
ESP32-C6
ESP-IDF Programming Guide

Release v5.1.6-1594-gb0f5707906
Espressif Systems
Jan 15, 2026

Table of contents

Table of contents i

1 Get Started 3
1.1 Introduction . 3
1.2 What You Need . 3

1.2.1 Hardware . 3
1.2.2 Software . 4

1.3 Installation . 4
1.3.1 IDE . 4
1.3.2 Manual Installation . 5

1.4 Build Your First Project . 35
1.5 Uninstall ESP-IDF . 35

2 API Reference 37
2.1 API Conventions . 37

2.1.1 Error Handling . 37
2.1.2 Configuration Structures . 37
2.1.3 Private APIs . 39
2.1.4 Components in Example Projects . 39
2.1.5 API Stability . 39

2.2 Application Protocols . 40
2.2.1 ASIO port . 40
2.2.2 ESP-Modbus . 40
2.2.3 ESP-MQTT . 41
2.2.4 ESP-TLS . 59
2.2.5 ESP HTTP Client . 75
2.2.6 ESP Local Control . 92
2.2.7 ESP Serial Slave Link . 102
2.2.8 ESP x509 Certificate Bundle . 118
2.2.9 HTTP Server . 121
2.2.10 HTTPS Server . 148
2.2.11 ICMP Echo . 152
2.2.12 mDNS Service . 157
2.2.13 Mbed TLS . 157
2.2.14 IP Network Layer . 159

2.3 Bluetooth API . 159
2.3.1 Bluetooth® Common . 159
2.3.2 Bluetooth® Low Energy . 169
2.3.3 Controller & HCI . 327
2.3.4 ESP-BLE-MESH . 341
2.3.5 NimBLE-based host APIs . 623

2.4 Error Codes Reference . 625
2.5 Networking APIs . 632

2.5.1 Wi-Fi . 632
2.5.2 Ethernet . 764
2.5.3 Thread . 799
2.5.4 ESP-NETIF . 810

i

2.5.5 IP Network Layer . 845
2.5.6 Application Layer . 848

2.6 Peripherals API . 848
2.6.1 Analog to Digital Converter (ADC) Oneshot Mode Driver 848
2.6.2 Analog to Digital Converter (ADC) Continuous Mode Driver 858
2.6.3 Analog to Digital Converter (ADC) Calibration Driver 866
2.6.4 Clock Tree . 868
2.6.5 Event Task Matrix (ETM) . 881
2.6.6 GPIO & RTC GPIO . 890
2.6.7 General Purpose Timer (GPTimer) . 913
2.6.8 Dedicated GPIO . 928
2.6.9 Hash-based Message Authentication Code (HMAC) . 932
2.6.10 Digital Signature (DS) . 936
2.6.11 Inter-Integrated Circuit (I2C) . 942
2.6.12 Inter-IC Sound (I2S) . 960
2.6.13 LCD . 1001
2.6.14 LED Control (LEDC) . 1014
2.6.15 Motor Control Pulse Width Modulator (MCPWM) . 1037
2.6.16 Parallel IO . 1090
2.6.17 Pulse Counter (PCNT) . 1096
2.6.18 Remote Control Transceiver (RMT) . 1110
2.6.19 SD Pull-up Requirements . 1137
2.6.20 SD SPI Host Driver . 1138
2.6.21 SDIO Card Slave Driver . 1143
2.6.22 Sigma-Delta Modulation (SDM) . 1153
2.6.23 SPI Flash API . 1159
2.6.24 SPI Master Driver . 1187
2.6.25 SPI Slave Driver . 1210
2.6.26 SPI Slave Half Duplex . 1216
2.6.27 Temperature Sensor . 1224
2.6.28 Two-Wire Automotive Interface (TWAI) . 1231
2.6.29 Universal Asynchronous Receiver/Transmitter (UART) 1248

2.7 Project Configuration . 1273
2.7.1 Introduction . 1273
2.7.2 Project Configuration Menu . 1273
2.7.3 Using sdkconfig.defaults . 1273
2.7.4 Kconfig Format Rules . 1273
2.7.5 Backward Compatibility of Kconfig Options . 1274
2.7.6 Configuration Options Reference . 1274

2.8 Provisioning API . 1637
2.8.1 Protocol Communication . 1637
2.8.2 Unified Provisioning . 1656
2.8.3 Wi-Fi Provisioning . 1661

2.9 Storage API . 1682
2.9.1 FAT Filesystem Support . 1682
2.9.2 Manufacturing Utility . 1691
2.9.3 Non-volatile Storage Library . 1695
2.9.4 NVS Partition Generator Utility . 1718
2.9.5 NVS Partition Parser Utility . 1722
2.9.6 SD/SDIO/MMC Driver . 1723
2.9.7 Partitions API . 1736
2.9.8 SPIFFS Filesystem . 1745
2.9.9 Virtual filesystem component . 1749
2.9.10 Wear Levelling API . 1765

2.10 System API . 1768
2.10.1 App Image Format . 1768
2.10.2 Application Level Tracing . 1774
2.10.3 Call function with external stack . 1778

ii

2.10.4 Chip Revision . 1780
2.10.5 Console . 1783
2.10.6 eFuse Manager . 1792
2.10.7 Error Codes and Helper Functions . 1823
2.10.8 ESP HTTPS OTA . 1826
2.10.9 Event Loop Library . 1833
2.10.10 FreeRTOS (Overview) . 1846
2.10.11 FreeRTOS (ESP-IDF) . 1848
2.10.12 FreeRTOS (Supplemental Features) . 1969
2.10.13 Heap Memory Allocation . 1993
2.10.14 Memory Management for MMU Supported Memory . 2006
2.10.15 Heap Memory Debugging . 2013
2.10.16 High Resolution Timer (ESP Timer) . 2024
2.10.17 Internal and Unstable APIs . 2031
2.10.18 Interrupt allocation . 2033
2.10.19 Logging library . 2039
2.10.20 Miscellaneous System APIs . 2046
2.10.21 Over The Air Updates (OTA) . 2063
2.10.22 Power Management . 2074
2.10.23 POSIX Threads Support . 2081
2.10.24 Random Number Generation . 2086
2.10.25 Sleep Modes . 2088
2.10.26 SoC Capabilities . 2104
2.10.27 System Time . 2121
2.10.28 The Async memcpy API . 2128
2.10.29 Watchdogs . 2132

3 Hardware Reference 2139

4 API Guides 2141
4.1 Application Level Tracing library . 2141

4.1.1 Overview . 2141
4.1.2 Modes of Operation . 2141
4.1.3 Configuration Options and Dependencies . 2142
4.1.4 How to Use This Library . 2143

4.2 Application Startup Flow . 2151
4.2.1 First stage bootloader . 2151
4.2.2 Second stage bootloader . 2152
4.2.3 Application startup . 2152

4.3 Bluetooth® Low Energy . 2153
4.3.1 Overview . 2154
4.3.2 Get Started . 2161
4.3.3 Profile . 2210

4.4 Bootloader . 2254
4.4.1 Bootloader Compatibility . 2255
4.4.2 Log Level . 2255
4.4.3 Factory Reset . 2255
4.4.4 Boot from Test Firmware . 2256
4.4.5 Rollback . 2256
4.4.6 Watchdog . 2257
4.4.7 Bootloader Size . 2257
4.4.8 Fast Boot from Deep-Sleep . 2257
4.4.9 Custom Bootloader . 2257

4.5 Build System . 2258
4.5.1 Overview . 2258
4.5.2 Using the Build System . 2258
4.5.3 Example Project . 2260
4.5.4 Project CMakeLists File . 2261

iii

4.5.5 Component CMakeLists Files . 2262
4.5.6 Component Configuration . 2264
4.5.7 Preprocessor Definitions . 2265
4.5.8 Component Requirements . 2265
4.5.9 Overriding Parts of the Project . 2269
4.5.10 Configuration-Only Components . 2270
4.5.11 Debugging CMake . 2270
4.5.12 Example Component CMakeLists . 2271
4.5.13 Custom Sdkconfig Defaults . 2275
4.5.14 Flash Arguments . 2275
4.5.15 Building the Bootloader . 2276
4.5.16 Writing Pure CMake Components . 2276
4.5.17 Using Third-Party CMake Projects with Components 2276
4.5.18 Using Prebuilt Libraries with Components . 2277
4.5.19 Using ESP-IDF in Custom CMake Projects . 2277
4.5.20 ESP-IDF CMake Build System API . 2278
4.5.21 File Globbing & Incremental Builds . 2282
4.5.22 Build System Metadata . 2283
4.5.23 Build System Internals . 2283
4.5.24 Migrating from ESP-IDF GNU Make System . 2285

4.6 RF Coexistence . 2286
4.6.1 Overview . 2286
4.6.2 Supported Coexistence Scenario for ESP32-C6 . 2286
4.6.3 Coexistence Mechanism and Policy . 2287
4.6.4 How to Use the Coexistence Feature . 2289

4.7 Core Dump . 2290
4.7.1 Overview . 2290
4.7.2 Configurations . 2290
4.7.3 Core Dump to Flash . 2291
4.7.4 Core Dump to UART . 2291
4.7.5 Core Dump Commands . 2293
4.7.6 ROM Functions in Backtraces . 2293
4.7.7 Dumping Variables on Demand . 2293
4.7.8 Running idf.py coredump-info and idf.py coredump-debug 2294

4.8 C++ Support . 2294
4.8.1 esp-idf-cxx Component . 2296
4.8.2 C++ language standard . 2296
4.8.3 Multithreading . 2297
4.8.4 Exception Handling . 2297
4.8.5 Runtime Type Information (RTTI) . 2297
4.8.6 Developing in C++ . 2297
4.8.7 Limitations . 2299
4.8.8 What to Avoid . 2299

4.9 Deep Sleep Wake Stubs . 2299
4.9.1 Rules for Wake Stubs . 2299
4.9.2 Implementing A Stub . 2300
4.9.3 Loading Code Into RTC Memory . 2300
4.9.4 Loading Data Into RTC Memory . 2300
4.9.5 CRC Check For Wake Stubs . 2301
4.9.6 Example . 2301

4.10 Error Handling . 2301
4.10.1 Overview . 2301
4.10.2 Error codes . 2302
4.10.3 Converting error codes to error messages . 2302
4.10.4 ESP_ERROR_CHECK macro . 2302
4.10.5 ESP_ERROR_CHECK_WITHOUT_ABORT macro . 2303
4.10.6 ESP_RETURN_ON_ERROR macro . 2303
4.10.7 ESP_GOTO_ON_ERROR macro . 2303

iv

4.10.8 ESP_RETURN_ON_FALSE macro . 2303
4.10.9 ESP_GOTO_ON_FALSE macro . 2303
4.10.10 CHECK MACROS Examples . 2303
4.10.11 Error handling patterns . 2304
4.10.12 C++ Exceptions . 2304

4.11 ESP-WIFI-MESH . 2305
4.11.1 Overview . 2305
4.11.2 Introduction . 2305
4.11.3 ESP-WIFI-MESH Concepts . 2306
4.11.4 Building a Network . 2312
4.11.5 Managing a Network . 2317
4.11.6 Data Transmission . 2320
4.11.7 Channel Switching . 2322
4.11.8 Performance . 2325
4.11.9 Further Notes . 2326

4.12 Fatal Errors . 2326
4.12.1 Overview . 2326
4.12.2 Panic Handler . 2326
4.12.3 Register Dump and Backtrace . 2327
4.12.4 GDB Stub . 2330
4.12.5 RTC Watchdog Timeout . 2330
4.12.6 Guru Meditation Errors . 2331
4.12.7 Other Fatal Errors . 2332

4.13 Flash Encryption . 2334
4.13.1 Introduction . 2335
4.13.2 Encrypted Partitions . 2335
4.13.3 Relevant eFuses . 2335
4.13.4 Flash Encryption Process . 2336
4.13.5 Flash Encryption Configuration . 2336
4.13.6 Possible Failures . 2342
4.13.7 ESP32-C6 Flash Encryption Status . 2343
4.13.8 Reading and Writing Data in Encrypted Flash . 2344
4.13.9 Updating Encrypted Flash . 2345
4.13.10 Disabling Flash Encryption . 2345
4.13.11 Key Points About Flash Encryption . 2345
4.13.12 Limitations of Flash Encryption . 2346
4.13.13 Flash Encryption and Secure Boot . 2346
4.13.14 Advanced Features . 2346
4.13.15 Technical Details . 2348

4.14 Hardware Abstraction . 2348
4.14.1 Architecture . 2348
4.14.2 LL (Low Level) Layer . 2349
4.14.3 HAL (Hardware Abstraction Layer) . 2350

4.15 JTAG Debugging . 2351
4.15.1 Introduction . 2351
4.15.2 How it Works? . 2352
4.15.3 Selecting JTAG Adapter . 2353
4.15.4 Setup of OpenOCD . 2353
4.15.5 Configuring ESP32-C6 Target . 2353
4.15.6 Launching Debugger . 2356
4.15.7 Debugging Examples . 2357
4.15.8 Building OpenOCD from Sources . 2357
4.15.9 Tips and Quirks . 2362
4.15.10 Related Documents . 2366

4.16 Linker Script Generation . 2391
4.16.1 Overview . 2391
4.16.2 Quick Start . 2392
4.16.3 Linker Script Generation Internals . 2395

v

4.17 lwIP . 2401
4.17.1 Supported APIs . 2401
4.17.2 BSD Sockets API . 2402
4.17.3 Netconn API . 2406
4.17.4 lwIP FreeRTOS Task . 2406
4.17.5 IPv6 Support . 2406
4.17.6 esp-lwip custom modifications . 2407
4.17.7 Performance Optimization . 2408

4.18 Memory Types . 2410
4.18.1 DRAM (Data RAM) . 2410
4.18.2 IRAM (Instruction RAM) . 2410
4.18.3 IROM (code executed from flash) . 2411
4.18.4 DROM (data stored in flash) . 2411
4.18.5 RTC FAST memory . 2412
4.18.6 DMA Capable Requirement . 2412
4.18.7 DMA Buffer in the Stack . 2412

4.19 OpenThread . 2413
4.19.1 Modes of the OpenThread stack . 2413
4.19.2 How to Write an OpenThread Application . 2413
4.19.3 OpenThread Macro Definitions . 2415
4.19.4 The OpenThread Border Router . 2415

4.20 Partition Tables . 2415
4.20.1 Overview . 2415
4.20.2 Built-in Partition Tables . 2416
4.20.3 Creating Custom Tables . 2416
4.20.4 Generating Binary Partition Table . 2419
4.20.5 Partition Size Checks . 2419
4.20.6 Flashing the Partition Table . 2419
4.20.7 Partition Tool (parttool.py) . 2420

4.21 Performance . 2421
4.21.1 How to Optimize Performance . 2421
4.21.2 Guides . 2421

4.22 Reproducible Builds . 2439
4.22.1 Introduction . 2439
4.22.2 Reasons for non-reproducible builds . 2439
4.22.3 Enabling reproducible builds in ESP-IDF . 2439
4.22.4 How reproducible builds are achieved . 2439
4.22.5 Reproducible builds and debugging . 2440
4.22.6 Factors which still affect reproducible builds . 2440

4.23 RF Calibration . 2440
4.23.1 Partial Calibration . 2440
4.23.2 Full Calibration . 2440
4.23.3 No Calibration . 2441
4.23.4 PHY Initialization Data . 2441
4.23.5 API Reference . 2441

4.24 Security . 2449
4.24.1 Goals . 2449
4.24.2 Platform Security . 2449
4.24.3 Network Security . 2451
4.24.4 Product Security . 2451
4.24.5 Security Policy . 2453

4.25 Secure Boot V2 . 2453
4.25.1 Background . 2453
4.25.2 Advantages . 2453
4.25.3 Secure Boot V2 Process . 2454
4.25.4 Signature Block Format . 2454
4.25.5 Secure Padding . 2455
4.25.6 Verifying a Signature Block . 2456

vi

4.25.7 Verifying an Image . 2456
4.25.8 Bootloader Size . 2456
4.25.9 eFuse usage . 2456
4.25.10 How To Enable Secure Boot V2 . 2457
4.25.11 Restrictions after Secure Boot is enabled . 2458
4.25.12 Generating Secure Boot Signing Key . 2458
4.25.13 Remote Signing of Images . 2459
4.25.14 Secure Boot Best Practices . 2460
4.25.15 Key Management . 2460
4.25.16 Multiple Keys . 2460
4.25.17 Key Revocation . 2460
4.25.18 Technical Details . 2461
4.25.19 Secure Boot & Flash Encryption . 2461
4.25.20 Signed App Verification Without Hardware Secure Boot 2462
4.25.21 Advanced Features . 2462

4.26 Thread Local Storage . 2462
4.26.1 Overview . 2463
4.26.2 FreeRTOS Native APIs . 2463
4.26.3 Pthread APIs . 2463
4.26.4 C11 Standard . 2463

4.27 Tools . 2463
4.27.1 IDF Frontend - idf.py . 2464
4.27.2 IDF Docker Image . 2468
4.27.3 IDF Windows Installer . 2470
4.27.4 IDF Component Manager . 2471
4.27.5 IDF Clang Tidy . 2473
4.27.6 Downloadable Tools . 2473

4.28 Unit Testing in ESP32-C6 . 2488
4.28.1 Normal Test Cases . 2488
4.28.2 Multi-device Test Cases . 2489
4.28.3 Multi-stage Test Cases . 2490
4.28.4 Tests For Different Targets . 2490
4.28.5 Building Unit Test App . 2491
4.28.6 Running Unit Tests . 2491
4.28.7 Timing Code with Cache Compensated Timer . 2493
4.28.8 Mocks . 2493

4.29 Running Applications on Host . 2495
4.29.1 Introduction . 2496
4.29.2 Requirements . 2496
4.29.3 Build and Run . 2497
4.29.4 Component Linux/Mock Support Overview . 2497

4.30 USB Serial/JTAG Controller Console . 2497
4.30.1 Hardware Requirements . 2498
4.30.2 Software Configuration . 2498
4.30.3 Uploading the Application . 2498
4.30.4 Limitations . 2498

4.31 Wi-Fi Driver . 2499
4.31.1 ESP32-C6 Wi-Fi Feature List . 2499
4.31.2 How To Write a Wi-Fi Application . 2499
4.31.3 ESP32-C6 Wi-Fi API Error Code . 2500
4.31.4 ESP32-C6 Wi-Fi API Parameter Initialization . 2501
4.31.5 ESP32-C6 Wi-Fi Programming Model . 2501
4.31.6 ESP32-C6 Wi-Fi Event Description . 2501
4.31.7 ESP32-C6 Wi-Fi Station General Scenario . 2504
4.31.8 ESP32-C6 Wi-Fi AP General Scenario . 2507
4.31.9 ESP32-C6 Wi-Fi Scan . 2507
4.31.10 ESP32-C6 Wi-Fi Station Connecting Scenario . 2514
4.31.11 ESP32-C6 Wi-Fi Station Connecting When Multiple APs Are Found 2521

vii

4.31.12 Wi-Fi Reconnect . 2521
4.31.13 Wi-Fi Beacon Timeout . 2521
4.31.14 ESP32-C6 Wi-Fi Configuration . 2522
4.31.15 Wi-Fi Easy Connect™ (DPP) . 2528
4.31.16 Wireless Network Management . 2528
4.31.17 Radio Resource Measurement . 2529
4.31.18 Fast BSS Transition . 2529
4.31.19 Wi-Fi Location . 2529
4.31.20 ESP32-C6 Wi-Fi Power-saving Mode . 2530
4.31.21 ESP32-C6 Wi-Fi Throughput . 2532
4.31.22 Wi-Fi 80211 Packet Send . 2532
4.31.23 Wi-Fi Sniffer Mode . 2533
4.31.24 Wi-Fi Multiple Antennas . 2534
4.31.25 Wi-Fi Channel State Information . 2536
4.31.26 Wi-Fi Channel State Information Configure . 2537
4.31.27 Wi-Fi HT20/40 . 2537
4.31.28 Wi-Fi QoS . 2537
4.31.29 Wi-Fi AMSDU . 2538
4.31.30 Wi-Fi Fragment . 2538
4.31.31 WPS Enrollee . 2538
4.31.32 Wi-Fi Buffer Usage . 2538
4.31.33 How to Improve Wi-Fi Performance . 2539
4.31.34 Wi-Fi Menuconfig . 2542
4.31.35 Troubleshooting . 2544

4.32 Wi-Fi Security . 2547
4.32.1 ESP32-C6 Wi-Fi Security Features . 2547
4.32.2 Protected Management Frames (PMF) . 2550
4.32.3 WiFi Enterprise . 2551
4.32.4 WPA3-Personal . 2551
4.32.5 Wi-Fi Enhanced Open™ . 2552

4.33 Low Power Mode User Guide . 2553

5 Migration Guides 2555
5.1 ESP-IDF 5.x Migration Guide . 2555

5.1.1 Migration from 4.4 to 5.0 . 2555
5.1.2 Migration from 5.0 to 5.1 . 2586

6 Libraries and Frameworks 2591
6.1 Cloud Frameworks . 2591

6.1.1 ESP RainMaker . 2591
6.1.2 AWS IoT . 2591
6.1.3 Azure IoT . 2591
6.1.4 Google IoT Core . 2591
6.1.5 Aliyun IoT . 2591
6.1.6 Joylink IoT . 2591
6.1.7 Tencent IoT . 2592
6.1.8 Tencentyun IoT . 2592
6.1.9 Baidu IoT . 2592

6.2 Espressif's Frameworks . 2592
6.2.1 Espressif Audio Development Framework . 2592
6.2.2 ESP-CSI . 2592
6.2.3 Espressif DSP Library . 2592
6.2.4 ESP-WIFI-MESH Development Framework . 2593
6.2.5 ESP-WHO . 2593
6.2.6 ESP RainMaker . 2593
6.2.7 ESP-IoT-Solution . 2593
6.2.8 ESP-Protocols . 2593
6.2.9 ESP-BSP . 2594

viii

6.2.10 ESP-IDF-CXX . 2594

7 Contributions Guide 2595
7.1 How to Contribute . 2595
7.2 Before Contributing . 2595
7.3 Pull Request Process . 2595
7.4 Legal Part . 2596
7.5 Related Documents . 2596

7.5.1 Espressif IoT Development Framework Style Guide . 2596
7.5.2 Install pre-commit Hook for ESP-IDF Project . 2604
7.5.3 Documenting Code . 2605
7.5.4 Creating Examples . 2610
7.5.5 API Documentation Template . 2611
7.5.6 Contributor Agreement . 2613
7.5.7 Copyright Header Guide . 2615
7.5.8 ESP-IDF Tests with Pytest Guide . 2617

8 ESP-IDF Versions 2627
8.1 Releases . 2627
8.2 Which Version Should I Start With? . 2627
8.3 Versioning Scheme . 2627
8.4 Support Periods . 2628
8.5 Checking the Current Version . 2629
8.6 Git Workflow . 2630
8.7 Updating ESP-IDF . 2630

8.7.1 Updating to Stable Release . 2631
8.7.2 Updating to a Pre-Release Version . 2631
8.7.3 Updating to Master Branch . 2631
8.7.4 Updating to a Release Branch . 2632

9 Resources 2633
9.1 PlatformIO . 2633

9.1.1 What is PlatformIO? . 2633
9.1.2 Installation . 2633
9.1.3 Configuration . 2634
9.1.4 Tutorials . 2634
9.1.5 Project Examples . 2634
9.1.6 Next Steps . 2634

9.2 Useful Links . 2634

10 Copyrights and Licenses 2635
10.1 Software Copyrights . 2635

10.1.1 Firmware Components . 2635
10.1.2 Documentation . 2636

10.2 ROM Source Code Copyrights . 2636
10.3 Xtensa libhal MIT License . 2637
10.4 TinyBasic Plus MIT License . 2637
10.5 TJpgDec License . 2637

11 About 2639

12 Switch Between Languages 2641

Index 2643

Index 2643

ix

x

Table of contents

This is the documentation for Espressif IoT Development Framework (esp-idf). ESP-IDF is the official development
framework for the ESP32, ESP32-S, ESP32-C and ESP32-H Series SoCs.
This document describes using ESP-IDF with the ESP32-C6 SoC.

Get Started API Reference API Guides

Espressif Systems 1
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf
https://www.espressif.com/en/products/socs
get-started/index.html
api-reference/index.html
api-guides/index.html
get-started/index.html
api-reference/index.html
api-guides/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Table of contents

Espressif Systems 2
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1

Get Started

This document is intended to help you set up the software development environment for the hardware based on
the ESP32-C6 chip by Espressif. After that, a simple example will show you how to use ESP-IDF (Espressif IoT
Development Framework) for menu configuration, then for building and flashing firmware onto an ESP32-C6 board.

Note: This is documentation for branch release/v5.1 of ESP-IDF. Other ESP-IDF Versions are also available.

1.1 Introduction

ESP32-C6 is a system on a chip that integrates the following features:
• Wi-Fi 6 (2.4 GHz band)
• Bluetooth Low Energy
• 802.15.4 Thread/Zigbee
• High performance 32-bit RISC-V single-core processor
• Multiple peripherals
• Built-in security hardware

Powered by 40 nm technology, ESP32-C6 provides a robust, highly integrated platform, which helps meet the con-
tinuous demands for efficient power usage, compact design, security, high performance, and reliability.
Espressif provides basic hardware and software resources to help application developers realize their ideas using
the ESP32-C6 series hardware. The software development framework by Espressif is intended for development of
Internet-of-Things (IoT) applications with Wi-Fi, Bluetooth, power management and several other system features.

1.2 What You Need

1.2.1 Hardware

• An ESP32-C6 board.
• USB cable - USB A / micro USB B.
• Computer running Windows, Linux, or macOS.

Note: Currently, some of the development boards are using USB Type C connectors. Be sure you have the correct
cable to connect your board!

3

Chapter 1. Get Started

If you have one of ESP32-C6 official development boards listed below, you can click on the link to learn more about
the hardware.

1.2.2 Software

To start using ESP-IDF on ESP32-C6, install the following software:
• Toolchain to compile code for ESP32-C6
• Build tools - CMake and Ninja to build a full Application for ESP32-C6
• ESP-IDF that essentially contains API (software libraries and source code) for ESP32-C6 and scripts to op-
erate the Toolchain

1.3 Installation

To install all the required software, we offer some different ways to facilitate this task. Choose from one of the
available options.

1.3.1 IDE

Note: We highly recommend installing the ESP-IDF through your favorite IDE.

• Eclipse Plugin
• VSCode Extension

Espressif Systems 4
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

1.3.2 Manual Installation

For the manual procedure, please select according to your operating system.

Standard Setup of Toolchain for Windows

Introduction ESP-IDF requires some prerequisite tools to be installed so you can build firmware for supported
chips. The prerequisite tools include Python, Git, cross-compilers, CMake and Ninja build tools.
For this Getting Started we're going to use the Command Prompt, but after ESP-IDF is installed you can use Eclipse
Plugin or another graphical IDE with CMake support instead.

Note: Limitations: - The installation path of ESP-IDF and ESP-IDF Tools must not be longer than 90 characters.
Too long installation paths might result in a failed build. - The installation path of Python or ESP-IDFmust not contain
white spaces or parentheses. - The installation path of Python or ESP-IDF should not contain special characters (non-
ASCII) unless the operating system is configured with "Unicode UTF-8" support.
System Administrator can enable the support via Control Panel - Change date, time, or number formats - Adminis-
trative tab - Change system locale - check the option "Beta: Use Unicode UTF-8 for worldwide language support" -
Ok and reboot the computer.

ESP-IDF Tools Installer The easiest way to install ESP-IDF's prerequisites is to download one of ESP-IDF Tools
Installers.

Windows Installer Download

What is the usecase forOnline andOffline Installer Online Installer is very small and allows the installation of all
available releases of ESP-IDF. The installer will download only necessary dependencies including Git For Windows
during the installation process. The installer stores downloaded files in the cache directory %userprofile%\.
espressif

Offline Installer does not require any network connection. The installer contains all required dependencies including
Git For Windows .

Components of the installation The installer deploys the following components:
• Embedded Python
• Cross-compilers
• OpenOCD
• CMake and Ninja build tools
• ESP-IDF

Espressif Systems 5
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://dl.espressif.com/dl/esp-idf/?idf=4.4
https://dl.espressif.com/dl/esp-idf/?idf=4.4
https://gitforwindows.org/
https://gitforwindows.org/
https://cmake.org/download/
https://ninja-build.org/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

The installer also allows reusing the existing directory with ESP-IDF. The recommended directory is %userpro-
file%\Desktop\esp-idf where %userprofile% is your home directory.

Launching ESP-IDF Environment At the end of the installation process you can check out option Run
ESP-IDF PowerShell Environment or Run ESP-IDF Command Prompt (cmd.exe). The
installer will launch ESP-IDF environment in selected prompt.
Run ESP-IDF PowerShell Environment:

Fig. 1: Completing the ESP-IDF Tools Setup Wizard with Run ESP-IDF PowerShell Environment

Run ESP-IDF Command Prompt (cmd.exe):

Using the Command Prompt For the remaining Getting Started steps, we're going to use theWindows Command
Prompt.
ESP-IDF Tools Installer also creates a shortcut in the Start menu to launch the ESP-IDF Command Prompt. This
shortcut launches the Command Prompt (cmd.exe) and runs export.bat script to set up the environment variables
(PATH, IDF_PATH and others). Inside this command prompt, all the installed tools are available.
Note that this shortcut is specific to the ESP-IDF directory selected in the ESP-IDF Tools Installer. If you have
multiple ESP-IDF directories on the computer (for example, to work with different versions of ESP-IDF), you have
two options to use them:

1. Create a copy of the shortcut created by the ESP-IDF Tools Installer, and change the working directory of the
new shortcut to the ESP-IDF directory you wish to use.

2. Alternatively, run cmd.exe, then change to the ESP-IDF directory you wish to use, and run export.bat.
Note that unlike the previous option, this way requires Python and Git to be present in PATH. If you get errors
related to Python or Git not being found, use the first option.

Espressif Systems 6
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Fig. 2: ESP-IDF PowerShell

Fig. 3: Completing the ESP-IDF Tools Setup Wizard with Run ESP-IDF Command Prompt (cmd.exe)

Espressif Systems 7
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Fig. 4: ESP-IDF Command Prompt

Espressif Systems 8
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

First Steps on ESP-IDF Now since all requirements are met, the next topic will guide you on how to start your
first project.
This guide will help you on the first steps using ESP-IDF. Follow this guide to start a new project on the ESP32-C6
and build, flash, and monitor the device output.

Note: If you have not yet installed ESP-IDF, please go to Installation and follow the instruction in order to get all
the software needed to use this guide.

Start a Project Now you are ready to prepare your application for ESP32-C6. You can start with get-
started/hello_world project from examples directory in ESP-IDF.

Important: The ESP-IDF build system does not support spaces in the paths to either ESP-IDF or to projects.

Copy the project get-started/hello_world to ~/esp directory:

cd %userprofile%\esp
xcopy /e /i %IDF_PATH%\examples\get-started\hello_world hello_world

Note: There is a range of example projects in the examples directory in ESP-IDF. You can copy any project in the
same way as presented above and run it. It is also possible to build examples in-place without copying them first.

Connect Your Device Now connect your ESP32-C6 board to the computer and check under which serial port the
board is visible.
Serial port names start with COM in Windows.
If you are not sure how to check the serial port name, please refer to Establish Serial Connection with ESP32-C6 for
full details.

Note: Keep the port name handy as you will need it in the next steps.

Configure Your Project Navigate to your hello_world directory, set ESP32-C6 as the target, and run the
project configuration utility menuconfig.

Windows
cd %userprofile%\esp\hello_world
idf.py set-target esp32c6
idf.py menuconfig

After opening a new project, you should first set the target with idf.py set-target esp32c6. Note that
existing builds and configurations in the project, if any, will be cleared and initialized in this process. The target
may be saved in the environment variable to skip this step at all. See Select the Target Chip: set-target for additional
information.
If the previous steps have been done correctly, the following menu appears:
You are using this menu to set up project specific variables, e.g., Wi-Fi network name and password, the processor
speed, etc. Setting up the project with menuconfig may be skipped for "hello_word", since this example runs with
default configuration.

Espressif Systems 9
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Fig. 5: Project configuration - Home window

Note: The colors of the menu could be different in your terminal. You can change the appearance with the option
--style. Please run idf.py menuconfig --help for further information.

Build the Project Build the project by running:

idf.py build

This command will compile the application and all ESP-IDF components, then it will generate the bootloader, par-
tition table, and application binaries.

$ idf.py build
Running cmake in directory /path/to/hello_world/build
Executing "cmake -G Ninja --warn-uninitialized /path/to/hello_world"...
Warn about uninitialized values.
-- Found Git: /usr/bin/git (found version "2.17.0")
-- Building empty aws_iot component due to configuration
-- Component names: ...
-- Component paths: ...

... (more lines of build system output)

[527/527] Generating hello_world.bin
esptool.py v2.3.1

Project build complete. To flash, run this command:
../../../components/esptool_py/esptool/esptool.py -p (PORT) -b 921600 write_flash -
↪→-flash_mode dio --flash_size detect --flash_freq 40m 0x10000 build/hello_world.
↪→bin build 0x1000 build/bootloader/bootloader.bin 0x8000 build/partition_table/
↪→partition-table.bin
or run 'idf.py -p PORT flash'

If there are no errors, the build will finish by generating the firmware binary .bin files.

Flash onto the Device To flash the binaries that you just built for the ESP32-C6 in the previous step, you need to
run the following command:

Espressif Systems 10
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

idf.py -p PORT flash

Replace PORT with your ESP32-C6 board's USB port name. If the PORT is not defined, the idf.py will try to connect
automatically using the available USB ports.
For more information on idf.py arguments, see idf.py.

Note: The option flash automatically builds and flashes the project, so running idf.py build is not necessary.

Encountered Issues While Flashing? See this Flashing Troubleshooting page or Establish Serial Connection with
ESP32-C6 for more detailed information.

Normal Operation When flashing, you will see the output log similar to the following:

...
esptool esp32c6 -p /dev/ttyUSB0 -b 460800 --before=default_reset --after=hard_
↪→reset --no-stub write_flash --flash_mode dio --flash_freq 80m --flash_size 2MB␣
↪→0x0 bootloader/bootloader.bin 0x10000 hello_world.bin 0x8000 partition_table/
↪→partition-table.bin
esptool.py v4.3
Serial port /dev/ttyUSB0
Connecting....
Chip is ESP32-C6 (revision v0.0)
Features: WiFi 6, BT 5
Crystal is 40MHz
MAC: 60:55:f9:f6:01:38
Changing baud rate to 460800
Changed.
Enabling default SPI flash mode...
Configuring flash size...
Flash will be erased from 0x00000000 to 0x00004fff...
Flash will be erased from 0x00010000 to 0x00028fff...
Flash will be erased from 0x00008000 to 0x00008fff...
Erasing flash...
Took 0.17s to erase flash block
Writing at 0x00000000... (5 %)
Writing at 0x00000c00... (23 %)
Writing at 0x00001c00... (47 %)
Writing at 0x00003000... (76 %)
Writing at 0x00004000... (100 %)
Wrote 17408 bytes at 0x00000000 in 0.5 seconds (254.6 kbit/s)...
Hash of data verified.
Erasing flash...
Took 0.85s to erase flash block
Writing at 0x00010000... (1 %)
Writing at 0x00014c00... (20 %)
Writing at 0x00019c00... (40 %)
Writing at 0x0001ec00... (60 %)
Writing at 0x00023c00... (80 %)
Writing at 0x00028c00... (100 %)
Wrote 102400 bytes at 0x00010000 in 3.2 seconds (253.5 kbit/s)...
Hash of data verified.
Erasing flash...
Took 0.04s to erase flash block
Writing at 0x00008000... (33 %)
Writing at 0x00008400... (66 %)
Writing at 0x00008800... (100 %)
Wrote 3072 bytes at 0x00008000 in 0.1 seconds (269.0 kbit/s)...
Hash of data verified.

(continues on next page)

Espressif Systems 11
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

(continued from previous page)
Leaving...
Hard resetting via RTS pin...

If there are no issues by the end of the flash process, the board will reboot and start up the“hello_world”application.
If you'd like to use the Eclipse or VS Code IDE instead of running idf.py, check out Eclipse Plugin, VSCode
Extension.

Monitor the Output To check if "hello_world" is indeed running, type idf.py -p PORT monitor (Do not
forget to replace PORT with your serial port name).
This command launches the IDF Monitor application:

$ idf.py -p <PORT> monitor
Running idf_monitor in directory [...]/esp/hello_world/build
Executing "python [...]/esp-idf/tools/idf_monitor.py -b 115200 [...]/esp/hello_
↪→world/build/hello_world.elf"...
--- idf_monitor on <PORT> 115200 ---
--- Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---
ets Jun 8 2016 00:22:57

rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57
...

After startup and diagnostic logs scroll up, you should see "Hello world!" printed out by the application.

...
Hello world!
Restarting in 10 seconds...
This is esp32c6 chip with 1 CPU core(s), WiFi/BLE, 802.15.4 (Zigbee/Thread),␣

↪→silicon revision v0.0, 2 MB external flash
Minimum free heap size: 473816 bytes

Restarting in 9 seconds...
Restarting in 8 seconds...
Restarting in 7 seconds...

To exit IDF monitor use the shortcut Ctrl+].

Note: You can combine building, flashing and monitoring into one step by running:

idf.py -p PORT flash monitor

See also:
• IDF Monitor for handy shortcuts and more details on using IDF monitor.
• idf.py for a full reference of idf.py commands and options.

That's all that you need to get started with ESP32-C6!
Now you are ready to try some other examples, or go straight to developing your own applications.

Important: Some of examples do not support ESP32-C6 because required hardware is not included in ESP32-C6
so it cannot be supported.
If building an example, please check the README file for the Supported Targets table. If this is present
including ESP32-C6 target, or the table does not exist at all, the example will work on ESP32-C6.

Espressif Systems 12
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Additional Tips

Permission issues /dev/ttyUSB0 With some Linux distributions, you may get the Failed to open port
/dev/ttyUSB0 error message when flashing the ESP32-C6. This can be solved by adding the current user to the
dialout group.

Python compatibility ESP-IDF supports Python 3.7 or newer. It is recommended to upgrade your operating
system to a recent version satisfying this requirement. Other options include the installation of Python from sources
or the use of a Python version management system such as pyenv.

FlashErase Erasing the flash is also possible. To erase the entire flashmemory you can run the following command:

idf.py -p PORT erase-flash

For erasing the OTA data, if present, you can run this command:

idf.py -p PORT erase-otadata

The flash erase command can take a while to be done. Do not disconnect your device while the flash erasing is in
progress.

Related Documents For advanced users who want to customize the install process:
• Updating ESP-IDF tools on Windows
• Establish Serial Connection with ESP32-C6
• Eclipse Plugin
• VSCode Extension
• IDF Monitor

Updating ESP-IDF tools on Windows

Install ESP-IDF tools using a script From the Windows Command Prompt, change to the directory where ESP-
IDF is installed. Then run:

install.bat

For Powershell, change to the directory where ESP-IDF is installed. Then run:

install.ps1

This will download and install the tools necessary to use ESP-IDF. If the specific version of the tool is already
installed, no action will be taken. The tools are downloaded and installed into a directory specified during ESP-IDF
Tools Installer process. By default, this is C:\Users\username\.espressif.

Add ESP-IDF tools to PATH using an export script ESP-IDF tools installer creates a Start menu shortcut for
"ESP-IDF Command Prompt". This shortcut opens a Command Prompt window where all the tools are already
available.
In some cases, you may want to work with ESP-IDF in a Command Prompt window which wasn't started using that
shortcut. If this is the case, follow the instructions below to add ESP-IDF tools to PATH.
In the command prompt where you need to use ESP-IDF, change to the directory where ESP-IDF is installed, then
execute export.bat:

cd %userprofile%\esp\esp-idf
export.bat

Espressif Systems 13
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.python.org/downloads/
https://github.com/pyenv/pyenv
https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Alternatively in the Powershell where you need to use ESP-IDF, change to the directory where ESP-IDF is installed,
then execute export.ps1:

cd ~/esp/esp-idf
export.ps1

When this is done, the tools will be available in this command prompt.

Establish Serial Connection with ESP32-C6
Establishing a serial connection with the ESP32-C6 target device could be done using USB-to-UART bridge or USB
peripheral supported in ESP32-C6.
Some development boards have the USB-to-UART bridge installed. If a board does not have a bridge then an external
bridge may be used.

Supported USB Peripheral The ESP32-C6 supports the USB peripheral. In this case, the USB-to-UART bridge
is not needed and the device can be flashed directly.

Fig. 6: SoC with Supported USB

Apart from the USB peripheral, some development boards also include the USB-to-UART bridge.

USB-to-UARTBridge onDevelopment Board For boards with an installedUSB-to-UARTbridge, the connection
between the personal computer and the bridge is USB and between the bridge and ESP32-C6 is UART.

External USB-to-UART Bridge Sometimes the USB-to-UART bridge is external. This is often used in small
development boards or finished products when space and costs are crucial.

Flash using USB For the ESP32-C6, the USB peripheral is available, allowing you to flash the binaries without
the need for an external USB-to-UART bridge.
The USB on the ESP32-C6 uses the GPIO13 for D+ and GPIO12 for D-.

Note: The ESP32-C6 supports only USB CDC and JTAG.

If you are flashing for the first time, you need to get the ESP32-C6 into the download mode manually. To do so,
press and hold the BOOT button and then press the RESET button once. After that release the BOOT button.

Espressif Systems 14
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Fig. 7: Development Board with USB-to-UART Bridge

Fig. 8: External USB-to-UART Bridge

Flash using UART This section provides guidance on how to establish a serial connection between ESP32-C6 and
PC using USB-to-UART Bridge, either installed on the development board or external.

Connect ESP32-C6 to PC Connect the ESP32-C6 board to the PC using the USB cable. If device driver does not
install automatically, identify USB-to-UART bridge on your ESP32-C6 board (or external converter dongle), search
for drivers in internet and install them.
Below is the list of USB to serial converter chips installed on most of the ESP32-C6 boards produced by Espressif
together with links to the drivers:

• CP210x: CP210x USB to UART Bridge VCP Drivers
• FTDI: FTDI Virtual COM Port Drivers

Please check the board user guide for specific USB-to-UART bridge chip used. The drivers above are primarily for
reference. Under normal circumstances, the drivers should be bundled with an operating system and automatically
installed upon connecting the board to the PC.
For devices downloaded using a USB-to-UART bridge, you can run the following command including the optional
argument to define the baud rate.

idf.py -p PORT [-b BAUD] flash

You can change the flasher baud rate by replacing BAUD with the baud rate you need. The default baud rate is
460800.

Note: If the device does not support the auto download mode, you need to get into the download mode manually. To
do so, press and hold the BOOT button and then press the RESET button once. After that release the BOOT button.

Espressif Systems 15
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers
https://ftdichip.com/drivers/vcp-drivers/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Check port on Windows Check the list of identified COM ports in the Windows Device Manager. Disconnect
ESP32-C6 and connect it back, to verify which port disappears from the list and then shows back again.
Figures below show serial port for ESP32 DevKitC and ESP32 WROVER KIT

Fig. 9: USB to UART bridge of ESP32-DevKitC in Windows Device Manager

Check port on Linux and macOS To check the device name for the serial port of your ESP32-C6 board (or
external converter dongle), run this command two times, first with the board / dongle unplugged, then with plugged
in. The port which appears the second time is the one you need:
Linux

ls /dev/tty*

macOS

ls /dev/cu.*

Note: macOS users: if you don't see the serial port then check you have the USB/serial drivers installed. See Section
Connect ESP32-C6 to PC for links to drivers. For macOS High Sierra (10.13), you may also have to explicitly allow
the drivers to load. Open System Preferences -> Security & Privacy -> General and check if there is a message shown
here about "System Software from developer ..." where the developer name is Silicon Labs or FTDI.

Adding user to dialout on Linux The currently logged user should have read and write access the serial port
over USB. On most Linux distributions, this is done by adding the user to dialout group with the following
command:

Espressif Systems 16
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Fig. 10: Two USB Serial Ports of ESP-WROVER-KIT in Windows Device Manager

Espressif Systems 17
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

sudo usermod -a -G dialout $USER

on Arch Linux this is done by adding the user to uucp group with the following command:

sudo usermod -a -G uucp $USER

Make sure you re-login to enable read and write permissions for the serial port.

Verify serial connection Now verify that the serial connection is operational. You can do this using a serial terminal
program by checking if you get any output on the terminal after resetting ESP32-C6.
The default console baud rate on ESP32-C6 is 115200.

Windows and Linux In this example we will use PuTTY SSH Client that is available for bothWindows and Linux.
You can use other serial programs and set communication parameters like below.
Run terminal and set identified serial port. Baud rate = 115200 (if needed, change this to the default baud rate of the
chip in use), data bits = 8, stop bits = 1, and parity = N. Below are example screenshots of setting the port and such
transmission parameters (in short described as 115200-8-1-N) on Windows and Linux. Remember to select exactly
the same serial port you have identified in steps above.

Fig. 11: Setting Serial Communication in PuTTY on Windows

Then open serial port in terminal and check, if you see any log printed out by ESP32-C6. The log contents will
depend on application loaded to ESP32-C6, see Example Output.

Note: Close the serial terminal after verification that communication is working. If you keep the terminal session
open, the serial port will be inaccessible for uploading firmware later.

Espressif Systems 18
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.putty.org/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Fig. 12: Setting Serial Communication in PuTTY on Linux

Espressif Systems 19
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

macOS To spare you the trouble of installing a serial terminal program, macOS offers the screen command.
• As discussed in Check port on Linux and macOS, run:

ls /dev/cu.*

• You should see similar output:

/dev/cu.Bluetooth-Incoming-Port /dev/cu.SLAB_USBtoUART /dev/cu.SLAB_
↪→USBtoUART7

• The output will vary depending on the type and the number of boards connected to your PC. Then pick the
device name of your board and run (if needed, change "115200" to the default baud rate of the chip in use):

screen /dev/cu.device_name 115200

Replace device_name with the name found running ls /dev/cu.*.
• What you are looking for is some log displayed by the screen. The log contents will depend on application
loaded to ESP32-C6, see Example Output. To exit the screen session type Ctrl-A + \ .

Note: Do not forget to exit the screen session after verifying that the communication is working. If you fail to do
it and just close the terminal window, the serial port will be inaccessible for uploading firmware later.

Example Output An example log is shown below. Reset the board if you do not see anything.

ets Jun 8 2016 00:22:57

rst:0x5 (DEEPSLEEP_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57

rst:0x7 (TG0WDT_SYS_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0x00
clk_drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00,wp_drv:0x00
mode:DIO, clock div:2
load:0x3fff0008,len:8
load:0x3fff0010,len:3464
load:0x40078000,len:7828
load:0x40080000,len:252
entry 0x40080034
I (44) boot: ESP-IDF v2.0-rc1-401-gf9fba35 2nd stage bootloader
I (45) boot: compile time 18:48:10
...

If you can see readable log output, it means serial connection is working and you are ready to proceed with installation
and finally upload an application to ESP32-C6.

Note: For some serial port wiring configurations, the serial RTS & DTR pins need to be disabled in the terminal
program before the ESP32-C6 will boot and produce serial output. This depends on the hardware itself, most devel-
opment boards (including all Espressif boards) do not have this issue. The issue is present if RTS & DTR are wired
directly to the EN & GPIO0 pins. See the esptool documentation for more details.

If you got here from Step 5. First Steps on ESP-IDF when installing s/w for ESP32-C6 development, then you can
continue with Step 5. First Steps on ESP-IDF.

Flashing Troubleshooting

Failed to Connect If you run the given command and see errors such as "Failed to connect", there might be several
reasons for this. One of the reasons might be issues encountered by esptool.py, the utility that is called by the

Espressif Systems 20
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://docs.espressif.com/projects/esptool/en/latest/advanced-topics/boot-mode-selection.html#automatic-bootloader
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

build system to reset the chip, interact with the ROM bootloader, and flash firmware. One simple solution to try is to
manually reset as described below. If it does not help, you can find more details about possible issues in the esptool
troubleshooting page.
esptool.py resets ESP32-C6 automatically by asserting DTR and RTS control lines of the USB-to-UART bridge,
i.e., FTDI or CP210x (for more information, see Establish Serial Connection with ESP32-C6). The DTR and RTS
control lines are in turn connected to GPIO9 and CHIP_PU (EN) pins of ESP32-C6, thus changes in the voltage
levels of DTR and RTS will boot ESP32-C6 into Firmware Download mode. As an example, check the schematic
for the ESP32 DevKitC development board.
In general, you should have no problems with the official esp-idf development boards. However, esptool.py is
not able to reset your hardware automatically in the following cases:

• Your hardware does not have the DTR and RTS lines connected to GPIO9 and CHIP_PU.
• The DTR and RTS lines are configured differently.
• There are no such serial control lines at all.

Depending on the kind of hardware you have, it may also be possible to manually put your ESP32-C6 board into
Firmware Download mode (reset).

• For development boards produced by Espressif, this information can be found in the respective getting started
guides or user guides. For example, to manually reset an ESP-IDF development board, hold down the Boot
button (GPIO9) and press the EN button (CHIP_PU).

• For other types of hardware, try pulling GPIO9 down.

IDF Monitor
IDF Monitor uses the esp-idf-monitor package as a serial terminal program which relays serial data to and from the
target device's serial port. It also provides some IDF-specific features.
IDF Monitor can be launched from an IDF project by running idf.py monitor.

Keyboard Shortcuts For easy interaction with IDF Monitor, use the keyboard shortcuts given in the table.

Espressif Systems 21
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://docs.espressif.com/projects/esptool/en/latest/esp32/troubleshooting.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/troubleshooting.html
https://dl.espressif.com/dl/schematics/esp32_devkitc_v4-sch-20180607a.pdf
https://www.espressif.com/en/products/devkits
https://github.com/espressif/esp-idf-monitor
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Keyboard
Shortcut

Action Description

Ctrl+] Exit the program
Ctrl+T Menu escape key Press and follow it by one of the keys given below.

• Ctrl+T Send the menu character it-
self to remote

• Ctrl+] Send the exit character it-
self to remote

• Ctrl+P Reset target into bootloader
to pause app via RTS line

Resets the target, into bootloader via the RTS line (if connected),
so that the board runs nothing. Useful when you need to wait for
another device to startup.

• Ctrl+R Reset target board via RTS Resets the target board and re-starts the application via the RTS
line (if connected).

• Ctrl+F Build and flash the project Pauses idf_monitor to run the project flash target, then re-
sumes idf_monitor. Any changed source files are recompiled
and then re-flashed. Target encrypted-flash is run if
idf_monitor was started with argument -E.

• Ctrl+A
(or A)

Build and flash the app only Pauses idf_monitor to run the app-flash target, then resumes
idf_monitor. Similar to the flash target, but only the main app
is built and re-flashed. Target encrypted-app-flash is
run if idf_monitor was started with argument -E.

• Ctrl+Y Stop/resume log output
printing on screen

Discards all incoming serial data while activated. Allows to
quickly pause and examine log output without quitting the mon-
itor.

• Ctrl+L Stop/resume log output
saved to file

Creates a file in the project directory and the output is written to
that file until this is disabled with the same keyboard shortcut (or
IDF Monitor exits).

• Ctrl+I
(or I)

Stop/resume printing
timestamps

IDF Monitor can print a timestamp in the beginning of
each line. The timestamp format can be changed by the
--timestamp-format command line argument.

• Ctrl+H
(or H)

Display all keyboard short-
cuts

• Ctrl+X
(or X)

Exit the program

Ctrl+C Interrupt running applica-
tion

Pauses IDF Monitor and runs GDB project debug-
ger to debug the application at runtime. This requires
:ref:CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME option
to be enabled.

Any keys pressed, other than Ctrl-] and Ctrl-T, will be sent through the serial port.

IDF-specific features

Automatic Address Decoding Whenever the chip outputs a hexadecimal address that points to executable code,
IDF monitor looks up the location in the source code (file name and line number) and prints the location on the next
line in yellow.
If an ESP-IDF app crashes and panics, a register dump and backtrace is produced, such as the following:

Espressif Systems 22
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://sourceware.org/gdb/download/onlinedocs/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

abort() was called at PC 0x42067cd5 on core 0

Stack dump detected
Core 0 register dump:
MEPC : 0x40386488 RA : 0x40386b02 SP : 0x3fc9a350 GP :␣
↪→0x3fc923c0
TP : 0xa5a5a5a5 T0 : 0x37363534 T1 : 0x7271706f T2 :␣
↪→0x33323130
S0/FP : 0x00000004 S1 : 0x3fc9a3b4 A0 : 0x3fc9a37c A1 :␣
↪→0x3fc9a3b2
A2 : 0x00000000 A3 : 0x3fc9a3a9 A4 : 0x00000001 A5 :␣
↪→0x3fc99000
A6 : 0x7a797877 A7 : 0x76757473 S2 : 0xa5a5a5a5 S3 :␣
↪→0xa5a5a5a5
S4 : 0xa5a5a5a5 S5 : 0xa5a5a5a5 S6 : 0xa5a5a5a5 S7 :␣
↪→0xa5a5a5a5
S8 : 0xa5a5a5a5 S9 : 0xa5a5a5a5 S10 : 0xa5a5a5a5 S11 :␣
↪→0xa5a5a5a5
T3 : 0x6e6d6c6b T4 : 0x6a696867 T5 : 0x66656463 T6 :␣
↪→0x62613938
MSTATUS : 0x00001881 MTVEC : 0x40380001 MCAUSE : 0x00000007 MTVAL :␣
↪→0x00000000

MHARTID : 0x00000000

Stack memory:
3fc9a350: 0xa5a5a5a5 0xa5a5a5a5 0x3fc9a3b0 0x403906cc 0xa5a5a5a5 0xa5a5a5a5␣
↪→0xa5a5a5a50
3fc9a370: 0x3fc9a3b4 0x3fc9423c 0x3fc9a3b0 0x726f6261 0x20292874 0x20736177␣
↪→0x6c6c61635
3fc9a390: 0x43502074 0x34783020 0x37363032 0x20356463 0x63206e6f 0x2065726f␣
↪→0x000000300
3fc9a3b0: 0x00000030 0x36303234 0x35646337 0x3c093700 0x0000002a 0xa5a5a5a5␣
↪→0x3c0937f48
3fc9a3d0: 0x00000001 0x3c0917f8 0x3c0937d4 0x0000002a 0xa5a5a5a5 0xa5a5a5a5␣
↪→0xa5a5a5a5e
3fc9a3f0: 0x0001f24c 0x000006c8 0x00000000 0x0001c200 0xffffffff 0xffffffff␣
↪→0x000000200
3fc9a410: 0x00001000 0x00000002 0x3c093818 0x3fccb470 0xa5a5a5a5 0xa5a5a5a5␣
↪→0xa5a5a5a56
.....

IDF Monitor adds more details to the dump by analyzing the stack dump:

abort() was called at PC 0x42067cd5 on core 0
0x42067cd5: __assert_func at /builds/idf/crosstool-NG/.build/riscv32-esp-elf/src/
↪→newlib/newlib/libc/stdlib/assert.c:62 (discriminator 8)

Stack dump detected
Core 0 register dump:
MEPC : 0x40386488 RA : 0x40386b02 SP : 0x3fc9a350 GP :␣
↪→0x3fc923c0
0x40386488: panic_abort at /home/marius/esp-idf_2/components/esp_system/panic.c:367

0x40386b02: rtos_int_enter at /home/marius/esp-idf_2/components/freertos/port/
↪→riscv/portasm.S:35

TP : 0xa5a5a5a5 T0 : 0x37363534 T1 : 0x7271706f T2 :␣
↪→0x33323130
S0/FP : 0x00000004 S1 : 0x3fc9a3b4 A0 : 0x3fc9a37c A1 :␣
↪→0x3fc9a3b2
A2 : 0x00000000 A3 : 0x3fc9a3a9 A4 : 0x00000001 A5 :␣
↪→0x3fc99000 (continues on next page)

Espressif Systems 23
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

(continued from previous page)
A6 : 0x7a797877 A7 : 0x76757473 S2 : 0xa5a5a5a5 S3 :␣
↪→0xa5a5a5a5
S4 : 0xa5a5a5a5 S5 : 0xa5a5a5a5 S6 : 0xa5a5a5a5 S7 :␣
↪→0xa5a5a5a5
S8 : 0xa5a5a5a5 S9 : 0xa5a5a5a5 S10 : 0xa5a5a5a5 S11 :␣
↪→0xa5a5a5a5
T3 : 0x6e6d6c6b T4 : 0x6a696867 T5 : 0x66656463 T6 :␣
↪→0x62613938
MSTATUS : 0x00001881 MTVEC : 0x40380001 MCAUSE : 0x00000007 MTVAL :␣
↪→0x00000000

MHARTID : 0x00000000

Backtrace:
panic_abort (details=details@entry=0x3fc9a37c "abort() was called at PC 0x42067cd5␣
↪→on core 0") at /home/marius/esp-idf_2/components/esp_system/panic.c:367
367 *((int *) 0) = 0; // NOLINT(clang-analyzer-core.NullDereference) should be␣
↪→an invalid operation on targets
#0 panic_abort (details=details@entry=0x3fc9a37c "abort() was called at PC␣
↪→0x42067cd5 on core 0") at /home/marius/esp-idf_2/components/esp_system/panic.
↪→c:367
#1 0x40386b02 in esp_system_abort (details=details@entry=0x3fc9a37c "abort() was␣
↪→called at PC 0x42067cd5 on core 0") at /home/marius/esp-idf_2/components/esp_
↪→system/system_api.c:108
#2 0x403906cc in abort () at /home/marius/esp-idf_2/components/newlib/abort.c:46
#3 0x42067cd8 in __assert_func (file=file@entry=0x3c0937f4 "", line=line@entry=42,
↪→ func=func@entry=0x3c0937d4 <__func__.8540> "",␣
↪→failedexpr=failedexpr@entry=0x3c0917f8 "") at /builds/idf/crosstool-NG/.build/
↪→riscv32-esp-elf/src/newlib/newlib/libc/stdlib/assert.c:62
#4 0x4200729e in app_main () at ../main/iperf_example_main.c:42
#5 0x42086cd6 in main_task (args=<optimized out>) at /home/marius/esp-idf_2/
↪→components/freertos/port/port_common.c:133
#6 0x40389f3a in vPortEnterCritical () at /home/marius/esp-idf_2/components/
↪→freertos/port/riscv/port.c:129

To decode each address, IDF Monitor runs the following command in the background:

riscv32-esp-elf-addr2line -pfiaC -e build/PROJECT.elf ADDRESS

If an address is not matched in the app source code, IDF monitor also checks the ROM code. Instead of printing the
source file name and line number, only the function name followed by in ROM is displayed:

abort() was called at PC 0x400481c1 on core 0
0x400481c1: ets_rsa_pss_verify in ROM

Stack dump detected
Core 0 register dump:
MEPC : 0x4038051c RA : 0x40383840 SP : 0x3fc8f6b0 GP :␣
↪→0x3fc8b000
0x4038051c: panic_abort at /Users/espressif/esp-idf/components/esp_system/panic.
↪→c:452
0x40383840: __ubsan_include at /Users/espressif/esp-idf/components/esp_system/
↪→ubsan.c:313

TP : 0x3fc8721c T0 : 0x37363534 T1 : 0x7271706f T2 :␣
↪→0x33323130
S0/FP : 0x00000004 S1 : 0x3fc8f714 A0 : 0x3fc8f6dc A1 :␣
↪→0x3fc8f712
A2 : 0x00000000 A3 : 0x3fc8f709 A4 : 0x00000001 A5 :␣
↪→0x3fc8c000
A6 : 0x7a797877 A7 : 0x76757473 S2 : 0x00000000 S3 :␣
↪→0x3fc8f750 (continues on next page)

Espressif Systems 24
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

(continued from previous page)
S4 : 0x3fc8f7e4 S5 : 0x00000000 S6 : 0x400481b0 S7 :␣
↪→0x3c025841
0x400481b0: ets_rsa_pss_verify in ROM
.....

The ROM ELF file is automatically loaded from a location based on the IDF_PATH and ESP_ROM_ELF_DIR
environment variables. This can be overridden by calling esp_idf_monitor and providing a path to a specific
ROM ELF file: python -m esp_idf_monitor --rom-elf-file [path to ROM ELF file].

Note: Set environment variable ESP_MONITOR_DECODE to 0 or call esp_idf_monitor with specific command line
option: python -m esp_idf_monitor --disable-address-decoding to disable address decoding.

Target Reset on Connection By default, IDF Monitor will reset the target when connecting to it. The reset of the
target chip is performed using the DTR and RTS serial lines. To prevent IDFMonitor from automatically resetting the
target on connection, call IDF Monitor with the --no-reset option (e.g., idf.py monitor --no-reset).

Note: The --no-reset option applies the same behavior even when connecting IDF Monitor to a particular port
(e.g., idf.py monitor --no-reset -p [PORT]).

Launching GDB with GDBStub GDBStub is a useful runtime debugging feature that runs on the target and
connects to the host over the serial port to receive debugging commands. GDBStub supports commands such as
reading memory and variables, examining call stack frames etc. Although GDBStub is less versatile than JTAG
debugging, it does not require any special hardware (such as a JTAG to USB bridge) as communication is done
entirely over the serial port.
A target can be configured to run GDBStub in the background by setting the CONFIG_ESP_SYSTEM_PANIC to
GDBStub on runtime. GDBStub will run in the background until a Ctrl+C message is sent over the serial
port and causes the GDBStub to break (i.e., stop the execution of) the program, thus allowing GDBStub to handle
debugging commands.
Furthermore, the panic handler can be configured to run GDBStub on a crash by setting the CON-
FIG_ESP_SYSTEM_PANIC to GDBStub on panic. When a crash occurs, GDBStub will output a special string
pattern over the serial port to indicate that it is running.
In both cases (i.e., sending the Ctrl+Cmessage, or receiving the special string pattern), IDF Monitor will automat-
ically launch GDB in order to allow the user to send debugging commands. After GDB exits, the target is reset via
the RTS serial line. If this line is not connected, users can reset their target (by pressing the board's Reset button).

Note: In the background, IDF Monitor runs the following command to launch GDB:

riscv32-esp-elf-gdb -ex "set serial baud BAUD" -ex "target remote PORT" -ex␣
↪→interrupt build/PROJECT.elf :idf_target:`Hello NAME chip`

Output Filtering IDF monitor can be invoked as idf.py monitor --print-filter="xyz", where
--print-filter is the parameter for output filtering. The default value is an empty string, which means that
everything is printed. Filtering can also be configured using the ESP_IDF_MONITOR_PRINT_FILTER environ-
ment variable.

Note: When using both the environment variable ESP_IDF_MONITOR_PRINT_FILTER and the argument
--print-filter, the setting from the CLI argument will take precedence.

Espressif Systems 25
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Restrictions on what to print can be specified as a series of <tag>:<log_level> items where <tag> is the tag
string and <log_level> is a character from the set {N, E, W, I, D, V, *} referring to a level for logging.
For example, --print_filter="tag1:W" matches and prints only the outputs written with
ESP_LOGW("tag1", ...) or at lower verbosity level, i.e., ESP_LOGE("tag1", ...). Not speci-
fying a <log_level> or using * defaults to a Verbose level.

Note: Use primary logging to disable at compilation the outputs you do not need through the logging library. Output
filtering with the IDF monitor is a secondary solution that can be useful for adjusting the filtering options without
recompiling the application.

Your app tags must not contain spaces, asterisks *, or colons : to be compatible with the output filtering feature.
If the last line of the output in your app is not followed by a carriage return, the output filteringmight get confused, i.e.,
the monitor starts to print the line and later finds out that the line should not have been written. This is a known issue
and can be avoided by always adding a carriage return (especially when no output follows immediately afterwards).

Examples of Filtering Rules:
• * can be used to match any tags. However, the string --print_filter="*:I tag1:E" with regards
to tag1 prints errors only, because the rule for tag1 has a higher priority over the rule for *.

• The default (empty) rule is equivalent to *:V because matching every tag at the Verbose level or lower means
matching everything.

• "*:N" suppresses not only the outputs from logging functions, but also the prints made by printf, etc. To
avoid this, use *:E or a higher verbosity level.

• Rules "tag1:V", "tag1:v", "tag1:", "tag1:*", and "tag1" are equivalent.
• Rule "tag1:W tag1:E" is equivalent to "tag1:E" because any consequent occurrence of the same tag
name overwrites the previous one.

• Rule "tag1:I tag2:W" only prints tag1 at the Info verbosity level or lower and tag2 at the Warning
verbosity level or lower.

• Rule "tag1:I tag2:W tag3:N" is essentially equivalent to the previous one because tag3:N specifies
that tag3 should not be printed.

• tag3:N in the rule "tag1:I tag2:W tag3:N *:V" is more meaningful because without tag3:N the
tag3 messages could have been printed; the errors for tag1 and tag2 will be printed at the specified (or
lower) verbosity level and everything else will be printed by default.

AMore Complex Filtering Example The following log snippet was acquired without any filtering options:

load:0x40078000,len:13564
entry 0x40078d4c
E (31) esp_image: image at 0x30000 has invalid magic byte
W (31) esp_image: image at 0x30000 has invalid SPI mode 255
E (39) boot: Factory app partition is not bootable
I (568) cpu_start: Pro cpu up.
I (569) heap_init: Initializing. RAM available for dynamic allocation:
I (603) cpu_start: Pro cpu start user code
D (309) light_driver: [light_init, 74]:status: 1, mode: 2
D (318) vfs: esp_vfs_register_fd_range is successful for range <54; 64) and VFS ID␣
↪→1
I (328) wifi: wifi driver task: 3ffdbf84, prio:23, stack:4096, core=0

The captured output for the filtering options--print_filter="wifi esp_image:E light_driver:I"
is given below:

E (31) esp_image: image at 0x30000 has invalid magic byte
I (328) wifi: wifi driver task: 3ffdbf84, prio:23, stack:4096, core=0

The options --print_filter="light_driver:D esp_image:N boot:N cpu_start:N vfs:N
wifi:N *:V" show the following output:

Espressif Systems 26
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

load:0x40078000,len:13564
entry 0x40078d4c
I (569) heap_init: Initializing. RAM available for dynamic allocation:
D (309) light_driver: [light_init, 74]:status: 1, mode: 2

Known Issues with IDF Monitor

Issues Observed on Windows
• Arrow keys, as well as some other keys, do not work in GDB due to Windows Console limitations.
• Occasionally, when "idf.py" exits, it might stall for up to 30 seconds before IDF Monitor resumes.
• When "gdb" is run, it might stall for a short time before it begins communicating with the GDBStub.

Standard Toolchain Setup for Linux and macOS

Installation Step by Step This is a detailed roadmap to walk you through the installation process.

