管脚、系统电源管脚以及部分模组管脚。
I/O 扩展芯片	TCA9554 是一款 8 位通用并行输入和输出 I/O 扩展芯片,它通过两线
	I2C 通信控制 IO 口的模式以及输出电平,丰富了系统的 IO 应用场景。
LCD 子板连接器	通过 2.54 mm 间距的连接器可以连接三种不同类型的 LCD 子板。
LED	具有 RGB 三色显示功能,可供用户配置用来做状态行为指示。
USB-to-USB 端口	为整个系统提供电源(USB-to-USB 端口和 USB-to-UART 端口两者选
	一)。建议使用至少 5V/2A 电源适配器供电, 保证供电稳定。该端口用
	于 PC 端与 ESP32-S3-WROOM-1 模组的 USB 通信。
USB-to-UART 端口	为整个系统提供电源(USB-to-USB 端口和 USB-to-UART 端口两者选
	一)。建议使用至少 5V/2A 电源适配器供电, 保证供电稳定。该端口用
	于 PC 端与 ESP32-S3-WROOM-1 模组的串口通信。
左侧麦克风	板载麦克风,连接至音频模数转换器。
右侧麦克风	板载麦克风,连接至音频模数转换器。
音频模数转换器	ES7210 是一款用于麦克风阵列应用的高性能、低功耗 4 通道音频模数
	转换器,同时具备声学回声消除 (AEC) 功能,非常适合音乐和语音应
YYOR XXX POP IC IN HI	用。
USB-to-UART 桥接器	单芯片 USB-UART 桥接器 CP2102N 为软件下载和调试提供高达 3
and the first of the billion in	Mbps 的传输速率。
音频编解码芯片	ES8311 是一种低功耗单声道音频编解码器,包含单通道 ADC、单通道
	DAC、低噪声前置放大器、耳机驱动器、数字音效、模拟混音和增益
	功能。它通过 I2S 和 I2C 总线与 ESP32-S3-WROOM-1 模组连接,以提供对于工产证的 III 的
マルスキックックト PB	供独立于音频应用程序的硬件音频处理。
音频功率放大器	NS4150 是一款低 EMI、3 W 单声道 D 类音频功率放大器,用于放大来
松丰阳 朱校明	自音频编解码芯片的音频信号,以驱动扬声器。
扬声器连接器	可通过音频功率放大器的支持,实现外部扬声器播放功能。

LCD 子板 主板可搭配以下三种不同类型的子板使用:

子板名称	屏幕(英	分辨率	LCD 驱动	触摸驱动	在售开发板
	寸)	(px)	芯片(接	芯片	
			口)		
ESP32-S3-LCD-EV-	0.96	128 x 64	SSD1315	无	无
Board-SUB1 v1.0			(I2C)		
	2.40	320 x 240	ST7789V	XTP2046	无
			(SPI)		
ESP32-S3-LCD-EV-	3.50	480 x 320	ST7796S	GT911	无
Board-SUB2 v1.4			(8080)		
	3.95	480 x 480	GC9503CV	FT5x06	ESP32-S3-LCD-EV-
			(RGB)		Board
ESP32-S3-LCD-EV-	4.30	800 x 480	ST7262E43	GT1151	ESP32-S3-LCD-EV-
Board-SUB3 v1.3			(RGB)		Board-2

- ESP32-S3-LCD-EV-Board-SUB1 子板提供了两种屏幕接口,分别支持连接一块 2.4 英寸 SPI 接口 屏或者一块 0.96 英寸 I2C 接口屏。该子板暂未做适配,此处不做进一步讲解。
- ESP32-S3-LCD-EV-Board-SUB2 子板提供了两种屏幕接口,分别支持连接一块 RGB 接口屏或者一块 8080 并口屏。当前子板贴装了一块 3.95 英寸、RGB565 接口、分辨率为 480x480 的触摸屏,该屏使用的 LCD 驱动芯片型号为 GC9503CV,触摸驱动芯片型号为 FT5x06。

