ESP32
ESP-IDF Programming Guide

)

Release v5.0.6-521-gdc13544d53
Espressif Systems
Jun 28, 2024

Table of contents

Table of contents

1 Get Started

1.1 Introduction
1.2 What You Need

1.2.1 Hardware
1.2.2 Software
1.3 Installation
131 IDE
1.3.2 Manual Installation

1.4 Build Your First Project
1.5 Uninstall ESP-IDF

2 API Reference

2.1 API Conventions

2.1.1 Errorhandling
2.1.2 Configuration StruCtUres v v v v v v e e e e e e e e e e e e e e e
2.1.3 Private APIs
2.14 Components in example projectsol
2.1.5 APIStability
2.2 Application Protocols
221 ASIOPOIt . . . o ot
222 ESP-Modbus e e e
223 ESP-MQTT e
224 ESP-TLS . . . e
225 ESPHTTPClient e e e e e
22.6 ESPLocal Control e
227 ESPSerial Slave Link o
2.2.8 ESPx509 Certificate Bundle
2.2.9 HTTP Server o e e e e e e e e e e e e
2.2.10 HTTPS Server o o e e e e e e e e e e e e
2211 ICMPEcho e
22,12 mDNS Service e e
2213 Mbed TLS e e
2.2.14 TP Network Layer e
2.3 Bluetooth APT e e
23.1 BT COMMON e
232 BTLE
233 CLASSICBT e s e e
234 Controller && VHCI o e
2.3.5 ESP-BLE-MESH e
2.3.6 NimBLE-basedhost APIs e

2.4 Error Codes Reference
2.5 Networking APIs
Wi-Fi
Ethernet
Thread

2.5.1
252
253

2.6

2.7

2.8

29

2.10

254 ESP-NETIF 995

2.5.5 IPNetwork Layer e e e e 1027
2.5.6 Application Layer e e e 1029
Peripherals APT e 1030
2.6.1 Analog to Digital Converter (ADC) Oneshot Mode Driver 1030
2.6.2 Analog to Digital Converter (ADC) Continuous Mode Driver 1039
2.6.3 Analog to Digital Converter (ADC) Calibration Driver 1046
264 ClockTree e e 1050
2.6.5 Digital To Analog Converter (DAC) 1057
2.6.6 GPIO&RTCGPIO e 1061
2.6.7 General Purpose Timer (GPTimer) 1080
2.6.8 Inter-Integrated Circuit (I2C) o 1092
2.6.9 Inter-IC Sound (I2S) e e 1109
26.10 LCD . . . e 1143
2.6.11 LED Control (LEDC) 1160
2.6.12 Motor Control Pulse Width Modulator MCPWM) 1179
2.6.13 Pulse Counter (PCNT) e e s s e 1231
2.6.14 Remote Control Transceiver (RMT) 1246
2.6.15 SD Pull-up Requirements e e 1273
2.6.16 SDMMC Host Driver e e 1276
2.6.17 SDSPIHostDriver 1282
2.6.18 SDIO CardSlave Driver e 1287
2.6.19 Sigma-Delta Modulation (SDM) e 1297
2.6.20 SPIMaster Driver e 1302
2.6.21 SPISlave Driver e e e e 1327
2.6.22 ESP32-WROOM-32SE (Secure Element) 1334
2.6.23 Touch Sensor e 1335
2.6.24 Two-Wire Automotive Interface (TWAI) 1352
2.6.25 Universal Asynchronous Receiver/Transmitter (UART) 1370
Project Configuration L e e e 1395
271 IntroduCtion e e e e e e e e e e 1395
2.7.2 Project Configuration Menu 1395
2.7.3 Using sdkconfig.defaults 1395
2.7.4 Kconfig FormattingRules 1396
2.7.5 Backward Compatibility of Kconfig Options 1396
2.7.6 Configuration Options Reference 1396
Provisioning APL e 1684
2.8.1 Protocol Communication e e 1684
2.8.2 Unified Provisioning e e e e e e e 1699
2.8.3 Wi-FiProvisioning e e 1704
Storage APL e e e 1723
29.1 FATFilesystem SUpport e 1723
2.9.2 Manufacturing Utility oL 1731
2.9.3 Non-volatile Storage Library 1735
2.9.4 NVS Partition Generator Utility e 1757
29.5 SD/SDIO/MMCDIIVEr o oottt e e e e e e 1762
29.6 SPIFlash API e 1776
2.9.7 SPIFFS Filesystem i ittt i it 1812
2.9.8 Virtual filesystem component L. e e e e 1816
2.9.9 Wear Levelling AP e 1832
System APL e e e 1835
2.10.1 ApplImage Format 1835
2.10.2 Application Level Tracing 1840
2.10.3 Call function with external stack L oL 1845
2.10.4 ChipRevision o e e e e e e e e e e 1847
2.10.5 Console e e 1849
2.10.6 eFuse Manager 1858
2.10.7 Error Codes and Helper Functions, . 1878

2.10.8 ESPHTTPS OTA e s e s 1881
2.10.9 EventLoop Library e e e 1888
2.10.10 FreeRTOS (OVErview) o v i i e e e e e e e e e e e e e e e e e 1900
2.10.11 FreeRTOS (ESP-IDF) e e e 1902
2.10.12 FreeRTOS (Supplemental Features) 2020
2.10.13 Heap Memory Allocationo it i 2039
2.10.14 Heap Memory Debugging o i e e e 2052
2.10.15 High Resolution Timer (ESP Timer) 2063
2.10.16 Internal and Unstable APIs 2070
2.10.17 Inter-Processor Call e 2071
2.10.18 Interrupt allocation 2076
2.10.19 Logging library L 2083
2.10.20 Miscellaneous System APIs 2090
2.10.21 Over The Air Updates (OTA) o e e e e e 2105
2.10.22 Performance Monitor Lo e e e e 2116
2.10.23 Power Managementl 2119
2.10.24 POSIX Threads Support. oot i 2125
2.10.25 Random Number Generation o vt 2129
2.10.26 SleepModes oL e e e e e e e 2131
2.10.27 SoC Capabilities e e 2143
2.10.28 System Time e e 2153
2.10.29 The himem allocation APT 2158
2.10.30 ULP Coprocessor programming « . v v v v v v vt e e e e e i e e e e 2161
2.10.31 Watchdogs o e e e e e e e 2193
3 Hardware Reference 2199
3.1 Chip Series COmMpPariSON v v v v vt e e e e e e e e e e e e e e e e e 2199
3.1.1 Related Documents L 2202
4 API Guides 2203
4.1 Application Level Tracing library e 2203
411 OVervVIEW oo e e e e e e e 2203
4.1.2 Modesof Operation e 2203
4.1.3 Configuration Options and Dependencies 2204
414 HowtoUse ThisLibrary e 2205
4.2 Application Startup Flow L e e e e 2213
4.2.1 Firststage bootloader e 2214
4.2.2 Second stage bootloader 2214
423 Application startup oL e e e e e 2215
43 BIuFi . . . 2216
431 OVEIVIEW . . o v ottt e e e e e e e e e e 2216
432 TheBluFiFlow e 2217
433 TheFlow Chartof BluFi 2217
4.3.4 The Frame Formats Defined in BluFi 2217
4.3.5 The Security Implementationof ESP32 oL 2223
4.3.6 GATT Related Instructions ittt 2224
44 Bootloader e 2224
4.4.1 Bootloader compatibility L 2225
442 LogLevel e 2225
443 Factoryreset e e 2226
444 Bootfrom Test Firmware e 2226
445 Rollback o e 2227
446 Watchdog e 2227
447 Bootloader Size e e 2227
448 FastbootfromDeepSleep 2227
449 Custombootloader L 2227
45 Build System e e e 2228
451 OVeIVIEW v ittt e e e e e e e e e 2228

4.6

4.7

4.8

4.9

4.10

4.5.2 Usingthe Build System 2229

453 Example Project e 2231
454 ProjectCMakeLists File e 2231
4.5.5 Component CMakeLists Files 2233
4.5.6 Component Configuration L 2235
4.5.7 Preprocessor Definitions 2235
4.5.8 Component Requirements e 2235
459 Overriding Parts of the Project o 2239
4.5.10 Configuration-Only Components 2240
45.11 DebuggingCMake e 2240
4.5.12 Example Component CMakeLists 2241
4.5.13 Custom sdkconfigdefaults L 2245
4.5.14 Flasharguments o i i e e e e e e e e 2245
4.5.15 Buildingthe Bootloader e 2246
4.5.16 Writing Pure CMake Components 2246
4.5.17 Using Third-Party CMake Projects with Components 2246
4.5.18 Using Prebuilt Libraries with Components 2247
4.5.19 Using ESP-IDF in Custom CMake Projects 2247
4.5.20 ESP-IDF CMake Build System API 2248
4.5.21 File Globbing & Incremental Builds 0oL, 2252
4.5.22 Build System Metadata 2253
4.5.23 BuildSystem Internals 2253
4.5.24 Migrating from ESP-IDF GNU Make System 2255
Core Dump e e 2256
4.6.1 OVerview e e e 2256
4.6.2 Configurations e e 2257
4.63 Savecoredumptoflash 2257
4.6.4 Printcoredumpto UART 2258
4.6.5 ROM Functions in Backtraces o 2258
4.6.6 Dumping variablesondemand oL o 2258
4.6.7 Running espcoredumpP .DY « « « v v v v vt bt e e e e e e e e e 2259
Deep Sleep Wake Stubs 2262
47.1 Rulesfor Wake Stubs 2262
4772 Implementing AStub e e e e e 2262
473 Loading Code Into RTC Memory vt i vttt i et 2262
474 Loading Datalnto RTC Memory 2263
4775 CRCCheck For Wake Stubs 2263
47.6 Example 2263
Error Handling e e e 2264
4.8.1 OVeIVIEW o o i e e e e e 2264
4.8.2 Errorcodes e 2264
4.8.3 Converting error codes tO eITor MESSAZES . . .« « . v ¢ v v v v v v e e e e e e e 2264
4.8.4 ESP_ERROR_CHECKMACIO v v v v vttt i e e e e e e e e 2265
4.8.5 ESP_ERROR_CHECK_WITHOUT_ABORTmMAacro. 2265
4.8.6 ESP_RETURN_ON_ERRORMACIO . « . . . v v v v v v it e e e e e e et e e e e 2265
4.8.7 ESP_GOTO_ON_ERRORMACIO . . « . v v v v v v vttt e e e e e et 2265
4.8.8 ESP_RETURN_ON_FALSEMACIO« v v v v v v vt et et e e e e e 2265
4.8.9 ESP_GOTO_ON_FALSE MACIO« v v v v v v vt et e e e e e e e e e e 2265
4.8.10 CHECK MACROS EXamples v v ittt it e e e e 2266
4.8.11 Error handling patterns o e e e e e e e e 2266
4.8.12 CH+EXCEPUONS v v i ot e e e e e e e e 2267
ESP-BLE-MESH e 2267
49.1 Getting Started with ESP-BLE-MESH 2268
49.2 ESP-BLE-MESH Examples 2274
493 ESP-BLE-MESHDemo Videos 2275
49.4 ESP-BLE-MESHFAQ e 2275
4.9.5 Related Documents e 2275
ESP-WIFI-MESH e 2304

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.10.1 OVErVIEW o oo e e 2304

4.10.2 Introduction e e e e 2304
4.10.3 ESP-WIFI-MESH Concepts o v v v vt it e e e e e e e e e e 2305
4.10.4 BuildingaNetwork e 2311
4.10.5 Managinga Network L 2316
4.10.6 Data TranSmiSSiOn v vttt e e e e e e e e e 2319
4.10.7 Channel Switching. e e 2321
4.10.8 Performance e 2324
4.10.9 Further Notes o e 2325
Event Handling e 2325
4.11.1 Wi-Fi, Ethernet,and IP Events 2325
4112 MeshEvents e 2326
4.11.3 Bluetooth Events e 2327
Fatal Errors e 2327
4121 OVerview o e e e e e 2327
4122 PanicHandler 2327
4.12.3 Register Dump and Backtrace L o 2328
4124 GDBStub e 2330
4.12.5 RTC Watchdog Timeout ittt et e 2331
4.12.6 Guru Meditation Errors L 2331
4.12.7 Other Fatal Errors e 2333
Flash Encryption e 2335
4.13.1 Introduction e 2335
4.13.2 RelevanteFuses e 2336
4.13.3 Flash Encryption Process e 2336
4.13.4 Flash Encryption Configuration 2337
4.13.5 Possible Failures 2343
4.13.6 ESP32 Flash Encryption Status 2344
4.13.7 Reading and Writing Data in Encrypted Flash 2345
4.13.8 Updating Encrypted Flash 2346
4.13.9 Disabling Flash Encryption 2346
4.13.10 Key Points About Flash Encryption 2346
4.13.11 Limitations of Flash Encryption, 2347
4.13.12 Flash Encryption and Secure Boot 2347
4.13.13 Advanced Features e 2347
4.13.14 Technical Details e 2349
Hardware Abstraction e 2350
4.14.1 Architecture e e e e 2350
4142 LL(LowLevel) Layer e e e 2351
4.14.3 HAL (Hardware Abstraction Layer) 2352
High-Level Interrupts e 2353
4.15.1 InterruptLevels e 2353
4152 NOES . . v v v e e e 2354
JTAG Debugging o o o e e 2354
4.16.1 Introduction e e 2355
4.16.2 Howit Works? e 2355
4.16.3 Selecting JTAG Adapter. e 2356
4.16.4 Setupof OpenOCD e 2356
4.16.5 Configuring ESP32 Target. i 2357
4.16.6 Launching Debugger e 2362
4.16.7 Debugging Examples e e e 2362
4.16.8 Building OpenOCD from Sources 2362
4169 Tipsand Quirks e 2367
4.16.10 Related Documents e 2372
Linker Script Generation o 0 i e e e e e e e e e e e e 2397
4171 OVEIVIEW . . . o v ottt e e e e e e e e e e e 2397
4172 Quick Start e e e e 2397
4.17.3 Linker Script Generation Internals oL 2400

4.18

4.19

4.20

4.21

4.22

4.23

4.4

4.25

IWIP . 2407
4.18.1 Supported APIs e e 2407
4.182 BSD Sockets APT e 2407
4183 Netconn API e 2411
4.18.4 IwIP FreeRTOS Task 2411
4.18.5 IPVOSUPPOIt e e e 2412
4.18.6 esp-lwip custom modifications 2412
4.18.7 Performance Optimization e 2414
Memory Types e 2415
4.19.1 DRAM (DataRAM) e 2415
4.19.2 IRAM (Instruction RAM) e 2416
4.19.3 IROM (code executed fromflash) 2417
4.19.4 DROM (datastoredinflash) 2417
4.19.5 RTCSIoW MEemMOry v v vttt et e e e e e e e e e 2417
4.19.6 RTCFASTmemory i i e et e e e 2418
4.19.7 DMA Capable Requirement 2418
4.19.8 DMABufferinthestack 2418
OpenThread e e e 2419
4.20.1 Modes of the OpenThread stack 2419
4.20.2 How to Write an OpenThread Application 2419
4.20.3 The OpenThread Border Router 2421
Partition Tables e 2421
4211 OVEIVIEW . . o v vttt et e e e e e e e e e 2421
4.21.2 Built-in Partition Tables 2421
4.21.3 Creating Custom Tables e 2422
4.21.4 Generating Binary Partition Table o L. 2424
4.21.5 Partition Size Checks e e 2424
4.21.6 Flashing the partitiontable 2425
4.21.7 Partition Tool (parttool.py) o o i e e e 2425
Performance e 2427
4.22.1 How to Optimize Performance 2427
4222 Guides e 2427
RF calibration o . e 2445
4.23.1 Partial calibrationo e 2445
4232 Fullcalibration e 2445
4233 Nocalibration e e e e 2445
4234 PHY initialization data e e 2445
4235 APIReference e 2446
Secure Boot L 2448
4241 Background e e e 2449
4.24.2 Secure Boot Process Overview e 2449
4243 KeyS . . . oo e 2449
4244 Bootloader Size e e e e 2450
4.24.5 How To Enable Secure Boot 2450
4.24.6 Re-Flashable Software Bootloader 2451
4.24.7 Generating Secure Boot SigningKey o oo oL 2451
4.24.8 Remote Signingof Images L oL 2452
4249 Secure Boot Best Practices 2452
4.24.10 Technical Details e 2452
4.24.11 Secure Boot & Flash Encryption, 2454
4.24.12 Signed App Verification Without Hardware Secure Boot 2454
4.24.13 Advanced Features e 2454
Secure Boot V2 L L e e 2455
4.25.1 Background 2455
4252 Advantages e e 2455
4253 Secure Boot V2 Process 2455
4254 Signature Block Format o 2456
4255 SecurePadding 2456

Vi

4.26

4.27

4.28

4.29

4.30

4.31

4.25.6 Verifyinga Signature Block oL 2457

4.25.7 VerifyinganImage e e e 2457
4.25.8 Bootloader Size e e 2457
4259 eFuseusage e 2457
4.25.10 How To Enable Secure Boot V2. 2458
4.25.11 Restrictions after Secure Bootisenabled 2458
4.25.12 Generating Secure Boot SigningKey 0 L. 2459
4.25.13 Remote Signing of Images e 2459
4.25.14 Secure Boot Best Practices 2460
4.25.15 Technical Details e 2460
4.25.16 Secure Boot & Flash Encryption 2460
4.25.17 Signed App Verification Without Hardware Secure Boot 2460
4.25.18 Advanced Features e 2461
Support for External RAMo 2461
4.26.1 Introduction e e e e e 2461
4.26.2 Hardware e e e e e e 2462
4.26.3 Configuring External RAM 2462
4.26.4 ReStriCtiONSo e e e e e e e e e e e 2463
4.26.5 Failuretoinitialize e 2464
4.26.6 ChipRevisions e 2464
Thread Local Storage e 2465
4271 OVEIVIEW . . . o o i e e e e e e e e e e e e e e e e e e 2465
4.27.2 FreeRTOS Native APT e e e 2465
4273 Pthread API L e 2465
4274 ClIStandard L e e e 2465
TOOIS . . . e e e e e 2466
4.28.1 IDFFrontend -idf.py e 2466
4.28.2 IDF Docker Image e 2470
4.28.3 IDF Windows Installer e 2472
4.28.4 IDF Component Manager v v vt v it et e e e 2473
4285 IDFClang Tidy e e 2474
4.28.6 Downloadable ToOIS e e e 2475
Unit Testing in ESP32 e 2488
4.29.1 Normal Test Cases v v vt v i it e e e e e 2488
4.29.2 Multi-device Test Cases o v i it e e 2489
4293 Multi-stage Test Cases e 2490
4.29.4 Tests For Different Targets 2490
4.29.5 BuildingUnit TesSt App L L e 2491
4.29.6 Running Unit Tests o e e e e e e 2491
4.29.7 Timing Code with Cache Compensated Timer 2492
4208 Mockso e 2493
Unit Testingon Linux L e 2495
4.30.1 Embedded Software Tests e e 2495
4.30.2 IDF UnitTestsonLinux Host 2496
WIi-FiDriver o o e e 2497
431.1 ESP32Wi-FiFeature List e 2497
4.31.2 How To Write a Wi-Fi Application 2497
4313 ESP32Wi-Fi APl Error Code 2498
4.31.4 ESP32 Wi-Fi API Parameter Initialization 2498
4.31.5 ESP32 Wi-Fi Programming Model 2498
4.31.6 ESP32 Wi-Fi Event Description 2499
4.31.7 ESP32 Wi-Fi Station General Scenario 2502
4.31.8 ESP32 Wi-Fi AP General Scenario 2505
4319 ESP32Wi-FiScan e 2505
4.31.10 ESP32 Wi-Fi Station Connecting Scenario 2512
4.31.11 ESP32 Wi-Fi Station Connecting When Multiple APs Are Found 2519
431.12 Wi-FiReconnect e 2519
4.31.13 Wi-FiBeacon Timeout e 2519

Vii

4.31.14 ESP32 Wi-Fi Configuration 2519

4.31.15 Wi-Fi Easy Connect™ (DPP) e 2525
4.31.16 Wireless Network Management 2526
4.31.17 Radio Resource Measuremento 2526
4.31.18 Fast BSS Transition o it e 2527
4.31.19 ESP32 Wi-Fi Power-saving Mode 2527
4.31.20 ESP32 Wi-Fi Throughput 2529
4.31.21 Wi-Fi80211 PacketSend 2529
4.31.22 Wi-FiSnifferMode 2530
4.31.23 Wi-Fi Multiple Antennas 2531
4.31.24 Wi-Fi Channel State Information 2532
4.31.25 Wi-Fi Channel State Information Configure 2534
4.31.26 Wi-Fi HT20/40 o e e e 2534
431.27 Wi-FiQoS o e e 2534
4.31.28 Wi-FiAMSDU e 2535
43129 Wi-FiFragment e 2535
43130 WPSEnrollee e 2535
431.31 Wi-FiBuffer Usage e e 2535
4.31.32 How to Improve Wi-Fi Performance 2536
43133 Wi-FiMenuconfig L. e 2539
4.31.34 Troubleshooting e 2542
432 Wi-FiSecurity e e 2545
4.32.1 ESP32 Wi-Fi Security Features e 2545
4.32.2 Protected Management Frames (PMF), 2548
4323 WiFiEnterprise e 2549
4324 WPA3-Personal 2549
4.32.5 Wi-FiEnhanced Open™ 2550
433 RFCOEXISIENCE o v v v v vt i e e e e e e e e e 2550
4331 OVEIVIEW . . o v vttt i e e e e e e e e e e e e 2551
4.33.2 Supported Coexistence Scenario for ESP32 oL 0oL 2551
4.33.3 Coexistence Mechanismand Policy 2551
4.33.4 How to Use the Coexistence Feature 2553
4.34 Reproducible Builds 2554
4.34.1 Introduction e e 2554
4.34.2 Reasons for non-reproducible builds o oo 2554
4.34.3 Enabling reproducible builds in ESP-IDF 2554
4.34.4 How reproducible builds are achieved L. 2554
4.34.5 Reproducible builds and debugging oo 2555
4.34.6 Factors which still affect reproducible builds 2555
4.35 LowPower Mode User Guide e 2555
Migration Guides 2557
5.1 ESP-IDF 5.x Migration Guide e 2557
5.1.1 Migration from4.4t05.0 e e 2557
Libraries and Frameworks 2589
6.1 Cloud Frameworks e 2589
6.1.1 ESPRainMaker 2589
6.1.2 AWSIoT e 2589
6.1.3 AzureIoT e 2589
6.14 Google IoT Core e 2589
6.1.5 AliyunIoT oo e 2589
6.1.6 Joylink IoT e e 2589
6.1.7 TencentIoT e 2590
6.1.8 TencentyunIoT 2590
6.1.9 BaiduloT e 2590
6.2 Espressif’ sFrameworks 2590
6.2.1 Espressif Audio Development Framework 2590

viii

6.2.2 ESP-CSI. . . .
6.2.3 Espressif DSP Library e e e
6.2.4 ESP-WIFI-MESH Development Framework
6.2.5 ESP-WHO e
6.2.6 ESPRainMaker
6.2.7 ESP-IoT-Solution e e e e e e e
6.2.8 ESP-Protocols
6.2.9 ESP-BSP
7 Contributions Guide
7.1 HowtoContribute e e
7.2 Before Contributing L e e e e e
7.3 PullRequest Process e
7.4 Legal Part o e e e
7.5 Related Documents e e
7.5.1 Espressif IoT Development Framework Style Guide
7.5.2 Install pre-commit Hook for ESP-IDF Project
7.5.3 DocumentingCode
7.54 Creating Examples
7.5.5 API Documentation Template
7.5.6 Contributor Agreement o e e e e
7.577 Copyright Header Guide i
7.5.8 ESP-IDF Tests with Pytest Guide
8 ESP-IDF Versions
8.1 Releases. o e
8.2 Which Version Should I Start With? L
8.3 Versioning Scheme e
8.4 SupportPeriods
8.5 Checking the Current Version oo v i i it
8.6 GitWorkflow L
8.7 Updating ESP-IDF e
8.7.1 Updating to Stable Release
8.7.2 Updating to a Pre-Release Version
8.73 Updatingto Master Branch L
8.74 UpdatingtoaRelease Branch
9 Resources
9.1 PlatformIO e e
9.1.1 Whatis PlatformIO?
9.1.2 Installation e e e
9.1.3 Configuration e
9.1.4 Tutorials e
9.1.5 Project Examples
9.1.6 NeXtSIEPS . .« o v v o e e e e e e e
9.2 Useful Links e
10 Copyrights and Licenses
10.1 Software Copyrights e
10.1.1 Firmware COomponentso vt v vt i it e e e e
10.1.2 Documentation it e e e e e e e e e e e e e
10.2 ROM Source Code Copyrights o o v it e e e
10.3 Xtensalibhal MIT License o oottt t et e e e e
10.4 TinyBasic Plus MIT License 0 0 i i v it e e e e e e e e e e e
10.5 TlpgDec License o v i it e e e e e e e e
11 About

12 Switch Between Languages

Index 2639

Index 2639

Table of contents

This is the documentation for Espressif IoT Development Framework (esp-idf). ESP-IDF is the official development
framework for the ESP32, ESP32-S and ESP32-C Series SoCs.

This document describes using ESP-IDF with the ESP32 SoC.

Get Started API Reference API Guides

Espressif Systems 1 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/esp-idf
https://www.espressif.com/en/products/socs
get-started/index.html
api-reference/index.html
api-guides/index.html
get-started/index.html
api-reference/index.html
api-guides/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Table of contents

Espressif Systems 2 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1

Get Started

This document is intended to help you set up the software development environment for the hardware based on the
ESP32 chip by Espressif. After that, a simple example will show you how to use ESP-IDF (Espressif [oT Development
Framework) for menu configuration, then for building and flashing firmware onto an ESP32 board.

Note: This is documentation for branch release/v5. 0 of ESP-IDF. Other ESP-IDF Versions are also available.

1.1 Introduction

ESP32 is a system on a chip that integrates the following features:

¢ Wi-Fi (2.4 GHz band)

* Bluetooth

* Dual high performance Xtensa® 32-bit LX6 CPU cores
¢ Ultra Low Power co-processor

* Multiple peripherals

Powered by 40 nm technology, ESP32 provides a robust, highly integrated platform, which helps meet the continuous
demands for efficient power usage, compact design, security, high performance, and reliability.

Espressif provides basic hardware and software resources to help application developers realize their ideas using the
ESP32 series hardware. The software development framework by Espressif is intended for development of Internet-
of-Things (IoT) applications with Wi-Fi, Bluetooth, power management and several other system features.

1.2 What You Need

1.2.1 Hardware

¢ An ESP32 board.
¢ USB cable - USB A / micro USB B.
¢ Computer running Windows, Linux, or macOS.

Note: Currently, some of the development boards are using USB Type C connectors. Be sure you have the correct
cable to connect your board!

If you have one of ESP32 official development boards listed below, you can click on the link to learn more about the
hardware.

Chapter 1. Get Started

ESP32-DevKitC V4 Getting Started Guide

This guide shows how to start using the ESP32-DevKitC V4 development board.

What You Need

o ESP32-DevKitC V4 board
e USB A / micro USB B cable
¢ Computer running Windows, Linux, or macOS

You can skip the introduction sections and go directly to Section Start Application Development.

Overview ESP32-DevKitC V4 is a small-sized ESP32-based development board produced by Espressif. Most of
the I/O pins are broken out to the pin headers on both sides for easy interfacing. Developers can either connect
peripherals with jumper wires or mount ESP32-DevKitC V4 on a breadboard.

To cover a wide range of user requirements, the following versions of ESP32-DevKitC V4 are available:

e different ESP32 modules

- ESP32-WROOM-DA
ESP32-WROOM-32E
ESP32-WROOM-32UE
ESP32-WROOM-32D
ESP32-WROOM-32U
ESP32-SOLO-1
ESP32-WROVER-E
ESP32-WROVER-IE
* male or female pin headers.

For details please refer to ESP Product Selector.

Functional Description The following figure and the table below describe the key components, interfaces and
controls of the ESP32-DevKitC V4 board.

5V Power On LED I/O Connector

LEREENLENELEENEN LY ELERELE E)
AS OWD €0 ZO ET ONO ZT #1 LI 9T ST €€ ZE€ SC ¥E NA dA N3 EAE
rl-I-lIlIIIlllil

EN Button
Micro USB Port ——= ESP32-WROOM-32

Boot Button e e | AL ST TIT

USB-to-UART Bridge Optional Space for ESP32-WROVER

Fig. 1: ESP32-DevKitC V4 with ESP32-WROOM-32 module soldered

Espressif Systems 4 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://espressif.com
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-da_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-solo-1_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-e_esp32-wrover-ie_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-e_esp32-wrover-ie_datasheet_en.pdf
https://products.espressif.com/#/product-selector?names=
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Key Component Description

ESP32-WROOM-32 A module with ESP32 at its core. For more information, see ESP32-WROOM-32
Datasheet.

EN Reset button.

Boot Download button. Holding down Boot and then pressing EN initiates Firmware

Download mode for downloading firmware through the serial port.
USB-to-UART Bridge Single USB-UART bridge chip provides transfer rates of up to 3 Mbps.

