
ESP-Docs User Guide

Release v2.1.0-10-ga05f6ae123
Espressif Systems
Oct 30, 2025

Table of contents

Table of contents i

1 Introduction 3
1.1 What Is ESP-Docs? . 3

1.1.1 Features . 3
1.1.2 Third-Party Extensions . 3
1.1.3 Extensions Developed by Espressif . 4

1.2 reStructuredText v.s. Markdown . 6
1.2.1 Extensibility . 7
1.2.2 Features . 7

1.3 ESP-Docs & Espressif Server v.s. Sphinx & Read the Docs . 9

2 Writing Documentation 11
2.1 Basic Syntax . 11

2.1.1 Paragraphs . 11
2.1.2 Inline Formatting . 11
2.1.3 Titles and Headings . 12
2.1.4 Section Numbering . 12
2.1.5 Lists . 14
2.1.6 Code Blocks . 15
2.1.7 Tables of Contents . 16
2.1.8 Index Files . 17
2.1.9 Substitutions . 17
2.1.10 To-Do Notes . 18

2.2 Figures . 18
2.2.1 Why Add Figures? . 18
2.2.2 Adding Figures in ESP-Docs . 19

2.3 Tables . 23
2.3.1 Simple Table . 23
2.3.2 Grid Table . 24
2.3.3 List Table . 25
2.3.4 CSV Table . 26
2.3.5 Comparison . 26
2.3.6 Still No Good Fit? . 27

2.4 Links . 27
2.4.1 Table of Contents . 27
2.4.2 Linking to Language Versions . 28
2.4.3 Linking to Other Sections Within the Document . 28
2.4.4 Linking to Other Documents . 28
2.4.5 Linking to a Specific Place of Other Documents in a Same Project 29
2.4.6 Linking to Kconfig References . 29
2.4.7 Linking to Classes, Functions, Enumerations, etc . 29
2.4.8 Linking to GitHub Files . 30
2.4.9 Linking to External Pages . 31
2.4.10 Linking to ESP TRMs and Datasheets . 31
2.4.11 Resources . 32

2.5 Creating a Glossary . 32

i

2.5.1 Create Glossary of Terms . 32
2.5.2 Link a Term to its Glossary Entry . 33

2.6 Writing for Multiple Targets . 33
2.6.1 Target-Specific Inline Text . 33
2.6.2 Target-Specific Paragraph . 34
2.6.3 Target-Specific Bullet Point . 36
2.6.4 Target-Specific Document . 36

2.7 Redirecting Documents . 37
2.8 Writing API Description . 38

2.8.1 Document Conventions . 38
2.8.2 Macro . 38
2.8.3 Type Definition . 39
2.8.4 Enumeration . 39
2.8.5 Structure . 41
2.8.6 Union . 42
2.8.7 Function . 44

2.9 Formatting and Generating API Descriptions . 45
2.9.1 Document API in Header Files . 45
2.9.2 Generate and Include API Descriptions . 52
2.9.3 Linking to Functions, Enumerations, etc . 53
2.9.4 Example . 53

2.10 Formatting Documents for Translation . 53
2.10.1 One Line per Paragraph . 53
2.10.2 Line Number Consistency . 54

2.11 Using Spellcheckers in VS Code . 54
2.11.1 Why Use Spellcheckers? . 55
2.11.2 Using Code Spell Checker in VS Code . 55

3 Building Documentation 57
3.1 Previewing Documentation inside Your Text Editor . 57

3.1.1 Visual Studio Code . 57
3.1.2 Sublime Text . 57

3.2 Building Documentation Locally . 57
3.2.1 Building HTML Locally on Your PC . 58
3.2.2 Building PDF Documentation Locally on Your PC . 60
3.2.3 Using a Docker Container . 61
3.2.4 Troubleshooting . 62

4 Configuring ESP-Docs Projects 63
4.1 Integrating ESP-Docs into Your Project . 63

4.1.1 Get Familiar with the Documentation Folder . 63
4.1.2 Prepare a Documentation Folder . 64
4.1.3 Update Build Configuration Files . 64
4.1.4 Update CI Configuration File . 65
4.1.5 What’s Next? . 65

4.2 Adding Extensions . 66
4.2.1 Where to Add? . 66
4.2.2 Third-Party Extensions . 66
4.2.3 Self-Developed Extensions . 66

4.3 Adding the Link-check Function . 67
4.3.1 How to Integrate the Link-check Function . 67
4.3.2 Note . 68

4.4 Collecting User Analytics . 69
4.4.1 Enabling Google Analytics for Your Project . 69
4.4.2 Viewing Google Analytics Data or Reports . 70

4.5 Collecting Document Feedback . 70
4.5.1 How to Add the Feedback Section to Your Repo . 71
4.5.2 Configuration of Collection of User Reactions in Google Analytics 71

ii

4.5.3 References . 73
4.6 Configuring codespell in GitLab Repositories . 73

4.6.1 Using codespell as a Git Pre-Commit Hook (Local) 75
4.6.2 Expected Behavior of the Local pre-commit Hook for codespell 75
4.6.3 Implement codespell in GitLab CI/CD . 76
4.6.4 Summary . 78

5 Troubleshooting 79
5.1 Troubleshooting Build Errors and Warnings . 79

5.1.1 Message Format . 79
5.1.2 Package-Related Errors and Warnings . 79
5.1.3 Syntax-Related Errors and Warnings . 81
5.1.4 Still Have Troubles? . 83

6 Contributing Guide 85
6.1 Report a Bug . 85
6.2 Add a New Feature . 85
6.3 Make Minor Changes . 85
6.4 Ask a Question . 85

7 Related Resources 87

8 Glossary 89

Index 91

Index 91

iii

iv

Table of contents

ESP-Docs is a documentation-building system developed by Espressif based on Sphinx and Read the Docs. This
guide provides information on how to use it as the documentation-building system in a project and how to write,
build, configure, and deploy the documentation under this system.
It is primarily for developers, writers, and translators who work on Espressif software documentation. Others can also
use it as a reference, such as for reStructuredText syntax, Sphinx extensions, and customizing your documentation-
building system based on Sphinx. Note that some links in this guide point to Espressif’s internal documentation,
which is thus not accessible to external users.
The guide consists of the following major sections:

Introduction
Overview, features,
extensions, supported
markup language of
ESP-Docs.

Writing Doc
ESP-Docs-specific syntax
and generic Sphinx and
restructuredText syntax,
including basic syntax and
link syntax.

Building Doc
How to preview docu-
mentation, build docu-
mentation from source
to target (HTML, PDF)
etc.

Configuring ESP-Docs
Projects

Configuration to Git projects
to use ESP-Docs, adding ex-
tensions, etc.

Espressif Systems 1
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/en/master/
introduction/index.html
introduction/index.html
writing-documentation/index.html
writing-documentation/index.html
building-documentation/index.html
building-documentation/index.html
configuring-esp-docs-projects/index.html
configuring-esp-docs-projects/index.html
configuring-esp-docs-projects/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Table of contents

Espressif Systems 2
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 1

Introduction

1.1 What Is ESP-Docs?

ESP-Docs is a documentation-building system developed by Espressif based on Sphinx and Read the Docs. It expands
Sphinx functionality and extensions with the features needed for Espressif’s documentation and bundles this into
a single package. It takes text source files written in reStructuredText and builds them into target formats, including
HTML and PDF.
ESP-Docs is an open-source and common project. You are always welcome to contribute any functionality! See
Contributing Guide for more information.
ESP-Docs is available as a Python package.

1.1.1 Features

ESP-Docs has the following features:
• Generating documentation for multiple targets from the same source files
• Generating API documentation automatically for multiple targets from header files
• Page redirection
• Linking to a specific file and folder in the project
• All features already provided by Sphinx, such as:

– Source text format: reStructuredText
– Multiple languages: English, Chinese, etc.
– Output format: HTML, PDF, etc.
– Extensive cross-references
– Extensions

1.1.2 Third-Party Extensions

Besides Sphinx, several other third-party applications (extensions) help to provide nicely formatted and easy-to-
navigate documentation. These applications are listed together with the installed version numbers as the dependent
packages to ESP-Docs in setup.cfg .

• docutils: open-source text processing system for processing plaintext in reStructuredText into HTML, LaTeX,
etc.

• cairosvg: SVG converter based on Cairo 2D graphics library to export SVG files to PDF, EPS, PS, and PNG
files.

• sphinx: documentation generator, which is the foundation for ESP-Docs.
• breathe: bridge between the Sphinx and Doxygen documentation systems, making it possible to include Doxy-
gen information in a set of documentation generated by Sphinx.

• sphinx-copybutton: Sphinx extension to add a“copy”button to code blocks.

3

http://www.sphinx-doc.org/
https://readthedocs.org
https://en.wikipedia.org/wiki/ReStructuredText
https://pypi.org/project/esp-docs/
https://github.com/espressif/esp-docs/blob/a05f6ae/setup.cfg
https://pypi.org/project/docutils/
https://pypi.org/project/CairoSVG
https://pypi.org/project/Sphinx/
https://pypi.org/project/breathe/
https://pypi.org/project/sphinx-copybutton/

Chapter 1. Introduction

• sphinx-notfound-page: Sphinx extension to create custom 404 pages.
• sphinxcontrib-blockdiag: Sphinx extension to generate block diagrams from plaintext.
• sphinxcontrib-seqdiag: Sphinx extension to generate sequence diagrams from plaintext.
• sphinxcontrib-actdiag: Sphinx extension to generate activity diagrams from plaintext.
• sphinxcontrib-nwdiag: Sphinx extension to generate network-related diagrams from plaintext.
• sphinxcontrib-wavedrom: Sphinx extension to generate wavedrom diagrams from plaintext.
• sphinxcontrib-svg2pdfconverter: sphinx extension to convert SVG images to PDF in case the builder does not
support SVG images natively.

• nwdiag: network diagram generator.
• recommonmark: a flavor of Markdown. With this package, Sphinx can build documents written in Markdown
to target formats.

• sphinx_selective_exclude: Sphinx extension to make the “only::”directive provided by Sphinx work in an
expected and intuitive manner.

1.1.3 Extensions Developed by Espressif

Espressif has created a couple of custom add-ons and extensions to help integrate documentation with underlying
Espressif repositories and further improve navigation as well as maintenance of documentation.
The section provides a quick reference to these add-ons and extensions.

Generic Extensions

These Sphinx extensions are developed for Espressif but do not rely on any Espressif-docs-specific behavior or con-
figuration.

Toctree Filter This Sphinx extension overrides the :toctree: directive to allow filtering entries based on
whether a tag is set (similar to how .. only:: does for paragraphs), as :tagname: toctree_entry. See
the Python file for a more complete description.
See Target-Specific Document for an example.

List Filter This Sphinx extension provides a .. list:: directive that allows filtering of entries in lists based
on whether a tag is set, as :tagname: - list content. See the Python file for a more complete description.
See Target-Specific Bullet Point for an example.

HTML redirect During the documentation lifetime, some source files are moved between folders or renamed.
This Sphinx extension adds a mechanism to redirect documentation pages that have changed URLs by gen-
erating in the Sphinx output static HTML redirect pages. The script is used together with a redirection list
html_redirect_pages. conf_common.py builds this list from docs/page_redirects.txt.
See Redirecting Documents for how to redirect documents.

Add warnings In some cases, it might be useful to be able to add warnings to a list of documents. This is the case
in ESP-IDF when we introduce a new target, which we build docs for, but not all docs are yet updated with useful
information. This extension can then be used to give warnings to readers of documents that are not yet updated.
Configuration values:

• add_warnings_content: content of the warning which will be added to the top of the documents.
• add_warnings_pages: list of the documents which the warning will be added to.

See conf_commom.py and docs_not_updated of ESP-IDF Programming Guide for an example.

Espressif Systems 4
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://pypi.org/project/sphinx-notfound-page/
https://pypi.org/project/sphinxcontrib-blockdiag/
https://pypi.org/project/sphinxcontrib-seqdiag/
https://pypi.org/project/sphinxcontrib-actdiag/
https://pypi.org/project/sphinxcontrib-nwdiag/
https://pypi.org/project/sphinxcontrib-wavedrom/
https://pypi.org/project/sphinxcontrib-svg2pdfconverter/
https://pypi.org/project/nwdiag/
https://github.com/readthedocs/recommonmark
https://pypi.org/project/sphinx-selective-exclude/
https://github.com/espressif/esp-idf/blob/master/docs/conf_common.py
https://github.com/espressif/esp-idf/tree/master/docs/docs_not_updated
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 1. Introduction

Espressif-Specific Extensions

RunDoxygen Subscribes to defines-generated event and runs Doxygen (docs/doxygen/Doxyfile)
to generate XML files describing key headers, and then runs Breathe to convert these to .inc files which can be
included directly into API reference pages.
Pushes a number of target-specific custom environment variables into Doxygen, including all macros defined in the
project’s default sdkconfig.h file and all macros defined in all soc component xxx_caps.h headers. This
means that public API headers can depend on target-specific configuration options or soc capabilities headers options
as #ifdef & #if preprocessor selections in the header.
This means we can generate different Doxygen files, depending on the target we are building docs for.
For headers with unique names the path to the generated .inc will be the header name itself, e.g.: inc/
my_header.inc, while for headers with non-unique names the whole header path will be used, e.g.: inc/
component/folder/my_header.inc.
See Formatting and Generating API Descriptions for how to generate API description from header files and include it
in your documentation.

Exclude Docs The Sphinx extension updates the excluded documents according to the condi-
tional_include_dict {tag:documents}. If the tag is set, the list of documents will be included.
It is also responsible for excluding documents when building with the config value docs_to_build set. In these
cases, all documents not listed in docs_to_build will be excluded.
It subscribes to defines-generated as it relies on the Sphinx tags to determine which documents to exclude.
See Target-Specific Document for an example.

Format ESP Target This is an extension for replacing generic target-related names with the idf_target passed to
the Sphinx command line. It supports markup for defining local (single .rst file) substitutions and it also overrides the
default .. include:: directive in order to format any included content using the same rules.
See Target-Specific Inline Text for an example.

Link Roles This is an implementation of a custom Sphinx Roles to help to link from documentation to specific
files and folders in project repositories.
See Links to files on GitHub for an example.

Latex Builder This extension adds ESP-Docs-specific functionality to the LaTeX builder. It overrides the default
Sphinx LaTeX builder.
It creates and adds the espidf.sty LaTeX package to the output directory, which contains some macros for run-time
variables such as IDF-Target.

Include Build File The include-build-file directive is like the built-in include-file directive, but
the file path is evaluated relative to build_dir.

IDF-Specific Extensions

Build System Integration This is a Python package implementing a Sphinx extension to pull IDF build system
information into the documentation build process:

• Creates a dummy CMake IDF project and runs CMake to generate metadata.
• Registers some new configuration variables and emits a new Sphinx event, both of which are for use by other
extensions.

Espressif Systems 5
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 1. Introduction

Configuration Variables
• docs_root - The absolute path of the $IDF_PATH/docs directory.
• idf_path - The value of IDF_PATH variable, or the absolute path of IDF_PATH if environment unset.
• build_dir - The build directory passed in by build_docs.py, and the default will be like _build/
<lang>/<target>.

• idf_target - The IDF_TARGET value. It is expected that build_docs.py set this on the Sphinx
command line.

New Event project-build-info event is emitted early in the build, after the dummy project CMake run is
complete.
Arguments are (app, project_description), where project_description is a dict containing the
values parsed from project_description.json in the CMake build directory.
Other IDF-specific extensions subscribe to this event and use it to set up some docs parameters based on build system
info.

KConfig Reference This extension subscribes to project-build-info event and uses confgen to gener-
ate kconfig.inc from the components included in the default project build. This file is then included into /
api-reference/kconfig.
See Link to Kconfig Reference for an example.

Error to Name Small wrapper extension that calls gen_esp_err_to_name.py and updates the included .rst
file if it has changed.

Generate Toolchain Links There are a couple of places in documentation that provide links to download the
toolchain. To provide one source of this information and reduce efforts to manually update several files, this script
generates toolchain download links and toolchain unpacking code snippets based on information found in tools/
toolchain_versions.mk. These links can be found in List of IDF Tools.

Generate Version-Specific Includes This extension automatically generates reStructuredText.inc snippets with
version-based content for this ESP-IDF version, such as git-clone-bash.inc.

Generate Defines This extension integrates defines from IDF into the Sphinx build and runs after the IDF dummy
project has been built.
It parses defines and adds them as Sphinx tags.
It emits the new defines-generated event which has a dictionary of raw text define values that other extensions
can use to generate relevant data.

Sphinx-IDF-Theme

HTML/CSS theme for Sphinx based on ReadtheDocs’s Sphinx theme. For more information see the Sphinx-IDF-
theme repository.

1.2 reStructuredText v.s. Markdown

reStructuredText and Markdown are two markup languages that are easy to read in plain-text format. Comparatively,
Markdown is simpler than reStructuredText regarding syntax, formatting, and documentation build system, so many
startup project documentation would use Markdown for its simplicity.

Espressif Systems 6
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/tools/idf-tools.html#list-of-idf-tools
https://github.com/espressif/sphinx_idf_theme
https://github.com/espressif/sphinx_idf_theme
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 1. Introduction

If your project is small, with a limited number of documents (for example, less than 5) and subfolders, thenMarkdown
is your go-to language.
As your project evolves and becomes more systematic, you might consider switching to reStructuredText which ESP-
Docs uses, given that reStructuredText offers more advanced formatting features and better experience but requires
fewer manual edits.
This document compares reStructuredText and Markdown in the following aspects, so that you can better understand
why reStructuredText is more suitable for complex projects.

• Extensibility
• Features

– API Reference
– Tables
– Links
– Table of Contents

1.2.1 Extensibility

Extensibility is a core design principle for reStructuredText. For this markup language, it is straightforward to add:
• Customized roles and directives, such as :example: defined in link_roles.py
• Extensions developed by others, such as sphinxcontrib.blockdiag
• Extensions developed by yourself, such as format_esp_target.py (see Adding Extensions)

In Markdown, there is no such built-in support for extensions, and people might use different extensions in their
Markdown editors to do the same thing. For example, to draw a diagram in the same project, one might use UMLet
in VS Code, others might use UmlSync in MacDown.
Because reStructuredText can be more easily extended, it has more features provided by various extensions as de-
scribed in the following section.

1.2.2 Features

reStructuredText has more built-in and extended features for generating API reference, tables, links, and table of
contents. These features can save your time to do manual edits, and make complex documents fancier.

API Reference

In reStructuredText, you can include API references generated from header files into your documentation (see For-
matting and Generating API Descriptions). The generation process of API references can be integrated into the build
process. For example, ESP-Docs has an extension called run_doxygen.py to generate API references from header
files when building documentation. You may navigate to doxygen, and run build_example.sh to see the results.
In Markdown, generating API documentation is not that easy. You need to either write from scratch as shown below,
or leverage some third-party API generators.

check_model method

```
Calibrator.check_model(model_proto)
```
Checks the compatibility of your model.

Argument
- **model_proto** _(ModelProto)_: An FP32 ONNX model.

(continues on next page)

Espressif Systems 7
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/esp_extensions/link_roles.py
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/esp_extensions/format_esp_target.py
https://marketplace.visualstudio.com/items?itemName=TheUMLetTeam.umlet
https://github.com/umlsynco/umlsync
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/esp_extensions/run_doxygen.py
https://github.com/espressif/esp-docs/tree/a05f6ae/examples/doxygen
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 1. Introduction

(continued from previous page)
Return
- **-1**: The model is incompatible.

Tables

Thanks to the various table formats supported by reStructuredText, you can create more complex tables with merged
cells, bullet lists, and specified column width, etc.

Column 1 Column 2

• Bullet point 1
• Bullet point 2

Column 2 is set to be wider

Column 1 Column 2
Merged cell

In Markdown, you can only adjust table alignment.

Links

In reStructuredText, there are many ways to avoid using raw URL links (see Links) when you:
• Link to a specific place of other documents in the same project
• Link to other documents in the same project without specifying document name

With ESP-Docs, you can even extend this functionality when you:
• Link to Kconfig references
• Link to classes, functions, enumerations, etc.
• Link to GitHub files of a certain commit

One advantage of using above link syntax is to avoid manual update when links change.
None of these features are supported in Markdown.

Table of Contents

In reStructuredText, you can use the toctree directive to generate a Table of Contents at a specified folder depth.
Using a file path is sufficient, and when document headings change, the headings in toctree will be updated automat-
ically.

.. toctree::
:maxdepth: 2

release-5.x/5.0/index
release-5.x/5.1/index

Moreover, with the help of toctree, you can generate a sidebar that contains the table of contents for easy navi-
gation. For example, see the sidebar of ESP-Docs User Guide.
In Markdown, inserting a table of contents with the same effect is also possible, but you need to manually insert each
file’s path and name, and specify folder structure when including more than one folder levels.

