
ESP-DL User Guide

Release v3.2.3-9-g7089b94a76
Espressif Systems
Jan 21, 2026

Table of contents

Table of contents i

1 Introduction 3
1.1 Introduction . 3

1.1.1 Overview . 3
1.2 ESP-DL Project Organization . 4

1.2.1 dl (Deep Learning) . 4
1.2.2 vision . 5
1.2.3 audio . 5
1.2.4 fbs_loader (FlatBuffers Loader) . 5
1.2.5 Other Files . 5

2 Getting Started 7
2.1 Hardware Requirements . 7
2.2 Software Requirements . 7

2.2.1 ESP-IDF . 7
2.2.2 ESP-PPQ . 7

2.3 Quick Start . 8
2.3.1 Example Compile & Flash . 8
2.3.2 Example Configuration . 9
2.3.3 Trouble shooting . 9

2.4 Model Quantization . 9
2.5 Model deployment . 9

3 Tutorials 11
3.1 How to quantize model . 11

3.1.1 Preparation . 11
3.1.2 Pre-trained model . 11
3.1.3 Quantize and export .espdl . 12
3.1.4 Advanced Quantization Methods . 13

3.2 How to load & test & profile model . 13
3.2.1 Preparation . 13
3.2.2 Load model from rodata . 13
3.2.3 Load model from partition . 14
3.2.4 Load model from sdcard . 15
3.2.5 Test whether on-board model inference is correct . 16
3.2.6 Profile model memory usage . 17
3.2.7 Profile model inference latency . 17
3.2.8 Combined profiling: profile() method . 18

3.3 How to run model . 18
3.3.1 Preparation . 18
3.3.2 Load model . 18
3.3.3 Get model input/output. 19
3.3.4 Quantize Input . 19
3.3.5 Dequantize output . 19
3.3.6 Model Inference . 20

3.4 Creating a New Module (Operator) . 20

i

3.4.1 Understand the Base Module Class . 20
3.4.2 Create a New Module Class . 21

3.5 How to deploy MobileNetV2 . 22
3.5.1 Preparation . 22
3.5.2 Model quantization . 22
3.5.3 Model deployment . 30

3.6 How to deploy YOLO11n . 31
3.6.1 Preparation . 31
3.6.2 Model quantization . 31
3.6.3 Model deployment . 43

3.7 How to deploy YOLO11n-pose . 43
3.7.1 Preparation . 43
3.7.2 Model quantization . 44
3.7.3 Model deployment . 51

3.8 How to Deploy Streaming Models . 52
3.8.1 Prerequisites . 52
3.8.2 Model Quantization . 52
3.8.3 Model Deployment . 55

4 API Reference 57
4.1 Tensor API Reference . 57

4.1.1 Header File . 57
4.1.2 Classes . 57

4.2 Module API Reference . 63
4.2.1 Header File . 63
4.2.2 Classes . 63
4.2.3 Header File . 65
4.2.4 Classes . 65

4.3 Model API Reference . 66
4.3.1 Header File . 66
4.3.2 Macros . 66
4.3.3 Classes . 66
4.3.4 Header File . 71
4.3.5 Macros . 71
4.3.6 Classes . 72
4.3.7 Header File . 74
4.3.8 Classes . 74
4.3.9 Header File . 77
4.3.10 Classes . 77

4.4 Fbs API Reference . 78
4.4.1 Header File . 78
4.4.2 Classes . 78
4.4.3 Header File . 80
4.4.4 Classes . 80

Index 87

Index 87

ii

Table of contents

Get Started Tutorials API Reference

Espressif Systems 1
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

getting_started/readme.html
tutorials/index.html
api_reference/index.html
getting_started/readme.html
tutorials/index.html
api_reference/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Table of contents

Espressif Systems 2
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 1

Introduction

1.1 Introduction

ESP-DL is a lightweight and efficient neural network inference framework designed specifically for ESP series chips.
With ESP-DL, you can easily and quickly develop AI applications using Espressif’s System on Chips (SoCs).

1.1.1 Overview

ESP-DL offers APIs to load, debug, and run AI models. The framework is easy to use and can be seamlessly integrated
with other Espressif SDKs. ESP-PPQ serves as the quantization tool for ESP-DL, capable of quantizing models from
ONNX, Pytorch, and TensorFlow, and exporting them into the ESP-DL standard model format.

• ESP-DL StandardModel Format: This format is similar to ONNX but uses FlatBuffers instead of Protobuf,
making it more lightweight and supporting zero-copy deserialization, with a file extension of .espdl.

• Efficient Operator Implementation: ESP-DL efficiently implements common AI operators such as Conv,
Gemm, Add, and Mul. The list of supported operators: operator_support_state.md

• Static Memory Planner: The memory planner automatically allocates different layers to the optimal mem-
ory location based on the user-specified internal RAM size, ensuring efficient overall running speed while
minimizing memory usage.

• Dual Core Scheduling: Automatic dual-core scheduling allows computationally intensive operators to fully
utilize the dual-core computing power. Currently, Conv2D and DepthwiseConv2D support dual-core schedul-
ing.

• 8bit LUT Activation: All activation functions except for ReLU and PReLU are implemented using an 8-bit
LUT (Look Up Table) method in ESP-DL to accelerate inference. You can use any activation function, and
their computational complexity remains the same.

The framework figures below illustrate the overall architecture of ESP-DL.

3

https://github.com/espressif/esp-dl/blob/7089b94/operator_support_state.md

Chapter 1. Introduction

...ESP-DL

Released Developing

Vision Audio

...

SIMD DMA Pipeline8-bit/16-bit QuantizationTwo Core Scheduling LUT Activations

...

Model... Memory Planner Model...

...ESP-PPQ Quantization Tool Model... ESP-DL Model Exporter

Model From Framework

Text is not SVG - cannot display

1.2 ESP-DL Project Organization

ESP-DL’s modular design enables efficient development, maintenance, and scalability. The project is organized as
follows:

1.2.1 dl (Deep Learning)

Core deep learning modules and tools, divided into submodules:
• model Loads, manages, and allocates memory for deep learning models. Includes dl_model_base and
dl_memory_manager.

• module Interfaces for 60+ neural network operators (convolution, pooling, activation, etc.). Files:
dl_module_base.hpp, dl_module_conv.hpp, dl_module_pool.hpp, dl_module_relu.
hpp, etc.

• base Implements operations for chips (esp32, esp32s3, esp32p4) with ISA-specific assembly support. Includes
operator implementations in dl_base_conv2d.cpp/hpp, dl_base_avg_pool2d.cpp/hpp, etc.,
and ISA-specific code in isa/ subdirectories.

• math Mathematical operations (matrix functions). Files: dl_math.hpp and dl_math_matrix.hpp.

Espressif Systems 4
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 1. Introduction

• tool Auxiliary functions (utility tools). Files: dl_tool.hpp and dl_tool.cpp. Includes ISA-specific
tools in isa/ subdirectories.

• tensor Tensor classes and operations. Files: dl_tensor_base.hpp.

1.2.2 vision

Computer vision modules divided into submodules:
• classification Image classification (model inference). Inference: dl_cls_base. Post-

processors: imagenet_cls_postprocessor, hand_gesture_cls_postprocessor,
dl_cls_postprocessor.

• recognition Feature extraction (model inference). Feature database management (Enroll, delete, query).
Pre-processor: dl_feat_image_preprocessor. Inference: dl_feat_base. Post-processor:
dl_feat_postprocessor. Database: dl_recognition_database

• image Image processing (resize, crop, warp affine). Color conversion (pixel, img). Image preproces-
sor (pipeline of resize, crop, color conversion, normalization, quantization). Image decoding/encoding
(JPEG/BMP). Draw utility (point, hollow rectangle).
Image process: dl_image_process. Color conversion: dl_image_color. Image preprocessor:
dl_image_preprocessor. Image decoding/encoding: dl_image_jpeg, dl_image_bmp. Draw
utility: dl_image_draw.

• detect Object detection (model inference). Inference: dl_detect_base. Post-processors:
dl_detect_yolo11_postprocessor, dl_detect_espdet_postprocessor,
dl_detect_msr_postprocessor, dl_detect_mnp_postprocessor,
dl_detect_pico_postprocessor. Pose estimation: dl_pose_yolo11_postprocessor.

1.2.3 audio

Audio processing modules divided into submodules:
• common Common audio utilities. Files: dl_audio_common.cpp/hpp, dl_audio_wav.cpp/hpp.
• speech_features Speech feature extraction. Files: dl_speech_features.cpp/hpp (base class),
dl_fbank.cpp/hpp (Filter Bank), dl_mfcc.cpp/hpp (MFCC), dl_spectrogram.cpp/hpp
(Spectrogram).

1.2.4 fbs_loader (FlatBuffers Loader)

Handles FlatBuffers models:
• include Headers: fbs_loader.hpp, fbs_model.hpp.
• src Implementations: fbs_loader.cpp.
• lib/ Pre-compiled libraries for different targets: esp32/, esp32s3/, esp32p4/.
• espidl.fbs FlatBuffers schema file.
• pack_espdl_models.py Model packing script.

1.2.5 Other Files

• CMakeLists.txt Project build configuration.
• idf_component.yml Component metadata (name, version, dependencies).
• README.md Project documentation and usage.
• LICENSE License terms.

Espressif Systems 5
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 1. Introduction

Espressif Systems 6
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 2

Getting Started

2.1 Hardware Requirements

• An ESP32-S3 or ESP32-P4 development board. Recommended: ESP32-S3-EYE or ESP32-P4-Function-
EV-Board

• PC (Linux)

Note:
• Some boards currently use Type C connectors. Make sure you use the right cable to connect the board!
• ESP-DL also supports ESP32, but its operator implementations are written in C, so the execution speed on

ESP32 will be significantly slower than on ESP32-S3 or ESP32-P4. If needed, you can manually add compi-
lation configuration files to your project—the function interface calls in ESP-DL remain identical. Note:

– When quantizing ESP32 platform models using ESP-PPQ, set the target to c.
– When deploying ESP32 platform models using ESP-DL, set the project compilation target to esp32.

2.2 Software Requirements

2.2.1 ESP-IDF

ESP-DL runs based on ESP-IDF. For detailed instructions on how to get ESP-IDF, see the ESP-IDF Programming
Guide.

Note: Please use release/v5.3 or higher version of ESP-IDF.

2.2.2 ESP-PPQ

ESP-PPQ is a quantization tool based on ppq, and its source code is fully open-sourced. ESP-PPQ adds Espressif’
s customized quantizer and exporter based on PPQ, which makes it convenient for users to select quantization rules
that match ESP-DL according to different chip selections, and export them to standard model files that can be directly
loaded by ESP-DL. ESP-PPQ is compatible with all PPQ APIs and quantization scripts. For more details, please

7

https://idf.espressif.com
https://idf.espressif.com
https://github.com/espressif/esp-idf
https://github.com/espressif/esp-ppq
https://github.com/OpenPPL/ppq

Chapter 2. Getting Started

refer to PPQ documents and videos. If you want to quantize your model, you can install esp-ppq using the following
method:
Method 1: Install the package using pip

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/
↪→whl/cpu
pip install esp-ppq

Method 2: Install from source with pip to stay synchronized with the master branch

git clone https://github.com/espressif/esp-ppq.git
cd esp-ppq
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/
↪→whl/cpu
pip install -e .

Method 3: Install the package using uv

uv pip install "esp-ppq[cpu]" --torch-backend=cpu
GPU
uv pip install "esp-ppq[cpu]" --torch-backend=cu124
AMD GPU
uv pip install "esp-ppq[cpu]" --torch-backend=rocm6.2
Intel XPU
uv pip install "esp-ppq[cpu]" --torch-backend=xpu

Method 4: Install from source using uv to stay in sync with the master branch

git clone https://github.com/espressif/esp-ppq.git
cd esp-ppq
uv pip install torch torchvision torchaudio --index-url https://download.pytorch.
↪→org/whl/cpu
uv pip install -e .

Method 5: Use esp-ppq with docker

docker build -t esp-ppq:your_tag https://github.com/espressif/esp-ppq.git

Note:
• The example code installs the Linux PyTorch CPU version. Please install the appropriate PyTorch version

based on your actual needs.
• If installing the package with uv, simply modify the --torch-backend parameter, which will override the

PyTorch URLs index configured in the project.

2.3 Quick Start

ESP-DL provides some out-of-the-box examples

2.3.1 Example Compile & Flash

idf.py set-target [Soc]
idf.py flash monitor -p [PORT]

Replace [Soc] with the specific chip, currently supports esp32s3 and esp32p4. The example does not yet
include the model and compilation configuration files for esp32.

Espressif Systems 8
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/OpenPPL/ppq
https://github.com/espressif/esp-dl/tree/7089b94/examples
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 2. Getting Started

2.3.2 Example Configuration

idf.py menuconfig

Some examples contain configurable options that can be configured using idf.py menuconfig after specifying
the chip using idf.py set-target.

2.3.3 Trouble shooting

Check ESP-IDF doc

See ESP-IDF DOC

Erase FLASH & Clear Example

idf.py erase-flash -p [PORT]

Delete build/, sdkconfig, dependencies.lock, managed_components/ and try again.

2.4 Model Quantization

First, please refer to operator_support_state.md to ensure that the operators in your model are supported.
ESP-DL must use the proprietary format .espdl for model deployment. Deep learning models need to be quantized
and converted to the format before they can be used. ESP-PPQ provides two interfaces, espdl_quantize_onnx
and espdl_quantize_torch, to support ONNX models and PyTorch models to be exported as .espdl mod-
els. Other deep learning frameworks, such as TensorfFlow, PaddlePaddle, etc., need to convert the model to ONNX
first. So make sure your model can be converted to ONNX model. For more details, please refer to:

• How to quantize model
• How to quantize MobileNetV2
• How to quantize YOLO11n
• How to quantize YOLO11n-pose
• How to quantize streaming model

2.5 Model deployment

ESP-DL provides a series of APIs to quickly load and run models. For more details, see:
• How to load & test & profile model
• How to run model
• How to deploy streaming model

Espressif Systems 9
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html
https://github.com/espressif/esp-dl/blob/7089b94/operator_support_state.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 2. Getting Started

Espressif Systems 10
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3

Tutorials

3.1 How to quantize model

ESP-DL must use a proprietary format .espdl for model deployment. This is a quantized model format that
supports 8bit and 16bit. In this tutorial, we will take quantize_sin_model as an example to show how to use ESP-
PPQ to quantize and export a .espdl model. The quantization method is Post Training Quantization (PTQ).

• Preparation
• Pre-trained model
• Quantize and export .espdl

– Add test input/output
– Quantized model inference & accuracy evaluation

• Advanced Quantization Methods
– Post Training Quantization (PTQ)
– Quantization Aware Training (QAT)

3.1.1 Preparation

Install ESP_PPQ

3.1.2 Pre-trained model

python sin_model.py

Run sin_model.py . This script trains a simple Pytorch model to fit the sin function in the range [0, 2pi]. After
training, the corresponding .pth weights will be saved and the ONNX model will be exported.

Note: ESP-PPQ provides two interfaces, espdl_quantize_onnx and espdl_quantize_torch, to sup-
port ONNX models and PyTorch models. Other deep learning frameworks, such as TensorfFlow, PaddlePaddle,
etc., need to be converted to ONNX first.

• Convert TensorFlow to ONNX tf2onnx
• Convert TFLite to ONNX tflite2onnx
• Convert TFLite to TensorFlow tflite2tensorflow

11

https://github.com/espressif/esp-dl/tree/7089b94/examples/tutorial/how_to_quantize_model/quantize_sin_model
https://github.com/espressif/esp-dl/blob/7089b94/examples/tutorial/how_to_quantize_model/quantize_sin_model/sin_model.py
https://github.com/onnx/tensorflow-onnx
https://github.com/zhenhuaw-me/tflite2onnx
https://github.com/PINTO0309/tflite2tensorflow

Chapter 3. Tutorials

• Convert PaddlePaddle to ONNX paddle2onnx

3.1.3 Quantize and export .espdl

Reference quantize_torch_model.py and quantize_onnx_model.py , learn how to use the es-
pdl_quantize_onnx and espdl_quantize_torch interfaces to quantize and export the .espdl
model.
After executing the script, three files will be exported:

• **.espdl: ESPDL model binary file, which can be directly used for chip reasoning.
• **.info: ESPDL model text file, used to debug and determine whether the .espdl model is exported

correctly. Contains model structure, quantized model weights, test input/output and other information.
• **.json: Quantization information file, used to save and load quantization information.

Note:
1. The .espdlmodels of different platforms cannot be mixed, otherwise the inference results will be inaccurate.

• The ESP32 uses ROUND_HALF_UP as its rounding strategy.
– When quantizing ESP32 platform models using ESP-PPQ, set the target to c. Because ESP-DL

implements its operators in C.
– When deploying ESP32 platform models using ESP-DL, set the project compilation target to
esp32.

• The ROUND strategy used by ESP32S3 is ROUND_HALF_UP.
• The ROUND strategy used by ESP32P4 is ROUND_HALF_EVEN.

2. The quantization strategy currently used by ESP-DL is symmetric quantization + POWER OF TWO.

Add test input/output

To verify whether the inference results of the model on the board are correct, you first need to record a set of test
input/output on the PC. By turning on the export_test_values option in the api, a set of test input/output
can be saved in the .espdl model. One of the input_shape and inputs parameters must be specified. The
input_shape parameter uses a random test input, while inputs can use a specific test input. The values of
the test input/output can be viewed in the .info file. Search for test inputs value and test outputs
value to view them.

Quantized model inference & accuracy evaluation

espdl_quantize_onnx and espdl_quantize_torch APIs will return BaseGraph. Use BaseGraph
to build the corresponding TorchExecutor to use the quantized model for inference on the PC side.

executor = TorchExecutor(graph=quanted_graph, device=device)
output = executor(input)

The output obtained by quantized model inference can be used to calculate various accuracy metrics. Since the
board-side esp-dl inference result can be aligned with esp-ppq, these metrics can be used directly to evaluate
the accuracy of the quantized model.

Note:
1. Currently esp-dl only supports batch_size of 1, and does not support multi-batch or dynamic batch.
2. The test input/output and the quantized model weights in the .info file are all 16-byte aligned. If the length

is less than 16 bytes, it will be padded with 0.

Espressif Systems 12
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/PaddlePaddle/Paddle2ONNX
https://github.com/espressif/esp-dl/blob/7089b94/examples/tutorial/how_to_quantize_model/quantize_sin_model/quantize_torch_model.py
https://github.com/espressif/esp-dl/blob/7089b94/examples/tutorial/how_to_quantize_model/quantize_sin_model/quantize_onnx_model.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

3.1.4 Advanced Quantization Methods

If you want to further improve the performance of the quantized model, please try the the following advanced quan-
tization methods:

Post Training Quantization (PTQ)

• Mixed precision quantization
• Layerwise equalization quantization
• Horizontal Layer Split Quantization

Quantization Aware Training (QAT)

• YOLO11n Quantization-Aware Training
• YOLO11n-pose Quantization-Aware Training

3.2 How to load & test & profile model

In this tutorial, we will show you how to load, test, profile an espdl model. example

• Preparation
• Load model from rodata
• Load model from partition
• Load model from sdcard
• Test whether on-board model inference is correct
• Profile model memory usage
• Profile model inference latency
• Combined profiling: profile() method

3.2.1 Preparation

1. Install ESP_IDF
2. how_to_quantize_model

3.2.2 Load model from rodata

This method embeds the model file directly into the application’s .rodata section in FLASH. It’s the simplest
approach but has the drawback that the model gets re-flashed every time the application code changes.

1. Add model file in CMakeLists.txt
To embed the .espdlmodel file into the .rodata section, add the following code to your CMakeLists.
txt. The first few lines should be placed before idf_component_register() and the last line after
idf_component_register().

idf_build_get_property(component_targets __COMPONENT_TARGETS)
if ("___idf_espressif__esp-dl" IN_LIST component_targets)

idf_component_get_property(espdl_dir espressif__esp-dl COMPONENT_DIR)
elseif("___idf_esp-dl" IN_LIST component_targets)

idf_component_get_property(espdl_dir esp-dl COMPONENT_DIR)
endif()

(continues on next page)

Espressif Systems 13
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/tree/7089b94/examples/tutorial/how_to_load_test_profile_model
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
set(cmake_dir ${espdl_dir}/fbs_loader/cmake)
include(${cmake_dir}/utilities.cmake)
set(embed_files your_model_path/model_name.espdl)

idf_component_register(...)

target_add_aligned_binary_data(${COMPONENT_LIB} ${embed_files} BINARY)

2. Load the model in the program
Include the header file:

#include "dl_model_base.hpp"

Declare the model symbol and create the model:

// The symbol name is composed of three parts: prefix "_binary_", filename
↪→"model_espdl", and suffix "_start"
extern const uint8_t model_espdl[] asm("_binary_model_espdl_start");

// Basic usage - loads model with default parameters
dl::Model *model = new dl::Model((const char *)model_espdl, fbs::MODEL_
↪→LOCATION_IN_FLASH_RODATA);

// Advanced usage with custom parameters:
// - Keep parameters in FLASH (saves PSRAM/internal RAM, but lower performance)
// - Limit internal RAM usage to 0 bytes (use PSRAM first)
// - Use greedy memory manager
// - No encryption key
// - param_copy = false (keep parameters in FLASH)
// dl::Model *model = new dl::Model((const char *)model_espdl,
// fbs::MODEL_LOCATION_IN_FLASH_RODATA,
// 0, // max_internal_size
// dl::MEMORY_MANAGER_GREEDY,
// nullptr, // key
// false); // param_copy

Note: Performance and Memory Trade-offs:
• Flashing Time: When using Load model from rodata, the model file is embedded in the application binary

and gets re-flashed every time you modify your code. For large models, this increases flashing time. Consider
Load model from partition or Load model from sdcard to avoid this.

• Memory vs Performance: Theparam_copy parameter controls whether model parameters are copied from
FLASH to faster memory (PSRAM/internal RAM). Setting param_copy=false saves RAM but reduces
inference performance since FLASH access is slower. Only disable parameter copying if RAM is extremely
tight.

• App Partition Size: Large models embedded in .rodata may require increasing the app partition size in
partition.csv.

3.2.3 Load model from partition

This method stores the model in a separate FLASH partition, allowing you to update the model independently of the
application code.

1. Add model information in partition.csv
Create or modify your partition.csv file to include a partition for the model. For details on partition
tables, refer to the ESP-IDF partition table documentation.

Espressif Systems 14
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

Name, Type, SubType, Offset, Size, Flags
factory, app, factory, 0x010000, 4000K,
model, data, spiffs, , 4000K,

• Name: Any meaningful name (max 16 characters including null terminator)
• Type: data
• SubType: spiffs (required for model storage)
• Offset: Leave blank for automatic calculation
• Size: Must be larger than the model file size

2. Add model flashing information in CMakeLists.txt

idf_component_register(...)
set(image_file your_model_path/model_name.espdl)
esptool_py_flash_to_partition(flash "model" "${image_file}")

The second parameter in esptool_py_flash_to_partition must match the Name field in parti-
tion.csv.

3. Load the model in the program
Include the header file:

#include "dl_model_base.hpp"

Create the model instance:

// Basic usage - loads model with default parameters
dl::Model *model = new dl::Model("model", fbs::MODEL_LOCATION_IN_FLASH_
↪→PARTITION);

// Advanced usage - keep parameters in FLASH to save RAM
// dl::Model *model = new dl::Model("model",
// fbs::MODEL_LOCATION_IN_FLASH_PARTITION,
// 0, // max_internal_size
// dl::MEMORY_MANAGER_GREEDY,
// nullptr, // key
// false); // param_copy

The first parameter (partition label) must match the Name field in partition.csv.

Note: Flashing Optimization: Use idf.py app-flash instead of idf.py flash to flash only the appli-
cation partition without re-flashing the model partition. This significantly reduces flashing time during development.

3.2.4 Load model from sdcard

This method loads the model from an SD card, which is useful when FLASH space is limited or when you need to
update models frequently without re-flashing.

1. Prepare the SD card
• Format: The SD card should be formatted as FAT32. If not, it will be automatically formatted when

mounted (data will be lost).
• Backup: Always backup SD card data before using it with ESP-DL.

2. Mount the SD card
• Using BSP (Board Support Package):

Enable CONFIG_BSP_SD_FORMAT_ON_MOUNT_FAIL in menuconfig to allow automatic format-
ting.

#include "bsp/esp-bsp.h"
ESP_ERROR_CHECK(bsp_sdcard_mount());

• Without BSP:
Configure the mount options with format_if_mount_failed = true.

Espressif Systems 15
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

#include "esp_vfs_fat.h"
#include "sdmmc_cmd.h"

esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5,
.allocation_unit_size = 16 * 1024

};
// Mount SD card (implementation depends on your hardware)

3. Copy model to SD card
Copy your .espdl model file to the SD card (e.g., to the root directory as model.espdl).

4. Load the model in the program
Include the header file:

#include "dl_model_base.hpp"

Create the model instance:

// Basic usage with BSP
ESP_ERROR_CHECK(bsp_sdcard_mount());
dl::Model *model = new dl::Model("/sdcard/model.espdl", fbs::MODEL_LOCATION_IN_
↪→SDCARD);

// Or with custom path
// dl::Model *model = new dl::Model("/sdcard/models/my_model.espdl",␣
↪→fbs::MODEL_LOCATION_IN_SDCARD);

// Don't forget to unmount when done
// ESP_ERROR_CHECK(bsp_sdcard_unmount());

For non-BSP usage, mount the SD card first, then create the model similarly.

Note: Performance Considerations: Loading from SD card is slower than from FLASH because the model data
must be copied from the SD card to RAM. However, this method saves FLASH space and allows easy model updates
by swapping SD cards.

3.2.5 Test whether on-board model inference is correct

The test() method verifies that the model produces correct inference results by comparing them against ground
truth values embedded in the model file.
Prerequisites:

• The .espdl model must be exported with test inputs and outputs enabled in ESP-PPQ (use the ex-
port_test_values option).