Micro USB Port USB interface. Power supply for the board as well as the communication interface
between a computer and the ESP32-WROOM-32 module.

5V Power On LED Turns on when the USB or an external 5V power supply is connected to the board.
For details see the schematics in Related Documents.

I/0 Most of the pins on the ESP module are broken out to the pin headers on the board.

You can program ESP32 to enable multiple functions such as PWM, ADC, DAC,
12C, 128, SPI, etc.

Power Supply Options There are three mutually exclusive ways to provide power to the board:

* Micro USB port, default power supply
* 5V / GND header pins
* 3V3/ GND header pins

Warning: The power supply must be provided using one and only one of the options above, otherwise the
board and/or the power supply source can be damaged.

Header Block The two tables below provide the Name and Function of I/O header pins on both sides of the board,
as shown in ESP32-DevKitC V4 with ESP32- WROOM-32 module soldered.

12 No. | Name | Type' | Function
1 3V3 P 3.3 V power supply
2 EN I CHIP_PU, Reset
3 VP I GPI1036, ADC1_CHO, S_VP
4 VN I GP1039, ADC1_CH3, S_VN
5 1034 |1 GPI0O34, ADC1_CH6, VDET_1
6 1035 |1 GP1035, ADC1_CH7, VDET_2
7 1032 | I/O GPI1032, ADC1_CH4, TOUCH_CH9, XTAL_32K P
8 1033 | I/O GP1033, ADC1_CHS5, TOUCH_CHS, XTAL_32K_N
9 1025 | I/O GPI1025, ADC1_CHS8, DAC _1

10 | 1026 | IO GP1026, ADC2_CH9, DAC_2

11 | 1027 | 1O GPI027, ADC2_CH7, TOUCH_CH7

12 | 1014 | VO GP1014, ADC2_CH6, TOUCH_CH6, MTMS
13 | 1012 | 1/O GPIO12, ADC2_CH5, TOUCH_CHS5, MTDI
14 GND G Ground

15 | 1013 | I/O GPIO13, ADC2_CH4, TOUCH_CH4, MTCK
16 | D2 /0 GP109, D2?

17 | D3 1/0 GPIO10, D3?

18 | CMD | I/O GPIO11, CMD?

19 5V P 5 V power supply

1 P: Power supply; I: Input; O: Output.
2 The pins DO, D1, D2, D3, CMD and CLK are used internally for communication between ESP32 and SPI flash memory. They are grouped
on both sides near the USB connector. Avoid using these pins, as it may disrupt access to the SPI flash memory / SPI RAM.

Espressif Systems 5 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

J3

No. | Name | Type’ | Function

1 GND G Ground

2 1023 1/0 GPI1023

3 1022 1/0 GPIO22

4 X 1/0 GPIO1, UOTXD

5 RX 1/0 GPIO3, UORXD

6 1021 1/0 GPIO21

7 GND | G Ground

8 1019 1/0 GPIO19

9 1018 1/0 GPIO18

10 105 1/0 GPIOS

11 1017 1/0 GPIO17°

12 1016 1/0 GPIO16M¢ 6.3

13 104 1/0 GP104, ADC2_CHO, TOUCH_CHO

14 100 1/0 GPIO0, ADC2_CHI1, TOUCH_CHI1, Boot
16 102 1/0 GP102, ADC2_CH2, TOUCH_CH2

17 1015 1/0 GPIO15, ADC2_CH3, TOUCH_CH3, MTDO
17 D1 1/0 GPI108, D1’

18 DO 1/0 GPIO7, DO’

19 CLK 1/0 GPI06, CLK’

ESP32-DevKitC &) ESPRESSIF

3V3 g @p
L] GP1023 VSPLMOSI
00/ip_ TSP ADC1_0 [RTC GPI036 & ESPRESSIF GPI022
op/iDBNSSYNST ADC1_3 JRTC GPI039 ESP32-WROOM GPIO1 , UOTXD
oo/io SWBETSY ADC1_6 (RTC GPI034 GPI0O3 , UORXD
op/i0 BWDETS2Y ADC1_7 [RTC,GPIO35. GPI021
00/0 132K XP I TOUCH9, ADC1 4 RTC GPI032 GND
oo/0 132K XN TOUCH8, ADC1 5 RTC GPIO33 GPI019 [VSPI_MISO] 0D/IE
LYY B ADC1_8 [RTC GPI025 GPI018 _VSPLSCK [oD/t
DAC_ 2 QLIEFEDCIHEIFS GPIO5 _ VSPLSS | SDIO OD/IEWPU
00/ID_ TOUCH7, ADC2_7 [RTC ,GPI027 GPIO17, OD/IE
MTMS U DEFEICIDEEITD GPI016, OD/IE
[V B TOUCHS, ADC2_5 JRTC GPI012 GPI04 [RTC, ADC2_0 JTOUCHO, OD/IE/WPD
@D GPIO0 {RTC, ADC2_1 _TOUCH1 BOOT _ OD/IEMWPY
(7} (< 'O ADC2_4 (TOUCH4 RTC .GPI013 GPIO2 |RTC ADC2_2 TOUCH2 OD/IE/WPD
BT GPI09 GPIO15; RTC | ADC2_3 [TOUCH3 ") [:]°}
LERNTGPI010 GPIO8 T3 § !
! («\ LA GPIO11 GPIO7 I [oo/ie/wru M)
[T NSCK !

5V0

ESP32 Specs
—N\,— PWM Capable Pin

32-bit Xtensa® dual-core @240MHz N GPIO Input Only
Wi-Fi IEEE 802.11 b/g/n 2.4GHz Q@I GPIO Input and Output
DAC. Digital-to-Analog Converter WPU: Weak Pull-up (Internal)

BLuetooth 4.2 BR/EDR and BLE DEBL‘,’é P, Debug;ng RTC Power Domain (VDD3P3_RTC) WPD: Weak Pull-down (Internal)
520 KB SRAM (16 KB for cache) FLASH External Flash Memory (SPI) Ground s and s & mpu"t‘ijn‘;gz’ej“’;’fg';::g

Analog to-Digital Converter BWD Pawer Ralls (3V3 and 5V ID: Input Disabled (After Reset
448 KB ROM @ITEIEY Touch Sensor Input Channel | PinShared with the Flash ';f’“"'y OF: OﬁrputEnable ;Af:erResetj
34 GPIOs, 4x SPI, 3x UART, 2x I2C, @ELLEED Other Related Functions Can't be used as regular GPIO OD: Output Disabled (After Reset)
2x I2S, RMT, LED PWM, 1 host SD/eMMC/SDIO, (I Serial for Debug/Programming

. Arduino Related Functions

1 slave SDIO/SPI, TWAIe, 12-bit ADC, Ethernet ST Strapping Pin Functions

Fig. 2: ESP32-DevKitC Pin Layout (click to enlarge)

Pin Layout

Note on C15 The component C15 may cause the following issues on earlier ESP32-DevKitC V4 boards:

3 The pins GPIO16 and GPIO17 are available for use only on the boards with the modules ESP32-WROOM and ESP32-SOLO-1. The boards
with ESP32-WROVER modules have the pins reserved for internal use.

Espressif Systems 6 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

¢ The board may boot into Download mode
* If you output clock on GPIOO0, C15 may impact the signal

In case these issues occur, please remove the component. The figure below shows the location of C15 highlighted in
yellow.

ST TA ed N1

Fig. 3: Location of C15 (yellow) on ESP32-DevKitC V4 board

Start Application Development Before powering up your ESP32-DevKitC V4, please make sure that the board
is in good condition with no obvious signs of damage.

After that, proceed to Get Started, where Section Installation will quickly help you set up the development environment
and then flash an example project onto your board.

| 48.2 mm

KD D1 15 2 @ 4 16 17 5 18 19GND 21 RX TX 22 23 GND

n

PA2ITINI0 26493

»
@ % 27.9 mm

£ TE SE *F NA 4A NI EAL|
T

Fig. 4: Dimensions of ESP32-DevKitC board with ESP32-WROOM-32 module soldered - back (click to enlarge)

Board Dimensions

Espressif Systems 7 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Related Documents

¢ ESP32-DevKitC V4 schematics (PDF)

¢ ESP32 Datasheet (PDF)

¢ ESP32-WROOM-32 Datasheet (PDF)

¢ ESP32-WROOM-32D and ESP32-WROOM-32U Datasheet (PDF)
¢ ESP32-WROOM-DA Datasheet (PDF)

¢ ESP32-WROVER Datasheet (PDF)

¢ ESP32-WROVER-B Datasheet (PDF)

¢ ESP Product Selector

For further design documentation for the board, please contact us at sales@espressif.com.

ESP32-DevKitC V2 Getting Started Guide
This guide shows how to start using the ESP32-DevKitC V2 development board.

What You Need

o ESP32-DevKitC V2 board
e USB A / micro USB B cable
¢ Computer running Windows, Linux, or macOS

You can skip the introduction sections and go directly to Section Start Application Development.

Overview ESP32-DevKitC V2 is a small-sized ESP32-based development board produced by Espressif. Most of
the I/O pins are broken out to the pin headers on both sides for easy interfacing. Developers can either connect
peripherals with jumper wires or mount ESP32-DevKitC V4 on a breadboard.

Functional Description The following figure and the table below describe the key components, interfaces and
controls of the ESP32-DevKitC V2 board.

ESP-WROOM-32

Fig. 5: ESP32-DevKitC V2 board layout

Espressif Systems 8 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/esp32_devkitc_v4-sch.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-b_datasheet_en.pdf
https://products.espressif.com/#/product-selector?names=
mailto:sales@espressif.com
https://espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Key Component Description

ESP32-WROOM-32 Standard module with ESP32 at its core. For more information, see ESP32-
WROOM-32 Datasheet

EN Reset button.

Boot Download button. Holding down Boot and then pressing EN initiates Firmware
Download mode for downloading firmware through the serial port.

Micro USB Port USB interface. Power supply for the board as well as the communication interface
between a computer and ESP32-WROOM-32.

I/0 Most of the pins on the ESP module are broken out to the pin headers on the board.
You can program ESP32 to enable multiple functions such as PWM, ADC, DAC,
12C, 128, SPI, etc.

Power Supply Options There are three mutually exclusive ways to provide power to the board:

* Micro USB port, default power supply
* 5V / GND header pins
* 3V3/ GND header pins

Warning: The power supply must be provided using one and only one of the options above, otherwise the
board and/or the power supply source can be damaged.

Start Application Development Before powering up your ESP32-DevKitC V2, please make sure that the board
is in good condition with no obvious signs of damage.

After that, proceed to Get Started, where Section Installation will quickly help you set up the development environment
and then flash an example project onto your board.

Related Documents

¢ ESP32-DevKitC schematics (PDF)
¢ ESP32 Datasheet (PDF)
¢ ESP32-WROOM-32 Datasheet (PDF)

ESP-WROVER-KIT V4.1 Getting Started Guide

This guide shows how to get started with the ESP-WROVER-KIT V4.1 development board and also provides infor-
mation about its functionality and configuration options.

What You Need

e ESP-WROVER-KIT V4.1 board
» USB 2.0 cable (A to Micro-B)
e Computer running Windows, Linux, or macOS

You can skip the introduction sections and go directly to Section Start Application Development.

Overview ESP-WROVER-KIT is an ESP32-based development board produced by Espressif.
ESP-WROVER-KIT features the following integrated components:

¢ ESP32-WROVER-E module
¢ LCD screen
e microSD card slot

Espressif Systems 9 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://dl.espressif.com/dl/schematics/ESP32-Core-Board-V2_sch.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Its another distinguishing feature is the embedded FTDI FT2232HL chip - an advanced multi-interface USB bridge.
This chip enables to use JTAG for direct debugging of ESP32 through the USB interface without a separate JTAG
debugger. ESP-WROVER-KIT makes development convenient, easy, and cost-effective.

Most of the ESP32 I/O pins are broken out to the board’ s pin headers for easy access.

Note: ESP32’ s GPIO16 and GPIO17 are used as chip select and clock signals for PSRAM. By default, the two
GPIOs are not broken out to the board’ s pin headers in order to ensure reliable performance.

Functionality Overview The block diagram below shows the main components of ESP-WROVER-KIT and their
interconnections.

32 7T68BKHz
crystal
1110 expand
| LCD:
USB 3.2inch
Connector
1 Camera
1 MicroSD
LDO:
EXT_E\-" +5->+3.3V i - - RGB LED
—_—
E =

Fig. 6: ESP-WROVER-KIT block diagram

Functional Description The following two figures and the table below describe the key components, interfaces,
and controls of the ESP-WROVER-KIT board.

FT2232HL 32.768 kHz

MicroSD Card Slot O0R

1/0 Connector ESP32-WROVER-E

Diagnostic LEDs
UART

RGB LED
Camera Connector

SPI

CTS/RTS
LDO

5V Power On LED

JTAG

USB Port
5V Input

Power Selector: EN Button
Boot Button

Power Switch

Fig. 7: ESP-WROVER-KIT board layout - front

The table below provides description in the following manner:

« Starting from the first picture’ s top right corner and going clockwise
* Then moving on to the second picture

Espressif Systems 10 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

LCD

- TEET [

Fig. 8: ESP-WROVER-KIT board layout - back

Key Component

Description

FT2232HL

The FT2232HL chip serves as a multi-protocol USB-to-serial bridge which can
be programmed and controlled via USB to provide communication with ESP32.
FT2232HL also features USB-to-JTAG interface which is available on channel A
of the chip, while USB-to-serial is on channel B. The FT2232HL chip enhances
user-friendliness in terms of application development and debugging. See ESP-
WROVER-KIT V4.1 schematic.

32.768 kHz

External precision 32.768 kHz crystal oscillator serves as a clock with low-power
consumption while the chip is in Deep-sleep mode.

OR

Zero-ohm resistor intended as a placeholder for a current shunt, can be desoldered
or replaced with a current shunt to facilitate the measurement of ESP32’ s current
consumption in different modes.

ESP32-WROVER-E

This ESP32 module features 64-Mbit PSRAM for flexible extended storage and data

module processing capabilities.

Diagnostic LEDs Four red LEDs connected to the GPIO pins of FT2232HL. Intended for future use.

UART Serial port. The serial TX/RX signals of FT2232HL and ESP32 are broken out to
the inward and outward sides of JP2 respectively. By default, these pairs of pins are
connected with jumpers. To use ESP32’ s serial interface, remove the jumpers and
connect another external serial device to the respective pins.

SPI By default, ESP32 uses its SPI interface to access flash and PSRAM memory inside
the module. Use these pins to connect ESP32 to another SPI device. In this case, an
extra chip select (CS) signal is needed. Please note that the voltage of this interface
is3.3V.

CTS/RTS Serial port flow control signals: the pins are not connected to the circuitry by default.
To enable them, short the respective pins of JP14 with jumpers.

JTAG JTAG interface. JTAG signals of FT2232HL and ESP32 are broken out to the in-
ward and outward sides of JP2 respectively. By default, these pairs of pins are dis-
connected. To enable JTAG, short the respective pins with jumpers as shown in
Section Setup Options.

USB Port USB interface. Power supply for the board as well as the communication interface
between a computer and the board.

EN Button Reset button.

BOOT Button Download button. Holding down Boot and then pressing EN initiates Firmware
Download mode for downloading firmware through the serial port.

B P OO Sl o T e o0t D 0 S ook (5005

gling away,_from Bogt powers the board off

ETZ=Y-4-Y

Power Selector

Power supply selector mitertace. The board can be powered either via USB or via the
5V Input interface. Select the power source with a jumper. For more details, see
Section Setup Options. jumper header JP7.

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Setup Options There are three jumper blocks available to set up the board functionality. The most frequently
required options are listed in the table below.

Espressif Systems 12 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Header Jumper Setting Description of Functionality
ot L
b2
JP7 Power ESP-WROVER-KIT via an external
power supply
JP7 Power ESP-WROVER-KIT via USB
Jp2 Enable JTAG functionality
JP2 Enable UART communication
Espressif Systems Release v5.0.6-521-gdc13544d53
back

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Allocation of ESP32 Pins Some pins or terminals of ESP32 are allocated for use with the onboard or external
hardware. If that hardware is not used, e.g., nothing is plugged into the Camera (JP4) header, then these GPIOs can
be used for other purposes.

Some of the pins, such as GPIO0 or GPIO2, have multiple functions and some of them are shared among onboard
and external peripheral devices. Certain combinations of peripherals cannot work together. For example, it is not
possible to do JTAG debugging of an application that is using SD card, because several pins are shared by JTAG and
the SD card slot.

In other cases, peripherals can coexist under certain conditions. This is applicable to, for example, LCD screen and
SD card that share only a single pin GPIO21. This pin is used to provide D/C (Data/Control) signal for the LCD as
well as the Card Detect signal read from the SD card slot. If the card detect functionality is not essential, then it may
be disabled by removing R167, so both LCD and SD may operate together.

For more details on which pins are shared among which peripherals, please refer to the table in the next section.

Main I/0 Connector /JP1 The JP1 connector consists of 14x2 male pins whose functions are shown in the middle
two “I/O” columns of the table below. The two “Shared With” columns on both sides describe where else on the
board a certain GPIO is used.

Shared With I/0 I/O Shared With
n/a 3.3V GND n/a
NC/XTAL 1032 1033 NC/XTAL
JTAG, microSD 1012 1013 JTAG, microSD
JTAG, microSD 1014 1027 Camera
Camera 1026 1025 Camera, LCD
Camera 1035 1034 Camera
Camera 1039 1036 Camera
JTAG EN 1023 Camera, LCD
Camera, LCD 1022 1021 Camera, LCD, microSD
Camera, LCD 1019 1018 Camera, LCD
Camera, LCD 105 1017 PSRAM
PSRAM 1016 104 LED, Camera, microSD
Camera, LED, Boot 100 102 LED, microSD
JTAG, microSD 1015 5V
Legend:

e NC/XTAL - 32.768 kHz Oscillator

e JTAG - JTAG /JP2

¢ Boot - Boot button / SW2

e Camera - Camera / JP4

e LED - RGB LED

e microSD - microSD Card / J4

« LCD-LCD/US

¢ PSRAM - ESP32-WROVER-E’ s PSRAM

32.768 kHz Oscillator

. | ESP32 Pin
1 | GP1032
2 | GPIO33

Note: Since GPIO32 and GPIO33 are connected to the oscillator by default, they are not connected to the JP1 I/O
connector to maintain signal integrity. This allocation may be changed from the oscillator to JP1 by desoldering the
zero-ohm resistors from positions R11 or R23 and re-soldering them to positions R12 or R24.

Espressif Systems 14 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

SPI Flash / JP2

ESP32 Pin
CLK / GPIO6
SDO / GPIO7
SD1 / GPIO8
SD2 / GPIO9
SD3 / GPIO10
CMD / GPIO11

NN | W~

Important: The module’ s flash bus is connected to the jumper block JP2 through zero-ohm resistors R140 ~
R145. If the flash memory needs to operate at the frequency of 80 MHz, for reasons such as improving the integrity
of bus signals, you can desolder these resistors to disconnect the module’ s flash bus from the pin header JP2.

JTAG / JP2
. | ESP32 Pin JTAG Signal
1 | EN TRST_N
2 | MTMS /GPIO14 | TMS
3 | MTDO/GPIO15 | TDO
4 | MTDI/GPIO12 | TDI
5 | MTCK/GPIO13 | TCK
Camera / JP4 _ _
. ESP32 Pin | Camera Signal
1 n/a 3.3V
2 n/a Ground
3 GPIO27 SIO_C / SCCB Clock
4 GPIO26 SIO_D / SCCB Data
5 GPIO25 VSYNC / Vertical Sync
6 GPIO23 HREF / Horizontal Reference
7 GPIO22 PCLK / Pixel Clock
8 GPIO21 XCLK / System Clock
9 GPIO35 D7 / Pixel Data Bit 7
10 | GPIO34 D6 / Pixel Data Bit 6
11 | GPIO39 D5 / Pixel Data Bit 5
12 | GPIO36 D4 / Pixel Data Bit 4
13 | GPIOI9 D3 / Pixel Data Bit 3
14 | GPIO18 D2 / Pixel Data Bit 2
15 | GPIOS D1 / Pixel Data Bit 1
16 | GPIO4 DO / Pixel Data Bit 0
17 | GPIOO RESET / Camera Reset
18 | n/a PWDN / Camera Power Down
¢ Signals DO .. D7 denote camera data bus
RGB LED
. | ESP32 Pin | RGB LED
1 | GPIOO Red
GPIO2 Green
3 | GPIO4 Blue
Espressif Systems 15 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

microSD Card
. | ESP32 Pin microSD Signal
1 | MTDI/GPIO12 | DATA2
2 | MTCK /GPIO13 | CD/DATA3
3 | MTDO / GPIO15 | CMD
4 | MTMS /GPIO14 | CLK
5 | GPIO2 DATAO
6 | GPIO4 DATA1
7 | GPIO21 Card Detect
LCD /U5
. | ESP32 Pin | LCD Signal
1 | GPIOI8 RESET
2 | GPIO19 SCL
3 | GPIO21 D/C
4 | GPIO22 CS
5 | GPIO23 SDA
6 | GPIO25 SDO
7 | GPIOS Backlight

Start Application Development Before powering up your ESP-WROVER-KIT, please make sure that the board
is in good condition with no obvious signs of damage.

Initial Setup Please set only the following jumpers shown in the pictures below:

* Select USB as the power source using the jumper block JP7.
¢ Enable UART communication using the jumper block JP2.

Enable UART communication

Do not install any other jumpers.

Turn the Power Switch to ON, and the 5V Power On LED should light up.

Now to Development Please proceed to Ger Started, where Section Installation will quickly help you set up the
development environment and then flash an example project onto your board.

A Board Support Package can be found in IDF Component Registry.

16
Submit Document Feedback

Espressif Systems Release v5.0.6-521-gdc13544d53

https://components.espressif.com/component/espressif/esp_wrover_kit
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

The application examples that use some hardware specific to your ESP-WROVER-KIT can be found below.

¢ On-board LCD example: peripherals/spi_master/lcd
* SD card slot example: storage/sd_card
» Camera connector example: https://github.com/espressif/esp32-camera

Related Documents

¢ ESP-WROVER-KIT V4.1 schematic (PDF)

¢ ESP-WROVER-KIT V4.1 layout (DXF) may be opened online with Autodesk Viewer
¢ ESP32 Datasheet (PDF)

* ESP32-WROVER-E Datasheet (PDF)

» JTAG Debugging

* Hardware Reference

ESP-WROVER-KIT V3 Getting Started Guide

This guide shows how to get started with the ESP-WROVER-KIT V3 development board and also provides infor-
mation about its functionality and configuration options. For the description of other ESP-WROVER-KIT versions,
please check Hardware Reference.

What You Need

e ESP-WROVER-KIT V3 board
e USB 2.0 cable (A to Micro-B)
¢ Computer running Windows, Linux, or macOS

You can skip the introduction sections and go directly to Section Start Application Development.

Overview ESP-WROVER-KIT is an ESP32-based development board produced by Espressif. This board features
an integrated LCD screen and microSD card slot.

ESP-WROVER-KIT comes with the following ESP32 modules:

« ESP32-WROOM-32
* ESP32-WROVER series

Its another distinguishing feature is the embedded FTDI FT2232HL chip - an advanced multi-interface USB bridge.
This chip enables to use JTAG for direct debugging of ESP32 through the USB interface without a separate JTAG
debugger. ESP-WROVER-KIT makes development convenient, easy, and cost-effective.

Most of the ESP32 I/0O pins are broken out to the board’ s pin headers for easy access.

Note: The version with the ESP32-WROVER module uses ESP32’ s GPIO16 and GPIO17 as chip
select and clock signals for PSRAM. By default, the two GPIOs are not broken out to the board’ s pin
headers in order to ensure reliable performance.

Functionality Overview The block diagram below shows the main components of ESP-WROVER-KIT and their
interconnections.

Functional Description The following two figures and the table below describe the key components, interfaces,
and controls of the ESP-WROVER-KIT board.

The table below provides description in the following manner:

« Starting from the first picture’ s top right corner and going clockwise
¢ Then moving on to the second picture

Espressif Systems 17 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/esp-idf/tree/dc13544d537/examples/peripherals/spi_master/lcd
https://github.com/espressif/esp-idf/tree/dc13544d537/examples/storage/sd_card
https://github.com/espressif/esp32-camera
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4.1.dxf
https://viewer.autodesk.com/
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-e_esp32-wrover-ie_datasheet_en.pdf
https://espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

uUsB
Connector

USB_gV
EXT_5V

32.768KHz
crystal

1110 expand

| LcD:
3.2inch

1 Camera

1 MicroSD

RGB LED

Fig. 9: ESP-WROVER-KIT block diagram

Key Component

Description

32.768 kHz

External precision 32.768 kHz crystal oscillator serves as a clock with low-power
consumption while the chip is in Deep-sleep mode.

OR

Zero-ohm resistor intended as a placeholder for a current shunt, can be desoldered
or replaced with a current shunt to facilitate the measurement of ESP32’ s current
consumption in different modes.

ESP32 Module

Either ESP32-WROOM-32 or ESP32-WROVER with an integrated ESP32. The
ESP32-WROVER module features all the functions of ESP32-WROOM-32 and
integrates an external 32-MBit PSRAM for flexible extended storage and data pro-
cessing capabilities.

FT2232

The FT2232 chip serves as a multi-protocol USB-to-serial bridge which can be pro-
grammed and controlled via USB to provide communication with ESP32. FT2232
also features USB-to-JTAG interface which is available on channel A of the chip,
while USB-to-serial is on channel B. The FT2232 chip enhances user-friendliness
in terms of application development and debugging. See ESP-WROVER-KIT V3
schematic.

UART

Serial port. The serial TX/RX signals of FT2232 and ESP32 are broken out to the
inward and outward sides of JP11 respectively. By default, these pairs of pins are
connected with jumpers. To use ESP32’ s serial interface, remove the jumpers and
connect another external serial device to the respective pins.

SPI

By default, ESP32 uses its SPI interface to access flash and PSRAM memory inside
the module. Use these pins to connect ESP32 to another SPI device. In this case,
an extra chip select (CS) signal is needed. Please note that the interface voltage for
the version with ESP32-WROVER is 1.8V, while that for the version with ESP32-
WROOM-32 is 3.3V.

CTS/RTS

Serial port flow control signals: the pins are not connected to the circuitry by default.
To enable them, short the respective pins of JP14 with jumpers.

JTAG

JTAG interface. JTAG signals of FT2232 and ESP32 are broken out to the inward
and outward sides of JP8 respectively. By default, these pairs of pins are discon-
nected. To enable JTAG, short the respective pins with jumpers as shown in Section
Setup Options.

EN

Reset button.

Boot

Download button. Holding down Boot and then pressing EN initiates Firmware
Download mode for downloading firmware through the serial port.

USB

USB interface. Power supply for the board as well as the communication interface

between a computer and the board.
Powx O Of 1 oooline to

- Power Key
Espressif Systems

from USB powers the boal@off. Release v5.0.6-521-gdc13544d53

Power Select

Power suppiRBEEHIQRMRBI TIREHARLEaN be powered either via USB or via the
5V Input interface. Select the power source with a jumper. For more details, see
Section Serup Options, jumper header JP7.

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

32.768
kHz
Micro OR
SD Card
ESP32
/o Module
FT2232
RGB
LED
B o . co
UART
Camera
SPI
LDO
CTS
RTS
5V
Input JTAG
Power Power
Select Key USB Boot EN
Fig. 10: ESP-WROVER-KIT board layout - front
Espressif Systems 19 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Ny - R
i &8

LCD mi @ on
* 027 o @ 0w

o @& 0

L

rwDn @ @ RESET

Fig. 11: ESP-WROVER-KIT board layout - back

Espressif Systems 20 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Setup Options There are five jumper blocks available to set up the board functionality. The most frequently
required options are listed in the table below.

Espressif Systems 21 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Header Description of Functionality

JP7 Power ESP-WROVER-KIT via an external power
supply

JpP7 Power ESP-WROVER-KIT via USB
JP8 Enable JTAG functionality
1 panl o = lmum
Espressif Sysk e | W 22 Release v5.0.6-521-gdc13544d53

Document Feedback

TD1 1 Tlemn vkl Aa TTA DT oA evm ot 1o e v b ~em

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Allocation of ESP32 Pins Some pins / terminals of ESP32 are allocated for use with the onboard or external
hardware. If that hardware is not used, e.g., nothing is plugged into the Camera (JP4) header, then these GPIOs can
be used for other purposes.

Some of the pins, such as GPIO0 or GPIO2, have multiple functions and some of them are shared among onboard
and external peripheral devices. Certain combinations of peripherals cannot work together. For example, it is not
possible to do JTAG debugging of an application that is using SD card, because several pins are shared by JTAG and
the SD card slot.

In other cases, peripherals can coexist under certain conditions. This is applicable to, for example, LCD screen and
SD card that share only a single pin GPIO21. This pin is used to provide D/C (Data / Control) signal for the LCD as
well as the CD (Card Detect) signal read from the SD card slot. If the card detect functionality is not essential, then
it may be disabled by removing R167, so both LCD and SD may operate together.

For more details on which pins are shared among which peripherals, please refer to the table in the next section.