Setting up Development Environment These are the steps for setting up the ESP-IDF for your ESP32-C6.
• Step 1. Install Prerequisites
• Step 2. Get ESP-IDF
• Step 3. Set up the tools
• Step 4. Set up the environment variables
• Step 5. First Steps on ESP-IDF

Step 1. Install Prerequisites In order to use ESP-IDF with the ESP32-C6, you need to install some software
packages based on your Operating System. This setup guide will help you on getting everything installed on Linux
and macOS based systems.

For Linux Users To compile using ESP-IDF you will need to get the following packages. The command to run
depends on which distribution of Linux you are using:

• Ubuntu and Debian:

sudo apt-get install git wget flex bison gperf python3 python3-pip python3-
↪→venv cmake ninja-build ccache libffi-dev libssl-dev dfu-util libusb-1.0-0

• CentOS 7 & 8:

sudo yum -y update && sudo yum install git wget flex bison gperf python3 cmake␣
↪→ninja-build ccache dfu-util libusbx

CentOS 7 is still supported but CentOS version 8 is recommended for a better user experience.
• Arch:

sudo pacman -S --needed gcc git make flex bison gperf python cmake ninja␣
↪→ccache dfu-util libusb

Note:
• CMake version 3.16 or newer is required for use with ESP-IDF. Run "tools/idf_tools.py install cmake" to
install a suitable version if your OS versions doesn't have one.

Espressif Systems 27
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

• If you do not see your Linux distribution in the above list then please check its documentation to find out which
command to use for package installation.

For macOS Users ESP-IDF will use the version of Python installed by default on macOS.
• Install CMake & Ninja build:

– If you have HomeBrew, you can run:

brew install cmake ninja dfu-util

– If you have MacPorts, you can run:

sudo port install cmake ninja dfu-util

– Otherwise, consult the CMake and Ninja home pages for macOS installation downloads.
• It is strongly recommended to also install ccache for faster builds. If you have HomeBrew, this can be done
via brew install ccache or sudo port install ccache on MacPorts.

Note: If an error like this is shown during any step:

xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools),␣
↪→missing xcrun at: /Library/Developer/CommandLineTools/usr/bin/xcrun

Then you will need to install the XCode command line tools to continue. You can install these by running
xcode-select --install.

Apple M1 Users If you use Apple M1 platform and see an error like this:

WARNING: directory for tool xtensa-esp32-elf version esp-2021r2-patch3-8.4.0 is␣
↪→present, but tool was not found
ERROR: tool xtensa-esp32-elf has no installed versions. Please run 'install.sh' to␣
↪→install it.

or:

zsh: bad CPU type in executable: ~/.espressif/tools/xtensa-esp32-elf/esp-2021r2-
↪→patch3-8.4.0/xtensa-esp32-elf/bin/xtensa-esp32-elf-gcc

Then you will need to install Apple Rosetta 2 by running

/usr/sbin/softwareupdate --install-rosetta --agree-to-license

Installing Python 3 Based on macOS Catalina 10.15 release notes, use of Python 2.7 is not recommended and
Python 2.7 will not be included by default in future versions of macOS. Check what Python you currently have:

python --version

If the output is like Python 2.7.17, your default interpreter is Python 2.7. If so, also check if Python 3 isn't
already installed on your computer:

python3 --version

If the above command returns an error, it means Python 3 is not installed.
Below is an overview of the steps to install Python 3.

• Installing with HomeBrew can be done as follows:

Espressif Systems 28
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://brew.sh/
https://www.macports.org/install.php
https://cmake.org/
https://ninja-build.org/
https://ccache.dev/
https://brew.sh/
https://www.macports.org/install.php
https://developer.apple.com/documentation/macos-release-notes/macos-catalina-10_15-release-notes
https://brew.sh/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

brew install python3

• If you have MacPorts, you can run:

sudo port install python38

Step 2. Get ESP-IDF To build applications for the ESP32-C6, you need the software libraries provided by Espres-
sif in ESP-IDF repository.
To get ESP-IDF, navigate to your installation directory and clone the repository with git clone, following in-
structions below specific to your operating system.
Open Terminal, and run the following commands:

mkdir -p ~/esp
cd ~/esp
git clone -b release/v5.1 --recursive https://github.com/espressif/esp-idf.git

ESP-IDF will be downloaded into ~/esp/esp-idf.
Consult ESP-IDF Versions for information about which ESP-IDF version to use in a given situation.

Step 3. Set up the tools Aside from the ESP-IDF, you also need to install the tools used by ESP-IDF, such as the
compiler, debugger, Python packages, etc, for projects supporting ESP32-C6.

cd ~/esp/esp-idf
./install.sh esp32c6

or with Fish shell

cd ~/esp/esp-idf
./install.fish esp32c6

The above commands install tools for ESP32-C6 only. If you intend to develop projects for more chip targets then
you should list all of them and run for example:

cd ~/esp/esp-idf
./install.sh esp32,esp32s2

or with Fish shell

cd ~/esp/esp-idf
./install.fish esp32,esp32s2

In order to install tools for all supported targets please run the following command:

cd ~/esp/esp-idf
./install.sh all

or with Fish shell

cd ~/esp/esp-idf
./install.fish all

Note: For macOS users, if an error like this is shown during any step:

<urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable␣
↪→to get local issuer certificate (_ssl.c:xxx)

Espressif Systems 29
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.macports.org/install.php
https://github.com/espressif/esp-idf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

You may run Install Certificates.command in the Python folder of your computer to install certificates.
For details, see Download Error While Installing ESP-IDF Tools.

Alternative File Downloads The tools installer downloads a number of files attached to GitHub Releases. If
accessing GitHub is slow then it is possible to set an environment variable to prefer Espressif's download server for
GitHub asset downloads.

Note: This setting only controls individual tools downloaded from GitHub releases, it doesn't change the URLs used
to access any Git repositories.

To prefer the Espressif download server when installing tools, use the following sequence of commands when running
install.sh:

cd ~/esp/esp-idf
export IDF_GITHUB_ASSETS="dl.espressif.com/github_assets"
./install.sh

Customizing the tools installation path The scripts introduced in this step install compilation tools required by
ESP-IDF inside the user home directory: $HOME/.espressif on Linux. If you wish to install the tools into a
different directory, set the environment variable IDF_TOOLS_PATH before running the installation scripts. Make
sure that your user account has sufficient permissions to read and write this path.
If changing the IDF_TOOLS_PATH, make sure it is set to the same value every time the Install script (install.
bat, install.ps1 or install.sh) and an Export script (export.bat, export.ps1 or export.sh)
are executed.

Step 4. Set up the environment variables The installed tools are not yet added to the PATH environment variable.
Tomake the tools usable from the command line, some environment variables must be set. ESP-IDF provides another
script which does that.
In the terminal where you are going to use ESP-IDF, run:

. $HOME/esp/esp-idf/export.sh

or for fish (supported only since fish version 3.0.0):

. $HOME/esp/esp-idf/export.fish

Note the space between the leading dot and the path!
If you plan to use esp-idf frequently, you can create an alias for executing export.sh:

1. Copy and paste the following command to your shell's profile (.profile, .bashrc, .zprofile, etc.)

alias get_idf='. $HOME/esp/esp-idf/export.sh'

2. Refresh the configuration by restarting the terminal session or by running source [path to profile],
for example, source ~/.bashrc.

Now you can run get_idf to set up or refresh the esp-idf environment in any terminal session.
Technically, you can add export.sh to your shell's profile directly; however, it is not recommended. Doing so
activates IDF virtual environment in every terminal session (including those where IDF is not needed), defeating the
purpose of the virtual environment and likely affecting other software.

Espressif Systems 30
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/issues/4775
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Step 5. First Steps on ESP-IDF Now since all requirements are met, the next topic will guide you on how to start
your first project.
This guide will help you on the first steps using ESP-IDF. Follow this guide to start a new project on the ESP32-C6
and build, flash, and monitor the device output.

Note: If you have not yet installed ESP-IDF, please go to Installation and follow the instruction in order to get all
the software needed to use this guide.

Start a Project Now you are ready to prepare your application for ESP32-C6. You can start with get-
started/hello_world project from examples directory in ESP-IDF.

Important: The ESP-IDF build system does not support spaces in the paths to either ESP-IDF or to projects.

Copy the project get-started/hello_world to ~/esp directory:

cd ~/esp
cp -r $IDF_PATH/examples/get-started/hello_world .

Note: There is a range of example projects in the examples directory in ESP-IDF. You can copy any project in the
same way as presented above and run it. It is also possible to build examples in-place without copying them first.

Connect Your Device Now connect your ESP32-C6 board to the computer and check under which serial port the
board is visible.
Serial ports have the following naming patterns:

• Linux: starting with /dev/tty
• macOS: starting with /dev/cu.

If you are not sure how to check the serial port name, please refer to Establish Serial Connection with ESP32-C6 for
full details.

Note: Keep the port name handy as you will need it in the next steps.

Configure Your Project Navigate to your hello_world directory, set ESP32-C6 as the target, and run the
project configuration utility menuconfig.

cd ~/esp/hello_world
idf.py set-target esp32c6
idf.py menuconfig

After opening a new project, you should first set the target with idf.py set-target esp32c6. Note that
existing builds and configurations in the project, if any, will be cleared and initialized in this process. The target
may be saved in the environment variable to skip this step at all. See Select the Target Chip: set-target for additional
information.
If the previous steps have been done correctly, the following menu appears:
You are using this menu to set up project specific variables, e.g., Wi-Fi network name and password, the processor
speed, etc. Setting up the project with menuconfig may be skipped for "hello_world", since this example runs with
default configuration.

Espressif Systems 31
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Fig. 13: Project configuration - Home window

Note: The colors of the menu could be different in your terminal. You can change the appearance with the option
--style. Please run idf.py menuconfig --help for further information.

Build the Project Build the project by running:

idf.py build

This command will compile the application and all ESP-IDF components, then it will generate the bootloader, par-
tition table, and application binaries.

$ idf.py build
Running cmake in directory /path/to/hello_world/build
Executing "cmake -G Ninja --warn-uninitialized /path/to/hello_world"...
Warn about uninitialized values.
-- Found Git: /usr/bin/git (found version "2.17.0")
-- Building empty aws_iot component due to configuration
-- Component names: ...
-- Component paths: ...

... (more lines of build system output)

[527/527] Generating hello_world.bin
esptool.py v2.3.1

Project build complete. To flash, run this command:
../../../components/esptool_py/esptool/esptool.py -p (PORT) -b 921600 write_flash -
↪→-flash_mode dio --flash_size detect --flash_freq 40m 0x10000 build/hello_world.
↪→bin build 0x1000 build/bootloader/bootloader.bin 0x8000 build/partition_table/
↪→partition-table.bin
or run 'idf.py -p PORT flash'

If there are no errors, the build will finish by generating the firmware binary .bin files.

Flash onto the Device To flash the binaries that you just built for the ESP32-C6 in the previous step, you need to
run the following command:

Espressif Systems 32
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

idf.py -p PORT flash

Replace PORT with your ESP32-C6 board's USB port name. If the PORT is not defined, the idf.py will try to connect
automatically using the available USB ports.
For more information on idf.py arguments, see idf.py.

Note: The option flash automatically builds and flashes the project, so running idf.py build is not necessary.

Encountered Issues While Flashing? See this Flashing Troubleshooting page or Establish Serial Connection with
ESP32-C6 for more detailed information.

Normal Operation When flashing, you will see the output log similar to the following:

...
esptool esp32c6 -p /dev/ttyUSB0 -b 460800 --before=default_reset --after=hard_
↪→reset --no-stub write_flash --flash_mode dio --flash_freq 80m --flash_size 2MB␣
↪→0x0 bootloader/bootloader.bin 0x10000 hello_world.bin 0x8000 partition_table/
↪→partition-table.bin
esptool.py v4.3
Serial port /dev/ttyUSB0
Connecting....
Chip is ESP32-C6 (revision v0.0)
Features: WiFi 6, BT 5
Crystal is 40MHz
MAC: 60:55:f9:f6:01:38
Changing baud rate to 460800
Changed.
Enabling default SPI flash mode...
Configuring flash size...
Flash will be erased from 0x00000000 to 0x00004fff...
Flash will be erased from 0x00010000 to 0x00028fff...
Flash will be erased from 0x00008000 to 0x00008fff...
Erasing flash...
Took 0.17s to erase flash block
Writing at 0x00000000... (5 %)
Writing at 0x00000c00... (23 %)
Writing at 0x00001c00... (47 %)
Writing at 0x00003000... (76 %)
Writing at 0x00004000... (100 %)
Wrote 17408 bytes at 0x00000000 in 0.5 seconds (254.6 kbit/s)...
Hash of data verified.
Erasing flash...
Took 0.85s to erase flash block
Writing at 0x00010000... (1 %)
Writing at 0x00014c00... (20 %)
Writing at 0x00019c00... (40 %)
Writing at 0x0001ec00... (60 %)
Writing at 0x00023c00... (80 %)
Writing at 0x00028c00... (100 %)
Wrote 102400 bytes at 0x00010000 in 3.2 seconds (253.5 kbit/s)...
Hash of data verified.
Erasing flash...
Took 0.04s to erase flash block
Writing at 0x00008000... (33 %)
Writing at 0x00008400... (66 %)
Writing at 0x00008800... (100 %)
Wrote 3072 bytes at 0x00008000 in 0.1 seconds (269.0 kbit/s)...
Hash of data verified.

(continues on next page)

Espressif Systems 33
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

(continued from previous page)
Leaving...
Hard resetting via RTS pin...

If there are no issues by the end of the flash process, the board will reboot and start up the“hello_world”application.
If you'd like to use the Eclipse or VS Code IDE instead of running idf.py, check out Eclipse Plugin, VSCode
Extension.

Monitor the Output To check if "hello_world" is indeed running, type idf.py -p PORT monitor (Do not
forget to replace PORT with your serial port name).
This command launches the IDF Monitor application:

$ idf.py -p <PORT> monitor
Running idf_monitor in directory [...]/esp/hello_world/build
Executing "python [...]/esp-idf/tools/idf_monitor.py -b 115200 [...]/esp/hello_
↪→world/build/hello_world.elf"...
--- idf_monitor on <PORT> 115200 ---
--- Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H ---
ets Jun 8 2016 00:22:57

rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
ets Jun 8 2016 00:22:57
...

After startup and diagnostic logs scroll up, you should see "Hello world!" printed out by the application.

...
Hello world!
Restarting in 10 seconds...
This is esp32c6 chip with 1 CPU core(s), WiFi/BLE, 802.15.4 (Zigbee/Thread),␣

↪→silicon revision v0.0, 2 MB external flash
Minimum free heap size: 473816 bytes

Restarting in 9 seconds...
Restarting in 8 seconds...
Restarting in 7 seconds...

To exit IDF monitor use the shortcut Ctrl+].

Note: You can combine building, flashing and monitoring into one step by running:

idf.py -p PORT flash monitor

See also:
• IDF Monitor for handy shortcuts and more details on using IDF monitor.
• idf.py for a full reference of idf.py commands and options.

That's all that you need to get started with ESP32-C6!
Now you are ready to try some other examples, or go straight to developing your own applications.

Important: Some of examples do not support ESP32-C6 because required hardware is not included in ESP32-C6
so it cannot be supported.
If building an example, please check the README file for the Supported Targets table. If this is present
including ESP32-C6 target, or the table does not exist at all, the example will work on ESP32-C6.

Espressif Systems 34
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Additional Tips

Permission issues /dev/ttyUSB0 With some Linux distributions, you may get the Failed to open port
/dev/ttyUSB0 error message when flashing the ESP32-C6. This can be solved by adding the current user to the
dialout group.

Python compatibility ESP-IDF supports Python 3.7 or newer. It is recommended to upgrade your operating
system to a recent version satisfying this requirement. Other options include the installation of Python from sources
or the use of a Python version management system such as pyenv.

FlashErase Erasing the flash is also possible. To erase the entire flashmemory you can run the following command:

idf.py -p PORT erase-flash

For erasing the OTA data, if present, you can run this command:

idf.py -p PORT erase-otadata

The flash erase command can take a while to be done. Do not disconnect your device while the flash erasing is in
progress.

Tip: Updating ESP-IDF It is recommended to update ESP-IDF from time to time, as newer versions fix bugs
and/or provide new features. Please note that each ESP-IDF major and minor release version has an associated
support period, and when one release branch is approaching end of life (EOL), all users are encouraged to upgrade
their projects to more recent ESP-IDF releases, to find out more about support periods, see ESP-IDF Versions.
The simplest way to do the update is to delete the existing esp-idf folder and clone it again, as if performing the
initial installation described in Step 2. Get ESP-IDF.
Another solution is to update only what has changed. The update procedure depends on the version of ESP-IDF you
are using.
After updating ESP-IDF, execute the Install script again, in case the new ESP-IDF version requires different versions
of tools. See instructions at Step 3. Set up the tools.
Once the new tools are installed, update the environment using the Export script. See instructions at Step 4. Set up
the environment variables.

Related Documents
• Establish Serial Connection with ESP32-C6
• Eclipse Plugin
• VSCode Extension
• IDF Monitor

1.4 Build Your First Project

If you already have the ESP-IDF installed and not using IDE, you can build your first project from the command line
following the Start a Project on Windows or Start a Project on Linux and macOS.

1.5 Uninstall ESP-IDF

If you want to remove ESP-IDF, please follow Uninstall ESP-IDF.

Espressif Systems 35
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.python.org/downloads/
https://github.com/pyenv/pyenv
https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 1. Get Started

Espressif Systems 36
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2

API Reference

2.1 API Conventions

This document describes conventions and assumptions common to ESP-IDF Application Programming Interfaces
(APIs).
ESP-IDF provides several kinds of programming interfaces:

• C functions, structures, enums, type definitions, and preprocessormacros declared in public header files of ESP-
IDF components. Various pages in the API Reference section of the programming guide contain descriptions
of these functions, structures, and types.

• Build system functions, predefined variables, and options. These are documented in the ESP-IDF CMake Build
System API.

• Kconfig options can be used in code and in the build system (CMakeLists.txt) files.
• Host tools and their command line parameters are also part of the ESP-IDF interfaces.

ESP-IDF is made up of multiple components where these components either contain code specifically written for
ESP chips, or contain a third-party library (i.e., a third-party component). In some cases, third-party components
will contain an "ESP-IDF specific" wrapper in order to provide an interface that is either simpler or better integrated
with the rest of ESP-IDF's features. In other cases, third-party components will present the original API of the
underlying library directly.
The following sections explain some of the aspects of ESP-IDF APIs and their usage.

2.1.1 Error Handling

Most ESP-IDF APIs return error codes defined with the esp_err_t type. See Error Handling section for more
information about error handling approaches. Error Codes Reference contains the list of error codes returned by
ESP-IDF components.

2.1.2 Configuration Structures

Important: Correct initialization of configuration structures is an important part of making the application com-
patible with future versions of ESP-IDF.

37

Chapter 2. API Reference

Most initialization, configuration, and installation functions in ESP-IDF (typically named ..._init(), ...
_config(), and ..._install()) take a configuration structure pointer as an argument. For example:

const esp_timer_create_args_t my_timer_args = {
.callback = &my_timer_callback,
.arg = callback_arg,
.name = "my_timer"

};
esp_timer_handle_t my_timer;
esp_err_t err = esp_timer_create(&my_timer_args, &my_timer);

These functions never store the pointer to the configuration structure, so it is safe to allocate the structure on the stack.
The application must initialize all fields of the structure. The following is incorrect:

esp_timer_create_args_t my_timer_args;
my_timer_args.callback = &my_timer_callback;
/* Incorrect! Fields .arg and .name are not initialized */
esp_timer_create(&my_timer_args, &my_timer);

Most ESP-IDF examples use C99 designated initializers for structure initialization since they provide a concise way
of setting a subset of fields, and zero-initializing the remaining fields:

const esp_timer_create_args_t my_timer_args = {
.callback = &my_timer_callback,
/* Correct, fields .arg and .name are zero-initialized */

};

The C++ language supports designated initializer syntax, too, but the initializers must be in the order of declaration.
When using ESP-IDF APIs in C++ code, you may consider using the following pattern:

/* Correct, fields .dispatch_method, .name and .skip_unhandled_events are zero-
↪→initialized */
const esp_timer_create_args_t my_timer_args = {

.callback = &my_timer_callback,

.arg = &my_arg,
};

///* Incorrect, .arg is declared after .callback in esp_timer_create_args_t */
//const esp_timer_create_args_t my_timer_args = {
// .arg = &my_arg,
// .callback = &my_timer_callback,
//};

For more information on designated initializers, see Designated Initializers. Note that C++ language versions older
than C++20, which are not the default in the current version of ESP-IDF, do not support designated initializers. If
you have to compile code with an older C++ standard than C++20, you may use GCC extensions to produce the
following pattern:

esp_timer_create_args_t my_timer_args = {};
/* All the fields are zero-initialized */
my_timer_args.callback = &my_timer_callback;

Default Initializers

For some configuration structures, ESP-IDF provides macros for setting default values of fields:

httpd_config_t config = HTTPD_DEFAULT_CONFIG();
/* HTTPD_DEFAULT_CONFIG expands to a designated initializer. Now all fields are␣
↪→set to the default values, and any field can still be modified: */
config.server_port = 8081;

(continues on next page)

Espressif Systems 38
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://en.cppreference.com/w/c/language/struct_initialization
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
httpd_handle_t server;
esp_err_t err = httpd_start(&server, &config);

It is recommended to use default initializer macros whenever they are provided for a particular configuration structure.

2.1.3 Private APIs

Certain header files in ESP-IDF contain APIs intended to be used only in ESP-IDF source code rather than by
the applications. Such header files often contain private or esp_private in their name or path. Certain
components, such as hal only contain private APIs.
Private APIs may be removed or changed in an incompatible way between minor or patch releases.

2.1.4 Components in Example Projects

ESP-IDF examples contain a variety of projects demonstrating the usage of ESP-IDF APIs. In order to reduce code
duplication in the examples, a few common helpers are defined inside components that are used by multiple examples.
This includes components located in common_components directory, as well as some of the components located in
the examples themselves. These components are not considered to be part of the ESP-IDF API.
It is not recommended to reference these components directly in custom projects (via EXTRA_COMPONENT_DIRS
build system variable), as they may change significantly between ESP-IDF versions. When starting a new project
based on an ESP-IDF example, copy both the project and the common components it depends on out of ESP-IDF,
and treat the common components as part of the project. Note that the common components are written with examples
in mind, and might not include all the error handling required for production applications. Before using, take time to
read the code and understand if it is applicable to your use case.

2.1.5 API Stability

ESP-IDF uses Semantic Versioning as explained in the Versioning Scheme.
Minor and bugfix releases of ESP-IDF guarantee compatibility with previous releases. The sections below explain
different aspects and limitations to compatibility.

Source-level Compatibility

ESP-IDF guarantees source-level compatibility of C functions, structures, enums, type definitions, and preprocessor
macros declared in public header files of ESP-IDF components. Source-level compatibility implies that the applica-
tion source code can be recompiled with the newer version of ESP-IDF without changes.
The following changes are allowed between minor versions and do not break source-level compatibility:

• Deprecating functions (using the deprecated attribute) and header files (using a preprocessor #warning).
Deprecations are listed in ESP-IDF release notes. It is recommended to update the source code to use the newer
functions or files that replace the deprecated ones, however, this is not mandatory. Deprecated functions and
files can be removed from major versions of ESP-IDF.

• Renaming components, moving source and header files between components—provided that the build system
ensures that correct files are still found.

• Renaming Kconfig options. Kconfig system's backward compatibility ensures that the original Kconfig option
names can still be used by the application in sdkconfig file, CMake files, and source code.

Espressif Systems 39
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/common_components
https://semver.org/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Lack of Binary Compatibility

ESP-IDF does not guarantee binary compatibility between releases. This means that if a precompiled library is built
with one ESP-IDF version, it is not guaranteed to work the same way with the next minor or bugfix release. The
following are the possible changes that keep source-level compatibility but not binary compatibility:

• Changing numerical values for C enum members.
• Adding new structure members or changing the order of members. See Configuration Structures for tips that
help ensure compatibility.

• Replacing an extern function with a static inline one with the same signature, or vice versa.
• Replacing a function-like macro with a compatible C function.

Other Exceptions from Compatibility

While we try to make upgrading to a new ESP-IDF version easy, there are parts of ESP-IDF that may change between
minor versions in an incompatible way. We appreciate issuing reports about any unintended breaking changes that
don't fall into the categories below.

• Private APIs.
• Components in Example Projects.
• Features clearly marked as "beta", "preview", or "experimental".
• Changes made to mitigate security issues or to replace insecure default behaviors with secure ones.
• Features that were never functional. For example, if it was never possible to use a certain function or an
enumeration value, it may get renamed (as part of fixing it) or removed. This includes software features that
depend on non-functional chip hardware features.

• Unexpected or undefined behavior that is not documented explicitly may be fixed/changed, such as due to
missing validation of argument ranges.

• Location of Kconfig options in menuconfig.
• Location and names of example projects.

2.2 Application Protocols

2.2.1 ASIO port

Asio is a cross-platform C++ library, see https://think-async.com/Asio/. It provides a consistent asynchronous model
using a modern C++ approach.
The ESP-IDF component ASIO has been moved from ESP-IDF since version v5.0 to a separate repository:

• ASIO component on GitHub
To add ASIO component in your project, please run idf.py add-dependency espressif/asio

Hosted Documentation

The documentation can be found on the link below:
• ASIO documentation (English)

2.2.2 ESP-Modbus

The Espressif ESP-Modbus Library (esp-modbus) supportsModbus communication in the networks based on RS485,
Wi-Fi, Ethernet interfaces. The ESP-IDF component freemodbus has been moved from ESP-IDF since version v5.0
to a separate repository:

Espressif Systems 40
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://think-async.com/Asio/
https://github.com/espressif/esp-protocols/tree/master/components/asio
https://docs.espressif.com/projects/esp-protocols/asio/docs/latest/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP-Modbus component on GitHub

Hosted Documentation

The documentation can be found on the link below:
• ESP-Modbus documentation (English)

Application Example

The examples below demonstrate the ESP-Modbus library of serial, TCP ports for slave and master implementations
accordingly.

• protocols/modbus/serial/mb_slave
• protocols/modbus/serial/mb_master
• protocols/modbus/tcp/mb_tcp_slave
• protocols/modbus/tcp/mb_tcp_master

Please refer to the specific example README.md for details.

Protocol References

• https://modbus.org/specs.php: Modbus Organization with protocol specifications.

2.2.3 ESP-MQTT

Overview

ESP-MQTT is an implementation of MQTT protocol client, which is a lightweight publish/subscribe messaging
protocol. Now ESP-MQTT supports MQTT v5.0.

Features

• Support MQTT over TCP, SSL with Mbed TLS, MQTT over WebSocket, and MQTT over WebSocket Secure
• Easy to setup with URI
• Multiple instances (multiple clients in one application)
• Support subscribing, publishing, authentication, last will messages, keep alive pings, and all 3 Quality of Service
(QoS) levels (it should be a fully functional client)

Application Examples

• protocols/mqtt/tcp: MQTT over TCP, default port 1883
• protocols/mqtt/ssl: MQTT over TLS, default port 8883
• protocols/mqtt/ssl_ds: MQTT over TLS using digital signature peripheral for authentication, default port 8883
• protocols/mqtt/ssl_mutual_auth: MQTT over TLS using certificates for authentication, default port 8883
• protocols/mqtt/ssl_psk: MQTT over TLS using pre-shared keys for authentication, default port 8883
• protocols/mqtt/ws: MQTT over WebSocket, default port 80
• protocols/mqtt/wss: MQTT over WebSocket Secure, default port 443
• protocols/mqtt5: Uses ESP-MQTT library to connect to broker with MQTT v5.0

Espressif Systems 41
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-modbus
https://docs.espressif.com/projects/esp-modbus
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/modbus/serial/mb_slave
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/modbus/serial/mb_master
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/modbus/tcp/mb_tcp_slave
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/modbus/tcp/mb_tcp_master
https://mqtt.org/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/mqtt/tcp
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/mqtt/ssl
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/mqtt/ssl_ds
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/mqtt/ssl_mutual_auth
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/mqtt/ssl_psk
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/mqtt/ws
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/mqtt/wss
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/mqtt5
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

MQTT Message Retransmission

A new MQTT message is created by calling esp_mqtt_client_publish or its non blocking counterpart
esp_mqtt_client_enqueue.
Messages with QoS 0 will be sent only once. QoS 1 and 2 have different behaviors since the protocol requires extra
steps to complete the process.
The ESP-MQTT library opts to always retransmit unacknowledged QoS 1 and 2 publish messages to avoid losses in
faulty connections, even though the MQTT specification requires the re-transmission only on reconnect with Clean
Session flag been set to 0 (set disable_clean_session to true for this behavior).
QoS 1 and 2messages that may need retransmission are always enqueued, but first transmission try occurs immediately
if esp_mqtt_client_publish is used. A transmission retry for unacknowledged messages will occur after
message_retransmit_timeout. AfterCONFIG_MQTT_OUTBOX_EXPIRED_TIMEOUT_MSmessages will
expire and be deleted. If CONFIG_MQTT_REPORT_DELETED_MESSAGES is set, an event will be sent to notify the
user.

Configuration

The configuration is made by setting fields in esp_mqtt_client_config_t struct. The configuration struct
has the following sub structs to configure different aspects of the client operation.

• esp_mqtt_client_config_t::broker_t - Allow to set address and security verification.
• esp_mqtt_client_config_t::credentials_t - Client credentials for authentication.
• esp_mqtt_client_config_t::session_t - Configuration for MQTT session aspects.
• esp_mqtt_client_config_t::network_t - Networking related configuration.
• esp_mqtt_client_config_t::task_t - Allow to configure FreeRTOS task.
• esp_mqtt_client_config_t::buffer_t - Buffer size for input and output.

In the following sections, the most common aspects are detailed.

Broker

Address Broker address can be set by usage of address struct. The configuration can be made by usage of uri
field or the combination of hostname, transport and port. Optionally, path could be set, this field is useful
in WebSocket connections.
The uri field is used in the format scheme://hostname:port/path.

• Curently support mqtt, mqtts, ws, wss schemes
• MQTT over TCP samples:

– mqtt://mqtt.eclipseprojects.io: MQTT over TCP, default port 1883
– mqtt://mqtt.eclipseprojects.io:1884: MQTT over TCP, port 1884
– mqtt://username:password@mqtt.eclipseprojects.io:1884: MQTT over TCP,
port 1884, with username and password

• MQTT over SSL samples:
– mqtts://mqtt.eclipseprojects.io: MQTT over SSL, port 8883
– mqtts://mqtt.eclipseprojects.io:8884: MQTT over SSL, port 8884

• MQTT over WebSocket samples:
– ws://mqtt.eclipseprojects.io:80/mqtt

• MQTT over WebSocket Secure samples:
– wss://mqtt.eclipseprojects.io:443/mqtt

• Minimal configurations:

const esp_mqtt_client_config_t mqtt_cfg = {
.broker.address.uri = "mqtt://mqtt.eclipseprojects.io",

};
esp_mqtt_client_handle_t client = esp_mqtt_client_init(&mqtt_cfg);

(continues on next page)

Espressif Systems 42
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
esp_mqtt_client_register_event(client, ESP_EVENT_ANY_ID, mqtt_event_handler,␣
↪→client);
esp_mqtt_client_start(client);

Note: By default MQTT client uses event loop library to post related MQTT events (connected, subscribed, pub-
lished, etc.).

Verification For secure connections with TLS used, and to guarantee Broker's identity, the verification
struct must be set. The broker certificate may be set in PEM or DER format. To select DER, the equivalent cer-
tificate_len field must be set. Otherwise, a null-terminated string in PEM format should be provided to cer-
tificate field.

• Get certificate from server, example: mqtt.eclipseprojects.io

openssl s_client -showcerts -connect mqtt.eclipseprojects.io:8883 < /dev/
↪→null \
2> /dev/null | openssl x509 -outform PEM > mqtt_eclipse_org.pem

• Check the sample application: protocols/mqtt/ssl
• Configuration:

const esp_mqtt_client_config_t mqtt_cfg = {
.broker = {

.address.uri = "mqtts://mqtt.eclipseprojects.io:8883",

.verification.certificate = (const char *)mqtt_eclipse_org_pem_start,
},

};

For details about other fields, please check the API Reference and TLS Server verification.

Client Credentials All client related credentials are under the credentials field.
• username: pointer to the username used for connecting to the broker, can also be set by URI
• client_id: pointer to the client ID, defaults to ESP32_%CHIPID% where %CHIPID% are the last 3 bytes
of MAC address in hex format

Authentication It's possible to set authentication parameters through the authentication field. The client
supports the following authentication methods:

• password: use a password by setting
• certificate and key: mutual authentication with TLS, and both can be provided in PEM or DER format
• use_secure_element: use secure element available in ESP32-WROOM-32SE
• ds_data: use Digital Signature Peripheral available in some Espressif devices

Session For MQTT session related configurations, session fields should be used.

Last Will and Testament MQTT allows for a last will and testament (LWT) message to notify other clients when
a client ungracefully disconnects. This is configured by the following fields in the last_will struct.

• topic: pointer to the LWT message topic
• msg: pointer to the LWT message
• msg_len: length of the LWT message, required if msg is not null-terminated
• qos: quality of service for the LWT message
• retain: specifies the retain flag of the LWT message

Espressif Systems 43
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/mqtt/ssl
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Change Settings in Project Configuration Menu The settings for MQTT can be found using idf.py menu-
config, under Component config > ESP-MQTT Configuration.
The following settings are available:

• CONFIG_MQTT_PROTOCOL_311: enable 3.1.1 version of MQTT protocol
• CONFIG_MQTT_TRANSPORT_SSL and CONFIG_MQTT_TRANSPORT_WEBSOCKET : enable specific
MQTT transport layer, such as SSL, WEBSOCKET, and WEBSOCKET_SECURE

• CONFIG_MQTT_CUSTOM_OUTBOX: disable default implementation of mqtt_outbox, so a specific imple-
mentation can be supplied

Events

The following events may be posted by the MQTT client:
• MQTT_EVENT_BEFORE_CONNECT: The client is initialized and about to start connecting to the broker.
• MQTT_EVENT_CONNECTED: The client has successfully established a connection to the broker. The client
is now ready to send and receive data.

• MQTT_EVENT_DISCONNECTED: The client has aborted the connection due to being unable to read or write
data, e.g. because the server is unavailable.

• MQTT_EVENT_SUBSCRIBED: The broker has acknowledged the client's subscribe request. The event data
will contain the message ID of the subscribe message.

• MQTT_EVENT_UNSUBSCRIBED: The broker has acknowledged the client's unsubscribe request. The event
data will contain the message ID of the unsubscribe message.

• MQTT_EVENT_PUBLISHED: The broker has acknowledged the client's publish message. This will only be
posted for QoS level 1 and 2, as level 0 does not use acknowledgements. The event data will contain the
message ID of the publish message.

• MQTT_EVENT_DATA: The client has received a publish message. The event data contains: message ID, name
of the topic it was published to, received data and its length. For data that exceeds the internal buffer, multiple
MQTT_EVENT_DATA will be posted and current_data_offset and total_data_len from event
data updated to keep track of the fragmented message.

• MQTT_EVENT_ERROR: The client has encountered an error. The field error_handle in the event data
contains error_type that can be used to identify the error. The type of error will determine which parts of
the error_handle struct is filled.

API Reference

Header File
• components/mqtt/esp-mqtt/include/mqtt_client.h

Functions
esp_mqtt_client_handle_t esp_mqtt_client_init(const esp_mqtt_client_config_t *config)

Creates MQTT client handle based on the configuration.
Parameters config -- MQTT configuration structure
Returns mqtt_client_handle if successfully created, NULL on error

esp_err_t esp_mqtt_client_set_uri(esp_mqtt_client_handle_t client, const char *uri)
SetsMQTT connection URI. This API is usually used to overrides the URI configured in esp_mqtt_client_init.

Parameters
• client -- MQTT client handle
• uri --

Returns ESP_FAIL if URI parse error, ESP_OK on success
esp_err_t esp_mqtt_client_start(esp_mqtt_client_handle_t client)

Starts MQTT client with already created client handle.
Parameters client -- MQTT client handle

Espressif Systems 44
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-mqtt/blob/cac1552/include/mqtt_client.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns ESP_OK on success ESP_ERR_INVALID_ARG on wrong initialization ESP_FAIL on
other error

esp_err_t esp_mqtt_client_reconnect(esp_mqtt_client_handle_t client)
This api is typically used to force reconnection upon a specific event.

Parameters client -- MQTT client handle
Returns ESP_OK on success ESP_ERR_INVALID_ARG on wrong initialization ESP_FAIL if

client is in invalid state
esp_err_t esp_mqtt_client_disconnect(esp_mqtt_client_handle_t client)

This api is typically used to force disconnection from the broker.
Parameters client -- MQTT client handle
Returns ESP_OK on success ESP_ERR_INVALID_ARG on wrong initialization

esp_err_t esp_mqtt_client_stop(esp_mqtt_client_handle_t client)
Stops MQTT client tasks.

• Notes:
• Cannot be called from the MQTT event handler

Parameters client -- MQTT client handle
Returns ESP_OK on success ESP_ERR_INVALID_ARG on wrong initialization ESP_FAIL if

client is in invalid state

int esp_mqtt_client_subscribe_single(esp_mqtt_client_handle_t client, const char *topic, int qos)
Subscribe the client to defined topic with defined qos.
Notes:

• Client must be connected to send subscribe message
• This API is could be executed from a user task or from a MQTT event callback i.e. internal MQTT task
(API is protected by internal mutex, so it might block if a longer data receive operation is in progress.

• esp_mqtt_client_subscribe could be used to call this function.

Parameters
• client -- MQTT client handle
• topic -- topic filter to subscribe
• qos -- Max qos level of the subscription

Returns message_id of the subscribe message on success -1 on failure -2 in case of full outbox.

int esp_mqtt_client_subscribe_multiple(esp_mqtt_client_handle_t client, const esp_mqtt_topic_t
*topic_list, int size)

Subscribe the client to a list of defined topics with defined qos.
Notes:

• Client must be connected to send subscribe message
• This API is could be executed from a user task or from a MQTT event callback i.e. internal MQTT task
(API is protected by internal mutex, so it might block if a longer data receive operation is in progress.

• esp_mqtt_client_subscribe could be used to call this function.

Parameters
• client -- MQTT client handle
• topic_list -- List of topics to subscribe
• size -- size of topic_list

Returns message_id of the subscribe message on success -1 on failure -2 in case of full outbox.

Espressif Systems 45
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int esp_mqtt_client_unsubscribe(esp_mqtt_client_handle_t client, const char *topic)
Unsubscribe the client from defined topic.
Notes:

• Client must be connected to send unsubscribe message
• It is thread safe, please refer to esp_mqtt_client_subscribe_single for details

Parameters
• client -- MQTT client handle
• topic --

Returns message_id of the subscribe message on success -1 on failure

int esp_mqtt_client_publish(esp_mqtt_client_handle_t client, const char *topic, const char *data, int len,
int qos, int retain)

Client to send a publish message to the broker.
Notes:

• This API might block for several seconds, either due to network timeout (10s) or if publishing payloads
longer than internal buffer (due to message fragmentation)

• Client doesn't have to be connected for this API to work, enqueueing the messages with qos>1 (returning
-1 for all the qos=0 messages if disconnected). If MQTT_SKIP_PUBLISH_IF_DISCONNECTED is
enabled, this API will not attempt to publish when the client is not connected and will always return -1.

• It is thread safe, please refer to esp_mqtt_client_subscribe for details

Parameters
• client -- MQTT client handle
• topic -- topic string
• data -- payload string (set to NULL, sending empty payload message)
• len -- data length, if set to 0, length is calculated from payload string
• qos -- QoS of publish message
• retain -- retain flag

Returns message_id of the publishmessage (for QoS 0message_id will always be zero) on success.
-1 on failure, -2 in case of full outbox.

int esp_mqtt_client_enqueue(esp_mqtt_client_handle_t client, const char *topic, const char *data, int len,
int qos, int retain, bool store)

Enqueue a message to the outbox, to be sent later. Typically used for messages with qos>0, but could be also
used for qos=0 messages if store=true.
This API generates and stores the publish message into the internal outbox and the actual sending to the net-
work is performed in the mqtt-task context (in contrast to the esp_mqtt_client_publish() which sends the pub-
lish message immediately in the user task's context). Thus, it could be used as a non blocking version of
esp_mqtt_client_publish().

Parameters
• client -- MQTT client handle
• topic -- topic string
• data -- payload string (set to NULL, sending empty payload message)
• len -- data length, if set to 0, length is calculated from payload string
• qos -- QoS of publish message
• retain -- retain flag
• store -- if true, all messages are enqueued; otherwise only QoS 1 and QoS 2 are en-
queued

Returns message_id if queued successfully, -1 on failure, -2 in case of full outbox.
esp_err_t esp_mqtt_client_destroy(esp_mqtt_client_handle_t client)

Destroys the client handle.
Notes:

Espressif Systems 46
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Cannot be called from the MQTT event handler

Parameters client -- MQTT client handle
Returns ESP_OK ESP_ERR_INVALID_ARG on wrong initialization

esp_err_t esp_mqtt_set_config(esp_mqtt_client_handle_t client, const esp_mqtt_client_config_t *config)
Set configuration structure, typically used when updating the config (i.e. on "before_connect" event.
Notes:

• When calling this function make sure to have all the intendend configurations set, otherwise default values
are set.

Parameters
• client -- MQTT client handle
• config -- MQTT configuration structure

Returns ESP_ERR_NO_MEM if failed to allocate ESP_ERR_INVALID_ARG if conflicts on
transport configuration. ESP_OK on success

esp_err_t esp_mqtt_client_register_event(esp_mqtt_client_handle_t client, esp_mqtt_event_id_t
event, esp_event_handler_t event_handler, void
*event_handler_arg)

Registers MQTT event.
Parameters

• client -- MQTT client handle
• event -- event type
• event_handler -- handler callback
• event_handler_arg -- handlers context

Returns ESP_ERR_NO_MEM if failed to allocate ESP_ERR_INVALID_ARG on wrong initial-
ization ESP_OK on success

esp_err_t esp_mqtt_client_unregister_event(esp_mqtt_client_handle_t client, esp_mqtt_event_id_t
event, esp_event_handler_t event_handler)

Unregisters mqtt event.
Parameters

• client -- mqtt client handle
• event -- event ID
• event_handler -- handler to unregister

Returns ESP_ERR_NO_MEM if failed to allocate ESP_ERR_INVALID_ARG on invalid event
ID ESP_OK on success

int esp_mqtt_client_get_outbox_size(esp_mqtt_client_handle_t client)
Get outbox size.

Parameters client -- MQTT client handle
Returns outbox size 0 on wrong initialization

esp_err_t esp_mqtt_dispatch_custom_event(esp_mqtt_client_handle_t client, esp_mqtt_event_t *event)
Dispatch user event to the mqtt internal event loop.

Parameters
• client -- MQTT client handle
• event -- MQTT event handle structure

Returns ESP_OK on success ESP_ERR_TIMEOUT if the event couldn't be queued (ref also
CONFIG_MQTT_EVENT_QUEUE_SIZE)

Structures

Espressif Systems 47
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_mqtt_error_codes
MQTT error code structure to be passed as a contextual information into ERROR event
Important: This structure extends esp_tls_last_error error structure and is backward compatible with
it (so might be down-casted and treated as esp_tls_last_error error, but recommended to update
applications if used this way previously)
Use this structure directly checking error_type first and then appropriate error code depending on the source
of the error:
| error_type | related member variables | note | | MQTT_ERROR_TYPE_TCP_TRANSPORT |
esp_tls_last_esp_err, esp_tls_stack_err, esp_tls_cert_verify_flags, sock_errno | Error reported from
tcp_transport/esp-tls | | MQTT_ERROR_TYPE_CONNECTION_REFUSED | connect_return_code | Inter-
nal error reported from MQTT broker on connection |

Public Members

esp_err_t esp_tls_last_esp_err

last esp_err code reported from esp-tls component

int esp_tls_stack_err
tls specific error code reported from underlying tls stack

int esp_tls_cert_verify_flags
tls flags reported from underlying tls stack during certificate verification

esp_mqtt_error_type_t error_type

error type referring to the source of the error

esp_mqtt_connect_return_code_t connect_return_code

connection refused error code reported from MQTT* broker on connection

int esp_transport_sock_errno
errno from the underlying socket

struct esp_mqtt_event_t
MQTT event configuration structure

Public Members

esp_mqtt_event_id_t event_id

MQTT event type

esp_mqtt_client_handle_t client

MQTT client handle for this event

char *data
Data associated with this event

int data_len
Length of the data for this event

Espressif Systems 48
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int total_data_len
Total length of the data (longer data are supplied with multiple events)

int current_data_offset
Actual offset for the data associated with this event

char *topic
Topic associated with this event

int topic_len
Length of the topic for this event associated with this event

int msg_id
MQTT messaged id of message

int session_present
MQTT session_present flag for connection event

esp_mqtt_error_codes_t *error_handle
esp-mqtt error handle including esp-tls errors as well as internal MQTT errors

bool retain
Retained flag of the message associated with this event

int qos
QoS of the messages associated with this event

bool dup
dup flag of the message associated with this event

esp_mqtt_protocol_ver_t protocol_ver

MQTT protocol version used for connection, defaults to value from menuconfig

struct esp_mqtt_client_config_t
MQTT client configuration structure

• Default values can be set via menuconfig
• All certificates and key data could be passed in PEMorDER format. PEM formatmust have a terminating
NULL character and the related len field set to 0. DER format requires a related len field set to the correct
length.

Public Members

struct esp_mqtt_client_config_t::broker_t broker
Broker address and security verification

struct esp_mqtt_client_config_t::credentials_t credentials
User credentials for broker

Espressif Systems 49
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_mqtt_client_config_t::session_t session
MQTT session configuration.

struct esp_mqtt_client_config_t::network_t network

Network configuration

struct esp_mqtt_client_config_t::task_t task
FreeRTOS task configuration.

struct esp_mqtt_client_config_t::buffer_t buffer
Buffer size configuration.

struct esp_mqtt_client_config_t::outbox_config_t outbox
Outbox configuration.

struct broker_t
Broker related configuration

Public Members

struct esp_mqtt_client_config_t::broker_t::address_t address
Broker address configuration

struct esp_mqtt_client_config_t::broker_t::verification_t verification
Security verification of the broker

struct address_t
Broker address

• uri have precedence over other fields
• If uri isn't set at least hostname, transport and port should.

Public Members

const char *uri
Complete MQTT broker URI

const char *hostname
Hostname, to set ipv4 pass it as string)

esp_mqtt_transport_t transport

Selects transport

const char *path
Path in the URI

Espressif Systems 50
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t port
MQTT server port

struct verification_t
Broker identity verification
If fields are not set broker's identity isn't verified. it's recommended to set the options in this struct
for security reasons.

Public Members

bool use_global_ca_store
Use a global ca_store, look esp-tls documentation for details.

esp_err_t (*crt_bundle_attach)(void *conf)
Pointer to ESP x509 Certificate Bundle attach function for the usage of certificate bundles.
Client only attach the bundle, the clean up must be done by the user.

const char *certificate
Certificate data, default is NULL. It's not copied nor freed by the client, user needs to clean up.

size_t certificate_len
Length of the buffer pointed to by certificate.

const struct psk_key_hint *psk_hint_key
Pointer to PSK struct defined in esp_tls.h to enable PSK authentication (as alternative to cer-
tificate verification). PSK is enabled only if there are no other ways to verify broker. It's not
copied nor freed by the client, user needs to clean up.

bool skip_cert_common_name_check
Skip any validation of server certificate CN field, this reduces the security of TLS and makes
the MQTT client susceptible to MITM attacks

const char **alpn_protos
NULL-terminated list of supported application protocols to be used for ALPN.

const char *common_name
Pointer to the string containing server certificate common name. If non-NULL, server certificate
CNmustmatch this name, If NULL, server certificate CNmustmatch hostname. This is ignored
if skip_cert_common_name_check=true. It's not copied nor freed by the client, user needs to
clean up.

struct buffer_t
Client buffer size configuration
Client have two buffers for input and output respectivelly.

Public Members

Espressif Systems 51
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int size
size of MQTT send/receive buffer

int out_size
size of MQTT output buffer. If not defined, defaults to the size defined by buffer_size

struct credentials_t
Client related credentials for authentication.

Public Members

const char *username
MQTT username

const char *client_id
Set MQTT client identifier. Ignored if set_null_client_id == true If NULL set the default client id.
Default client id is ESP32_CHIPID% where CHIPID% are last 3 bytes of MAC address in hex
format

bool set_null_client_id
Selects a NULL client id

struct esp_mqtt_client_config_t::credentials_t::authentication_t authentication
Client authentication

struct authentication_t
Client authentication
Fields related to client authentication by broker
For mutual authentication using TLS, user could select certificate and key, secure element or digital
signature peripheral if available.

Public Members

const char *password
MQTT password

const char *certificate
Certificate for ssl mutual authentication, not required if mutual authentication is not needed.
Must be provided with key. It's not copied nor freed by the client, user needs to clean up.

size_t certificate_len
Length of the buffer pointed to by certificate.

const char *key
Private key for SSL mutual authentication, not required if mutual authentication is not needed.
If it is not NULL, also certificate has to be provided. It's not copied nor freed by the
client, user needs to clean up.

Espressif Systems 52
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

size_t key_len
Length of the buffer pointed to by key.

const char *key_password
Client key decryption password, not PEM nor DER, if provided key_password_len must
be correctly set.

int key_password_len
Length of the password pointed to by key_password

bool use_secure_element
Enable secure element, available in ESP32-ROOM-32SE, for SSL connection

void *ds_data
Carrier of handle for digital signature parameters, digital signature peripheral is available in
some Espressif devices. It's not copied nor freed by the client, user needs to clean up.

struct network_t
Network related configuration

Public Members

int reconnect_timeout_ms
Reconnect to the broker after this value in miliseconds if auto reconnect is not disabled (defaults to
10s)

int timeout_ms
Abort network operation if it is not completed after this value, in milliseconds (defaults to 10s).

int refresh_connection_after_ms
Refresh connection after this value (in milliseconds)

bool disable_auto_reconnect
Client will reconnect to server (when errors/disconnect). Set dis-
able_auto_reconnect=true to disable

esp_transport_handle_t transport
Custom transport handle to use. Warning: The transport should be valid during the client lifetime
and is destroyed when esp_mqtt_client_destroy is called.

struct ifreq *if_name
The name of interface for data to go through. Use the default interface without setting

struct outbox_config_t
Client outbox configuration options.

Public Members

Espressif Systems 53
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint64_t limit
Size limit for the outbox in bytes.

struct session_t
MQTT Session related configuration

Public Members

struct esp_mqtt_client_config_t::session_t::last_will_t last_will

Last will configuration

bool disable_clean_session
MQTT clean session, default clean_session is true

int keepalive
MQTT keepalive, default is 120 seconds When configuring this value, keep in mind that the client
attempts to communicate with the broker at half the interval that is actually set. This conservative
approach allows for more attempts before the broker's timeout occurs

bool disable_keepalive
Set disable_keepalive=true to turn off keep-alive mechanism, keepalive is active by de-
fault. Note: setting the config value keepalive to 0 doesn't disable keepalive feature, but uses a
default keepalive period

esp_mqtt_protocol_ver_t protocol_ver

MQTT protocol version used for connection.

int message_retransmit_timeout
timeout for retransmitting of failed packet

struct last_will_t
Last Will and Testament message configuration.

Public Members

const char *topic
LWT (Last Will and Testament) message topic

const char *msg
LWT message, may be NULL terminated

int msg_len
LWT message length, if msg isn't NULL terminated must have the correct length

int qos
LWT message QoS

Espressif Systems 54
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int retain
LWT retained message flag

struct task_t
Client task configuration

Public Members

int priority
MQTT task priority

int stack_size
MQTT task stack size

struct topic_t
Topic definition struct

Public Members

const char *filter
Topic filter to subscribe

int qos
Max QoS level of the subscription

Macros

MQTT_ERROR_TYPE_ESP_TLS

MQTT_ERROR_TYPE_TCP_TRANSPORT error type hold all sorts of transport layer errors, including ESP-
TLS error, but in the past only the errors from MQTT_ERROR_TYPE_ESP_TLS layer were reported, so the
ESP-TLS error type is re-defined here for backward compatibility

esp_mqtt_client_subscribe(client_handle, topic_type, qos_or_size)
Convenience macro to select subscribe function to use.
Notes:

• Usage of esp_mqtt_client_subscribe_single is the same as previous
esp_mqtt_client_subscribe, refer to it for details.

Parameters
• client_handle -- MQTT client handle
• topic_type -- Needs to be char* for single subscription or esp_mqtt_topic_t
for multiple topics

• qos_or_size -- It's either a qos when subscribing to a single topic or the size of the
subscription array when subscribing to multiple topics.

Returns message_id of the subscribe message on success -1 on failure -2 in case of full outbox.

Type Definitions

typedef struct esp_mqtt_client *esp_mqtt_client_handle_t

Espressif Systems 55
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef enum esp_mqtt_event_id_t esp_mqtt_event_id_t

MQTT event types.
User event handler receives context data in esp_mqtt_event_t structure with

• client - MQTT client handle
• various other data depending on event type

typedef enum esp_mqtt_connect_return_code_t esp_mqtt_connect_return_code_t

MQTT connection error codes propagated via ERROR event

typedef enum esp_mqtt_error_type_t esp_mqtt_error_type_t

MQTT connection error codes propagated via ERROR event

typedef enum esp_mqtt_transport_t esp_mqtt_transport_t

typedef enum esp_mqtt_protocol_ver_t esp_mqtt_protocol_ver_t

MQTT protocol version used for connection

typedef struct esp_mqtt_error_codes esp_mqtt_error_codes_t

MQTT error code structure to be passed as a contextual information into ERROR event
Important: This structure extends esp_tls_last_error error structure and is backward compatible with
it (so might be down-casted and treated as esp_tls_last_error error, but recommended to update
applications if used this way previously)
Use this structure directly checking error_type first and then appropriate error code depending on the source
of the error:
| error_type | related member variables | note | | MQTT_ERROR_TYPE_TCP_TRANSPORT |
esp_tls_last_esp_err, esp_tls_stack_err, esp_tls_cert_verify_flags, sock_errno | Error reported from
tcp_transport/esp-tls | | MQTT_ERROR_TYPE_CONNECTION_REFUSED | connect_return_code | Inter-
nal error reported from MQTT broker on connection |

typedef struct esp_mqtt_event_t esp_mqtt_event_t

MQTT event configuration structure

typedef esp_mqtt_event_t *esp_mqtt_event_handle_t

typedef struct esp_mqtt_client_config_t esp_mqtt_client_config_t

MQTT client configuration structure

• Default values can be set via menuconfig
• All certificates and key data could be passed in PEMorDER format. PEM formatmust have a terminating
NULL character and the related len field set to 0. DER format requires a related len field set to the correct
length.

typedef struct topic_t esp_mqtt_topic_t
Topic definition struct

Enumerations

Espressif Systems 56
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum esp_mqtt_event_id_t

MQTT event types.
User event handler receives context data in esp_mqtt_event_t structure with

• client - MQTT client handle
• various other data depending on event type

Values:

enumerator MQTT_EVENT_ANY

enumerator MQTT_EVENT_ERROR
on error event, additional context: connection return code, error handle from esp_tls (if supported)

enumerator MQTT_EVENT_CONNECTED
connected event, additional context: session_present flag

enumerator MQTT_EVENT_DISCONNECTED
disconnected event

enumerator MQTT_EVENT_SUBSCRIBED
subscribed event, additional context:
• msg_id message id
• error_handle error_type in case subscribing failed
• data pointer to broker response, check for errors.
• data_len length of the data for this event

enumerator MQTT_EVENT_UNSUBSCRIBED
unsubscribed event, additional context: msg_id

enumerator MQTT_EVENT_PUBLISHED
published event, additional context: msg_id

enumerator MQTT_EVENT_DATA
data event, additional context:
• msg_id message id
• topic pointer to the received topic
• topic_len length of the topic
• data pointer to the received data
• data_len length of the data for this event
• current_data_offset offset of the current data for this event
• total_data_len total length of the data received
• retain retain flag of the message
• qos QoS level of the message
• dup dup flag of the message Note: Multiple MQTT_EVENT_DATA could be fired for one message,
if it is longer than internal buffer. In that case only first event contains topic pointer and length, other
contain data only with current data length and current data offset updating.

enumerator MQTT_EVENT_BEFORE_CONNECT
The event occurs before connecting

Espressif Systems 57
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator MQTT_EVENT_DELETED
Notification on delete of one message from the internal outbox, if the message couldn't have been sent
and acknowledged before expiring defined in OUTBOX_EXPIRED_TIMEOUT_MS. (events are not
posted upon deletion of successfully acknowledged messages)
• This event id is posted only if MQTT_REPORT_DELETED_MESSAGES==1
• Additional context: msg_id (id of the deleted message).

enumerator MQTT_USER_EVENT
Custom event used to queue tasks into mqtt event handler All fields from the esp_mqtt_event_t type could
be used to pass an additional context data to the handler.

enum esp_mqtt_connect_return_code_t

MQTT connection error codes propagated via ERROR event
Values:

enumerator MQTT_CONNECTION_ACCEPTED
Connection accepted

enumerator MQTT_CONNECTION_REFUSE_PROTOCOL
MQTT connection refused reason: Wrong protocol

enumerator MQTT_CONNECTION_REFUSE_ID_REJECTED
MQTT connection refused reason: ID rejected

enumerator MQTT_CONNECTION_REFUSE_SERVER_UNAVAILABLE
MQTT connection refused reason: Server unavailable

enumerator MQTT_CONNECTION_REFUSE_BAD_USERNAME
MQTT connection refused reason: Wrong user

enumerator MQTT_CONNECTION_REFUSE_NOT_AUTHORIZED
MQTT connection refused reason: Wrong username or password

enum esp_mqtt_error_type_t

MQTT connection error codes propagated via ERROR event
Values:

enumerator MQTT_ERROR_TYPE_NONE

enumerator MQTT_ERROR_TYPE_TCP_TRANSPORT

enumerator MQTT_ERROR_TYPE_CONNECTION_REFUSED

enumerator MQTT_ERROR_TYPE_SUBSCRIBE_FAILED

enum esp_mqtt_transport_t

Values:

Espressif Systems 58
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator MQTT_TRANSPORT_UNKNOWN

enumerator MQTT_TRANSPORT_OVER_TCP
MQTT over TCP, using scheme: MQTT

enumerator MQTT_TRANSPORT_OVER_SSL
MQTT over SSL, using scheme: MQTTS

enumerator MQTT_TRANSPORT_OVER_WS
MQTT over Websocket, using scheme:: ws

enumerator MQTT_TRANSPORT_OVER_WSS
MQTT over Websocket Secure, using scheme: wss

enum esp_mqtt_protocol_ver_t

MQTT protocol version used for connection
Values:

enumerator MQTT_PROTOCOL_UNDEFINED

enumerator MQTT_PROTOCOL_V_3_1

enumerator MQTT_PROTOCOL_V_3_1_1

enumerator MQTT_PROTOCOL_V_5

2.2.4 ESP-TLS

Overview

The ESP-TLS component provides a simplified API interface for accessing the commonly used TLS functionality.
It supports common scenarios like CA certification validation, SNI, ALPN negotiation, non-blocking connection
among others. All the configuration can be specified in the esp_tls_cfg_t data structure. Once done, TLS
communication can be conducted using the following APIs:

• esp_tls_init(): for initializing the TLS connection handle.
• esp_tls_conn_new_sync(): for opening a new blocking TLS connection.
• esp_tls_conn_new_async(): for opening a new non-blocking TLS connection.
• esp_tls_conn_read(): for reading from the connection.
• esp_tls_conn_write(): for writing into the connection.
• esp_tls_conn_destroy(): for freeing up the connection.

Any application layer protocol like HTTP1, HTTP2 etc can be executed on top of this layer.

Application Example

Simple HTTPS example that uses ESP-TLS to establish a secure socket connection: protocols/https_request.

Espressif Systems 59
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_request
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Tree structure for ESP-TLS component

├── esp_tls.c
├── esp_tls.h
├── esp_tls_mbedtls.c
├── esp_tls_wolfssl.c
└── private_include

├── esp_tls_mbedtls.h
└── esp_tls_wolfssl.h

The ESP-TLS component has a file esp-tls/esp_tls.h which contain the public API headers for the component. Inter-
nally ESP-TLS component uses one of the two SSL/TLS Libraries between mbedtls and wolfssl for its operation. API
specific to mbedtls are present in esp-tls/private_include/esp_tls_mbedtls.h and API specific to wolfssl are present in
esp-tls/private_include/esp_tls_wolfssl.h.

TLS Server verification

The ESP-TLS provides multiple options for TLS server verification on the client side. The ESP-TLS client can verify
the server by validating the peer's server certificate or with the help of pre-shared keys. The user should select only
one of the following options in the esp_tls_cfg_t structure for TLS server verification. If no option is selected
then client will return a fatal error by default at the time of the TLS connection setup.

• cacert_buf and cacert_bytes: The CA certificate can be provided in a buffer to the esp_tls_cfg_t struc-
ture. The ESP-TLS will use the CA certificate present in the buffer to verify the server. The following variables
in esp_tls_cfg_t structure must be set.

– cacert_buf - pointer to the buffer which contains the CA cert.
– cacert_bytes - size of the CA certificate in bytes.

• use_global_ca_store: The global_ca_store can be initialized and set at once. Then it can be used
to verify the server for all the ESP-TLS connections which have set use_global_ca_store = true
in their respective esp_tls_cfg_t structure. See API Reference section below on information regarding
different API used for initializing and setting up the global_ca_store.

• crt_bundle_attach: The ESP x509 Certificate Bundle API provides an easy way to include a bundle of custom
x509 root certificates for TLS server verification. More details can be found at ESP x509 Certificate Bundle

• psk_hint_key: To use pre-shared keys for server verification, CONFIG_ESP_TLS_PSK_VERIFICATION
should be enabled in the ESP-TLS menuconfig. Then the pointer to PSK hint and key should be provided
to the esp_tls_cfg_t structure. The ESP-TLS will use the PSK for server verification only when no other
option regarding the server verification is selected.

• skip server verification: This is an insecure option provided in the ESP-TLS for test-
ing purpose. The option can be set by enabling CONFIG_ESP_TLS_INSECURE and CON-
FIG_ESP_TLS_SKIP_SERVER_CERT_VERIFY in the ESP-TLS menuconfig. When this option is enabled the
ESP-TLS will skip server verification by default when no other options for server verification are selected in
the esp_tls_cfg_t structure. WARNING:Enabling this option comes with a potential risk of establishing a
TLS connection with a server which has a fake identity, provided that the server certificate is not provided either
through API or other mechanism like ca_store etc.

ESP-TLS Server cert selection hook

The ESP-TLS component provides an option to set the server cert selection hook when using the mbedTLS stack.
This provides an ability to configure and use a certificate selection callback during server handshake, to select a
certificate to present to the client based on the TLS extensions supplied in the client hello (alpn, sni, etc). To enable
this feature, please enable CONFIG_ESP_TLS_SERVER_CERT_SELECT_HOOK in the ESP-TLS menuconfig. The
certificate selection callback can be configured in the esp_tls_cfg_t structure as follows:

int cert_selection_callback(mbedtls_ssl_context *ssl)
{

/* Code that the callback should execute */
return 0;

(continues on next page)

Espressif Systems 60
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp-tls/esp_tls.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp-tls/private_include/esp_tls_mbedtls.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp-tls/private_include/esp_tls_wolfssl.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
}

esp_tls_cfg_t cfg = {
cert_select_cb = cert_section_callback,

};

Underlying SSL/TLS Library Options

The ESP-TLS component has an option to use mbedtls or wolfssl as their underlying SSL/TLS library. By default
only mbedtls is available and is used, wolfssl SSL/TLS library is available publicly at https://github.com/espressif/
esp-wolfssl. The repository provides wolfssl component in binary format, it also provides few examples which are
useful for understanding the API. Please refer the repository README.md for information on licensing and other
options. Please see below option for using wolfssl in your project.

Note: As the library options are internal to ESP-TLS, switching the libraries will not change ESP-TLS specific code
for a project.

How to use wolfssl with ESP-IDF

There are two ways to use wolfssl in your project
1) Directly add wolfssl as a component in your project with following three commands.:

(First change directory (cd) to your project directory)
mkdir components
cd components
git clone https://github.com/espressif/esp-wolfssl.git

2) Add wolfssl as an extra component in your project.
• Download wolfssl with:

git clone https://github.com/espressif/esp-wolfssl.git

• Include esp-wolfssl in ESP-IDFwith setting EXTRA_COMPONENT_DIRS in CMakeLists.txt of your project
as done in wolfssl/examples. For reference see Optional Project variables in build-system.

After above steps, you will have option to choose wolfssl as underlying SSL/TLS library in configuration menu of
your project as follows:

idf.py menuconfig -> ESP-TLS -> choose SSL/TLS Library -> mbedtls/wolfssl

Comparison between mbedtls and wolfssl

The following table shows a typical comparison between wolfssl and mbedtls when protocols/https_request exam-
ple (which has server authentication) was run with both SSL/TLS libraries and with all respective configurations
set to default. (mbedtls IN_CONTENT length and OUT_CONTENT length were set to 16384 bytes and 4096 bytes
respectively)

Property Wolfssl Mbedtls
Total Heap Consumed ~19 Kb ~37 Kb
Task Stack Used ~2.2 Kb ~3.6 Kb
Bin size ~858 Kb ~736 Kb

Espressif Systems 61
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-wolfssl
https://github.com/espressif/esp-wolfssl
https://github.com/espressif/esp-wolfssl/tree/master/examples
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_request
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: These values are subject to change with change in configuration options and version of respective libraries.

Digital Signature with ESP-TLS

ESP-TLS provides support for using the Digital Signature (DS) with ESP32-C6. Use of the DS for TLS is supported
only when ESP-TLS is used with mbedTLS (default stack) as its underlying SSL/TLS stack. For more details on
Digital Signature, please refer to the Digital Signature Documentation. The technical details of Digital Signature such
as how to calculate private key parameters can be found in ESP32-C6 Technical Reference Manual > Digital Signature
(DS) [PDF]. The DS peripheral must be configured before it can be used to perform Digital Signature, see Configure
the DS Peripheral in Digital Signature.
The DS peripheral must be initlized with the required encrypted private key parameters (obtained when the DS
peripheral is configured). ESP-TLS internally initializes the DS peripheral when provided with the required DS
context (DS parameters). Please see the below code snippet for passing the DS context to esp-tls context. The DS
context passed to the esp-tls context should not be freed till the TLS connection is deleted.