• For deployment, you can export a version without test data to reduce model size.
API: esp_err_t dl::Model::test()

Returns: ESP_OK if all tests pass, ESP_FAIL otherwise.
Usage:

#include "dl_model_base.hpp"

// After creating the model...
esp_err_t ret = model->test();
if (ret == ESP_OK) {

ESP_LOGI(TAG, "Model test passed!");
} else {

(continues on next page)

Espressif Systems 16
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
ESP_LOGE(TAG, "Model test failed!");

}

// Or using the convenience macro:
ESP_ERROR_CHECK(model->test());

How it works:
1. Loads test input tensors embedded in the model
2. Runs inference through all model layers
3. Compares each output against the ground truth values (with tolerance for quantization errors)
4. Reports success or failure for each output

Note for INT16 models: Due to quantization rounding errors, INT16 models allow ±1 difference in comparison.

3.2.6 Profile model memory usage

The profile_memory() method prints a detailed breakdown of memory usage across different memory types
(internal RAM, PSRAM, FLASH).
API: void dl::Model::profile_memory()

Usage:

#include "dl_model_base.hpp"

// After creating and testing the model...
model->profile_memory();

Output includes:

Name Explanation
fbs_model parameter

FlatBuffers model structure (includes model metadata,
graph structure, tensor shapes, etc.) Model parame-
ters stored within the FlatBuffers model (sub-item of
fbs_model)

parameter_copy Parameters copied from FLASH to faster mem-
ory (PSRAM/internal RAM). Only present when
param_copy=true (default). Improves inference
performance.

variable Memory allocated for model inputs, outputs, and inter-
mediate tensors by the memory manager.

others Miscellaneous memory usage (class member variables,
alignment overhead, etc.). Usually very small.

total Total memory usage across all categories.

Memory types shown: Internal RAM, PSRAM, and FLASH usage for each category.

3.2.7 Profile model inference latency

The profile_module() method prints detailed latency information for each module (layer) in the model.
API: void dl::Model::profile_module(bool sort_module_by_latency = false)

Parameters: - sort_module_by_latency: If true, modules are sorted by latency (highest first). If false
(default), modules are shown in ONNX topological order.
Usage:

Espressif Systems 17
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

// Default: topological order
model->profile_module();

// Sorted by latency (highest first)
model->profile_module(true);

Output includes: - Module name - Module type (operation type) - Inference latency in microseconds (or cycles if
DL_LOG_LATENCY_UNIT is enabled) - Total inference latency at the end

3.2.8 Combined profiling: profile() method

The profile() method combines profile_memory() and profile_module() for comprehensive anal-
ysis.
API: void dl::Model::profile(bool sort_module_by_latency = false)

Usage:

// Comprehensive profiling in topological order
model->profile();

// Comprehensive profiling sorted by latency
model->profile(true);

This is the most convenient way to get both memory and performance analysis in one call.

3.3 How to run model

In this tutorial, we will introduce the most basic model inference process. example

• Preparation
• Load model
• Get model input/output.
• Quantize Input

– Quantize a single value
– Quantize dl::TensorBase

• Dequantize output
– Dequantize a single value
– Dequantize dl::TensorBase

• Model Inference

3.3.1 Preparation

Install ESP_IDF

3.3.2 Load model

How to load model

Espressif Systems 18
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/tree/7089b94/examples/tutorial/how_to_run_model
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

3.3.3 Get model input/output.

std::map<std::string, dl::TensorBase *> model_inputs = model->get_inputs();
dl::TensorBase *model_input = model_inputs.begin()->second;
std::map<std::string, dl::TensorBase *> model_outputs = model->get_outputs();
dl::TensorBase *model_output = model_outputs.begin()->second;

You can get the input/output names and the corresponding dl::TensorBase with get_inputs() and
get_outputs() api. For more information, see dl::TensorBase documentation.

Note: ESP-DL’s memory manager allocates a whole block of memory for each model’s input/intermediate
result/output. Since they share this memory, when the model is inferencing, the later results will overwrite the previous
results. In other words, the data in model_input may be overwritten by model_output or other intermediate
results after the model inference is completed.

3.3.4 Quantize Input

8-bit and 16-bit quantized models accept inputs of type int8_t and int16_t respectively. float inputs must
be quantized to the one of them according to exponent before being fed into the model. Calculation formula:

Q = Clip
(

Round
(

R

Scale

)
,MIN,MAX

)
Scale = 2Exp

Where:
• R is the floating point number to be quantized.
• Q is the integer value after quantization, which needs to be clipped within the range [MIN, MAX].
• MIN is the minimum integer value, when 8bit, MIN = -128, when 16bit, MIN = -32768.
• MAX is the maximum integer value, when 8bit, MAX = 127, when 16bit, MAX = 32767.

Quantize a single value

float input_v = VALUE;
// Note that dl::quantize accepts inverse of scale as the second input, so we use␣
↪→DL_RESCALE here.
int8_t quant_input_v = dl::quantize<int8_t>(input_v, DL_RESCALE(model_input->
↪→exponent));

Quantize dl::TensorBase

// assume that input_tensor already contains the float input data.
dl::TensorBase *input_tensor;
model_input->assign(input_tensor);

3.3.5 Dequantize output

8bit and 16bit quantized model, get int8_t and int16_t type output respectively. Must be dequantized according
to exponent to get floating point output. Calculation formula:

R′ = Q× Scale

Espressif Systems 19
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

Scale = 2Exp

Where:
• R’is the approximate floating point value recovered after dequantization.
• Q is the integer value after quantization.

Dequantize a single value

int8_t quant_output_v = VALUE;
float output_v = dl::dequantize(quant_output_v, DL_SCALE(model_output->exponent));

Dequantize dl::TensorBase

// create a TensorBase filled with 0 of shape [1, 1]
dl::TensorBase *output_tensor = new dl::TensorBase({1, 1}, nullptr, 0, dl::DATA_
↪→TYPE_FLOAT);
output_tensor->assign(model_output);

3.3.6 Model Inference

See:
• example
• void dl::Model::run(runtime_mode_t mode)
• void dl::Model::run(TensorBase *input, runtime_mode_t mode)
• void dl::Model::run(std::map<std::string, TensorBase*> &user_inputs,
runtime_mode_t mode, std::map<std::string, TensorBase*> user_outputs)

3.4 Creating a New Module (Operator)

This tutorial guides you through the process of creating a new module in thedl::module namespace. TheModule
class serves as the base class for all modules, and you can extend this base class to create your custom module.

Note: The interface of modules in ESP-DL should be aligned with ONNX.

3.4.1 Understand the Base Module Class

The base class provides several virtual methods that must be overridden in your derived class.
• Methods:

– dl::module::Module::Module(): Constructor to initialize the module.
– dl::module::Module::~Module(): Destructor to release resources.
– dl::module::Module::get_output_shape(): Calculates the output shape based on the in-

put shape.
– dl::module::Module::forward(): Runs the module, high-level interface.
– dl::module::Module::forward_args(): Runs the module, low-level interface.
– dl::module::Module::deserialize(): Creates a module instance from serialized informa-

tion.
– dl::module::Module::print(): Prints module information.

For more information, please refer to Module Class Reference.

Espressif Systems 20
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/tree/7089b94/examples/tutorial/how_to_run_model
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/dl/module/include/dl_module_base.hpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

3.4.2 Create a New Module Class

To create a new module, you need to derive a new class from the Module base class and override the necessary
methods.

Example: Creating a MyCustomModule Class

For more examples, please refer to esp-dl/dl/module.

#include "module.h" // Include the header file where the Module class is defined

namespace dl {
namespace module {

class MyCustomModule : public Module {
public:

// Constructor
MyCustomModule(const char *name = "MyCustomModule",

module_inplace_t inplace = MODULE_NON_INPLACE,
quant_type_t quant_type = QUANT_TYPE_NONE)

: Module(name, inplace, quant_type) {}

// Destructor
virtual ~MyCustomModule() {}

// Override the get_output_shape method
std::vector<std::vector<int>> get_output_shape(std::vector<std::vector<int>> &

↪→input_shapes) override {
// Implement the logic to calculate the output shape based on input shapes
std::vector<std::vector<int>> output_shapes;
// Example: Assume the output shape is the same as the input shape
output_shapes.push_back(input_shapes[0]);
return output_shapes;

}

// Override the forward method
void forward(std::vector<dl::TensorBase *> &tensors, runtime_mode_t mode =␣

↪→RUNTIME_MODE_AUTO) override {
// Implement the logic to run the module
// Example: Perform some operation on the tensors
for (auto &tensor : tensors) {

// Perform some operation on each tensor
}

}

// Override the forward_args method
void forward_args(void *args) override {

// Implement the low-level interface logic
// Example: Perform some operation based on the arguments

}

// Deserialize module instance by serialization information
static Module *deserialize(fbs::FbsModel *fbs_model, std::string node_name){

// Implement the logic to deserialize the module instance
// The interface should be align with ONNX

}

// Override the print method
void print() override {

// Print module information
ESP_LOGI("MyCustomModule", "Module Name: %s, Quant type: %d", name.c_str(),

↪→ quant_type); (continues on next page)

Espressif Systems 21
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/tree/7089b94/esp-dl/dl/module/include
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
}

};

} // namespace module
} // namespace dl

Register MyCustomModule Class

Once you have implemented MyCustomModule Class, register your module in dl_module_creator as a globally
available module.

void register_dl_modules()
{

if (creators.empty()) {
...
this->register_module("MyCustomModule", MyCustomModule::deserialize);

}
}

3.5 How to deploy MobileNetV2

In this tutorial, we will introduce how to quantize a pre-trained MobileNetV2 model using ESP-PPQ and deploy the
quantized MobileNetV2 model using ESP-DL.

• Preparation
• Model quantization

– Pre-trained model
– Calibration dataset
– 8bit default configuration quantization
– Mixed precision quantization
– Layerwise equalization quantization

• Model deployment
– Image classification base class
– Pre-process
– Post-process

3.5.1 Preparation

1. Install ESP_IDF
2. Install ESP_PPQ

3.5.2 Model quantization

Quantization script

Pre-trained model

Load the pre-trained model of MobileNet_v2 from torchvision. You can also download it from ONNX models or
TensorFlow models:

Espressif Systems 22
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/dl/module/include/dl_module_creator.hpp
https://github.com/espressif/esp-dl/tree/7089b94/examples/tutorial/how_to_quantize_model/quantize_mobilenetv2
https://github.com/onnx/models
https://github.com/tensorflow/models
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

import torchvision
from torchvision.models.mobilenetv2 import MobileNet_V2_Weights

model = torchvision.models.mobilenet.mobilenet_v2(weights=MobileNet_V2_Weights.
↪→IMAGENET1K_V1)

Calibration dataset

The calibration dataset needs to be consistent with your model input format. The calibration dataset needs to cover all
possible situations of your model input as much as possible to better quantize the model. Here we take the ImageNet
dataset as an example to demonstrate how to prepare the calibration dataset.
Use torchvision to load the ImageNet dataset:

import torchvision.datasets as datasets
from torch.utils.data.dataset import Subset
dataset = datasets.ImageFolder(

CALIB_DIR,
transforms.Compose(

[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(

mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),

]
),

)
dataset = Subset(dataset, indices=[_ for _ in range(0, 1024)])
dataloader = DataLoader(

dataset=dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=4,
pin_memory=False,
collate_fn=collate_fn1,

)

8bit default configuration quantization

Quantization settings

target="esp32p4"
num_of_bits=8
batch_size=32
quant_setting = QuantizationSettingFactory.espdl_setting() # default setting

Quantization results

Analysing Graphwise Quantization Error::
Layer | NOISE:SIGNAL POWER RATIO
/features/features.16/conv/conv.2/Conv: | ████████████████████ | 48.831%
/features/features.15/conv/conv.2/Conv: | ███████████████████ | 45.268%
/features/features.17/conv/conv.2/Conv: | ██████████████████ | 43.112%
/features/features.18/features.18.0/Conv: | █████████████████ | 41.586%
/features/features.14/conv/conv.2/Conv: | █████████████████ | 41.135%
/features/features.13/conv/conv.2/Conv: | ██████████████ | 35.090%
/features/features.17/conv/conv.0/conv.0.0/Conv: | █████████████ | 32.895%

(continues on next page)

Espressif Systems 23
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/features/features.16/conv/conv.1/conv.1.0/Conv: | ████████████ | 29.226%
/features/features.12/conv/conv.2/Conv: | ████████████ | 28.895%
/features/features.16/conv/conv.0/conv.0.0/Conv: | ███████████ | 27.808%
/features/features.7/conv/conv.2/Conv: | ███████████ | 27.675%
/features/features.10/conv/conv.2/Conv: | ███████████ | 26.292%
/features/features.11/conv/conv.2/Conv: | ███████████ | 26.085%
/features/features.6/conv/conv.2/Conv: | ███████████ | 25.892%
/classifier/classifier.1/Gemm: | ██████████ | 25.591%
/features/features.15/conv/conv.0/conv.0.0/Conv: | ██████████ | 25.323%
/features/features.4/conv/conv.2/Conv: | ██████████ | 24.787%
/features/features.15/conv/conv.1/conv.1.0/Conv: | ██████████ | 24.354%
/features/features.14/conv/conv.1/conv.1.0/Conv: | ████████ | 20.207%
/features/features.9/conv/conv.2/Conv: | ████████ | 19.808%
/features/features.14/conv/conv.0/conv.0.0/Conv: | ████████ | 18.465%
/features/features.5/conv/conv.2/Conv: | ███████ | 17.868%
/features/features.12/conv/conv.1/conv.1.0/Conv: | ███████ | 16.589%
/features/features.13/conv/conv.1/conv.1.0/Conv: | ███████ | 16.143%
/features/features.11/conv/conv.1/conv.1.0/Conv: | ██████ | 15.382%
/features/features.3/conv/conv.2/Conv: | ██████ | 15.105%
/features/features.13/conv/conv.0/conv.0.0/Conv: | ██████ | 15.029%
/features/features.10/conv/conv.1/conv.1.0/Conv: | ██████ | 14.875%
/features/features.2/conv/conv.2/Conv: | ██████ | 14.869%
/features/features.11/conv/conv.0/conv.0.0/Conv: | ██████ | 14.552%
/features/features.9/conv/conv.1/conv.1.0/Conv: | ██████ | 14.050%
/features/features.8/conv/conv.1/conv.1.0/Conv: | ██████ | 13.929%
/features/features.8/conv/conv.2/Conv: | ██████ | 13.833%
/features/features.12/conv/conv.0/conv.0.0/Conv: | ██████ | 13.684%
/features/features.7/conv/conv.0/conv.0.0/Conv: | █████ | 12.942%
/features/features.6/conv/conv.1/conv.1.0/Conv: | █████ | 12.765%
/features/features.10/conv/conv.0/conv.0.0/Conv: | █████ | 12.251%
/features/features.5/conv/conv.1/conv.1.0/Conv: | █████ | 11.186%
/features/features.17/conv/conv.1/conv.1.0/Conv: | ████ | 11.070%
/features/features.9/conv/conv.0/conv.0.0/Conv: | ████ | 10.371%
/features/features.4/conv/conv.1/conv.1.0/Conv: | ████ | 10.356%
/features/features.6/conv/conv.0/conv.0.0/Conv: | ████ | 10.149%
/features/features.4/conv/conv.0/conv.0.0/Conv: | ████ | 9.472%
/features/features.8/conv/conv.0/conv.0.0/Conv: | ████ | 9.232%
/features/features.3/conv/conv.1/conv.1.0/Conv: | ████ | 9.187%
/features/features.1/conv/conv.1/Conv: | ████ | 8.770%
/features/features.5/conv/conv.0/conv.0.0/Conv: | ███ | 8.408%
/features/features.7/conv/conv.1/conv.1.0/Conv: | ███ | 8.151%
/features/features.2/conv/conv.1/conv.1.0/Conv: | ███ | 7.156%
/features/features.3/conv/conv.0/conv.0.0/Conv: | ███ | 6.328%
/features/features.2/conv/conv.0/conv.0.0/Conv: | ██ | 5.392%
/features/features.1/conv/conv.0/conv.0.0/Conv: | | 0.875%
/features/features.0/features.0.0/Conv: | | 0.119%
Analysing Layerwise quantization error:: 100
↪→%|███|␣
↪→53/53 [08:44<00:00, 9.91s/it]
Layer | NOISE:SIGNAL POWER RATIO
/features/features.1/conv/conv.0/conv.0.0/Conv: | ████████████████████ | 14.303%
/features/features.0/features.0.0/Conv: | █ | 0.844%
/features/features.1/conv/conv.1/Conv: | █ | 0.667%
/features/features.2/conv/conv.1/conv.1.0/Conv: | █ | 0.574%
/features/features.3/conv/conv.1/conv.1.0/Conv: | █ | 0.419%
/features/features.15/conv/conv.1/conv.1.0/Conv: | | 0.272%
/features/features.9/conv/conv.1/conv.1.0/Conv: | | 0.238%
/features/features.17/conv/conv.1/conv.1.0/Conv: | | 0.214%
/features/features.4/conv/conv.1/conv.1.0/Conv: | | 0.180%
/features/features.11/conv/conv.1/conv.1.0/Conv: | | 0.151%
/features/features.12/conv/conv.1/conv.1.0/Conv: | | 0.148%

(continues on next page)

Espressif Systems 24
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/features/features.16/conv/conv.1/conv.1.0/Conv: | | 0.146%
/features/features.14/conv/conv.2/Conv: | | 0.136%
/features/features.13/conv/conv.1/conv.1.0/Conv: | | 0.105%
/features/features.6/conv/conv.1/conv.1.0/Conv: | | 0.105%
/features/features.8/conv/conv.1/conv.1.0/Conv: | | 0.083%
/features/features.7/conv/conv.2/Conv: | | 0.076%
/features/features.5/conv/conv.1/conv.1.0/Conv: | | 0.076%
/features/features.3/conv/conv.2/Conv: | | 0.075%
/features/features.16/conv/conv.2/Conv: | | 0.074%
/features/features.13/conv/conv.0/conv.0.0/Conv: | | 0.072%
/features/features.15/conv/conv.2/Conv: | | 0.066%
/features/features.4/conv/conv.2/Conv: | | 0.065%
/features/features.11/conv/conv.2/Conv: | | 0.063%
/classifier/classifier.1/Gemm: | | 0.063%
/features/features.2/conv/conv.0/conv.0.0/Conv: | | 0.054%
/features/features.13/conv/conv.2/Conv: | | 0.050%
/features/features.10/conv/conv.1/conv.1.0/Conv: | | 0.042%
/features/features.17/conv/conv.0/conv.0.0/Conv: | | 0.040%
/features/features.2/conv/conv.2/Conv: | | 0.038%
/features/features.4/conv/conv.0/conv.0.0/Conv: | | 0.034%
/features/features.17/conv/conv.2/Conv: | | 0.030%
/features/features.14/conv/conv.0/conv.0.0/Conv: | | 0.025%
/features/features.16/conv/conv.0/conv.0.0/Conv: | | 0.024%
/features/features.10/conv/conv.2/Conv: | | 0.022%
/features/features.11/conv/conv.0/conv.0.0/Conv: | | 0.021%
/features/features.9/conv/conv.2/Conv: | | 0.021%
/features/features.14/conv/conv.1/conv.1.0/Conv: | | 0.020%
/features/features.7/conv/conv.1/conv.1.0/Conv: | | 0.020%
/features/features.5/conv/conv.2/Conv: | | 0.019%
/features/features.8/conv/conv.2/Conv: | | 0.018%
/features/features.12/conv/conv.2/Conv: | | 0.017%
/features/features.6/conv/conv.2/Conv: | | 0.014%
/features/features.7/conv/conv.0/conv.0.0/Conv: | | 0.014%
/features/features.3/conv/conv.0/conv.0.0/Conv: | | 0.013%
/features/features.12/conv/conv.0/conv.0.0/Conv: | | 0.009%
/features/features.15/conv/conv.0/conv.0.0/Conv: | | 0.008%
/features/features.5/conv/conv.0/conv.0.0/Conv: | | 0.006%
/features/features.6/conv/conv.0/conv.0.0/Conv: | | 0.005%
/features/features.9/conv/conv.0/conv.0.0/Conv: | | 0.003%
/features/features.18/features.18.0/Conv: | | 0.002%
/features/features.10/conv/conv.0/conv.0.0/Conv: | | 0.002%
/features/features.8/conv/conv.0/conv.0.0/Conv: | | 0.002%

* Prec@1 60.500 Prec@5 83.275*

Quantization error analysis
The top1 accuracy after quantization is only 60.5%, which is far from the accuracy of the float model (71.878%).
The quantization model has a large loss in accuracy, including:

• Graphwise Error
The last layer of the model is /classifier/classifier.1/Gemm, and the cumulative error of this layer is 25.591%.
In experience, the cumulative error of the last layer is less than 10%, and the accuracy loss of the quantization
model is small.

• Layerwise error
Observing the Layerwise error, it is found that the errors of most layers are less than 1%, indicating that the
quantization errors of most layers are small, and only a few layers have large errors. We can choose to quantize
the layers with large errors using int16. For details, please see mixed precision quantization.

Espressif Systems 25
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

Mixed precision quantization

esp-dl supports mixed precision quantization, which can be used to quantize some layers using int16 and some layers
using int8. The quantization error of the model can be reduced by using mixed precision quantization.
Quantization settings

from esp_ppq.api import get_target_platform
target="esp32p4"
num_of_bits=8
batch_size=32

The following layers are quantized using int16
quant_setting = QuantizationSettingFactory.espdl_setting()
quant_setting.dispatching_table.append("/features/features.1/conv/conv.0/conv.0.0/
↪→Conv", get_target_platform(TARGET, 16))
quant_setting.dispatching_table.append("/features/features.1/conv/conv.0/conv.0.2/
↪→Clip", get_target_platform(TARGET, 16))

Quantization results

Layer | NOISE:SIGNAL POWER RATIO
/features/features.16/conv/conv.2/Conv: | ████████████████████ | 31.585%
/features/features.15/conv/conv.2/Conv: | ███████████████████ | 29.253%
/features/features.17/conv/conv.0/conv.0.0/Conv: | ████████████████ | 25.077%
/features/features.14/conv/conv.2/Conv: | ████████████████ | 24.819%
/features/features.17/conv/conv.2/Conv: | ████████████ | 19.546%
/features/features.13/conv/conv.2/Conv: | ████████████ | 19.283%
/features/features.16/conv/conv.0/conv.0.0/Conv: | ████████████ | 18.764%
/features/features.16/conv/conv.1/conv.1.0/Conv: | ████████████ | 18.596%
/features/features.18/features.18.0/Conv: | ████████████ | 18.541%
/features/features.15/conv/conv.0/conv.0.0/Conv: | ██████████ | 15.633%
/features/features.12/conv/conv.2/Conv: | █████████ | 14.784%
/features/features.15/conv/conv.1/conv.1.0/Conv: | █████████ | 14.773%
/features/features.14/conv/conv.1/conv.1.0/Conv: | █████████ | 13.700%
/features/features.6/conv/conv.2/Conv: | ████████ | 12.824%
/features/features.10/conv/conv.2/Conv: | ███████ | 11.727%
/features/features.14/conv/conv.0/conv.0.0/Conv: | ███████ | 10.612%
/features/features.11/conv/conv.2/Conv: | ██████ | 10.262%
/features/features.9/conv/conv.2/Conv: | ██████ | 9.967%
/classifier/classifier.1/Gemm: | ██████ | 9.117%
/features/features.5/conv/conv.2/Conv: | ██████ | 8.915%
/features/features.7/conv/conv.2/Conv: | █████ | 8.690%
/features/features.3/conv/conv.2/Conv: | █████ | 8.586%
/features/features.4/conv/conv.2/Conv: | █████ | 7.525%
/features/features.13/conv/conv.1/conv.1.0/Conv: | █████ | 7.432%
/features/features.12/conv/conv.1/conv.1.0/Conv: | █████ | 7.317%
/features/features.13/conv/conv.0/conv.0.0/Conv: | ████ | 6.848%
/features/features.8/conv/conv.2/Conv: | ████ | 6.711%
/features/features.10/conv/conv.1/conv.1.0/Conv: | ████ | 6.100%
/features/features.8/conv/conv.1/conv.1.0/Conv: | ████ | 6.043%
/features/features.11/conv/conv.1/conv.1.0/Conv: | ████ | 5.962%
/features/features.9/conv/conv.1/conv.1.0/Conv: | ████ | 5.873%
/features/features.12/conv/conv.0/conv.0.0/Conv: | ████ | 5.833%
/features/features.7/conv/conv.0/conv.0.0/Conv: | ████ | 5.832%
/features/features.11/conv/conv.0/conv.0.0/Conv: | ████ | 5.736%
/features/features.6/conv/conv.1/conv.1.0/Conv: | ████ | 5.639%
/features/features.5/conv/conv.1/conv.1.0/Conv: | ███ | 5.017%
/features/features.10/conv/conv.0/conv.0.0/Conv: | ███ | 4.963%
/features/features.17/conv/conv.1/conv.1.0/Conv: | ███ | 4.870%
/features/features.3/conv/conv.1/conv.1.0/Conv: | ███ | 4.655%
/features/features.2/conv/conv.2/Conv: | ███ | 4.650%
/features/features.4/conv/conv.0/conv.0.0/Conv: | ███ | 4.648%

(continues on next page)