Main I/0 Connector /JP1 The JP1 connector consists of 14x2 male pins whose functions are shown in the middle
two “I/O” columns of the table below. The two “Shared With” columns on both sides describe where else on the
board a certain GPIO is used.

Shared With I/0 I/O Shared With

n/a 3.3V | GND | n/a

NC/XTAL 1032 | 1033 | NC/XTAL

JTAG, microSD 1012 | 1013 | JTAG, microSD

JTAG, microSD 1014 | 1027 | Camera

Camera 1026 | 1025 | Camera, LCD

Camera 1035 | 1034 | Camera

Camera 1039 | 1036 | Camera

JTAG EN 1023 | Camera, LCD

Camera, LCD 1022 | 1021 | Camera, LCD, microSD
Camera, LCD 1019 | 1018 | Camera, LCD

Camera, LCD 105 1017 | PSRAM

PSRAM 1016 | 104 LED, Camera, microSD
Camera, LED, Boot | 100 102 LED, microSD

JTAG, microSD 1015 | 5V

Legend:

e NC/XTAL - 32.768 kHz Oscillator

e JTAG - JTAG /JP8

¢ Boot - Boot button / SW2

e Camera - Camera / JP4

e LED - RGB LED

e microSD - microSD Card / J4

« LCD-LCD /U5

* PSRAM - only in case ESP32-WROVER is installed

32.768 kHz Oscillator

. | ESP32 Pin
1 | GP1032
2 | GPIO33

Note: Since GPIO32 and GPIO33 are connected to the oscillator by default, they are not connected to the JP1 I/O
connector to maintain signal integrity. This allocation may be changed from the oscillator to JP1 by desoldering the
zero-ohm resistors from positions R11 / R23 and re-soldering them to positions R12 / R24.

Espressif Systems 23 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

SPI Flash / JP13

ESP32 Pin
CLK / GP10O6
SDO / GP1O7
SD1 / GPIOS
SD2 / GPIO9
SD3 / GPIO10
CMD / GPIO11

AN N | W =]

Important: The module’ s flash bus is connected to the jumper block JP13 through zero-ohm resistors R140 ~
R145. If the flash memory needs to operate at the frequency of 80 MHz, for reasons such as improving the integrity
of bus signals, you can desolder these resistors to disconnect the module’ s flash bus from the pin header JP13.

JTAG / JP8 i i
. | ESP32 Pin JTAG Signal
1 | EN TRST_N
2 | MTMS /GPIO14 | TMS
3 | MTDO/GPIO15 | TDO
4 | MTDI/GPIO12 | TDI
5 | MTCK/GPIO13 | TCK
Camera / JP4 _ _
. ESP32 Pin | Camera Signal
1 n/a 3.3V
2 n/a Ground
3 GPIO27 SIO_C / SCCB Clock
4 GPIO26 SIO_D / SCCB Data
5 GPIO25 VSYNC / Vertical Sync
6 GPIO23 HREF / Horizontal Reference
7 GPIO22 PCLK / Pixel Clock
8 GPIO21 XCLK / System Clock
9 GPIO35 D7 / Pixel Data Bit 7
10 | GPIO34 D6 / Pixel Data Bit 6
11 | GPIO39 D5 / Pixel Data Bit 5
12 | GPIO36 D4 / Pixel Data Bit 4
13 | GPIOI9 D3 / Pixel Data Bit 3
14 | GPIO18 D2 / Pixel Data Bit 2
15 | GPIOS D1 / Pixel Data Bit 1
16 | GPIO4 DO / Pixel Data Bit 0
17 | GPIOO RESET / Camera Reset
18 | n/a PWDN / Camera Power Down
¢ Signals DO .. D7 denote camera data bus
RGB LED
. | ESP32 Pin | RGB LED
1 | GPIOO Red
GPIO2 Green
3 | GPIO4 Blue
Espressif Systems 24 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

microSD Card

. | ESP32 Pin microSD Signal
1 | MTDI/GPIO12 | DATA2
2 | MTCK /GPIO13 | CD/DATA3
3 | MTDO/ GPIO15 | CMD
4 | MTMS/GPIO14 | CLK
5 | GPIO2 DATAO
6 | GPIO4 DATAI
7 | GPIO21 CD
LCD /U5
. | ESP32 Pin | LCD Signal
1 | GPIO18 RESET
2 | GPIO19 SCL
3 | GPIO21 D/C
4 | GPIO22 CS
5 | GPIO23 SDA
6 | GPIO25 SDO
7 | GPIO5 Backlight

Start Application Development Before powering up your ESP-WROVER-KIT, please make sure that the board

is in good condition with no obvious signs of damage.

Initial Setup Please set only the following jumpers shown in the pictures below:

* Select USB as the power source using the jumper block JP7.
¢ Enable UART communication using the jumper block JP11.

e

Enabl

UART communication

Do not install any other jumpers.

Turn the Power Switch to ON, the 5V Power On LED should light up.

Now to Development Please proceed to Ger Started, where Section Installation will quickly help you set up the

development environment and then flash an example project onto your board.

Espressif Systems

25

Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Related Documents

¢ ESP-WROVER-KIT V3 schematic (PDF)
¢ ESP32 Datasheet (PDF)

¢ ESP32-WROVER Datasheet (PDF)

¢ ESP32-WROOM-32 Datasheet (PDF)

e JTAG Debugging

* Hardware Reference

ESP-WROVER-KIT V2 Getting Started Guide

This guide shows how to get started with the ESP-WROVER-KIT V2 development board and also provides infor-
mation about its functionality and configuration options. For the description of other ESP-WROVER-KIT versions,
please check Hardware Reference.

What You Need

¢ ESP-WROVER-KIT V2 board
e USB 2.0 cable (A to Micro-B)
¢ Computer running Windows, Linux, or macOS

You can skip the introduction sections and go directly to Section Start Application Development.

Overview ESP-WROVER-KIT is an ESP32-based development board produced by Espressif. This board features
an integrated LCD screen and microSD card slot.

ESP-WROVER-KIT comes with the following ESP32 modules:

*« ESP32-WROOM-32
e ESP32-WROVER series

Its another distinguishing feature is the embedded FTDI FT2232HL chip - an advanced multi-interface USB bridge.
This chip enables to use JTAG for direct debugging of ESP32 through the USB interface without a separate JTAG
debugger. ESP-WROVER-KIT makes development convenient, easy, and cost-effective.

Most of the ESP32 1/0 pins are broken out to the board’ s pin headers for easy access.

Note: The version with the ESP32-WROVER module uses ESP32° s GPIO16 and GPIO17 as chip
select and clock signals for PSRAM. By default, the two GPIOs are not broken out to the board’ s pin
headers in order to ensure reliable performance.

Functionality Overview The block diagram below shows the main components of ESP-WROVER-KIT and their
interconnections.

Functional Description The following two figures and the table below describe the key components, interfaces,
and controls of the ESP-WROVER-KIT board.

The table below provides description in the following manner:

* Starting from the first picture’ s top right corner and going clockwise
¢ Then moving on to the second picture

Espressif Systems 26 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-3.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

EZPROM

32.768KHz
crystal

1110 expand
ChannelA T
USB 3.2inch
Connector
1 Camera
1 MicroSD
USB_5v
EXT 5V RGB LED
Fig. 12: ESP-WROVER-KIT block diagram
Micro 5D 32.T68K
Card Hz
ESP32
Madule
|
_ A | cTS
== RTS
o 8
&= o
¥
= ==
UART
RGE
SPI
Camera
JTAG
LOO FT2232
sv Pawer Power
Input Key Select Hes Eook EN

Fig. 13: ESP-WROVER-KIT board layout - front

Espressif Systems

27

Submit Document Feedback

Release v5.0.6-521-gdc13544d53

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

"N FFEFFFFFFFFFFrFrFrrFrrFry.

HREF

* S0

ESP-WROVER-KIT
oKl bremiton o o o

D&
D4
Dz
[1]i]
PWON

L O BN B B BN BN BN B AR BN R BN BN BN OB O B N O BN BN
LB B BN BN B BN BN BN BN BN BN OB BN BN BN BN B OB OB BN O BN AN

oS @

S

Fig. 14: ESP-WROVER-KIT board layout - back

Espressif Systems 28 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Key Component

Description

32.768 kHz

External precision 32.768 kHz crystal oscillator serves as a clock with low-power
consumption while the chip is in Deep-sleep mode.

ESP32 Module

Either ESP32-WROOM-32 or ESP32-WROVER with an integrated ESP32. The
ESP32-WROVER module features all the functions of ESP32-WROOM-32 and
integrates an external 32-MBit PSRAM for flexible extended storage and data pro-
cessing capabilities.

CTS/RTS

Serial port flow control signals: the pins are not connected to the circuitry by default.
To enable them, short the respective pins of JP14 with jumpers.

UART

Serial port. The serial TX/RX signals of FT2232 and ESP32 are broken out to the
inward and outward sides of JP11 respectively. By default, these pairs of pins are
connected with jumpers. To use ESP32’ s serial interface, remove the jumpers and
connect another external serial device to the respective pins.

SPI

By default, ESP32 uses its SPI interface to access flash and PSRAM memory inside
the module. Use these pins to connect ESP32 to another SPI device. In this case,
an extra chip select (CS) signal is needed. Please note that the interface voltage for
the version with ESP32-WROVER is 1.8V, while that for the version with ESP32-
WROOM-32is 3.3 V.

JTAG

JTAG interface. JTAG signals of FT2232 and ESP32 are broken out to the inward
and outward sides of JP8 respectively. By default, these pairs of pins are discon-
nected. To enable JTAG, short the respective pins with jumpers as shown in Section
Setup Options.

FT2232

The FT2232 chip serves as a multi-protocol USB-to-serial bridge which can be pro-
grammed and controlled via USB to provide communication with ESP32. FT2232
features USB-to-UART and USB-to-JTAG functionalities.

EN

Reset button.

Boot

Download button. Holding down Boot and then pressing EN initiates Firmware
Download mode for downloading firmware through the serial port.

USB

USB interface. Power supply for the board as well as the communication interface
between a computer and the board.

Power Select

Power supply selector interface. The board can be powered either via USB or via the
5 V Input interface. Select the power source with a jumper. For more details, see
Section Setup Options, jumper header JP7.

Power Key Power On/Off Switch. Toggling toward USB powers the board on, toggling away
from USB powers the board off.

5V Input The 5 V power supply interface can be more convenient when the board is operating
autonomously (not connected to a computer).

LDO NCP1117(1 A). 5V-t0-3.3V LDO. NCP1117 can provide a maximum current of 1
A. The LDO on the board has a fixed output voltage. Although, the user can install an
LDO with adjustable output voltage. For details, please refer to ESP-WROVER-KIT
V2 schematic.

Camera Camera interface, a standard OV7670 camera module.

RGB Red, green and blue (RGB) light emitting diodes (LEDs), can be controlled by pulse
width modulation (PWM).

1/0 All the pins on the ESP32 module are broken out to pin headers. You can program

ESP32 to enable multiple functions, such as PWM, ADC, DAC, 12C, 128, SPI, etc.

microSD Card

microSD card slot for data storage: when ESP32 enters the download mode, GP102
cannot be held high. However, a pull-up resistor is required on GPIO2 to enable the
microSD Card. By default, GPIO2 and the pull-up resistor R153 are disconnected.
To enable the SD Card, use jumpers on JP1 as shown in Section Setup Options.

LCD

Support for mounting and interfacing a 3.2” SPI (standard 4-wire Serial Peripheral
Interface) LCD, as shown on figure ESP- WROVER-KIT board layout - back.

Setup Options There are five jumper blocks available to set up the board functionality. The most frequently
required options are listed in the table below.

Espressif Systems

29 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Header

Jumper Setting

JP1

JP1

JP7

JP7

Egprg:ssif S ‘.

Description of Functionality

Enable pull up for the microSD Card

Assert GPIO2 low during each download (by jumping it to

GPIO0)

Power ESP-WROVER-KIT via an external power supply

fﬂl'rs JEILAL.
8 [= nSRST

Power ESP-WROVER-KIT via USB

EnablB9TAG functionality

=al PN =
pocumentre

Release v5.0.6-521-gdc13544d53

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Start Application Development Before powering up your ESP-WROVER-KIT, please make sure that the board
is in good condition with no obvious signs of damage.

Initial Setup Please set only the following jumpers shown in the pictures below:

* Select USB as the power source using the jumper block JP7.
¢ Enable UART communication using the jumper block JP11.

Enable UART communication

Power up from USB port

Do not install any other jumpers.

Turn the Power Switch to ON, the SV Power On LED should light up.

Now to Development Please proceed to Get Started, where Section Installation will quickly help you set up the
development environment and then flash an example project onto your board.

Related Documents

¢ ESP-WROVER-KIT V2 schematic (PDF)
¢ ESP32 Datasheet (PDF)
ESP32-WROVER Datasheet (PDF)
ESP32-WROOM-32 Datasheet (PDF)
JTAG Debugging

e Hardware Reference

ESP32-PICO-KIT V4 / V4.1 Getting Started Guide

This guide shows how to get started with the ESP32-PICO-KIT V4/V4.1 mini development board. For the description
of other ESP32-PICO-KIT versions, please check Hardware Reference.

This particular description covers ESP32-PICO-KIT V4 and V4.1. The difference is the upgraded USB-UART
bridge from CP2102 in V4 with up to 1 Mbps transfer rates to CP2102N in V4.1 with up to 3 Mbps transfer rates.

What You Need

e ESP32-PICO-KIT mini development board
» USB 2.0 A to Micro B cable
* Computer running Windows, Linux, or macOS

You can skip the introduction sections and go directly to Section Start Application Development.

Espressif Systems 31 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_SCH-2.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Overview ESP32-PICO-KIT is an ESP32-based mini development board produced by Espressif.

The core of this board is ESP32-PICO-D4 - a System-in-Package (SiP) module with complete Wi-Fi and Bluetooth
functionalities. Compared to other ESP32 modules, ESP32-PICO-D4 integrates the following peripheral components
in one single package, which otherwise would need to be installed separately:

¢ 40 MHz crystal oscillator
* 4 MB flash

* Filter capacitors

* RF matching links

This setup reduces the costs of additional external components as well as the cost of assembly and testing and also
increases the overall usability of the product.

The development board features a USB-UART Bridge circuit which allows developers to connect the board to a
computer’ s USB port for flashing and debugging.

All the IO signals and system power on ESP32-PICO-D4 are led out to two rows of 20 x 0.1 header pads on both sides
of the development board for easy access. For compatibility with Dupont wires, 2 x 17 header pads are populated
with two rows of male pin headers. The remaining 2 x 3 header pads beside the antenna are not populated. These
pads may be populated later by the user if required.

Note:

1. There are two versions of ESP32-PICO-KIT boards, respectively with male headers and female headers. In
this guide, the male header version is taken as an example.

2. The 2 x 3 pads not populated with pin headers are connected to the flash memory embedded in the ESP32-
PICO-D4 SiP module. For more details, see module’ s datasheet in Related Documents.

Functionality Overview The block diagram below shows the main components of ESP32-PICO-KIT and their
interconnections.

\l/ 00000000000 OGOGOGEOGEOO O

S S S S S S S S SSSSSSSS Pin Header
DR/DOM
TURX USB Bridget / -
5V -
3.3V USE Part
LDO Regulator
EN) (BOOT — Sighal

= Power

SONSNANNNSNNNNNNNNN
000000000 OOEOGOGEOG®EO®EO®OOE

Pin Header

Fig. 15: ESP32-PICO-KIT block diagram

Espressif Systems 32 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Functional Description The following figure and the table below describe the key components, interfaces, and
controls of the ESP32-PICO-KIT board.

ESP32-PICO-D4 LDO USB-to-UART Bridge

] gL ¥ AR 1AF 33 o » BN GAU 3VD

}iﬁﬂ_ﬂﬂﬂgl
' YT .
L |
t Micro USB Port
e

E .; .
[}
A L
3 Power On LED

/O Connector

Fig. 16: ESP32-PICO-KIT board layout (with female headers)

Below is the description of the items identified in the figure starting from the top left corner and going clockwise.

Key Component Description

ESP32-PICO-D4 Standard ESP32-PICO-D4 module soldered to the ESP32-PICO-KIT board. The
complete ESP32 system on a chip (ESP32 SoC) has been integrated into the SiP
module, requiring only an external antenna with LC matching network, decoupling
capacitors, and a pull-up resistor for EN signals to function properly.

LDO 5V-t0-3.3V Low dropout voltage regulator (LDO).

USB-UART bridge Single-chip USB-UART bridge: CP2102 in V4 provides up to 1 Mbps transfer rates
and CP2102N in V4.1 offers up to 3 Mbps transfers rates.

Micro USB Port USB interface. Power supply for the board as well as the communication interface
between a computer and the board.

5V Power On LED This red LED turns on when power is supplied to the board. For details, see the
schematics in Related Documents.

/0 All the pins on ESP32-PICO-D4 are broken out to pin headers. You can program

ESP32 to enable multiple functions, such as PWM, ADC, DAC, 12C, 128, SPI, etc.
For details, please see Section Pin Descriptions.

BOOT Button Download button. Holding down Boot and then pressing EN initiates Firmware
Download mode for downloading firmware through the serial port.
EN Button Reset button.

Power Supply Options There are three mutually exclusive ways to provide power to the board:

* Micro USB port, default power supply
* 5V / GND header pins
¢ 3V3/ GND header pins

Warning: The power supply must be provided using one and only one of the options above, otherwise the
board and/or the power supply source can be damaged.

Espressif Systems 33 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Pin Descriptions The two tables below provide the Name and Function of I/O header pins on both sides of the
board, see ESP32-PICO-KIT board layout (with female headers). The pin numbering and header names are the same
as in the schematic given in Related Documents.

Espressif Systems 34 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Espressif Systems 35 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Header J2

No. Name Type Function

1 FLASH_SD1 (FSD1) 1/0
GPIOS, SD_DATALI,
SPID, HS1_DATATI1 (See
1), U2CTS

2 FLASH_SD3 (FSD3) I/0
GPIO7, SD_DATADO,
SPIQ, HS1_DATAO (See
1), U2RTS

3 FLASH_CLK (FCLK) 1/0
GP106, SD_CLK,
SPICLK, HS1_CLK (See
1), UICTS

4 1021 1/0
GPIO21, VSPIHD,
EMAC_TX_EN

5 1022 /0
GPIO22, VSPIWP,
UORTS, EMAC_TXD1

6 1019 1/0
GPIO19, VSPIQ,
UOCTS, EMAC_TXDO

7 1023 /0
GPIO23, VSPID,
HS1_STROBE

8 1018 /0
GPIO18, VSPICLK,
HS1_DATA7

9 105 /0
GPIOS5, VSPICSO,
HS1_DATAGS,
EMAC_RX_CLK

10 1010 I/0
GPIO10, SD_DATAZ3,
SPIWP, HS1_DATA3,
UITXD

11 109 I/0

GPIO9, SD_DATA?2,
SPIHD, HS1_DATA2,
UIRXD

19

T
[Espressif Systems

Y
Submit Document Feedback

O
17O

Rele

ase v5.0.6-521-gdc13544d53
GPIO3, UORXD (See 3) ,

CLK_OUT2

4~

[———

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Espressif Systems 37 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Header J3

No.

Name

Type

Function

FLASH_CS (FCS)

I/0

GPIO16, HS1_DATA4
(See 1), U2RXD,
EMAC_CLK_OUT

FLASH_SDO (FSDO0)

I/0

GPIO17, HS1_DATAS
(See 1), U2TXD,
EMAC_CLK_OUT_180

FLASH_SD2 (FSD2)

I/0

GPIO11, SD_CMD,
SPICS0, HS1_CMD (See
1), UIRTS

SENSOR_VP (FSVP)

GPIO36, ADC1_CHO,
RTC_GPIOO

SENSOR_VN (FSVN)

GPIO39, ADC1_CH3,
RTC_GPIO3

1025

I/0

GPIO25, DAC_1,
ADC2_CHS,
RTC_GPIO6,
EMAC_RXDO

1026

I/0

GPI026, DAC_2,
ADC2_CH9,
RTC_GPIO7,
EMAC_RXD1

1032

I/0

32K_XP (See 2a) ,
ADCI1_CH4, TOUCHS9,
RTC_GPIO9

1033

I/0

32K_XN (See 2b) ,
ADCI1_CHS5, TOUCHS,
RTC_GPIOS

10

1027

I/0

GPIO27, ADC2_CH7,
TOUCH?7,
RTC_GPIO17

EMAC_RX DV

Edpressif Systems

1014
Submit Docu

2fﬂ0
ent Feedback

Rele

ase v5.0.6-521-gdc13544d53

ADC2_CH6, TOUCHS,
RTC_GPIO16, MTMS,

HSPICLK.

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Note:

This pin is connected to the flash pin of ESP32-PICO-D4.

32.768 kHz crystal oscillator: a) input, b) output.

This pin is connected to the pin of the USB bridge chip on the board.

The operating voltage of ESP32-PICO-KIT’ s embedded SPIflash is 3.3 V. Therefore, the strapping pin MTDI
should hold bit zero during the module power-on reset. If connected, please make sure that this pin is not held

b

up on reset.

Start Application Development Before powering up your ESP32-PICO-KIT, please make sure that the board is
in good condition with no obvious signs of damage.

After that, proceed to Get Started, where Section Installation will quickly help you set up the development environment
and then flash an example project onto your board.

Board Dimensions The dimensions are 52 x 20.3 x 10 mm (2.1” x0.8” x0.4”).

B 3
: SRR

@)Eﬁiﬂtﬂﬂ E

. €ESPRESSIF =

ESPRESSIF SYSTEMS (E -

(SHANGHAT)PTE LTD\ © o

S PICOKIT V4.1 FOC 1D 2007 2-ESP2PICOIT &~

[l B LTLY S a _

_¥
SR G

=

=

[

L |
Y

L 52 mm _‘

Fig. 18: ESP32-PICO-KIT dimensions - side (with male headers)

For the board physical construction details, please refer to its Reference Design listed below.

Espressif Systems 39 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Related Documents

¢ ESP32-PICO-KIT V4 schematic (PDF)

¢ ESP32-PICO-KIT V4.1 schematic (PDF)

ESP32-PICO-KIT Reference Design containing OrCAD schematic, PCB layout, gerbers and BOM
ESP32-PICO-D4 Datasheet (PDF)

e Hardware Reference

ESP32-PICO-KIT V3 Getting Started Guide

This guide shows how to get started with the ESP32-PICO-KIT V3 mini development board. For the description of
other ESP32-PICO-KIT versions, please check Hardware Reference.

What You Need

e ESP32-PICO-KIT V3 mini development board
e USB 2.0 A to Micro B cable
e Computer running Windows, Linux, or macOS

You can skip the introduction sections and go directly to Section Start Application Development.

Overview ESP32-PICO-KIT V3 is an ESP32-based mini development board produced by Espressif. The core of
this board is ESP32-PICO-D4 - a System-in-Package (SiP) module.

The development board features a USB-UART Bridge circuit, which allows developers to connect the board to a
computer’ s USB port for flashing and debugging.

All the 10O signals and system power on ESP32-PICO-D4 are led out to two rows of 20 x 0.1” header pads on both
sides of the development board for easy access.

Functional Description The following figure and the table below describe the key components, interfaces, and
controls of the ESP32-PICO-KIT V3 board.

Below is the description of the items identified in the figure starting from the top left corner and going clockwise.

Key Component Description

ESP32-PICO-D4 Standard ESP32-PICO-D4 module soldered to the ESP32-PICO-KIT V3 board.
The complete ESP32 system on a chip (ESP32 SoC) has been integrated into the
SiP module, requiring only an external antenna with LC matching network, decou-
pling capacitors, and a pull-up resistor for EN signals to function properly.

LDO 5V-t0-3.3V Low dropout voltage regulator (LDO).

USB-UART bridge Single-chip USB-UART bridge provides up to 1 Mbps transfers rates.

Micro USB Port USB interface. Power supply for the board as well as the communication interface
between a computer and the board.

Power On LED This red LED turns on when power is supplied to the board.

I/0 All the pins on ESP32-PICO-D4 are broken out to pin headers. You can program
ESP32 to enable multiple functions, such as PWM, ADC, DAC, 12C, 128, SPI, etc.

BOOT Button Download button. Holding down Boot and then pressing EN initiates Firmware
Download mode for downloading firmware through the serial port.

EN Button Reset button.

Start Application Development Before powering up your ESP32-PICO-KIT V3, please make sure that the board
is in good condition with no obvious signs of damage.

After that, proceed to Get Started, where Section Installation will quickly help you set up the development environment
and then flash an example project onto your board.

Espressif Systems 40 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/esp32-pico-kit-v4_schematic.pdf
https://dl.espressif.com/dl/schematics/esp32-pico-kit-v4.1_schematic.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-pico-kit_v4.1_20180314_en.zip
https://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
https://espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

\' 3D Antenna | [ESP32-PICO-D4
|

_ /0
sve]] 021
037 L3 "1 1022
1038 [} - 11019
SVN [a1 1023
1034) b1 1018
EN £} ¥ 1105
1035 £5) 1 F SD1
1025 CXE Y F sD3
1026 ﬁl ® 1 F CLK
GND £ - 1 F SD2
1032 L= 2 - 1 1010
1033 CRe E Y 109
1027 "Ry ;%' ¥ 1 RXDO
1014] &1 TXDO
1012] & 1 GND
1013 £~} 1 F SDO
1015] *1F CS
102 [+ 9 BY
104 § "1 GND
100 £ £ Javs ¢
/0 : %
/ L 3
Micro USB USB-UART P,
Port ‘ ‘ Bridge %
Fig. 19: ESP32-PICO-KIT V3 board layout
Espressif Systems 41 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Related Documents

¢ ESP32-PICO-KIT V3 schematic (PDF)
¢ ESP32-PICO-D4 Datasheet (PDF)
* Hardware Reference

ESP32-Ethernet-Kit V1.2 Getting Started Guide

This guide shows how to get started with the ESP32-Ethernet-Kit development board and also provides information
about its functionality and configuration options.

The ESP32-Ethernet-Kit is an Ethernet-to-Wi-Fi development board that enables Ethernet devices to be intercon-
nected over Wi-Fi. At the same time, to provide more flexible power supply options, the ESP32-Ethernet-Kit also
supports power over Ethernet (PoE).

Fig. 20: ESP32-Ethernet-Kit V1.2 Overview (click to enlarge)

What You Need

o ESP32-Ethernet-Kit V1.2 board
e USB 2.0 A to Micro B Cable
¢ Computer running Windows, Linux, or macOS

You can skip the introduction sections and go directly to Section Start Application Development.

Overview ESP32-Ethernet-Kit is an ESP32-based development board produced by Espressif.

Espressif Systems 42 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/esp32-pico-kit-v3_schematic.pdf
https://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
https://espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

It consists of two development boards, the Ethernet board A and the PoE board B. The Ethernet board (A) con-
tains Bluetooth/Wi-Fi dual-mode ESP32-WROVER-E module and IP101GRI, a Single Port 10/100 Fast Ethernet
Transceiver (PHY). The PoE board (B) provides power over Ethernet functionality. The A board can work indepen-
dently, without the board B installed.

Ethernet Board (A)
@ \\ ESP32-Ethernet—Kit_A_V1.2
m v . Espressif.con o

<[T [J]):
[T ol

183f) T
o] (T

o

. ®
. o
.3
g
[~}
=)
. @
o

S16-2019

:r.!!au}'h' =
] e
R TR
cr |

PoE Board (B)

Fig. 21: ESP32-Ethernet-Kit V1.2 (click to enlarge)

For the application loading and monitoring, the Ethernet board (A) also features FTDI FT2232H chip - an advanced
multi-interface USB bridge. This chip enables to use JTAG for direct debugging of ESP32 through the USB interface
without a separate JTAG debugger.

Functionality Overview The block diagram below shows the main components of ESP32-Ethernet-Kit and their
interconnections.

Functional Description The following figures and tables describe the key components, interfaces, and controls of
the ESP32-Ethernet-Kit.

Ethernet Board (A) The table below provides description starting from the picture’ s top right corner and going
clockwise.

Espressif Systems 43 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

oy ESP32-ETHERNET-KIT B
GND :
ESPSZ—ETHERITET—KIT_A ESP3Z—ETBER‘N’ET—KIT_B
Pty e RI45
1P78 : 1P78
1P45 : ql;"S
P5V : Eiﬁﬁ:;grmr ;gz;?ss Bridge £
T5v outpue [gzgrcler rectifier Transformer
Network
Interface
\ 5V 5v
w N DCDC BUCK RMII PHY
opeien Switch o3 3y >|1P101GRI
MAC RESET N
5v srac ESP32
use D+/D- S-UART } Module
CHNN [USB-JTAG ¢/ RY
(FT2232H) LED*2
. DTR/RTS
:‘:: EN+I00 / I0O0+EN ! Xay*2 |
ESP32 —ETHERNET—KIT_A
Fig. 22: ESP32-Ethernet-Kit block diagram (click to enlarge)
EN Button
BOOT Button GPIO Header 1
EanE kit ALY ‘S Reoec ESP32-WROVER-E
& N £5P32-Ethernel-Kit_A_viz | £ 8
@ Wik, ESprassif.com N [' i 2 T
Link/Activit
LEDY ' £ 5 Fﬂﬂ
Magnetics jp=y
Module
RJ45 Port — = : 3 GPIO
J ; 3 Header 2
IP1O1GRI
(PHY)
Function Switch
Tx/Rx LEDs
Board B : :
Connectors ESP32-Ethernel-Kit_B_VLO s FT2232H
""""""""""""""""""" - USB Port
DC/DC 5V Power On LED - |
Converter 5V Input Power Switch
Fig. 23: ESP32-Ethernet-Kit - Ethernet board (A) layout (click to enlarge)
Espressif Systems 44 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Table 1: Table 1 Component Description

Key Component

Description

ESP32-WROVER-
E

This ESP32 module features 64-Mbit PSRAM for flexible extended storage and data
processing capabilities.