#include "esp_tls.h"
esp_ds_data_ctx_t *ds_ctx;
/* initialize ds_ctx with encrypted private key parameters, which can be read from␣
↪→the nvs or
provided through the application code */
esp_tls_cfg_t cfg = {

.clientcert_buf = /* the client cert */,

.clientcert_bytes = /* length of the client cert */,
/* other configurations options */
.ds_data = (void *)ds_ctx,

};

Note: When using Digital Signature for the TLS connection, along with the other required params, only the client
cert (clientcert_buf) and the DS params (ds_data) are required and the client key (clientkey_buf) can be set to NULL.

• An example of mutual authentication with the DS peripheral can be found at ssl mutual auth which internally
uses (ESP-TLS) for the TLS connection.

API Reference

Header File
• components/esp-tls/esp_tls.h

Functions
esp_tls_t *esp_tls_init(void)

Create TLS connection.
This function allocates and initializes esp-tls structure handle.

Returns tls Pointer to esp-tls as esp-tls handle if successfully initialized, NULL if allocation error
esp_tls_t *esp_tls_conn_http_new(const char *url, const esp_tls_cfg_t *cfg)

Create a new blocking TLS/SSL connection with a given "HTTP" url.
Note: This API is present for backward compatibility reasons. Alternative function with
the same functionality is esp_tls_conn_http_new_sync (and its asynchronous version
esp_tls_conn_http_new_async)

Parameters
• url -- [in] url of host.

Espressif Systems 62
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#digsig
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/mqtt/ssl_mutual_auth
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp-tls/esp_tls.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• cfg -- [in] TLS configuration as esp_tls_cfg_t. If you wish to open non-TLS connection,
keep this NULL. For TLS connection, a pass pointer to 'esp_tls_cfg_t'. At a minimum,
this structure should be zero-initialized.

Returns pointer to esp_tls_t, or NULL if connection couldn't be opened.
int esp_tls_conn_new_sync(const char *hostname, int hostlen, int port, const esp_tls_cfg_t *cfg, esp_tls_t

*tls)
Create a new blocking TLS/SSL connection.
This function establishes a TLS/SSL connection with the specified host in blocking manner.

Parameters
• hostname -- [in] Hostname of the host.
• hostlen -- [in] Length of hostname.
• port -- [in] Port number of the host.
• cfg -- [in] TLS configuration as esp_tls_cfg_t. If you wish to open non-TLS connection,
keep this NULL. For TLS connection, a pass pointer to esp_tls_cfg_t. At a minimum, this
structure should be zero-initialized.

• tls -- [in] Pointer to esp-tls as esp-tls handle.
Returns

• -1 If connection establishment fails.
• 1 If connection establishment is successful.
• 0 If connection state is in progress.

int esp_tls_conn_http_new_sync(const char *url, const esp_tls_cfg_t *cfg, esp_tls_t *tls)
Create a new blocking TLS/SSL connection with a given "HTTP" url.
The behaviour is same as esp_tls_conn_new_sync() API. However this API accepts host's url.

Parameters
• url -- [in] url of host.
• cfg -- [in] TLS configuration as esp_tls_cfg_t. If you wish to open non-TLS connection,
keep this NULL. For TLS connection, a pass pointer to 'esp_tls_cfg_t'. At a minimum,
this structure should be zero-initialized.

• tls -- [in] Pointer to esp-tls as esp-tls handle.
Returns

• -1 If connection establishment fails.
• 1 If connection establishment is successful.
• 0 If connection state is in progress.

int esp_tls_conn_new_async(const char *hostname, int hostlen, int port, const esp_tls_cfg_t *cfg, esp_tls_t
*tls)

Create a new non-blocking TLS/SSL connection.
This function initiates a non-blocking TLS/SSL connection with the specified host, but due to its non-blocking
nature, it doesn't wait for the connection to get established.

Parameters
• hostname -- [in] Hostname of the host.
• hostlen -- [in] Length of hostname.
• port -- [in] Port number of the host.
• cfg -- [in] TLS configuration as esp_tls_cfg_t. non_block member of this structure
should be set to be true.

• tls -- [in] pointer to esp-tls as esp-tls handle.
Returns

• -1 If connection establishment fails.
• 0 If connection establishment is in progress.
• 1 If connection establishment is successful.

int esp_tls_conn_http_new_async(const char *url, const esp_tls_cfg_t *cfg, esp_tls_t *tls)
Create a new non-blocking TLS/SSL connection with a given "HTTP" url.
The behaviour is same as esp_tls_conn_new_async() API. However this API accepts host's url.

Espressif Systems 63
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• url -- [in] url of host.
• cfg -- [in] TLS configuration as esp_tls_cfg_t.
• tls -- [in] pointer to esp-tls as esp-tls handle.

Returns
• -1 If connection establishment fails.
• 0 If connection establishment is in progress.
• 1 If connection establishment is successful.

ssize_t esp_tls_conn_write(esp_tls_t *tls, const void *data, size_t datalen)
Write from buffer 'data' into specified tls connection.

Parameters
• tls -- [in] pointer to esp-tls as esp-tls handle.
• data -- [in] Buffer from which data will be written.
• datalen -- [in] Length of data buffer.

Returns
• >=0 if write operation was successful, the return value is the number of bytes actually
written to the TLS/SSL connection.

• <0 if write operation was not successful, because either an error occured or an action must
be taken by the calling process.

• ESP_TLS_ERR_SSL_WANT_READ/ ESP_TLS_ERR_SSL_WANT_WRITE. if the
handshake is incomplete and waiting for data to be available for reading. In this case this
functions needs to be called again when the underlying transport is ready for operation.

ssize_t esp_tls_conn_read(esp_tls_t *tls, void *data, size_t datalen)
Read from specified tls connection into the buffer 'data'.

Parameters
• tls -- [in] pointer to esp-tls as esp-tls handle.
• data -- [in] Buffer to hold read data.
• datalen -- [in] Length of data buffer.

Returns
• >0 if read operation was successful, the return value is the number of bytes actually read
from the TLS/SSL connection.

• 0 if read operation was not successful. The underlying connection was closed.
• <0 if read operation was not successful, because either an error occured or an action must
be taken by the calling process.

int esp_tls_conn_destroy(esp_tls_t *tls)
Close the TLS/SSL connection and free any allocated resources.
This function should be called to close each tls connection opened with esp_tls_conn_new_sync() (or
esp_tls_conn_http_new_sync()) and esp_tls_conn_new_async() (or esp_tls_conn_http_new_async()) APIs.

Parameters tls -- [in] pointer to esp-tls as esp-tls handle.
Returns - 0 on success

• -1 if socket error or an invalid argument
ssize_t esp_tls_get_bytes_avail(esp_tls_t *tls)

Return the number of application data bytes remaining to be read from the current record.
This API is a wrapper over mbedtls's mbedtls_ssl_get_bytes_avail() API.

Parameters tls -- [in] pointer to esp-tls as esp-tls handle.
Returns

• -1 in case of invalid arg
• bytes available in the application data record read buffer

esp_err_t esp_tls_get_conn_sockfd(esp_tls_t *tls, int *sockfd)
Returns the connection socket file descriptor from esp_tls session.

Parameters

Espressif Systems 64
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• tls -- [in] handle to esp_tls context
• sockfd -- [out] int pointer to sockfd value.

Returns - ESP_OK on success and value of sockfd will be updated with socket file descriptor for
connection
• ESP_ERR_INVALID_ARG if (tls == NULL || sockfd == NULL)

esp_err_t esp_tls_set_conn_sockfd(esp_tls_t *tls, int sockfd)
Sets the connection socket file descriptor for the esp_tls session.

Parameters
• tls -- [in] handle to esp_tls context
• sockfd -- [in] sockfd value to set.

Returns - ESP_OK on success and value of sockfd for the tls connection shall updated withthe
provided value
• ESP_ERR_INVALID_ARG if (tls == NULL || sockfd < 0)

esp_err_t esp_tls_get_conn_state(esp_tls_t *tls, esp_tls_conn_state_t *conn_state)
Gets the connection state for the esp_tls session.

Parameters
• tls -- [in] handle to esp_tls context
• conn_state -- [out] pointer to the connection state value.

Returns - ESP_OK on success and value of sockfd for the tls connection shall updated withthe
provided value
• ESP_ERR_INVALID_ARG (Invalid arguments)

esp_err_t esp_tls_set_conn_state(esp_tls_t *tls, esp_tls_conn_state_t conn_state)
Sets the connection state for the esp_tls session.

Parameters
• tls -- [in] handle to esp_tls context
• conn_state -- [in] connection state value to set.

Returns - ESP_OK on success and value of sockfd for the tls connection shall updated withthe
provided value
• ESP_ERR_INVALID_ARG (Invalid arguments)

void *esp_tls_get_ssl_context(esp_tls_t *tls)
Returns the ssl context.

Parameters tls -- [in] handle to esp_tls context
Returns - ssl_ctx pointer to ssl context of underlying TLS layer on success

• NULL in case of error
esp_err_t esp_tls_init_global_ca_store(void)

Create a global CA store, initially empty.
This function should be called if the application wants to use the same CA store for multiple connections. This
function initialises the global CA store which can be then set by calling esp_tls_set_global_ca_store(). To be
effective, this function must be called before any call to esp_tls_set_global_ca_store().

Returns
• ESP_OK if creating global CA store was successful.
• ESP_ERR_NO_MEM if an error occured when allocating the mbedTLS resources.

esp_err_t esp_tls_set_global_ca_store(const unsigned char *cacert_pem_buf, const unsigned int
cacert_pem_bytes)

Set the global CA store with the buffer provided in pem format.
This function should be called if the application wants to set the global CA store for multiple connections
i.e. to add the certificates in the provided buffer to the certificate chain. This function implicitly calls
esp_tls_init_global_ca_store() if it has not already been called. The application must call this function be-
fore calling esp_tls_conn_new().

Parameters

Espressif Systems 65
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• cacert_pem_buf -- [in] Buffer which has certificates in pem format. This buffer is
used for creating a global CA store, which can be used by other tls connections.

• cacert_pem_bytes -- [in] Length of the buffer.
Returns

• ESP_OK if adding certificates was successful.
• Other if an error occured or an action must be taken by the calling process.

void esp_tls_free_global_ca_store(void)
Free the global CA store currently being used.
The memory being used by the global CA store to store all the parsed certificates is freed up. The application
can call this API if it no longer needs the global CA store.

esp_err_t esp_tls_get_and_clear_last_error(esp_tls_error_handle_t h, int *esp_tls_code, int
*esp_tls_flags)

Returns last error in esp_tls with detailedmbedtls related error codes. The error information is cleared internally
upon return.

Parameters
• h -- [in] esp-tls error handle.
• esp_tls_code -- [out] last error code returned from mbedtls api (set to zero if none)
This pointer could be NULL if caller does not care about esp_tls_code

• esp_tls_flags -- [out] last certification verification flags (set to zero if none) This
pointer could be NULL if caller does not care about esp_tls_code

Returns
• ESP_ERR_INVALID_STATE if invalid parameters
• ESP_OK (0) if no error occurred
• specific error code (based on ESP_ERR_ESP_TLS_BASE) otherwise

esp_err_t esp_tls_get_and_clear_error_type(esp_tls_error_handle_t h, esp_tls_error_type_t
err_type, int *error_code)

Returns the last error captured in esp_tls of a specific type The error information is cleared internally upon
return.

Parameters
• h -- [in] esp-tls error handle.
• err_type -- [in] specific error type
• error_code -- [out] last error code returned frommbedtls api (set to zero if none) This
pointer could be NULL if caller does not care about esp_tls_code

Returns
• ESP_ERR_INVALID_STATE if invalid parameters
• ESP_OK if a valid error returned and was cleared

esp_err_t esp_tls_get_error_handle(esp_tls_t *tls, esp_tls_error_handle_t *error_handle)
Returns the ESP-TLS error_handle.

Parameters
• tls -- [in] handle to esp_tls context
• error_handle -- [out] pointer to the error handle.

Returns
• ESP_OK on success and error_handle will be updated with the ESP-TLS error handle.
• ESP_ERR_INVALID_ARG if (tls == NULL || error_handle == NULL)

mbedtls_x509_crt *esp_tls_get_global_ca_store(void)
Get the pointer to the global CA store currently being used.
The application must first call esp_tls_set_global_ca_store(). Then the same CA store could be used by the
application for APIs other than esp_tls.

Note: Modifying the pointer might cause a failure in verifying the certificates.

Espressif Systems 66
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• Pointer to the global CA store currently being used if successful.
• NULL if there is no global CA store set.

esp_err_t esp_tls_plain_tcp_connect(const char *host, int hostlen, int port, const esp_tls_cfg_t *cfg,
esp_tls_error_handle_t error_handle, int *sockfd)

Creates a plain TCP connection, returning a valid socket fd on success or an error handle.
Parameters

• host -- [in] Hostname of the host.
• hostlen -- [in] Length of hostname.
• port -- [in] Port number of the host.
• cfg -- [in] ESP-TLS configuration as esp_tls_cfg_t.
• error_handle -- [out] ESP-TLS error handle holding potential errors occurred during
connection

• sockfd -- [out] Socket descriptor if successfully connected on TCP layer
Returns ESP_OK on success ESP_ERR_INVALID_ARG if invalid output parameters ESP-TLS

based error codes on failure

Structures

struct psk_key_hint
ESP-TLS preshared key and hint structure.

Public Members

const uint8_t *key
key in PSK authentication mode in binary format

const size_t key_size
length of the key

const char *hint
hint in PSK authentication mode in string format

struct tls_keep_alive_cfg
esp-tls client session ticket ctx
Keep alive parameters structure

Public Members

bool keep_alive_enable
Enable keep-alive timeout

int keep_alive_idle
Keep-alive idle time (second)

int keep_alive_interval
Keep-alive interval time (second)

Espressif Systems 67
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int keep_alive_count
Keep-alive packet retry send count

struct esp_tls_cfg
ESP-TLS configuration parameters.

Note: Note about format of certificates:
• This structure includes certificates of a Certificate Authority, of client or server as well as private keys,
which may be of PEM or DER format. In case of PEM format, the buffer must be NULL terminated
(with NULL character included in certificate size).

• Certificate Authority's certificate may be a chain of certificates in case of PEM format, but could be only
one certificate in case of DER format

• Variables names of certificates and private key buffers and sizes are defined as unions providing backward
compatibility for legacy *_pem_buf and *_pem_bytes names which suggested only PEM format was
supported. It is encouraged to use generic names such as cacert_buf and cacert_bytes.

Public Members

const char **alpn_protos
Application protocols required for HTTP2. If HTTP2/ALPN support is required, a list of protocols that
should be negotiated. The format is length followed by protocol name. For the most common cases the
following is ok: const char **alpn_protos = { "h2", NULL };
• where 'h2' is the protocol name

const unsigned char *cacert_buf
Certificate Authority's certificate in a buffer. Formatmay be PEMorDER, depending onmbedtls-support
This buffer should be NULL terminated in case of PEM

const unsigned char *cacert_pem_buf
CA certificate buffer legacy name

unsigned int cacert_bytes
Size of Certificate Authority certificate pointed to by cacert_buf (including NULL-terminator in case of
PEM format)

unsigned int cacert_pem_bytes
Size of Certificate Authority certificate legacy name

const unsigned char *clientcert_buf
Client certificate in a buffer Format may be PEM or DER, depending on mbedtls-support This buffer
should be NULL terminated in case of PEM

const unsigned char *clientcert_pem_buf
Client certificate legacy name

unsigned int clientcert_bytes
Size of client certificate pointed to by clientcert_pem_buf (including NULL-terminator in case of PEM
format)

Espressif Systems 68
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

unsigned int clientcert_pem_bytes
Size of client certificate legacy name

const unsigned char *clientkey_buf
Client key in a buffer Format may be PEM or DER, depending on mbedtls-support This buffer should be
NULL terminated in case of PEM

const unsigned char *clientkey_pem_buf
Client key legacy name

unsigned int clientkey_bytes
Size of client key pointed to by clientkey_pem_buf (including NULL-terminator in case of PEM format)

unsigned int clientkey_pem_bytes
Size of client key legacy name

const unsigned char *clientkey_password
Client key decryption password string

unsigned int clientkey_password_len
String length of the password pointed to by clientkey_password

bool use_ecdsa_peripheral
Use the ECDSA peripheral for the private key operations

uint8_t ecdsa_key_efuse_blk
The efuse block where the ECDSA key is stored

bool non_block
Configure non-blocking mode. If set to true the underneath socket will be configured in non blocking
mode after tls session is established

bool use_secure_element
Enable this option to use secure element or atecc608a chip (Integrated with ESP32-WROOM-32SE)

int timeout_ms
Network timeout in milliseconds. Note: If this value is not set, by default the timeout is set to 10 seconds.
If you wish that the session should wait indefinitely then please use a larger value e.g., INT32_MAX

bool use_global_ca_store
Use a global ca_store for all the connections in which this bool is set.

const char *common_name
If non-NULL, server certificate CN must match this name. If NULL, server certificate CN must match
hostname.

bool skip_common_name
Skip any validation of server certificate CN field

Espressif Systems 69
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

tls_keep_alive_cfg_t *keep_alive_cfg
Enable TCP keep-alive timeout for SSL connection

const psk_hint_key_t *psk_hint_key
Pointer to PSK hint and key. if not NULL (and certificates are NULL) then PSK authentication is enabled
with configured setup. Important note: the pointer must be valid for connection

esp_err_t (*crt_bundle_attach)(void *conf)
Function pointer to esp_crt_bundle_attach. Enables the use of certification bundle for server verification,
must be enabled in menuconfig

void *ds_data
Pointer for digital signature peripheral context

bool is_plain_tcp
Use non-TLS connection: When set to true, the esp-tls uses plain TCP transport rather then
TLS/SSL connection. Note, that it is possible to connect using a plain tcp transport directly with
esp_tls_plain_tcp_connect() API

struct ifreq *if_name
The name of interface for data to go through. Use the default interface without setting

esp_tls_addr_family_t addr_family

The address family to use when connecting to a host.

esp_tls_proto_ver_t tls_version

TLS protocol version of the connection, e.g., TLS 1.2, TLS 1.3 (default - no preference)

Type Definitions

typedef enum esp_tls_conn_state esp_tls_conn_state_t

ESP-TLS Connection State.

typedef enum esp_tls_role esp_tls_role_t

typedef struct psk_key_hint psk_hint_key_t
ESP-TLS preshared key and hint structure.

typedef struct tls_keep_alive_cfg tls_keep_alive_cfg_t
esp-tls client session ticket ctx
Keep alive parameters structure

typedef enum esp_tls_addr_family esp_tls_addr_family_t

typedef struct esp_tls_cfg esp_tls_cfg_t
ESP-TLS configuration parameters.

Note: Note about format of certificates:

Espressif Systems 70
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• This structure includes certificates of a Certificate Authority, of client or server as well as private keys,
which may be of PEM or DER format. In case of PEM format, the buffer must be NULL terminated
(with NULL character included in certificate size).

• Certificate Authority's certificate may be a chain of certificates in case of PEM format, but could be only
one certificate in case of DER format

• Variables names of certificates and private key buffers and sizes are defined as unions providing backward
compatibility for legacy *_pem_buf and *_pem_bytes names which suggested only PEM format was
supported. It is encouraged to use generic names such as cacert_buf and cacert_bytes.

typedef struct esp_tls esp_tls_t

Enumerations

enum esp_tls_conn_state

ESP-TLS Connection State.
Values:

enumerator ESP_TLS_INIT

enumerator ESP_TLS_CONNECTING

enumerator ESP_TLS_HANDSHAKE

enumerator ESP_TLS_FAIL

enumerator ESP_TLS_DONE

enum esp_tls_role

Values:

enumerator ESP_TLS_CLIENT

enumerator ESP_TLS_SERVER

enum esp_tls_addr_family

Values:

enumerator ESP_TLS_AF_UNSPEC
Unspecified address family.

enumerator ESP_TLS_AF_INET
IPv4 address family.

enumerator ESP_TLS_AF_INET6
IPv6 address family.

enum esp_tls_proto_ver_t

Values:

Espressif Systems 71
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_TLS_VER_ANY

enumerator ESP_TLS_VER_TLS_1_2

enumerator ESP_TLS_VER_TLS_1_3

enumerator ESP_TLS_VER_TLS_MAX

Header File
• components/esp-tls/esp_tls_errors.h

Structures

struct esp_tls_last_error
Error structure containing relevant errors in case tls error occurred.

Public Members

esp_err_t last_error

error code (based on ESP_ERR_ESP_TLS_BASE) of the last occurred error

int esp_tls_error_code
esp_tls error code from last esp_tls failed api

int esp_tls_flags
last certification verification flags

Macros

ESP_ERR_ESP_TLS_BASE

Starting number of ESP-TLS error codes

ESP_ERR_ESP_TLS_CANNOT_RESOLVE_HOSTNAME

Error if hostname couldn't be resolved upon tls connection

ESP_ERR_ESP_TLS_CANNOT_CREATE_SOCKET

Failed to create socket

ESP_ERR_ESP_TLS_UNSUPPORTED_PROTOCOL_FAMILY

Unsupported protocol family

ESP_ERR_ESP_TLS_FAILED_CONNECT_TO_HOST

Failed to connect to host

ESP_ERR_ESP_TLS_SOCKET_SETOPT_FAILED

failed to set/get socket option

Espressif Systems 72
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp-tls/esp_tls_errors.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_ESP_TLS_CONNECTION_TIMEOUT

new connection in esp_tls_low_level_conn connection timeouted

ESP_ERR_ESP_TLS_SE_FAILED

ESP_ERR_ESP_TLS_TCP_CLOSED_FIN

ESP_ERR_MBEDTLS_CERT_PARTLY_OK

mbedtls parse certificates was partly successful

ESP_ERR_MBEDTLS_CTR_DRBG_SEED_FAILED

mbedtls api returned error

ESP_ERR_MBEDTLS_SSL_SET_HOSTNAME_FAILED

mbedtls api returned error

ESP_ERR_MBEDTLS_SSL_CONFIG_DEFAULTS_FAILED

mbedtls api returned error

ESP_ERR_MBEDTLS_SSL_CONF_ALPN_PROTOCOLS_FAILED

mbedtls api returned error

ESP_ERR_MBEDTLS_X509_CRT_PARSE_FAILED

mbedtls api returned error

ESP_ERR_MBEDTLS_SSL_CONF_OWN_CERT_FAILED

mbedtls api returned error

ESP_ERR_MBEDTLS_SSL_SETUP_FAILED

mbedtls api returned error

ESP_ERR_MBEDTLS_SSL_WRITE_FAILED

mbedtls api returned error

ESP_ERR_MBEDTLS_PK_PARSE_KEY_FAILED

mbedtls api returned failed

ESP_ERR_MBEDTLS_SSL_HANDSHAKE_FAILED

mbedtls api returned failed

ESP_ERR_MBEDTLS_SSL_CONF_PSK_FAILED

mbedtls api returned failed

ESP_ERR_MBEDTLS_SSL_TICKET_SETUP_FAILED

mbedtls api returned failed

ESP_ERR_WOLFSSL_SSL_SET_HOSTNAME_FAILED

wolfSSL api returned error

Espressif Systems 73
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_WOLFSSL_SSL_CONF_ALPN_PROTOCOLS_FAILED

wolfSSL api returned error

ESP_ERR_WOLFSSL_CERT_VERIFY_SETUP_FAILED

wolfSSL api returned error

ESP_ERR_WOLFSSL_KEY_VERIFY_SETUP_FAILED

wolfSSL api returned error

ESP_ERR_WOLFSSL_SSL_HANDSHAKE_FAILED

wolfSSL api returned failed

ESP_ERR_WOLFSSL_CTX_SETUP_FAILED

wolfSSL api returned failed

ESP_ERR_WOLFSSL_SSL_SETUP_FAILED

wolfSSL api returned failed

ESP_ERR_WOLFSSL_SSL_WRITE_FAILED

wolfSSL api returned failed

ESP_TLS_ERR_SSL_WANT_READ

Definition of errors reported from IO API (potentially non-blocking) in case of error:
• esp_tls_conn_read()
• esp_tls_conn_write()

ESP_TLS_ERR_SSL_WANT_WRITE

ESP_TLS_ERR_SSL_TIMEOUT

Type Definitions

typedef struct esp_tls_last_error *esp_tls_error_handle_t

typedef struct esp_tls_last_error esp_tls_last_error_t
Error structure containing relevant errors in case tls error occurred.

Enumerations

enum esp_tls_error_type_t

Definition of different types/sources of error codes reported from different components
Values:

enumerator ESP_TLS_ERR_TYPE_UNKNOWN

enumerator ESP_TLS_ERR_TYPE_SYSTEM
System error — errno

Espressif Systems 74
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_TLS_ERR_TYPE_MBEDTLS
Error code from mbedTLS library

enumerator ESP_TLS_ERR_TYPE_MBEDTLS_CERT_FLAGS
Certificate flags defined in mbedTLS

enumerator ESP_TLS_ERR_TYPE_ESP
ESP-IDF error type — esp_err_t

enumerator ESP_TLS_ERR_TYPE_WOLFSSL
Error code from wolfSSL library

enumerator ESP_TLS_ERR_TYPE_WOLFSSL_CERT_FLAGS
Certificate flags defined in wolfSSL

enumerator ESP_TLS_ERR_TYPE_MAX
Last err type — invalid entry

2.2.5 ESP HTTP Client

Overview

esp_http_client component provides a set of APIs for making HTTP/S requests from ESP-IDF applications.
The steps to use these APIs are as follows:

• esp_http_client_init(): Creates an esp_http_client_handle_t instance, i.e., an HTTP
client handle based on the given esp_http_client_config_t configuration. This function must be the
first to be called; default values will be assumed for the configuration values that are not explicitly defined by
the user.

• esp_http_client_perform(): Performs all operations of the esp_http_client - opening the
connection, exchanging data, and closing the connection (as required), while blocking the current task
before its completion. All related events will be invoked through the event handler (as specified in
esp_http_client_config_t).

• esp_http_client_cleanup(): Closes the connection (if any) and frees up all the memory allocated
to the HTTP client instance. This must be the last function to be called after the completion of operations.

Application Example

Simple example that uses ESP HTTP Client to make HTTP/S requests can be found at protocols/esp_http_client.

Basic HTTP Request

Check out the example functions http_rest_with_url and http_rest_with_hostname_path in the
application example for implementation details.

Espressif Systems 75
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/esp_http_client
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Persistent Connections

Persistent connection means that the HTTP client can re-use the same connection for several exchanges. If the server
does not request to close the connection with the Connection: close header, the connection is not dropped
but is instead kept open and used for further requests.
To allow ESP HTTP client to take full advantage of persistent connections, one should make as many requests
as possible using the same handle instance. Check out the example functions http_rest_with_url and
http_rest_with_hostname_path in the application example. Here, once the connection is created, multiple
requests (GET, POST, PUT, etc.) are made before the connection is closed.

HTTPS Request

ESP HTTP client supports SSL connections using mbedTLS, with the url configuration starting with https
scheme or transport_type set to HTTP_TRANSPORT_OVER_SSL. HTTPS support can be configured via
CONFIG_ESP_HTTP_CLIENT_ENABLE_HTTPS (enabled by default).

Note: While making HTTPS requests, if server verification is needed, an additional root certificate (in PEM format)
needs to be provided to the cert_pem member in the esp_http_client_config_t configuration. Users
can also use the ESP x509 Certificate Bundle for server verification using the crt_bundle_attach
member of the esp_http_client_config_t configuration.

Check out the example functions https_with_url and https_with_hostname_path in the application
example for implementation details of the above note.

HTTP Stream

Some applications need to open the connection and control the exchange of data actively (data streaming). In such
cases, the application flow is different from regular requests. Example flow is given below:

• esp_http_client_init(): Create a HTTP client handle.
• esp_http_client_set_* or esp_http_client_delete_*: Modify the HTTP connection pa-
rameters (optional).

• esp_http_client_open(): Open the HTTP connection with write_len parameter (content length
that needs to be written to server), set write_len=0 for read-only connection.

• esp_http_client_write(): Write data to server with a maximum length equal to write_len of
esp_http_client_open() function; no need to call this function for write_len=0.

• esp_http_client_fetch_headers(): Read the HTTP Server response headers, after sending the
request headers and server data (if any). Returns the content-length from the server and can be suc-
ceeded by esp_http_client_get_status_code() for getting the HTTP status of the connection.

• esp_http_client_read(): Read the HTTP stream.
• esp_http_client_close(): Close the connection.
• esp_http_client_cleanup(): Release allocated resources.

Check out the example function http_perform_as_stream_reader in the application example for imple-
mentation details.

HTTP Authentication

ESP HTTP client supports both Basic and Digest Authentication.
• Users can provide the username and password in the url or the username and pass-
word members of the esp_http_client_config_t configuration. For auth_type =
HTTP_AUTH_TYPE_BASIC, the HTTP client takes only one perform operation to pass the authen-
tication process.

Espressif Systems 76
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• If auth_type = HTTP_AUTH_TYPE_NONE, but the username and password fields are present
in the configuration, the HTTP client takes two perform operations. The client will receive the 401
Unauthorized header in its first attempt to connect to the server. Based on this information, it decides
which authentication method to choose and performs it in the second operation.

• Check out the example functions http_auth_basic, http_auth_basic_redirect (for Basic
authentication) and http_auth_digest (for Digest authentication) in the application example for
implementation details.

Examples of Authentication Configuration
• Authentication with URI

esp_http_client_config_t config = {
.url = "http://user:passwd@httpbin.org/basic-auth/user/passwd",
.auth_type = HTTP_AUTH_TYPE_BASIC,

};

• Authentication with username and password entry

esp_http_client_config_t config = {
.url = "http://httpbin.org/basic-auth/user/passwd",
.username = "user",
.password = "passwd",
.auth_type = HTTP_AUTH_TYPE_BASIC,

};

Event Handling

ESP HTTP Client supports event handling by triggering an event handler corresponding to the event which takes
place. esp_http_client_event_id_t contains all the events which could occur while performing an HTTP
request using the ESP HTTP Client.
To enable event handling, you just need to set a callback function using the
esp_http_client_config_t::event_handler member.

ESP HTTP Client Diagnostic Information

Diagnostic information could be helpful to gain insights into a problem. In the case of ESP HTTP Client, the di-
agnostic information can be collected by registering an event handler with the Event Loop library. This feature has
been added by keeping in mind the ESP Insights framework which collects the diagnostic information. However, this
feature can also be used without any dependency on the ESP Insights framework for the diagnostic purpose. Event
handler can be registered to the event loop using the esp_event_handler_register() function.
Expected data types for different HTTP Client events in the event loop are as follows:

• HTTP_EVENT_ERROR : esp_http_client_handle_t
• HTTP_EVENT_ON_CONNECTED : esp_http_client_handle_t
• HTTP_EVENT_HEADERS_SENT : esp_http_client_handle_t
• HTTP_EVENT_ON_HEADER : esp_http_client_handle_t
• HTTP_EVENT_ON_DATA : esp_http_client_on_data_t
• HTTP_EVENT_ON_FINISH : esp_http_client_handle_t
• HTTP_EVENT_DISCONNECTED : esp_http_client_handle_t
• HTTP_EVENT_REDIRECT : esp_http_client_redirect_event_data_t

The esp_http_client_handle_t received along with the event data will be valid until
HTTP_EVENT_DISCONNECTED is not received. This handle has been sent primarily to differentiate be-
tween different client connections and must not be used for any other purpose, as it may change based on client
connection state.

Espressif Systems 77
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-insights
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/esp_http_client/include/esp_http_client.h

Functions
esp_http_client_handle_t esp_http_client_init(const esp_http_client_config_t *config)

Start a HTTP session This function must be the first function to call, and it returns a esp_http_client_handle_t
that you must use as input to other functions in the interface. This call MUST have a corresponding call to
esp_http_client_cleanup when the operation is complete.

Parameters config -- [in] The configurations, see http_client_config_t
Returns

• esp_http_client_handle_t
• NULL if any errors

esp_err_t esp_http_client_perform(esp_http_client_handle_t client)
Invoke this function after esp_http_client_init and all the options calls are made, and will perform
the transfer as described in the options. It must be called with the same esp_http_client_handle_t as input as
the esp_http_client_init call returned. esp_http_client_perform performs the entire request in either blocking
or non-blocking manner. By default, the API performs request in a blocking manner and returns when done,
or if it failed, and in non-blocking manner, it returns if EAGAIN/EWOULDBLOCK or EINPROGRESS is
encountered, or if it failed. And in case of non-blocking request, the user may call this API multiple times
unless request & response is complete or there is a failure. To enable non-blocking esp_http_client_perform(),
is_asyncmember of esp_http_client_config_t must be set while making a call to esp_http_client_init() API.
You can do any amount of calls to esp_http_client_perform while using the same esp_http_client_handle_t.
The underlying connection may be kept open if the server allows it. If you intend to transfer more than one
file, you are even encouraged to do so. esp_http_client will then attempt to reuse the same connection for
the following transfers, thus making the operations faster, less CPU intense and using less network resources.
Just note that you will have to use esp_http_client_set_** between the invokes to set options for the
following esp_http_client_perform.

Note: You must never call this function simultaneously from two places using the same client han-
dle. Let the function return first before invoking it another time. If you want parallel transfers,
you must use several esp_http_client_handle_t. This function include esp_http_client_open
-> esp_http_client_write -> esp_http_client_fetch_headers ->
esp_http_client_read (and option) esp_http_client_close.

Parameters client -- The esp_http_client handle
Returns

• ESP_OK on successful
• ESP_FAIL on error

esp_err_t esp_http_client_cancel_request(esp_http_client_handle_t client)
Cancel an ongoing HTTP request. This API closes the current socket and opens a new socket with the same
esp_http_client context.

Parameters client -- The esp_http_client handle
Returns

• ESP_OK on successful
• ESP_FAIL on error
• ESP_ERR_INVALID_ARG
• ESP_ERR_INVALID_STATE

esp_err_t esp_http_client_set_url(esp_http_client_handle_t client, const char *url)
Set URL for client, when performing this behavior, the options in the URL will replace the old ones.

Espressif Systems 78
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_http_client/include/esp_http_client.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• client -- [in] The esp_http_client handle
• url -- [in] The url

Returns
• ESP_OK
• ESP_FAIL

esp_err_t esp_http_client_set_post_field(esp_http_client_handle_t client, const char *data, int len)
Set post data, this function must be called before esp_http_client_perform. Note: The data param-
eter passed to this function is a pointer and this function will not copy the data.

Parameters
• client -- [in] The esp_http_client handle
• data -- [in] post data pointer
• len -- [in] post length

Returns
• ESP_OK
• ESP_FAIL

int esp_http_client_get_post_field(esp_http_client_handle_t client, char **data)
Get current post field information.

Parameters
• client -- [in] The client
• data -- [out] Point to post data pointer

Returns Size of post data
esp_err_t esp_http_client_set_header(esp_http_client_handle_t client, const char *key, const char

*value)
Set http request header, this function must be called after esp_http_client_init and before any perform function.

Parameters
• client -- [in] The esp_http_client handle
• key -- [in] The header key
• value -- [in] The header value

Returns
• ESP_OK
• ESP_FAIL

esp_err_t esp_http_client_get_header(esp_http_client_handle_t client, const char *key, char **value)
Get http request header. The value parameter will be set to NULL if there is no header which is same as the
key specified, otherwise the address of header value will be assigned to value parameter. This function must
be called after esp_http_client_init.

Parameters
• client -- [in] The esp_http_client handle
• key -- [in] The header key
• value -- [out] The header value

Returns
• ESP_OK
• ESP_FAIL

esp_err_t esp_http_client_get_username(esp_http_client_handle_t client, char **value)
Get http request username. The address of username buffer will be assigned to value parameter. This function
must be called after esp_http_client_init.

Parameters
• client -- [in] The esp_http_client handle
• value -- [out] The username value

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG

Espressif Systems 79
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_http_client_set_username(esp_http_client_handle_t client, const char *username)
Set http request username. The value of username parameter will be assigned to username buffer. If the
username parameter is NULL then username buffer will be freed.

Parameters
• client -- [in] The esp_http_client handle
• username -- [in] The username value

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG

esp_err_t esp_http_client_get_password(esp_http_client_handle_t client, char **value)
Get http request password. The address of password buffer will be assigned to value parameter. This function
must be called after esp_http_client_init.

Parameters
• client -- [in] The esp_http_client handle
• value -- [out] The password value

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG

esp_err_t esp_http_client_set_password(esp_http_client_handle_t client, const char *password)
Set http request password. The value of password parameter will be assigned to password buffer. If the
password parameter is NULL then password buffer will be freed.

Parameters
• client -- [in] The esp_http_client handle
• password -- [in] The password value

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG

esp_err_t esp_http_client_set_authtype(esp_http_client_handle_t client, esp_http_client_auth_type_t
auth_type)

Set http request auth_type.
Parameters

• client -- [in] The esp_http_client handle
• auth_type -- [in] The esp_http_client auth type

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG

esp_err_t esp_http_client_get_user_data(esp_http_client_handle_t client, void **data)
Get http request user_data. The value stored from the esp_http_client_config_t will be written to the address
passed into data.

Parameters
• client -- [in] The esp_http_client handle
• data -- [out] A pointer to the pointer that will be set to user_data.

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG

esp_err_t esp_http_client_set_user_data(esp_http_client_handle_t client, void *data)
Set http request user_data. The value passed in +data+ will be available during event callbacks. No memory
management will be performed on the user's behalf.

Parameters
• client -- [in] The esp_http_client handle
• data -- [in] The pointer to the user data

Espressif Systems 80
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG

int esp_http_client_get_errno(esp_http_client_handle_t client)
Get HTTP client session errno.

Parameters client -- [in] The esp_http_client handle
Returns

• (-1) if invalid argument
• errno

esp_err_t esp_http_client_set_method(esp_http_client_handle_t client, esp_http_client_method_t
method)

Set http request method.
Parameters

• client -- [in] The esp_http_client handle
• method -- [in] The method

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG

esp_err_t esp_http_client_set_timeout_ms(esp_http_client_handle_t client, int timeout_ms)
Set http request timeout.

Parameters
• client -- [in] The esp_http_client handle
• timeout_ms -- [in] The timeout value

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG

esp_err_t esp_http_client_delete_header(esp_http_client_handle_t client, const char *key)
Delete http request header.

Parameters
• client -- [in] The esp_http_client handle
• key -- [in] The key

Returns
• ESP_OK
• ESP_FAIL

esp_err_t esp_http_client_open(esp_http_client_handle_t client, int write_len)
This function will be open the connection, write all header strings and return.

Parameters
• client -- [in] The esp_http_client handle
• write_len -- [in] HTTP Content length need to write to the server

Returns
• ESP_OK
• ESP_FAIL

int esp_http_client_write(esp_http_client_handle_t client, const char *buffer, int len)
This function will write data to the HTTP connection previously opened by esp_http_client_open()

Parameters
• client -- [in] The esp_http_client handle
• buffer -- The buffer
• len -- [in] This value must not be larger than the write_len parameter provided to
esp_http_client_open()

Returns
• (-1) if any errors

Espressif Systems 81
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Length of data written
int64_t esp_http_client_fetch_headers(esp_http_client_handle_t client)

This function need to call after esp_http_client_open, it will read from http stream, process all receive headers.
Parameters client -- [in] The esp_http_client handle
Returns

• (0) if stream doesn't contain content-length header, or chunked encoding (checked by
esp_http_client_is_chunked response)

• (-1: ESP_FAIL) if any errors
• (-ESP_ERR_HTTP_EAGAIN = -0x7007) if call is timed-out before any data was ready
• Download data length defined by content-length header

bool esp_http_client_is_chunked_response(esp_http_client_handle_t client)
Check response data is chunked.

Parameters client -- [in] The esp_http_client handle
Returns true or false

int esp_http_client_read(esp_http_client_handle_t client, char *buffer, int len)
Read data from http stream.

Note: (-ESP_ERR_HTTP_EAGAIN = -0x7007) is returned when call is timed-out before any data was ready

Parameters
• client -- [in] The esp_http_client handle
• buffer -- The buffer
• len -- [in] The length

Returns
• (-1) if any errors
• Length of data was read

int esp_http_client_get_status_code(esp_http_client_handle_t client)
Get http response status code, the valid value if this function invoke after esp_http_client_perform

Parameters client -- [in] The esp_http_client handle
Returns Status code

int64_t esp_http_client_get_content_length(esp_http_client_handle_t client)
Get http response content length (from header Content-Length) the valid value if this function invoke after
esp_http_client_perform

Parameters client -- [in] The esp_http_client handle
Returns

• (-1) Chunked transfer
• Content-Length value as bytes

esp_err_t esp_http_client_close(esp_http_client_handle_t client)
Close http connection, still kept all http request resources.

Parameters client -- [in] The esp_http_client handle
Returns

• ESP_OK
• ESP_FAIL

esp_err_t esp_http_client_cleanup(esp_http_client_handle_t client)
This function must be the last function to call for an session. It is the opposite of the esp_http_client_init
function and must be called with the same handle as input that a esp_http_client_init call returned. This might
close all connections this handle has used and possibly has kept open until now. Don't call this function if you
intend to transfer more files, re-using handles is a key to good performance with esp_http_client.

Espressif Systems 82
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters client -- [in] The esp_http_client handle
Returns

• ESP_OK
• ESP_FAIL

esp_http_client_transport_t esp_http_client_get_transport_type(esp_http_client_handle_t client)
Get transport type.

Parameters client -- [in] The esp_http_client handle
Returns

• HTTP_TRANSPORT_UNKNOWN
• HTTP_TRANSPORT_OVER_TCP
• HTTP_TRANSPORT_OVER_SSL

esp_err_t esp_http_client_set_redirection(esp_http_client_handle_t client)
Set redirection URL. When received the 30x code from the server, the client stores the redirect URL pro-
vided by the server. This function will set the current URL to redirect to enable client to execute the redirec-
tion request. When disable_auto_redirect is set, the client will not call this function but the event
HTTP_EVENT_REDIRECT will be dispatched giving the user control over the redirection event.

Parameters client -- [in] The esp_http_client handle
Returns

• ESP_OK
• ESP_FAIL

esp_err_t esp_http_client_reset_redirect_counter(esp_http_client_handle_t client)
Reset the redirection counter. This is useful to reset redirect counter in cases where the same handle is used
for multiple requests.

Parameters client -- [in] The esp_http_client handle
Returns

• ESP_OK
• ESP_ERR_INVALID_ARG

void esp_http_client_add_auth(esp_http_client_handle_t client)
On receiving HTTP Status code 401, this API can be invoked to add authorization information.

Note: There is a possibility of receiving body message with redirection status codes, thus make sure to flush
off body data after calling this API.

Parameters client -- [in] The esp_http_client handle

bool esp_http_client_is_complete_data_received(esp_http_client_handle_t client)
Checks if entire data in the response has been read without any error.

Parameters client -- [in] The esp_http_client handle
Returns

• true
• false

int esp_http_client_read_response(esp_http_client_handle_t client, char *buffer, int len)
Helper API to read larger data chunks This is a helper API which internally calls esp_http_client_read
multiple times till the end of data is reached or till the buffer gets full.

Parameters
• client -- [in] The esp_http_client handle
• buffer -- The buffer
• len -- [in] The buffer length

Returns
• Length of data was read

Espressif Systems 83
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_http_client_flush_response(esp_http_client_handle_t client, int *len)
Process all remaining response data This uses an internal buffer to repeatedly receive, parse, and discard re-
sponse data until complete data is processed. As no additional user-supplied buffer is required, this may be
preferable to esp_http_client_read_response in situations where the content of the response may
be ignored.

Parameters
• client -- [in] The esp_http_client handle
• len -- Length of data discarded

Returns
• ESP_OK If successful, len will have discarded length
• ESP_FAIL If failed to read response
• ESP_ERR_INVALID_ARG If the client is NULL

esp_err_t esp_http_client_get_url(esp_http_client_handle_t client, char *url, const int len)
Get URL from client.

Parameters
• client -- [in] The esp_http_client handle
• url -- [inout] The buffer to store URL
• len -- [in] The buffer length

Returns
• ESP_OK
• ESP_FAIL

esp_err_t esp_http_client_get_chunk_length(esp_http_client_handle_t client, int *len)
Get Chunk-Length from client.

Parameters
• client -- [in] The esp_http_client handle
• len -- [out] Variable to store length

Returns
• ESP_OK If successful, len will have length of current chunk
• ESP_FAIL If the server is not a chunked server
• ESP_ERR_INVALID_ARG If the client or len are NULL

Structures

struct esp_http_client_event
HTTP Client events data.

Public Members

esp_http_client_event_id_t event_id

event_id, to know the cause of the event

esp_http_client_handle_t client

esp_http_client_handle_t context

void *data
data of the event

int data_len
data length of data

Espressif Systems 84
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void *user_data
user_data context, from esp_http_client_config_t user_data

char *header_key
For HTTP_EVENT_ON_HEADER event_id, it's store current http header key

char *header_value
For HTTP_EVENT_ON_HEADER event_id, it's store current http header value

struct esp_http_client_on_data
Argument structure for HTTP_EVENT_ON_DATA event.

Public Members

esp_http_client_handle_t client

Client handle

int64_t data_process
Total data processed

struct esp_http_client_redirect_event_data
Argument structure for HTTP_EVENT_REDIRECT event.

Public Members

esp_http_client_handle_t client

Client handle

int status_code
Status Code

struct esp_http_client_config_t
HTTP configuration.

Public Members

const char *url
HTTP URL, the information on the URL is most important, it overrides the other fields below, if any

const char *host
Domain or IP as string

int port
Port to connect, default depend on esp_http_client_transport_t (80 or 443)

const char *username
Using for Http authentication

Espressif Systems 85
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

const char *password
Using for Http authentication

esp_http_client_auth_type_t auth_type

Http authentication type, see esp_http_client_auth_type_t

const char *path
HTTP Path, if not set, default is /

const char *query
HTTP query

const char *cert_pem
SSL server certification, PEM format as string, if the client requires to verify server

size_t cert_len
Length of the buffer pointed to by cert_pem. May be 0 for null-terminated pem

const char *client_cert_pem
SSL client certification, PEM format as string, if the server requires to verify client

size_t client_cert_len
Length of the buffer pointed to by client_cert_pem. May be 0 for null-terminated pem

const char *client_key_pem
SSL client key, PEM format as string, if the server requires to verify client

size_t client_key_len
Length of the buffer pointed to by client_key_pem. May be 0 for null-terminated pem

const char *client_key_password
Client key decryption password string

size_t client_key_password_len
String length of the password pointed to by client_key_password

esp_http_client_proto_ver_t tls_version

TLS protocol version of the connection, e.g., TLS 1.2, TLS 1.3 (default - no preference)

const char *user_agent
The User Agent string to send with HTTP requests

esp_http_client_method_t method

HTTP Method

int timeout_ms
Network timeout in milliseconds

Espressif Systems 86
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool disable_auto_redirect
Disable HTTP automatic redirects

int max_redirection_count
Max number of redirections on receiving HTTP redirect status code, using default value if zero

int max_authorization_retries
Max connection retries on receiving HTTP unauthorized status code, using default value if zero. Disables
authorization retry if -1

http_event_handle_cb event_handler

HTTP Event Handle

esp_http_client_transport_t transport_type

HTTP transport type, see esp_http_client_transport_t

int buffer_size
HTTP receive buffer size

int buffer_size_tx
HTTP transmit buffer size

void *user_data
HTTP user_data context

bool is_async
Set asynchronous mode, only supported with HTTPS for now

bool use_global_ca_store
Use a global ca_store for all the connections in which this bool is set.

bool skip_cert_common_name_check
Skip any validation of server certificate CN field

const char *common_name
Pointer to the string containing server certificate common name. If non-NULL, server certificate CN
must match this name, If NULL, server certificate CN must match hostname.

esp_err_t (*crt_bundle_attach)(void *conf)
Function pointer to esp_crt_bundle_attach. Enables the use of certification bundle for server verification,
must be enabled in menuconfig

bool keep_alive_enable
Enable keep-alive timeout

int keep_alive_idle
Keep-alive idle time. Default is 5 (second)

Espressif Systems 87
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int keep_alive_interval
Keep-alive interval time. Default is 5 (second)

int keep_alive_count
Keep-alive packet retry send count. Default is 3 counts

struct ifreq *if_name
The name of interface for data to go through. Use the default interface without setting

void *ds_data
Pointer for digital signature peripheral context, see ESP-TLS Documentation for more details

Macros

DEFAULT_HTTP_BUF_SIZE

ESP_ERR_HTTP_BASE

Starting number of HTTP error codes

ESP_ERR_HTTP_MAX_REDIRECT

The error exceeds the number of HTTP redirects

ESP_ERR_HTTP_CONNECT

Error open the HTTP connection

ESP_ERR_HTTP_WRITE_DATA

Error write HTTP data

ESP_ERR_HTTP_FETCH_HEADER

Error read HTTP header from server

ESP_ERR_HTTP_INVALID_TRANSPORT

There are no transport support for the input scheme

ESP_ERR_HTTP_CONNECTING

HTTP connection hasn't been established yet

ESP_ERR_HTTP_EAGAIN

Mapping of errno EAGAIN to esp_err_t

ESP_ERR_HTTP_CONNECTION_CLOSED

Read FIN from peer and the connection closed

Type Definitions

typedef struct esp_http_client *esp_http_client_handle_t

typedef struct esp_http_client_event *esp_http_client_event_handle_t

Espressif Systems 88
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef struct esp_http_client_event esp_http_client_event_t
HTTP Client events data.

typedef struct esp_http_client_on_data esp_http_client_on_data_t
Argument structure for HTTP_EVENT_ON_DATA event.

typedef struct esp_http_client_redirect_event_data esp_http_client_redirect_event_data_t
Argument structure for HTTP_EVENT_REDIRECT event.

typedef esp_err_t (*http_event_handle_cb)(esp_http_client_event_t *evt)

Enumerations

enum esp_http_client_event_id_t

HTTP Client events id.
Values:

enumerator HTTP_EVENT_ERROR
This event occurs when there are any errors during execution

enumerator HTTP_EVENT_ON_CONNECTED
Once the HTTP has been connected to the server, no data exchange has been performed

enumerator HTTP_EVENT_HEADERS_SENT
After sending all the headers to the server

enumerator HTTP_EVENT_HEADER_SENT
This header has been kept for backward compatibility and will be deprecated in future versions esp-idf

enumerator HTTP_EVENT_ON_HEADER
Occurs when receiving each header sent from the server

enumerator HTTP_EVENT_ON_DATA
Occurs when receiving data from the server, possibly multiple portions of the packet

enumerator HTTP_EVENT_ON_FINISH
Occurs when finish a HTTP session

enumerator HTTP_EVENT_DISCONNECTED
The connection has been disconnected

enumerator HTTP_EVENT_REDIRECT
Intercepting HTTP redirects to handle them manually

enum esp_http_client_transport_t

HTTP Client transport.
Values:

Espressif Systems 89
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator HTTP_TRANSPORT_UNKNOWN
Unknown

enumerator HTTP_TRANSPORT_OVER_TCP
Transport over tcp

enumerator HTTP_TRANSPORT_OVER_SSL
Transport over ssl

enum esp_http_client_proto_ver_t

Values:

enumerator ESP_HTTP_CLIENT_TLS_VER_ANY

enumerator ESP_HTTP_CLIENT_TLS_VER_TLS_1_2

enumerator ESP_HTTP_CLIENT_TLS_VER_TLS_1_3

enumerator ESP_HTTP_CLIENT_TLS_VER_MAX

enum esp_http_client_method_t

HTTP method.
Values:

enumerator HTTP_METHOD_GET
HTTP GET Method

enumerator HTTP_METHOD_POST
HTTP POST Method

enumerator HTTP_METHOD_PUT
HTTP PUT Method

enumerator HTTP_METHOD_PATCH
HTTP PATCH Method

enumerator HTTP_METHOD_DELETE
HTTP DELETE Method

enumerator HTTP_METHOD_HEAD
HTTP HEAD Method

enumerator HTTP_METHOD_NOTIFY
HTTP NOTIFY Method

enumerator HTTP_METHOD_SUBSCRIBE
HTTP SUBSCRIBE Method

Espressif Systems 90
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator HTTP_METHOD_UNSUBSCRIBE
HTTP UNSUBSCRIBE Method

enumerator HTTP_METHOD_OPTIONS
HTTP OPTIONS Method

enumerator HTTP_METHOD_COPY
HTTP COPY Method

enumerator HTTP_METHOD_MOVE
HTTP MOVE Method

enumerator HTTP_METHOD_LOCK
HTTP LOCK Method

enumerator HTTP_METHOD_UNLOCK
HTTP UNLOCK Method

enumerator HTTP_METHOD_PROPFIND
HTTP PROPFIND Method

enumerator HTTP_METHOD_PROPPATCH
HTTP PROPPATCH Method

enumerator HTTP_METHOD_MKCOL
HTTP MKCOL Method

enumerator HTTP_METHOD_MAX

enum esp_http_client_auth_type_t

HTTP Authentication type.
Values:

enumerator HTTP_AUTH_TYPE_NONE
No authention

enumerator HTTP_AUTH_TYPE_BASIC
HTTP Basic authentication

enumerator HTTP_AUTH_TYPE_DIGEST
HTTP Digest authentication

enum HttpStatus_Code

Enum for the HTTP status codes.
Values:

enumerator HttpStatus_Ok

Espressif Systems 91
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator HttpStatus_MultipleChoices

enumerator HttpStatus_MovedPermanently

enumerator HttpStatus_Found

enumerator HttpStatus_SeeOther

enumerator HttpStatus_TemporaryRedirect

enumerator HttpStatus_PermanentRedirect

enumerator HttpStatus_BadRequest

enumerator HttpStatus_Unauthorized

enumerator HttpStatus_Forbidden

enumerator HttpStatus_NotFound

enumerator HttpStatus_InternalError

2.2.6 ESP Local Control

Overview

ESPLocal Control (esp_local_ctrl) component in ESP-IDF provides capability to control an ESP device over HTTPS
or BLE. It provides access to application defined properties that are available for reading / writing via a set of
configurable handlers.
Initialization of the esp_local_ctrl service over BLE transport is performed as follows:

esp_local_ctrl_config_t config = {
.transport = ESP_LOCAL_CTRL_TRANSPORT_BLE,
.transport_config = {

.ble = & (protocomm_ble_config_t) {
.device_name = SERVICE_NAME,
.service_uuid = {

/* LSB <---------------------------------------
* ---------------------------------------> MSB */
0x21, 0xd5, 0x3b, 0x8d, 0xbd, 0x75, 0x68, 0x8a,
0xb4, 0x42, 0xeb, 0x31, 0x4a, 0x1e, 0x98, 0x3d

}
}

},
.proto_sec = {

.version = PROTOCOM_SEC0,

.custom_handle = NULL,

.sec_params = NULL,
},
.handlers = {

/* User defined handler functions */

(continues on next page)

Espressif Systems 92
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
.get_prop_values = get_property_values,
.set_prop_values = set_property_values,
.usr_ctx = NULL,
.usr_ctx_free_fn = NULL

},
/* Maximum number of properties that may be set */
.max_properties = 10

};

/* Start esp_local_ctrl service */
ESP_ERROR_CHECK(esp_local_ctrl_start(&config));

Similarly for HTTPS transport:

/* Set the configuration */
httpd_ssl_config_t https_conf = HTTPD_SSL_CONFIG_DEFAULT();

/* Load server certificate */
extern const unsigned char servercert_start[] asm("_binary_servercert_pem_
↪→start");
extern const unsigned char servercert_end[] asm("_binary_servercert_pem_
↪→end");
https_conf.servercert = servercert_start;
https_conf.servercert_len = servercert_end - servercert_start;

/* Load server private key */
extern const unsigned char prvtkey_pem_start[] asm("_binary_prvtkey_pem_
↪→start");
extern const unsigned char prvtkey_pem_end[] asm("_binary_prvtkey_pem_
↪→end");
https_conf.prvtkey_pem = prvtkey_pem_start;
https_conf.prvtkey_len = prvtkey_pem_end - prvtkey_pem_start;

esp_local_ctrl_config_t config = {
.transport = ESP_LOCAL_CTRL_TRANSPORT_HTTPD,
.transport_config = {

.httpd = &https_conf
},
.proto_sec = {

.version = PROTOCOM_SEC0,

.custom_handle = NULL,

.sec_params = NULL,
},
.handlers = {

/* User defined handler functions */
.get_prop_values = get_property_values,
.set_prop_values = set_property_values,
.usr_ctx = NULL,
.usr_ctx_free_fn = NULL

},
/* Maximum number of properties that may be set */
.max_properties = 10

};

/* Start esp_local_ctrl service */
ESP_ERROR_CHECK(esp_local_ctrl_start(&config));

You may set security for transport in ESP local control using following options:
1. PROTOCOM_SEC2: specifies that SRP6a based key exchange and end to end encryption based on AES-GCM

is used. This is the most preffered option as it adds a robust security with Augmented PAKE protocol i.e.
SRP6a.

Espressif Systems 93
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2. PROTOCOM_SEC1: specifies that Curve25519 based key exchange and end to end encryption based on AES-
CTR is used.

3. PROTOCOM_SEC0: specifies that data will be exchanged as a plain text (no security).
4. PROTOCOM_SEC_CUSTOM: you can define your own security requirement. Please note that you will also

have to provide custom_handle of type protocomm_security_t * in this context.

Note: The respective security schemes need to be enabled through the project configuration menu. Please refer to
the Enabling protocom security version section in Protocol Communication for more details.

Creating a property

Now that we know how to start the esp_local_ctrl service, let's add a property to it. Each property must have a
unique name (string), a type (e.g. enum), flags (bit fields) and size.
The size is to be kept 0, if we want our property value to be of variable length (e.g. if its a string or bytestream). For
fixed length property value data-types, like int, float, etc., setting the size field to the right value, helps esp_local_ctrl
to perform internal checks on arguments received with write requests.
The interpretation of type and flags fields is totally upto the application, hence they may be used as enumerations, bit-
fields, or even simple integers. One way is to use type values to classify properties, while flags to specify characteristics
of a property.
Here is an example property which is to function as a timestamp. It is assumed that the application defines
TYPE_TIMESTAMP and READONLY, which are used for setting the type and flags fields here.

/* Create a timestamp property */
esp_local_ctrl_prop_t timestamp = {

.name = "timestamp",

.type = TYPE_TIMESTAMP,

.size = sizeof(int32_t),

.flags = READONLY,

.ctx = func_get_time,

.ctx_free_fn = NULL
};

/* Now register the property */
esp_local_ctrl_add_property(×tamp);

Also notice that there is a ctx field, which is set to point to some custom func_get_time(). This can be used inside the
property get / set handlers to retrieve timestamp.
Here is an example of get_prop_values() handler, which is used for retrieving the timestamp.

static esp_err_t get_property_values(size_t props_count,
const esp_local_ctrl_prop_t *props,
esp_local_ctrl_prop_val_t *prop_

↪→values,
void *usr_ctx)

{
for (uint32_t i = 0; i < props_count; i++) {

ESP_LOGI(TAG, "Reading %s", props[i].name);
if (props[i].type == TYPE_TIMESTAMP) {

/* Obtain the timer function from ctx */
int32_t (*func_get_time)(void) = props[i].ctx;

/* Use static variable for saving the value.
* This is essential because the value has to be
* valid even after this function returns.
* Alternative is to use dynamic allocation
* and set the free_fn field */

(continues on next page)

Espressif Systems 94
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
static int32_t ts = func_get_time();
prop_values[i].data = &ts;

}
}
return ESP_OK;

}

Here is an example of set_prop_values() handler. Notice how we restrict from writing to read-only properties.

static esp_err_t set_property_values(size_t props_count,
const esp_local_ctrl_prop_t *props,
const esp_local_ctrl_prop_val_t␣

↪→*prop_values,
void *usr_ctx)

{
for (uint32_t i = 0; i < props_count; i++) {

if (props[i].flags & READONLY) {
ESP_LOGE(TAG, "Cannot write to read-only property %s",␣

↪→props[i].name);
return ESP_ERR_INVALID_ARG;

} else {
ESP_LOGI(TAG, "Setting %s", props[i].name);

/* For keeping it simple, lets only log the incoming data */
ESP_LOG_BUFFER_HEX_LEVEL(TAG, prop_values[i].data,

prop_values[i].size, ESP_LOG_INFO);
}

}
return ESP_OK;

}

For complete example see protocols/esp_local_ctrl

Client Side Implementation

The client side implementation will have establish a protocomm session with the device first, over the supported mode
of transport, and then send and receive protobuf messages understood by the esp_local_ctrl service. The service will
translate these messages into requests and then call the appropriate handlers (set / get). Then, the generated response
for each handler is again packed into a protobuf message and transmitted back to the client.
See below the various protobuf messages understood by the esp_local_ctrl service:

1. get_prop_count : This should simply return the total number of properties supported by the service
2. get_prop_values : This accepts an array of indices and should return the information (name, type, flags) and

values of the properties corresponding to those indices
3. set_prop_values : This accepts an array of indices and an array of new values, which are used for setting the

values of the properties corresponding to the indices
Note that indices may or may not be the same for a property, across multiple sessions. Therefore, the client must
only use the names of the properties to uniquely identify them. So, every time a new session is established, the client
should first call get_prop_count and then get_prop_values, hence form an index to name mapping for all properties.
Now when calling set_prop_values for a set of properties, it must first convert the names to indexes, using the created
mapping. As emphasized earlier, the client must refresh the index to name mapping every time a new session is
established with the same device.
The various protocomm endpoints provided by esp_local_ctrl are listed below:

Espressif Systems 95
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/esp_local_ctrl
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Table 1: Endpoints provided by ESP Local Control
Endpoint
Name
(BLE +
GATT
Server)

URI (HTTPS Server +
mDNS)

Description

esp_local_ctrl/versionhttps://<mdns-
hostname>.local/esp_local_ctrl/version

Endpoint used for retrieving version string

esp_local_ctrl/controlhttps://<mdns-
hostname>.local/esp_local_ctrl/control

Endpoint used for sending / receiving control messages

API Reference

Header File
• components/esp_local_ctrl/include/esp_local_ctrl.h

Functions
const esp_local_ctrl_transport_t *esp_local_ctrl_get_transport_ble(void)

Function for obtaining BLE transport mode.
const esp_local_ctrl_transport_t *esp_local_ctrl_get_transport_httpd(void)

Function for obtaining HTTPD transport mode.
esp_err_t esp_local_ctrl_start(const esp_local_ctrl_config_t *config)

Start local control service.
Parameters config -- [in] Pointer to configuration structure
Returns

• ESP_OK : Success
• ESP_FAIL : Failure

esp_err_t esp_local_ctrl_stop(void)
Stop local control service.

esp_err_t esp_local_ctrl_add_property(const esp_local_ctrl_prop_t *prop)
Add a new property.
This adds a new property and allocates internal resources for it. The total number of properties that could be
added is limited by configuration option max_properties

Parameters prop -- [in] Property description structure
Returns

• ESP_OK : Success
• ESP_FAIL : Failure

esp_err_t esp_local_ctrl_remove_property(const char *name)
Remove a property.
This finds a property by name, and releases the internal resources which are associated with it.

Parameters name -- [in] Name of the property to remove
Returns

• ESP_OK : Success
• ESP_ERR_NOT_FOUND : Failure

const esp_local_ctrl_prop_t *esp_local_ctrl_get_property(const char *name)
Get property description structure by name.
This API may be used to get a property's context structure esp_local_ctrl_prop_t when its name is
known

Espressif Systems 96
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https:/
https:/
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_local_ctrl/include/esp_local_ctrl.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters name -- [in] Name of the property to find
Returns

• Pointer to property
• NULL if not found

esp_err_t esp_local_ctrl_set_handler(const char *ep_name, protocomm_req_handler_t handler, void
*user_ctx)

Register protocomm handler for a custom endpoint.
This API can be called by the application to register a protocomm handler for an endpoint after the local control
service has started.

Note: In case of BLE transport the names and uuids of all custom endpoints must be provided beforehand as
a part of the protocomm_ble_config_t structure set in esp_local_ctrl_config_t, and passed
to esp_local_ctrl_start().

Parameters
• ep_name -- [in] Name of the endpoint
• handler -- [in] Endpoint handler function
• user_ctx -- [in] User data

Returns
• ESP_OK : Success
• ESP_FAIL : Failure

Unions

union esp_local_ctrl_transport_config_t
#include <esp_local_ctrl.h> Transport mode (BLE / HTTPD) configuration.

Public Members

esp_local_ctrl_transport_config_ble_t *ble
This is same as protocomm_ble_config_t. See protocomm_ble.h for available configuration
parameters.

esp_local_ctrl_transport_config_httpd_t *httpd
This is same as httpd_ssl_config_t. See esp_https_server.h for available configuration
parameters.

Structures

struct esp_local_ctrl_prop
Property description data structure, which is to be populated and passed to the
esp_local_ctrl_add_property() function.
Once a property is added, its structure is available for read-only access inside get_prop_values() and
set_prop_values() handlers.

Public Members

char *name
Unique name of property

Espressif Systems 97
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t type
Type of property. This may be set to application defined enums

size_t size
Size of the property value, which:
• if zero, the property can have values of variable size
• if non-zero, the property can have values of fixed size only, therefore, checks are performed internally
by esp_local_ctrl when setting the value of such a property

uint32_t flags
Flags set for this property. This could be a bit field. A flag may indicate property behavior, e.g. read-only
/ constant

void *ctx
Pointer to some context data relevant for this property. This will be available for use inside the
get_prop_values and set_prop_values handlers as a part of this property structure. When
set, this is valid throughout the lifetime of a property, till either the property is removed or the
esp_local_ctrl service is stopped.

void (*ctx_free_fn)(void *ctx)
Function used by esp_local_ctrl to internally free the property context when
esp_local_ctrl_remove_property() or esp_local_ctrl_stop() is called.

struct esp_local_ctrl_prop_val
Property value data structure. This gets passed to the get_prop_values() and set_prop_values()
handlers for the purpose of retrieving or setting the present value of a property.

Public Members

void *data
Pointer to memory holding property value

size_t size
Size of property value

void (*free_fn)(void *data)
This may be set by the application in get_prop_values() handler to tell esp_local_ctrl
to call this function on the data pointer above, for freeing its resources after sending the
get_prop_values response.

struct esp_local_ctrl_handlers
Handlers for receiving and responding to local control commands for getting and setting properties.

Public Members

esp_err_t (*get_prop_values)(size_t props_count, const esp_local_ctrl_prop_t props[],
esp_local_ctrl_prop_val_t prop_values[], void *usr_ctx)

Handler function to be implemented for retrieving current values of properties.