Espressif Systems 26
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/features/features.1/conv/conv.1/Conv: | ███ | 4.318%
/features/features.9/conv/conv.0/conv.0.0/Conv: | ██ | 3.849%
/features/features.6/conv/conv.0/conv.0.0/Conv: | ██ | 3.712%
/features/features.4/conv/conv.1/conv.1.0/Conv: | ██ | 3.394%
/features/features.8/conv/conv.0/conv.0.0/Conv: | ██ | 3.391%
/features/features.7/conv/conv.1/conv.1.0/Conv: | ██ | 2.713%
/features/features.2/conv/conv.1/conv.1.0/Conv: | ██ | 2.637%
/features/features.2/conv/conv.0/conv.0.0/Conv: | ██ | 2.602%
/features/features.5/conv/conv.0/conv.0.0/Conv: | █ | 2.397%
/features/features.3/conv/conv.0/conv.0.0/Conv: | █ | 1.759%
/features/features.1/conv/conv.0/conv.0.0/Conv: | | 0.433%
/features/features.0/features.0.0/Conv: | | 0.119%
Analysing Layerwise quantization error:: 100
↪→%|███|␣
↪→53/53 [08:27<00:00, 9.58s/it]
*
Layer | NOISE:SIGNAL POWER RATIO
/features/features.1/conv/conv.1/Conv: | ████████████████████ | 1.096%
/features/features.0/features.0.0/Conv: | ███████████████ | 0.844%
/features/features.2/conv/conv.1/conv.1.0/Conv: | ██████████ | 0.574%
/features/features.3/conv/conv.1/conv.1.0/Conv: | ████████ | 0.425%
/features/features.15/conv/conv.1/conv.1.0/Conv: | █████ | 0.272%
/features/features.9/conv/conv.1/conv.1.0/Conv: | ████ | 0.238%
/features/features.17/conv/conv.1/conv.1.0/Conv: | ████ | 0.214%
/features/features.4/conv/conv.1/conv.1.0/Conv: | ███ | 0.180%
/features/features.11/conv/conv.1/conv.1.0/Conv: | ███ | 0.151%
/features/features.12/conv/conv.1/conv.1.0/Conv: | ███ | 0.148%
/features/features.16/conv/conv.1/conv.1.0/Conv: | ███ | 0.146%
/features/features.14/conv/conv.2/Conv: | ██ | 0.136%
/features/features.13/conv/conv.1/conv.1.0/Conv: | ██ | 0.105%
/features/features.6/conv/conv.1/conv.1.0/Conv: | ██ | 0.105%
/features/features.8/conv/conv.1/conv.1.0/Conv: | █ | 0.083%
/features/features.5/conv/conv.1/conv.1.0/Conv: | █ | 0.076%
/features/features.3/conv/conv.2/Conv: | █ | 0.075%
/features/features.16/conv/conv.2/Conv: | █ | 0.074%
/features/features.13/conv/conv.0/conv.0.0/Conv: | █ | 0.072%
/features/features.7/conv/conv.2/Conv: | █ | 0.071%
/features/features.15/conv/conv.2/Conv: | █ | 0.066%
/features/features.4/conv/conv.2/Conv: | █ | 0.065%
/features/features.11/conv/conv.2/Conv: | █ | 0.063%
/classifier/classifier.1/Gemm: | █ | 0.063%
/features/features.13/conv/conv.2/Conv: | █ | 0.059%
/features/features.2/conv/conv.0/conv.0.0/Conv: | █ | 0.054%
/features/features.10/conv/conv.1/conv.1.0/Conv: | █ | 0.042%
/features/features.17/conv/conv.0/conv.0.0/Conv: | █ | 0.040%
/features/features.2/conv/conv.2/Conv: | █ | 0.038%
/features/features.4/conv/conv.0/conv.0.0/Conv: | █ | 0.034%
/features/features.17/conv/conv.2/Conv: | █ | 0.030%
/features/features.14/conv/conv.0/conv.0.0/Conv: | | 0.025%
/features/features.16/conv/conv.0/conv.0.0/Conv: | | 0.024%
/features/features.10/conv/conv.2/Conv: | | 0.022%
/features/features.11/conv/conv.0/conv.0.0/Conv: | | 0.021%
/features/features.9/conv/conv.2/Conv: | | 0.021%
/features/features.14/conv/conv.1/conv.1.0/Conv: | | 0.020%
/features/features.7/conv/conv.1/conv.1.0/Conv: | | 0.020%
/features/features.5/conv/conv.2/Conv: | | 0.019%
/features/features.8/conv/conv.2/Conv: | | 0.018%
/features/features.12/conv/conv.2/Conv: | | 0.017%
/features/features.1/conv/conv.0/conv.0.0/Conv: | | 0.017%
/features/features.6/conv/conv.2/Conv: | | 0.014%
/features/features.7/conv/conv.0/conv.0.0/Conv: | | 0.014%

(continues on next page)

Espressif Systems 27
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/features/features.3/conv/conv.0/conv.0.0/Conv: | | 0.013%
/features/features.12/conv/conv.0/conv.0.0/Conv: | | 0.009%
/features/features.15/conv/conv.0/conv.0.0/Conv: | | 0.008%
/features/features.5/conv/conv.0/conv.0.0/Conv: | | 0.006%
/features/features.6/conv/conv.0/conv.0.0/Conv: | | 0.005%
/features/features.9/conv/conv.0/conv.0.0/Conv: | | 0.003%
/features/features.18/features.18.0/Conv: | | 0.002%
/features/features.10/conv/conv.0/conv.0.0/Conv: | | 0.002%
/features/features.8/conv/conv.0/conv.0.0/Conv: | | 0.002%

* Prec@1 69.550 Prec@5 88.450*

Quantization Error Analysis
After replacing the layer with the largest error with 16-bit quantization, it can be observed that the model accuracy is
significantly improved. The top1 accuracy after quantization is 69.550%, which is close to the accuracy of the float
model (71.878%). The cumulative error of the last layer of the model /classifier/classifier.1/Gemm
is 9.117%.

Layerwise equalization quantization

This method is proposed in the paper Data-Free Quantization Through Weight Equalization and Bias Correction.
When using this method, the original ReLU6 in the MobilenetV2 model needs to be replaced with ReLU.
Quantization Settings

import torch.nn as nn
def convert_relu6_to_relu(model):

for child_name, child in model.named_children():
if isinstance(child, nn.ReLU6):

setattr(model, child_name, nn.ReLU())
else:

convert_relu6_to_relu(child)
return model

Replace ReLU6 with ReLU
model = convert_relu6_to_relu(model)
Use layerwise equalization
quant_setting = QuantizationSettingFactory.espdl_setting()
quant_setting.equalization = True
quant_setting.equalization_setting.iterations = 4
quant_setting.equalization_setting.value_threshold = .4
quant_setting.equalization_setting.opt_level = 2
quant_setting.equalization_setting.interested_layers = None

Layer | NOISE:SIGNAL POWER RATIO
/features/features.16/conv/conv.2/Conv: | ████████████████████ | 34.497%
/features/features.15/conv/conv.2/Conv: | ██████████████████ | 30.813%
/features/features.14/conv/conv.2/Conv: | ███████████████ | 25.876%
/features/features.17/conv/conv.0/conv.0.0/Conv: | ██████████████ | 24.498%
/features/features.17/conv/conv.2/Conv: | ████████████ | 20.290%
/features/features.13/conv/conv.2/Conv: | ████████████ | 20.177%
/features/features.16/conv/conv.0/conv.0.0/Conv: | ████████████ | 19.993%
/features/features.18/features.18.0/Conv: | ███████████ | 19.536%
/features/features.16/conv/conv.1/conv.1.0/Conv: | ██████████ | 17.879%
/features/features.12/conv/conv.2/Conv: | ██████████ | 17.150%
/features/features.15/conv/conv.0/conv.0.0/Conv: | █████████ | 15.970%
/features/features.15/conv/conv.1/conv.1.0/Conv: | █████████ | 15.254%
/features/features.1/conv/conv.1/Conv: | █████████ | 15.122%
/features/features.10/conv/conv.2/Conv: | █████████ | 14.917%

(continues on next page)

Espressif Systems 28
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://arxiv.org/abs/1906.04721
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/features/features.6/conv/conv.2/Conv: | ████████ | 13.446%
/features/features.11/conv/conv.2/Conv: | ███████ | 12.533%
/features/features.9/conv/conv.2/Conv: | ███████ | 11.479%
/features/features.14/conv/conv.1/conv.1.0/Conv: | ███████ | 11.470%
/features/features.5/conv/conv.2/Conv: | ██████ | 10.669%
/features/features.3/conv/conv.2/Conv: | ██████ | 10.526%
/features/features.14/conv/conv.0/conv.0.0/Conv: | ██████ | 9.529%
/features/features.7/conv/conv.2/Conv: | █████ | 9.500%
/classifier/classifier.1/Gemm: | █████ | 8.965%
/features/features.4/conv/conv.2/Conv: | █████ | 8.674%
/features/features.12/conv/conv.1/conv.1.0/Conv: | █████ | 8.349%
/features/features.13/conv/conv.1/conv.1.0/Conv: | █████ | 8.068%
/features/features.8/conv/conv.2/Conv: | █████ | 7.961%
/features/features.13/conv/conv.0/conv.0.0/Conv: | ████ | 7.451%
/features/features.10/conv/conv.1/conv.1.0/Conv: | ████ | 6.714%
/features/features.9/conv/conv.1/conv.1.0/Conv: | ████ | 6.399%
/features/features.8/conv/conv.1/conv.1.0/Conv: | ████ | 6.369%
/features/features.11/conv/conv.1/conv.1.0/Conv: | ████ | 6.222%
/features/features.2/conv/conv.2/Conv: | ███ | 5.867%
/features/features.5/conv/conv.1/conv.1.0/Conv: | ███ | 5.719%
/features/features.12/conv/conv.0/conv.0.0/Conv: | ███ | 5.546%
/features/features.6/conv/conv.1/conv.1.0/Conv: | ███ | 5.414%
/features/features.10/conv/conv.0/conv.0.0/Conv: | ███ | 5.093%
/features/features.17/conv/conv.1/conv.1.0/Conv: | ███ | 4.951%
/features/features.11/conv/conv.0/conv.0.0/Conv: | ███ | 4.941%
/features/features.2/conv/conv.1/conv.1.0/Conv: | ███ | 4.825%
/features/features.7/conv/conv.0/conv.0.0/Conv: | ██ | 4.330%
/features/features.2/conv/conv.0/conv.0.0/Conv: | ██ | 4.299%
/features/features.3/conv/conv.1/conv.1.0/Conv: | ██ | 4.283%
/features/features.4/conv/conv.0/conv.0.0/Conv: | ██ | 3.477%
/features/features.4/conv/conv.1/conv.1.0/Conv: | ██ | 3.287%
/features/features.8/conv/conv.0/conv.0.0/Conv: | ██ | 2.787%
/features/features.9/conv/conv.0/conv.0.0/Conv: | ██ | 2.774%
/features/features.6/conv/conv.0/conv.0.0/Conv: | ██ | 2.705%
/features/features.7/conv/conv.1/conv.1.0/Conv: | ██ | 2.636%
/features/features.5/conv/conv.0/conv.0.0/Conv: | █ | 1.846%
/features/features.3/conv/conv.0/conv.0.0/Conv: | █ | 1.170%
/features/features.1/conv/conv.0/conv.0.0/Conv: | | 0.389%
/features/features.0/features.0.0/Conv: | | 0.025%
Analysing Layerwise quantization error:: 100%|██████████| 53/53 [07:46<00:00, 8.
↪→80s/it]
Layer | NOISE:SIGNAL POWER RATIO
/features/features.1/conv/conv.0/conv.0.0/Conv: | ████████████████████ | 0.989%
/features/features.0/features.0.0/Conv: | █████████████████ | 0.845%
/features/features.16/conv/conv.2/Conv: | █████ | 0.238%
/features/features.17/conv/conv.2/Conv: | ████ | 0.202%
/features/features.14/conv/conv.2/Conv: | ████ | 0.198%
/features/features.1/conv/conv.1/Conv: | ████ | 0.192%
/features/features.15/conv/conv.2/Conv: | ███ | 0.145%
/features/features.4/conv/conv.2/Conv: | ██ | 0.120%
/features/features.2/conv/conv.2/Conv: | ██ | 0.111%
/features/features.2/conv/conv.1/conv.1.0/Conv: | ██ | 0.079%
/classifier/classifier.1/Gemm: | █ | 0.062%
/features/features.13/conv/conv.2/Conv: | █ | 0.050%
/features/features.3/conv/conv.2/Conv: | █ | 0.050%
/features/features.12/conv/conv.2/Conv: | █ | 0.050%
/features/features.5/conv/conv.1/conv.1.0/Conv: | █ | 0.047%
/features/features.3/conv/conv.1/conv.1.0/Conv: | █ | 0.046%
/features/features.7/conv/conv.2/Conv: | █ | 0.045%
/features/features.5/conv/conv.2/Conv: | █ | 0.030%
/features/features.11/conv/conv.2/Conv: | █ | 0.028%

(continues on next page)

Espressif Systems 29
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/features/features.6/conv/conv.2/Conv: | █ | 0.027%
/features/features.6/conv/conv.1/conv.1.0/Conv: | █ | 0.026%
/features/features.4/conv/conv.0/conv.0.0/Conv: | | 0.025%
/features/features.15/conv/conv.1/conv.1.0/Conv: | | 0.023%
/features/features.8/conv/conv.1/conv.1.0/Conv: | | 0.021%
/features/features.10/conv/conv.2/Conv: | | 0.020%
/features/features.11/conv/conv.1/conv.1.0/Conv: | | 0.020%
/features/features.16/conv/conv.1/conv.1.0/Conv: | | 0.017%
/features/features.14/conv/conv.0/conv.0.0/Conv: | | 0.016%
/features/features.4/conv/conv.1/conv.1.0/Conv: | | 0.012%
/features/features.13/conv/conv.1/conv.1.0/Conv: | | 0.012%
/features/features.13/conv/conv.0/conv.0.0/Conv: | | 0.012%
/features/features.12/conv/conv.1/conv.1.0/Conv: | | 0.012%
/features/features.17/conv/conv.0/conv.0.0/Conv: | | 0.011%
/features/features.12/conv/conv.0/conv.0.0/Conv: | | 0.011%
/features/features.2/conv/conv.0/conv.0.0/Conv: | | 0.010%
/features/features.9/conv/conv.2/Conv: | | 0.008%
/features/features.8/conv/conv.2/Conv: | | 0.008%
/features/features.10/conv/conv.1/conv.1.0/Conv: | | 0.008%
/features/features.16/conv/conv.0/conv.0.0/Conv: | | 0.008%
/features/features.7/conv/conv.0/conv.0.0/Conv: | | 0.008%
/features/features.10/conv/conv.0/conv.0.0/Conv: | | 0.006%
/features/features.15/conv/conv.0/conv.0.0/Conv: | | 0.005%
/features/features.3/conv/conv.0/conv.0.0/Conv: | | 0.004%
/features/features.11/conv/conv.0/conv.0.0/Conv: | | 0.004%
/features/features.18/features.18.0/Conv: | | 0.003%
/features/features.5/conv/conv.0/conv.0.0/Conv: | | 0.003%
/features/features.9/conv/conv.1/conv.1.0/Conv: | | 0.003%
/features/features.6/conv/conv.0/conv.0.0/Conv: | | 0.003%
/features/features.7/conv/conv.1/conv.1.0/Conv: | | 0.003%
/features/features.17/conv/conv.1/conv.1.0/Conv: | | 0.002%
/features/features.14/conv/conv.1/conv.1.0/Conv: | | 0.002%
/features/features.8/conv/conv.0/conv.0.0/Conv: | | 0.001%
/features/features.9/conv/conv.0/conv.0.0/Conv: | | 0.001%

* Prec@1 69.800 Prec@5 88.550

Quantization Error Analysis
Note that applying layerwise equalization to 8-bit quantization helps reduce quantization loss. The cumulative error
of the last layer of the model /classifier/classifier.1/Gemm is 8.965%. The top1 accuracy after quan-
tization is 69.800%, which is closer to the accuracy of the float model (71.878%) and higher than the quantization
accuracy of mixed precision quantization.

Note: To further reduce the quantization error, you can try using QAT (Auantization Aware Training). For specific
methods, please refer to PPQ QAT example.

3.5.3 Model deployment

examples

Image classification base class

• dl_cls_base.hpp
• dl_cls_base.cpp

Espressif Systems 30
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/OpenPPL/ppq/blob/master/ppq/samples/TensorRT/Example_QAT.py
https://github.com/espressif/esp-dl/tree/7089b94/examples/mobilenetv2_cls
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/classification/dl_cls_base.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/classification/dl_cls_base.cpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

Pre-process

ImagePreprocessor class contains the common pre-precoess pipeline, color conversion, crop, re-
size, normalization, quantize。

• dl_image_preprocessor.hpp
• dl_image_preprocessor.cpp

Post-process

• dl_cls_postprocessor.hpp
• dl_cls_postprocessor.cpp
• imagenet_cls_postprocessor.hpp
• imagenet_cls_postprocessor.cpp

3.6 How to deploy YOLO11n

In this tutorial, we will introduce how to quantize a pre-trained YOLO11n model using ESP-PPQ and deploy the
quantized YOLO11n model using ESP-DL.

• Preparation
• Model quantization

– Pre-trained Model
– Calibration Dataset
– 8bit default configuration quantization
– Mixed-Precision + Horizontal Layer Split Quantization
– Quantization-Aware Training

• Model deployment
– Object detection base class
– Pre-process
– Post-process

3.6.1 Preparation

1. 安装 ESP_IDF
2. 安装 ESP_PPQ

3.6.2 Model quantization

Pre-trained Model

You can download pre-trained yolo11n model from Ultralytics release.
Currently, ESP-PPQ supports ONNX, PyTorch, and TensorFlow models. During the quantization process, PyTorch
and TensorFlow models are first converted to ONNX models, so the pre-trained yolo11n model needs to be converted
to an ONNX model.
Specifically, refer to the script export_onnx.py to convert the pre-trained yolo11n model to an ONNX model.
In the script, we have overridden the forward method of the Detect class, which offers following advantages:

Espressif Systems 31
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/image/dl_image_preprocessor.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/image/dl_image_preprocessor.cpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/classification/dl_cls_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/classification/dl_cls_postprocessor.cpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/classification/imagenet_cls_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/classification/imagenet_cls_postprocessor.cpp
https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt
https://github.com/espressif/esp-dl/blob/7089b94/models/coco_detect/models/export_onnx.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

• Faster inference. Compared to the original yolo11n model, operations related to decoding bounding boxes in
Detect head are moved from the inference pass to the post-processing phase, resulting in a significant reduction
in inference latency. On one hand, operations like Conv, Transpose, Slice, Split and Concat are
time-consuming when applied during inference pass. On the other hand, the inference outputs are first filtered
using a score threshold before decoding the boxes in the post-processing pass, which significantly reduces the
number of calculations, thereby accelerating the overall inference speed.

• Lower quantization Error. The Concat and Add operators adopt joint quantization in ESP-PPQ. To reduce
quantization errors, the box and score are output by separate branches, rather than being concatenated, due to
the significant difference in their ranges. Similarly, since the ranges of the two inputs of Add and Sub differ
significantly, the calculations are performed in the post-processing phase to avoid quantization errors.

Calibration Dataset

The calibration dataset needs to match the input format of the model. The calibration dataset should cover all possible
input scenarios to better quantize the model. Here, the calibration dataset used in this example is calib_yolo11n.

8bit default configuration quantization

Quantization settings

target="esp32p4"
num_of_bits=8
batch_size=32
quant_setting = QuantizationSettingFactory.espdl_setting() # default setting

Quantization results

Layer | NOISE:SIGNAL POWER RATIO
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | ████████████████████ | 36.008%
/model.10/m/m.0/attn/proj/conv/Conv: | ████████████████ | 28.705%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | █████████████ | 22.865%
/model.23/cv2.2/cv2.2.0/conv/Conv: | ████████████ | 21.718%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | ████████████ | 21.624%
/model.23/cv2.2/cv2.2.1/conv/Conv: | ████████████ | 21.392%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | ████████████ | 21.224%
/model.22/m.0/cv2/conv/Conv: | ███████████ | 19.763%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ███████████ | 19.436%
/model.22/m.0/cv3/conv/Conv: | ███████████ | 19.378%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | ██████████ | 18.913%
/model.22/m.0/m/m.1/cv2/conv/Conv: | ██████████ | 18.645%
/model.22/cv2/conv/Conv: | ██████████ | 18.628%
/model.23/cv2.1/cv2.1.1/conv/Conv: | ██████████ | 17.980%
/model.8/m.0/cv2/conv/Conv: | █████████ | 16.247%
/model.23/cv2.0/cv2.0.1/conv/Conv: | █████████ | 15.602%
/model.10/m/m.0/attn/qkv/conv/Conv: | ████████ | 14.666%
/model.10/m/m.0/attn/pe/conv/Conv: | ████████ | 14.556%
/model.23/cv2.1/cv2.1.0/conv/Conv: | ████████ | 14.302%
/model.22/cv1/conv/Conv: | ████████ | 13.921%
/model.10/m/m.0/attn/MatMul_1: | ████████ | 13.905%
/model.10/cv1/conv/Conv: | ███████ | 13.494%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ██████ | 11.800%
/model.19/m.0/cv2/conv/Conv: | ██████ | 11.515%
/model.22/m.0/m/m.0/cv2/conv/Conv: | ██████ | 11.286%
/model.20/conv/Conv: | ██████ | 10.930%
/model.13/m.0/cv2/conv/Conv: | ██████ | 10.882%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | ██████ | 10.692%
/model.23/cv2.2/cv2.2.2/Conv: | ██████ | 10.113%
/model.10/cv2/conv/Conv: | █████ | 9.720%
/model.8/cv2/conv/Conv: | █████ | 9.598%

(continues on next page)

Espressif Systems 32
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://dl.espressif.com/public/calib_yolo11n.zip
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.8/m.0/cv1/conv/Conv: | █████ | 9.470%
/model.19/cv2/conv/Conv: | █████ | 9.314%
/model.22/m.0/m/m.0/cv1/conv/Conv: | █████ | 9.068%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █████ | 9.065%
/model.8/cv1/conv/Conv: | █████ | 9.051%
/model.8/m.0/cv3/conv/Conv: | █████ | 9.044%
/model.6/m.0/cv2/conv/Conv: | █████ | 8.811%
/model.22/m.0/m/m.1/cv1/conv/Conv: | █████ | 8.781%
/model.13/cv2/conv/Conv: | █████ | 8.687%
/model.8/m.0/m/m.0/cv1/conv/Conv: | █████ | 8.503%
/model.8/m.0/m/m.0/cv2/conv/Conv: | █████ | 8.470%
/model.19/cv1/conv/Conv: | ████ | 8.199%
/model.10/m/m.0/attn/MatMul: | ████ | 8.117%
/model.8/m.0/m/m.1/cv1/conv/Conv: | ████ | 7.964%
/model.13/cv1/conv/Conv: | ████ | 7.734%
/model.19/m.0/cv1/conv/Conv: | ████ | 7.661%
/model.22/m.0/cv1/conv/Conv: | ████ | 7.490%
/model.13/m.0/cv1/conv/Conv: | ████ | 7.162%
/model.8/m.0/m/m.1/cv2/conv/Conv: | ████ | 7.145%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ████ | 7.041%
/model.23/cv2.1/cv2.1.2/Conv: | ████ | 6.917%
/model.23/cv2.0/cv2.0.2/Conv: | ████ | 6.778%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ████ | 6.641%
/model.17/conv/Conv: | ███ | 6.125%
/model.16/m.0/cv2/conv/Conv: | ███ | 5.937%
/model.6/cv2/conv/Conv: | ███ | 5.838%
/model.6/m.0/cv3/conv/Conv: | ███ | 5.832%
/model.6/cv1/conv/Conv: | ███ | 5.688%
/model.7/conv/Conv: | ███ | 5.612%
/model.9/cv2/conv/Conv: | ███ | 5.367%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | ███ | 5.158%
/model.6/m.0/m/m.0/cv1/conv/Conv: | ███ | 5.143%
/model.16/m.0/cv1/conv/Conv: | ███ | 5.137%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ███ | 5.087%
/model.16/cv2/conv/Conv: | ███ | 4.989%
/model.2/cv2/conv/Conv: | ██ | 4.547%
/model.6/m.0/m/m.0/cv2/conv/Conv: | ██ | 4.441%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | ██ | 4.343%
/model.3/conv/Conv: | ██ | 4.304%
/model.6/m.0/m/m.1/cv1/conv/Conv: | ██ | 4.006%
/model.5/conv/Conv: | ██ | 3.932%
/model.6/m.0/cv1/conv/Conv: | ██ | 3.837%
/model.4/cv1/conv/Conv: | ██ | 3.687%
/model.2/cv1/conv/Conv: | ██ | 3.565%
/model.4/cv2/conv/Conv: | ██ | 3.559%
/model.16/cv1/conv/Conv: | ██ | 3.107%
/model.2/m.0/cv2/conv/Conv: | ██ | 2.882%
/model.6/m.0/m/m.1/cv2/conv/Conv: | █ | 2.758%
/model.4/m.0/cv1/conv/Conv: | █ | 2.564%
/model.9/cv1/conv/Conv: | █ | 2.017%
/model.4/m.0/cv2/conv/Conv: | █ | 1.785%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █ | 1.327%
/model.1/conv/Conv: | █ | 1.313%
/model.23/cv3.2/cv3.2.2/Conv: | █ | 1.155%
/model.2/m.0/cv1/conv/Conv: | | 0.727%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.493%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.282%
/model.0/conv/Conv: | | 0.159%
Analysing Layerwise quantization error:: 100%|██████████| 89/89 [03:39<00:00, 2.
↪→46s/it]
Layer | NOISE:SIGNAL POWER RATIO

(continues on next page)