图 23: ESP32-S3-LCD-EV-Board-SUB2 - 正面(点击放大)

图 24: ESP32-S3-LCD-EV-Board-SUB2 - 反面(点击放大)

• **ESP32-S3-LCD-EV-Board-SUB3** 子板仅支持 4.3 英寸、RGB565 接口、分辨率为 800x480 的触摸屏, 该屏使用的 LCD 驱动芯片型号为 ST7262E43, 触摸驱动芯片型号为 GT1151。

USB Type-A 转接板 通过连接 USB Type-A 转接板,主板可作为 USB Host 连接 USB 设备。

4.2.2 应用程序开发

本节介绍硬件和软件的设置方法,以及烧录固件至开发板以开发应用程序的说明。

必备硬件

- 1 x ESP32-S3-LCD-EV-Board-MB
- 1 x LCD 子板
- 1 x USB 2.0 数据线 (标准 A 型转 Type-C 型)
- 1 x 电脑(Windows、Linux 或 macOS)

备注: 请确保使用适当的 USB 数据线。部分数据线仅可用于充电,无法用于数据传输和程序烧录。

可选硬件

• 1 x 扬声器

图 25: ESP32-S3-LCD-EV-Board-SUB3 - 正面(点击放大)

图 26: ESP32-S3-LCD-EV-Board-SUB3 - 反面(点击放大)

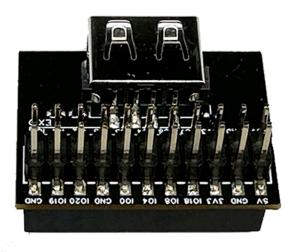


图 27: USB Type-A 转接板 v1.1 - 正面(点击放大)

图 28: USB Type-A 转接板 v1.1 - 与主板连接(点击放大)

图 29: USB Type-A 转接板 v1.1 - 连接 USB 设备(点击放大)

硬件设置

准备开发板,加载第一个示例应用程序:

- 1. 连接 LCD 子板至 LCD 子板连接器端口。
- 2. 插入 USB 数据线,分别连接 PC 与开发板的两个 USB 端口之一。
- 3. LCD 屏幕亮起,可以用手指与触摸屏进行交互。

硬件设置完成,接下来可以进行软件设置。

软件设置

ESP32-S3-LCD-EV-Board 的开发框架为 ESP-IDF。ESP-IDF 是基于 FreeRTOS 的乐鑫 SoC 开发框架,具有众多组件,包括 LCD、ADC、RMT、SPI 等。开发板应用示例存放在 Examples 文件夹下,在示例目录下输入 idf.py menuconfig 可以配置工程选项。

了解如何快速设置开发环境,请前往快速入门>安装。

备注:

- ESP-IDF 的版本要求在 v5.0.1 及以上,推荐使用最新的 release/v5.1 分支开发。
- 关于如何开发 LCD 应用的更多信息,请参考 ESP-IoT-Solution 编程指南。

4.2.3 硬件参考

本节提供关于开发板硬件的更多信息。

GPIO 分配列表

下表为 ESP32-S3-WROOM-1 模组管脚的 GPIO 分配列表,用于控制开发板的特定组件或功能。

表 3: ESP32-S3-WROOM-1 GPIO 分配

管脚	管脚名称	功能
1	GND	接地
2	3V3	供电
3	EN	RESET
4	IO4	LED
5	IO5	I2S_MCLK
6	IO6	I2S_CODEC_DSDIN
7	IO7	I2S_LRCK
8	IO15	I2S_ADC_SDOUT
9	IO16	I2S_SCLK
10	IO17	LCD_DE
11	IO18	I2C_SCL
12	IO8	I2C_SDA
13	IO19	USB_D-
14	IO20	USB_D+
15	IO3	LCD_VSYNC
16	IO46	LCD_HSYNC
17	IO9	LCD_PCLK
18	IO10	LCD_DATA0
19	IO11	LCD_DATA1
20	IO12	LCD_DATA2
21	IO13	LCD_DATA3