Espressif Systems 98
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: If any of the properties have fixed sizes, the size field of corresponding element inprop_values
need to be set

Param props_count [in] Total elements in the props array
Param props [in] Array of properties, the current values for which have been requested by

the client
Param prop_values [out] Array of empty property values, the elements of which need to be

populated with the current values of those properties specified by props argument
Param usr_ctx [in] This provides value of the usr_ctx field of

esp_local_ctrl_handlers_t structure
Return Returning different error codes will convey the corresponding protocol level errors to

the client :
• ESP_OK : Success
• ESP_ERR_INVALID_ARG : InvalidArgument
• ESP_ERR_INVALID_STATE : InvalidProto
• All other error codes : InternalError

esp_err_t (*set_prop_values)(size_t props_count, const esp_local_ctrl_prop_t props[], const
esp_local_ctrl_prop_val_t prop_values[], void *usr_ctx)

Handler function to be implemented for changing values of properties.

Note: If any of the properties have variable sizes, the size field of the corresponding element in
prop_values must be checked explicitly before making any assumptions on the size.

Param props_count [in] Total elements in the props array
Param props [in] Array of properties, the values for which the client requests to change
Param prop_values [in] Array of property values, the elements of which need to be used for

updating those properties specified by props argument
Param usr_ctx [in] This provides value of the usr_ctx field of

esp_local_ctrl_handlers_t structure
Return Returning different error codes will convey the corresponding protocol level errors to

the client :
• ESP_OK : Success
• ESP_ERR_INVALID_ARG : InvalidArgument
• ESP_ERR_INVALID_STATE : InvalidProto
• All other error codes : InternalError

void *usr_ctx
Context pointer to be passed to above handler functions upon invocation. This is different from the
property level context, as this is valid throughout the lifetime of the esp_local_ctrl service, and
freed only when the service is stopped.

void (*usr_ctx_free_fn)(void *usr_ctx)
Pointer to function which will be internally invoked on usr_ctx for freeing the context resources when
esp_local_ctrl_stop() is called.

struct esp_local_ctrl_proto_sec_cfg
Protocom security configs

Public Members

Espressif Systems 99
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_local_ctrl_proto_sec_t version

This sets protocom security version, sec0/sec1 or custom If custom, user must provide handle via
proto_sec_custom_handle below

void *custom_handle
Custom security handle if security is set custom via proto_sec above This handle must follow pro-
tocomm_security_t signature

const void *pop
Proof of possession to be used for local control. Could be NULL.

const void *sec_params
Pointer to security params (NULL if not needed). This is not needed for protocomm security 0 This
pointer should hold the struct of type esp_local_ctrl_security1_params_t for protocomm security 1 and
esp_local_ctrl_security2_params_t for protocomm security 2 respectively. Could be NULL.

struct esp_local_ctrl_config
Configuration structure to pass to esp_local_ctrl_start()

Public Members

const esp_local_ctrl_transport_t *transport
Transport layer over which service will be provided

esp_local_ctrl_transport_config_t transport_config

Transport layer over which service will be provided

esp_local_ctrl_proto_sec_cfg_t proto_sec

Security version and POP

esp_local_ctrl_handlers_t handlers

Register handlers for responding to get/set requests on properties

size_t max_properties
This limits the number of properties that are available at a time

Macros

ESP_LOCAL_CTRL_TRANSPORT_BLE

ESP_LOCAL_CTRL_TRANSPORT_HTTPD

Type Definitions

typedef struct esp_local_ctrl_prop esp_local_ctrl_prop_t
Property description data structure, which is to be populated and passed to the
esp_local_ctrl_add_property() function.
Once a property is added, its structure is available for read-only access inside get_prop_values() and
set_prop_values() handlers.

Espressif Systems 100
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef struct esp_local_ctrl_prop_val esp_local_ctrl_prop_val_t
Property value data structure. This gets passed to the get_prop_values() and set_prop_values()
handlers for the purpose of retrieving or setting the present value of a property.

typedef struct esp_local_ctrl_handlers esp_local_ctrl_handlers_t
Handlers for receiving and responding to local control commands for getting and setting properties.

typedef struct esp_local_ctrl_transport esp_local_ctrl_transport_t
Transport mode (BLE / HTTPD) over which the service will be provided.
This is forward declaration of a private structure, implemented internally by esp_local_ctrl.

typedef struct protocomm_ble_config esp_local_ctrl_transport_config_ble_t

Configuration for transport mode BLE.
This is a forward declaration for protocomm_ble_config_t. To use this, application must set CON-
FIG_BT_BLUEDROID_ENABLED and include protocomm_ble.h.

typedef struct httpd_config esp_local_ctrl_transport_config_httpd_t
Configuration for transport mode HTTPD.
This is a forward declaration for httpd_ssl_config_t (for HTTPS) or httpd_config_t (for HTTP)

typedef enum esp_local_ctrl_proto_sec esp_local_ctrl_proto_sec_t

Security types for esp_local_control.

typedef protocomm_security1_params_t esp_local_ctrl_security1_params_t

typedef protocomm_security2_params_t esp_local_ctrl_security2_params_t

typedef struct esp_local_ctrl_proto_sec_cfg esp_local_ctrl_proto_sec_cfg_t
Protocom security configs

typedef struct esp_local_ctrl_config esp_local_ctrl_config_t
Configuration structure to pass to esp_local_ctrl_start()

Enumerations

enum esp_local_ctrl_proto_sec

Security types for esp_local_control.
Values:

enumerator PROTOCOM_SEC0

enumerator PROTOCOM_SEC1

enumerator PROTOCOM_SEC2

enumerator PROTOCOM_SEC_CUSTOM

Espressif Systems 101
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.2.7 ESP Serial Slave Link

Overview

Espressif provides several chips that can work as slaves. These slave devices rely on some common buses, and have
their own communication protocols over those buses. The esp_serial_slave_link component is designed for the master
to communicate with ESP slave devices through those protocols over the bus drivers.
After an esp_serial_slave_link device is initialized properly, the application can use it to communicate with the ESP
slave devices conveniently.

Espressif Device protocols

For more details about Espressif device protocols, see the following documents.

Communication with ESP SDIO Slave This document describes the process of initialization of an ESP SDIO
Slave device and then provides details on the ESP SDIO Slave protocol - a non-standard protocol that allows an SDIO
Host to communicate with an ESP SDIO slave.
The ESP SDIO Slave protocol was created to implement the communication between SDIO host and slave, because
the SDIO specification only shows how to access the custom region of a card (by sending CMD52 and CMD53 to
Functions 1-7) without any details regarding the underlying hardware implementation.

SDIOSlaveCapabilities of Espressif chips The services provided by the SDIO Slave peripheral of the ESP32-C6
chip are listed in the table below:

Services ESP32-C6
SDIO slave Y
Tohost intr 8
Frhost intr 8
TX DMA Y
RX DMA Y
Shared registers 56*

• * Not including the interrupt registers

ESP SDIO Slave Initialization The host should initialize the ESP32-C6 SDIO slave according to the standard
SDIO initialization process (Section 3.1.2 of SDIO Simplified Specification). In this specification as well as below,
the SDIO slave is called an (SD)IO card. Here is a brief example of an ESP SDIO Slave initialization process:

1. SDIO reset CMD52 (Write 0x6=0x8)
2. SD reset CMD0
3. Check whether IO card (optional) CMD8
4. Send SDIO op cond and wait for card ready CMD5 arg = 0x00000000

CMD5 arg = 0x00ff8000 (according to the response above, poll until ready)
Example: Arg of R4 after first CMD5 (arg=0x00000000) is 0xXXFFFF00.

Keep sending CMD5 with arg=0x00FFFF00 until the R4 shows card ready (arg bit 31=1).
5. Set address CMD3
6. Select card CMD7 (arg address according to CMD3 response)

Example: Arg of R6 after CMD3 is 0x0001xxxx.
Arg of CMD7 should be 0x00010000.

7. Select 4-bit mode (optional) CMD52 (Write 0x07=0x02)
8. Enable func1 CMD52 (Write 0x02=0x02)
9. Enable SDIO interrupt (required if interrupt line (DAT1) is used) CMD52 (Write 0x04=0x03)

Espressif Systems 102
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.sdcard.org/downloads/pls/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

10. Set Func0 blocksize (optional, default value is 512 (0x200)) CMD52/53 (Read 0x10~0x11)
CMD52/53 (Write 0x10=0x00)
CMD52/53 (Write 0x11=0x02)
CMD52/53 (Read 0x10~0x11, read to check the final value)

11. Set Func1 blocksize (optional, default value is 512 (0x200)) CMD52/53 (Read 0x110~0x111)
CMD52/53 (Write 0x110=0x00)
CMD52/53 (Write 0x111=0x02)
CMD52/53 (Read 0x110~0x111, read to check the final value)

ESP SDIO Slave Protocol The ESP SDIO Slave protocol is based on the SDIO Specification's I/O Read/Write
commands, i.e., CMD52 and CMD53. The protocol offers the following services:

• Sending FIFO and receiving FIFO
• 52 8-bit R/W registers shared by host and slave (For details, see ESP32-C6 Technical Reference Manual > SDIO

Slave Controller > Register Summary > SDIO SLC Host registers [PDF]
• 16 general purpose interrupt sources, 8 from host to slave and 8 from slave to host

To begin communication, the host needs to enable the I/O Function 1 in the slave and access its registers as described
below.
Check the code example peripherals/sdio.
The ESP Serial Slave Link component implements the logic of this protocol for ESP32 SDIO Host when communi-
cating with an ESP32 SDIO slave.

Slave register table

32-bit
• 0x044 (TOKEN_RDATA): in which bit 27-16 holds the number of the receiving buffer.
• 0x058 (INT_ST): holds the interrupt source bits from slave to host.
• 0x060 (PKT_LEN): holds the accumulated data length (in bytes) already read by host plus the data copied to
the buffer but yet to be read.

• 0x0D4 (INT_CLR): write 1 to clear interrupt bits corresponding to INT_ST.
• 0x0DC (INT_ENA): mask bits for interrupts from slave to host.

8-bit Shared general purpose registers:
• 0x06C-0x077: R/W registers 0-11 shared by slave and host.
• 0x07A-0x07B: R/W registers 14-15 shared by slave and host.
• 0x07E-0x07F: R/W registers 18-19 shared by slave and host.
• 0x088-0x08B: R/W registers 24-27 shared by slave and host.
• 0x09C-0x0BB: R/W registers 32-63 shared by slave and host.

Interrupt Registers: - 0x08D (SLAVE_INT): bits for host to interrupt slave. auto clear.

FIFO (sending and receiving) 0x090 - 0x1F7FF are reserved for FIFOs.
The address of CMD53 is related to the length requested to read from or write to the slave in a single transfer, as
demonstrated by the equation below:

requested length = 0x1F800-address

The slave will respond with data that has a length equal to the length field of CMD53. In cases where the data is longer
than the requested length, the data will be zero filled (when sending) or discarded (when receiving). This includes
both the block and the byte mode of CMD53.

Note: The function number should be set to 1, OP Code should be set to 1 (for CMD53).

Espressif Systems 103
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#sdioslave-reg-summ
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/sdio
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

In order to achieve higher efficiency when accessing the FIFO by an arbitrary length, the block and byte modes of
CMD53 can be used in combination. For example, given that the block size is set to 512 by default, you can write/get
1031 bytes of data from the FIFO by doing the following:

1. Send CMD53 in block mode, block count=2 (1024 bytes) to address 0x1F3F9=0x1F800-1031.
2. Then send CMD53 in byte mode, byte count=8 (or 7 if your controller supports that) to address

0x1F7F9=0x1F800-7.

Interrupts SDIO interrupts are "level sensitive". For host interrupts, the slave sends an interrupt by pulling the
DAT1 line down at a proper time. The host detects when the interrupt line is pulled down and reads the INT_ST
register to determine the source of the interrupt. After that, the host can clear the interrupt bits by writing the
INT_CLR register and process the interrupt. The host can also mask unneeded sources by clearing the bits in the
INT_ENA register corresponding to the sources. If all the sources are cleared (or masked), the DAT1 line goes
inactive.
On ESP32-C6, the corresponding host_int bits are: bit 0 to bit 7.
For slave interrupts, the host sends a transfer to write the SLAVE_INT register. Once a bit is set to 1, the slave
hardware and the driver will detect it and inform the application.

Receiving FIFO To write to the slave's receiving FIFO, the host should complete the following steps:
1. Read the TOKEN1 field (bits 27-16) of the register TOKEN_RDATA (0x044). The buffer number re-

maining is TOKEN1 minus the number of buffers used by host.
2. Make sure the buffer number is sufficient (buffer_size x buffer_num is greater than the data to write,

buffer_size is pre-defined between the host and the slave before the communication starts). Otherwise, keep
returning to Step 1 until the buffer size is sufficient.

3. Write to the FIFO address with CMD53. Note that the requested length should not exceed the length
calculated at Step 2, and the FIFO address is related to requested length.

4. Calculate used buffers. Note that a partially used buffer at the tail is counted as used.

Sending FIFO To read the slave's sending FIFO, the host should complete the following steps:
1. Wait for the interrupt line to become active (optional, low by default).
2. Read (poll) the interrupt bits in the INT_ST register to monitor if new packets exist.
3. If new packets are ready, read the PKT_LEN register. Before reading the packets, determine the length

of data to be read. As the host keeps the length of data already read from the slave, subtract this value from
PKT_LEN, the result will be the maximum length of data available for reading. If no data has been added to
the sending FIFO yet, wait and poll until the slave is ready and update PKT_LEN.

4. Read from the FIFO using CMD53. Note that the requested length should not be greater than calculated at
Step 3, and the FIFO address is related to requested length.

5. Update the read length.

ESP SPI Slave HD (Half Duplex) Mode Protocol

SPI Slave Capabilities of Espressif chips

ESP32 ESP32-S2 ESP32-C3 ESP32-S3 ESP32-C2 ESP32-C6 ESP32-H2
SPI Slave HD N Y (v2) Y (v2) Y (v2) Y (v2) Y (v2) Y (v2)
Tohost intr N N N N N N
Frhost intr 2 * 2 * 2 * 2 * 2 * 2 *
TX DMA Y Y Y Y Y Y
RX DMA Y Y Y Y Y Y
Shared registers 72 64 64 64 64 64

Espressif Systems 104
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Introduction In the half duplex mode, the master has to use the protocol defined by the slave to communicate with
the slave. Each transaction may consist of the following phases (list by the order they should exist):

• Command: 8-bit, master to slave
This phase determines the rest phases of the transactions. See Supported Commands.

• Address: 8-bit, master to slave, optional
For some commands (WRBUF, RDBUF), this phase specifies the address of the shared buffer to
write to/read from. For other commands with this phase, they are meaningless but still have to exist
in the transaction.

• Dummy: 8-bit, floating, optional
This phase is the turnaround time between the master and the slave on the bus, and also provides
enough time for the slave to prepare the data to send to the master.

• Data: variable length, the direction is also determined by the command.
This may be a data OUT phase, in which the direction is slave to master, or a data IN phase, in
which the direction is master to slave.

The direction means which side (master or slave) controls the MOSI, MISO, WP, and HD pins.

Data IOModes In some IO modes, more data wires can be used to send the data. As a result, the SPI clock cycles
required for the same amount of data will be less than in the 1-bit mode. For example, in QIO mode, address and
data (IN and OUT) should be sent on all 4 data wires (MOSI, MISO, WP, and HD). Here are the modes supported
by the ESP32-S2 SPI slave and the wire number used in corresponding modes.

Mode command WN address WN dummy cycles data WN
1-bit 1 1 1 1
DOUT 1 1 4 2
DIO 1 2 4 2
QOUT 1 1 4 4
QIO 1 4 4 4
QPI 4 4 4 4

Normally, which mode is used is determined by the command sent by the master (See Supported Commands), except
the QPI mode.

QPIMode The QPI mode is a special state of the SPI Slave. The master can send the ENQPI command to put the
slave into the QPI mode state. In the QPI mode, the command is also sent in 4-bit, thus it's not compatible with the
normal modes. The master should only send QPI commands when the slave is in QPI mode. To exit from the QPI
mode, master can send the EXQPI command.

SupportedCommands
Note: The command name is in a master-oriented direction. For example, WRBUF means master writes the buffer
of slave.

Espressif Systems 105
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Name Description Command Address Data
WRBUF Write buffer 0x01 Buf addr master to slave, no

longer than buffer
size

RDBUF Read buffer 0x02 Buf addr slave to master, no
longer than buffer
size

WRDMA Write DMA 0x03 8 bits master to slave, no
longer than length
provided by slave

RDDMA Read DMA 0x04 8 bits slave to master, no
longer than length
provided by slave

SEG_DONE Segments done 0x05 • •

ENQPI Enter QPI mode 0x06 • •

WR_DONE Write segments
done

0x07 • •

CMD8 Interrupt 0x08 • •

CMD9 Interrupt 0x09 • •

CMDA Interrupt 0x0A • •

EXQPI Exit QPI mode 0xDD • •

Moreover, WRBUF, RDBUF, WRDMA, RDDMA commands have their 2-bit and 4-bit version. To do transactions
in 2-bit or 4-bit mode, send the original command ORed by the corresponding command mask below. For example,
command 0xA1 means WRBUF in QIO mode.

Mode Mask
1-bit 0x00
DOUT 0x10
DIO 0x50
QOUT 0x20
QIO 0xA0
QPI 0xA0

Segment Transaction Mode Segment transaction mode is the only mode supported by the SPI Slave HD driver
for now. In this mode, for a transaction the slave load onto the DMA, the master is allowed to read or write in
segments. This way the master doesn't have to prepare a large buffer as the size of data provided by the slave. After
the master finishes reading/writing a buffer, it has to send the corresponding termination command to the slave as a
synchronization signal. The slave driver will update new data (if exist) onto the DMA upon seeing the termination
command.
The termination command is WR_DONE (0x07) for the WRDMA and CMD8 (0x08) for the RDDMA.
Here's an example for the flow the master read data from the slave DMA:

1. The slave loads 4092 bytes of data onto the RDDMA
2. The master do seven RDDMA transactions, each of them is 512 bytes long, and reads the first 3584 bytes from

the slave

Espressif Systems 106
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

3. The master do the last RDDMA transaction of 512 bytes (equal, longer, or shorter than the total length loaded
by the slave are all allowed). The first 508 bytes are valid data from the slave, while the last 4 bytes are
meaningless bytes.

4. The master sends CMD8 to the slave
5. The slave loads another 4092 bytes of data onto the RDDMA
6. The master can start new reading transactions after it sends the CMD8

Terminology

• ESSL: Abbreviation for ESP Serial Slave Link, the component described by this document.
• Master: The device running the esp_serial_slave_link component.
• ESSL device: a virtual device on the master associated with an ESP slave device. The device context has the
knowledge of the slave protocol above the bus, relying on some bus drivers to communicate with the slave.

• ESSL device handle: a handle to ESSL device context containing the configuration, status and data required
by the ESSL component. The context stores the driver configurations, communication state, data shared by
master and slave, etc.
The context should be initialized before it is used, and get deinitialized if not used any more. The master
application operates on the ESSL device through this handle.

• ESP slave: the slave device connected to the bus, which ESSL component is designed to communicate with.
• Bus: The bus over which the master and the slave communicate with each other.
• Slave protocol: The special communication protocol specified by Espressif HW/SW over the bus.
• TX buffer num: a counter, which is on the slave and can be read by the master, indicates the accumulated
buffer numbers that the slave has loaded to the hardware to receive data from the master.

• RX data size: a counter, which is on the slave and can be read by the master, indicates the accumulated data
size that the slave has loaded to the hardware to send to the master.

Services provided by ESP slave

There are some common services provided by the Espressif slaves:
1. Tohost Interrupts: The slave can inform the master about certain events by the interrupt line. (optional)
2. Frhost Interrupts: The master can inform the slave about certain events.
3. Tx FIFO (master to slave): the slave can send data in stream to the master. The SDIO slave can also indicate

it has new data to send to master by the interrupt line.
The slave updates the TX buffer num to inform the master how much data it can receive, and the master then
read the TX buffer num, and take off the used buffer number to know how many buffers are remaining.

4. Rx FIFO (slave to master): the slave can receive data from the master in units of receiving buffers.
The slave updates the RX data size to inform the master how much data it has prepared to send, and then
the master read the data size, and take off the data length it has already received to know how many data is
remaining.

5. Shared registers: the master can read some part of the registers on the slave, and also write these registers to
let the slave read.

The services provided by the slave depends on the slave's model. See SDIO Slave Capabilities of Espressif chips and
SPI Slave Capabilities of Espressif chips for more details.

Initialization of ESP Serial Slave Link

ESP SDIO Slave The ESP SDIO slave link (ESSL SDIO) devices relies on the sdmmc component. It includes the
usage of communicating with ESP SDIO Slave device via SDSPI feature. The ESSL device should be initialized as
below:

1. Initialize a sdmmc card (see :doc:` Document of SDMMC driver </api-reference/storage/sdmmc>`) structure.
2. Call sdmmc_card_init() to initialize the card.
3. Initialize the ESSL device with essl_sdio_config_t. The card member should be the sd-

mmc_card_t got in step 2, and the recv_buffer_size member should be filled correctly according to pre-
negotiated value.

Espressif Systems 107
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

4. Call essl_init() to do initialization of the SDIO part.
5. Call essl_wait_for_ready() to wait for the slave to be ready.

ESPSPI Slave
Note: If you are communicating with the ESP SDIO Slave device through SPI interface, you should use the SDIO
interface instead.

Hasn't been supported yet.

APIs

After the initialization process above is performed, you can call the APIs below to make use of the services provided
by the slave:

Tohost Interrupts (optional)
1. Call essl_get_intr_ena() to know which events will trigger the interrupts to the master.
2. Call essl_set_intr_ena() to set the events that will trigger interrupts to the master.
3. Call essl_wait_int() to wait until interrupt from the slave, or timeout.
4. When interrupt is triggered, call essl_get_intr() to know which events are active, and call

essl_clear_intr() to clear them.

Frhost Interrupts
1. Call essl_send_slave_intr() to trigger general purpose interrupt of the slave.

TX FIFO
1. Call essl_get_tx_buffer_num() to know how many buffers the slave has prepared to receive data

from the master. This is optional. The master will poll tx_buffer_num when it try to send packets to the slave,
until the slave has enough buffer or timeout.

2. Call essl_send_packet() to send data to the slave.

RX FIFO
1. Call essl_get_rx_data_size() to know how many data the slave has prepared to send to the master.

This is optional. When the master tries to receive data from the slave, it will update the rx_data_size for once,
if the current rx_data_size is shorter than the buffer size the master prepared to receive. And it may poll the
rx_data_size if the rx_dat_size keeps 0, until timeout.

2. Call essl_get_packet() to receive data from the slave.

Reset counters (Optional) Call essl_reset_cnt() to reset the internal counter if you find the slave has reset
its counter.

Application Example

The example below shows how ESP32-C6 SDIO host and slave communicate with each other. The host use the ESSL
SDIO.
peripherals/sdio.
Please refer to the specific example README.md for details.

Espressif Systems 108
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/sdio
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/driver/test_apps/components/esp_serial_slave_link/include/esp_serial_slave_link/essl.h

Functions
esp_err_t essl_init(essl_handle_t handle, uint32_t wait_ms)

Initialize the slave.
Parameters

• handle -- Handle of an ESSL device.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK: If success
• ESP_ERR_NOT_SUPPORTED: Current device does not support this function.
• Other value returned from lower layer init.

esp_err_t essl_wait_for_ready(essl_handle_t handle, uint32_t wait_ms)
Wait for interrupt of an ESSL slave device.

Parameters
• handle -- Handle of an ESSL device.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK: If success
• ESP_ERR_NOT_SUPPORTED: Current device does not support this function.
• One of the error codes from SDMMC host controller

esp_err_t essl_get_tx_buffer_num(essl_handle_t handle, uint32_t *out_tx_num, uint32_t wait_ms)
Get buffer num for the host to send data to the slave. The buffers are size of buffer_size.

Parameters
• handle -- Handle of a ESSL device.
• out_tx_num -- Output of buffer num that host can send data to ESSL slave.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK: Success
• ESP_ERR_NOT_SUPPORTED: This API is not supported in this mode
• One of the error codes from SDMMC/SPI host controller

esp_err_t essl_get_rx_data_size(essl_handle_t handle, uint32_t *out_rx_size, uint32_t wait_ms)
Get the size, in bytes, of the data that the ESSL slave is ready to send

Parameters
• handle -- Handle of an ESSL device.
• out_rx_size -- Output of data size to read from slave, in bytes
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK: Success
• ESP_ERR_NOT_SUPPORTED: This API is not supported in this mode
• One of the error codes from SDMMC/SPI host controller

esp_err_t essl_reset_cnt(essl_handle_t handle)
Reset the counters of this component. Usually you don't need to do this unless you know the slave is reset.

Parameters handle -- Handle of an ESSL device.
Returns

• ESP_OK: Success
• ESP_ERR_NOT_SUPPORTED: This API is not supported in this mode
• ESP_ERR_INVALID_ARG: Invalid argument, handle is not init.

Espressif Systems 109
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/test_apps/components/esp_serial_slave_link/include/esp_serial_slave_link/essl.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t essl_send_packet(essl_handle_t handle, const void *start, size_t length, uint32_t wait_ms)
Send a packet to the ESSL Slave. The Slave receives the packet into buffers whose size is buffer_size
(configured during initialization).

Parameters
• handle -- Handle of an ESSL device.
• start -- Start address of the packet to send
• length -- Length of data to send, if the packet is over-size, the it will be divided into
blocks and hold into different buffers automatically.

• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG: Invalid argument, handle is not init or other argument is not
valid.

• ESP_ERR_TIMEOUT: No buffer to use, or error ftrom SDMMC host controller.
• ESP_ERR_NOT_FOUND: Slave is not ready for receiving.
• ESP_ERR_NOT_SUPPORTED: This API is not supported in this mode
• One of the error codes from SDMMC/SPI host controller.

esp_err_t essl_get_packet(essl_handle_t handle, void *out_data, size_t size, size_t *out_length, uint32_t
wait_ms)

Get a packet from ESSL slave.
Parameters

• handle -- Handle of an ESSL device.
• out_data -- [out] Data output address
• size -- The size of the output buffer, if the buffer is smaller than the size of data to
receive from slave, the driver returns ESP_ERR_NOT_FINISHED

• out_length -- [out] Output of length the data actually received from slave.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK Success: All the data has been read from the slave.
• ESP_ERR_INVALID_ARG: Invalid argument, The handle is not initialized or the other
arguments are invalid.

• ESP_ERR_NOT_FINISHED: Read was successful, but there is still data remaining.
• ESP_ERR_NOT_FOUND: Slave is not ready to send data.
• ESP_ERR_NOT_SUPPORTED: This API is not supported in this mode
• One of the error codes from SDMMC/SPI host controller.

esp_err_t essl_write_reg(essl_handle_t handle, uint8_t addr, uint8_t value, uint8_t *value_o, uint32_t
wait_ms)

Write general purpose R/W registers (8-bit) of ESSL slave.

Note: sdio 28-31 are reserved, the lower API helps to skip.

Parameters
• handle -- Handle of an ESSL device.
• addr -- Address of register to write. For SDIO, valid address: 0-59. For SPI, see
essl_spi.h

• value -- Value to write to the register.
• value_o -- Output of the returned written value.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK Success
• One of the error codes from SDMMC/SPI host controller

esp_err_t essl_read_reg(essl_handle_t handle, uint8_t add, uint8_t *value_o, uint32_t wait_ms)
Read general purpose R/W registers (8-bit) of ESSL slave.

Espressif Systems 110
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• handle -- Handle of a essl device.
• add -- Address of register to read. For SDIO, Valid address: 0-27, 32-63 (28-31 reserved,
return interrupt bits on read). For SPI, see essl_spi.h

• value_o -- Output value read from the register.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK Success
• One of the error codes from SDMMC/SPI host controller

esp_err_t essl_wait_int(essl_handle_t handle, uint32_t wait_ms)
wait for an interrupt of the slave

Parameters
• handle -- Handle of an ESSL device.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK: If interrupt is triggered.
• ESP_ERR_NOT_SUPPORTED: Current device does not support this function.
• ESP_ERR_TIMEOUT: No interrupts before timeout.

esp_err_t essl_clear_intr(essl_handle_t handle, uint32_t intr_mask, uint32_t wait_ms)
Clear interrupt bits of ESSL slave. All the bits set in the mask will be cleared, while other bits will stay the
same.

Parameters
• handle -- Handle of an ESSL device.
• intr_mask -- Mask of interrupt bits to clear.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK: Success
• ESP_ERR_NOT_SUPPORTED: Current device does not support this function.
• One of the error codes from SDMMC host controller

esp_err_t essl_get_intr(essl_handle_t handle, uint32_t *intr_raw, uint32_t *intr_st, uint32_t wait_ms)
Get interrupt bits of ESSL slave.

Parameters
• handle -- Handle of an ESSL device.
• intr_raw -- Output of the raw interrupt bits. Set to NULL if only masked bits are read.
• intr_st -- Output of the masked interrupt bits. set to NULL if only raw bits are read.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK: Success
• ESP_INVALID_ARG: If both intr_raw and intr_st are NULL.
• ESP_ERR_NOT_SUPPORTED: Current device does not support this function.
• One of the error codes from SDMMC host controller

esp_err_t essl_set_intr_ena(essl_handle_t handle, uint32_t ena_mask, uint32_t wait_ms)
Set interrupt enable bits of ESSL slave. The slave only sends interrupt on the line when there is a bit both the
raw status and the enable are set.

Parameters
• handle -- Handle of an ESSL device.
• ena_mask -- Mask of the interrupt bits to enable.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK: Success
• ESP_ERR_NOT_SUPPORTED: Current device does not support this function.
• One of the error codes from SDMMC host controller

Espressif Systems 111
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t essl_get_intr_ena(essl_handle_t handle, uint32_t *ena_mask_o, uint32_t wait_ms)
Get interrupt enable bits of ESSL slave.

Parameters
• handle -- Handle of an ESSL device.
• ena_mask_o -- Output of interrupt bit enable mask.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK Success
• One of the error codes from SDMMC host controller

esp_err_t essl_send_slave_intr(essl_handle_t handle, uint32_t intr_mask, uint32_t wait_ms)
Send interrupts to slave. Each bit of the interrupt will be triggered.

Parameters
• handle -- Handle of an ESSL device.
• intr_mask -- Mask of interrupt bits to send to slave.
• wait_ms -- Millisecond to wait before timeout, will not wait at all if set to 0-9.

Returns
• ESP_OK: Success
• ESP_ERR_NOT_SUPPORTED: Current device does not support this function.
• One of the error codes from SDMMC host controller

Type Definitions

typedef struct essl_dev_t *essl_handle_t
Handle of an ESSL device.

Header File
• components/driver/test_apps/components/esp_serial_slave_link/include/esp_serial_slave_link/essl_sdio.h

Functions
esp_err_t essl_sdio_init_dev(essl_handle_t *out_handle, const essl_sdio_config_t *config)

Initialize the ESSL SDIO device and get its handle.
Parameters

• out_handle -- Output of the handle.
• config -- Configuration for the ESSL SDIO device.

Returns
• ESP_OK: on success
• ESP_ERR_NO_MEM: memory exhausted.

esp_err_t essl_sdio_deinit_dev(essl_handle_t handle)
Deinitialize and free the space used by the ESSL SDIO device.

Parameters handle -- Handle of the ESSL SDIO device to deinit.
Returns

• ESP_OK: on success
• ESP_ERR_INVALID_ARG: wrong handle passed

Structures

struct essl_sdio_config_t
Configuration for the ESSL SDIO device.

Espressif Systems 112
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/test_apps/components/esp_serial_slave_link/include/esp_serial_slave_link/essl_sdio.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

sdmmc_card_t *card
The initialized sdmmc card pointer of the slave.

int recv_buffer_size
The pre-negotiated recv buffer size used by both the host and the slave.

Header File
• components/driver/test_apps/components/esp_serial_slave_link/include/esp_serial_slave_link/essl_spi.h

Functions
esp_err_t essl_spi_init_dev(essl_handle_t *out_handle, const essl_spi_config_t *init_config)

Initialize the ESSL SPI device function list and get its handle.
Parameters

• out_handle -- [out] Output of the handle
• init_config -- Configuration for the ESSL SPI device

Returns
• ESP_OK: On success
• ESP_ERR_NO_MEM: Memory exhausted
• ESP_ERR_INVALID_STATE: SPI driver is not initialized
• ESP_ERR_INVALID_ARG: Wrong register ID

esp_err_t essl_spi_deinit_dev(essl_handle_t handle)
Deinitialize the ESSL SPI device and free the memory used by the device.

Parameters handle -- Handle of the ESSL SPI device
Returns

• ESP_OK: On success
• ESP_ERR_INVALID_STATE: ESSL SPI is not in use

esp_err_t essl_spi_read_reg(void *arg, uint8_t addr, uint8_t *out_value, uint32_t wait_ms)
Read from the shared registers.

Note: The registers for Master/Slave synchronization are reserved. Do not use them. (see rx_sync_reg
in essl_spi_config_t)

Parameters
• arg -- Context of the component. (Member arg from essl_handle_t)
• addr -- Address of the shared registers. (Valid: 0 ~
SOC_SPI_MAXIMUM_BUFFER_SIZE, registers for M/S sync are reserved, see
note1).

• out_value -- [out] Read buffer for the shared registers.
• wait_ms -- Time to wait before timeout (reserved for future use, user should set this to
0).

Returns
• ESP_OK: success
• ESP_ERR_INVALID_STATE: ESSL SPI has not been initialized.
• ESP_ERR_INVALID_ARG: The address argument is not valid. See note 1.
• or other return value from :cpp:func:spi_device_transmit.

esp_err_t essl_spi_get_packet(void *arg, void *out_data, size_t size, uint32_t wait_ms)
Get a packet from Slave.

Espressif Systems 113
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/test_apps/components/esp_serial_slave_link/include/esp_serial_slave_link/essl_spi.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• arg -- Context of the component. (Member arg from essl_handle_t)
• out_data -- [out] Output data address
• size -- The size of the output data.
• wait_ms -- Time to wait before timeout (reserved for future use, user should set this to
0).

Returns
• ESP_OK: On Success
• ESP_ERR_INVALID_STATE: ESSL SPI has not been initialized.
• ESP_ERR_INVALID_ARG: The output data address is neither DMA capable nor 4 byte-
aligned

• ESP_ERR_INVALID_SIZE: Master requires size bytes of data but Slave did not load
enough bytes.

esp_err_t essl_spi_write_reg(void *arg, uint8_t addr, uint8_t value, uint8_t *out_value, uint32_t
wait_ms)

Write to the shared registers.

Note: The registers for Master/Slave synchronization are reserved. Do not use them. (see tx_sync_reg
in essl_spi_config_t)

Note: Feature of checking the actual written value (out_value) is not supported.

Parameters
• arg -- Context of the component. (Member arg from essl_handle_t)
• addr -- Address of the shared registers. (Valid: 0 ~
SOC_SPI_MAXIMUM_BUFFER_SIZE, registers for M/S sync are reserved, see
note1)

• value -- Buffer for data to send, should be align to 4.
• out_value -- [out] Not supported, should be set to NULL.
• wait_ms -- Time to wait before timeout (reserved for future use, user should set this to
0).

Returns
• ESP_OK: success
• ESP_ERR_INVALID_STATE: ESSL SPI has not been initialized.
• ESP_ERR_INVALID_ARG: The address argument is not valid. See note 1.
• ESP_ERR_NOT_SUPPORTED: Should set out_value to NULL. See note 2.
• or other return value from :cpp:func:spi_device_transmit.

esp_err_t essl_spi_send_packet(void *arg, const void *data, size_t size, uint32_t wait_ms)
Send a packet to Slave.

Parameters
• arg -- Context of the component. (Member arg from essl_handle_t)
• data -- Address of the data to send
• size -- Size of the data to send.
• wait_ms -- Time to wait before timeout (reserved for future use, user should set this to
0).

Returns
• ESP_OK: On success
• ESP_ERR_INVALID_STATE: ESSL SPI has not been initialized.
• ESP_ERR_INVALID_ARG: The data address is not DMA capable
• ESP_ERR_INVALID_SIZE: Master will send size bytes of data but Slave did not load
enough RX buffer

Espressif Systems 114
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void essl_spi_reset_cnt(void *arg)
Reset the counter in Master context.

Note: Shall only be called if the slave has reset its counter. Else, Slave and Master would be desynchronized

Parameters arg -- Context of the component. (Member arg from essl_handle_t)

esp_err_t essl_spi_rdbuf(spi_device_handle_t spi, uint8_t *out_data, int addr, int len, uint32_t flags)
Read the shared buffer from the slave in ISR way.

Note: The slave's HW doesn't guarantee the data in one SPI transaction is consistent. It sends data in unit of
byte. In other words, if the slave SW attempts to update the shared register when a rdbuf SPI transaction is
in-flight, the data got by the master will be the combination of bytes of different writes of slave SW.

Note: out_data should be prepared in words and in the DRAM. The buffer may be written in words by the
DMA. When a byte is written, the remaining bytes in the same word will also be overwritten, even the len is
shorter than a word.

Parameters
• spi -- SPI device handle representing the slave
• out_data -- [out] Buffer for read data, strongly suggested to be in the DRAM and
aligned to 4

• addr -- Address of the slave shared buffer
• len -- Length to read
• flags -- SPI_TRANS_* flags to control the transaction mode of the transaction to send.

Returns
• ESP_OK: on success
• or other return value from :cpp:func:spi_device_transmit.

esp_err_t essl_spi_rdbuf_polling(spi_device_handle_t spi, uint8_t *out_data, int addr, int len, uint32_t
flags)

Read the shared buffer from the slave in polling way.

Note: out_data should be prepared in words and in the DRAM. The buffer may be written in words by the
DMA. When a byte is written, the remaining bytes in the same word will also be overwritten, even the len is
shorter than a word.

Parameters
• spi -- SPI device handle representing the slave
• out_data -- [out] Buffer for read data, strongly suggested to be in the DRAM and
aligned to 4

• addr -- Address of the slave shared buffer
• len -- Length to read
• flags -- SPI_TRANS_* flags to control the transaction mode of the transaction to send.

Returns
• ESP_OK: on success
• or other return value from :cpp:func:spi_device_transmit.

esp_err_t essl_spi_wrbuf(spi_device_handle_t spi, const uint8_t *data, int addr, int len, uint32_t flags)
Write the shared buffer of the slave in ISR way.

Espressif Systems 115
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: out_data should be prepared in words and in the DRAM. The buffer may be written in words by the
DMA. When a byte is written, the remaining bytes in the same word will also be overwritten, even the len is
shorter than a word.

Parameters
• spi -- SPI device handle representing the slave
• data -- Buffer for data to send, strongly suggested to be in the DRAM
• addr -- Address of the slave shared buffer,
• len -- Length to write
• flags -- SPI_TRANS_* flags to control the transaction mode of the transaction to send.

Returns
• ESP_OK: success
• or other return value from :cpp:func:spi_device_transmit.

esp_err_t essl_spi_wrbuf_polling(spi_device_handle_t spi, const uint8_t *data, int addr, int len, uint32_t
flags)

Write the shared buffer of the slave in polling way.

Note: out_data should be prepared in words and in the DRAM. The buffer may be written in words by the
DMA. When a byte is written, the remaining bytes in the same word will also be overwritten, even the len is
shorter than a word.

Parameters
• spi -- SPI device handle representing the slave
• data -- Buffer for data to send, strongly suggested to be in the DRAM
• addr -- Address of the slave shared buffer,
• len -- Length to write
• flags -- SPI_TRANS_* flags to control the transaction mode of the transaction to send.

Returns
• ESP_OK: success
• or other return value from :cpp:func:spi_device_polling_transmit.

esp_err_t essl_spi_rddma(spi_device_handle_t spi, uint8_t *out_data, int len, int seg_len, uint32_t flags)
Receive long buffer in segments from the slave through its DMA.

Note: This function combines several :cpp:func:essl_spi_rddma_seg and one
:cpp:func:essl_spi_rddma_done at the end. Used when the slave is working in segment mode.

Parameters
• spi -- SPI device handle representing the slave
• out_data -- [out] Buffer to hold the received data, strongly suggested to be in the
DRAM and aligned to 4

• len -- Total length of data to receive.
• seg_len -- Length of each segment, which is not larger than the maximum transaction
length allowed for the spi device. Suggested to be multiples of 4. When set < 0, means
send all data in one segment (the rddma_done will still be sent.)

• flags -- SPI_TRANS_* flags to control the transaction mode of the transaction to send.
Returns

• ESP_OK: success
• or other return value from :cpp:func:spi_device_transmit.

Espressif Systems 116
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t essl_spi_rddma_seg(spi_device_handle_t spi, uint8_t *out_data, int seg_len, uint32_t flags)
Read one data segment from the slave through its DMA.

Note: To read long buffer, call :cpp:func:essl_spi_rddma instead.

Parameters
• spi -- SPI device handle representing the slave
• out_data -- [out] Buffer to hold the received data. strongly suggested to be in the
DRAM and aligned to 4

• seg_len -- Length of this segment
• flags -- SPI_TRANS_* flags to control the transaction mode of the transaction to send.

Returns
• ESP_OK: success
• or other return value from :cpp:func:spi_device_transmit.

esp_err_t essl_spi_rddma_done(spi_device_handle_t spi, uint32_t flags)
Send the rddma_done command to the slave. Upon receiving this command, the slave will stop sending the
current buffer even there are data unsent, and maybe prepare the next buffer to send.

Note: This is required only when the slave is working in segment mode.

Parameters
• spi -- SPI device handle representing the slave
• flags -- SPI_TRANS_* flags to control the transaction mode of the transaction to send.

Returns
• ESP_OK: success
• or other return value from :cpp:func:spi_device_transmit.

esp_err_t essl_spi_wrdma(spi_device_handle_t spi, const uint8_t *data, int len, int seg_len, uint32_t flags)
Send long buffer in segments to the slave through its DMA.

Note: This function combines several :cpp:func:essl_spi_wrdma_seg and one
:cpp:func:essl_spi_wrdma_done at the end. Used when the slave is working in segment mode.

Parameters
• spi -- SPI device handle representing the slave
• data -- Buffer for data to send, strongly suggested to be in the DRAM
• len -- Total length of data to send.
• seg_len -- Length of each segment, which is not larger than the maximum transaction
length allowed for the spi device. Suggested to be multiples of 4. When set < 0, means
send all data in one segment (the wrdma_done will still be sent.)

• flags -- SPI_TRANS_* flags to control the transaction mode of the transaction to send.
Returns

• ESP_OK: success
• or other return value from :cpp:func:spi_device_transmit.

esp_err_t essl_spi_wrdma_seg(spi_device_handle_t spi, const uint8_t *data, int seg_len, uint32_t flags)
Send one data segment to the slave through its DMA.

Note: To send long buffer, call :cpp:func:essl_spi_wrdma instead.

Espressif Systems 117
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• spi -- SPI device handle representing the slave
• data -- Buffer for data to send, strongly suggested to be in the DRAM
• seg_len -- Length of this segment
• flags -- SPI_TRANS_* flags to control the transaction mode of the transaction to send.

Returns
• ESP_OK: success
• or other return value from :cpp:func:spi_device_transmit.

esp_err_t essl_spi_wrdma_done(spi_device_handle_t spi, uint32_t flags)
Send the wrdma_done command to the slave. Upon receiving this command, the slave will stop receiving,
process the received data, and maybe prepare the next buffer to receive.

Note: This is required only when the slave is working in segment mode.

Parameters
• spi -- SPI device handle representing the slave
• flags -- SPI_TRANS_* flags to control the transaction mode of the transaction to send.

Returns
• ESP_OK: success
• or other return value from :cpp:func:spi_device_transmit.

Structures

struct essl_spi_config_t
Configuration of ESSL SPI device.

Public Members

spi_device_handle_t *spi
Pointer to SPI device handle.

uint32_t tx_buf_size
The pre-negotiated Master TX buffer size used by both the host and the slave.

uint8_t tx_sync_reg
The pre-negotiated register ID for Master-TX-SLAVE-RX synchronization. 1 word (4 Bytes) will be
reserved for the synchronization.

uint8_t rx_sync_reg
The pre-negotiated register ID for Master-RX-Slave-TX synchronization. 1 word (4 Bytes) will be re-
served for the synchronization.

2.2.8 ESP x509 Certificate Bundle

Overview

The ESP x509 Certificate Bundle API provides an easy way to include a bundle of custom x509 root certificates for
TLS server verification.

Espressif Systems 118
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: The bundle is currently not available when using WolfSSL.

The bundle comes with the complete list of root certificates from Mozilla’s NSS root certificate store. Using the
gen_crt_bundle.py python utility the certificates’subject name and public key are stored in a file and embedded in
the ESP32-C6 binary.
When generating the bundle you may choose between:

• The full root certificate bundle from Mozilla, containing more than 130 certificates. The current bundle was
updated Tue Jan 10 04:12:06 2023 GMT.

• A pre-selected filter list of the name of the most commonly used root certificates, reducing the amount of
certificates to around 41 while still having around 90% absolute usage coverage and 99%market share coverage
according to SSL certificate authorities statistics.

In addition it is possible to specify a path to a certificate file or a directory containing certificates which then will be
added to the generated bundle.

Note: Trusting all root certificates means the list will have to be updated if any of the certificates are retracted. This
includes removing them from cacrt_all.pem.

Configuration

Most configuration is done through menuconfig. CMake will generate the bundle according to the configuration and
embed it.

• CONFIG_MBEDTLS_CERTIFICATE_BUNDLE: automatically build and attach the bundle.
• CONFIG_MBEDTLS_DEFAULT_CERTIFICATE_BUNDLE: decide which certificates to include from the com-
plete root list.

• CONFIG_MBEDTLS_CUSTOM_CERTIFICATE_BUNDLE_PATH: specify the path of any additional certifi-
cates to embed in the bundle.

To enable the bundle when using ESP-TLS simply pass the function pointer to the bundle attach function:

esp_tls_cfg_t cfg = {
.crt_bundle_attach = esp_crt_bundle_attach,

};

This is done to avoid embedding the certificate bundle unless activated by the user.
If using mbedTLS directly then the bundle may be activated by directly calling the attach function during the setup
process:

mbedtls_ssl_config conf;
mbedtls_ssl_config_init(&conf);

esp_crt_bundle_attach(&conf);

Generating the List of Root Certificates

The list of root certificates comes from Mozilla's NSS root certificate store, which can be found here The list can be
downloaded and created by running the script mk-ca-bundle.pl that is distributed as a part of curl. Another
alternative would be to download the finished list directly from the curl website: CA certificates extracted from
Mozilla
The common certificates bundle were made by selecting the authorities with a market share of more than 1 %
from w3tech's SSL Survey. These authorities were then used to pick the names of the certificates for the filter
list, cmn_crt_authorities.csv, from this list provided by Mozilla.

Espressif Systems 119
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://wiki.mozilla.org/CA/Included_Certificates
https://github.com/curl/curl
https://curl.se/docs/caextract.html
https://curl.se/docs/caextract.html
https://w3techs.com/technologies/overview/ssl_certificate
https://ccadb-public.secure.force.com/mozilla/IncludedCACertificateReportPEMCSV
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Updating the Certificate Bundle

The bundle is embedded into the app and can be updated along with the app by an OTA update. If you want to include
a more up-to-date bundle than the bundle currently included in ESP-IDF, then the certificate list can be downloaded
from Mozilla as described in Generating the List of Root Certificates.

Application Example

Simple HTTPS example that uses ESP-TLS to establish a secure socket connection using the certificate bundle with
two custom certificates added for verification: protocols/https_x509_bundle.
HTTPS example that uses ESP-TLS and the default bundle: protocols/https_request.
HTTPS example that uses mbedTLS and the default bundle: protocols/https_mbedtls.

API Reference

Header File
• components/mbedtls/esp_crt_bundle/include/esp_crt_bundle.h

Functions
esp_err_t esp_crt_bundle_attach(void *conf)

Attach and enable use of a bundle for certificate verification.
Attach and enable use of a bundle for certificate verification through a verification callback. If no specific bundle
has been set through esp_crt_bundle_set() it will default to the bundle defined in menuconfig and embedded in
the binary.

Parameters conf -- [in] The config struct for the SSL connection.
Returns

• ESP_OK if adding certificates was successful.
• Other if an error occurred or an action must be taken by the calling process.

void esp_crt_bundle_detach(mbedtls_ssl_config *conf)
Disable and dealloc the certification bundle.
Removes the certificate verification callback and deallocates used resources

Parameters conf -- [in] The config struct for the SSL connection.
esp_err_t esp_crt_bundle_set(const uint8_t *x509_bundle, size_t bundle_size)

Set the default certificate bundle used for verification.
Overrides the default certificate bundle only in case of successful initialization. In most use cases the bundle
should be set through menuconfig. The bundle needs to be sorted by subject name since binary search is used
to find certificates.

Parameters
• x509_bundle -- [in] A pointer to the certificate bundle.
• bundle_size -- [in] Size of the certificate bundle in bytes.

Returns
• ESP_OK if adding certificates was successful.
• Other if an error occurred or an action must be taken by the calling process.

bool esp_crt_bundle_in_use(const mbedtls_x509_crt *ca_chain)
Check if the given CA certificate chain is the default "dummy" certificate chain attached by the esp_crt_bundle.

Parameters ca_chain -- A pointer to the CA chain.
Returns true if the ca_chain is the dummy CA chain attached by esp_crt_bundle
Returns false otherwise

Espressif Systems 120
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_x509_bundle
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_request
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_mbedtls
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/mbedtls/esp_crt_bundle/include/esp_crt_bundle.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.2.9 HTTP Server

Overview

The HTTP Server component provides an ability for running a lightweight web server on ESP32-C6. Following are
detailed steps to use the API exposed by HTTP Server:

• httpd_start(): Creates an instance of HTTP server, allocate memory/resources for it depending upon
the specified configuration and outputs a handle to the server instance. The server has both, a listening socket
(TCP) for HTTP traffic, and a control socket (UDP) for control signals, which are selected in a round robin
fashion in the server task loop. The task priority and stack size are configurable during server instance creation
by passing httpd_config_t structure to httpd_start(). TCP traffic is parsed as HTTP requests and, depending
on the requested URI, user registered handlers are invoked which are supposed to send back HTTP response
packets.

• httpd_stop(): This stops the server with the provided handle and frees up any associated mem-
ory/resources. This is a blocking function that first signals a halt to the server task and then waits for the
task to terminate. While stopping, the task will close all open connections, remove registered URI handlers
and reset all session context data to empty.

• httpd_register_uri_handler(): A URI handler is registered by passing object of type
httpd_uri_t structure which has members including uri name, method type (eg. HTTPD_GET/
HTTPD_POST/HTTPD_PUT etc.), function pointer of type esp_err_t *handler (httpd_req_t
*req) and user_ctx pointer to user context data.

Application Example

/* Our URI handler function to be called during GET /uri request */
esp_err_t get_handler(httpd_req_t *req)
{

/* Send a simple response */
const char resp[] = "URI GET Response";
httpd_resp_send(req, resp, HTTPD_RESP_USE_STRLEN);
return ESP_OK;

}

/* Our URI handler function to be called during POST /uri request */
esp_err_t post_handler(httpd_req_t *req)
{

/* Destination buffer for content of HTTP POST request.
* httpd_req_recv() accepts char* only, but content could
* as well be any binary data (needs type casting).
* In case of string data, null termination will be absent, and
* content length would give length of string */

char content[100];

/* Truncate if content length larger than the buffer */
size_t recv_size = MIN(req->content_len, sizeof(content));

int ret = httpd_req_recv(req, content, recv_size);
if (ret <= 0) { /* 0 return value indicates connection closed */

/* Check if timeout occurred */
if (ret == HTTPD_SOCK_ERR_TIMEOUT) {

/* In case of timeout one can choose to retry calling
* httpd_req_recv(), but to keep it simple, here we
* respond with an HTTP 408 (Request Timeout) error */

httpd_resp_send_408(req);
}
/* In case of error, returning ESP_FAIL will

(continues on next page)

Espressif Systems 121
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
* ensure that the underlying socket is closed */

return ESP_FAIL;
}

/* Send a simple response */
const char resp[] = "URI POST Response";
httpd_resp_send(req, resp, HTTPD_RESP_USE_STRLEN);
return ESP_OK;

}

/* URI handler structure for GET /uri */
httpd_uri_t uri_get = {

.uri = "/uri",

.method = HTTP_GET,

.handler = get_handler,

.user_ctx = NULL
};

/* URI handler structure for POST /uri */
httpd_uri_t uri_post = {

.uri = "/uri",

.method = HTTP_POST,

.handler = post_handler,

.user_ctx = NULL
};

/* Function for starting the webserver */
httpd_handle_t start_webserver(void)
{

/* Generate default configuration */
httpd_config_t config = HTTPD_DEFAULT_CONFIG();

/* Empty handle to esp_http_server */
httpd_handle_t server = NULL;

/* Start the httpd server */
if (httpd_start(&server, &config) == ESP_OK) {

/* Register URI handlers */
httpd_register_uri_handler(server, &uri_get);
httpd_register_uri_handler(server, &uri_post);

}
/* If server failed to start, handle will be NULL */
return server;

}

/* Function for stopping the webserver */
void stop_webserver(httpd_handle_t server)
{

if (server) {
/* Stop the httpd server */
httpd_stop(server);

}
}

Simple HTTP Server Example Check HTTP server example under protocols/http_server/simple where handling
of arbitrary content lengths, reading request headers and URL query parameters, and setting response headers is
demonstrated.

Espressif Systems 122
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/http_server/simple
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Persistent Connections

HTTP server features persistent connections, allowing for the re-use of the same connection (session) for several
transfers, all the while maintaining context specific data for the session. Context data may be allocated dynamically by
the handler in which case a custom function may need to be specified for freeing this data when the connection/session
is closed.

Persistent Connections Example
/* Custom function to free context */
void free_ctx_func(void *ctx)
{

/* Could be something other than free */
free(ctx);

}

esp_err_t adder_post_handler(httpd_req_t *req)
{

/* Create session's context if not already available */
if (! req->sess_ctx) {

req->sess_ctx = malloc(sizeof(ANY_DATA_TYPE)); /*!< Pointer to context␣
↪→data */

req->free_ctx = free_ctx_func; /*!< Function to free␣
↪→context data */

}

/* Access context data */
ANY_DATA_TYPE *ctx_data = (ANY_DATA_TYPE *)req->sess_ctx;

/* Respond */
...............
...............
...............

return ESP_OK;
}

Check the example under protocols/http_server/persistent_sockets.

Websocket Server

The HTTP server component provides websocket support. The websocket feature can be enabled in menuconfig us-
ing the CONFIG_HTTPD_WS_SUPPORT option. Please refer to the protocols/http_server/ws_echo_server example
which demonstrates usage of the websocket feature.

Event Handling

ESPHTTP server has various events for which a handler can be triggered by the Event Loop librarywhen the particular
event occurs. The handler has to be registered using esp_event_handler_register(). This helps in event
handling for ESP HTTP server.
esp_http_server_event_id_t has all the events which can happen for ESP HTTP server.
Expected data type for different ESP HTTP server events in event loop:

• HTTP_SERVER_EVENT_ERROR : httpd_err_code_t
• HTTP_SERVER_EVENT_START : NULL
• HTTP_SERVER_EVENT_ON_CONNECTED : int
• HTTP_SERVER_EVENT_ON_HEADER : int
• HTTP_SERVER_EVENT_HEADERS_SENT : int

Espressif Systems 123
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/http_server/persistent_sockets
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/http_server/ws_echo_server
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• HTTP_SERVER_EVENT_ON_DATA : esp_http_server_event_data
• HTTP_SERVER_EVENT_SENT_DATA : esp_http_server_event_data
• HTTP_SERVER_EVENT_DISCONNECTED : int
• HTTP_SERVER_EVENT_STOP : NULL

API Reference

Header File
• components/esp_http_server/include/esp_http_server.h

Functions
esp_err_t httpd_register_uri_handler(httpd_handle_t handle, const httpd_uri_t *uri_handler)

Registers a URI handler.

Example usage:

esp_err_t my_uri_handler(httpd_req_t* req)
{

// Recv , Process and Send
....
....
....

// Fail condition
if (....) {

// Return fail to close session //
return ESP_FAIL;

}

// On success
return ESP_OK;

}

// URI handler structure
httpd_uri_t my_uri {

.uri = "/my_uri/path/xyz",

.method = HTTPD_GET,

.handler = my_uri_handler,

.user_ctx = NULL
};

// Register handler
if (httpd_register_uri_handler(server_handle, &my_uri) != ESP_OK) {

// If failed to register handler
....

}

Note: URI handlers can be registered in real time as long as the server handle is valid.

Parameters
• handle -- [in] handle to HTTPD server instance
• uri_handler -- [in] pointer to handler that needs to be registered

Returns
• ESP_OK : On successfully registering the handler
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_HANDLERS_FULL : If no slots left for new handler

Espressif Systems 124
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_http_server/include/esp_http_server.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_HTTPD_HANDLER_EXISTS : If handler with same URI and method is al-
ready registered

esp_err_t httpd_unregister_uri_handler(httpd_handle_t handle, const char *uri, httpd_method_t
method)

Unregister a URI handler.
Parameters

• handle -- [in] handle to HTTPD server instance
• uri -- [in] URI string
• method -- [in] HTTP method

Returns
• ESP_OK : On successfully deregistering the handler
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_NOT_FOUND : Handler with specified URI and method not found

esp_err_t httpd_unregister_uri(httpd_handle_t handle, const char *uri)
Unregister all URI handlers with the specified uri string.

Parameters
• handle -- [in] handle to HTTPD server instance
• uri -- [in] uri string specifying all handlers that need to be deregisterd

Returns
• ESP_OK : On successfully deregistering all such handlers
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_NOT_FOUND : No handler registered with specified uri string

esp_err_t httpd_sess_set_recv_override(httpd_handle_t hd, int sockfd, httpd_recv_func_t recv_func)
Override web server's receive function (by session FD)
This function overrides the web server's receive function. This same function is used to read HTTP request
packets.

Note: This API is supposed to be called either from the context of
• an http session APIs where sockfd is a valid parameter
• a URI handler where sockfd is obtained using httpd_req_to_sockfd()

Parameters
• hd -- [in] HTTPD instance handle
• sockfd -- [in] Session socket FD
• recv_func -- [in] The receive function to be set for this session

Returns
• ESP_OK : On successfully registering override
• ESP_ERR_INVALID_ARG : Null arguments

esp_err_t httpd_sess_set_send_override(httpd_handle_t hd, int sockfd, httpd_send_func_t send_func)
Override web server's send function (by session FD)
This function overrides the web server's send function. This same function is used to send out any response to
any HTTP request.

Note: This API is supposed to be called either from the context of
• an http session APIs where sockfd is a valid parameter
• a URI handler where sockfd is obtained using httpd_req_to_sockfd()

Parameters
• hd -- [in] HTTPD instance handle

Espressif Systems 125
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• sockfd -- [in] Session socket FD
• send_func -- [in] The send function to be set for this session

Returns
• ESP_OK : On successfully registering override
• ESP_ERR_INVALID_ARG : Null arguments

esp_err_t httpd_sess_set_pending_override(httpd_handle_t hd, int sockfd, httpd_pending_func_t
pending_func)

Override web server's pending function (by session FD)
This function overrides the web server's pending function. This function is used to test for pending bytes in a
socket.

Note: This API is supposed to be called either from the context of
• an http session APIs where sockfd is a valid parameter
• a URI handler where sockfd is obtained using httpd_req_to_sockfd()

Parameters
• hd -- [in] HTTPD instance handle
• sockfd -- [in] Session socket FD
• pending_func -- [in] The receive function to be set for this session

Returns
• ESP_OK : On successfully registering override
• ESP_ERR_INVALID_ARG : Null arguments

int httpd_req_to_sockfd(httpd_req_t *r)
Get the Socket Descriptor from the HTTP request.
This API will return the socket descriptor of the session for which URI handler was executed on reception of
HTTP request. This is useful when user wants to call functions that require session socket fd, from within a
URI handler, ie. : httpd_sess_get_ctx(), httpd_sess_trigger_close(), httpd_sess_update_lru_counter().

Note: This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

Parameters r -- [in] The request whose socket descriptor should be found
Returns

• Socket descriptor : The socket descriptor for this request
• -1 : Invalid/NULL request pointer

int httpd_req_recv(httpd_req_t *r, char *buf, size_t buf_len)
API to read content data from the HTTP request.
This API will read HTTP content data from the HTTP request into provided buffer. Use content_len provided
in httpd_req_t structure to know the length of data to be fetched. If content_len is too large for the buffer then
user may have to make multiple calls to this function, each time fetching 'buf_len' number of bytes, while the
pointer to content data is incremented internally by the same number.

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• If an error is returned, the URI handler must further return an error. This will ensure that the erroneous
socket is closed and cleaned up by the web server.

• Presently Chunked Encoding is not supported

Espressif Systems 126
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• r -- [in] The request being responded to
• buf -- [in] Pointer to a buffer that the data will be read into
• buf_len -- [in] Length of the buffer

Returns
• Bytes : Number of bytes read into the buffer successfully
• 0 : Buffer length parameter is zero / connection closed by peer
• HTTPD_SOCK_ERR_INVALID : Invalid arguments
• HTTPD_SOCK_ERR_TIMEOUT : Timeout/interrupted while calling socket recv()
• HTTPD_SOCK_ERR_FAIL : Unrecoverable error while calling socket recv()

size_t httpd_req_get_hdr_value_len(httpd_req_t *r, const char *field)
Search for a field in request headers and return the string length of it's value.

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• Once httpd_resp_send() API is called all request headers are purged, so request headers need be copied
into separate buffers if they are required later.

Parameters
• r -- [in] The request being responded to
• field -- [in] The header field to be searched in the request

Returns
• Length : If field is found in the request URL
• Zero : Field not found / Invalid request / Null arguments

esp_err_t httpd_req_get_hdr_value_str(httpd_req_t *r, const char *field, char *val, size_t val_size)
Get the value string of a field from the request headers.

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• Once httpd_resp_send() API is called all request headers are purged, so request headers need be copied
into separate buffers if they are required later.

• If output size is greater than input, then the value is truncated, accompanied by truncation error as return
value.

• Use httpd_req_get_hdr_value_len() to know the right buffer length

Parameters
• r -- [in] The request being responded to
• field -- [in] The field to be searched in the header
• val -- [out] Pointer to the buffer into which the value will be copied if the field is found
• val_size -- [in] Size of the user buffer "val"

Returns
• ESP_OK : Field found in the request header and value string copied
• ESP_ERR_NOT_FOUND : Key not found
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_INVALID_REQ : Invalid HTTP request pointer
• ESP_ERR_HTTPD_RESULT_TRUNC : Value string truncated

Espressif Systems 127
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

size_t httpd_req_get_url_query_len(httpd_req_t *r)
Get Query string length from the request URL.

Note: This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid

Parameters r -- [in] The request being responded to
Returns

• Length : Query is found in the request URL
• Zero : Query not found / Null arguments / Invalid request

esp_err_t httpd_req_get_url_query_str(httpd_req_t *r, char *buf, size_t buf_len)
Get Query string from the request URL.

Note:
• Presently, the user can fetch the full URL query string, but decoding will have to be performed by the
user. Request headers can be read using httpd_req_get_hdr_value_str() to know the 'Content-Type' (eg.
Content-Type: application/x-www-form-urlencoded) and then the appropriate decoding algorithm needs
to be applied.

• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid

• If output size is greater than input, then the value is truncated, accompanied by truncation error as return
value

• Prior to calling this function, one can use httpd_req_get_url_query_len() to know the query string length
beforehand and hence allocate the buffer of right size (usually query string length + 1 for null termination)
for storing the query string

Parameters
• r -- [in] The request being responded to
• buf -- [out] Pointer to the buffer into which the query string will be copied (if found)
• buf_len -- [in] Length of output buffer

Returns
• ESP_OK : Query is found in the request URL and copied to buffer
• ESP_ERR_NOT_FOUND : Query not found
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_INVALID_REQ : Invalid HTTP request pointer
• ESP_ERR_HTTPD_RESULT_TRUNC : Query string truncated

esp_err_t httpd_query_key_value(const char *qry, const char *key, char *val, size_t val_size)
Helper function to get a URL query tag from a query string of the type param1=val1¶m2=val2.

Note:
• The components of URL query string (keys and values) are not URLdecoded. The user must check for
'Content-Type' field in the request headers and then depending upon the specified encoding (URLencoded
or otherwise) apply the appropriate decoding algorithm.

• If actual value size is greater than val_size, then the value is truncated, accompanied by truncation error
as return value.

Parameters
• qry -- [in] Pointer to query string
• key -- [in] The key to be searched in the query string
• val -- [out] Pointer to the buffer into which the value will be copied if the key is found

Espressif Systems 128
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• val_size -- [in] Size of the user buffer "val"
Returns

• ESP_OK : Key is found in the URL query string and copied to buffer
• ESP_ERR_NOT_FOUND : Key not found
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_RESULT_TRUNC : Value string truncated

esp_err_t httpd_req_get_cookie_val(httpd_req_t *req, const char *cookie_name, char *val, size_t
*val_size)

Get the value string of a cookie value from the "Cookie" request headers by cookie name.
Parameters

• req -- [in] Pointer to the HTTP request
• cookie_name -- [in] The cookie name to be searched in the request
• val -- [out] Pointer to the buffer into which the value of cookie will be copied if the
cookie is found

• val_size -- [inout] Pointer to size of the user buffer "val". This variable will
contain cookie length if ESP_OK is returned and required buffer length incase
ESP_ERR_HTTPD_RESULT_TRUNC is returned.

Returns
• ESP_OK : Key is found in the cookie string and copied to buffer
• ESP_ERR_NOT_FOUND : Key not found
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_RESULT_TRUNC : Value string truncated
• ESP_ERR_NO_MEM : Memory allocation failure

bool httpd_uri_match_wildcard(const char *uri_template, const char *uri_to_match, size_t
match_upto)

Test if a URI matches the given wildcard template.
Template may end with "?" to make the previous character optional (typically a slash), "*" for a wildcard match,
and "?*" to make the previous character optional, and if present, allow anything to follow.
Example:

• * matches everything
• /foo/? matches /foo and /foo/
• /foo/* (sans the backslash) matches /foo/ and /foo/bar, but not /foo or /fo
• /foo/?* or /foo/*? (sans the backslash) matches /foo/, /foo/bar, and also /foo, but not /foox or /fo

The special characters "?" and "*" anywhere else in the template will be taken literally.
Parameters

• uri_template -- [in] URI template (pattern)
• uri_to_match -- [in] URI to be matched
• match_upto -- [in] howmany characters of the URI buffer to test (there may be trailing
query string etc.)