GPIO Header 2

Five unpopulated through-hole solder pads to provide access to selected GPIOs of ESP32.
For details, see GPIO Header 2.

Function Switch

A 4-bit DIP switch used to configure the functionality of selected GPIOs of ESP32. For
details see Function Switch.

Tx/Rx LEDs

Two LEDs to show the status of UART transmission.

FT2232H

The FT2232H chip serves as a multi-protocol USB-to-serial bridge which can be pro-
grammed and controlled via USB to provide communication with ESP32. FT2232H
also features USB-to-JTAG interface which is available on channel A of the chip, while
USB-to-serial is on channel B. The FT2232H chip enhances user-friendliness in terms of
application development and debugging. See ESP32-Ethernet-Kit V1.2 Ethernet board
(A) schematic.

USB Port

USB interface. Power supply for the board as well as the communication interface be-
tween a computer and the board.

Power Switch

Power On/Off Switch. Toggling the switch to 5V0 position powers the board on, toggling
to GND position powers the board off.

5V Input The 5 V power supply interface can be more convenient when the board is operating
autonomously (not connected to a computer).

5V Power On LED This red LED turns on when power is supplied to the board, either from USB or 5 V
Input.

DC/DC Converter Provided DC 5 V to 3.3 V conversion, output current up to 2 A.

Board B Connectors | A pair male and female header pins for mounting the PoE board (B)

IP101GRI (PHY) The physical layer (PHY) connection to the Ethernet cable is implemented using the
IP101GRI chip. The connection between PHY and ESP32 is done through the reduced
media-independent interface (RMII), a variant of the media-independent interface (MII)
standard. The PHY supports the IEEE 802.3/802.3u standard of 10/100 Mbps.

RJ45 Port Ethernet network data transmission port.

Magnetics Module The Magnetics are part of the Ethernet specification to protect against faults and transients,
including rejection of common mode signals between the transceiver IC and the cable.
The magnetics also provide galvanic isolation between the transceiver and the Ethernet
device.

Link/Activity LEDs | Two LEDs (green and red) that respectively indicate the “Link” and “Activity” statuses
of the PHY.

BOOT Button Download button. Holding down BOOT and then pressing EN initiates Firmware Down-
load mode for downloading firmware through the serial port.

EN Button Reset button.

GPIO Header 1

This header provides six unpopulated through-hole solder pads connected to spare GP1Os
of ESP32. For details, see GPIO Header 1.

Note: Automatic firmware download is supported. If following steps and using software described in Section Start
Application Development, users don’ t need to do any operation with BOOT button or EN button.

PoE Board (B) This board coverts power delivered over the Ethernet cable (PoE) to provide a power supply for the
Ethernet board (A). The main components of the PoE board (B) are shown on the block diagram under Functionality
Overview.

The PoE board (B) has the following features:

* Support for IEEE 802.3at
* Power output: 5V, 14 A

To take advantage of the PoE functionality the RJ45 Port of the Ethernet board (A) should be connected with an

45
Submit Document Feedback

Espressif Systems Release v5.0.6-521-gdc13544d53

https://dl.espressif.com/dl/schematics/SCH_ESP32-Ethernet-Kit_A_V1.2_20200528.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-Ethernet-Kit_A_V1.2_20200528.pdf
http://www.bdtic.com/DataSheet/ICplus/IP101G_DS_R01_20121224.pdf
https://en.wikipedia.org/wiki/Media-independent_interface
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Ethernet cable to a switch that supports PoOE. When the Ethernet board (A) detects 5 V power output from the PoE
board (B), the USB power will be automatically cut off.

External
Power
Terminals
Board A Board A
Connector Connector
Fig. 24: ESP32-Ethernet-Kit - PoE board (B) layout (click to enlarge)
Table 2: Table PoE board (B)
Key Component Description

Board A Connector Four female (left) and four male (right) header pins for connecting the PoE board (B) to
Ethernet board (A). The pins on the left accept power coming from a PoE switch. The
pins on the right deliver 5 V power supply to the Ethernet board (A).

External Power Ter- | Optional power supply (26.6 ~ 54 V) to the PoE board (B).

minals

Setup Options This section describes options to configure the ESP32-Ethernet-Kit hardware.

Function Switch When in On position, this DIP switch is routing listed GPIOs to FT2232H to provide JTAG
functionality. When in Off position, the GPIOs may be used for other purposes.

DIP SW | GPIO Pin
1 GPIO13
2 GPIO12
3 GPIO15
4 GPIO14

RMII Clock Selection The ethernet MAC and PHY under RMII working mode need a common 50 MHz refer-
ence clock (i.e. RMII clock) that can be provided either externally, or generated from internal ESP32 APLL (not
recommended).

Note: For additional information on the RMII clock selection, please refer to ESP32-Ethernet-Kit V1.2 Ethernet
board (A) schematic, sheet 2, location D2.

RMII Clock Sourced Externally by PHY By default, the ESP32-Ethernet-Kit is configured to provide RMII
clock for the IPIOIGRIPHY’ s 50M_CLKO output. The clock signal is generated by the frequency multiplication
of 25 MHz crystal connected to the PHY. For details, please see the figure below.

Please note that the PHY is reset on power up by pulling the RESET_N signal down with a resistor. ESP32 should
assert RESET_N high with GPIOS to enable PHY. Only this can ensure the power-up of system. Otherwise ESP32
may enter download mode (when the clock signal of REF_CLK_50M is at a high logic level during the GPIOO0
power-up sampling phase).

Espressif Systems 46 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/SCH_ESP32-Ethernet-Kit_A_V1.2_20200528.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-Ethernet-Kit_A_V1.2_20200528.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

ESP32
GPIC0 REF_CLK_50M
B

. ‘ IHI

=

X = o

&) S % < >
o o
: 3
[F]

RMII RMII Interface o PHY
Serial Management Interface
z IP101GRI
|_
L
&n
Ly
i
GPIOS T
Fig. 25: RMII Clock from IP101GRI PHY
Espressif Systems 47 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

ESP32
GPICD REF_CLK_50M_180
APLL B
Y
=
~ = o
&) S % < >
= o
: 3
[F]
RMII RMII Interface o PHY
Serial Management Interface
z IP101GRI
|_
L
VDD O i
|j |
GPIOS l T
Fig. 26: RMII Clock from ESP Internal APLL
Espressif Systems 48 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

RMII Clock Sourced Internally from ESP32° s APLL Another option is to source the RMII Clock from internal
ESP32 APLL, see figure below. The clock signal coming from GPIOO is first inverted, to account for transmission
line delay, and then supplied to the PHY.

To implement this option, users need to remove or add some RC components on the board. For details please refer
to ESP32-Ethernet-Kit V1.2 Ethernet board (A) schematic, sheet 2, location D2. Please note that if the APLL is
already used for other purposes (e.g. 12S peripheral), then you have no choice but use an external RMII clock.

GPIO Allocation This section describes allocation of ESP32 GPIOs to specific interfaces or functions of the
ESP32-Ethernet-Kit.

IP101GRI (PHY) Interface The allocation of the ESP32 (MAC) pins to IP101GRI (PHY) is shown in the table
below. Implementation of ESP32-Ethernet-Kit defaults to Reduced Media-Independent Interface (RMII).

No. \ ESP32 Pin (MAC) \ IP101GRI (PHY)
RMII Interface

1 GPIO21 TX_EN

2 GPIO19 TXDI[0]

3 GPIO22 TXD[1]

4 GPIO25 RXDI[0]

5 GPI1026 RXDI[1]

6 GPI1027 CRS_DV
7 GPIOO REF_CLK
Serial Management Interface

8 GPI023 MDC

9 GPIO18 MDIO

PHY Reset

10 \ GPIOS \ Reset_N

Note: The allocation of all pins under the ESP32’ s RMII Interface is fixed and cannot be changed either through 10
MUX or GPIO Matrix. REF_CLK can only be selected from GPIO0, GPIO16 or GPIO17 and it can not be changed
through GPIO Matrix.

GPIO Header 1 This header exposes some GPIOs that are not used elsewhere on the ESP32-Ethernet-Kit.

No. | ESP32 Pin
1 GPIO32
2 GPIO33
3 GPIO34
4 GPIO35
5 GPIO36
6 GPIO39

GPIO Header 2 This header contains GPIOs that may be used for other purposes depending on scenarios described
in column “Comments” .

Espressif Systems 49 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/SCH_ESP32-Ethernet-Kit_A_V1.2_20200528.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

No. | ESP32 Pin | Comments
1 GPIO17 See note 1
2 GPIO16 See note 1
3 GPIO4

4 GPIO2

5 GPIO13 See note 2
6 GPIO12 See note 2
7 GPIO15 See note 2
8 GPIO14 See note 2
9 GND Ground

10 3V3 3.3 V power supply

Note:

1. The ESP32 pins GPIO16 and GPIO17 are not broken out to the ESP32-WROVER-E module and therefore
not available for use. If you need to use these pins, please solder a module without PSRAM memory inside,
e.g. the ESP32-WROOM-32D or ESP32-SOLO-1.

2. Functionality depends on the settings of the Function Switch.

GPIO Allocation Summary

ESP32-WROVER-E | IP101GRI | UART | JTAG | GPIO Comments
S_VP 1036

S_VN 1039

1034 1034

1035 1035

1032 1032

1033 1033

1025 RXD[0]

1026 RXDI[1]

1027 CRS_DV

1014 TMS 1014

1012 TDI 1012

1013 TCK 1013

1015 TDO 1015

102 102

100 REF_CLK See note 1
104 104

1016 1016 (NC) | See note 2
1017 1017 (NC) | See note 2
105 Reset_ N See note 1
1018 MDIO

1019 TXD[0]

1021 TX_EN

RXDO RXD

TXDO TXD

1022 TXDI[1]

1023 MDC

Note:

1. To prevent the power-on state of the GPIOO from being affected by the clock output on the PHY side, the
RESET_N signal to PHY defaults to low, turning the clock output off. After power-on you can control RE-

Espressif Systems 50
Submit Document Feedback

Release v5.0.6-521-gdc13544d53

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

SET_N with GPIOS to turn the clock output on. See also RMII Clock Sourced Externally by PHY. For PHYs
that cannot turn off the clock output through RESET_N, it is recommended to use a crystal module that can be
disabled/enabled externally. Similarly like when using RESET _N, the oscillator module should be disabled by
default and turned on by ESP32 after power-up. For a reference design please see ESP32-Ethernet-Kit V1.2
Ethernet board (A) schematic.

2. The ESP32 pins GPIO16 and GPIO17 are not broken out to the ESP32-WROVER-E module and therefore
not available for use. If you need to use these pins, please solder a module without PSRAM memory inside,
e.g. the ESP32-WROOM-32D or ESP32-SOLO-1.

Start Application Development Before powering up your ESP32-Ethernet-Kit, please make sure that the board
is in good condition with no obvious signs of damage.

Initial Setup

Set the Function Switch on the Ethernet board (A) to its default position by turning all the switches to ON.
To simplify flashing and testing of the application, do not input extra signals to the board headers.

The PoE board (B) can now be plugged in, but do not connect external power to it.

Connect the Ethernet board (A) to the PC with a USB cable.

Turn the Power Switch from GND to 5VO position, the SV Power On LED should light up.

AN S e

Now to Development Proceed to Get Started, where Section Installation will quickly help you set up the develop-
ment environment and then flash an example project onto your board.

Move on to the next section only if you have successfully completed all the above steps.

Configure and Load the Ethernet Example After setting up the development environment and testing the board,
you can configure and flash the ethernet/basic example. This example has been created for testing Ethernet function-
ality. It supports different PHY, including IP101GRI installed on ESP32-Ethernet-Kit V1.2 (click to enlarge).

Summary of Changes from ESP32-Ethernet-Kit V1.1

¢ Correct the placement of GPIO pin number marking on the board’ s silkscreen besides the DIP switch.

¢ Values of C1, C2, C42, and C43 are updated to 20 pF. For more information, please check ESP32-Ethernet-Kit
V1.2 Ethernet board (A) schematic.

* Replace ESP32-WROVER-B with ESP32-WROVER-E.

Other Versions of ESP32-Ethernet-Kit

o ESP32-Ethernet-Kit V1.0 Getting Started Guide
o ESP32-Ethernet-Kit V1.1 Getting Started Guide

Related Documents

¢ ESP32-Ethernet-Kit V1.2 Ethernet Board (A) Schematic (PDF)

¢ ESP32-Ethernet-Kit PoE Board (B) Schematic (PDF)

» ESP32-Ethernet-Kit V1.2 Ethernet Board (A) PCB Layout (PDF)
» ESP32-Ethernet-Kit PoE Board (B) PCB Layout (PDF)

¢ ESP32 Datasheet (PDF)

¢ ESP32-WROVER-E Datasheet (PDF)

e JTAG Debugging

* Hardware Reference

For other design documentation for the board, please contact us at sales@espressif.com.

Espressif Systems 51 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/SCH_ESP32-Ethernet-Kit_A_V1.2_20200528.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-Ethernet-Kit_A_V1.2_20200528.pdf
https://github.com/espressif/esp-idf/tree/dc13544d537/examples/ethernet/basic
https://dl.espressif.com/dl/schematics/SCH_ESP32-Ethernet-Kit_A_V1.2_20200528.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-Ethernet-Kit_A_V1.2_20200528.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-Ethernet-Kit_A_V1.2_20200528.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_B_V1.0_20190517.pdf
https://dl.espressif.com/dl/schematics/PCB_ESP32-Ethernet-Kit_A_V1_2_20190829.pdf
https://dl.espressif.com/dl/schematics/PCB_ESP32-Ethernet-Kit_B_V1_0_20190306.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-e_esp32-wrover-ie_datasheet_en.pdf
mailto:sales@espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

ESP32-Ethernet-Kit V1.0 Getting Started Guide

This guide shows how to get started with the ESP32-Ethernet-Kit development board and also provides information
about its functionality and configuration options.

The ESP32-Ethernet-Kit is an Ethernet-to-Wi-Fi development board that enables Ethernet devices to be intercon-
nected over Wi-Fi. At the same time, to provide more flexible power supply options, the ESP32-Ethernet-Kit also
supports power over Ethernet (PoE).

What You Need

e ESP32-Ethernet-Kit V1.0 board
e USB 2.0 A to Micro B Cable
e Computer running Windows, Linux, or macOS

You can skip the introduction sections and go directly to Section Start Application Development.

Overview ESP32-Ethernet-Kit is an ESP32-based development board produced by Espressif.

It consists of two development boards, the Ethernet board A and the PoE board B. The Ethernet board (A) con-
tains Bluetooth / Wi-Fi dual-mode ESP32-WROVER-B module and IP101GRI, a Single Port 10/100 Fast Ethernet
Transceiver (PHY). The PoE board (B) provides power over Ethernet functionality. The A board can work indepen-
dently, without the board B installed.

Ethernet Board (A)

y ESP32-Ethernst=Kil_A_¥1.0

r\J‘/ wl ESpressif . con

3w
]
.l
)
-
-
=
-
-
-
-
-
-
=l

¢ ml
wl
-
-

PoE Board (B)

Fig. 27: ESP32-Ethernet-Kit V1.0

For the application loading and monitoring the Ethernet board (A) also features FTDI FT2232H chip - an advanced
multi-interface USB bridge. This chip enables to use JTAG for direct debugging of ESP32 through the USB interface

Espressif Systems 52 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

without a separate JTAG debugger.

Functionality Overview The block diagram below shows the main components of ESP32-Ethernet-Kit and their
interconnections.

- i ESP32-ETHERNET-KIT B pSE
ESD32-ETHERNET-KIT_A ESP32-ETHERNET-KIT_B b
:' ‘\:!..
i mXCH :
ﬁ(?: : TXCM 3 RJ45
1878 $ 1P78 :
1P45 £ 1p45 3 $
| [e— POE PD
PS5V : Trﬁn:;ormer 32323753 Bridge Transformer
1 |5v osutput rectifier
- Controlex]
.. p——
$ Interface
5V
sv |5V AN DeDC BUCK RMII PHY
Option MT3012ZNSBER|
Svitch 5v-3.3V IP101GRI
RESET N
=k MAC 0SC_EN
/D- ITAG .
UsB D+ USB-UART ESP32
CNN USB-JTAG
TX/RX
(F12232H) —
DTR/RTS
;‘;:;; EN+100 / IO0+EN Reyi2
ESP32-ETHERNET-KIT_A e

Fig. 28: ESP32-Ethernet-Kit block diagram (click to enlarge)

Functional Description The following two figures and tables describe the key components, interfaces, and controls
of the ESP32-Ethernet-Kit.

Ethernet Board (A) The table below provides description starting from the picture’ s top right corner and going
clockwise.

Espressif Systems 53 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started
CH_PU Button
BOOT Button GPIO Header 1
. ESP3I2-Ethernet-Kit_A_V1.0 > ¢] ESP32'WROVER'B
. “ (J) wwn Espressif, com t‘i ti .' & ; .
Link/Activity &
LEDs <l W) [P i
R _1 3 :‘!
Magnetics [P : -
Modul | : GPIO
ule K Header 2
RJ45 Port = Flow Control
IP101GRI Function Switch
(PHY) Tx/Rx LEDs
GPIO
Header 3
Conargitngg ESP32-Ethernet—Kit_B_V1.0
FT2232H
R | e USB Port
DC/DC 5V Power On LED J
Converter 5V Input Power Switch
Fig. 29: ESP32-Ethernet-Kit - Ethernet board (A) layout (click to enlarge)
Key | Description
Com-
po-
nent
ESP32-This ESP32 module features 64-Mbit PSRAM for flexible extended storage and data processing capabil-
WROVERs.
B
GPIO| Five unpopulated through-hole solder pads to provide access to selected GPIOs of ESP32. For details,
Header see GPIO Header 2.
2
Flow | A jumper header with access to the board signals. For details, see Flow Control.
Con-
trol
Func-| A DIP switch used to configure the functionality of selected GPIOs of ESP32. For details, see Function
tion | Switch.
Switch
Tx/Rx| Two LEDs to show the status of UART transmission.
LEDs
GPIO| Provides access to some GPIOs of ESP32 that can be used depending on the position of the Function
Header Switch.

3

FT2232Hhe FT2232H chip serves as a multi-protocol USB-to-serial bridge which can be programmed and con-

trolled via USB to provide communication with ESP32. FT2232H also features USB-to-JTAG interface
which is available on channel A of the chip, while USB-to-serial is on channel B. The FT2232H chip
enhances user-friendliness in terms of application development and debugging. See ESP32-Ethernet-Kit
V1.0 Ethernet board (A) schematic.

USB | USB interface. Power supply for the board as well as the communication interface between a computer
Port | and the board.
Power| Power On/Off Switch. Toggling toward the Boot button powers the board on, toggling away from Boot

Switch powers the board off.

5V The 5V power supply interface can be more convenient when the board is operating autonomously (not
In- connected to a computer).
ESaressif-System S H6-521-pdc13544d53
R WY LED turns on when pgy cg 1ed‘fo thf, llgoarg elthﬁl‘ from BeE S SVt 8
P cumen ee
ower
On

LED

https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_A_V1.0_20190517.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_A_V1.0_20190517.pdf
http://www.bdtic.com/DataSheet/ICplus/IP101G_DS_R01_20121224.pdf
https://en.wikipedia.org/wiki/Media-independent_interface
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

PoE Board (B) This board coverts power delivered over the Ethernet cable (PoE) to provide a power supply for the
Ethernet board (A). The main components of the PoE board (B) are shown on the block diagram under Functionality
Overview.

The PoE board (B) has the following features:

* Support for IEEE 802.3at
e Power output: 5V, 1.4 A

To take advantage of the PoE functionality the RJ45 Port of the Ethernet board (A) should be connected with an
Ethernet cable to a switch that supports PoOE. When the Ethernet board (A) detects 5 V power output from the PoE
board (B), the USB power will be automatically cut off.

External
Power
Terminals
Board A Board A
Connector Connector
Fig. 30: ESP32-Ethernet-Kit - PoE board (B) layout (click to enlarge)
Key Component Description
Board A Connector Four female header pins for mounting this board onto Ethernet board (A).
External Power Terminals | Optional power supply to the PoE board (B).

Setup Options This section describes options to configure the ESP32-Ethernet-Kit hardware.

Function Switch The functions for specific GPIO pins can be selected with the Function Switch.

DIP SW | GPIO Pin | Pin Functionality if DIP SW is ON

GPIO14 Connected to FT2232H to provide JTAG functionality
GPIO12 Connected to FT2232H to provide JTAG functionality
GPIO13 Connected to FT2232H to provide JTAG functionality
GPIO15 Connected to FT2232H to provide JTAG functionality
GPIO4 Connected to FT2232H to provide JTAG functionality
GPIO2 Connected to on-board 25 MHz oscillator

GPIOS Connected to RESET_N input of IP101GRI

n/a

[e=]IEN]No N RV, | NN OSSR

You can make a certain GPIO pin available for other purposes by putting its DIP SW to the Off position.

Flow Control This is a 2 x 2 jumper pin header intended for the UART flow control.

Signal | Comment

MTDO | GPIO13, see also Function Switch
MTCK | GPIO15, see also Function Switch
RTS RTS signal of FT2232H

CTS CTS signal of FT2232H

EENROSIE ST R

GPIO Allocation This section describes allocation of ESP32 GPIOs to specific interfaces or functions of the
ESP32-Ethernet-Kit.

Espressif Systems 55 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

IP101GRI (PHY) Interface The allocation of the ESP32 (MAC) pins to [IP101GRI (PHY) is shown in the table
below. Implementation of ESP32-Ethernet-Kit defaults to Reduced Media-Independent Interface (RMII).

\ ESP32 Pin (MAC) \ IP101GRI (PHY)
RMII Interface
1 GPIO21 TX_EN
2 GPIO19 TXD[0]
3 GPIO22 TXD[1]
4 GPIO25 RXDI[0]
5 GPIO26 RXDI[1]
6 GPIO27 CRS_DV
7 GPIOO REF_CLK
Serial Management Interface
8 GPIO23 MDC
9 GPIO18 MDIO
PHY Reset
10 | GPIO5 | Reset_N

Note: Except for REF_CLK, the allocation of all pins under the RMII Interface is fixed and cannot be changed either
through IOMUX or GPIO Matrix.

GPIO Header 1 This header exposes some GPIOs that are not used elsewhere on the ESP32-Ethernet-Kit.

ESP32 Pin
GPIO32
GPIO33
GPIO34
GPIO35
GPIO36
GPIO39

NN | W =]

GPIO Header 2 This header contains the GPIOs with specific MII functionality (except GPIO2), as opposed to
Reduced Media-Independent Interface (RMII) functionality implemented on ESP32-Ethernet-Kit board by default,
see IP101GRI (PHY) Interface. Depending on the situation, if MMI is used, specific Ethernet applications might
require this functionality.

. | ESP32 Pin | MIl Function Comments
1 | GPIO17 EMAC_CLK_180 See note 1

2 | GPIO16 EMAC_CLK_OUT | See note 1
3 | GPIO4 EMAC_TX_ER

4 | GPIO2 n/a See note 2
5 | GPIOS EMAC_RX_CLK See note 2

Note:

1. The ESP32 pins GPIO16 and GPIO17 are not broken out to the ESP32-WROVER-B module and therefore
not available for use. If you need to use these pins, please solder a module without SPIRAM memory inside,
e.g. the ESP32-WROOM-32D or ESP32-SOLO-1.

2. Functionality depends on the settings of the Function Switch.

Espressif Systems 56 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

GPIO Header 3 The functionality of GPIOs connected to this header depends on the settings of the Function

Switch.
. | ESP32 Pin
1 | GPIOI15
2 | GPIO13
3 | GPIO12
4 | GPIO14
5 | GND
6 | 3V3
GPIO Allocation Summary
ESP32-WROVER-B | IP101GRI | UART | JTAG | GPIO Comments
S_VP 1036
S_VN 1039
1034 1034
1035 1035
1032 1032
1033 1033
1025 RXDI[0]
1026 RXDJ[1]
1027 CRS_DV
1014 T™S 1014
1012 TDI 1012
1013 RTS TCK 1013
1015 CTS TDO 1015
102 102 See notes 1 and 3 below
100 REF_CLK See notes 2 and 3 below
104 nTRST | 104
1016 1016 (NC) | See note 4 below
1017 1017 (NC) | See note 4 below
105 Reset_N 105
1018 MDIO
1019 TXDI[0]
1021 TX_EN
RXDO RXD
TXDO TXD
1022 TXD[1]
1023 MDC
Note:

1. GPIO2 is used to enable external oscillator of the PHY.

2. GPIOO is a source of 50 MHz reference clock for the PHY. The clock signal is first inverted, to account for
transmission line delay, and then supplied to the PHY.

3. To prevent affecting the power-on state of GPIOO by the clock output on the PHY side, the PHY external
oscillator is enabled using GP1O2 after ESP32 is powered up.

4. The ESP32 pins GPIO16 and GPIO17 are not broken out to the ESP32-WROVER-B module and therefore
not available for use. If you need to use these pins, please solder a module without SPIRAM memory inside,
e.g. the ESP32-WROOM-32D or ESP32-SOLO-1.

Start Application Development Before powering up your ESP32-Ethernet-Kit, please make sure that the board
is in good condition with no obvious signs of damage.

Espressif Systems 57 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Initial Setup

1. Set the Function Switch on the Ethernet board (A) to its default position by turning all the switches to ON.

2. To simplify flashing and testing the application, do not install any jumpers and do not connect any signals to
the board headers.

3. The PoE board (B) can now be plugged in, but do not connect external power to it.

Connect the Ethernet board (A) to the PC with a USB cable.

5. Turn the Power Switch from GND to 5V0 position, the 5V Power On LED should light up.

&

Now to Development Proceed to Ger Started, where Section Installation will quickly help you set up the develop-
ment environment and then flash an example project onto your board.

To use the older GNU Make compilation system, please refer to Installation section.

Move on to the next section only if you have successfully completed all the above steps.

Configure and Load the Ethernet Example After setting up the development environment and testing the board,
you can configure and flash the ethernet/basic example. This example has been created for testing Ethernet function-
ality. It supports different PHY, including IP101GRI installed on ESP32-Ethernet-Kit V1.0 board.

Related Documents

¢ ESP32-Ethernet-Kit V1.0 Ethernet board (A) schematic (PDF)
¢ ESP32-Ethernet-Kit V1.0 PoE board (B) schematic (PDF)
ESP32 Datasheet (PDF)

¢ ESP32-WROVER-B Datasheet (PDF)

e JTAG Debugging

* Hardware Reference

For other design documentation for the board, please contact us at sales@espressif.com.

ESP32-Ethernet-Kit V1.1 Getting Started Guide

This guide shows how to get started with the ESP32-Ethernet-Kit development board and also provides information
about its functionality and configuration options.

The ESP32-Ethernet-Kit is an Ethernet-to-Wi-Fi development board that enables Ethernet devices to be intercon-
nected over Wi-Fi. At the same time, to provide more flexible power supply options, the ESP32-Ethernet-Kit also
supports power over Ethernet (PoE).

What You Need

o ESP32-Ethernet-Kit V1.1 board
* USB 2.0 A to Micro B Cable
* Computer running Windows, Linux, or macOS

You can skip the introduction sections and go directly to Section Start Application Development.

Overview ESP32-Ethernet-Kit is an ESP32-based development board produced by Espressif.

It consists of two development boards, the Ethernet board A and the PoE board B. The Ethernet board (A) con-
tains Bluetooth / Wi-Fi dual-mode ESP32-WROVER-B module and IP101GRI, a Single Port 10/100 Fast Ethernet
Transceiver (PHY). The PoE board (B) provides power over Ethernet functionality. The A board can work indepen-
dently, without the board B installed.

For the application loading and monitoring, the Ethernet board (A) also features FTDI FT2232H chip - an advanced
multi-interface USB bridge. This chip enables to use JTAG for direct debugging of ESP32 through the USB interface
without a separate JTAG debugger.

Espressif Systems 58 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/esp-idf/tree/dc13544d537/examples/ethernet/basic
https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_A_V1.0_20190517.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_B_V1.0_20190517.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover-b_datasheet_en.pdf
mailto:sales@espressif.com
https://espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Ethernet Board (A)

. @ ESP32-Ethernet-Kit_A_V11 '
e —

» Wi ESpressif. com

SR

[BEER]

ipene

i H
Eii

O ¥ LIRSS

PoE Board (B)

Fig. 31: ESP32-Ethernet-Kit V1.1

59 Release v5.0.6-521-gdc13544d53

Espressif Systems
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Functionality Overview The block diagram below shows the main components of ESP32-Ethernet-Kit and their
interconnections.