Espressif Systems 8
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-docs/en/latest/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 1. Introduction

- [Migration from 4.4 to 5.0](./release-5.x/5.0/index)
- [Bluetooth](./release-5.x/5.0/bluetooth)
- [Wi-Fi](./release-5.x/5.0/wifi)
- [Peripherals](./release-5.x/5.0/peripherals)

- [Migration from 5.0 to 5.1](./release-5.x/5.1/index)
- [Peripherals](./release-5.x/5.0/peripherals)

Besides, in Markdown there is no sidebar to show the documents in this project and to help readers navigate. Take
the ESP-DL repository as example. If you are reading Get Started, and want to check how to deploy a model, there
is no way to know where to find this document until you explore almost every folder. Just imagine what a nightmare
it would be if the project has 100 files.

1.3 ESP-Docs & Espressif Server v.s. Sphinx & Read the Docs

Among all Espressif software documentation, some are built with ESP-Docs and deployed to Espressif server (rec-
ommended), such as ESP-IDF Programming Guide, and some are built with Sphinx and deployed to Read the Docs
(RTD), such as ESP-ADF Guide.
This document compares the above two ways of building and deploying Espressif documentation and explains why
the former is recommended for new Espressif software documentation. If your documentation has already adopted
the latter, you can choose whether to switch to ESP-Docs for building and Espressif server for hosting based on your
needs.

Dimension ESP-Docs & Espressif Server Sphinx & Read the Docs
Feature ✅ More features, including 1) those pro-

vided by Sphinx 2) those provided by
Sphinx third-party extensions, which are
standardized to fixed versions to reduce
build or deploy issues 3) those developed
only for Espressif documentation, such as
support for multiple targets. They are ac-
tively maintained and contribution to new or
existing extensions is very welcome.

❌ Fewer features, including 1) those pro-
vided by Sphinx 2) those provided by
Sphinx third-party extensions, some of
which are not set to fixed versions, thus
causing build or deploy issues from time to
time.

Configuring deploy-
ment

❌ More workload. For deployment infor-
mation, see Update CI Configuration File.

✅ Easier. For deployment information, see
Documentation Team Site > Section ESP-
Docs User Guide > Read the Docs Config-
uration Notes for Espressif doc.

Debugging deploy-
ment issues

✅ Independent debugging without engaging
third parties, thus quicker.

❌ Needing support from RTD team, be-
cause RTD often breaks in ways we can not
debug ourselves.

Debugging build is-
sues caused by de-
pendent packages

✅ The project or documentation owner can
get help and support internally from Docu-
mentation Team and ESP-Docs developers.

❌ The project or documentation owner
should fix them.

Access to documen-
tation

✅ Quicker access ❌ Slow access to RTD servers from
China. A caching reverse proxy at docs.
espressif.com is provided to speed up
the access, but if the cache is cold, the page
load time can be high (>= 0.5 s).

Espressif Systems 9
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-dl/blob/8bc9a5b01350959819f7e1bf8392b3cb26be066b/docs/en/get_started.md
https://github.com/espressif/esp-dl/tree/8bc9a5b01350959819f7e1bf8392b3cb26be066b/tutorial/quantization_tool_example
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/index.html
http://www.sphinx-doc.org/
https://readthedocs.org
https://docs.espressif.com/projects/esp-adf/en/latest/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 1. Introduction

Espressif Systems 10
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2

Writing Documentation

2.1 Basic Syntax

This document covers some basic reST syntax used in documentation built with ESP-Docs.

• Paragraphs
• Inline Formatting

– Italic
– Bold
– Literal

• Titles and Headings
• Section Numbering
• Lists

– Bulleted Lists
– Numbered Lists
– Nested Lists

• Code Blocks
– Simple Code Blocks
– Bash Code Blocks
– Python Code Blocks
– none Code Blocks

• Tables of Contents
• Index Files
• Substitutions
• To-Do Notes

2.1.1 Paragraphs

The paragraph is the most basic block in a reST document. Paragraphs are simply chunks of text separated by one
or more blank lines. As in Python, indentation is significant in reST.

2.1.2 Inline Formatting

You can specify inline formatting through special symbols around the text you want to format.

Italic

Use single asterisks to show text as italic or emphasized.

11

Chapter 2. Writing Documentation

Syntax:

text

Rendering result:
text

Bold

Use double asterisks to show text as bold or strong.
Syntax:

text

Rendering result:
text

Literal

Use double backquotes to show text as inline literal, to indicate code snippets, variable names, UI elements, etc.
Syntax:

``code``

Rendering result:
code

2.1.3 Titles and Headings

Normally, there are no heading levels assigned to certain characters as the structure is determined from the succession
of headings. However, it is better to stick to the same convention throughout a project. For instance:

• # with overline, for parts
• * with overline, for chapters
• =, for sections
• -, for subsections
• ^, for subsubsections
• ", for paragraphs

2.1.4 Section Numbering

Section numbering is generally not recommended, particularly when done manually. However, if no alternative
exists, it is advisable to use automatic methods.
To automatically number sections and subsections across documents, see Index Files > numbered option.
To automatically number sections and subsections in one document, use
Syntax:

.. sectnum::
:depth: 3
:prefix: 3.2.
:start: 1

You may give the following options to the directive:

Espressif Systems 12
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

Fig. 1: Rendered Result - Numbering Across Documents (Click to Enlarge)

Fig. 2: Rendered Result - Numbering in One Document (Click to Enlarge)

Espressif Systems 13
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

• :depth:: The number of section levels that are numbered by this directive. The default depth is unlimited.
• :prefix:: An arbitrary string that is prefixed to the automatically generated section numbers. It may be
something like“3.2.”, which will produce“3.2.1”,“3.2.2”, and so on. The default is no prefix.

• :start:: The value that will be used for the first section number. Combined with prefix, this may be
used to force the right numbering for a document split over several source files. The default is 1.

However, the sectnum directive also needlessly numbers the title of the document itself. See invalid section num-
bering for reasons.

2.1.5 Lists

You can list items either in an ordered or unordered fashion.

Bulleted Lists

Syntax and example:

- Each bullet item starts with a symbol and a space.
- The symbol can be ``-``, ``*``, ``+``, etc.

Rendering result:
• Each bullet item starts with a symbol and a space.
• The symbol can be -, *, +, etc.

Numbered Lists

1. Common numbered lists
Syntax and example:

1. Each numbered list item starts with a symbol, a dot, and a space.
2. The symbol can be 1, A, i, (1) and so on.

Rendering result:
1. Each numbered list item starts with a symbol, a dot, and a space.
2. The symbol can be 1, A, i, (1) and so on.
2. Automatic numbered lists

Syntax and example:

#. Each automatic numbered list item starts with the number sign (#), a dot, and a␣
↪→space.
#. The number sign is #.

Rendering result:
1. Each automatic numbered list item starts with the number sign (#), a dot, and a space.
2. The number sign is #.

Nested Lists

Example:

Espressif Systems 14
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/sphinx-doc/sphinx/issues/4628#issuecomment-366418186
https://github.com/sphinx-doc/sphinx/issues/4628#issuecomment-366418186
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

- This is the first item of the bulleted list.
- This is the second item of the bulleted list.

1. This is the first item of the numbered list.
2. This is the second item of the numbered list.

- This is the third item of the bulleted list.

Rendering result:
• This is the first item of the bulleted list.
• This is the second item of the bulleted list.

1. This is the first item of the numbered list.
2. This is the second item of the numbered list.

• This is the third item of the bulleted list.
Note:

1. Separate different levels of list items with a line.
2. The same level of list items should have the same indentation.

2.1.6 Code Blocks

A code block consists of the code-block directive and the actual code indented by four spaces for consistency
with other code bases. For Python, C, Bash, and other programming languages, the keywords are highlighted by
default.

Simple Code Blocks

Syntax and example:

::

AT+GMR

Rendering result:

AT+GMR

Bash Code Blocks

Syntax and example:

.. code-block:: bash

ls
pwd
touch a.txt

Rendering result:

ls
pwd
touch a.txt

Espressif Systems 15
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

Python Code Blocks

Syntax and example:

.. code-block:: python

for i in range(10):
print(i)

Rendering result:

for i in range(10):
print(i)

none Code Blocks

If no other type applies, use“none”. It can be useful for obscure languages or mixtures of languages like this mix
of Bash and Python.
Syntax and example:

.. code-block:: none

cat program.py

for i in range(10):
print(i)

Rendering result:

cat program.py

for i in range(10):
print(i)

For more types, please refer to code blocks.

2.1.7 Tables of Contents

To create a table of contents (TOC), use
Syntax:

.. contents::
:local:
:depth: 1

You may give the following options to the directive:
• :local:: Generate a local table of contents. Entries will only include subsections of the section in which the
directive is given. If no explicit title is given, the table of contents will not be titled.

• :depth:: The number of section levels that are collected in the table of contents. The default depth is
unlimited.

To generate a TOC of the whole document, use
Syntax:

.. contents::
:depth: 1

Espressif Systems 16
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.anaconda.com/restructuredtext/detailed/#code-blocks
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

To generate a TOC of a section, use
Syntax:

.. contents::
:local:
:depth: 1

2.1.8 Index Files

Instead of using the contents directive to show a table of its own contents, the index file uses the toctree
directive to create a table of contents across files.
Syntax and example:

.. toctree::
:hidden:

introduction/index
writing-documentation/index
building-documentation/index
configuring-esp-docs-projects/index
troubleshooting/index
contributing-guide
related-resources
glossary

Rendering result:
See ESP-Docs User Guide

You may give the following options to the directive:
• :maxdepth:: The maximum depth of the TOC.
• :hidden:: The toctree is hidden in which case they will be used to build the left navigation column but not
appear in the main page text.

• :numbered: (not recommended): Numbering starts from the heading of the top level. Sub-toctrees are
also automatically numbered. In the example above, numbering will begin from the heading level of intro-
duction.

For more information, see Sphinx TOC tree documentation.

2.1.9 Substitutions

Use a substitution to reuse short, inline content. Substitution definitions are indicated by an explicit markup start (
“.. “) followed by a vertical bar, the substitution text, another vertical bar, whitespace, and the definition block. A
substitution definition block contains an embedded inline-compatible directive (without the leading“.. “), such as
“image”or“replace”.
For example, use a substitution for a short list of CPU exceptions. To print the CPU exceptions, enter
|CPU_EXCEPTIONS_LIST|.
Syntax and example:

CPU exceptions: |CPU_EXCEPTIONS_LIST|

The value of |CPU_EXCEPTIONS_LIST| is defined in a substitution definition.
Syntax and example:

.. |CPU_EXCEPTIONS_LIST| replace:: Illegal instruction, load/store alignment error,
↪→ load/store prohibited error, double exception.

Espressif Systems 17
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-toctree
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

Rendering result:
CPU Exceptions: Illegal instruction, load/store alignment error, load/store prohibited error, double exception.
If you then change the replace value of the substitution, the new value will be used in all instances when you rebuild
the project.
For more information, see Sphinx substitutions documentation.

2.1.10 To-Do Notes

Working on a document, you might need to:
• Give some suggestions on what should be added or modified in future.
• Leave a reminder for yourself or somebody else to follow up.

In this case, add a to-do note to your reST file using the directive .. todo::.
Syntax and example:

.. todo::

Add a package diagram.

If you add .. todolist:: to a reST file, the directive will be replaced by a list of all to-do notes from the whole
documentation.
By default, the directives .. todo:: and .. todolist:: are ignored by documentation builders. If you want
the notes and the list of notes to be visible in your locally built documentation, take the following steps:

1. Open your local conf_common.py file.
2. Find the parameter todo_include_todos.
3. Change its value from False to True.

Note: Before pushing your changes to origin, please set the value of todo_include_todos back to False.
Otherwise, you will make all the to-do notes visible to customers, too.

For more information, see sphinx.ext.todo documentation.
To learn more about the basic syntax, visit Docutils Quick reStructuredText.

2.2 Figures

This document will briefly introduce the common image formats used in Espressif software documentation built with
ESP-Docs, describe their usage, and provide corresponding examples for writers’reference.

2.2.1 Why Add Figures?

Figures serve an essential role in conveying complex technical information. If you are writing some technical text
and feel like expressing your ideas is getting increasingly harder (for example, while describing logical connections),
consider using a diagram. Even the most complex ideas that are hard to understand when written as text can be
quickly understood with the simplest of diagrams. The key to success is to choose the right diagram type for your
case.
Luckily, diagrams in Espressif software documentation built with ESP-Docs already have more or less established
styles.

Espressif Systems 18
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#substitutions
https://www.sphinx-doc.org/en/master/usage/extensions/todo.html#directive-todolist
https://docutils.sourceforge.io/docs/user/rst/quickref.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.2.2 Adding Figures in ESP-Docs

There are different ways of rendering images in documentation: - Directives to include ready-to-use pictures created
by graphic editors. - Diagram as Code to create diagrams based on textual descriptions for documents based on
markup languages.

Using Directives

Pictures could be built in documentation using directives and options. Writers can include a ready-to-use figure with
the following source code:

.. figure:: ../../_static/figure-raster-image-usage.png
:align: center
:scale: 90%
:alt: Development of Applications

This is the caption of the figure (optional)

Below is the image in PNG format added through the above directives and options:

Fig. 3: This is the caption of the figure (optional)

For detailed information about how to use these directives, please refer to Section Figure in the reStructuredText
documentation. Below are some notes for writers when using the directives in our documentation.

• For the .. figure:: directive, the path followed can either be a URL, or a relative path to your figures in
the current project. For example, to link the specific figure under the _static folder, it can be written as:

Espressif Systems 19
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docutils.sourceforge.io/docs/ref/rst/directives.html#figure
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

.. figure:: ../../_static/doc-format1-recommend.png

or to access the separate server through the URL::

.. figure:: https://dl.espressif.com/dl/sche,atocs/pictures/esp32-s2-
↪→kaluga-1-kit-v1.0-3d.png

Note that, for the relative path, if you are not sure about it, please check␣
↪→in the terminal using ``cd ..``. For the URL, if the figures are too large,␣
↪→upload it to a separate server, then provide the URL.

Generally, for each repo, figures are stored in the ``_static`` folder. Below␣
↪→are some of the paths for your information:

- ESP-IDF: `esp-idf/docs/_static <https://github.com/espressif/esp-idf/
↪→tree/master/docs/_static>`_

- ESP-ADF: `esp-adf-internal/docs/_static <https://github.com/espressif/
↪→esp-adf/tree/master/docs/_static>`_

- ESP-AT: `esp-at/docs/_static <https://github.com/espressif/esp-at/tree/
↪→master/docs/_static>`_

- ESP-Docs: `esp-docs/docs/_static <https://github.com/espressif/esp-docs/
↪→tree/master/docs/_static>`_

- esp-dev-kits: `esp-dev-kits/docs/_static <https://github.com/espressif/
↪→esp-dev-kits/tree/master/docs/_static>`_

Note that if you use the ``... figure::`` directive to upload the non-editable␣
↪→diagrams (PNG, JPG, etc.), please remember to also upload the editable copy␣
↪→(SVG, ODG, etc.) with the same name as the non-editable diagrams uploaded to␣
↪→the internal image-storing GitLab repository corresponding to the current␣
↪→repository. It is also recommended to add a commented-out link to the␣
↪→editable copy in the figure directive for easier search. The reason why we␣
↪→are doing this is that while the editable copy could be too large to make␣
↪→the repository hard to pull, storing them in another repository could always␣
↪→be a fortune when the content of the document has changed and writers are␣
↪→able to find the original images and edit them at any time.

• For the align: option, while another option, figclass: align- is sometimes used together in ESP-
IDF, the priorities are listed below:

– If the alignments are the same, such as:align: left and:figclass: align-left
are used, then the figure will be aligned left.

– If different alignments are defined, such as :align: center and :figclass:
align-left are used, then the figure will be aligned center (top priority) > left > right
(the lowest priority), as align: has a higher priority than figclass: align-.

Thus, it is recommended to use align: instead of figclass: align- in the documentation.
• For the :scale: option, the default is“100%”, i.e. no scaling. As on the RTD page, only 700 px can fit
into the page, figures should be scaled to get properly presented on HTML pages. To figure out the percentage
of scaling that should be used, please check the width and height of the original figure. For example, if the
dimension of the original figure is 3452*1590, then :scale:20% (which results in 690*318, smaller than
700 px) should be adopted to keep the right proportion presented on the page.

If a URL is provided as the figure path, and meanwhile the“scale”option is used, an error Could
not obtain image size. :scale: option is ignored. might occur. At this
time, you need to provide the image’s original width and height explicitly using :width: and
:height: like below:

.. figure:: https://dl.espressif.com/dl/schematics/pictures/esp-lyrap-
↪→lcd32-v1.1-3d.png

:align: center
:width: 2243px
:height: 1534px
:scale: 30%
:alt: EESP-LyraP-LCD32

Espressif Systems 20
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

• For the :alt: option, it shows the alternate description of figures. This description will be displayed when
the figure is shown not properly on display. Normally, the caption of the figure would be placed here. If the
figure is scaled, then the writer should also add (Click to enlarge) after the caption.

Using Diagram as Code

For adding graphics using Diagram as Code, several sphinx extensions are provided to generate diagram images from
simple text files:

• sphinxcontrib-blockdiag: Sphinx extension to generate block diagrams from plaintext.
• sphinxcontrib-seqdiag: Sphinx extension to generate sequence diagrams from plaintext.
• sphinxcontrib-actdiag: Sphinx extension to generate activity diagrams from plaintext.
• sphinxcontrib-nwdiag: Sphinx extension to generate network-related diagrams from plaintext.
• sphinxcontrib-wavedrom: Sphinx extension to generate wavedrom diagrams from plaintext.

The following types of diagrams are supported:
• Block diagram
• Sequence diagram
• Activity diagram
• Logical network diagram
• Digital timing diagram provided by WaveDrom

With this suite of tools, it is possible to generate beautiful diagram images from simple text format (similar to graphviz’
s DOT format). The diagram elements are laid out automatically. The diagram code is then converted into“.png”
graphics and integrated “behind the scenes”into Sphinx documents. Below is an example of Diagram as Code
graphics in Espressif software documentation built by ESP-Docs:

Fig. 4: Wi-Fi Programming Model

Here is the source code:

.. blockdiag::
:caption: Wi-Fi Programming Model
:align: center

blockdiag wifi-programming-model {

global attributes
node_height = 60;
node_width = 100;
span_width = 100;
span_height = 60;

(continues on next page)

Espressif Systems 21
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://pypi.org/project/sphinxcontrib-blockdiag/
https://pypi.org/project/sphinxcontrib-seqdiag/
https://pypi.org/project/sphinxcontrib-actdiag/
https://pypi.org/project/sphinxcontrib-nwdiag/
https://pypi.org/project/sphinxcontrib-wavedrom/
http://blockdiag.com/en/blockdiag/index.html
http://blockdiag.com/en/seqdiag/index.html
http://blockdiag.com/en/actdiag/index.html
http://blockdiag.com/en/nwdiag/index.html
https://wavedrom.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

(continued from previous page)
default_shape = roundedbox;
default_group_color = none;

node labels
TCP_STACK [label="TCP\n stack", fontsize=12];
EVNT_TASK [label="Event\n task", fontsize=12];
APPL_TASK [label="Application\n task", width = 120, fontsize=12];
WIFI_DRV [label="Wi-Fi\n Driver", width = 120, fontsize=12];
KNOT [shape=none];

node connections + labels
TCP_STACK -> EVNT_TASK [label=event];
EVNT_TASK -> APPL_TASK [label="callback\n or event"];

arrange nodes vertically
group {
label = "default handler";
orientation = portrait;
EVNT_TASK <- WIFI_DRV [label=event];
}

intermediate node
group {

label = "user handler";
orientation = portrait;
APPL_TASK -- KNOT;

}
WIFI_DRV <- KNOT [label="API\n call"];

}

If a blockdiag has lengthy code, it is suggested to save the code in a .diag file and provide the path to the file like in
Section Driver Operation in ESP-IDF, which would reach exactly the same effects as well:

.. blockdiag:: ../../../_static/diagrams/twai/state_transition.diag
:caption: State transition diagram of the TWAI driver (see table below)
:align: center

For the diagram preparation, you can use an online interactive shell that instantly shows the rendered image.
There are also a couple of diagram examples provided in the live editor for your reference:

• Simple block diagram / blockdiag - Wi-Fi Buffer Configuration
• Slightly more complicated block diagram - Wi-Fi programming model
• Sequence diagram / seqdiag - Scan for a Specific AP in All Channels
• Packet diagram / packetdiag - NVS Page Structure

Try them out by modifying the source code and see the diagram instantly rendering below.
There may be slight differences in rendering of font used by the interactive shell compared to the font used
in the esp-docs documentation.
For more details, see online documentation at http://blockdiag.com/.
To conclude, while ready-to-use images drawn in graphic editors might be easier to handle for writers with little
experience in creating diagrams, they have rather larger size based on their resolution. As for text-based Diagram as
Code graphics, it would undoubtedly cost writers some time to get started and master, but they are smaller in size
and easier to version with Git. Thus, it is recommended to use Diagram as Code to present pictures in your files.