Returns true if a match was found
esp_err_t httpd_resp_send(httpd_req_t *r, const char *buf, ssize_t buf_len)

API to send a complete HTTP response.
This API will send the data as an HTTP response to the request. This assumes that you have the entire response
ready in a single buffer. If you wish to send response in incremental chunks use httpd_resp_send_chunk()
instead.
If no status code and content-type were set, by default this will send 200 OK status code and content type
as text/html. You may call the following functions before this API to configure the response headers :
httpd_resp_set_status() - for setting the HTTP status string, httpd_resp_set_type() - for setting the Content
Type, httpd_resp_set_hdr() - for appending any additional field value entries in the response header

Note:

Espressif Systems 129
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• Once this API is called, the request has been responded to.
• No additional data can then be sent for the request.
• Once this API is called, all request headers are purged, so request headers need be copied into separate
buffers if they are required later.

Parameters
• r -- [in] The request being responded to
• buf -- [in] Buffer from where the content is to be fetched
• buf_len -- [in] Length of the buffer, HTTPD_RESP_USE_STRLEN to use strlen()

Returns
• ESP_OK : On successfully sending the response packet
• ESP_ERR_INVALID_ARG : Null request pointer
• ESP_ERR_HTTPD_RESP_HDR : Essential headers are too large for internal buffer
• ESP_ERR_HTTPD_RESP_SEND : Error in raw send
• ESP_ERR_HTTPD_INVALID_REQ : Invalid request

esp_err_t httpd_resp_send_chunk(httpd_req_t *r, const char *buf, ssize_t buf_len)
API to send one HTTP chunk.
This API will send the data as an HTTP response to the request. This API will use chunked-encoding and
send the response in the form of chunks. If you have the entire response contained in a single buffer, please
use httpd_resp_send() instead.
If no status code and content-type were set, by default this will send 200 OK status code and content
type as text/html. You may call the following functions before this API to configure the response headers
httpd_resp_set_status() - for setting the HTTP status string, httpd_resp_set_type() - for setting the Content
Type, httpd_resp_set_hdr() - for appending any additional field value entries in the response header

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• When you are finished sending all your chunks, you must call this function with buf_len as 0.
• Once this API is called, all request headers are purged, so request headers need be copied into separate
buffers if they are required later.

Parameters
• r -- [in] The request being responded to
• buf -- [in] Pointer to a buffer that stores the data
• buf_len -- [in] Length of the buffer, HTTPD_RESP_USE_STRLEN to use strlen()

Returns
• ESP_OK : On successfully sending the response packet chunk
• ESP_ERR_INVALID_ARG : Null request pointer
• ESP_ERR_HTTPD_RESP_HDR : Essential headers are too large for internal buffer
• ESP_ERR_HTTPD_RESP_SEND : Error in raw send
• ESP_ERR_HTTPD_INVALID_REQ : Invalid request pointer

static inline esp_err_t httpd_resp_sendstr(httpd_req_t *r, const char *str)
API to send a complete string as HTTP response.
This API simply calls http_resp_send with buffer length set to string length assuming the buffer contains a null
terminated string

Parameters
• r -- [in] The request being responded to
• str -- [in] String to be sent as response body

Espressif Systems 130
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK : On successfully sending the response packet
• ESP_ERR_INVALID_ARG : Null request pointer
• ESP_ERR_HTTPD_RESP_HDR : Essential headers are too large for internal buffer
• ESP_ERR_HTTPD_RESP_SEND : Error in raw send
• ESP_ERR_HTTPD_INVALID_REQ : Invalid request

static inline esp_err_t httpd_resp_sendstr_chunk(httpd_req_t *r, const char *str)
API to send a string as an HTTP response chunk.
This API simply calls http_resp_send_chunk with buffer length set to string length assuming the buffer contains
a null terminated string

Parameters
• r -- [in] The request being responded to
• str -- [in] String to be sent as response body (NULL to finish response packet)

Returns
• ESP_OK : On successfully sending the response packet
• ESP_ERR_INVALID_ARG : Null request pointer
• ESP_ERR_HTTPD_RESP_HDR : Essential headers are too large for internal buffer
• ESP_ERR_HTTPD_RESP_SEND : Error in raw send
• ESP_ERR_HTTPD_INVALID_REQ : Invalid request

esp_err_t httpd_resp_set_status(httpd_req_t *r, const char *status)
API to set the HTTP status code.
This API sets the status of the HTTP response to the value specified. By default, the '200 OK' response is sent
as the response.

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• This API only sets the status to this value. The status isn't sent out until any of the send APIs is executed.
• Make sure that the lifetime of the status string is valid till send function is called.

Parameters
• r -- [in] The request being responded to
• status -- [in] The HTTP status code of this response

Returns
• ESP_OK : On success
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_INVALID_REQ : Invalid request pointer

esp_err_t httpd_resp_set_type(httpd_req_t *r, const char *type)
API to set the HTTP content type.
This API sets the 'Content Type' field of the response. The default content type is 'text/html'.

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• This API only sets the content type to this value. The type isn't sent out until any of the send APIs is
executed.

• Make sure that the lifetime of the type string is valid till send function is called.

Parameters

Espressif Systems 131
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• r -- [in] The request being responded to
• type -- [in] The Content Type of the response

Returns
• ESP_OK : On success
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_INVALID_REQ : Invalid request pointer

esp_err_t httpd_resp_set_hdr(httpd_req_t *r, const char *field, const char *value)
API to append any additional headers.
This API sets any additional header fields that need to be sent in the response.

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• The header isn't sent out until any of the send APIs is executed.
• The maximum allowed number of additional headers is limited to value of max_resp_headers in config
structure.

• Make sure that the lifetime of the field value strings are valid till send function is called.

Parameters
• r -- [in] The request being responded to
• field -- [in] The field name of the HTTP header
• value -- [in] The value of this HTTP header

Returns
• ESP_OK : On successfully appending new header
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_RESP_HDR : Total additional headers exceed max allowed
• ESP_ERR_HTTPD_INVALID_REQ : Invalid request pointer

esp_err_t httpd_resp_send_err(httpd_req_t *req, httpd_err_code_t error, const char *msg)
For sending out error code in response to HTTP request.

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• Once this API is called, all request headers are purged, so request headers need be copied into separate
buffers if they are required later.

• If you wish to send additional data in the body of the response, please use the lower-level functions
directly.

Parameters
• req -- [in] Pointer to the HTTP request for which the response needs to be sent
• error -- [in] Error type to send
• msg -- [in] Error message string (pass NULL for default message)

Returns
• ESP_OK : On successfully sending the response packet
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_RESP_SEND : Error in raw send
• ESP_ERR_HTTPD_INVALID_REQ : Invalid request pointer

static inline esp_err_t httpd_resp_send_404(httpd_req_t *r)
Helper function for HTTP 404.

Espressif Systems 132
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Send HTTP 404 message. If you wish to send additional data in the body of the response, please use the
lower-level functions directly.

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• Once this API is called, all request headers are purged, so request headers need be copied into separate
buffers if they are required later.

Parameters r -- [in] The request being responded to
Returns

• ESP_OK : On successfully sending the response packet
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_RESP_SEND : Error in raw send
• ESP_ERR_HTTPD_INVALID_REQ : Invalid request pointer

static inline esp_err_t httpd_resp_send_408(httpd_req_t *r)
Helper function for HTTP 408.
Send HTTP 408 message. If you wish to send additional data in the body of the response, please use the
lower-level functions directly.

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• Once this API is called, all request headers are purged, so request headers need be copied into separate
buffers if they are required later.

Parameters r -- [in] The request being responded to
Returns

• ESP_OK : On successfully sending the response packet
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_RESP_SEND : Error in raw send
• ESP_ERR_HTTPD_INVALID_REQ : Invalid request pointer

static inline esp_err_t httpd_resp_send_500(httpd_req_t *r)
Helper function for HTTP 500.
Send HTTP 500 message. If you wish to send additional data in the body of the response, please use the
lower-level functions directly.

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• Once this API is called, all request headers are purged, so request headers need be copied into separate
buffers if they are required later.

Parameters r -- [in] The request being responded to
Returns

• ESP_OK : On successfully sending the response packet
• ESP_ERR_INVALID_ARG : Null arguments
• ESP_ERR_HTTPD_RESP_SEND : Error in raw send
• ESP_ERR_HTTPD_INVALID_REQ : Invalid request pointer

Espressif Systems 133
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int httpd_send(httpd_req_t *r, const char *buf, size_t buf_len)
Raw HTTP send.
Call this API if you wish to construct your custom response packet. When using this, all essential header, eg.
HTTP version, Status Code, Content Type and Length, Encoding, etc. will have to be constructed manually,
andHTTP delimeters (CRLF)will need to be placed correctly for separating sub-sections of theHTTP response
packet.
If the send override function is set, this API will end up calling that function eventually to send data out.

Note:
• This API is supposed to be called only from the context of a URI handler where httpd_req_t* request
pointer is valid.

• Unless the response has the correct HTTP structure (which the user must now ensure) it is not guaranteed
that it will be recognized by the client. For most cases, you wouldn't have to call this API, but you would
rather use either of : httpd_resp_send(), httpd_resp_send_chunk()

Parameters
• r -- [in] The request being responded to
• buf -- [in] Buffer from where the fully constructed packet is to be read
• buf_len -- [in] Length of the buffer

Returns
• Bytes : Number of bytes that were sent successfully
• HTTPD_SOCK_ERR_INVALID : Invalid arguments
• HTTPD_SOCK_ERR_TIMEOUT : Timeout/interrupted while calling socket send()
• HTTPD_SOCK_ERR_FAIL : Unrecoverable error while calling socket send()

int httpd_socket_send(httpd_handle_t hd, int sockfd, const char *buf, size_t buf_len, int flags)
A low level API to send data on a given socket

This internally calls the default send function, or the function registered by httpd_sess_set_send_override().

Note: This API is not recommended to be used in any request handler. Use this only for advanced use cases,
wherein some asynchronous data is to be sent over a socket.

Parameters
• hd -- [in] server instance
• sockfd -- [in] session socket file descriptor
• buf -- [in] buffer with bytes to send
• buf_len -- [in] data size
• flags -- [in] flags for the send() function

Returns
• Bytes : The number of bytes sent successfully
• HTTPD_SOCK_ERR_INVALID : Invalid arguments
• HTTPD_SOCK_ERR_TIMEOUT : Timeout/interrupted while calling socket send()
• HTTPD_SOCK_ERR_FAIL : Unrecoverable error while calling socket send()

int httpd_socket_recv(httpd_handle_t hd, int sockfd, char *buf, size_t buf_len, int flags)
A low level API to receive data from a given socket

This internally calls the default recv function, or the function registered by httpd_sess_set_recv_override().

Espressif Systems 134
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: This API is not recommended to be used in any request handler. Use this only for advanced use cases,
wherein some asynchronous communication is required.

Parameters
• hd -- [in] server instance
• sockfd -- [in] session socket file descriptor
• buf -- [in] buffer with bytes to send
• buf_len -- [in] data size
• flags -- [in] flags for the send() function

Returns
• Bytes : The number of bytes received successfully
• 0 : Buffer length parameter is zero / connection closed by peer
• HTTPD_SOCK_ERR_INVALID : Invalid arguments
• HTTPD_SOCK_ERR_TIMEOUT : Timeout/interrupted while calling socket recv()
• HTTPD_SOCK_ERR_FAIL : Unrecoverable error while calling socket recv()

esp_err_t httpd_register_err_handler(httpd_handle_t handle, httpd_err_code_t error,
httpd_err_handler_func_t handler_fn)

Function for registering HTTP error handlers.
This function maps a handler function to any supported error code given by httpd_err_code_t. See
prototype httpd_err_handler_func_t above for details.

Parameters
• handle -- [in] HTTP server handle
• error -- [in] Error type
• handler_fn -- [in] User implemented handler function (Pass NULL to unset any pre-
viously set handler)

Returns
• ESP_OK : handler registered successfully
• ESP_ERR_INVALID_ARG : invalid error code or server handle

esp_err_t httpd_start(httpd_handle_t *handle, const httpd_config_t *config)
Starts the web server.
Create an instance of HTTP server and allocate memory/resources for it depending upon the specified config-
uration.
Example usage:

//Function for starting the webserver
httpd_handle_t start_webserver(void)
{

// Generate default configuration
httpd_config_t config = HTTPD_DEFAULT_CONFIG();

// Empty handle to http_server
httpd_handle_t server = NULL;

// Start the httpd server
if (httpd_start(&server, &config) == ESP_OK) {

// Register URI handlers
httpd_register_uri_handler(server, &uri_get);
httpd_register_uri_handler(server, &uri_post);

}
// If server failed to start, handle will be NULL
return server;

}

Espressif Systems 135
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• config -- [in] Configuration for new instance of the server
• handle -- [out] Handle to newly created instance of the server. NULL on error

Returns
• ESP_OK : Instance created successfully
• ESP_ERR_INVALID_ARG : Null argument(s)
• ESP_ERR_HTTPD_ALLOC_MEM : Failed to allocate memory for instance
• ESP_ERR_HTTPD_TASK : Failed to launch server task

esp_err_t httpd_stop(httpd_handle_t handle)
Stops the web server.
Deallocates memory/resources used by an HTTP server instance and deletes it. Once deleted the handle can
no longer be used for accessing the instance.
Example usage:

// Function for stopping the webserver
void stop_webserver(httpd_handle_t server)
{

// Ensure handle is non NULL
if (server != NULL) {

// Stop the httpd server
httpd_stop(server);

}
}

Parameters handle -- [in] Handle to server returned by httpd_start
Returns

• ESP_OK : Server stopped successfully
• ESP_ERR_INVALID_ARG : Handle argument is Null

esp_err_t httpd_queue_work(httpd_handle_t handle, httpd_work_fn_t work, void *arg)
Queue execution of a function in HTTPD's context.
This API queues a work function for asynchronous execution

Note: Some protocols require that the web server generate some asynchronous data and send it to the persis-
tently opened connection. This facility is for use by such protocols.

Parameters
• handle -- [in] Handle to server returned by httpd_start
• work -- [in] Pointer to the function to be executed in the HTTPD's context
• arg -- [in] Pointer to the arguments that should be passed to this function

Returns
• ESP_OK : On successfully queueing the work
• ESP_FAIL : Failure in ctrl socket
• ESP_ERR_INVALID_ARG : Null arguments

void *httpd_sess_get_ctx(httpd_handle_t handle, int sockfd)
Get session context from socket descriptor.
Typically if a session context is created, it is available to URI handlers through the httpd_req_t structure.
But, there are cases where the web server's send/receive functions may require the context (for example, for
accessing keying information etc). Since the send/receive function only have the socket descriptor at their
disposal, this API provides them with a way to retrieve the session context.

Parameters
• handle -- [in] Handle to server returned by httpd_start

Espressif Systems 136
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• sockfd -- [in] The socket descriptor for which the context should be extracted.
Returns

• void* : Pointer to the context associated with this session
• NULL : Empty context / Invalid handle / Invalid socket fd

void httpd_sess_set_ctx(httpd_handle_t handle, int sockfd, void *ctx, httpd_free_ctx_fn_t free_fn)
Set session context by socket descriptor.

Parameters
• handle -- [in] Handle to server returned by httpd_start
• sockfd -- [in] The socket descriptor for which the context should be extracted.
• ctx -- [in] Context object to assign to the session
• free_fn -- [in] Function that should be called to free the context

void *httpd_sess_get_transport_ctx(httpd_handle_t handle, int sockfd)
Get session 'transport' context by socket descriptor.

This context is used by the send/receive functions, for example to manage SSL context.
See also:
httpd_sess_get_ctx()

Parameters
• handle -- [in] Handle to server returned by httpd_start
• sockfd -- [in] The socket descriptor for which the context should be extracted.

Returns
• void* : Pointer to the transport context associated with this session
• NULL : Empty context / Invalid handle / Invalid socket fd

void httpd_sess_set_transport_ctx(httpd_handle_t handle, int sockfd, void *ctx, httpd_free_ctx_fn_t
free_fn)

Set session 'transport' context by socket descriptor.

See also:
httpd_sess_set_ctx()

Parameters
• handle -- [in] Handle to server returned by httpd_start
• sockfd -- [in] The socket descriptor for which the context should be extracted.
• ctx -- [in] Transport context object to assign to the session
• free_fn -- [in] Function that should be called to free the transport context

void *httpd_get_global_user_ctx(httpd_handle_t handle)
Get HTTPD global user context (it was set in the server config struct)

Parameters handle -- [in] Handle to server returned by httpd_start
Returns global user context

void *httpd_get_global_transport_ctx(httpd_handle_t handle)
Get HTTPD global transport context (it was set in the server config struct)

Parameters handle -- [in] Handle to server returned by httpd_start
Returns global transport context

Espressif Systems 137
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t httpd_sess_trigger_close(httpd_handle_t handle, int sockfd)
Trigger an httpd session close externally.

Note: Calling this API is only required in special circumstances wherein some application requires to close
an httpd client session asynchronously.

Parameters
• handle -- [in] Handle to server returned by httpd_start
• sockfd -- [in] The socket descriptor of the session to be closed

Returns
• ESP_OK : On successfully initiating closure
• ESP_FAIL : Failure to queue work
• ESP_ERR_NOT_FOUND : Socket fd not found
• ESP_ERR_INVALID_ARG : Null arguments

esp_err_t httpd_sess_update_lru_counter(httpd_handle_t handle, int sockfd)
Update LRU counter for a given socket.
LRU Counters are internally associated with each session to monitor how recently a session exchanged traffic.
When LRU purge is enabled, if a client is requesting for connection but maximum number of sockets/sessions
is reached, then the session having the earliest LRU counter is closed automatically.
Updating the LRU counter manually prevents the socket from being purged due to the Least Recently Used
(LRU) logic, even though it might not have received traffic for some time. This is useful when all open sock-
ets/session are frequently exchanging traffic but the user specifically wants one of the sessions to be kept open,
irrespective of when it last exchanged a packet.

Note: Calling this API is only necessary if the LRU Purge Enable option is enabled.

Parameters
• handle -- [in] Handle to server returned by httpd_start
• sockfd -- [in] The socket descriptor of the session for which LRU counter is to be
updated

Returns
• ESP_OK : Socket found and LRU counter updated
• ESP_ERR_NOT_FOUND : Socket not found
• ESP_ERR_INVALID_ARG : Null arguments

esp_err_t httpd_get_client_list(httpd_handle_t handle, size_t *fds, int *client_fds)
Returns list of current socket descriptors of active sessions.

Note: Size of provided array has to be equal or greater then maximum number of opened sockets, configured
upon initialization with max_open_sockets field in httpd_config_t structure.

Parameters
• handle -- [in] Handle to server returned by httpd_start
• fds -- [inout] In: Size of provided client_fds array Out: Number of valid client fds
returned in client_fds,

• client_fds -- [out] Array of client fds
Returns

• ESP_OK : Successfully retrieved session list
• ESP_ERR_INVALID_ARG : Wrong arguments or list is longer than provided array

Espressif Systems 138
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Structures

struct esp_http_server_event_data
Argument structure forHTTP_SERVER_EVENT_ON_DATAandHTTP_SERVER_EVENT_SENT_DATA
event

Public Members

int fd
Session socket file descriptor

int data_len
Data length

struct httpd_config
HTTP Server Configuration Structure.

Note: Use HTTPD_DEFAULT_CONFIG() to initialize the configuration to a default value and then modify
only those fields that are specifically determined by the use case.

Public Members

unsigned task_priority
Priority of FreeRTOS task which runs the server

size_t stack_size
The maximum stack size allowed for the server task

BaseType_t core_id
The core the HTTP server task will run on

uint16_t server_port
TCP Port number for receiving and transmitting HTTP traffic

uint16_t ctrl_port
UDP Port number for asynchronously exchanging control signals between various components of the
server

uint16_t max_open_sockets
Max number of sockets/clients connected at any time (3 sockets are reserved for internal working of the
HTTP server)

uint16_t max_uri_handlers
Maximum allowed uri handlers

uint16_t max_resp_headers
Maximum allowed additional headers in HTTP response

Espressif Systems 139
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t backlog_conn
Number of backlog connections

bool lru_purge_enable
Purge "Least Recently Used" connection

uint16_t recv_wait_timeout
Timeout for recv function (in seconds)

uint16_t send_wait_timeout
Timeout for send function (in seconds)

void *global_user_ctx
Global user context.
This field can be used to store arbitrary user data within the server context. The value can be retrieved
using the server handle, available e.g. in the httpd_req_t struct.
When shutting down, the server frees up the user context by calling free() on the global_user_ctx field.
If you wish to use a custom function for freeing the global user context, please specify that here.

httpd_free_ctx_fn_t global_user_ctx_free_fn

Free function for global user context

void *global_transport_ctx
Global transport context.
Similar to global_user_ctx, but used for session encoding or encryption (e.g. to hold the SSL context). It
will be freed using free(), unless global_transport_ctx_free_fn is specified.

httpd_free_ctx_fn_t global_transport_ctx_free_fn

Free function for global transport context

bool enable_so_linger
bool to enable/disable linger

int linger_timeout
linger timeout (in seconds)

bool keep_alive_enable
Enable keep-alive timeout

int keep_alive_idle
Keep-alive idle time. Default is 5 (second)

int keep_alive_interval
Keep-alive interval time. Default is 5 (second)

int keep_alive_count
Keep-alive packet retry send count. Default is 3 counts

Espressif Systems 140
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

httpd_open_func_t open_fn

Custom session opening callback.
Called on a new session socket just after accept(), but before reading any data.
This is an opportunity to set up e.g. SSL encryption using global_transport_ctx and the send/recv/pending
session overrides.
If a context needs to be maintained between these functions, store it in the session using
httpd_sess_set_transport_ctx() and retrieve it later with httpd_sess_get_transport_ctx()
Returning a value other than ESP_OK will immediately close the new socket.

httpd_close_func_t close_fn

Custom session closing callback.
Called when a session is deleted, before freeing user and transport contexts and before closing the socket.
This is a place for custom de-init code common to all sockets.
The server will only close the socket if no custom session closing callback is set. If a custom callback is
used, close(sockfd) should be called in here for most cases.
Set the user or transport context to NULL if it was freed here, so the server does not try to free it again.
This function is run for all terminated sessions, including sessions where the socket was closed by the
network stack - that is, the file descriptor may not be valid anymore.

httpd_uri_match_func_t uri_match_fn

URI matcher function.
Called when searching for amatchingURI: 1) whose request handler is to be executed right after an HTTP
request is successfully parsed 2) in order to prevent duplication while registering a new URI handler using
httpd_register_uri_handler()

Available options are: 1) NULL : Internally do basic matching using strncmp() 2)
httpd_uri_match_wildcard() : URI wildcard matcher
Users can implement their own matching functions (See description of the
httpd_uri_match_func_t function prototype)

struct httpd_req
HTTP Request Data Structure.

Public Members

httpd_handle_t handle

Handle to server instance

int method
The type of HTTP request, -1 if unsupported method

const char uri[HTTPD_MAX_URI_LEN + 1]
The URI of this request (1 byte extra for null termination)

size_t content_len
Length of the request body

Espressif Systems 141
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void *aux
Internally used members

void *user_ctx
User context pointer passed during URI registration.

void *sess_ctx
Session Context Pointer
A session context. Contexts are maintained across 'sessions' for a given open TCP connection. One
session could have multiple request responses. The web server will ensure that the context persists across
all these request and responses.
By default, this is NULL. URI Handlers can set this to any meaningful value.
If the underlying socket gets closed, and this pointer is non-NULL, the web server will free up the context
by calling free(), unless free_ctx function is set.

httpd_free_ctx_fn_t free_ctx

Pointer to free context hook
Function to free session context
If the web server's socket closes, it frees up the session context by calling free() on the sess_ctx member.
If you wish to use a custom function for freeing the session context, please specify that here.

bool ignore_sess_ctx_changes
Flag indicating if Session Context changes should be ignored
By default, if you change the sess_ctx in some URI handler, the http server will internally free the
earlier context (if non NULL), after the URI handler returns. If you want to manage the alloca-
tion/reallocation/freeing of sess_ctx yourself, set this flag to true, so that the server will not perform
any checks on it. The context will be cleared by the server (by calling free_ctx or free()) only if the
socket gets closed.

struct httpd_uri
Structure for URI handler.

Public Members

const char *uri
The URI to handle

httpd_method_t method

Method supported by the URI

esp_err_t (*handler)(httpd_req_t *r)
Handler to call for supported request method. This must return ESP_OK, or else the underlying socket
will be closed.

void *user_ctx
Pointer to user context data which will be available to handler

Espressif Systems 142
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Macros

HTTPD_MAX_REQ_HDR_LEN

HTTPD_MAX_URI_LEN

HTTPD_SOCK_ERR_FAIL

HTTPD_SOCK_ERR_INVALID

HTTPD_SOCK_ERR_TIMEOUT

HTTPD_200

HTTP Response 200

HTTPD_204

HTTP Response 204

HTTPD_207

HTTP Response 207

HTTPD_400

HTTP Response 400

HTTPD_404

HTTP Response 404

HTTPD_408

HTTP Response 408

HTTPD_500

HTTP Response 500

HTTPD_TYPE_JSON

HTTP Content type JSON

HTTPD_TYPE_TEXT

HTTP Content type text/HTML

HTTPD_TYPE_OCTET

HTTP Content type octext-stream

ESP_HTTPD_DEF_CTRL_PORT

HTTP Server control socket port
HTTPD_DEFAULT_CONFIG()

ESP_ERR_HTTPD_BASE

Starting number of HTTPD error codes

Espressif Systems 143
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_HTTPD_HANDLERS_FULL

All slots for registering URI handlers have been consumed

ESP_ERR_HTTPD_HANDLER_EXISTS

URI handler with same method and target URI already registered

ESP_ERR_HTTPD_INVALID_REQ

Invalid request pointer

ESP_ERR_HTTPD_RESULT_TRUNC

Result string truncated

ESP_ERR_HTTPD_RESP_HDR

Response header field larger than supported

ESP_ERR_HTTPD_RESP_SEND

Error occured while sending response packet

ESP_ERR_HTTPD_ALLOC_MEM

Failed to dynamically allocate memory for resource

ESP_ERR_HTTPD_TASK

Failed to launch server task/thread

HTTPD_RESP_USE_STRLEN

Type Definitions

typedef struct httpd_req httpd_req_t
HTTP Request Data Structure.

typedef struct httpd_uri httpd_uri_t
Structure for URI handler.

typedef int (*httpd_send_func_t)(httpd_handle_t hd, int sockfd, const char *buf, size_t buf_len, int flags)
Prototype for HTTPDs low-level send function.

Note: User specified send function must handle errors internally, depending upon the set value of errno, and
return specificHTTPD_SOCK_ERR_ codes, which will eventually be conveyed as return value of httpd_send()
function

Param hd [in] server instance
Param sockfd [in] session socket file descriptor
Param buf [in] buffer with bytes to send
Param buf_len [in] data size
Param flags [in] flags for the send() function
Return

• Bytes : The number of bytes sent successfully
• HTTPD_SOCK_ERR_INVALID : Invalid arguments
• HTTPD_SOCK_ERR_TIMEOUT : Timeout/interrupted while calling socket send()

Espressif Systems 144
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• HTTPD_SOCK_ERR_FAIL : Unrecoverable error while calling socket send()

typedef int (*httpd_recv_func_t)(httpd_handle_t hd, int sockfd, char *buf, size_t buf_len, int flags)
Prototype for HTTPDs low-level recv function.

Note: User specified recv function must handle errors internally, depending upon the set value of er-
rno, and return specific HTTPD_SOCK_ERR_ codes, which will eventually be conveyed as return value of
httpd_req_recv() function

Param hd [in] server instance
Param sockfd [in] session socket file descriptor
Param buf [in] buffer with bytes to send
Param buf_len [in] data size
Param flags [in] flags for the send() function
Return

• Bytes : The number of bytes received successfully
• 0 : Buffer length parameter is zero / connection closed by peer
• HTTPD_SOCK_ERR_INVALID : Invalid arguments
• HTTPD_SOCK_ERR_TIMEOUT : Timeout/interrupted while calling socket recv()
• HTTPD_SOCK_ERR_FAIL : Unrecoverable error while calling socket recv()

typedef int (*httpd_pending_func_t)(httpd_handle_t hd, int sockfd)
Prototype for HTTPDs low-level "get pending bytes" function.

Note: User specified pending function must handle errors internally, depending upon the set value of errno,
and return specific HTTPD_SOCK_ERR_ codes, which will be handled accordingly in the server task.

Param hd [in] server instance
Param sockfd [in] session socket file descriptor
Return

• Bytes : The number of bytes waiting to be received
• HTTPD_SOCK_ERR_INVALID : Invalid arguments
• HTTPD_SOCK_ERR_TIMEOUT : Timeout/interrupted while calling socket pending()
• HTTPD_SOCK_ERR_FAIL : Unrecoverable error while calling socket pending()

typedef esp_err_t (*httpd_err_handler_func_t)(httpd_req_t *req, httpd_err_code_t error)
Function prototype for HTTP error handling.
This function is executed upon HTTP errors generated during internal processing of an HTTP request. This is
used to override the default behavior on error, which is to send HTTP error response and close the underlying
socket.

Note:
• If implemented, the server will not automatically send out HTTP error response codes, therefore,
httpd_resp_send_err() must be invoked inside this function if user wishes to generate HTTP error re-
sponses.

• When invoked, the validity of uri, method, content_len and user_ctx fields of the httpd_req_t
parameter is not guaranteed as the HTTP request may be partially received/parsed.

• The function must return ESP_OK if underlying socket needs to be kept open. Any other
value will ensure that the socket is closed. The return value is ignored when error is of type
HTTPD_500_INTERNAL_SERVER_ERROR and the socket closed anyway.

Espressif Systems 145
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Param req [in] HTTP request for which the error needs to be handled
Param error [in] Error type
Return

• ESP_OK : error handled successful
• ESP_FAIL : failure indicates that the underlying socket needs to be closed

typedef void *httpd_handle_t
HTTP Server Instance Handle.
Every instance of the server will have a unique handle.

typedef enum http_method httpd_method_t
HTTP Method Type wrapper over "enum http_method" available in "http_parser" library.

typedef void (*httpd_free_ctx_fn_t)(void *ctx)
Prototype for freeing context data (if any)

Param ctx [in] object to free

typedef esp_err_t (*httpd_open_func_t)(httpd_handle_t hd, int sockfd)
Function prototype for opening a session.
Called immediately after the socket was opened to set up the send/recv functions and other parameters of the
socket.

Param hd [in] server instance
Param sockfd [in] session socket file descriptor
Return

• ESP_OK : On success
• Any value other than ESP_OK will signal the server to close the socket immediately

typedef void (*httpd_close_func_t)(httpd_handle_t hd, int sockfd)
Function prototype for closing a session.

Note: It's possible that the socket descriptor is invalid at this point, the function is called for all terminated
sessions. Ensure proper handling of return codes.

Param hd [in] server instance
Param sockfd [in] session socket file descriptor

typedef bool (*httpd_uri_match_func_t)(const char *reference_uri, const char *uri_to_match, size_t
match_upto)

Function prototype for URI matching.
Param reference_uri [in] URI/template with respect to which the other URI is matched
Param uri_to_match [in] URI/template being matched to the reference URI/template
Param match_upto [in] For specifying the actual length of uri_to_match up to which the

matching algorithm is to be applied (The maximum value is strlen(uri_to_match),
independent of the length of reference_uri)

Return true on match

typedef struct httpd_config httpd_config_t
HTTP Server Configuration Structure.

Espressif Systems 146
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: Use HTTPD_DEFAULT_CONFIG() to initialize the configuration to a default value and then modify
only those fields that are specifically determined by the use case.

typedef void (*httpd_work_fn_t)(void *arg)
Prototype of the HTTPD work function Please refer to httpd_queue_work() for more details.

Param arg [in] The arguments for this work function

Enumerations

enum httpd_err_code_t

Error codes sent as HTTP response in case of errors encountered during processing of an HTTP request.
Values:

enumerator HTTPD_500_INTERNAL_SERVER_ERROR

enumerator HTTPD_501_METHOD_NOT_IMPLEMENTED

enumerator HTTPD_505_VERSION_NOT_SUPPORTED

enumerator HTTPD_400_BAD_REQUEST

enumerator HTTPD_401_UNAUTHORIZED

enumerator HTTPD_403_FORBIDDEN

enumerator HTTPD_404_NOT_FOUND

enumerator HTTPD_405_METHOD_NOT_ALLOWED

enumerator HTTPD_408_REQ_TIMEOUT

enumerator HTTPD_411_LENGTH_REQUIRED

enumerator HTTPD_414_URI_TOO_LONG

enumerator HTTPD_431_REQ_HDR_FIELDS_TOO_LARGE

enumerator HTTPD_ERR_CODE_MAX

enum esp_http_server_event_id_t

HTTP Server events id.
Values:

enumerator HTTP_SERVER_EVENT_ERROR
This event occurs when there are any errors during execution

Espressif Systems 147
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator HTTP_SERVER_EVENT_START
This event occurs when HTTP Server is started

enumerator HTTP_SERVER_EVENT_ON_CONNECTED
Once the HTTP Server has been connected to the client, no data exchange has been performed

enumerator HTTP_SERVER_EVENT_ON_HEADER
Occurs when receiving each header sent from the client

enumerator HTTP_SERVER_EVENT_HEADERS_SENT
After sending all the headers to the client

enumerator HTTP_SERVER_EVENT_ON_DATA
Occurs when receiving data from the client

enumerator HTTP_SERVER_EVENT_SENT_DATA
Occurs when an ESP HTTP server session is finished

enumerator HTTP_SERVER_EVENT_DISCONNECTED
The connection has been disconnected

enumerator HTTP_SERVER_EVENT_STOP
This event occurs when HTTP Server is stopped

2.2.10 HTTPS Server

Overview

This component is built on top of HTTP Server. The HTTPS server takes advantage of hook registration functions in
the regular HTTP server to provide callback function for SSL session.
All documentation for HTTP Server applies also to a server you create this way.

Used APIs

The following APIs of HTTP Server should not be used with HTTPS Server, as they are used internally to handle
secure sessions and to maintain internal state:

• "send", "receive" and "pending" callback registration functions - secure socket handling
– httpd_sess_set_send_override()
– httpd_sess_set_recv_override()
– httpd_sess_set_pending_override()

• "transport context" - both global and session
– httpd_sess_get_transport_ctx() - returns SSL used for the session
– httpd_sess_set_transport_ctx()
– httpd_get_global_transport_ctx() - returns the shared SSL context
– httpd_config::global_transport_ctx
– httpd_config::global_transport_ctx_free_fn
– httpd_config::open_fn - used to set up secure sockets

Everything else can be used without limitations.

Espressif Systems 148
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Usage

Please see the example protocols/https_server to learn how to set up a secure server.
Basically, all you need is to generate a certificate, embed it into the firmware, and pass the init struct into the start
function after the certificate address and lengths are correctly configured in the init struct.
The server can be started with or without SSL by changing a flag in the init struct -
httpd_ssl_config::transport_mode. This could be used, e.g., for testing or in trusted environ-
ments where you prefer speed over security.

Performance

The initial session setup can take about two seconds, or more with slower clock speed or more verbose logging.
Subsequent requests through the open secure socket are much faster (down to under 100 ms).

API Reference

Header File
• components/esp_https_server/include/esp_https_server.h

Functions
esp_err_t httpd_ssl_start(httpd_handle_t *handle, httpd_ssl_config_t *config)

Create a SSL capable HTTP server (secure mode may be disabled in config)
Parameters

• config -- [inout] - server config, must not be const. Does not have to stay valid after
calling this function.

• handle -- [out] - storage for the server handle, must be a valid pointer
Returns success

esp_err_t httpd_ssl_stop(httpd_handle_t handle)
Stop the server. Blocks until the server is shut down.

Parameters handle -- [in]
Returns

• ESP_OK: Server stopped successfully
• ESP_ERR_INVALID_ARG: Invalid argument
• ESP_FAIL: Failure to shut down server

Structures

struct esp_https_server_user_cb_arg
Callback data struct, contains the ESP-TLS connection handle and the connection state at which the callback
is executed.

Public Members

httpd_ssl_user_cb_state_t user_cb_state

State of user callback

esp_tls_t *tls
ESP-TLS connection handle

Espressif Systems 149
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_server
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_https_server/include/esp_https_server.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct httpd_ssl_config
HTTPS server config struct
Please use HTTPD_SSL_CONFIG_DEFAULT() to initialize it.

Public Members

httpd_config_t httpd

Underlying HTTPD server config
Parameters like task stack size and priority can be adjusted here.

const uint8_t *servercert
Server certificate

size_t servercert_len
Server certificate byte length

const uint8_t *cacert_pem
CA certificate ((CA used to sign clients, or client cert itself)

size_t cacert_len
CA certificate byte length

const uint8_t *prvtkey_pem
Private key

size_t prvtkey_len
Private key byte length

bool use_ecdsa_peripheral
Use ECDSA peripheral to use private key

uint8_t ecdsa_key_efuse_blk
The efuse block where ECDSA key is stored

httpd_ssl_transport_mode_t transport_mode

Transport Mode (default secure)

uint16_t port_secure
Port used when transport mode is secure (default 443)

uint16_t port_insecure
Port used when transport mode is insecure (default 80)

bool session_tickets
Enable tls session tickets

bool use_secure_element
Enable secure element for server session

Espressif Systems 150
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_https_server_user_cb *user_cb
User callback for esp_https_server

void *ssl_userdata
user data to add to the ssl context

esp_tls_handshake_callback cert_select_cb
Certificate selection callback to use

const char **alpn_protos
Application protocols the server supports in order of prefernece. Used for negotiating during the TLS
handshake, first one the client supports is selected. The data structure must live as long as the https server
itself!

Macros
HTTPD_SSL_CONFIG_DEFAULT()

Default config struct init
(http_server default config had to be copied for customization)
Notes:

• port is set when starting the server, according to 'transport_mode'
• one socket uses ~ 40kB RAM with SSL, we reduce the default socket count to 4
• SSL sockets are usually long-lived, closing LRU prevents pool exhaustion DOS
• Stack size may need adjustments depending on the user application

Type Definitions

typedef struct esp_https_server_user_cb_arg esp_https_server_user_cb_arg_t
Callback data struct, contains the ESP-TLS connection handle and the connection state at which the callback
is executed.

typedef void esp_https_server_user_cb(esp_https_server_user_cb_arg_t *user_cb)
Callback function prototype Can be used to get connection or client information (SSL context) E.g. Client
certificate, Socket FD, Connection state, etc.

Param user_cb Callback data struct

typedef struct httpd_ssl_config httpd_ssl_config_t

Enumerations

enum httpd_ssl_transport_mode_t

Values:

enumerator HTTPD_SSL_TRANSPORT_SECURE

enumerator HTTPD_SSL_TRANSPORT_INSECURE

enum httpd_ssl_user_cb_state_t

Indicates the state at which the user callback is executed, i.e at session creation or session close.
Values:

Espressif Systems 151
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator HTTPD_SSL_USER_CB_SESS_CREATE

enumerator HTTPD_SSL_USER_CB_SESS_CLOSE

2.2.11 ICMP Echo

Overview

ICMP (Internet Control Message Protocol) is used for diagnostic or control purposes or generated in response to
errors in IP operations. The common network util ping is implemented based on the ICMP packets with the type
field value of 0, also called Echo Reply.
During a ping session, the source host firstly sends out an ICMP echo request packet and wait for an ICMP echo reply
with specific times. In this way, it also measures the round-trip time for the messages. After receiving a valid ICMP
echo reply, the source host will generate statistics about the IP link layer (e.g. packet loss, elapsed time, etc).
It is common that IoT device needs to check whether a remote server is alive or not. The device should show the
warnings to users when it got offline. It can be achieved by creating a ping session and sending/parsing ICMP echo
packets periodically.
To make this internal procedure much easier for users, ESP-IDF provides some out-of-box APIs.

Create a new ping session To create a ping session, you need to fill in the esp_ping_config_t configuration
structure firstly, specifying target IP address, interval times, and etc. Optionally, you can also register some callback
functions with the esp_ping_callbacks_t` structure.
Example method to create a new ping session and register callbacks:

static void test_on_ping_success(esp_ping_handle_t hdl, void *args)
{

// optionally, get callback arguments
// const char* str = (const char*) args;
// printf("%s\r\n", str); // "foo"
uint8_t ttl;
uint16_t seqno;
uint32_t elapsed_time, recv_len;
ip_addr_t target_addr;
esp_ping_get_profile(hdl, ESP_PING_PROF_SEQNO, &seqno, sizeof(seqno));
esp_ping_get_profile(hdl, ESP_PING_PROF_TTL, &ttl, sizeof(ttl));
esp_ping_get_profile(hdl, ESP_PING_PROF_IPADDR, &target_addr, sizeof(target_

↪→addr));
esp_ping_get_profile(hdl, ESP_PING_PROF_SIZE, &recv_len, sizeof(recv_len));
esp_ping_get_profile(hdl, ESP_PING_PROF_TIMEGAP, &elapsed_time, sizeof(elapsed_

↪→time));
printf("%d bytes from %s icmp_seq=%d ttl=%d time=%d ms\n",

recv_len, inet_ntoa(target_addr.u_addr.ip4), seqno, ttl, elapsed_time);
}

static void test_on_ping_timeout(esp_ping_handle_t hdl, void *args)
{

uint16_t seqno;
ip_addr_t target_addr;
esp_ping_get_profile(hdl, ESP_PING_PROF_SEQNO, &seqno, sizeof(seqno));
esp_ping_get_profile(hdl, ESP_PING_PROF_IPADDR, &target_addr, sizeof(target_

↪→addr));
printf("From %s icmp_seq=%d timeout\n", inet_ntoa(target_addr.u_addr.ip4),␣

↪→seqno);
}

(continues on next page)

Espressif Systems 152
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
static void test_on_ping_end(esp_ping_handle_t hdl, void *args)
{

uint32_t transmitted;
uint32_t received;
uint32_t total_time_ms;

esp_ping_get_profile(hdl, ESP_PING_PROF_REQUEST, &transmitted,␣
↪→sizeof(transmitted));

esp_ping_get_profile(hdl, ESP_PING_PROF_REPLY, &received, sizeof(received));
esp_ping_get_profile(hdl, ESP_PING_PROF_DURATION, &total_time_ms, sizeof(total_

↪→time_ms));
printf("%d packets transmitted, %d received, time %dms\n", transmitted,␣

↪→received, total_time_ms);
}

void initialize_ping()
{

/* convert URL to IP address */
ip_addr_t target_addr;
struct addrinfo hint;
struct addrinfo *res = NULL;
memset(&hint, 0, sizeof(hint));
memset(&target_addr, 0, sizeof(target_addr));
getaddrinfo("www.espressif.com", NULL, &hint, &res);
struct in_addr addr4 = ((struct sockaddr_in *) (res->ai_addr))->sin_addr;
inet_addr_to_ip4addr(ip_2_ip4(&target_addr), &addr4);
freeaddrinfo(res);

esp_ping_config_t ping_config = ESP_PING_DEFAULT_CONFIG();
ping_config.target_addr = target_addr; // target IP address
ping_config.count = ESP_PING_COUNT_INFINITE; // ping in infinite mode, esp_

↪→ping_stop can stop it

/* set callback functions */
esp_ping_callbacks_t cbs;
cbs.on_ping_success = test_on_ping_success;
cbs.on_ping_timeout = test_on_ping_timeout;
cbs.on_ping_end = test_on_ping_end;
cbs.cb_args = "foo"; // arguments that will feed to all callback functions,␣

↪→can be NULL
cbs.cb_args = eth_event_group;

esp_ping_handle_t ping;
esp_ping_new_session(&ping_config, &cbs, &ping);

}

Start and Stop ping session You can start and stop ping session with the handle returned by
esp_ping_new_session. Note that, the ping session won't start automatically after creation. If the ping session
is stopped, and restart again, the sequence number in ICMP packets will recount from zero again.

Delete a ping session If a ping session won't be used any more, you can delete it with
esp_ping_delete_session. Please make sure the ping session is in stop state (i.e. you have called
esp_ping_stop before or the ping session has finished all the procedures) when you call this function.

Get runtime statistics As the example code above, you can call esp_ping_get_profile to get different
runtime statistics of ping session in the callback function.

Espressif Systems 153
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Application Example

ICMP echo example: protocols/icmp_echo

API Reference

Header File
• components/lwip/include/apps/ping/ping_sock.h

Functions
esp_err_t esp_ping_new_session(const esp_ping_config_t *config, const esp_ping_callbacks_t *cbs,

esp_ping_handle_t *hdl_out)
Create a ping session.

Parameters
• config -- ping configuration
• cbs -- a bunch of callback functions invoked by internal ping task
• hdl_out -- handle of ping session

Returns
• ESP_ERR_INVALID_ARG: invalid parameters (e.g. configuration is null, etc)
• ESP_ERR_NO_MEM: out of memory
• ESP_FAIL: other internal error (e.g. socket error)
• ESP_OK: create ping session successfully, user can take the ping handle to do follow-on
jobs

esp_err_t esp_ping_delete_session(esp_ping_handle_t hdl)
Delete a ping session.

Parameters hdl -- handle of ping session
Returns

• ESP_ERR_INVALID_ARG: invalid parameters (e.g. ping handle is null, etc)
• ESP_OK: delete ping session successfully

esp_err_t esp_ping_start(esp_ping_handle_t hdl)
Start the ping session.

Parameters hdl -- handle of ping session
Returns

• ESP_ERR_INVALID_ARG: invalid parameters (e.g. ping handle is null, etc)
• ESP_OK: start ping session successfully

esp_err_t esp_ping_stop(esp_ping_handle_t hdl)
Stop the ping session.

Parameters hdl -- handle of ping session
Returns

• ESP_ERR_INVALID_ARG: invalid parameters (e.g. ping handle is null, etc)
• ESP_OK: stop ping session successfully

esp_err_t esp_ping_get_profile(esp_ping_handle_t hdl, esp_ping_profile_t profile, void *data, uint32_t
size)

Get runtime profile of ping session.
Parameters

• hdl -- handle of ping session
• profile -- type of profile
• data -- profile data
• size -- profile data size

Returns
• ESP_ERR_INVALID_ARG: invalid parameters (e.g. ping handle is null, etc)

Espressif Systems 154
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/icmp_echo
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/lwip/include/apps/ping/ping_sock.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_SIZE: the actual profile data size doesn't match the "size" param-
eter

• ESP_OK: get profile successfully

Structures

struct esp_ping_callbacks_t
Type of "ping" callback functions.

Public Members

void *cb_args
arguments for callback functions

void (*on_ping_success)(esp_ping_handle_t hdl, void *args)
Invoked by internal ping thread when received ICMP echo reply packet.

void (*on_ping_timeout)(esp_ping_handle_t hdl, void *args)
Invoked by internal ping thread when receive ICMP echo reply packet timeout.

void (*on_ping_end)(esp_ping_handle_t hdl, void *args)
Invoked by internal ping thread when a ping session is finished.

struct esp_ping_config_t
Type of "ping" configuration.

Public Members

uint32_t count
A "ping" session contains count procedures

uint32_t interval_ms
Milliseconds between each ping procedure

uint32_t timeout_ms
Timeout value (in milliseconds) of each ping procedure

uint32_t data_size
Size of the data next to ICMP packet header

int tos
Type of Service, a field specified in the IP header

int ttl
Time to Live,a field specified in the IP header

ip_addr_t target_addr
Target IP address, either IPv4 or IPv6

Espressif Systems 155
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t task_stack_size
Stack size of internal ping task

uint32_t task_prio
Priority of internal ping task

uint32_t interface
Netif index, interface=0 means NETIF_NO_INDEX

Macros
ESP_PING_DEFAULT_CONFIG()

Default ping configuration.

ESP_PING_COUNT_INFINITE

Set ping count to zero will ping target infinitely

Type Definitions

typedef void *esp_ping_handle_t
Type of "ping" session handle.

Enumerations

enum esp_ping_profile_t

Profile of ping session.
Values:

enumerator ESP_PING_PROF_SEQNO
Sequence number of a ping procedure

enumerator ESP_PING_PROF_TOS
Type of service of a ping procedure

enumerator ESP_PING_PROF_TTL
Time to live of a ping procedure

enumerator ESP_PING_PROF_REQUEST
Number of request packets sent out

enumerator ESP_PING_PROF_REPLY
Number of reply packets received

enumerator ESP_PING_PROF_IPADDR
IP address of replied target

enumerator ESP_PING_PROF_SIZE
Size of received packet

Espressif Systems 156
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_PING_PROF_TIMEGAP
Elapsed time between request and reply packet

enumerator ESP_PING_PROF_DURATION
Elapsed time of the whole ping session

2.2.12 mDNS Service

mDNS is a multicast UDP service that is used to provide local network service and host discovery.
The ESP-IDF component mDNS has been moved from ESP-IDF since version v5.0 to a separate repository:

• mDNS component on GitHub
To add mDNS component in your project, please run idf.py add-dependency espressif/mdns.

Hosted Documentation

The documentation can be found on the link below:
• mDNS documentation

2.2.13 Mbed TLS

Mbed TLS is a C library that implements cryptographic primitives, X.509 certificate manipulation and the SSL/TLS
and DTLS protocols. Its small code footprint makes it suitable for embedded systems.

Note: ESP-IDF uses a fork of Mbed TLS which includes a few patches (related to hardware routines of certain
modules like bignum (MPI) and ECC) over vanilla Mbed TLS.

Mbed TLS supports SSL 3.0 up to TLS 1.3 and DTLS 1.0 to 1.2 communication by providing the following:
• TCP/IP communication functions: listen, connect, accept, read/write.
• SSL/TLS communication functions: init, handshake, read/write.
• X.509 functions: CRT, CRL and key handling
• Random number generation
• Hashing
• Encryption/decryption

Note: Mbed TLS is in the process of migrating all the documentation to a single place. In the meantime, users can
find the documentation at the old Mbed TLS site .

Mbed TLS Support in ESP-IDF

Please find the information about the Mbed TLS versions present in different branches of ESP-IDF here.

Note: Please refer the ESP-IDF Migration Guide to migrate from Mbed TLS version 2.x to version 3.0 or greater.

Espressif Systems 157
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-protocols/tree/master/components/mdns
https://docs.espressif.com/projects/esp-protocols/mdns/docs/latest/en/index.html
https://github.com/Mbed-TLS/mbedtls
https://github.com/espressif/mbedtls
https://tls.mbed.org/api
https://github.com/espressif/mbedtls/wiki#mbed-tls-support-in-esp-idf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Application Examples

Examples in ESP-IDF use ESP-TLS which provides a simplified API interface for accessing the commonly used TLS
functionality.
Refer to the examples protocols/https_server/simple (Simple HTTPS server) and protocols/https_request (Make
HTTPS requests) for more information.
If the Mbed TLS API is to be used directly, refer to the example protocols/https_mbedtls.

Alternatives

ESP-TLS acts as an abstraction layer over the underlying SSL/TLS library and thus has an option to use Mbed TLS
or wolfSSL as the underlying library. By default, only Mbed TLS is available and used in ESP-IDF whereas wolfSSL
is available publicly at https://github.com/espressif/esp-wolfSSL with the upstream submodule pointer.
Please refer to ESP-TLS: Underlying SSL/TLS Library Options docs for more information on this and comparison of
Mbed TLS and wolfSSL.

Important Config Options

Following is a brief list of important config options accessible at Component Config -> mbedTLS. The full
list of config options can be found here.

• CONFIG_MBEDTLS_SSL_PROTO_TLS1_2: Support for TLS 1.2
• CONFIG_MBEDTLS_SSL_PROTO_TLS1_3: Support for TLS 1.3
• CONFIG_MBEDTLS_CERTIFICATE_BUNDLE: Support for trusted root certificate bundle (more about this:

ESP x509 Certificate Bundle)
• CONFIG_MBEDTLS_CLIENT_SSL_SESSION_TICKETS: Support for TLS Session Resumption: Client session
tickets

• CONFIG_MBEDTLS_SERVER_SSL_SESSION_TICKETS: Support for TLS Session Resumption: Server session
tickets

• CONFIG_MBEDTLS_HARDWARE_SHA: Support for hardware SHA acceleration
• CONFIG_MBEDTLS_HARDWARE_AES: Support for hardware AES acceleration
• CONFIG_MBEDTLS_HARDWARE_MPI: Support for hardware MPI (bignum) acceleration
• CONFIG_MBEDTLS_HARDWARE_ECC: Support for hardware ECC acceleration

Note: Mbed TLS v3.0.0 and later support only TLS 1.2 and TLS 1.3 (SSL 3.0, TLS 1.0, TLS 1.1 and DTLS 1.0 are
not supported). The support for TLS 1.3 is experimental and only supports the client-side. More information about
this can be found out here.

Performance and Memory Tweaks

Reducing Heap Usage The following table shows typical memory usage with different configs when the proto-
cols/https_request example (with Server Validation enabled) was run with Mbed TLS as the SSL/TLS library.

Espressif Systems 158
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_server/simple
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_request
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_mbedtls
https://github.com/espressif/esp-wolfSSL
https://github.com/espressif/mbedtls/blob/9bb5effc3298265f829878825d9bd38478e67514/docs/architecture/tls13-support.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_request
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_request
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Mbed TLS
Test

Related Configs Heap
Usage
(approx.)

Default NA 42196 B
Enable SSL
Variable Length

CONFIG_MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH 42120 B

Disable Keep
Peer Certificate

CONFIG_MBEDTLS_SSL_KEEP_PEER_CERTIFICATE 38533 B

Enable Dy-
namic TX/RX
Buffer

CONFIG_MBEDTLS_DYNAMIC_BUFFER CON-
FIG_MBEDTLS_DYNAMIC_FREE_CONFIG_DATA CON-
FIG_MBEDTLS_DYNAMIC_FREE_CA_CERT

22013 B

Note: These values are subject to change with change in configuration options and versions of Mbed TLS.

Reducing Binary Size Under Component Config -> mbedTLS, there are multiple Mbed TLS features
which are enabled by default but can be disabled if not needed to save code size. More information can be about this
can be found in Minimizing Binary Size docs.
Code examples for this API section are provided in the protocols directory of ESP-IDF examples.

2.2.14 IP Network Layer

Documentation for IP Network Layer protocols (below the Application Protocol layer) are provided in Networking
APIs.

2.3 Bluetooth API

2.3.1 Bluetooth® Common

BT GENERIC DEFINES

API Reference

Header File
• components/bt/host/bluedroid/api/include/api/esp_bt_defs.h

Structures

struct esp_ble_conn_params_t
create connection parameters

Public Members

uint16_t scan_interval
Initial scan interval, in units of 0.625ms, the range is 0x0004(2.5ms) to 0xFFFF(10.24s).

Espressif Systems 159
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/host/bluedroid/api/include/api/esp_bt_defs.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t scan_window
Initial scan window, in units of 0.625ms, the range is 0x0004(2.5ms) to 0xFFFF(10.24s).

uint16_t interval_min
Minimum connection interval, in units of 1.25ms, the range is 0x0006(7.5ms) to 0x0C80(4s).

uint16_t interval_max
Maximum connection interval, in units of 1.25ms, the range is 0x0006(7.5ms) to 0x0C80(4s).

uint16_t latency
Connection latency, the range is 0x0000(0) to 0x01F3(499).

uint16_t supervision_timeout
Connection supervision timeout, in units of 10ms, the range is from 0x000A(100ms) to 0x0C80(32s).

uint16_t min_ce_len
Minimum connection event length, in units of 0.625ms, setting to 0 for no preferred parameters.

uint16_t max_ce_len
Maximum connection event length, in units of 0.625ms, setting to 0 for no preferred parameters.

struct esp_bt_uuid_t
UUID type.

Public Members

uint16_t len
UUID length, 16bit, 32bit or 128bit

uint16_t uuid16
16bit UUID

uint32_t uuid32
32bit UUID

uint8_t uuid128[ESP_UUID_LEN_128]
128bit UUID

union esp_bt_uuid_t::[anonymous] uuid
UUID

Macros
ESP_BLUEDROID_STATUS_CHECK(status)

ESP_BT_STATUS_BASE_FOR_HCI_ERR

ESP_BT_OCTET16_LEN

Espressif Systems 160
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BT_OCTET8_LEN

ESP_DEFAULT_GATT_IF

Default GATT interface id.

ESP_BLE_PRIM_ADV_INT_MIN

Minimum advertising interval for undirected and low duty cycle directed advertising

ESP_BLE_PRIM_ADV_INT_MAX

Maximum advertising interval for undirected and low duty cycle directed advertising

ESP_BLE_CONN_INT_MIN

relate to BTM_BLE_CONN_INT_MIN in stack/btm_ble_api.h

ESP_BLE_CONN_INT_MAX

relate to BTM_BLE_CONN_INT_MAX in stack/btm_ble_api.h

ESP_BLE_CONN_LATENCY_MAX

relate to ESP_BLE_CONN_LATENCY_MAX in stack/btm_ble_api.h

ESP_BLE_CONN_SUP_TOUT_MIN

relate to BTM_BLE_CONN_SUP_TOUT_MIN in stack/btm_ble_api.h

ESP_BLE_CONN_SUP_TOUT_MAX

relate to ESP_BLE_CONN_SUP_TOUT_MAX in stack/btm_ble_api.h

ESP_BLE_PHY_1M_PREF_MASK

The Host prefers use the LE1M transmitter or receiver PHY

ESP_BLE_PHY_2M_PREF_MASK

The Host prefers use the LE2M transmitter or receiver PHY

ESP_BLE_PHY_CODED_PREF_MASK

The Host prefers use the LE CODED transmitter or receiver PHY
ESP_BLE_IS_VALID_PARAM(x, min, max)

Check the param is valid or not.

ESP_UUID_LEN_16

ESP_UUID_LEN_32

ESP_UUID_LEN_128

ESP_BD_ADDR_LEN

Bluetooth address length.

ESP_PEER_IRK_LEN

Bluetooth peer irk.

Espressif Systems 161
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_ENC_KEY_MASK

Used to exchange the encryption key in the init key & response key.

ESP_BLE_ID_KEY_MASK

Used to exchange the IRK key in the init key & response key.

ESP_BLE_CSR_KEY_MASK

Used to exchange the CSRK key in the init key & response key.

ESP_BLE_LINK_KEY_MASK

Used to exchange the link key(this key just used in the BLE & BR/EDR coexist mode) in the init key &
response key.

ESP_APP_ID_MIN

Minimum of the application id.

ESP_APP_ID_MAX

Maximum of the application id.

ESP_BD_ADDR_STR

ESP_BD_ADDR_HEX(addr)

ESP_BLE_ADV_NAME_LEN_MAX

ESP_INVALID_CONN_HANDLE

Type Definitions

typedef uint8_t esp_bt_octet16_t[ESP_BT_OCTET16_LEN]

typedef uint8_t esp_bt_octet8_t[ESP_BT_OCTET8_LEN]

typedef uint8_t esp_link_key[ESP_BT_OCTET16_LEN]

typedef uint8_t esp_ble_phy_mask_t

typedef uint8_t esp_bd_addr_t[ESP_BD_ADDR_LEN]
Bluetooth device address.

typedef uint8_t esp_ble_key_mask_t

Enumerations

enum esp_bt_status_t

Status Return Value.
Values:

Espressif Systems 162
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BT_STATUS_SUCCESS

enumerator ESP_BT_STATUS_FAIL

enumerator ESP_BT_STATUS_NOT_READY

enumerator ESP_BT_STATUS_NOMEM

enumerator ESP_BT_STATUS_BUSY

enumerator ESP_BT_STATUS_DONE

enumerator ESP_BT_STATUS_UNSUPPORTED

enumerator ESP_BT_STATUS_PARM_INVALID

enumerator ESP_BT_STATUS_UNHANDLED

enumerator ESP_BT_STATUS_AUTH_FAILURE

enumerator ESP_BT_STATUS_RMT_DEV_DOWN

enumerator ESP_BT_STATUS_AUTH_REJECTED

enumerator ESP_BT_STATUS_INVALID_STATIC_RAND_ADDR

enumerator ESP_BT_STATUS_PENDING

enumerator ESP_BT_STATUS_UNACCEPT_CONN_INTERVAL

enumerator ESP_BT_STATUS_PARAM_OUT_OF_RANGE

enumerator ESP_BT_STATUS_TIMEOUT

enumerator ESP_BT_STATUS_PEER_LE_DATA_LEN_UNSUPPORTED

enumerator ESP_BT_STATUS_CONTROL_LE_DATA_LEN_UNSUPPORTED

enumerator ESP_BT_STATUS_ERR_ILLEGAL_PARAMETER_FMT

enumerator ESP_BT_STATUS_MEMORY_FULL

enumerator ESP_BT_STATUS_EIR_TOO_LARGE

enumerator ESP_BT_STATUS_HCI_SUCCESS

Espressif Systems 163
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BT_STATUS_HCI_ILLEGAL_COMMAND

enumerator ESP_BT_STATUS_HCI_NO_CONNECTION

enumerator ESP_BT_STATUS_HCI_HW_FAILURE

enumerator ESP_BT_STATUS_HCI_PAGE_TIMEOUT

enumerator ESP_BT_STATUS_HCI_AUTH_FAILURE

enumerator ESP_BT_STATUS_HCI_KEY_MISSING

enumerator ESP_BT_STATUS_HCI_MEMORY_FULL

enumerator ESP_BT_STATUS_HCI_CONNECTION_TOUT

enumerator ESP_BT_STATUS_HCI_MAX_NUM_OF_CONNECTIONS

enumerator ESP_BT_STATUS_HCI_MAX_NUM_OF_SCOS

enumerator ESP_BT_STATUS_HCI_CONNECTION_EXISTS

enumerator ESP_BT_STATUS_HCI_COMMAND_DISALLOWED

enumerator ESP_BT_STATUS_HCI_HOST_REJECT_RESOURCES

enumerator ESP_BT_STATUS_HCI_HOST_REJECT_SECURITY

enumerator ESP_BT_STATUS_HCI_HOST_REJECT_DEVICE

enumerator ESP_BT_STATUS_HCI_HOST_TIMEOUT

enumerator ESP_BT_STATUS_HCI_UNSUPPORTED_VALUE

enumerator ESP_BT_STATUS_HCI_ILLEGAL_PARAMETER_FMT

enumerator ESP_BT_STATUS_HCI_PEER_USER

enumerator ESP_BT_STATUS_HCI_PEER_LOW_RESOURCES

enumerator ESP_BT_STATUS_HCI_PEER_POWER_OFF

enumerator ESP_BT_STATUS_HCI_CONN_CAUSE_LOCAL_HOST

enumerator ESP_BT_STATUS_HCI_REPEATED_ATTEMPTS

Espressif Systems 164
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BT_STATUS_HCI_PAIRING_NOT_ALLOWED

enumerator ESP_BT_STATUS_HCI_UNKNOWN_LMP_PDU

enumerator ESP_BT_STATUS_HCI_UNSUPPORTED_REM_FEATURE

enumerator ESP_BT_STATUS_HCI_SCO_OFFSET_REJECTED

enumerator ESP_BT_STATUS_HCI_SCO_INTERVAL_REJECTED

enumerator ESP_BT_STATUS_HCI_SCO_AIR_MODE

enumerator ESP_BT_STATUS_HCI_INVALID_LMP_PARAM

enumerator ESP_BT_STATUS_HCI_UNSPECIFIED

enumerator ESP_BT_STATUS_HCI_UNSUPPORTED_LMP_PARAMETERS

enumerator ESP_BT_STATUS_HCI_ROLE_CHANGE_NOT_ALLOWED

enumerator ESP_BT_STATUS_HCI_LMP_RESPONSE_TIMEOUT

enumerator ESP_BT_STATUS_HCI_LMP_ERR_TRANS_COLLISION

enumerator ESP_BT_STATUS_HCI_LMP_PDU_NOT_ALLOWED

enumerator ESP_BT_STATUS_HCI_ENCRY_MODE_NOT_ACCEPTABLE

enumerator ESP_BT_STATUS_HCI_UNIT_KEY_USED

enumerator ESP_BT_STATUS_HCI_QOS_NOT_SUPPORTED

enumerator ESP_BT_STATUS_HCI_INSTANT_PASSED

enumerator ESP_BT_STATUS_HCI_PAIRING_WITH_UNIT_KEY_NOT_SUPPORTED

enumerator ESP_BT_STATUS_HCI_DIFF_TRANSACTION_COLLISION

enumerator ESP_BT_STATUS_HCI_UNDEFINED_0x2B

enumerator ESP_BT_STATUS_HCI_QOS_UNACCEPTABLE_PARAM

enumerator ESP_BT_STATUS_HCI_QOS_REJECTED

enumerator ESP_BT_STATUS_HCI_CHAN_CLASSIF_NOT_SUPPORTED

Espressif Systems 165
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BT_STATUS_HCI_INSUFFCIENT_SECURITY

enumerator ESP_BT_STATUS_HCI_PARAM_OUT_OF_RANGE

enumerator ESP_BT_STATUS_HCI_UNDEFINED_0x31

enumerator ESP_BT_STATUS_HCI_ROLE_SWITCH_PENDING

enumerator ESP_BT_STATUS_HCI_UNDEFINED_0x33

enumerator ESP_BT_STATUS_HCI_RESERVED_SLOT_VIOLATION

enumerator ESP_BT_STATUS_HCI_ROLE_SWITCH_FAILED

enumerator ESP_BT_STATUS_HCI_INQ_RSP_DATA_TOO_LARGE

enumerator ESP_BT_STATUS_HCI_SIMPLE_PAIRING_NOT_SUPPORTED

enumerator ESP_BT_STATUS_HCI_HOST_BUSY_PAIRING

enumerator ESP_BT_STATUS_HCI_REJ_NO_SUITABLE_CHANNEL

enumerator ESP_BT_STATUS_HCI_CONTROLLER_BUSY

enumerator ESP_BT_STATUS_HCI_UNACCEPT_CONN_INTERVAL

enumerator ESP_BT_STATUS_HCI_DIRECTED_ADVERTISING_TIMEOUT

enumerator ESP_BT_STATUS_HCI_CONN_TOUT_DUE_TO_MIC_FAILURE

enumerator ESP_BT_STATUS_HCI_CONN_FAILED_ESTABLISHMENT

enumerator ESP_BT_STATUS_HCI_MAC_CONNECTION_FAILED

enumerator ESP_BT_STATUS_HCI_CCA_REJECTED

enumerator ESP_BT_STATUS_HCI_TYPE0_SUBMAP_NOT_DEFINED

enumerator ESP_BT_STATUS_HCI_UNKNOWN_ADV_ID

enumerator ESP_BT_STATUS_HCI_LIMIT_REACHED

enumerator ESP_BT_STATUS_HCI_OPT_CANCEL_BY_HOST

enumerator ESP_BT_STATUS_HCI_PKT_TOO_LONG

Espressif Systems 166
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BT_STATUS_HCI_TOO_LATE

enumerator ESP_BT_STATUS_HCI_TOO_EARLY

enum esp_bt_dev_type_t

Bluetooth device type.
Values:

enumerator ESP_BT_DEVICE_TYPE_BREDR

enumerator ESP_BT_DEVICE_TYPE_BLE

enumerator ESP_BT_DEVICE_TYPE_DUMO

enum esp_ble_addr_type_t

BLE device address type.
Values:

enumerator BLE_ADDR_TYPE_PUBLIC
Public Device Address

enumerator BLE_ADDR_TYPE_RANDOM
Random Device Address. To set this address, use the function
esp_ble_gap_set_rand_addr(esp_bd_addr_t rand_addr)

enumerator BLE_ADDR_TYPE_RPA_PUBLIC
Resolvable Private Address (RPA) with public identity address

enumerator BLE_ADDR_TYPE_RPA_RANDOM
Resolvable Private Address (RPA) with random identity address. To set this address, use the function
esp_ble_gap_set_rand_addr(esp_bd_addr_t rand_addr)

enum esp_ble_wl_addr_type_t

white list address type
Values:

enumerator BLE_WL_ADDR_TYPE_PUBLIC
Public Device Address

enumerator BLE_WL_ADDR_TYPE_RANDOM
Random Device Address

BT MAIN API

API Reference

Header File
• components/bt/host/bluedroid/api/include/api/esp_bt_main.h

Espressif Systems 167
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/host/bluedroid/api/include/api/esp_bt_main.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_bluedroid_status_t esp_bluedroid_get_status(void)

Get bluetooth stack status.
Returns Bluetooth stack status

esp_err_t esp_bluedroid_enable(void)
Enable bluetooth, must after esp_bluedroid_init().

