
ESP-DL用户指南

Release v3.2.2-3-gdd0797170c
乐鑫信息科技
2026年 01月 09日

Table of contents

Table of contents i

1 Introduction 3
1.1 ESP-DL简介 . 3

1.1.1 概述 . 3
1.2 ESP-DL项目组织 . 4

1.2.1 dl（深度学习） . 4
1.2.2 vision（计算机视觉） . 5
1.2.3 audio（音频处理） . 5
1.2.4 fbs_loader（FlatBuffers加载器） . 5
1.2.5 其他文件 . 5

2 入门指南 7
2.1 硬件要求 . 7
2.2 软件要求 . 7

2.2.1 ESP-IDF . 7
2.2.2 ESP-PPQ . 7

2.3 快速开始 . 8
2.3.1 示例编译 &烧录 . 8
2.3.2 示例配置 . 9
2.3.3 故障排除 . 9

2.4 模型量化 . 9
2.5 模型部署 . 9

3 Tutorials 11
3.1 如何量化模型 . 11

3.1.1 准备工作 . 11
3.1.2 预训练模型 . 11
3.1.3 量化并导出 .espdl . 12
3.1.4 高级量化方法 . 13

3.2 如何加载、测试和性能分析模型 . 13
3.2.1 准备工作 . 13
3.2.2 从 rodata中加载模型 . 13
3.2.3 从 partition中加载模型 . 14
3.2.4 从 sdcard中加载模型 . 15
3.2.5 测试模型板端推理是否正确 . 16
3.2.6 分析模型内存使用情况 . 16
3.2.7 分析模型推理延迟 . 17
3.2.8 组合性能分析：profile()方法 . 17

3.3 如何进行模型推理 . 18
3.3.1 准备工作 . 18
3.3.2 加载模型 . 18
3.3.3 获取模型输入/输出。 . 18
3.3.4 量化输入 . 19
3.3.5 反量化输出 . 19
3.3.6 模型推理 . 20

3.4 如何创建新模块（算子） . 20

i

3.4.1 理解基类 Module . 20
3.4.2 创建新模块类 . 20

3.5 如何部署MobileNetV2 . 22
3.5.1 准备工作 . 22
3.5.2 模型量化 . 22
3.5.3 模型部署 . 30

3.6 如何部署 YOLO11n . 30
3.6.1 准备工作 . 31
3.6.2 模型量化 . 31
3.6.3 模型部署 . 42

3.7 如何部署 YOLO11n-pose . 42
3.7.1 准备工作 . 43
3.7.2 模型量化 . 43
3.7.3 模型部署 . 50

3.8 如何部署流式模型 . 51
3.8.1 准备工作 . 51
3.8.2 模型量化 . 51
3.8.3 模型部署 . 53

4 API Reference 55
4.1 Tensor API Reference . 55

4.1.1 Header File . 55
4.1.2 Classes . 55

4.2 Module API Reference . 61
4.2.1 Header File . 61
4.2.2 Classes . 61
4.2.3 Header File . 63
4.2.4 Classes . 63

4.3 Model API Reference . 64
4.3.1 Header File . 64
4.3.2 Macros . 64
4.3.3 Classes . 64
4.3.4 Header File . 69
4.3.5 Macros . 69
4.3.6 Classes . 70
4.3.7 Header File . 72
4.3.8 Classes . 72
4.3.9 Header File . 75
4.3.10 Classes . 75

4.4 Fbs API Reference . 76
4.4.1 Header File . 76
4.4.2 Classes . 76
4.4.3 Header File . 78
4.4.4 Classes . 78

索引 85

索引 85

ii

Table of contents

入门指南 使用教程 API Reference

Espressif Systems 1
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

getting_started/readme.html
tutorials/index.html
api_reference/index.html
getting_started/readme.html
tutorials/index.html
api_reference/index.html
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Table of contents

Espressif Systems 2
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 1

Introduction

1.1 ESP-DL简介

ESP-DL是一个专为 ESP系列芯片设计的轻量级且高效的神经网络推理框架。通过 ESP-DL，您可以轻松
快速地使用乐鑫的系统级芯片 (SoC)开发 AI应用。

1.1.1 概述

ESP-DL提供了加载、调试和运行 AI模型的 API。该框架易于使用，并且可以与其他乐鑫 SDK无缝集
成。ESP-PPQ作为 ESP-DL的量化工具，能够量化来自 ONNX、Pytorch和 TensorFlow的模型，并将其导
出为 ESP-DL标准模型格式。

• ESP-DL标准模型格式：该格式类似于 ONNX，但使用 FlatBuffers而不是 Protobuf，使其更轻量级
并支持零拷贝反序列化，文件后缀为 ‘.espdl‘。

• 高效算子实现：ESP-DL高效地实现了常见的 AI算子，如 Conv、Pool、Gemm、Add和Mul等。目
前支持的算子 operator_support_state.md

• 静态内存规划器：内存规划器根据用户指定的内部 RAM大小，自动将不同层分配到最佳内存位置，
确保高效的整体运行速度同时最小化内存使用。

• 双核调度：自动双核调度允许计算密集型算子充分利用双核计算能力。目前，Conv2D和 Depth-
wiseConv2D支持双核调度。

• 8bit LUT Activation：除了 Relu, PRelu(n>1)之外的所有激活函数，ESP-DL默认使用 8bit LUT(Look
Up Table)方式实现,以加速推理。

ESP-DL系统框架图如下所示:

3

https://github.com/espressif/esp-dl/blob/dd07971/operator_support_state.md

Chapter 1. Introduction

...ESP-DL

已发布 开发中

视觉 音频

...

SIMD DMA 流水线8 位/16 位...双核调度 查找表激活

...

模型运行器 存储器规划器 模型加载器

...ESP-PPQ 量化工具 模型优化 ESP-DL...

框架模型

Text is not SVG - cannot display

1.2 ESP-DL项目组织

ESP-DL的模块化设计使其开发、维护和扩展变得高效。项目的组织结构如下：

1.2.1 dl（深度学习）

核心深度学习模块和工具，分为子模块：

• model加载、管理和分配深度学习模型的内存。包含 dl_model_base和 dl_memory_manager。
• module 60+ 个神经网络算子接口（卷积、池化、激活等）。文件：dl_module_base.hpp，
dl_module_conv.hpp，dl_module_pool.hpp，dl_module_relu.hpp等。

• base具体的算子实现，包括对芯片（esp32, esp32s3, esp32p4）的 ISA特定汇编加速。包含算子实现
文件如 dl_base_conv2d.cpp/hpp，dl_base_avg_pool2d.cpp/hpp等，以及 isa/子目录
中的 ISA特定代码。

• math数学操作（矩阵函数）。文件：dl_math.hpp和 dl_math_matrix.hpp。
• tool辅助功能（实用工具）。文件：dl_tool.hpp和 dl_tool.cpp。包含 isa/子目录中的 ISA
特定工具。

• tensor张量类和操作。文件：dl_tensor_base.hpp。

Espressif Systems 4
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 1. Introduction

1.2.2 vision（计算机视觉）

计算机视觉模块，分为子模块：

• classification 图 像 分 类 （模 型 推 理） 。 推 理：dl_cls_base。 后 处 理
器：imagenet_cls_postprocessor，hand_gesture_cls_postprocessor，
dl_cls_postprocessor。

• recognition 特 征 提 取 （模 型 推 理） 。 特 征 数 据 库 管 理 （注 册、 删 除、 查 询） 。
预 处 理 器：dl_feat_image_preprocessor。 推 理：dl_feat_base。 后 处 理 器：
dl_feat_postprocessor。数据库：dl_recognition_database

• image图像处理（调整大小、裁剪、仿射变换）。颜色转换（像素、图像）。图像预处理器（调整大小、
裁剪、颜色转换、规范化、量化的管道）。图像解码/编码（JPEG/BMP）。绘制工具（点、空心矩形）。
图 像 处 理：dl_image_process。 颜 色 转 换：dl_image_color。 图 像 预 处 理 器：
dl_image_preprocessor。图像解码/编码：dl_image_jpeg、dl_image_bmp。绘制工
具：dl_image_draw。

• detect 目 标 检 测 （模 型 推 理） 。 推 理：dl_detect_base。 后 处 理 器：
dl_detect_yolo11_postprocessor、dl_detect_espdet_postprocessor、
dl_detect_msr_postprocessor、dl_detect_mnp_postprocessor、
dl_detect_pico_postprocessor。姿态估计：dl_pose_yolo11_postprocessor。

1.2.3 audio（音频处理）

音频处理模块，分为子模块：

• common通用音频工具。文件：dl_audio_common.cpp/hpp，dl_audio_wav.cpp/hpp。
• speech_features语音特征提取。文件：dl_speech_features.cpp/hpp (base class), dl_fbank.
cpp/hpp (Filter Bank), dl_mfcc.cpp/hpp (MFCC), dl_spectrogram.cpp/hpp (Spectrogram)。

1.2.4 fbs_loader（FlatBuffers加载器）

处理 FlatBuffers模型：
• include头文件：fbs_loader.hpp，fbs_model.hpp。
• src实现：fbs_loader.cpp。
• lib/针对不同目标的预编译库：esp32/，esp32s3/，esp32p4/。
• espidl.fbs FlatBuffers模式文件。
• pack_espdl_models.py模型打包脚本。

1.2.5 其他文件

• CMakeLists.txt项目构建配置。
• idf_component.yml组件元数据（名称、版本、依赖项）。
• README.md项目文档和使用说明。
• LICENSE许可条款。

Espressif Systems 5
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 1. Introduction

Espressif Systems 6
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 2

入门指南

2.1 硬件要求

• 一块 ESP32-S3或 ESP32-P4开发板。推荐使用：ESP32-S3-EYE或 ESP32-P4-Function-EV-Board
• 一台 PC（Linux系统）

备注:
• 部分开发板目前采用 Type C接口。请确保使用正确的线缆连接开发板！
• ESP-DL 也支持 ESP32，但其算子实现采用 C 编写，因此 ESP32 运行速度会远慢于 ESP32-S3 或
ESP32-P4。如有需要，可在项目中自行添加编译配置文件，ESP-DL的函数接口调用方式完全一致。
需要注意的是:

– 使用 ESP-PPQ量化 ESP32平台模型时，需将 target设置为 c。
– 使用 ESP-DL部署 ESP32平台模型时，项目编译 target则设置为 esp32。

2.2 软件要求

2.2.1 ESP-IDF

ESP-DL基于 ESP-IDF运行。有关如何获取 ESP-IDF的详细说明，请参阅 ESP-IDF编程指南。

备注: 请使用 ESP-IDF的 release/v5.3或更高版本。

2.2.2 ESP-PPQ

ESP-PPQ是基于 ppq的量化工具，其代码已全部开源。ESP-PPQ在 PPQ的基础上添加了乐鑫定制的
quantizer和 exporter，方便用户根据不同的芯片选择和 ESP-DL匹配的量化规则，并导出为 ESP-DL可以
直接加载的标准模型文件。ESP-PPQ兼容 PPQ所有的 API和量化脚本。更多细节请参考 PPQ文档和视
频。如果您想量化自己的模型，可以使用如下方式安装 esp-ppq：
方式一: 使用 pip安装包

7

https://idf.espressif.com
https://github.com/espressif/esp-idf
https://github.com/espressif/esp-ppq
https://github.com/OpenPPL/ppq
https://github.com/OpenPPL/ppq
https://github.com/OpenPPL/ppq

Chapter 2. 入门指南

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/
↪→whl/cpu
pip install esp-ppq

方式二: 使用 pip安装源码，以便保持与 master分支同步

git clone https://github.com/espressif/esp-ppq.git
cd esp-ppq
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/
↪→whl/cpu
pip install -e .

方式三: 使用 uv安装包

uv pip install "esp-ppq[cpu]" --torch-backend=cpu
GPU
uv pip install "esp-ppq[cpu]" --torch-backend=cu124
AMD GPU
uv pip install "esp-ppq[cpu]" --torch-backend=rocm6.2
Intel XPU
uv pip install "esp-ppq[cpu]" --torch-backend=xpu

方式四: 使用 uv安装源码，以便保持与 master分支同步

git clone https://github.com/espressif/esp-ppq.git
cd esp-ppq
uv pip install torch torchvision torchaudio --index-url https://download.pytorch.
↪→org/whl/cpu
uv pip install -e .

方式五: 在 docker中使用 esp-ppq

docker build -t esp-ppq:your_tag https://github.com/espressif/esp-ppq.git

备注:
• 示例代码中安装的是 linux pytorch cpu版本，请根据实际情况安装对应的 pytorch。
• 如果使用 uv安装包，仅需要更改 --torch-backend参数即可，其会忽略项目中配置的 pytorch
URLs索引。

2.3 快速开始

ESP-DL提供了一些开箱即用的示例

2.3.1 示例编译 &烧录

idf.py set-target [Soc]
idf.py flash monitor

使用具体的芯片替换 [Soc]，目前支持 esp32s3和 esp32p4。示例暂未添加 esp32的模型和编译配
置文件。

Espressif Systems 8
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/tree/dd07971/examples
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 2. 入门指南

2.3.2 示例配置

idf.py menuconfig

一些示例包含可配置的选项，可以在使用 idf.py set-target 指定芯片之后使用 idf.py
menuconfig进行配置。

2.3.3 故障排除

查看 ESP-IDF文档

请参阅 ESP-IDF DOC

擦除 FLASH和清除示例

idf.py eras-flash -p [PORT]

删除 build/、sdkconfig、dependencies.lock、managed_components/并重试。

2.4 模型量化

首先，请参考 ESP-DL算子支持状态 operator_support_state.md，确保您的模型中的算子已经得到支持。
ESP-DL必须使用专有格式 .espdl进行模型部署，深度学习模型需要进行量化和格式转换之后才能使
用。ESP-PPQ提供了 espdl_quantize_onnx和 espdl_quantize_torch两种接口以支持 ONNX
模型和 PyTorch模型导出为 .espdl模型。其他深度学习框架，如 TensorfFlow, PaddlePaddle等都需要先
将模型转换为 ONNX。因此请确保您的模型可以转换为 ONNX模型。更多详细信息，请参阅：

• 如何量化模型
• 如何量化 MobileNetV2
• 如何量化 YOLO11n
• 如何量化 YOLO11n-pose
• 如何量化流式模型

2.5 模型部署

ESP-DL提供了一系列 API来快速加载和运行模型。更多详细信息，请参阅：
• 如何加载和测试模型
• 如何进行模型推理
• 如何部署流式模型

Espressif Systems 9
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://docs.espressif.com/projects/esp-idf/zh_CN/latest/esp32/get-started/index.html
https://github.com/espressif/esp-dl/blob/dd07971/operator_support_state.md
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 2. 入门指南

Espressif Systems 10
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3

Tutorials

3.1 如何量化模型

ESP-DL必须使用专有格式 .espdl进行模型部署。这是一种量化模型格式，支持 8bit和 16bit。在本教
程中，我们将以 quantize_sin_model 为例，介绍如何使用 ESP-PPQ量化并导出 .espdl模型，量化方法
为 Post Training Quantization (PTQ)。

• 准备工作
• 预训练模型
• 量化并导出 .espdl

– 添加测试输入/输出
– 量化模型推理 &精度评估

• 高级量化方法
– 训练后量化 (PTQ)
– 量化感知训练 (QAT)

3.1.1 准备工作

安装 ESP_PPQ

3.1.2 预训练模型

python sin_model.py

执行 sin_model.py 。该脚本会训练一个简单的 Pytorch模型用于拟合 [0, 2pi]范围内的 sin函数。训练结束
会保存相应的.pth权重，并导出 ONNX模型。

备注: ESP-PPQ提供了 espdl_quantize_onnx和 espdl_quantize_torch两种接口以支持ONNX
模型和 PyTorch模型。其他深度学习框架，如 TensorfFlow, PaddlePaddle等都需要先将模型转换为 ONNX
。

• TensorFlow转 ONNX tf2onnx
• TFLite转 ONNX tflite2onnx
• TFLite转 TensorFlow tflite2tensorflow

11

https://github.com/espressif/esp-dl/tree/dd07971/examples/tutorial/how_to_quantize_model/quantize_sin_model
https://github.com/espressif/esp-dl/blob/dd07971/examples/tutorial/how_to_quantize_model/quantize_sin_model/sin_model.py
https://github.com/onnx/tensorflow-onnx
https://github.com/zhenhuaw-me/tflite2onnx
https://github.com/PINTO0309/tflite2tensorflow

Chapter 3. Tutorials

• PaddlePaddle转 ONNX paddle2onnx

3.1.3 量化并导出 .espdl

参考 quantize_torch_model.py 和 quantize_onnx_model.py , 了解如何使用 espdl_quantize_onnx 和
espdl_quantize_torch接口量化并导出 .espdl模型。

执行脚本后会导出三个文件，分别是：

• **.espdl：ESPDL模型二进制文件，可以直接用于芯片的推理。
• **.info：ESPDL模型文本文件，用于调试和确定 .espdl模型是否被正确导出。包含了模型结
构，量化完的模型权重，测试输入/输出等信息。

• **.json：量化信息文件，用于量化信息的保存和加载。

备注:
1. 不同平台的 .espdl模型不能混用，推理结果会有误差。

• ESP32使用的 ROUND策略是 ROUND_HALF_UP。
– 使用 ESP-PPQ量化 ESP32平台模型时，需将 target设置为 c，因为在 ESP-DL中，其算
子实现采用 C语言编写。

– 使用 ESP-DL部署 ESP32平台模型时，项目编译 target则设置为 esp32。
• ESP32S3使用的 ROUND策略是 ROUND_HALF_UP。
• ESP32P4使用的则是 ROUND_HALF_EVEN。

2. 目前 ESP-DL使用的量化策略是对称量化 + POWER OF TWO。

添加测试输入/输出

验证模型在板端的推理结果是否正确，首先需要记录 PC 端的一组测试输入/输出。开启 api 中的
export_test_values选项，就能将一组测试输入/输出固化在 .espdl模型中。input_shape参数
和 inputs参数必须指定其中的一个，input_shape参数使用随机的测试输入，inputs则可以指定一
个特定的测试输入。.info文件中可以查看测试输入/输出的值。搜索 test inputs value和 test
outputs value查看它们。

量化模型推理 &精度评估

espdl_quantize_onnx和 espdl_quantize_torch API会返回 BaseGraph。使用 BaseGraph构
建相应的 TorchExecutor就可以在 PC端使用量化模型进行推理了。

executor = TorchExecutor(graph=quanted_graph, device=device)
output = executor(input)

量化模型推理得到的输出可以用来计算各种精度指标。由于 esp-dl板端推理的结果是能和 esp-ppq
对齐的，可以直接用该指标评估量化完模型的性能。

备注:
1. 当前 esp-dl仅支持 batch_size为 1，不支持多 batch或者动态 batch。
2. .info文件中的测试输入/输出，以及量化完的模型权重都是 16字节对齐的，也就是说如果不满

16字节，会在后面填充 0。

Espressif Systems 12
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/PaddlePaddle/Paddle2ONNX
https://github.com/espressif/esp-dl/blob/dd07971/examples/tutorial/how_to_quantize_model/quantize_sin_model/quantize_torch_model.py
https://github.com/espressif/esp-dl/blob/dd07971/examples/tutorial/how_to_quantize_model/quantize_sin_model/quantize_onnx_model.py
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

3.1.4 高级量化方法

如果你的模型使用默认的 8bit量化方法无法达到满意的结果，我们也提供了如下量化方法可以进一步减
少量化模型的性能损失：

训练后量化 (PTQ)

• 混合精度量化
• 层间均衡量化
• 算子分裂量化

量化感知训练 (QAT)

• YOLO11n量化感知训练
• YOLO11n-pose量化感知训练

3.2 如何加载、测试和性能分析模型

在本教程中，我们将介绍如何加载、测试和分析一个 espdl模型。参考例程

• 准备工作
• 从 rodata中加载模型
• 从 partition中加载模型
• 从 sdcard中加载模型
• 测试模型板端推理是否正确
• 分析模型内存使用情况
• 分析模型推理延迟
• 组合性能分析：profile()方法

3.2.1 准备工作

1. 安装 ESP_IDF
2. 量化导出 espdl模型

3.2.2 从 rodata中加载模型

此方法将模型文件直接嵌入到应用程序 FLASH的 .rodata段中。这是最简单的方法，但缺点是每次应
用程序代码更改时模型都会被重新烧录。

1. 在 CMakeLists.txt中添加模型文件
要将 .espdl模型文件嵌入到 .rodata段，请在 CMakeLists.txt中添加以下代码。前几行应
放在 idf_component_register()之前，最后一行放在 idf_component_register()之后。

idf_build_get_property(component_targets __COMPONENT_TARGETS)
if ("___idf_espressif__esp-dl" IN_LIST component_targets)

idf_component_get_property(espdl_dir espressif__esp-dl COMPONENT_DIR)
elseif("___idf_esp-dl" IN_LIST component_targets)

idf_component_get_property(espdl_dir esp-dl COMPONENT_DIR)
endif()
set(cmake_dir ${espdl_dir}/fbs_loader/cmake)

(下页继续)

Espressif Systems 13
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/tree/dd07971/examples/tutorial/how_to_load_test_profile_model
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
include(${cmake_dir}/utilities.cmake)
set(embed_files your_model_path/model_name.espdl)

idf_component_register(...)

target_add_aligned_binary_data(${COMPONENT_LIB} ${embed_files} BINARY)

2. 在程序中加载模型
包含头文件：

#include "dl_model_base.hpp"

声明模型符号并创建模型：

// 符号名由三部分组成：前缀 "_binary_"，文件名 "model_espdl"，后缀 "_start"
extern const uint8_t model_espdl[] asm("_binary_model_espdl_start");

// 基本用法 - 使用默认参数加载模型
dl::Model *model = new dl::Model((const char *)model_espdl, fbs::MODEL_
↪→LOCATION_IN_FLASH_RODATA);

// 高级用法 - 自定义参数：
// - 将参数保留在 FLASH 中（节省 PSRAM/内部 RAM，但性能较低）
// - 限制内部 RAM 使用为 0 字节（优先使用 PSRAM）
// - 使用贪婪内存管理器
// - 无加密密钥
// - param_copy = false（将参数保留在 FLASH 中）
// dl::Model *model = new dl::Model((const char *)model_espdl,
// fbs::MODEL_LOCATION_IN_FLASH_RODATA,
// 0, // max_internal_size
// dl::MEMORY_MANAGER_GREEDY,
// nullptr, // key
// false); // param_copy

备注: 性能与内存权衡：
• 烧录时间：使用从 rodata中加载模型时，模型文件嵌入在应用程序二进制文件中，每次修改代码
时都会重新烧录。对于大型模型，这会增加烧录时间。考虑使用从 partition中加载模型或从 sdcard
中加载模型来避免此问题。

• 内存 vs性能： param_copy参数控制模型参数是否从 FLASH复制到更快的内存（PSRAM/内部
RAM）。设置 param_copy=false可以节省 RAM，但由于 FLASH访问速度较慢，会降低推理性
能。仅在 RAM极其紧张时才禁用参数复制。

• 应用程序分区大小：嵌入在 .rodata中的大型模型可能需要增加 partition.csv中的应用程序
分区大小。

3.2.3 从 partition中加载模型

此方法将模型存储在单独的 FLASH分区中，允许您独立于应用程序代码更新模型。
1. 在 partition.csv中添加模型信息
创建或修改您的 partition.csv文件以包含模型分区。有关分区表的详细信息，请参阅 ESP-IDF
分区表文档。

Name, Type, SubType, Offset, Size, Flags
factory, app, factory, 0x010000, 4000K,
model, data, spiffs, , 4000K,

• Name: 任何有意义的名称（包括空终止符最多 16个字符）
• Type: data

Espressif Systems 14
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://docs.espressif.com/projects/esp-idf/zh_CN/latest/esp32/api-guides/partition-tables.html
https://docs.espressif.com/projects/esp-idf/zh_CN/latest/esp32/api-guides/partition-tables.html
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

• SubType: spiffs（模型存储必需）
• Offset: 留空以自动计算
• Size: 必须大于模型文件大小

2. 在 CMakeLists.txt中添加模型烧录信息

idf_component_register(...)
set(image_file your_model_path/model_name.espdl)
esptool_py_flash_to_partition(flash "model" "${image_file}")

esptool_py_flash_to_partition中的第二个参数必须与 partition.csv中的 Name字段
匹配。

3. 在程序中加载模型
包含头文件：

#include "dl_model_base.hpp"

创建模型实例：

// 基本用法 - 使用默认参数加载模型
dl::Model *model = new dl::Model("model", fbs::MODEL_LOCATION_IN_FLASH_
↪→PARTITION);

// 高级用法 - 将参数保留在 FLASH 中以节省 RAM
// dl::Model *model = new dl::Model("model",
// fbs::MODEL_LOCATION_IN_FLASH_PARTITION,
// 0, // max_internal_size
// dl::MEMORY_MANAGER_GREEDY,
// nullptr, // key
// false); // param_copy

第一个参数（分区标签）必须与 partition.csv中的 Name字段匹配。

备注: 烧录优化：使用 idf.py app-flash代替 idf.py flash，可以仅烧录应用程序分区而不重新
烧录模型分区。这显著减少了开发期间的烧录时间。

3.2.4 从 sdcard中加载模型

此方法从 SD卡加载模型，当 FLASH空间有限或需要频繁更新模型而无需重新烧录时非常有用。
1. 准备 SD卡

• 格式： SD卡应格式化为 FAT32。如果未格式化，挂载时将自动格式化（数据会丢失）。
• 备份：在使用 ESP-DL之前，请始终备份 SD卡数据。

2. 挂载 SD卡
• 使用 BSP（板级支持包）：
在 menuconfig中启用 CONFIG_BSP_SD_FORMAT_ON_MOUNT_FAIL以允许自动格式化。

#include "bsp/esp-bsp.h"
ESP_ERROR_CHECK(bsp_sdcard_mount());

• 不使用 BSP：
配置挂载选项，设置 format_if_mount_failed = true。

#include "esp_vfs_fat.h"
#include "sdmmc_cmd.h"

esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5,
.allocation_unit_size = 16 * 1024