Espressif Systems 22
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/twai.html?highlight=can%20protocol#driver-operation
http://interactive.blockdiag.com/?compression=deflate&src=eJxlUMFOwzAMvecrrO3aITYQQirlAIIzEseJQ5q4TUSIq8TVGIh_J2m7jbKc7Ge_5_dSO1Lv2soWvoVYgieNoMh7VGzJR9FJtugZ7lYQ0UcKEbYNOY36rRQHZHUPT68vV5tceGLbWCUzPfeaFFMoBZzecVc56vWwJFnWMmJ59CCZg617xpOFbTSyw0pmvT_HJ7hxtFNGBr6wvuu5SCkchcrZ1vAeXZomznh5YgTqfcpR02cBO6vZVDeXBRjMjKEcFRbLh8f18-Z2UUBDnqP9wmp9ncRmSSfND2ldGo2h_zse407g0Mxc1q7HzJ3-4jzYYTJjtQH3iSV-fgFzx50J
http://interactive.blockdiag.com/?compression=deflate&src=eJylUk1rwkAQvfsrBntpIUKiRQqSgK0VSj0EtCi0EjbJxCyuuyG7QW3pf-9m06hJeyg0t33zmHkfCZmItjElGwiLJME8IEwjRFHBA3WAj04H9HcFGyZCwoAoldOwUCgNzkWMwZ7GKgUXnKE9gjOcIt2kSuN39sigMiP8jDqX6GmF_Y3GmJCCqUCmJEM9yEXBY4xDcWjOE8GVpO9oztdaGQmRSRAJlMZysjOCKsVj358Fi_H8GV4Nze2Os4zRyvEbB0XktrseQWVktn_ym-wS-UFb0ilt0pa0N6Vn3i_KUEY5zcqrbXWTx_nDaZHjwYvEHGKiSNeC2q_r3FpQZekObAtMTi4XCi2IBBO5e0Rd5L7ppLG574GvO__PUuO7sXTgweTIyY5GcD1XOtToBhYruDf_VvuUad3tD-0_Xq1TLPPSI84xKvNrF9vzLnrTj1M7rYhrXv24cCPVkZUaOK47n1-lOvbk
http://interactive.blockdiag.com/?compression=deflate&src=eJyFk09P40AMxe98CqscIVILq72UIFX8kSoQWy0RHABFTuImFtOZaGYKuyC-O840bagaRI7Pfs7Pz0mmTP5cMJbwynNOa2tKi4sF6zJdmIIUvO_tgTz7UCqToQL03nK29OSCrqUpfeXCVxDD6Gg47tSKuKy8yL9b1dWov1E3E4atWtAcl8qnrsKapGDNUhdUZObfdr2UQp3mRhkrXdpoGq-BGwhQmJFaoSZns_Q2mZxdwUNQ44Eojxqcx_x5cAhzo73jN4pHv55WL7m4u0nSZHLbOeiFtBePR9dvmcxm19sWrGvFOXo2utd4CGH5eHQ8bGfcTy-n6fnfO9jMuOfoksV9bvmFbO-Lr27-JPAQ4oqbGJ62c8iN1pQ3EA4O-lOJTncXDvvupCGdu3vmqFQmSQqm3CIYBx0EWou6pADjQJbw3Bj-h3I4onxpsHrCQLnmoD0yVKgLJXuP1x3GsowPmUpfbay3yH5T7khPoi7NnpU-1nisPdkFyY_gV4x9XB3Y0pHdpfoJ60toURQOtqbYuvpJ1B6zDXYym0qmTVpNnh-fpWcbRA
http://interactive.blockdiag.com/seqdiag/?compression=deflate&src=eJyVkU1PwzAMhu_7FdburUgQXMomTaPcKIdOIIRQlDVuG1EloUknPsR_J2s2rRsT2nKJ9drvY8ex-C4kr8AWXLFSt8waLBg38D0Cf3jh5Io7qRVMQGmFSS-jqJA1qCpXe51cXwTZGg-pUVa1W8tXQRVY8q5xzNbcoNdb3SmBYqk_9vOlVs7Kr3UJoQmMwgDGMMftWwK4QuU28ZOM7uQm3q_zYTQd5OGl4UtsJmMSE5jCXKtSVl2LUPgpXPvpb4Hj1-RUCPWQ3O_K-wKpX84WMLAcB9B-igCouVLYADnDTA_N9GRzHMdnNMoOG2Vb8-4b4CY6Zr4MT3zOF-k9Sx_TbMHy-Sxjtw9Z-mfRHjEA7hD0X8TPLxU91AQ
http://interactive.blockdiag.com/packetdiag/?compression=deflate&src=eJxFkMFOwzAQRO_9ij2mh63idRKaSj1V_ACIE6DIxG4StTgh3oCg6r_j2JTs8c3szNqDqk-GdacasJ-uGlRjKsfjVPM0GriswE_dn786zS3sQRJAYLbXprpRkS-sNV3TcrAGqM1RTWeujr1l1_2Y2U6rIKUod_DIis2LTbJ1YBneeWY-Nj5ts-AtkudPdnJGQ0JppLRFKXZweDhIWrySsPDB95bHb3BzPLx1_K4GSCSt_-4vMizzmykNSuBlgWKuioJYBOHLROnbEBGe_ZfEh-7pNcolIdF_raA8rl5_AaqqWyE%3E
http://blockdiag.com/en/blockdiag/sphinxcontrib.html
http://blockdiag.com/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.3 Tables

Tables can present complex information in an understandable way. With reStructuredText syntax, you can create
tables in the following formats:

• Simple Table
• Grid Table
• List Table 2/72/72/7
• CSV Table

This document covers the syntax for all table formats and their pros and cons, so that you can choose the best fit for
your use scenario. For more detailed instructions, please refer to reStructuredText Directives > Tables.

2.3.1 Simple Table

Simple tables are preceded and ended with a sequence of = to indicate columns.
Texts in the same column should be aligned with = on the left, and not extend beyond = on the right.
Simple tables supports:

• Column span: Cells in multiple columns (except last row) can be merged by adding a sequence of -
• Table notes: Manually numbered footnote [1]_ and autonumbered footnote [#]
• Insert pictures

.. table::
:align: center

================================== ============================
ESP-Docs 用户指南

================================== ============================
|write-doc| |build-doc|
Writing Documentation [1]_ Building Documentation [#]_
Covers ESP-Docs supported syntax 介绍如何预览、构建文档
================================== ============================

.. |write-doc| image:: ../../_static/writing-documentation.png
:height: 100px
:width: 100px

.. |build-doc| image:: ../../_static/building-documentation.png
:height: 100px
:width: 100px

.. [1] This is a manually numbered table note. Note that it generates links from␣
↪→notes back to the table.
.. [#] This is an autonumbered table note. It generates no backlinks and continues␣
↪→numbering from the previous note.

The above table would be rendered as:

Espressif Systems 23
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docutils.sourceforge.io/docs/ref/rst/directives.html#tables
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

ESP-Docs用户指南

Writing Documentation1 Building Documentation2
Covers ESP-Docs supported syntax 介绍如何预览、构建文档

2.3.2 Grid Table

Grid tables are named after its grid structure formed by delimiters +, -, and |.
Grid tables support:

• Column span
• Row span
• Table notes
• Bullet Lists
• Insert pictures (For example, see ESP-Docs User Guide)

If there are Chinese characters, the vertical bars | can hardly be aligned to form a grid.

.. table::
:align: center

+----------+--+--------------------------+
| 芯片 | 描述 | Ambient Temperature [#]_ |
| | +-------------+------------+
| | | Min (°C) | Max (°C) |
+==========+==+=============+============+
ESP32-C3	ESP32-C3 is a single-core, 32-bit,	-40	105
	RISC-V-based MCU with 400 KB of SRAM,		
	which is capable of running at 160 MHz.		
+----------+--+-------------+------------+			
ESP32-S3	ESP32-S3 is a dual-core XTensa LX7 MCU,	-40	105
	capable of running at 240 MHz.		
+----------+--+-------------+------------+

.. [#] This is an autonumbered table note. Note that the automatic numbering␣
↪→continues from the previous table note.

The above table would be rendered as:

芯片 描述 Ambient Tempera-
turePage 25, 3
Min (°C) Max

(°C)
ESP32-
C3

ESP32-C3 is a single-core, 32-bit, RISC-V-based MCU with 400 KB of
SRAM, which is capable of running at 160 MHz.

-40 105

ESP32-
S3

ESP32-S3 is a dual-core Xtensa LX7 MCU, capable of running at 240 MHz. -40 105

1 This is a manually numbered table note. Note that it generates links from notes back to the table.
2 This is an autonumbered table note. It generates no backlinks and continues numbering from the previous note.

Espressif Systems 24
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

To facilitate the generation of grid tables, you may use tools such as Tables Generator.

2.3.3 List Table

List tables are formed of two-level lists, where the first level * represents rows, and the second level - represents
columns.
The number of columns must be consistent. Empty table cells should still by marked by -, even if there is no content.
List tables support:

• Adjustable column width
• Table notes
• Bullet Lists
• Insert pictures

.. list-table::
:header-rows: 1
:widths: 40 60
:align: center

* - Field
- Value (Byte)

* - Type (Least Significant Bit)
- 1

* - Frame Control (Frag)
-

* - 序列号
- 1

* - 数据长度
- 1

* - Data
- * Total Content Length: 2

* Content: ${Data Length} - 2
* - CheckSum (Most Significant Bit) [#]_

- 2

.. [#] This is an autonumbered table note. Note that the automatic numbering␣
↪→continues from the previous table note.

The above table would be rendered as:

Field Value (Byte)
Type (Least Significant Bit) 1
Frame Control (Frag)
序列号 1
数据长度 1
Data • Total Content Length: 2

• Content: ${Data Length} - 2

CheckSum (Most Significant Bit)4 2

3 This is an autonumbered table note. Note that the automatic numbering continues from the previous table note.
4 This is an autonumbered table note. Note that the automatic numbering continues from the previous table note.

Espressif Systems 25
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

http://www.tablesgenerator.com/text_tables
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.3.4 CSV Table

CSV (comma-separated values) tables might be the choice if you want to include CSV data into your documentation.
The CSV data may be:

• placed in a separate CSV file
• an integral part of the document

As for formatting, CSV tables only support adjustable column width.
• Example of integrating a separate CSV file:

.. csv-table:: Table Title
:file: CSV file path and name
:widths: 30, 70
:align: center
:header-rows: 1

• Example of integrating CSV data as an integral part of the document:

.. csv-table:: Ordering Information
:header: "订购代码", "Flash Size"
:widths: 50, 50
:align: center

ESP32-C3,N/A
ESP32-C3FN4,"4 MB"
ESP32-C3FH4,"4 MB"

The above table would be rendered as:

Table 1: Ordering Information
订购代码 Flash Size
ESP32-C3 N/A
ESP32-C3FN4 4 MB
ESP32-C3FH4 4 MB

Note: Text with spaces in between should be enclosed by quotation marks, such as "4 MB".

2.3.5 Comparison

To summarize:
• 2/72/72/7 List tables are ideal because they achieve a balance between easy maintenance and advanced formatting
features.

• Simple tables are good choices when table cells do not contain long sentences.
• Grid tables provide more formatting options, but they are the most difficult to maintain.
• CSV tables are convenient to present simple data, but not friendly to text with spaces.

Espressif Systems 26
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

Simple
Table

Grid Table List Table CSV Table

What you see is what you get ✅ ✅
Easy to maintain ✅ ✅
Friendly to Chinese characters ✅ ✅ ✅
Friendly to long text ✅ ✅
Adjustable table width ✅ ✅
Row span ✅
Column span ✅ ✅
Bullet points ✅ ✅

2.3.6 Still No Good Fit?

If the above table formats cannot meet your needs, consider adding new table extensions. For example, to use a list
table for its easy maintenance, but with column span and row span features, you may refer to to the flat-table directive.

2.4 Links

This document introduces how to link to different elements of documentation when you write documents with ESP-
Docs.

2.4.1 Table of Contents

• Linking to Language Versions
• Linking to Other Sections Within the Document
• Linking to Other Documents
• Linking to a Specific Place of Other Documents in a Same Project
• Linking to Kconfig References
• Linking to Classes, Functions, Enumerations, etc
• Linking to GitHub Files
• Linking to External Pages
• Linking to ESP TRMs and Datasheets

– Linking to a Whole TRM or Datasheet File
– Linking to Chapters of a TRM or Datasheet File

• Resources

When writing documentation, you often need to link to other language versions of the document, other sections within
the document, other documents, GitHub files, etc. An easy way is just to use the raw URL that Sphinx generates for
each page or section. This works, but it has some disadvantages:

• Links can change, so they are hard to maintain.
• Links can be verbose and hard to read, so it is unclear what page or section they are linking to.
• There is no easy way to link to specific sections like paragraphs, figures, or code blocks.
• URL links only work for the HTML version of your documentation.

Instead, Sphinx offers a powerful way to link to different elements of the document, called cross-references. Some
advantages of using them:

• Use a human-readable name of your choice, instead of a URL.
• Portable between formats: HTML, PDF, ePub.
• Sphinx will warn you of invalid references.
• You can cross-reference more than just pages and section headers.

Espressif Systems 27
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://return42.github.io/linuxdoc/linuxdoc-howto/table-markup.html#flat-table
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.4.2 Linking to Language Versions

Switching between documentation in different languages may be done using the :link_to_translation:
custom role. The role placed on a page of documentation provides a link to the same page in a language specified as
a parameter. Examples below show how to enter links to Chinese and English versions of documentation.
Syntax and examples:

:link_to_translation:`zh_CN: 中文版`
:link_to_translation:`en:English`

The language is specified using standard abbreviations like en or zh_CN. The text after last semicolon is not stan-
dardized and may be entered depending on the context where the link is placed, e.g.:

:link_to_translation:`en:see description in English`

2.4.3 Linking to Other Sections Within the Document

Syntax and example:

`Linking to ESP TRMs and Datasheets`_

Rendering result:
Linking to ESP TRMs and Datasheets

2.4.4 Linking to Other Documents

If you want to link to other documents in the same folder, which is the docs folder here, you can either use the
path relative to the root folder or relative to the document you want to link to. In addition, you can also display the
document title as the link text or customize the link text. Please note that we recommend using the path relative to
the root folder as links will not break when you move the document containing the links.

• You can use the following syntax to display the document title as the link text.
Syntax:

:doc:`relative path to the root folder`
:doc:`relative path to the document you want to link to`

Example:

:doc:`/introduction/index`
:doc:`../introduction/index`

Rendering result:
Introduction
Introduction

• If you want to customize the link text, you can use the following syntax.
Syntax:

:doc:`CustomizedLinkText <relative path to the root folder>`
:doc:`CustomizedLinkText <relative path to the document you want to link to>`

Example:

:doc:`Another Introduction </introduction/index>`
:doc:`Another Introduction <../introduction/index>`

Rendering result:
Another Introduction
Another Introduction

Espressif Systems 28
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.4.5 Linking to a Specific Place of Other Documents in a Same Project

To link to a specific place of documents in a same project, you need to first add an anchor in the specific place and
then refer it in the document.

• Add an anchor to the specific place where you want to link to with the following syntax.
Syntax:

.. _AnchorName:

Example:

.. _building-documentation-1

• Insert the anchor in your document with the following syntaxes. You can either display the section name after
the anchor as the link text or customize the link text.

– Display the section name after the anchor as the link text
Syntax:

:ref:`AnchorName`

Example:

:ref:`building-documentation-1`

Rendering result:
Building HTML Locally on Your PC

– Customize the link text
Syntax:

:ref:`CustomizedLinkText <AnchorName>`

Example:

:ref:`Building Document <building-documentation-1>`

Rendering result:
Building Document

2.4.6 Linking to Kconfig References

If you need to link to Kconfig references when writing documentation, please refer to the following syntax. The
references are generated by kconfig_reference.py . We use the Kconfig files of ESP-IDF as examples to introduce
this syntax.
Syntax and examples:

- :ref:`CONFIG_APP_COMPATIBLE_PRE_V3_1_BOOTLOADERS`
- :ref:`CONFIG_APP_COMPATIBLE_PRE_V2_1_BOOTLOADERS`
- :ref:`CONFIG_APP_BUILD_TYPE`
- :ref:`CONFIG_APP_REPRODUCIBLE_BUILD`
- :ref:`CONFIG_APP_NO_BLOBS`

If you use :ref:`CONFIG_APP_COMPATIBLE_PRE_V3_1_BOOTLOADERS` in ESP-IDF documents, this
can lead you to the description of this Kconfig reference.

2.4.7 Linking to Classes, Functions, Enumerations, etc

For linking to classes, functions, enumerations and other structure types in the doxygen API documentation, please
refer to the following syntax. We also use structure types defined in ESP-IDF as examples to introduce this syntax.
Syntax:

Espressif Systems 29
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/idf_extensions/kconfig_reference.py
https://docs.espressif.com/projects/esp-idf/en/release-v5.0/esp32/api-reference/kconfig.html#config-app-compatible-pre-v3-1-bootloaders
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

- Class - :cpp:class:`name`
- Function - :cpp:func:`name`
- Structure - :cpp:type:`name`
- Structure Member - :cpp:member:`struct_name::member_name`
- Enumeration - :cpp:type:`name`
- Enumeration Value - :cpp:enumerator:`name`
- Defines - :c:macro:`name`

Examples:

- Class - :cpp:class:`esp_mqtt_client_config_t`
- Function - :cpp:func:`esp-gcov_dump`
- Structure - :cpp:type:`mesh_cfg_t`
- Structure Member - :cpp:member:`eth_esp32_emac_config_t::clock_config`
- Enumeration - :cpp:type:`esp_partition_type_t`
- Enumeration Value - :cpp:enumerator:`WIFI_MODE_APSTA`
- Defines - :c:macro:`ESP_OK`

2.4.8 Linking to GitHub Files

In addition to linking to documentation in the docs folder, you may also need to link to other files in the project, for
example, the header and program files. You can link to them on GitHub.
When linking to files on GitHub, do not use absolute/hardcoded URLs. We have developed link_roles.py , so that
you can use Docutils custom roles to generate links. These auto-generated links point to the tree or blob for the git
commit ID (or tag) of the repository. This is needed to ensure that links do not get broken when files in the master
branch are moved around or deleted. The roles will transparently handle files that are located in submodules and will
link to the submodule’s repository with the correct commit ID.
Syntax and explanation:

- :project:`path` - points to directories in the project repository
- :project_file:`path` - points to files in the project repository
- :project_raw:`path` - points to raw view of files in the project repository
- :component:`path` - points to directories in the components directory of the␣
↪→project repository
- :component_file:`path` - points to files in the components directory of the␣
↪→project repository
- :component_raw:`path` - points to raw view of files in the components directory␣
↪→of the project repository
- :example:`path` - points to directories in the examples directory of the␣
↪→project repository
- :example_file:`path` - points to files in the examples directory of the project␣
↪→repository
- :example_raw:`path` - points to raw view of files in the examples directory of␣
↪→the project repository

Examples:

- :example:`doxygen/en`
- :example:`English Version <doxygen/en>`
- :example_file:`doxygen/en/conf.py`
- :example_raw:`doxygen/en/conf.py`

Rendering results:
• doxygen/en
• English Version
• doxygen/en/conf.py
• doxygen/en/conf.py

Espressif Systems 30
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/esp_extensions/link_roles.py
https://github.com/espressif/esp-docs/tree/a05f6ae/examples/doxygen/en
https://github.com/espressif/esp-docs/tree/a05f6ae/examples/doxygen/en
https://github.com/espressif/esp-docs/blob/a05f6ae/examples/doxygen/en/conf.py
https://github.com/espressif/esp-docs/raw/a05f6ae/examples/doxygen/en/conf.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

By running build-docs gh-linkcheck, you can search .rst files for presence of hard-coded links (identified
by tree/master, blob/master, or raw/master part of the URL). This check is recommended to be added to the CI
pipeline.

2.4.9 Linking to External Pages

Generally, you can always use URL to link to external pages. For example, if you want link to Espressif’s homepage,
you can refer to the following syntax.
Syntax and example:

Welcome to `Espressif <https://www.espressif.com/>`_!

Rendering result:
Welcome to Espressif!
Please note that if you have several links with the same display text, it will lead to the Sphinx warning duplicate
explicit target names. To avoid this issue, you can use two underscores __ at the end of links. For example,

Welcome to `Espressif <https://www.espressif.com/>`__!

Rendering result:
Welcome to Espressif!

2.4.10 Linking to ESP TRMs and Datasheets

If you need to link to Espressif’s TRMs and datasheets of different targets, you can
also use the external links introduced above. However, ESP-Docs offers a simple way
by defining the macros {IDF_TARGET_TRM_EN_URL}, {IDF_TARGET_TRM_CN_URL},
{IDF_TARGET_DATASHEET_EN_URL} and {IDF_TARGET_DATASHEET_CN_URL}. You can directly
use them to link to related TRMs and datasheets. For details, please refer to format_esp_target.py .