下页继续

表 3 - 续上页

管脚	管脚名称	功能
22	IO14	LCD_DATA4
23	IO21	LCD_DATA5
24	IO47	LCD_DATA6
25	IO48	LCD_DATA7
26	IO45	LCD_DATA8
27	IO0	BOOT
28	IO35	未连接
29	IO36	未连接
30	IO37	未连接
31	IO38	LCD_DATA9
32	IO39	LCD_DATA10
33	IO40	LCD_DATA11
34	IO41	LCD_DATA12
35	IO42	LCD_DATA13
36	RXD0	UART_RXD0
37	TXD0	UART_TXD0
38	IO2	LCD_DATA14
39	IO1	LCD_DATA15
40	GND	接地
41	EPAD	接地

分配给 IO 扩展芯片的 GPIO 被进一步分配为多个 GPIO。

表 4: IO 扩展芯片 GPIO 分配

IO 扩展器管脚	管脚名称	功能
1	A0	接地
2	A1	接地
3	A2	接地
4	P0	PA_CTRL
5	P1	LCD_SPI_CS
6	P2	LCD_SPI_SCK
7	P3	LCD_SPI_MOSI
8	GND	接地
9	P4	可做任意用途
10	P5	可做任意用途
11	P6	可做任意用途
12	P7	可做任意用途
13	INT	未连接
14	SCL	I2C_SCL
15	SDA	I2C_SDA
16	VCC	供电电压

供电说明

USB 供电 开发板有两种 USB 供电方式:

- 通过 USB-to-USB 端口供电
- 通过 USB-to-UART 端口供电

<mark>音频和数字独立供电</mark> ESP32-S3-LCD-EV-Board 可为音频组件和 ESP 模组提供相互独立的电源,可降低数字组件给音频信号带来的噪声并提高组件的整体性能。