};
// 挂载 SD 卡（具体实现取决于您的硬件）

Espressif Systems 15
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

3. 复制模型到 SD卡
将您的 .espdl模型文件复制到 SD卡（例如，复制到根目录作为 model.espdl）。

4. 在程序中加载模型
包含头文件：

#include "dl_model_base.hpp"

• 如果不使用 BSP(Board Support Package)

// 挂载sdcard.
const char *model_path = "/your_sdcard_mount_point/your_model_path/model_name.
↪→espdl";
Model *model = new Model(model_path, fbs::MODEL_LOCATION_IN_SDCARD);

备注: 使用从 sdcard中加载模型时，模型加载过程将花费更长的时间，因为模型数据需要从 sdcard复制
到 PSRAM或者 internal RAM。如果你的 FLASH空间紧张，这种方法很有用。

3.2.5 测试模型板端推理是否正确

test()方法通过将推理结果与模型文件中嵌入的基准真值进行比较，验证模型是否产生正确的推理结
果。

前提条件：

• .espdl模型必须在 ESP-PPQ中导出时启用 **测试输入和输出 **（使用 export_test_values
选项）。

• 对于部署，您可以导出一个没有测试数据的版本以减小模型大小。
API： esp_err_t dl::Model::test()

返回值：如果所有测试通过则返回 ESP_OK，否则返回 ESP_FAIL。

用法：

#include "dl_model_base.hpp"

// 创建模型后...
esp_err_t ret = model->test();
if (ret == ESP_OK) {

ESP_LOGI(TAG, "模型测试通过！");
} else {

ESP_LOGE(TAG, "模型测试失败！");
}

// 或使用便捷宏：
ESP_ERROR_CHECK(model->test());

工作原理：

1. 加载模型中嵌入的测试输入张量，所以 test()不需要外部输入
2. 通过所有模型层运行推理
3. 将每个输出与基准真值进行比较（考虑量化误差的容差）
4. 报告每个输出的成功或失败

INT16模型注意事项：由于量化舍入误差，INT16模型允许比较时有 ±1的差异。

3.2.6 分析模型内存使用情况

profile_memory()方法打印跨不同内存类型（内部 RAM、PSRAM、FLASH）的内存使用详细明细。

Espressif Systems 16
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-bsp/tree/master/bsp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

API： void dl::Model::profile_memory()

用法：

#include "dl_model_base.hpp"

// 创建并测试模型后...
model->profile_memory();

输出包括：

名称 解释

fbs_model parameter
flatbuffers 模型，包含一个子项，模型参数
parameter。flatbuffers 模型除了模型参数之外，
还包括测试输入输出，模型参数/变量的形状，模
型结构等信息。

parameter_copy 复制的模型参数，当 flatbuffers模型位于 FLASH的
时候，默认情况下会复制到 PSRAM或者 internal
RAM以提高推理性能。

variable 内存管理模块申请的内存，模型输入/输出以及中
间的计算结果都会使用这部分空间。

others 类 成 员 变 量 所 需 要 的 空 间,
heap_caps_aligned_alloc /
heap_caps_aligned_calloc 申 请 过 程
中对齐的额外部分（很小）。

显示的内存类型：每个类别的内部 RAM、PSRAM和 FLASH使用情况。

3.2.7 分析模型推理延迟

profile_module()方法打印模型中每个模块（层）的详细延迟信息。

API： void dl::Model::profile_module(bool sort_module_by_latency = false)

参数： - sort_module_by_latency：如果为 true，模块按延迟排序（最高优先）。如果为 false
（默认），模块按拓扑顺序显示。

用法：

// 默认：拓扑顺序
model->profile_module();

// 按延迟排序（最高优先）
model->profile_module(true);

输出包括： -模块名称 -模块类型（操作类型）-推理延迟（微秒，如果启用 DL_LOG_LATENCY_UNIT
则为周期数）-末尾的总推理延迟
相关 API：

• std::map<std::string, module_info> get_module_info() - 以编程方式返回模块信
息

• void print_module_info(const std::map<std::string, module_info> &info,
bool sort_module_by_latency = false) -从映射打印模块信息

3.2.8 组合性能分析：profile()方法

profile()方法结合了 profile_memory()和 profile_module()，进行综合分析。

API： void dl::Model::profile(bool sort_module_by_latency = false)

Espressif Systems 17
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

用法：

// 拓扑顺序的综合性能分析
model->profile();

// 按延迟排序的综合性能分析
model->profile(true);

这是获取内存和性能分析的最便捷方式。

3.3 如何进行模型推理

在本教程中，我们将介绍最基本的模型推理流程。参考例程

• 准备工作
• 加载模型
• 获取模型输入/输出。
• 量化输入

– 量化单个值
– 量化 dl::TensorBase

• 反量化输出
– 反量化单个值
– 反量化 dl::TensorBase

• 模型推理

3.3.1 准备工作

安装 ESP_IDF

3.3.2 加载模型

如何加载模型

3.3.3 获取模型输入/输出。

std::map<std::string, dl::TensorBase *> model_inputs = model->get_inputs();
dl::TensorBase *model_input = model_inputs.begin()->second;
std::map<std::string, dl::TensorBase *> model_outputs = model->get_outputs();
dl::TensorBase *model_output = model_outputs.begin()->second;

可以通过 get_inputs()和 get_outputs() api获得输入/输出的名字和对应的 dl::TensorBase。
更多信息，请参阅dl::TensorBase文档。

备注: ESP-DL的内存管理器会为每个模型的输入/中间结果/输出分配一整块的内存。由于它们共用这部
分内存，所以当模型进行推理的时候，后面的结果会覆盖前面的结果。也就是说，model_input中的
数据，在执行完模型推理之后，可能就会被 model_output或者其他中间结果所覆盖。

Espressif Systems 18
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/tree/dd07971/examples/tutorial/how_to_run_model
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

3.3.4 量化输入

8bit和 16bit量化的模型，分别接受 int8_t和 int16_t类型的输入。float类型的输入必须先根据
exponent量化成对应的整数类型之后才能喂入模型。计算公式：

Q = Clip
(
Round

(
R

Scale

)
,MIN,MAX

)
Scale = 2Exp

其中：

• R是要量化的浮点数。
• Q是量化后的整数值，需要在 [MIN, MAX]范围内进行裁剪。
• MIN整数最小值，8bit时，MIN = -128, 16bit时，MIN = -32768。
• MAX整数最大值，8bit时，MAX = 127, 16bit时，MAX = 32767。

量化单个值

float input_v = VALUE;
// Note that dl::quantize accepts inverse of scale as the second input, so we use␣
↪→DL_RESCALE here.
int8_t quant_input_v = dl::quantize<int8_t>(input_v, DL_RESCALE(model_input->
↪→exponent));

量化 dl::TensorBase

// assume that input_tensor already contains the float input data.
dl::TensorBase *input_tensor;
model_input->assign(input_tensor);

3.3.5 反量化输出

8bit和 16bit量化的模型，分别得到 int8_t和 int16_t类型的输出。必须根据 exponent反量化之后
才能得到浮点输出。计算公式：

R′ = Q× Scale

Scale = 2Exp

其中：

• R’是反量化后恢复的近似浮点值。
• Q是量化后的整数值。

反量化单个值

int8_t quant_output_v = VALUE;
float output_v = dl::dequantize(quant_output_v, DL_SCALE(model_output->exponent));

反量化 dl::TensorBase

Espressif Systems 19
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

// create a TensorBase filled with 0 of shape [1, 1]
dl::TensorBase *output_tensor = new dl::TensorBase({1, 1}, nullptr, 0, dl::DATA_
↪→TYPE_FLOAT);
output_tensor->assign(model_output);

3.3.6 模型推理

请参阅：

• 参考例程
• void dl::Model::run(runtime_mode_t mode)
• void dl::Model::run(TensorBase *input, runtime_mode_t mode)
• void dl::Model::run(std::map<std::string, TensorBase*> &user_inputs,
runtime_mode_t mode, std::map<std::string, TensorBase*> user_outputs)

3.4 如何创建新模块（算子）

本教程将指导您在 dl::module命名空间中创建一个新模块。Module类是所有模块的基类，您将扩展
这个基类来创建您的自定义模块。

备注: ESP-DL中的模块接口应与 ONNX对齐。

3.4.1 理解基类 Module

基类提供了几个必须在派生类中重写的虚方法。

• 方法：
– dl::module::Module::Module()：构造函数，用于初始化模块。
– dl::module::Module::~Module()：析构函数，用于释放资源。
– dl::module::Module::get_output_shape()：根据输入形状计算输出形状。
– dl::module::Module::forward()：运行模块，高级接口。
– dl::module::Module::forward_args()：运行模块，低级接口。
– dl::module::Module::deserialize()：从序列化信息创建模块实例。
– dl::module::Module::print()：打印模块信息。

更多信息，请参考Module Class Reference。

3.4.2 创建新模块类

要创建一个新模块，您需要从 Module基类派生一个新类并重写必要的方法。

示例：创建 MyCustomModule类

更多示例，请参考 esp-dl/dl/module。

#include "module.h" // 包含定义 Module 类的头文件

namespace dl {
namespace module {

(下页继续)

Espressif Systems 20
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/tree/dd07971/examples/tutorial/how_to_run_model
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/dl/module/include/dl_module_base.hpp
https://github.com/espressif/esp-dl/tree/dd07971/esp-dl/dl/module/include
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
class MyCustomModule : public Module {
public:

// 构造函数
MyCustomModule(const char *name = "MyCustomModule",

module_inplace_t inplace = MODULE_NON_INPLACE,
quant_type_t quant_type = QUANT_TYPE_NONE)

: Module(name, inplace, quant_type) {}

// 析构函数
virtual ~MyCustomModule() {}

// 重写 get_output_shape 方法
std::vector<std::vector<int>> get_output_shape(std::vector<std::vector<int>> &

↪→input_shapes) override {
// 实现根据输入形状计算输出形状的逻辑
std::vector<std::vector<int>> output_shapes;
// 示例：假设输出形状与输入形状相同
output_shapes.push_back(input_shapes[0]);
return output_shapes;

}

// 重写 forward 方法
void forward(std::vector<dl::TensorBase *> &tensors, runtime_mode_t mode =␣

↪→RUNTIME_MODE_AUTO) override {
// 实现运行模块的逻辑
// 示例：对张量执行某些操作
for (auto &tensor : tensors) {

// 对每个张量执行某些操作
}

}

// 重写 forward_args 方法
void forward_args(void *args) override {

// 实现低级接口的逻辑
// 示例：根据参数执行某些操作

}

// 从序列化信息反序列化模块实例
static Module *deserialize(fbs::FbsModel *fbs_model, std::string node_name){

// 实现反序列化模块实例的逻辑
// 接口应与 ONNX 对齐

}

// 重写 print 方法
void print() override {

// 打印模块信息
ESP_LOGI("MyCustomModule", "Module Name: %s, Quant type: %d", name.c_str(),

↪→ quant_type);
}

};

} // namespace module
} // namespace dl

注册 MyCustomModule类

当您实现了 MyCustomModule类后，请在 dl_module_creator 中注册您的模块，使其全局可用。

void register_dl_modules()
{

(下页继续)

Espressif Systems 21
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/dl/module/include/dl_module_creator.hpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
if (creators.empty()) {

...
this->register_module("MyCustomModule", MyCustomModule::deserialize);

}
}

3.5 如何部署MobileNetV2

在本教程中，我们介绍如何使用 ESP-PPQ对预训练的MobileNetV2模型进行量化，并使用 ESP-DL部署
量化后的MobileNetV2模型。

• 准备工作
• 模型量化

– 预训练模型
– 校准数据集
– 8bit默认配置量化
– 混合精度量化
– 层间均衡量化

• 模型部署
– 图像分类基类
– 前处理
– 后处理

3.5.1 准备工作

1. 安装 ESP_IDF
2. 安装 ESP_PPQ

3.5.2 模型量化

量化脚本

预训练模型

从 torchvision加载MobileNet_v2的预训练模型，你也可以从 ONNX models或 TensorFlow models下载：

import torchvision
from torchvision.models.mobilenetv2 import MobileNet_V2_Weights

model = torchvision.models.mobilenet.mobilenet_v2(weights=MobileNet_V2_Weights.
↪→IMAGENET1K_V1)

校准数据集

校准数据集需要和你的模型输入格式一致，校准数据集需要尽可能覆盖你的模型输入的所有可能情况，
以便更好地量化模型。这里以 ImageNet数据集为例，演示如何准备校准数据集。
使用 torchvision加载 ImageNet数据集：

Espressif Systems 22
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/tree/dd07971/examples/tutorial/how_to_quantize_model/quantize_mobilenetv2
https://github.com/onnx/models
https://github.com/tensorflow/models
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

import torchvision.datasets as datasets
from torch.utils.data.dataset import Subset
dataset = datasets.ImageFolder(

CALIB_DIR,
transforms.Compose(

[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(

mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),

]
),

)
dataset = Subset(dataset, indices=[_ for _ in range(0, 1024)])
dataloader = DataLoader(

dataset=dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=4,
pin_memory=False,
collate_fn=collate_fn1,

)

8bit默认配置量化

量化设置

target="esp32p4"
num_of_bits=8
batch_size=32
quant_setting = QuantizationSettingFactory.espdl_setting() # default setting

量化结果

Analysing Graphwise Quantization Error::
Layer | NOISE:SIGNAL POWER RATIO
/features/features.16/conv/conv.2/Conv: | ████████████████████ | 48.831%
/features/features.15/conv/conv.2/Conv: | ███████████████████ | 45.268%
/features/features.17/conv/conv.2/Conv: | ██████████████████ | 43.112%
/features/features.18/features.18.0/Conv: | █████████████████ | 41.586%
/features/features.14/conv/conv.2/Conv: | █████████████████ | 41.135%
/features/features.13/conv/conv.2/Conv: | ██████████████ | 35.090%
/features/features.17/conv/conv.0/conv.0.0/Conv: | █████████████ | 32.895%
/features/features.16/conv/conv.1/conv.1.0/Conv: | ████████████ | 29.226%
/features/features.12/conv/conv.2/Conv: | ████████████ | 28.895%
/features/features.16/conv/conv.0/conv.0.0/Conv: | ███████████ | 27.808%
/features/features.7/conv/conv.2/Conv: | ███████████ | 27.675%
/features/features.10/conv/conv.2/Conv: | ███████████ | 26.292%
/features/features.11/conv/conv.2/Conv: | ███████████ | 26.085%
/features/features.6/conv/conv.2/Conv: | ███████████ | 25.892%
/classifier/classifier.1/Gemm: | ██████████ | 25.591%
/features/features.15/conv/conv.0/conv.0.0/Conv: | ██████████ | 25.323%
/features/features.4/conv/conv.2/Conv: | ██████████ | 24.787%
/features/features.15/conv/conv.1/conv.1.0/Conv: | ██████████ | 24.354%
/features/features.14/conv/conv.1/conv.1.0/Conv: | ████████ | 20.207%
/features/features.9/conv/conv.2/Conv: | ████████ | 19.808%
/features/features.14/conv/conv.0/conv.0.0/Conv: | ████████ | 18.465%
/features/features.5/conv/conv.2/Conv: | ███████ | 17.868%

(下页继续)

Espressif Systems 23
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/features/features.12/conv/conv.1/conv.1.0/Conv: | ███████ | 16.589%
/features/features.13/conv/conv.1/conv.1.0/Conv: | ███████ | 16.143%
/features/features.11/conv/conv.1/conv.1.0/Conv: | ██████ | 15.382%
/features/features.3/conv/conv.2/Conv: | ██████ | 15.105%
/features/features.13/conv/conv.0/conv.0.0/Conv: | ██████ | 15.029%
/features/features.10/conv/conv.1/conv.1.0/Conv: | ██████ | 14.875%
/features/features.2/conv/conv.2/Conv: | ██████ | 14.869%
/features/features.11/conv/conv.0/conv.0.0/Conv: | ██████ | 14.552%
/features/features.9/conv/conv.1/conv.1.0/Conv: | ██████ | 14.050%
/features/features.8/conv/conv.1/conv.1.0/Conv: | ██████ | 13.929%
/features/features.8/conv/conv.2/Conv: | ██████ | 13.833%
/features/features.12/conv/conv.0/conv.0.0/Conv: | ██████ | 13.684%
/features/features.7/conv/conv.0/conv.0.0/Conv: | █████ | 12.942%
/features/features.6/conv/conv.1/conv.1.0/Conv: | █████ | 12.765%
/features/features.10/conv/conv.0/conv.0.0/Conv: | █████ | 12.251%
/features/features.5/conv/conv.1/conv.1.0/Conv: | █████ | 11.186%
/features/features.17/conv/conv.1/conv.1.0/Conv: | ████ | 11.070%
/features/features.9/conv/conv.0/conv.0.0/Conv: | ████ | 10.371%
/features/features.4/conv/conv.1/conv.1.0/Conv: | ████ | 10.356%
/features/features.6/conv/conv.0/conv.0.0/Conv: | ████ | 10.149%
/features/features.4/conv/conv.0/conv.0.0/Conv: | ████ | 9.472%
/features/features.8/conv/conv.0/conv.0.0/Conv: | ████ | 9.232%
/features/features.3/conv/conv.1/conv.1.0/Conv: | ████ | 9.187%
/features/features.1/conv/conv.1/Conv: | ████ | 8.770%
/features/features.5/conv/conv.0/conv.0.0/Conv: | ███ | 8.408%
/features/features.7/conv/conv.1/conv.1.0/Conv: | ███ | 8.151%
/features/features.2/conv/conv.1/conv.1.0/Conv: | ███ | 7.156%
/features/features.3/conv/conv.0/conv.0.0/Conv: | ███ | 6.328%
/features/features.2/conv/conv.0/conv.0.0/Conv: | ██ | 5.392%
/features/features.1/conv/conv.0/conv.0.0/Conv: | | 0.875%
/features/features.0/features.0.0/Conv: | | 0.119%
Analysing Layerwise quantization error:: 100
↪→%|███|␣
↪→53/53 [08:44<00:00, 9.91s/it]
Layer | NOISE:SIGNAL POWER RATIO
/features/features.1/conv/conv.0/conv.0.0/Conv: | ████████████████████ | 14.303%
/features/features.0/features.0.0/Conv: | █ | 0.844%
/features/features.1/conv/conv.1/Conv: | █ | 0.667%
/features/features.2/conv/conv.1/conv.1.0/Conv: | █ | 0.574%
/features/features.3/conv/conv.1/conv.1.0/Conv: | █ | 0.419%
/features/features.15/conv/conv.1/conv.1.0/Conv: | | 0.272%
/features/features.9/conv/conv.1/conv.1.0/Conv: | | 0.238%
/features/features.17/conv/conv.1/conv.1.0/Conv: | | 0.214%
/features/features.4/conv/conv.1/conv.1.0/Conv: | | 0.180%
/features/features.11/conv/conv.1/conv.1.0/Conv: | | 0.151%
/features/features.12/conv/conv.1/conv.1.0/Conv: | | 0.148%
/features/features.16/conv/conv.1/conv.1.0/Conv: | | 0.146%
/features/features.14/conv/conv.2/Conv: | | 0.136%
/features/features.13/conv/conv.1/conv.1.0/Conv: | | 0.105%
/features/features.6/conv/conv.1/conv.1.0/Conv: | | 0.105%
/features/features.8/conv/conv.1/conv.1.0/Conv: | | 0.083%
/features/features.7/conv/conv.2/Conv: | | 0.076%
/features/features.5/conv/conv.1/conv.1.0/Conv: | | 0.076%
/features/features.3/conv/conv.2/Conv: | | 0.075%
/features/features.16/conv/conv.2/Conv: | | 0.074%
/features/features.13/conv/conv.0/conv.0.0/Conv: | | 0.072%
/features/features.15/conv/conv.2/Conv: | | 0.066%
/features/features.4/conv/conv.2/Conv: | | 0.065%
/features/features.11/conv/conv.2/Conv: | | 0.063%
/classifier/classifier.1/Gemm: | | 0.063%
/features/features.2/conv/conv.0/conv.0.0/Conv: | | 0.054%

(下页继续)

Espressif Systems 24
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/features/features.13/conv/conv.2/Conv: | | 0.050%
/features/features.10/conv/conv.1/conv.1.0/Conv: | | 0.042%
/features/features.17/conv/conv.0/conv.0.0/Conv: | | 0.040%
/features/features.2/conv/conv.2/Conv: | | 0.038%
/features/features.4/conv/conv.0/conv.0.0/Conv: | | 0.034%
/features/features.17/conv/conv.2/Conv: | | 0.030%
/features/features.14/conv/conv.0/conv.0.0/Conv: | | 0.025%
/features/features.16/conv/conv.0/conv.0.0/Conv: | | 0.024%
/features/features.10/conv/conv.2/Conv: | | 0.022%
/features/features.11/conv/conv.0/conv.0.0/Conv: | | 0.021%
/features/features.9/conv/conv.2/Conv: | | 0.021%
/features/features.14/conv/conv.1/conv.1.0/Conv: | | 0.020%
/features/features.7/conv/conv.1/conv.1.0/Conv: | | 0.020%
/features/features.5/conv/conv.2/Conv: | | 0.019%
/features/features.8/conv/conv.2/Conv: | | 0.018%
/features/features.12/conv/conv.2/Conv: | | 0.017%
/features/features.6/conv/conv.2/Conv: | | 0.014%
/features/features.7/conv/conv.0/conv.0.0/Conv: | | 0.014%
/features/features.3/conv/conv.0/conv.0.0/Conv: | | 0.013%
/features/features.12/conv/conv.0/conv.0.0/Conv: | | 0.009%
/features/features.15/conv/conv.0/conv.0.0/Conv: | | 0.008%
/features/features.5/conv/conv.0/conv.0.0/Conv: | | 0.006%
/features/features.6/conv/conv.0/conv.0.0/Conv: | | 0.005%
/features/features.9/conv/conv.0/conv.0.0/Conv: | | 0.003%
/features/features.18/features.18.0/Conv: | | 0.002%
/features/features.10/conv/conv.0/conv.0.0/Conv: | | 0.002%
/features/features.8/conv/conv.0/conv.0.0/Conv: | | 0.002%

* Prec@1 60.500 Prec@5 83.275*

量化误差分析

量化后的 top1准确率只有 60.5%，和 float模型的准确率 (71.878%)相差较远，量化模型精度损失较大，
其中：

• 累计误差 (Graphwise Error)
该模型的最后一层为 /classifier/classifier.1/Gemm，该层的累计误差为 25.591%。经验来说最后一层
的累计误差小于 10%，量化模型的精度损失较小。

• 逐层误差 (Layerwise error)
观察 Layerwise error，发现大部分层的误差都在 1%以下，说明大部分层的量化误差较小，只有少
数几层误差较大，我们可以选择将误差较大的层使用 int16进行量化。具体请看混合精度量化。

混合精度量化

量化设置

from esp_ppq.api import get_target_platform
target="esp32p4"
num_of_bits=8
batch_size=32

以下层使用int16进行量化
quant_setting = QuantizationSettingFactory.espdl_setting()
quant_setting.dispatching_table.append("/features/features.1/conv/conv.0/conv.0.0/
↪→Conv", get_target_platform(TARGET, 16))
quant_setting.dispatching_table.append("/features/features.1/conv/conv.0/conv.0.2/
↪→Clip", get_target_platform(TARGET, 16))

量化结果

Espressif Systems 25
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

Layer | NOISE:SIGNAL POWER RATIO
/features/features.16/conv/conv.2/Conv: | ████████████████████ | 31.585%
/features/features.15/conv/conv.2/Conv: | ███████████████████ | 29.253%
/features/features.17/conv/conv.0/conv.0.0/Conv: | ████████████████ | 25.077%
/features/features.14/conv/conv.2/Conv: | ████████████████ | 24.819%
/features/features.17/conv/conv.2/Conv: | ████████████ | 19.546%
/features/features.13/conv/conv.2/Conv: | ████████████ | 19.283%
/features/features.16/conv/conv.0/conv.0.0/Conv: | ████████████ | 18.764%
/features/features.16/conv/conv.1/conv.1.0/Conv: | ████████████ | 18.596%
/features/features.18/features.18.0/Conv: | ████████████ | 18.541%
/features/features.15/conv/conv.0/conv.0.0/Conv: | ██████████ | 15.633%
/features/features.12/conv/conv.2/Conv: | █████████ | 14.784%
/features/features.15/conv/conv.1/conv.1.0/Conv: | █████████ | 14.773%
/features/features.14/conv/conv.1/conv.1.0/Conv: | █████████ | 13.700%
/features/features.6/conv/conv.2/Conv: | ████████ | 12.824%
/features/features.10/conv/conv.2/Conv: | ███████ | 11.727%
/features/features.14/conv/conv.0/conv.0.0/Conv: | ███████ | 10.612%
/features/features.11/conv/conv.2/Conv: | ██████ | 10.262%
/features/features.9/conv/conv.2/Conv: | ██████ | 9.967%
/classifier/classifier.1/Gemm: | ██████ | 9.117%
/features/features.5/conv/conv.2/Conv: | ██████ | 8.915%
/features/features.7/conv/conv.2/Conv: | █████ | 8.690%
/features/features.3/conv/conv.2/Conv: | █████ | 8.586%
/features/features.4/conv/conv.2/Conv: | █████ | 7.525%
/features/features.13/conv/conv.1/conv.1.0/Conv: | █████ | 7.432%
/features/features.12/conv/conv.1/conv.1.0/Conv: | █████ | 7.317%
/features/features.13/conv/conv.0/conv.0.0/Conv: | ████ | 6.848%
/features/features.8/conv/conv.2/Conv: | ████ | 6.711%
/features/features.10/conv/conv.1/conv.1.0/Conv: | ████ | 6.100%
/features/features.8/conv/conv.1/conv.1.0/Conv: | ████ | 6.043%
/features/features.11/conv/conv.1/conv.1.0/Conv: | ████ | 5.962%
/features/features.9/conv/conv.1/conv.1.0/Conv: | ████ | 5.873%
/features/features.12/conv/conv.0/conv.0.0/Conv: | ████ | 5.833%
/features/features.7/conv/conv.0/conv.0.0/Conv: | ████ | 5.832%
/features/features.11/conv/conv.0/conv.0.0/Conv: | ████ | 5.736%
/features/features.6/conv/conv.1/conv.1.0/Conv: | ████ | 5.639%
/features/features.5/conv/conv.1/conv.1.0/Conv: | ███ | 5.017%
/features/features.10/conv/conv.0/conv.0.0/Conv: | ███ | 4.963%
/features/features.17/conv/conv.1/conv.1.0/Conv: | ███ | 4.870%
/features/features.3/conv/conv.1/conv.1.0/Conv: | ███ | 4.655%
/features/features.2/conv/conv.2/Conv: | ███ | 4.650%
/features/features.4/conv/conv.0/conv.0.0/Conv: | ███ | 4.648%
/features/features.1/conv/conv.1/Conv: | ███ | 4.318%
/features/features.9/conv/conv.0/conv.0.0/Conv: | ██ | 3.849%
/features/features.6/conv/conv.0/conv.0.0/Conv: | ██ | 3.712%
/features/features.4/conv/conv.1/conv.1.0/Conv: | ██ | 3.394%
/features/features.8/conv/conv.0/conv.0.0/Conv: | ██ | 3.391%
/features/features.7/conv/conv.1/conv.1.0/Conv: | ██ | 2.713%
/features/features.2/conv/conv.1/conv.1.0/Conv: | ██ | 2.637%
/features/features.2/conv/conv.0/conv.0.0/Conv: | ██ | 2.602%
/features/features.5/conv/conv.0/conv.0.0/Conv: | █ | 2.397%
/features/features.3/conv/conv.0/conv.0.0/Conv: | █ | 1.759%
/features/features.1/conv/conv.0/conv.0.0/Conv: | | 0.433%
/features/features.0/features.0.0/Conv: | | 0.119%
Analysing Layerwise quantization error:: 100
↪→%|███|␣
↪→53/53 [08:27<00:00, 9.58s/it]
*
Layer | NOISE:SIGNAL POWER RATIO
/features/features.1/conv/conv.1/Conv: | ████████████████████ | 1.096%
/features/features.0/features.0.0/Conv: | ███████████████ | 0.844%
/features/features.2/conv/conv.1/conv.1.0/Conv: | ██████████ | 0.574%