Linking to a Whole TRM or Datasheet File

You can choose a macro to link to the TRM or datasheet of a specific target in your document.
Syntax and example:

Please refer to `ESP32-S3 TRM <{IDF_TARGET_TRM_EN_URL}>`__.
Please refer to `ESP32-S3 Datasheet <{IDF_TARGET_DATASHEET_EN_URL}>`__.

Linking to Chapters of a TRM or Datasheet File

You can link to a specific chapter of a TRM or datasheet file by appending #hypertarget-name at the end of the
macros. This hypertarget acts like a bookmark.
For example, if you need to refer to Chapter I2C Controller in the ESP32-S3 TRM, use the following link.
Syntax and example:

For details, please refer to *ESP32-S3 Technical Reference Manual* > *I2C␣
↪→Controller (I2C)* [`PDF <{IDF_TARGET_TRM_EN_URL}#i2c>`__].

For the specific hypertargets of chapters in different ESP TRMs, please go to Documentation Team Site > Section
ESP-Docs User Guide > Hypertargets of chapters.

Espressif Systems 31
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/
https://www.espressif.com/
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/esp_extensions/format_esp_target.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.4.11 Resources

For more information about links, please refer to Cross-referencing with Sphinx.

2.5 Creating a Glossary

A glossary or“glossary of terms”is a collection of words pertaining to a specific topic. Usually, it is a list of all
terms you used that may not immediately be obvious to your reader. Your glossary only needs to include terms that
your reader may not be familiar with, and is intended to enhance their understanding of your work.
Glossaries are not mandatory, but if you use a lot of technical or field-specific terms, it may improve readability to
add one. A good example is Glossary in the ESP-Docs User Guide.
If you are going to create a glossary for your project, then you are the target audience of this document. This document
describes how to:

• create a consolidated glossary of terms.
• link terms in other documents to their definitions in the glossary.

2.5.1 Create Glossary of Terms

To create a glossary of terms, you can use the directive .. glossary::. Write each glossary entry as a definition
list in the form of a term followed by a single-line indented definition as below:

.. glossary::

Term A
Definition

Term B
Definition

The above content will be rendered in the document in the form of:
Term A

Definition
Term B

Definition
You can also give the glossary directive a :sorted: flag that will automatically sort the entries alphabetically.

.. glossary::
:sorted:

B-term
Definition B

A-term
Definition A

As you can notice, although we wrote B-term before A-term, after applying :sorted:, the rendered effect would
be:
A-term

Definition A
B-term

Definition B

Espressif Systems 32
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.readthedocs.io/en/stable/guides/cross-referencing-with-sphinx.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.5.2 Link a Term to its Glossary Entry

After a glossary is created with the .. glossary:: directive containing a definition list with terms and definitions,
you can link a term to its definition in the glossary by using the :term: role.
For example the ESP-Docs User Guide has one global Glossary. You can use the the following syntax to link the
term add-ons to its definition:

Please refer to :term:`add-ons`.

This will be rendered as:
Please refer to add-ons.

Important:
• The term specified must exactly match a term in the glossary directive. If you use a term that is not explained
in a glossary, you’ll get a warning during the documentation build.

• The term used in your document can only be linked to its definition in the glossary when your document and
the glossary are in the same project. For example, this document, which is in the project of ESP-Docs User
Guide, can not be linked to the terms defined in the ESP-ADF Glossary.

You can link to a term in the glossary while showing different text in the topic by including the term in angle brackets.
For example:

This file is written in :term:`rst <reStructuredText>` format.

This will be rendered as:
This file is written in rst format.

Important: The term in angle brackets must exactly match a term in the glossary. The text before the angle brackets
is what users see on the page.

2.6 Writing for Multiple Targets

Espressif provides a rich list of chip products, e.g., ESP32, ESP32-S2, ESP32-C3, which are referred to as“targets”
in ESP-Docs. Technical documentation differs for each specific chip, yet a large part of the content is reusable
among different targets.
To facilitate the writing of documents that can be reused for multiple different chips, several functionalities are
provided in ESP-Docs for writers to deal with target-specific inline text, paragraph, bullet point, and even document
while building the documentation for all Espressif’s chips from the same files.

2.6.1 Target-Specific Inline Text

When the content is reusable for all ESP chips, but you need to refer to the specific chip name, toolchain name, path,
hardware/software specification, or other inline text that varies among different targets in the paragraph, consider
using the substitutionmacros supplied by the extension Format ESP Target . Substitutionmacros allow you to generate
target-specific inline text from the same source file with the target passed to the Sphinx command line.
For example, in the following reStructuredText content, the substitution macros (referred to as tag here-
inafter) IDF_TARGET_NAME, IDF_TARGET_PATH_NAME, IDF_TARGET_TOOLCHAIN_PREFIX, and
IDF_TARGET_TOOLCHAIN_PREFIX defined in esp_extensions/format_esp_target.py are used:

Espressif Systems 33
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-adf/en/latest/english-chinese-glossary.html
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/esp_extensions/format_esp_target.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

This is {IDF_TARGET_NAME} with /{IDF_TARGET_PATH_NAME}/soc.c, compiled with `{IDF_
↪→TARGET_TOOLCHAIN_PREFIX}-gcc` with `CONFIG_{IDF_TARGET_TOOLCHAIN_PREFIX}_MULTI_
↪→DOC`.

The text will be rendered for ESP32-S2 chip as the following:

This is ESP32-S2 with /esp32s2/soc.c, compiled with `xtensa-esp32s2-elf-gcc` with␣
↪→`CONFIG_ESP32S2_MULTI_DOC`.

This extension also supports markup for defining local substitutions within a single source file. Place a definition
like the following in a single line to define a target-dependent substitution of the tag IDF_TARGET_SUFFIX in the
current reStructuredText file:

{IDF_TARGET_SUFFIX:default="DEFAULT_VALUE", esp32="ESP32_VALUE", esp32s2="ESP32S2_
↪→VALUE", esp32c3="ESP32C3_VALUE"}

For example:

{IDF_TARGET_TX_PIN:default="IO3", esp32="IO4", esp32s2="IO5", esp32c3="IO6"}

The above line will define a substitution for the tag IDF_TARGET_TX_PIN, which would be replaced by the text
“IO5”if Sphinx is called with the target esp32s2 and“IO3”if called with esp32s3. You may also use the text“Not
updated”for the default value.
In the case when multiple targets have the same value (may not be the default value) to be substituted, you can even
group such targets together to avoid re-writing the same values multiple times.
For example::

{IDF_TARGET_SBV2_KEY:default=”RSA-3072”, esp32c6, esp32h2=”RSA-3072 or ECDSA-256 or
ECDSA-192”}

The above line will define a substitution for the tag IDF_TARGET_SBV2_KEY, which would be replaced by the text
“RSA-3072 or ECDSA-256 or ECDSA-192”if Sphinx is called with the target esp32c6 or esp32h2 and“RSA-3072”
if called with any other target.

Note:
• These single-file definitions can be placed anywhere in the reStructuredText file on their own line, but the name
of the directive must start with IDF_TARGET_.

• Also note that these replacements cannot be used insidemarkup that rely on alignment of characters, e.g., tables.

ESP-Docs also allows other extensions to add additional substitutions through Sphinx events. For example, in ESP-
IDF it is possible to use defines from soc_caps.h:

The target has {IDF_TARGET_SOC_SPI_PERIPH_NUM} SPI peripherals.

The text will be rendered for ESP32-S2 as the following:

The target has 3 SPI peripherals.

For a full overview of available substitutions in your project, you can take a look at
IDF_TARGET-substitutions.txt, which is generated in the build folder when a project is built.

2.6.2 Target-Specific Paragraph

In a document shared by multiple targets, occasionally there will be paragraphs only applicable to one or some of the
targets, or the paragraphs should be customized for different targets. ESP-Docs introduces the .. only:: TAG
directive provided by the Sphinx selective exclude extension to help you define specific chip targets for target-specific
content in the document.

Espressif Systems 34
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/pfalcon/sphinx_selective_exclude
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

To use the .. only:: TAG directive, simply follow the steps described below:
1. Define the target of the content and replace“TAG”with one of the following options:
• Chip names. For example:

– esp32 > .. only:: esp32
– esp32s2 > .. only:: esp32s2
– esp32c3 > .. only:: esp32c3

• Or other tags you define and configure based on your own needs. For example, there are two kinds of cus-
tomized tags in esp-idf:

– Tags defined in the sdkconfig.h header files, e.g., CONFIG_FREERTOS_UNICORE, which are
generated by the default menuconfig settings for the target.

– Tags defined in the *_caps.h header files, e.g., SOC_BT_SUPPORTED and
SOC_CAN_SUPPORTED.

2. Place the directive before the content that you want to exclude from the rest of the document:

.. only:: esp32

ESP32-specific content.

Note: Note that it is required to leave a blank line after the directive and to indent before the content.

In this way, Sphinx will only generate the content for the target that you have defined using the directive, e.g., ESP32
in the example above.
This directive also supports the boolean operators and, or, and not. For example:

• .. only:: not esp32c2
• .. only:: esp32 or esp32s2
• .. only:: SOC_BT_SUPPORTED and CONFIG_FREERTOS_UNICORE

Note that the extension sometimes does not correctly handle the case where you exclude a section that is directly
followed by a labeled new section. For example:

.. only:: esp32

.. _section_1_label:

Section 1
^^^^^^^^^
Section 1 content

.. _section_2_label:

Section 2
^^^^^^^^^
Section 2 content

In the above case, if the label section_2_label does not correctly link to the section that follows, refer to the
temporary workaround below when this cannot be avoided:

.. only:: esp32

.. _section_1_label:

Section 1
^^^^^^^^^
Section 1 content

.. _section_2_label:

(continues on next page)

Espressif Systems 35
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-idf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

(continued from previous page)
.. only:: not esp32

.. _section_2_label:

Section 2
^^^^^^^^^
Section 2 content

2.6.3 Target-Specific Bullet Point

The :TAG: role provided by ESP-Docs comes in handy when you need to define targets for content inside a list
of bullet points. To achieve this, simply add the :TAG: inside the .. list:: directive before the items. For
example:

.. list::

:esp32: - ESP32-specific content
:esp32c2 or esp32c3: - Content specific to ESP32-C2 and ESP32-C3
:SOC_BT_SUPPORTED: - Bluetooth-specific content
- Common bullet point 1
- Common bullet point 2

Then Sphinx will only generate the first bullet point for ESP32 documentation, the second bullet point for ESP32-
C2 and ESP32-C3 documentations, and the third bullet point for targets that support Bluetooth after you define the
SOC_BT_SUPPORTED tag.

2.6.4 Target-Specific Document

It is also possible to define targets for a whole document using the :TAG: role in a table of content tree. After you
place the :TAG: role before the toctree item, Sphinx will use the role to include or exclude content based on the
target it was called with.
For example, in the following toctree extracted from the index of api-guides for esp-idf, the tags
SOC_BT_SUPPORTED, SOC_RTC_MEM_SUPPORTED, and SOC_USB_OTG_SUPPORTED (defined in the \
*_caps header files) are used:

.. toctree::
:maxdepth: 1

app_trace
startup
:SOC_BT_SUPPORTED: blufi
bootloader
build-system
core_dump
:SOC_RTC_MEM_SUPPORTED: deep-sleep-stub
error-handling
:esp32s3: flash_psram_config
:not esp32c6: RF_calibration

In this way, Sphinx will only link to the documents blufi.rst and deep-sleep-stub.rst for targets
that support these functions, the document flash_psram_config.rst for ESP32-S3, and the document
RF_calibration.rst for all the targets except for ESP32-C6.
Note that if you need to exclude an entire document from the toctree based on targets, it is necessary to also update the
configuration in docs/conf_common.py to exclude the file for other targets, or a Sphinx warning“WARNING:
document isn’t included in any toctree”will be generated.

Espressif Systems 36
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-idf/blob/master/docs/en/api-guides/index.rst
https://github.com/espressif/esp-idf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

The recommended way of doing it is adding a conditional_include_dict list in docs/conf_common.
py and include the document to one of the list that gets included. Examples can be found in docs/conf_common.py in
esp-idf, where, for instance, a document which should only be shown for Bluetooth-capable targets should be added
to BT_DOCS. The exclude_docs.py will then take care of adding it to conditional_include_dict if
the corresponding tag is not set.

2.7 Redirecting Documents

During documentation lifetime, some source files are moved between folders or renamed, and the original links to
these files will be broken. Manually fixing these links one by one is time-consuming.
To solve this issue, the html_redirects.py extension is provided to redirect pages that have changed URLs. The
extension is integrated in ESP-Docs.
This extension is used together with a redirection list html_redirect_pages, which is generated by conf_common.py
from page_redirects.txt .
conf_common.py is a configuration file for your project. To enable the html_redirects.py extension, you need to add
html_redirects.py to its extension list to enable this extension.
page_redirects.txt is a file that includes both old URLs and updated URLs. By reading this file, html_redirects.py
generates a redirection list html_redirect_pages, thus redirecting old URLs to updated ones.
If you want to rename a document, for example, rename docs/en/introduction to docs/en/get-started, or redirect a
document, for example, redirect docs/en/writing-documentation/basic-syntax to a web page, and do not want to update
the links manually, you can follow the below steps.

• Open your conf_common.py file and append html_redirects.py to the extensions list, thus enabling it in your
project:

extensions += [
...
'generic_extensions.html_redirects'
...

]

This step is done only once for a project.
• Create the file docs/page_redirects.txt to include the old and new URLs. conf_common.py will build the list

html_redirect_pages from docs/page_redirects.txt. You can check page_redirects.txt as an example.
• Add content following the below format to the page_redirects.txt file.

old URL new URL

In the above two scenarios, the URLs added in the file should be:

docs/en/introduction docs/en/get-started
docs/en/writing-documentation/basic-syntax "https://www.sphinx-doc.org/
↪→en/master/usage/restructuredtext/basics.html"

The old URL must be relative to the document root only and MUST NOT contain the file extension, which is .rst in
this case.
The new URL can either be an absolute URL or a relative URL.

• For absolute URLs, the URLs must be wrapped with double quotation marks. Whatever is inside the quotation
marks is used verbatim as the URL. Don’t forget to add the“https://”prefix to your absolute URL.

• For relative URLs, the URLs must be relative to the document root only and MUST NOT be wrapped with
any quotation marks.

In this way, page_redirects.txt is used as a“recipe”to redirect to the new URLs.

Espressif Systems 37
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-idf/blob/master/docs/conf_common.py
https://github.com/espressif/esp-idf
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/generic_extensions/html_redirects.py
https://github.com/espressif/esp-docs/blob/a05f6ae/docs/conf_common.py
https://github.com/espressif/esp-docs/blob/a05f6ae/test/unit_tests/page_redirects.txt
https://github.com/espressif/esp-docs/blob/a05f6ae/docs/conf_common.py
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/generic_extensions/html_redirects.py
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/generic_extensions/html_redirects.py
https://github.com/espressif/esp-docs/blob/a05f6ae/test/unit_tests/page_redirects.txt
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/generic_extensions/html_redirects.py
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/generic_extensions/html_redirects.py
https://github.com/espressif/esp-docs/blob/a05f6ae/test/unit_tests/page_redirects.txt
https://
https://github.com/espressif/esp-docs/blob/a05f6ae/test/unit_tests/page_redirects.txt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.8 Writing API Description

The API descriptions contain all the information required to work with the API, with details about every function,
structure, enumeration, and other elements used in the API. To help you write informative API descriptions in a
consistent style, this document provides guidelines on what to write with practical examples.

• Document Conventions
• Macro
• Type Definition
• Enumeration
• Structure
• Union
• Function

For details about formatting API documentation in header files, please refer to Formatting and Generating API De-
scriptions.

2.8.1 Document Conventions

This document uses the conventions shown below to indicate types of patterns:

Pattern Example Identifies
Descriptions enclosed in quotation
marks“”

“Measurement unit:
⋯”

A fixed sentence pattern for describing measure-
ment unit

Directives indicated by the @ charac-
ter

@brief Tags used to define the formatting of the descrip-
tions

2.8.2 Macro

Macros are used to define reusable values or code snippets, such as a clock frequency, Wi-Fi’s SSID, default con-
figurations, etc.
Macro descriptions should include:

•@brief A brief description of the macro
– Use concise sentence fragments if possible
– Example: @brief The number of CPU cores.

•@note Target-specific information, or anything that needs emphasis
– Example: @note This macro is only for ESP32.

Example 1: ESP_BLUFI_BD_ADDR_LEN

/**
* @brief Bluetooth address length in bytes.
*
* @note Must be 6 bytes.
*/
#define ESP_BLUFI_BD_ADDR_LEN 6

The above code will be rendered as:
Example 2: ESP_NETIF_INHERENT_DEFAULT_OPENTHREAD

/**
* @brief Default configuration of OT ESP-NETIF.
*/

(continues on next page)

Espressif Systems 38
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-idf/en/v5.0.2/esp32/api-reference/bluetooth/esp_blufi.html#c.ESP_BLUFI_BD_ADDR_LEN
https://docs.espressif.com/projects/esp-idf/en/v5.0.2/esp32/api-reference/network/esp_openthread.html#c.ESP_NETIF_INHERENT_DEFAULT_OPENTHREAD
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

(continued from previous page)
#define ESP_NETIF_INHERENT_DEFAULT_OPENTHREAD() \

{ \
.flags = 0, \
ESP_COMPILER_DESIGNATED_INIT_AGGREGATE_TYPE_EMPTY(mac) \
ESP_COMPILER_DESIGNATED_INIT_AGGREGATE_TYPE_EMPTY(ip_info) \
.get_ip_event = 0, \
.lost_ip_event = 0, \
.if_key = "OT_DEF", \
.if_desc = "openthread", \
.route_prio = 15 \

};

The above code will be rendered as:

2.8.3 Type Definition

Type definitions are used to create a type alias or define a new type.
Type definition descriptions should include:

•@brief A brief description of the typedef
– Use concise sentence fragments if possible
– Example: @brief Event handler type.

Note: When a type definition is used for function pointers or other similar cases, please refer to the corresponding
guidelines for function, etc.

Example: pcnt_unit_handle_t

/**
* @brief PCNT unit handle type.
*/
typedef struct pcnt_unit_t *pcnt_unit_handle_t;

The above code will be rendered as:

2.8.4 Enumeration

Enumerations allow you to define a set of named values (or enumerators) as something textual and meaningful.
Enumeration descriptions should include:

Espressif Systems 39
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-idf/en/v5.1.2/esp32c6/api-reference/peripherals/pcnt.html#_CPPv418pcnt_unit_handle_t
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

•@brief An overall description of the enumeration
– Use concise sentence fragments if possible
– Example: @brief Clock sources.

•Meanings of each enumerator
– Use concise sentence fragments or sentences
– Example: The duty resolution is 13 bits.

•@note Target-specific information, prerequisites to configure a structure member, or anything that
needs emphasis

– Example: @note The number of channels is different across chips.

Example: ledc_mode_t

/**
* @brief LEDC speed mode.
*/
typedef enum {

LEDC_HIGH_SPEED_MODE = 0, /*!< High speed mode. */
/*!< @note Only ESP32's LEDC supports high speed␣

↪→mode. */
LEDC_LOW_SPEED_MODE, /*!< Low speed mode. */
LEDC_SPEED_MODE_MAX, /*!< Speed limit. */

} ledc_mode_t;

The above code will be rendered as:

Espressif Systems 40
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-idf/en/v5.0.2/esp32/api-reference/peripherals/ledc.html#_CPPv411ledc_mode_t
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.8.5 Structure

Structures provide a way to group several related data elements (or members) into one place, so that functions can
easily use them as parameters. Members in a structure may be of different data types such as int, char, and bool.
Structure descriptions should include:

•@brief An overall description of the structure
– Use concise sentence fragments if possible
– Example: @brief ESP-NOW rate configuration.

•A list of structure members
–Description of each structure member

∗ Use concise sentence fragments if possible
∗ If the structure member is a bool, use the format“True if⋯; false otherwise. “
∗ Example: True if the timer interrupts are shared; false otherwise.