Espressif Systems 33
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.1/conv/Conv: | ████████████████████ | 0.384%
/model.22/cv1/conv/Conv: | █████████████ | 0.247%
/model.4/cv2/conv/Conv: | ████████████ | 0.233%
/model.2/cv2/conv/Conv: | ██████████ | 0.201%
/model.0/conv/Conv: | ██████████ | 0.192%
/model.9/cv2/conv/Conv: | ████████ | 0.156%
/model.10/cv1/conv/Conv: | ███████ | 0.132%
/model.3/conv/Conv: | ██████ | 0.108%
/model.4/cv1/conv/Conv: | ████ | 0.074%
/model.16/cv1/conv/Conv: | ███ | 0.066%
/model.2/cv1/conv/Conv: | ███ | 0.060%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ███ | 0.052%
/model.2/m.0/cv1/conv/Conv: | ██ | 0.044%
/model.6/cv1/conv/Conv: | ██ | 0.033%
/model.10/m/m.0/attn/pe/conv/Conv: | ██ | 0.029%
/model.2/m.0/cv2/conv/Conv: | █ | 0.028%
/model.22/m.0/m/m.0/cv1/conv/Conv: | █ | 0.023%
/model.16/cv2/conv/Conv: | █ | 0.021%
/model.16/m.0/cv2/conv/Conv: | █ | 0.020%
/model.19/m.0/cv1/conv/Conv: | █ | 0.020%
/model.4/m.0/cv1/conv/Conv: | █ | 0.018%
/model.19/cv2/conv/Conv: | █ | 0.017%
/model.4/m.0/cv2/conv/Conv: | █ | 0.016%
/model.10/m/m.0/attn/qkv/conv/Conv: | █ | 0.016%
/model.19/cv1/conv/Conv: | █ | 0.015%
/model.13/cv2/conv/Conv: | █ | 0.015%
/model.8/cv1/conv/Conv: | █ | 0.013%
/model.23/cv2.1/cv2.1.0/conv/Conv: | █ | 0.013%
/model.23/cv2.2/cv2.2.1/conv/Conv: | █ | 0.012%
/model.13/cv1/conv/Conv: | █ | 0.012%
/model.10/cv2/conv/Conv: | █ | 0.011%
/model.13/m.0/cv1/conv/Conv: | █ | 0.011%
/model.6/cv2/conv/Conv: | █ | 0.011%
/model.13/m.0/cv2/conv/Conv: | █ | 0.010%
/model.5/conv/Conv: | | 0.010%
/model.19/m.0/cv2/conv/Conv: | | 0.009%
/model.6/m.0/m/m.1/cv1/conv/Conv: | | 0.009%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | | 0.008%
/model.23/cv2.2/cv2.2.0/conv/Conv: | | 0.008%
/model.23/cv2.1/cv2.1.1/conv/Conv: | | 0.008%
/model.9/cv1/conv/Conv: | | 0.008%
/model.23/cv2.0/cv2.0.1/conv/Conv: | | 0.007%
/model.16/m.0/cv1/conv/Conv: | | 0.007%
/model.17/conv/Conv: | | 0.007%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | | 0.007%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | | 0.007%
/model.23/cv2.0/cv2.0.2/Conv: | | 0.006%
/model.8/m.0/cv1/conv/Conv: | | 0.006%
/model.23/cv2.2/cv2.2.2/Conv: | | 0.005%
/model.23/cv2.1/cv2.1.2/Conv: | | 0.005%
/model.22/m.0/cv3/conv/Conv: | | 0.005%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | | 0.005%
/model.7/conv/Conv: | | 0.005%
/model.8/cv2/conv/Conv: | | 0.004%
/model.22/cv2/conv/Conv: | | 0.004%
/model.6/m.0/cv3/conv/Conv: | | 0.004%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | | 0.004%
/model.8/m.0/m/m.1/cv2/conv/Conv: | | 0.004%
/model.22/m.0/m/m.1/cv1/conv/Conv: | | 0.004%
/model.8/m.0/m/m.1/cv1/conv/Conv: | | 0.004%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | | 0.003%

(continues on next page)

Espressif Systems 34
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.10/m/m.0/attn/proj/conv/Conv: | | 0.003%
/model.22/m.0/m/m.0/cv2/conv/Conv: | | 0.003%
/model.22/m.0/cv1/conv/Conv: | | 0.003%
/model.8/m.0/cv3/conv/Conv: | | 0.003%
/model.6/m.0/m/m.0/cv1/conv/Conv: | | 0.003%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | | 0.002%
/model.6/m.0/m/m.1/cv2/conv/Conv: | | 0.002%
/model.8/m.0/m/m.0/cv2/conv/Conv: | | 0.002%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | | 0.002%
/model.10/m/m.0/attn/MatMul_1: | | 0.002%
/model.22/m.0/m/m.1/cv2/conv/Conv: | | 0.001%
/model.6/m.0/m/m.0/cv2/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | | 0.001%
/model.8/m.0/m/m.0/cv1/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | | 0.001%
/model.6/m.0/cv1/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.001%
/model.20/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | | 0.001%
/model.6/m.0/cv2/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.000%
/model.10/m/m.0/attn/MatMul: | | 0.000%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | | 0.000%
/model.8/m.0/cv2/conv/Conv: | | 0.000%
/model.22/m.0/cv2/conv/Conv: | | 0.000%

Quantization error analysis
With the same inputs, The mAP50:95 on COCO val2017 after quantization is only 30.7%, which is lower than that
of the float model. There is a accuracy loss with:

• Graphwise Error
The output layers of the model are /model.23/cv3.2/cv3.2.2/Conv, /model.23/cv2.2/cv2.2.2/Conv,
/model.23/cv3.1/cv3.1.2/Conv, /model.23/cv2.1/cv2.1.2/Conv, /model.23/cv3.0/cv3.0.2/Conv and
/model.23/cv2.0/cv2.0.2/Conv. The cumulative error for these layers are 1.155%, 10.113%, 0.493%,
6.917%, 0.282% and 6.778% respectively. Generally, if the cumulative error of the output layer is less than
10%, the loss in accuracy of the quantized model is minimal.

• Layerwise error
Observing the Layerwise error, it is found that the errors for all layers are below 1%, indicating that the quan-
tization errors for all layers are small.

We noticed that although the layer-wise errors for all layers are small, the cumulative errors in some layers are relatively
large. This may be related to the complex CSP structure in the yolo11n model, where the inputs to the Concat or
Add layers may have different distributions or scales. We can choose to quantize certain layers using int16 and
optimize the quantization with horizontal layer split pass. For more details, please refer to the mixed-precision +
horizontal layer split pass quantization test.

Mixed-Precision + Horizontal Layer Split Quantization

Splitting convolution layers or GEMM layers can reduce quantization error for better performance.
Quantization settings

from esp_ppq.api import get_target_platform
target="esp32p4"
num_of_bits=8
batch_size=32

(continues on next page)

Espressif Systems 35
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)

Quantize the following layers with 16-bits
quant_setting = QuantizationSettingFactory.espdl_setting()
quant_setting.dispatching_table.append("/model.2/cv2/conv/Conv", get_target_
↪→platform(TARGET, 16))
quant_setting.dispatching_table.append("/model.3/conv/Conv", get_target_
↪→platform(TARGET, 16))
quant_setting.dispatching_table.append("/model.4/cv2/conv/Conv", get_target_
↪→platform(TARGET, 16))

Horizontal Layer Split Pass
quant_setting.weight_split = True
quant_setting.weight_split_setting.method = 'balance'
quant_setting.weight_split_setting.value_threshold = 1.5
quant_setting.weight_split_setting.interested_layers = ['/model.0/conv/Conv', '/
↪→model.1/conv/Conv']

Quantization results

Layer | NOISE:SIGNAL POWER RATIO
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | ████████████████████ | 24.835%
/model.10/m/m.0/attn/proj/conv/Conv: | ███████████████ | 18.632%
/model.23/cv2.2/cv2.2.1/conv/Conv: | ██████████████ | 17.908%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | ██████████████ | 16.922%
/model.23/cv2.2/cv2.2.0/conv/Conv: | █████████████ | 16.754%
/model.22/m.0/cv3/conv/Conv: | ████████████ | 15.404%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | ████████████ | 15.042%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ████████████ | 14.948%
/model.22/m.0/m/m.1/cv2/conv/Conv: | ████████████ | 14.702%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | ███████████ | 13.683%
/model.22/cv2/conv/Conv: | ███████████ | 13.654%
/model.22/m.0/cv2/conv/Conv: | ███████████ | 13.514%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | ██████████ | 12.885%
/model.23/cv2.1/cv2.1.1/conv/Conv: | █████████ | 10.865%
/model.23/cv2.0/cv2.0.1/conv/Conv: | ████████ | 9.875%
/model.23/cv2.1/cv2.1.0/conv/Conv: | ████████ | 9.658%
/model.22/cv1/conv/Conv: | ███████ | 8.917%
/model.10/m/m.0/attn/MatMul_1: | ███████ | 8.368%
/model.23/cv2.2/cv2.2.2/Conv: | ███████ | 8.156%
/model.22/m.0/m/m.0/cv2/conv/Conv: | ██████ | 8.056%
/model.10/m/m.0/attn/qkv/conv/Conv: | ██████ | 7.948%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ██████ | 7.824%
/model.13/m.0/cv2/conv/Conv: | ██████ | 7.504%
/model.19/m.0/cv2/conv/Conv: | ██████ | 7.290%
/model.20/conv/Conv: | ██████ | 6.986%
/model.10/m/m.0/attn/pe/conv/Conv: | ██████ | 6.926%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █████ | 6.771%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | █████ | 6.756%
/model.22/m.0/m/m.1/cv1/conv/Conv: | █████ | 6.465%
/model.22/m.0/m/m.0/cv1/conv/Conv: | █████ | 6.274%
/model.19/cv2/conv/Conv: | █████ | 6.116%
/model.10/cv1/conv/Conv: | █████ | 5.868%
/model.13/cv2/conv/Conv: | █████ | 5.815%
/model.10/cv2/conv/Conv: | ████ | 5.664%
/model.19/cv1/conv/Conv: | ████ | 5.178%
/model.8/m.0/cv2/conv/Conv: | ████ | 4.970%
/model.19/m.0/cv1/conv/Conv: | ████ | 4.919%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ████ | 4.864%
/model.22/m.0/cv1/conv/Conv: | ████ | 4.844%
/model.10/m/m.0/attn/MatMul: | ████ | 4.650%
/model.13/cv1/conv/Conv: | ████ | 4.564%

(continues on next page)

Espressif Systems 36
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.23/cv2.0/cv2.0.0/conv/Conv: | ███ | 4.389%
/model.13/m.0/cv1/conv/Conv: | ███ | 4.243%
/model.23/cv2.0/cv2.0.2/Conv: | ███ | 4.232%
/model.23/cv2.1/cv2.1.2/Conv: | ███ | 4.222%
/model.6/m.0/cv2/conv/Conv: | ███ | 4.023%
/model.17/conv/Conv: | ███ | 3.754%
/model.16/m.0/cv2/conv/Conv: | ███ | 3.511%
/model.8/m.0/cv1/conv/Conv: | ███ | 3.277%
/model.16/m.0/cv1/conv/Conv: | ██ | 3.158%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | ██ | 3.155%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ██ | 3.152%
/model.8/cv2/conv/Conv: | ██ | 3.119%
/model.8/m.0/m/m.1/cv1/conv/Conv: | ██ | 3.106%
/model.8/m.0/cv3/conv/Conv: | ██ | 3.083%
/model.6/m.0/cv3/conv/Conv: | ██ | 3.068%
/model.8/cv1/conv/Conv: | ██ | 3.035%
/model.16/cv2/conv/Conv: | ██ | 3.002%
/model.2/cv2/conv/Conv: | ██ | 2.992%
/model.8/m.0/m/m.0/cv2/conv/Conv: | ██ | 2.971%
/model.6/cv1/conv/Conv: | ██ | 2.819%
/model.8/m.0/m/m.0/cv1/conv/Conv: | ██ | 2.809%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | ██ | 2.760%
/model.2/cv1/conv/Conv: | ██ | 2.683%
/model.6/cv2/conv/Conv: | ██ | 2.630%
/model.8/m.0/m/m.1/cv2/conv/Conv: | ██ | 2.615%
/model.9/cv2/conv/Conv: | ██ | 2.540%
/model.3/conv/Conv: | ██ | 2.503%
/model.2/m.0/cv2/conv/Conv: | ██ | 2.474%
/model.6/m.0/m/m.0/cv1/conv/Conv: | ██ | 2.273%
/model.6/m.0/m/m.0/cv2/conv/Conv: | ██ | 2.246%
/model.4/cv2/conv/Conv: | ██ | 2.141%
/model.7/conv/Conv: | ██ | 2.120%
/model.6/m.0/m/m.1/cv1/conv/Conv: | ██ | 2.069%
/model.5/conv/Conv: | ██ | 2.015%
/model.16/cv1/conv/Conv: | █ | 1.894%
/model.4/cv1/conv/Conv: | █ | 1.793%
/model.4/m.0/cv1/conv/Conv: | █ | 1.776%
/model.6/m.0/cv1/conv/Conv: | █ | 1.731%
/model.6/m.0/m/m.1/cv2/conv/Conv: | █ | 1.550%
/model.4/m.0/cv2/conv/Conv: | █ | 1.257%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █ | 0.886%
/model.1/conv/Conv: | █ | 0.775%
/model.23/cv3.2/cv3.2.2/Conv: | █ | 0.771%
PPQ_Operation_2: | | 0.696%
/model.9/cv1/conv/Conv: | | 0.695%
/model.2/m.0/cv1/conv/Conv: | | 0.534%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.339%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.190%
PPQ_Operation_0: | | 0.110%
/model.0/conv/Conv: | | 0.099%
Analysing Layerwise quantization error:: 100%|██████████| 91/91 [04:13<00:00, 2.
↪→79s/it]
Layer | NOISE:SIGNAL POWER RATIO
/model.22/cv1/conv/Conv: | ████████████████████ | 0.244%
/model.9/cv2/conv/Conv: | █████████████ | 0.156%
/model.10/cv1/conv/Conv: | ███████████ | 0.132%
/model.1/conv/Conv: | ██████ | 0.077%
/model.4/cv1/conv/Conv: | ██████ | 0.074%
/model.16/cv1/conv/Conv: | █████ | 0.066%
/model.0/conv/Conv: | █████ | 0.061%
/model.2/cv1/conv/Conv: | █████ | 0.060%

(continues on next page)

Espressif Systems 37
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.23/cv2.0/cv2.0.0/conv/Conv: | ████ | 0.052%
PPQ_Operation_0: | ████ | 0.047%
/model.2/m.0/cv1/conv/Conv: | ████ | 0.045%
/model.10/m/m.0/attn/pe/conv/Conv: | ██ | 0.029%
/model.2/m.0/cv2/conv/Conv: | ██ | 0.029%
/model.10/m/m.0/attn/MatMul: | ██ | 0.025%
/model.6/cv1/conv/Conv: | ██ | 0.025%
/model.22/m.0/m/m.0/cv1/conv/Conv: | ██ | 0.023%
/model.16/cv2/conv/Conv: | ██ | 0.021%
/model.16/m.0/cv2/conv/Conv: | ██ | 0.020%
/model.19/m.0/cv1/conv/Conv: | ██ | 0.020%
/model.4/m.0/cv1/conv/Conv: | █ | 0.018%
/model.19/cv2/conv/Conv: | █ | 0.017%
/model.4/m.0/cv2/conv/Conv: | █ | 0.016%
/model.10/m/m.0/attn/qkv/conv/Conv: | █ | 0.016%
/model.19/cv1/conv/Conv: | █ | 0.015%
/model.13/cv2/conv/Conv: | █ | 0.015%
/model.23/cv2.1/cv2.1.0/conv/Conv: | █ | 0.013%
/model.23/cv2.2/cv2.2.1/conv/Conv: | █ | 0.012%
/model.13/cv1/conv/Conv: | █ | 0.012%
/model.6/cv2/conv/Conv: | █ | 0.011%
/model.13/m.0/cv1/conv/Conv: | █ | 0.011%
/model.8/cv1/conv/Conv: | █ | 0.010%
/model.13/m.0/cv2/conv/Conv: | █ | 0.010%
/model.5/conv/Conv: | █ | 0.010%
/model.6/m.0/m/m.1/cv1/conv/Conv: | █ | 0.009%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █ | 0.008%
/model.23/cv2.2/cv2.2.0/conv/Conv: | █ | 0.008%
/model.23/cv2.1/cv2.1.1/conv/Conv: | █ | 0.008%
/model.19/m.0/cv2/conv/Conv: | █ | 0.008%
/model.8/cv2/conv/Conv: | █ | 0.008%
/model.9/cv1/conv/Conv: | █ | 0.008%
/model.23/cv2.0/cv2.0.1/conv/Conv: | █ | 0.007%
/model.16/m.0/cv1/conv/Conv: | █ | 0.007%
/model.17/conv/Conv: | █ | 0.007%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | █ | 0.007%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | █ | 0.007%
/model.22/m.0/cv1/conv/Conv: | | 0.006%
/model.10/cv2/conv/Conv: | | 0.006%
/model.23/cv2.0/cv2.0.2/Conv: | | 0.006%
/model.23/cv2.2/cv2.2.2/Conv: | | 0.005%
/model.23/cv2.1/cv2.1.2/Conv: | | 0.005%
/model.22/m.0/cv3/conv/Conv: | | 0.005%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | | 0.005%
/model.22/cv2/conv/Conv: | | 0.005%
/model.7/conv/Conv: | | 0.004%
/model.6/m.0/cv3/conv/Conv: | | 0.004%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | | 0.004%
/model.8/m.0/m/m.1/cv2/conv/Conv: | | 0.004%
/model.22/m.0/m/m.1/cv1/conv/Conv: | | 0.004%
/model.8/m.0/m/m.1/cv1/conv/Conv: | | 0.004%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | | 0.003%
/model.8/m.0/cv1/conv/Conv: | | 0.003%
/model.10/m/m.0/attn/proj/conv/Conv: | | 0.003%
/model.22/m.0/m/m.0/cv2/conv/Conv: | | 0.003%
PPQ_Operation_2: | | 0.003%
/model.8/m.0/cv3/conv/Conv: | | 0.003%
/model.6/m.0/m/m.0/cv1/conv/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | | 0.002%
/model.6/m.0/m/m.1/cv2/conv/Conv: | | 0.002%
/model.8/m.0/m/m.0/cv2/conv/Conv: | | 0.002%

(continues on next page)

Espressif Systems 38
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | | 0.002%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | | 0.002%
/model.10/m/m.0/attn/MatMul_1: | | 0.002%
/model.22/m.0/m/m.1/cv2/conv/Conv: | | 0.001%
/model.6/m.0/m/m.0/cv2/conv/Conv: | | 0.001%
/model.8/m.0/m/m.0/cv1/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | | 0.001%
/model.2/cv2/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | | 0.001%
/model.6/m.0/cv1/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.001%
/model.20/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | | 0.001%
/model.6/m.0/cv2/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.000%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | | 0.000%
/model.8/m.0/cv2/conv/Conv: | | 0.000%
/model.22/m.0/cv2/conv/Conv: | | 0.000%
/model.3/conv/Conv: | | 0.000%
/model.4/cv2/conv/Conv: | | 0.000%

Quantization error analysis
After using 16-bits quantization on layers with higher layer-wise error and employing horizontal layer split pass, the
quantized model’s mAP50:95 on COCO val2017 improves to 33.4% with the same inputs. Additionally, a noticeable
decrease in cumulative error of output layers can be observed.
The graphwise error for the output layers of the model, /model.23/cv3.2/cv3.2.2/Conv,
/model.23/cv2.2/cv2.2.2/Conv, /model.23/cv3.1/cv3.1.2/Conv, /model.23/cv2.1/cv2.1.2/Conv,
/model.23/cv3.0/cv3.0.2/Conv and /model.23/cv2.0/cv2.0.2/Conv, are 0.771%, 8.156%, 0.339%, 4.222%,
0.190% and 4.232% respectively.

Quantization-Aware Training

To further improve the accuracy of the quantized model, we adopt the quantization-aware training(QAT) strategy.
Here, QAT is performed based on 8-bit quantization.
Quantization settings

• yolo11n_qat.py
• trainer.py

Quantization results

Layer | NOISE:SIGNAL POWER RATIO
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | ████████████████████ | 29.837%
/model.10/m/m.0/attn/proj/conv/Conv: | ████████████████ | 23.397%
/model.10/m/m.0/attn/pe/conv/Conv: | ██████████ | 15.253%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | ██████████ | 14.819%
/model.10/m/m.0/attn/MatMul_1: | ██████████ | 14.725%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ██████████ | 14.315%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | █████████ | 14.212%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | █████████ | 14.187%
/model.10/m/m.0/attn/qkv/conv/Conv: | █████████ | 13.797%
/model.23/cv2.2/cv2.2.0/conv/Conv: | █████████ | 13.721%
/model.22/m.0/cv2/conv/Conv: | █████████ | 13.540%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | █████████ | 13.408%
/model.8/m.0/cv2/conv/Conv: | █████████ | 12.809%
/model.22/m.0/cv3/conv/Conv: | ████████ | 12.623%

(continues on next page)

Espressif Systems 39
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/examples/tutorial/how_to_quantize_model/quantize_yolo11n/yolo11n_qat.py
https://github.com/espressif/esp-dl/blob/7089b94/examples/tutorial/how_to_quantize_model/quantize_yolo11n/trainer.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.23/cv2.1/cv2.1.1/conv/Conv: | ████████ | 12.472%
/model.23/cv2.1/cv2.1.0/conv/Conv: | ████████ | 12.177%
/model.22/m.0/m/m.1/cv2/conv/Conv: | ████████ | 11.719%
/model.23/cv2.2/cv2.2.1/conv/Conv: | ████████ | 11.711%
/model.10/cv1/conv/Conv: | ████████ | 11.589%
/model.22/cv2/conv/Conv: | ████████ | 11.551%
/model.23/cv2.0/cv2.0.1/conv/Conv: | ████████ | 11.505%
/model.10/m/m.0/attn/MatMul: | ████████ | 11.346%
/model.22/cv1/conv/Conv: | ███████ | 10.201%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ██████ | 9.710%
/model.13/m.0/cv2/conv/Conv: | ██████ | 9.538%
/model.20/conv/Conv: | ██████ | 8.870%
/model.19/m.0/cv2/conv/Conv: | ██████ | 8.713%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █████ | 8.157%
/model.22/m.0/m/m.0/cv2/conv/Conv: | █████ | 8.005%
/model.8/cv2/conv/Conv: | █████ | 7.952%
/model.8/m.0/cv1/conv/Conv: | █████ | 7.697%
/model.13/cv2/conv/Conv: | █████ | 7.557%
/model.19/cv2/conv/Conv: | █████ | 7.443%
/model.10/cv2/conv/Conv: | █████ | 7.403%
/model.6/m.0/cv2/conv/Conv: | █████ | 7.099%
/model.8/cv1/conv/Conv: | █████ | 6.996%
/model.19/cv1/conv/Conv: | █████ | 6.912%
/model.8/m.0/m/m.0/cv1/conv/Conv: | █████ | 6.908%
/model.8/m.0/cv3/conv/Conv: | ████ | 6.755%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | ████ | 6.746%
/model.8/m.0/m/m.0/cv2/conv/Conv: | ████ | 6.743%
/model.8/m.0/m/m.1/cv1/conv/Conv: | ████ | 6.638%
/model.13/cv1/conv/Conv: | ████ | 6.361%
/model.2/m.0/cv2/conv/Conv: | ████ | 6.274%
/model.13/m.0/cv1/conv/Conv: | ████ | 6.261%
/model.19/m.0/cv1/conv/Conv: | ████ | 6.191%
/model.22/m.0/m/m.0/cv1/conv/Conv: | ████ | 6.036%
/model.23/cv2.2/cv2.2.2/Conv: | ████ | 5.999%
/model.22/m.0/m/m.1/cv1/conv/Conv: | ████ | 5.899%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ████ | 5.618%
/model.8/m.0/m/m.1/cv2/conv/Conv: | ████ | 5.560%
/model.22/m.0/cv1/conv/Conv: | ███ | 5.336%
/model.16/m.0/cv2/conv/Conv: | ███ | 5.316%
/model.17/conv/Conv: | ███ | 5.113%
/model.6/m.0/cv3/conv/Conv: | ███ | 5.103%
/model.16/m.0/cv1/conv/Conv: | ███ | 5.101%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ███ | 5.052%
/model.2/cv2/conv/Conv: | ███ | 5.003%
/model.6/cv2/conv/Conv: | ███ | 4.968%
/model.6/cv1/conv/Conv: | ███ | 4.792%
/model.23/cv2.1/cv2.1.2/Conv: | ███ | 4.543%
/model.7/conv/Conv: | ███ | 4.520%
/model.3/conv/Conv: | ███ | 4.362%
/model.16/cv2/conv/Conv: | ███ | 4.028%
/model.23/cv2.0/cv2.0.2/Conv: | ███ | 4.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ███ | 3.954%
/model.9/cv2/conv/Conv: | ███ | 3.901%
/model.6/m.0/m/m.0/cv1/conv/Conv: | ███ | 3.891%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | ██ | 3.791%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | ██ | 3.711%
/model.4/cv1/conv/Conv: | ██ | 3.673%
/model.6/m.0/m/m.0/cv2/conv/Conv: | ██ | 3.620%
/model.6/m.0/m/m.1/cv1/conv/Conv: | ██ | 3.513%
/model.4/cv2/conv/Conv: | ██ | 3.421%
/model.5/conv/Conv: | ██ | 3.320%

(continues on next page)