(下页继续)

Espressif Systems 26
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/features/features.3/conv/conv.1/conv.1.0/Conv: | ████████ | 0.425%
/features/features.15/conv/conv.1/conv.1.0/Conv: | █████ | 0.272%
/features/features.9/conv/conv.1/conv.1.0/Conv: | ████ | 0.238%
/features/features.17/conv/conv.1/conv.1.0/Conv: | ████ | 0.214%
/features/features.4/conv/conv.1/conv.1.0/Conv: | ███ | 0.180%
/features/features.11/conv/conv.1/conv.1.0/Conv: | ███ | 0.151%
/features/features.12/conv/conv.1/conv.1.0/Conv: | ███ | 0.148%
/features/features.16/conv/conv.1/conv.1.0/Conv: | ███ | 0.146%
/features/features.14/conv/conv.2/Conv: | ██ | 0.136%
/features/features.13/conv/conv.1/conv.1.0/Conv: | ██ | 0.105%
/features/features.6/conv/conv.1/conv.1.0/Conv: | ██ | 0.105%
/features/features.8/conv/conv.1/conv.1.0/Conv: | █ | 0.083%
/features/features.5/conv/conv.1/conv.1.0/Conv: | █ | 0.076%
/features/features.3/conv/conv.2/Conv: | █ | 0.075%
/features/features.16/conv/conv.2/Conv: | █ | 0.074%
/features/features.13/conv/conv.0/conv.0.0/Conv: | █ | 0.072%
/features/features.7/conv/conv.2/Conv: | █ | 0.071%
/features/features.15/conv/conv.2/Conv: | █ | 0.066%
/features/features.4/conv/conv.2/Conv: | █ | 0.065%
/features/features.11/conv/conv.2/Conv: | █ | 0.063%
/classifier/classifier.1/Gemm: | █ | 0.063%
/features/features.13/conv/conv.2/Conv: | █ | 0.059%
/features/features.2/conv/conv.0/conv.0.0/Conv: | █ | 0.054%
/features/features.10/conv/conv.1/conv.1.0/Conv: | █ | 0.042%
/features/features.17/conv/conv.0/conv.0.0/Conv: | █ | 0.040%
/features/features.2/conv/conv.2/Conv: | █ | 0.038%
/features/features.4/conv/conv.0/conv.0.0/Conv: | █ | 0.034%
/features/features.17/conv/conv.2/Conv: | █ | 0.030%
/features/features.14/conv/conv.0/conv.0.0/Conv: | | 0.025%
/features/features.16/conv/conv.0/conv.0.0/Conv: | | 0.024%
/features/features.10/conv/conv.2/Conv: | | 0.022%
/features/features.11/conv/conv.0/conv.0.0/Conv: | | 0.021%
/features/features.9/conv/conv.2/Conv: | | 0.021%
/features/features.14/conv/conv.1/conv.1.0/Conv: | | 0.020%
/features/features.7/conv/conv.1/conv.1.0/Conv: | | 0.020%
/features/features.5/conv/conv.2/Conv: | | 0.019%
/features/features.8/conv/conv.2/Conv: | | 0.018%
/features/features.12/conv/conv.2/Conv: | | 0.017%
/features/features.1/conv/conv.0/conv.0.0/Conv: | | 0.017%
/features/features.6/conv/conv.2/Conv: | | 0.014%
/features/features.7/conv/conv.0/conv.0.0/Conv: | | 0.014%
/features/features.3/conv/conv.0/conv.0.0/Conv: | | 0.013%
/features/features.12/conv/conv.0/conv.0.0/Conv: | | 0.009%
/features/features.15/conv/conv.0/conv.0.0/Conv: | | 0.008%
/features/features.5/conv/conv.0/conv.0.0/Conv: | | 0.006%
/features/features.6/conv/conv.0/conv.0.0/Conv: | | 0.005%
/features/features.9/conv/conv.0/conv.0.0/Conv: | | 0.003%
/features/features.18/features.18.0/Conv: | | 0.002%
/features/features.10/conv/conv.0/conv.0.0/Conv: | | 0.002%
/features/features.8/conv/conv.0/conv.0.0/Conv: | | 0.002%

* Prec@1 69.550 Prec@5 88.450*

量化误差分析

将之前误差最大的层替换为 16位量化后，可以观察到模型准确度明显提升，量化后的 top1准确率为
69.550%，和 float模型的准确率 (71.878%)比较接近。该模型的最后一层 /classifier/classifier.
1/Gemm的累计误差为 9.117%。

Espressif Systems 27
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

层间均衡量化

该方法在论文 Data-Free Quantization Through Weight Equalization and Bias Correction中提出。使用此方法
时，需要将MobilenetV2模型中原来的 ReLU6替换为 ReLU。
量化设置

import torch.nn as nn
def convert_relu6_to_relu(model):

for child_name, child in model.named_children():
if isinstance(child, nn.ReLU6):

setattr(model, child_name, nn.ReLU())
else:

convert_relu6_to_relu(child)
return model

将ReLU6 替换为 ReLU
model = convert_relu6_to_relu(model)
使用层间均衡
quant_setting = QuantizationSettingFactory.espdl_setting()
quant_setting.equalization = True
quant_setting.equalization_setting.iterations = 4
quant_setting.equalization_setting.value_threshold = .4
quant_setting.equalization_setting.opt_level = 2
quant_setting.equalization_setting.interested_layers = None

量化结果

Layer | NOISE:SIGNAL POWER RATIO
/features/features.16/conv/conv.2/Conv: | ████████████████████ | 34.497%
/features/features.15/conv/conv.2/Conv: | ██████████████████ | 30.813%
/features/features.14/conv/conv.2/Conv: | ███████████████ | 25.876%
/features/features.17/conv/conv.0/conv.0.0/Conv: | ██████████████ | 24.498%
/features/features.17/conv/conv.2/Conv: | ████████████ | 20.290%
/features/features.13/conv/conv.2/Conv: | ████████████ | 20.177%
/features/features.16/conv/conv.0/conv.0.0/Conv: | ████████████ | 19.993%
/features/features.18/features.18.0/Conv: | ███████████ | 19.536%
/features/features.16/conv/conv.1/conv.1.0/Conv: | ██████████ | 17.879%
/features/features.12/conv/conv.2/Conv: | ██████████ | 17.150%
/features/features.15/conv/conv.0/conv.0.0/Conv: | █████████ | 15.970%
/features/features.15/conv/conv.1/conv.1.0/Conv: | █████████ | 15.254%
/features/features.1/conv/conv.1/Conv: | █████████ | 15.122%
/features/features.10/conv/conv.2/Conv: | █████████ | 14.917%
/features/features.6/conv/conv.2/Conv: | ████████ | 13.446%
/features/features.11/conv/conv.2/Conv: | ███████ | 12.533%
/features/features.9/conv/conv.2/Conv: | ███████ | 11.479%
/features/features.14/conv/conv.1/conv.1.0/Conv: | ███████ | 11.470%
/features/features.5/conv/conv.2/Conv: | ██████ | 10.669%
/features/features.3/conv/conv.2/Conv: | ██████ | 10.526%
/features/features.14/conv/conv.0/conv.0.0/Conv: | ██████ | 9.529%
/features/features.7/conv/conv.2/Conv: | █████ | 9.500%
/classifier/classifier.1/Gemm: | █████ | 8.965%
/features/features.4/conv/conv.2/Conv: | █████ | 8.674%
/features/features.12/conv/conv.1/conv.1.0/Conv: | █████ | 8.349%
/features/features.13/conv/conv.1/conv.1.0/Conv: | █████ | 8.068%
/features/features.8/conv/conv.2/Conv: | █████ | 7.961%
/features/features.13/conv/conv.0/conv.0.0/Conv: | ████ | 7.451%
/features/features.10/conv/conv.1/conv.1.0/Conv: | ████ | 6.714%
/features/features.9/conv/conv.1/conv.1.0/Conv: | ████ | 6.399%
/features/features.8/conv/conv.1/conv.1.0/Conv: | ████ | 6.369%
/features/features.11/conv/conv.1/conv.1.0/Conv: | ████ | 6.222%
/features/features.2/conv/conv.2/Conv: | ███ | 5.867%
/features/features.5/conv/conv.1/conv.1.0/Conv: | ███ | 5.719%

(下页继续)

Espressif Systems 28
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://arxiv.org/abs/1906.04721
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/features/features.12/conv/conv.0/conv.0.0/Conv: | ███ | 5.546%
/features/features.6/conv/conv.1/conv.1.0/Conv: | ███ | 5.414%
/features/features.10/conv/conv.0/conv.0.0/Conv: | ███ | 5.093%
/features/features.17/conv/conv.1/conv.1.0/Conv: | ███ | 4.951%
/features/features.11/conv/conv.0/conv.0.0/Conv: | ███ | 4.941%
/features/features.2/conv/conv.1/conv.1.0/Conv: | ███ | 4.825%
/features/features.7/conv/conv.0/conv.0.0/Conv: | ██ | 4.330%
/features/features.2/conv/conv.0/conv.0.0/Conv: | ██ | 4.299%
/features/features.3/conv/conv.1/conv.1.0/Conv: | ██ | 4.283%
/features/features.4/conv/conv.0/conv.0.0/Conv: | ██ | 3.477%
/features/features.4/conv/conv.1/conv.1.0/Conv: | ██ | 3.287%
/features/features.8/conv/conv.0/conv.0.0/Conv: | ██ | 2.787%
/features/features.9/conv/conv.0/conv.0.0/Conv: | ██ | 2.774%
/features/features.6/conv/conv.0/conv.0.0/Conv: | ██ | 2.705%
/features/features.7/conv/conv.1/conv.1.0/Conv: | ██ | 2.636%
/features/features.5/conv/conv.0/conv.0.0/Conv: | █ | 1.846%
/features/features.3/conv/conv.0/conv.0.0/Conv: | █ | 1.170%
/features/features.1/conv/conv.0/conv.0.0/Conv: | | 0.389%
/features/features.0/features.0.0/Conv: | | 0.025%
Analysing Layerwise quantization error:: 100%|██████████| 53/53 [07:46<00:00, 8.
↪→80s/it]
Layer | NOISE:SIGNAL POWER RATIO
/features/features.1/conv/conv.0/conv.0.0/Conv: | ████████████████████ | 0.989%
/features/features.0/features.0.0/Conv: | █████████████████ | 0.845%
/features/features.16/conv/conv.2/Conv: | █████ | 0.238%
/features/features.17/conv/conv.2/Conv: | ████ | 0.202%
/features/features.14/conv/conv.2/Conv: | ████ | 0.198%
/features/features.1/conv/conv.1/Conv: | ████ | 0.192%
/features/features.15/conv/conv.2/Conv: | ███ | 0.145%
/features/features.4/conv/conv.2/Conv: | ██ | 0.120%
/features/features.2/conv/conv.2/Conv: | ██ | 0.111%
/features/features.2/conv/conv.1/conv.1.0/Conv: | ██ | 0.079%
/classifier/classifier.1/Gemm: | █ | 0.062%
/features/features.13/conv/conv.2/Conv: | █ | 0.050%
/features/features.3/conv/conv.2/Conv: | █ | 0.050%
/features/features.12/conv/conv.2/Conv: | █ | 0.050%
/features/features.5/conv/conv.1/conv.1.0/Conv: | █ | 0.047%
/features/features.3/conv/conv.1/conv.1.0/Conv: | █ | 0.046%
/features/features.7/conv/conv.2/Conv: | █ | 0.045%
/features/features.5/conv/conv.2/Conv: | █ | 0.030%
/features/features.11/conv/conv.2/Conv: | █ | 0.028%
/features/features.6/conv/conv.2/Conv: | █ | 0.027%
/features/features.6/conv/conv.1/conv.1.0/Conv: | █ | 0.026%
/features/features.4/conv/conv.0/conv.0.0/Conv: | | 0.025%
/features/features.15/conv/conv.1/conv.1.0/Conv: | | 0.023%
/features/features.8/conv/conv.1/conv.1.0/Conv: | | 0.021%
/features/features.10/conv/conv.2/Conv: | | 0.020%
/features/features.11/conv/conv.1/conv.1.0/Conv: | | 0.020%
/features/features.16/conv/conv.1/conv.1.0/Conv: | | 0.017%
/features/features.14/conv/conv.0/conv.0.0/Conv: | | 0.016%
/features/features.4/conv/conv.1/conv.1.0/Conv: | | 0.012%
/features/features.13/conv/conv.1/conv.1.0/Conv: | | 0.012%
/features/features.13/conv/conv.0/conv.0.0/Conv: | | 0.012%
/features/features.12/conv/conv.1/conv.1.0/Conv: | | 0.012%
/features/features.17/conv/conv.0/conv.0.0/Conv: | | 0.011%
/features/features.12/conv/conv.0/conv.0.0/Conv: | | 0.011%
/features/features.2/conv/conv.0/conv.0.0/Conv: | | 0.010%
/features/features.9/conv/conv.2/Conv: | | 0.008%
/features/features.8/conv/conv.2/Conv: | | 0.008%
/features/features.10/conv/conv.1/conv.1.0/Conv: | | 0.008%
/features/features.16/conv/conv.0/conv.0.0/Conv: | | 0.008%

(下页继续)

Espressif Systems 29
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/features/features.7/conv/conv.0/conv.0.0/Conv: | | 0.008%
/features/features.10/conv/conv.0/conv.0.0/Conv: | | 0.006%
/features/features.15/conv/conv.0/conv.0.0/Conv: | | 0.005%
/features/features.3/conv/conv.0/conv.0.0/Conv: | | 0.004%
/features/features.11/conv/conv.0/conv.0.0/Conv: | | 0.004%
/features/features.18/features.18.0/Conv: | | 0.003%
/features/features.5/conv/conv.0/conv.0.0/Conv: | | 0.003%
/features/features.9/conv/conv.1/conv.1.0/Conv: | | 0.003%
/features/features.6/conv/conv.0/conv.0.0/Conv: | | 0.003%
/features/features.7/conv/conv.1/conv.1.0/Conv: | | 0.003%
/features/features.17/conv/conv.1/conv.1.0/Conv: | | 0.002%
/features/features.14/conv/conv.1/conv.1.0/Conv: | | 0.002%
/features/features.8/conv/conv.0/conv.0.0/Conv: | | 0.001%
/features/features.9/conv/conv.0/conv.0.0/Conv: | | 0.001%

* Prec@1 69.800 Prec@5 88.550

量化误差分析

注意到对 8bit量化应用层间均衡有助于降低量化损失。模型最后一层 /classifier/classifier.1/
Gemm的累积误差为 8.965%。量化后的 top1准确率为 69.800%，和 float模型的准确率 (71.878%)更加接
近，比混合精度量化的量化精度更高。

备注: 如果想进一步降低量化误差，可以尝试使用 QAT (Auantization Aware Training)。具体方法请参考
PPQ QAT example。

3.5.3 模型部署

参考示例

图像分类基类

• dl_cls_base.hpp
• dl_cls_base.cpp

前处理

ImagePreprocessor类中封装了常用的图像前处理流程，包括 color conversion, crop, resize,
normalization, quantize。

• dl_image_preprocessor.hpp
• dl_image_preprocessor.cpp

后处理

• dl_cls_postprocessor.hpp
• dl_cls_postprocessor.cpp
• imagenet_cls_postprocessor.hpp
• imagenet_cls_postprocessor.cpp

3.6 如何部署 YOLO11n

Espressif Systems 30
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/OpenPPL/ppq/blob/master/ppq/samples/TensorRT/Example_QAT.py
https://github.com/espressif/esp-dl/tree/dd07971/examples/mobilenetv2_cls
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/classification/dl_cls_base.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/classification/dl_cls_base.cpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/image/dl_image_preprocessor.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/image/dl_image_preprocessor.cpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/classification/dl_cls_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/classification/dl_cls_postprocessor.cpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/classification/imagenet_cls_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/classification/imagenet_cls_postprocessor.cpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

在本教程中，我们介绍如何使用 ESP-PPQ对预训练的 YOLO11n模型进行量化，并使用 ESP-DL部署量
化后的 YOLO11n模型。

• 准备工作
• 模型量化

– 预训练模型
– 校准数据集
– 8bit默认配置量化
– 混合精度 +算子分裂量化
– 量化感知训练

• 模型部署
– 目标检测基类
– 前处理
– 后处理

3.6.1 准备工作

1. 安装 ESP_IDF
2. 安装 ESP_PPQ

3.6.2 模型量化

预训练模型

你可以从 Ultralytics release下载预训练的 yolo11n模型。
目前 ESP-PPQ支持 ONNX、PyTorch、TensorFlow模型。在量化过程中，PyTorch和 TensorFlow会先转化
为 ONNX模型，因此将与训练的 yolo11n转化成 ONNX模型。
具体来说，参考脚本：export_onnx.py 将预训练的 yolo11n模型转换为 ONNX模型。
在该脚本中，我们重载了 Detect类的 forward方法，具有以下优势：

• 更快的推理速度。与原始的 yolo11n 模型相比, 将推理过程中 Detect 里与解码边界框相关的操作
移至后处理中完成,从而显著减少了推理延迟。一方面，Conv，Transpose，Slice，Split和
Concat操作在推理过程中运行是非常耗时的。另一方面，在后处理阶段，模型推理的输出首先进
行置信度筛选，然后再解码边界框，这大大减少了计算量，从而加快了整体推理速度。

• 更低的量化误差。ESP-PPQ中的 Concat和 Add操作采用了联合量化。为了减少量化误差，由于
box和 score的范围差异较大，它们通过不同的分支输出，而不是拼接在一起。类似地，由于 Add
和 Sub的输入的范围差异较大，相关计算被移到了后处理中进行，避免被量化。

校准数据集

校准数据集需要和模型输入格式一致，同时尽可能覆盖模型输入的所有可能情况，以便更好地量化模型。
本示例中，我们使用的校准集为 calib_yolo11n。

8bit默认配置量化

量化设置

target="esp32p4"
num_of_bits=8
batch_size=32
quant_setting = QuantizationSettingFactory.espdl_setting() # default setting

量化结果

Espressif Systems 31
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt
https://github.com/espressif/esp-dl/blob/dd07971/models/coco_detect/models/export_onnx.py
https://dl.espressif.com/public/calib_yolo11n.zip
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

Layer | NOISE:SIGNAL POWER RATIO
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | ████████████████████ | 36.008%
/model.10/m/m.0/attn/proj/conv/Conv: | ████████████████ | 28.705%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | █████████████ | 22.865%
/model.23/cv2.2/cv2.2.0/conv/Conv: | ████████████ | 21.718%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | ████████████ | 21.624%
/model.23/cv2.2/cv2.2.1/conv/Conv: | ████████████ | 21.392%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | ████████████ | 21.224%
/model.22/m.0/cv2/conv/Conv: | ███████████ | 19.763%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ███████████ | 19.436%
/model.22/m.0/cv3/conv/Conv: | ███████████ | 19.378%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | ██████████ | 18.913%
/model.22/m.0/m/m.1/cv2/conv/Conv: | ██████████ | 18.645%
/model.22/cv2/conv/Conv: | ██████████ | 18.628%
/model.23/cv2.1/cv2.1.1/conv/Conv: | ██████████ | 17.980%
/model.8/m.0/cv2/conv/Conv: | █████████ | 16.247%
/model.23/cv2.0/cv2.0.1/conv/Conv: | █████████ | 15.602%
/model.10/m/m.0/attn/qkv/conv/Conv: | ████████ | 14.666%
/model.10/m/m.0/attn/pe/conv/Conv: | ████████ | 14.556%
/model.23/cv2.1/cv2.1.0/conv/Conv: | ████████ | 14.302%
/model.22/cv1/conv/Conv: | ████████ | 13.921%
/model.10/m/m.0/attn/MatMul_1: | ████████ | 13.905%
/model.10/cv1/conv/Conv: | ███████ | 13.494%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ██████ | 11.800%
/model.19/m.0/cv2/conv/Conv: | ██████ | 11.515%
/model.22/m.0/m/m.0/cv2/conv/Conv: | ██████ | 11.286%
/model.20/conv/Conv: | ██████ | 10.930%
/model.13/m.0/cv2/conv/Conv: | ██████ | 10.882%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | ██████ | 10.692%
/model.23/cv2.2/cv2.2.2/Conv: | ██████ | 10.113%
/model.10/cv2/conv/Conv: | █████ | 9.720%
/model.8/cv2/conv/Conv: | █████ | 9.598%
/model.8/m.0/cv1/conv/Conv: | █████ | 9.470%
/model.19/cv2/conv/Conv: | █████ | 9.314%
/model.22/m.0/m/m.0/cv1/conv/Conv: | █████ | 9.068%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █████ | 9.065%
/model.8/cv1/conv/Conv: | █████ | 9.051%
/model.8/m.0/cv3/conv/Conv: | █████ | 9.044%
/model.6/m.0/cv2/conv/Conv: | █████ | 8.811%
/model.22/m.0/m/m.1/cv1/conv/Conv: | █████ | 8.781%
/model.13/cv2/conv/Conv: | █████ | 8.687%
/model.8/m.0/m/m.0/cv1/conv/Conv: | █████ | 8.503%
/model.8/m.0/m/m.0/cv2/conv/Conv: | █████ | 8.470%
/model.19/cv1/conv/Conv: | ████ | 8.199%
/model.10/m/m.0/attn/MatMul: | ████ | 8.117%
/model.8/m.0/m/m.1/cv1/conv/Conv: | ████ | 7.964%
/model.13/cv1/conv/Conv: | ████ | 7.734%
/model.19/m.0/cv1/conv/Conv: | ████ | 7.661%
/model.22/m.0/cv1/conv/Conv: | ████ | 7.490%
/model.13/m.0/cv1/conv/Conv: | ████ | 7.162%
/model.8/m.0/m/m.1/cv2/conv/Conv: | ████ | 7.145%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ████ | 7.041%
/model.23/cv2.1/cv2.1.2/Conv: | ████ | 6.917%
/model.23/cv2.0/cv2.0.2/Conv: | ████ | 6.778%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ████ | 6.641%
/model.17/conv/Conv: | ███ | 6.125%
/model.16/m.0/cv2/conv/Conv: | ███ | 5.937%
/model.6/cv2/conv/Conv: | ███ | 5.838%
/model.6/m.0/cv3/conv/Conv: | ███ | 5.832%
/model.6/cv1/conv/Conv: | ███ | 5.688%
/model.7/conv/Conv: | ███ | 5.612%
/model.9/cv2/conv/Conv: | ███ | 5.367%

(下页继续)