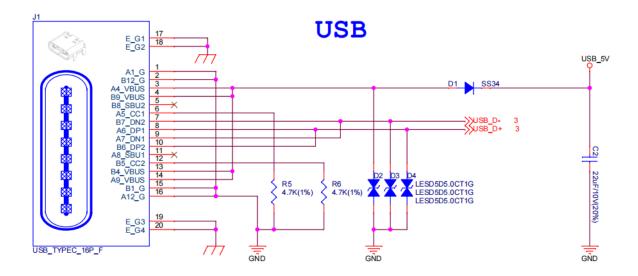


图 30: ESP32-S3-LCD-EV-Board - USB-to-USB 电源供电

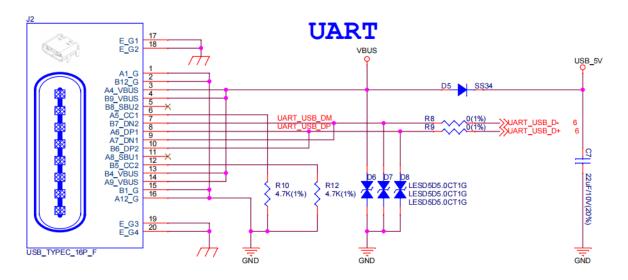


图 31: ESP32-S3-LCD-EV-Board - USB-to-UART 电源供电

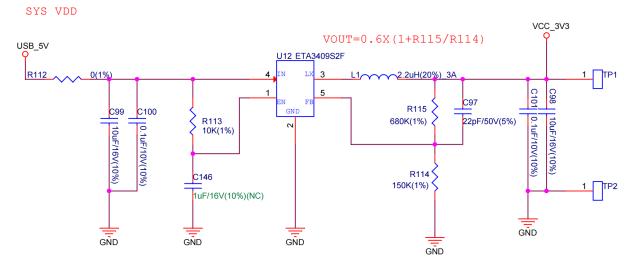


图 32: ESP32-S3-LCD-EV-Board - 数字供电

Audio VDD

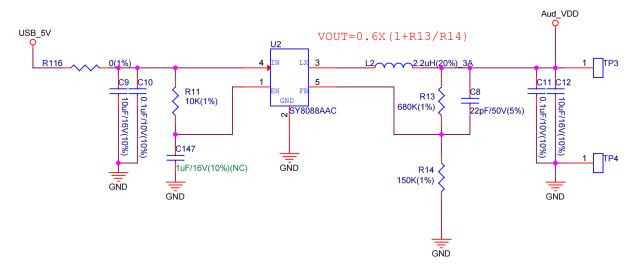


图 33: ESP32-S3-LCD-EV-Board - 音频供电

AEC 电路

AEC 电路为 AEC 算法提供参考信号。

ESP32-S3-LCD-EV-Board 回声参考信号源有两路兼容设计,一路是 Codec (ES8311) DAC 输出 (DAC_AOUTLN/DAC_AOUTLP),一路是 PA (NS4150) 输出 (PA_OUTL+/PA_OUTL-)。推荐将默认 Codec (ES8311) DAC 输出 (DAC_AOUTLN/DAC_AOUTLP) 作为回声参考信号,下图中电阻 R54、R56 无需连接。

回声参考信号通过 ADC (ES7210) 的 ADC_MIC3P/ADC_MIC3N 采集后送回给 ESP32-S3 用于 AEC 算法。

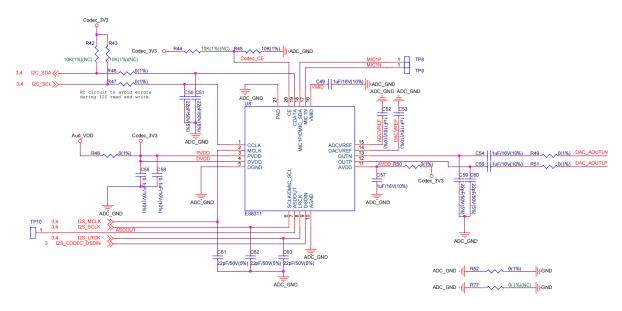


图 34: ESP32-S3-LCD-EV-Board - AEC Codec DAC 输出(点击放大)

硬件设置选项

自动下载 可以通过两种方式使开发板进入下载模式:

• 按下 Boot 和 Reset 键, 然后先松开 Reset 键, 再松开 Boot 键。

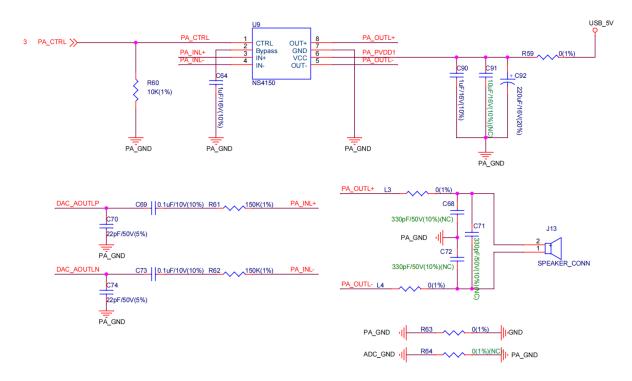


图 35: ESP32-S3-LCD-EV-Board - AEC PA 输出(点击放大)

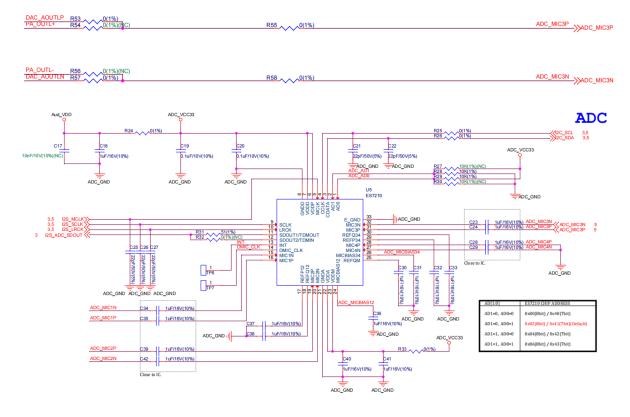


图 36: ESP32-S3-LCD-EV-Board - 参考信号采集(点击放大)