B5V ESP32—ETHERNET—KIT_B
GND i
ESP32-ETHERNET-KIT A ESP32-ETHERNET-KIT_B
P Tow RI45
1F78 : 1p78
1P45 1p45 \
i |F1yback POE PD _ i
P5V - Transformer ggggjsg g:::g;ier Transformer
é 5V output [~ Controler
Network
Interface
A S N AN P RMIT _[PRY
Switch 5v-3.3V < —~]IP101GRI
MAC RESET_N
5v srac ESP32
- o
usa D+/D~_[ysp-vane > Module
con ST USB-JTAG
i
(FT2232H) DX R LED*2
. DTR/RTS
‘;‘;: EN+IO0 IO0+EN ! Xay*2 |
ESP32—ETHERNET—KIT_A

Fig. 32: ESP32-Ethernet-Kit block diagram (click to enlarge)

Functional Description The following figures and tables describe the key components, interfaces, and controls of
the ESP32-Ethernet-Kit.

Ethernet Board (A) The table below provides description starting from the picture’ s top right corner and going
clockwise.

Espressif Systems 60 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Link/Activity
LEDs

Magnetics

EN Button
BOOT Button

® \[SP32~EIharn:l-Kit_A_'|'I.l |
m Wik, ESPressit . com x I

- 1 [l

GPIO Header 1
ESP32-WROVER-B

Module

RJ45 Port — &

GPIO
Header 2

IPLO1GRI
(PHY) o
Function Switch
Tx/Rx LEDs
Con?]?e?:;?)rz ESP32-Ethernet-Kit_B_V1.0 FT2232H
""""""""""""""""""""" USB Port
DC/DC 5V Power On LED
Converter 5V Input Power Switch
Fig. 33: ESP32-Ethernet-Kit - Ethernet board (A) layout (click to enlarge)
Table 3: Table 1 Component Description
Key Component Description

ESP32-WROVER-
B

This ESP32 module features 64-Mbit PSRAM for flexible extended storage and data
processing capabilities.

GPIO Header 2

Five unpopulated through-hole solder pads to provide access to selected GP1Os of ESP32.
For details, see GPIO Header 2.

Function Switch

A 4-bit DIP switch used to configure the functionality of selected GPIOs of ESP32.
Please note that placement of GPIO pin number marking on the board’ s silkscreen
besides the DIP switch is incorrect. For details and correct pin allocation see Function
Switch.

Tx/Rx LEDs

Two LEDs to show the status of UART transmission.

FT2232H

The FT2232H chip serves as a multi-protocol USB-to-serial bridge which can be pro-
grammed and controlled via USB to provide communication with ESP32. FT2232H
also features USB-to-JTAG interface which is available on channel A of the chip, while
USB-to-serial is on channel B. The FT2232H chip enhances user-friendliness in terms of
application development and debugging. See ESP32-Ethernet-Kit V1.1 Ethernet board
(A) schematic.

USB Port

USB interface. Power supply for the board as well as the communication interface be-
tween a computer and the board.

Power Switch

Power On/Off Switch. Toggling the switch to 5V0 position powers the board on, toggling
to GND position powers the board off.

5V Input The 5 V power supply interface can be more convenient when the board is operating
autonomously (not connected to a computer).

5V Power On LED This red LED turns on when power is supplied to the board, either from USB or 5 V
Input.

DC/DC Converter Provided DC 5 V to 3.3 V conversion, output current up to 2 A.

Board B Connectors | A pair male and female header pins for mounting the PoE board (B).

IP101GRI (PHY) The physical layer (PHY) connection to the Ethernet cable is implemented using the
IP101GRI chip. The connection between PHY and ESP32 is done through the reduced
media-independent interface (RMII), a variant of the media-independent interface (MII)
standard. The PHY supports the IEEE 802.3 / 802.3u standard of 10/100 Mbps.

RJ45 Port Ethernet network data transmission-port:

Esaressshioy Nevarule The Magnetics are part of the Efiernet specification to prételaaieatOFuRe Anededasiged) 3

including rejecabR B tORGUMARIFeadRasKween the transceiver IC and the cable.
The magnetics also provide galvanic isolation between the transceiver and the Ethernet
device.

https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_A_V1.1_20190711.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_A_V1.1_20190711.pdf
http://www.bdtic.com/DataSheet/ICplus/IP101G_DS_R01_20121224.pdf
https://en.wikipedia.org/wiki/Media-independent_interface
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

PoE Board (B) This board coverts power delivered over the Ethernet cable (PoE) to provide a power supply for the
Ethernet board (A). The main components of the PoE board (B) are shown on the block diagram under Functionality
Overview.

The PoE board (B) has the following features:

* Support for IEEE 802.3at
e Power output: 5V, 1.4 A

To take advantage of the PoE functionality the RJ45 Port of the Ethernet board (A) should be connected with an
Ethernet cable to a switch that supports PoOE. When the Ethernet board (A) detects 5 V power output from the PoE
board (B), the USB power will be automatically cut off.

External
Power
Terminals
Board A Board A
Connector Connector
Fig. 34: ESP32-Ethernet-Kit - PoE board (B) layout (click to enlarge)
Table 4: Table PoE board (B)
Key Component Description

Board A Connector Four female (left) and four male (right) header pins for connecting the PoE board (B) to
Ethernet board (A). The pins on the left accept power coming from a PoE switch. The
pins on the right deliver 5 V power supply to the Ethernet board (A).

External Power Ter- | Optional power supply (26.6 ~ 54 V) to the PoE board (B).

minals

Setup Options This section describes options to configure the ESP32-Ethernet-Kit hardware.

Function Switch When in On position, this DIP switch is routing listed GPIOs to FT2232H to provide JTAG
functionality. When in Off position, the GPIOs may be used for other purposes.

DIP SW | GPIO Pin
1 GPIO13
2 GPIO12
3 GPIO15
4 GPIO14

Note: Placement of GPIO pin number marking on the board’ s silkscreen besides the DIP switch is incorrect.
Please use instead the pin order as in the table above.

RMII Clock Selection The ethernet MAC and PHY under RMII working mode need a common 50 MHz reference
clock (i.e. RMII clock) that can be provided either externally, or generated from internal ESP32 APLL.

Note: For additional information on the RMII clock selection, please refer to ESP32-Ethernet-Kit V1.1 Ethernet
board (A) schematic, sheet 2, location D2.

Espressif Systems 62 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_A_V1.1_20190711.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_A_V1.1_20190711.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

RMII Clock Sourced Externally by PHY By default, the ESP32-Ethernet-Kit is configured to provide RMII
clock for the IPI0OIGRIPHY’ s SOM_CLKO output. The clock signal is generated by the frequency multiplication
of 25 MHz crystal connected to the PHY. For details, please see the figure below.

ESP32
GPICO REF_CLK_50M
B
' IHI
=
x _
%) x % b >,
UI U|
= =
o o]
RMII RMIl Interface 0 PHY
Serial Management Interface
é z IP101GRI
|_
LU
o
LU
[
GPICS i T

Fig. 35: RMII Clock from IP101GRI PHY

Please note that the PHY is reset on power up by pulling the RESET_N signal down with a resistor. ESP32 should
assert RESET_N high with GPIOS to enable PHY. Only this can ensure the power-up of system. Otherwise ESP32
may enter download mode (when the clock signal of REF_CLK_50M is at a high logic level during the GPIO0
power-up sampling phase).

RMII Clock Sourced Internally from ESP32° s APLL Another option is to source the RMII Clock from internal
ESP32 APLL, see figure below. The clock signal coming from GPIOO is first inverted, to account for transmission
line delay, and then supplied to the PHY.

To implement this option, users need to remove or add some RC components on the board. For details please refer
to ESP32-Ethernet-Kit V1.1 Ethernet board (A) schematic, sheet 2, location D2. Please note that if the APLL is
already used for other purposes (e.g. 12S peripheral), then you have no choice but use an external RMII clock.

GPIO Allocation This section describes allocation of ESP32 GPIOs to specific interfaces or functions of the
ESP32-Ethernet-Kit.

Espressif Systems 63 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_A_V1.1_20190711.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

ESP32
GPICD REF_CLK_50M_180
APLL B
Y
=
~ = o
&) S % < >
= o
: 3
[F]
RMII RMII Interface o PHY
Serial Management Interface
z IP101GRI
'_
L
VDD O i
|j |
GPIOS l T
Fig. 36: RMII Clock from ESP Internal APLL
Espressif Systems 64 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

IP101GRI (PHY) Interface The allocation of the ESP32 (MAC) pins to [IP101GRI (PHY) is shown in the table
below. Implementation of ESP32-Ethernet-Kit defaults to Reduced Media-Independent Interface (RMII).

\ ESP32 Pin (MAC) \ IP101GRI (PHY)
RMII Interface
1 GPIO21 TX_EN
2 GPIO19 TXD[0]
3 GPIO22 TXD[1]
4 GPIO25 RXDI[0]
5 GPIO26 RXDI[1]
6 GPIO27 CRS_DV
7 GPIOO REF_CLK
Serial Management Interface
8 GPIO23 MDC
9 GPIO18 MDIO
PHY Reset
10 | GPIO5 | Reset_N

Note: Except for REF_CLK, the allocation of all pins under the ESP32’ s RMII Interface is fixed and cannot be
changed either through IOMUX or GPIO Matrix.

GPIO Header 1 This header exposes some GPIOs that are not used elsewhere on the ESP32-Ethernet-Kit.

ESP32 Pin
GPIO32
GPIO33
GPIO34
GPIO35
GPIO36
GPIO39

NN | W =]

GPIO Header 2 This header contains GPIOs that may be used for other purposes depending on scenarios described
in column “Comments” .

. ESP32 Pin | Comments
1 GPIO17 See note 1
2 GPIO16 See note 1
3 GPIO4

4 GPIO2

5 GPIO13 See note 2
6 GPIO12 See note 2
7 GPIO15 See note 2
8 GPIO14 See note 2
9 GND Ground

10 | 3V3 3.3 V power supply

Note:

1. The ESP32 pins GPIO16 and GPIO17 are not broken out to the ESP32-WROVER-B module and therefore
not available for use. If you need to use these pins, please solder a module without PSRAM memory inside,
e.g. the ESP32-WROOM-32D or ESP32-SOLO-1.

2. Functionality depends on the settings of the Function Switch.

Espressif Systems 65 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

GPIO Allocation Summary

ESP32-WROVER-B | IP101GRI | UART | JTAG | GPIO Comments
S_VP 1036

S_VN 1039

1034 1034

1035 1035

1032 1032

1033 1033

1025 RXD[0]

1026 RXD[1]

1027 CRS_DV

1014 TMS 1014

1012 TDI 1012

1013 RTS TCK 1013

1015 CTS TDO 1015

102 102

100 REF _CLK See note 1
104 104

1016 1016 (NC) | See note 2
1017 1017 (NC) | See note 2
105 Reset N See note 1
1018 MDIO

1019 TXD[O0]

1021 TX_EN

RXDO RXD

TXDO TXD

1022 TXD[1]

1023 MDC

Note:

1. To prevent the power-on state of the GPIOO from being affected by the clock output on the PHY side, the
RESET_N signal to PHY defaults to low, turning the clock output off. After power-on you can control RE-
SET_N with GPIOS to turn the clock output on. See also RMII Clock Sourced Externally by PHY. For PHYs
that cannot turn off the clock output through RESET_N, it is recommended to use a crystal module that can be
disabled / enabled externally. Similarly like when using RESET N, the oscillator module should be disabled
by default and turned on by ESP32 after power-up. For a reference design please see ESP32-Ethernet-Kit
V1.1 Ethernet board (A) schematic.

2. The ESP32 pins GPIO16 and GPIO17 are not broken out to the ESP32-WROVER-B module and therefore
not available for use. If you need to use these pins, please solder a module without PSRAM memory inside,
e.g. the ESP32-WROOM-32D or ESP32-SOLO-1.

Start Application Development Before powering up your ESP32-Ethernet-Kit, please make sure that the board
is in good condition with no obvious signs of damage.

Initial Setup

1. Set the Function Switch on the Ethernet board (A) to its default position by turning all the switches to ON.
2. To simplify flashing and testing of the application, do not input extra signals to the board headers.

3. The PoE board (B) can now be plugged in, but do not connect external power to it.

4. Connect the Ethernet board (A) to the PC with a USB cable.

Espressif Systems 66 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_A_V1.1_20190711.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_A_V1.1_20190711.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

5. Turn the Power Switch from GND to 5VO0 position, the SV Power On LED should light up.

Now to Development Proceed to Get Started, where Section Installation will quickly help you set up the develop-
ment environment and then flash an example project onto your board.

Move on to the next section only if you have successfully completed all the above steps.

Configure and Load the Ethernet Example After setting up the development environment and testing the board,
you can configure and flash the ethernet/basic example. This example has been created for testing Ethernet function-
ality. It supports different PHY, including IP101GRI installed on ESP32-Ethernet-Kit V1.1.

Summary of Changes from ESP32-Ethernet-Kit V1.0

 The original inverted clock provided to the PHY by ESP32 using GPIOO has been replaced by a clock generated
on PHY side. The PHY ’ s clock is connected to the ESP32 with same GPIO0. The GPIO2 which was originally
used to control the active crystal oscillator on the PHY side, can now be used for other purposes.

e On power up, the ESP32 boot strapping pin GPIO0 may be affected by clock generated on the PHY side. To
resolve this issue the PHY’ s Reset-N signal is pulled low using resistor R17 and effectively turning off the
PHY’ s clock output. The Reset-N signal can be then pulled high by ESP32 using GPIOS.

e Removed FT2232H chip’ s external SPI Flash U6.

¢ Removed flow control jumper header J4.

* Removed nTRST JTAG signal. The corresponding GPIO4 can now be used for other purposes.

* Pull-up resistor R68 on the GPIO15 line is moved to the MTDO side of JTAG.

¢ To make the A and B board connections more foolproof (reduce chances of plugging in the B board in reverse
orientation), the original two 4-pin male rows on board A were changed to one 4-pin female row and one 4-pin
male row. Corresponding male and female 4-pins rows were installed on board B.

Other Versions of ESP32-Ethernet-Kit
e ESP32-Ethernet-Kit V1.0 Getting Started Guide

Related Documents

¢ ESP32-Ethernet-Kit V1.1 Ethernet board (A) schematic (PDF)
¢ ESP32-Ethernet-Kit V1.0 PoE board (B) schematic (PDF)

¢ ESP32 Datasheet (PDF)

¢ ESP32-WROVER-B Datasheet (PDF)

» JTAG Debugging

* Hardware Reference

For other design documentation for the board, please contact us at sales@espressif.com.

ESP32-DevKitS(-R)

This user guide provides information on ESP32-DevKitS(-R), an ESP32-based flashing board produced by Espressif.

ESP32-DevKitS(-R) is a combination of two board names: ESP32-DevKitS and ESP32-DevKitS-R. S stands for
springs, and R stands for WROVER.

Espressif Systems 67 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/esp-idf/tree/dc13544d537/examples/ethernet/basic
https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_A_V1.1_20190711.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-ETHERNET-KIT_B_V1.0_20190517.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover-b_datasheet_en.pdf
mailto:sales@espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

ESP32-DevKitS ESP32-DevKitS-R

The document consists of the following major sections:

* Getting Started: Provides an overview of ESP32-DevKitS(-R) and hardware/software setup instructions to get
started.

e Hardware Reference: Provides more detailed information about ESP32-DevKitS(-R)’ s hardware.

e Related Documents: Gives links to related documentation.

Getting Started This section describes how to get started with ESP32-DevKitS(-R). It begins with a few introduc-
tory sections about ESP32-DevKitS(-R), then Section How fo Flash a Board provides instructions on how to mount
a module onto ESP32-DevKitS(-R), get it ready, and flash firmware onto it.

Overview ESP32-DevKitS(-R) is Espressif’ s flashing board designed specifically for ESP32. It can be used to
flash an ESP32 module without soldering the module to the power supply and signal lines. With a module mounted,
ESP32-DevKitS(-R) can also be used as a mini development board like ESP32-DevKitC.

ESP32-DevKitS and ESP32-DevKitS-R boards vary only in layout of spring pins to fit the following ESP32 modules.

» ESP32-DevKitS:

— ESP32-WROOM-32
ESP32-WROOM-32D
ESP32-WROOM-32U
ESP32-SOLO-1
ESP32-WROOM-32E
ESP32-WROOM-32UE
¢ ESP32-DevKitS-R:

— ESP32-WROVER (PCB & IPEX)

— ESP32-WROVER-B (PCB & IPEX)

— ESP32-WROVER-E

— ESP32-WROVER-IE

For information about above modules, please refer to ESP32 Series Modules.

Description of Components

Espressif Systems 68 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/products/modules?id=ESP32
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Spring Pins

Left Female Headers Right Female Headers

@ ESPRESSIF
Model ESP32-DevKits
SN:051850000000000233

senann oa (8] [@]E
LT AL -_
=

LDO

Power On LED USB-to-UART Bridge

frigpe p1 15 2 8 & 46

EN Button - Boot Button

Micro-B USB

Fig. 37: ESP32-DevKitS - front

Spring Pins

Left Female Headers Right Female Headers

HedelESPI2Z-Davkits=R
SH:DS| 850D00000000134

sanasn o [E]5[E]
BUHAMREN 0

%

LDO

il
4
-4
Lol
-
]

Power On LED USB-to-UART Bridge

CLK be D1 15..2

EN Button Boot Button

Micro-B USB

Fig. 38: ESP32-DevKitS-R - front

Espressif Systems 69 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Key Component Description

Spring Pins Click the module in. The pins will fit into the module’ s castellated holes.

2.54 mm Female Headers These female headers are connected to pins of the module mounted on this
board. For description of female headers, please refer to Header Blocks.

USB-to-UART Bridge Single-chip USB to UART bridge provides transfer rates of up to 3 Mbps.

LDO 5V-t0-3.3V low-dropout voltage regulator (LDO).

Micro-USB Connector/Micro | USB interface. Power supply for the board as well as the communication in-

USB Port terface between a computer and the board.

EN Button Reset button.

Boot Button Download button. Holding down Boot and then pressing EN initiates
Firmware Download mode for downloading firmware through the serial port.

Power On LED Turns on when the USB or power supply is connected to the board.

How to Flash a Board Before powering up your ESP32-DevKitS(-R), please make sure that it is in good condition
with no obvious signs of damage.

Required Hardware

¢ An ESP32 module of your choice
¢ USB 2.0 cable (Standard-A to Micro-B)
¢ Computer running Windows, Linux, or macOS

Hardware Setup Please mount a module of your choice onto your ESP32-DevKitS(-R) according to the following
steps:

¢ Gently put your module on the ESP32-DevKitS(-R) board. Make sure that castellated holes on your module
are aligned with spring pins on the board.

¢ Press your module down into the board until it clicks.

¢ Check whether all spring pins are inserted into castellated holes. If there are some misaligned spring pins,
place them into castellated holes with tweezers.

Software Setup

Preferred Method The ESP-IDF development framework provides a preferred way of flashing binaries onto
ESP32-DevKitS(-R). Please proceed to Get Started, where Section Installation will quickly help you set up the de-
velopment environment and then flash an application example onto your ESP32-DevKitS(-R).

Alternative Method As an alternative, Windows users can flash binaries using the Flash Download Tool. Just
download it, unzip it, and follow the instructions inside the doc folder.

Note:

1. To flash binary files, ESP32 should be set to Firmware Download mode. This can be done either
by the flash tool automatically, or by holding down the Boot button and tapping the EN button.

2. After flashing binary files, the Flash Download Tool restarts your ESP32 module and boots the
flashed application by default.

Board Dimensions

Contents and Packaging

Espressif Systems 70 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/support/download/other-tools?keys=flash+download+tools
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

==
ESP32-DevKits-vl.1 ﬁé

ik

=

i

ULCE X0 TR

Pk tpbbee

00000
97 ST 10

48.2 mm

Lw &8

AS OWD €0 20 ET OND ZT ¥ [Z

CLkD@ D1 15 2 & 4 16 17

Fig. 39: ESP32-DevKitS board dimensions - back

ESP32-DevKit5-v1.1

s ©00O0COO0O00

48.2 mm

'-I-:J' T <;

=

AS OWD €0 ZO €T ONS 7T PT I :'_,': Tl ! 15 1 T
o e e ve we @ (S

CLKD® D1 15 2 @& 4 16 17 |

& 8 @@

Fig. 40: ESP32-DevKitS-R board dimensions - back

Espressif Systems 7 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Retail orders If you order a few samples, each ESP32-DevKitS(-R) comes in an individual package in either
antistatic bag or any packaging depending on a retailer.

For retail orders, please go to https://www.espressif.com/en/contact-us/get-samples.

Wholesale Orders If you order in bulk, the boards come in large cardboard boxes.

For wholesale orders, please go to https://www.espressif.com/en/contact-us/sales-questions.

Hardware Reference

Block Diagram A block diagram below shows the components of ESP32-DevKitS(-R) and their interconnections.

B e e e TXD Micro-B USB
RXD DP
EN —
USB to UART DM
: : BOOT EXT 5V |—
Spring Pins for

ESP32 Module |— LED

VDD33
100 ©

Signal

e Eoon)(EN)

Power

Fig. 41: ESP32-DevKitS(-R) (click to enlarge)

Power Supply Options There are three mutually exclusive ways to provide power to the board:

* Micro USB port, default power supply
* 5V and GND header pins
* 3V3 and GND header pins

It is advised to use the first option: micro USB port.

. Label | Signal

L1 3V3 VDD 3V3

L2 EN CHIP_PU

L3 VP SENSOR_VP
L4 VN SENSOR_VN
L5 34 GPIO34

L6 | 35 GPIO35

L7 32 GPIO32

L8 | 33 GPIO33
continues on next page

Espressif Systems 72 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/contact-us/get-samples
https://www.espressif.com/en/contact-us/sales-questions
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Table 5 - continued from previous page
. Label | Signal

L9 25 GPIO25
L10 | 26 GPIO26
L11 | 27 GPIO27
L12 | 14 GPIO14
L13 | 12 GPIO12
L14 | GND | GND

L15 | 13 GPIO13
L16 | D2 SD_DATA2
L17 | D3 SD_DATA3
L18 | CMD | SD_CMD
L19 | 5V External 5V
R1 GND | GND

R2 |23 GPI1023

R3 22 GPIO22

R4 TX U0TXD

R5 RX UORXD

R6 21 GPIO21

R7 GND | GND

R8 | 19 GPIO19

R9 18 GPIO18
RI10 | 5 GPIOS

RI11 | 17 GPIO17
RI12 | 16 GPIO16

R13 | 4 GPIO4
R14 | O GPIOO0
R15 | 2 GPIO2

R16 | 15 GPIOI15
R17 | D1 SD_DATA1
R18 | DO SD_DATAO
R19 | CLK | SD_CLK

Header Blocks For the image of header blocks, please refer to Description of Components.

Related Documents

e ESP32-DevKitS(-R) Schematics (PDF)

¢ ESP32 Datasheet (PDF)

¢ ESP32-WROOM-32 Datasheet (PDF)

¢ ESP32-WROOM-32D & ESP32-WROOM-32U Datasheet (PDF)
¢ ESP32-SOLO-1 Datasheet (PDF)

¢ ESP32-WROVER Datasheet (PDF)

¢ ESP32-WROVER-B Datasheet (PDF)

¢ ESP Product Selector

ESP32-PICO-KIT-1

Overview ESP32-PICO-KIT-1 is an ESP32-based development board produced by Espressif.

The core of this board is ESP32-PICO-V3 - a System-in-Package (SiP) module with complete Wi-Fi and Bluetooth
functionalities. Compared to other ESP32 modules, ESP32-PICO-V3 integrates the following peripheral components
in one single package, which otherwise would need to be installed separately:

Espressif Systems 73 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://dl.espressif.com/dl/ESP32_DEVKITS_20190621.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-solo-1_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-b_datasheet_en.pdf
https://products.espressif.com/#/product-selector?names=
https://espressif.com
https://www.espressif.com/en/products/socs
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

¢ 40 MHz crystal oscillator
¢ 4 MB flash

* Filter capacitors

* RF matching network

This setup reduces the costs of additional external components as well as the cost of assembly and testing and also
increases the overall usability of the product.

The development board features a USB-to-UART Bridge circuit which allows developers to connect the board to a
computer’ s USB port for flashing and debugging.

All the IO signals and system power on ESP32-PICO-V3 are led out to two rows of 18 x 0.1” header pads on both
sides of the development board for easy access. For compatibility with Dupont wires, all header pads are populated
with two rows of male pin headers.

Note: ESP32-PICO-KIT-1 comes with male headers by default.

ESP32-PICO-KIT-1 provides the users with hardware for development of applications based on the ESP32, making
it easier for users to explore ESP32 functionalities.

This guide covers:

e Getting Started: Provides an overview of the ESP32-PICO-KIT-1 and software setup instructions to get started.

* Contents and Packaging: Provides information about packaging and contents for retail and wholesale orders.

e Hardware Reference: Provides more detailed information about the ESP32-PICO-KIT-1" s hardware.

* Hardware Revision Details: Covers revision history, known issues, and links to user guides for previous versions
of the ESP32-PICO-KIT-1.

* Related Documents: Gives links to related documentation.

Getting Started This section describes how to get started with the ESP32-PICO-KIT-1. It begins with a few
introductory sections about the ESP32-PICO-KIT-1, then Section Start Application Development provides instructions
on how to flash firmware onto the ESP32-PICO-KIT-1.

Description of Components The following figure and the table below describe the key components, interfaces,
and controls of the ESP32-PICO-KIT-1 board.

Below is the description of the items identified in the figure starting from the top left corner and going clockwise.

Key Component Description

ESP32-PICO-V3 Standard ESP32-PICO-V3 module soldered to the ESP32-PICO-KIT-1 board.
The complete ESP32 system on a chip (ESP32 SoC) has been integrated into
the SiP module, requiring only an external antenna with LC matching network,
decoupling capacitors, and a pull-up resistor for EN signals to function properly.

LDO 5V-t0-3.3V Low dropout voltage regulator (LDO).

USB-to-UART bridge CP2102N, single-chip USB-to-UART bridge that offers up to 3 Mbps transfers
rates.

Micro USB Port USB interface. Power supply for the board as well as the communication inter-
face between a computer and the board.

5V Power On LED This red LED turns on when power is supplied to the board. For details, see the
schematic in Related Documents.

I/0 Connector All the pins on ESP32-PICO-V3 are broken out to pin headers. You can program

ESP32 to enable multiple functions, such as PWM, ADC, DAC, 12C, 12S, SPI,
etc. For details, please see Section Pin Descriptions.

BOOT Button Download button. Holding down Boot and then pressing EN initiates Firmware
Download mode for downloading firmware through the serial port.
EN Button Reset button.
Espressif Systems 74 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Fig. 42: ESP32-PICO-KIT-1 Overview (click to enlarge)

Espressif Systems 75 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

ESP32-PICO-V3 LOO USB-to-UART Bridga

N GO I

3D Antenna Micro USB Port

Power On LED

sEN. aF
7 |14 1233352 i -8 1

" Y LYY Y Y

S 3 1% N ¥

/0 Connector EN Button BOOT Button

Fig. 43: ESP32-PICO-KIT-1 board layout - front (click to enlarge)

Start Application Development Before powering up your ESP32-PICO-KIT-1, please make sure that the board
is in good condition with no obvious signs of damage.

Required Hardware

¢ 1 x ESP32-PICO-KIT-1
¢ 1 x USB 2.0 A to Micro B cable
¢ 1 x Computer running Windows, Linux, or macOS

Software Setup Please proceed to Ger Started, where Section Installation will quickly help you set up the develop-
ment environment.

Contents and Packaging

Retail Orders If you order one or several samples of the board, each ESP32-PICO-KIT-1 development board
comes in an individual package.

For retail orders, please go to https://www.espressif.com/en/contact-us/get-samples.

Wholesale Orders If you order in bulk, the boards come in large cardboard boxes.

For wholesale orders, please go to https://www.espressif.com/en/contact-us/sales-questions.

Hardware Reference

Block Diagram The block diagram below shows the main components of ESP32-PICO-KIT-1 and their intercon-
nections.

Power Supply Options There are three mutually exclusive ways to provide power to the board:

* Micro USB port, default power supply
¢ 5V/GND header pins
¢ 3V3/GND header pins

Espressif Systems 76 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/contact-us/get-samples
https://www.espressif.com/en/contact-us/sales-questions
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

[¢ e e ¢ ¢ ¢ e ¢ ¢ ¢ ¢ 0 ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢
Pin Header

SN TXD Micro-B USS
RXD DP
BOOT USB to UART DM —

EN EXT_5V |—

ESP32-PICO-W3

LED
WDD33 |_

LDO {O)
,,,,,,, @ @

ESP32-PICO-KIT-1

Signal

Power

[. ®« & & & & & & & * & & @+ & & & & & b » .]

Fig. 44: ESP32-PICO-KIT-1 Block Diagram (click to enlarge)

Warning: The power supply must be provided using one and only one of the options above, otherwise the
board and/or the power supply source can be damaged.