Espressif Systems 32
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | ███ | 5.158%
/model.6/m.0/m/m.0/cv1/conv/Conv: | ███ | 5.143%
/model.16/m.0/cv1/conv/Conv: | ███ | 5.137%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ███ | 5.087%
/model.16/cv2/conv/Conv: | ███ | 4.989%
/model.2/cv2/conv/Conv: | ██ | 4.547%
/model.6/m.0/m/m.0/cv2/conv/Conv: | ██ | 4.441%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | ██ | 4.343%
/model.3/conv/Conv: | ██ | 4.304%
/model.6/m.0/m/m.1/cv1/conv/Conv: | ██ | 4.006%
/model.5/conv/Conv: | ██ | 3.932%
/model.6/m.0/cv1/conv/Conv: | ██ | 3.837%
/model.4/cv1/conv/Conv: | ██ | 3.687%
/model.2/cv1/conv/Conv: | ██ | 3.565%
/model.4/cv2/conv/Conv: | ██ | 3.559%
/model.16/cv1/conv/Conv: | ██ | 3.107%
/model.2/m.0/cv2/conv/Conv: | ██ | 2.882%
/model.6/m.0/m/m.1/cv2/conv/Conv: | █ | 2.758%
/model.4/m.0/cv1/conv/Conv: | █ | 2.564%
/model.9/cv1/conv/Conv: | █ | 2.017%
/model.4/m.0/cv2/conv/Conv: | █ | 1.785%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █ | 1.327%
/model.1/conv/Conv: | █ | 1.313%
/model.23/cv3.2/cv3.2.2/Conv: | █ | 1.155%
/model.2/m.0/cv1/conv/Conv: | | 0.727%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.493%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.282%
/model.0/conv/Conv: | | 0.159%
Analysing Layerwise quantization error:: 100%|██████████| 89/89 [03:39<00:00, 2.
↪→46s/it]
Layer | NOISE:SIGNAL POWER RATIO
/model.1/conv/Conv: | ████████████████████ | 0.384%
/model.22/cv1/conv/Conv: | █████████████ | 0.247%
/model.4/cv2/conv/Conv: | ████████████ | 0.233%
/model.2/cv2/conv/Conv: | ██████████ | 0.201%
/model.0/conv/Conv: | ██████████ | 0.192%
/model.9/cv2/conv/Conv: | ████████ | 0.156%
/model.10/cv1/conv/Conv: | ███████ | 0.132%
/model.3/conv/Conv: | ██████ | 0.108%
/model.4/cv1/conv/Conv: | ████ | 0.074%
/model.16/cv1/conv/Conv: | ███ | 0.066%
/model.2/cv1/conv/Conv: | ███ | 0.060%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ███ | 0.052%
/model.2/m.0/cv1/conv/Conv: | ██ | 0.044%
/model.6/cv1/conv/Conv: | ██ | 0.033%
/model.10/m/m.0/attn/pe/conv/Conv: | ██ | 0.029%
/model.2/m.0/cv2/conv/Conv: | █ | 0.028%
/model.22/m.0/m/m.0/cv1/conv/Conv: | █ | 0.023%
/model.16/cv2/conv/Conv: | █ | 0.021%
/model.16/m.0/cv2/conv/Conv: | █ | 0.020%
/model.19/m.0/cv1/conv/Conv: | █ | 0.020%
/model.4/m.0/cv1/conv/Conv: | █ | 0.018%
/model.19/cv2/conv/Conv: | █ | 0.017%
/model.4/m.0/cv2/conv/Conv: | █ | 0.016%
/model.10/m/m.0/attn/qkv/conv/Conv: | █ | 0.016%
/model.19/cv1/conv/Conv: | █ | 0.015%
/model.13/cv2/conv/Conv: | █ | 0.015%
/model.8/cv1/conv/Conv: | █ | 0.013%
/model.23/cv2.1/cv2.1.0/conv/Conv: | █ | 0.013%
/model.23/cv2.2/cv2.2.1/conv/Conv: | █ | 0.012%
/model.13/cv1/conv/Conv: | █ | 0.012%

(下页继续)

Espressif Systems 33
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.10/cv2/conv/Conv: | █ | 0.011%
/model.13/m.0/cv1/conv/Conv: | █ | 0.011%
/model.6/cv2/conv/Conv: | █ | 0.011%
/model.13/m.0/cv2/conv/Conv: | █ | 0.010%
/model.5/conv/Conv: | | 0.010%
/model.19/m.0/cv2/conv/Conv: | | 0.009%
/model.6/m.0/m/m.1/cv1/conv/Conv: | | 0.009%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | | 0.008%
/model.23/cv2.2/cv2.2.0/conv/Conv: | | 0.008%
/model.23/cv2.1/cv2.1.1/conv/Conv: | | 0.008%
/model.9/cv1/conv/Conv: | | 0.008%
/model.23/cv2.0/cv2.0.1/conv/Conv: | | 0.007%
/model.16/m.0/cv1/conv/Conv: | | 0.007%
/model.17/conv/Conv: | | 0.007%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | | 0.007%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | | 0.007%
/model.23/cv2.0/cv2.0.2/Conv: | | 0.006%
/model.8/m.0/cv1/conv/Conv: | | 0.006%
/model.23/cv2.2/cv2.2.2/Conv: | | 0.005%
/model.23/cv2.1/cv2.1.2/Conv: | | 0.005%
/model.22/m.0/cv3/conv/Conv: | | 0.005%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | | 0.005%
/model.7/conv/Conv: | | 0.005%
/model.8/cv2/conv/Conv: | | 0.004%
/model.22/cv2/conv/Conv: | | 0.004%
/model.6/m.0/cv3/conv/Conv: | | 0.004%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | | 0.004%
/model.8/m.0/m/m.1/cv2/conv/Conv: | | 0.004%
/model.22/m.0/m/m.1/cv1/conv/Conv: | | 0.004%
/model.8/m.0/m/m.1/cv1/conv/Conv: | | 0.004%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | | 0.003%
/model.10/m/m.0/attn/proj/conv/Conv: | | 0.003%
/model.22/m.0/m/m.0/cv2/conv/Conv: | | 0.003%
/model.22/m.0/cv1/conv/Conv: | | 0.003%
/model.8/m.0/cv3/conv/Conv: | | 0.003%
/model.6/m.0/m/m.0/cv1/conv/Conv: | | 0.003%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | | 0.002%
/model.6/m.0/m/m.1/cv2/conv/Conv: | | 0.002%
/model.8/m.0/m/m.0/cv2/conv/Conv: | | 0.002%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | | 0.002%
/model.10/m/m.0/attn/MatMul_1: | | 0.002%
/model.22/m.0/m/m.1/cv2/conv/Conv: | | 0.001%
/model.6/m.0/m/m.0/cv2/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | | 0.001%
/model.8/m.0/m/m.0/cv1/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | | 0.001%
/model.6/m.0/cv1/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.001%
/model.20/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | | 0.001%
/model.6/m.0/cv2/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.000%
/model.10/m/m.0/attn/MatMul: | | 0.000%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | | 0.000%
/model.8/m.0/cv2/conv/Conv: | | 0.000%
/model.22/m.0/cv2/conv/Conv: | | 0.000%

量化误差分析

Espressif Systems 34
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

在相同输入下，量化后的模型在 COCO val2017上的 mAP50:95仅为 30.7%，低于浮点模型，存在一定的
精度损失：

• 累计误差 (Graphwise Error)
模 型 的 输 出 层 是 /model.23/cv3.2/cv3.2.2/Conv，/model.23/cv2.2/cv2.2.2/Conv，
/model.23/cv3.1/cv3.1.2/Conv，/model.23/cv2.1/cv2.1.2/Conv，/model.23/cv3.0/cv3.0.2/Conv
和 /model.23/cv2.0/cv2.0.2/Conv，累计误差分别为 1.155%，10.113%，0.493%，6.917%，
0.282%和 6.778%。通常，如果输出层的累计误差小于 10%，则量化模型的精度损失较
小。

• 逐层误差 (Layerwise error)
观察逐层误差发现，所有层的误差均低于 1%，这表明所有层的量化误差都很小。

我们注意到，虽然所有层的逐层误差都很小，但是一些层的累计误差却较大。这可能与 yolo11n模型中复
杂的 CSP结构有关，模型中 Concat或 Add层的输入可能具有不同的分布或尺度。我们可以选择使用
int16对某些层进行量化，并采用算子分裂过程优化量化效果。有关详细信息，请参阅混合精度 +算子分
裂过程量化测试。

混合精度 +算子分裂量化

量化设置

from esp_ppq.api import get_target_platform
target="esp32p4"
num_of_bits=8
batch_size=32

Quantize the following layers with 16-bits
quant_setting = QuantizationSettingFactory.espdl_setting()
quant_setting.dispatching_table.append("/model.2/cv2/conv/Conv", get_target_
↪→platform(TARGET, 16))
quant_setting.dispatching_table.append("/model.3/conv/Conv", get_target_
↪→platform(TARGET, 16))
quant_setting.dispatching_table.append("/model.4/cv2/conv/Conv", get_target_
↪→platform(TARGET, 16))

Horizontal Layer Split Pass
quant_setting.weight_split = True
quant_setting.weight_split_setting.method = 'balance'
quant_setting.weight_split_setting.value_threshold = 1.5
quant_setting.weight_split_setting.interested_layers = ['/model.0/conv/Conv', '/
↪→model.1/conv/Conv']

量化结果

Layer | NOISE:SIGNAL POWER RATIO
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | ████████████████████ | 24.835%
/model.10/m/m.0/attn/proj/conv/Conv: | ███████████████ | 18.632%
/model.23/cv2.2/cv2.2.1/conv/Conv: | ██████████████ | 17.908%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | ██████████████ | 16.922%
/model.23/cv2.2/cv2.2.0/conv/Conv: | █████████████ | 16.754%
/model.22/m.0/cv3/conv/Conv: | ████████████ | 15.404%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | ████████████ | 15.042%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ████████████ | 14.948%
/model.22/m.0/m/m.1/cv2/conv/Conv: | ████████████ | 14.702%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | ███████████ | 13.683%
/model.22/cv2/conv/Conv: | ███████████ | 13.654%
/model.22/m.0/cv2/conv/Conv: | ███████████ | 13.514%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | ██████████ | 12.885%
/model.23/cv2.1/cv2.1.1/conv/Conv: | █████████ | 10.865%
/model.23/cv2.0/cv2.0.1/conv/Conv: | ████████ | 9.875%
/model.23/cv2.1/cv2.1.0/conv/Conv: | ████████ | 9.658%

(下页继续)

Espressif Systems 35
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.22/cv1/conv/Conv: | ███████ | 8.917%
/model.10/m/m.0/attn/MatMul_1: | ███████ | 8.368%
/model.23/cv2.2/cv2.2.2/Conv: | ███████ | 8.156%
/model.22/m.0/m/m.0/cv2/conv/Conv: | ██████ | 8.056%
/model.10/m/m.0/attn/qkv/conv/Conv: | ██████ | 7.948%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ██████ | 7.824%
/model.13/m.0/cv2/conv/Conv: | ██████ | 7.504%
/model.19/m.0/cv2/conv/Conv: | ██████ | 7.290%
/model.20/conv/Conv: | ██████ | 6.986%
/model.10/m/m.0/attn/pe/conv/Conv: | ██████ | 6.926%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █████ | 6.771%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | █████ | 6.756%
/model.22/m.0/m/m.1/cv1/conv/Conv: | █████ | 6.465%
/model.22/m.0/m/m.0/cv1/conv/Conv: | █████ | 6.274%
/model.19/cv2/conv/Conv: | █████ | 6.116%
/model.10/cv1/conv/Conv: | █████ | 5.868%
/model.13/cv2/conv/Conv: | █████ | 5.815%
/model.10/cv2/conv/Conv: | ████ | 5.664%
/model.19/cv1/conv/Conv: | ████ | 5.178%
/model.8/m.0/cv2/conv/Conv: | ████ | 4.970%
/model.19/m.0/cv1/conv/Conv: | ████ | 4.919%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ████ | 4.864%
/model.22/m.0/cv1/conv/Conv: | ████ | 4.844%
/model.10/m/m.0/attn/MatMul: | ████ | 4.650%
/model.13/cv1/conv/Conv: | ████ | 4.564%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ███ | 4.389%
/model.13/m.0/cv1/conv/Conv: | ███ | 4.243%
/model.23/cv2.0/cv2.0.2/Conv: | ███ | 4.232%
/model.23/cv2.1/cv2.1.2/Conv: | ███ | 4.222%
/model.6/m.0/cv2/conv/Conv: | ███ | 4.023%
/model.17/conv/Conv: | ███ | 3.754%
/model.16/m.0/cv2/conv/Conv: | ███ | 3.511%
/model.8/m.0/cv1/conv/Conv: | ███ | 3.277%
/model.16/m.0/cv1/conv/Conv: | ██ | 3.158%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | ██ | 3.155%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ██ | 3.152%
/model.8/cv2/conv/Conv: | ██ | 3.119%
/model.8/m.0/m/m.1/cv1/conv/Conv: | ██ | 3.106%
/model.8/m.0/cv3/conv/Conv: | ██ | 3.083%
/model.6/m.0/cv3/conv/Conv: | ██ | 3.068%
/model.8/cv1/conv/Conv: | ██ | 3.035%
/model.16/cv2/conv/Conv: | ██ | 3.002%
/model.2/cv2/conv/Conv: | ██ | 2.992%
/model.8/m.0/m/m.0/cv2/conv/Conv: | ██ | 2.971%
/model.6/cv1/conv/Conv: | ██ | 2.819%
/model.8/m.0/m/m.0/cv1/conv/Conv: | ██ | 2.809%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | ██ | 2.760%
/model.2/cv1/conv/Conv: | ██ | 2.683%
/model.6/cv2/conv/Conv: | ██ | 2.630%
/model.8/m.0/m/m.1/cv2/conv/Conv: | ██ | 2.615%
/model.9/cv2/conv/Conv: | ██ | 2.540%
/model.3/conv/Conv: | ██ | 2.503%
/model.2/m.0/cv2/conv/Conv: | ██ | 2.474%
/model.6/m.0/m/m.0/cv1/conv/Conv: | ██ | 2.273%
/model.6/m.0/m/m.0/cv2/conv/Conv: | ██ | 2.246%
/model.4/cv2/conv/Conv: | ██ | 2.141%
/model.7/conv/Conv: | ██ | 2.120%
/model.6/m.0/m/m.1/cv1/conv/Conv: | ██ | 2.069%
/model.5/conv/Conv: | ██ | 2.015%
/model.16/cv1/conv/Conv: | █ | 1.894%
/model.4/cv1/conv/Conv: | █ | 1.793%

(下页继续)

Espressif Systems 36
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.4/m.0/cv1/conv/Conv: | █ | 1.776%
/model.6/m.0/cv1/conv/Conv: | █ | 1.731%
/model.6/m.0/m/m.1/cv2/conv/Conv: | █ | 1.550%
/model.4/m.0/cv2/conv/Conv: | █ | 1.257%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █ | 0.886%
/model.1/conv/Conv: | █ | 0.775%
/model.23/cv3.2/cv3.2.2/Conv: | █ | 0.771%
PPQ_Operation_2: | | 0.696%
/model.9/cv1/conv/Conv: | | 0.695%
/model.2/m.0/cv1/conv/Conv: | | 0.534%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.339%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.190%
PPQ_Operation_0: | | 0.110%
/model.0/conv/Conv: | | 0.099%
Analysing Layerwise quantization error:: 100%|██████████| 91/91 [04:13<00:00, 2.
↪→79s/it]
Layer | NOISE:SIGNAL POWER RATIO
/model.22/cv1/conv/Conv: | ████████████████████ | 0.244%
/model.9/cv2/conv/Conv: | █████████████ | 0.156%
/model.10/cv1/conv/Conv: | ███████████ | 0.132%
/model.1/conv/Conv: | ██████ | 0.077%
/model.4/cv1/conv/Conv: | ██████ | 0.074%
/model.16/cv1/conv/Conv: | █████ | 0.066%
/model.0/conv/Conv: | █████ | 0.061%
/model.2/cv1/conv/Conv: | █████ | 0.060%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ████ | 0.052%
PPQ_Operation_0: | ████ | 0.047%
/model.2/m.0/cv1/conv/Conv: | ████ | 0.045%
/model.10/m/m.0/attn/pe/conv/Conv: | ██ | 0.029%
/model.2/m.0/cv2/conv/Conv: | ██ | 0.029%
/model.10/m/m.0/attn/MatMul: | ██ | 0.025%
/model.6/cv1/conv/Conv: | ██ | 0.025%
/model.22/m.0/m/m.0/cv1/conv/Conv: | ██ | 0.023%
/model.16/cv2/conv/Conv: | ██ | 0.021%
/model.16/m.0/cv2/conv/Conv: | ██ | 0.020%
/model.19/m.0/cv1/conv/Conv: | ██ | 0.020%
/model.4/m.0/cv1/conv/Conv: | █ | 0.018%
/model.19/cv2/conv/Conv: | █ | 0.017%
/model.4/m.0/cv2/conv/Conv: | █ | 0.016%
/model.10/m/m.0/attn/qkv/conv/Conv: | █ | 0.016%
/model.19/cv1/conv/Conv: | █ | 0.015%
/model.13/cv2/conv/Conv: | █ | 0.015%
/model.23/cv2.1/cv2.1.0/conv/Conv: | █ | 0.013%
/model.23/cv2.2/cv2.2.1/conv/Conv: | █ | 0.012%
/model.13/cv1/conv/Conv: | █ | 0.012%
/model.6/cv2/conv/Conv: | █ | 0.011%
/model.13/m.0/cv1/conv/Conv: | █ | 0.011%
/model.8/cv1/conv/Conv: | █ | 0.010%
/model.13/m.0/cv2/conv/Conv: | █ | 0.010%
/model.5/conv/Conv: | █ | 0.010%
/model.6/m.0/m/m.1/cv1/conv/Conv: | █ | 0.009%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █ | 0.008%
/model.23/cv2.2/cv2.2.0/conv/Conv: | █ | 0.008%
/model.23/cv2.1/cv2.1.1/conv/Conv: | █ | 0.008%
/model.19/m.0/cv2/conv/Conv: | █ | 0.008%
/model.8/cv2/conv/Conv: | █ | 0.008%
/model.9/cv1/conv/Conv: | █ | 0.008%
/model.23/cv2.0/cv2.0.1/conv/Conv: | █ | 0.007%
/model.16/m.0/cv1/conv/Conv: | █ | 0.007%
/model.17/conv/Conv: | █ | 0.007%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | █ | 0.007%

(下页继续)

Espressif Systems 37
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | █ | 0.007%
/model.22/m.0/cv1/conv/Conv: | | 0.006%
/model.10/cv2/conv/Conv: | | 0.006%
/model.23/cv2.0/cv2.0.2/Conv: | | 0.006%
/model.23/cv2.2/cv2.2.2/Conv: | | 0.005%
/model.23/cv2.1/cv2.1.2/Conv: | | 0.005%
/model.22/m.0/cv3/conv/Conv: | | 0.005%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | | 0.005%
/model.22/cv2/conv/Conv: | | 0.005%
/model.7/conv/Conv: | | 0.004%
/model.6/m.0/cv3/conv/Conv: | | 0.004%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | | 0.004%
/model.8/m.0/m/m.1/cv2/conv/Conv: | | 0.004%
/model.22/m.0/m/m.1/cv1/conv/Conv: | | 0.004%
/model.8/m.0/m/m.1/cv1/conv/Conv: | | 0.004%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | | 0.003%
/model.8/m.0/cv1/conv/Conv: | | 0.003%
/model.10/m/m.0/attn/proj/conv/Conv: | | 0.003%
/model.22/m.0/m/m.0/cv2/conv/Conv: | | 0.003%
PPQ_Operation_2: | | 0.003%
/model.8/m.0/cv3/conv/Conv: | | 0.003%
/model.6/m.0/m/m.0/cv1/conv/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | | 0.002%
/model.6/m.0/m/m.1/cv2/conv/Conv: | | 0.002%
/model.8/m.0/m/m.0/cv2/conv/Conv: | | 0.002%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | | 0.002%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | | 0.002%
/model.10/m/m.0/attn/MatMul_1: | | 0.002%
/model.22/m.0/m/m.1/cv2/conv/Conv: | | 0.001%
/model.6/m.0/m/m.0/cv2/conv/Conv: | | 0.001%
/model.8/m.0/m/m.0/cv1/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | | 0.001%
/model.2/cv2/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | | 0.001%
/model.6/m.0/cv1/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.001%
/model.20/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | | 0.001%
/model.6/m.0/cv2/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.000%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | | 0.000%
/model.8/m.0/cv2/conv/Conv: | | 0.000%
/model.22/m.0/cv2/conv/Conv: | | 0.000%
/model.3/conv/Conv: | | 0.000%
/model.4/cv2/conv/Conv: | | 0.000%

量化误差分析

在对逐层误差较高的层使用 16-bit量化，并采用算子分裂过程后，在相同输入下，量化后的模型在 COCO
val2017上的 mAP50:95提升至 33.4%；同时可以观察到输出层的累计误差明显减少。
模型的输出层/model.23/cv3.2/cv3.2.2/Conv，/model.23/cv2.2/cv2.2.2/Conv，/model.23/cv3.1/cv3.1.2/Conv，
/model.23/cv2.1/cv2.1.2/Conv，/model.23/cv3.0/cv3.0.2/Conv和/model.23/cv2.0/cv2.0.2/Conv的累计误差分别
为 0.771%，8.156%，0.339%，4.222%，0.190%和 4.232%。

量化感知训练

为了进一步提高量化模型的精度，可以采用量化感知训练。本示例基于 8-bit量化方式进行量化感知训
练。

Espressif Systems 38
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

量化设置

• yolo11n_qat.py
• trainer.py

量化结果

Layer | NOISE:SIGNAL POWER RATIO
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | ████████████████████ | 29.837%
/model.10/m/m.0/attn/proj/conv/Conv: | ████████████████ | 23.397%
/model.10/m/m.0/attn/pe/conv/Conv: | ██████████ | 15.253%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | ██████████ | 14.819%
/model.10/m/m.0/attn/MatMul_1: | ██████████ | 14.725%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ██████████ | 14.315%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | █████████ | 14.212%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | █████████ | 14.187%
/model.10/m/m.0/attn/qkv/conv/Conv: | █████████ | 13.797%
/model.23/cv2.2/cv2.2.0/conv/Conv: | █████████ | 13.721%
/model.22/m.0/cv2/conv/Conv: | █████████ | 13.540%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | █████████ | 13.408%
/model.8/m.0/cv2/conv/Conv: | █████████ | 12.809%
/model.22/m.0/cv3/conv/Conv: | ████████ | 12.623%
/model.23/cv2.1/cv2.1.1/conv/Conv: | ████████ | 12.472%
/model.23/cv2.1/cv2.1.0/conv/Conv: | ████████ | 12.177%
/model.22/m.0/m/m.1/cv2/conv/Conv: | ████████ | 11.719%
/model.23/cv2.2/cv2.2.1/conv/Conv: | ████████ | 11.711%
/model.10/cv1/conv/Conv: | ████████ | 11.589%
/model.22/cv2/conv/Conv: | ████████ | 11.551%
/model.23/cv2.0/cv2.0.1/conv/Conv: | ████████ | 11.505%
/model.10/m/m.0/attn/MatMul: | ████████ | 11.346%
/model.22/cv1/conv/Conv: | ███████ | 10.201%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ██████ | 9.710%
/model.13/m.0/cv2/conv/Conv: | ██████ | 9.538%
/model.20/conv/Conv: | ██████ | 8.870%
/model.19/m.0/cv2/conv/Conv: | ██████ | 8.713%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █████ | 8.157%
/model.22/m.0/m/m.0/cv2/conv/Conv: | █████ | 8.005%
/model.8/cv2/conv/Conv: | █████ | 7.952%
/model.8/m.0/cv1/conv/Conv: | █████ | 7.697%
/model.13/cv2/conv/Conv: | █████ | 7.557%
/model.19/cv2/conv/Conv: | █████ | 7.443%
/model.10/cv2/conv/Conv: | █████ | 7.403%
/model.6/m.0/cv2/conv/Conv: | █████ | 7.099%
/model.8/cv1/conv/Conv: | █████ | 6.996%
/model.19/cv1/conv/Conv: | █████ | 6.912%
/model.8/m.0/m/m.0/cv1/conv/Conv: | █████ | 6.908%
/model.8/m.0/cv3/conv/Conv: | ████ | 6.755%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | ████ | 6.746%
/model.8/m.0/m/m.0/cv2/conv/Conv: | ████ | 6.743%
/model.8/m.0/m/m.1/cv1/conv/Conv: | ████ | 6.638%
/model.13/cv1/conv/Conv: | ████ | 6.361%
/model.2/m.0/cv2/conv/Conv: | ████ | 6.274%
/model.13/m.0/cv1/conv/Conv: | ████ | 6.261%
/model.19/m.0/cv1/conv/Conv: | ████ | 6.191%
/model.22/m.0/m/m.0/cv1/conv/Conv: | ████ | 6.036%
/model.23/cv2.2/cv2.2.2/Conv: | ████ | 5.999%
/model.22/m.0/m/m.1/cv1/conv/Conv: | ████ | 5.899%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ████ | 5.618%
/model.8/m.0/m/m.1/cv2/conv/Conv: | ████ | 5.560%
/model.22/m.0/cv1/conv/Conv: | ███ | 5.336%
/model.16/m.0/cv2/conv/Conv: | ███ | 5.316%
/model.17/conv/Conv: | ███ | 5.113%
/model.6/m.0/cv3/conv/Conv: | ███ | 5.103%

(下页继续)

Espressif Systems 39
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/examples/tutorial/how_to_quantize_model/quantize_yolo11n/yolo11n_qat.py
https://github.com/espressif/esp-dl/blob/dd07971/examples/tutorial/how_to_quantize_model/quantize_yolo11n/trainer.py
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.16/m.0/cv1/conv/Conv: | ███ | 5.101%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ███ | 5.052%
/model.2/cv2/conv/Conv: | ███ | 5.003%
/model.6/cv2/conv/Conv: | ███ | 4.968%
/model.6/cv1/conv/Conv: | ███ | 4.792%
/model.23/cv2.1/cv2.1.2/Conv: | ███ | 4.543%
/model.7/conv/Conv: | ███ | 4.520%
/model.3/conv/Conv: | ███ | 4.362%
/model.16/cv2/conv/Conv: | ███ | 4.028%
/model.23/cv2.0/cv2.0.2/Conv: | ███ | 4.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ███ | 3.954%
/model.9/cv2/conv/Conv: | ███ | 3.901%
/model.6/m.0/m/m.0/cv1/conv/Conv: | ███ | 3.891%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | ██ | 3.791%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | ██ | 3.711%
/model.4/cv1/conv/Conv: | ██ | 3.673%
/model.6/m.0/m/m.0/cv2/conv/Conv: | ██ | 3.620%
/model.6/m.0/m/m.1/cv1/conv/Conv: | ██ | 3.513%
/model.4/cv2/conv/Conv: | ██ | 3.421%
/model.5/conv/Conv: | ██ | 3.320%
/model.6/m.0/cv1/conv/Conv: | ██ | 3.073%
/model.2/cv1/conv/Conv: | ██ | 3.021%
/model.16/cv1/conv/Conv: | ██ | 2.764%
/model.6/m.0/m/m.1/cv2/conv/Conv: | ██ | 2.454%
/model.4/m.0/cv1/conv/Conv: | ██ | 2.408%
/model.4/m.0/cv2/conv/Conv: | █ | 1.689%
/model.2/m.0/cv1/conv/Conv: | █ | 1.602%
/model.9/cv1/conv/Conv: | █ | 1.568%
/model.1/conv/Conv: | █ | 1.205%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █ | 1.091%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.746%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.480%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.386%
/model.0/conv/Conv: | | 0.163%
Analysing Layerwise quantization error:: 100%|██████████| 89/89 [04:01<00:00, 2.
↪→72s/it]
Layer | NOISE:SIGNAL POWER RATIO
/model.2/cv2/conv/Conv: | ████████████████████ | 0.935%
/model.9/cv2/conv/Conv: | ██████████████████ | 0.826%
/model.2/m.0/cv1/conv/Conv: | ███████████████ | 0.698%
/model.3/conv/Conv: | █████████████ | 0.611%
/model.4/cv2/conv/Conv: | ██████████ | 0.491%
/model.10/cv2/conv/Conv: | █████████ | 0.408%
/model.23/cv2.2/cv2.2.2/Conv: | ██████ | 0.283%
/model.2/cv1/conv/Conv: | ██████ | 0.261%
/model.4/cv1/conv/Conv: | █████ | 0.249%
/model.1/conv/Conv: | █████ | 0.217%
/model.22/cv1/conv/Conv: | ████ | 0.201%
/model.10/cv1/conv/Conv: | ███ | 0.143%
/model.5/conv/Conv: | ███ | 0.136%
/model.16/cv1/conv/Conv: | ███ | 0.128%
/model.10/m/m.0/attn/pe/conv/Conv: | ███ | 0.120%
/model.0/conv/Conv: | ███ | 0.118%
/model.16/m.0/cv1/conv/Conv: | ██ | 0.105%
/model.16/cv2/conv/Conv: | ██ | 0.094%
/model.16/m.0/cv2/conv/Conv: | ██ | 0.092%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ██ | 0.089%
/model.4/m.0/cv1/conv/Conv: | ██ | 0.071%
/model.22/m.0/cv1/conv/Conv: | █ | 0.067%
/model.19/cv2/conv/Conv: | █ | 0.063%
/model.6/cv2/conv/Conv: | █ | 0.061%