• 由软件自动执行下载。软件利用串口的 DTR 和 RTS 信号来控制开发板 EN、IOO 管脚的状态。

4.2.4 硬件版本

无历史版本。

4.2.5 样品获取

此开发板及转接板适用于评估高性能的 智能屏方案。如有需要,请前往 乐鑫官方淘宝商城 进行采购。

4.2.6 相关文档

- ESP32-S3 技术规格书
- ESP32-S3-WROOM-1 技术规格书
- 乐鑫产品选型工具
- ESP32-S3-LCD-EV-Board-MB 原理图
- ESP32-S3-LCD-EV-Board-MB PCB 布局图
- ESP32-S3-LCD-EV-Board-SUB1 原理图
- ESP32-S3-LCD-EV-Board-SUB1 PCB 布局图
- ESP32-S3-LCD-EV-Board-SUB2 原理图
- ESP32-S3-LCD-EV-Board-SUB2 PCB 布局图
- ESP32-S3-LCD-EV-Board-SUB3 原理图
- ESP32-S3-LCD-EV-Board-SUB3 PCB 布局图
- ESP32-S3-LCD-EV-Board USB 转接板原理图
- ESP32-S3-LCD-EV-Board USB 转接板 PCB 布局图
- TCA9554 规格书

有关本开发板的更多设计文档,请联系我们的商务部门 sales@espressif.com。

Chapter 5

ESP32-S3-USB-Bridge

ESP32-S3-USB-Bridge 通过在计算机和目前微控制器之间建立桥接,可以作为 USB 转 UART 芯片(如 CP210x)或调试器的替代品。

5.1 ESP32-S3-USB-Bridge

本指南将帮助您快速上手 ESP32-S3-USB-Bridge,并提供该款开发板的详细信息。

本指南包括如下内容:

- 开发板概述: 简要介绍了开发板的软件和硬件
- 应用程序开发: 介绍了应用程序开发过程中的软硬件设置
- 硬件参考: 详细介绍了开发板的硬件
- 硬件版本: 暂无历史版本 样品获取: 如何获取样品
- 相关文档: 列出了相关文档的链接

5.1.1 开发板概述

ESP32-S3-USB-Bridge 是一款基于 ESP32-S3 芯片的开发板。

- 使用 usb_wireless_bridge 例程可在计算机和目标芯片之间建立桥接。它可以模拟 USB 复合设备,支持多种功能:
 - USB 转 UART 桥接: 通过 USB 转 UART 桥接,实现计算机与目标芯片的串口数据收发。
 - JTAG 适配器:通过 JTAG 桥接,实现计算机与目标芯片之间双向传输 JTAG 通信。
 - MSC 存储设备: 通过将 UF2 固件文件拖放到开发板的 USB 存储设备中, 实现固件升级。
 - 无线桥接: 通过 ESP-NOW, 实现无线烧录以及无线串口数据收发。

此外,开发板还支持 USB Type-A 接口,更换方便。

特性列表

该开发板具有以下特性:

- 嵌入式模组: 板载 ESP32-S3-MINI-1 模组, 内置 4 MB flash 以及 2 MB PSRAM
- 指示灯: 板载一颗 WS2812 指示灯, 以及两颗串口数据指示灯
- USB: 板载 USB 转 UART 桥接器及 JTAG 适配器,支持 USB Type-C 接口下载调试