Pin Descriptions The two tables below provide the Name and Function of I/O header pins on both sides of the
board, see Description of Components. The pin numbering and header names are the same as in the schematic given
in Related Documents.

Header J2
No. Name Type Function
1 1020 /0 GP1020
2 1021 /0 GPIO21, VSPIHD, EMAC_TX_EN
3 1022 I/0 GPI022, VSPIWP, UORTS, EMAC_TXD1
4 1019 /0 GPIO19, VSPIQ, UOCTS, EMAC_TXDO
5 108 /0 GPIOS, SD_DATAI1, HS1_DATAI, U2CTS
6 107 /0 GPIO7, SD_DATAO, HS1_DATAO, U2RTS
7 105 I/0 GPIOS5, VSPICSO0, HS1_DATA6, EMAC_RX_CLK
8 1010 /0 GPIO10, SD_DATA3, SPIWP, HS1_DATA3, UITXD
9 109 I/0 GPIO9, SD_DATA2, SPIHD, HS1_DATAZ2, UIRXD
10 RXDO I/0 GPIO3, UORXD (See 1), CLK_OUT2
11 TXDO /0 GPIO1, UOTXD (See 1), CLK_OUT3, EMAC_RXD2
12 1035 I ADCI1_CH7, RTC_GPIOS5
13 1034 I ADCI1_CH6, RTC_GPIO4
14 1038 I GPIO38, ADC1_CH2, RTC_GPIO2
15 1037 I GPIO37, ADC1_CH1, RTC_GPIO1
16 EN I CHIP_PU
17 GND P Ground
18 VvDD33 | P 3.3 V power supply
(3V3)
Espressif Systems 77 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Header J3
No. Name Type Function
1 GND P Ground
SEN- I GPI1036, ADC1_CHO, RTC_GPIO0
SOR_VP
(FSVP)
3 SEN- I GPI039, ADC1_CH3, RTC_GPIO3
SOR_VN
(FSVN)
4 1025 /0 GP1025, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXDO0
5 1026 /0 GPIO26, DAC_2, ADC2_CHY9, RTC_GPIO7, EMAC_RXDI1
6 1032 /0 32K_XP (See 2a), ADC1_CH4, TOUCH9, RTC_GPIO9
7 1033 /0 32K_XN (See 2b), ADC1_CHS, TOUCHS, RTC_GPIO8
8 1027 /0 GPI1027, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV
9 1014 /0 ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK,
SD_CLK, EMAC_TXD2
10 1012 I/0 ADC2_CHS5, TOUCHS, RTC_GPIO15, MTDI (See 3), HSPIQ,
HS2_DATA2, SD_DATA2, EMAC_TXD3
11 1013 /0 ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID, HS2_DATA3,
SD_DATA3, EMAC_RX_ER
12 1015 /0 ADC2_CH3, TOUCH3, RTC_GPIO13, MTDO, HSPICSO, HS2_CMD,
SD_CMD, EMAC_RXD3
13 102 /0 ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2 DATAO,
SD_DATAO
14 104 I/0 ADC2_CHO, TOUCHO, RTC_GPIO10, HSPIHD, HS2_DATALI,
SD_DATA1, EMAC_TX_ER
15 100 /0 ADC2_CHI1, TOUCHI, RTC_GPIO11, CLK_OUTI1, EMAC_TX_CLK
16 VvDD33 | P 3.3V power supply
(3V3)
17 GND P Ground
18 EXT_5V| P 5V power supply
(5V)
Note:

—

This pin is connected to the pin of the USB bridge chip on the board.

2. 32.768 kHz crystal oscillator: a) input b) output

3. The operating voltage of ESP32-PICO-KIT-1" s embedded SPI flash is 3.3 V. Therefore, the strapping pin
MTDI should be pulled down during the module power-on reset. If connected, please make sure that this pin
is not held up on reset.

Pin Layout

Hardware Revision Details No previous versions available.

Related Documents

¢ ESP32-PICO-V3 Datasheet (PDF)

¢ ESP Product Selector

¢ ESP32-PICO-KIT-1 Schematic (PDF)

¢ ESP32-PICO-KIT-1 PCB Layout (PDF)

For other design documentation for the board, please contact us at sales@espressif.com.

Espressif Systems 78 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://espressif.com/sites/default/files/documentation/esp32-pico-v3_datasheet_en.pdf
https://products.espressif.com/#/product-selector?names=
https://dl.espressif.com/dl/schematics/SCH_ESP32-PICO-KIT-1_V1_0_20200811A.pdf
https://dl.espressif.com/dl/schematics/PCB_ESP32-PICO-KIT-1_V1.0_20200811.pdf
mailto:sales@espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

[[RTc_GPioo_|[ADC1_cHo | [GPIoas | (] ISl [GPIo21 [VSPIHD_|EMAC_TX_EN|

[[RTc_crios |[AbcT cria][Grioss || &

[EmAC_RD0 | [IIBAGIIN] [RTC_GPIO6 | [ADC2_CHB | [GPIo25 |\ d

[EvAC R | IIBAGIZN [RTC_GPIO7 | [ADG2 GHB | [GFIOZ6 | jusk

IR oucre | . GPos | [Aoci o] [oz | 3

[IBZERN| ToucHs | [RTC_GPIOS |[ADG1_CH5 |[GPIC33 |

[Emac_Rx_pv][ToucH? |[RTC_GPIO17 | [ADC2_CHT |[GPio27

[FSZI60K| | EMAC_TxD2 | SD_CLK |[HSPICIK | MTMS || TOUCHS | [RTC_GPIOT6 | [ADC2_CH | [GPIOT4 |
[HSZIDATAZ| EMAC_TXD3 [SD_DATAZ[HSPIQ || MTDI || TOUCH5 |[RTC_GPIO15 | [ADCZ CHb|[GPIOIZ |
[FSZDATAS| EMAC_RX ERSD_DATAA[HSPID || MTCK | TOUGH4 |[RTC_GPIO14 |[ADC2 CHA |[GPIO13 |
[FiSZI0ND| | EMAC_RXD3 |[SD_CMD |[HSPICS0 [MTDO][TOUCH3 |[RTC_GPIOT3 |[ADC2 CHa | [GPIOT5 | [GPI0as |[ADCT_CH7 |[RTC_GPIOS |
BD_DATAQ[HSPIWP |[THSZ.DATAD || TOUCH2 |[RTC_GPIO12 | [ADG2 CH2 |[GPIO2 | P [GPI0a4 |[ADC1_CHG |[RTC_GPIO4 |
[EMAC_TX_ER|SD_DATAT|_HSPIRD. ||JS2IDATAT] ToUCHO | [RTC_GPIOT0 | [ADC2_GHo| [GPict || Bt , "4 [GPioss |[ADCi_cHz | [RTC GPioz |

[k ouT1[EMAC_ X GLK]| ToucH! |[RTC_GPIOT1 | [ADE2_CH1][GPico | ™ PP [GPioa7 |[ADCT_CH1 |[RTC_GPIOT |

[cPiczz | vsPWP || UORTS || EMAC_TXD1 |

[ePio1g][vsPia][uocTs |[EMAC TXDO |

J [GPios |[SD_DATAT|[U2CTS | [HSTDATAD

L [GPIO7 |[SD_DATAD|[U2RTS | [HSIIDATADY|

Jl [cPI05 | VSPICS0 | [HSTLDATAB | FMAC_RX CLK
[Geioro | [spiwe [SboATAS | IESBATASH X0

(GPoe |[P[0 oavee | pRsmATAR oo

[[ePi03][UoRXD [CLK_OUTZ |

U [GPIO1 || UuoTXD][CLK_OUT3 || EMAC_RXDZ |

Fig. 45: ESP32-PICO-KIT-1 Pin Layout(click to enlarge)

ESP32-PICO-DevKitM-2

Overview ESP32-PICO-DevKitM-2 is an ESP32-based development board produced by Espressif.

The core of this board is ESP32-PICO-MINI-02(02U) module with complete Wi-Fi and Bluetooth functionalities.

The development board features a USB-to-UART Bridge circuit which allows developers to connect the board to a
computer’ s USB port for flashing and debugging.

All the 10 signals and system power on ESP32-PICO-MINI-02(02U) are led out to two rows of 18 x 0.1” header

pads on both sides of the development board for easy access. For compatibility with Dupont wires, all header pads
are populated with two rows of male pin headers.

Note: ESP32-PICO-DevKitM-2 comes with male headers by default.

ESP32-PICO-DevKitM-2 provides the users with hardware for development of applications based on the ESP32,
making it easier for users to explore ESP32 functionalities.

This guide covers:

* Getting Started: Provides an overview of the ESP32-PICO-DevKitM-2 and software setup instructions to get
started.

Contents and Packaging: Provides information about packaging and contents for retail and wholesale orders.
Hardware Reference: Provides more detailed information about the ESP32-PICO-DevKitM-2’ s hardware.
Hardware Revision Details: Covers revision history, known issues, and links to user guides for previous versions
(if any) of the ESP32-PICO-DevKitM-2.

* Related Documents: Gives links to related documentation.

Getting Started This section describes how to get started with the ESP32-PICO-DevKitM-2. It begins with a
few introductory sections about the ESP32-PICO-DevKitM-2, then Section Start Application Development provides
instructions on how to flash firmware onto the ESP32-PICO-DevKitM-2.

Espressif Systems 79 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://espressif.com
https://www.espressif.com/en/products/modules
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Fig. 46: ESP32-PICO-DevKitM-2 Overview (click to enlarge)

Espressif Systems 80 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Description of Components The following figure and the table below describe the key components, interfaces,
and controls of the ESP32-PICO-DevKitM-2 board. We take the board with a ESP32-PICO-MINI-02 module as an
example in the following sections.

ESP32-PICO-MINI-02 LDO USB-to-UART Bridge

eoeoes

3@ A7 EN GND 3V)
]

Micro USE Port

Power On LED

Y0 Connector EN Button BOOT Button

Fig. 47: ESP32-PICO-DevKitM-2 board layout - front (click to enlarge)

Below is the description of the items identified in the figure starting from the top left corner and going clockwise.

Key Component Description

ESP32-PICO-MINI-02 Standard ESP32-PICO-MINI-02 module soldered to the ESP32-PICO-
DevKitM-2 board. The complete ESP32 system on a chip (ESP32 SoC) has
been integrated into the module. Users can also select the board with ESP32-
PICO-MINI-02U soldered.

LDO V-t0-3.3V Low dropout voltage regulator (LDO).

USB-to-UART bridge CP2102N, single-chip USB-UART bridge that offers up to 3 Mbps transfers
rates.

Micro-B USB Port USB interface. Power supply for the board as well as the communication inter-
face between a computer and the board.

5V Power On LED This red LED turns on when power is supplied to the board. For details, see the
schematic in Related Documents.

I/0 Connector All the pins on ESP32-PICO-MINI-02 are broken out to pin headers. You can

program ESP32 to enable multiple functions, such as PWM, ADC, DAC, 12C,
12S, SPI, etc. For details, please see Section Pin Descriptions.

BOOT Button Download button. Holding down Boot and then pressing EN initiates Firmware
Download mode for downloading firmware through the serial port.
EN Button Reset button.

Start Application Development Before powering up your ESP32-PICO-DevKitM-2, please make sure that the
board is in good condition with no obvious signs of damage.

Required Hardware

¢ 1 x ESP32-PICO-DevKitM-2
¢ 1 x USB 2.0 A to Micro B cable
* 1 x Computer running Windows, Linux, or macOS

Espressif Systems 81 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Software Setup Please proceed to Get Started, where Section Installation will quickly help you set up the develop-
ment environment.

Contents and Packaging

Retail Orders If you order one or several samples of the board, each ESP32-PICO-DevKitM-2 development board
comes in an individual package.

For retail orders, please go to https://www.espressif.com/en/contact-us/get-samples.

Wholesale Orders If you order in bulk, the boards come in large cardboard boxes.

For wholesale orders, please go to https://www.espressif.com/en/contact-us/sales-questions.

Hardware Reference

Block Diagram The block diagram below shows the main components of ESP32-PICO-DevKitM-2 and their
interconnections.

[¢ ¢ ¢ ¢« o ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢« ¢« ¢ ¢ ¢ 0 ¢ o o

Pin Header
NSNS TXD Micro-B USB
RXD DP
BOOT [
= USB to UART DM
ESP32-PICO-MINI-02 EXTSV =

LED
\VDD33 |-
LDO {O)
ST ,
Signal
| EN "BOOT' _—

ESP32-PICO-DevKitM-2

[e o ¢ ¢ o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ ¢ ¢ o o

Fig. 48: ESP32-PICO-DevKitM-2 Block Diagram (click to enlarge)

Power Supply Options There are three mutually exclusive ways to provide power to the board:

* Micro USB port, default power supply
* 5V/GND header pins
* 3V3/GND header pins

Warning: The power supply must be provided using one and only one of the options above, otherwise the
board and/or the power supply source can be damaged.

Pin Descriptions The two tables below provide the Name and Function of I/O header pins on both sides of the
board, see Description of Components. The pin numbering and header names are the same as in the schematic given
in Related Documents.

Espressif Systems 82 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/contact-us/get-samples
https://www.espressif.com/en/contact-us/sales-questions
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Header J2
No. Name Type Function
1 1020 /0 GPIO20
2 1021 I/0 GPIO21, VSPIHD, EMAC_TX_EN
3 1022 /0 GPIO22, VSPIWP, UORTS, EMAC_TXD1
4 1019 /0 GPIO19, VSPIQ, UOCTS, EMAC_TXDO
5 108 /0 GPIOS8, SD_DATAI1, HS1_DATAI1, U2CTS
6 107 I/0 GPIO7, SD_DATAO, HS1_DATAO, U2RTS
7 105 /0 GPIOS, VSPICS0, HS1_DATA6, EMAC_RX_CLK
8 NC - NC
9 NC - NC
10 RXDO /0 GPIO3, UORXD (See 1), CLK_OUT2
11 TXDO /0 GPIO1, UOTXD (See 1), CLK_OUT3, EMAC_RXD?2
12 1035 I ADCI1_CH7, RTC_GPIOS
13 1034 I ADC1_CH6, RTC_GPIO4
14 1038 I GPIO38, ADC1_CH2, RTC_GPIO2
15 1037 I GPI037, ADCI1_CH1, RTC_GPIO1
16 EN I CHIP_PU
17 GND P Ground
18 VvDD33 | P 3.3 V power supply
(3V3)
Header J3
No. Name Type Function
1 GND P Ground
2 SEN- I GPI1036, ADC1_CHO, RTC_GPIO0
SOR_VP
(FSVP)
3 SEN- I GPI1039, ADC1_CH3, RTC_GPIO3
SOR_VN
(FSVN)
4 1025 /0 GPI1025, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXDO0
5 1026 I/0 GP1026, DAC_2, ADC2_CHY9, RTC_GPIO7, EMAC_RXD1
6 1032 /0 32K_XP (See 2a), ADC1_CH4, TOUCH9, RTC_GPIO9
7 1033 /0 32K_XN (See 2b), ADC1_CHS, TOUCHS, RTC_GPIO8
8 1027 I/0 GPI1027, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV
9 1014 I/0 ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2 CLK,
SD_CLK, EMAC_TXD2
10 1012 I/0 ADC2_CHS5, TOUCHS, RTC_GPIO15, MTDI (See 3), HSPIQ,
HS2_DATA2, SD_DATA2, EMAC_TXD3
11 1013 /0 ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID, HS2_DATA3,
SD_DATA3, EMAC_RX_ER
12 1015 /0 ADC2_CH3, TOUCH3, RTC_GPIO13, MTDO, HSPICSO, HS2_CMD,
SD_CMD, EMAC_RXD3
13 102 /0 ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2 DATAO,
SD_DATAO
14 104 /0 ADC2_CHO, TOUCHO, RTC_GPIO10, HSPIHD, HS2 DATALI,
SD_DATA1, EMAC_TX_ER
15 100 /0 ADC2_CHI, TOUCH1, RTC_GPIO11, CLK_OUT1, EMAC_TX_CLK
16 VvDD33 | P 3.3V power supply
(3V3)
17 GND P Ground
18 EXT_5V| P 5V power supply
(3V)

Espressif Systems

83 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Note:

—

This pin is connected to the pin of the USB bridge chip on the board.

2. 32.768 kHz crystal oscillator: a) input b) output

3. The operating voltage of ESP32-PICO-DevKitM-2’ s embedded SPI flash is 3.3 V. Therefore, the strapping
pin MTDI should be pulled down during the module power-on reset. If connected, please make sure that this
pin is not held up on reset.

ExlE)
[[RTc_crioo |[ADC1_cHo | [epioas] L _ [cPic21][[VSPHD | EMAC_TX_EN

. [GPiozz2|[VSPMWP][UORTS |[EMAC_TXDT1 |
[GPIO19][VSPIQ][UOCTS |[EMAC_TXDO |

[cPios |[So.0ATAn) [U | e

[Evac_rxpo | [IIBAGHIN [RTC_GRios | [ADC2 GHe | [GPIozs|
[EMAC_RxD1 | IDAGIEN] [RTC_GPIO7 | [ADCZ_CHO | [GPIDZ6] e

[IREZFIN[ToucHs |[RTc_GPIo9 |[ADC1_cH4 | [GPioaz]
[T | Touchs | [RTC_GPIOS | [ADCT_GHS |[GPIoaa]

[Emac_Rx_DV][ToucH? |[RTC_GPIO17 |[ADC2_CHT |[GPIO27]

[HSZICIKI[EvAC_TxDz [[SD_CLK |[HSPICLK | MTMS || ToUCH6 | [RTC_GPIO16 |[ADCZ CHG | [GPiot4] & o
[FiS2I0ATAZ| EMAC_TXD3 |SD_DATAZ[HSPIQ | MTDI || TOUCHS |[RTC_GPIO15 |[ADC2_CHS |[GPIO12] ¥ = 5 | [GPI03 || UORXD][CLK_OUTZ |

[iS2IPATAS| EMAC_RX_ER[SD_DATAJ[HSPID | MTCK

| Touchs |[RTC_GPIO14 |[ADC2_CH4 |[GPio13] R Reissing =L | [GPIOT || UOTXD |[CLK OUTS |[EMAG_RXDZ |

[HS216MDB || EMAC_RXD3 |[SD_CMD |[HSPICS0 | MTDO : . [GPI035][ADC1_CHY | [RTC_GPIOS |
0_DATAG[HSPIWP |[JHS2LPATADY]| TOUCH2 | [RTC_GPIO12 |[ADC2_CH2 |[GPIO2 . [GPI034][ADC1_CHS |[RTC_GPIO4 |

[EMAC_TX_ER|SD_DATAI| HSPIHD |[JHSZIDATAR| ToucHo | [RTC_GPioio | [ADC2_cHo |[GPios | KN [__ [cpioss|[aDci_cHz |[RTc_GPioz]
[cLk_ouTt[EmAC T cLK|| ToucH1 | [RTC_GPIO11 |[ADC2 CH1 | [GPIoo | B £l [crioa7][ADC1_CHT |[RTC_GPIOT |

Fig. 49: ESP32-PICO-DevKitM-2 Pin Layout (click to enlarge)

Pin Layout

Hardware Revision Details No previous versions available.

Related Documents

e ESP32-PICO-MINI-02 & ESP32-PICO-MINI-1U Datasheet (PDF)
¢ ESP Product Selector

¢ ESP32-PICO-DevKitM-2 Schematic (PDF)

¢ ESP32-PICO-DevKitM-2 PCB Layout (PDF)

For other design documentation for the board, please contact us at sales@espressif.com.

ESP32-DevKitM-1

This user guide will help you get started with ESP32-DevKitM-1 and will also provide more in-depth information.

ESP32-DevKitM-1 is an ESP32-MINI-1(1U)-based development board produced by Espressif. Most of the I/O pins
are broken out to the pin headers on both sides for easy interfacing. Users can either connect peripherals with jumper
wires or mount ESP32-DevKitM-1 on a breadboard.

Espressif Systems 84 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/sites/default/files/documentation/esp32-pico-mini-02_datasheet_en.pdf
https://products.espressif.com/#/product-selector?names=
https://dl.espressif.com/dl/schematics/SCH_ESP32-PICO-DEVKITM-2_V1_0_20200812A.pdf
https://dl.espressif.com/dl/schematics/PCB_ESP32-PICO-DevKitM-2_V1.0_20200812.pdf
mailto:sales@espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

@@@?@GOQQQGQOGQGE

3¢ 38 37 36 3V3 GND

ESP32-DevKitM-1 - front ESP32-DevKitM-1 - isometric

The document consists of the following major sections:

* Getting started: Provides an overview of the ESP32-DevKitM-1 and hardware/software setup instructions to
get started.

e Hardware reference: Provides more detailed information about the ESP32-DevKitM-1’ s hardware.

* Related Documents: Gives links to related documentaiton.

Getting Started This section describes how to get started with ESP32-DevKitM-1. It begins with a few introduc-
tory sections about the ESP32-DevKitM-1, then Section Start Application Development provides instructions on how
to do the initial hardware setup and then how to flash firmware onto the ESP32-DevKitM-1.

Overview This is a small and convenient development board that features:

» ESP32-MINI-1, or ESP32-MINI-1U module

» USB-to-serial programming interface that also provides power supply for the board
e pin headers

* pushbuttons for reset and activation of Firmware Download mode

¢ a few other components

Contents and Packaging

Retail orders If you order a few samples, each ESP32-DevKitM-1 comes in an individual package in either anti-
static bag or any packaging depending on your retailer.

For retail orders, please go to https://www.espressif.com/en/contact-us/get-samples.

Wholesale Orders If you order in bulk, the boards come in large cardboard boxes.

For wholesale orders, please go to https://www.espressif.com/en/contact-us/sales-questions.

Description of Components The following figure and the table below describe the key components, interfaces and
controls of the ESP32-DevKitM-1 board. We take the board with a ESP32-MINI-1 module as an example in the
following sections.

Espressif Systems 85 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/sites/default/files/documentation/esp32-mini-1_datasheet_en.pdf
https://www.espressif.com/en/contact-us/get-samples
https://www.espressif.com/en/contact-us/sales-questions
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

USB-to-UART

N 5V 1o 3.3V LDO 1/0 Connector
Bridge

2090900000000 0000 A

GND 3V 14 27 26 25[33 32 3T 34|RST 3¢ 38 37 36 3V3 GND

Boot Button

Micro-USB Port ESP32-MINI-1 Module

Reset Button

3.3V Power
On LED I/O Connector

Fig. 50: ESP32-DevKitM-1 - front

Key Component Description

On-board module ESP32-MINI-1 module or ESP32-MINI-1U module. ESP32-MINI-1 comes with an
on-board PCB antenna. ESP32-MINI-1U comes with an external antenna connector.
The two modules both have a 4 MB flash in chip package. For details, please see
ESP32-MINI-1 & ESP32-MINI-1U Datasheet.

5Vt03.3VLDO Power regulator converts 5 V to 3.3 V.

Boot Button Download button. Holding down Boot and then pressing Reset initiates Firmware
Download mode for downloading firmware through the serial port.

Reset Button Reset Button

Micro-USB Port USB interface. Power supply for the board as well as the communication interface

between a computer and the ESP32 chip.
USB-to-UART Bridge Single USB-UART bridge chip provides transfer rates up to 3 Mbps.

3.3 V Power On LED Turns on when the USB is connected to the board. For details, please see the
schematics in Related Documents.
I/0 Connector All available GPIO pins (except for the SPI bus for flash) are broken out to the pin

headers on the board. Users can program ESP32 chip to enable multiple functions.

Start Application Development Before powering up your ESP32-DevKitM-1, please make sure that it is in good
condition with no obvious signs of damage.

Required Hardware

¢ ESP32-DevKitM-1
e USB 2.0 cable (Standard-A to Micro-B)
¢ Computer running Windows, Linux, or macOS

Software Setup Please proceed to Ger Started, where Section Installation will quickly help you set up the develop-
ment environment and then flash an application example onto your ESP32-DevKitM-1.

Espressif Systems 86 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/sites/default/files/documentation/esp32-mini-1_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Attention: ESP32-DevKitM-1 boards manufactured before December 2, 2021 have a single core module in-
stalled. To verify what module you have, please check module marking information in PCN-2021-021 . If your
board has a single core module installed, please enable single core mode (CONFIG_FREERTOS_UNICORE) in

menuconfig before flashing your applications.

Hardware Reference

Block Diagram A block diagram below shows the components of ESP32-DevKitM-1 and their interconnections.

U~
=
Power Supply/
Programming
| D+/D- TX/RX .
- > USB-'UART ~ g ESP32-MINI-1 Pin Header |
.6» Bridge Module - " Connector x2
: 3.3V :
. > :
. |
LDO 1 1
: o] [o 5
. ESP32-DevKitM-1_V1 Boot RST

Fig. 51: ESP32-DevKitM-1

Power Source Select There are three mutually exclusive ways to provide power to the board:

* Micro USB port, default power supply
¢ 5V and GND header pins
* 3V3 and GND header pins

Warning:

e The power supply must be provided using one and only one of the options above, otherwise the board
and/or the power supply source can be damaged.
* Power supply by micro USB port is recommended.

Pin Descriptions The table below provides the Name and Function of pins on both sides of the board. For pe-
ripheral pin configurations, please refer to ESP32 Datasheet.

No. Name Type Function
1 GND P Ground
2 3V3 P 3.3 V power supply
continues on next page
Espressif Systems 87 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/sites/default/files/pcn_downloads/PCN-2021-021%20ESP32-U4WDH%20%E5%8D%87%E7%BA%A7%E4%B8%BA%E5%8F%8C%E6%A0%B8%E5%A4%84%E7%90%86%E5%99%A8%E4%BA%A7%E5%93%81.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Table 6 - continued from previous page

No. Name Type Function
3 136 1 GPIO36, ADC1_CHO, RTC_GPIOO
4 137 I GPIO37, ADCI_CHI1, RTC_GPIO1
5 138 I GPIO38, ADC1_CH2, RTC_GPIO2
6 139 I GPI039, ADC1_CH3, RTC_GPIO3
7 RST I Reset; High: enable; Low: powers off
8 134 I GPI0O34, ADC1_CH6, RTC_GPIO4
9 135 1 GPIO35, ADC1_CH7, RTC_GPIOS
10 1032 I/0 GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input),
ADCI1_CH4, TOUCHY, RTC_GPIO9
11 1033 1/0 GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output),
ADCI1_CHS5, TOUCHS, RTC_GPIO8
12 1025 1/0 GPIO25, DAC_1, ADC2_CHS8, RTC_GPIO6, EMAC_RXDO0
13 1026 1/0 GPI1026, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1
14 1027 1/0 GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV
15 1014 1/0 GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK,
HS2_CLK, SD_CLK, EMAC_TXD2
16 5V P 5 V power supply
17 1012 I/0 GPIO12, ADC2_CH5, TOUCHS, RTC_GPIO15, MTDI, HSPIQ,
HS2_DATA2, SD_DATA2, EMAC_TXD3
18 1013 1/0 GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID,
HS2_DATA3, SD_DATA3, EMAC_RX_ER
19 1015 1/0 GPIO15, ADC2_CH3, TOUCH3, RTC_GPIO13, MTDO, HSPICSO,
HS2_CMD, SD_CMD, EMAC_RXD?3
20 102 1/0 GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP,
HS2_DATAO, SD_DATAO
21 100 1/0 GPIO0O, ADC2_CHI1, TOUCHI1, RTC_GPIO11, CLK_OUTI,
EMAC_TX_CLK
22 104 1/0 GPIO4, ADC2_CHO, TOUCHO, RTC_GPIO10, HSPIHD,
HS2_DATAI1, SD_DATA1, EMAC_TX_ER
23 109 1/0 GPIO9, HS1_DATA2, UIRXD, SD_DATA2
24 1010 1/0 GPIO10, HS1_DATA3, UITXD, SD_DATA3
25 105 1/0 GPIOS, HS1_DATA®6, VSPICSO, EMAC_RX_CLK
26 1018 1/0 GPIO18, HS1_DATA7, VSPICLK
27 1023 1/0 GPI10O23, HS1_STROBE, VSPID
28 1019 1/0 GPIO19, VSPIQ, UOCTS, EMAC_TXDO0
29 1022 1/0 GPI1022, VSPIWP, UORTS, EMAC_TXD1
30 1021 1/0 GPIO21, VSPIHD, EMAC_TX_EN
31 TXDO 1/0 GPIO1, UOTXD, CLK_OUT3, EMAC_RXD2
32 RXDO I/0 GPIO3, UORXD, CLK_OUT?2
Hardware Revision Details No previous versions available.
Related Documents
¢ ESP32-MINI-1 & ESP32-MINI-1U Datasheet (PDF)
¢ ESP32-DevKitM-1 Schematics (PDF)
¢ ESP32-DevKitM-1 PCB layout (PDF)
¢ ESP32-DevKitM-1 layout (DXF) - You can view it with Autodesk Viewer online
¢ ESP32 Datasheet (PDF)
¢ ESP Product Selector
For other design documentation for the board, please contact us at sales@espressif.com.
Espressif Systems 88 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/sites/default/files/documentation/esp32-mini-1_datasheet_en.pdf
https://dl.espressif.com/dl/schematics/SCH_ESP32-DEVKITM-1_V1_20200910A.pdf
https://dl.espressif.com/dl/schematics/PCB_ESP32-DevKitM-1_V1_20200910AE.pdf
https://dl.espressif.com/dl/schematics/ESP32-DevKitM-1_V1.dxf
https://viewer.autodesk.com/
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://products.espressif.com/#/product-selector?names=
mailto:sales@espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

1.2.2 Software

To start using ESP-IDF on ESP32, install the following software:

* Toolchain to compile code for ESP32

¢ Build tools - CMake and Ninja to build a full Application for ESP32

¢ ESP-IDF that essentially contains API (software libraries and source code) for ESP32 and scripts to operate
the Toolchain

CMake / IDE
ESP-IDF /
Toolchain
Project
Application —
PP iy
UPLOAD ;:'f E
- H
2
i
H 2 2
/ H—I\I\-:"!I:!-;-f-r-r"r-r"n"r-r"l—_'-_'\-‘l - - .-____'
:f;;—ui *\ -

1.3 Installation

To install all the required software, we offer some different ways to facilitate this task. Choose from one of the
available options.