– “Measurement unit: ⋯”, if any
– @note Target-specific information, prerequisites to configure a structure member, or any-
thing that needs emphasis

Example 1: struct esp_ble_mesh_gen_level_set_t

/**
* @brief Generic Level state configuration.
*/
typedef struct {

bool op_en; /*!< True if optional parameters are included; false␣
↪→otherwise. */

int16_t level; /*!< Target value of Generic Level state. */
uint8_t tid; /*!< Transaction ID. */

} esp_ble_mesh_gen_level_set_t;

The above code will be rendered as:

Example 2: struct ledc_channel_config_t

/**
* @brief LEDC timer configuration.
*/
typedef struct {

ledc_mode_t speed_mode; /*!< LEDC speed mode. */
ledc_timer_bit_t duty_resolution; /*!< LEDC channel duty resolution. */
uint32_t freq_hz; /*!< LEDC timer frequency. Measurement␣

(continues on next page)

Espressif Systems 41
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-idf/en/v5.0.2/esp32c3/api-reference/bluetooth/esp-ble-mesh.html?#_CPPv428esp_ble_mesh_gen_level_set_t
https://docs.espressif.com/projects/esp-idf/en/v5.0.2/esp32/api-reference/peripherals/ledc.html#_CPPv419ledc_timer_config_t
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

(continued from previous page)
↪→unit: Hz. */

ledc_clk_cfg_t clk_cfg; /*!< LEDC clock. */
/*!< @note For ESP32 and ESP32-S2,␣

↪→each timer can have a independent clock source. For other chips, all timers use␣
↪→one collective clock source. */
} ledc_timer_config_t;

The above code will be rendered as:

2.8.6 Union

Similar to structures, unions are also data structures to hold multiple variables, but the members of unions are stored
in the same memory locations.
Union descriptions should include:

•@brief An overall description of the union
– Use concise sentence fragments if possible
– Example: @brief GATT client callback parameters.

•A list of union members with descriptions
–Description of each union member

∗ Use concise sentence fragments if possible
∗ Example: Signal duration.

If the union member is a structure, follow the writing guidelines for structures, that is, provide an
overall description for the structure and individual descriptions for structuremembers. For reference,
see line 5 to line 13 in the following example.

– “Measurement unit: ⋯”, if any

Espressif Systems 42
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

– @note Target-specific information, prerequisites to configure a union member, or anything
that needs emphasis

Example: rmt_symbol_word_t

1 /**
2 * @brief Union to store the RMT symbol layout.
3 */
4 typedef union {
5 /**
6 * @brief RMT symbol duration and level configuration.
7 */
8 struct {
9 unsigned int duration0 : 15; /*!< Duration of level0. Measurement unit:␣

↪→RMT tick. */
10 unsigned int level0 : 1; /*!< Level of the first part. */
11 unsigned int duration1 : 15; /*!< Duration of level1. Measurement unit:␣

↪→RMT tick. */
12 unsigned int level1 : 1; /*!< Level of the second part. */
13 } structure_name;
14 unsigned int val; /*!< The entire 32-bit RMT symbol. */
15 } rmt_symbol_word_t;

The above code will be rendered as:

Espressif Systems 43
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-idf/en/v5.0.2/esp32/api-reference/peripherals/rmt.html?#_CPPv417rmt_symbol_word_t
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.8.7 Function

Functions encapsulate a set of instructions, and can accept parameters and return values.
Function descriptions should include:

•@brief A brief description of the function
– Use concise sentence fragments if possible
– Example: Reset the timer.

•Description and direction of parameters
– Use concise sentence fragments if possible
– If parameters have a measurement unit, remember to mention it with“Measurement unit: ⋯”
– Example: PWM frequency. Measurement unit: MHz.

•Returned values and their meanings for non-void functions
– If the return value is a bool, use the format“True if⋯; false otherwise.”
– If the return value (especially for functions of the esp_err_t type) is a error code such as
ESP_ERR_INVALID_STATE, provide specific error cause. For example, the description for
ESP_ERR_INVALID_STATE can be Duty cycle fading function not installed
or started, instead of Invalid state (see the highlighted line 12 ~ 14 in the example be-
low).

• @note Target-specific information, prerequisites to configure a structure member, or anything that
needs emphasis

Example: ledc_fade_stop

1 /**
2 * @brief Stop LEDC duty cycle fading.
3 *
4 * @note
5 * 1. This function can be called when you want to configure a fixed duty cycle␣

↪→or a new fading but the last fade is still in progress.
6 * 2. This function only stops duty cycle fading if the fading is started via␣

↪→`ledc_fade_start()` in `LEDC_FADE_NO_WAIT` mode. It cannot stop duty cycle␣
↪→fading in `LEDC_FADE_WAIT_DONE` mode.

7 * 3. After this function returns values, the duty cycle of the channel will be␣
↪→fixed one PWM cycle at most.

8 *
9 * @param[in] speed_mode LEDC speed mode.
10 * @param[in] channel LEDC channel number.
11 *
12 * @return
13 * - ESP_OK: Done.
14 * - ESP_ERR_INVALID_STATE: Duty cycle fading function not installed or started.
15 *
16 */
17 esp_err_t ledc_fade_stop(ledc_mode_t speed_mode, ledc_channel_t channel);

The above code will be rendered as:

Note:
• If a parameter should be assigned with enum values (e.g. values of ledc_channel_t), there is no need
to mention the enum in parameter descriptions given that the link to enum descriptions will be automatically
generated and added (the pink circle in the above Figure).

• When referring to a function in API descriptions, always add brackets () after the function. That is,
ledc_fade_start(), instead of ledc_fade_start.

Espressif Systems 44
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-idf/en/v5.1.2/esp32c6/api-reference/peripherals/ledc.html#_CPPv414ledc_fade_stop11ledc_mode_t14ledc_channel_t
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.9 Formatting and Generating API Descriptions

When you are documenting an API, there are some guidelines to follow, as demonstrated inWriting API Descriptions.
Preparing such documentation could be tedious.
To simplify this process, ESP-Docs provides the run_doxygen.py extension, which generates API descriptions from
header files during documentation build. This extension allows for automatic updates whenever code changes occur.
This document will cover the following topics:

•Syntax and formatting rules to document API in header files
– Comment Blocks
– In-Body Comments
– Target-Specific Information
– Style

• How to generate the API descriptions and include them in rst files

2.9.1 Document API in Header Files

This section covers the formatting rules for API descriptions, so that the run_doxygen.py extension knows which
descriptions should be extracted from header files.

Comment Blocks

Comment blocks are used when documenting functions. Such comment blocks start with /**, and end with
*/. Other lines within comment blocks should be marked with * at the beginning:

/**
* @brief A brief explanation for this function. It is mandatory.
* If the explanation cannot fit into one line, start the second line with␣

(continues on next page)

Espressif Systems 45
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/esp_extensions/run_doxygen.py
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/esp_extensions/run_doxygen.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

(continued from previous page)
↪→indentation and a * at the beginning.
*
* To break a line, break it twice (add an empty line in between), just like␣
↪→how you do in rst files.
*
* @param [parameter_1's_name] [meaning.]
* @param [parameter_2's_name] [meaning.]
*
* @return
* - [response_1]: meaning.
* - [response_2]: meaning.
*/
[function_type] [function_name](parameter_1_type parameter_1, parameter_2_type␣
↪→parameter_2);

@brief, @param, and @return form the basic structure for API descriptions. @param and @return can be
skipped if a function does not have parameters or return any response.
If the function might return different responses, use a bullet list to document the responses under @return.
Comment blocks have some additional features, which can make the formatting of API descriptions fancier:

• Use [in], [out], [in, out] to document the direction of parameters:

*
* @param[in] [parameter_1's_name] [meaning.]
* @param[out] [parameter_2's_name] [meaning.]
*

• Add notes, warnings, or attentions after @note, @warning, or @attention respectively:

*
* @note
* 1. This is a numbered note. It is optional. Pay attention to the␣
↪→indentation.
* 2. You can replace @note with @warning and @attention. The␣
↪→formatting rules are the same.
*
* @warning If there is only one warning, the warning can be placed in␣
↪→the same line with @warning.
*

• Add code snippets enclosed by @code{c} and @endcode:

*
* @code{c}
* // Example of using nvs_get_i32:
* int32_t max_buffer_size = 4096; // default value
* esp_err_t err = nvs_get_i32(my_handle, "max_buffer_size", &max_
↪→buffer_size);
* assert(err == ESP_OK || err == ESP_ERR_NVS_NOT_FOUND);
* // if ESP_ERR_NVS_NOT_FOUND was returned, max_buffer_size will still
* // have its default value.
* @endcode
*

• Group similar functions by enclosing them with /**@{*/ and /**@}*/:

/**@{*/
/**
* @brief Set int8_t value for given key.
*
*
* @param[in] value The value to set.

(continues on next page)

Espressif Systems 46
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

Fig. 5: Rendered Result - Comment Blocks (Click to enlarge)

Espressif Systems 47
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

(continued from previous page)
*
* @return
* - ESP_OK.
* - ESP_FAIL.
*/
esp_err_t nvs_set_i8 (int8_t value);

/**
* @brief Set uint16_t value for given key.
*
* This function is the same as \c nvs_set_i8 except for the data type.
*/
esp_err_t nvs_set_u16 (uint16_t value);
/**@}*/

• Use Markdown Syntax:

*
* @brief Returns a random number inside a range.
*
* See [ESP32 Technical Reference Manual](https://www.
↪→espressif.com/sites/default/files/documentation/esp32_technical_
↪→reference_manual_en.pdf).
*

In-Body Comments

In-body comments are used when documenting a macro, a typedef, and members of a struct, enum, etc.
Such in-body comments start with /*!<, and end with */.

typedef struct {
type member_1; /*!< Explanation for structure member_1. */
type member_2; /*!< Explanation for structure member_2. */
type member_3; /*!< Explanation for structure member_3. */

} structure_name

Optionally, comment blocks can be used together with in-body comments when you provide overall descriptions for
a struct, enum, etc.

/**
* @brief A brief explanation for this structure.
*/
typedef struct {

type member_1; /*!< Explanation for structure member_1. */
type member_2; /*!< Explanation for structure member_2. */
type member_3; /*!< Explanation for structure member_3. */

} structure_name

You may skip repetitive macros, enumerations, or other code by enclosing them within /** @cond */ and /**
@endcond */, so that they will not show in the generated API descriptions:

/** @cond */
typedef struct esp_flash_t esp_flash_t;
/** @endcond */

Target-Specific Information

ESP-Docs introduces several functionalities to deal with target-specific contents (see Writing for Multiple Targets),
but such functionalities are not supported for API descriptions generated from header files.

Espressif Systems 48
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

Fig. 6: Rendered Result - In-Body Comments with Comment Blocks (Click to enlarge)

Espressif Systems 49
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

For target-specific information, it is preferable to use @note to clarify the applicable targets.
Use @note for a target-specific function:

/**
* @brief Enable RX PDM mode.
* @note ESP32-C3: Not applicable, because it doesn't support RX PDM mode.
*
* @param hw Peripheral I2S hardware instance address.
* @param pdm_enable Set true to RX enable PDM mode (ignored).
*/
static inline void i2s_ll_rx_enable_pdm(i2s_dev_t *hw, bool pdm_enable)

Use @note for a target-specific struct:

/**
* @brief ADC digital controller (DMA mode) output data format.
* Used to analyze the acquired ADC (DMA) data.
* @note ESP32: Only `type1` is valid. ADC2 does not support DMA mode.
*/
typedef struct {

union {
struct {

uint16_t data: 12; /*!<ADC real output data info. Resolution: 12␣
↪→bit. */

uint16_t channel: 4; /*!<ADC channel index info. */
} type1; /*!<ADC type1. */
struct {

uint16_t data: 11; /*!<ADC real output data info Resolution: 11␣
↪→bit. */

uint16_t channel: 4; /*!<ADC channel index info. For ESP32-S2:
If (channel < `ADC_CHANNEL_MAX`), The data␣

↪→is valid.
If (channel > `ADC_CHANNEL_MAX`), The data␣

↪→is invalid. */
uint16_t unit: 1; /*!<ADC unit index info. 0: ADC1; 1: ADC2. */

} type2; /*!<When the configured output format is 11␣
↪→bit.*/

uint16_t val; /*!<Raw data value. */
};

} adc_digi_output_data_t;

Alternatively, you can use if statements (#if and #endif directives in C language) together with macros defined
in *_caps.h header files as shown in the following examples.

Note: Please note that some developers tend to read header files directly instead of API documentation. If statements
would make header files hard to read, so they are less recommended.

Use an if statement to mark a target-specific function:

#if SOC_I2C_SUPPORT_SLAVE
/**
* @brief Write bytes to internal ringbuffer of the I2C slave data. When the TX␣
↪→fifo empty, the ISR will
* fill the hardware FIFO with the internal ringbuffer's data.
* @note This function shall only be called in I2C slave mode.
*
* @param i2c_num I2C port number.
* @param data Bytes to write into internal buffer.
* @param size Size, in bytes, of `data` buffer.
* @param ticks_to_wait Maximum ticks to wait.

(continues on next page)

Espressif Systems 50
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

(continued from previous page)
*
* @return
* - ESP_FAIL (-1): Parameter error.
* - Other (>=0): The number of data bytes pushed to the I2C slave buffer.
*/
int i2c_slave_write_buffer(i2c_port_t i2c_num, const uint8_t *data, int size,␣
↪→TickType_t ticks_to_wait);
#endif // SOC_I2C_SUPPORT_SLAVE

Use an if statement to mark a target-specific enum:

/**
* @brief I2C port number, can be `I2C_NUM_0` ~ (`I2C_NUM_MAX` - 1).
*/
typedef enum {

I2C_NUM_0 = 0, /*!< I2C port 0. */
#if SOC_I2C_NUM >= 2

I2C_NUM_1, /*!< I2C port 1. */
#endif

I2C_NUM_MAX, /*!< Maximum I2C ports. */
} i2c_port_t;

Style

When preparing the API descriptions, follow the style below for consistency:
• The maximum line length is 120 characters for better code readability, as described in Espressif IoT Develop-
ment Framework Style Guide

• If descriptions in combination with code are more than 120 characters, manually break lines, or consider if the
descriptions better fit in the main text (namely the .rst files)

• Capitalize the first word of every sentence segment or sentence
•Use a period . at the end of:

– Complete sentences
– Sentence fragments
– Bulleted or numbered list items

• Use bullet points if there are 2 or more returned values
• Use : between a returned value and its meaning
• Between parameters and parameter meanings, do not add any punctuation marks such as - and :

The example below shows how to follow above style after >>>:

1 /**
2 *
3 * @brief This function is called to send wifi connection report ␣

↪→ >>> Should add a ending period "." for complete sentences
4 * @param opmode : Wi-Fi opmode. ␣

↪→ >>> Should delete the colon ":" between parameter's name and perameters' meaning
5 * @param sta_conn_state station is already in connection or not. ␣

↪→ >>> Should be capitalized
6 * @param softap_conn_num Softap connection number.
7 * @param extra_info Extra information, such as sta_ssid, softap_ssid and␣

↪→etc.
8 *
9 * @return ESP_OK - Success, other - Failed ␣

↪→ >>> Values should be listed using bullet points, and "-" should be changed to ":
↪→"

10 *
11 */
12 esp_err_t esp_blufi_send_wifi_conn_report(wifi_mode_t opmode, esp_blufi_sta_conn_

(continues on next page)

Espressif Systems 51
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-idf/en/v5.0.2/esp32/contribute/style-guide.html#vertical-space
https://docs.espressif.com/projects/esp-idf/en/v5.0.2/esp32/contribute/style-guide.html#vertical-space
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

(continued from previous page)
↪→state_t sta_conn_state, uint8_t softap_conn_num, esp_blufi_extra_info_t *extra_
↪→info);

Above examples can be updated as follows in line with the rules (note that the returned error codes and their descrip-
tions in line 10 can be more specific):

1 /**
2 *
3 * @brief Send Wi-Fi connection report.
4 * @param opmode Wi-Fi operation mode.
5 * @param sta_conn_state Whether station is connected or not.
6 * @param softap_conn_num SoftAP connection number.
7 * @param extra_info Extra information, such as sta_ssid, softap_ssid and etc.
8 *
9 * @return
10 * - ESP_OK: Done.
11 * - Other error code: Failed.
12 *
13 */
14 esp_err_t esp_blufi_send_wifi_conn_report(wifi_mode_t opmode, esp_blufi_sta_conn_

↪→state_t sta_conn_state, uint8_t softap_conn_num, esp_blufi_extra_info_t *extra_
↪→info);

2.9.2 Generate and Include API Descriptions

Doxyfile is the must-have Doxygen configuration file for automatic API generation. All header files used to
generate API should be included in Doxyfile. For example, please refer to the Doxyfile of ESP-IDF.

Note: Target-specific header files may be placed in a separateDoxyfile. For example, Doxyfile_esp32 is provided
to generate ESP32-specific API descriptions in ESP-IDF.

ESP-Docs integrates API generation into the process of building documentation. To be specific, when you run
the command to build documentation (see Building Documentation Locally), run_doxygen.py generates .inc files
from input header files defined in Doxyfile according to configuration, and places the output files in _build/
$(language)/$(target)/inc directory.
To include the generated .inc files into .rst files, use the include-build-file:: directive defined in
include_build_file.py .

Espressif Systems 52
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-idf/tree/master/docs/doxygen
https://github.com/espressif/esp-idf/tree/master/docs/doxygen
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/esp_extensions/run_doxygen.py
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/esp_extensions/include_build_file.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

API Reference

.. include-build-file:: inc/i2c.inc

2.9.3 Linking to Functions, Enumerations, etc

To link to a function, enumeration, and other structure types described in API descriptions, please refer to Linking to
Classes, Functions, Enumerations, etc.

2.9.4 Example

For reference, you may navigate to the doxygen folder, and check the header files stored in the src/api subfolder.
To see the API descriptions in HTML, please run build_example.sh.

2.10 Formatting Documents for Translation

Espressif aims to provide well-formatted and up-to-date English and Chinese documents for customers. To keep En-
glish and Chinese versions always in sync, writers are encouraged to update both versions at the same time. However,
the documents of one language versionmay lag behind the other sometimes since somewriters, who are non-bilingual,
can only update one language version. Therefore, the Documentation Team will provide translation for these docu-
ments as soon as possible as the lag-behind documents will be misleading for customers.
To make it easier to update both versions for writers and facilitate the translation process for the Documentation
Team, writers and translators should follow the guidelines below when writing and updating documentation.

2.10.1 One Line per Paragraph

One paragraph should be written in one line. Breaking lines to enhance readability is only suitable for writing codes.
In the documentation, please do not break lines like the below:

Fig. 7: Line breaks within the same paragraph - not recommended (click to enlarge)

To make the document easier to read, it is recommended to place an empty line to separate the paragraph.

Espressif Systems 53
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-docs/tree/a05f6ae/examples/doxygen
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

Fig. 8: One line per paragraph - recommended (click to enlarge)

2.10.2 Line Number Consistency

Make the line numbers of English and Chinese documents consistent. For example, as shown below, the title of the
9th line in the English version should also be placed on the 9th line in the Chinese version. Other lines follow the
same rule.

Fig. 9: Keep the line number for English and Chinese documents consistent (click to enlarge)

This approach could be beneficial in the following ways:
• For non-bilingual writers, they only need to update the same line in the corresponding Chinese or English
document when updating documents.

• For translators, if documents are updated in English, then translators can quickly locate where to update in the
corresponding Chinese document later.

• By comparing the total number of lines in English and Chinese documents, Documentation Team can quickly
find out which document lags behind the other version and provide translation soon.

Note: This document only describes formatting rules that facilitate translation. For other formatting rules, see
Espressif Manual of Style.

2.11 Using Spellcheckers in VS Code

Using spellcheckers in your code editors is recommended to ensure high-quality and error-free documentation. This
helps reduce spelling mistakes and grammatical errors, improving readability and professionalism.

Espressif Systems 54
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

2.11.1 Why Use Spellcheckers?

Our documentation is collaboratively maintained by multiple contributors, many of whom prioritize technical accu-
racy over grammatical precision. This is particularly common in documentation embedded in header files, where
grammar reviews are often skipped during technical revisions.
As a result, spelling and grammatical errors may go unnoticed until they are reported long after publication. Address-
ing these issues requires considerable manual effort from the documentation team and may still leave some errors
unresolved. This not only undermines the overall clarity and professionalism of the documentation, but also leads to
unnecessary resource consumption.

2.11.2 Using Code Spell Checker in VS Code

Visual Studio Code (VS Code) provides a wide range of extensions to help detect spelling and grammar issues during
documentation writing. These tools make it easier to identify and resolve language problems early in the drafting
process, ensuring higher-quality output. One popular lightweight choice is the Code Spell Checker extension, which
works well with code and documents.
To install and configure Code Spell Checker in VS Code:

1. Open VS Code.
2. Go to the Extensions view by clicking the square icon on the sidebar.
3. Search for Code Spell Checker and click Install.

Fig. 10: Install Code Spell Checker (Click to enlarge)

4. Once installed, the extension will start underlining potential spelling mistakes.

Note: Code Spell Checker includes a variety of built-in dictionaries covering general English (US and GB),
software terminology, multiple programming languages, etc. These dictionaries help reduce false positives
when checking technical content. You can also define custom dictionaries to include domain-specific terms or
abbreviations. For more features and configuration options, refer to the official documentation.