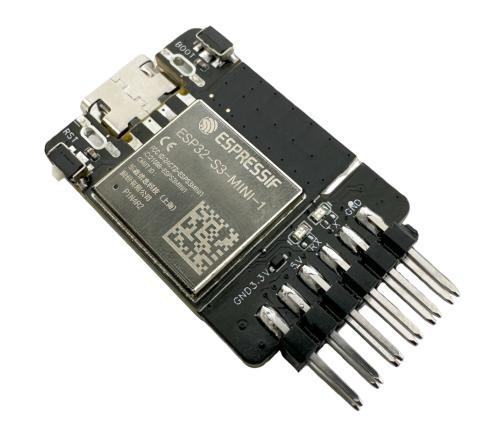


图 1: ESP32-S3-USB-Bridge Type-C 连接

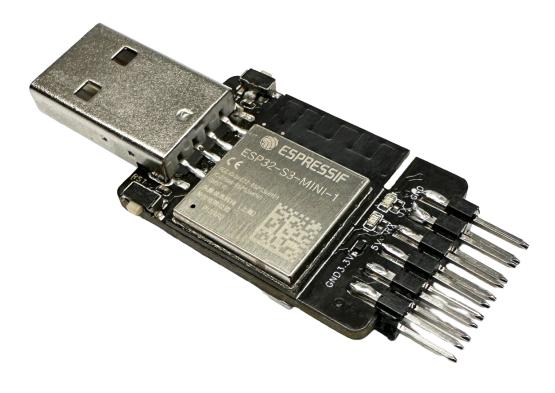


图 2: ESP32-S3-USB-Bridge Type-A 连接

功能框图

ESP32-S3-USB-Bridge 的主要组件和连接方式如下图所示。

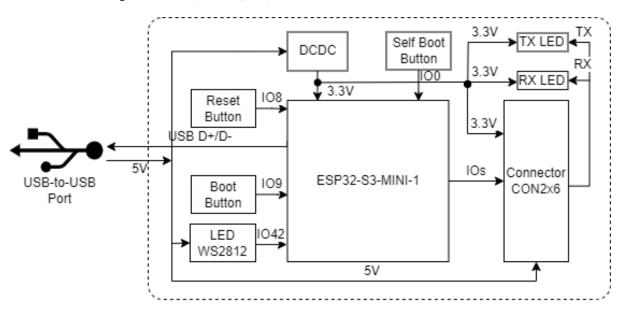


图 3: ESP32-S3-USB-Bridge 功能框图 (点击放大)

组件介绍

ESP32-S3-USB-Bridge 开发板较为小巧,尺寸为 23.3 mm * 31.5 mm。其集成了 ESP32-S3-MINI-1 模组,并提供了 12 个外接接口。

以下按照顺时针顺序依次介绍开发板上的主要组件。

主要组件	介绍
ESP32-S3-MINI-1-N4R2 模	ESP32-S3-MINI-1-N4R2 模组是一款通用型 Wi-Fi + 低功耗蓝牙 MCU
组	模组,搭载 ESP32-S3 系列芯片,内置 4 MB flash 以及 2 MB PSRAM。
	除具有丰富的外设接口外,模组还拥有强大的神经网络运算能力和信
	号处理能力,适用于 AIoT 领域的多种应用场景。
TX/RX 指示灯	用于指示串口数据的收发状态。
扩展连接器	可供连接的 JTAG 管脚、串口管脚、TX/RX 管脚、Boot 管脚、Reset 管
	脚以及系统电压管脚。
Reset 按键	此按键连接目标芯片的 Reset 按键,与模组的 IO8 相连。单独按下此按
	钮,可以复位目标芯片。
USB 转 USB 接口	为整个系统提供电源。该端口用于 PC 端与 ESP32-S3-MINI-1 模组的
	USB 通信。
Boot 按键	此按键连接目标芯片的 Boot 按键,与模组的 IO9 相连。长按 Boot 键
	时,再按 Reset 键可启动固件上传模式,然后便可通过串口或 USB 上
	传固件。

主要组件	介绍
5 V 转 3.3 V	用于将 USB 电压转换为 3.3 V 电压,为 ESP32-S3-MINI-1 模组供电。
模组 Boot 按键	此按键连接模组的 IOO 按键,长按此按键再重新给开发板上电,即可
	让开发板处于下载模式,上传新固件。
WS2812	与模组的 IO42 相连,用于指示开发板当前的状态。

图 4: ESP32-S3-USB-Bridge - 正面(点击放大)