1.3.1 IDE

Note: We highly recommend installing the ESP-IDF through your favorite IDE.

* Eclipse Plugin
* VSCode Extension

1.3.2 Manual Installation

For the manual procedure, please select according to your operating system.

Espressif Systems 89 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Standard Setup of Toolchain for Windows

Introduction ESP-IDF requires some prerequisite tools to be installed so you can build firmware for supported
chips. The prerequisite tools include Python, Git, cross-compilers, CMake and Ninja build tools.

For this Getting Started we’ re going to use the Command Prompt, but after ESP-IDF is installed you can use Eclipse
Plugin or another graphical IDE with CMake support instead.

Note: Limitations: - The installation path of ESP-IDF and ESP-IDF Tools must not be longer than 90 characters.
Too long installation paths might result in a failed build. - The installation path of Python or ESP-IDF must not contain
white spaces or parentheses. - The installation path of Python or ESP-IDF should not contain special characters (non-
ASCII) unless the operating system is configured with “Unicode UTF-8” support.

System Administrator can enable the support via Control Panel - Change date, time, or number formats - Adminis-
trative tab - Change system locale - check the option “Beta: Use Unicode UTF-8 for worldwide language support”
- Ok and reboot the computer.

ESP-IDF Tools Installer The easiest way to install ESP-IDF’ s prerequisites is to download one of ESP-IDF
Tools Installers.

Windows
Installer

Windows Installer Download

What is the usecase for Online and Offline Installer Online Installer is very small and allows the installation of all
available releases of ESP-IDF. The installer will download only necessary dependencies including Git For Windows
during the installation process. The installer stores downloaded files in the cache directory $userprofile%\.
espressif

Offline Installer does not require any network connection. The installer contains all required dependencies including
Git For Windows .

Components of the installation The installer deploys the following components:

¢ Embedded Python

* Cross-compilers

¢ OpenOCD

* CMake and Ninja build tools
ESP-IDF

The installer also allows reusing the existing directory with ESP-IDF. The recommended directory is $userpro-
file%\Desktop\esp-idf where $userprofile% is your home directory.

Espressif Systems 20 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://dl.espressif.com/dl/esp-idf/?idf=4.4
https://dl.espressif.com/dl/esp-idf/?idf=4.4
https://gitforwindows.org/
https://gitforwindows.org/
https://cmake.org/download/
https://ninja-build.org/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Launching ESP-IDF Environment At the end of the installation process you can check out option Run
ESP-IDF PowerShell Environment or Run ESP-IDF Command Prompt (cmd.exe). The
installer will launch ESP-IDF environment in selected prompt.

Run ESP-IDF PowerShell Environment:

Completing the ESP-IDF Tools Setup
Wizard

Setup has finished installing ESP-IDF Tools on your computer.

Click Finish to exit Setup.

[+] Run ESP-IDF Edipse Environment
| Run ESP-IDF PowerShell Environmentl

Run ESP-IDF Command Prompt Environment

Register the ESP-IDF Tools executables as Windows Defender
exclusions. The registration might improve compilation time by about

~ 30%. The installer deployed the files on the operating system and
antivirus software scanned them. The registration of exclusions requires
the elevation of privileges. The exclusions can be added/removed by
idf-env tool. More details: https://github.com/espressif/idf-env.

Fig. 52: Completing the ESP-IDF Tools Setup Wizard with Run ESP-IDF PowerShell Environment

Run ESP-IDF Command Prompt (cmd.exe):

Using the Command Prompt For the remaining Getting Started steps, we’ re going to use the Windows Command
Prompt.

ESP-IDF Tools Installer also creates a shortcut in the Start menu to launch the ESP-IDF Command Prompt. This
shortcut launches the Command Prompt (cmd.exe) and runs export . bat script to set up the environment variables
(PATH, IDF_PATH and others). Inside this command prompt, all the installed tools are available.

Note that this shortcut is specific to the ESP-IDF directory selected in the ESP-IDF Tools Installer. If you have
multiple ESP-IDF directories on the computer (for example, to work with different versions of ESP-IDF), you have
two options to use them:

1. Create a copy of the shortcut created by the ESP-IDF Tools Installer, and change the working directory of the
new shortcut to the ESP-IDF directory you wish to use.

2. Alternatively, run cmd . exe, then change to the ESP-IDF directory you wish to use, and run export .bat.
Note that unlike the previous option, this way requires Python and Git to be present in PATH. If you get errors
related to Python or Git not being found, use the first option.

First Steps on ESP-IDF Now since all requirements are met, the next topic will guide you on how to start your
first project.

Espressif Systems 91 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Us1ﬂg Python in C:/Users/developer/.espressif/python_env/idf4.1 py3.8_env/scripts

Python 3.8.7

Us1ng G1t in C: /Program Files/Git/cmd/

git version 2.29.2.windows.1

Setting IDF_PATH: C:\Users\developer\Desktop\esp-idf

IAdding ESP-IDF tools to PATH.

:\Users\deve1oper\.espress1f\too1s\xtensa esp32-e1f\esp-2020r3-8.4.0\xtensa-esp32-el1f\bin
:\Users\developer\.espressif\tools\xtensa-esp32s2-e1f\esp-2020r3-8.4.0\xtensa-esp32s2-e1f\bin
:\Users\developer\.espressif\tools\esp32ulp-el1f\2.28.51-esp-20191205\esp32ulp-elf-binutils\bin
:\Users\developer\.espressif\tools\esp32s2ulp- e1f\2 28.51-esp-20191205\esp32s2ulp-elf-binutils\bin
:\Users\developer\.espressif\tools\cmake\3.13.4\

:\Users\developer\.espressif\tools\openocd- esp:Z\vO 10.0-esp32-20200709\openocd-esp32\bin
:\Users\developer\.espressif\tools\ninja\1.9.0\
:\Users\developer\.espressif\tools\idf-exe\1.0.1\
:\Users\developer\.espressif\tools\ccache\3.7\

:\Users\developer\Desktop\esp-id\tools

Ichecking if Python packages are up to date

Python requirements from cC: \Users\deve1oper\Desktop\esp idf\requirements.txt are satisfied.

C
C
C
C
C
C
C
C
C
C

Done! You can now compile ESP-IDF projects.
Go to the project directory and run:
idf.py build

Ps c:\Users\developer\Desktop\esp-idf>

Fig. 53: ESP-IDF PowerShell

Completing the ESP-IDF Tools Setup
Wizard

Setup has finished installing ESP-IDF Tools on your computer.

Click Finish to exit Setup.

[+] Run ESP-IDF Edlipse Environment
Run ESP-IDF PowerShell Environment

| Run ESP-IDF Command Prompt Environment

Reqgister the ESP-IDF Tools executables as Windows Defender
exclusions. The registration might improve compilation time by about

~ 30%. The installer deployed the files on the operating system and
antivirus software scanned them. The registration of exclusions requires
the elevation of privileges. The exclusions can be added/removed by
idf-env tool. More details: https://github.com/espressif/idf-env.

Fig. 54: Completing the ESP-IDF Tools Setup Wizard with Run ESP-IDF Command Prompt (cmd.exe)

Espressif Systems 92 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

@& ESP-IDF Command Prompt (cmd.exe = -

Using Python in C:\Users\test\AppData‘\Local\Programs\Python\Python3m, -
Puthon 3.7.8

Using Git in C:\Users\test\Git‘cmd'

git version 2.30.0.windows .1

Setting IDF_PATH: C:\Users\test\esp\esp-idf '

Adding ESP-IDF tools to PATH...
C:\Users\test\ .espressifitoocls\xtensa-esp32-elf\esp-2020r3-8.4.0\xtensa-esp3

. sers\test) . espressifitools\xtensa-esp32s2-elf\esp-2020r3-8.4.08\xtensa-es
p32s2-elfi\bin
sers\test).espressifitools\xtensa-esp32s3-elf\esp-2020r3-8.4.0\xtensa-es
elf\bin
C:\Users\test\.espressifitools\riscu32-esp-elf\1.24.0.123_64eb9ff-8.4.0\risc
y32-esp-elfi\bin
C:\Users\test\.espressifitools\esp32ulp-elf\2.28.51-esp-20191205\esp32ulp-el
f-binutils\bin
C:\Users\test\ .espressifitools\esp32s2ulp-elf'\2.28.51-esp-20191205esp32s2ul
p-elf-binutils‘\bin
sershtesth.
sershtesth.
in

if\tools\idf-exe\1.0.1\
ifytoolshccache\ 3. TV
ifytools \dfu-util 0, Ndfu-util-90, K 9-winBy

©

ifypython_enu\idf4.3_py3.7_envi\Scripts

C:‘\Users\test\esp\esp-idf\tools

Checking 1f Python packag are up to date...
Puthon requirements from C:‘\Users\test\esp\esp-idfirequirements.txt are satisfie
d.

Done! You can now compile ESP-IDF projects.
Go to the project directory and run:

idf.py build

C:\Users\test\esp\esp-idf:

Fig. 55: ESP-IDF Command Prompt

Espressif Systems 93 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

This guide will help you on the first steps using ESP-IDF. Follow this guide to start a new project on the ESP32 and
build, flash, and monitor the device output.

Note: If you have not yet installed ESP-IDF, please go to Installation and follow the instruction in order to get all
the software needed to use this guide.

Start a Project Now you are ready to prepare your application for ESP32. You can start with get-
started/hello_world project from examples directory in ESP-IDF.

Important: The ESP-IDF build system does not support spaces in the paths to either ESP-IDF or to projects.

Copy the project get-started/hello_world to ~/esp directory:

cd 2userprofile\esp
xcopy /e /i %IDF_PATH%\examples\get-started\hello_world hello_world

Note: There is a range of example projects in the examples directory in ESP-IDF. You can copy any project in the
same way as presented above and run it. It is also possible to build examples in-place without copying them first.

Connect Your Device Now connect your ESP32 board to the computer and check under which serial port the
board is visible.

Serial port names start with COM in Windows.

If you are not sure how to check the serial port name, please refer to Establish Serial Connection with ESP32 for full
details.

Note: Keep the port name handy as you will need it in the next steps.

Configure Your Project Navigate to your hello_world directory, set ESP32 as the target, and run the project
configuration utility menuconfig.

Windows

cd Zuserprofile$\esp\hello_world
idf.py set-target esp32
idf.py menuconfig

After opening a new project, you should first set the target with 1df .py set—-target esp32. Note that existing
builds and configurations in the project, if any, will be cleared and initialized in this process. The target may be saved
in the environment variable to skip this step at all. See Select the Target Chip: set-target for additional information.

If the previous steps have been done correctly, the following menu appears:

You are using this menu to set up project specific variables, e.g., Wi-Fi network name and password, the processor
speed, etc. Setting up the project with menuconfig may be skipped for “hello_word” , since this example runs with
default configuration.

Attention: If you use ESP32-DevKitC board with the ESP32-SOLO-1 module, or ESP32-DevKitM-1 board
with the ESP32-MIN1-1(1U) module, please enable single core mode (CONFIG_FREERTOS_UNICORE) in
menuconfig before flashing examples.

Espressif Systems 94 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/esp-idf/tree/dc13544d537/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/dc13544d537/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/dc13544d537/examples
https://github.com/espressif/esp-idf/tree/dc13544d537/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/dc13544d537/examples
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Espressif IoT Development Framework Configuration

SDK tool configuration ---=
Build type --->
Application manager ---=
Bootloader config ---=>
Security features ---=
Partition Table ---=
Compiler options ---=
Component config ---=>
Compatibility options ---»>

[S] save

ymbol info [/] Jump to symbol
e show-name ggle show-all mode

Fig. 56: Project configuration - Home window

Note: The colors of the menu could be different in your terminal. You can change the appearance with the option
—-style. Please run idf.py menuconfig —-help for further information.

If you are using one of the supported development boards, you can speed up your development by using Board Support
Package. See Additional Tips for more information.

Build the Project Build the project by running:

idf.py build

This command will compile the application and all ESP-IDF components, then it will generate the bootloader, par-
tition table, and application binaries.

$ idf.py build

Running cmake in directory /path/to/hello_world/build

Executing "cmake -G Ninja —--warn-uninitialized /path/to/hello_world"...
Warn about uninitialized values.

-— Found Git: /usr/bin/git (found version "2.17.0")

—— Building empty aws_iot component due to configuration

—-— Component names:

—— Component paths:

(more lines of build system output)

[527/527] Generating hello_world.bin
esptool.py v2.3.1

Project build complete. To flash, run this command:
./../../components/esptool_py/esptool/esptool.py -p (PORT) -b 921600 write_flash -
——-flash_mode dio —--flash_size detect --flash_freq 40m 0x10000 build/hello_world.
—bin build 0x1000 build/bootloader/bootloader.bin 0x8000 build/partition_table/
—partition-table.bin

or run 'idf.py -p PORT flash'

If there are no errors, the build will finish by generating the firmware binary .bin files.

Espressif Systems 95 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Flash onto the Device Flash the binaries that you just built (bootloader.bin, partition-table.bin and hello_world.bin)
onto your ESP32 board by running:

idf.py -p PORT [-b BAUD] flash

Replace PORT with your ESP32 board’ s serial port name.

You can also change the flasher baud rate by replacing BAUD with the baud rate you need. The default baud rate is
460800.

For more information on idf.py arguments, see idf.py.

Note: The option f 1ash automatically builds and flashes the project, so running 1df . py bui 1dis not necessary.

Encountered Issues While Flashing? If you run the given command and see errors such as “Failed to connect” ,
there might be several reasons for this. One of the reasons might be issues encountered by esptool . py, the utility
that is called by the build system to reset the chip, interact with the ROM bootloader, and flash firmware. One simple
solution to try is manual reset described below, and if it does not help you can find more details about possible issues
in Troubleshooting.

esptool.py resets ESP32 automatically by asserting DTR and RTS control lines of the USB to serial converter
chip, i.e., FTDI or CP210x (for more information, see Establish Serial Connection with ESP32). The DTR and RTS
control lines are in turn connected to GPI00 and CHIP_PU (EN) pins of ESP32, thus changes in the voltage levels
of DTR and RTS will boot ESP32 into Firmware Download mode. As an example, check the schematic for the
ESP32 DevKitC development board.

In general, you should have no problems with the official esp-idf development boards. However, esptool.py is
not able to reset your hardware automatically in the following cases:

¢ Your hardware does not have the DTR and RTS lines connected to GPIO0 and CHIP_PU
e The DTR and RTS lines are configured differently
¢ There are no such serial control lines at all

Depending on the kind of hardware you have, it may also be possible to manually put your ESP32 board into Firmware
Download mode (reset).

* For development boards produced by Espressif, this information can be found in the respective getting started
guides or user guides. For example, to manually reset an ESP-IDF development board, hold down the Boot
button (GPI00) and press the EN button (CHIP_PU).

* For other types of hardware, try pulling GPTOO0 down.

Normal Operation When flashing, you will see the output log similar to the following:

esptool.py —-chip esp32 -p /dev/ttyUSBO -b 460800 —--before=default_reset —-
—after=hard_reset write_flash --flash_mode dio —--flash_freqg 40m --flash_size 2MB.
—~0x8000 partition_table/partition-table.bin 0x1000 bootloader/bootloader.bin.
—0x10000 hello_world.bin

esptool.py v3.0-dev

Serial port /dev/ttyUSBO

Connecting........ _

Chip is ESP32DOWDQ6 (revision 0)

Features: WiFi, BT, Dual Core, Coding Scheme None

Crystal is 40MHz

MAC: 24:0a:c4:05:b9:14

Uploading stub...

Running stub...

Stub running...

Changing baud rate to 460800

Changed.

(continues on next page)

Espressif Systems 96 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/esptool#bootloader-wont-respond
https://dl.espressif.com/dl/schematics/esp32_devkitc_v4-sch-20180607a.pdf
https://www.espressif.com/en/products/devkits
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

(continued from previous page)

Configuring flash size...
Compressed 3072 bytes to 103...

Writing at 0x00008000... (100 %)

Wrote 3072 bytes (103 compressed) at 0x00008000 in 0.0 seconds (effective 5962.8._
—kbit/s) ...

Hash of data verified.

Compressed 26096 bytes to 15408...

Writing at 0x00001000... (100 %)

Wrote 26096 bytes (15408 compressed) at 0x00001000 in 0.4 seconds (effective 546.7.
<—>kblt/S) .« o

Hash of data verified.

Compressed 147104 bytes to 77364...

Writing at 0x00010000... (20

Writing at 0x00014000... (40 %)
Writing at 0x00018000... (60 %)
Writing at 0x0001c000... (80 %)
Writing at 0x00020000... (100 %)

Wrote 147104 bytes (77364 compressed) at 0x00010000 in 1.9 seconds (effective 615.
—5 kbit/s) ...
Hash of data verified.

Leaving...
Hard resetting via RTS pin...
Done

If there are no issues by the end of the flash process, the board will reboot and start up the “hello_world” application.

If you’ d like to use the Eclipse or VS Code IDE instead of running idf . py, check out Eclipse Plugin, VSCode
Extension.

Monitor the Output To check if “hello_world” is indeed running, type idf .py —-p PORT monitor (Do
not forget to replace PORT with your serial port name).

This command launches the IDF Monitor application:

$ idf.py -p <PORT> monitor

Running idf_monitor in directory [...]/esp/hello_world/build

Executing "python [...]/esp-idf/tools/idf_monitor.py -b 115200 [...]/esp/hello_
—world/build/hello_world.elf"...

—-—— 1df_monitor on <PORT> 115200 —--—-

—-—— Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ——-

ets Jun 8 2016 00:22:57

rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57

After startup and diagnostic logs scroll up, you should see “Hello world!” printed out by the application.

Hello world!

Restarting in 10 seconds...

This is esp32 chip with 2 CPU core(s), WiFi/BT/BLE, silicon revision 1, 2MB._
—external flash
Minimum free heap size: 298968 bytes

Restarting in 9 seconds...

Restarting in 8 seconds...

Restarting in 7 seconds...

To exit IDF monitor use the shortcut Ctr1+].

Espressif Systems 97 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

If IDF monitor fails shortly after the upload, or, if instead of the messages above, you see random garbage similar to
what is given below, your board is likely using a 26 MHz crystal. Most development board designs use 40 MHz, so
ESP-IDF uses this frequency as a default value.

eB88) (Xn@dy. '§9(BPW+)§BHN9a ™~ /98 | 9t 560PH~DKEBcHealsDiA
~ZYOGY (16,1 66 eB6G) (Xn@by. !DrézY (6 jpi® |G+z5Ymvp

If you have such a problem, do the following:

1. Exit the monitor.

2. Go back to menuconfig.

3. Go to Component config-—>Hardware Settings —>Main XTAL Config->Main XTAL
frequency, then change CONFIG_XTAL_FREQ_SEL to 26 MHz.

4. After that, build and flash the application again.

In the current version of ESP-IDF, main XTAL frequencies supported by ESP32 are as follows:

* 26 MHz
* 40 MHz

Note: You can combine building, flashing and monitoring into one step by running:

idf.py -p PORT flash monitor

See also:

* [IDF Monitor for handy shortcuts and more details on using IDF monitor.
* idf.py for a full reference of 1df . py commands and options.

That’ s all that you need to get started with ESP32!

Now you are ready to try some other examples, or go straight to developing your own applications.

Important: Some of examples do not support ESP32 because required hardware is not included in ESP32 so it
cannot be supported.

If building an example, please check the README file for the Supported Targets table. If this is present
including ESP32 target, or the table does not exist at all, the example will work on ESP32.

Additional Tips

Permission issues /dev/ttyUSB0 With some Linux distributions, you may get the Failed to open port
/dev/ttyUSBO error message when flashing the ESP32. This can be solved by adding the current user to the dialout

group.

Python compatibility ESP-IDF supports Python 3.7 or newer. It is recommended to upgrade your operating
system to a recent version satisfying this requirement. Other options include the installation of Python from sources
or the use of a Python version management system such as pyenv.

Start with Board Support Package To speed up prototyping on some development boards, you can use Board
Support Packages (BSPs), which makes initialization of a particular board as easy as few function calls.

Espressif Systems 98 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/esp-idf/tree/dc13544d537/examples
https://www.python.org/downloads/
https://github.com/pyenv/pyenv
https://github.com/espressif/esp-bsp
https://github.com/espressif/esp-bsp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

A BSP typically supports all of the hardware components provided on development board. Apart from the pinout
definition and initialization functions, a BSP ships with drivers for the external components such as sensors, displays,
audio codecs etc.

The BSPs are distributed via IDF Component Manager, so they can be found in IDF Component Registry.
Here’ s an example of how to add ESP-WROVER-KIT BSP to your project:

idf.py add-dependency esp_wrover_kit

More examples of BSP usage can be found in BSP examples folder.

Related Documents For advanced users who want to customize the install process:

e Updating ESP-IDF tools on Windows

e Establish Serial Connection with ESP32
* Eclipse Plugin

¢ VSCode Extension

e [DF Monitor

Updating ESP-IDF tools on Windows

Install ESP-IDF tools using a script From the Windows Command Prompt, change to the directory where ESP-
IDF is installed. Then run:

install.bat

For Powershell, change to the directory where ESP-IDF is installed. Then run:

install.psl

This will download and install the tools necessary to use ESP-IDF. If the specific version of the tool is already
installed, no action will be taken. The tools are downloaded and installed into a directory specified during ESP-IDF
Tools Installer process. By default, this is C: \Users\username\.espressif.

Add ESP-IDF tools to PATH using an export script ESP-IDF tools installer creates a Start menu shortcut for
“ESP-IDF Command Prompt” . This shortcut opens a Command Prompt window where all the tools are already
available.

In some cases, you may want to work with ESP-IDF in a Command Prompt window which wasn’ t started using that
shortcut. If this is the case, follow the instructions below to add ESP-IDF tools to PATH.

In the command prompt where you need to use ESP-IDF, change to the directory where ESP-IDF is installed, then
execute export .bat:

cd %userprofile%\esp\esp-idf
export.bat

Alternatively in the Powershell where you need to use ESP-IDF, change to the directory where ESP-IDF is installed,
then execute export .psi:

cd ~/esp/esp-idf
export.psl

‘When this is done, the tools will be available in this command prompt.

Establish Serial Connection with ESP32

This section provides guidance how to establish serial connection between ESP32 and PC.

Espressif Systems 929 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://components.espressif.com
https://github.com/espressif/esp-bsp/tree/master/examples
https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Connect ESP32 to PC Connect the ESP32 board to the PC using the USB cable. If device driver does not install
automatically, identify USB to serial converter chip on your ESP32 board (or external converter dongle), search for
drivers in internet and install them.

Below is the list of USB to serial converter chips installed on most of the ESP32 boards produced by Espressif together
with links to the drivers:

e CP210x: CP210x USB to UART Bridge VCP Drivers
e FTDI: FTDI Virtual COM Port Drivers

Please check the board user guide for specific USB to serial converter chip used. The drivers above are primarily for
reference. Under normal circumstances, the drivers should be bundled with an operating system and automatically
installed upon connecting the board to the PC.

Check port on Windows Check the list of identified COM ports in the Windows Device Manager. Disconnect
ESP32 and connect it back, to verify which port disappears from the list and then shows back again.

Figures below show serial port for ESP32 DevKitC and ESP32 WROVER KIT

=g Device Manager o =] & |
File Action View Help

&= = HE .

4 5=y tdk-kmb-op780
- M Computer

sy Disk drives

- Display adapters

> L) DVD/CD-ROM drives

-'.':1:,'_, Human Interface Devices
g IDE ATA/ATAPI controllers
<ZZ Keyboards

}3 Mice and cther pointing devices
- Monitors

¥ Metwork adapters

4 73" Ports (COM & LPT)

D Processors
-% Sound, video and game controllers

- M Systern devices
» - i Universal Serial Bus controllers

Fig. 57: USB to UART bridge of ESP32-DevKitC in Windows Device Manager

Check port on Linux and macOS To check the device name for the serial port of your ESP32 board (or external
converter dongle), run this command two times, first with the board / dongle unplugged, then with plugged in. The
port which appears the second time is the one you need:

Linux

ls /dev/tty*

macOS

Espressif Systems 100 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers
https://ftdichip.com/drivers/vcp-drivers/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

£ 1

=y Device Manager EI@

File Action View Help

= mE HE

4 = tdk-kmb-op780
i -JM Computer

15|

by Disk drives

i B Display adapters

b ey DVD/CD-ROM drives

b Eﬁ Human Interface Devices
i £ IDE ATA/ATAPI controllers
- Keyboards

S

> --ﬂ Mice and octher pointing devices
» | Monitors

b - ¥ Network adapters

4 73 Ports (COM & LPT)

[% Sound, video and game controllers
[yl System devices
[i Universal Serial Bus controllers

Fig. 58: Two USB Serial Ports of ESP-WROVER-KIT in Windows Device Manager

Espressif Systems 101 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

ls /dev/cu.*

Note: macOS users: if you don’ t see the serial port then check you have the USB/serial drivers installed. See
Section Connect ESP32 to PC for links to drivers. For macOS High Sierra (10.13), you may also have to explicitly
allow the drivers to load. Open System Preferences -> Security & Privacy -> General and check if there is a message
shown here about “System Software from developer ---” where the developer name is Silicon Labs or FTDI.

Adding user to dialout on Linux The currently logged user should have read and write access the serial port
over USB. On most Linux distributions, this is done by adding the user to dialout group with the following
command:

sudo usermod —-a -G dialout S$USER

on Arch Linux this is done by adding the user to uucp group with the following command:

sudo usermod -a -G uucp S$USER

Make sure you re-login to enable read and write permissions for the serial port.

Verify serial connection Now verify that the serial connection is operational. You can do this using a serial terminal
program by checking if you get any output on the terminal after resetting ESP32.

The default console baud rate on ESP32 is 115200.

Windows and Linux In this example we will use PuTTY SSH Client that is available for both Windows and Linux.
You can use other serial programs and set communication parameters like below.

Run terminal and set identified serial port. Baud rate = 115200 (if needed, change this to the default baud rate of the
chip in use), data bits = 8, stop bits = 1, and parity = N. Below are example screenshots of setting the port and such
transmission parameters (in short described as 115200-8-1-N) on Windows and Linux. Remember to select exactly
the same serial port you have identified in steps above.

Then open serial port in terminal and check, if you see any log printed out by ESP32. The log contents will depend
on application loaded to ESP32, see Example Output.

Note: Close the serial terminal after verification that communication is working. If you keep the terminal session
open, the serial port will be inaccessible for uploading firmware later.

macOS To spare you the trouble of installing a serial terminal program, macOS offers the screen command.

¢ As discussed in Check port on Linux and macOS, run:

1ls /dev/cu.*

* You should see similar output:

/dev/cu.Bluetooth-Incoming-Port /dev/cu.SLAB_USBtoUART /dev/cu.SLAB_
—USBtoUART7

¢ The output will vary depending on the type and the number of boards connected to your PC. Then pick the
device name of your board and run (if needed, change “115200” to the default baud rate of the chip in use):

screen /dev/cu.device_name 115200

Replace device_name with the name found running 1s /dev/cu. *.

Espressif Systems 102 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.putty.org/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

ﬁ PuTTY Configuration
Category:

[=J- Terminal

- Keyboard
- Bell

- Features

=~ Window

- Appearance
- Behaviour
- Tranglation
- Selection

- Colours

[=I- Connection

- Data

- Py
- Telnet

- Rlogin

- SSH

- Serial

Options controling local sedal lines |

About

Select a seral line

Seral line to connect to

Corfigure the seral line

Speed (baud)
Data bits
Stop bits
Parity

Flow contral

ComMi12

115200

[None -]

| XON/XOFF ~|

Open] [Cancel

Fig. 59: Setting Serial Communication in PuTTY on Windows

Espressif Systems

103

Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

PuTTY Configuration

Category: Options controlling local serial lines
Logging Select a serial line

¥ Terminal serial line to connect to [dev/ttyusBo
Keyboard
Bell

Features
* Window Data bits !

Configure the serial line
Speed (baud) 115200

Appearance Stop bits 1
Behaviour
Translation
selection Flow control XOMN/XOFF =
Colours
Fonks

¥ Connection
Data
Proxy
Telnet
Rlegin

* 55H

About % Cancel

Fig. 60: Setting Serial Communication in PuTTY on Linux

Parity Maone =

Espressif Systems 104 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

* What you are looking for is some log displayed by the screen. The log contents will depend on application
loaded to ESP32, see Example Output. To exit the screen session type Ctrl-A +\ .