(下页继续)

Espressif Systems 40
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.4/m.0/cv2/conv/Conv: | █ | 0.059%
/model.17/conv/Conv: | █ | 0.054%
/model.13/cv2/conv/Conv: | █ | 0.053%
/model.8/m.0/cv3/conv/Conv: | █ | 0.051%
/model.6/cv1/conv/Conv: | █ | 0.047%
/model.23/cv2.2/cv2.2.0/conv/Conv: | █ | 0.042%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | █ | 0.041%
/model.13/cv1/conv/Conv: | █ | 0.040%
/model.7/conv/Conv: | █ | 0.038%
/model.10/m/m.0/attn/qkv/conv/Conv: | █ | 0.038%
/model.13/m.0/cv1/conv/Conv: | █ | 0.033%
/model.23/cv2.1/cv2.1.0/conv/Conv: | █ | 0.031%
/model.6/m.0/m/m.1/cv1/conv/Conv: | █ | 0.028%
/model.19/m.0/cv2/conv/Conv: | █ | 0.027%
/model.8/m.0/m/m.1/cv1/conv/Conv: | █ | 0.026%
/model.2/m.0/cv2/conv/Conv: | █ | 0.026%
/model.19/m.0/cv1/conv/Conv: | | 0.022%
/model.6/m.0/cv3/conv/Conv: | | 0.021%
/model.19/cv1/conv/Conv: | | 0.021%
/model.9/cv1/conv/Conv: | | 0.016%
/model.22/m.0/m/m.1/cv1/conv/Conv: | | 0.016%
/model.13/m.0/cv2/conv/Conv: | | 0.015%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | | 0.015%
/model.22/m.0/m/m.0/cv1/conv/Conv: | | 0.014%
/model.8/cv1/conv/Conv: | | 0.013%
/model.23/cv2.0/cv2.0.2/Conv: | | 0.013%
/model.23/cv2.2/cv2.2.1/conv/Conv: | | 0.012%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | | 0.011%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | | 0.011%
/model.8/cv2/conv/Conv: | | 0.011%
/model.23/cv2.1/cv2.1.2/Conv: | | 0.010%
/model.22/m.0/cv3/conv/Conv: | | 0.010%
/model.23/cv2.1/cv2.1.1/conv/Conv: | | 0.008%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | | 0.008%
/model.23/cv2.0/cv2.0.1/conv/Conv: | | 0.007%
/model.10/m/m.0/attn/proj/conv/Conv: | | 0.007%
/model.8/m.0/cv1/conv/Conv: | | 0.007%
/model.22/m.0/m/m.0/cv2/conv/Conv: | | 0.006%
/model.8/m.0/m/m.1/cv2/conv/Conv: | | 0.005%
/model.22/cv2/conv/Conv: | | 0.005%
/model.20/conv/Conv: | | 0.005%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | | 0.005%
/model.6/m.0/m/m.0/cv1/conv/Conv: | | 0.005%
/model.8/m.0/m/m.0/cv1/conv/Conv: | | 0.004%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | | 0.003%
/model.8/m.0/m/m.0/cv2/conv/Conv: | | 0.003%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | | 0.003%
/model.6/m.0/cv1/conv/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | | 0.003%
/model.6/m.0/m/m.1/cv2/conv/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | | 0.002%
/model.22/m.0/m/m.1/cv2/conv/Conv: | | 0.002%
/model.6/m.0/m/m.0/cv2/conv/Conv: | | 0.002%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | | 0.002%
/model.10/m/m.0/attn/MatMul_1: | | 0.002%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | | 0.001%

(下页继续)

Espressif Systems 41
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.6/m.0/cv2/conv/Conv: | | 0.000%
/model.10/m/m.0/attn/MatMul: | | 0.000%
/model.8/m.0/cv2/conv/Conv: | | 0.000%
/model.22/m.0/cv2/conv/Conv: | | 0.000%

量化误差分析

在对 8-bit量化应用量化感知训练后，在相同输入下，量化后的模型在 COCO val2017上的 mAP50:95提
升至 36.0%；同时输出层的累计误差大幅减少。相比前两种量化方式，量化感知训练后的 8-bit量化模型
可以在最快的推理速度下达到最高的量化精度。

模型的输出层/model.23/cv3.2/cv3.2.2/Conv，/model.23/cv2.2/cv2.2.2/Conv，/model.23/cv3.1/cv3.1.2/Conv，
/model.23/cv2.1/cv2.1.2/Conv，/model.23/cv3.0/cv3.0.2/Conv和/model.23/cv2.0/cv2.0.2/Conv的累计误差分别
为 0.746%，5.999%，0.480%，4.543%，0.386%和 4.001%。

备注: 如果想要更快的模型推理速度，并且可以接受一定程度的精度损失，可以考虑在量化 YOLO11N
的时候将输入大小设置为 320x320。不同分辨率下的模型推理速度可以在 README.md 中找到。

3.6.3 模型部署

参考示例

目标检测基类

• dl_detect_base.hpp
• dl_detect_base.cpp

前处理

ImagePreprocessor类中封装了常用的图像前处理流程，包括 color conversion, crop, resize,
normalization, quantize。

• dl_image_preprocessor.hpp
• dl_image_preprocessor.cpp

后处理

• dl_detect_postprocessor.hpp
• dl_detect_postprocessor.cpp
• dl_detect_yolo11_postprocessor.hpp
• dl_detect_yolo11_postprocessor.cpp

3.7 如何部署 YOLO11n-pose

在本教程中，我们介绍如何使用 ESP-PPQ对预训练的 YOLO11n-pose模型进行量化，并使用 ESP-DL部
署量化后的 YOLO11n-pose模型。

• 准备工作
• 模型量化

Espressif Systems 42
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/models/coco_detect/README.md
https://github.com/espressif/esp-dl/tree/dd07971/examples/yolo11_detect
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_detect_base.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_detect_base.cpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/image/dl_image_preprocessor.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/image/dl_image_preprocessor.cpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_detect_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_detect_postprocessor.cpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_detect_yolo11_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_detect_yolo11_postprocessor.cpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

– 预训练模型
– 校准数据集
– 8bit默认配置量化
– 量化感知训练

• 模型部署
– 目标检测基类
– 前处理
– 后处理

3.7.1 准备工作

1. 安装 ESP_IDF
2. 安装 ESP_PPQ

3.7.2 模型量化

预训练模型

你可以从 Ultralytics release下载预训练的 yolo11n-pose模型。
目前 ESP-PPQ支持 ONNX、PyTorch、TensorFlow模型。在量化过程中，PyTorch和 TensorFlow会先转化
为 ONNX模型，因此将与训练的 yolo11n-pose转化成 ONNX模型。
具体来说，参考脚本：export_onnx.py 将预训练的 yolo11n-pose模型转换为 ONNX模型。
在该脚本中，我们重载了 Pose类的 forward方法，具有以下优势：

• 更快的推理速度。与原始的 yolo11n-pose模型相比,将推理过程中 Pose里与解码边界框相关的操作
移至后处理中完成,从而显著减少了推理延迟。一方面，Conv，Transpose，Slice，Split和
Concat操作在推理过程中运行是非常耗时的。另一方面，在后处理阶段，模型推理的输出首先进
行置信度筛选，然后再解码边界框，这大大减少了计算量，从而加快了整体推理速度。

• 更低的量化误差。ESP-PPQ中的 Concat和 Add操作采用了联合量化。为了减少量化误差，由于
box和 score的范围差异较大，它们通过不同的分支输出，而不是拼接在一起。类似地，由于 Add
和 Sub的输入的范围差异较大，相关计算被移到了后处理中进行，避免被量化。

校准数据集

校准数据集需要和模型输入格式一致，同时尽可能覆盖模型输入的所有可能情况，以便更好地量化模型。
本示例中，我们使用的校准集为 calib_yolo11n-pose。

8bit默认配置量化

量化设置

target="esp32p4"
num_of_bits=8
batch_size=32
quant_setting = QuantizationSettingFactory.espdl_setting() # default setting

量化结果

Layer | NOISE:SIGNAL POWER RATIO
/model.22/m.0/cv2/conv/Conv: | ████████████████████ | 29.305%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | ██████████████████ | 26.959%
/model.23/cv4.1/cv4.1.0/conv/Conv: | ██████████████████ | 26.555%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | █████████████████ | 25.611%

(下页继续)

Espressif Systems 43
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt
https://github.com/espressif/esp-dl/blob/dd07971/models/coco_pose/models/export_onnx.py
https://dl.espressif.com/public/calib_yolo11n-pose.zip
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.20/conv/Conv: | █████████████████ | 24.738%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | ████████████████ | 24.122%
/model.23/cv4.1/cv4.1.1/conv/Conv: | ███████████████ | 22.512%
/model.19/m.0/cv2/conv/Conv: | ███████████████ | 22.397%
/model.23/cv2.0/cv2.0.1/conv/Conv: | ███████████████ | 22.174%
/model.23/cv4.0/cv4.0.0/conv/Conv: | ███████████████ | 21.621%
/model.23/cv2.1/cv2.1.1/conv/Conv: | ███████████████ | 21.489%
/model.23/cv4.0/cv4.0.1/conv/Conv: | ███████████████ | 21.445%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ██████████████ | 20.528%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ██████████████ | 20.083%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ██████████████ | 20.066%
/model.13/m.0/cv2/conv/Conv: | ██████████████ | 20.042%
/model.22/m.0/cv3/conv/Conv: | █████████████ | 19.737%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | █████████████ | 19.585%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | █████████████ | 19.392%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | █████████████ | 18.773%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | █████████████ | 18.688%
/model.22/cv1/conv/Conv: | █████████████ | 18.579%
/model.19/cv2/conv/Conv: | █████████████ | 18.494%
/model.22/m.0/m/m.1/cv2/conv/Conv: | ████████████ | 17.576%
/model.17/conv/Conv: | ████████████ | 17.224%
/model.19/cv1/conv/Conv: | ████████████ | 17.140%
/model.22/cv2/conv/Conv: | ███████████ | 16.785%
/model.23/cv4.2/cv4.2.1/conv/Conv: | ███████████ | 16.375%
/model.23/cv4.2/cv4.2.0/conv/Conv: | ███████████ | 16.167%
/model.23/cv2.1/cv2.1.0/conv/Conv: | ███████████ | 15.655%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ███████████ | 15.504%
/model.23/cv2.2/cv2.2.0/conv/Conv: | ███████████ | 15.431%
/model.10/m/m.0/attn/proj/conv/Conv: | ██████████ | 15.251%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | ██████████ | 15.171%
/model.22/m.0/m/m.0/cv2/conv/Conv: | ██████████ | 15.006%
/model.19/m.0/cv1/conv/Conv: | ██████████ | 14.692%
/model.23/cv2.2/cv2.2.1/conv/Conv: | ██████████ | 14.548%
/model.22/m.0/m/m.0/cv1/conv/Conv: | █████████ | 13.065%
/model.16/m.0/cv2/conv/Conv: | █████████ | 12.980%
/model.22/m.0/m/m.1/cv1/conv/Conv: | █████████ | 12.921%
/model.10/m/m.0/attn/pe/conv/Conv: | █████████ | 12.745%
/model.23/cv4.1/cv4.1.2/Conv: | ████████ | 12.498%
/model.13/cv2/conv/Conv: | ████████ | 11.932%
/model.23/cv4.2/cv4.2.2/Conv: | ████████ | 11.797%
/model.13/m.0/cv1/conv/Conv: | ████████ | 11.777%
/model.16/cv2/conv/Conv: | ███████ | 10.892%
/model.13/cv1/conv/Conv: | ███████ | 10.760%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ███████ | 10.352%
/model.23/cv4.0/cv4.0.2/Conv: | ███████ | 10.325%
/model.22/m.0/cv1/conv/Conv: | ███████ | 10.257%
/model.8/m.0/cv2/conv/Conv: | ███████ | 9.687%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | ██████ | 8.997%
/model.10/cv1/conv/Conv: | ██████ | 8.787%
/model.16/m.0/cv1/conv/Conv: | ██████ | 8.629%
/model.10/m/m.0/attn/qkv/conv/Conv: | ██████ | 8.600%
/model.8/m.0/cv3/conv/Conv: | ██████ | 8.328%
/model.10/m/m.0/attn/MatMul_1: | ██████ | 8.293%
/model.16/cv1/conv/Conv: | █████ | 7.947%
/model.10/cv2/conv/Conv: | █████ | 7.824%
/model.8/cv2/conv/Conv: | █████ | 7.696%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █████ | 7.615%
/model.8/m.0/m/m.1/cv2/conv/Conv: | █████ | 7.145%
/model.8/m.0/m/m.0/cv2/conv/Conv: | █████ | 7.033%
/model.10/m/m.0/attn/MatMul: | █████ | 6.707%
/model.8/m.0/m/m.1/cv1/conv/Conv: | ████ | 6.376%

(下页继续)

Espressif Systems 44
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.23/cv2.1/cv2.1.2/Conv: | ████ | 6.321%
/model.8/cv1/conv/Conv: | ████ | 6.296%
/model.6/m.0/cv2/conv/Conv: | ████ | 5.605%
/model.23/cv3.2/cv3.2.2/Conv: | ████ | 5.599%
/model.6/m.0/m/m.0/cv2/conv/Conv: | ████ | 5.559%
/model.23/cv2.0/cv2.0.2/Conv: | ████ | 5.262%
/model.23/cv2.2/cv2.2.2/Conv: | ████ | 5.207%
/model.6/m.0/cv3/conv/Conv: | ███ | 4.840%
/model.8/m.0/cv1/conv/Conv: | ███ | 4.667%
/model.6/cv1/conv/Conv: | ███ | 4.523%
/model.9/cv1/conv/Conv: | ███ | 4.038%
/model.9/cv2/conv/Conv: | ██ | 3.733%
/model.7/conv/Conv: | ██ | 3.605%
/model.6/cv2/conv/Conv: | ██ | 3.478%
/model.3/conv/Conv: | ██ | 3.352%
/model.2/cv2/conv/Conv: | ██ | 3.230%
/model.8/m.0/m/m.0/cv1/conv/Conv: | ██ | 3.136%
/model.4/cv1/conv/Conv: | ██ | 2.913%
/model.6/m.0/m/m.1/cv1/conv/Conv: | ██ | 2.830%
/model.6/m.0/m/m.1/cv2/conv/Conv: | ██ | 2.692%
/model.6/m.0/m/m.0/cv1/conv/Conv: | ██ | 2.557%
/model.6/m.0/cv1/conv/Conv: | ██ | 2.475%
/model.5/conv/Conv: | ██ | 2.413%
/model.2/cv1/conv/Conv: | █ | 2.267%
/model.4/cv2/conv/Conv: | █ | 2.135%
/model.2/m.0/cv2/conv/Conv: | █ | 2.104%
/model.4/m.0/cv1/conv/Conv: | █ | 1.910%
/model.1/conv/Conv: | █ | 1.708%
/model.2/m.0/cv1/conv/Conv: | █ | 1.658%
/model.23/cv3.1/cv3.1.2/Conv: | █ | 1.455%
/model.4/m.0/cv2/conv/Conv: | █ | 1.056%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.364%
/model.0/conv/Conv: | | 0.087%
Analysing Layerwise quantization error:: 100%|██████████| 98/98 [16:09<00:00, 9.
↪→89s/it]
Layer | NOISE:SIGNAL POWER RATIO
/model.0/conv/Conv: | ████████████████████ | 1.017%
/model.9/cv2/conv/Conv: | ██████████ | 0.493%
/model.8/cv1/conv/Conv: | ████████ | 0.410%
/model.2/cv2/conv/Conv: | ██████ | 0.287%
/model.1/conv/Conv: | ████ | 0.228%
/model.2/cv1/conv/Conv: | ███ | 0.163%
/model.16/cv2/conv/Conv: | ███ | 0.130%
/model.4/cv2/conv/Conv: | ██ | 0.096%
/model.3/conv/Conv: | █ | 0.070%
/model.4/cv1/conv/Conv: | █ | 0.068%
/model.10/cv1/conv/Conv: | █ | 0.049%
/model.2/m.0/cv2/conv/Conv: | █ | 0.047%
/model.2/m.0/cv1/conv/Conv: | █ | 0.043%
/model.4/m.0/cv2/conv/Conv: | █ | 0.041%
/model.13/cv2/conv/Conv: | █ | 0.037%
/model.16/cv1/conv/Conv: | █ | 0.030%
/model.22/cv2/conv/Conv: | █ | 0.027%
/model.8/cv2/conv/Conv: | █ | 0.027%
/model.13/cv1/conv/Conv: | | 0.025%
/model.5/conv/Conv: | | 0.025%
/model.19/m.0/cv2/conv/Conv: | | 0.025%
/model.6/cv2/conv/Conv: | | 0.024%
/model.4/m.0/cv1/conv/Conv: | | 0.022%
/model.6/cv1/conv/Conv: | | 0.021%
/model.19/cv1/conv/Conv: | | 0.020%

(下页继续)

Espressif Systems 45
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.23/cv2.1/cv2.1.1/conv/Conv: | | 0.018%
/model.23/cv4.1/cv4.1.0/conv/Conv: | | 0.017%
/model.9/cv1/conv/Conv: | | 0.015%
/model.23/cv4.2/cv4.2.1/conv/Conv: | | 0.014%
/model.10/m/m.0/attn/qkv/conv/Conv: | | 0.014%
/model.19/cv2/conv/Conv: | | 0.014%
/model.16/m.0/cv2/conv/Conv: | | 0.014%
/model.23/cv4.2/cv4.2.0/conv/Conv: | | 0.014%
/model.6/m.0/m/m.0/cv1/conv/Conv: | | 0.013%
/model.22/m.0/cv3/conv/Conv: | | 0.013%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | | 0.013%
/model.23/cv4.0/cv4.0.0/conv/Conv: | | 0.013%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | | 0.013%
/model.22/m.0/m/m.1/cv1/conv/Conv: | | 0.012%
/model.6/m.0/cv3/conv/Conv: | | 0.012%
/model.10/m/m.0/attn/pe/conv/Conv: | | 0.012%
/model.23/cv4.1/cv4.1.1/conv/Conv: | | 0.011%
/model.8/m.0/m/m.1/cv1/conv/Conv: | | 0.011%
/model.13/m.0/cv1/conv/Conv: | | 0.011%
/model.22/m.0/m/m.0/cv1/conv/Conv: | | 0.011%
/model.6/m.0/m/m.1/cv1/conv/Conv: | | 0.011%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | | 0.011%
/model.8/m.0/cv3/conv/Conv: | | 0.010%
/model.7/conv/Conv: | | 0.010%
/model.17/conv/Conv: | | 0.009%
/model.8/m.0/m/m.0/cv1/conv/Conv: | | 0.009%
/model.13/m.0/cv2/conv/Conv: | | 0.009%
/model.10/m/m.0/attn/MatMul: | | 0.009%
/model.19/m.0/cv1/conv/Conv: | | 0.008%
/model.16/m.0/cv1/conv/Conv: | | 0.008%
/model.23/cv2.2/cv2.2.1/conv/Conv: | | 0.008%
/model.8/m.0/m/m.1/cv2/conv/Conv: | | 0.008%
/model.8/m.0/cv1/conv/Conv: | | 0.008%
/model.10/cv2/conv/Conv: | | 0.007%
/model.23/cv2.0/cv2.0.2/Conv: | | 0.007%
/model.22/m.0/cv1/conv/Conv: | | 0.007%
/model.6/m.0/cv1/conv/Conv: | | 0.007%
/model.23/cv2.0/cv2.0.0/conv/Conv: | | 0.006%
/model.23/cv2.1/cv2.1.0/conv/Conv: | | 0.006%
/model.22/m.0/m/m.1/cv2/conv/Conv: | | 0.006%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | | 0.005%
/model.8/m.0/m/m.0/cv2/conv/Conv: | | 0.005%
/model.23/cv2.1/cv2.1.2/Conv: | | 0.005%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | | 0.005%
/model.23/cv2.2/cv2.2.2/Conv: | | 0.005%
/model.22/cv1/conv/Conv: | | 0.004%
/model.10/m/m.0/attn/proj/conv/Conv: | | 0.004%
/model.23/cv4.2/cv4.2.2/Conv: | | 0.004%
/model.23/cv4.1/cv4.1.2/Conv: | | 0.004%
/model.22/m.0/m/m.0/cv2/conv/Conv: | | 0.004%
/model.23/cv2.2/cv2.2.0/conv/Conv: | | 0.003%
/model.6/m.0/m/m.1/cv2/conv/Conv: | | 0.003%
/model.23/cv4.0/cv4.0.1/conv/Conv: | | 0.003%
/model.6/m.0/m/m.0/cv2/conv/Conv: | | 0.003%
/model.10/m/m.0/attn/MatMul_1: | | 0.002%
/model.23/cv4.0/cv4.0.2/Conv: | | 0.002%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | | 0.002%
/model.20/conv/Conv: | | 0.002%
/model.23/cv2.0/cv2.0.1/conv/Conv: | | 0.002%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | | 0.001%

(下页继续)

Espressif Systems 46
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | | 0.001%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.000%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.000%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | | 0.000%
/model.6/m.0/cv2/conv/Conv: | | 0.000%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | | 0.000%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | | 0.000%
/model.8/m.0/cv2/conv/Conv: | | 0.000%
/model.22/m.0/cv2/conv/Conv: | | 0.000%

量化误差分析

在相同输入下，量化后的模型在 COCO上的 Pose mAP50:95仅为 43.1%，低于浮点模型（50.0%），存在
一定的精度损失。

量化感知训练

为了进一步提高量化模型的精度，可以采用量化感知训练。本示例基于 8-bit量化方式进行量化感知训
练。

量化设置

• yolo11n-pose_qat.py
• trainer.py

量化结果

Layer | NOISE:SIGNAL POWER RATIO
/model.22/m.0/cv2/conv/Conv: | ████████████████████ | 27.739%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | ███████████████████ | 26.872%
/model.23/cv4.1/cv4.1.0/conv/Conv: | ███████████████████ | 26.229%
/model.23/cv2.1/cv2.1.1/conv/Conv: | ██████████████████ | 25.300%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | ██████████████████ | 24.625%
/model.23/cv2.0/cv2.0.1/conv/Conv: | █████████████████ | 23.751%
/model.20/conv/Conv: | █████████████████ | 23.320%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | █████████████████ | 22.901%
/model.23/cv4.1/cv4.1.1/conv/Conv: | ████████████████ | 22.516%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | ████████████████ | 22.035%
/model.19/m.0/cv2/conv/Conv: | ████████████████ | 21.569%
/model.23/cv4.0/cv4.0.0/conv/Conv: | ███████████████ | 21.199%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | ███████████████ | 20.785%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | ███████████████ | 20.597%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | ███████████████ | 20.329%
/model.23/cv4.0/cv4.0.1/conv/Conv: | ███████████████ | 20.179%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | ██████████████ | 19.983%
/model.22/m.0/cv3/conv/Conv: | ██████████████ | 19.919%
/model.13/m.0/cv2/conv/Conv: | ██████████████ | 19.424%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | ██████████████ | 18.893%
/model.19/cv2/conv/Conv: | █████████████ | 18.055%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | █████████████ | 17.915%
/model.22/m.0/m/m.1/cv2/conv/Conv: | █████████████ | 17.796%
/model.22/cv1/conv/Conv: | █████████████ | 17.777%
/model.23/cv4.2/cv4.2.1/conv/Conv: | █████████████ | 17.573%
/model.19/cv1/conv/Conv: | ████████████ | 17.116%
/model.17/conv/Conv: | ████████████ | 16.869%
/model.22/cv2/conv/Conv: | ████████████ | 16.750%
/model.23/cv2.2/cv2.2.1/conv/Conv: | ████████████ | 16.540%
/model.10/m/m.0/attn/proj/conv/Conv: | ████████████ | 16.491%

(下页继续)