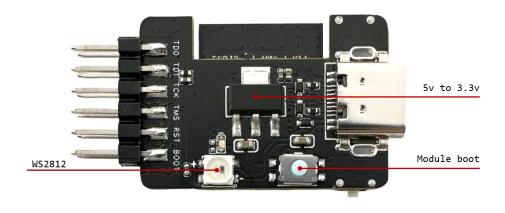


图 5: ESP32-S3-USB-Bridge - 背面(点击放大)

软件支持

ESP32-S3-USB-Bridge 的开发框架为 ESP-IDF。ESP-IDF 是基于 FreeRTOS 的乐鑫 SoC 开发框架,具有众多组件,包括 LCD、ADC、RMT、SPI 等。开发板应用示例存放在 Examples 中,在示例目录下输入idf.py menuconfig 可以配置工程选项。

备注:

- 目前支持的 ESP-IDF 版本为 release/5.0。
- 请不要按住模组自身的 Boot 按键后上下电, 防止默认固件被替换。

5.1.2 应用程序开发

本节介绍硬件和软件的设置方法,以及烧录固件至开发板以开发应用程序的说明。

必备硬件

- 1 x ESP32-S3-USB-Bridge
- 1 x LCD 子板
- 1 x USB 2.0 数据线 (标准 A 型转 Type-C 型)
- 1 x 电脑(Windows、Linux 或 macOS)

备注: 请确保使用适当的 USB 数据线。部分数据线仅可用于充电,无法用于数据传输和程序烧录。

硬件设置

准备开发板,加载第一个示例应用程序:

- 1. 插入 USB 数据线, 分别连接 PC 与开发板 USB 口。
- 2. 确保开发板处于下载模式。
- 3. 指示灯亮起, 烧录完成。

硬件设置完成,接下来可以进行软件设置。

软件设置

请前往快速入门的详细安装步骤小节查看如何快速设置开发环境。

了解开发应用程序的更多软件信息,请查看软件支持。

5.1.3 硬件参考

本节提供关于开发板硬件的更多信息。

GPIO 分配列表

下表为 ESP32-S3-MINI-1 模组管脚以及外接接口的 GPIO 分配列表,用于控制开发板以及外接目标芯片的特定组件或功能。

管脚 管脚名称 功能 **GND** 接地 1 3V3 2 供电 3 IO0 模组 Boot 按键,用于进入下载模式,以及作为按键输 JTAG 管脚 TDO,用于测试数据输出 4 IO2 5 IO3 JTAG 管脚 TDI,用于测试数据输入 IO4 JTAG 管脚 TCK,用于同步测试数据传输 6 7 IO5 JTAG 管脚 TMS,用于测试模式选择 IO8 连接目标芯片的 Reset 管脚,按下为低电平 8 9 连接目标芯片的 Boot 管脚, 按下为低电平 IO9 10 IO19 与 USB_D- 接口相连 IO20 与 USB D+接口相连 11 12 IO40 RX,用于连接目标芯片的 UART TX 管脚 13 IO41 TX,用于连接目标芯片的 UART RX 管脚 14 **IO42** WS2812 控制管脚

表 1: ESP32-S3-MINI-1 管脚及外接接口 GPIO 分配

备注: 管脚 3-14 为开发板提供的外接接口。除上表所列内容外,所有引出 IO 均可作为其他用处,其中 GPIO5 和 GPIO8 与外部按键相连。

供电说明

USB 供电 开发板有两种 USB 供电方式:

• 通过 Type-A 端口供电

TYPE-A

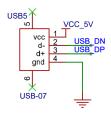


图 6: ESP32-S3-USB-Bridge - Type-A 电源供电

• 通过 Type-C 端口供电

电压转换电路 ESP32-S3-USB-Bridge 可以将 5 V 转化为 3.3 V 供模组使用。

硬件设置选项

自动下载 按下模组 Boot 按键后重新上电,随后松开模组 Boot 按键,即可使开发板进入下载模式。

TYPE-C

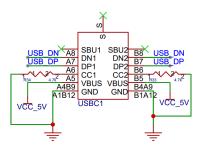


图 7: ESP32-S3-USB-Bridge - Type-C 电源供电

POWER

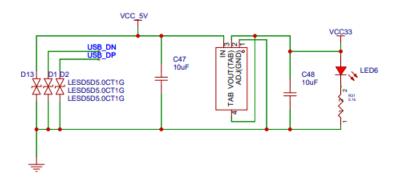


图 8: ESP32-S3-USB-Bridge - 电压转换

5.1.4 硬件版本

无历史版本。

5.1.5 样品获取

此开发板已开源至 立创开源硬件平台。如有需要,请自行打样。

5.1.6 相关文档

- ESP32-S3 技术规格书
- ESP32-S3-MINI-1 技术规格书
- 乐鑫产品选型工具
- ESP32-S3-USB-Bridge PCB 布局图
- ESP32-S3-USB-Bridge 原理图

有关本开发板的更多设计文档,请联系我们的商务部门 sales@espressif.com。

Chapter 6

相关文档和资源

6.1 相关文档

- 《ESP32-S3 技术规格书》 -提供 ESP32-S3 芯片的硬件技术规格。
- 《ESP32-S3 技术参考手册》 -提供 ESP32-S3 芯片的存储器和外设的详细使用说明。
- 《ESP32-S3 硬件设计指南》 -提供基于 ESP32-S3 芯片的产品设计规范。
- 证事

https://espressif.com/zh-hans/support/documents/certificates

- ESP32-S3 产品/工艺变更通知 (PCN)
 - https://espressif.com/zh-hans/support/documents/pcns?keys=ESP32-S3
- ESP32-S3 公告-提供有关安全、bug、兼容性、器件可靠性的信息。 https://espressif.com/zh-hans/support/documents/advisories?keys=ESP32-S3
- 文档更新和订阅通知

https://espressif.com/zh-hans/support/download/documents

6.2 开发者社区

- ESP32-S3 ESP-IDF 编程指南 -ESP-IDF 开发框架的文档中心。
- ESP-IDF 及 GitHub 上的其它开发框架 https://github.com/espressif
- ESP32 论坛-工程师对工程师 (E2E) 的社区, 您可以在这里提出问题、解决问题、分享知识、探索观点。

https://esp32.com/

- The ESP Journal -分享乐鑫工程师的最佳实践、技术文章和工作随笔。https://blog.espressif.com/
- SDK 和演示、App、工具、AT 等下载资源 https://espressif.com/zh-hans/support/download/sdks-demos

6.3 产品

- ESP32-S3 系列芯片-ESP32-S3 全系列芯片。 https://espressif.com/zh-hans/products/socs?id=ESP32-S3
- ESP32-S3 系列模组-ESP32-S3 全系列模组。
 https://espressif.com/zh-hans/products/modules?id=ESP32-S3
- ESP32-S3 系列开发板-ESP32-S3 全系列开发板。
 https://espressif.com/zh-hans/products/devkits?id=ESP32-S3

• ESP Product Selector(乐鑫产品选型工具)—通过筛选性能参数、进行产品对比快速定位您所需要的产品。

https://products.espressif.com/#/product-selector

6.4 联系我们

• 商务问题、技术支持、电路原理图 & PCB 设计审阅、购买样品(线上商店)、成为供应商、意见与建议

https://espressif.com/zh-hans/contact-us/sales-questions

Chapter 7

免责声明和版权公告

本文档中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

本文档可能引用了第三方的信息,所有引用的信息均为"按现状"提供,乐鑫不对信息的准确性、真实性做任何保证。

乐鑫不对本文档的内容做任何保证,包括内容的适销性、是否适用于特定用途,也不提供任何其他乐鑫提案、规格书或样品在他处提到的任何保证。

乐鑫不对本文档是否侵犯第三方权利做任何保证,也不对使用本文档内信息导致的任何侵犯知识产权的行为负责。本文档在此未以禁止反言或其他方式授予任何知识产权许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文档中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。