Note: Do not forget to exit the screen session after verifying that the communication is working. If you fail to do
it and just close the terminal window, the serial port will be inaccessible for uploading firmware later.

Example Output An example log is shown below. Reset the board if you do not see anything.

ets Jun 8 2016 00:22:57

rst:0x5 (DEEPSLEEP_RESET) ,boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57

rst:0x7 (TGOWDT_SYS_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0x00

clk_drv:0x00,g _drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00, wp_drv:0x00
mode:DIO, clock div:2

load:0x3fff0008, 1len:8

load:0x3f£ff0010, len:3464

load:0x40078000,1en:7828

1load:0x40080000,1len:252

entry 0x40080034

I (44) boot: ESP-IDF v2.0-rcl-401-gf9fba35 2nd stage bootloader
I (45) boot: compile time 18:48:10

If you can see readable log output, it means serial connection is working and you are ready to proceed with installation
and finally upload of application to ESP32.

Note: For some serial port wiring configurations, the serial RTS & DTR pins need to be disabled in the terminal
program before the ESP32 will boot and produce serial output. This depends on the hardware itself, most development
boards (including all Espressif boards) do not have this issue. The issue is present if RTS & DTR are wired directly
to the EN & GPIOO pins. See the esptool documentation for more details.

If you got here from Step 5. First Steps on ESP-IDF when installing s/w for ESP32 development, then you can continue
with Step 5. First Steps on ESP-IDF .

IDF Monitor

IDF Monitor is mainly a serial terminal program which relays serial data to and from the target device’ s serial port.
It also provides some IDF-specific features.

IDF Monitor can be launched from an IDF project by running idf .py monitor.

Keyboard Shortcuts For easy interaction with IDF Monitor, use the keyboard shortcuts given in the table.

Espressif Systems 105 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://docs.espressif.com/projects/esptool/en/latest/advanced-topics/boot-mode-selection.html#automatic-bootloader
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

tion

Keyboard Action Description
Shortcut
Ctrl+] Exit the program
Cul+T Menu escape key Press and follow it by one of the keys given below.
Send the menu character it-
e Ctrl+T
self to remote
Send the exit character it-
e Ctrl+]
self to remote
Cirl4P Reset target into bootloader | Resets the target, into bootloader via the RTS line (if connected),
trit to pause app via RTS line so that the board runs nothing. Useful when you need to wait for
another device to startup.
Reset target board via RTS | Resets the target board and re-starts the application via the RTS
e Ctrl+R L
line (if connected).
Build and flash the project | Pauses idf_monitor to run the project £1lash target, then re-
e Ctul+F . . .
sumes idf_monitor. Any changed source files are recompiled
and then re-flashed. Target encrypted-flash is run if
idf_monitor was started with argument —E.
Build and flash the app only | Pauses idf_monitor to run the app—f 1ash target, then resumes
o Cul+A
A idf_monitor. Similar to the £1ash target, but only the main app
(or A) is built and re-flashed. Target encrypted-app-flash is
run if idf_monitor was started with argument —E.
Stop/resume log output | Discards all incoming serial data while activated. Allows to
e Ctul+Y o . . . -
printing on screen quickly pause and examine log output without quitting the mon-
itor.
Ctrl+L. Stop/resume log output | Creates a file in the project directory and the output is written to
trit saved to file that file until this is disabled with the same keyboard shortcut (or
IDF Monitor exits).
Stop/resume printing | IDF Monitor can print a timestamp in the beginning of
o Ctrl+lI . . .
timestamps each line. The timestamp format can be changed by the
(or I) . .
-—timestamp-format command line argument.
. Ctl+H Display all keyboard short-
cuts
(or H)
. Ctrl+X Exit the program
(or X)
Ctrl+C Interrupt running applica- | Pauses IDF Monitor and run GDB project debug-

ger to debug the application at runtime. This requires
:ref:CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME option
to be enabled.

Any keys pressed, other than Ctr1-] and Ctr1-T, will be sent through the serial port.

IDF-specific features

Automatic Address Decoding Whenever ESP-IDF outputs a hexadecimal code address of the form

0x4
name.

, IDF Monitor uses addr21ine_ to look up the location in the source code and find the function

If an ESP-IDF app crashes and panics, a register dump and backtrace is produced, such as the following:

Espressif Systems

106 Release v5.0.6-521-gdc13544d53

Submit Document Feedback

https://sourceware.org/gdb/download/onlinedocs/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Guru Meditation Error of type StoreProhibited occurred on core 0. Exception was.
—unhandled.

Register dump:

PC : 0x400£360d PS : 0x00060330 A0 : 0x800dbf56 Al H
—~0x3ffb7e00

A2 : Ox3ffbl36c A3 : 0x00000005 A4 : 0x00000000 A5 H
—0x00000000

A6 : 0x00000000 A7 : 0x00000080 A8 : 0x00000000 A9 H
—0x3ffb7dd0

Al0 : 0x00000003 Al1l : 0x00060£f23 Al2 : 0x00060£f20 A13 H
—0x3ffba6dl

Al4 : 0x00000047 A1lS : 0x0000000f SAR : 0x00000019 EXCCAUSE:.
—0x0000001d

EXCVADDR: 0x00000000 LBEG : 0x4000c46c LEND : 0x4000c477 LCOUNT :o
—0x00000000

Backtrace: 0x400£360d:0x3ffb7e¢00 0x400dbf56:0x3ffb7e20 0x400dbf5e:0x3ffb7e40_
—0x400db£f82:0x3ffb7e60 0x400d071d:0x3ffb7e90

IDF Monitor adds more details to the dump:

Guru Meditation Error of type StoreProhibited occurred on core 0. Exception was.
—unhandled.

Register dump:

PC : 0x400£360d PS : 0x00060330 A0 : 0x800dbf56 Al H-
—0x3ffb7e00

0x400£f360d: do_something_to_crash at /home/gus/esp/32/idf/examples/get-started/
—~hello_world/main/./hello_world_main.c:57

(inlined by) inner_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:52

A2 : 0x3ffbl36c A3 : 0x00000005 A4 : 0x00000000 A5 H.
—0x00000000
A6 : 0x00000000 A7 : 0x00000080 A8 : 0x00000000 A9 H.
—0x3ffb7dd0
Al0 : 0x00000003 A1l : 0x00060£23 Al12 : 0x00060£20 A13 H.
—0x3ffba6dl
Al4 : 0x00000047 A15 : 0x0000000f SAR : 0x00000019 EXCCAUSE:.
—0x0000001d
EXCVADDR: 0x00000000 LBEG : 0x4000c46c LEND : 0x4000c477 LCOUNT :.
—0x00000000

Backtrace: 0x400£f360d:0x3ffb7e00 0x400dbf56:0x3ffb7e20 0x400dbf5e:0x3ffb7e40._
—0x400dbf82:0x3ffb7e60 0x400d071d:0x3ffb7e90

0x400£360d: do_something_to_crash at /home/gus/esp/32/idf/examples/get-started/
—hello_world/main/./hello_world_main.c:57

(inlined by) inner_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:52

0x400dbf56: still_dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_
—world/main/./hello_world_main.c:47

0x400dbf5e: dont_crash at /home/gus/esp/32/idf/examples/get-started/hello_world/
—main/./hello_world main.c:42

0x400dbf82: app_main at /home/gus/esp/32/idf/examples/get-started/hello_world/main/
< ./hello_world _main.c:33

0x400d071d: main_task at /home/gus/esp/32/idf/components/esp32/./cpu_start.c:254

To decode each address, IDF Monitor runs the following command in the background:

xtensa-esp32-elf-addr2line -pfiaC -e build/PROJECT.elf ADDRESS

Note: Set environment variable ESP_MONITOR_DECODE to 0 or call idf_monitor.py with specific command line

Espressif Systems 107 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

option: idf_monitor.py —--disable-address-decoding to disable address decoding.

Target Reset on Connection By default, IDF Monitor will reset the target when connecting to it. The reset of the
target chip is performed using the DTR and RTS serial lines. To prevent IDF Monitor from automatically resetting the
target on connection, call IDF Monitor with the ——no-reset option (e.g., idf_monitor.py —-—no-reset).

Note: The ——no-reset option applies the same behavior even when connecting IDF Monitor to a particular port
(e.g., idf.py monitor --no-reset -p [PORT]).

Launching GDB with GDBStub GDBStub is a useful runtime debugging feature that runs on the target and
connects to the host over the serial port to receive debugging commands. GDBStub supports commands such as
reading memory and variables, examining call stack frames etc. Although GDBStub is less versatile than JTAG
debugging, it does not require any special hardware (such as a JTAG to USB bridge) as communication is done
entirely over the serial port.

A target can be configured to run GDBStub in the background by setting the CONFIG_ESP_SYSTEM_PANIC to
GDBStub on runtime. GDBStub will run in the background until a Ct r1+C message is sent over the serial
port and causes the GDBStub to break (i.e., stop the execution of) the program, thus allowing GDBStub to handle
debugging commands.

Furthermore, the panic handler can be configured to run GDBStub on a crash by setting the CON-
FIG_ESP_SYSTEM_PANIC to GDBStub on panic. When a crash occurs, GDBStub will output a special string
pattern over the serial port to indicate that it is running.

In both cases (i.e., sending the Ct r1+C message, or receiving the special string pattern), IDF Monitor will automat-
ically launch GDB in order to allow the user to send debugging commands. After GDB exits, the target is reset via
the RTS serial line. If this line is not connected, users can reset their target (by pressing the board’ s Reset button).

Note: In the background, IDF Monitor runs the following command to launch GDB:

xtensa-esp32-elf-gdb -ex "set serial baud BAUD" -ex "target remote PORT" -ex.
—interrupt build/PROJECT.elf :idf_target: Hello NAME chip"

Output Filtering IDF monitor can be invoked as idf.py monitor --print-filter="xyz", where
—-—print-filter is the parameter for output filtering. The default value is an empty string, which means that
everything is printed.

Restrictions on what to print can be specified as a series of <tag>:<log_level> items where <tag> is the tag

string and <log_level> is a character from the set {N, E, W, I, D, V, *} referringto alevel for logging.

For example, PRINT_FILTER="tagl:W" matches and prints only the outputs written with
ESP_LOGW ("tagl", ...) or at lower verbosity level, i.e. ESP_LOGE ("tagl", ...). Not speci-
fyinga <log_level> or using * defaults to Verbose level.

Note: Use primary logging to disable at compilation the outputs you do not need through the logging library. Output
filtering with IDF monitor is a secondary solution which can be useful for adjusting the filtering options without
recompiling the application.

Your app tags must not contain spaces, asterisks *, or colons : to be compatible with the output filtering feature.

If the last line of the output in your app is not followed by a carriage return, the output filtering might get confused, i.e.,
the monitor starts to print the line and later finds out that the line should not have been written. This is a known issue
and can be avoided by always adding a carriage return (especially when no output follows immediately afterwards).

Espressif Systems 108 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Examples of Filtering Rules:

e * can be used to match any tags. However, the string PRINT_FILTER="*:I tagl:E" with regards to
tagl prints errors only, because the rule for tag1l has a higher priority over the rule for *.

* The default (empty) rule is equivalent to * : V because matching every tag at the Verbose level or lower means
matching everything.

e "*:N" suppresses not only the outputs from logging functions, but also the prints made by print £, etc. To
avoid this, use * : E or a higher verbosity level.

e Rules "tagl:V", "tagl:v", "tagl:", "tagl:*",and "tagl" are equivalent.

* Rule "tagl:W tagl:E" isequivalentto "tagl:E" because any consequent occurrence of the same tag
name overwrites the previous one.

* Rule "tagl:I tag2:W" only prints tagl at the Info verbosity level or lower and tag?2 at the Warning
verbosity level or lower.

e Rule "tagl:I tag2:W tag3:N" isessentially equivalent to the previous one because tag3 : N specifies
that t ag3 should not be printed.

e tag3:Nintherule "tagl:I tag2:W tag3:N *:V" is more meaningful because without tag3: N the
tag3 messages could have been printed; the errors for tagl and tag2 will be printed at the specified (or
lower) verbosity level and everything else will be printed by default.

A More Complex Filtering Example The following log snippet was acquired without any filtering options:

load:0x40078000,1len:13564
entry 0x40078d4c

E (31) esp_image: image at 0x30000 has invalid magic byte

W (31) esp_image: image at 0x30000 has invalid SPI mode 255

E (39) boot: Factory app partition is not bootable

I (568) cpu_start: Pro cpu up.

I (569) heap_init: Initializing. RAM available for dynamic allocation:

I (603) cpu_start: Pro cpu start user code

D (309) light_driver: [light_init, 74]:status: 1, mode: 2

D (318) vfs: esp_vfs_register_fd_range is successful for range <54; 64) and VFS ID.
1

I (328) wifi: wifi driver task: 3ffdbf84, prio:23, stack:4096, core=0

The captured output for the filtering options PRINT_FILTER="wifi esp_image:E light_driver:I"
is given below:

E (31) esp_image: image at 0x30000 has invalid magic byte
I (328) wifi: wifi driver task: 3ffdbf84, prio:23, stack:4096, core=0

The options "~ "PRINT_FILTER="light_driver:D esp_image:N boot:N cpu_start:N
vEs:N wifi:N *:V" show the following output:

10oad:0x40078000, 1len:13564

entry 0x40078d4c

I (569) heap_init: Initializing. RAM available for dynamic allocation:
D (309) light_driver: [light_init, 74]:status: 1, mode: 2

Known Issues with IDF Monitor

Issues Observed on Windows

» Arrow keys, as well as some other keys, do not work in GDB due to Windows Console limitations.
¢ Occasionally, when “idf.py” exits, it might stall for up to 30 seconds before IDF Monitor resumes.
e When “gdb” is run, it might stall for a short time before it begins communicating with the GDBStub.

Espressif Systems 109 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Standard Toolchain Setup for Linux and macOS

Installation Step by Step This is a detailed roadmap to walk you through the installation process.

Setting up Development Environment These are the steps for setting up the ESP-IDF for your ESP32.

e Step 1. Install Prerequisites

o Step 2. Get ESP-IDF

e Step 3. Set up the tools

e Step 4. Set up the environment variables
* Step 5. First Steps on ESP-IDF

Step 1. Install Prerequisites In order to use ESP-IDF with the ESP32, you need to install some software packages
based on your Operating System. This setup guide will help you on getting everything installed on Linux and macOS
based systems.

For Linux Users To compile using ESP-IDF you will need to get the following packages. The command to run
depends on which distribution of Linux you are using:

¢ Ubuntu and Debian:

sudo apt-get install git wget flex bison gperf python3 python3-pip python3-
—venv cmake ninja-build ccache libffi-dev libssl-dev dfu-util libusb-1.0-0

CentOS 7 & 8:

sudo yum -y update && sudo yum install git wget flex bison gperf python3 cmake.
—ninja-build ccache dfu-util libusbx

CentOS 7 is still supported but CentOS version 8 is recommended for a better user experience.

e Arch:

sudo pacman —-S —--needed gcc git make flex bison gperf python cmake ninja.
—ccache dfu-util libusb

Note:

¢ CMake version 3.16 or newer is required for use with ESP-IDF. Run “tools/idf_tools.py install cmake” to
install a suitable version if your OS versions doesn’ t have one.

* If you do not see your Linux distribution in the above list then please check its documentation to find out which
command to use for package installation.

For macOS Users ESP-IDF will use the version of Python installed by default on macOS.

¢ Install CMake & Ninja build:
— If you have HomeBrew, you can run:

’brew install cmake ninja dfu-util

— If you have MacPorts, you can run:

sudo port install cmake ninja dfu-util

— Otherwise, consult the CMake and Ninja home pages for macOS installation downloads.

Espressif Systems 110 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://brew.sh/
https://www.macports.org/install.php
https://cmake.org/
https://ninja-build.org/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

* It is strongly recommended to also install ccache for faster builds. If you have HomeBrew, this can be done
viabrew install ccacheor sudo port install ccache on MacPorts.

Note: If an error like this is shown during any step:

xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools), .
—missing xcrun at: /Library/Developer/CommandLineTools/usr/bin/xcrun

Then you will need to install the XCode command line tools to continue. You can install these by running
xcode-select —-install.

Apple M1 Users If you use Apple M1 platform and see an error like this:

WARNING: directory for tool xtensa-esp32-elf version esp-2021r2-patch3-8.4.0 is_
—present, but tool was not found

ERROR: tool xtensa-esp32-elf has no installed versions. Please run 'install.sh' to.
—install it.

or:

zsh: bad CPU type in executable: ~/.espressif/tools/xtensa-esp32-elf/esp-2021r2-
—patch3-8.4.0/xtensa-esp32-elf/bin/xtensa-esp32-elf-gcc

Then you will need to install Apple Rosetta 2 by running

/usr/sbin/softwareupdate --install-rosetta --—-agree-to-license

Installing Python 3 Based on macOS Catalina 10.15 release notes, use of Python 2.7 is not recommended and
Python 2.7 will not be included by default in future versions of macOS. Check what Python you currently have:

’python ——version

If the output is like Python 2.7.17, your default interpreter is Python 2.7. If so, also check if Python 3 isn’ t
already installed on your computer:

’pythonB —--version

If the above command returns an error, it means Python 3 is not installed.
Below is an overview of the steps to install Python 3.

¢ Installing with HomeBrew can be done as follows:

’brew install python3

« If you have MacPorts, you can run:

’sudo port install python38

Step 2. Get ESP-IDF To build applications for the ESP32, you need the software libraries provided by Espressif
in ESP-IDF repository.

To get ESP-IDF, navigate to your installation directory and clone the repository with git clone, following in-
structions below specific to your operating system.

Open Terminal, and run the following commands:

Espressif Systems 111 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://ccache.dev/
https://brew.sh/
https://www.macports.org/install.php
https://developer.apple.com/documentation/macos-release-notes/macos-catalina-10_15-release-notes
https://brew.sh/
https://www.macports.org/install.php
https://github.com/espressif/esp-idf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

mkdir -p ~/esp
cd ~/esp
git clone -b release/v5.0 —--recursive https://github.com/espressif/esp-idf.git

ESP-IDF will be downloaded into ~/esp/esp—-idf.

Consult ESP-IDF Versions for information about which ESP-IDF version to use in a given situation.

Step 3. Set up the tools Aside from the ESP-IDF, you also need to install the tools used by ESP-IDF, such as the
compiler, debugger, Python packages, etc, for projects supporting ESP32.

cd ~/esp/esp-idf
./install.sh esp32

or with Fish shell

cd ~/esp/esp-idf
./install.fish esp32

The above commands install tools for ESP32 only. If you intend to develop projects for more chip targets then you
should list all of them and run for example:

cd ~/esp/esp-idf
./install.sh esp32,esp32s2

or with Fish shell

cd ~/esp/esp-idf
./install.fish esp32,esp32s2

In order to install tools for all supported targets please run the following command:

cd ~/esp/esp-idf
./install.sh all

or with Fish shell

cd ~/esp/esp-idf
./install.fish all

Note: For macOS users, if an error like this is shown during any step:

<urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable.
—to get local issuer certificate (_ssl.c:xxx)

Youmay run Install Certificates.command in the Python folder of your computer to install certificates.
For details, see Download Error While Installing ESP-IDF Tools.

Alternative File Downloads The tools installer downloads a number of files attached to GitHub Releases. If
accessing GitHub is slow then it is possible to set an environment variable to prefer Espressif’ s download server for
GitHub asset downloads.

Note: This setting only controls individual tools downloaded from GitHub releases, it doesn’ t change the URLs
used to access any Git repositories.

To prefer the Espressif download server when installing tools, use the following sequence of commands when running
install.sh:

Espressif Systems 112 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/esp-idf/issues/4775
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

cd ~/esp/esp-idf
export IDF_GITHUB_ASSETS="dl.espressif.com/github_assets"
./install.sh

Customizing the tools installation path The scripts introduced in this step install compilation tools required by
ESP-IDF inside the user home directory: $SHOME/ .espressif on Linux. If you wish to install the tools into a
different directory, set the environment variable IDF_TOOLS_PATH before running the installation scripts. Make
sure that your user account has sufficient permissions to read and write this path.

If changing the IDF_TOOLS_PATH, make sure it is set to the same value every time the Install script (install.
bat, install.psl or install.sh) and an Export script (export .bat, export.psl or export.sh)
are executed.

Step 4. Set up the environment variables The installed tools are not yet added to the PATH environment variable.
To make the tools usable from the command line, some environment variables must be set. ESP-IDF provides another
script which does that.

In the terminal where you are going to use ESP-IDF, run:

’. SHOME /esp/esp-idf/export.sh

or for fish (supported only since fish version 3.0.0):

’. SHOME /esp/esp-idf/export.fish

Note the space between the leading dot and the path!
If you plan to use esp-idf frequently, you can create an alias for executing export . sh:

1. Copy and paste the following command to your shell’ s profile (.profile, .bashrc, .zprofile,etc.)

alias get_1idf='. $SHOME/esp/esp-idf/export.sh'

2. Refresh the configuration by restarting the terminal session or by running source [path to profile],
for example, source ~/.bashrc.

Now you can run get_idf to set up or refresh the esp-idf environment in any terminal session.

Technically, you can add export . sh to your shell’ s profile directly; however, it is not recommended. Doing so
activates IDF virtual environment in every terminal session (including those where IDF is not needed), defeating the
purpose of the virtual environment and likely affecting other software.

Step 5. First Steps on ESP-IDF Now since all requirements are met, the next topic will guide you on how to start
your first project.

This guide will help you on the first steps using ESP-IDF. Follow this guide to start a new project on the ESP32 and
build, flash, and monitor the device output.

Note: If you have not yet installed ESP-IDF, please go to Installation and follow the instruction in order to get all
the software needed to use this guide.

Start a Project Now you are ready to prepare your application for ESP32. You can start with get-
started/hello_world project from examples directory in ESP-IDF.

Important: The ESP-IDF build system does not support spaces in the paths to either ESP-IDF or to projects.

Copy the project get-started/hello_world to ~/esp directory:

Espressif Systems 113 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/esp-idf/tree/dc13544d537/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/dc13544d537/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/dc13544d537/examples
https://github.com/espressif/esp-idf/tree/dc13544d537/examples/get-started/hello_world
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

cd ~/esp
cp -r $IDEF_PATH/examples/get-started/hello_world .

Note: There is a range of example projects in the examples directory in ESP-IDF. You can copy any project in the
same way as presented above and run it. It is also possible to build examples in-place without copying them first.

Connect Your Device Now connect your ESP32 board to the computer and check under which serial port the
board is visible.

Serial ports have the following naming patterns:

 Linux: starting with /dev/tty
* macOS: starting with /dev/cu.

If you are not sure how to check the serial port name, please refer to Establish Serial Connection with ESP32 for full
details.

Note: Keep the port name handy as you will need it in the next steps.

Configure Your Project Navigate to your hello_world directory, set ESP32 as the target, and run the project
configuration utility menuconfig.

cd ~/esp/hello_world
idf.py set-target esp32
idf.py menuconfig

After opening a new project, you should first set the target with 1df . py set-target esp32. Note that existing
builds and configurations in the project, if any, will be cleared and initialized in this process. The target may be saved
in the environment variable to skip this step at all. See Select the Target Chip: set-target for additional information.

If the previous steps have been done correctly, the following menu appears:

Espressif IoT Development Framework Configuration

SDK tool configuration ---=
Build type ---=
Application manager ---=
Bootloader config ---=
Security features --->
Partition Table --->
Compiler options ---=>
Component config ---=
Compatibility options ---=

[.pj(c,fEntcr] Toggle/enter [E'»IC] Leave menu [5] ?ave

ymbol info
a oggle show-nam
[Q] uu1t (pr-:r-upt for save) ave minimal conf

Fig. 61: Project configuration - Home window

You are using this menu to set up project specific variables, e.g., Wi-Fi network name and password, the processor
speed, etc. Setting up the project with menuconfig may be skipped for “hello_world” , since this example runs with

Espressif Systems 114 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://github.com/espressif/esp-idf/tree/dc13544d537/examples
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

default configuration.

Attention: If you use ESP32-DevKitC board with the ESP32-SOLO-1 module, or ESP32-DevKitM-1 board
with the ESP32-MIN1-1(1U) module, please enable single core mode (CONFIG_FREERTOS_UNICORE) in
menuconfig before flashing examples.

Note: The colors of the menu could be different in your terminal. You can change the appearance with the option
—-style. Please run idf.py menuconfig —-help for further information.

If you are using one of the supported development boards, you can speed up your development by using Board Support
Package. See Additional Tips for more information.

Build the Project Build the project by running:

idf.py build

This command will compile the application and all ESP-IDF components, then it will generate the bootloader, par-
tition table, and application binaries.

$ idf.py build

Running cmake in directory /path/to/hello_world/build

Executing "cmake -G Ninja --warn-uninitialized /path/to/hello_world"...
Warn about uninitialized values.

—-— Found Git: /usr/bin/git (found version "2.17.0")

—— Building empty aws_iot component due to configuration

—— Component names:

—— Component paths:

(more lines of build system output)

[527/527] Generating hello_world.bin
esptool.py v2.3.1

Project build complete. To flash, run this command:
./../../components/esptool_py/esptool/esptool.py -p (PORT) -b 921600 write_flash -
——flash_mode dio —--flash_size detect --flash_freq 40m 0x10000 build/hello_world.
—bin build 0x1000 build/bootloader/bootloader.bin 0x8000 build/partition_table/
—partition-table.bin

or run 'idf.py -p PORT flash'

If there are no errors, the build will finish by generating the firmware binary .bin files.

Flash onto the Device Flash the binaries that you just built (bootloader.bin, partition-table.bin and hello_world.bin)
onto your ESP32 board by running:

idf.py -p PORT [-b BAUD] flash

Replace PORT with your ESP32 board’ s serial port name.

You can also change the flasher baud rate by replacing BAUD with the baud rate you need. The default baud rate is
460800.

For more information on idf.py arguments, see idf.py.

Note: The option £1ash automatically builds and flashes the project, so running 1df . py build isnotnecessary.

Espressif Systems 115 Release v5.0.6-521-gdc13544d53
Submit Document Feedback

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.0.6-521-gdc13544d53

Chapter 1. Get Started

Encountered Issues While Flashing? If you run the given command and see errors such as “Failed to connect” ,
there might be several reasons for this. One of the reasons might be issues encountered by esptool . py, the utility
that is called by the build system to reset the chip, interact with the ROM bootloader, and flash firmware. One simple
solution to try is manual reset described below, and if it does not help you can find more details about possible issues
in Troubleshooting.

esptool.py resets ESP32 automatically by asserting DTR and RTS control lines of the USB to serial converter
chip, i.e., FTDI or CP210x (for more information, see Establish Serial Connection with ESP32). The DTR and RTS
control lines are in turn connected to GPI00 and CHIP_PU (EN) pins of ESP32, thus changes in the voltage levels
of DTR and RTS will boot ESP32 into Firmware Download mode. As an example, check the schematic for the
ESP32 DevKitC development board.

In general, you should have no problems with the official esp-idf development boards. However, esptool.py is
not able to reset your hardware automatically in the following cases:

¢ Your hardware does not have the DTR and RTS lines connected to GPIO0 and CHIP_PU
¢ The DTR and RTS lines are configured differently
¢ There are no such serial control lines at all

Depending on the kind of hardware you have, it may also be possible to manually put your ESP32 board into Firmware
Download mode (reset).

¢ For development boards produced by Espressif, this information can be found in the respective getting started
guides or user guides. For example, to manually reset an ESP-IDF development board, hold down the Boot
button (GPI00) and press the EN button (CHIP_PU).

* For other types of hardware, try pulling GPTO0 down.

Normal Operation When flashing, you will see the output log similar to the following:

esptool.py —-chip esp32 -p /dev/ttyUSBO -b 460800 --before=default_reset --
—after=hard_reset write_flash --flash _mode dio —--flash_freqg 40m --flash_size 2MB.
—0x8000 partition_table/partition-table.bin 0x1000 bootloader/bootloader.bin.
—0x10000 hello_world.bin

esptool.py v3.0-dev

Serial port /dev/ttyUSBO

Connecting........ _

Chip is ESP32DOWDQ6 (revision 0)

Features: WiFi, BT, Dual Core, Coding Scheme None

Crystal is 40MHz

MAC: 24:0a:c4:05:09:14

Uploading stub...

Running stub...

Stub running...

Changing baud rate to 460800

Changed.

Configuring flash size...

Compressed 3072 bytes to 103...

Writing at 0x00008000... (100 %)

Wrote 3072 bytes (103 compressed) at 0x00008000 in 0.0 seconds (effective 5962.8.
—kbit/s) ...

Hash of data verified.

Compressed 26096 bytes to 15408...

Writing at 0x00001000... (100 %)

Wrote 26096 bytes (15408 compressed) at 0x00001000 in 0.4 seconds (effective 546.7.
—kbit/s) ...

Hash of data verified.

Compressed 147104 bytes to 77364...
Writing at 0x00010000... (20 %)
Writing at 0x00014000... (40 %)
Writing at 0x00018000... (60 %)
Writing at 0x0001c000... (80 %)
(continues on next page)
Espressif