Espressif Systems 47
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/examples/tutorial/how_to_quantize_model/quantize_yolo11n-pose/yolo11n_pose_qat.py
https://github.com/espressif/esp-dl/blob/dd07971/examples/tutorial/how_to_quantize_model/quantize_yolo11n-pose/trainer.py
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.23/cv2.2/cv2.2.0/conv/Conv: | ████████████ | 16.421%
/model.23/cv2.1/cv2.1.0/conv/Conv: | ████████████ | 16.205%
/model.23/cv4.2/cv4.2.0/conv/Conv: | ████████████ | 16.116%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | ███████████ | 15.400%
/model.22/m.0/m/m.0/cv2/conv/Conv: | ███████████ | 15.251%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | ███████████ | 14.851%
/model.10/m/m.0/attn/pe/conv/Conv: | ███████████ | 14.659%
/model.19/m.0/cv1/conv/Conv: | ██████████ | 14.289%
/model.22/m.0/m/m.1/cv1/conv/Conv: | █████████ | 13.038%
/model.16/m.0/cv2/conv/Conv: | █████████ | 12.941%
/model.22/m.0/m/m.0/cv1/conv/Conv: | █████████ | 12.791%
/model.23/cv4.2/cv4.2.2/Conv: | █████████ | 12.508%
/model.23/cv4.1/cv4.1.2/Conv: | █████████ | 12.226%
/model.13/cv1/conv/Conv: | ████████ | 11.821%
/model.13/cv2/conv/Conv: | ████████ | 11.612%
/model.13/m.0/cv1/conv/Conv: | ████████ | 11.515%
/model.10/m/m.0/attn/MatMul_1: | ████████ | 11.303%
/model.16/cv2/conv/Conv: | ████████ | 11.028%
/model.10/m/m.0/attn/qkv/conv/Conv: | ████████ | 10.951%
/model.10/cv1/conv/Conv: | ████████ | 10.755%
/model.23/cv2.0/cv2.0.0/conv/Conv: | ████████ | 10.684%
/model.22/m.0/cv1/conv/Conv: | ███████ | 10.164%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | ███████ | 9.968%
/model.16/m.0/cv1/conv/Conv: | ███████ | 9.656%
/model.23/cv4.0/cv4.0.2/Conv: | ███████ | 9.566%
/model.8/m.0/cv2/conv/Conv: | ███████ | 9.521%
/model.10/cv2/conv/Conv: | ██████ | 8.068%
/model.16/cv1/conv/Conv: | ██████ | 7.989%
/model.23/cv2.1/cv2.1.2/Conv: | ██████ | 7.969%
/model.8/m.0/cv3/conv/Conv: | ██████ | 7.725%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | █████ | 7.570%
/model.8/m.0/m/m.0/cv2/conv/Conv: | █████ | 7.339%
/model.8/m.0/m/m.1/cv2/conv/Conv: | █████ | 7.283%
/model.8/cv2/conv/Conv: | █████ | 7.092%
/model.10/m/m.0/attn/MatMul: | █████ | 6.654%
/model.8/cv1/conv/Conv: | █████ | 6.492%
/model.8/m.0/m/m.1/cv1/conv/Conv: | █████ | 6.451%
/model.23/cv2.0/cv2.0.2/Conv: | ████ | 5.990%
/model.23/cv2.2/cv2.2.2/Conv: | ████ | 5.902%
/model.6/m.0/m/m.0/cv2/conv/Conv: | ████ | 5.898%
/model.6/m.0/cv2/conv/Conv: | ████ | 5.881%
/model.6/m.0/cv3/conv/Conv: | ████ | 5.402%
/model.8/m.0/cv1/conv/Conv: | ████ | 5.210%
/model.23/cv3.2/cv3.2.2/Conv: | ████ | 5.126%
/model.6/cv1/conv/Conv: | ████ | 4.983%
/model.9/cv2/conv/Conv: | ███ | 4.616%
/model.9/cv1/conv/Conv: | ███ | 3.934%
/model.7/conv/Conv: | ███ | 3.906%
/model.3/conv/Conv: | ███ | 3.654%
/model.6/cv2/conv/Conv: | ██ | 3.429%
/model.8/m.0/m/m.0/cv1/conv/Conv: | ██ | 3.319%
/model.2/cv2/conv/Conv: | ██ | 3.220%
/model.6/m.0/m/m.1/cv1/conv/Conv: | ██ | 3.191%
/model.6/m.0/m/m.0/cv1/conv/Conv: | ██ | 3.157%
/model.4/cv1/conv/Conv: | ██ | 2.893%
/model.6/m.0/m/m.1/cv2/conv/Conv: | ██ | 2.792%
/model.6/m.0/cv1/conv/Conv: | ██ | 2.761%
/model.5/conv/Conv: | ██ | 2.629%
/model.4/cv2/conv/Conv: | ██ | 2.298%
/model.2/cv1/conv/Conv: | █ | 2.107%
/model.2/m.0/cv2/conv/Conv: | █ | 2.095%

(下页继续)

Espressif Systems 48
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.4/m.0/cv1/conv/Conv: | █ | 2.069%
/model.23/cv3.1/cv3.1.2/Conv: | █ | 1.744%
/model.1/conv/Conv: | █ | 1.631%
/model.2/m.0/cv1/conv/Conv: | █ | 1.583%
/model.4/m.0/cv2/conv/Conv: | █ | 1.126%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.535%
/model.0/conv/Conv: | | 0.067%
Analysing Layerwise quantization error:: 100%|██████████| 98/98 [10:49<00:00, 6.
↪→63s/it]
Layer | NOISE:SIGNAL POWER RATIO
/model.9/cv2/conv/Conv: | ████████████████████ | 2.976%
/model.2/cv2/conv/Conv: | ███████████ | 1.610%
/model.3/conv/Conv: | ██████ | 0.854%
/model.2/cv1/conv/Conv: | ████ | 0.543%
/model.1/conv/Conv: | ███ | 0.487%
/model.8/cv1/conv/Conv: | ███ | 0.414%
/model.4/cv2/conv/Conv: | ███ | 0.397%
/model.0/conv/Conv: | ██ | 0.364%
/model.6/m.0/cv3/conv/Conv: | ██ | 0.230%
/model.5/conv/Conv: | █ | 0.181%
/model.2/m.0/cv2/conv/Conv: | █ | 0.144%
/model.13/cv2/conv/Conv: | █ | 0.140%
/model.2/m.0/cv1/conv/Conv: | █ | 0.138%
/model.4/cv1/conv/Conv: | █ | 0.129%
/model.16/cv2/conv/Conv: | █ | 0.122%
/model.23/cv4.2/cv4.2.0/conv/Conv: | █ | 0.120%
/model.4/m.0/cv1/conv/Conv: | █ | 0.107%
/model.23/cv4.1/cv4.1.0/conv/Conv: | █ | 0.096%
/model.19/cv2/conv/Conv: | █ | 0.078%
/model.23/cv2.2/cv2.2.2/Conv: | █ | 0.076%
/model.4/m.0/cv2/conv/Conv: | | 0.071%
/model.8/m.0/m/m.1/cv1/conv/Conv: | | 0.071%
/model.6/cv2/conv/Conv: | | 0.067%
/model.6/cv1/conv/Conv: | | 0.066%
/model.17/conv/Conv: | | 0.060%
/model.23/cv4.2/cv4.2.1/conv/Conv: | | 0.057%
/model.22/m.0/m/m.1/cv1/conv/Conv: | | 0.056%
/model.16/cv1/conv/Conv: | | 0.051%
/model.10/cv1/conv/Conv: | | 0.050%
/model.23/cv4.2/cv4.2.2/Conv: | | 0.046%
/model.22/cv2/conv/Conv: | | 0.044%
/model.7/conv/Conv: | | 0.043%
/model.10/m/m.0/attn/pe/conv/Conv: | | 0.043%
/model.10/cv2/conv/Conv: | | 0.037%
/model.19/cv1/conv/Conv: | | 0.037%
/model.8/cv2/conv/Conv: | | 0.036%
/model.13/cv1/conv/Conv: | | 0.036%
/model.6/m.0/m/m.1/cv1/conv/Conv: | | 0.033%
/model.22/m.0/cv3/conv/Conv: | | 0.031%
/model.19/m.0/cv1/conv/Conv: | | 0.027%
/model.23/cv3.2/cv3.2.0/cv3.2.0.1/conv/Conv: | | 0.026%
/model.8/m.0/cv1/conv/Conv: | | 0.025%
/model.19/m.0/cv2/conv/Conv: | | 0.025%
/model.8/m.0/cv3/conv/Conv: | | 0.024%
/model.10/m/m.0/attn/qkv/conv/Conv: | | 0.023%
/model.8/m.0/m/m.0/cv1/conv/Conv: | | 0.023%
/model.22/m.0/cv1/conv/Conv: | | 0.021%
/model.6/m.0/m/m.0/cv1/conv/Conv: | | 0.021%
/model.23/cv2.0/cv2.0.0/conv/Conv: | | 0.020%
/model.6/m.0/cv1/conv/Conv: | | 0.020%
/model.23/cv4.0/cv4.0.0/conv/Conv: | | 0.019%

(下页继续)

Espressif Systems 49
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
/model.9/cv1/conv/Conv: | | 0.018%
/model.23/cv4.1/cv4.1.2/Conv: | | 0.018%
/model.23/cv2.1/cv2.1.1/conv/Conv: | | 0.018%
/model.13/m.0/cv1/conv/Conv: | | 0.016%
/model.23/cv2.1/cv2.1.0/conv/Conv: | | 0.016%
/model.23/cv4.1/cv4.1.1/conv/Conv: | | 0.016%
/model.16/m.0/cv2/conv/Conv: | | 0.015%
/model.10/m/m.0/attn/proj/conv/Conv: | | 0.013%
/model.23/cv3.1/cv3.1.1/cv3.1.1.1/conv/Conv: | | 0.013%
/model.8/m.0/m/m.0/cv2/conv/Conv: | | 0.013%
/model.16/m.0/cv1/conv/Conv: | | 0.012%
/model.23/cv2.2/cv2.2.0/conv/Conv: | | 0.011%
/model.20/conv/Conv: | | 0.011%
/model.22/m.0/m/m.0/cv1/conv/Conv: | | 0.011%
/model.23/cv3.2/cv3.2.1/cv3.2.1.1/conv/Conv: | | 0.011%
/model.8/m.0/m/m.1/cv2/conv/Conv: | | 0.010%
/model.23/cv2.0/cv2.0.2/Conv: | | 0.009%
/model.10/m/m.0/attn/MatMul: | | 0.009%
/model.22/cv1/conv/Conv: | | 0.009%
/model.13/m.0/cv2/conv/Conv: | | 0.008%
/model.23/cv2.2/cv2.2.1/conv/Conv: | | 0.008%
/model.23/cv2.1/cv2.1.2/Conv: | | 0.007%
/model.23/cv3.2/cv3.2.1/cv3.2.1.0/conv/Conv: | | 0.007%
/model.22/m.0/m/m.1/cv2/conv/Conv: | | 0.007%
/model.6/m.0/m/m.0/cv2/conv/Conv: | | 0.006%
/model.22/m.0/m/m.0/cv2/conv/Conv: | | 0.006%
/model.23/cv4.0/cv4.0.1/conv/Conv: | | 0.005%
/model.23/cv3.2/cv3.2.0/cv3.2.0.0/conv/Conv: | | 0.005%
/model.23/cv4.0/cv4.0.2/Conv: | | 0.004%
/model.6/m.0/m/m.1/cv2/conv/Conv: | | 0.004%
/model.23/cv3.0/cv3.0.0/cv3.0.0.1/conv/Conv: | | 0.004%
/model.10/m/m.0/ffn/ffn.1/conv/Conv: | | 0.003%
/model.23/cv3.2/cv3.2.2/Conv: | | 0.003%
/model.10/m/m.0/attn/MatMul_1: | | 0.002%
/model.10/m/m.0/ffn/ffn.0/conv/Conv: | | 0.002%
/model.23/cv3.1/cv3.1.0/cv3.1.0.1/conv/Conv: | | 0.002%
/model.23/cv2.0/cv2.0.1/conv/Conv: | | 0.002%
/model.23/cv3.1/cv3.1.1/cv3.1.1.0/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.2/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.2/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.1/cv3.0.1.0/conv/Conv: | | 0.001%
/model.23/cv3.1/cv3.1.0/cv3.1.0.0/conv/Conv: | | 0.001%
/model.23/cv3.0/cv3.0.0/cv3.0.0.0/conv/Conv: | | 0.000%
/model.6/m.0/cv2/conv/Conv: | | 0.000%
/model.23/cv3.0/cv3.0.1/cv3.0.1.1/conv/Conv: | | 0.000%
/model.8/m.0/cv2/conv/Conv: | | 0.000%
/model.22/m.0/cv2/conv/Conv: | | 0.000%

量化误差分析

在对 8-bit量化应用量化感知训练后，在相同输入下，量化后的模型在 COCO上的 Pose mAP50:95提升至
44.9%；同时输出层的累计误差大幅减少。相比 8-bit后量化方式，量化感知训练后的 8-bit量化模型可以
在相同的推理速度下达到最高的量化精度。

3.7.3 模型部署

example

Espressif Systems 50
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/tree/dd07971/examples/yolo11_pose
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

目标检测基类

• dl_detect_base.hpp
• dl_detect_base.cpp

前处理

ImagePreprocessor类中封装了常用的图像前处理流程，包括 color conversion, crop, resize,
normalization, quantize。

• dl_image_preprocessor.hpp
• dl_image_preprocessor.cpp

后处理

• dl_detect_postprocessor.hpp
• dl_detect_postprocessor.cpp
• dl_pose_yolo11_postprocessor.hpp
• dl_pose_yolo11_postprocessor.cpp

3.8 如何部署流式模型

时间序列模型如今被应用在许多领域，例如，音频领域。而音频模型在部署时通常有两种模式：

• Offline模式：模型需要一次性接收完整的音频数据（例如整个语音文件），然后进行整体处理。
• Streaming模式：流式模式下，模型逐帧（逐块）接收音频数据，实时处理并输出中间结果。

在本教程中，我们来介绍如何使用 ESP-PPQ量化流式模型，并使用 ESP-DL部署量化后的流式模型。

• 准备工作
• 模型量化

– 如何转换为流式模型
– 自动流式转换
– 自动流式转换的工作原理

• 模型部署

3.8.1 准备工作

1. 安装 ESP_IDF
2. 安装 ESP_PPQ

3.8.2 模型量化

参考示例

如何转换为流式模型

时间序列模型种类繁多，这里仅以 Temporal Convolutional Network(TCN)为例，不熟悉的可自行查找资料
了解，这里不过多介绍其细节。其它模型需根据自身情况，量体裁衣。

该示例代码中构建了一个 TCN模型：models.py (模型非完整，仅用于演示)。

Espressif Systems 51
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_detect_base.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_detect_base.cpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/image/dl_image_preprocessor.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/image/dl_image_preprocessor.cpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_detect_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_detect_postprocessor.cpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_pose_yolo11_postprocessor.hpp
https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/vision/detect/dl_pose_yolo11_postprocessor.cpp
https://github.com/espressif/esp-dl/tree/dd07971/examples/tutorial/how_to_deploy_streaming_model
https://github.com/espressif/esp-dl/blob/dd07971/examples/tutorial/how_to_deploy_streaming_model/quantize_streaming_model/models.py
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

ESP-PPQ提供了自动流式转换功能，可以简化创建流式模型的过程。通过 auto_streaming=True参
数，ESP-PPQ自动处理流式推理所需的模型转换。

备注:
• Offline模式，模型输入是一段完整数据，input shape在时间维度上的 size一般比较大（例如 [1,
16, 15]）。

• Streaming模式，模型输入是连续数据，在时间维度上的 size较小，匹配实时处理的块大小（例如
[1, 16, 3]）。

自动流式转换

ESP-PPQ 通过量化过程中的 auto_streaming=True 参数提供自动流式转换功能。启用此标志后，
ESP-PPQ会自动转换模型以支持流式推理：

1. 分析模型结构以识别适当的分块点
2. 创建内部状态管理以在块之间保持上下文
3. 生成适合流式场景的优化代码

自动流式转换的工作原理

ESP-PPQ中的自动流式转换会分析模型图，并在关键位置插入 StreamingCache节点以实现时间上下
文保持。转换过程遵循以下原则：

1. 算子分类
• 支持流式的算子：需要时间上下文的卷积、池化和转置卷积操作（例如 Conv、AveragePool、
MaxPool、ConvTranspose）。

• 绕过算子：不需要时间上下文的激活函数、数学运算、量化节点和其他操作（例如 Relu、Add、
MatMul、LayerNorm）。

2. 窗口大小计算 对于支持流式的算子，ESP-PPQ根据以下因素计算所需的缓存窗口大小：- Kernel size
and dilation rates - Padding configuration - Stride values
窗口大小决定了需要缓存多少历史帧才能正确计算当前帧。

3. StreamingCache节点插入 ESP-PPQ在支持流式的算子之前插入 StreamingCache节点。这些节点：
-维护历史帧的滑动窗口缓冲区 -调整张量形状以容纳缓存窗口 -保留原始操作的量化配置 -管理
帧轴对齐以进行正确的时间处理

4. 填充调整 对于流式操作，ESP-PPQ调整填充配置：-移除底部填充以防止前瞻到未来帧 -保持对称或
仅顶部填充以实现因果处理

限制和注意事项
• 自动转换开箱即用地支持基于卷积的时间操作
• 自定义操作或复杂的时间依赖关系可能需要手动配置流式表
• 转换假设时间维度沿轴 1（可通过 streaming_table配置）

以下是如何使用自动流式功能的示例：

导出非流式模型
quant_ppq_graph = espdl_quantize_torch(

model=model,
espdl_export_file=ESPDL_MODEL_PATH,
calib_dataloader=dataloader,
calib_steps=32, # 校准步数
input_shape=INPUT_SHAPE, # 离线模式的输入形状
inputs=None,
target=TARGET, # 量化目标类型
num_of_bits=NUM_OF_BITS, # 量化位数
dispatching_override=None,
device=DEVICE,
error_report=True,
skip_export=False,

(下页继续)

Espressif Systems 52
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
export_test_values=True,
verbose=1, # 输出详细日志信息

)

使用自动转换导出流式模型
quant_ppq_graph = espdl_quantize_torch(

model=model,
espdl_export_file=ESPDL_STEAMING_MODEL_PATH,
calib_dataloader=dataloader,
calib_steps=32,
input_shape=INPUT_SHAPE,
inputs=None,
target=TARGET,
num_of_bits=NUM_OF_BITS,
dispatching_override=None,
device=DEVICE,
error_report=True,
skip_export=False,
export_test_values=False,
verbose=1,
auto_streaming=True, # 启用自动流式转换
streaming_input_shape=[1, 16, 3], # 流式模式的输入形状
streaming_table=None,

)

3.8.3 模型部署

参考示例 ,该示例使用预生成的数据来模拟实时数据流。

备注: 基础的模型加载和推理方法，可参考其它文档，这里不再赘述：
• 如何加载和测试模型
• 如何进行模型推理

在流式模式下，模型按时间接收数据块，而不是要求一次性获得整个输入。流式模型依次处理这些块，
同时在块之间保持内部状态。部署代码负责将输入分解为适当的块并将其馈送到模型。见 app_main.cpp
如下代码块：

dl::TensorBase *run_streaming_model(dl::Model *model, dl::TensorBase *test_input)
{

std::map<std::string, dl::TensorBase *> model_inputs = model->get_inputs();
dl::TensorBase *model_input = model_inputs.begin()->second;
std::map<std::string, dl::TensorBase *> model_outputs = model->get_outputs();
dl::TensorBase *model_output = model_outputs.begin()->second;

if (!test_input) {
ESP_LOGE(TAG,

"Model input doesn't have a corresponding test input. Please␣
↪→enable export_test_values option "

"in esp-ppq when export espdl model.");
return nullptr;

}

int test_input_size = test_input->get_bytes();
uint8_t *test_input_ptr = (uint8_t *)test_input->data;
int model_input_size = model_input->get_bytes();
uint8_t *model_input_ptr = (uint8_t *)model_input->data;
int chunks = test_input_size / model_input_size;

(下页继续)

Espressif Systems 53
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/tree/dd07971/examples/tutorial/how_to_deploy_streaming_model
https://github.com/espressif/esp-dl/blob/dd07971/examples/tutorial/how_to_deploy_streaming_model/test_streaming_model/main/app_main.cpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 3. Tutorials

(续上页)
for (int i = 0; i < chunks; i++) {

// assign chunk data to model input
memcpy(model_input_ptr, test_input_ptr + i * model_input_size, model_input_

↪→size);
model->run(model_input);

}

return model_output;
}

这种方法允许模型通过将长序列分解为更小、更易管理的块来高效处理。每个块依次馈送到模型中，内
部状态自动维护以确保跨块的连续性。

备注:
• 块的数量是根据完整输入大小与流式模型输入大小的比率计算的。
• ESP-DL流式模型自动处理内部状态管理，使部署变得简单。
• 流式模型的输出应与等效离线模型输出的最后部分匹配。

Espressif Systems 54
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4

API Reference

4.1 Tensor API Reference

Tensor is the fundamental data type in esp-dl, used for storing multi-type data such as int8, int16, float, etc., similar
to the tensor in PyTorch. We have implemented some common tensor operations. Please refer to the following APIs
for details.

4.1.1 Header File

• esp-dl/dl/tensor/include/dl_tensor_base.hpp

4.1.2 Classes

class TensorBase
This class is designed according to PyTorch Tensor. TensorBase is required to ensure that the first address are
aligned to 16 bytes and the memory size should be a multiple of 16 bytes.
TODO:: Implement more functions

Public Functions

TensorBase(std::vector<int> shape, const void *element, int exponent = 0, dtype_t dtype =
DATA_TYPE_FLOAT, bool deep = true, uint32_t caps = MALLOC_CAP_DEFAULT)

Construct a TensorBase object.
参数

• shape –Shape of tensor
• element –Pointer of data
• exponent –Exponent of tensor, default is 0
• dtype –Data type of element, default is float
• deep –True: malloc memory and copy data, false: use the pointer directly
• caps –Bitwise OR of MALLOC_CAP_* flags indicating the type of memory to be
returned

inline virtual ~TensorBase()
Destroy the TensorBase object.

55

https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/dl/tensor/include/dl_tensor_base.hpp

Chapter 4. API Reference

bool assign(TensorBase *tensor)
Assign tensor to this tensor.
参数 tensor –
返回 true if assign successfully, otherwise false.

bool assign(std::vector<int> shape, const void *element, int exponent, dtype_t dtype)
Assign data to this tensor.
参数

• shape –
• element –
• exponent –
• dtype –

返回 true if assign successfully, otherwise false.
inline int get_size()

Get the size of Tensor.
返回 the size of Tensor.

inline int get_aligned_size()
Get the aligned size of Tensor.
返回 the aligned size of Tensor.

inline size_t get_dtype_bytes()
Get the dtype size, in bytes.
返回 the size of dtype.

inline const char *get_dtype_string()
Get the dtype string of Tensor.
返回 the string of Tensor’s dtype.

inline int get_bytes()
Get the bytes of Tensor.
返回 the bytes of Tensor.

inline int get_aligned_bytes()
Get the bytes of Tensor.
返回 the bytes of Tensor.

inline virtual void *get_element_ptr()
Get data pointer. If cache(preload data pointer) is not null, return cache pointer, otherwise return data
pointer.
返回 the pointer of Tensor’s data

template<typename T>
inline T *get_element_ptr()

Get data pointer by the specified template. If cache(preload data pointer) is not null, return cache pointer,
otherwise return data pointer.
返回 the pointer of Tensor’s data

TensorBase &set_element_ptr(void *data)
Set the data pointer of Tensor.
参数 data –point to data memory
返回 TensorBase& self

Espressif Systems 56
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

inline std::vector<int> get_shape()
Get the shape of Tensor.
返回 std::vector<int> the shape of Tensor

TensorBase &set_shape(const std::vector<int> shape)
Set the shape of Tensor.
参数 shape –the shape of Tensor.
返回 Tensor.

inline int get_exponent()
Get the exponent of Tensor.
返回 int the exponent of Tensor

inline dtype_t get_dtype()
Get the data type of Tensor.
返回 dtype_t the data type of Tensor

inline uint32_t get_caps()
Get the memory flags of Tensor.
返回 uint32_t the memory flags of Tensor

TensorBase *reshape(std::vector<int> shape)
Change a new shape to the Tensor without changing its data.
参数 shape –the target shape
返回 TensorBase *self

template<typename T>
TensorBase *flip(const std::vector<int> &axes)

Flip the input Tensor along the specified axes.
参数 axes –the specified axes
返回 TensorBase& self

TensorBase *transpose(TensorBase *input, std::vector<int> perm = {})
Reverse or permute the axes of the input Tensor.
参数

• input –the input Tensor
• perm –the new arrangement of the dims. if perm == {}, the dims arrangement will be
reversed.

返回 TensorBase *self
template<typename T>
TensorBase *transpose(T *input_element, std::vector<int> &input_shape, std::vector<int>

&input_axis_offset, std::vector<int> &perm)
Reverse or permute the axes of the input Tensor.
参数

• input_element –the input data pointer
• input_shape –the input data shape
• input_axis_offset –the input data axis offset
• perm –the new arrangement of the dims. if perm == {}, the dims arrangement will be
reversed.

返回 TensorBase *self
bool is_same_shape(TensorBase *tensor)

Check the shape is the same as the shape of input.
参数 tensor –Input tensor pointer

Espressif Systems 57
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

返回
• true: same shape
• false: not

bool equal(TensorBase *tensor, float epsilon = 1e-6, bool verbose = false)
Compare the shape and data of two Tensor.
参数

• tensor –Input tensor
• epsilon –The max error of two element
• verbose –If true, print the detail of results

返回 true if two tensor is equal otherwise false
TensorBase *slice(const std::vector<int> &start, const std::vector<int> &end, const std::vector<int>

&axes = {}, const std::vector<int> &step = {})
Produces a slice of the this tensor along multiple axes.