Returns
• ESP_OK : Succeed
• Other : Failed

esp_err_t esp_bluedroid_disable(void)
Disable Bluetooth, must be called prior to esp_bluedroid_deinit().

Note: Before calling this API, ensure that all activities related to the application, such as connections, scans,
etc., are properly closed.

Returns
• ESP_OK : Succeed
• Other : Failed

esp_err_t esp_bluedroid_init(void)
Init and alloc the resource for bluetooth, must be prior to every bluetooth stuff.

Returns
• ESP_OK : Succeed
• Other : Failed

esp_err_t esp_bluedroid_deinit(void)
Deinit and free the resource for bluetooth, must be after every bluetooth stuff.

Returns
• ESP_OK : Succeed
• Other : Failed

Enumerations

enum esp_bluedroid_status_t

Bluetooth stack status type, to indicate whether the bluetooth stack is ready.
Values:

enumerator ESP_BLUEDROID_STATUS_UNINITIALIZED
Bluetooth not initialized

enumerator ESP_BLUEDROID_STATUS_INITIALIZED
Bluetooth initialized but not enabled

enumerator ESP_BLUEDROID_STATUS_ENABLED
Bluetooth initialized and enabled

BT DEVICE APIs

Overview Bluetooth device reference APIs.

Espressif Systems 168
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/bt/host/bluedroid/api/include/api/esp_bt_device.h

Functions
const uint8_t *esp_bt_dev_get_address(void)

Get bluetooth device address. Must use after "esp_bluedroid_enable".
Returns bluetooth device address (six bytes), or NULL if bluetooth stack is not enabled

esp_err_t esp_bt_dev_set_device_name(const char *name)
Set bluetooth device name. This function should be called after esp_bluedroid_enable() completes successfully.
A BR/EDR/LE device type shall have a single Bluetooth device name which shall be identical irrespective of
the physical channel used to perform the name discovery procedure.

Parameters name -- [in] : device name to be set
Returns

• ESP_OK : Succeed
• ESP_ERR_INVALID_ARG : if name is NULL pointer or empty, or string length out of
limit

• ESP_ERR_INVALID_STATE : if bluetooth stack is not yet enabled
• ESP_FAIL : others

2.3.2 Bluetooth® Low Energy

GAP API

Application Example Check bluetooth/bluedroid/ble folder in ESP-IDF examples, which contains the following
demos and their tutorials:

• This is a SMP security client demo and its tutorial. This demo initiates its security parameters and acts as a
GATT client, which can send a security request to the peer device and then complete the encryption procedure.

– bluetooth/bluedroid/ble/gatt_security_client
– GATT Security Client Example Walkthrough

• This is a SMP security server demo and its tutorial. This demo initiates its security parameters and acts as a
GATT server, which can send a pair request to the peer device and then complete the encryption procedure.

– bluetooth/bluedroid/ble/gatt_security_server
– GATT Security Server Example Walkthrough

API Reference

Header File
• components/bt/host/bluedroid/api/include/api/esp_gap_ble_api.h

Functions
esp_err_t esp_ble_gap_register_callback(esp_gap_ble_cb_t callback)

This function is called to occur gap event, such as scan result.

Note: Avoid performing time-consuming operations within the callback functions.

Parameters callback -- [in] callback function

Espressif Systems 169
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/host/bluedroid/api/include/api/esp_bt_device.h
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_security_client
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_security_client/tutorial/Gatt_Security_Client_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_security_server
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_security_server/tutorial/Gatt_Security_Server_Example_Walkthrough.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/host/bluedroid/api/include/api/esp_gap_ble_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK : success
• other : failed

esp_gap_ble_cb_t esp_ble_gap_get_callback(void)
This function is called to get the current gap callback.

Returns
• esp_gap_ble_cb_t : callback function

esp_err_t esp_ble_gap_config_adv_data(esp_ble_adv_data_t *adv_data)
This function is called to override the BTA default ADV parameters.

Parameters adv_data -- [in] Pointer to User defined ADV data structure. This memory space
can not be freed until callback of config_adv_data is received.

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_scan_params(esp_ble_scan_params_t *scan_params)
This function is called to set scan parameters.

Parameters scan_params -- [in] Pointer to User defined scan_params data structure. This
memory space can not be freed until callback of set_scan_params

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_start_scanning(uint32_t duration)
This procedure keep the device scanning the peer device which advertising on the air.

Parameters duration -- [in]The scanning duration in seconds. Set to 0 for continuous scanning
until explicitly stopped.

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_stop_scanning(void)
This function call to stop the device scanning the peer device which advertising on the air.

Returns
• ESP_OK : success
– other : failed

esp_err_t esp_ble_gap_start_advertising(esp_ble_adv_params_t *adv_params)
This function is called to start advertising.

Parameters adv_params -- [in] pointer to User defined adv_params data structure.
Returns

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_stop_advertising(void)
This function is called to stop advertising.

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_update_conn_params(esp_ble_conn_update_params_t *params)
Update connection parameters, can only be used when connection is up.

Parameters params -- [in] - connection update parameters
Returns

Espressif Systems 170
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_pkt_data_len(esp_bd_addr_t remote_device, uint16_t tx_data_length)
This function is to set maximum LE data packet size.

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_rand_addr(esp_bd_addr_t rand_addr)
This function allows configuring either a Non-Resolvable Private Address or a Static Random Address.

Parameters rand_addr -- [in] The address to be configured. Refer to the table below for pos-
sible address subtypes:

| address [47:46] | Address Type |␣
↪→Corresponding API |

|-----------------|-----------------------------|--------
↪→--------------------------------|

| 0b00 | Non-Resolvable Private | esp_
↪→ble_gap_addr_create_nrpa |

| | Address (NRPA) | ␣
↪→ |

|-----------------|-----------------------------|--------
↪→--------------------------------|

| 0b11 | Static Random Address | esp_
↪→ble_gap_addr_create_static |

|-----------------|-----------------------------|--------
↪→--------------------------------|

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_addr_create_static(esp_bd_addr_t rand_addr)
Create a static device address.

Parameters rand_addr -- [out] Pointer to the buffer where the static device address will be
stored.

Returns - ESP_OK : Success
• Other : Failed

esp_err_t esp_ble_gap_addr_create_nrpa(esp_bd_addr_t rand_addr)
Create a non-resolvable private address (NRPA)

Parameters rand_addr -- [out] Pointer to the buffer where the NRPA will be stored.
Returns - ESP_OK : Success

• Other : Failed
esp_err_t esp_ble_gap_set_resolvable_private_address_timeout(uint16_t rpa_timeout)

This function sets the length of time the Controller uses a Resolvable Private Address before generating and
starting to use a new resolvable private address.

Note: Note: This function is currently not supported on the ESP32 but will be enabled in a future update.

Parameters rpa_timeout -- [in] The timeout duration in seconds for how long a Resolvable
Private Address is used before a new one is generated. The value must be within the range
specified by the Bluetooth specification (0x0001 to 0x0E10), which corresponds to a time
range of 1 second to 1 hour. The default value is 0x0384 (900 seconds or 15 minutes).

Returns
• ESP_OK : success

Espressif Systems 171
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• other : failed

esp_err_t esp_ble_gap_add_device_to_resolving_list(esp_bd_addr_t peer_addr, uint8_t
addr_type, uint8_t *peer_irk)

This function adds a device to the resolving list used to generate and resolve Resolvable Private Addresses in
the Controller.

Note: Note: This function shall not be used when address resolution is enabled in the Controller and:
• Advertising (other than periodic advertising) is enabled,
• Scanning is enabled, or
• an HCI_LE_Create_Connection, HCI_LE_Extended_Create_Connection, or
HCI_LE_Periodic_Advertising_Create_Sync command is pending. This command may be used
at any time when address resolution is disabled in the Controller. The added device shall be set to
Network Privacy mode.

Parameters
• peer_addr -- [in] The peer identity address of the device to be added to the resolving
list.

• addr_type -- [in] The address type of the peer identity address
(BLE_ADDR_TYPE_PUBLIC or BLE_ADDR_TYPE_RANDOM).

• peer_irk -- [in] The Identity Resolving Key (IRK) of the device.
Returns

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_clear_rand_addr(void)
This function clears the random address for the application.

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_config_local_privacy(bool privacy_enable)
Enable/disable privacy (including address resolution) on the local device.

Parameters privacy_enable -- [in] - enable/disable privacy on remote device.
Returns

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_config_local_icon(uint16_t icon)
Set the local GAP appearance icon.

For a complete list of valid appearance values, please refer to "2.6.2 Appearance Category ranges" at: https:
//www.bluetooth.com/specifications/assigned-numbers/

Note: This API does not restrict the input icon value. If an undefined or incorrect icon value is used, the
device icon may not display properly.

Parameters icon -- [in] - External appearance value (16-bit), as defined by the Bluetooth SIG.
Returns

• ESP_OK : Success
• ESP_FAIL : Internal failure

Espressif Systems 172
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.bluetooth.com/specifications/assigned-numbers/
https://www.bluetooth.com/specifications/assigned-numbers/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_gap_update_whitelist(bool add_remove, esp_bd_addr_t remote_bda,
esp_ble_wl_addr_type_t wl_addr_type)

Add or remove device from white list.
Parameters

• add_remove -- [in] the value is true if added the ble device to the white list, and false
remove to the white list.

• remote_bda -- [in] the remote device address add/remove from the white list.
• wl_addr_type -- [in] whitelist address type

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_clear_whitelist(void)
Clear all white list.

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_get_whitelist_size(uint16_t *length)
Get the whitelist size in the controller.

Parameters length -- [out] the white list length.
Returns

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_prefer_conn_params(esp_bd_addr_t bd_addr, uint16_t min_conn_int,
uint16_t max_conn_int, uint16_t slave_latency,
uint16_t supervision_tout)

This function is called to set the preferred connection parameters when default connection parameter is not
desired before connecting. This API can only be used in the master role.

Parameters
• bd_addr -- [in] BD address of the peripheral
• min_conn_int -- [in] minimum preferred connection interval
• max_conn_int -- [in] maximum preferred connection interval
• slave_latency -- [in] preferred slave latency
• supervision_tout -- [in] preferred supervision timeout

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_device_name(const char *name)
Set device name to the local device Note: This API don't affect the advertising data.

Parameters name -- [in] - device name.
Returns

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_get_device_name(void)
Get device name of the local device.

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_get_local_used_addr(esp_bd_addr_t local_used_addr, uint8_t *addr_type)
This function is called to get local used address and address type. uint8_t *esp_bt_dev_get_address(void) get
the public address.

Espressif Systems 173
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• local_used_addr -- [in] - current local used ble address (six bytes)
• addr_type -- [in] - ble address type

Returns - ESP_OK : success
• other : failed

uint8_t *esp_ble_resolve_adv_data_by_type(uint8_t *adv_data, uint16_t adv_data_len,
esp_ble_adv_data_type type, uint8_t *length)

This function is called to get ADV data for a specific type.

Note: This is the recommended function to use for resolving ADV data by type. It improves upon the
deprecated esp_ble_resolve_adv_data function by including an additional parameter to specify the
length of the ADV data, thereby offering better safety and reliability.

Parameters
• adv_data -- [in] - pointer of ADV data which to be resolved
• adv_data_len -- [in] - the length of ADV data which to be resolved.
• type -- [in] - finding ADV data type
• length -- [out] - return the length of ADV data not including type

Returns pointer of ADV data

uint8_t *esp_ble_resolve_adv_data(uint8_t *adv_data, uint8_t type, uint8_t *length)
This function is called to get ADV data for a specific type.

Note: This function has been deprecated and will be removed in a future release. Please use
esp_ble_resolve_adv_data_by_type instead, which provides better parameter validation and sup-
ports more accurate data resolution.

Parameters
• adv_data -- [in] - pointer of ADV data which to be resolved
• type -- [in] - finding ADV data type
• length -- [out] - return the length of ADV data not including type

Returns pointer of ADV data

esp_err_t esp_ble_gap_config_adv_data_raw(uint8_t *raw_data, uint32_t raw_data_len)
This function is called to set raw advertising data. User need to fill ADV data by self.

Parameters
• raw_data -- [in] : raw advertising data with the format: [Length 1][Data Type 1][Data
1][Length 2][Data Type 2][Data 2] ...

• raw_data_len -- [in] : raw advertising data length , less than 31 bytes
Returns

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_config_scan_rsp_data_raw(uint8_t *raw_data, uint32_t raw_data_len)
This function is called to set raw scan response data. User need to fill scan response data by self.

Parameters
• raw_data -- [in] : raw scan response data
• raw_data_len -- [in] : raw scan response data length , less than 31 bytes

Returns
• ESP_OK : success
• other : failed

Espressif Systems 174
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_gap_read_rssi(esp_bd_addr_t remote_addr)
This function is called to read the RSSI of remote device. The address of link policy results are returned in the
gap callback function with ESP_GAP_BLE_READ_RSSI_COMPLETE_EVT event.

Parameters remote_addr -- [in] : The remote connection device address.
Returns

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_add_duplicate_scan_exceptional_device(esp_ble_duplicate_exceptional_info_type_t
type, esp_duplicate_info_t
device_info)

This function is called to add a device info into the duplicate scan exceptional list.
Parameters

• type -- [in] device info type, it is defined in esp_ble_duplicate_exceptional_info_type_t
when type is MESH_BEACON_TYPE, MESH_PROV_SRV_ADV or
MESH_PROXY_SRV_ADV , device_info is invalid.

• device_info -- [in] the device information.
Returns

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_remove_duplicate_scan_exceptional_device(esp_ble_duplicate_exceptional_info_type_t
type,
esp_duplicate_info_t
device_info)

This function is called to remove a device info from the duplicate scan exceptional list.
Parameters

• type -- [in] device info type, it is defined in esp_ble_duplicate_exceptional_info_type_t
when type is MESH_BEACON_TYPE, MESH_PROV_SRV_ADV or
MESH_PROXY_SRV_ADV , device_info is invalid.

• device_info -- [in] the device information.
Returns

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_clean_duplicate_scan_exceptional_list(esp_duplicate_scan_exceptional_list_type_t
list_type)

This function is called to clean the duplicate scan exceptional list. This API will delete all device information
in the duplicate scan exceptional list.

Parameters list_type -- [in] duplicate scan exceptional list type, the value can be one or more
of esp_duplicate_scan_exceptional_list_type_t.

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_security_param(esp_ble_sm_param_t param_type, void *value, uint8_t
len)

Set a GAP security parameter value. Overrides the default value.

Secure connection is highly recommended to avoid some major
vulnerabilities like 'Impersonation in the Pin Pairing Protocol'
(CVE-2020-26555) and 'Authentication of the LE Legacy Pairing
Protocol'.

To accept only `secure connection mode`, it is necessary do as␣
↪→following:

(continues on next page)

Espressif Systems 175
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

1. Set bit `ESP_LE_AUTH_REQ_SC_ONLY` (`param_type` is
`ESP_BLE_SM_AUTHEN_REQ_MODE`), bit `ESP_LE_AUTH_BOND` and bit
`ESP_LE_AUTH_REQ_MITM` is optional as required.

2. Set to `ESP_BLE_ONLY_ACCEPT_SPECIFIED_AUTH_ENABLE` (`param_
↪→type` is

`ESP_BLE_SM_ONLY_ACCEPT_SPECIFIED_SEC_AUTH`).

Parameters
• param_type -- [in] : the type of the param which to be set
• value -- [in] : the param value
• len -- [in] : the length of the param value

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_security_rsp(esp_bd_addr_t bd_addr, bool accept)
Grant security request access.

Parameters
• bd_addr -- [in] : BD address of the peer
• accept -- [in] : accept the security request or not

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_set_encryption(esp_bd_addr_t bd_addr, esp_ble_sec_act_t sec_act)
Set a gap parameter value. Use this function to change the default GAP parameter values.

Parameters
• bd_addr -- [in] : the address of the peer device need to encryption
• sec_act -- [in] : This is the security action to indicate what kind of BLE security level
is required for the BLE link if the BLE is supported

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_passkey_reply(esp_bd_addr_t bd_addr, bool accept, uint32_t passkey)
Reply the key value to the peer device in the legacy connection stage.

Parameters
• bd_addr -- [in] : BD address of the peer
• accept -- [in] : passkey entry successful or declined.
• passkey -- [in] : passkey value, must be a 6 digit number, can be lead by 0.

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_confirm_reply(esp_bd_addr_t bd_addr, bool accept)
Reply the confirm value to the peer device in the secure connection stage.

Parameters
• bd_addr -- [in] : BD address of the peer device
• accept -- [in] : numbers to compare are the same or different.

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_remove_bond_device(esp_bd_addr_t bd_addr)
Removes a device from the security database list of peer device. It manages unpairing event while connected.

Parameters bd_addr -- [in] : BD address of the peer device
Returns - ESP_OK : success

• other : failed

Espressif Systems 176
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int esp_ble_get_bond_device_num(void)
Get the device number from the security database list of peer device. It will return the device bonded number
immediately.

Returns - >= 0 : bonded devices number.
• ESP_FAIL : failed

esp_err_t esp_ble_get_bond_device_list(int *dev_num, esp_ble_bond_dev_t *dev_list)
Get the device from the security database list of peer device. It will return the device bonded information
immediately.

Parameters
• dev_num -- [inout] Indicate the dev_list array(buffer) size as input. If dev_num is
large enough, it means the actual number as output. Suggest that dev_num value equal
to esp_ble_get_bond_device_num().

• dev_list -- [out] an array(buffer) of esp_ble_bond_dev_t type. Use for storing
the bonded devices address. The dev_list should be allocated by who call this API.

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_oob_req_reply(esp_bd_addr_t bd_addr, uint8_t *TK, uint8_t len)
This function is called to provide the OOB data for SMP in response to ESP_GAP_BLE_OOB_REQ_EVT.

Parameters
• bd_addr -- [in] BD address of the peer device.
• TK -- [in] Temporary Key value, the TK value shall be a 128-bit random number
• len -- [in] length of temporary key, should always be 128-bit

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_sc_oob_req_reply(esp_bd_addr_t bd_addr, uint8_t p_c[16], uint8_t p_r[16])
This function is called to provide the OOB data for SMP in response to
ESP_GAP_BLE_SC_OOB_REQ_EVT.

Parameters
• bd_addr -- [in] BD address of the peer device.
• p_c -- [in] Confirmation value, it shall be a 128-bit random number
• p_r -- [in] Randomizer value, it should be a 128-bit random number

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_create_sc_oob_data(void)
This function is called to create the OOB data for SMP when secure connection.

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_get_local_irk(uint8_t local_irk[16])
Get the local Identity Resolving Key (IRK).

Note: This API retrieves the local IRK stored in the device's security database. The IRK is used by the
controller to generate and resolve Resolvable Private Addresses (RPA). The IRK length is always 16 bytes
(ESP_BT_OCTET16_LEN).

Note: Usage Restrictions: Do NOT call this API during a disconnection event or while a BLE disconnection
is in progress. Calling this API during disconnection may lead to undefined behavior or accessing invalid
information.

Espressif Systems 177
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters local_irk -- [out] Buffer to hold the 16-byte IRK. The array notation [16] ex-
plicitly indicates the required buffer size (ESP_BT_OCTET16_LEN).

Returns
• ESP_OK : success
• ESP_ERR_INVALID_ARG : local_irk is NULL
• ESP_ERR_INVALID_STATE : BLE stack not initialized or IRK not available

esp_err_t esp_ble_gap_disconnect(esp_bd_addr_t remote_device)
This function is to disconnect the physical connection of the peer device gattc may have multiple virtual GATT
server connections when multiple app_id registered. esp_ble_gattc_close (esp_gatt_if_t gattc_if, uint16_t
conn_id) only close one virtual GATT server connection. if there exist other virtual GATT server connec-
tions, it does not disconnect the physical connection. esp_ble_gap_disconnect(esp_bd_addr_t remote_device)
disconnect the physical connection directly.

Parameters remote_device -- [in] : BD address of the peer device
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_get_current_conn_params(esp_bd_addr_t bd_addr, esp_gap_conn_params_t

*conn_params)
This function is called to read the connection parameters information of the device.

Parameters
• bd_addr -- [in] BD address of the peer device.
• conn_params -- [out] the connection parameters information

Returns - ESP_OK : success
• other : failed

esp_err_t esp_gap_ble_set_channels(esp_gap_ble_channels channels)
BLE set channels.

Parameters channels -- [in] : The n th such field (in the range 0 to 36) contains the value for
the link layer channel index n. 0 means channel n is bad. 1 means channel n is unknown. The
most significant bits are reserved and shall be set to 0. At least one channel shall be marked as
unknown.

Returns - ESP_OK : success
• ESP_ERR_INVALID_STATE: if bluetooth stack is not yet enabled
• other : failed

esp_err_t esp_gap_ble_set_authorization(esp_bd_addr_t bd_addr, bool authorize)
This function is called to authorized a link after Authentication(MITM protection)

Parameters
• bd_addr -- [in] BD address of the peer device.
• authorize -- [out] Authorized the link or not.

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_read_phy(esp_bd_addr_t bd_addr)
This function is used to read the current transmitter PHY and receiver PHY on the connection identified by
remote address.

Parameters bd_addr -- [in] : BD address of the peer device
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_set_preferred_default_phy(esp_ble_gap_phy_mask_t tx_phy_mask,

esp_ble_gap_phy_mask_t rx_phy_mask)
This function is used to allows the Host to specify its preferred values for the transmitter PHY and receiver
PHY to be used for all subsequent connections over the LE transport.

Parameters

Espressif Systems 178
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• tx_phy_mask -- [in] : indicates the transmitter PHYs that the Host prefers the Con-
troller to use

• rx_phy_mask -- [in] : indicates the receiver PHYs that the Host prefers the Controller
to use

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_preferred_phy(esp_bd_addr_t bd_addr, esp_ble_gap_all_phys_t
all_phys_mask, esp_ble_gap_phy_mask_t tx_phy_mask,
esp_ble_gap_phy_mask_t rx_phy_mask,
esp_ble_gap_prefer_phy_options_t phy_options)

This function is used to set the PHY preferences for the connection identified by the remote address. The
Controller might not be able to make the change (e.g. because the peer does not support the requested PHY)
or may decide that the current PHY is preferable.

Parameters
• bd_addr -- [in] : remote address
• all_phys_mask -- [in] : a bit field that allows the Host to specify
• tx_phy_mask -- [in] : a bit field that indicates the transmitter PHYs that the Host
prefers the Controller to use

• rx_phy_mask -- [in] : a bit field that indicates the receiver PHYs that the Host prefers
the Controller to use

• phy_options -- [in] : a bit field that allows the Host to specify options for PHYs
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_ext_adv_set_rand_addr(uint8_t instance, esp_bd_addr_t rand_addr)

This function is used by the Host to set the random device address specified by the Random_Address parameter.
Parameters

• instance -- [in] : Used to identify an advertising set
• rand_addr -- [in] : Random Device Address

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_ext_adv_set_params(uint8_t instance, const esp_ble_gap_ext_adv_params_t
*params)

This function is used by the Host to set the advertising parameters.
Parameters

• instance -- [in] : identifies the advertising set whose parameters are being configured.
• params -- [in] : advertising parameters

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_config_ext_adv_data_raw(uint8_t instance, uint16_t length, const uint8_t
*data)

This function is used to set the data used in advertising PDUs that have a data field.
Parameters

• instance -- [in] : identifies the advertising set whose data are being configured
• length -- [in] : data length
• data -- [in] : data information

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_config_ext_scan_rsp_data_raw(uint8_t instance, uint16_t length, const
uint8_t *scan_rsp_data)

This function is used to provide scan response data used in scanning response PDUs.
Parameters

Espressif Systems 179
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• instance -- [in] : identifies the advertising set whose response data are being config-
ured.

• length -- [in] : responsedata length
• scan_rsp_data -- [in] : response data information

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_ext_adv_start(uint8_t num_adv, const esp_ble_gap_ext_adv_t *ext_adv)
This function is used to request the Controller to enable one or more advertising sets using the advertising sets
identified by the instance parameter.

Parameters
• num_adv -- [in] : Number of advertising sets to enable or disable
• ext_adv -- [in] : adv parameters

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_ext_adv_stop(uint8_t num_adv, const uint8_t *ext_adv_inst)
This function is used to request the Controller to disable one or more advertising sets using the advertising sets
identified by the instance parameter.

Parameters
• num_adv -- [in] : Number of advertising sets to enable or disable
• ext_adv_inst -- [in] : ext adv instance

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_ext_adv_set_remove(uint8_t instance)
This function is used to remove an advertising set from the Controller.

Parameters instance -- [in] : Used to identify an advertising set
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_ext_adv_set_clear(void)

This function is used to remove all existing advertising sets from the Controller.
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_periodic_adv_set_params(uint8_t instance, const

esp_ble_gap_periodic_adv_params_t *params)
This function is used by the Host to set the parameters for periodic advertising.

Parameters
• instance -- [in] : identifies the advertising set whose periodic advertising parameters
are being configured.

• params -- [in] : periodic adv parameters
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_config_periodic_adv_data_raw(uint8_t instance, uint16_t length, const

uint8_t *data)
This function is used to set the data used in periodic advertising PDUs.

Parameters
• instance -- [in] : identifies the advertising set whose periodic advertising parameters
are being configured.

• length -- [in] : the length of periodic data
• data -- [in] : periodic data information

Returns - ESP_OK : success
• other : failed

Espressif Systems 180
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_gap_periodic_adv_start(uint8_t instance)
This function is used to request the Controller to enable the periodic advertising for the advertising set specified.

Parameters instance -- [in] : Used to identify an advertising set
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_periodic_adv_stop(uint8_t instance)

This function is used to request the Controller to disable the periodic advertising for the advertising set specified.
Parameters instance -- [in] : Used to identify an advertising set
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_set_ext_scan_params(const esp_ble_ext_scan_params_t *params)

This function is used to set the extended scan parameters to be used on the advertising channels.
Parameters params -- [in] : scan parameters
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_start_ext_scan(uint32_t duration, uint16_t period)

Enables extended scanning.
Parameters

• duration -- [in] Scan duration in units of 10 ms.
– Range: 0x0001 to 0xFFFF (Time = N * 10 ms).
– 0x0000: Scan continuously until explicitly disabled.

• period -- [in] Time interval between the start of consecutive scan durations, in units of
1.28 seconds.
– Range: 0x0001 to 0xFFFF (Time = N * 1.28 sec).
– 0x0000: Scan continuously.

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_stop_ext_scan(void)
This function is used to disable scanning.

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_periodic_adv_create_sync(const esp_ble_gap_periodic_adv_sync_params_t
*params)

This function is used to synchronize with periodic advertising from an advertiser and begin receiving periodic
advertising packets.

Parameters params -- [in] : sync parameters
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_periodic_adv_sync_cancel(void)

This function is used to cancel the LE_Periodic_Advertising_Create_Sync command while it is pending.
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_periodic_adv_sync_terminate(uint16_t sync_handle)

This function is used to stop reception of the periodic advertising identified by the Sync Handle parameter.
Parameters sync_handle -- [in] : identify the periodic advertiser
Returns - ESP_OK : success

• other : failed

Espressif Systems 181
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_gap_periodic_adv_add_dev_to_list(esp_ble_addr_type_t addr_type,
esp_bd_addr_t addr, uint8_t sid)

This function is used to add a single device to the Periodic Advertiser list stored in the Controller.
Parameters

• addr_type -- [in] : address type
• addr -- [in] : Device Address
• sid -- [in] : Advertising SID subfield in the ADI field used to identify the Periodic Ad-
vertising

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_periodic_adv_remove_dev_from_list(esp_ble_addr_type_t addr_type,
esp_bd_addr_t addr, uint8_t sid)

This function is used to remove one device from the list of Periodic Advertisers stored in the Controller.
Removals from the Periodic Advertisers List take effect immediately.

Parameters
• addr_type -- [in] : address type
• addr -- [in] : Device Address
• sid -- [in] : Advertising SID subfield in the ADI field used to identify the Periodic Ad-
vertising

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_periodic_adv_clear_dev(void)
This function is used to remove all devices from the list of Periodic Advertisers in the Controller.

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_prefer_ext_connect_params_set(esp_bd_addr_t addr,
esp_ble_gap_phy_mask_t phy_mask,
const esp_ble_gap_conn_params_t
*phy_1m_conn_params, const
esp_ble_gap_conn_params_t
*phy_2m_conn_params, const
esp_ble_gap_conn_params_t
*phy_coded_conn_params)

This function is used to set aux connection parameters.
Parameters

• addr -- [in] : device address
• phy_mask -- [in] : indicates the PHY(s) on which the advertising packets should be re-
ceived on the primary advertising channel and the PHYs for which connection parameters
have been specified.

• phy_1m_conn_params -- [in] : Scan connectable advertisements on the LE 1MPHY.
Connection parameters for the LE 1M PHY are provided.

• phy_2m_conn_params -- [in] : Connection parameters for the LE 2M PHY are pro-
vided.

• phy_coded_conn_params -- [in] : Scan connectable advertisements on the LE
Coded PHY. Connection parameters for the LE Coded PHY are provided.

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_get_periodic_list_size(uint8_t *size)
Retrieve the capacity of the periodic advertiser list in the controller.

Parameters size -- [out] Pointer to a variable where the capacity of the periodic advertiser list
will be stored.

Returns

Espressif Systems 182
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK : Success
• Others : Failure

esp_err_t esp_ble_gap_periodic_adv_recv_enable(uint16_t sync_handle, uint8_t enable)
This function is used to set periodic advertising receive enable.

Parameters
• sync_handle -- [in] : Handle of periodic advertising sync
• enable -- [in] : Determines whether reporting and duplicate filtering are enabled or
disabled

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_periodic_adv_sync_trans(esp_bd_addr_t addr, uint16_t service_data,
uint16_t sync_handle)

This function is used to transfer periodic advertising sync.
Parameters

• addr -- [in] : Peer device address
• service_data -- [in] : Service data used by Host
• sync_handle -- [in] : Handle of periodic advertising sync

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_periodic_adv_set_info_trans(esp_bd_addr_t addr, uint16_t service_data,
uint8_t adv_handle)

This function is used to transfer periodic advertising set info.
Parameters

• addr -- [in] : Peer device address
• service_data -- [in] : Service data used by Host
• adv_handle -- [in] : Handle of advertising set

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_periodic_adv_sync_trans_params(esp_bd_addr_t addr, const
esp_ble_gap_past_params_t
*params)

This function is used to set periodic advertising sync transfer params.
Parameters

• addr -- [in] : Peer device address
• params -- [in] : Params of periodic advertising sync transfer

Returns - ESP_OK : success
• other : failed

esp_err_t esp_ble_dtm_tx_start(const esp_ble_dtm_tx_t *tx_params)
This function is used to start a test where the DUT generates reference packets at a fixed interval.

Parameters tx_params -- [in] : DTM Transmitter parameters
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_dtm_rx_start(const esp_ble_dtm_rx_t *rx_params)

This function is used to start a test where the DUT receives test reference packets at a fixed interval.
Parameters rx_params -- [in] : DTM Receiver parameters
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_dtm_enh_tx_start(const esp_ble_dtm_enh_tx_t *tx_params)

This function is used to start a test where the DUT generates reference packets at a fixed interval.

Espressif Systems 183
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters tx_params -- [in] : DTM Transmitter parameters
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_dtm_enh_rx_start(const esp_ble_dtm_enh_rx_t *rx_params)

This function is used to start a test where the DUT receives test reference packets at a fixed interval.
Parameters rx_params -- [in] : DTM Receiver parameters
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_dtm_stop(void)

This function is used to stop any test which is in progress.
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_clear_advertising(void)

This function is used to clear legacy advertising.
Returns - ESP_OK : success

• other : failed
esp_err_t esp_ble_gap_vendor_command_send(esp_ble_vendor_cmd_params_t *vendor_cmd_param)

This function is called to send vendor hci command.
Parameters vendor_cmd_param -- [in] vendor hci command parameters
Returns

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_privacy_mode(esp_ble_addr_type_t addr_type, esp_bd_addr_t addr,
esp_ble_privacy_mode_t mode)

This function set the privacy mode of the device in resolving list.

Note: This feature is not supported on ESP32.

Parameters
• addr_type -- [in] The address type of the peer identity address
(BLE_ADDR_TYPE_PUBLIC or BLE_ADDR_TYPE_RANDOM).

• addr -- [in] The peer identity address of the device.
• mode -- [in] The privacy mode of the device.

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_csa_support(uint8_t csa_select)
This function is used to set which channel selection algorithm(CSA) is supported.

Note: - This function should only be used when there are BLE compatibility issues about channel hopping
after connected. For example, if the peer device only supports CSA#1, this function can be called to make the
Controller use CSA#1.

• This function is not supported on ESP32.

Parameters csa_select -- [in] 0: Channel Selection Algorighm will be selected by Controller
1: Select the LE Channel Selection Algorighm #1 2: Select the LE Channel Selection Algo-
righm #2

Returns

Espressif Systems 184
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_vendor_event_mask(esp_ble_vendor_evt_mask_t event_mask)
This function is used to control which vendor events are generated by the HCI for the Host.

Parameters event_mask -- [in] The BLE vendor HCI event mask
Returns

• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_common_factor(uint32_t common_factor)
This function is used to set a common connection interval factor for multiple central-role connections. When
multiple BLE connections in the central role exist, it is recommended that each connection interval be config-
ured to either the same value or an integer multiple of the others. And use this function to set the common
factor of all connection intervalsin the controller. The controller will then arrange the scheduling of each
connection based on this factor to minimize or avoid connection conflicts.

Note: - This function is used in multi-connection scenarios.
• This function takes effect only when the connection role is central.
• This function only needs to be called once and before establishing the connection.

Parameters common_factor -- [in] The common connection interval factor (in units of 625us)
used for scheduling across all central-role connections.

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_sch_len(uint8_t role, uint32_t len)
This function is used to Set the scheduling protection time for specific LE role. It can be used to configures
the minimum protection time to be reserved for a connection's TX/RX operations, ensuring that a complete
transmission and reception cycle is not interrupted. It helps prevent disconnect in scenarios with multiple
connections competing for time slots.

Note: - This function is used in multi-connection scenarios.
• This function must be called before establishing the connection.

Parameters
• role -- [in] 0: Central 1: Peripheral
• len -- [in] The protection time length of the corresponding role (in units of us)

Returns
• ESP_OK : success
• other : failed

esp_err_t esp_ble_gap_set_scan_chan_map(uint8_t state, uint8_t chan_map[5])
This function is used to Set the channel map for LE scanning or initiating state.

Note: - This function must be called before starting scanning or initiating.
• At least one channel should be marked as used.

Parameters
• state -- [in] The LE state for which the channel map is applied.

Espressif Systems 185
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

– 0 : Scanning state
– 1 : Initiating state

• chan_map -- [in] A 5-byte array representing the channel usage bit mask. Each bit
corresponds to one channel from channel 0 to channel 39. The least significant bit of
chan_map[0] corresponds to channel 0. The most significant bit of chan_map[4] corre-
sponds to channel 39.
– Bit = 1 : channel is used
– Bit = 0 : channel is not used

Returns
• ESP_OK : success
• other : failed

Unions

union esp_ble_key_value_t
#include <esp_gap_ble_api.h> union type of the security key value

Public Members

esp_ble_penc_keys_t penc_key

received peer encryption key

esp_ble_pcsrk_keys_t pcsrk_key

received peer device SRK

esp_ble_pid_keys_t pid_key

peer device ID key

esp_ble_lenc_keys_t lenc_key

local encryption reproduction keys LTK = = d1(ER,DIV,0)

esp_ble_lcsrk_keys lcsrk_key

local device CSRK = d1(ER,DIV,1)

union esp_ble_sec_t
#include <esp_gap_ble_api.h> union associated with ble security

Public Members

esp_ble_sec_key_notif_t key_notif

passkey notification

esp_ble_sec_req_t ble_req

BLE SMP related request

esp_ble_key_t ble_key

BLE SMP keys used when pairing

esp_ble_local_id_keys_t ble_id_keys

BLE IR event

Espressif Systems 186
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_local_oob_data_t oob_data

BLE SMP secure connection OOB data

esp_ble_auth_cmpl_t auth_cmpl

Authentication complete indication.

union esp_ble_vendor_evt_param_t
#include <esp_gap_ble_api.h> BLE vendor event parameters union.

Public Members

struct esp_ble_vendor_evt_param_t::ble_pdu_recv_evt_param pdu_recv

Event parameter of ESP_BLE_VENDOR_PDU_RECV_EVT

struct esp_ble_vendor_evt_param_t::ble_chan_map_update_evt_param chan_map_update

Event parameter of ESP_BLE_VENDOR_CHAN_MAP_UPDATE_EVT

struct esp_ble_vendor_evt_param_t::ble_sleep_wakeup_evt_param sleep_wakeup

Event parameter of ESP_BLE_VENDOR_SLEEP_WAKEUP_EVT

struct ble_chan_map_update_evt_param
#include <esp_gap_ble_api.h> ESP_BLE_VENDOR_CHAN_MAP_UPDATE_EVT.

Public Members

uint8_t status
Indicate the channel map update status (HCI error code)

uint16_t conn_handle
The connection handle

esp_gap_ble_channels ch_map

The channel map after updated

struct ble_pdu_recv_evt_param
#include <esp_gap_ble_api.h> ESP_BLE_VENDOR_PDU_RECV_EVT.

Public Members

esp_ble_vendor_pdu_t type

The type of LE PDU

uint8_t handle
The handle of advertising set

Espressif Systems 187
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_addr_type_t addr_type

The address type of peer device

esp_bd_addr_t peer_addr

The address of peer device

struct ble_sleep_wakeup_evt_param
#include <esp_gap_ble_api.h> ESP_BLE_VENDOR_SLEEP_WAKEUP_EVT.

union esp_ble_gap_cb_param_t
#include <esp_gap_ble_api.h> Gap callback parameters union.

Public Members

struct esp_ble_gap_cb_param_t::ble_get_dev_name_cmpl_evt_param get_dev_name_cmpl

Event parameter of ESP_GAP_BLE_GET_DEV_NAME_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_adv_data_cmpl_evt_param adv_data_cmpl

Event parameter of ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_scan_rsp_data_cmpl_evt_param scan_rsp_data_cmpl

Event parameter of ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_scan_param_cmpl_evt_param scan_param_cmpl

Event parameter of ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_scan_result_evt_param scan_rst

Event parameter of ESP_GAP_BLE_SCAN_RESULT_EVT

struct esp_ble_gap_cb_param_t::ble_adv_data_raw_cmpl_evt_param adv_data_raw_cmpl

Event parameter of ESP_GAP_BLE_ADV_DATA_RAW_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_scan_rsp_data_raw_cmpl_evt_param scan_rsp_data_raw_cmpl

Event parameter of ESP_GAP_BLE_SCAN_RSP_DATA_RAW_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_adv_start_cmpl_evt_param adv_start_cmpl

Event parameter of ESP_GAP_BLE_ADV_START_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_scan_start_cmpl_evt_param scan_start_cmpl

Event parameter of ESP_GAP_BLE_SCAN_START_COMPLETE_EVT

esp_ble_sec_t ble_security

ble gap security union type

struct esp_ble_gap_cb_param_t::ble_scan_stop_cmpl_evt_param scan_stop_cmpl

Event parameter of ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT

Espressif Systems 188
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_gap_cb_param_t::ble_adv_stop_cmpl_evt_param adv_stop_cmpl

Event parameter of ESP_GAP_BLE_ADV_STOP_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_adv_clear_cmpl_evt_param adv_clear_cmpl

Event parameter of ESP_GAP_BLE_ADV_CLEAR_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_set_rand_cmpl_evt_param set_rand_addr_cmpl

Event parameter of ESP_GAP_BLE_SET_STATIC_RAND_ADDR_EVT

struct esp_ble_gap_cb_param_t::ble_update_conn_params_evt_param update_conn_params

Event parameter for ESP_GAP_BLE_UPDATE_CONN_PARAMS_EVT

struct esp_ble_gap_cb_param_t::ble_pkt_data_length_cmpl_evt_param pkt_data_length_cmpl

Event parameter of ESP_GAP_BLE_SET_PKT_LENGTH_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_local_privacy_cmpl_evt_param local_privacy_cmpl

Event parameter of ESP_GAP_BLE_SET_LOCAL_PRIVACY_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_rpa_timeout_cmpl_evt_param set_rpa_timeout_cmpl

Event parameter of ESP_GAP_BLE_SET_RPA_TIMEOUT_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_add_dev_to_resolving_list_cmpl_evt_param
add_dev_to_resolving_list_cmpl

Event parameter of ESP_GAP_BLE_ADD_DEV_TO_RESOLVING_LIST_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_remove_bond_dev_cmpl_evt_param remove_bond_dev_cmpl

Event parameter of ESP_GAP_BLE_REMOVE_BOND_DEV_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_clear_bond_dev_cmpl_evt_param clear_bond_dev_cmpl

Event parameter of ESP_GAP_BLE_CLEAR_BOND_DEV_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_get_bond_dev_cmpl_evt_param get_bond_dev_cmpl

Event parameter of ESP_GAP_BLE_GET_BOND_DEV_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_read_rssi_cmpl_evt_param read_rssi_cmpl

Event parameter of ESP_GAP_BLE_READ_RSSI_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_update_whitelist_cmpl_evt_param update_whitelist_cmpl

Event parameter of ESP_GAP_BLE_UPDATE_WHITELIST_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_update_duplicate_exceptional_list_cmpl_evt_param
update_duplicate_exceptional_list_cmpl

Event parameter of ESP_GAP_BLE_UPDATE_DUPLICATE_EXCEPTIONAL_LIST_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_set_channels_evt_param ble_set_channels

Event parameter of ESP_GAP_BLE_SET_CHANNELS_EVT

struct esp_ble_gap_cb_param_t::ble_read_phy_cmpl_evt_param read_phy

Event parameter of ESP_GAP_BLE_READ_PHY_COMPLETE_EVT

Espressif Systems 189
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_gap_cb_param_t::ble_set_perf_def_phy_cmpl_evt_param set_perf_def_phy

Event parameter of ESP_GAP_BLE_SET_PREFERRED_DEFAULT_PHY_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_set_perf_phy_cmpl_evt_param set_perf_phy

Event parameter of ESP_GAP_BLE_SET_PREFERRED_PHY_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_adv_set_rand_addr_cmpl_evt_param
ext_adv_set_rand_addr

Event parameter of ESP_GAP_BLE_EXT_ADV_SET_RAND_ADDR_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_adv_set_params_cmpl_evt_param ext_adv_set_params

Event parameter of ESP_GAP_BLE_EXT_ADV_SET_PARAMS_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_adv_data_set_cmpl_evt_param ext_adv_data_set

Event parameter of ESP_GAP_BLE_EXT_ADV_DATA_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_adv_scan_rsp_set_cmpl_evt_param scan_rsp_set

Event parameter of ESP_GAP_BLE_EXT_SCAN_RSP_DATA_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_adv_start_cmpl_evt_param ext_adv_start

Event parameter of ESP_GAP_BLE_EXT_ADV_START_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_adv_stop_cmpl_evt_param ext_adv_stop

Event parameter of ESP_GAP_BLE_EXT_ADV_STOP_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_adv_set_remove_cmpl_evt_param ext_adv_remove

Event parameter of ESP_GAP_BLE_EXT_ADV_SET_REMOVE_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_adv_set_clear_cmpl_evt_param ext_adv_clear

Event parameter of ESP_GAP_BLE_EXT_ADV_SET_CLEAR_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_periodic_adv_set_params_cmpl_param peroid_adv_set_params

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_SET_PARAMS_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_periodic_adv_data_set_cmpl_param period_adv_data_set

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_DATA_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_periodic_adv_start_cmpl_param period_adv_start

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_START_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_periodic_adv_stop_cmpl_param period_adv_stop

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_STOP_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_period_adv_create_sync_cmpl_param period_adv_create_sync

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_CREATE_SYNC_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_period_adv_sync_cancel_cmpl_param period_adv_sync_cancel

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_SYNC_CANCEL_COMPLETE_EVT

Espressif Systems 190
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_gap_cb_param_t::ble_period_adv_sync_terminate_cmpl_param period_adv_sync_term

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_SYNC_TERMINATE_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_period_adv_add_dev_cmpl_param period_adv_add_dev

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_ADD_DEV_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_period_adv_remove_dev_cmpl_param period_adv_remove_dev

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_REMOVE_DEV_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_period_adv_clear_dev_cmpl_param period_adv_clear_dev

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_CLEAR_DEV_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_set_ext_scan_params_cmpl_param set_ext_scan_params

Event parameter of ESP_GAP_BLE_SET_EXT_SCAN_PARAMS_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_scan_start_cmpl_param ext_scan_start

Event parameter of ESP_GAP_BLE_EXT_SCAN_START_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_scan_stop_cmpl_param ext_scan_stop

Event parameter of ESP_GAP_BLE_EXT_SCAN_STOP_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_conn_params_set_cmpl_param ext_conn_params_set

Event parameter of ESP_GAP_BLE_PREFER_EXT_CONN_PARAMS_SET_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_adv_terminate_param adv_terminate

Event parameter of ESP_GAP_BLE_ADV_TERMINATED_EVT

struct esp_ble_gap_cb_param_t::ble_scan_req_received_param scan_req_received

Event parameter of ESP_GAP_BLE_SCAN_REQ_RECEIVED_EVT

struct esp_ble_gap_cb_param_t::ble_channel_sel_alg_param channel_sel_alg

Event parameter of ESP_GAP_BLE_CHANNEL_SELECT_ALGORITHM_EVT

struct esp_ble_gap_cb_param_t::ble_periodic_adv_sync_lost_param periodic_adv_sync_lost

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_SYNC_LOST_EVT

struct esp_ble_gap_cb_param_t::ble_periodic_adv_sync_estab_param periodic_adv_sync_estab

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_SYNC_ESTAB_EVT

struct esp_ble_gap_cb_param_t::ble_phy_update_cmpl_param phy_update

Event parameter of ESP_GAP_BLE_PHY_UPDATE_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_ext_adv_report_param ext_adv_report

Event parameter of ESP_GAP_BLE_EXT_ADV_REPORT_EVT

struct esp_ble_gap_cb_param_t::ble_periodic_adv_report_param period_adv_report

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_REPORT_EVT

Espressif Systems 191
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_gap_cb_param_t::ble_periodic_adv_recv_enable_cmpl_param
period_adv_recv_enable

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_RECV_ENABLE_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_cmpl_param period_adv_sync_trans

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_SYNC_TRANS_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_periodic_adv_set_info_trans_cmpl_param
period_adv_set_info_trans

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_SET_INFO_TRANS_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_set_past_params_cmpl_param set_past_params

Event parameter of ESP_GAP_BLE_SET_PAST_PARAMS_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param past_received

Event parameter of ESP_GAP_BLE_PERIODIC_ADV_SYNC_TRANS_RECV_EVT

struct esp_ble_gap_cb_param_t::ble_dtm_state_update_evt_param dtm_state_update

Event parameter of ESP_GAP_BLE_DTM_TEST_UPDATE_EVT

struct esp_ble_gap_cb_param_t::vendor_cmd_cmpl_evt_param vendor_cmd_cmpl

Event parameter of ESP_GAP_BLE_VENDOR_CMD_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_set_privacy_mode_cmpl_evt_param set_privacy_mode_cmpl

Event parameter of ESP_GAP_BLE_SET_PRIVACY_MODE_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_set_csa_support_cmpl_evt_param set_csa_support_cmpl

Event parameter of ESP_GAP_BLE_SET_CSA_SUPPORT_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_set_vendor_evt_mask_cmpl_evt_param
set_vendor_evt_mask_cmpl

Event parameter of ESP_GAP_BLE_SET_VENDOR_EVT_MASK_COMPLETE_EVT

struct esp_ble_gap_cb_param_t::ble_vendor_hci_event_evt_param vendor_hci_evt

Event parameter of ESP_GAP_BLE_VENDOR_HCI_EVT

struct esp_ble_gap_cb_param_t::ble_set_common_factor_cmpl_evt_param set_common_factor_cmpl

Event parameter of ESP_GAP_BLE_SET_COMMON_FACTOR_CMPL_EVT

struct esp_ble_gap_cb_param_t::ble_set_sch_len_cmpl_evt_param set_sch_len_cmpl

Event parameter of ESP_GAP_BLE_SET_SCH_LEN_CMPL_EVT

struct esp_ble_gap_cb_param_t::ble_set_scan_chan_map_cmpl_evt_param set_scan_chan_map_cmpl

Event parameter of ESP_GAP_BLE_SET_SCAN_CHAN_MAP_CMPL_EVT

struct ble_add_dev_to_resolving_list_cmpl_evt_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_ADD_DEV_TO_RESOLVING_LIST_COMPLETE_EVT.

Espressif Systems 192
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_bt_status_t status

Indicates the success status of adding a device to the resolving list

struct ble_adv_clear_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_ADV_CLEAR_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate adv clear operation success status

struct ble_adv_data_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the set advertising data operation success status

struct ble_adv_data_raw_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_ADV_DATA_RAW_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the set raw advertising data operation success status

struct ble_adv_start_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_ADV_START_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate advertising start operation success status

struct ble_adv_stop_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_ADV_STOP_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate adv stop operation success status

Espressif Systems 193
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct ble_adv_terminate_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_ADV_TERMINATED_EVT.

Public Members

uint8_t status
Indicate adv terminate status

uint8_t adv_instance
extend advertising handle

uint16_t conn_idx
connection index

uint8_t completed_event
the number of completed extend advertising events

struct ble_channel_sel_alg_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_CHANNEL_SELECT_ALGORITHM_EVT.

Public Members

uint16_t conn_handle
connection handle

uint8_t channel_sel_alg
channel selection algorithm

struct ble_clear_bond_dev_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_CLEAR_BOND_DEV_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the clear bond device operation success status

struct ble_dtm_state_update_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_DTM_TEST_UPDATE_EVT.

Public Members

esp_bt_status_t status

Indicate DTM operation success status

esp_ble_dtm_update_evt_t update_evt

DTM state change event, 0x00: DTM TX start, 0x01: DTM RX start, 0x02:DTM end

Espressif Systems 194
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t num_of_pkt
number of packets received, only valid if update_evt is DTM_TEST_STOP_EVT and shall be re-
ported as 0 for a transmitter

struct ble_ext_adv_data_set_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_EXT_ADV_DATA_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate extend advertising data set status

uint8_t instance
extend advertising handle

struct ble_ext_adv_report_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_EXT_ADV_REPORT_EVT.

Public Members

esp_ble_gap_ext_adv_report_t params

extend advertising report parameters

struct ble_ext_adv_scan_rsp_set_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_EXT_SCAN_RSP_DATA_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate extend advertising scan response data set status

uint8_t instance
extend advertising handle

struct ble_ext_adv_set_clear_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_EXT_ADV_SET_CLEAR_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate advertising stop operation success status

uint8_t instance
extend advertising handle

struct ble_ext_adv_set_params_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_EXT_ADV_SET_PARAMS_COMPLETE_EVT.

Espressif Systems 195
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_bt_status_t status

Indicate extend advertising parameters set status

uint8_t instance
extend advertising handle

struct ble_ext_adv_set_rand_addr_cmpl_evt_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_EXT_ADV_SET_RAND_ADDR_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate extend advertising random address set status

uint8_t instance
extend advertising handle

struct ble_ext_adv_set_remove_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_EXT_ADV_SET_REMOVE_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate advertising stop operation success status

uint8_t instance
extend advertising handle

struct ble_ext_adv_start_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_EXT_ADV_START_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate advertising start operation success status

uint8_t instance_num
extend advertising handle numble

uint8_t instance[EXT_ADV_NUM_SETS_MAX]
extend advertising handle list

struct ble_ext_adv_stop_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_EXT_ADV_STOP_COMPLETE_EVT.

Espressif Systems 196
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_bt_status_t status

Indicate advertising stop operation success status

uint8_t instance_num
extend advertising handle numble

uint8_t instance[EXT_ADV_NUM_SETS_MAX]
extend advertising handle list

struct ble_ext_conn_params_set_cmpl_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_PREFER_EXT_CONN_PARAMS_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate extend connection parameters set status

struct ble_ext_scan_start_cmpl_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_EXT_SCAN_START_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate extend advertising start status

struct ble_ext_scan_stop_cmpl_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_EXT_SCAN_STOP_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate extend advertising stop status

struct ble_get_bond_dev_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_GET_BOND_DEV_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the get bond device operation success status

uint8_t dev_num
Indicate the get number device in the bond list

Espressif Systems 197
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_bond_dev_t *bond_dev
the pointer to the bond device Structure

struct ble_get_dev_name_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_GET_DEV_NAME_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the get device name success status

char *name
Name of bluetooth device

struct ble_local_privacy_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_LOCAL_PRIVACY_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the set local privacy operation success status

struct ble_period_adv_add_dev_cmpl_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_PERIODIC_ADV_ADD_DEV_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate periodic advertising device list add status

struct ble_period_adv_clear_dev_cmpl_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_PERIODIC_ADV_CLEAR_DEV_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate periodic advertising device list clean status

struct ble_period_adv_create_sync_cmpl_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_PERIODIC_ADV_CREATE_SYNC_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate periodic advertising create sync status

Espressif Systems 198
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct ble_period_adv_remove_dev_cmpl_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_PERIODIC_ADV_REMOVE_DEV_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate periodic advertising device list remove status

struct ble_period_adv_sync_cancel_cmpl_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_PERIODIC_ADV_SYNC_CANCEL_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate periodic advertising sync cancel status

struct ble_period_adv_sync_terminate_cmpl_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_PERIODIC_ADV_SYNC_TERMINATE_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate periodic advertising sync terminate status

struct ble_periodic_adv_data_set_cmpl_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_PERIODIC_ADV_DATA_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate periodic advertising data set status

uint8_t instance
extend advertising handle

struct ble_periodic_adv_recv_enable_cmpl_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_PERIODIC_ADV_RECV_ENABLE_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Set periodic advertising receive enable status

struct ble_periodic_adv_report_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_PERIODIC_ADV_REPORT_EVT.

Espressif Systems 199
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_gap_periodic_adv_report_t params

periodic advertising report parameters

struct ble_periodic_adv_set_info_trans_cmpl_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_PERIODIC_ADV_SET_INFO_TRANS_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Periodic advertising set info transfer status

esp_bd_addr_t bda

The remote device address

struct ble_periodic_adv_set_params_cmpl_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_PERIODIC_ADV_SET_PARAMS_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate periodic advertisingparameters set status

uint8_t instance
extend advertising handle

struct ble_periodic_adv_start_cmpl_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_PERIODIC_ADV_START_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate periodic advertising start status

uint8_t instance
extend advertising handle

struct ble_periodic_adv_stop_cmpl_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_PERIODIC_ADV_STOP_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate periodic advertising stop status

Espressif Systems 200
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t instance
extend advertising handle

struct ble_periodic_adv_sync_estab_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_PERIODIC_ADV_SYNC_ESTAB_EVT.

Public Members

esp_bt_status_t status

periodic advertising sync status

uint16_t sync_handle
periodic advertising sync handle

uint8_t sid
periodic advertising sid

esp_ble_addr_type_t adv_addr_type

periodic advertising address type

esp_bd_addr_t adv_addr

periodic advertising address

esp_ble_gap_phy_t adv_phy

periodic advertising phy type

uint16_t period_adv_interval
periodic advertising interval

uint8_t adv_clk_accuracy
periodic advertising clock accuracy

struct ble_periodic_adv_sync_lost_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_PERIODIC_ADV_SYNC_LOST_EVT.

Public Members

uint16_t sync_handle
sync handle

struct ble_periodic_adv_sync_trans_cmpl_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_PERIODIC_ADV_SYNC_TRANS_COMPLETE_EVT.

Public Members

Espressif Systems 201
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_bt_status_t status

Periodic advertising sync transfer status

esp_bd_addr_t bda

The remote device address

struct ble_periodic_adv_sync_trans_recv_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_PERIODIC_ADV_SYNC_TRANS_RECV_EVT.

Public Members

esp_bt_status_t status

Periodic advertising sync transfer received status

esp_bd_addr_t bda

The remote device address

uint16_t service_data
The value provided by the peer device

uint16_t sync_handle
Periodic advertising sync handle

uint8_t adv_sid
Periodic advertising set id

uint8_t adv_addr_type
Periodic advertiser address type

esp_bd_addr_t adv_addr

Periodic advertiser address

esp_ble_gap_phy_t adv_phy

Periodic advertising PHY

uint16_t adv_interval
Periodic advertising interval

uint8_t adv_clk_accuracy
Periodic advertising clock accuracy

struct ble_phy_update_cmpl_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_PHY_UPDATE_COMPLETE_EVT.

Public Members

Espressif Systems 202
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_bt_status_t status

phy update status

esp_bd_addr_t bda

address

esp_ble_gap_phy_t tx_phy

tx phy type

esp_ble_gap_phy_t rx_phy

rx phy type

struct ble_pkt_data_length_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_PKT_LENGTH_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the set pkt data length operation success status

esp_ble_pkt_data_length_params_t params

pkt data length value

struct ble_read_phy_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_READ_PHY_COMPLETE_EVT.

Public Members

esp_bt_status_t status

read phy complete status

esp_bd_addr_t bda

read phy address

esp_ble_gap_phy_t tx_phy

tx phy type

esp_ble_gap_phy_t rx_phy

rx phy type

struct ble_read_rssi_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_READ_RSSI_COMPLETE_EVT.

Public Members

Espressif Systems 203
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_bt_status_t status

Indicate the read adv tx power operation success status

int8_t rssi
The ble remote device rssi value, the range is from -127 to 20, the unit is dbm, if the RSSI cannot
be read, the RSSI metric shall be set to 127.

esp_bd_addr_t remote_addr

The remote device address

struct ble_remove_bond_dev_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_REMOVE_BOND_DEV_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the remove bond device operation success status

esp_bd_addr_t bd_addr

The device address which has been remove from the bond list

struct ble_rpa_timeout_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_RPA_TIMEOUT_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the set RPA timeout operation success status

struct ble_scan_param_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the set scan param operation success status

struct ble_scan_req_received_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_REQ_RECEIVED_EVT.

Public Members

uint8_t adv_instance
extend advertising handle

Espressif Systems 204
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_addr_type_t scan_addr_type

scanner address type

esp_bd_addr_t scan_addr

scanner address

struct ble_scan_result_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_RESULT_EVT.

Public Members

esp_gap_search_evt_t search_evt

Search event type

esp_bd_addr_t bda

Bluetooth device address which has been searched

esp_bt_dev_type_t dev_type

Device type

esp_ble_addr_type_t ble_addr_type

Ble device address type

esp_ble_evt_type_t ble_evt_type

Ble scan result event type

int rssi
Searched device's RSSI

uint8_t ble_adv[ESP_BLE_ADV_DATA_LEN_MAX +
ESP_BLE_SCAN_RSP_DATA_LEN_MAX]

Received EIR

int flag
Advertising data flag bit

int num_resps
Scan result number

uint8_t adv_data_len
Adv data length

uint8_t scan_rsp_len
Scan response length

uint32_t num_dis
The number of discard packets

Espressif Systems 205
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct ble_scan_rsp_data_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the set scan response data operation success status

struct ble_scan_rsp_data_raw_cmpl_evt_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_SCAN_RSP_DATA_RAW_SET_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate the set raw advertising data operation success status

struct ble_scan_start_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_START_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate scan start operation success status

struct ble_scan_stop_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate scan stop operation success status

struct ble_set_channels_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_CHANNELS_EVT.

Public Members

esp_bt_status_t stat

BLE set channel status

struct ble_set_common_factor_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_COMMON_FACTOR_CMPL_EVT.

Espressif Systems 206
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_bt_status_t status

Indicate common factor set operation success status

struct ble_set_csa_support_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_CSA_SUPPORT_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate CSA support set operation success status

struct ble_set_ext_scan_params_cmpl_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_EXT_SCAN_PARAMS_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate extend advertising parameters set status

struct ble_set_past_params_cmpl_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_PAST_PARAMS_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Set periodic advertising sync transfer params status

esp_bd_addr_t bda

The remote device address

struct ble_set_perf_def_phy_cmpl_evt_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_SET_PREFERRED_DEFAULT_PHY_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate perf default phy set status

struct ble_set_perf_phy_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_PREFERRED_PHY_COMPLETE_EVT.

Espressif Systems 207
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_bt_status_t status

Indicate perf phy set status

struct ble_set_privacy_mode_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_PRIVACY_MODE_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate privacy mode set operation success status

struct ble_set_rand_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_STATIC_RAND_ADDR_EVT.

Public Members

esp_bt_status_t status

Indicate set static rand address operation success status

struct ble_set_scan_chan_map_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_SCAN_CHAN_MAP_CMPL_EVT.

Public Members

esp_bt_status_t status

Indicate channel map for scanning set operation success status

struct ble_set_sch_len_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_SCH_LEN_CMPL_EVT.

Public Members

esp_bt_status_t status

Indicate scheduling length set operation success status

struct ble_set_vendor_evt_mask_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_SET_VENDOR_EVT_MASK_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate set vendor event mask operation success status

Espressif Systems 208
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct ble_update_conn_params_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_UPDATE_CONN_PARAMS_EVT.

Public Members

esp_bt_status_t status

Indicate update connection parameters success status

esp_bd_addr_t bda

Bluetooth device address

uint16_t min_int
Minimum connection interval. If the master initiates the connection parameter update, this value is
not applicable for the slave and will be set to zero.

uint16_t max_int
Maximum connection interval. If the master initiates the connection parameter update, this value is
not applicable for the slave and will be set to zero.

uint16_t latency
Slave latency for the connection in number of connection events. Range: 0x0000 to 0x01F3

uint16_t conn_int
Current connection interval in milliseconds, calculated as N × 1.25 ms

uint16_t timeout
Supervision timeout for the LE Link. Range: 0x000A to 0x0C80. This value is calculated as N ×
10 ms

struct ble_update_duplicate_exceptional_list_cmpl_evt_param
#include <esp_gap_ble_api.h>ESP_GAP_BLE_UPDATE_DUPLICATE_EXCEPTIONAL_LIST_COMPLETE_EVT.

Public Members

esp_bt_status_t status

Indicate update duplicate scan exceptional list operation success status

uint8_t subcode
Define in esp_bt_duplicate_exceptional_subcode_type_t

uint16_t length
The length of device_info

esp_duplicate_info_t device_info

device information, when subcode is ESP_BLE_DUPLICATE_EXCEPTIONAL_LIST_CLEAN,
the value is invalid

struct ble_update_whitelist_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_UPDATE_WHITELIST_COMPLETE_EVT.

Espressif Systems 209
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_bt_status_t status

Indicate the add or remove whitelist operation success status

esp_ble_wl_operation_t wl_operation

The value is ESP_BLE_WHITELIST_ADD if add address to whitelist operation success,
ESP_BLE_WHITELIST_REMOVE if remove address from the whitelist operation success

struct ble_vendor_hci_event_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_VENDOR_HCI_EVT.

Public Members

esp_ble_vendor_evt_t subevt_code

Subevent code for BLE vendor HCI event

esp_ble_vendor_evt_param_t param

Event parameter of BLE vendor HCI subevent

uint8_t param_len
The length of the event parameter buffer (for internal use only)

uint8_t *param_buf
The pointer of the event parameter buffer (for internal use only)

struct vendor_cmd_cmpl_evt_param
#include <esp_gap_ble_api.h> ESP_GAP_BLE_VENDOR_CMD_COMPLETE_EVT.

Public Members

uint16_t opcode
vendor hci command opcode

uint16_t param_len
The length of parameter buffer

uint8_t *p_param_buf
The point of parameter buffer

Structures

struct esp_ble_vendor_cmd_params_t
Vendor HCI command parameters.

Espressif Systems 210
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t opcode
vendor hci command opcode

uint8_t param_len
the length of parameter

uint8_t *p_param_buf
the point of parameter buffer

struct esp_ble_dtm_tx_t
DTM TX parameters.

Public Members

uint8_t tx_channel
channel for sending test data, tx_channel = (Frequency -2402)/2, tx_channel range:0x00-0x27, Frequency
range: 2402 MHz to 2480 MHz

uint8_t len_of_data
length in bytes of payload data in each packet

esp_ble_dtm_pkt_payload_t pkt_payload

packet payload type. value range: 0x00-0x07

struct esp_ble_dtm_rx_t
DTM RX parameters.

Public Members

uint8_t rx_channel
channel for test data reception, rx_channel = (Frequency -2402)/2, tx_channel range:0x00-0x27, Fre-
quency range: 2402 MHz to 2480 MHz

struct esp_ble_adv_params_t
Advertising parameters.