Espressif Systems 55
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 2. Writing Documentation

Espressif Systems 56
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 3

Building Documentation

3.1 Previewing Documentation inside Your Text Editor

This section describes how to preview your rst documentation inside your text editor on your PC.
reStructuredText documents are text files, and can be edited with any text editor. Inside these text editors, there are
plenty of extensions or plugins you can use to achieve a live preview.
This approach is good for achieving a real-time live preview while you write because it’s simple and fast, but it
will only render “base”rst content without any esp-docs specific features. The styles of rendering really depend
on the extensions or plugins you use, and you may face issues such as broken links. If you want to preview your
rst documentation rendered in exactly the same style as if it is on-line with all the correct reference, go to Section
Building Documentation locally on Your OS.
In this section, we will use Visual Studio Code and Sublime Text as examples.

3.1.1 Visual Studio Code

1. Open your VS Code instance, and navigate to Extensions.
2. In the top search bar, type in keywords such as“preview”or“rst preview”.
3. Install the previewer extension of your choice (for example, Preview), and follow the instruction inside the

extension to enable a live preview.

3.1.2 Sublime Text

1. Open your Sublime Text instance, go to Tools, and click Install Package Control from the
drop-down menu.

2. After step 1, go to Tools again, and click on Command Palette....
3. In the top search bar, type“Install”and select Package Control: Install Package.
4. In the top search bar, type in keywords such as“preview”or“rst preview”.
5. Install the previewer plugin (for example, OmniMarkupPreviewer) of your choice, and follow the instruction

inside the plugin to enable a live preview.

3.2 Building Documentation Locally

The purpose of this description is to provide a summary on how to build documentation locally using ESP-Docs.

57

https://code.visualstudio.com/
https://www.sublimetext.com/
https://marketplace.visualstudio.com/items?itemName=searKing.preview-vscode
http://timonwong.github.io/OmniMarkupPreviewer/

Chapter 3. Building Documentation

3.2.1 Building HTML Locally on Your PC

ESP-Docs allows you to build your rst documentation into HTML pages on you local computer with the same style
exactly as how it will be rendered on the server. In this way, you can:

• Catch and fix any potential build errors (due to markup syntax, incorrect links, labels, missing images, etc.)
early, instead of waiting on CI errors.

• Of course, have a peek of your final documentation early.
If you just want to roughly preview your rst files while your write and don’t care too much about styles and broken
links at this moment, then go to Section Previewing Documentation inside Your Text Editor.

Installing Dependencies

In order to build documentation locally on your PC, you need to install the following prerequisites:
1. ESP-Docs - https://github.com/espressif/esp-docs
2. CairoSVG - https://cairosvg.org/documentation/
3. Doxygen (only needed when generating API documentation from header files)- http://doxygen.nl

For building the ESP-IDF documentation, see its own Building Documentation section instead.

Note: Docs building now supports Python 3 only. Python 2 installations will not work.

Note: If you are a Windows user or simply want to use a Docker container, then go directly to Using a Docker
Container at the end of this section.

ESP-Docs All applications needed are Python packages, and you can install them in one step as follows:

pip install --user esp-docs

This will pull in all the necessary dependencies such as Sphinx, Breathe, etc.

Note: The installed esp-docs may not be added to your PATH environment variable yet at this moment. To make
this tool usable from the command line, add the bin folder where it is installed to your PATH variable by running
export PATH=path_to_bin_folder:$PATH in your terminal.
To get this path_to_bin_folder, try entering pip uninstall esp-docs, you will see something like:

Found existing installation: esp-docs 1.3.0
Uninstalling esp-docs-1.3.0:
Would remove:
/Users/dummy/Library/Python/3.10/bin/build-docs
/Users/dummy/Library/Python/3.10/bin/deploy-docs
/Users/dummy/Library/Python/3.10/lib/python/site-packages/esp_docs-1.3.0.dist-info/
↪→*
/Users/dummy/Library/Python/3.10/lib/python/site-packages/esp_docs/*

The path before build-docs is your bin path. However, this configuration is only effective in the current terminal
session. You need to add PATH again once you reopen your terminal.
Therefore, if you plan to use esp-docs frequently, consider adding export
PATH="path_to_bin_folder:$PATH" to your shell profile files, such as .zprofile, then refresh
the configuration by restarting your terminal or by running source [path_to_profile_file], for example
source ~/.zprofile. Afterwards, you can use esp-docs in any terminal session anytime.

Espressif Systems 58
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/sphinx_idf_theme
https://github.com/espressif/esp-docs
https://cairosvg.org/documentation/
http://doxygen.nl
https://docs.espressif.com/projects/esp-idf/en/stable/contribute/documenting-code.html#building-documentation
https://www.python.org/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 3. Building Documentation

CairoSVG CairoSVG is an SVG 1.1 to PNG, PDF, PS and SVG converter. You can install it as follows:

pip3 install cairosvg

If you have issues, please check out CairoSVG documentation.

Doxygen Installation of Doxygen is OS dependent:
Linux

sudo apt-get install doxygen

MacOS

brew install doxygen

After these steps, you should be able to build HTML pages on your PC already. To see the details, go to Building
HTML Pages.

Building HTML Pages

After completing the above-mentioned preparation, you can navigate to your docs folders (cd ~/
$PROJECT_PATH/docs), then build HTML pages locally with the build-docs command.

Note: If $PROJECT_PATH is not the parent to the docs folder, then please specify the project path with
--project-path option. This is only required when you want to build API documentation.

•Build HTML pages in projects that do not support targets

build-docs build

•Build HTML pages for a single language

build-docs -l en

Choices for language (-l) are en and zh_CN.
•Build HTML pages for a single target

build-docs -t esp32

Choices for target (-t) are any supported chip targets (for example esp32 and esp32s2).
•Build HTML pages for a single language and target combination only

build-docs -t esp32 -l en

Choices for language (-l) are en and zh_CN, and for target (-t) are any supported chip targets (for
example esp32 and esp32s2).

•Build HTML pages excluding Doxygen-generated API documentation, which drastically reduces
build time

build-docs -f

or by setting the environment variable DOCS_FAST_BUILD. To set an environment variable, go to your
project’s Settings > CI/CD and expand the Variables section. Select Add variable and fill in the
details for your variables. For more information on how to add a variable to a project, see the GitLab
documentation.

Note: To set an environment variable, you need to be a project admin or contact the project admin for
help.

Espressif Systems 59
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://cairosvg.org/documentation/
https://docs.gitlab.com/ee/ci/variables/#add-a-cicd-variable-to-a-project
https://docs.gitlab.com/ee/ci/variables/#add-a-cicd-variable-to-a-project
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 3. Building Documentation

Note: The time it takes to build is mainly determined by the amount of Doxygen API included. This is
the reason why build with option -f for fast build is much faster.

•Build HTML pages for a single document or a subset of documentation
For a single document

build-docs -t esp32 -l en -i api-reference/peripherals/can.rst

For a subset of documentation by listing all of them

build-docs -t esp32 -l en -i api-reference/peripherals/can.rst api-
↪→reference/peripherals/adc.rst

For a subset of documentation by using wildcards:

build-docs -l en -t esp32 -i api-reference/peripherals/* build

Note: Note that when you only build a single document or a subset of documentation. The HTML output
won’t be perfect, i.e. it will not build a proper index that lists all the documents, and any references to
documents that are not built will result in warnings.

•To see the complete list of options:

build-docs --help

Checking Output

The built HTML pages will be placed in _build/<language>/<target>/html folder.

Note: There are a couple of spurious warnings that cannot be resolved without doing updates to the
Sphinx or Doxygen source code. For such specific cases, respective warnings can be documented in docs/
sphinx-known-warnings.txt and docs/doxygen-known-warnings.txt files, which are checked
during the build process to ignore these spurious warnings.

3.2.2 Building PDF Documentation Locally on Your PC

ESP-Docs also allows you to build your rst files into PDF files on your local PC. To do this, on top of all the packages
and steps described in Building HTML Locally on Your PC, you also need to complete some additional steps.

Installing Dependencies

1. Install the following LaTeX packages:
• latexmk
• texlive-latex-recommended
• texlive-fonts-recommended
• texlive-xetex

2. Install the following fonts:
• Freefont Serif, Sans and Mono OpenType fonts, available as the package fonts-freefont-otf on
Ubuntu

• Lmodern, available as the package fonts-lmodern on Ubuntu
• Fandol, can be downloaded from ctan.org archive

Espressif Systems 60
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://ctan.org/tex-archive/fonts/fandol
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 3. Building Documentation

Note: Another alternative is to simply install TeX Live, which contains all LaTeX packages and fonts required to
build PDF files. However, it may take you hours to install.

Note: If you are a Windows user or simply want to use a Docker container, then go directly to Using a Docker
Container at the end of this section.

After these steps, you should be able to build PDF files on your PC already. To see the details, go to Building PDF
Documents.

Building PDF Documents

Now you can navigate to your docs folders (cd ~/$PROJECT_PATH/docs), then build PDF documents with the
same build-docs command, but with the -bs latex option.

•Build PDF for“generic”documentation that doesn’t contain a target

build-docs -bs latex

•Build PDF for a single language and target combination only

build-docs -bs latex -t esp32 -l en

Choices for language (-l) are en and zh_CN, and for target (-t) are any supported chip targets (for
example esp32 and esp32s2).

•Or alternatively build both HTML and PDF:

build-docs -bs html latex -l en -t esp32

Checking Output

The built LaTeX and PDF files will be placed in _build/<language>/<target>/latex/build folder.

Note: There are a couple of spurious warnings that cannot be resolved without doing updates to the
Sphinx or Doxygen source code. For such specific cases, respective warnings can be documented in docs/
sphinx-known-warnings.txt and docs/doxygen-known-warnings.txt files, which are checked
during the build process to ignore these spurious warnings.

3.2.3 Using a Docker Container

ADocker container image is a lightweight, standalone, executable package of software that can be prepared to include
everything needed to run an application: code, runtime, system tools, system libraries, and in our case, to build the
documentation locally. This approach saves you the trouble to configure your PC.
To build documentation locally in a Docker container, complete the steps below:

1. Navigate to your project folder. For example cd esp/esp-docs.
2. Create a container for your project using the image provided by Espressif.

docker run -v $PWD:/esp-docs -w /esp-docs -it ciregistry.espressif.cn:8443/esp-
↪→idf-doc-env-v5.0

3. Configure your container by running pip install -U esp-docs.
After these steps, you can build docs following the instructions described in Sections Building HTML Pages and
Building PDF Documents.

Espressif Systems 61
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.tug.org/texlive/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 3. Building Documentation

3.2.4 Troubleshooting

If you experience any warning or error when building documentation locally:
• Check Troubleshooting Build Errors and Warnings;
• Or contact us by submitting a documentation feedback.

Espressif Systems 62
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4

Configuring ESP-Docs Projects

4.1 Integrating ESP-Docs into Your Project

This document describes how to integrate ESP-Docs into your project to continuously build and deploy your docu-
mentation to a server, such as Espressif’s server docs.espressif.com (recommended for Espressif software
documentation).
While performing the steps in this document, you can always refer to the documentation that has already been de-
ployed to Espressif’s server as examples, such as ESP-IDF Programming Guide, ESP-AT User Guide, esptool.py
Documentation, and ESP-Docs User Guide.
The process to integrate ESP-Docs can be broken down into the following steps:

• Get Familiar with the Documentation Folder
• Prepare a Documentation Folder
• Update Build Configuration Files
• Update CI Configuration File
• What’s Next?

4.1.1 Get Familiar with the Documentation Folder

The contents of the basic documentation folder are described below to provide more details about the folder structure
and the function of each file. Your folder might look slightly different, but being familiar with these building blocks
will help you better understand the following steps in this document.

• _static: contains graphics files, sources of diagrams, attachments not shown directly in the documentation
(e.g., schematics) as well as other resources, such as font files.

– docs_version.js: configures target and version information displayed in HTML layout, such as the
target and language selector in the top-left corner of ESP-IDF Programming Guide.

– periph_timing.json: sample figure in JSON format.
• en: English language folder that contains English documents and a build configuration file.

– conf.py: build configuration file that contains configuration information specific to the English docu-
ments, such as the English copyright information.

– index.rst: English homepage that defines documentation structure with a table of contents tree (toc-
tree). See Defining document structure for more information.

– subpage.rst: sample subpage of index.rst.
• zh_CN: the same as en but for the Simplified Chinese language.

– conf.py: the same as en/conf.py but for the Chinese documents.
– index.rst: the same as en/index.rst but for the Chinese documents.
– subpage.rst: the same as en/subpage.rst but in Chinese.

• README.md: introduction to the docs folder.

63

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
https://docs.espressif.com/projects/esp-at/en/latest/esp32/
https://docs.espressif.com/projects/esptool/en/latest/esp32/
https://docs.espressif.com/projects/esptool/en/latest/esp32/
https://docs.espressif.com/projects/esp-docs/en/latest/index.html
https://github.com/espressif/esp-docs/tree/a05f6ae/examples/basic
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
https://www.sphinx-doc.org/en/master/usage/quickstart.html#defining-document-structure

Chapter 4. Configuring ESP-Docs Projects

• build_example.sh: contains the command to simplify building this sample documentation.
• conf_common.py: contains the build configuration information common to both English and Chinese doc-
uments. The contents of this file are imported during the building process for each language to the standard
Sphinx configuration file conf.py located in respective language folders (e.g. docs/en, docs/zh_CN).
See Sphinx Configuration for more information.

• requirements.txt: package dependencies and their versions for building documentation, such as ESP-
Docs.

4.1.2 Prepare a Documentation Folder

1. Copy one of the following sample documentation folders to the root directory of your project depending on
whether the project needs support for target, version, or building API documentation from header files:

Doc Folder Target Version API Doc
basic Y Y –
doxygen Y Y Y
test/build_tests/no_target – Y Y
test/build_tests/no_version_info– – Y
test/build_tests/target_only Y – Y

2. Rename the folder to docs.
3. Delete the build_example.sh file (if there is one).
4. (Optional) Go to docs/requirements.txt and change the ESP-Docs version as needed. ESP-Docs

follows the semantic versioning scheme. For features supported by each release, please see release history.

4.1.3 Update Build Configuration Files

Build configuration files are where you set the variables that are affecting the final documentation output built with
ESP-Docs. As mentioned in Get Familiar with the Documentation Folder, there should be two types of configuration
files in each project:

• conf_common.py
• en/conf.py and zh_CN/conf.py

The configuration files in the sample documentation folder configure how to build the sample documentation instead
of your documentation, so you need to reconfigure a few variables for your documentation.

1. In conf_common.py, reconfigure some of the following variables based on your needs:
• languages: supported languages, such as en and zh_CN. It must be set to at least one language element,
namely the current project’s language.

• idf_targets: project target used as a URL slug, such as esp32 in https://docs.espressif.
com/projects/esp-idf/en/latest/esp32/. The variable is optional, but you should set either
both this variable and idf_target or neither. For more information about idf_target, see Build System
Integration .

• extensions: extensions that add more functionalities to ESP-Docs, such as sphinx_copybutton and
sphinxcontrib.wavedrom.

• github_repo: GitHub repository to which the links generated by link_roles.py point.
• html_context['github_user']: GitHub user name used by sphinx_idf_theme.
• html_context['github_repo']: GitHub repo name used by sphinx_idf_theme.
• html_static_path: path to the _static folder.
• project_slug: short name of the project as a URL slug, such as esp-docs.
• versions_url: URL from which to download the versions.js file. If it is specified as a relative URL,
such as _static/docs_version.js, the file will be downloaded relative to the HTML root folder.

• pdf_file_prefix: PDF filename prefix used for generating the link to download the PDF together with
the target and version name.

Espressif Systems 64
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.sphinx-doc.org/en/master/usage/configuration.html
https://github.com/espressif/esp-docs/tree/a05f6ae/examples/basic
https://github.com/espressif/esp-docs/tree/a05f6ae/examples/doxygen
https://github.com/espressif/esp-docs/tree/a05f6ae/test/build_tests/no_target
https://github.com/espressif/esp-docs/tree/a05f6ae/test/build_tests/no_version_info
https://github.com/espressif/esp-docs/tree/a05f6ae/test/build_tests/target_only
https://github.com/espressif/esp-docs/releases
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/esp_extensions/link_roles.py
https://github.com/espressif/sphinx_idf_theme
https://github.com/espressif/sphinx_idf_theme
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

2. In en/conf.py and zh_CN/conf.py, reconfigure some of the following variables based on your needs:
• project: name of your documentation in HTML, such as ESP-IDF Programming Guide, ESP-AT User
Guide.

• copyright: copyright statement.
• pdf_title: name of your documentation in PDF.
• language: language for content autogenerated by ESP-Docs.

4.1.4 Update CI Configuration File

Note: The following descriptions assume you are using Gitlab CI for building documentation and deploying it to
www.espressif.com, and will have to be tweaked if you are running something else for CI/CD.

The GitLab CI configuration file, .gitlab-ci.yml, is where you add jobs to enable the automatic and continuous
building and deploying of your documentation to the www.espressif.com server.
In the .gitlab-ci.yml of your project, do the steps given below. For examples, please refer to esp-docs/.gitlab-
ci.yml and esp-idf/.gitlab/ci/docs.yml.

1. Use an appropriate docker image to build the documentation. For convenience, you can reuse the image used
by ESP-IDF, $CI_DOCKER_REGISTRY/esp-idf-doc-env-v5.0:2-3. For the latest version of this
image, go to Documentation Team Site > Section ESP-Docs User Guide > esp-idf-doc-env image.

2. Add the jobs to build documentation in HTML and PDF. For examples, please refer to the
build_esp_docs_html and build_esp_docs_pdf jobs in .gitlab-ci.yml.

3. In the above building documentation jobs, addpip install -r requirements.txt to install package
dependencies.

4. Add the jobs to deploy the built documentation to the server:
a. Copy and paste the .deploy_docs_template and deploy_docs_esp_docs jobs from .gitlab-

ci.yml to your .gitlab-ci.yml.
b. Write the job for deploying your documentation based on the deploy_docs_esp_docs job.

Note: If your project is hosted on GitLab and the updates made in GitLab later are synchronized to GitHub, in such
case, please only run deploy_docs job after the job that synchronizes your repository to GitHub. This is crucial
because if synchronization to GitHub fails, the links within your documentation that refer to the GitHub project may
not function correctly.

5. Configure the required environment variables depending on your project:
a: ESP_DOCS_LATEST_BRANCH_NAME: decides which git branch will be built and deployed as
latest. Defaults to master and should therefore be changed to e.g. main if that is the naming
scheme of your master branch in your git repo.

6. Configure the variables mentioned in the jobs that deploy documentation:
a. Find out who the server’s admin is. To know who this person is and more information about the vari-

ables, please go to Documentation Team Site > Section ESP-Docs User Guide > Deploying documentation to
docs.espressif.com.

b. Ask the admin to create an SSH key for you and a directory for your documentation on the server.
c. Go to your project’s Settings > CI/CD and expand the Variables section. Select Add variable and fill in

the details for your variables. For more information on how to add a variable to a project, see the GitLab
documentation.

4.1.5 What’s Next?

1. Push your changes to GitLab and check if the pipeline passes.
2. If yes, you can check the Artifacts to see what the built sample documentation looks like.

Espressif Systems 65
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-docs/blob/master/.gitlab-ci.yml
https://github.com/espressif/esp-docs/blob/master/.gitlab-ci.yml
https://github.com/espressif/esp-idf/blob/master/.gitlab/ci/docs.yml
https://github.com/espressif/esp-docs/blob/a05f6ae/.gitlab-ci.yml
https://github.com/espressif/esp-docs/blob/a05f6ae/.gitlab-ci.yml
https://github.com/espressif/esp-docs/blob/a05f6ae/.gitlab-ci.yml
https://docs.gitlab.com/ee/ci/variables/#add-a-cicd-variable-to-a-project
https://docs.gitlab.com/ee/ci/variables/#add-a-cicd-variable-to-a-project
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

3. Now it is time to put your reST source files into the respective language folder and have them built and deployed!

4.2 Adding Extensions

Sometimes your project might need features that the ESP-Docs package does not support yet. In this case, you may
add extensions either to ESP-Docs or to your project.
This document describes how to add third-party extensions and self-developed extensions to ESP-Docs or your
project.

4.2.1 Where to Add?

An extension can be added either to ESP-Docs or to your project depending on the range of use.
If the extension might be used later in other projects integrating ESP-Docs, then add it to ESP-Docs. Otherwise, add
it to your own project.

4.2.2 Third-Party Extensions

Third-party extensions are those extensions contributed by other users, for example extensions in LinuxDoc and
sphinx-contrib libraries.