警告: The length of start, end and step must be same as the shape of input tensor

参数
• start –Starting indicesd
• end –Ending indices
• axes –Axes that starts and ends apply to.
• step –Slice step, step = 1 if step is not specified

返回 TensorBase* Output tensor pointer, created by this slice function

template<typename T>
TensorBase *pad(T *input_element, const std::vector<int> &input_shape, const std::vector<int> &pads,

const padding_mode_t mode, TensorBase *const_value = nullptr)
Pad input tensor.
参数

• input_element –Data pointer of input tensor
• input_shape –Shape of input tensor
• pads –The number of padding elements to add, pads format should be: [x1_begin,
x2_begin,⋯, x1_end, x2_end,⋯]

• mode –Supported modes: constant(default), reflect, edge
• const_value –(Optional) A scalar value to be used if the mode chosen is constant

返回 Output tensor pointer
TensorBase *pad(TensorBase *input, const std::vector<int> &pads, const padding_mode_t mode,

TensorBase *const_value = nullptr)
Pad input tensor.
参数

• input –Input tensor pointer
• pads –Padding elements to add, pads format should be: [x1_begin, x2_begin, ⋯,
x1_end, x2_end,⋯]

• mode –Supported modes: constant(default), reflect, edge
• const_value –(Optional) A scalar value to be used if the mode chosen is constant

返回 Output tensor pointer
template<typename T>
bool compare_elements(const T *gt_elements, float epsilon = 1e-6, bool verbose = false)

Compare the elements of two Tensor.
参数

• gt_elements –The ground truth elements
• epsilon –The max error of two element

Espressif Systems 58
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

• verbose –If true, print the detail of results
返回 true if all elements are equal otherwise false

int get_element_index(const std::vector<int> &axis_index)
Get the index of element.
参数 axis_index –The coordinates of element
返回 int the index of element

std::vector<int> get_element_coordinates(int index)
Get the coordinates of element.
参数 index –The index of element
返回 The coordinates of element

template<typename T>
T get_element(int index)

Get a element of Tensor by index.
参数 index –The index of element
返回 The element of tensor

template<typename T>
T get_element(const std::vector<int> &axis_index)

Get a element of Tensor.
参数 axis_index –The index of element
返回 The element of tensor

size_t set_preload_addr(void *addr, size_t size)
Set preload address of Tensor.
参数

• addr –The address of preload data
• size –Size of preload data

返回 The size of preload data
inline virtual void preload()

Preload the data of Tensor.
void reset_bias_layout(quant_type_t op_quant_type, bool is_depthwise)

Reset the layout of Tensor.

警告: Only available for Convolution. Don’t use it unless you know exactly what it does.

参数
• op_quant_type –The quant type of operation
• is_depthwise –Whether is depthwise convolution

void push(TensorBase *new_tensor, int dim)
Push new_tensor to current tensor. The time series dimension size of new tensor must is lesser or equal
than that of the current tensor.”.
参数

• new_tensor –The new tensor will be pushed
• dim –Specify the dimension on which to perform streaming stack pushes

virtual void print(bool print_data = false)
print the information of TensorBase
参数 print_data –Whether print the data

Espressif Systems 59
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

Public Members

int size
size of element including padding

std::vector<int> shape
shape of Tensor

dtype_t dtype
data type of element

int exponent
exponent of element

bool auto_free
free element when object destroy

std::vector<int> axis_offset
element offset of each axis

void *data
data pointer

void *cache
cache pointer，used for preload and do not need to free

uint32_t caps
flags indicating the type of memory

Public Static Functions

static void slice(TensorBase *input, TensorBase *output, const std::vector<int> &start, const
std::vector<int> &end, const std::vector<int> &axes = {}, const std::vector<int> &step =
{})

Produces a slice along multiple axes.

警告: The length of start, end and step must be same as the shape of input tensor

参数
• input –Input Tensor
• output –Output Tensor
• start –Starting indicesd
• end –Ending indices
• axes –Axes that starts and ends apply to.
• step –Slice step, step = 1 if step is not specified

Espressif Systems 60
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

4.2 Module API Reference

The Module is the base class for operators in esp-dl, and all operators inherit from this base class. This base class
defines the basic interfaces for operators, enabling the model layer to automatically execute operators and manage
memory planning.

4.2.1 Header File

• esp-dl/dl/module/include/dl_module_base.hpp

4.2.2 Classes

class Module
Base class for module.

Public Functions

Module(const char *name = NULL, module_inplace_t inplace = MODULE_NON_INPLACE,
quant_type_t quant_type = QUANT_TYPE_NONE)

Construct a new Module object.
参数

• name –Name of module.
• inplace –Inplace operation mode
• quant_type –Quantization type

virtual ~Module()
Destroy the Module object. Return resource.

inline virtual std::vector<int> get_outputs_index()
Get the tensor index of this module’s outputs.
返回 Tensor index of model’s tensors

virtual std::vector<std::vector<int» get_output_shape(std::vector<std::vector<int» &input_shapes) =
0

Calculate output shape by input shape.
参数 input_shapes –Input shapes
返回 outputs shapes

virtual void forward(ModelContext *context, runtime_mode_t mode = RUNTIME_MODE_AUTO) = 0
Build the module, high-level interface for Module layer.
参数

• context –Model context including all inputs and outputs and other runtime informa-
tion

• mode –Runtime mode, default is RUNTIME_MODE_AUTO
inline virtual void forward_args(void *args)

Run the module, Low-level interface for base layer and multi-core processing.
参数 args –ArgsType, arithArgsType, resizeArgsType and so on

inline virtual void print()
print module information

Espressif Systems 61
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/dl/module/include/dl_module_base.hpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

inline virtual void set_preload_addr(void *addr, size_t size)
set preload RAM pointer
参数

• addr –Internal RAM address, should be aligned to 16 bytes
• size –The size of RAM address

inline virtual void preload()
Perform a preload operation.

警告: Not implemented

inline virtual void reset()
reset all state of module, include inputs，outputs and preload cache setting

virtual void run(TensorBase *input, TensorBase *output, runtime_mode_t mode =
RUNTIME_MODE_SINGLE_CORE)

Run the module with single input and single output.
参数

• input –Input tensor
• output –Output tensor
• mode –Runtime mode

virtual void run(std::vector<dl::TensorBase*> inputs, std::vector<dl::TensorBase*> outputs,
runtime_mode_t mode = RUNTIME_MODE_SINGLE_CORE)

Run the module by inputs and outputs.
参数

• inputs –Input tensors
• outputs –Output tensors
• mode –Runtime mode

Public Members

char *name
Name of module.

module_inplace_t inplace
Inplace type.

quant_type_t quant_type
Quantization type.

std::vector<int> m_inputs_index
Tensor index of model’s tensors that used for inputs.

std::vector<int> m_outputs_index
Tensor index of model’s tensors that used for outputs.

Public Static Functions

Espressif Systems 62
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

static inline Module *deserialize(fbs::FbsModel *fbs_model, std::string node_name)
create module instance by node serialization information
参数

• fbs_model –Flatbuffer’s model
• node_name –The node name in model’s graph

返回 The pointer of module instance

4.2.3 Header File

• esp-dl/dl/module/include/dl_module_creator.hpp

4.2.4 Classes

class ModuleCreator
Singleton class for registering modules.

Public Types

using Creator = std::function<Module*(fbs::FbsModel*, std::string)>
Module creator function type.

Public Functions

inline void register_module(const std::string &op_type, Creator creator)
Register a module creator to the module creator map This function allows for the dynamic registration of
new module types and their corresponding creator functions at runtime. By associating the module type
name with the creator function, the system can flexibly create instances of various modules.
参数

• op_type –The module type name, used as the key in the map
• creator –The module creator function, used to create modules of a specific type

inline Module *create(fbs::FbsModel *fbs_model, const std::string &op_type, const std::string name)
Create module instance pointer.
参数

• fbs_model –Flatbuffer model pointer
• op_type –Module/Operator type
• name –Module name

返回 Module instance pointer
inline void register_dl_modules()

Pre-register the already implemented modules.
inline void print()

Print all modules has been registered.
inline void clear()

Clear all modules has been registered.

Espressif Systems 63
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/dl/module/include/dl_module_creator.hpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

Public Static Functions

static inline ModuleCreator *get_instance()
Get instance of ModuleCreator by this function. It is only safe method to get instance of ModuleCreator
because ModuleCreator is a singleton class.
返回 ModuleCreator instance pointer

4.3 Model API Reference

This section covers model loading and static memory planning, making it convenient for users to directly load and
run ESPDL models.

4.3.1 Header File

• esp-dl/dl/model/include/dl_model_base.hpp

4.3.2 Macros

DL_LOG_INFER_LATENCY_INIT_WITH_SIZE(size)

DL_LOG_INFER_LATENCY_INIT()

DL_LOG_INFER_LATENCY_START()

DL_LOG_INFER_LATENCY_END()

DL_LOG_INFER_LATENCY_PRINT(prefix, key)

DL_LOG_INFER_LATENCY_END_PRINT(prefix, key)

DL_LOG_INFER_LATENCY_ARRAY_INIT_WITH_SIZE(n, size)

DL_LOG_INFER_LATENCY_ARRAY_INIT(n)

DL_LOG_INFER_LATENCY_ARRAY_START(i)

DL_LOG_INFER_LATENCY_ARRAY_END(i)

DL_LOG_INFER_LATENCY_ARRAY_PRINT(i, prefix, key)

DL_LOG_INFER_LATENCY_ARRAY_END_PRINT(i, prefix, key)

4.3.3 Classes

class Model
Neural Network Model.

Public Functions

Espressif Systems 64
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/dl/model/include/dl_model_base.hpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

Model(const char *rodata_address_or_partition_label_or_path, fbs::model_location_type_t location =
fbs::MODEL_LOCATION_IN_FLASH_RODATA, int max_internal_size = 0,
memory_manager_t mm_type = MEMORY_MANAGER_GREEDY, const uint8_t *key = nullptr,
bool param_copy = true)

Create the Model object by rodata address or partition label.
参数

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• location –The model location.
• max_internal_size –In bytes. Limit the max internal size usage. Only take effect
when there’s a PSRAM, and you want to alloc memory on internal RAM first.

• mm_type –Type of memory manager
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to
PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Model(const char *rodata_address_or_partition_label_or_path, int model_index,
fbs::model_location_type_t location = fbs::MODEL_LOCATION_IN_FLASH_RODATA, int
max_internal_size = 0, memory_manager_t mm_type = MEMORY_MANAGER_GREEDY, const
uint8_t *key = nullptr, bool param_copy = true)

Create the Model object by rodata address or partition label.
参数

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• model_index –The model index of packed models.
• location –The model location.
• max_internal_size –In bytes. Limit the max internal size usage. Only take effect
when there’s a PSRAM, and you want to alloc memory on internal RAM first.

• mm_type –Type of memory manager
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to
PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Model(const char *rodata_address_or_partition_label_or_path, const char *model_name,
fbs::model_location_type_t location = fbs::MODEL_LOCATION_IN_FLASH_RODATA, int
max_internal_size = 0, memory_manager_t mm_type = MEMORY_MANAGER_GREEDY, const
uint8_t *key = nullptr, bool param_copy = true)

Create the Model object by rodata address or partition label.
参数

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• model_name –The model name of packed models.
• location –The model location.

Espressif Systems 65
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

• max_internal_size –In bytes. Limit the max internal size usage. Only take effect
when there’s a PSRAM, and you want to alloc memory on internal RAM first.

• mm_type –Type of memory manager
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to
PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

Model(fbs::FbsModel *fbs_model, int internal_size = 0, memory_manager_t mm_type =
MEMORY_MANAGER_GREEDY)

Create the Model object by fbs_model.
参数

• fbs_model –The fbs model.
• internal_size –Internal ram size, in bytes
• mm_type –Type of memory manager

virtual ~Model()
Destroy the Model object.

virtual esp_err_t load(const char *rodata_address_or_partition_label_or_path, fbs::model_location_type_t
location = fbs::MODEL_LOCATION_IN_FLASH_RODATA, const uint8_t *key
= nullptr, bool param_copy = true)

Load model graph and parameters from FLASH or sdcard.
参数

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• location –The model location.
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to
PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

返回
• ESP_OK Success
• ESP_FAIL Failed

virtual esp_err_t load(const char *rodata_address_or_partition_label_or_path, fbs::model_location_type_t
location = fbs::MODEL_LOCATION_IN_FLASH_RODATA, int model_index =
0, const uint8_t *key = nullptr, bool param_copy = true)

Load model graph and parameters from FLASH or sdcard.
参数

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• location –The model location.
• model_index –The model index of packed models.
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to
PSRAM. Only set this param to false when your PSRAM resource is very

Espressif Systems 66
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

返回
• ESP_OK Success
• ESP_FAIL Failed

virtual esp_err_t load(const char *rodata_address_or_partition_label_or_path, fbs::model_location_type_t
location = fbs::MODEL_LOCATION_IN_FLASH_RODATA, const char
*model_name = nullptr, const uint8_t *key = nullptr, bool param_copy = true)

Load model graph and parameters from FLASH or sdcard.
参数

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• location –The model location.
• model_name –The model name of packed models.
• key –The key of encrypted model.
• param_copy –Set to false to avoid copy model parameters from FLASH to
PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

返回
• ESP_OK Success
• ESP_FAIL Failed

virtual esp_err_t load(fbs::FbsModel *fbs_model)
Load model graph and parameters from Flatbuffers model.
参数 fbs_model –The FlatBuffers model
返回

• ESP_OK Success
• ESP_FAIL Failed

virtual void build(size_t max_internal_size, memory_manager_t mm_type =
MEMORY_MANAGER_GREEDY, bool preload = false)

Allocate memory for the model.
参数

• max_internal_size –In bytes. Limit the max internal size usage. Only take effect
when there’s a PSRAM, and you want to alloc memory on internal RAM first.

• mm_type –Type of memory manager
• preload –Whether to preload the model’s parameters to internal ram (not imple-
mented yet)

virtual void run(runtime_mode_t mode = RUNTIME_MODE_SINGLE_CORE)
Run the model module by module.
参数 mode –Runtime mode.

virtual void run(TensorBase *input, runtime_mode_t mode = RUNTIME_MODE_SINGLE_CORE)
Run the model module by module.
参数

• input –The model input.
• mode –Runtime mode.

Espressif Systems 67
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

virtual void run(std::map<std::string, TensorBase*> &user_inputs, runtime_mode_t mode =
RUNTIME_MODE_SINGLE_CORE, std::map<std::string, TensorBase*> user_outputs =
{})

Run the model module by module.
参数

• user_inputs –The model inputs.
• mode –Runtime mode.
• user_outputs –It’s for debug to specify the output of the intermediate layer; Under
normal use, there is no need to pass a value to this parameter. If no parameter is passed,
the default is the graphical output, which can be obtained through Model::get_outputs().

void minimize()
Minimize the model.

esp_err_t test()
Test whether the model inference result is correct. Themodel should contain test_inputs and test_outputs.
Enable export_test_values option in esp-ppq to use this api.
返回 esp_err_t

std::map<std::string, mem_info_t> get_memory_info()
Get memory info.
返回 Memory usage statistics on internal and PSRAM.

std::map<std::string, module_info> get_module_info()
Get module info.
返回 return Type and latency of each module.

void print_module_info(const std::map<std::string, module_info> &info, bool
sort_module_by_latency = false)

Print the module info obtained by get_module_info function.
参数

• info –
• sort_module_by_latency –

void profile_memory()
Print model memory summary.

void profile_module(bool sort_module_by_latency = false)
Print module info summary. (Name, Type, Latency)
参数 sort_module_by_latency –True The module is printed in latency decreasing

sort. False The module is printed in ONNX topological sort.
void profile(bool sort_module_by_latency = false)

Combination of profile_memory & profile_module.
参数 sort_module_by_latency –True The module is printed in latency decreasing

sort. False The module is printed in ONNX topological sort.
virtual std::map<std::string, TensorBase*> &get_inputs()

Get inputs of model.
返回 The map of model input’s name and TensorBase*

virtual TensorBase *get_input()
Get the only input of model.
返回 TensorBase*

Espressif Systems 68
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

virtual TensorBase *get_input(const std::string &name)
Get input of model by name.
参数 name –input name
返回 TensorBase*

virtual TensorBase *get_intermediate(const std::string &name)
Get intermediate TensorBase of model.

备注: When using memory manager, the content of TensorBase’s data may be overwritten by the
outputs of other

参数 name –The name of intermediate Tensor. operators.
返回 The intermediate TensorBase*.

virtual std::map<std::string, TensorBase*> &get_outputs()
Get outputs of model.
返回 The map of model output’s name and TensorBase*

virtual TensorBase *get_output()
Get the only output of model.
返回 TensorBase*

virtual TensorBase *get_output(const std::string &name)
Get output of model by name.
参数 name –output name
返回 TensorBase*

std::string get_metadata_prop(const std::string &key)
Get the model’s metadata prop.
参数 key –The key of metadata prop
返回 The value of metadata prop

virtual void print()
Print the model.

inline virtual fbs::FbsModel *get_fbs_model()
Get the fbs model instance.
返回 fbs::FbsModel *

4.3.4 Header File

• esp-dl/dl/model/include/dl_model_context.hpp

4.3.5 Macros

CONTEXT_PARAMETER_OFFSET

Offset for parameter tensors

Espressif Systems 69
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/dl/model/include/dl_model_context.hpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

4.3.6 Classes

class ModelContext
Model Context class including variable tensors and parameters.

Public Functions

inline ModelContext()
Constructor for ModelContext. Initializes the PSRAM and internal root pointers to nullptr.

inline ~ModelContext()
Destructor for ModelContext. Clears all resources and tensors.

int add_tensor(const std::string name, bool is_paramter = false, TensorBase *tensor = nullptr)
Adds a tensor to the parameter or variable list.
参数

• name –The name of the tensor.
• is_paramter –Whether the tensor is a parameter (default: false).
• tensor –Pointer to the TensorBase object (default: nullptr).

返回 int Returns the index of the added tensor.
int push_back_tensor(TensorBase *tensor, bool is_paramter = false)

Push back a tensor.
参数

• tensor –Pointer to the TensorBase object.
• is_paramter –Whether the tensor is a parameter (default: false).

返回 int Returns the index of the added tensor.
void update_tensor(int index, TensorBase *tensor)

Updates the tensor at the specified index.
参数

• index –The index of the tensor to update.
• tensor –Pointer to the new TensorBase object.

TensorBase *get_tensor(int index)
Gets the tensor by its index.
参数 index –The index of the tensor.
返回 TensorBase* Returns the pointer to the TensorBase object, or nullptr if the index is in-

valid.
TensorBase *get_tensor(const std::string &name)

Gets the tensor by its name.
参数 name –The name of the tensor.
返回 TensorBase* Returns the pointer to the TensorBase object, or nullptr if the name is not

found.
int get_tensor_index(const std::string &name)

Gets the tensor index by its name.
参数 name –The name of the tensor.
返回 int Returns index if the name is found, else -1

int get_variable_index(const std::string &name)
Gets the variable tensor index by its name.
参数 name –The name of the tensor.
返回 int Returns index if the name is found and is variable tensor, else -1

Espressif Systems 70
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

inline int get_variable_count()
Gets the count of variable tensors.
返回 int Returns the number of variable tensors.

inline int get_parameter_count()
Gets the count of parameter tensors.
返回 int Returns the number of parameter tensors.

bool root_alloc(size_t internal_size, size_t psram_size, int alignment = 16)
Allocates memory for PSRAM and internal roots.
参数

• internal_size –The size of the internal memory in bytes.
• psram_size –The size of the PSRAM memory in bytes.
• alignment –The alignment of the memory in bytes.

返回 Bool Return true if the allocation is successful, false otherwise.
inline void *get_psram_root()

Gets the pointer to the PSRAM root.
返回 Void* Returns the pointer to the PSRAM root.

inline void *get_internal_root()
Gets the pointer to the internal root.
返回 Void* Returns the pointer to the internal root.

size_t get_parameter_memory_size(mem_info_t &mem_info, bool copy)
Gets the size of the parameters in bytes.
参数

• mem_info –The size of the memory used by the parameters in bytes, filtered by copy
option.

• copy –Filter the parameters by auto_free.
返回 size_t Returns the total size of the parameters memory in bytes.

size_t get_variable_memory_size(mem_info_t &mem_info)
Get the variable memory size object.
参数 mem_info –The size of the memory used by the variables in bytes.
返回 size_t Returns the total size of the variables memory in bytes.

inline void root_free()
Frees the memory allocated for PSRAM and internal roots. This function ensures proper cleanup of
allocated memory.

inline void minimize()
Minimizes the context by clearing the name-to-index map. This is used to free unnecessary intermediate
variables during the inference.

inline void clear()
Clears all resources and tensors in the context. This includes clearing variables, parameters, name-to-
index map, and freeing memory.

Public Members

std::vector<TensorBase*> m_variables
Variable tensors of model, the first one is nullptr

Espressif Systems 71
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

std::vector<TensorBase*> m_parameters
Parameters of model, the first one is nullptr

4.3.7 Header File

• esp-dl/dl/model/include/dl_memory_manager.hpp

4.3.8 Classes

class MemoryManagerBase
Memory manager base class, each model has its own memory manager TODO: share memory manager with
different models.
Subclassed by dl::MemoryManagerGreedy

Public Functions

inline MemoryManagerBase(int alignment = 16)
Construct a new Memory Manager Base object.
参数 alignment –Memory address alignment

inline virtual ~MemoryManagerBase()
Destroy the MemoryManager object. Return resource.

virtual bool alloc(fbs::FbsModel *fbs_model, std::vector<dl::module::Module*> &execution_plan,
ModelContext *context) = 0

Allocate memory for each tensor, include all input and output tensors.
参数

• fbs_model –FlatBuffer’s Model
• execution_plan –Topological sorted module list
• context –Model context

返回 Bool Return true if the allocation is successful, false otherwise.

Public Members

int alignment
The root pointer needs to be aligned must be a power of two

class TensorInfo
Tensor info, include tensor name, shape, dtype, size, time range and call times, which is used to plan model
memory.

Public Functions

TensorInfo(std::string &name, int time_begin, int time_end, std::vector<int> shape, dtype_t dtype, int
exponent, bool is_internal = false)

Construct a new Tensor Info object.
参数

• name –Tensor name

Espressif Systems 72
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/dl/model/include/dl_memory_manager.hpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

• time_begin –Tensor lifetime begin
• time_end –Tensor lifetime end
• shape –Tensor shape
• dtype –Tensor dtype
• exponent –Tensor exponent
• is_internal –Is tensor in internal RAM or not

inline ~TensorInfo()
Destroy the Tensor Info object.

void set_inplace_leader_tensor(TensorInfo *tensor)
Set the inplace leader tensor object.
参数 tensor –Inplace leader tensor

inline void set_inplace_follower_dirty_tensor(TensorInfo *tensor)
Set the inplace follower dirty tensor object.
参数 tensor –Inplace follower dirty tensor

inline void set_inplace_follower_clean_tensor(TensorInfo *tensor)
Set the inplace follower clean tensor object.
参数 tensor –Inplace follower clean tensor

inline std::pair<TensorInfo*, TensorInfo*> get_inplace_follower_tensor()
Get the inplace follower tensor object.
返回 std::pair<TensorInfo *, TensorInfo *>

void update_time(int new_time)
Update Tensor lifetime.
参数 new_time –new tensor lifetime

TensorBase *create_tensor(void *internal_root, void *psram_root)
Create a TensorBase object according to TensorInfo.
参数

• internal_root –Internal RAM root pointer
• psram_root –PSRAM root pointer

返回 TensorBase*
inline bool is_inplaced()

Is inplaced or not.
返回 true if inplaced else false

inline uint32_t get_offset()
Get the tensor offset.
返回 uint32_t

inline void set_offset(uint32_t offset)
Set the tensor offset.
参数 offset –

inline uint32_t get_internal_offset()
Get the internal offset.
返回 uint32_t

inline bool get_internal_state()
Get the internal state.
返回 true if is internal else false

Espressif Systems 73
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

inline void set_internal_state(bool is_internal)
Set the internal state.
参数 is_internal –

inline void set_internal_offset(uint32_t offset)
Set the internal offset.
参数 offset –

inline int get_time_end()
Get the liftetime end.
返回 int

inline int get_time_begin()
Get the liftetime begin.
返回 int

inline size_t get_size()
Get the tensor size.
返回 size_t

inline std::string get_name()
Get the tensor name.
返回 std::string

inline std::vector<int> get_shape()
Get the tensor shape.
返回 std::vector<int>

inline void print()
print tensor info

class MemoryChunk
Memory chunk, include size, is free, offset, alignment and tensor, which is used to simulate memory allocation.

Public Functions

MemoryChunk(size_t size, int is_free, int alignment = 16)
Construct a new Memory Chunk object.
参数

• size –Memory chunk size
• is_free –Whether free or not
• alignment –Memory chunk alignment

MemoryChunk(TensorInfo *tensor, int alignment = 16)
Construct a new Memory Chunk object.
参数

• tensor –TensorInfo
• alignment –Memory chunk alignment

inline ~MemoryChunk()
Destroy the Memory Chunk object.

Espressif Systems 74
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

MemoryChunk *merge_free_chunk(MemoryChunk *chunk)
Merge continuous free chunk.
参数 chunk –
返回 MemoryChunk*

MemoryChunk *insert(TensorInfo *tensor)
Insert tensor into free chunk.
参数 tensor –
返回 MemoryChunk*

MemoryChunk *extend(TensorInfo *tensor)
Extend free chunk and insert tensor.
参数 tensor –
返回 MemoryChunk*

inline void free()
Free memory chunk, set is_free to true and set tensor to nullptr.

size_t get_aligned_size(size_t size)
get aligned size, which is 16/alignment bytes aligned
参数 size –
返回 size_t

Public Members

size_t size
Memory chunk size

bool is_free
Whether memory chunk is free or not

int offset
Offset relative to root pointer

int alignment
Memory address alignment

TensorInfo *tensor
Info of the tensor which occupies the memory

4.3.9 Header File

• esp-dl/dl/model/include/dl_memory_manager_greedy.hpp

4.3.10 Classes

class MemoryManagerGreedy : public dl::MemoryManagerBase
Greedy memory manager that allocates memory for tensors in execution order, prioritizing internal RAM
allocation first.