Public Members

uint16_t adv_int_min
Minimum advertising interval for undirected and low duty cycle directed advertising. Range: 0x0020 to
0x4000 Default: N = 0x0800 (1.28 second) Time = N * 0.625 msec Time Range: 20 ms to 10.24 sec

uint16_t adv_int_max
Maximum advertising interval for undirected and low duty cycle directed advertising. Range: 0x0020 to
0x4000 Default: N = 0x0800 (1.28 second) Time = N * 0.625 msec Time Range: 20 ms to 10.24 sec
Advertising max interval

Espressif Systems 211
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_adv_type_t adv_type

Advertising type

esp_ble_addr_type_t own_addr_type

Owner bluetooth device address type

esp_bd_addr_t peer_addr

Peer device bluetooth device address

esp_ble_addr_type_t peer_addr_type

Peer device bluetooth device address type, only support public address type and random address type

esp_ble_adv_channel_t channel_map

Advertising channel map

esp_ble_adv_filter_t adv_filter_policy

Advertising filter policy

struct esp_ble_adv_data_t
Advertising data content, according to "Supplement to the Bluetooth Core Specification".

Public Members

bool set_scan_rsp
Set this advertising data as scan response or not

bool include_name
Advertising data include device name or not

bool include_txpower
Advertising data include TX power

int min_interval
Advertising data show slave preferred connection min interval. The connection interval in the following
manner: connIntervalmin =Conn_Interval_Min * 1.25msConn_Interval_Min range: 0x0006 to 0x0C80
Value of 0xFFFF indicates no specific minimum. Values not defined above are reserved for future use.

int max_interval
Advertising data show slave preferred connection max interval. The connection interval in the follow-
ing manner: connIntervalmax = Conn_Interval_Max * 1.25 ms Conn_Interval_Max range: 0x0006 to
0x0C80 Conn_Interval_Max shall be equal to or greater than the Conn_Interval_Min. Value of 0xFFFF
indicates no specific maximum. Values not defined above are reserved for future use.

int appearance
External appearance of device

uint16_t manufacturer_len
Manufacturer data length

Espressif Systems 212
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t *p_manufacturer_data
Manufacturer data point

uint16_t service_data_len
Service data length

uint8_t *p_service_data
Service data point

uint16_t service_uuid_len
Service uuid length

uint8_t *p_service_uuid
Service uuid array point

uint8_t flag
Advertising flag of discovery mode, see BLE_ADV_DATA_FLAG detail

struct esp_ble_scan_params_t
Ble scan parameters.

Public Members

esp_ble_scan_type_t scan_type

Scan type

esp_ble_addr_type_t own_addr_type

Owner address type

esp_ble_scan_filter_t scan_filter_policy

Scan filter policy

uint16_t scan_interval
Scan interval. This is defined as the time interval from when the Controller started its last LE scan until
it begins the subsequent LE scan. Range: 0x0004 to 0x4000 Default: 0x0010 (10 ms) Time = N * 0.625
msec Time Range: 2.5 msec to 10.24 seconds

uint16_t scan_window
Scan window. The duration of the LE scan. LE_Scan_Window shall be less than or equal to
LE_Scan_Interval Range: 0x0004 to 0x4000 Default: 0x0010 (10 ms) Time = N * 0.625 msec Time
Range: 2.5 msec to 10240 msec

esp_ble_scan_duplicate_t scan_duplicate

The Scan_Duplicates parameter controls whether the Link Layer should filter out duplicate advertising
reports (BLE_SCAN_DUPLICATE_ENABLE) to the Host, or if the Link Layer should generate ad-
vertising reports for each packet received

struct esp_gap_conn_params_t
connection parameters information

Espressif Systems 213
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t interval
connection interval

uint16_t latency
Slave latency for the connection in number of connection events. Range: 0x0000 to 0x01F3

uint16_t timeout
Supervision timeout for the LE Link. Range: 0x000A to 0x0C80. Mandatory Range: 0x000A to 0x0C80
Time = N * 10 msec Time Range: 100 msec to 32 seconds

struct esp_ble_conn_update_params_t
Connection update parameters.

Public Members

esp_bd_addr_t bda

Bluetooth device address

uint16_t min_int
Min connection interval

uint16_t max_int
Max connection interval

uint16_t latency
Slave latency for the connection in number of connection events. Range: 0x0000 to 0x01F3

uint16_t timeout
Supervision timeout for the LE Link. Range: 0x000A to 0x0C80. Mandatory Range: 0x000A to 0x0C80
Time = N * 10 msec Time Range: 100 msec to 32 seconds

struct esp_ble_pkt_data_length_params_t
BLE pkt date length keys.

Public Members

uint16_t rx_len
pkt rx data length value

uint16_t tx_len
pkt tx data length value

struct esp_ble_penc_keys_t
BLE encryption keys.

Espressif Systems 214
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_bt_octet16_t ltk

The long term key

esp_bt_octet8_t rand

The random number

uint16_t ediv
The ediv value

uint8_t sec_level
The security level of the security link

uint8_t key_size
The key size(7~16) of the security link

struct esp_ble_pcsrk_keys_t
BLE CSRK keys.

Public Members

uint32_t counter
The counter

esp_bt_octet16_t csrk

The csrk key

uint8_t sec_level
The security level

struct esp_ble_pid_keys_t
BLE pid keys.

Public Members

esp_bt_octet16_t irk

The irk value

esp_ble_addr_type_t addr_type

The address type

esp_bd_addr_t static_addr

The static address

struct esp_ble_lenc_keys_t
BLE Encryption reproduction keys.

Espressif Systems 215
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_bt_octet16_t ltk

The long term key

uint16_t div
The div value

uint8_t key_size
The key size of the security link

uint8_t sec_level
The security level of the security link

struct esp_ble_lcsrk_keys
BLE SRK keys.

Public Members

uint32_t counter
The counter value

uint16_t div
The div value

uint8_t sec_level
The security level of the security link

esp_bt_octet16_t csrk

The csrk key value

struct esp_ble_sec_key_notif_t
Structure associated with ESP_KEY_NOTIF_EVT.

Public Members

esp_bd_addr_t bd_addr

peer address

uint32_t passkey
the numeric value for comparison. If just_works, do not show this number to UI

struct esp_ble_sec_req_t
Structure of the security request.

Espressif Systems 216
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_bd_addr_t bd_addr

peer address

struct esp_ble_bond_key_info_t
struct type of the bond key information value

Public Members

esp_ble_key_mask_t key_mask

the key mask to indicate witch key is present

esp_ble_penc_keys_t penc_key

received peer encryption key

esp_ble_pcsrk_keys_t pcsrk_key

received peer device SRK

esp_ble_pid_keys_t pid_key

peer device ID key

struct esp_ble_bond_dev_t
struct type of the bond device value

Public Members

esp_bd_addr_t bd_addr

peer address

esp_ble_bond_key_info_t bond_key

the bond key information

esp_ble_addr_type_t bd_addr_type

peer address type

struct esp_ble_key_t
union type of the security key value

Public Members

esp_bd_addr_t bd_addr

peer address

esp_ble_key_type_t key_type

key type of the security link

Espressif Systems 217
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_key_value_t p_key_value

the pointer to the key value

struct esp_ble_local_id_keys_t
structure type of the ble local id keys value

Public Members

esp_bt_octet16_t ir

the 16 bits of the ir value

esp_bt_octet16_t irk

the 16 bits of the ir key value

esp_bt_octet16_t dhk

the 16 bits of the dh key value

struct esp_ble_local_oob_data_t
structure type of the ble local oob data value

Public Members

esp_bt_octet16_t oob_c

the 128 bits of confirmation value

esp_bt_octet16_t oob_r

the 128 bits of randomizer value

struct esp_ble_auth_cmpl_t
Structure associated with ESP_AUTH_CMPL_EVT.

Public Members

esp_bd_addr_t bd_addr

BD address of peer device

bool key_present
True if the link key value is valid; false otherwise

esp_link_key key

Link key associated with peer device

uint8_t key_type
The type of link key

Espressif Systems 218
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool success
True if authentication succeeded; false otherwise

esp_ble_auth_fail_rsn_t fail_reason

The HCI reason/error code for failure when success is false

esp_ble_addr_type_t addr_type

Peer device address type

esp_bt_dev_type_t dev_type

Device type

esp_ble_auth_req_t auth_mode

Authentication mode

struct esp_ble_gap_ext_adv_params_t
ext adv parameters

Public Members

esp_ble_ext_adv_type_mask_t type

ext adv type

uint32_t interval_min
ext adv minimum interval

uint32_t interval_max
ext adv maximum interval

esp_ble_adv_channel_t channel_map

ext adv channel map

esp_ble_addr_type_t own_addr_type

ext adv own address type

esp_ble_addr_type_t peer_addr_type

ext adv peer address type

esp_bd_addr_t peer_addr

ext adv peer address

esp_ble_adv_filter_t filter_policy

ext adv filter policy

int8_t tx_power
ext adv tx power

Espressif Systems 219
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_gap_pri_phy_t primary_phy

ext adv primary phy

uint8_t max_skip
ext adv maximum skip

esp_ble_gap_phy_t secondary_phy

ext adv secondary phy

uint8_t sid
ext adv sid

bool scan_req_notif
ext adv scan request event notify

struct esp_ble_ext_scan_cfg_t
ext scan config

Public Members

esp_ble_scan_type_t scan_type

ext scan type

uint16_t scan_interval
ext scan interval

uint16_t scan_window
ext scan window

struct esp_ble_ext_scan_params_t
ext scan parameters

Public Members

esp_ble_addr_type_t own_addr_type

ext scan own address type

esp_ble_scan_filter_t filter_policy

ext scan filter policy

esp_ble_scan_duplicate_t scan_duplicate

ext scan duplicate scan

esp_ble_ext_scan_cfg_mask_t cfg_mask

ext scan config mask

Espressif Systems 220
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_ext_scan_cfg_t uncoded_cfg

ext scan uncoded config parameters

esp_ble_ext_scan_cfg_t coded_cfg

ext scan coded config parameters

struct esp_ble_gap_conn_params_t
create extend connection parameters

Public Members

uint16_t scan_interval
init scan interval

uint16_t scan_window
init scan window

uint16_t interval_min
minimum interval

uint16_t interval_max
maximum interval

uint16_t latency
ext scan type

uint16_t supervision_timeout
connection supervision timeout

uint16_t min_ce_len
minimum ce length

uint16_t max_ce_len
maximum ce length

struct esp_ble_gap_ext_adv_t
extend adv enable parameters

Public Members

uint8_t instance
advertising handle

int duration
advertising duration

Espressif Systems 221
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int max_events
maximum number of extended advertising events

struct esp_ble_gap_periodic_adv_params_t
periodic adv parameters

Public Members

uint16_t interval_min
periodic advertising minimum interval

uint16_t interval_max
periodic advertising maximum interval

uint8_t properties
periodic advertising properties

struct esp_ble_gap_periodic_adv_sync_params_t
periodic adv sync parameters

Public Members

esp_ble_gap_sync_t filter_policy

Configures the filter policy for periodic advertising sync: 0: Use Advertising SID, Advertiser Address
Type, and Advertiser Address parameters to determine the advertiser to listen to. 1: Use the Periodic
Advertiser List to determine the advertiser to listen to.

uint8_t sid
SID of the periodic advertising

esp_ble_addr_type_t addr_type

Address type of the periodic advertising

esp_bd_addr_t addr

Address of the periodic advertising

uint16_t skip
Maximum number of periodic advertising events that can be skipped

uint16_t sync_timeout
Synchronization timeout

struct esp_ble_gap_ext_adv_report_t
extend adv report parameters

Espressif Systems 222
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_gap_adv_type_t event_type

extend advertising type

uint8_t addr_type
extend advertising address type

esp_bd_addr_t addr

extend advertising address

esp_ble_gap_pri_phy_t primary_phy

extend advertising primary phy

esp_ble_gap_phy_t secondly_phy

extend advertising secondary phy

uint8_t sid
extend advertising sid

uint8_t tx_power
extend advertising tx power

int8_t rssi
extend advertising rssi

uint16_t per_adv_interval
periodic advertising interval

uint8_t dir_addr_type
direct address type

esp_bd_addr_t dir_addr

direct address

esp_ble_gap_ext_adv_data_status_t data_status

data type

uint8_t adv_data_len
extend advertising data length

uint8_t adv_data[251]
extend advertising data

struct esp_ble_gap_periodic_adv_report_t
periodic adv report parameters

Espressif Systems 223
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t sync_handle
periodic advertising train handle

uint8_t tx_power
periodic advertising tx power

int8_t rssi
periodic advertising rssi

esp_ble_gap_ext_adv_data_status_t data_status

periodic advertising data type

uint8_t data_length
periodic advertising data length

uint8_t data[251]
periodic advertising data

struct esp_ble_gap_periodic_adv_sync_estab_t
perodic adv sync establish parameters

Public Members

uint8_t status
periodic advertising sync status

uint16_t sync_handle
periodic advertising train handle

uint8_t sid
periodic advertising sid

esp_ble_addr_type_t addr_type

periodic advertising address type

esp_bd_addr_t adv_addr

periodic advertising address

esp_ble_gap_phy_t adv_phy

periodic advertising adv phy type

uint16_t period_adv_interval
periodic advertising interval

uint8_t adv_clk_accuracy
periodic advertising clock accuracy

Espressif Systems 224
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_dtm_enh_tx_t
DTM TX parameters.

Public Members

uint8_t tx_channel
channel for sending test data, tx_channel = (Frequency -2402)/2, tx_channel range:0x00-0x27, Frequency
range: 2402 MHz to 2480 MHz

uint8_t len_of_data
length in bytes of payload data in each packet

esp_ble_dtm_pkt_payload_t pkt_payload

packet payload type. value range: 0x00-0x07

esp_ble_gap_phy_t phy

the phy type used by the transmitter, coded phy with S=2:0x04

struct esp_ble_dtm_enh_rx_t
DTM RX parameters.

Public Members

uint8_t rx_channel
channel for test data reception, rx_channel = (Frequency -2402)/2, tx_channel range:0x00-0x27, Fre-
quency range: 2402 MHz to 2480 MHz

esp_ble_gap_phy_t phy

the phy type used by the receiver, 1M phy: 0x01, 2M phy:0x02, coded phy:0x03

uint8_t modulation_idx
modulation index, 0x00:standard modulation index, 0x01:stable modulation index

struct esp_ble_gap_past_params_t
periodic adv sync transfer parameters

Public Members

esp_ble_gap_past_mode_t mode

periodic advertising sync transfer mode

uint16_t skip
the number of periodic advertising packets that can be skipped

uint16_t sync_timeout
synchronization timeout for the periodic advertising train

Espressif Systems 225
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t cte_type
periodic advertising sync transfer CET type

Macros

ESP_BLE_ADV_FLAG_LIMIT_DISC

BLE_ADV_DATA_FLAG data flag bit definition used for advertising data flag.

ESP_BLE_ADV_FLAG_GEN_DISC

ESP_BLE_ADV_FLAG_BREDR_NOT_SPT

ESP_BLE_ADV_FLAG_DMT_CONTROLLER_SPT

ESP_BLE_ADV_FLAG_DMT_HOST_SPT

ESP_BLE_ADV_FLAG_NON_LIMIT_DISC

ESP_LE_KEY_NONE

relate to BTM_LE_KEY_xxx in stack/btm_api.h
No encryption key

ESP_LE_KEY_PENC

encryption key, encryption information of peer device

ESP_LE_KEY_PID

identity key of the peer device

ESP_LE_KEY_PCSRK

peer SRK

ESP_LE_KEY_PLK

Link key

ESP_LE_KEY_LLK

peer link key

ESP_LE_KEY_LENC

master role security information:div

ESP_LE_KEY_LID

master device ID key

ESP_LE_KEY_LCSRK

local CSRK has been deliver to peer

Espressif Systems 226
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_LE_AUTH_NO_BOND

relate to BTM_LE_AUTH_xxx in stack/btm_api.h
0 no bondingv

ESP_LE_AUTH_BOND

1 << 0 device in the bonding with peer

ESP_LE_AUTH_REQ_MITM

1 << 2 man in the middle attack

ESP_LE_AUTH_REQ_BOND_MITM

0101 banding with man in the middle attack

ESP_LE_AUTH_REQ_SC_ONLY

1 << 3 secure connection

ESP_LE_AUTH_REQ_SC_BOND

1001 secure connection with band

ESP_LE_AUTH_REQ_SC_MITM

1100 secure conn with MITM

ESP_LE_AUTH_REQ_SC_MITM_BOND

1101 SC with MITM and Bonding

ESP_BLE_ONLY_ACCEPT_SPECIFIED_AUTH_DISABLE

authentication disable

ESP_BLE_ONLY_ACCEPT_SPECIFIED_AUTH_ENABLE

authentication enable

ESP_BLE_OOB_DISABLE

disbale the out of bond

ESP_BLE_OOB_ENABLE

enable the out of bond

ESP_IO_CAP_OUT

relate to BTM_IO_CAP_xxx in stack/btm_api.h
DisplayOnly

ESP_IO_CAP_IO

DisplayYesNo

ESP_IO_CAP_IN

KeyboardOnly

Espressif Systems 227
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_IO_CAP_NONE

NoInputNoOutput

ESP_IO_CAP_KBDISP

Keyboard display

ESP_BLE_APPEARANCE_UNKNOWN

relate to BTM_BLE_APPEARANCE_UNKNOWN in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_PHONE

relate to BTM_BLE_APPEARANCE_GENERIC_PHONE in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_COMPUTER

relate to BTM_BLE_APPEARANCE_GENERIC_COMPUTER in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_WATCH

relate to BTM_BLE_APPEARANCE_GENERIC_WATCH in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_SPORTS_WATCH

relate to BTM_BLE_APPEARANCE_SPORTS_WATCH in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_CLOCK

relate to BTM_BLE_APPEARANCE_GENERIC_CLOCK in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_DISPLAY

relate to BTM_BLE_APPEARANCE_GENERIC_DISPLAY in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_REMOTE

relate to BTM_BLE_APPEARANCE_GENERIC_REMOTE in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_EYEGLASSES

relate to BTM_BLE_APPEARANCE_GENERIC_EYEGLASSES in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_TAG

relate to BTM_BLE_APPEARANCE_GENERIC_TAG in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_KEYRING

relate to BTM_BLE_APPEARANCE_GENERIC_KEYRING in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_MEDIA_PLAYER

relate to BTM_BLE_APPEARANCE_GENERIC_MEDIA_PLAYER in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_BARCODE_SCANNER

relate to BTM_BLE_APPEARANCE_GENERIC_BARCODE_SCANNER in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_THERMOMETER

relate to BTM_BLE_APPEARANCE_GENERIC_THERMOMETER in stack/btm_ble_api.h

Espressif Systems 228
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_APPEARANCE_THERMOMETER_EAR

relate to BTM_BLE_APPEARANCE_THERMOMETER_EAR in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_HEART_RATE

relate to BTM_BLE_APPEARANCE_GENERIC_HEART_RATE in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_HEART_RATE_BELT

relate to BTM_BLE_APPEARANCE_HEART_RATE_BELT in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_BLOOD_PRESSURE

relate to BTM_BLE_APPEARANCE_GENERIC_BLOOD_PRESSURE in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_BLOOD_PRESSURE_ARM

relate to BTM_BLE_APPEARANCE_BLOOD_PRESSURE_ARM in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_BLOOD_PRESSURE_WRIST

relate to BTM_BLE_APPEARANCE_BLOOD_PRESSURE_WRIST in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_HID

relate to BTM_BLE_APPEARANCE_GENERIC_HID in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_HID_KEYBOARD

relate to BTM_BLE_APPEARANCE_HID_KEYBOARD in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_HID_MOUSE

relate to BTM_BLE_APPEARANCE_HID_MOUSE in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_HID_JOYSTICK

relate to BTM_BLE_APPEARANCE_HID_JOYSTICK in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_HID_GAMEPAD

relate to BTM_BLE_APPEARANCE_HID_GAMEPAD in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_HID_DIGITIZER_TABLET

relate to BTM_BLE_APPEARANCE_HID_DIGITIZER_TABLET in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_HID_CARD_READER

relate to BTM_BLE_APPEARANCE_HID_CARD_READER in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_HID_DIGITAL_PEN

relate to BTM_BLE_APPEARANCE_HID_DIGITAL_PEN in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_HID_BARCODE_SCANNER

relate to BTM_BLE_APPEARANCE_HID_BARCODE_SCANNER in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_GLUCOSE

relate to BTM_BLE_APPEARANCE_GENERIC_GLUCOSE in stack/btm_ble_api.h

Espressif Systems 229
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_APPEARANCE_GENERIC_WALKING

relate to BTM_BLE_APPEARANCE_GENERIC_WALKING in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_WALKING_IN_SHOE

relate to BTM_BLE_APPEARANCE_WALKING_IN_SHOE in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_WALKING_ON_SHOE

relate to BTM_BLE_APPEARANCE_WALKING_ON_SHOE in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_WALKING_ON_HIP

relate to BTM_BLE_APPEARANCE_WALKING_ON_HIP in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_CYCLING

relate to BTM_BLE_APPEARANCE_GENERIC_CYCLING in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_CYCLING_COMPUTER

relate to BTM_BLE_APPEARANCE_CYCLING_COMPUTER in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_CYCLING_SPEED

relate to BTM_BLE_APPEARANCE_CYCLING_SPEED in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_CYCLING_CADENCE

relate to BTM_BLE_APPEARANCE_CYCLING_CADENCE in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_CYCLING_POWER

relate to BTM_BLE_APPEARANCE_CYCLING_POWER in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_CYCLING_SPEED_CADENCE

relate to BTM_BLE_APPEARANCE_CYCLING_SPEED_CADENCE in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_STANDALONE_SPEAKER

relate to BTM_BLE_APPEARANCE_STANDALONE_SPEAKER in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_PULSE_OXIMETER

relate to BTM_BLE_APPEARANCE_GENERIC_PULSE_OXIMETER in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_PULSE_OXIMETER_FINGERTIP

relate to BTM_BLE_APPEARANCE_PULSE_OXIMETER_FINGERTIP in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_PULSE_OXIMETER_WRIST

relate to BTM_BLE_APPEARANCE_PULSE_OXIMETER_WRIST in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_WEIGHT

relate to BTM_BLE_APPEARANCE_GENERIC_WEIGHT in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_PERSONAL_MOBILITY_DEVICE

relate to BTM_BLE_APPEARANCE_GENERIC_PERSONAL_MOBILITY_DEVICE in
stack/btm_ble_api.h

Espressif Systems 230
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_APPEARANCE_POWERED_WHEELCHAIR

relate to BTM_BLE_APPEARANCE_POWERED_WHEELCHAIR in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_MOBILITY_SCOOTER

relate to BTM_BLE_APPEARANCE_MOBILITY_SCOOTER in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_CONTINUOUS_GLUCOSE_MONITOR

relate to BTM_BLE_APPEARANCE_GENERIC_CONTINUOUS_GLUCOSE_MONITOR in
stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_INSULIN_PUMP

relate to BTM_BLE_APPEARANCE_GENERIC_INSULIN_PUMP in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_INSULIN_PUMP_DURABLE_PUMP

relate to BTM_BLE_APPEARANCE_INSULIN_PUMP_DURABLE_PUMP in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_INSULIN_PUMP_PATCH_PUMP

relate to BTM_BLE_APPEARANCE_INSULIN_PUMP_PATCH_PUMP in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_INSULIN_PEN

relate to BTM_BLE_APPEARANCE_INSULIN_PEN in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_MEDICATION_DELIVERY

relate to BTM_BLE_APPEARANCE_GENERIC_MEDICATION_DELIVERY in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_GENERIC_OUTDOOR_SPORTS

relate to BTM_BLE_APPEARANCE_GENERIC_OUTDOOR_SPORTS in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION

relate to BTM_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION_AND_NAV

relate to BTM_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION_AND_NAV in
stack/btm_ble_api.h

ESP_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION_POD

relate to BTM_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION_POD in stack/btm_ble_api.h

ESP_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION_POD_AND_NAV

relate to BTM_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION_POD_AND_NAV in
stack/btm_ble_api.h

BLE_DTM_PKT_PAYLOAD_0x00

PRBS9 sequence‘11111111100000111101...’(in transmission order) as described in [Vol 6] Part F, Section
4.1.5

BLE_DTM_PKT_PAYLOAD_0x01

Repeated‘11110000’(in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5

Espressif Systems 231
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

BLE_DTM_PKT_PAYLOAD_0x02

Repeated‘10101010’(in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5

BLE_DTM_PKT_PAYLOAD_0x03

PRBS15 sequence as described in [Vol 6] Part F, Section 4.1.5

BLE_DTM_PKT_PAYLOAD_0x04

Repeated‘11111111’(in transmission order) sequence

BLE_DTM_PKT_PAYLOAD_0x05

Repeated‘00000000’(in transmission order) sequence

BLE_DTM_PKT_PAYLOAD_0x06

Repeated‘00001111’(in transmission order) sequence

BLE_DTM_PKT_PAYLOAD_0x07

Repeated‘01010101’(in transmission order) sequence

BLE_DTM_PKT_PAYLOAD_MAX

0x08 ~ 0xFF, Reserved for future use

ESP_GAP_BLE_CHANNELS_LEN

channel length

ESP_GAP_BLE_ADD_WHITELIST_COMPLETE_EVT

This is the old name, just for backwards compatibility.

ESP_BLE_ADV_DATA_LEN_MAX

Advertising data maximum length.

ESP_BLE_SCAN_RSP_DATA_LEN_MAX

Scan response data maximum length.

VENDOR_HCI_CMD_MASK

BLE_BIT(n)

ESP_BLE_GAP_SET_EXT_ADV_PROP_NONCONN_NONSCANNABLE_UNDIRECTED

Non-Connectable and Non-Scannable Undirected advertising

ESP_BLE_GAP_SET_EXT_ADV_PROP_CONNECTABLE

Connectable advertising

ESP_BLE_GAP_SET_EXT_ADV_PROP_SCANNABLE

Scannable advertising

ESP_BLE_GAP_SET_EXT_ADV_PROP_DIRECTED

Directed advertising

Espressif Systems 232
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_GAP_SET_EXT_ADV_PROP_HD_DIRECTED

High Duty Cycle Directed Connectable advertising (<= 3.75 ms Advertising Interval)

ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY

Use legacy advertising PDUs

ESP_BLE_GAP_SET_EXT_ADV_PROP_ANON_ADV

Omit advertiser's address from all PDUs ("anonymous advertising")

ESP_BLE_GAP_SET_EXT_ADV_PROP_INCLUDE_TX_PWR

Include TxPower in the extended header of the advertising PDU

ESP_BLE_GAP_SET_EXT_ADV_PROP_MASK

Reserved for future use If extended advertising PDU types are being used (bit 4 = 0) then: The advertisement
shall not be both connectable and scannable. High duty cycle directed connectable advertising (<= 3.75 ms
advertising interval) shall not be used (bit 3 = 0) ADV_IND

ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY_IND

ADV_DIRECT_IND (low duty cycle)

ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY_LD_DIR

ADV_DIRECT_IND (high duty cycle)

ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY_HD_DIR

ADV_SCAN_IND

ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY_SCAN

ADV_NONCONN_IND

ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY_NONCONN

ESP_BLE_GAP_PHY_1M

Secondery Advertisement PHY is LE1M

ESP_BLE_GAP_PHY_2M

Secondery Advertisement PHY is LE2M

ESP_BLE_GAP_PHY_CODED

Secondery Advertisement PHY is LE Coded

ESP_BLE_GAP_NO_PREFER_TRANSMIT_PHY

No Prefer TX PHY supported by controller

ESP_BLE_GAP_NO_PREFER_RECEIVE_PHY

No Prefer RX PHY supported by controller

ESP_BLE_GAP_PRI_PHY_1M

Primary phy only support 1M and LE coded phy.
Primary Phy is LE1M

Espressif Systems 233
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_GAP_PRI_PHY_CODED

Primary Phy is LE CODED

ESP_BLE_GAP_PHY_1M_PREF_MASK

The Host prefers use the LE1M transmitter or receiver PHY

ESP_BLE_GAP_PHY_2M_PREF_MASK

The Host prefers use the LE2M transmitter or receiver PHY

ESP_BLE_GAP_PHY_CODED_PREF_MASK

The Host prefers use the LE CODED transmitter or receiver PHY

ESP_BLE_GAP_PHY_OPTIONS_NO_PREF

The Host has no preferred coding when transmitting on the LE Coded PHY

ESP_BLE_GAP_PHY_OPTIONS_PREF_S2_CODING

The Host prefers that S=2 coding be used when transmitting on the LE Coded PHY

ESP_BLE_GAP_PHY_OPTIONS_PREF_S8_CODING

The Host prefers that S=8 coding be used when transmitting on the LE Coded PHY

ESP_BLE_GAP_EXT_SCAN_CFG_UNCODE_MASK

Scan Advertisements on the LE1M PHY

ESP_BLE_GAP_EXT_SCAN_CFG_CODE_MASK

Scan advertisements on the LE coded PHY

ESP_BLE_GAP_EXT_ADV_DATA_COMPLETE

Advertising data.
extended advertising data compete

ESP_BLE_GAP_EXT_ADV_DATA_INCOMPLETE

extended advertising data incomplete

ESP_BLE_GAP_EXT_ADV_DATA_TRUNCATED

extended advertising data truncated mode

ESP_BLE_GAP_SYNC_POLICY_BY_ADV_INFO

Advertising SYNC policy.
sync policy by advertising info

ESP_BLE_GAP_SYNC_POLICY_BY_PERIODIC_LIST

periodic advertising sync policy

ESP_BLE_ADV_REPORT_EXT_ADV_IND

Advertising report.
advertising report with extended advertising indication type

Espressif Systems 234
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_ADV_REPORT_EXT_SCAN_IND

advertising report with extended scan indication type

ESP_BLE_ADV_REPORT_EXT_DIRECT_ADV

advertising report with extended direct advertising indication type

ESP_BLE_ADV_REPORT_EXT_SCAN_RSP

advertising report with extended scan response indication type Bluetooth 5.0, Vol 2, Part E, 7.7.65.13

ESP_BLE_LEGACY_ADV_TYPE_IND

advertising report with legacy advertising indication type

ESP_BLE_LEGACY_ADV_TYPE_DIRECT_IND

advertising report with legacy direct indication type

ESP_BLE_LEGACY_ADV_TYPE_SCAN_IND

advertising report with legacy scan indication type

ESP_BLE_LEGACY_ADV_TYPE_NONCON_IND

advertising report with legacy non connectable indication type

ESP_BLE_LEGACY_ADV_TYPE_SCAN_RSP_TO_ADV_IND

advertising report with legacy scan response indication type

ESP_BLE_LEGACY_ADV_TYPE_SCAN_RSP_TO_ADV_SCAN_IND

advertising report with legacy advertising with scan response indication type

EXT_ADV_TX_PWR_NO_PREFERENCE

Extend advertising tx power, range: [-127, +126] dBm.
host has no preference for tx power

EXT_ADV_NUM_SETS_MAX

max number of advertising sets to enable or disable
max evt instance num

ESP_BLE_GAP_PAST_MODE_NO_SYNC_EVT

Periodic advertising sync trans mode.
No attempt is made to sync and no periodic adv sync transfer received event

ESP_BLE_GAP_PAST_MODE_NO_REPORT_EVT

An periodic adv sync transfer received event and no periodic adv report events

ESP_BLE_GAP_PAST_MODE_DUP_FILTER_DISABLED

Periodic adv report events will be enabled with duplicate filtering disabled

ESP_BLE_GAP_PAST_MODE_DUP_FILTER_ENABLED

Periodic adv report events will be enabled with duplicate filtering enabled

Espressif Systems 235
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_VENDOR_SCAN_REQ_RECV_EVT_MASK

Vendor BLE legacy SCAN_REQ received event mask

ESP_BLE_VENDOR_CHMAP_UPDATE_EVT_MASK

Vendor BLE channel map update event mask

ESP_BLE_VENDOR_SLEEP_WAKEUP_EVT_MASK

Vendor BLE sleep wakeup event mask

ESP_BLE_VENDOR_CONN_REQ_RECV_EVT_MASK

Vendor BLE CONNECT_IND and AUX_CONNECT_REQ received event mask

ESP_BLE_VENDOR_CONN_RSP_RECV_EVT_MASK

Vendor BLE AUX_CONNECT_RSP received event mask

ESP_BLE_VENDOR_PDU_RECV_EVT

Vendor BLE specify PDU received event

ESP_BLE_VENDOR_CHAN_MAP_UPDATE_EVT

Vendor BLE channel map update complete event

ESP_BLE_VENDOR_SLEEP_WAKEUP_EVT

Vendor BLE sleep wakeup event

Type Definitions

typedef uint8_t esp_ble_key_type_t

typedef uint8_t esp_ble_auth_req_t
combination of the above bit pattern

typedef uint8_t esp_ble_io_cap_t
combination of the io capability

typedef uint8_t esp_ble_dtm_pkt_payload_t

typedef uint8_t esp_gap_ble_channels[ESP_GAP_BLE_CHANNELS_LEN]

typedef uint8_t esp_duplicate_info_t[ESP_BD_ADDR_LEN]

typedef uint16_t esp_ble_ext_adv_type_mask_t

typedef uint8_t esp_ble_gap_phy_t

typedef uint8_t esp_ble_gap_all_phys_t

typedef uint8_t esp_ble_gap_pri_phy_t

Espressif Systems 236
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef uint8_t esp_ble_gap_phy_mask_t

typedef uint16_t esp_ble_gap_prefer_phy_options_t

typedef uint8_t esp_ble_ext_scan_cfg_mask_t

typedef uint8_t esp_ble_gap_ext_adv_data_status_t

typedef uint8_t esp_ble_gap_sync_t

typedef uint8_t esp_ble_gap_adv_type_t

typedef uint8_t esp_ble_gap_past_mode_t

typedef uint32_t esp_ble_vendor_evt_mask_t

typedef uint8_t esp_ble_vendor_evt_t

typedef void (*esp_gap_ble_cb_t)(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param)
GAP callback function type.

Param event : Event type
Param param : Point to callback parameter, currently is union type

Enumerations

enum esp_gap_ble_cb_event_t

GAP BLE callback event type.
Values:

enumerator ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT
When advertising data set complete, the event comes

enumerator ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT
When scan response data set complete, the event comes

enumerator ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT
When scan parameters set complete, the event comes

enumerator ESP_GAP_BLE_SCAN_RESULT_EVT
When one scan result ready, the event comes each time

enumerator ESP_GAP_BLE_ADV_DATA_RAW_SET_COMPLETE_EVT
When raw advertising data set complete, the event comes

enumerator ESP_GAP_BLE_SCAN_RSP_DATA_RAW_SET_COMPLETE_EVT
When raw scan response data set complete, the event comes

Espressif Systems 237
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GAP_BLE_ADV_START_COMPLETE_EVT
When start advertising complete, the event comes

enumerator ESP_GAP_BLE_SCAN_START_COMPLETE_EVT
When start scan complete, the event comes

enumerator ESP_GAP_BLE_AUTH_CMPL_EVT
Authentication complete indication.

enumerator ESP_GAP_BLE_KEY_EVT
BLE key event for peer device keys

enumerator ESP_GAP_BLE_SEC_REQ_EVT
BLE security request

enumerator ESP_GAP_BLE_PASSKEY_NOTIF_EVT
passkey notification event

enumerator ESP_GAP_BLE_PASSKEY_REQ_EVT
passkey request event

enumerator ESP_GAP_BLE_OOB_REQ_EVT
OOB request event

enumerator ESP_GAP_BLE_LOCAL_IR_EVT
BLE local IR (identity Root 128-bit random static value used to generate Long Term Key) event

enumerator ESP_GAP_BLE_LOCAL_ER_EVT
BLE local ER (Encryption Root value used to generate identity resolving key) event

enumerator ESP_GAP_BLE_NC_REQ_EVT
Numeric Comparison request event

enumerator ESP_GAP_BLE_ADV_STOP_COMPLETE_EVT
When stop adv complete, the event comes

enumerator ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT
When stop scan complete, the event comes

enumerator ESP_GAP_BLE_SET_STATIC_RAND_ADDR_EVT
When set the static rand address complete, the event comes

enumerator ESP_GAP_BLE_UPDATE_CONN_PARAMS_EVT
When update connection parameters complete, the event comes

enumerator ESP_GAP_BLE_SET_PKT_LENGTH_COMPLETE_EVT
When set pkt length complete, the event comes

Espressif Systems 238
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GAP_BLE_SET_LOCAL_PRIVACY_COMPLETE_EVT
When Enable/disable privacy on the local device complete, the event comes

enumerator ESP_GAP_BLE_REMOVE_BOND_DEV_COMPLETE_EVT
When remove the bond device complete, the event comes

enumerator ESP_GAP_BLE_CLEAR_BOND_DEV_COMPLETE_EVT
When clear the bond device clear complete, the event comes

enumerator ESP_GAP_BLE_GET_BOND_DEV_COMPLETE_EVT
When get the bond device list complete, the event comes

enumerator ESP_GAP_BLE_READ_RSSI_COMPLETE_EVT
When read the rssi complete, the event comes

enumerator ESP_GAP_BLE_UPDATE_WHITELIST_COMPLETE_EVT
When add or remove whitelist complete, the event comes

enumerator ESP_GAP_BLE_UPDATE_DUPLICATE_EXCEPTIONAL_LIST_COMPLETE_EVT
When update duplicate exceptional list complete, the event comes

enumerator ESP_GAP_BLE_SET_CHANNELS_EVT
When setting BLE channels complete, the event comes

enumerator ESP_GAP_BLE_READ_PHY_COMPLETE_EVT
when reading phy complete, this event comes

enumerator ESP_GAP_BLE_SET_PREFERRED_DEFAULT_PHY_COMPLETE_EVT
when preferred default phy complete, this event comes

enumerator ESP_GAP_BLE_SET_PREFERRED_PHY_COMPLETE_EVT
when preferred phy complete , this event comes

enumerator ESP_GAP_BLE_EXT_ADV_SET_RAND_ADDR_COMPLETE_EVT
when extended set random address complete, the event comes

enumerator ESP_GAP_BLE_EXT_ADV_SET_PARAMS_COMPLETE_EVT
when extended advertising parameter complete, the event comes

enumerator ESP_GAP_BLE_EXT_ADV_DATA_SET_COMPLETE_EVT
when extended advertising data complete, the event comes

enumerator ESP_GAP_BLE_EXT_SCAN_RSP_DATA_SET_COMPLETE_EVT
when extended scan response data complete, the event comes

enumerator ESP_GAP_BLE_EXT_ADV_START_COMPLETE_EVT
when extended advertising start complete, the event comes

Espressif Systems 239
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GAP_BLE_EXT_ADV_STOP_COMPLETE_EVT
when extended advertising stop complete, the event comes

enumerator ESP_GAP_BLE_EXT_ADV_SET_REMOVE_COMPLETE_EVT
when extended advertising set remove complete, the event comes

enumerator ESP_GAP_BLE_EXT_ADV_SET_CLEAR_COMPLETE_EVT
when extended advertising set clear complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_SET_PARAMS_COMPLETE_EVT
when periodic advertising parameter complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_DATA_SET_COMPLETE_EVT
when periodic advertising data complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_START_COMPLETE_EVT
when periodic advertising start complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_STOP_COMPLETE_EVT
when periodic advertising stop complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_CREATE_SYNC_COMPLETE_EVT
when periodic advertising create sync complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_SYNC_CANCEL_COMPLETE_EVT
when extended advertising sync cancel complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_SYNC_TERMINATE_COMPLETE_EVT
when extended advertising sync terminate complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_ADD_DEV_COMPLETE_EVT
when extended advertising add device complete , the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_REMOVE_DEV_COMPLETE_EVT
when extended advertising remove device complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_CLEAR_DEV_COMPLETE_EVT
when extended advertising clear device, the event comes

enumerator ESP_GAP_BLE_SET_EXT_SCAN_PARAMS_COMPLETE_EVT
when extended scan parameter complete, the event comes

enumerator ESP_GAP_BLE_EXT_SCAN_START_COMPLETE_EVT
when extended scan start complete, the event comes

enumerator ESP_GAP_BLE_EXT_SCAN_STOP_COMPLETE_EVT
when extended scan stop complete, the event comes

Espressif Systems 240
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GAP_BLE_PREFER_EXT_CONN_PARAMS_SET_COMPLETE_EVT
when extended prefer connection parameter set complete, the event comes

enumerator ESP_GAP_BLE_PHY_UPDATE_COMPLETE_EVT
when ble phy update complete, the event comes

enumerator ESP_GAP_BLE_EXT_ADV_REPORT_EVT
when extended advertising report complete, the event comes

enumerator ESP_GAP_BLE_SCAN_TIMEOUT_EVT
when scan timeout complete, the event comes

enumerator ESP_GAP_BLE_ADV_TERMINATED_EVT
when advertising terminate data complete, the event comes

enumerator ESP_GAP_BLE_SCAN_REQ_RECEIVED_EVT
when scan req received complete, the event comes

enumerator ESP_GAP_BLE_CHANNEL_SELECT_ALGORITHM_EVT
when channel select algorithm complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_REPORT_EVT
when periodic report advertising complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_SYNC_LOST_EVT
when periodic advertising sync lost complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_SYNC_ESTAB_EVT
when periodic advertising sync establish complete, the event comes

enumerator ESP_GAP_BLE_SC_OOB_REQ_EVT
Secure Connection OOB request event

enumerator ESP_GAP_BLE_SC_CR_LOC_OOB_EVT
Secure Connection create OOB data complete event

enumerator ESP_GAP_BLE_GET_DEV_NAME_COMPLETE_EVT
When getting BT device name complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_RECV_ENABLE_COMPLETE_EVT
when set periodic advertising receive enable complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_SYNC_TRANS_COMPLETE_EVT
when periodic advertising sync transfer complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_SET_INFO_TRANS_COMPLETE_EVT
when periodic advertising set info transfer complete, the event comes

Espressif Systems 241
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GAP_BLE_SET_PAST_PARAMS_COMPLETE_EVT
when set periodic advertising sync transfer params complete, the event comes

enumerator ESP_GAP_BLE_PERIODIC_ADV_SYNC_TRANS_RECV_EVT
when periodic advertising sync transfer received, the event comes

enumerator ESP_GAP_BLE_DTM_TEST_UPDATE_EVT
when direct test mode state changes, the event comes

enumerator ESP_GAP_BLE_ADV_CLEAR_COMPLETE_EVT
When clear advertising complete, the event comes

enumerator ESP_GAP_BLE_SET_RPA_TIMEOUT_COMPLETE_EVT
When set the Resolvable Private Address (RPA) timeout completes, the event comes

enumerator ESP_GAP_BLE_ADD_DEV_TO_RESOLVING_LIST_COMPLETE_EVT
when add a device to the resolving list completes, the event comes

enumerator ESP_GAP_BLE_VENDOR_CMD_COMPLETE_EVT
When vendor hci command complete, the event comes

enumerator ESP_GAP_BLE_SET_PRIVACY_MODE_COMPLETE_EVT
When set privacy mode complete, the event comes

enumerator ESP_GAP_BLE_SET_CSA_SUPPORT_COMPLETE_EVT
When set CSA support complete, the event comes

enumerator ESP_GAP_BLE_SET_VENDOR_EVT_MASK_COMPLETE_EVT
When set vendor event mask complete, the event comes

enumerator ESP_GAP_BLE_VENDOR_HCI_EVT
When BLE vendor HCI event received, the event comes

enumerator ESP_GAP_BLE_SET_COMMON_FACTOR_CMPL_EVT
When set the common factor complete, the event comes

enumerator ESP_GAP_BLE_SET_SCH_LEN_CMPL_EVT
When set the scheduling length complete, the event comes

enumerator ESP_GAP_BLE_SET_SCAN_CHAN_MAP_CMPL_EVT
When set the channel map for scanning complete, the event comes

enumerator ESP_GAP_BLE_EVT_MAX
when maximum advertising event complete, the event comes

enum esp_ble_adv_data_type

The type of advertising data(not adv_type)
Values:

Espressif Systems 242
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_AD_TYPE_FLAG

enumerator ESP_BLE_AD_TYPE_16SRV_PART

enumerator ESP_BLE_AD_TYPE_16SRV_CMPL

enumerator ESP_BLE_AD_TYPE_32SRV_PART

enumerator ESP_BLE_AD_TYPE_32SRV_CMPL

enumerator ESP_BLE_AD_TYPE_128SRV_PART

enumerator ESP_BLE_AD_TYPE_128SRV_CMPL

enumerator ESP_BLE_AD_TYPE_NAME_SHORT

enumerator ESP_BLE_AD_TYPE_NAME_CMPL

enumerator ESP_BLE_AD_TYPE_TX_PWR

enumerator ESP_BLE_AD_TYPE_DEV_CLASS

enumerator ESP_BLE_AD_TYPE_SM_TK

enumerator ESP_BLE_AD_TYPE_SM_OOB_FLAG

enumerator ESP_BLE_AD_TYPE_INT_RANGE

enumerator ESP_BLE_AD_TYPE_SOL_SRV_UUID

enumerator ESP_BLE_AD_TYPE_128SOL_SRV_UUID

enumerator ESP_BLE_AD_TYPE_SERVICE_DATA

enumerator ESP_BLE_AD_TYPE_PUBLIC_TARGET

enumerator ESP_BLE_AD_TYPE_RANDOM_TARGET

enumerator ESP_BLE_AD_TYPE_APPEARANCE

enumerator ESP_BLE_AD_TYPE_ADV_INT

enumerator ESP_BLE_AD_TYPE_LE_DEV_ADDR

enumerator ESP_BLE_AD_TYPE_LE_ROLE

Espressif Systems 243
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_AD_TYPE_SPAIR_C256

enumerator ESP_BLE_AD_TYPE_SPAIR_R256

enumerator ESP_BLE_AD_TYPE_32SOL_SRV_UUID

enumerator ESP_BLE_AD_TYPE_32SERVICE_DATA

enumerator ESP_BLE_AD_TYPE_128SERVICE_DATA

enumerator ESP_BLE_AD_TYPE_LE_SECURE_CONFIRM

enumerator ESP_BLE_AD_TYPE_LE_SECURE_RANDOM

enumerator ESP_BLE_AD_TYPE_URI

enumerator ESP_BLE_AD_TYPE_INDOOR_POSITION

enumerator ESP_BLE_AD_TYPE_TRANS_DISC_DATA

enumerator ESP_BLE_AD_TYPE_LE_SUPPORT_FEATURE

enumerator ESP_BLE_AD_TYPE_CHAN_MAP_UPDATE

enumerator ESP_BLE_AD_MANUFACTURER_SPECIFIC_TYPE

enum esp_ble_adv_type_t

Advertising mode.
Values:

enumerator ADV_TYPE_IND

enumerator ADV_TYPE_DIRECT_IND_HIGH

enumerator ADV_TYPE_SCAN_IND

enumerator ADV_TYPE_NONCONN_IND

enumerator ADV_TYPE_DIRECT_IND_LOW

enum esp_ble_adv_channel_t

Advertising channel mask.
Values:

enumerator ADV_CHNL_37

Espressif Systems 244
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ADV_CHNL_38

enumerator ADV_CHNL_39

enumerator ADV_CHNL_ALL

enum esp_ble_adv_filter_t

Values:

enumerator ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY
Allow both scan and connection requests from anyone.

enumerator ADV_FILTER_ALLOW_SCAN_WLST_CON_ANY
Allow both scan req from White List devices only and connection req from anyone.

enumerator ADV_FILTER_ALLOW_SCAN_ANY_CON_WLST
Allow both scan req from anyone and connection req from White List devices only.

enumerator ADV_FILTER_ALLOW_SCAN_WLST_CON_WLST
Allow scan and connection requests from White List devices only.

enum esp_ble_sec_act_t

Values:

enumerator ESP_BLE_SEC_ENCRYPT
relate to BTA_DM_BLE_SEC_ENCRYPT in bta/bta_api.h. If the device has already bonded, the stack
will used Long Term Key (LTK) to encrypt with the remote device directly. Else if the device hasn't
bonded, the stack will used the default authentication request used the esp_ble_gap_set_security_param
function set by the user.

enumerator ESP_BLE_SEC_ENCRYPT_NO_MITM
relate to BTA_DM_BLE_SEC_ENCRYPT_NO_MITM in bta/bta_api.h. If the device has been already
bonded, the stack will check the LTK (Long TermKey)Whether the authentication request has been met,
and if met, use the LTK to encrypt with the remote device directly, else re-pair with the remote device.
Else if the device hasn't been bonded, the stack will use NO MITM authentication request in the current
link instead of using the authreq in the esp_ble_gap_set_security_param function set by the user.

enumerator ESP_BLE_SEC_ENCRYPT_MITM
relate to BTA_DM_BLE_SEC_ENCRYPT_MITM in bta/bta_api.h. If the device has been already
bonded, the stack will check the LTK (Long Term Key) whether the authentication request has been
met, and if met, use the LTK to encrypt with the remote device directly, else re-pair with the remote
device. Else if the device hasn't been bonded, the stack will use MITM authentication request in the
current link instead of using the authreq in the esp_ble_gap_set_security_param function set by the user.

enum esp_ble_sm_param_t

Values:

enumerator ESP_BLE_SM_PASSKEY
Authentication requirements of local device

Espressif Systems 245
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_SM_AUTHEN_REQ_MODE
The IO capability of local device

enumerator ESP_BLE_SM_IOCAP_MODE
Initiator Key Distribution/Generation

enumerator ESP_BLE_SM_SET_INIT_KEY
Responder Key Distribution/Generation

enumerator ESP_BLE_SM_SET_RSP_KEY
Maximum Encryption key size to support

enumerator ESP_BLE_SM_MAX_KEY_SIZE
Minimum Encryption key size requirement from Peer

enumerator ESP_BLE_SM_MIN_KEY_SIZE
Set static Passkey

enumerator ESP_BLE_SM_SET_STATIC_PASSKEY
Reset static Passkey

enumerator ESP_BLE_SM_CLEAR_STATIC_PASSKEY
Accept only specified SMP Authentication requirement

enumerator ESP_BLE_SM_ONLY_ACCEPT_SPECIFIED_SEC_AUTH
Enable/Disable OOB support

enumerator ESP_BLE_SM_OOB_SUPPORT
Appl encryption key size

enumerator ESP_BLE_APP_ENC_KEY_SIZE
authentication max param

enumerator ESP_BLE_SM_MAX_PARAM

enum esp_ble_dtm_update_evt_t

Values:

enumerator DTM_TX_START_EVT
DTM TX start event.

enumerator DTM_RX_START_EVT
DTM RX start event.

enumerator DTM_TEST_STOP_EVT
DTM test end event.

Espressif Systems 246
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum esp_ble_scan_type_t

Ble scan type.
Values:

enumerator BLE_SCAN_TYPE_PASSIVE
Passive scan

enumerator BLE_SCAN_TYPE_ACTIVE
Active scan

enum esp_ble_scan_filter_t

Ble scan filter type.
Values:

enumerator BLE_SCAN_FILTER_ALLOW_ALL
Accept all :
i. advertisement packets except directed advertising packets not addressed to this device (default).

enumerator BLE_SCAN_FILTER_ALLOW_ONLY_WLST
Accept only :
i. advertisement packets from devices where the advertiser’s address is in the White list.
ii. Directed advertising packets which are not addressed for this device shall be ignored.

enumerator BLE_SCAN_FILTER_ALLOW_UND_RPA_DIR
Accept all :
i. undirected advertisement packets, and
ii. directed advertising packets where the initiator address is a resolvable private address, and
iii. directed advertising packets addressed to this device.

enumerator BLE_SCAN_FILTER_ALLOW_WLIST_RPA_DIR
Accept all :
i. advertisement packets from devices where the advertiser’s address is in the White list, and
ii. directed advertising packets where the initiator address is a resolvable private address, and
iii. directed advertising packets addressed to this device.

enum esp_ble_scan_duplicate_t

Ble scan duplicate type.
Values:

enumerator BLE_SCAN_DUPLICATE_DISABLE
the Link Layer should generate advertising reports to the host for each packet received

enumerator BLE_SCAN_DUPLICATE_ENABLE
the Link Layer should filter out duplicate advertising reports to the Host

enumerator BLE_SCAN_DUPLICATE_ENABLE_RESET
Duplicate filtering enabled, reset for each scan period, only supported in BLE 5.0.

Espressif Systems 247
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator BLE_SCAN_DUPLICATE_MAX
Reserved for future use.

enum esp_ble_auth_fail_rsn_t

Definition of the authentication failed reason.
Values:

enumerator ESP_AUTH_SMP_PASSKEY_FAIL
The user input of passkey failed

enumerator ESP_AUTH_SMP_OOB_FAIL
The OOB data is not available

enumerator ESP_AUTH_SMP_PAIR_AUTH_FAIL
The authentication requirements cannot be met

enumerator ESP_AUTH_SMP_CONFIRM_VALUE_FAIL
The confirm value does not match the calculated comparison value

enumerator ESP_AUTH_SMP_PAIR_NOT_SUPPORT
Pairing is not supported by the device

enumerator ESP_AUTH_SMP_ENC_KEY_SIZE
The resultant encryption key size is not long enough

enumerator ESP_AUTH_SMP_INVALID_CMD
The SMP command received is not supported by this device

enumerator ESP_AUTH_SMP_UNKNOWN_ERR
Pairing failed due to an unspecified reason

enumerator ESP_AUTH_SMP_REPEATED_ATTEMPT
Pairing or authentication procedure is disallowed

enumerator ESP_AUTH_SMP_INVALID_PARAMETERS
The command length is invalid or that a parameter is outside the specified range

enumerator ESP_AUTH_SMP_DHKEY_CHK_FAIL
The DHKey Check value received doesn’t match the one calculated by the local device

enumerator ESP_AUTH_SMP_NUM_COMP_FAIL
The confirm values in the numeric comparison protocol do not match

enumerator ESP_AUTH_SMP_BR_PARING_IN_PROGR
Pairing Request sent over the BR/EDR transport is in progress

enumerator ESP_AUTH_SMP_XTRANS_DERIVE_NOT_ALLOW
The BR/EDR Link Key or BLE LTK cannot be used to derive

Espressif Systems 248
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_AUTH_SMP_INTERNAL_ERR
Internal error in pairing procedure

enumerator ESP_AUTH_SMP_UNKNOWN_IO
Unknown IO capability, unable to decide association model

enumerator ESP_AUTH_SMP_INIT_FAIL
SMP pairing initiation failed

enumerator ESP_AUTH_SMP_CONFIRM_FAIL
The confirm value does not match

enumerator ESP_AUTH_SMP_BUSY
Pending security request on going

enumerator ESP_AUTH_SMP_ENC_FAIL
The Controller failed to start encryption

enumerator ESP_AUTH_SMP_STARTED
SMP pairing process started

enumerator ESP_AUTH_SMP_RSP_TIMEOUT
Security Manager timeout due to no SMP command being received

enumerator ESP_AUTH_SMP_DIV_NOT_AVAIL
Encrypted Diversifier value not available

enumerator ESP_AUTH_SMP_UNSPEC_ERR
Unspecified failed reason

enumerator ESP_AUTH_SMP_CONN_TOUT
Pairing process failed due to connection timeout

enum esp_gap_search_evt_t

Sub Event of ESP_GAP_BLE_SCAN_RESULT_EVT.
Values:

enumerator ESP_GAP_SEARCH_INQ_RES_EVT
Inquiry result for a peer device.

enumerator ESP_GAP_SEARCH_INQ_CMPL_EVT
Inquiry complete.

enumerator ESP_GAP_SEARCH_DISC_RES_EVT
Discovery result for a peer device.

enumerator ESP_GAP_SEARCH_DISC_BLE_RES_EVT
Discovery result for BLE GATT based service on a peer device.

Espressif Systems 249
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GAP_SEARCH_DISC_CMPL_EVT
Discovery complete.

enumerator ESP_GAP_SEARCH_DI_DISC_CMPL_EVT
Discovery complete.

enumerator ESP_GAP_SEARCH_SEARCH_CANCEL_CMPL_EVT
Search cancelled

enumerator ESP_GAP_SEARCH_INQ_DISCARD_NUM_EVT
The number of pkt discarded by flow control

enum esp_ble_evt_type_t

Ble scan result event type, to indicate the result is scan response or advertising data or other.
Values:

enumerator ESP_BLE_EVT_CONN_ADV
Connectable undirected advertising (ADV_IND)

enumerator ESP_BLE_EVT_CONN_DIR_ADV
Connectable directed advertising (ADV_DIRECT_IND)

enumerator ESP_BLE_EVT_DISC_ADV
Scannable undirected advertising (ADV_SCAN_IND)

enumerator ESP_BLE_EVT_NON_CONN_ADV
Non connectable undirected advertising (ADV_NONCONN_IND)

enumerator ESP_BLE_EVT_SCAN_RSP
Scan Response (SCAN_RSP)

enum esp_ble_wl_operation_t

Values:

enumerator ESP_BLE_WHITELIST_REMOVE
remove mac from whitelist

enumerator ESP_BLE_WHITELIST_ADD
add address to whitelist

enumerator ESP_BLE_WHITELIST_CLEAR
clear all device in whitelist

enum esp_bt_duplicate_exceptional_subcode_type_t

Values:

enumerator ESP_BLE_DUPLICATE_EXCEPTIONAL_LIST_ADD
Add device info into duplicate scan exceptional list

Espressif Systems 250
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_DUPLICATE_EXCEPTIONAL_LIST_REMOVE
Remove device info from duplicate scan exceptional list

enumerator ESP_BLE_DUPLICATE_EXCEPTIONAL_LIST_CLEAN
Clean duplicate scan exceptional list

enum esp_ble_duplicate_exceptional_info_type_t

Values:

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_ADV_ADDR
BLE advertising address , device infowill be added into ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_ADDR_LIST

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_LINK_ID
BLE mesh link ID, it is for BLE mesh, device info will be added into
ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_LINK_ID_LIST

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_BEACON_TYPE
BLE mesh beacon AD type, the format is | Len | 0x2B | Beacon Type | Beacon Data |

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_PROV_SRV_ADV
BLE mesh provisioning service uuid, the format is | 0x02 | 0x01 | flags | 0x03 | 0x03 | 0x1827 | |`

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_PROXY_SRV_ADV
BLE mesh adv with proxy service uuid, the format is | 0x02 | 0x01 | flags | 0x03 | 0x03 | 0x1828 | |`

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_PROXY_SOLIC_ADV
BLE mesh adv with proxy service uuid, the format is | 0x02 | 0x01 | flags | 0x03 | 0x03 | 0x1859 | |`

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_URI_ADV
BLE mesh URI adv, the format is ...| Len | 0x24 | data |...

enum esp_duplicate_scan_exceptional_list_type_t

Values:

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_ADDR_LIST
duplicate scan exceptional addr list

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_LINK_ID_LIST
duplicate scan exceptional mesh link ID list

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_BEACON_TYPE_LIST
duplicate scan exceptional mesh beacon type list

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_PROV_SRV_ADV_LIST
duplicate scan exceptional mesh adv with provisioning service uuid

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_PROXY_SRV_ADV_LIST
duplicate scan exceptional mesh adv with proxy service uuid

Espressif Systems 251
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_PROXY_SOLIC_ADV_LIST
duplicate scan exceptional mesh adv with proxy solicitation PDU uuid

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_URI_ADV_LIST
duplicate scan exceptional URI list

enumerator ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_ALL_LIST
duplicate scan exceptional all list

enum esp_ble_privacy_mode_t

Values:

enumerator ESP_BLE_NETWORK_PRIVACY_MODE
Network Privacy Mode for peer device (default)

enumerator ESP_BLE_DEVICE_PRIVACY_MODE
Device Privacy Mode for peer device

enum esp_ble_vendor_pdu_t

Values:

enumerator ESP_BLE_VENDOR_PDU_SCAN_REQ
SCAN_REQ PDU type

enumerator ESP_BLE_VENDOR_PDU_CONN_REQ
CONNECT_IND and AUX_CONNECT_REQ PDU type

enumerator ESP_BLE_VENDOR_PDU_CONN_RSP
AUX_CONNECT_RSP PDU type

GATT DEFINES

API Reference

Header File
• components/bt/host/bluedroid/api/include/api/esp_gatt_defs.h

Unions

union esp_gatt_rsp_t
#include <esp_gatt_defs.h> Represents the response type for a GATT remote read request.

Public Members

esp_gatt_value_t attr_value

The GATT attribute value, including its data, handle, and metadata.

Espressif Systems 252
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/host/bluedroid/api/include/api/esp_gatt_defs.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t handle
Only the handle of the GATT attribute, when that's the only required information.

Structures

struct esp_gatt_id_t
Represents a GATT identifier.

Public Members

esp_bt_uuid_t uuid

The UUID component of the GATT ID.

uint8_t inst_id
The instance ID component of the GATT ID, providing further differentiation of the GATT ID.

struct esp_gatt_srvc_id_t
Represents a GATT service identifier.

Public Members

esp_gatt_id_t id

Encapsulates the UUID and instance ID of the GATT service.

bool is_primary
Indicates if the service is primary. A value of truemeans it is a primary service, false indicates a secondary
service.

struct esp_attr_desc_t
Defines an attribute's description.
This structure is used to describe an attribute in the GATT database. It includes details such as the UUID of
the attribute, its permissions, and its value.

Public Members

uint16_t uuid_length
Length of the UUID in bytes.

uint8_t *uuid_p
Pointer to the UUID value.

uint16_t perm
Attribute permissions, defined by esp_gatt_perm_t.

uint16_t max_length
Maximum length of the attribute's value.

Espressif Systems 253
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t length
Current length of the attribute's value.

uint8_t *value
Pointer to the attribute's value array.

struct esp_attr_control_t
Defines the auto response setting for attribute operations.
This structure is used to control whether the GATT stack or the application will handle responses to Read/Write
operations.

Public Members

uint8_t auto_rsp
Controls who handles the response to Read/Write operations.

• If set to ESP_GATT_RSP_BY_APP, the application is responsible for generating the response.
• If set to ESP_GATT_AUTO_RSP, the GATT stack will automatically generate the response.

struct esp_gatts_attr_db_t
attribute type added to the GATT server database

Public Members

esp_attr_control_t attr_control

The attribute control type

esp_attr_desc_t att_desc

The attribute type

struct esp_attr_value_t
set the attribute value type

Public Members

uint16_t attr_max_len
attribute max value length

uint16_t attr_len
attribute current value length

uint8_t *attr_value
the pointer to attribute value

struct esp_gatts_incl_svc_desc_t
Gatt include service entry element.

Espressif Systems 254
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t start_hdl
Gatt start handle value of included service

uint16_t end_hdl
Gatt end handle value of included service

uint16_t uuid
Gatt attribute value UUID of included service

struct esp_gatts_incl128_svc_desc_t
Gatt include 128 bit service entry element.

Public Members

uint16_t start_hdl
Gatt start handle value of included 128 bit service

uint16_t end_hdl
Gatt end handle value of included 128 bit service

struct esp_gatt_value_t
Represents a GATT attribute's value.

Public Members

uint8_t value[ESP_GATT_MAX_ATTR_LEN]
Array holding the value of the GATT attribute.

uint16_t handle
Unique identifier (handle) of the GATT attribute.

uint16_t offset
Offset within the attribute's value, for partial updates.

uint16_t len
Current length of the data in the value array.

uint8_t auth_req
Authentication requirements for accessing this attribute.

struct esp_gatt_conn_params_t
Connection parameters for GATT.

Espressif Systems 255
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t interval
Connection interval.

uint16_t latency
Slave latency for the connection in number of connection events.

uint16_t timeout
Supervision timeout for the LE Link.

struct esp_gattc_multi_t
Represents multiple attributes for reading.

Public Members

uint8_t num_attr
Number of attributes.

uint16_t handles[ESP_GATT_MAX_READ_MULTI_HANDLES]
List of attribute handles.

struct esp_gattc_db_elem_t
GATT database attribute element.

Public Members

esp_gatt_db_attr_type_t type

Attribute type.

uint16_t attribute_handle
Attribute handle.

uint16_t start_handle
Service start handle.

uint16_t end_handle
Service end handle.

esp_gatt_char_prop_t properties

Characteristic properties.

esp_bt_uuid_t uuid

Attribute UUID.

struct esp_gattc_service_elem_t
Represents a GATT service element.

Espressif Systems 256
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

bool is_primary
Indicates if the service is primary.

uint16_t start_handle
Service start handle.

uint16_t end_handle
Service end handle.

esp_bt_uuid_t uuid

Service UUID.

struct esp_gattc_char_elem_t
Represents a GATT characteristic element.

Public Members

uint16_t char_handle
Characteristic handle.

esp_gatt_char_prop_t properties

Characteristic properties.

esp_bt_uuid_t uuid

Characteristic UUID.

struct esp_gattc_descr_elem_t
Represents a GATT descriptor element.

Public Members

uint16_t handle
Descriptor handle.

esp_bt_uuid_t uuid

Descriptor UUID.

struct esp_gattc_incl_svc_elem_t
Represents an included GATT service element.

Public Members

uint16_t handle
Current attribute handle of the included service.

Espressif Systems 257
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t incl_srvc_s_handle
Start handle of the included service.

uint16_t incl_srvc_e_handle
End handle of the included service.

esp_bt_uuid_t uuid

Included service UUID.

struct esp_ble_gatt_creat_conn_params_t
Represents a creat connection element.

Public Members

esp_bd_addr_t remote_bda

The Bluetooth address of the remote device

esp_ble_addr_type_t remote_addr_type

Address type of the remote device

bool is_direct
Direct connection or background auto connection(by now, background auto connection is not supported

bool is_aux
Set to true for BLE 5.0 or higher to enable auxiliary connections; set to false for BLE 4.2 or lower.

esp_ble_addr_type_t own_addr_type

Specifies the address type used in the connection request. Set to 0xFF if the address type is unknown.

esp_ble_phy_mask_t phy_mask

Indicates which PHY connection parameters will be used. When is_aux is false, only the connection
params for 1M PHY can be specified

const esp_ble_conn_params_t *phy_1m_conn_params
Connection parameters for the LE 1M PHY

const esp_ble_conn_params_t *phy_2m_conn_params
Connection parameters for the LE 2M PHY

const esp_ble_conn_params_t *phy_coded_conn_params
Connection parameters for the LE Coded PHY

Macros

ESP_GATT_ILLEGAL_UUID

GATT INVALID UUID.

ESP_GATT_ILLEGAL_HANDLE

GATT INVALID HANDLE.

Espressif Systems 258
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_GATT_ATTR_HANDLE_MAX

GATT attribute max handle.

ESP_GATT_MAX_READ_MULTI_HANDLES

Maximum number of attributes to read in one request.

ESP_GATT_UUID_IMMEDIATE_ALERT_SVC

Immediate Alert Service UUID.

ESP_GATT_UUID_LINK_LOSS_SVC

Link Loss Service UUID.

ESP_GATT_UUID_TX_POWER_SVC

TX Power Service UUID.

ESP_GATT_UUID_CURRENT_TIME_SVC

Current Time Service UUID.