• To add a third-party extension to ESP-Docs, you should:
1. Add the extension to src/esp_docs/conf_docs.py of ESP-Docs.

extensions = ['breathe',
'sphinx.ext.todo',
'sphinx_idf_theme',
]

2. Add the extension and its version to setup.cfg of ESP-Docs.

install_requires =
sphinx==4.5.0
breathe==4.33.1

• To add a third-party extension to your project, you should:
1. Add the extension to docs/conf_common.py of your project, or to the language specific configura-

tion file docs/$lang$/conf.py of your project.

extensions = ['sphinx_copybutton',
'sphinxcontrib.wavedrom',
'linuxdoc.rstFlatTable',
]

2. Add the extension and its version to docs/requirements.txt of your project.

linuxdoc==20210324
sphinx-design==0.2.0

4.2.3 Self-Developed Extensions

Self-developed extensions are those local extensions created by you and not provided as a package.
• To add a self-developed extension to ESP-Docs, you should:

1. Place the extension in one of the following three folders of ESP-Docs:
– src/esp_docs/generic_extensions, for extensions that do not rely on any Espressif-docs-
specific behavior or configuration.

Espressif Systems 66
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://return42.github.io/linuxdoc/
https://github.com/sphinx-contrib
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/conf_docs.py
https://github.com/espressif/esp-docs/blob/a05f6ae/setup.cfg
https://github.com/espressif/esp-docs/tree/a05f6ae/src/esp_docs/generic_extensions
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

– src/esp_docs/esp_extensions, for extensions that rely on any Espressif-docs-specific behav-
ior or configuration.

– src/esp_docs/idf_extensions, for extensions that rely on ESP-IDF-docs-specific behavior or
configuration.

For more information about self-developed extension types, you may refer to Extensions Devel-
oped by Espressif.

2. Add the extension to src/esp_docs/conf_docs.py of ESP-Docs:

extensions = ['esp_docs.generic_extensions.html_redirects',
'esp_docs.esp_extensions.include_build_file',
]

• To add a self-developed extension to your project, you should:
1. Place the extension in a proper folder of your project.

For example, in the esp-iot-solution repository, the self-developed extension link-roles.py is
placed in the docs folder.

2. Add the extension to docs/conf_common.py of your project, or to the language specific configura-
tion file docs/$lang$/conf.py of your project.

extensions = ['link-roles',
]

4.3 Adding the Link-check Function

Links play an important role in documentation with the function of directing users to supplementary information.
However, broken links can not lead the user to where the author intended, which will harm reading experience and
leave a bad impression on users.
Considering the great amount of time and labor to conduct manual check on link function throughout hundreds or even
thousands of pages, a helpful tool is provided to automatically check links in the process of building the document.
It helps identify and locate broken links.
This document describes how to integrate the link-check tool to your project pipeline and how to suppress falsely
reported links.

4.3.1 How to Integrate the Link-check Function

• To integrate the link-check function to your project, add a CI/CD job to the GitLab YAML file of your project.
It can be .gitlab-ci.yml or .docs.yml. Here is an example for your reference.

check_doc_links:
extends:

- .build_docs_template
only:

- master
stage: post_deploy
tags:

- build
artifacts:

when: always
paths:

- docs/_build/*/*/*.txt
- docs/_build/*/*/linkcheck/*.txt

expire_in: 1 week
allow_failure: true
script:

- cd docs
- build-docs -l $DOCLANG linkcheck

(continues on next page)

Espressif Systems 67
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-docs/tree/a05f6ae/src/esp_docs/esp_extensions
https://github.com/espressif/esp-docs/tree/a05f6ae/src/esp_docs/idf_extensions
https://github.com/espressif/esp-docs/blob/a05f6ae/src/esp_docs/conf_docs.py
https://github.com/espressif/esp-iot-solution
https://github.com/espressif/esp-iot-solution/blob/master/docs/link-roles.py
https://github.com/espressif/esp-iot-solution/tree/master/docs
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

(continued from previous page)
parallel:

matrix:
- DOCLANG: ["en", "zh_CN"]

– extends: This command is to include the configuration from a predefined template in the
.yml file. It helps reusing common configurations across multiple jobs. If you mention this
template here, make sure you have defined it first. The following code provides an example on
how to define the template:

.build_docs_template:
image: $ESP_IDF_DOC_ENV_IMAGE
stage: build_doc
tags:

- build_docs
dependencies: []

– only: In this case, the link-check function will only run on the master branch. Note that this
is not a must for projects without any links to GitHub Files.

– stage: Specifies the stage of the pipeline where this job belongs. It is up to you which stage
to do the link check. post_deploy is just one possible stage. Note that if the docs contain
links to GitHub files then link-check should be done in the stage after the code is deployed to
GitHub. Otherwise all GitHub links will be broken.

– tags: Specifies the runner tags that this job should be picked up by. In this case, the job
requires a runner with the tag build.

– artifacts: Defines the artifacts to be collected from the job after it completes.
∗ when: always means that the artifacts are collected regardless of whether the job succeeds
or fails.

∗ paths: specifies which files and directories to collect as artifacts.
∗ expire_in: 1 week sets the expiration time for these artifacts, meaning they will be auto-
matically deleted after one week.

– allow_failure: true: Link-checkmight fail due circumstances outside of our control,
e.g. a website being temporarily down or network outage. We use allow_failure so as not to
mark a pipeline as failed just because the link-check failed.

– scripts:
∗ cd docs: changes the working directory to docs.
∗ build-docs -l $DOCLANG linkcheck: runs a command to check links within the docu-
mentation. The -l $DOCLANG flag specifies the language for the documentation, with
$DOCLANG being an environment variable set by the parallel matrix.

– parallel: Defines a matrix of job configurations to run in parallel. In this case, it specifies
that the build_docs command should be run twice: once for each value of DOCLANG (i.e.,
en for English and zh_CN for Simplified Chinese).

– image: to define the Docker image or environment used for running jobs or pipelines.
• After automatic check, a report will be generated in .txt file.

Similar to the image above, the report file will generate detailed information, including the path of file that goes
through link-check, the location of the link, link-check result and the complete link.
The result of the link-check can be classified in to 4 status:

• ok: the link passes the check.
• redirect: the broken link has been modified.
• broken: the link is identified as invalid.
• ignored: the link is excluded from check.

4.3.2 Note

It is possible that some links are reported as broken but when you open these links in the browser, they function well.
These cases are called false positives. Common false positives are listed below. To exclude certain links from the

Espressif Systems 68
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

Fig. 1: Link-check Report

scan, add the following code in conf_common.py file of your project.
1. Links in index documents

linkcheck_exclude_documents = ['index', # several false positives due␣
↪→to the way we link to different sections]

2. Links in documents located in a specific subdirectory (take the subdirectory named‘wifi_provisioning’as
an example)

linkcheck_exclude_documents = ['api-reference/provisioning/wifi_
↪→provisioning', # Fails due to `https://<mdns-hostname>.local`]

3. Github links with anchors
Disable checking automatically generated anchors on github.com, such as anchors in
reST/Markdown documents.

linkcheck_anchors = False

4. Links requesting too many times from github
If certain links are consistently reported as broken due to rate limiting but are valid, you might need
to handle them manually. You can exclude them from the scan by referring to previous instructions.

5. Links to unpublished documents (take ESP32-C2 Datasheet as an example)

linkcheck_ignore = ['https://www.espressif.com/sites/default/files/
↪→documentation/esp32-c2_datasheet_en.pdf', # Not published]

4.4 Collecting User Analytics

Google Analytics is a free web analytics service offered by Google that provides data for your website, such as the
number of visitors to your site, where they came from, and what pages they viewed. Additionally, you can track the
active user and conversion rate. The service is widely used by website owners and marketers to track the performance
of their website and improve its performance.

4.4.1 Enabling Google Analytics for Your Project

To enable Google Analytics for your project:
1. Obtain Tracking ID by sending your request to Documentation Team Manager.
2. Go to docs/conf_common.py, and add the following code to it. The YOUR_TRACKING_ID should be

changed to the obtained Tracking ID from the previous step.

Espressif Systems 69
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.google.com/analytics/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

add Tracking ID for Google Analytics

google_analytics_id = 'YOUR_TRACKING_ID'

3. Once you’ve added the Tracking ID to your project, you will need to wait for some time before data will
appear on the Google Analytics platform.

4.4.2 Viewing Google Analytics Data or Reports

To view Google Analytics data or reports:
1. Create a Google account if you don’t already have one, then sign up for Google Analytics.
2. Gain access to data or reports by sending your Google account to Documentation Team Manager.
3. Log in to Google Analytics and view reports.

See more descriptions in Google Analytics for Beginners.

4.5 Collecting Document Feedback

To better gather user feedback, we can use a quicker and easier feedback channel by clicking thumbs up or down,
and the number of likes and dislikes will be collected using Google Analytics.

After clicking the thumbs up button:

After clicking the thumbs down button:

Note: Espressif Documentation Feedback Form is the link to the classic feedback form.

Espressif Systems 70
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://accounts.google.com/signin
https://www.google.com/analytics/
https://analytics.google.com/analytics/academy/course/6
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

4.5.1 How to Add the Feedback Section to Your Repo

Currently, there is a _templates folder under both the en and zh_CN directories in the documentation repository.
Each folder contains a layout.html file that stores the feedback section for this documentation repository. Replace the
content of this layout.html with the corresponding language’s layout.html from the ../../feedback_templates directory.
You need to replace YOUR_DOCID in the official website links (lines 53 and 60) with the corresponding docId for
the document. Please note that the docIds for English and Chinese documents are different.
After that, you can compile the documentation, then the feedback section with thumbs up and down will appear.

4.5.2 Configuration of Collection of User Reactions in Google Analytics

We need to add custom events to Google Analytics (GA4) to enable tracking of users feedback on documentation in
the form of thumbs up/down.

Prerequisites

1. The site with documentation to track reactions should be added to Google Analytics, see ESP-Docs > Config-
uring ESP-Docs Projects » Collecting User Analytics.

2. The Google Analytics should collect data from the site.
3. The site should include the feedback section that shows thumbs up/down buttons (previous step).
4. To configure the collection of user reactions in Google Analytics, you need to have access to the Google Ana-

lytics account that is used for the site with documentation.

Configuration

The configuration of the collection of user reactions in Google Analytics consists of the following steps:
• Check if Custom Events are Sent to Google Analytics

1. Open the site with documentation in a browser and click the thumbs up/down buttons on a
couple of pages.

2. Open the Google Analytics account that is used for the site with documentation. Go to Reports
> Realtime.

3. On the dashboard find the Event count by Event name section and check if the events
user_reaction are sent to Google Analytics. You may need to wait a couple of seconds for
the events to appear. See the picture below.

Espressif Systems 71
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-docs/en/latest/configuring-esp-docs-projects/collecting-user-analytics.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

4. If the events are not sent to Google Analytics, check the code that sends the events to Google
Analytics (previous step).

• Add Custom Definition to Google Analytics
1. Open the Google Analytics account that is used for the site with documentation. Go to Admin

> Property settings > Data display > Custom definitions.
2. Click Create custom dimension and configure the custom dimension as follows:

– Dimension name: User Like Document
– Description: User thumbs up/down reaction on documentation
– Scope: Event
– User Property/Parameter: user_likes_document

3. Click Save to save the custom dimension. See the picture below how the custom dimension
should look like.

• Configure Exploration Report
1. Go to Explore and click Create a new exploration. See the picture below.

2. Configure the report’s input Variables.

Espressif Systems 72
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

Under DIMENSIONS, click +. On the next page that will show up search and then select the following
dimensions (see picture below). Click Import once both dimensions are selected.
– Page Title
– User Likes Document
– Event Name

UnderMETRICS, click +. On the next page that will show up search and then select the following metric.
Click Import once the metric is selected.
– Event count

3. Configure report by dragging and dropping previously added dimensions and metrics to the Settings panel.
– Drop Page Title dimension to the ROWS section.
– Drop User Likes Document dimension to the COLUMNS section.
– Drop Event count metric to the VALUES section.
– Drop Event name dimension to the FILTERS section.
– Set the Event name filter to exactly matches the user_reaction.

See the picture below. You may need to scroll down the Settings panel to see the FILTERS section.
4. Fine tune the configuration:

– Change the EXPLORATION NAME to Show User Reactions.
– Select desired period to show the results.
– Change SHOW ROWS to e.g. 100 to display more rows.

The report would look like the picture below.

Note: The exploration reports do not show values for the current day. You need to wait at least 24 h
from the first thumbs up/down clicked to see some values.

4.5.3 References

• Collect additional information that Google Analytics does not collect automatically

4.6 Configuring codespell in GitLab Repositories

This guide explains how to integrate codespell, a tool that detects common misspellings in source code, into a GitLab
repository.
Two main usage scenarios are covered:

1. Local pre-commit hooks
codespell runs automatically when you attempt a Git commit, scanning staged changes for spelling errors.

2. CI/CD pipeline enforcement
codespell runs in GitLab CI as a job. If spelling errors are found, the job fails and contributors must fix
issues locally before resubmitting.

Espressif Systems 73
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://support.google.com/analytics/answer/12229021?hl=en
https://github.com/codespell-project/codespell
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

Espressif Systems 74
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

In both cases, a shared configuration file .codespellrc ensures consistent behavior.
Example:

[codespell]
skip = build,*.drawio,*.svg,*.pdf
ignore-words-list = laf,OT
write-changes = true

• skip: Specifies directories or file extensions to ignore (e.g., build outputs, diagrams).
• ignore-words-list: Defines project-specific terms that should not be flagged (e.g., laf, OT).
• write-changes: Lets codespell automatically apply suggested fixes. If omitted, codespell runs in
dry-run mode and only reports issues.

4.6.1 Using codespell as a Git Pre-Commit Hook (Local)

This method prevents spelling errors from being committed.

Steps

1. Install pre-commit.
pre-commit is a framework that manages Git hooks. Install it with:

pip install pre-commit

2. Activate the pre-commit hook in your repository.
Go to your local repository and enable hooks with:

pre-commit install

3. Modify .pre-commit-config.yaml.
Add codespell configuration:

repos:
- repo: https://github.com/codespell-project/codespell
rev: v2.4.1 #latest release version
hooks:

- id: codespell
args: [--config=.codespellrc]

• repo: Location of the codespell hook repository.
• rev: The version of codespell to use. It is recommended to use v2.4.1 to remain consistent with other
repositories.

• id: Selects the codespell hook.
• args: Passes additional arguments, here explicitly pointing to .codespellrc.

4.6.2 Expected Behavior of the Local pre-commit Hook for codespell

When the local pre-commit hook for codespell runs, it scans only the files that have been modified. During
the check, codespell automatically fixes typos when it is confident about the correct replacement.
If there are multiple possible corrections, codespell does not modify the files directly. Instead, it provides sug-
gestions in the terminal output for you to review. For example, messages in the following screenshot show that
codespell has found two potential typos,“editers”and“repoted”, in lines 4 and 12 respectively. However,
it is uncertain which correction to apply, so it displays the possible alternatives in green highlights for you to review
and adopt. # codespell:ignore (intentional typos for demonstration)

Espressif Systems 75
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

Fig. 2: Automatic Correction by codespell

Fig. 3: Suggested Corrections from codespell

4.6.3 Implement codespell in GitLab CI/CD

To ensure spelling checks are enforced for all contributions, you can integrate codespell directly into the GitLab
CI/CD pipeline. When configured, each Merge Request pipeline can trigger a codespell job that scans only the
modified files. If spelling errors are found, the job fails, and the contributor must fix the typos locally before pushing
the corrected commit.
You can add codespell to your CI/CD process by either modifying .gitlab-ci.yml or, if pre-commit is
already integrated (usually in .gitlab/ci/pre_commit.yml), simply updating .pre-commit-config.
yaml without changing any CI files.

1. If you use .gitlab-ci.yml to manage all your jobs. Take the following code as an example:

codespell_check:
stage: check
image: $ESP_DOCS_ENV_IMAGE
extends:
- .before_script_minimal

rules:
- if: $CI_PIPELINE_SOURCE == "merge_request_event"

before_script:
- pip install codespell
- git fetch origin $CI_MERGE_REQUEST_TARGET_BRANCH_NAME --depth=1
- git fetch origin $CI_COMMIT_REF_NAME --depth=1
- export MODIFIED_FILES="$(git diff --name-only origin/$CI_MERGE_REQUEST_

↪→TARGET_BRANCH_NAME..origin/$CI_COMMIT_REF_NAME)"
script:
- |

if [-n "$MODIFIED_FILES"]; then
echo "Running codespell on changed files:"
echo "$MODIFIED_FILES"
codespell --config .codespellrc $MODIFIED_FILES

else
echo "No modified files to check with codespell."

fi

• stage: Specifies the stage of the pipeline where this job belongs. The stage can be check or pre-check
as defined earlier in the yml file.

• image: Specifies the Docker image used for running jobs. This should match the image already config-
ured in your repository.

• extends: Inherits configuration from a predefined template, e.g., .before_script_minimal.
This reduces repetition and ensures consistent initialization across jobs.

• rules: Defines conditions for when the job should run. For example, using if:

Espressif Systems 76
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

$CI_PIPELINE_SOURCE == "merge_request_event" ensures the job only runs in
pipelines triggered by a Merge Request, and not for regular branch pushes or scheduled pipelines.

• before_script:
– Installs codespell into the job environment.
– Fetches the diff range between target and source branches.
– Collects the list of modified files for spell checking.

• script: Runs codespell on modified files only. If spelling errors are detected, the job fails.
2. If your project runs unified pre-commit jobs in the CI pipeline, adding a separate codespell_check job

in .gitlab-ci.yml is unnecessary. The CI pipeline simply uses the same .pre-commit-config.
yaml file, ensuring that the checks performed in CI are identical to those on local machines.

How to Run Unified Pre-Commit Jobs in GitLab CI/CD

Running unified pre-commit jobs in GitLab CI/CD is recommended because it allows you to easily add or update
hooks in the future with minimal changes. Follow these steps to set it up:
Step 1: Include the .gitlab/ci/pre_commit.yml file in your root .gitlab-ci.yml configuration.
Example:

include:
- '.gitlab/ci/pre_commit.yml'

Note: If your .gitlab-ci.yml file does not yet define any global workflow rules, please add the following
configuration:

workflow:
rules:
- if: $CI_PIPELINE_SOURCE == "merge_request_event" # Run pipelines only for␣

↪→merge requests
- when: always # Fallback rule to always run if no other rules match

Step 2: Create the .gitlab/ci/pre_commit.yml file to include the following job definition:

.check_pre_commit_template:
stage: check # or "pre-check", depending on your pipeline structure
image: $ESP_DOCS_ENV_IMAGE # Use the same image as other jobs in your repository
extends:
- .before_script_minimal # Optional: reuse an existing minimal setup if␣

↪→available
rules:
- if: $CI_PIPELINE_SOURCE == "merge_request_event" # Run this job only for␣

↪→merge request pipelines.
script:
- pip install pre-commit
- git fetch origin $CI_MERGE_REQUEST_TARGET_BRANCH_NAME --depth=1 # Fetch␣

↪→target branch latest commit
- git fetch origin $CI_COMMIT_REF_NAME --depth=1 # Fetch source branch latest␣

↪→commit
- |

echo "Target branch: $CI_MERGE_REQUEST_TARGET_BRANCH_NAME"
echo "Source branch: $CI_COMMIT_REF_NAME"

MODIFIED_FILES=$(git diff --name-only origin/$CI_MERGE_REQUEST_TARGET_BRANCH_
↪→NAME..origin/$CI_COMMIT_REF_NAME)

echo "Modified files to check:"
echo "$MODIFIED_FILES"

if [-n "$MODIFIED_FILES"]; then

(continues on next page)

Espressif Systems 77
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 4. Configuring ESP-Docs Projects

(continued from previous page)
CI=true pre-commit run --files $MODIFIED_FILES

else
echo "No modified files to check."

fi

check_pre_commit:
extends:
- .check_pre_commit_template # All configured pre-commit hooks will run under␣

↪→this job

Note: If your repository includes submodules, make sure to fetch them in the pre-commit job to ensure all files are
available for scanning.
In this case, add the following configuration under .check_pre_commit_template:

variables:
GIT_STRATEGY: fetch
SUBMODULES_TO_FETCH: "all"

script:
- fetch_submodules # Usually defined in ``utils.sh`` to fetch submodules
If 'fetch_submodules' is not available, you can alternatively use:
- git submodule update --init --recursive

Step 3: Modify the .pre-commit-config.yaml file to add the expected hook.
Example:

repos:
- repo: https://github.com/codespell-project/codespell
rev: v2.4.1
hooks:

- id: codespell
args: [--config=.codespellrc]

After completing these steps, your CI pipeline will automatically run all pre-commit hooks on the files modified in
each Merge Request.
For a more detailed example, refer to .gitlab-ci.yml in the ESP-IDF repository.

4.6.4 Summary

• Local pre-commit hook: Prevents contributors from committing misspelled files.
• CI/CD pipeline check: Enforces centralized spelling checks in CI pipelines.
• Unified config: .codespellrc guarantees consistent behavior across environments.

Combining both approaches ensures consistent spelling and improves documentation quality.

Potential Risks of codespell

The way codespell works is by using a dictionary of common misspellings and their correct forms. During
checks, it scans files for words in this dictionary and suggests corrections. This means that codespell is not a
comprehensive spell checker –it only detects typos that exist in its dictionary, and may miss other spelling mistakes.
To catch more typos in a smarter way, it is strongly recommended to enable a spell checker in your IDE or editor.
For instance, you can Use Spellcheckers in VS Code, which flags spelling mistakes instantly as you type.