Espressif Systems 75
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/dl/model/include/dl_memory_manager_greedy.hpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

Public Functions

inline MemoryManagerGreedy(int max_internal_size, int alignment = 16)
Constructs a greedy memory manager with specified constraints.
参数

• max_internal_size –Maximum allowed internal RAM usage in bytes
• alignment –Memory address alignment requirement (default: 16 bytes)

inline ~MemoryManagerGreedy()
Destructor that releases all managed memory resources.

virtual bool alloc(fbs::FbsModel *fbs_model, std::vector<dl::module::Module*> &execution_plan,
ModelContext *context)

Allocates memory for all network tensors following greedy strategy.
参数

• fbs_model –FlatBuffer model containing network architecture
• execution_plan –Execution graph ordered by computation dependencies
• context –Device-specific runtime configuration

返回 bool True if successful allocation, false if memory insufficient
void free()

Releases all allocated memory including tensor buffers and memory pools.

4.4 Fbs API Reference

The esp-dl model utilizes FlatBuffers to store information about parameters and the computation graph. Taking into
account the encryption requirements of some models, this part has not been open-sourced. However, we provide a
set of APIs to facilitate users in loading and parsing esp-dl models.

4.4.1 Header File

• esp-dl/fbs_loader/include/fbs_loader.hpp

4.4.2 Classes

class FbsLoader
Class for parser the flatbuffers.

Public Functions

FbsLoader(const char *rodata_address_or_partition_label_or_path = nullptr, model_location_type_t
location = MODEL_LOCATION_IN_FLASH_RODATA)

Construct a new FbsLoader object.
参数

• rodata_address_or_partition_label_or_path –The address of model
data while location is MODEL_LOCATION_IN_FLASH_RODATA. The label of par-
tition while location is MODEL_LOCATION_IN_FLASH_PARTITION. The path of
model while location is MODEL_LOCATION_IN_SDCARD.

• location –The model location.

Espressif Systems 76
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/fbs_loader/include/fbs_loader.hpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

~FbsLoader()

Destroy the FbsLoader object.
FbsModel *load(const uint8_t *key = nullptr, bool param_copy = true)

Load the model. If there are multiple sub-models, the first sub-model will be loaded.
参数

• key –NULL or a 128-bit AES key, like {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}

• param_copy –Set to false to avoid copy model parameters from FLASH to
PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

返回 Return nullptr if loading fails. Otherwise return the pointer of FbsModel.
FbsModel *load(const int model_index, const uint8_t *key = nullptr, bool param_copy = true)

Load the model by model index.
参数

• model_index –The index of model.
• key –NULL or a 128-bit AES key, like {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}.

• param_copy –Set to false to avoid copy model parameters from FLASH to
PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

返回 Return nullptr if loading fails. Otherwise return the pointer of FbsModel.
FbsModel *load(const char *model_name, const uint8_t *key = nullptr, bool param_copy = true)

Load the model by model name.
参数

• model_name –The name of model.
• key –NULL or a 128-bit AES key, like {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}

• param_copy –Set to false to avoid copy model parameters from FLASH to
PSRAM. Only set this param to false when your PSRAM resource is very
tight. This saves PSRAM and sacrifices the performance of model inference
because the frequency of PSRAM is higher than FLASH. Only takes effect
when MODEL_LOCATION_IN_FLASH_RODATA(CONFIG_SPIRAM_RODATA
not set) or MODEL_LOCATION_IN_FLASH_PARTITION.

返回 Return nullptr if loading fails. Otherwise return the pointer of FbsModel.
int get_model_num()

Get the number of models.
返回 The number of models

void list_models()
List all model’s name.

const char *get_model_location_string()
Get the model location string.
返回 The model location string.

Espressif Systems 77
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

4.4.3 Header File

• esp-dl/fbs_loader/include/fbs_model.hpp

4.4.4 Classes

class FbsModel
Flatbuffer model object.

Public Functions

FbsModel(const void *data, size_t size, model_location_type_t location, bool encrypt, bool rodata_move,
bool auto_free, bool param_copy)

Construct a new FbsModel object.
参数

• data –The data of model flatbuffers.
• size –The size of model flatbuffers in bytes.
• location –The location of model flatbuffers.
• encrypt –Whether the model flatbuffers is encrypted or not.
• rodata_move –Whether the model flatbuffers is moved from FLASH rodata to
PSRAM.

• auto_free –Whether to free the model flatbuffers data when destroy this class in-
stance.

• param_copy –Whether to copy the parameter in flatbuffers.
~FbsModel()

Destroy the FbsModel object.
void print()

Print the model information.
std::vector<std::string> topological_sort()

Return vector of node name in the order of execution.
返回 topological sort of node name.

esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name, int
&ret_value)

Get the attribute of node.
参数

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name, float

&ret_value)
Get the attribute of node.
参数

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.

Espressif Systems 78
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://github.com/espressif/esp-dl/blob/dd07971/esp-dl/fbs_loader/include/fbs_model.hpp
https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name, std::string
&ret_value)

Get the attribute of node.
参数

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

std::vector<int> &ret_value)
Get the attribute of node.
参数

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

std::vector<float> &ret_value)
Get the attribute of node.
参数

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

dl::quant_type_t &ret_value)
Get the attribute of node.
参数

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

dl::activation_type_t &ret_value)
Get the attribute of node.
参数

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

dl::resize_mode_t &ret_value)
Get the attribute of node.
参数

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_attribute(std::string node_name, std::string attribute_name,

dl::TensorBase *&ret_value)

Espressif Systems 79
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

Get the attribute of node.
参数

• node_name –The name of operation.
• attribute_name –The name of attribute.
• ret_value –The attribute value.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_input_shape(std::string node_name, int index, std::vector<int>

&ret_value)
Get operation input shape.
参数

• node_name –The name of operation.
• index –The index of inputs
• ret_value –Return shape value.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_output_shape(std::string node_name, int index, std::vector<int>

&ret_value)
Get operation output shape.
参数

• node_name –The name of operation.
• index –The index of outputs
• ret_value –Return shape value.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
esp_err_t get_operation_inputs_and_outputs(std::string node_name, std::vector<std::string>

&inputs, std::vector<std::string> &outputs)
Get the attribute of node.
参数

• node_name –The name of operation.
• inputs –The vector of operation inputs.
• outputs –The vector of operation outputs.

返回 esp_err_t Return ESP_OK if get successfully. Otherwise return ESP_FAIL.
std::string get_operation_type(std::string node_name)

Get operation type,“Conv”,“Linear”etc.
参数 node_name –The name of operation
返回 The type of operation.

dl::TensorBase *get_operation_parameter(std::string node_name, int index = 1, uint32_t caps =
MALLOC_CAP_DEFAULT)

Return if the variable is a parameter.
参数

• node_name –The name of operation
• index –The index of the variable
• caps –Bitwise OR of MALLOC_CAP_* flags indicating the type of memory to be
returned

返回 dl::TensorBase*
dl::TensorBase *get_operation_lut(std::string node_name, uint32_t caps =

MALLOC_CAP_DEFAULT, std::string attribute_name =
”lut”)

Get LUT(Look Up Table) if the operation has LUT.
参数

• node_name –The name of operation

Espressif Systems 80
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

• caps –Bitwise OR of MALLOC_CAP_* flags indicating the type of memory to be
returned

• attribute_name –The name of LUT attribute
返回 dl::TensorBase*

bool is_parameter(std::string name)
return true if the variable is a parameter
参数 name –Variable name
返回 true if the variable is a parameter else false

const void *get_tensor_raw_data(std::string tensor_name)
Get the raw data of FlatBuffers::Dl::Tensor.
参数 tensor_name –The name of Tensor.
返回 uint8_t * The pointer of raw data.

dl::dtype_t get_tensor_dtype(std::string tensor_name)
Get the element type of tensor tensor.
参数 tensor_name –The tensor name.
返回 FlatBuffers::Dl::TensorDataType

std::vector<int> get_tensor_shape(std::string tensor_name)
Get the shape of tensor.
参数 tensor_name –The name of tensor.
返回 std::vector<int> The shape of tensor.

std::vector<int> get_tensor_exponents(std::string tensor_name)
Get the exponents of tensor.

警告: When quantization is PER_CHANNEL, the size of exponents is same as out_channels. When
quantization is PER_TENSOR, the size of exponents is 1.

参数 tensor_name –The name of tensor.
返回 The exponents of tensor.

dl::dtype_t get_value_info_dtype(std::string var_name)
Get the element type of value_info.
参数 var_name –The value_info name.
返回 dl::dtype_t

std::vector<int> get_value_info_shape(std::string var_name)
Get the shape of value_info.
参数 var_name –The value_info name.
返回 the shape of value_info.

int get_value_info_exponent(std::string var_name)
Get the exponent of value_info. Only support PER_TENSOR quantization.
参数 var_name –The value_info name.
返回 the exponent of value_info

const void *get_test_input_tensor_raw_data(std::string tensor_name)
Get the raw data of test input tensor.
参数 tensor_name –The name of test input tensor.
返回 uint8_t * The pointer of raw data.

Espressif Systems 81
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

const void *get_test_output_tensor_raw_data(std::string tensor_name)
Get the raw data of test output tensor.
参数 tensor_name –The name of test output tensor.
返回 uint8_t * The pointer of raw data.

dl::TensorBase *get_test_input_tensor(std::string tensor_name)
Get the test input tensor.
参数 tensor_name –The name of test input tensor.
返回 The pointer of tensor.

dl::TensorBase *get_test_output_tensor(std::string tensor_name)
Get the test output tensor.
参数 tensor_name –The name of test output tensor.
返回 The pointer of tensor.

std::vector<std::string> get_test_outputs_name()
Get the name of test outputs.
返回 the name of test outputs

std::vector<std::string> get_graph_inputs()
Get the graph inputs.
返回 the name of inputs

std::vector<std::string> get_graph_outputs()
Get the graph outputs.
返回 the name of ounputs

void clear_map()
Clear all map.

void load_map()
Load all map.

std::string get_model_name()
Get the model name.
返回 the name of model

int64_t get_model_version()
Get the model version.
返回 The version of model

std::string get_model_doc_string()
Get the model doc string.
返回 The doc string of model

std::string get_model_metadata_prop(const std::string &key)
Get the model’s metadata prop.
参数 key –The key of metadata prop
返回 The value of metadata prop

void get_model_size(size_t *internal_size, size_t *psram_size, size_t *psram_rodata_size, size_t
*flash_size)

Get the model size.
参数

• internal_size –Flatbuffers model internal RAM usage

Espressif Systems 82
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

• psram_size –Flatbuffers model PSRAM usage
• psram_rodata_size –Flatbuffers model PSRAM rodate usage. If CON-
FIG_SPIRAM_RODATA option is on, \ Flatbuffers model in FLASH rodata will be
copied to PSRAM

• flash_size –Flatbuffers model FLASH usage

Public Members

bool m_param_copy
copy flatbuffers param or not.

Espressif Systems 83
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

Chapter 4. API Reference

Espressif Systems 84
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

索引

C
CONTEXT_PARAMETER_OFFSET (C macro), 69

D
dl::MemoryChunk (C++ class), 74
dl::MemoryChunk::~MemoryChunk (C++ func-

tion), 74
dl::MemoryChunk::alignment (C++ member),

75
dl::MemoryChunk::extend (C++ function), 75
dl::MemoryChunk::free (C++ function), 75
dl::MemoryChunk::get_aligned_size

(C++ function), 75
dl::MemoryChunk::insert (C++ function), 75
dl::MemoryChunk::is_free (C++ member), 75
dl::MemoryChunk::MemoryChunk (C++ func-

tion), 74
dl::MemoryChunk::merge_free_chunk

(C++ function), 74
dl::MemoryChunk::offset (C++ member), 75
dl::MemoryChunk::size (C++ member), 75
dl::MemoryChunk::tensor (C++ member), 75
dl::MemoryManagerBase (C++ class), 72
dl::MemoryManagerBase::~MemoryManagerBase

(C++ function), 72
dl::MemoryManagerBase::alignment (C++

member), 72
dl::MemoryManagerBase::alloc (C++ func-

tion), 72
dl::MemoryManagerBase::MemoryManagerBase

(C++ function), 72
dl::MemoryManagerGreedy (C++ class), 75
dl::MemoryManagerGreedy::~MemoryManagerGreedy

(C++ function), 76
dl::MemoryManagerGreedy::alloc (C++

function), 76
dl::MemoryManagerGreedy::free (C++ func-

tion), 76
dl::MemoryManagerGreedy::MemoryManagerGreedy

(C++ function), 76
dl::Model (C++ class), 64
dl::Model::~Model (C++ function), 66
dl::Model::build (C++ function), 67
dl::Model::get_fbs_model (C++ function), 69
dl::Model::get_input (C++ function), 68
dl::Model::get_inputs (C++ function), 68

dl::Model::get_intermediate (C++ func-
tion), 69

dl::Model::get_memory_info (C++ function),
68

dl::Model::get_metadata_prop (C++ func-
tion), 69

dl::Model::get_module_info (C++ function),
68

dl::Model::get_output (C++ function), 69
dl::Model::get_outputs (C++ function), 69
dl::Model::load (C++ function), 66, 67
dl::Model::minimize (C++ function), 68
dl::Model::Model (C++ function), 64–66
dl::Model::print (C++ function), 69
dl::Model::print_module_info (C++ func-

tion), 68
dl::Model::profile (C++ function), 68
dl::Model::profile_memory (C++ function),

68
dl::Model::profile_module (C++ function),

68
dl::Model::run (C++ function), 67
dl::Model::test (C++ function), 68
dl::ModelContext (C++ class), 70
dl::ModelContext::~ModelContext (C++

function), 70
dl::ModelContext::add_tensor (C++ func-

tion), 70
dl::ModelContext::clear (C++ function), 71
dl::ModelContext::get_internal_root

(C++ function), 71
dl::ModelContext::get_parameter_count

(C++ function), 71
dl::ModelContext::get_parameter_memory_size

(C++ function), 71
dl::ModelContext::get_psram_root (C++

function), 71
dl::ModelContext::get_tensor (C++ func-

tion), 70
dl::ModelContext::get_tensor_index

(C++ function), 70
dl::ModelContext::get_variable_count

(C++ function), 70
dl::ModelContext::get_variable_index

(C++ function), 70
dl::ModelContext::get_variable_memory_size

(C++ function), 71

85

索引

dl::ModelContext::m_parameters (C++
member), 71

dl::ModelContext::m_variables (C++
member), 71

dl::ModelContext::minimize (C++ function),
71

dl::ModelContext::ModelContext (C++
function), 70

dl::ModelContext::push_back_tensor
(C++ function), 70

dl::ModelContext::root_alloc (C++ func-
tion), 71

dl::ModelContext::root_free (C++ func-
tion), 71

dl::ModelContext::update_tensor (C++
function), 70

dl::module::Module (C++ class), 61
dl::module::Module::~Module (C++ func-

tion), 61
dl::module::Module::deserialize (C++

function), 62
dl::module::Module::forward (C++ func-

tion), 61
dl::module::Module::forward_args (C++

function), 61
dl::module::Module::get_output_shape

(C++ function), 61
dl::module::Module::get_outputs_index

(C++ function), 61
dl::module::Module::inplace (C++ mem-

ber), 62
dl::module::Module::m_inputs_index

(C++ member), 62
dl::module::Module::m_outputs_index

(C++ member), 62
dl::module::Module::Module (C++ function),

61
dl::module::Module::name (C++ member), 62
dl::module::Module::preload (C++ func-

tion), 62
dl::module::Module::print (C++ function),

61
dl::module::Module::quant_type (C++

member), 62
dl::module::Module::reset (C++ function),

62
dl::module::Module::run (C++ function), 62
dl::module::Module::set_preload_addr

(C++ function), 61
dl::module::ModuleCreator (C++ class), 63
dl::module::ModuleCreator::clear (C++

function), 63
dl::module::ModuleCreator::create

(C++ function), 63
dl::module::ModuleCreator::Creator

(C++ type), 63
dl::module::ModuleCreator::get_instance

(C++ function), 64

dl::module::ModuleCreator::print (C++
function), 63

dl::module::ModuleCreator::register_dl_modules
(C++ function), 63

dl::module::ModuleCreator::register_module
(C++ function), 63

dl::TensorBase (C++ class), 55
dl::TensorBase::~TensorBase (C++ func-

tion), 55
dl::TensorBase::assign (C++ function), 55,

56
dl::TensorBase::auto_free (C++ member),

60
dl::TensorBase::axis_offset (C++ mem-

ber), 60
dl::TensorBase::cache (C++ member), 60
dl::TensorBase::caps (C++ member), 60
dl::TensorBase::compare_elements (C++

function), 58
dl::TensorBase::data (C++ member), 60
dl::TensorBase::dtype (C++ member), 60
dl::TensorBase::equal (C++ function), 58
dl::TensorBase::exponent (C++ member), 60
dl::TensorBase::flip (C++ function), 57
dl::TensorBase::get_aligned_bytes

(C++ function), 56
dl::TensorBase::get_aligned_size (C++

function), 56
dl::TensorBase::get_bytes (C++ function),

56
dl::TensorBase::get_caps (C++ function), 57
dl::TensorBase::get_dtype (C++ function),

57
dl::TensorBase::get_dtype_bytes (C++

function), 56
dl::TensorBase::get_dtype_string (C++

function), 56
dl::TensorBase::get_element (C++ func-

tion), 59
dl::TensorBase::get_element_coordinates

(C++ function), 59
dl::TensorBase::get_element_index

(C++ function), 59
dl::TensorBase::get_element_ptr (C++

function), 56
dl::TensorBase::get_exponent (C++ func-

tion), 57
dl::TensorBase::get_shape (C++ function),

56
dl::TensorBase::get_size (C++ function), 56
dl::TensorBase::is_same_shape (C++ func-

tion), 57
dl::TensorBase::pad (C++ function), 58
dl::TensorBase::preload (C++ function), 59
dl::TensorBase::print (C++ function), 59
dl::TensorBase::push (C++ function), 59
dl::TensorBase::reset_bias_layout

(C++ function), 59

Espressif Systems 86
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

索引

dl::TensorBase::reshape (C++ function), 57
dl::TensorBase::set_element_ptr (C++

function), 56
dl::TensorBase::set_preload_addr (C++

function), 59
dl::TensorBase::set_shape (C++ function),

57
dl::TensorBase::shape (C++ member), 60
dl::TensorBase::size (C++ member), 60
dl::TensorBase::slice (C++ function), 58, 60
dl::TensorBase::TensorBase (C++ function),

55
dl::TensorBase::transpose (C++ function),

57
dl::TensorInfo (C++ class), 72
dl::TensorInfo::~TensorInfo (C++ func-

tion), 73
dl::TensorInfo::create_tensor (C++ func-

tion), 73
dl::TensorInfo::get_inplace_follower_tensor

(C++ function), 73
dl::TensorInfo::get_internal_offset

(C++ function), 73
dl::TensorInfo::get_internal_state

(C++ function), 73
dl::TensorInfo::get_name (C++ function), 74
dl::TensorInfo::get_offset (C++ function),

73
dl::TensorInfo::get_shape (C++ function),

74
dl::TensorInfo::get_size (C++ function), 74
dl::TensorInfo::get_time_begin (C++

function), 74
dl::TensorInfo::get_time_end (C++ func-

tion), 74
dl::TensorInfo::is_inplaced (C++ func-

tion), 73
dl::TensorInfo::print (C++ function), 74
dl::TensorInfo::set_inplace_follower_clean_tensor

(C++ function), 73
dl::TensorInfo::set_inplace_follower_dirty_tensor

(C++ function), 73
dl::TensorInfo::set_inplace_leader_tensor

(C++ function), 73
dl::TensorInfo::set_internal_offset

(C++ function), 74
dl::TensorInfo::set_internal_state

(C++ function), 73
dl::TensorInfo::set_offset (C++ function),

73
dl::TensorInfo::TensorInfo (C++ function),

72
dl::TensorInfo::update_time (C++ func-

tion), 73
DL_LOG_INFER_LATENCY_ARRAY_END (C

macro), 64
DL_LOG_INFER_LATENCY_ARRAY_END_PRINT

(C macro), 64

DL_LOG_INFER_LATENCY_ARRAY_INIT (C
macro), 64

DL_LOG_INFER_LATENCY_ARRAY_INIT_WITH_SIZE
(C macro), 64

DL_LOG_INFER_LATENCY_ARRAY_PRINT (C
macro), 64

DL_LOG_INFER_LATENCY_ARRAY_START (C
macro), 64

DL_LOG_INFER_LATENCY_END (C macro), 64
DL_LOG_INFER_LATENCY_END_PRINT (C

macro), 64
DL_LOG_INFER_LATENCY_INIT (C macro), 64
DL_LOG_INFER_LATENCY_INIT_WITH_SIZE (C

macro), 64
DL_LOG_INFER_LATENCY_PRINT (C macro), 64
DL_LOG_INFER_LATENCY_START (C macro), 64

F
fbs::FbsLoader (C++ class), 76
fbs::FbsLoader::~FbsLoader (C++ function),

76
fbs::FbsLoader::FbsLoader (C++ function),

76
fbs::FbsLoader::get_model_location_string

(C++ function), 77
fbs::FbsLoader::get_model_num (C++ func-

tion), 77
fbs::FbsLoader::list_models (C++ func-

tion), 77
fbs::FbsLoader::load (C++ function), 77
fbs::FbsModel (C++ class), 78
fbs::FbsModel::~FbsModel (C++ function), 78
fbs::FbsModel::clear_map (C++ function), 82
fbs::FbsModel::FbsModel (C++ function), 78
fbs::FbsModel::get_graph_inputs (C++

function), 82
fbs::FbsModel::get_graph_outputs (C++

function), 82
fbs::FbsModel::get_model_doc_string

(C++ function), 82
fbs::FbsModel::get_model_metadata_prop

(C++ function), 82
fbs::FbsModel::get_model_name (C++ func-

tion), 82
fbs::FbsModel::get_model_size (C++ func-

tion), 82
fbs::FbsModel::get_model_version (C++

function), 82
fbs::FbsModel::get_operation_attribute

(C++ function), 78, 79
fbs::FbsModel::get_operation_input_shape

(C++ function), 80
fbs::FbsModel::get_operation_inputs_and_outputs

(C++ function), 80
fbs::FbsModel::get_operation_lut (C++

function), 80
fbs::FbsModel::get_operation_output_shape

(C++ function), 80

Espressif Systems 87
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

索引

fbs::FbsModel::get_operation_parameter
(C++ function), 80

fbs::FbsModel::get_operation_type
(C++ function), 80

fbs::FbsModel::get_tensor_dtype (C++
function), 81

fbs::FbsModel::get_tensor_exponents
(C++ function), 81

fbs::FbsModel::get_tensor_raw_data
(C++ function), 81

fbs::FbsModel::get_tensor_shape (C++
function), 81

fbs::FbsModel::get_test_input_tensor
(C++ function), 82

fbs::FbsModel::get_test_input_tensor_raw_data
(C++ function), 81

fbs::FbsModel::get_test_output_tensor
(C++ function), 82

fbs::FbsModel::get_test_output_tensor_raw_data
(C++ function), 81

fbs::FbsModel::get_test_outputs_name
(C++ function), 82

fbs::FbsModel::get_value_info_dtype
(C++ function), 81

fbs::FbsModel::get_value_info_exponent
(C++ function), 81

fbs::FbsModel::get_value_info_shape
(C++ function), 81

fbs::FbsModel::is_parameter (C++ func-
tion), 81

fbs::FbsModel::load_map (C++ function), 82
fbs::FbsModel::m_param_copy (C++ mem-

ber), 83
fbs::FbsModel::print (C++ function), 78
fbs::FbsModel::topological_sort (C++

function), 78

Espressif Systems 88
Submit Document Feedback

Release v3.2.2-3-gdd0797170c

https://www.espressif.com/zh-hans/company/documents/documentation_feedback?docId=§ions=&version=Release v3.2.2-3-gdd0797170c%20for

	Table of contents
	Introduction
	ESP-DL 简介
	概述

	ESP-DL 项目组织
	dl（深度学习）
	vision（计算机视觉）
	audio（音频处理）
	fbs_loader（FlatBuffers 加载器）
	其他文件

	入门指南
	硬件要求
	软件要求
	ESP-IDF
	ESP-PPQ

	快速开始
	示例编译 & 烧录
	示例配置
	故障排除
	查看 ESP-IDF 文档
	擦除 FLASH 和清除示例

	模型量化
	模型部署

	Tutorials
	如何量化模型
	准备工作
	预训练模型
	量化并导出 .espdl
	添加测试输入/输出
	量化模型推理 & 精度评估

	高级量化方法
	训练后量化 (PTQ)
	量化感知训练 (QAT)

	如何加载、测试和性能分析模型
	准备工作
	从 rodata 中加载模型
	从 partition 中加载模型
	从 sdcard 中加载模型
	测试模型板端推理是否正确
	分析模型内存使用情况
	分析模型推理延迟
	组合性能分析：profile() 方法

	如何进行模型推理
	准备工作
	加载模型
	获取模型输入/输出。
	量化输入
	量化单个值
	量化 dl::TensorBase

	反量化输出
	反量化单个值
	反量化 dl::TensorBase

	模型推理

	如何创建新模块（算子）
	理解基类 Module
	创建新模块类
	示例：创建 MyCustomModule 类
	注册 MyCustomModule 类

	如何部署 MobileNetV2
	准备工作
	模型量化
	预训练模型
	校准数据集
	8bit 默认配置量化
	混合精度量化
	层间均衡量化

	模型部署
	图像分类基类
	前处理
	后处理

	如何部署 YOLO11n
	准备工作
	模型量化
	预训练模型
	校准数据集
	8bit 默认配置量化
	混合精度+算子分裂量化
	量化感知训练

	模型部署
	目标检测基类
	前处理
	后处理

	如何部署 YOLO11n-pose
	准备工作
	模型量化
	预训练模型
	校准数据集
	8bit 默认配置量化
	量化感知训练

	模型部署
	目标检测基类
	前处理
	后处理

	如何部署流式模型
	准备工作
	模型量化
	如何转换为流式模型
	自动流式转换
	自动流式转换的工作原理

	模型部署

	API Reference
	Tensor API Reference
	Header File
	Classes

	Module API Reference
	Header File
	Classes
	Header File
	Classes

	Model API Reference
	Header File
	Macros
	Classes
	Header File
	Macros
	Classes
	Header File
	Classes
	Header File
	Classes

	Fbs API Reference
	Header File
	Classes
	Header File
	Classes

	索引
	索引