Espressif Systems 40
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.6/m.0/cv1/conv/Conv: | ██ | 3.073%
/model.2/cv1/conv/Conv: | ██ | 3.021%
/model.16/cv1/conv/Conv: | ██ | 2.764%
/model.6/m.0/m/m.1/cv2/conv/Conv: | ██ | 2.454%
/model.4/m.0/cv1/conv/Conv: | ██ | 2.408%
/model.4/m.0/cv2/conv/Conv: | █ | 1.689%
/model.2/m.0/cv1/conv/Conv: | █ | 1.602%
/model.9/cv1/conv/Conv: | █ | 1.568%
/model.1/conv/Conv: | █ | 1.205%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █ | 1.091%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.746%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.480%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.386%
/model.0/conv/Conv: | | 0.163%
Analysing Layerwise quantization error:: 100%|██████████| 89/89 [04:01<00:00, 2.
↪→72s/it]
Layer | NOISE:SIGNAL POWER RATIO
/model.2/cv2/conv/Conv: | ████████████████████ | 0.935%
/model.9/cv2/conv/Conv: | ██████████████████ | 0.826%
/model.2/m.0/cv1/conv/Conv: | ███████████████ | 0.698%
/model.3/conv/Conv: | █████████████ | 0.611%
/model.4/cv2/conv/Conv: | ██████████ | 0.491%
/model.10/cv2/conv/Conv: | █████████ | 0.408%
/model.23/cv2.2/cv2.2.2/Conv: | ██████ | 0.283%
/model.2/cv1/conv/Conv: | ██████ | 0.261%
/model.4/cv1/conv/Conv: | █████ | 0.249%
/model.1/conv/Conv: | █████ | 0.217%
/model.22/cv1/conv/Conv: | ████ | 0.201%
/model.10/cv1/conv/Conv: | ███ | 0.143%
/model.5/conv/Conv: | ███ | 0.136%
/model.16/cv1/conv/Conv: | ███ | 0.128%
/model.10/m/m.0/attn/pe/conv/Conv: | ███ | 0.120%
/model.0/conv/Conv: | ███ | 0.118%
/model.16/m.0/cv1/conv/Conv: | ██ | 0.105%
/model.16/cv2/conv/Conv: | ██ | 0.094%
/model.16/m.0/cv2/conv/Conv: | ██ | 0.092%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ██ | 0.089%
/model.4/m.0/cv1/conv/Conv: | ██ | 0.071%
/model.22/m.0/cv1/conv/Conv: | █ | 0.067%
/model.19/cv2/conv/Conv: | █ | 0.063%
/model.6/cv2/conv/Conv: | █ | 0.061%
/model.4/m.0/cv2/conv/Conv: | █ | 0.059%
/model.17/conv/Conv: | █ | 0.054%
/model.13/cv2/conv/Conv: | █ | 0.053%
/model.8/m.0/cv3/conv/Conv: | █ | 0.051%
/model.6/cv1/conv/Conv: | █ | 0.047%
/model.23/cv2.2/cv2.2.0/conv/Conv: | █ | 0.042%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █ | 0.041%
/model.13/cv1/conv/Conv: | █ | 0.040%
/model.7/conv/Conv: | █ | 0.038%
/model.10/m/m.0/attn/qkv/conv/Conv: | █ | 0.038%
/model.13/m.0/cv1/conv/Conv: | █ | 0.033%
/model.23/cv2.1/cv2.1.0/conv/Conv: | █ | 0.031%
/model.6/m.0/m/m.1/cv1/conv/Conv: | █ | 0.028%
/model.19/m.0/cv2/conv/Conv: | █ | 0.027%
/model.8/m.0/m/m.1/cv1/conv/Conv: | █ | 0.026%
/model.2/m.0/cv2/conv/Conv: | █ | 0.026%
/model.19/m.0/cv1/conv/Conv: | | 0.022%
/model.6/m.0/cv3/conv/Conv: | | 0.021%
/model.19/cv1/conv/Conv: | | 0.021%
/model.9/cv1/conv/Conv: | | 0.016%

(continues on next page)

Espressif Systems 41
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.22/m.0/m/m.1/cv1/conv/Conv: | | 0.016%
/model.13/m.0/cv2/conv/Conv: | | 0.015%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | | 0.015%
/model.22/m.0/m/m.0/cv1/conv/Conv: | | 0.014%
/model.8/cv1/conv/Conv: | | 0.013%
/model.23/cv2.0/cv2.0.2/Conv: | | 0.013%
/model.23/cv2.2/cv2.2.1/conv/Conv: | | 0.012%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | | 0.011%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | | 0.011%
/model.8/cv2/conv/Conv: | | 0.011%
/model.23/cv2.1/cv2.1.2/Conv: | | 0.010%
/model.22/m.0/cv3/conv/Conv: | | 0.010%
/model.23/cv2.1/cv2.1.1/conv/Conv: | | 0.008%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | | 0.008%
/model.23/cv2.0/cv2.0.1/conv/Conv: | | 0.007%
/model.10/m/m.0/attn/proj/conv/Conv: | | 0.007%
/model.8/m.0/cv1/conv/Conv: | | 0.007%
/model.22/m.0/m/m.0/cv2/conv/Conv: | | 0.006%
/model.8/m.0/m/m.1/cv2/conv/Conv: | | 0.005%
/model.22/cv2/conv/Conv: | | 0.005%
/model.20/conv/Conv: | | 0.005%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | | 0.005%
/model.6/m.0/m/m.0/cv1/conv/Conv: | | 0.005%
/model.8/m.0/m/m.0/cv1/conv/Conv: | | 0.004%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | | 0.003%
/model.8/m.0/m/m.0/cv2/conv/Conv: | | 0.003%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | | 0.003%
/model.6/m.0/cv1/conv/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | | 0.003%
/model.6/m.0/m/m.1/cv2/conv/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | | 0.002%
/model.22/m.0/m/m.1/cv2/conv/Conv: | | 0.002%
/model.6/m.0/m/m.0/cv2/conv/Conv: | | 0.002%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | | 0.002%
/model.10/m/m.0/attn/MatMul_1: | | 0.002%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | | 0.001%
/model.6/m.0/cv2/conv/Conv: | | 0.000%
/model.10/m/m.0/attn/MatMul: | | 0.000%
/model.8/m.0/cv2/conv/Conv: | | 0.000%
/model.22/m.0/cv2/conv/Conv: | | 0.000%

Quantization error analysis
After applying QAT to 8-bit quantization, the quantized model’s mAP50:95 on COCO val2017 improves to 36.0%
with the same inputs, while cumulative errors of out layers are significantly reduced. Compared to the other two
quantization methods, the 8-bit QAT quantized model achieves the highest quantization accuracy with the lowest
inference latency.
The graphwise error for the output layers of the model, /model.23/cv3.2/cv3.2.2/Conv,
/model.23/cv2.2/cv2.2.2/Conv, /model.23/cv3.1/cv3.1.2/Conv, /model.23/cv2.1/cv2.1.2/Conv,
/model.23/cv3.0/cv3.0.2/Conv and /model.23/cv2.0/cv2.0.2/Conv, are 0.746%, 5.999%, 0.480%, 4.543%,
0.386% and 4.001% respectively.

Note: If the model inference speed is a higher priority and a certain degree of accuracy loss is acceptable, you may
consider quantizing the model with an input size of 320x320 for the YOLO11N model. The model inference speed

Espressif Systems 42
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

of different input resolutions can be found in README.md .

3.6.3 Model deployment

example

Object detection base class

• dl_detect_base.hpp
• dl_detect_base.cpp

Pre-process

ImagePreprocessor class contains the common pre-precoess pipeline, color conversion, crop, re-
size, normalization, quantize。

• dl_image_preprocessor.hpp
• dl_image_preprocessor.cpp

Post-process

• dl_detect_postprocessor.hpp
• dl_detect_postprocessor.cpp
• dl_detect_yolo11_postprocessor.hpp
• dl_detect_yolo11_postprocessor.cpp

3.7 How to deploy YOLO11n-pose

In this tutorial, we will introduce how to quantize a pre-trained YOLO11n-pose model using ESP-PPQ and deploy
the quantized YOLO11n-pose model using ESP-DL.

• Preparation
• Model quantization

– Pre-trained Model
– Calibration Dataset
– 8bit default configuration quantization
– Quantization-Aware Training

• Model deployment
– Object detection base class
– Pre-process
– Post-process

3.7.1 Preparation

1. 安装 ESP_IDF
2. 安装 ESP_PPQ

Espressif Systems 43
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/models/coco_detect/README.md
https://github.com/espressif/esp-dl/tree/7089b94/examples/yolo11_detect
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_detect_base.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_detect_base.cpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/image/dl_image_preprocessor.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/image/dl_image_preprocessor.cpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_detect_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_detect_postprocessor.cpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_detect_yolo11_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_detect_yolo11_postprocessor.cpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

3.7.2 Model quantization

Pre-trained Model

You can download pre-trained yolo11n-pose model from Ultralytics release.
Currently, ESP-PPQ supports ONNX, PyTorch, and TensorFlow models. During the quantization process, PyTorch
and TensorFlow models are first converted to ONNX models, so the pre-trained yolo11n-pose model needs to be
converted to an ONNX model.
Specifically, refer to the script export_onnx.py to convert the pre-trained yolo11n-pose model to an ONNX model.
In the script, we have overridden the forward method of the Pose class, which offers following advantages:

• Faster inference. Compared to the original yolo11n-pose model, operations related to decoding bounding
boxes and keypoints in Pose head are moved from the inference pass to the post-processing phase, resulting
in a significant reduction in inference latency. On one hand, operations like Conv, Transpose, Slice,
Split andConcat are time-consuming when applied during inference pass. On the other hand, the inference
outputs are first filtered using a score threshold before decoding the boxes in the post-processing pass, which
significantly reduces the number of calculations, thereby accelerating the overall inference speed.

• Lower quantization Error. The Concat and Add operators adopt joint quantization in ESP-PPQ. To reduce
quantization errors, the box and score are output by separate branches, rather than being concatenated, due to
the significant difference in their ranges. Similarly, since the ranges of the two inputs of Add and Sub differ
significantly, the calculations are performed in the post-processing phase to avoid quantization errors.

Calibration Dataset

The calibration dataset needs to match the input format of the model. The calibration dataset should cover all possible
input scenarios to better quantize the model. Here, the calibration dataset used in this example is calib_yolo11n-pose.

8bit default configuration quantization

Quantization settings

target="esp32p4"
num_of_bits=8
batch_size=32
quant_setting = QuantizationSettingFactory.espdl_setting() # default setting

Quantization results

Layer | NOISE:SIGNAL POWER RATIO
/model.22/m.0/cv2/conv/Conv: | ████████████████████ | 29.305%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | ██████████████████ | 26.959%
/model.23/cv4.1/cv4.1.0/conv/Conv: | ██████████████████ | 26.555%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | █████████████████ | 25.611%
/model.20/conv/Conv: | █████████████████ | 24.738%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | ████████████████ | 24.122%
/model.23/cv4.1/cv4.1.1/conv/Conv: | ███████████████ | 22.512%
/model.19/m.0/cv2/conv/Conv: | ███████████████ | 22.397%
/model.23/cv2.0/cv2.0.1/conv/Conv: | ███████████████ | 22.174%
/model.23/cv4.0/cv4.0.0/conv/Conv: | ███████████████ | 21.621%
/model.23/cv2.1/cv2.1.1/conv/Conv: | ███████████████ | 21.489%
/model.23/cv4.0/cv4.0.1/conv/Conv: | ███████████████ | 21.445%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ██████████████ | 20.528%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ██████████████ | 20.083%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ██████████████ | 20.066%
/model.13/m.0/cv2/conv/Conv: | ██████████████ | 20.042%
/model.22/m.0/cv3/conv/Conv: | █████████████ | 19.737%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | █████████████ | 19.585%

(continues on next page)

Espressif Systems 44
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt
https://github.com/espressif/esp-dl/blob/7089b94/models/coco_pose/models/export_onnx.py
https://dl.espressif.com/public/calib_yolo11n-pose.zip
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | █████████████ | 19.392%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | █████████████ | 18.773%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | █████████████ | 18.688%
/model.22/cv1/conv/Conv: | █████████████ | 18.579%
/model.19/cv2/conv/Conv: | █████████████ | 18.494%
/model.22/m.0/m/m.1/cv2/conv/Conv: | ████████████ | 17.576%
/model.17/conv/Conv: | ████████████ | 17.224%
/model.19/cv1/conv/Conv: | ████████████ | 17.140%
/model.22/cv2/conv/Conv: | ███████████ | 16.785%
/model.23/cv4.2/cv4.2.1/conv/Conv: | ███████████ | 16.375%
/model.23/cv4.2/cv4.2.0/conv/Conv: | ███████████ | 16.167%
/model.23/cv2.1/cv2.1.0/conv/Conv: | ███████████ | 15.655%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ███████████ | 15.504%
/model.23/cv2.2/cv2.2.0/conv/Conv: | ███████████ | 15.431%
/model.10/m/m.0/attn/proj/conv/Conv: | ██████████ | 15.251%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | ██████████ | 15.171%
/model.22/m.0/m/m.0/cv2/conv/Conv: | ██████████ | 15.006%
/model.19/m.0/cv1/conv/Conv: | ██████████ | 14.692%
/model.23/cv2.2/cv2.2.1/conv/Conv: | ██████████ | 14.548%
/model.22/m.0/m/m.0/cv1/conv/Conv: | █████████ | 13.065%
/model.16/m.0/cv2/conv/Conv: | █████████ | 12.980%
/model.22/m.0/m/m.1/cv1/conv/Conv: | █████████ | 12.921%
/model.10/m/m.0/attn/pe/conv/Conv: | █████████ | 12.745%
/model.23/cv4.1/cv4.1.2/Conv: | ████████ | 12.498%
/model.13/cv2/conv/Conv: | ████████ | 11.932%
/model.23/cv4.2/cv4.2.2/Conv: | ████████ | 11.797%
/model.13/m.0/cv1/conv/Conv: | ████████ | 11.777%
/model.16/cv2/conv/Conv: | ███████ | 10.892%
/model.13/cv1/conv/Conv: | ███████ | 10.760%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ███████ | 10.352%
/model.23/cv4.0/cv4.0.2/Conv: | ███████ | 10.325%
/model.22/m.0/cv1/conv/Conv: | ███████ | 10.257%
/model.8/m.0/cv2/conv/Conv: | ███████ | 9.687%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | ██████ | 8.997%
/model.10/cv1/conv/Conv: | ██████ | 8.787%
/model.16/m.0/cv1/conv/Conv: | ██████ | 8.629%
/model.10/m/m.0/attn/qkv/conv/Conv: | ██████ | 8.600%
/model.8/m.0/cv3/conv/Conv: | ██████ | 8.328%
/model.10/m/m.0/attn/MatMul_1: | ██████ | 8.293%
/model.16/cv1/conv/Conv: | █████ | 7.947%
/model.10/cv2/conv/Conv: | █████ | 7.824%
/model.8/cv2/conv/Conv: | █████ | 7.696%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █████ | 7.615%
/model.8/m.0/m/m.1/cv2/conv/Conv: | █████ | 7.145%
/model.8/m.0/m/m.0/cv2/conv/Conv: | █████ | 7.033%
/model.10/m/m.0/attn/MatMul: | █████ | 6.707%
/model.8/m.0/m/m.1/cv1/conv/Conv: | ████ | 6.376%
/model.23/cv2.1/cv2.1.2/Conv: | ████ | 6.321%
/model.8/cv1/conv/Conv: | ████ | 6.296%
/model.6/m.0/cv2/conv/Conv: | ████ | 5.605%
/model.23/cv3.2/cv3.2.2/Conv: | ████ | 5.599%
/model.6/m.0/m/m.0/cv2/conv/Conv: | ████ | 5.559%
/model.23/cv2.0/cv2.0.2/Conv: | ████ | 5.262%
/model.23/cv2.2/cv2.2.2/Conv: | ████ | 5.207%
/model.6/m.0/cv3/conv/Conv: | ███ | 4.840%
/model.8/m.0/cv1/conv/Conv: | ███ | 4.667%
/model.6/cv1/conv/Conv: | ███ | 4.523%
/model.9/cv1/conv/Conv: | ███ | 4.038%
/model.9/cv2/conv/Conv: | ██ | 3.733%
/model.7/conv/Conv: | ██ | 3.605%
/model.6/cv2/conv/Conv: | ██ | 3.478%

(continues on next page)

Espressif Systems 45
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.3/conv/Conv: | ██ | 3.352%
/model.2/cv2/conv/Conv: | ██ | 3.230%
/model.8/m.0/m/m.0/cv1/conv/Conv: | ██ | 3.136%
/model.4/cv1/conv/Conv: | ██ | 2.913%
/model.6/m.0/m/m.1/cv1/conv/Conv: | ██ | 2.830%
/model.6/m.0/m/m.1/cv2/conv/Conv: | ██ | 2.692%
/model.6/m.0/m/m.0/cv1/conv/Conv: | ██ | 2.557%
/model.6/m.0/cv1/conv/Conv: | ██ | 2.475%
/model.5/conv/Conv: | ██ | 2.413%
/model.2/cv1/conv/Conv: | █ | 2.267%
/model.4/cv2/conv/Conv: | █ | 2.135%
/model.2/m.0/cv2/conv/Conv: | █ | 2.104%
/model.4/m.0/cv1/conv/Conv: | █ | 1.910%
/model.1/conv/Conv: | █ | 1.708%
/model.2/m.0/cv1/conv/Conv: | █ | 1.658%
/model.23/cv3.1/cv3.1.2/Conv: | █ | 1.455%
/model.4/m.0/cv2/conv/Conv: | █ | 1.056%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.364%
/model.0/conv/Conv: | | 0.087%
Analysing Layerwise quantization error:: 100%|██████████| 98/98 [16:09<00:00, 9.
↪→89s/it]
Layer | NOISE:SIGNAL POWER RATIO
/model.0/conv/Conv: | ████████████████████ | 1.017%
/model.9/cv2/conv/Conv: | ██████████ | 0.493%
/model.8/cv1/conv/Conv: | ████████ | 0.410%
/model.2/cv2/conv/Conv: | ██████ | 0.287%
/model.1/conv/Conv: | ████ | 0.228%
/model.2/cv1/conv/Conv: | ███ | 0.163%
/model.16/cv2/conv/Conv: | ███ | 0.130%
/model.4/cv2/conv/Conv: | ██ | 0.096%
/model.3/conv/Conv: | █ | 0.070%
/model.4/cv1/conv/Conv: | █ | 0.068%
/model.10/cv1/conv/Conv: | █ | 0.049%
/model.2/m.0/cv2/conv/Conv: | █ | 0.047%
/model.2/m.0/cv1/conv/Conv: | █ | 0.043%
/model.4/m.0/cv2/conv/Conv: | █ | 0.041%
/model.13/cv2/conv/Conv: | █ | 0.037%
/model.16/cv1/conv/Conv: | █ | 0.030%
/model.22/cv2/conv/Conv: | █ | 0.027%
/model.8/cv2/conv/Conv: | █ | 0.027%
/model.13/cv1/conv/Conv: | | 0.025%
/model.5/conv/Conv: | | 0.025%
/model.19/m.0/cv2/conv/Conv: | | 0.025%
/model.6/cv2/conv/Conv: | | 0.024%
/model.4/m.0/cv1/conv/Conv: | | 0.022%
/model.6/cv1/conv/Conv: | | 0.021%
/model.19/cv1/conv/Conv: | | 0.020%
/model.23/cv2.1/cv2.1.1/conv/Conv: | | 0.018%
/model.23/cv4.1/cv4.1.0/conv/Conv: | | 0.017%
/model.9/cv1/conv/Conv: | | 0.015%
/model.23/cv4.2/cv4.2.1/conv/Conv: | | 0.014%
/model.10/m/m.0/attn/qkv/conv/Conv: | | 0.014%
/model.19/cv2/conv/Conv: | | 0.014%
/model.16/m.0/cv2/conv/Conv: | | 0.014%
/model.23/cv4.2/cv4.2.0/conv/Conv: | | 0.014%
/model.6/m.0/m/m.0/cv1/conv/Conv: | | 0.013%
/model.22/m.0/cv3/conv/Conv: | | 0.013%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | | 0.013%
/model.23/cv4.0/cv4.0.0/conv/Conv: | | 0.013%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | | 0.013%
/model.22/m.0/m/m.1/cv1/conv/Conv: | | 0.012%

(continues on next page)

Espressif Systems 46
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.6/m.0/cv3/conv/Conv: | | 0.012%
/model.10/m/m.0/attn/pe/conv/Conv: | | 0.012%
/model.23/cv4.1/cv4.1.1/conv/Conv: | | 0.011%
/model.8/m.0/m/m.1/cv1/conv/Conv: | | 0.011%
/model.13/m.0/cv1/conv/Conv: | | 0.011%
/model.22/m.0/m/m.0/cv1/conv/Conv: | | 0.011%
/model.6/m.0/m/m.1/cv1/conv/Conv: | | 0.011%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | | 0.011%
/model.8/m.0/cv3/conv/Conv: | | 0.010%
/model.7/conv/Conv: | | 0.010%
/model.17/conv/Conv: | | 0.009%
/model.8/m.0/m/m.0/cv1/conv/Conv: | | 0.009%
/model.13/m.0/cv2/conv/Conv: | | 0.009%
/model.10/m/m.0/attn/MatMul: | | 0.009%
/model.19/m.0/cv1/conv/Conv: | | 0.008%
/model.16/m.0/cv1/conv/Conv: | | 0.008%
/model.23/cv2.2/cv2.2.1/conv/Conv: | | 0.008%
/model.8/m.0/m/m.1/cv2/conv/Conv: | | 0.008%
/model.8/m.0/cv1/conv/Conv: | | 0.008%
/model.10/cv2/conv/Conv: | | 0.007%
/model.23/cv2.0/cv2.0.2/Conv: | | 0.007%
/model.22/m.0/cv1/conv/Conv: | | 0.007%
/model.6/m.0/cv1/conv/Conv: | | 0.007%
/model.23/cv2.0/cv2.0.0/conv/Conv: | | 0.006%
/model.23/cv2.1/cv2.1.0/conv/Conv: | | 0.006%
/model.22/m.0/m/m.1/cv2/conv/Conv: | | 0.006%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | | 0.005%
/model.8/m.0/m/m.0/cv2/conv/Conv: | | 0.005%
/model.23/cv2.1/cv2.1.2/Conv: | | 0.005%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | | 0.005%
/model.23/cv2.2/cv2.2.2/Conv: | | 0.005%
/model.22/cv1/conv/Conv: | | 0.004%
/model.10/m/m.0/attn/proj/conv/Conv: | | 0.004%
/model.23/cv4.2/cv4.2.2/Conv: | | 0.004%
/model.23/cv4.1/cv4.1.2/Conv: | | 0.004%
/model.22/m.0/m/m.0/cv2/conv/Conv: | | 0.004%
/model.23/cv2.2/cv2.2.0/conv/Conv: | | 0.003%
/model.6/m.0/m/m.1/cv2/conv/Conv: | | 0.003%
/model.23/cv4.0/cv4.0.1/conv/Conv: | | 0.003%
/model.6/m.0/m/m.0/cv2/conv/Conv: | | 0.003%
/model.10/m/m.0/attn/MatMul_1: | | 0.002%
/model.23/cv4.0/cv4.0.2/Conv: | | 0.002%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | | 0.002%
/model.20/conv/Conv: | | 0.002%
/model.23/cv2.0/cv2.0.1/conv/Conv: | | 0.002%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.000%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.000%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | | 0.000%
/model.6/m.0/cv2/conv/Conv: | | 0.000%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | | 0.000%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | | 0.000%
/model.8/m.0/cv2/conv/Conv: | | 0.000%
/model.22/m.0/cv2/conv/Conv: | | 0.000%

Quantization error analysis

Espressif Systems 47
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

With the same inputs, The Pose mAP50:95 on COCO after quantization is only 43.1%, which is lower than that of
the float model（50.0%）.