Espressif Systems 78
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://gitlab.espressif.cn:6688/espressif/esp-idf/-/blob/master/.gitlab-ci.yml?ref_type=heads
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 5

Troubleshooting

5.1 Troubleshooting Build Errors and Warnings

When build fails, a message would pop out to alert you. Such a message has two levels of severity:
• Error, which indicates that the build cannot be completed and no HTML files will be generated.
• Warning, which indicates that the HTML files are generated with errors.

This document provides guidelines on addressing build errors and warnings with the help of messages. Errors and
warnings in this document are related to either the esp-docs package or the reStructuredText syntax.

5.1.1 Message Format

Messages can help you locate errors and warnings and get a hint of why they occur.
For projects using the esp-docs package, a message usually includes the following parameters in sequence:

• Language
• Target
• [Optional] File path
• [Optional] Line number
• Error or warning type

Example of a package-related error:

en/esp32s3: Extension error:
en/esp32s3: Could not import extension linuxdoc.rstFlatTable (exception: No module␣
↪→named 'linuxdoc')

Example of a syntax-related warning:

en/esp32s3: Users/johnlee/esp/esp-idf/docs/en/api-reference/peripherals/ledc.
↪→rst:318: WARNING: undefined label: pwm-sheet

Among these parameters, file path and line number are optional. They will not be provided if an error or warning
is general and does not apply to a specific file or line.

5.1.2 Package-Related Errors and Warnings

Command not found: build-docs

This error occurs when you have not:
• installed the esp-docs package properly;

79

Chapter 5. Troubleshooting

• or correctly set the environment variable PATH.
To address this error, please go to Section Building Documentation locally on Your OS, and make sure you have
completed all the steps required.

Application error: Cannot find source directory

This error occurs when you are not in the right directory.
To address this error, navigate to docs directory:

cd docs

Extension error: Could not import extension

This error occurs when you add a new extension to conf_common.py (or in some projects conf.py), but forget
to install this extension.
To address this error, there are two options:

• Option 1: for an extension specific to your project, add it and its version to docs/requirements.txt of
your project. For example, if the extension is sphinx-design and version is 0.2.0, then add:

sphinx-design==0.2.0

And run the following command in docs directory:

pip install -r requirements.txt

• Option 2: for an extension that might be reused in other projects using the esp-docs package, add it and its
version to setup.cfg of the ESP-Docs project, for example:

install_requires =
sphinx-design==0.2.0

And run the following command:

pip install esp-docs

SyntaxError: future feature annotations is not defined

Future feature annotations is available from Python 3.7. This error might occur when Python version is too low.
To address this error, try to upgrade your Python to the required version. The required Python version can be found
in setup.cfg.

exception: No documents to build

This error occurs when you build a single document, but this document cannot be found at the specified path. For
example:

build-docs -t esp32 -l en -i api-reference/peripherals/can.rst

To address this error, correct the document path:

build-docs -t esp32 -l en -i api-reference/peripherals/twai.rst

Espressif Systems 80
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://github.com/espressif/esp-docs/blob/a05f6ae/setup.cfg
https://github.com/espressif/esp-docs/blob/a05f6ae/setup.cfg
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 5. Troubleshooting

5.1.3 Syntax-Related Errors and Warnings

ERROR: Unknown interpreted text role

This error occurs when you use an incorrect role, for example docs instead of doc.
To address this error, correct the name of the role.

ERROR: Unknown target name

This error occurs when the reference to a `target`_ cannot be found by Sphinx.
For example, the section is named as Syntax-Related Errors and Warnings, but referred to as Syn-
tax-Related Errors and Warning without s at the end:

Related resources:

- `Package-Related Errors and Warnings`_
- `Syntax-Related Errors and Warning`_

Package-Related Errors and Warnings

Syntax-Related Errors and Warnings

To address this error, correct the target name.

ERROR: Unknown directive type

This error occurs when you use directives of an extension not covered by your project or by the esp-docs package.
To address this error, add the extension following Adding Extensions.

WARNING: the underline is too short

This warning occurs when the section title underline is too short, for example:

Getting Started
===========

To fix this warning, make the title underline the same length as or longer than the title:

Getting Started
===============

Note: For Chinese titles, each Chinese character requires two underline markers (e.g. =).

WARNING: image file not readable

This warning occurs when Sphinx cannot find the image at the specified path.
To fix this warning, check if the image path is correct.

Espressif Systems 81
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 5. Troubleshooting

WARNING: unknown document

This warning occurs when Sphinx cannot find the document at specified path.
To fix this warning:

1. Check if the document path is correct.
2. Check if you have used correct syntax for role. For instance, .rst in the following example should be removed

(see Links):

:doc:`reStructuredText Syntax <../writing-documentation/basic-syntax.rst>`

WARNING: document isn’t included in any toctree

toctree directive glues all .rst files together into a table of contents (TOC). Therefore, by default every .rst
file is required to be placed under a toctree, otherwise this warning will occur.
To fix this warning, there are two options:

• Option 1: add the .rst file to its corresponding toctree, for example:

.. toctree::
:maxdepth: 2

user_guide

Usually the corresponding toctree is in the index.rst file of the parent folder, and adding
file name without .rst extension would be sufficient.
If you have already included the .rst file in a toctree and this warning still occur, check
whether you have used the .. only:: TAG directive or the :TAG: role provided by the
multiple target feature of esp-docs. For example:

.. only:: esp32

.. toctree::
:maxdepth: 2

user_guide

.. toctree::
:maxdepth: 2

:SOC_BT_SUPPORTED: bluetooth

If yes, suppress this warning by adding the .rst file to the list of documents it belongs to in
docs/conf_common.py or. For example:

BT_DOCS = ['api-guides/bluetooth.rst]

• Option 2: add :orphan: at the beginning of the .rst file. Note that in this way, this file will not be
reachable from any table of contents, but will have a matchable HTML file.

WARNING: undefined label

This warning occurs when reference :ref: points to a non-existing label, for example:

The pin header names are shown in Figure :ref:`user-guide-c6-devkitc-1-v1-board-
↪→front`.

To fix this warning, add the missing label .. _user-guide-c6-devkitc-1-v1-board-front: before
the place you want to link to:

Espressif Systems 82
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 5. Troubleshooting

.. _user-guide-c6-devkitc-1-v1-board-front:

.. figure:: ../../../_static/esp32-c6-devkitc-1/esp32-c6-devkitc-1-v1-annotated-
↪→photo.png
:align: center
:alt: ESP32-C6-DevKitC-1 - front
:figclass: align-center

ESP32-C6-DevKitC-1 - front

WARNING: Duplicate label

This warning occurs when the label is not unique, for example:

.. _order:
Retail orders
^^^^^^^^^^^^^

.. _order:
Wholesale Orders
^^^^^^^^^^^^^^^^

To fix this warning, rename the labels to make them unique.

WARNING: duplicate substitution

This warning occurs when the substitution is defined multiple times, either in the same file, or in different files within
the same project. For example, the substitution to |placeholder| is defined both in bluetooth.rst and
wifi.rst:

.. |placeholder| image:: https://dl.espressif.com/public/table-header-placeholder.
↪→png

To fix this warning, delete repetitive substitutions.
You might encounter cases that after deleting repetitive substitution in bluetooth.rst, the |placeholder|
in bluetooth.rst cannot be substituted by its definition in wifi.rstwith the following error message popping
out:

ERROR: undefined substitution referenced: "placeholder"

If this is the case, you may add this substitution definition to the end of every .rst file by using rst_epilog in
docs/conf_common.py (or docs/conf.py):

rst_epilog = """
.. |placeholder| image:: https://dl.espressif.com/public/table-header-placeholder.
↪→png
"""

5.1.4 Still Have Troubles?

This document is far from comprehensive. If you still have no clue why your build fails, here are a few more support
options:

• Contact us by submitting documentation feedback.
• For syntax-related errors and warnings, refer to ChapterWriting Documentation for the correct format.

Espressif Systems 83
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 5. Troubleshooting

Espressif Systems 84
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 6

Contributing Guide

ESP-Docs is an open and common project and we welcome contributions.
Please contribute via GitHub Pull Requests or internal GitLab Merge Requests.

6.1 Report a Bug

• Before reporting a bug, check Troubleshooting. You may find the cause of and the fix to the problem.
• If you just want to report the bug, contact the Documentation Team directly, or fill in the documentation
feedback form.

• If you want to fix the bug, open a pull/merge request with your fix. In the request, describe the problem and
solution clearly.

6.2 Add a New Feature

• CheckWhat Is ESP-Docs? to ensure the feature to be introduced is not implemented in the esp-docs project.
• Open a pull/merge request with your code. In the request, mention what the feature is about and how it will
improve the esp-docs project.

• Self-check if your code conforms to esp-idf coding style to speed up the following review process.

6.3 Make Minor Changes

• If you identify typos, grammar errors, or broken links, or want to make other minor changes, contact the
Documentation Team directly, or fill in the documentation feedback form.

• The Documentation Team will make bulk changes periodically based on such requests.

6.4 Ask a Question

• If you have questions regarding the documentation or code here, contact the Documentation Team directly, or
fill in the documentation feedback form.

85

https://github.com/espressif/esp-docs/pulls
https://www.espressif.com/en/company/documents/documentation_feedback?docId=6391&version=latest%2520(v1.3.0-34-g2aaa84f335)
https://www.espressif.com/en/company/documents/documentation_feedback?docId=6391&version=latest%2520(v1.3.0-34-g2aaa84f335)
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/contribute/style-guide.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=6391&version=latest%2520(v1.3.0-34-g2aaa84f335)
https://www.espressif.com/en/company/documents/documentation_feedback?docId=6391&version=latest%2520(v1.3.0-34-g2aaa84f335)

Chapter 6. Contributing Guide

Espressif Systems 86
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 7

Related Resources

• reStructuredText Directives describes the directives that extend the reStructuredText (reST) syntax.
• Sphinx covers the basics of getting startedwith Sphinx. On this site, reStructuredText Primer section introduces
reST concepts and syntax.

• API Documentation Template provides a template in rst format to document API.
• To see the rendered output of directives and functionality that ESP-Docs supports, refer to the documentation
built with ESP-Docs, such as

– ESP-IDF Programming Guide
– ESP-AT User Guide
– esptool.py Documentation
– mDNS Service
– ESP WebSocket Client
– ASIO port
– ESP MQTT C++ client

• To learn more about how documentation builds, go to
– Docutils that explains how this text processing system processes plaintext documentation into formats
like HTML

– Doxygen that explains how the standard tool generates documentation from annotated C++ sources
• To try Markdown in your documentation, Recommonmark parser’s documentation page presents an approach
to write CommonMark inside of Sphinx projects.

• An overview of ESP-Docs is given in the ESP DevCon22 talk How to create awesome documentation for your
ESP32-X using ESP-Docs. The video starts at 2:32:21.

• Espressif Manual of Style answers some writing style questions.
• To seek help from the Documentation Team, please check Documentation Team Site. Type the keywords in
the search box, and all relevant ready-made documents will show up.

87

https://docutils.sourceforge.io/docs/ref/rst/directives.html
https://www.sphinx-doc.org/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://github.com/espressif/esp-idf/blob/master/docs/en/api-reference/template.rst
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
https://docs.espressif.com/projects/esp-at/en/latest/esp32/
https://docs.espressif.com/projects/esptool/en/latest/esp32/
https://docs.espressif.com/projects/esp-protocols/mdns/docs/latest/en/index.html
https://docs.espressif.com/projects/esp-protocols/esp_websocket_client/docs/latest/index.html
https://docs.espressif.com/projects/esp-protocols/asio/docs/latest/index.html
https://docs.espressif.com/projects/esp-protocols/esp_mqtt_cxx/docs/latest/index.html
https://docutils.sourceforge.io/
http://doxygen.nl/
https://recommonmark.readthedocs.io/en/latest
https://youtu.be/8l29cTFS27w?t=9141

Chapter 7. Related Resources

Espressif Systems 88
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Chapter 8

Glossary

This document lists terms that are used in ESP-Docs documentation. Each term is followed by its definition and some
have notes.
add-ons

Definition: Add-ons are small programs that expand or extend the features of a browser.
blockdiag

Definition: blockdiag is an application that generates raster images from plaintext .diag source files.
Note: Do not capitalize the first letter b when using this term.

dependency
Definition: When a project consumes executable code generated by another project, the project that generates
the code is referred to as a project dependency of the project that consumes the code.

Docutils
Definition: Docutils is an open-source text processing system for processing plaintext documentation into useful
formats, such as HTML, LaTeX, man-pages, OpenDocument, or XML.

Doxygen
Definition: Doxygen is a documentation generator and static analysis tool for software source trees.

ESP-Docs
Definition: ESP-Docs is a documentation-building system developed by Espressif based on Sphinx and Read
the Docs. It expands Sphinx functionality and extensions with the features needed for Espressif’s documen-
tation and bundles this into a single package. SeeWhat Is ESP-Docs? for more information.
Note: ESP-Docs is used as a proper noun just like other documentation generators including Sphinx, or soft-
ware products like ESP-IDF and ESP-IoT Solution. Use esp-docs only in the repo name, code, command
line, folder/file name, etc.

Graphviz
Definition: Graphviz is a package of open-source tools for drawing graphs specified in DOT language scripts
having the file name extension“gv”.

interactive shell
An interactive shell is defined as the shell that simply takes commands as input on tty from the user and ac-
knowledges the output to the user.

LaTeX
Definition: LaTeX is a software system for document preparation. When writing, the writer uses plain text as
opposed to the formatted text found in WYSIWYG word processors like Microsoft Word, LibreOffice Writer
and Apple Pages.
Note: T and X should be capitalized.

Markdown
Definition: Markdown is a lightweight markup language for creating formatted text using a plaintext editor.
Note: When placed in documentation, the first letter should be capitalized.

Read the Docs
Definition: Read the Docs is an open-sourced free software documentation hosting platform. It generates
documentation written with the Sphinx documentation generator.
Note: Spaces should be added around the, and D should be capitalized.

reStructuredText

89

http://www.sphinx-doc.org/
https://readthedocs.org
https://readthedocs.org

Chapter 8. Glossary

Definition: reStructuredText is a file format for textual data used primarily in the Python programming language
community for technical documentation.
Note: Abbreviations of this term include reST, or rst. When using its full name, S and T should be capitalized,
while r remains lowercase.

slug
Definition: A unique identifier for a project, version, or target. This value comes from the project, ver-
sion name, or target name, such as esp-idf, release-v5.0, or esp32 in https://docs.espressif.com/
projects/esp-idf/en/release-v5.0/esp32/index.html.

Sphinx
Definition: Sphinx is a powerful documentation generator that has many great features for writing technical
documentation.
Note: When placed in documentation, S should be capitalized.

target
Definition: Represents a series of Espressif products for which you build documentation, e.g., ESP32, ESP32-
S2, ESP32-C3.

WaveDrom
Definition: WaveDrom draws your Timing Diagram or Waveform from a simple textual description.

Espressif Systems 90
Submit Document Feedback

Release v2.1.0-10-ga05f6ae123

https://docs.espressif.com/projects/esp-idf/en/release-v5.0/esp32/index.html
https://docs.espressif.com/projects/esp-idf/en/release-v5.0/esp32/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=§ions=&version=Release v2.1.0-10-ga05f6ae123%20for

Index

A
A-term, 32
add-ons, 89

B
B-term, 32
blockdiag, 89

D
dependency, 89
Docutils, 89
Doxygen, 89

E
ESP-Docs, 89

G
Graphviz, 89

I
interactive shell, 89

L
LaTeX, 89

M
Markdown, 89

R
Read the Docs, 89
reStructuredText, 89

S
slug, 90
Sphinx, 90

T
target, 90
Term A, 32
Term B, 32

W
WaveDrom, 90

91

	Table of contents
	Introduction
	What Is ESP-Docs?
	Features
	Third-Party Extensions
	Extensions Developed by Espressif
	Generic Extensions
	Toctree Filter
	List Filter
	HTML redirect
	Add warnings

	Espressif-Specific Extensions
	Run Doxygen
	Exclude Docs
	Format ESP Target
	Link Roles
	Latex Builder
	Include Build File

	IDF-Specific Extensions
	Build System Integration
	Configuration Variables
	New Event

	KConfig Reference
	Error to Name
	Generate Toolchain Links
	Generate Version-Specific Includes
	Generate Defines

	Sphinx-IDF-Theme

	reStructuredText v.s. Markdown
	Extensibility
	Features
	API Reference
	Tables
	Links
	Table of Contents

	ESP-Docs & Espressif Server v.s. Sphinx & Read the Docs

	Writing Documentation
	Basic Syntax
	Paragraphs
	Inline Formatting
	Italic
	Bold
	Literal

	Titles and Headings
	Section Numbering
	Lists
	Bulleted Lists
	Numbered Lists
	Nested Lists

	Code Blocks
	Simple Code Blocks
	Bash Code Blocks
	Python Code Blocks
	none Code Blocks

	Tables of Contents
	Index Files
	Substitutions
	To-Do Notes

	Figures
	Why Add Figures?
	Adding Figures in ESP-Docs
	Using Directives
	Using Diagram as Code

	Tables
	Simple Table
	Grid Table
	List Table
	CSV Table
	Comparison
	Still No Good Fit?

	Links
	Table of Contents
	Linking to Language Versions
	Linking to Other Sections Within the Document
	Linking to Other Documents
	Linking to a Specific Place of Other Documents in a Same Project
	Linking to Kconfig References
	Linking to Classes, Functions, Enumerations, etc
	Linking to GitHub Files
	Linking to External Pages
	Linking to ESP TRMs and Datasheets
	Linking to a Whole TRM or Datasheet File
	Linking to Chapters of a TRM or Datasheet File

	Resources

	Creating a Glossary
	Create Glossary of Terms
	Link a Term to its Glossary Entry

	Writing for Multiple Targets
	Target-Specific Inline Text
	Target-Specific Paragraph
	Target-Specific Bullet Point
	Target-Specific Document

	Redirecting Documents
	Writing API Description
	Document Conventions
	Macro
	Type Definition
	Enumeration
	Structure
	Union
	Function

	Formatting and Generating API Descriptions
	Document API in Header Files
	Comment Blocks
	In-Body Comments
	Target-Specific Information
	Style

	Generate and Include API Descriptions
	Linking to Functions, Enumerations, etc
	Example

	Formatting Documents for Translation
	One Line per Paragraph
	Line Number Consistency

	Using Spellcheckers in VS Code
	Why Use Spellcheckers?
	Using Code Spell Checker in VS Code

	Building Documentation
	Previewing Documentation inside Your Text Editor
	Visual Studio Code
	Sublime Text

	Building Documentation Locally
	Building HTML Locally on Your PC
	Installing Dependencies
	ESP-Docs
	CairoSVG
	Doxygen

	Building HTML Pages
	Checking Output

	Building PDF Documentation Locally on Your PC
	Installing Dependencies
	Building PDF Documents
	Checking Output

	Using a Docker Container
	Troubleshooting

	Configuring ESP-Docs Projects
	Integrating ESP-Docs into Your Project
	Get Familiar with the Documentation Folder
	Prepare a Documentation Folder
	Update Build Configuration Files
	Update CI Configuration File
	What’s Next?

	Adding Extensions
	Where to Add?
	Third-Party Extensions
	Self-Developed Extensions

	Adding the Link-check Function
	How to Integrate the Link-check Function
	Note

	Collecting User Analytics
	Enabling Google Analytics for Your Project
	Viewing Google Analytics Data or Reports

	Collecting Document Feedback
	How to Add the Feedback Section to Your Repo
	Configuration of Collection of User Reactions in Google Analytics
	Prerequisites
	Configuration

	References

	Configuring codespell in GitLab Repositories
	Using codespell as a Git Pre-Commit Hook (Local)
	Steps

	Expected Behavior of the Local pre-commit Hook for codespell
	Implement codespell in GitLab CI/CD
	How to Run Unified Pre-Commit Jobs in GitLab CI/CD

	Summary
	Potential Risks of codespell

	Troubleshooting
	Troubleshooting Build Errors and Warnings
	Message Format
	Package-Related Errors and Warnings
	Command not found: build-docs
	Application error: Cannot find source directory
	Extension error: Could not import extension
	SyntaxError: future feature annotations is not defined
	exception: No documents to build

	Syntax-Related Errors and Warnings
	ERROR: Unknown interpreted text role
	ERROR: Unknown target name
	ERROR: Unknown directive type
	WARNING: the underline is too short
	WARNING: image file not readable
	WARNING: unknown document
	WARNING: document isn’t included in any toctree
	WARNING: undefined label
	WARNING: Duplicate label
	WARNING: duplicate substitution

	Still Have Troubles?

	Contributing Guide
	Report a Bug
	Add a New Feature
	Make Minor Changes
	Ask a Question

	Related Resources
	Glossary
	Index
	Index