Quantization-Aware Training

To further improve the accuracy of the quantized model, we adopt the quantization-aware training(QAT) strategy.
Here, QAT is performed based on 8-bit quantization.
Quantization settings

• yolo11n-pose_qat.py
• trainer.py

Quantization results

Layer | NOISE:SIGNAL POWER RATIO
/model.22/m.0/cv2/conv/Conv: | ████████████████████ | 27.739%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | ███████████████████ | 26.872%
/model.23/cv4.1/cv4.1.0/conv/Conv: | ███████████████████ | 26.229%
/model.23/cv2.1/cv2.1.1/conv/Conv: | ██████████████████ | 25.300%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | ██████████████████ | 24.625%
/model.23/cv2.0/cv2.0.1/conv/Conv: | █████████████████ | 23.751%
/model.20/conv/Conv: | █████████████████ | 23.320%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | █████████████████ | 22.901%
/model.23/cv4.1/cv4.1.1/conv/Conv: | ████████████████ | 22.516%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | ████████████████ | 22.035%
/model.19/m.0/cv2/conv/Conv: | ████████████████ | 21.569%
/model.23/cv4.0/cv4.0.0/conv/Conv: | ███████████████ | 21.199%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ███████████████ | 20.785%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ███████████████ | 20.597%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | ███████████████ | 20.329%
/model.23/cv4.0/cv4.0.1/conv/Conv: | ███████████████ | 20.179%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ██████████████ | 19.983%
/model.22/m.0/cv3/conv/Conv: | ██████████████ | 19.919%
/model.13/m.0/cv2/conv/Conv: | ██████████████ | 19.424%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | ██████████████ | 18.893%
/model.19/cv2/conv/Conv: | █████████████ | 18.055%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | █████████████ | 17.915%
/model.22/m.0/m/m.1/cv2/conv/Conv: | █████████████ | 17.796%
/model.22/cv1/conv/Conv: | █████████████ | 17.777%
/model.23/cv4.2/cv4.2.1/conv/Conv: | █████████████ | 17.573%
/model.19/cv1/conv/Conv: | ████████████ | 17.116%
/model.17/conv/Conv: | ████████████ | 16.869%
/model.22/cv2/conv/Conv: | ████████████ | 16.750%
/model.23/cv2.2/cv2.2.1/conv/Conv: | ████████████ | 16.540%
/model.10/m/m.0/attn/proj/conv/Conv: | ████████████ | 16.491%
/model.23/cv2.2/cv2.2.0/conv/Conv: | ████████████ | 16.421%
/model.23/cv2.1/cv2.1.0/conv/Conv: | ████████████ | 16.205%
/model.23/cv4.2/cv4.2.0/conv/Conv: | ████████████ | 16.116%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ███████████ | 15.400%
/model.22/m.0/m/m.0/cv2/conv/Conv: | ███████████ | 15.251%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | ███████████ | 14.851%
/model.10/m/m.0/attn/pe/conv/Conv: | ███████████ | 14.659%
/model.19/m.0/cv1/conv/Conv: | ██████████ | 14.289%
/model.22/m.0/m/m.1/cv1/conv/Conv: | █████████ | 13.038%
/model.16/m.0/cv2/conv/Conv: | █████████ | 12.941%
/model.22/m.0/m/m.0/cv1/conv/Conv: | █████████ | 12.791%
/model.23/cv4.2/cv4.2.2/Conv: | █████████ | 12.508%
/model.23/cv4.1/cv4.1.2/Conv: | █████████ | 12.226%
/model.13/cv1/conv/Conv: | ████████ | 11.821%
/model.13/cv2/conv/Conv: | ████████ | 11.612%
/model.13/m.0/cv1/conv/Conv: | ████████ | 11.515%

(continues on next page)

Espressif Systems 48
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/examples/tutorial/how_to_quantize_model/quantize_yolo11n-pose/yolo11n_pose_qat.py
https://github.com/espressif/esp-dl/blob/7089b94/examples/tutorial/how_to_quantize_model/quantize_yolo11n-pose/trainer.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.10/m/m.0/attn/MatMul_1: | ████████ | 11.303%
/model.16/cv2/conv/Conv: | ████████ | 11.028%
/model.10/m/m.0/attn/qkv/conv/Conv: | ████████ | 10.951%
/model.10/cv1/conv/Conv: | ████████ | 10.755%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ████████ | 10.684%
/model.22/m.0/cv1/conv/Conv: | ███████ | 10.164%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | ███████ | 9.968%
/model.16/m.0/cv1/conv/Conv: | ███████ | 9.656%
/model.23/cv4.0/cv4.0.2/Conv: | ███████ | 9.566%
/model.8/m.0/cv2/conv/Conv: | ███████ | 9.521%
/model.10/cv2/conv/Conv: | ██████ | 8.068%
/model.16/cv1/conv/Conv: | ██████ | 7.989%
/model.23/cv2.1/cv2.1.2/Conv: | ██████ | 7.969%
/model.8/m.0/cv3/conv/Conv: | ██████ | 7.725%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █████ | 7.570%
/model.8/m.0/m/m.0/cv2/conv/Conv: | █████ | 7.339%
/model.8/m.0/m/m.1/cv2/conv/Conv: | █████ | 7.283%
/model.8/cv2/conv/Conv: | █████ | 7.092%
/model.10/m/m.0/attn/MatMul: | █████ | 6.654%
/model.8/cv1/conv/Conv: | █████ | 6.492%
/model.8/m.0/m/m.1/cv1/conv/Conv: | █████ | 6.451%
/model.23/cv2.0/cv2.0.2/Conv: | ████ | 5.990%
/model.23/cv2.2/cv2.2.2/Conv: | ████ | 5.902%
/model.6/m.0/m/m.0/cv2/conv/Conv: | ████ | 5.898%
/model.6/m.0/cv2/conv/Conv: | ████ | 5.881%
/model.6/m.0/cv3/conv/Conv: | ████ | 5.402%
/model.8/m.0/cv1/conv/Conv: | ████ | 5.210%
/model.23/cv3.2/cv3.2.2/Conv: | ████ | 5.126%
/model.6/cv1/conv/Conv: | ████ | 4.983%
/model.9/cv2/conv/Conv: | ███ | 4.616%
/model.9/cv1/conv/Conv: | ███ | 3.934%
/model.7/conv/Conv: | ███ | 3.906%
/model.3/conv/Conv: | ███ | 3.654%
/model.6/cv2/conv/Conv: | ██ | 3.429%
/model.8/m.0/m/m.0/cv1/conv/Conv: | ██ | 3.319%
/model.2/cv2/conv/Conv: | ██ | 3.220%
/model.6/m.0/m/m.1/cv1/conv/Conv: | ██ | 3.191%
/model.6/m.0/m/m.0/cv1/conv/Conv: | ██ | 3.157%
/model.4/cv1/conv/Conv: | ██ | 2.893%
/model.6/m.0/m/m.1/cv2/conv/Conv: | ██ | 2.792%
/model.6/m.0/cv1/conv/Conv: | ██ | 2.761%
/model.5/conv/Conv: | ██ | 2.629%
/model.4/cv2/conv/Conv: | ██ | 2.298%
/model.2/cv1/conv/Conv: | █ | 2.107%
/model.2/m.0/cv2/conv/Conv: | █ | 2.095%
/model.4/m.0/cv1/conv/Conv: | █ | 2.069%
/model.23/cv3.1/cv3.1.2/Conv: | █ | 1.744%
/model.1/conv/Conv: | █ | 1.631%
/model.2/m.0/cv1/conv/Conv: | █ | 1.583%
/model.4/m.0/cv2/conv/Conv: | █ | 1.126%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.535%
/model.0/conv/Conv: | | 0.067%
Analysing Layerwise quantization error:: 100%|██████████| 98/98 [10:49<00:00, 6.
↪→63s/it]
Layer | NOISE:SIGNAL POWER RATIO
/model.9/cv2/conv/Conv: | ████████████████████ | 2.976%
/model.2/cv2/conv/Conv: | ███████████ | 1.610%
/model.3/conv/Conv: | ██████ | 0.854%
/model.2/cv1/conv/Conv: | ████ | 0.543%
/model.1/conv/Conv: | ███ | 0.487%
/model.8/cv1/conv/Conv: | ███ | 0.414%

(continues on next page)

Espressif Systems 49
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.4/cv2/conv/Conv: | ███ | 0.397%
/model.0/conv/Conv: | ██ | 0.364%
/model.6/m.0/cv3/conv/Conv: | ██ | 0.230%
/model.5/conv/Conv: | █ | 0.181%
/model.2/m.0/cv2/conv/Conv: | █ | 0.144%
/model.13/cv2/conv/Conv: | █ | 0.140%
/model.2/m.0/cv1/conv/Conv: | █ | 0.138%
/model.4/cv1/conv/Conv: | █ | 0.129%
/model.16/cv2/conv/Conv: | █ | 0.122%
/model.23/cv4.2/cv4.2.0/conv/Conv: | █ | 0.120%
/model.4/m.0/cv1/conv/Conv: | █ | 0.107%
/model.23/cv4.1/cv4.1.0/conv/Conv: | █ | 0.096%
/model.19/cv2/conv/Conv: | █ | 0.078%
/model.23/cv2.2/cv2.2.2/Conv: | █ | 0.076%
/model.4/m.0/cv2/conv/Conv: | | 0.071%
/model.8/m.0/m/m.1/cv1/conv/Conv: | | 0.071%
/model.6/cv2/conv/Conv: | | 0.067%
/model.6/cv1/conv/Conv: | | 0.066%
/model.17/conv/Conv: | | 0.060%
/model.23/cv4.2/cv4.2.1/conv/Conv: | | 0.057%
/model.22/m.0/m/m.1/cv1/conv/Conv: | | 0.056%
/model.16/cv1/conv/Conv: | | 0.051%
/model.10/cv1/conv/Conv: | | 0.050%
/model.23/cv4.2/cv4.2.2/Conv: | | 0.046%
/model.22/cv2/conv/Conv: | | 0.044%
/model.7/conv/Conv: | | 0.043%
/model.10/m/m.0/attn/pe/conv/Conv: | | 0.043%
/model.10/cv2/conv/Conv: | | 0.037%
/model.19/cv1/conv/Conv: | | 0.037%
/model.8/cv2/conv/Conv: | | 0.036%
/model.13/cv1/conv/Conv: | | 0.036%
/model.6/m.0/m/m.1/cv1/conv/Conv: | | 0.033%
/model.22/m.0/cv3/conv/Conv: | | 0.031%
/model.19/m.0/cv1/conv/Conv: | | 0.027%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | | 0.026%
/model.8/m.0/cv1/conv/Conv: | | 0.025%
/model.19/m.0/cv2/conv/Conv: | | 0.025%
/model.8/m.0/cv3/conv/Conv: | | 0.024%
/model.10/m/m.0/attn/qkv/conv/Conv: | | 0.023%
/model.8/m.0/m/m.0/cv1/conv/Conv: | | 0.023%
/model.22/m.0/cv1/conv/Conv: | | 0.021%
/model.6/m.0/m/m.0/cv1/conv/Conv: | | 0.021%
/model.23/cv2.0/cv2.0.0/conv/Conv: | | 0.020%
/model.6/m.0/cv1/conv/Conv: | | 0.020%
/model.23/cv4.0/cv4.0.0/conv/Conv: | | 0.019%
/model.9/cv1/conv/Conv: | | 0.018%
/model.23/cv4.1/cv4.1.2/Conv: | | 0.018%
/model.23/cv2.1/cv2.1.1/conv/Conv: | | 0.018%
/model.13/m.0/cv1/conv/Conv: | | 0.016%
/model.23/cv2.1/cv2.1.0/conv/Conv: | | 0.016%
/model.23/cv4.1/cv4.1.1/conv/Conv: | | 0.016%
/model.16/m.0/cv2/conv/Conv: | | 0.015%
/model.10/m/m.0/attn/proj/conv/Conv: | | 0.013%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | | 0.013%
/model.8/m.0/m/m.0/cv2/conv/Conv: | | 0.013%
/model.16/m.0/cv1/conv/Conv: | | 0.012%
/model.23/cv2.2/cv2.2.0/conv/Conv: | | 0.011%
/model.20/conv/Conv: | | 0.011%
/model.22/m.0/m/m.0/cv1/conv/Conv: | | 0.011%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | | 0.011%
/model.8/m.0/m/m.1/cv2/conv/Conv: | | 0.010%

(continues on next page)

Espressif Systems 50
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
/model.23/cv2.0/cv2.0.2/Conv: | | 0.009%
/model.10/m/m.0/attn/MatMul: | | 0.009%
/model.22/cv1/conv/Conv: | | 0.009%
/model.13/m.0/cv2/conv/Conv: | | 0.008%
/model.23/cv2.2/cv2.2.1/conv/Conv: | | 0.008%
/model.23/cv2.1/cv2.1.2/Conv: | | 0.007%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | | 0.007%
/model.22/m.0/m/m.1/cv2/conv/Conv: | | 0.007%
/model.6/m.0/m/m.0/cv2/conv/Conv: | | 0.006%
/model.22/m.0/m/m.0/cv2/conv/Conv: | | 0.006%
/model.23/cv4.0/cv4.0.1/conv/Conv: | | 0.005%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | | 0.005%
/model.23/cv4.0/cv4.0.2/Conv: | | 0.004%
/model.6/m.0/m/m.1/cv2/conv/Conv: | | 0.004%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | | 0.004%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.003%
/model.10/m/m.0/attn/MatMul_1: | | 0.002%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | | 0.002%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | | 0.002%
/model.23/cv2.0/cv2.0.1/conv/Conv: | | 0.002%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | | 0.000%
/model.6/m.0/cv2/conv/Conv: | | 0.000%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | | 0.000%
/model.8/m.0/cv2/conv/Conv: | | 0.000%
/model.22/m.0/cv2/conv/Conv: | | 0.000%

Quantization error analysis
After applying QAT to 8-bit quantization, the quantized model’s Pose mAP50:95 on COCO improves to 44.9%
with the same inputs, while cumulative errors of out layers are significantly reduced. Compared to the other two
quantization methods, the 8-bit QAT quantized model achieves the highest quantization accuracy with the lowest
inference latency.

3.7.3 Model deployment

example

Object detection base class

• dl_detect_base.hpp
• dl_detect_base.cpp

Pre-process

ImagePreprocessor class contains the common pre-precoess pipeline, color conversion, crop, re-
size, normalization, quantize。

• dl_image_preprocessor.hpp
• dl_image_preprocessor.cpp

Espressif Systems 51
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/tree/7089b94/examples/yolo11_pose
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_detect_base.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_detect_base.cpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/image/dl_image_preprocessor.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/image/dl_image_preprocessor.cpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

Post-process

• dl_detect_postprocessor.hpp
• dl_detect_postprocessor.cpp
• dl_pose_yolo11_postprocessor.hpp
• dl_pose_yolo11_postprocessor.cpp

3.8 How to Deploy Streaming Models

Time series models are now widely applied in various fields, such as audio processing. Audio models typically have
two deployment modes when deployed:

• Offline mode: The model receives the complete audio data (e.g., an entire speech file) at once and processes it
as a whole.

• Streaming mode: In streaming mode, the model receives audio data frame by frame (or chunk by chunk) in
real-time, processes it, and outputs intermediate results.

In this tutorial, we will introduce how to quantize a streaming model using ESP-PPQ and deploy the quantized
streaming model with ESP-DL.

• Prerequisites
• Model Quantization

– Automatic Streaming Conversion
– How Auto Streaming Conversion Works
– Manual Streaming Cache Configuration

• Model Deployment

3.8.1 Prerequisites

1. Install ESP-IDF
2. Install ESP-PPQ

3.8.2 Model Quantization

Reference example
There are numerous types of time series models. Here, we take the Temporal Convolutional Network (TCN) as an
example. If you are unfamiliar with TCNs, please refer to relevant resources for details; we won’t elaborate further.
Other models should be customized based on their specific structures.
The example code constructs a TCN model: models.py (the model is incomplete and used only for demonstration).
ESP-PPQ provides an automatic streaming conversion feature that simplifies the process of creating streaming mod-
els. With the auto_streaming=True parameter, ESP-PPQ automatically handles the model transformation
required for streaming inference.

Note:
• In offline mode, the model input is a complete data segment, and the input shape typically has a large size along

the time dimension (e.g., [1, 16, 15]).
• In streaming mode, the model input is continuous data with a smaller time dimension, which matches the chunk

size for real-time processing (e.g., [1, 16, 3]).

Espressif Systems 52
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_detect_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_detect_postprocessor.cpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_pose_yolo11_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/vision/detect/dl_pose_yolo11_postprocessor.cpp
https://github.com/espressif/esp-dl/tree/7089b94/examples/tutorial/how_to_deploy_streaming_model
https://github.com/espressif/esp-dl/blob/7089b94/examples/tutorial/how_to_deploy_streaming_model/quantize_streaming_model/models.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

Automatic Streaming Conversion

ESP-PPQ provides an automatic streaming conversion feature via the auto_streaming=True parameter in the
quantization process. When this flag is enabled, ESP-PPQ automatically transforms the model to support streaming
inference by:

1. Analyzing the model structure to identify appropriate chunking points
2. Creating internal state management for maintaining context between chunks
3. Generating optimized code suitable for streaming scenarios

How Auto Streaming Conversion Works

The automatic streaming conversion in ESP-PPQ analyzes the model graph and inserts StreamingCache nodes
at strategic locations to enable temporal context preservation. The conversion process follows these principles:
1. Operation Classification

• Streaming-enabled operations: Convolution, pooling, and transpose convolution operations that require
temporal context (e.g., Conv, AveragePool, MaxPool, ConvTranspose).

• Bypass operations: Activation functions, mathematical operations, quantization nodes, and other oper-
ations that don’t require temporal context (e.g., Relu, Add, MatMul, LayerNorm).

2. Window Size Calculation For streaming-enabled operations, ESP-PPQ calculates the required cache window
size based on: - Kernel size and dilation rates - Padding configuration - Stride values
The window size determines how many previous frames need to be cached for proper computation of the
current frame.

3. StreamingCache Node Insertion ESP-PPQ inserts StreamingCache nodes before streaming-enabled op-
erations. These nodes: - Maintain a sliding window buffer of historical frames - Adjust tensor shapes to
accommodate the cache window - Preserve quantization configurations from the original operation - Manage
frame axis alignment for proper temporal processing

4. Padding Adjustment For streaming operations, ESP-PPQ adjusts padding configurations: - Removes bottom
padding to prevent look-ahead into future frames - Maintains symmetric or top-only padding for causal pro-
cessing

Limitations and Considerations
• Automatic conversion supports convolution-based temporal operations out-of-the-box
• Custom operations or complex temporal dependencies may require manual streaming table configuration
• The conversion assumes the time dimension is along axis 1 (configurable via streaming_table)

Here’s an example of how to use the auto streaming feature:

Export non-streaming model
quant_ppq_graph = espdl_quantize_torch(

model=model,
espdl_export_file=ESPDL_MODEL_PATH,
calib_dataloader=dataloader,
calib_steps=32, # Number of calibration steps
input_shape=INPUT_SHAPE, # Input shape for offline mode
inputs=None,
target=TARGET, # Quantization target type
num_of_bits=NUM_OF_BITS, # Number of quantization bits
dispatching_override=None,
device=DEVICE,
error_report=True,
skip_export=False,
export_test_values=True,
verbose=1, # Output detailed log information

)

Export streaming model with automatic conversion
quant_ppq_graph = espdl_quantize_torch(

model=model,
espdl_export_file=ESPDL_STEAMING_MODEL_PATH,

(continues on next page)

Espressif Systems 53
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
calib_dataloader=dataloader,
calib_steps=32,
input_shape=INPUT_SHAPE,
inputs=None,
target=TARGET,
num_of_bits=NUM_OF_BITS,
dispatching_override=None,
device=DEVICE,
error_report=True,
skip_export=False,
export_test_values=False,
verbose=1,
auto_streaming=True, # Enable automatic streaming conversion
streaming_input_shape=[1, 16, 3], # Input shape for streaming mode
streaming_table=None,

)

Manual Streaming Cache Configuration

For operators that are not automatically supported by ESP-PPQ’s streaming conversion feature (such
as Transpose, Reshape, Slice, etc.), you can manually insert StreamingCache nodes using the in-
sert_streaming_cache_on_var function. This function allows you to specify cache attributes for variables
that cannot have streamingCache inserted automatically.
The insert_streaming_cache_on_var function has the following signature:

def insert_streaming_cache_on_var(
var_name: str,
window_size: int,
op_name: str = None,
frame_axis: int = 1

) -> Dict[str, Any]

Parameters: -var_name: The name of the variable where the streaming cache should be inserted -window_size:
The size of the cache window (number of frames to cache) - op_name: (Optional) The name of the operator
associated with the variable - frame_axis: (Optional) The axis representing the time dimension, default is 1
The function returns a dictionary containing the streaming cache configuration, which should be added to a stream-
ing_table list and passed to the espdl_quantize_torch function.
Example usage:

streaming_table = []
Manually specify cache attributes for variables that cannot insert␣
↪→streamingCache automatically
streaming_table.append(

insert_streaming_cache_on_var("/out_conv/Conv_output_0", output_frame_size - 1)
)
streaming_table.append(insert_streaming_cache_on_var("PPQ_Variable_0", 1, "/Slice
↪→"))

quant_ppq_graph = espdl_quantize_torch(
model=model,
espdl_export_file=ESPDL_STEAMING_MODEL_PATH,
calib_dataloader=dataloader,
calib_steps=32,
input_shape=INPUT_SHAPE,
inputs=None,
target=TARGET,
num_of_bits=NUM_OF_BITS,

(continues on next page)

Espressif Systems 54
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

(continued from previous page)
dispatching_override=None,
device=DEVICE,
error_report=True,
skip_export=False,
export_test_values=False,
verbose=1,
auto_streaming=True,
streaming_input_shape=[1, 16, 3],
streaming_table=streaming_table, # Pass the manually configured streaming␣

↪→table
)

3.8.3 Model Deployment

Reference example , this example uses pre-generated data to simulate a real-time data stream.

Note: For basic model loading and inference methods, please refer to other documents:
• How to Load and Test a Model
• How to Perform Model Inference

In streaming mode, the model receives data in chunks over time rather than requiring the entire input at once. The
streaming model processes these chunks sequentially while maintaining internal state between chunks. The deploy-
ment code handles splitting the input into appropriate chunks and feeding them to the model. See app_main.cpp for
the following code block:

dl::TensorBase *run_streaming_model(dl::Model *model, dl::TensorBase *test_input)
{

std::map<std::string, dl::TensorBase *> model_inputs = model->get_inputs();
dl::TensorBase *model_input = model_inputs.begin()->second;
std::map<std::string, dl::TensorBase *> model_outputs = model->get_outputs();
dl::TensorBase *model_output = model_outputs.begin()->second;

if (!test_input) {
ESP_LOGE(TAG,

"Model input doesn't have a corresponding test input. Please␣
↪→enable export_test_values option "

"in esp-ppq when export espdl model.");
return nullptr;

}

int test_input_size = test_input->get_bytes();
uint8_t *test_input_ptr = (uint8_t *)test_input->data;
int model_input_size = model_input->get_bytes();
uint8_t *model_input_ptr = (uint8_t *)model_input->data;
int chunks = test_input_size / model_input_size;
for (int i = 0; i < chunks; i++) {

// assign chunk data to model input
memcpy(model_input_ptr, test_input_ptr + i * model_input_size, model_input_

↪→size);
model->run(model_input);

}

return model_output;
}

This approach allows the model to process long sequences efficiently by breaking them into smaller, manageable
chunks. Each chunk is fed to the model sequentially, and the internal state is maintained automatically to ensure
continuity across chunks.

Espressif Systems 55
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/tree/7089b94/examples/tutorial/how_to_deploy_streaming_model
https://github.com/espressif/esp-dl/blob/7089b94/examples/tutorial/how_to_deploy_streaming_model/test_streaming_model/main/app_main.cpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 3. Tutorials

Note:
• The number of chunks is calculated based on the ratio between the full input size and the streaming model’s

input size.
• ESP-DL streaming models handle internal state management automatically, making deployment straightfor-

ward.
• The output from the streaming model should match the final portion of the equivalent offline model’s output.

Espressif Systems 56
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4

API Reference

4.1 Tensor API Reference

Tensor is the fundamental data type in esp-dl, used for storing multi-type data such as int8, int16, float, etc., similar
to the tensor in PyTorch. We have implemented some common tensor operations. Please refer to the following APIs
for details.

4.1.1 Header File

• esp-dl/dl/tensor/include/dl_tensor_base.hpp

4.1.2 Classes

class TensorBase
This class is designed according to PyTorch Tensor. TensorBase is required to ensure that the first address are
aligned to 16 bytes and the memory size should be a multiple of 16 bytes.
TODO:: Implement more functions

Public Functions

TensorBase(std::vector<int> shape, const void *element, int exponent = 0, dtype_t dtype =
DATA_TYPE_FLOAT, bool deep = true, uint32_t caps = MALLOC_CAP_DEFAULT)

Construct a TensorBase object.
Parameters

• shape –Shape of tensor
• element –Pointer of data
• exponent –Exponent of tensor, default is 0
• dtype –Data type of element, default is float
• deep –True: malloc memory and copy data, false: use the pointer directly
• caps –Bitwise OR of MALLOC_CAP_* flags indicating the type of memory to be

returned
inline virtual ~TensorBase()

Destroy the TensorBase object.

57

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/dl/tensor/include/dl_tensor_base.hpp

Chapter 4. API Reference

bool assign(TensorBase *tensor)
Assign tensor to this tensor.

Parameters tensor –
Returns true if assign successfully, otherwise false.

bool assign(std::vector<int> shape, const void *element, int exponent, dtype_t dtype)
Assign data to this tensor.

Parameters
• shape –
• element –
• exponent –
• dtype –

Returns true if assign successfully, otherwise false.
inline int get_size()

Get the size of Tensor.
Returns the size of Tensor.

inline int get_aligned_size()
Get the aligned size of Tensor.

Returns the aligned size of Tensor.
inline size_t get_dtype_bytes()

Get the dtype size, in bytes.
Returns the size of dtype.

inline const char *get_dtype_string()
Get the dtype string of Tensor.

Returns the string of Tensor’s dtype.
inline int get_bytes()

Get the bytes of Tensor.
Returns the bytes of Tensor.

inline int get_aligned_bytes()
Get the bytes of Tensor.

Returns the bytes of Tensor.
inline virtual void *get_element_ptr()

Get data pointer. If cache(preload data pointer) is not null, return cache pointer, otherwise return data
pointer.

Returns the pointer of Tensor’s data
template<typename T>
inline T *get_element_ptr()

Get data pointer by the specified template. If cache(preload data pointer) is not null, return cache pointer,
otherwise return data pointer.

Returns the pointer of Tensor’s data
TensorBase &set_element_ptr(void *data)

Set the data pointer of Tensor.
Parameters data –point to data memory
Returns TensorBase& self

Espressif Systems 58
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

inline std::vector<int> get_shape()

Get the shape of Tensor.
Returns std::vector<int> the shape of Tensor

TensorBase &set_shape(const std::vector<int> shape)
Set the shape of Tensor.

Parameters shape –the shape of Tensor.
Returns Tensor.

inline int get_exponent()
Get the exponent of Tensor.

Returns int the exponent of Tensor
inline dtype_t get_dtype()

Get the data type of Tensor.
Returns dtype_t the data type of Tensor

inline uint32_t get_caps()
Get the memory flags of Tensor.

Returns uint32_t the memory flags of Tensor
TensorBase *reshape(std::vector<int> shape)

Change a new shape to the Tensor without changing its data.
Parameters shape –the target shape
Returns TensorBase *self

template<typename T>
TensorBase *flip(const std::vector<int> &axes)

Flip the input Tensor along the specified axes.
Parameters axes –the specified axes
Returns TensorBase& self

TensorBase *transpose(TensorBase *input, std::vector<int> perm = {})
Reverse or permute the axes of the input Tensor.

Parameters
• input –the input Tensor
• perm –the new arrangement of the dims. if perm == {}, the dims arrangement will be

reversed.
Returns TensorBase *self

template<typename T>
TensorBase *transpose(T *input_element, std::vector<int> &input_shape, std::vector<int>

&input_axis_offset, std::vector<int> &perm)
Reverse or permute the axes of the input Tensor.

Parameters
• input_element –the input data pointer
• input_shape –the input data shape
• input_axis_offset –the input data axis offset
• perm –the new arrangement of the dims. if perm == {}, the dims arrangement will be

reversed.
Returns TensorBase *self

bool is_same_shape(TensorBase *tensor)
Check the shape is the same as the shape of input.

Parameters tensor –Input tensor pointer

Espressif Systems 59
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

Returns
• true: same shape
• false: not

bool equal(TensorBase *tensor, float epsilon = 1e-6, bool verbose = false)
Compare the shape and data of two Tensor.

Parameters
• tensor –Input tensor
• epsilon –The max error of two element
• verbose –If true, print the detail of results

Returns true if two tensor is equal otherwise false
TensorBase *slice(const std::vector<int> &start, const std::vector<int> &end, const std::vector<int>

&axes = {}, const std::vector<int> &step = {})
Produces a slice of the this tensor along multiple axes.

Warning: The length of start, end and step must be same as the shape of input tensor

Parameters
• start –Starting indicesd
• end –Ending indices
• axes –Axes that starts and ends apply to.
• step –Slice step, step = 1 if step is not specified

Returns TensorBase* Output tensor pointer, created by this slice function

template<typename T>
TensorBase *pad(T *input_element, const std::vector<int> &input_shape, const std::vector<int> &pads,

const padding_mode_t mode, TensorBase *const_value = nullptr)
Pad input tensor.

Parameters
• input_element –Data pointer of input tensor
• input_shape –Shape of input tensor
• pads –The number of padding elements to add, pads format should be: [x1_begin,

x2_begin,⋯, x1_end, x2_end,⋯]
• mode –Supported modes: constant(default), reflect, edge
• const_value –(Optional) A scalar value to be used if the mode chosen is constant

Returns Output tensor pointer
TensorBase *pad(TensorBase *input, const std::vector<int> &pads, const padding_mode_t mode,

TensorBase *const_value = nullptr)
Pad input tensor.

Parameters
• input –Input tensor pointer
• pads –Padding elements to add, pads format should be: [x1_begin, x2_begin, ⋯,

x1_end, x2_end,⋯]
• mode –Supported modes: constant(default), reflect, edge
• const_value –(Optional) A scalar value to be used if the mode chosen is constant

Returns Output tensor pointer
template<typename T>
bool compare_elements(const T *gt_elements, float epsilon = 1e-6, bool verbose = false)

Compare the elements of two Tensor.
Parameters

• gt_elements –The ground truth elements
• epsilon –The max error of two element

Espressif Systems 60
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

• verbose –If true, print the detail of results
Returns true if all elements are equal otherwise false

int get_element_index(const std::vector<int> &axis_index)
Get the index of element.

Parameters axis_index –The coordinates of element
Returns int the index of element

std::vector<int> get_element_coordinates(int index)
Get the coordinates of element.

Parameters index –The index of element
Returns The coordinates of element

template<typename T>
T get_element(int index)

Get a element of Tensor by index.
Parameters index –The index of element
Returns The element of tensor

template<typename T>
T get_element(const std::vector<int> &axis_index)

Get a element of Tensor.
Parameters axis_index –The index of element
Returns The element of tensor

size_t set_preload_addr(void *addr, size_t size)
Set preload address of Tensor.

Parameters
• addr –The address of preload data
• size –Size of preload data

Returns The size of preload data
inline virtual void preload()

Preload the data of Tensor.
void reset_bias_layout(quant_type_t op_quant_type, bool is_depthwise)

Reset the layout of Tensor.

Warning: Only available for Convolution. Don’t use it unless you know exactly what it does.

Parameters
• op_quant_type –The quant type of operation
• is_depthwise –Whether is depthwise convolution

void push(TensorBase *new_tensor, int dim)
Push new_tensor to current tensor. The time series dimension size of new tensor must is lesser or equal
than that of the current tensor.”.

Parameters
• new_tensor –The new tensor will be pushed
• dim –Specify the dimension on which to perform streaming stack pushes

virtual void print(bool print_data = false)
print the information of TensorBase

Parameters print_data –Whether print the data

Espressif Systems 61
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

Public Members

int size
size of element including padding

std::vector<int> shape

shape of Tensor

dtype_t dtype
data type of element

int exponent
exponent of element

bool auto_free
free element when object destroy

std::vector<int> axis_offset

element offset of each axis

void *data
data pointer

void *cache
cache pointer，used for preload and do not need to free

uint32_t caps
flags indicating the type of memory

Public Static Functions

static void slice(TensorBase *input, TensorBase *output, const std::vector<int> &start, const
std::vector<int> &end, const std::vector<int> &axes = {}, const std::vector<int> &step =
{})

Produces a slice along multiple axes.

Warning: The length of start, end and step must be same as the shape of input tensor

Parameters
• input –Input Tensor
• output –Output Tensor
• start –Starting indicesd
• end –Ending indices
• axes –Axes that starts and ends apply to.
• step –Slice step, step = 1 if step is not specified

Espressif Systems 62
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

4.2 Module API Reference

The Module is the base class for operators in esp-dl, and all operators inherit from this base class. This base class
defines the basic interfaces for operators, enabling the model layer to automatically execute operators and manage
memory planning.

4.2.1 Header File

• esp-dl/dl/module/include/dl_module_base.hpp

4.2.2 Classes

class Module
Base class for module.

Public Functions

Module(const char *name = NULL, module_inplace_t inplace = MODULE_NON_INPLACE,
quant_type_t quant_type = QUANT_TYPE_NONE)

Construct a new Module object.
Parameters

• name –Name of module.
• inplace –Inplace operation mode
• quant_type –Quantization type

virtual ~Module()
Destroy the Module object. Return resource.

inline virtual std::vector<int> get_outputs_index()

Get the tensor index of this module’s outputs.
Returns Tensor index of model’s tensors

virtual std::vector<std::vector<int>> get_output_shape(std::vector<std::vector<int>> &input_shapes)
= 0

Calculate output shape by input shape.
Parameters input_shapes –Input shapes
Returns outputs shapes

virtual void forward(ModelContext *context, runtime_mode_t mode = RUNTIME_MODE_AUTO) = 0
Build the module, high-level interface for Module layer.

Parameters
• context –Model context including all inputs and outputs and other runtime informa-

tion
• mode –Runtime mode, default is RUNTIME_MODE_AUTO

inline virtual void forward_args(void *args)
Run the module, Low-level interface for base layer and multi-core processing.

Parameters args –ArgsType, arithArgsType, resizeArgsType and so on
inline virtual void print()

print module information

Espressif Systems 63
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/dl/module/include/dl_module_base.hpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

inline virtual void set_preload_addr(void *addr, size_t size)
set preload RAM pointer

Parameters
• addr –Internal RAM address, should be aligned to 16 bytes
• size –The size of RAM address

inline virtual void preload()
Perform a preload operation.

Warning: Not implemented

inline virtual void reset()
reset all state of module, include inputs，outputs and preload cache setting

virtual void run(TensorBase *input, TensorBase *output, runtime_mode_t mode =
RUNTIME_MODE_SINGLE_CORE)

Run the module with single input and single output.
Parameters

• input –Input tensor
• output –Output tensor
• mode –Runtime mode

virtual void run(std::vector<dl::TensorBase*> inputs, std::vector<dl::TensorBase*> outputs,
runtime_mode_t mode = RUNTIME_MODE_SINGLE_CORE)

Run the module by inputs and outputs.
Parameters

• inputs –Input tensors
• outputs –Output tensors
• mode –Runtime mode

Public Members

char *name
Name of module.

module_inplace_t inplace
Inplace type.

quant_type_t quant_type
Quantization type.

std::vector<int> m_inputs_index

Tensor index of model’s tensors that used for inputs.

std::vector<int> m_outputs_index

Tensor index of model’s tensors that used for outputs.

Public Static Functions

Espressif Systems 64
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

static inline Module *deserialize(fbs::FbsModel *fbs_model, std::string node_name)
create module instance by node serialization information

Parameters
• fbs_model –Flatbuffer’s model
• node_name –The node name in model’s graph

Returns The pointer of module instance

4.2.3 Header File

• esp-dl/dl/module/include/dl_module_creator.hpp

4.2.4 Classes

class ModuleCreator
Singleton class for registering modules.

Public Types

using Creator = std::function<Module*(fbs::FbsModel*, std::string)>
Module creator function type.

Public Functions

inline void register_module(const std::string &op_type, Creator creator)
Register a module creator to the module creator map This function allows for the dynamic registration of
new module types and their corresponding creator functions at runtime. By associating the module type
name with the creator function, the system can flexibly create instances of various modules.

Parameters
• op_type –The module type name, used as the key in the map
• creator –The module creator function, used to create modules of a specific type

inline Module *create(fbs::FbsModel *fbs_model, const std::string &op_type, const std::string name)
Create module instance pointer.

Parameters
• fbs_model –Flatbuffer model pointer
• op_type –Module/Operator type
• name –Module name

Returns Module instance pointer
inline void register_dl_modules()

Pre-register the already implemented modules.
inline void print()

Print all modules has been registered.
inline void clear()

Clear all modules has been registered.

Espressif Systems 65
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/dl/module/include/dl_module_creator.hpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

Public Static Functions

static inline ModuleCreator *get_instance()
Get instance of ModuleCreator by this function. It is only safe method to get instance of ModuleCreator
because ModuleCreator is a singleton class.

Returns ModuleCreator instance pointer

4.3 Model API Reference

This section covers model loading and static memory planning, making it convenient for users to directly load and
run ESPDL models.

4.3.1 Header File

• esp-dl/dl/model/include/dl_model_base.hpp

4.3.2 Macros

DL_LOG_INFER_LATENCY_INIT_WITH_SIZE(size)

DL_LOG_INFER_LATENCY_INIT()

DL_LOG_INFER_LATENCY_START()

DL_LOG_INFER_LATENCY_END()

DL_LOG_INFER_LATENCY_PRINT(prefix, key)

DL_LOG_INFER_LATENCY_END_PRINT(prefix, key)

DL_LOG_INFER_LATENCY_ARRAY_INIT_WITH_SIZE(n, size)

DL_LOG_INFER_LATENCY_ARRAY_INIT(n)

DL_LOG_INFER_LATENCY_ARRAY_START(i)

DL_LOG_INFER_LATENCY_ARRAY_END(i)

DL_LOG_INFER_LATENCY_ARRAY_PRINT(i, prefix, key)

DL_LOG_INFER_LATENCY_ARRAY_END_PRINT(i, prefix, key)

4.3.3 Classes

class Model
Neural Network Model.

Public Functions

Espressif Systems 66
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/dl/model/include/dl_model_base.hpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

Model(const char *rodata_address_or_partition_label_or_path, fbs::model_location_type_t location =
fbs::MODEL_LOCATION_IN_FLASH_RODATA, int max_internal_size = 0,
memory_manager_t mm_type = MEMORY_MANAGER_GREEDY, const uint8_t *key = nullptr,
bool param_copy = true)

Create the Model object by rodata address or partition label.
Parameters

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• location –The model location.
• max_internal_size –In bytes. Limit the max internal size usage. Only take effect

when there’s a PSRAM, and you want to alloc memory on internal RAM first.
• mm_type –Type of memory manager
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to

PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Model(const char *rodata_address_or_partition_label_or_path, int model_index,
fbs::model_location_type_t location = fbs::MODEL_LOCATION_IN_FLASH_RODATA, int
max_internal_size = 0, memory_manager_t mm_type = MEMORY_MANAGER_GREEDY, const
uint8_t *key = nullptr, bool param_copy = true)

Create the Model object by rodata address or partition label.
Parameters

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• model_index –The model index of packed models.
• location –The model location.
• max_internal_size –In bytes. Limit the max internal size usage. Only take effect

when there’s a PSRAM, and you want to alloc memory on internal RAM first.
• mm_type –Type of memory manager
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to

PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Model(const char *rodata_address_or_partition_label_or_path, const char *model_name,
fbs::model_location_type_t location = fbs::MODEL_LOCATION_IN_FLASH_RODATA, int
max_internal_size = 0, memory_manager_t mm_type = MEMORY_MANAGER_GREEDY, const
uint8_t *key = nullptr, bool param_copy = true)

Create the Model object by rodata address or partition label.
Parameters

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• model_name –The model name of packed models.
• location –The model location.

Espressif Systems 67
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

• max_internal_size –In bytes. Limit the max internal size usage. Only take effect
when there’s a PSRAM, and you want to alloc memory on internal RAM first.

• mm_type –Type of memory manager
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to

PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Model(fbs::FbsModel *fbs_model, int internal_size = 0, memory_manager_t mm_type =
MEMORY_MANAGER_GREEDY)

Create the Model object by fbs_model.
Parameters

• fbs_model –The fbs model.
• internal_size –Internal ram size, in bytes
• mm_type –Type of memory manager

virtual ~Model()
Destroy the Model object.

virtual esp_err_t load(const char *rodata_address_or_partition_label_or_path, fbs::model_location_type_t
location = fbs::MODEL_LOCATION_IN_FLASH_RODATA, const uint8_t *key
= nullptr, bool param_copy = true)

Load model graph and parameters from FLASH or sdcard.
Parameters

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• location –The model location.
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to

PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Returns
• ESP_OK Success
• ESP_FAIL Failed

virtual esp_err_t load(const char *rodata_address_or_partition_label_or_path, fbs::model_location_type_t
location = fbs::MODEL_LOCATION_IN_FLASH_RODATA, int model_index =
0, const uint8_t *key = nullptr, bool param_copy = true)

Load model graph and parameters from FLASH or sdcard.
Parameters

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• location –The model location.
• model_index –The model index of packed models.
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to

PSRAM. Only set this param to false when your PSRAM resource is very

Espressif Systems 68
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Returns
• ESP_OK Success
• ESP_FAIL Failed

virtual esp_err_t load(const char *rodata_address_or_partition_label_or_path, fbs::model_location_type_t
location = fbs::MODEL_LOCATION_IN_FLASH_RODATA, const char
*model_name = nullptr, const uint8_t *key = nullptr, bool param_copy = true)

Load model graph and parameters from FLASH or sdcard.
Parameters

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• location –The model location.
• model_name –The model name of packed models.
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to

PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Returns
• ESP_OK Success
• ESP_FAIL Failed

virtual esp_err_t load(fbs::FbsModel *fbs_model)
Load model graph and parameters from Flatbuffers model.

Parameters fbs_model –The FlatBuffers model
Returns

• ESP_OK Success
• ESP_FAIL Failed

virtual void build(size_t max_internal_size, memory_manager_t mm_type =
MEMORY_MANAGER_GREEDY, bool preload = false)

Allocate memory for the model.
Parameters

• max_internal_size –In bytes. Limit the max internal size usage. Only take effect
when there’s a PSRAM, and you want to alloc memory on internal RAM first.

• mm_type –Type of memory manager
• preload –Whether to preload the model’s parameters to internal ram (not imple-

mented yet)
virtual void run(runtime_mode_t mode = RUNTIME_MODE_SINGLE_CORE)

Run the model module by module.
Parameters mode –Runtime mode.

virtual void run(TensorBase *input, runtime_mode_t mode = RUNTIME_MODE_SINGLE_CORE)
Run the model module by module.

Parameters
• input –The model input.
• mode –Runtime mode.

Espressif Systems 69
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

virtual void run(std::map<std::string, TensorBase*> &user_inputs, runtime_mode_t mode =
RUNTIME_MODE_SINGLE_CORE, std::map<std::string, TensorBase*> user_outputs =
{})

Run the model module by module.
Parameters

• user_inputs –The model inputs.
• mode –Runtime mode.
• user_outputs –It’s for debug to specify the output of the intermediate layer; Under

normal use, there is no need to pass a value to this parameter. If no parameter is passed,
the default is the graphical output, which can be obtained through Model::get_outputs().

void minimize()
Minimize the model.

esp_err_t test()
Test whether the model inference result is correct. The model should contain test_inputs and test_outputs.
Enable export_test_values option in esp-ppq to use this api.

Returns esp_err_t
std::map<std::string, mem_info_t> get_memory_info()

Get memory info.
Returns Memory usage statistics on internal and PSRAM.

std::map<std::string, module_info> get_module_info()

Get module info.
Returns return Type and latency of each module.

void print_module_info(const std::map<std::string, module_info> &info, bool
sort_module_by_latency = false)

Print the module info obtained by get_module_info function.
Parameters

• info –
• sort_module_by_latency –

void profile_memory()
Print model memory summary.

void profile_module(bool sort_module_by_latency = false)
Print module info summary. (Name, Type, Latency)

Parameters sort_module_by_latency –True The module is printed in latency de-
creasing sort. False The module is printed in ONNX topological sort.

void profile(bool sort_module_by_latency = false)
Combination of profile_memory & profile_module.

Parameters sort_module_by_latency –True The module is printed in latency de-
creasing sort. False The module is printed in ONNX topological sort.

virtual std::map<std::string, TensorBase*> &get_inputs()
Get inputs of model.

Returns The map of model input’s name and TensorBase*
virtual TensorBase *get_input()

Get the only input of model.
Returns TensorBase*

Espressif Systems 70
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

virtual TensorBase *get_input(const std::string &name)
Get input of model by name.

Parameters name –input name
Returns TensorBase*

virtual TensorBase *get_intermediate(const std::string &name)
Get intermediate TensorBase of model.

Note: When using memory manager, the content of TensorBase’s data may be overwritten by the
outputs of other

Parameters name –The name of intermediate Tensor. operators.
Returns The intermediate TensorBase*.

virtual std::map<std::string, TensorBase*> &get_outputs()
Get outputs of model.

Returns The map of model output’s name and TensorBase*
virtual TensorBase *get_output()

Get the only output of model.
Returns TensorBase*

virtual TensorBase *get_output(const std::string &name)
Get output of model by name.

Parameters name –output name
Returns TensorBase*

std::string get_metadata_prop(const std::string &key)
Get the model’s metadata prop.

Parameters key –The key of metadata prop
Returns The value of metadata prop

virtual void print()
Print the model.

inline virtual fbs::FbsModel *get_fbs_model()
Get the fbs model instance.

Returns fbs::FbsModel *

4.3.4 Header File

• esp-dl/dl/model/include/dl_model_context.hpp

4.3.5 Macros

CONTEXT_PARAMETER_OFFSET

Offset for parameter tensors

Espressif Systems 71
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/dl/model/include/dl_model_context.hpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

4.3.6 Classes

class ModelContext
Model Context class including variable tensors and parameters.

Public Functions

inline ModelContext()
Constructor for ModelContext. Initializes the PSRAM and internal root pointers to nullptr.

inline ~ModelContext()
Destructor for ModelContext. Clears all resources and tensors.

int add_tensor(const std::string name, bool is_paramter = false, TensorBase *tensor = nullptr)
Adds a tensor to the parameter or variable list.

Parameters
• name –The name of the tensor.
• is_paramter –Whether the tensor is a parameter (default: false).
• tensor –Pointer to the TensorBase object (default: nullptr).

Returns int Returns the index of the added tensor.
int push_back_tensor(TensorBase *tensor, bool is_paramter = false)

Push back a tensor.
Parameters

• tensor –Pointer to the TensorBase object.
• is_paramter –Whether the tensor is a parameter (default: false).

Returns int Returns the index of the added tensor.
void update_tensor(int index, TensorBase *tensor)

Updates the tensor at the specified index.
Parameters

• index –The index of the tensor to update.
• tensor –Pointer to the new TensorBase object.

TensorBase *get_tensor(int index)
Gets the tensor by its index.

Parameters index –The index of the tensor.
Returns TensorBase* Returns the pointer to the TensorBase object, or nullptr if the index is

invalid.
TensorBase *get_tensor(const std::string &name)

Gets the tensor by its name.
Parameters name –The name of the tensor.
Returns TensorBase* Returns the pointer to the TensorBase object, or nullptr if the name is

not found.
int get_tensor_index(const std::string &name)

Gets the tensor index by its name.
Parameters name –The name of the tensor.
Returns int Returns index if the name is found, else -1

int get_variable_index(const std::string &name)
Gets the variable tensor index by its name.

Parameters name –The name of the tensor.
Returns int Returns index if the name is found and is variable tensor, else -1

Espressif Systems 72
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

inline int get_variable_count()
Gets the count of variable tensors.

Returns int Returns the number of variable tensors.
inline int get_parameter_count()

Gets the count of parameter tensors.
Returns int Returns the number of parameter tensors.

bool root_alloc(size_t internal_size, size_t psram_size, int alignment = 16)
Allocates memory for PSRAM and internal roots.

Parameters
• internal_size –The size of the internal memory in bytes.
• psram_size –The size of the PSRAM memory in bytes.
• alignment –The alignment of the memory in bytes.

Returns Bool Return true if the allocation is successful, false otherwise.
inline void *get_psram_root()

Gets the pointer to the PSRAM root.
Returns Void* Returns the pointer to the PSRAM root.

inline void *get_internal_root()
Gets the pointer to the internal root.

Returns Void* Returns the pointer to the internal root.
size_t get_parameter_memory_size(mem_info_t &mem_info, bool copy)

Gets the size of the parameters in bytes.
Parameters

• mem_info –The size of the memory used by the parameters in bytes, filtered by copy
option.

• copy –Filter the parameters by auto_free.
Returns size_t Returns the total size of the parameters memory in bytes.

size_t get_variable_memory_size(mem_info_t &mem_info)
Get the variable memory size object.

Parameters mem_info –The size of the memory used by the variables in bytes.
Returns size_t Returns the total size of the variables memory in bytes.

inline void root_free()
Frees the memory allocated for PSRAM and internal roots. This function ensures proper cleanup of
allocated memory.

inline void minimize()
Minimizes the context by clearing the name-to-index map. This is used to free unnecessary intermediate
variables during the inference.

inline void clear()
Clears all resources and tensors in the context. This includes clearing variables, parameters, name-to-
index map, and freeing memory.

Public Members

std::vector<TensorBase*> m_variables

Variable tensors of model, the first one is nullptr

Espressif Systems 73
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

std::vector<TensorBase*> m_parameters

Parameters of model, the first one is nullptr

4.3.7 Header File

• esp-dl/dl/model/include/dl_memory_manager.hpp

4.3.8 Classes

class MemoryManagerBase
Memory manager base class, each model has its own memory manager TODO: share memory manager with
different models.
Subclassed by dl::MemoryManagerGreedy

Public Functions

inline MemoryManagerBase(int alignment = 16)
Construct a new Memory Manager Base object.

Parameters alignment –Memory address alignment
inline virtual ~MemoryManagerBase()

Destroy the MemoryManager object. Return resource.
virtual bool alloc(fbs::FbsModel *fbs_model, std::vector<dl::module::Module*> &execution_plan,

ModelContext *context) = 0
Allocate memory for each tensor, include all input and output tensors.

Parameters
• fbs_model –FlatBuffer’s Model
• execution_plan –Topological sorted module list
• context –Model context

Returns Bool Return true if the allocation is successful, false otherwise.

Public Members

int alignment
The root pointer needs to be aligned must be a power of two

class TensorInfo
Tensor info, include tensor name, shape, dtype, size, time range and call times, which is used to plan model
memory.

Public Functions

TensorInfo(std::string &name, int time_begin, int time_end, std::vector<int> shape, dtype_t dtype, int
exponent, bool is_internal = false)

Construct a new Tensor Info object.
Parameters

• name –Tensor name

Espressif Systems 74
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/dl/model/include/dl_memory_manager.hpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

• time_begin –Tensor lifetime begin
• time_end –Tensor lifetime end
• shape –Tensor shape
• dtype –Tensor dtype
• exponent –Tensor exponent
• is_internal –Is tensor in internal RAM or not

inline ~TensorInfo()
Destroy the Tensor Info object.

void set_inplace_leader_tensor(TensorInfo *tensor)
Set the inplace leader tensor object.

Parameters tensor –Inplace leader tensor
inline void set_inplace_follower_dirty_tensor(TensorInfo *tensor)

Set the inplace follower dirty tensor object.
Parameters tensor –Inplace follower dirty tensor

inline void set_inplace_follower_clean_tensor(TensorInfo *tensor)
Set the inplace follower clean tensor object.

Parameters tensor –Inplace follower clean tensor
inline std::pair<TensorInfo*, TensorInfo*> get_inplace_follower_tensor()

Get the inplace follower tensor object.
Returns std::pair<TensorInfo *, TensorInfo *>

void update_time(int new_time)
Update Tensor lifetime.

Parameters new_time –new tensor lifetime
TensorBase *create_tensor(void *internal_root, void *psram_root)

Create a TensorBase object according to TensorInfo.
Parameters

• internal_root –Internal RAM root pointer
• psram_root –PSRAM root pointer

Returns TensorBase*
inline bool is_inplaced()

Is inplaced or not.
Returns true if inplaced else false

inline uint32_t get_offset()
Get the tensor offset.

Returns uint32_t
inline void set_offset(uint32_t offset)

Set the tensor offset.
Parameters offset –

inline uint32_t get_internal_offset()
Get the internal offset.

Returns uint32_t
inline bool get_internal_state()

Get the internal state.
Returns true if is internal else false

Espressif Systems 75
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

inline void set_internal_state(bool is_internal)
Set the internal state.

Parameters is_internal –

inline void set_internal_offset(uint32_t offset)
Set the internal offset.

Parameters offset –

inline int get_time_end()
Get the liftetime end.

Returns int
inline int get_time_begin()

Get the liftetime begin.
Returns int

inline size_t get_size()
Get the tensor size.

Returns size_t
inline std::string get_name()

Get the tensor name.
Returns std::string

inline std::vector<int> get_shape()

Get the tensor shape.
Returns std::vector<int>

inline void print()
print tensor info

class MemoryChunk
Memory chunk, include size, is free, offset, alignment and tensor, which is used to simulate memory allocation.

Public Functions

MemoryChunk(size_t size, int is_free, int alignment = 16)
Construct a new Memory Chunk object.

Parameters
• size –Memory chunk size
• is_free –Whether free or not
• alignment –Memory chunk alignment

MemoryChunk(TensorInfo *tensor, int alignment = 16)
Construct a new Memory Chunk object.

Parameters
• tensor –TensorInfo
• alignment –Memory chunk alignment

inline ~MemoryChunk()
Destroy the Memory Chunk object.

Espressif Systems 76
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

MemoryChunk *merge_free_chunk(MemoryChunk *chunk)
Merge continuous free chunk.

Parameters chunk –
Returns MemoryChunk*

MemoryChunk *insert(TensorInfo *tensor)
Insert tensor into free chunk.

Parameters tensor –
Returns MemoryChunk*

MemoryChunk *extend(TensorInfo *tensor)
Extend free chunk and insert tensor.

Parameters tensor –
Returns MemoryChunk*

inline void free()
Free memory chunk, set is_free to true and set tensor to nullptr.

size_t get_aligned_size(size_t size)
get aligned size, which is 16/alignment bytes aligned

Parameters size –
Returns size_t

Public Members

size_t size
Memory chunk size

bool is_free
Whether memory chunk is free or not

int offset
Offset relative to root pointer

int alignment
Memory address alignment

TensorInfo *tensor
Info of the tensor which occupies the memory

4.3.9 Header File

• esp-dl/dl/model/include/dl_memory_manager_greedy.hpp

4.3.10 Classes

class MemoryManagerGreedy : public dl::MemoryManagerBase
Greedy memory manager that allocates memory for tensors in execution order, prioritizing internal RAM
allocation first.

Espressif Systems 77
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/dl/model/include/dl_memory_manager_greedy.hpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

Public Functions

inline MemoryManagerGreedy(int max_internal_size, int alignment = 16)
Constructs a greedy memory manager with specified constraints.

Parameters
• max_internal_size –Maximum allowed internal RAM usage in bytes
• alignment –Memory address alignment requirement (default: 16 bytes)

inline ~MemoryManagerGreedy()
Destructor that releases all managed memory resources.

virtual bool alloc(fbs::FbsModel *fbs_model, std::vector<dl::module::Module*> &execution_plan,
ModelContext *context)

Allocates memory for all network tensors following greedy strategy.
Parameters

• fbs_model –FlatBuffer model containing network architecture
• execution_plan –Execution graph ordered by computation dependencies
• context –Device-specific runtime configuration

Returns bool True if successful allocation, false if memory insufficient
void free()

Releases all allocated memory including tensor buffers and memory pools.

4.4 Fbs API Reference

The esp-dl model utilizes FlatBuffers to store information about parameters and the computation graph. Taking into
account the encryption requirements of some models, this part has not been open-sourced. However, we provide a
set of APIs to facilitate users in loading and parsing esp-dl models.

4.4.1 Header File

• esp-dl/fbs_loader/include/fbs_loader.hpp

4.4.2 Classes

class FbsLoader
Class for parser the flatbuffers.

Public Functions

FbsLoader(const char *rodata_address_or_partition_label_or_path = nullptr, model_location_type_t
location = MODEL_LOCATION_IN_FLASH_RODATA)

Construct a new FbsLoader object.
Parameters

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• location –The model location.

Espressif Systems 78
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/fbs_loader/include/fbs_loader.hpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

~FbsLoader()

Destroy the FbsLoader object.
FbsModel *load(const uint8_t *key = nullptr, bool param_copy = true)

Load the model. If there are multiple sub-models, the first sub-model will be loaded.
Parameters

• key –NULL or a 128-bit AES key, like {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}

• param_copy –Set to false to avoid copy model parameters from FLASH to
PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Returns Return nullptr if loading fails. Otherwise return the pointer of FbsModel.
FbsModel *load(const int model_index, const uint8_t *key = nullptr, bool param_copy = true)

Load the model by model index.
Parameters

• model_index –The index of model.
• key –NULL or a 128-bit AES key, like {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}.
• param_copy –Set to false to avoid copy model parameters from FLASH to

PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Returns Return nullptr if loading fails. Otherwise return the pointer of FbsModel.
FbsModel *load(const char *model_name, const uint8_t *key = nullptr, bool param_copy = true)

Load the model by model name.
Parameters

• model_name –The name of model.
• key –NULL or a 128-bit AES key, like {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}
• param_copy –Set to false to avoid copy model parameters from FLASH to

PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Returns Return nullptr if loading fails. Otherwise return the pointer of FbsModel.
int get_model_num()

Get the number of models.
Returns The number of models

void list_models()
List all model’s name.

const char *get_model_location_string()
Get the model location string.

Returns The model location string.

Espressif Systems 79
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

4.4.3 Header File

• esp-dl/fbs_loader/include/fbs_model.hpp

4.4.4 Classes

class FbsModel
Flatbuffer model object.

Public Functions

FbsModel(const void *data, size_t size, model_location_type_t location, bool encrypt, bool rodata_move,
bool auto_free, bool param_copy)

Construct a new FbsModel object.
Parameters

• data –The data of model flatbuffers.
• size –The size of model flatbuffers in bytes.
• location –The location of model flatbuffers.
• encrypt –Whether the model flatbuffers is encrypted or not.
• rodata_move –Whether the model flatbuffers is moved from FLASH rodata to

PSRAM.
• auto_free –Whether to free the model flatbuffers data when destroy this class in-

stance.
• param_copy –Whether to copy the parameter in flatbuffers.

~FbsModel()

Destroy the FbsModel object.
void print()

Print the model information.
std::vector<std::string> topological_sort()

Return vector of node name in the order of execution.
Returns topological sort of node name.

esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name, int
&ret_value)

Get the attribute of node.
Parameters

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name, float

&ret_value)
Get the attribute of node.

Parameters
• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.

Espressif Systems 80
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://github.com/espressif/esp-dl/blob/7089b94/esp-dl/fbs_loader/include/fbs_model.hpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name, std::string
&ret_value)

Get the attribute of node.
Parameters

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

std::vector<int> &ret_value)
Get the attribute of node.

Parameters
• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

std::vector<float> &ret_value)
Get the attribute of node.

Parameters
• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

dl::quant_type_t &ret_value)
Get the attribute of node.

Parameters
• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

dl::activation_type_t &ret_value)
Get the attribute of node.

Parameters
• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

dl::resize_mode_t &ret_value)
Get the attribute of node.

Parameters
• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

dl::TensorBase *&ret_value)

Espressif Systems 81
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

Get the attribute of node.
Parameters

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_input_shape(std::string node_name, int index, std::vector<int>

&ret_value)
Get operation input shape.

Parameters
• node_name –The name of operation.
• index –The index of inputs
• ret_value –Return shape value.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_output_shape(std::string node_name, int index, std::vector<int>

&ret_value)
Get operation output shape.

Parameters
• node_name –The name of operation.
• index –The index of outputs
• ret_value –Return shape value.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_inputs_and_outputs(std::string node_name, std::vector<std::string>

&inputs, std::vector<std::string> &outputs)
Get the attribute of node.

Parameters
• node_name –The name of operation.
• inputs –The vector of operation inputs.
• outputs –The vector of operation outputs.

Returns esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
std::string get_operation_type(std::string node_name)

Get operation type,“Conv”,“Linear”etc.
Parameters node_name –The name of operation
Returns The type of operation.

dl::TensorBase *get_operation_parameter(std::string node_name, int index = 1, uint32_t caps =
MALLOC_CAP_DEFAULT)

Return if the variable is a parameter.
Parameters

• node_name –The name of operation
• index –The index of the variable
• caps –Bitwise OR of MALLOC_CAP_* flags indicating the type of memory to be

returned
Returns dl::TensorBase*

dl::TensorBase *get_operation_lut(std::string node_name, uint32_t caps =
MALLOC_CAP_DEFAULT, std::string attribute_name =
"lut")

Get LUT(Look Up Table) if the operation has LUT.
Parameters

• node_name –The name of operation

Espressif Systems 82
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

• caps –Bitwise OR of MALLOC_CAP_* flags indicating the type of memory to be
returned

• attribute_name –The name of LUT attribute
Returns dl::TensorBase*

bool is_parameter(std::string name)
return true if the variable is a parameter

Parameters name –Variable name
Returns true if the variable is a parameter else false

const void *get_tensor_raw_data(std::string tensor_name)
Get the raw data of FlatBuffers::Dl::Tensor.

Parameters tensor_name –The name of Tensor.
Returns uint8_t * The pointer of raw data.

dl::dtype_t get_tensor_dtype(std::string tensor_name)
Get the element type of tensor tensor.

Parameters tensor_name –The tensor name.
Returns FlatBuffers::Dl::TensorDataType

std::vector<int> get_tensor_shape(std::string tensor_name)
Get the shape of tensor.

Parameters tensor_name –The name of tensor.
Returns std::vector<int> The shape of tensor.

std::vector<int> get_tensor_exponents(std::string tensor_name)
Get the exponents of tensor.

Warning: When quantization is PER_CHANNEL, the size of exponents is same as out_channels.
When quantization is PER_TENSOR, the size of exponents is 1.

Parameters tensor_name –The name of tensor.
Returns The exponents of tensor.

dl::dtype_t get_value_info_dtype(std::string var_name)
Get the element type of value_info.

Parameters var_name –The value_info name.
Returns dl::dtype_t

std::vector<int> get_value_info_shape(std::string var_name)
Get the shape of value_info.

Parameters var_name –The value_info name.
Returns the shape of value_info.

int get_value_info_exponent(std::string var_name)
Get the exponent of value_info. Only support PER_TENSOR quantization.

Parameters var_name –The value_info name.
Returns the exponent of value_info

const void *get_test_input_tensor_raw_data(std::string tensor_name)
Get the raw data of test input tensor.

Parameters tensor_name –The name of test input tensor.
Returns uint8_t * The pointer of raw data.

Espressif Systems 83
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

const void *get_test_output_tensor_raw_data(std::string tensor_name)
Get the raw data of test output tensor.

Parameters tensor_name –The name of test output tensor.
Returns uint8_t * The pointer of raw data.

dl::TensorBase *get_test_input_tensor(std::string tensor_name)
Get the test input tensor.

Parameters tensor_name –The name of test input tensor.
Returns The pointer of tensor.

dl::TensorBase *get_test_output_tensor(std::string tensor_name)
Get the test output tensor.

Parameters tensor_name –The name of test output tensor.
Returns The pointer of tensor.

std::vector<std::string> get_test_outputs_name()

Get the name of test outputs.
Returns the name of test outputs

std::vector<std::string> get_graph_inputs()

Get the graph inputs.
Returns the name of inputs

std::vector<std::string> get_graph_outputs()

Get the graph outputs.
Returns the name of ounputs

void clear_map()
Clear all map.

void load_map()
Load all map.

std::string get_model_name()
Get the model name.

Returns the name of model
int64_t get_model_version()

Get the model version.
Returns The version of model

std::string get_model_doc_string()
Get the model doc string.

Returns The doc string of model
std::string get_model_metadata_prop(const std::string &key)

Get the model’s metadata prop.
Parameters key –The key of metadata prop
Returns The value of metadata prop

void get_model_size(size_t *internal_size, size_t *psram_size, size_t *psram_rodata_size, size_t
*flash_size)

Get the model size.
Parameters

• internal_size –Flatbuffers model internal RAM usage

Espressif Systems 84
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

• psram_size –Flatbuffers model PSRAM usage
• psram_rodata_size –Flatbuffers model PSRAM rodate usage. If CON-

FIG_SPIRAM_RODATA option is on, \ Flatbuffers model in FLASH rodata will be
copied to PSRAM

• flash_size –Flatbuffers model FLASH usage

Public Members

bool m_param_copy
copy flatbuffers param or not.

Espressif Systems 85
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Chapter 4. API Reference

Espressif Systems 86
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Index

C
CONTEXT_PARAMETER_OFFSET (C macro), 71

D
dl::MemoryChunk (C++ class), 76
dl::MemoryChunk::~MemoryChunk (C++ func-

tion), 76
dl::MemoryChunk::alignment (C++ member),

77
dl::MemoryChunk::extend (C++ function), 77
dl::MemoryChunk::free (C++ function), 77
dl::MemoryChunk::get_aligned_size

(C++ function), 77
dl::MemoryChunk::insert (C++ function), 77
dl::MemoryChunk::is_free (C++ member), 77
dl::MemoryChunk::MemoryChunk (C++ func-

tion), 76
dl::MemoryChunk::merge_free_chunk

(C++ function), 76
dl::MemoryChunk::offset (C++ member), 77
dl::MemoryChunk::size (C++ member), 77
dl::MemoryChunk::tensor (C++ member), 77
dl::MemoryManagerBase (C++ class), 74
dl::MemoryManagerBase::~MemoryManagerBase

(C++ function), 74
dl::MemoryManagerBase::alignment (C++

member), 74
dl::MemoryManagerBase::alloc (C++ func-

tion), 74
dl::MemoryManagerBase::MemoryManagerBase

(C++ function), 74
dl::MemoryManagerGreedy (C++ class), 77
dl::MemoryManagerGreedy::~MemoryManagerGreedy

(C++ function), 78
dl::MemoryManagerGreedy::alloc (C++

function), 78
dl::MemoryManagerGreedy::free (C++ func-

tion), 78
dl::MemoryManagerGreedy::MemoryManagerGreedy

(C++ function), 78
dl::Model (C++ class), 66
dl::Model::~Model (C++ function), 68
dl::Model::build (C++ function), 69
dl::Model::get_fbs_model (C++ function), 71
dl::Model::get_input (C++ function), 70
dl::Model::get_inputs (C++ function), 70

dl::Model::get_intermediate (C++ func-
tion), 71

dl::Model::get_memory_info (C++ function),
70

dl::Model::get_metadata_prop (C++ func-
tion), 71

dl::Model::get_module_info (C++ function),
70

dl::Model::get_output (C++ function), 71
dl::Model::get_outputs (C++ function), 71
dl::Model::load (C++ function), 68, 69
dl::Model::minimize (C++ function), 70
dl::Model::Model (C++ function), 66--68
dl::Model::print (C++ function), 71
dl::Model::print_module_info (C++ func-

tion), 70
dl::Model::profile (C++ function), 70
dl::Model::profile_memory (C++ function),

70
dl::Model::profile_module (C++ function),

70
dl::Model::run (C++ function), 69
dl::Model::test (C++ function), 70
dl::ModelContext (C++ class), 72
dl::ModelContext::~ModelContext (C++

function), 72
dl::ModelContext::add_tensor (C++ func-

tion), 72
dl::ModelContext::clear (C++ function), 73
dl::ModelContext::get_internal_root

(C++ function), 73
dl::ModelContext::get_parameter_count

(C++ function), 73
dl::ModelContext::get_parameter_memory_size

(C++ function), 73
dl::ModelContext::get_psram_root (C++

function), 73
dl::ModelContext::get_tensor (C++ func-

tion), 72
dl::ModelContext::get_tensor_index

(C++ function), 72
dl::ModelContext::get_variable_count

(C++ function), 72
dl::ModelContext::get_variable_index

(C++ function), 72
dl::ModelContext::get_variable_memory_size

(C++ function), 73

87

Index

dl::ModelContext::m_parameters (C++
member), 73

dl::ModelContext::m_variables (C++
member), 73

dl::ModelContext::minimize (C++ function),
73

dl::ModelContext::ModelContext (C++
function), 72

dl::ModelContext::push_back_tensor
(C++ function), 72

dl::ModelContext::root_alloc (C++ func-
tion), 73

dl::ModelContext::root_free (C++ func-
tion), 73

dl::ModelContext::update_tensor (C++
function), 72

dl::module::Module (C++ class), 63
dl::module::Module::~Module (C++ func-

tion), 63
dl::module::Module::deserialize (C++

function), 64
dl::module::Module::forward (C++ func-

tion), 63
dl::module::Module::forward_args (C++

function), 63
dl::module::Module::get_output_shape

(C++ function), 63
dl::module::Module::get_outputs_index

(C++ function), 63
dl::module::Module::inplace (C++ mem-

ber), 64
dl::module::Module::m_inputs_index

(C++ member), 64
dl::module::Module::m_outputs_index

(C++ member), 64
dl::module::Module::Module (C++ function),

63
dl::module::Module::name (C++ member), 64
dl::module::Module::preload (C++ func-

tion), 64
dl::module::Module::print (C++ function),

63
dl::module::Module::quant_type (C++

member), 64
dl::module::Module::reset (C++ function),

64
dl::module::Module::run (C++ function), 64
dl::module::Module::set_preload_addr

(C++ function), 63
dl::module::ModuleCreator (C++ class), 65
dl::module::ModuleCreator::clear (C++

function), 65
dl::module::ModuleCreator::create

(C++ function), 65
dl::module::ModuleCreator::Creator

(C++ type), 65
dl::module::ModuleCreator::get_instance

(C++ function), 66

dl::module::ModuleCreator::print (C++
function), 65

dl::module::ModuleCreator::register_dl_modules
(C++ function), 65

dl::module::ModuleCreator::register_module
(C++ function), 65

dl::TensorBase (C++ class), 57
dl::TensorBase::~TensorBase (C++ func-

tion), 57
dl::TensorBase::assign (C++ function), 57,

58
dl::TensorBase::auto_free (C++ member),

62
dl::TensorBase::axis_offset (C++ mem-

ber), 62
dl::TensorBase::cache (C++ member), 62
dl::TensorBase::caps (C++ member), 62
dl::TensorBase::compare_elements (C++

function), 60
dl::TensorBase::data (C++ member), 62
dl::TensorBase::dtype (C++ member), 62
dl::TensorBase::equal (C++ function), 60
dl::TensorBase::exponent (C++ member), 62
dl::TensorBase::flip (C++ function), 59
dl::TensorBase::get_aligned_bytes

(C++ function), 58
dl::TensorBase::get_aligned_size (C++

function), 58
dl::TensorBase::get_bytes (C++ function),

58
dl::TensorBase::get_caps (C++ function), 59
dl::TensorBase::get_dtype (C++ function),

59
dl::TensorBase::get_dtype_bytes (C++

function), 58
dl::TensorBase::get_dtype_string (C++

function), 58
dl::TensorBase::get_element (C++ func-

tion), 61
dl::TensorBase::get_element_coordinates

(C++ function), 61
dl::TensorBase::get_element_index

(C++ function), 61
dl::TensorBase::get_element_ptr (C++

function), 58
dl::TensorBase::get_exponent (C++ func-

tion), 59
dl::TensorBase::get_shape (C++ function),

58
dl::TensorBase::get_size (C++ function), 58
dl::TensorBase::is_same_shape (C++ func-

tion), 59
dl::TensorBase::pad (C++ function), 60
dl::TensorBase::preload (C++ function), 61
dl::TensorBase::print (C++ function), 61
dl::TensorBase::push (C++ function), 61
dl::TensorBase::reset_bias_layout

(C++ function), 61

Espressif Systems 88
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Index

dl::TensorBase::reshape (C++ function), 59
dl::TensorBase::set_element_ptr (C++

function), 58
dl::TensorBase::set_preload_addr (C++

function), 61
dl::TensorBase::set_shape (C++ function),

59
dl::TensorBase::shape (C++ member), 62
dl::TensorBase::size (C++ member), 62
dl::TensorBase::slice (C++ function), 60, 62
dl::TensorBase::TensorBase (C++ function),

57
dl::TensorBase::transpose (C++ function),

59
dl::TensorInfo (C++ class), 74
dl::TensorInfo::~TensorInfo (C++ func-

tion), 75
dl::TensorInfo::create_tensor (C++ func-

tion), 75
dl::TensorInfo::get_inplace_follower_tensor

(C++ function), 75
dl::TensorInfo::get_internal_offset

(C++ function), 75
dl::TensorInfo::get_internal_state

(C++ function), 75
dl::TensorInfo::get_name (C++ function), 76
dl::TensorInfo::get_offset (C++ function),

75
dl::TensorInfo::get_shape (C++ function),

76
dl::TensorInfo::get_size (C++ function), 76
dl::TensorInfo::get_time_begin (C++

function), 76
dl::TensorInfo::get_time_end (C++ func-

tion), 76
dl::TensorInfo::is_inplaced (C++ func-

tion), 75
dl::TensorInfo::print (C++ function), 76
dl::TensorInfo::set_inplace_follower_clean_tensor

(C++ function), 75
dl::TensorInfo::set_inplace_follower_dirty_tensor

(C++ function), 75
dl::TensorInfo::set_inplace_leader_tensor

(C++ function), 75
dl::TensorInfo::set_internal_offset

(C++ function), 76
dl::TensorInfo::set_internal_state

(C++ function), 75
dl::TensorInfo::set_offset (C++ function),

75
dl::TensorInfo::TensorInfo (C++ function),

74
dl::TensorInfo::update_time (C++ func-

tion), 75
DL_LOG_INFER_LATENCY_ARRAY_END (C

macro), 66
DL_LOG_INFER_LATENCY_ARRAY_END_PRINT

(C macro), 66

DL_LOG_INFER_LATENCY_ARRAY_INIT (C
macro), 66

DL_LOG_INFER_LATENCY_ARRAY_INIT_WITH_SIZE
(C macro), 66

DL_LOG_INFER_LATENCY_ARRAY_PRINT (C
macro), 66

DL_LOG_INFER_LATENCY_ARRAY_START (C
macro), 66

DL_LOG_INFER_LATENCY_END (C macro), 66
DL_LOG_INFER_LATENCY_END_PRINT (C

macro), 66
DL_LOG_INFER_LATENCY_INIT (C macro), 66
DL_LOG_INFER_LATENCY_INIT_WITH_SIZE (C

macro), 66
DL_LOG_INFER_LATENCY_PRINT (C macro), 66
DL_LOG_INFER_LATENCY_START (C macro), 66

F
fbs::FbsLoader (C++ class), 78
fbs::FbsLoader::~FbsLoader (C++ function),

78
fbs::FbsLoader::FbsLoader (C++ function),

78
fbs::FbsLoader::get_model_location_string

(C++ function), 79
fbs::FbsLoader::get_model_num (C++ func-

tion), 79
fbs::FbsLoader::list_models (C++ func-

tion), 79
fbs::FbsLoader::load (C++ function), 79
fbs::FbsModel (C++ class), 80
fbs::FbsModel::~FbsModel (C++ function), 80
fbs::FbsModel::clear_map (C++ function), 84
fbs::FbsModel::FbsModel (C++ function), 80
fbs::FbsModel::get_graph_inputs (C++

function), 84
fbs::FbsModel::get_graph_outputs (C++

function), 84
fbs::FbsModel::get_model_doc_string

(C++ function), 84
fbs::FbsModel::get_model_metadata_prop

(C++ function), 84
fbs::FbsModel::get_model_name (C++ func-

tion), 84
fbs::FbsModel::get_model_size (C++ func-

tion), 84
fbs::FbsModel::get_model_version (C++

function), 84
fbs::FbsModel::get_operation_attribute

(C++ function), 80, 81
fbs::FbsModel::get_operation_input_shape

(C++ function), 82
fbs::FbsModel::get_operation_inputs_and_outputs

(C++ function), 82
fbs::FbsModel::get_operation_lut (C++

function), 82
fbs::FbsModel::get_operation_output_shape

(C++ function), 82

Espressif Systems 89
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

Index

fbs::FbsModel::get_operation_parameter
(C++ function), 82

fbs::FbsModel::get_operation_type
(C++ function), 82

fbs::FbsModel::get_tensor_dtype (C++
function), 83

fbs::FbsModel::get_tensor_exponents
(C++ function), 83

fbs::FbsModel::get_tensor_raw_data
(C++ function), 83

fbs::FbsModel::get_tensor_shape (C++
function), 83

fbs::FbsModel::get_test_input_tensor
(C++ function), 84

fbs::FbsModel::get_test_input_tensor_raw_data
(C++ function), 83

fbs::FbsModel::get_test_output_tensor
(C++ function), 84

fbs::FbsModel::get_test_output_tensor_raw_data
(C++ function), 83

fbs::FbsModel::get_test_outputs_name
(C++ function), 84

fbs::FbsModel::get_value_info_dtype
(C++ function), 83

fbs::FbsModel::get_value_info_exponent
(C++ function), 83

fbs::FbsModel::get_value_info_shape
(C++ function), 83

fbs::FbsModel::is_parameter (C++ func-
tion), 83

fbs::FbsModel::load_map (C++ function), 84
fbs::FbsModel::m_param_copy (C++ mem-

ber), 85
fbs::FbsModel::print (C++ function), 80
fbs::FbsModel::topological_sort (C++

function), 80

Espressif Systems 90
Submit Document Feedback

Release v3.2.3-9-g7089b94a76

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.3-9-g7089b94a76%20for

	Table of contents
	Introduction
	Introduction
	Overview

	ESP-DL Project Organization
	dl (Deep Learning)
	vision
	audio
	fbs_loader (FlatBuffers Loader)
	Other Files

	Getting Started
	Hardware Requirements
	Software Requirements
	ESP-IDF
	ESP-PPQ

	Quick Start
	Example Compile & Flash
	Example Configuration
	Trouble shooting
	Check ESP-IDF doc
	Erase FLASH & Clear Example

	Model Quantization
	Model deployment

	Tutorials
	How to quantize model
	Preparation
	Pre-trained model
	Quantize and export .espdl
	Add test input/output
	Quantized model inference & accuracy evaluation

	Advanced Quantization Methods
	Post Training Quantization (PTQ)
	Quantization Aware Training (QAT)

	How to load & test & profile model
	Preparation
	Load model from rodata
	Load model from partition
	Load model from sdcard
	Test whether on-board model inference is correct
	Profile model memory usage
	Profile model inference latency
	Combined profiling: profile() method

	How to run model
	Preparation
	Load model
	Get model input/output.
	Quantize Input
	Quantize a single value
	Quantize dl::TensorBase

	Dequantize output
	Dequantize a single value
	Dequantize dl::TensorBase

	Model Inference

	Creating a New Module (Operator)
	Understand the Base Module Class
	Create a New Module Class
	Example: Creating a MyCustomModule Class
	Register MyCustomModule Class

	How to deploy MobileNetV2
	Preparation
	Model quantization
	Pre-trained model
	Calibration dataset
	8bit default configuration quantization
	Mixed precision quantization
	Layerwise equalization quantization

	Model deployment
	Image classification base class
	Pre-process
	Post-process

	How to deploy YOLO11n
	Preparation
	Model quantization
	Pre-trained Model
	Calibration Dataset
	8bit default configuration quantization
	Mixed-Precision + Horizontal Layer Split Quantization
	Quantization-Aware Training

	Model deployment
	Object detection base class
	Pre-process
	Post-process

	How to deploy YOLO11n-pose
	Preparation
	Model quantization
	Pre-trained Model
	Calibration Dataset
	8bit default configuration quantization
	Quantization-Aware Training

	Model deployment
	Object detection base class
	Pre-process
	Post-process

	How to Deploy Streaming Models
	Prerequisites
	Model Quantization
	Automatic Streaming Conversion
	How Auto Streaming Conversion Works
	Manual Streaming Cache Configuration

	Model Deployment

	API Reference
	Tensor API Reference
	Header File
	Classes

	Module API Reference
	Header File
	Classes
	Header File
	Classes

	Model API Reference
	Header File
	Macros
	Classes
	Header File
	Macros
	Classes
	Header File
	Classes
	Header File
	Classes

	Fbs API Reference
	Header File
	Classes
	Header File
	Classes

	Index
	Index