ESP_GATT_UUID_REF_TIME_UPDATE_SVC

Reference Time Update Service UUID.

ESP_GATT_UUID_NEXT_DST_CHANGE_SVC

Next DST Change Service UUID.

ESP_GATT_UUID_GLUCOSE_SVC

Glucose Service UUID.

ESP_GATT_UUID_HEALTH_THERMOM_SVC

Health Thermometer Service UUID.

ESP_GATT_UUID_DEVICE_INFO_SVC

Device Information Service UUID.

ESP_GATT_UUID_HEART_RATE_SVC

Heart Rate Service UUID.

ESP_GATT_UUID_PHONE_ALERT_STATUS_SVC

Phone Alert Status Service UUID.

ESP_GATT_UUID_BATTERY_SERVICE_SVC

Battery Service UUID.

ESP_GATT_UUID_BLOOD_PRESSURE_SVC

Blood Pressure Service UUID.

ESP_GATT_UUID_ALERT_NTF_SVC

Alert Notification Service UUID.

Espressif Systems 259
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_GATT_UUID_HID_SVC

HID Service UUID.

ESP_GATT_UUID_SCAN_PARAMETERS_SVC

Scan Parameters Service UUID.

ESP_GATT_UUID_RUNNING_SPEED_CADENCE_SVC

Running Speed and Cadence Service UUID.

ESP_GATT_UUID_Automation_IO_SVC

Automation IO Service UUID.

ESP_GATT_UUID_CYCLING_SPEED_CADENCE_SVC

Cycling Speed and Cadence Service UUID.

ESP_GATT_UUID_CYCLING_POWER_SVC

Cycling Power Service UUID.

ESP_GATT_UUID_LOCATION_AND_NAVIGATION_SVC

Location and Navigation Service UUID.

ESP_GATT_UUID_ENVIRONMENTAL_SENSING_SVC

Environmental Sensing Service UUID.

ESP_GATT_UUID_BODY_COMPOSITION

Body Composition Service UUID.

ESP_GATT_UUID_USER_DATA_SVC

User Data Service UUID.

ESP_GATT_UUID_WEIGHT_SCALE_SVC

Weight Scale Service UUID.

ESP_GATT_UUID_BOND_MANAGEMENT_SVC

Bond Management Service UUID.

ESP_GATT_UUID_CONT_GLUCOSE_MONITOR_SVC

Continuous Glucose Monitoring Service UUID.

ESP_GATT_UUID_PRI_SERVICE

Primary Service UUID.

ESP_GATT_UUID_SEC_SERVICE

Secondary Service UUID.

ESP_GATT_UUID_INCLUDE_SERVICE

Include Service UUID.

Espressif Systems 260
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_GATT_UUID_CHAR_DECLARE

Characteristic Declaration UUID.

ESP_GATT_UUID_CHAR_EXT_PROP

Characteristic Extended Properties UUID.

ESP_GATT_UUID_CHAR_DESCRIPTION

Characteristic User Description UUID.

ESP_GATT_UUID_CHAR_CLIENT_CONFIG

Client Characteristic Configuration UUID.

ESP_GATT_UUID_CHAR_SRVR_CONFIG

Server Characteristic Configuration UUID.

ESP_GATT_UUID_CHAR_PRESENT_FORMAT

Characteristic Presentation Format UUID.

ESP_GATT_UUID_CHAR_AGG_FORMAT

Characteristic Aggregate Format UUID.

ESP_GATT_UUID_CHAR_VALID_RANGE

Characteristic Valid Range UUID.

ESP_GATT_UUID_EXT_RPT_REF_DESCR

External Report Reference Descriptor UUID.

ESP_GATT_UUID_RPT_REF_DESCR

Report Reference Descriptor UUID.

ESP_GATT_UUID_NUM_DIGITALS_DESCR

Number of Digitals Descriptor UUID.

ESP_GATT_UUID_VALUE_TRIGGER_DESCR

Value Trigger Setting Descriptor UUID.

ESP_GATT_UUID_ENV_SENSING_CONFIG_DESCR

Environmental Sensing Configuration Descriptor UUID.

ESP_GATT_UUID_ENV_SENSING_MEASUREMENT_DESCR

Environmental Sensing Measurement Descriptor UUID.

ESP_GATT_UUID_ENV_SENSING_TRIGGER_DESCR

Environmental Sensing Trigger Setting Descriptor UUID.

ESP_GATT_UUID_TIME_TRIGGER_DESCR

Time Trigger Setting Descriptor UUID.

Espressif Systems 261
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_GATT_UUID_GAP_DEVICE_NAME

GAP Device Name UUID.

ESP_GATT_UUID_GAP_ICON

GAP Icon UUID.

ESP_GATT_UUID_GAP_PREF_CONN_PARAM

GAP Preferred Connection Parameters UUID.

ESP_GATT_UUID_GAP_CENTRAL_ADDR_RESOL

GAP Central Address Resolution UUID.

ESP_GATT_UUID_GATT_SRV_CHGD

GATT Service Changed UUID.

ESP_GATT_UUID_ALERT_LEVEL

Alert Level UUID.

ESP_GATT_UUID_TX_POWER_LEVEL

TX Power Level UUID.

ESP_GATT_UUID_CURRENT_TIME

Current Time UUID.

ESP_GATT_UUID_LOCAL_TIME_INFO

Local Time Info UUID.

ESP_GATT_UUID_REF_TIME_INFO

Reference Time Information UUID.

ESP_GATT_UUID_NW_STATUS

Network Availability Status UUID.

ESP_GATT_UUID_NW_TRIGGER

Network Availability Trigger UUID.

ESP_GATT_UUID_ALERT_STATUS

Alert Status UUID.

ESP_GATT_UUID_RINGER_CP

Ringer Control Point UUID.

ESP_GATT_UUID_RINGER_SETTING

Ringer Setting UUID.

ESP_GATT_UUID_GM_MEASUREMENT

Glucose Measurement Characteristic UUID.

Espressif Systems 262
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_GATT_UUID_GM_CONTEXT

Glucose Measurement Context Characteristic UUID.

ESP_GATT_UUID_GM_CONTROL_POINT

Glucose Control Point Characteristic UUID.

ESP_GATT_UUID_GM_FEATURE

Glucose Feature Characteristic UUID.

ESP_GATT_UUID_SYSTEM_ID

System ID Characteristic UUID.

ESP_GATT_UUID_MODEL_NUMBER_STR

Model Number String Characteristic UUID.

ESP_GATT_UUID_SERIAL_NUMBER_STR

Serial Number String Characteristic UUID.

ESP_GATT_UUID_FW_VERSION_STR

Firmware Revision String Characteristic UUID.

ESP_GATT_UUID_HW_VERSION_STR

Hardware Revision String Characteristic UUID.

ESP_GATT_UUID_SW_VERSION_STR

Software Revision String Characteristic UUID.

ESP_GATT_UUID_MANU_NAME

Manufacturer Name String Characteristic UUID.

ESP_GATT_UUID_IEEE_DATA

IEEE 11073-20601 Regulatory Certification Data List Characteristic UUID.

ESP_GATT_UUID_PNP_ID

PnP ID Characteristic UUID.

ESP_GATT_UUID_HID_INFORMATION

HID Information Characteristic UUID.

ESP_GATT_UUID_HID_REPORT_MAP

HID Report Map Characteristic UUID.

ESP_GATT_UUID_HID_CONTROL_POINT

HID Control Point Characteristic UUID.

ESP_GATT_UUID_HID_REPORT

HID Report Characteristic UUID.

Espressif Systems 263
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_GATT_UUID_HID_PROTO_MODE

HID Protocol Mode Characteristic UUID.

ESP_GATT_UUID_HID_BT_KB_INPUT

HID Bluetooth Keyboard Input Characteristic UUID.

ESP_GATT_UUID_HID_BT_KB_OUTPUT

HID Bluetooth Keyboard Output Characteristic UUID.

ESP_GATT_UUID_HID_BT_MOUSE_INPUT

HID Bluetooth Mouse Input Characteristic UUID.

ESP_GATT_HEART_RATE_MEAS

Heart Rate Measurement Characteristic UUID.

ESP_GATT_BODY_SENSOR_LOCATION

Body Sensor Location Characteristic UUID.

ESP_GATT_HEART_RATE_CNTL_POINT

Heart Rate Control Point Characteristic UUID.

ESP_GATT_UUID_BATTERY_LEVEL

Battery Level Characteristic UUID.

ESP_GATT_UUID_SC_CONTROL_POINT

Sensor Control Point Characteristic UUID.

ESP_GATT_UUID_SENSOR_LOCATION

Sensor Location Characteristic UUID.

ESP_GATT_UUID_RSC_MEASUREMENT

RSC Measurement Characteristic UUID.

ESP_GATT_UUID_RSC_FEATURE

RSC Feature Characteristic UUID.

ESP_GATT_UUID_CSC_MEASUREMENT

CSC Measurement Characteristic UUID.

ESP_GATT_UUID_CSC_FEATURE

CSC Feature Characteristic UUID.

ESP_GATT_UUID_SCAN_INT_WINDOW

Scan Interval Window Characteristic UUID.

ESP_GATT_UUID_SCAN_REFRESH

Scan Refresh UUID.

Espressif Systems 264
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_GATT_PERM_READ

Permission to read the attribute. Corresponds to BTA_GATT_PERM_READ.

ESP_GATT_PERM_READ_ENCRYPTED

Permission to read the attribute with encryption. Corresponds to
BTA_GATT_PERM_READ_ENCRYPTED.

ESP_GATT_PERM_READ_ENC_MITM

Permission to read the attribute with encrypted MITM (Man In The Middle) protection. Corresponds to
BTA_GATT_PERM_READ_ENC_MITM.

ESP_GATT_PERM_WRITE

Permission to write to the attribute. Corresponds to BTA_GATT_PERM_WRITE.

ESP_GATT_PERM_WRITE_ENCRYPTED

Permission to write to the attribute with encryption. Corresponds to
BTA_GATT_PERM_WRITE_ENCRYPTED.

ESP_GATT_PERM_WRITE_ENC_MITM

Permission to write to the attribute with encrypted MITM protection. Corresponds to
BTA_GATT_PERM_WRITE_ENC_MITM.

ESP_GATT_PERM_WRITE_SIGNED

Permission for signed writes to the attribute. Corresponds to BTA_GATT_PERM_WRITE_SIGNED.

ESP_GATT_PERM_WRITE_SIGNED_MITM

Permission for signed writes to the attribute with MITM protection. Corresponds to
BTA_GATT_PERM_WRITE_SIGNED_MITM.

ESP_GATT_PERM_READ_AUTHORIZATION

Permission to read the attribute with authorization.

ESP_GATT_PERM_WRITE_AUTHORIZATION

Permission to write to the attribute with authorization.
ESP_GATT_PERM_ENCRYPT_KEY_SIZE(keysize)

Macro to specify minimum encryption key size.
Parameters

• keysize -- The minimum size of the encryption key, in bytes.

ESP_GATT_CHAR_PROP_BIT_BROADCAST

Ability to broadcast.Corresponds to BTA_GATT_CHAR_PROP_BIT_BROADCAST.

ESP_GATT_CHAR_PROP_BIT_READ

Ability to read.Corresponds to BTA_GATT_CHAR_PROP_BIT_READ.

ESP_GATT_CHAR_PROP_BIT_WRITE_NR

Ability to write without response.Corresponds to BTA_GATT_CHAR_PROP_BIT_WRITE_NR.

Espressif Systems 265
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_GATT_CHAR_PROP_BIT_WRITE

Ability to write.Corresponds to BTA_GATT_CHAR_PROP_BIT_WRITE.

ESP_GATT_CHAR_PROP_BIT_NOTIFY

Ability to notify.Corresponds to BTA_GATT_CHAR_PROP_BIT_NOTIFY.

ESP_GATT_CHAR_PROP_BIT_INDICATE

Ability to indicate.Corresponds to BTA_GATT_CHAR_PROP_BIT_INDICATE.

ESP_GATT_CHAR_PROP_BIT_AUTH

Ability to authenticate.Corresponds to BTA_GATT_CHAR_PROP_BIT_AUTH.

ESP_GATT_CHAR_PROP_BIT_EXT_PROP

Has extended properties.Corresponds to BTA_GATT_CHAR_PROP_BIT_EXT_PROP.

ESP_GATT_MAX_ATTR_LEN

Defines the maximum length of a GATT attribute.
This definition specifies the maximum number of bytes that a GATT attribute can hold. As same as
GATT_MAX_ATTR_LEN.

ESP_GATT_RSP_BY_APP

Defines attribute control for GATT operations.
This module provides definitions for controlling attribute auto responses in GATT operations.
Response to Write/Read operations should be handled by the application.

ESP_GATT_AUTO_RSP

Response to Write/Read operations should be automatically handled by the GATT stack.

ESP_GATT_IF_NONE

Macro indicating no specific GATT interface.
No specific application GATT interface.

Type Definitions

typedef uint16_t esp_gatt_perm_t
Type to represent GATT attribute permissions.

typedef uint8_t esp_gatt_char_prop_t
Type for characteristic properties bitmask.

typedef uint8_t esp_gatt_if_t
GATT interface type for client applications.

Enumerations

enum esp_gatt_prep_write_type

Defines the attribute write operation types from the client.
These values are used to specify the type of write operation in a prepare write sequence. relate to
BTA_GATT_PREP_WRITE_xxx in bta/bta_gatt_api.h.

Espressif Systems 266
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Values:

enumerator ESP_GATT_PREP_WRITE_CANCEL
Prepare write cancel. Corresponds to BTA_GATT_PREP_WRITE_CANCEL.

enumerator ESP_GATT_PREP_WRITE_EXEC
Prepare write execute. Corresponds to BTA_GATT_PREP_WRITE_EXEC.

enum esp_gatt_status_t

GATT operation status codes.
These status codes are used to indicate the result of various GATT operations. relate to BTA_GATT_xxx in
bta/bta_gatt_api.h .
Values:

enumerator ESP_GATT_OK
0x0, Operation successful. Corresponds to BTA_GATT_OK.

enumerator ESP_GATT_INVALID_HANDLE
0x01, Invalid handle. Corresponds to BTA_GATT_INVALID_HANDLE.

enumerator ESP_GATT_READ_NOT_PERMIT
0x02, Read operation not permitted. Corresponds to BTA_GATT_READ_NOT_PERMIT.

enumerator ESP_GATT_WRITE_NOT_PERMIT
0x03, Write operation not permitted. Corresponds to BTA_GATT_WRITE_NOT_PERMIT.

enumerator ESP_GATT_INVALID_PDU
0x04, Invalid PDU. Corresponds to BTA_GATT_INVALID_PDU.

enumerator ESP_GATT_INSUF_AUTHENTICATION
0x05, Insufficient authentication. Corresponds to BTA_GATT_INSUF_AUTHENTICATION.

enumerator ESP_GATT_REQ_NOT_SUPPORTED
0x06, Request not supported. Corresponds to BTA_GATT_REQ_NOT_SUPPORTED.

enumerator ESP_GATT_INVALID_OFFSET
0x07, Invalid offset. Corresponds to BTA_GATT_INVALID_OFFSET.

enumerator ESP_GATT_INSUF_AUTHORIZATION
0x08, Insufficient authorization. Corresponds to BTA_GATT_INSUF_AUTHORIZATION.

enumerator ESP_GATT_PREPARE_Q_FULL
0x09, Prepare queue full. Corresponds to BTA_GATT_PREPARE_Q_FULL.

enumerator ESP_GATT_NOT_FOUND
0x0a, Not found. Corresponds to BTA_GATT_NOT_FOUND.

enumerator ESP_GATT_NOT_LONG
0x0b, Not long. Corresponds to BTA_GATT_NOT_LONG.

Espressif Systems 267
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GATT_INSUF_KEY_SIZE
0x0c, Insufficient key size. Corresponds to BTA_GATT_INSUF_KEY_SIZE.

enumerator ESP_GATT_INVALID_ATTR_LEN
0x0d, Invalid attribute length. Corresponds to BTA_GATT_INVALID_ATTR_LEN.

enumerator ESP_GATT_ERR_UNLIKELY
0x0e, Unlikely error. Corresponds to BTA_GATT_ERR_UNLIKELY.

enumerator ESP_GATT_INSUF_ENCRYPTION
0x0f, Insufficient encryption. Corresponds to BTA_GATT_INSUF_ENCRYPTION.

enumerator ESP_GATT_UNSUPPORT_GRP_TYPE
0x10, Unsupported group type. Corresponds to BTA_GATT_UNSUPPORT_GRP_TYPE.

enumerator ESP_GATT_INSUF_RESOURCE
0x11, Insufficient resource. Corresponds to BTA_GATT_INSUF_RESOURCE.

enumerator ESP_GATT_NO_RESOURCES
0x80, No resources. Corresponds to BTA_GATT_NO_RESOURCES.

enumerator ESP_GATT_INTERNAL_ERROR
0x81, Internal error. Corresponds to BTA_GATT_INTERNAL_ERROR.

enumerator ESP_GATT_WRONG_STATE
0x82, Wrong state. Corresponds to BTA_GATT_WRONG_STATE.

enumerator ESP_GATT_DB_FULL
0x83, Database full. Corresponds to BTA_GATT_DB_FULL.

enumerator ESP_GATT_BUSY
0x84, Busy. Corresponds to BTA_GATT_BUSY.

enumerator ESP_GATT_ERROR
0x85, Generic error. Corresponds to BTA_GATT_ERROR.

enumerator ESP_GATT_CMD_STARTED
0x86, Command started. Corresponds to BTA_GATT_CMD_STARTED.

enumerator ESP_GATT_ILLEGAL_PARAMETER
0x87, Illegal parameter. Corresponds to BTA_GATT_ILLEGAL_PARAMETER.

enumerator ESP_GATT_PENDING
0x88, Operation pending. Corresponds to BTA_GATT_PENDING.

enumerator ESP_GATT_AUTH_FAIL
0x89, Authentication failed. Corresponds to BTA_GATT_AUTH_FAIL.

Espressif Systems 268
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GATT_MORE
0x8a, More data available. Corresponds to BTA_GATT_MORE.

enumerator ESP_GATT_INVALID_CFG
0x8b, Invalid configuration. Corresponds to BTA_GATT_INVALID_CFG.

enumerator ESP_GATT_SERVICE_STARTED
0x8c, Service started. Corresponds to BTA_GATT_SERVICE_STARTED.

enumerator ESP_GATT_ENCRYPTED_MITM
0x0, Encrypted, with MITM protection. Corresponds to BTA_GATT_ENCRYPTED_MITM.

enumerator ESP_GATT_ENCRYPTED_NO_MITM
0x8d, Encrypted, without MITM protection. Corresponds to BTA_GATT_ENCRYPTED_NO_MITM.

enumerator ESP_GATT_NOT_ENCRYPTED
0x8e, Not encrypted. Corresponds to BTA_GATT_NOT_ENCRYPTED.

enumerator ESP_GATT_CONGESTED
0x8f, Congested. Corresponds to BTA_GATT_CONGESTED.

enumerator ESP_GATT_DUP_REG
0x90, Duplicate registration. Corresponds to BTA_GATT_DUP_REG.

enumerator ESP_GATT_ALREADY_OPEN
0x91, Already open. Corresponds to BTA_GATT_ALREADY_OPEN.

enumerator ESP_GATT_CANCEL
0x92, Operation cancelled. Corresponds to BTA_GATT_CANCEL.

enumerator ESP_GATT_STACK_RSP
0xe0, Stack response. Corresponds to BTA_GATT_STACK_RSP.

enumerator ESP_GATT_APP_RSP
0xe1, Application response. Corresponds to BTA_GATT_APP_RSP.

enumerator ESP_GATT_UNKNOWN_ERROR
0xef, Unknown error. Corresponds to BTA_GATT_UNKNOWN_ERROR.

enumerator ESP_GATT_CCC_CFG_ERR
0xfd, Client Characteristic Configuration Descriptor improperly configured. Corresponds to
BTA_GATT_CCC_CFG_ERR.

enumerator ESP_GATT_PRC_IN_PROGRESS
0xfe, Procedure already in progress. Corresponds to BTA_GATT_PRC_IN_PROGRESS.

enumerator ESP_GATT_OUT_OF_RANGE
0xff, Attribute value out of range. Corresponds to BTA_GATT_OUT_OF_RANGE.

Espressif Systems 269
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum esp_gatt_conn_reason_t

Enumerates reasons for GATT connection.
Values:

enumerator ESP_GATT_CONN_UNKNOWN
Unknown connection reason. Corresponds to BTA_GATT_CONN_UNKNOWN in bta/bta_gatt_api.h

enumerator ESP_GATT_CONN_L2C_FAILURE
General L2CAP failure. Corresponds to BTA_GATT_CONN_L2C_FAILURE in bta/bta_gatt_api.h

enumerator ESP_GATT_CONN_TIMEOUT
Connection timeout. Corresponds to BTA_GATT_CONN_TIMEOUT in bta/bta_gatt_api.h

enumerator ESP_GATT_CONN_TERMINATE_PEER_USER
Connection terminated by peer user. Corresponds to BTA_GATT_CONN_TERMINATE_PEER_USER
in bta/bta_gatt_api.h

enumerator ESP_GATT_CONN_TERMINATE_LOCAL_HOST
Connection terminated by local host. Corresponds to BTA_GATT_CONN_TERMINATE_LOCAL_HOST
in bta/bta_gatt_api.h

enumerator ESP_GATT_CONN_FAIL_ESTABLISH
Failure to establish connection. Corresponds to BTA_GATT_CONN_FAIL_ESTABLISH in
bta/bta_gatt_api.h

enumerator ESP_GATT_CONN_LMP_TIMEOUT
Connection failed due to LMP response timeout. Corresponds to
BTA_GATT_CONN_LMP_TIMEOUT in bta/bta_gatt_api.h

enumerator ESP_GATT_CONN_CONN_CANCEL
L2CAP connection cancelled. Corresponds to BTA_GATT_CONN_CONN_CANCEL in
bta/bta_gatt_api.h

enumerator ESP_GATT_CONN_NONE
No connection to cancel. Corresponds to BTA_GATT_CONN_NONE in bta/bta_gatt_api.h

enum esp_gatt_auth_req_t

Defines the GATT authentication request types.
This enumeration lists the types of authentication requests that can be made. It corresponds to the
BTA_GATT_AUTH_REQ_xxx values defined in bta/bta_gatt_api.h. The types include options for
no authentication, unauthenticated encryption, authenticated encryption, and both signed versions with and
without MITM (Man-In-The-Middle) protection.
Values:

enumerator ESP_GATT_AUTH_REQ_NONE
No authentication required. Corresponds to BTA_GATT_AUTH_REQ_NONE.

enumerator ESP_GATT_AUTH_REQ_NO_MITM
Unauthenticated encryption. Corresponds to BTA_GATT_AUTH_REQ_NO_MITM.

Espressif Systems 270
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GATT_AUTH_REQ_MITM
Authenticated encryption (MITM protection). Corresponds to BTA_GATT_AUTH_REQ_MITM.

enumerator ESP_GATT_AUTH_REQ_SIGNED_NO_MITM
Signed data, no MITM protection. Corresponds to BTA_GATT_AUTH_REQ_SIGNED_NO_MITM.

enumerator ESP_GATT_AUTH_REQ_SIGNED_MITM
Signed data with MITM protection. Corresponds to BTA_GATT_AUTH_REQ_SIGNED_MITM.

enum esp_service_source_t

Enumerates the possible sources of a GATT service discovery.
This enumeration identifies the source of a GATT service discovery process, indicating whether the service
information was obtained from a remote device, from NVS (Non-Volatile Storage) flash, or the source is
unknown.
Values:

enumerator ESP_GATT_SERVICE_FROM_REMOTE_DEVICE
Service information from a remote device. Relates to BTA_GATTC_SERVICE_INFO_FROM_REMOTE_DEVICE.

enumerator ESP_GATT_SERVICE_FROM_NVS_FLASH
Service information fromNVSflash. Relates to BTA_GATTC_SERVICE_INFO_FROM_NVS_FLASH.

enumerator ESP_GATT_SERVICE_FROM_UNKNOWN
Service source is unknown. Relates to BTA_GATTC_SERVICE_INFO_FROM_UNKNOWN.

enum esp_gatt_write_type_t

Defines the types of GATT write operations.
Values:

enumerator ESP_GATT_WRITE_TYPE_NO_RSP
Write operation where no response is needed.

enumerator ESP_GATT_WRITE_TYPE_RSP
Write operation that requires a remote response.

enum esp_gatt_db_attr_type_t

Enumerates types of GATT database attributes.
Values:

enumerator ESP_GATT_DB_PRIMARY_SERVICE
Primary service attribute.

enumerator ESP_GATT_DB_SECONDARY_SERVICE
Secondary service attribute.

enumerator ESP_GATT_DB_CHARACTERISTIC
Characteristic attribute.

Espressif Systems 271
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GATT_DB_DESCRIPTOR
Descriptor attribute.

enumerator ESP_GATT_DB_INCLUDED_SERVICE
Included service attribute.

enumerator ESP_GATT_DB_ALL
All attribute types.

GATT SERVER API

Application Example Check bluetooth/bluedroid/ble folder in ESP-IDF examples, which contains the following
demos and their tutorials:

• This is a GATT sever demo and its tutorial. This demo creates a GATT service with an attribute table, which
releases the user from adding attributes one by one. This is the recommended method of adding attributes.

– bluetooth/bluedroid/ble/gatt_server_service_table
– GATT Server Service Table Example Walkthrough

• This is a GATT server demo and its tutorial. This demo creates a GATT service by adding attributes one by
one as defined by Bluedroid. The recommended method of adding attributes is presented in example above.

– bluetooth/bluedroid/ble/gatt_server
– GATT Server Example Walkthrough

• This is a BLE SPP-Like demo. This demo, which acts as a GATT server, can receive data from UART and
then send the data to the peer device automatically.

– bluetooth/bluedroid/ble/ble_spp_server

API Reference

Header File
• components/bt/host/bluedroid/api/include/api/esp_gatts_api.h

Functions
esp_err_t esp_ble_gatts_register_callback(esp_gatts_cb_t callback)

Register GATT Server application callbacks.

Note: Avoid performing time-consuming operations within the callback functions.

Parameters callback -- [in] The pointer to the application callback function
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

esp_gatts_cb_t esp_ble_gatts_get_callback(void)
Get the current GATT Server application callback.

Returns
• esp_gatts_cb_t: Current callback

esp_err_t esp_ble_gatts_app_register(uint16_t app_id)
Register GATT Server application.

Note:

Espressif Systems 272
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_server_service_table
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_server_service_table/tutorial/Gatt_Server_Service_Table_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_server
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_server/tutorial/Gatt_Server_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble/ble_spp_server
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/host/bluedroid/api/include/api/esp_gatts_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

a. This function triggers ESP_GATTS_REG_EVT.
b. The maximum number of applications is limited to 6.

Parameters app_id -- [in] The UUID for different application
Returns

• ESP_OK: Success
• ESP_ERR_INVALID_ARG: The input app_id exceeds ESP_APP_ID_MAX (0x7fff)
defined in esp_bt_defs.h.

• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gatts_app_unregister(esp_gatt_if_t gatts_if)
Unregister an GATT Server application.

Note:
a. This function triggers ESP_GATTS_UNREG_EVT.
b. The maximum number of applications is limited to 6.

Parameters gatts_if -- [in] GATT Server access interface.
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gatts_create_service(esp_gatt_if_t gatts_if, esp_gatt_srvc_id_t *service_id,
uint16_t num_handle)

Create a GATT Server service.

Note:
a. This function triggers ESP_GATTS_CREATE_EVT.
b. num_handle should not be greater than CONFIG_BT_GATT_MAX_SR_ATTRIBUTES.

Parameters
• gatts_if -- [in] GATT Server access interface
• service_id -- [in] The pointer to the Service ID
• num_handle -- [in] The number of handles requested for this service.

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gatts_create_attr_tab(const esp_gatts_attr_db_t *gatts_attr_db, esp_gatt_if_t
gatts_if, uint16_t max_nb_attr, uint8_t srvc_inst_id)

Create a service attribute table.

Note:
a. This function triggers ESP_GATTS_CREAT_ATTR_TAB_EVT.
b. max_nb_attr should not be greater than CONFIG_BT_GATT_MAX_SR_ATTRIBUTES.

Parameters
• gatts_attr_db -- [in] The pointer to the service attribute table
• gatts_if -- [in] GATT Server access interface
• max_nb_attr -- [in] The number of attributes to be added to the service database

Espressif Systems 273
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• srvc_inst_id -- [in] The instance ID of the service
Returns

• ESP_OK: Success
• ESP_ERR_INVALID_ARG: Invalid max_nb_attr
• ESP_FAIL: Failure

esp_err_t esp_ble_gatts_add_included_service(uint16_t service_handle, uint16_t
included_service_handle)

Add an included service.

Note:
a. This function triggers ESP_GATTS_ADD_INCL_SRVC_EVT.
b. This function has to be called between esp_ble_gatts_create_service and

esp_ble_gatts_add_char.

Parameters
• service_handle -- [in] Target service handle to add
• included_service_handle -- [in] The handle of included service to be added

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gatts_add_char(uint16_t service_handle, esp_bt_uuid_t *char_uuid, esp_gatt_perm_t
perm, esp_gatt_char_prop_t property, esp_attr_value_t *char_val,
esp_attr_control_t *control)

Add a characteristic into a service.

Note:
a. This function triggers ESP_GATTS_ADD_CHAR_EVT.
b. control->auto_rsp should be set to ESP_GATT_AUTO_RSP or ESP_GATT_RSP_BY_APP.
c. For stack respond attribute (ESP_GATT_AUTO_RSP), char_val should not be NULL and
char_val->attr_max_len must be greater than 0.

Parameters
• service_handle -- [in] Target service handle to add the characteristic
• char_uuid -- [in] The pointer to the characteristic UUID
• perm -- [in] Characteristic value declaration attribute permission
• property -- [in] Characteristic Properties
• char_val -- [in] The pointer to the characteristic value
• control -- [in] The pointer to the attribute response control byte

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_ARG: Invalid arguments
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gatts_add_char_descr(uint16_t service_handle, esp_bt_uuid_t *descr_uuid,
esp_gatt_perm_t perm, esp_attr_value_t *char_descr_val,
esp_attr_control_t *control)

Add a characteristic descriptor.

Note:
a. This function triggers ESP_GATTS_ADD_CHAR_DESCR_EVT.

Espressif Systems 274
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

b. control->auto_rsp should be set to ESP_GATT_AUTO_RSP or ESP_GATT_RSP_BY_APP.
c. For stack respond attribute (ESP_GATT_AUTO_RSP), char_val should not be NULL and
char_val->attr_max_len must be greater than 0.

Parameters
• service_handle -- [in] Target service handle to add the characteristic descriptor
• descr_uuid -- [in] The pointer to the descriptor UUID
• perm -- [in] Descriptor access permission
• char_descr_val -- [in] The pointer to the characteristic descriptor value
• control -- [in] The pointer to the attribute response control byte

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_ARG: Invalid arguments
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gatts_delete_service(uint16_t service_handle)
Delete a service.

Note: This function triggers ESP_GATTS_DELETE_EVT.

Parameters service_handle -- [in] Target service handle to delete
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gatts_start_service(uint16_t service_handle)
Start a service.

Note: This function triggers ESP_GATTS_START_EVT.

Parameters service_handle -- [in] Target service handle to start
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gatts_stop_service(uint16_t service_handle)
Stop a service.

Note: This function triggers ESP_GATTS_STOP_EVT.

Parameters service_handle -- [in] Target service handle to stop
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gatts_send_indicate(esp_gatt_if_t gatts_if, uint16_t conn_id, uint16_t attr_handle,
uint16_t value_len, uint8_t *value, bool need_confirm)

Send indication or notification to a GATT Client.

Note:
a. This function triggers ESP_GATTS_CONF_EVT.

Espressif Systems 275
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

b. The size of indication or notification data must be less than or equal to MTU size, see
esp_ble_gattc_send_mtu_req.

c. This function should be called only after the connection has been established.

Parameters
• gatts_if -- [in] GATT Server access interface
• conn_id -- [in] Connection ID
• attr_handle -- [in] Attribute handle to indicate
• value_len -- [in] Indication value length in bytes
• value -- [in] Value to indicate
• need_confirm -- [in] True if a confirmation is required, which is a GATT indication;
false if the confirmation is not required, which is a GATT notification.

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: The connection has not been established.
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gatts_send_response(esp_gatt_if_t gatts_if, uint16_t conn_id, uint32_t trans_id,
esp_gatt_status_t status, esp_gatt_rsp_t *rsp)

Send a response to a request.

Note:
a. This function triggers ESP_GATTS_RESPONSE_EVT.
b. This function should be called only after the connection has been established.

Parameters
• gatts_if -- [in] GATT Server access interface
• conn_id -- [in] Connection ID
• trans_id -- [in] Transfer ID
• status -- [in] Response status
• rsp -- [in] The pointer to the response data

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: The connection has not been established.
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gatts_set_attr_value(uint16_t attr_handle, uint16_t length, const uint8_t *value)
Set the attribute value.

Note: This function triggers ESP_GATTS_SET_ATTR_VAL_EVT.

Parameters
• attr_handle -- [in] Target attribute handle to set the value
• length -- [in] The value length in bytes
• value -- [in] The pointer to the attribute value

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_gatt_status_t esp_ble_gatts_get_attr_value(uint16_t attr_handle, uint16_t *length, const uint8_t
**value)

Retrieve attribute value.

Espressif Systems 276
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note:
a. This function does not trigger any event.
b. attr_handle must be greater than 0.

Parameters
• attr_handle -- [in] Attribute handle
• length -- [out] The pointer to the attribute value length in bytes
• value -- [out] The pointer to attribute value payload. This value cannot be modified by
user.

Returns
• ESP_OK: Success
• ESP_GATT_INVALID_HANDLE: Invalid attr_handle
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gatts_open(esp_gatt_if_t gatts_if, esp_bd_addr_t remote_bda, bool is_direct)
Create an ACL connection when BT_BLE_42_FEATURES_SUPPORTED is enabled in the menuconfig.

Note:
a. The function always triggers ESP_GATTS_CONNECT_EVT and ESP_GATTS_OPEN_EVT.
b. When the device acts as GATT Server, besides the above two events, this function triggers

ESP_GATTS_CONNECT_EVT as well.
c. This function will establish an ACL connection as a Central and a virtual connection as a GATT Server.

If the ACL connection already exists, it will create a virtual connection only.

Parameters
• gatts_if -- [in] GATT Server access interface
• remote_bda -- [in] Remote device address
• is_direct -- [in] True indicates a direct connection, while False indicates a back-
ground auto connection. Currently, background auto connection is not supported, so
please always set this parameter to True.

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gatts_close(esp_gatt_if_t gatts_if, uint16_t conn_id)
Close a connection with a remote device.

Note:
a. This function triggers ESP_GATTS_CLOSE_EVT.
b. There may be multiple virtual GATT server connections when multiple app_id got registered.
c. This API closes one virtual GATT server connection only, if there exist other virtual GATT server con-

nections. It does not close the physical connection.
d. The API esp_ble_gap_disconnect can be used to disconnect the physical connection directly.
e. If there is only one virtual GATT connection left, this API will terminate the ACL connec-

tion in addition, and trigger ESP_GATTS_DISCONNECT_EVT. Then there is no need to call
esp_ble_gap_disconnect anymore.

Parameters
• gatts_if -- [in] GATT Server access interface
• conn_id -- [in] Connection ID to be closed

Returns

Espressif Systems 277
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gatts_send_service_change_indication(esp_gatt_if_t gatts_if,
esp_bd_addr_t remote_bda)

Send service change indication.

Note: This function triggers ESP_GATTS_SEND_SERVICE_CHANGE_EVT.

Parameters
• gatts_if -- [in] GATT Server access interface
• remote_bda -- [in] Remote device address. If remote_bda is NULL then it will send
service change indication to all the connected devices and if not then to a specific device.

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gatts_show_local_database(void)
Display the Server's local attribute database.
This API prints the local attribute database of the BLE server, including details of all services, characteristics,
and descriptors.

Note:
a. This function does not trigger any event.
b. It is primarily intended for debugging purposes to verify the server's current configuration.

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

Unions

union esp_ble_gatts_cb_param_t
#include <esp_gatts_api.h> GATT Server callback parameters.

Public Members

struct esp_ble_gatts_cb_param_t::gatts_reg_evt_param reg

Callback parameter for the event ESP_GATTS_REG_EVT

struct esp_ble_gatts_cb_param_t::gatts_read_evt_param read

Callback parameter for the event ESP_GATTS_READ_EVT

struct esp_ble_gatts_cb_param_t::gatts_write_evt_param write

Callback parameter for the event ESP_GATTS_WRITE_EVT

struct esp_ble_gatts_cb_param_t::gatts_exec_write_evt_param exec_write

Callback parameter for the event ESP_GATTS_EXEC_WRITE_EVT

Espressif Systems 278
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_gatts_cb_param_t::gatts_mtu_evt_param mtu

Callback parameter for the event ESP_GATTS_MTU_EVT

struct esp_ble_gatts_cb_param_t::gatts_conf_evt_param conf

Callback parameter for the event ESP_GATTS_CONF_EVT

struct esp_ble_gatts_cb_param_t::gatts_create_evt_param create

Callback parameter for the event ESP_GATTS_CREATE_EVT

struct esp_ble_gatts_cb_param_t::gatts_add_incl_srvc_evt_param add_incl_srvc

Callback parameter for the event ESP_GATTS_ADD_INCL_SRVC_EVT

struct esp_ble_gatts_cb_param_t::gatts_add_char_evt_param add_char

Callback parameter for the event ESP_GATTS_ADD_CHAR_EVT

struct esp_ble_gatts_cb_param_t::gatts_add_char_descr_evt_param add_char_descr

Callback parameter for the event ESP_GATTS_ADD_CHAR_DESCR_EVT

struct esp_ble_gatts_cb_param_t::gatts_delete_evt_param del

Callback parameter for the event ESP_GATTS_DELETE_EVT

struct esp_ble_gatts_cb_param_t::gatts_start_evt_param start

Callback parameter for the event ESP_GATTS_START_EVT

struct esp_ble_gatts_cb_param_t::gatts_stop_evt_param stop

Callback parameter for the event ESP_GATTS_STOP_EVT

struct esp_ble_gatts_cb_param_t::gatts_connect_evt_param connect

Callback parameter for the event ESP_GATTS_CONNECT_EVT

struct esp_ble_gatts_cb_param_t::gatts_disconnect_evt_param disconnect

Callback parameter for the event ESP_GATTS_DISCONNECT_EVT

struct esp_ble_gatts_cb_param_t::gatts_open_evt_param open

Callback parameter for the event ESP_GATTS_OPEN_EVT

struct esp_ble_gatts_cb_param_t::gatts_cancel_open_evt_param cancel_open

Callback parameter for the event ESP_GATTS_CANCEL_OPEN_EVT

struct esp_ble_gatts_cb_param_t::gatts_close_evt_param close

Callback parameter for the event ESP_GATTS_CLOSE_EVT

struct esp_ble_gatts_cb_param_t::gatts_congest_evt_param congest

Callback parameter for the event ESP_GATTS_CONGEST_EVT

struct esp_ble_gatts_cb_param_t::gatts_rsp_evt_param rsp

Callback parameter for the event ESP_GATTS_RESPONSE_EVT

Espressif Systems 279
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_gatts_cb_param_t::gatts_add_attr_tab_evt_param add_attr_tab

Callback parameter for the event ESP_GATTS_CREAT_ATTR_TAB_EVT

struct esp_ble_gatts_cb_param_t::gatts_set_attr_val_evt_param set_attr_val

Callback parameter for the event ESP_GATTS_SET_ATTR_VAL_EVT

struct esp_ble_gatts_cb_param_t::gatts_send_service_change_evt_param service_change

Callback parameter for the event ESP_GATTS_SEND_SERVICE_CHANGE_EVT

struct gatts_add_attr_tab_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_CREAT_ATTR_TAB_EVT

Public Members

esp_gatt_status_t status

Operation status

esp_bt_uuid_t svc_uuid

Service UUID type

uint8_t svc_inst_id
Service ID

uint16_t num_handle
The number of the attribute handles which have been added to the GATT Service table

uint16_t *handles
The handles which have been added to the table

struct gatts_add_char_descr_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_ADD_CHAR_DESCR_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t attr_handle
Descriptor attribute handle

uint16_t service_handle
Service attribute handle

esp_bt_uuid_t descr_uuid

Characteristic descriptor UUID

struct gatts_add_char_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_ADD_CHAR_EVT

Espressif Systems 280
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_gatt_status_t status

Operation status

uint16_t attr_handle
Characteristic attribute handle

uint16_t service_handle
Service attribute handle

esp_bt_uuid_t char_uuid

Characteristic UUID

struct gatts_add_incl_srvc_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_ADD_INCL_SRVC_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t attr_handle
Included service attribute handle

uint16_t service_handle
Service attribute handle

struct gatts_cancel_open_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_CANCEL_OPEN_EVT

Public Members

esp_gatt_status_t status

Operation status

struct gatts_close_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_CLOSE_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

Espressif Systems 281
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct gatts_conf_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_CONF_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

uint16_t handle
Attribute handle

uint16_t len
The length of indication or notification value in bytes. The length is invalid if the notification or
indication failed.

uint8_t *value
The indication or notification value. The value is invalid if the notification or indication failed.

struct gatts_congest_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_CONGEST_EVT

Public Members

uint16_t conn_id
Connection ID

bool congested
True indicates the connection is congested; false otherwise.

struct gatts_connect_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_CONNECT_EVT

Public Members

uint16_t conn_id
Connection ID

uint8_t link_role
Link role: master role = 0; slave role = 1

esp_bd_addr_t remote_bda

Remote device address

Espressif Systems 282
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_gatt_conn_params_t conn_params

Current connection parameters

esp_ble_addr_type_t ble_addr_type

Remote device address type

uint16_t conn_handle
HCI connection handle

struct gatts_create_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_CREATE_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t service_handle
Service attribute handle

esp_gatt_srvc_id_t service_id

Service ID, including service UUID and other information

struct gatts_delete_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_DELETE_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t service_handle
Service attribute handle

struct gatts_disconnect_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_DISCONNECT_EVT

Public Members

uint16_t conn_id
Connection ID

esp_bd_addr_t remote_bda

Remote device address

Espressif Systems 283
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_gatt_conn_reason_t reason

The reason of disconnection

struct gatts_exec_write_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_EXEC_WRITE_EVT

Public Members

uint16_t conn_id
Connection ID

uint32_t trans_id
Transfer ID

esp_bd_addr_t bda

The bluetooth device address to write

uint8_t exec_write_flag
Execute write flag: ESP_GATT_PREP_WRITE_CANCEL or ESP_GATT_PREP_WRITE_EXEC

struct gatts_mtu_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_MTU_EVT

Public Members

uint16_t conn_id
Connection ID

uint16_t mtu
MTU size

struct gatts_open_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_OPEN_EVT

Public Members

esp_gatt_status_t status

Operation status

struct gatts_read_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_READ_EVT

Public Members

uint16_t conn_id
Connection ID

Espressif Systems 284
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t trans_id
Transfer ID

esp_bd_addr_t bda

The device address to read

uint16_t handle
The attribute handle

uint16_t offset
The position offset to read. If the length of value is less than or equal to the MTU size, this value is
0.

bool is_long
True indicates that the length of value is greater than the MTU size; false otherwise.

bool need_rsp
True indicates that the esp_ble_gatts_send_response is required in the following step;
false otherwise.

struct gatts_reg_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_REG_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t app_id
Application ID

struct gatts_rsp_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_RESPONSE_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

uint16_t handle
Attribute handle which sends the response

struct gatts_send_service_change_evt_param
#include <esp_gatts_api.h>Callback parameter for the eventESP_GATTS_SEND_SERVICE_CHANGE_EVT

Espressif Systems 285
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_gatt_status_t status

Operation status

struct gatts_set_attr_val_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_SET_ATTR_VAL_EVT

Public Members

uint16_t srvc_handle
The service handle

uint16_t attr_handle
The attribute handle

esp_gatt_status_t status

Operation status

struct gatts_start_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_START_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t service_handle
Service attribute handle

struct gatts_stop_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_STOP_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t service_handle
Service attribute handle

struct gatts_write_evt_param
#include <esp_gatts_api.h> Callback parameter for the event ESP_GATTS_WRITE_EVT

Espressif Systems 286
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t conn_id
Connection ID

uint32_t trans_id
Transfer ID

esp_bd_addr_t bda

The device address to write

uint16_t handle
The attribute handle

uint16_t offset
The position offset to write. If the length of value is less than or equal to the MTU size, this value
is 0.

bool need_rsp
True indicates that the esp_ble_gatts_send_response is required in the following step;
false otherwise.

bool is_prep
True indicates the write operation is a prepared write operation

uint16_t len
The length of the write attribute value in bytes

uint8_t *value
The write attribute value

Macros

ESP_GATT_PREP_WRITE_CANCEL

Flag to indicate the cancellation of a prepare write operation

ESP_GATT_PREP_WRITE_EXEC

Flag to indicate the execution of a prepare write operation

Type Definitions

typedef void (*esp_gatts_cb_t)(esp_gatts_cb_event_t event, esp_gatt_if_t gatts_if, esp_ble_gatts_cb_param_t
*param)

GATT Server callback function type.
Param event [in] Event type
Param gatts_if [in] GATT Server access interface. Typically, different gatts_if values cor-

respond to different profiles.
Param param [in] The pointer to the callback parameter, which is of a union type.

Espressif Systems 287
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enumerations

enum esp_gatts_cb_event_t

GATT Server callback function events.
Values:

enumerator ESP_GATTS_REG_EVT
This event is triggered when a GATT Server application is registered using
esp_ble_gatts_app_register.

enumerator ESP_GATTS_READ_EVT
This event is triggered when the read request from the Client is received.

enumerator ESP_GATTS_WRITE_EVT
This event is triggered when the write request from the Client is received.

enumerator ESP_GATTS_EXEC_WRITE_EVT
This event is triggered when the write execution request from the Client is received.

enumerator ESP_GATTS_MTU_EVT
This event is triggered when the MTU configuration request from the Client is received.

enumerator ESP_GATTS_CONF_EVT
This event is triggered when the confirmation from the Client is received.

enumerator ESP_GATTS_UNREG_EVT
This event is triggered when a GATT Server application is unregistered using
esp_ble_gatts_app_unregister.

enumerator ESP_GATTS_CREATE_EVT
This event is triggered when a GATT Server service is created using
esp_ble_gatts_create_service.

enumerator ESP_GATTS_ADD_INCL_SRVC_EVT
This event is triggered when an included service is added using
esp_ble_gatts_add_included_service.

enumerator ESP_GATTS_ADD_CHAR_EVT
This event is triggered when a characteristic is added to the service using
esp_ble_gatts_add_char.

enumerator ESP_GATTS_ADD_CHAR_DESCR_EVT
This event is triggered when a characteristic descriptor is added to the service using
esp_ble_gatts_add_char_descr.

enumerator ESP_GATTS_DELETE_EVT
This event is triggered when the service is deleted using esp_ble_gatts_delete_service.

enumerator ESP_GATTS_START_EVT
This event is triggered when the service is started using esp_ble_gatts_start_service.

Espressif Systems 288
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GATTS_STOP_EVT
This event is triggered when the service is stopped using esp_ble_gatts_stop_service.

enumerator ESP_GATTS_CONNECT_EVT
This event is triggered when a physical connection is set up.

enumerator ESP_GATTS_DISCONNECT_EVT
This event is triggered when a physical connection is terminated.

enumerator ESP_GATTS_OPEN_EVT
This event is triggered when a virtual connection is created using esp_ble_gatts_open.

enumerator ESP_GATTS_CANCEL_OPEN_EVT
Deprecated.

enumerator ESP_GATTS_CLOSE_EVT
This event is triggered when a virtual connection is closed using esp_ble_gatts_close.

enumerator ESP_GATTS_LISTEN_EVT
Deprecated.

enumerator ESP_GATTS_CONGEST_EVT
This event is triggered when the GATT connection is congested.

enumerator ESP_GATTS_RESPONSE_EVT
This event is triggered when a response is sent to the request using
esp_ble_gatts_send_response.

enumerator ESP_GATTS_CREAT_ATTR_TAB_EVT
This event is triggered when a service attribute table is created using
esp_ble_gatts_create_attr_tab.

enumerator ESP_GATTS_SET_ATTR_VAL_EVT
This event is triggered when an attribute value is set using esp_ble_gatts_set_attr_value.

enumerator ESP_GATTS_SEND_SERVICE_CHANGE_EVT
This event is triggered when a service change indication is sent using
esp_ble_gatts_send_service_change_indication.

GATT CLIENT API

Application Example Check bluetooth/bluedroid/ble folder in ESP-IDF examples, which contains the following
demos and their tutorials:

• This is a GATT client demo and its tutorial. This demo can scan for devices, connect to the GATT server and
discover its services.

– bluetooth/bluedroid/ble/gatt_client
– GATT Client Example Walkthrough

• This is a multiple connection demo and its tutorial. This demo can connect to multiple GATT server devices
and discover their services.

– bluetooth/bluedroid/ble/gattc_multi_connect

Espressif Systems 289
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_client
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_client/tutorial/Gatt_Client_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble/gattc_multi_connect
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

– GATT Client Multi-connection Example Walkthrough
• This is a BLE SPP-Like demo. This demo, which acts as a GATT client, can receive data from UART and
then send the data to the peer device automatically.

– bluetooth/bluedroid/ble/ble_spp_client

API Reference

Header File
• components/bt/host/bluedroid/api/include/api/esp_gattc_api.h

Functions
esp_err_t esp_ble_gattc_register_callback(esp_gattc_cb_t callback)

Register GATT Client application callbacks.

Note: Avoid performing time-consuming operations within the callback functions.

Parameters callback -- [in] The pointer to the application callback function
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

esp_gattc_cb_t esp_ble_gattc_get_callback(void)
Get the current application callbacks.

Returns
• esp_gattc_cb_t: Current callback

esp_err_t esp_ble_gattc_app_register(uint16_t app_id)
Register a GATT Client application.

Note:
a. This function triggers ESP_GATTC_REG_EVT.
b. The maximum number of applications is limited to 4.

Parameters app_id -- [in] The UUID for different application
Returns

• ESP_OK: Success
• ESP_ERR_INVALID_ARG: The input app_id exceeds ESP_APP_ID_MAX (0x7fff)
defined in esp_bt_defs.h

• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gattc_app_unregister(esp_gatt_if_t gattc_if)
Unregister a GATT Client application.

Note: This function triggers ESP_GATTC_UNREG_EVT.

Parameters gattc_if -- [in] GATT Client access interface
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

Espressif Systems 290
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gattc_multi_connect/tutorial/Gatt_Client_Multi_Connection_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble/ble_spp_client
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/host/bluedroid/api/include/api/esp_gattc_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_gattc_enh_open(esp_gatt_if_t gattc_if, esp_ble_gatt_creat_conn_params_t
*esp_gatt_create_conn)

Create an ACL connection.

Note:
a. Do not enableBT_BLE_42_FEATURES_SUPPORTED andBT_BLE_50_FEATURES_SUPPORTED

in the menuconfig simultaneously.
a. The function always triggers ESP_GATTC_CONNECT_EVT and ESP_GATTC_OPEN_EVT.
b. When the device acts as GATT server, besides the above two events, this function triggers

ESP_GATTS_CONNECT_EVT as well.
c. This function will establish an ACL connection as a Central and a virtual connection as a GATT Client.

If the ACL connection already exists, it will create a virtual connection only.

Parameters
• gattc_if -- [in] GATT client access interface.
• esp_gatt_create_conn -- [in] Pointer to the structure containing connection pa-
rameters.

Returns
• ESP_OK: Success
• others: Operation failed

esp_err_t esp_ble_gattc_open(esp_gatt_if_t gattc_if, esp_bd_addr_t remote_bda, esp_ble_addr_type_t
remote_addr_type, bool is_direct)

Create an ACL connection when BT_BLE_42_FEATURES_SUPPORTED is enabled in the menuconfig.

Note:
a. The function always triggers ESP_GATTC_CONNECT_EVT and ESP_GATTC_OPEN_EVT.
b. When the device acts as GATT server, besides the above two events, this function triggers

ESP_GATTS_CONNECT_EVT as well.
c. This function will establish an ACL connection as a Central and a virtual connection as a GATT Client.

If the ACL connection already exists, it will create a virtual connection only.

Parameters
• gattc_if -- [in] GATT Client access interface
• remote_bda -- [in] Remote device address
• remote_addr_type -- [in] Remote device address type
• is_direct -- [in] True indicates a direct connection, while False indicates a back-
ground auto connection. By now, background auto connection is not supported, please
always pass True to this parameter.

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gattc_aux_open(esp_gatt_if_t gattc_if, esp_bd_addr_t remote_bda,
esp_ble_addr_type_t remote_addr_type, bool is_direct)

Create an ACL connection when BT_BLE_50_FEATURES_SUPPORTED is enabled in the menuconfig.

Note:
a. The function always triggers ESP_GATTC_CONNECT_EVT and ESP_GATTC_OPEN_EVT.
b. When the device acts as GATT server, besides the above two events, this function triggers

ESP_GATTS_CONNECT_EVT as well.

Espressif Systems 291
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

c. This function will establish an ACL connection as a Central and a virtual connection as a GATT Client.
If the ACL connection already exists, it will create a virtual connection only.

Parameters
• gattc_if -- [in] GATT Client access interface
• remote_bda -- [in] Remote device address
• remote_addr_type -- [in] Remote device address type
• is_direct -- [in] True indicates a direct connection, while False indicates a back-
ground auto connection. By now, background auto connection is not supported, please
always pass True to this parameter.

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gattc_close(esp_gatt_if_t gattc_if, uint16_t conn_id)
Close the virtual GATT Client connection.

Note:
a. This function triggers ESP_GATTC_CLOSE_EVT.
b. There may be multiple virtual GATT server connections when multiple app_id got registered.
c. This API closes one virtual GATT server connection only, if there exist other virtual GATT server con-

nections. It does not close the physical connection.
d. The API esp_ble_gap_disconnect can be used to disconnect the physical connection directly.
e. If there is only one virtual GATT connection left, this API will terminate the ACL connec-

tion in addition and triggers ESP_GATTC_DISCONNECT_EVT. Then there is no need to call
esp_ble_gap_disconnect anymore.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID to be closed

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gattc_send_mtu_req(esp_gatt_if_t gattc_if, uint16_t conn_id)
Configure the MTU size in the GATT channel.

Note:
a. This function triggers ESP_GATTC_CFG_MTU_EVT.
b. You could call esp_ble_gatt_set_local_mtu to set the desired MTU size locally before this

API. If not set, the GATT channel uses the default MTU size (23 bytes).

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gattc_search_service(esp_gatt_if_t gattc_if, uint16_t conn_id, esp_bt_uuid_t
*filter_uuid)

Search services from the local GATTC cache.

Espressif Systems 292
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note:
a. This function triggers ESP_GATTC_SEARCH_RES_EVT each time a service is retrieved.
b. This function triggers ESP_GATTC_SEARCH_CMPL_EVT when the search is completed.
c. The 128-bit base UUID will be converted to a 16-bit UUID automatically in the search results. Other

types of UUID remain unchanged.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• filter_uuid -- [in] A UUID of the intended service. If NULL is passed, this API
will return all services.

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_gatt_status_t esp_ble_gattc_get_service(esp_gatt_if_t gattc_if, uint16_t conn_id, esp_bt_uuid_t
*svc_uuid, esp_gattc_service_elem_t *result, uint16_t
*count, uint16_t offset)

Get the service with the given service UUID in the local GATTC cache.

Note:
a. This API does not trigger any event.
b. esp_ble_gattc_cache_refresh can be used to discover services again.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• svc_uuid -- [in] The pointer to the service UUID. If NULL is passed, the API will
retrieve all services.

• result -- [out] The pointer to the service which has been found in the local GATTC
cache

• count -- [inout] The number of services to retrieve. It will be updated with the actual
number of services found.

• offset -- [in] The position offset to retrieve
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

esp_gatt_status_t esp_ble_gattc_get_all_char(esp_gatt_if_t gattc_if, uint16_t conn_id, uint16_t
start_handle, uint16_t end_handle,
esp_gattc_char_elem_t *result, uint16_t *count, uint16_t
offset)

Get all characteristics with the given handle range in the local GATTC cache.

Note:
a. This API does not trigger any event.
b. start_handle must be greater than 0, and smaller than end_handle.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID

Espressif Systems 293
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• start_handle -- [in] The attribute start handle
• end_handle -- [in] The attribute end handle
• result -- [out] The pointer to the characteristic in the service
• count -- [inout] The number of characteristics to retrieve. It will be updated with the
actual number of characteristics found.

• offset -- [in] The position offset to retrieve
Returns

• ESP_OK: Success
• ESP_GATT_INVALID_HANDLE: Invalid GATT start_handle or end_handle
• ESP_GATT_INVALID_PDU: NULL pointer to result or NULL pointer to count
or the count value is 0

• ESP_FAIL: Failure due to other reasons

esp_gatt_status_t esp_ble_gattc_get_all_descr(esp_gatt_if_t gattc_if, uint16_t conn_id, uint16_t
char_handle, esp_gattc_descr_elem_t *result, uint16_t
*count, uint16_t offset)

Get all descriptors with the given characteristic in the local GATTC cache.

Note:
a. This API does not trigger any event.
b. char_handle must be greater than 0.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID which identifies the server
• char_handle -- [in] The given characteristic handle
• result -- [out] The pointer to the descriptor in the characteristic
• count -- [inout] The number of descriptors to retrieve. It will be updated with the actual
number of descriptors found.

• offset -- [in] The position offset to retrieve
Returns

• ESP_OK: Success
• ESP_GATT_INVALID_HANDLE: Invalid GATT char_handle
• ESP_GATT_INVALID_PDU: NULL pointer to result or NULL pointer to count
or the count value is 0

• ESP_FAIL: Failure due to other reasons

esp_gatt_status_t esp_ble_gattc_get_char_by_uuid(esp_gatt_if_t gattc_if, uint16_t conn_id, uint16_t
start_handle, uint16_t end_handle, esp_bt_uuid_t
char_uuid, esp_gattc_char_elem_t *result,
uint16_t *count)

Get the characteristic with the given characteristic UUID in the local GATTC cache.

Note:
a. This API does not trigger any event.
b. start_handle must be greater than 0, and smaller than end_handle.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• start_handle -- [in] The attribute start handle
• end_handle -- [in] The attribute end handle
• char_uuid -- [in] The characteristic UUID

Espressif Systems 294
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• result -- [out] The pointer to the characteristic in the service
• count -- [inout] The number of characteristics to retrieve. It will be updated with the
actual number of characteristics found.

Returns
• ESP_OK: Success
• ESP_GATT_INVALID_HANDLE: Invalid GATT start_handle or end_handle
• ESP_GATT_INVALID_PDU: NULL pointer to result or NULL pointer to count
or the count value is 0

• ESP_FAIL: Failure due to other reasons

esp_gatt_status_t esp_ble_gattc_get_descr_by_uuid(esp_gatt_if_t gattc_if, uint16_t conn_id, uint16_t
start_handle, uint16_t end_handle, esp_bt_uuid_t
char_uuid, esp_bt_uuid_t descr_uuid,
esp_gattc_descr_elem_t *result, uint16_t *count)

Get the descriptor with the given characteristic UUID in the local GATTC cache.

Note:
a. This API does not trigger any event.
b. start_handle must be greater than 0, and smaller than end_handle.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• start_handle -- [in] The attribute start handle
• end_handle -- [in] The attribute end handle
• char_uuid -- [in] The characteristic UUID
• descr_uuid -- [in] The descriptor UUID.
• result -- [out] The pointer to the descriptor in the given characteristic.
• count -- [inout] The number of descriptors want to retrieve. It will be updated with the
actual number of descriptors found.

Returns
• ESP_OK: Success
• ESP_GATT_INVALID_PDU: NULL pointer to result or NULL pointer to count
or the count value is 0

• ESP_FAIL: Failure due to other reasons

esp_gatt_status_t esp_ble_gattc_get_descr_by_char_handle(esp_gatt_if_t gattc_if, uint16_t
conn_id, uint16_t char_handle,
esp_bt_uuid_t descr_uuid,
esp_gattc_descr_elem_t *result,
uint16_t *count)

Get the descriptor with the given characteristic handle in the local GATTC cache.

Note:
a. This API does not trigger any event.
b. char_handle must be greater than 0.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID which identifies the server
• char_handle -- [in] The characteristic handle
• descr_uuid -- [in] The descriptor UUID
• result -- [out] The pointer to the descriptor in the given characteristic

Espressif Systems 295
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• count -- [inout] The number of descriptors want to retrieve. It will be updated with the
actual number of descriptors found.

Returns
• ESP_OK: Success
• ESP_GATT_INVALID_HANDLE: Invalid GATT char_handle
• ESP_GATT_INVALID_PDU: NULL pointer to result or NULL pointer to count
or the count value is 0

• ESP_FAIL: Failure due to other reasons

esp_gatt_status_t esp_ble_gattc_get_include_service(esp_gatt_if_t gattc_if, uint16_t conn_id,
uint16_t start_handle, uint16_t end_handle,
esp_bt_uuid_t *incl_uuid,
esp_gattc_incl_svc_elem_t *result, uint16_t
*count)

Get the included services with the given service handle in the local GATTC cache.

Note:
a. This API does not trigger any event.
b. start_handle must be greater than 0, and smaller than end_handle.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID which identifies the server
• start_handle -- [in] The attribute start handle
• end_handle -- [in] The attribute end handle
• incl_uuid -- [in] The included service UUID
• result -- [out] The pointer to the included service with the given service handle.
• count -- [inout] The number of included services to retrieve. It will be updated with the
actual number of included services found.

Returns
• ESP_OK: Success
• ESP_GATT_INVALID_PDU: NULL pointer to result or NULL pointer to count
or the count value is 0

• ESP_FAIL: Failure due to other reasons

esp_gatt_status_t esp_ble_gattc_get_attr_count(esp_gatt_if_t gattc_if, uint16_t conn_id,
esp_gatt_db_attr_type_t type, uint16_t start_handle,
uint16_t end_handle, uint16_t char_handle, uint16_t
*count)

Get the attribute count with the given service or characteristic in the local GATTC cache.

Note:
a. This API does not trigger any event.
b. start_handle must be greater than 0, and smaller than end_handle if the type is not

ESP_GATT_DB_DESCRIPTOR.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• type -- [in] The attribute type
• start_handle -- [in] The attribute start handle. If the type is
ESP_GATT_DB_DESCRIPTOR, this parameter will be ignored.

• end_handle -- [in] The attribute end handle. If the type is
ESP_GATT_DB_DESCRIPTOR, this parameter will be ignored.

Espressif Systems 296
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• char_handle -- [in] The characteristic handle. This parameter is valid only if the type
is ESP_GATT_DB_DESCRIPTOR.

• count -- [out] The number of attributes found in the local GATTC cache with the given
attribute type

Returns
• ESP_OK: Success
• ESP_GATT_INVALID_HANDLE: Invalid GATT start_handle, end_handle
• ESP_GATT_INVALID_PDU: NULL pointer to count
• ESP_FAIL: Failure due to other reasons

esp_gatt_status_t esp_ble_gattc_get_db(esp_gatt_if_t gattc_if, uint16_t conn_id, uint16_t start_handle,
uint16_t end_handle, esp_gattc_db_elem_t *db, uint16_t *count)

Get the GATT database elements.

Note:
a. This API does not trigger any event.
b. start_handle must be greater than 0, and smaller than end_handle.

Parameters
• gattc_if -- [in] GATT Client access interface
• start_handle -- [in] The attribute start handle
• end_handle -- [in] The attribute end handle
• conn_id -- [in] Connection ID
• db -- [out] The pointer to GATT database elements
• count -- [inout] The number of elements in the database to retrieve. It will be updated
with the actual number of elements found.

Returns
• ESP_OK: Success
• ESP_GATT_INVALID_HANDLE: Invalid GATT start_handle, end_handle
• ESP_GATT_INVALID_PDU: NULL pointer to db or NULL pointer to count or the
count value is 0

• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gattc_read_char(esp_gatt_if_t gattc_if, uint16_t conn_id, uint16_t handle,
esp_gatt_auth_req_t auth_req)

Read the characteristics value of the given characteristic handle.

Note:
a. This function triggers ESP_GATTC_READ_CHAR_EVT.
b. This function should be called only after the connection has been established.
c. handle must be greater than 0.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• handle -- [in] Characteristic handle to read
• auth_req -- [in] Authenticate request type

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: The connection has not been established.
• ESP_GATT_INVALID_HANDLE: Invalid handle
• ESP_FAIL: Failure due to other reasons

Espressif Systems 297
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_gattc_read_by_type(esp_gatt_if_t gattc_if, uint16_t conn_id, uint16_t start_handle,
uint16_t end_handle, esp_bt_uuid_t *uuid, esp_gatt_auth_req_t
auth_req)

Read the characteristics value of the given characteristic UUID.

Note:
a. This function triggers ESP_GATTC_READ_CHAR_EVT.
b. This function should be called only after the connection has been established.
c. start_handle must be greater than 0, and smaller than end_handle.

Parameters
• gattc_if -- [in] GATT Client access interface.
• conn_id -- [in] Connection ID
• start_handle -- [in] The attribute start handle
• end_handle -- [in] The attribute end handle
• uuid -- [in] The pointer to UUID of attribute to read
• auth_req -- [in] Authenticate request type

Returns
• ESP_OK: Success
• ESP_GATT_ILLEGAL_PARAMETER: NULL pointer to uuid
• ESP_ERR_INVALID_STATE: The connection has not been established
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gattc_read_multiple(esp_gatt_if_t gattc_if, uint16_t conn_id, esp_gattc_multi_t
*read_multi, esp_gatt_auth_req_t auth_req)

Read multiple characteristic or descriptor values.

Note:
a. This function triggers ESP_GATTC_READ_MULTIPLE_EVT.
b. This function should be called only after the connection has been established.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID which specifies the server
• read_multi -- [in] Pointer to esp_gattc_multi_t
• auth_req -- [in] Authenticate request type

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: The connection has not been established
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gattc_read_multiple_variable(esp_gatt_if_t gattc_if, uint16_t conn_id,
esp_gattc_multi_t *read_multi,
esp_gatt_auth_req_t auth_req)

Read multiple variable length characteristic values.

Note:
a. This function triggers ESP_GATTC_READ_MULTI_VAR_EVT.
b. This function should be called only after the connection has been established.

Parameters

Espressif Systems 298
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• read_multi -- [in] The pointer to the esp_gattc_multi_t
• auth_req -- [in] Authenticate request type

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: The connection has not been established.
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gattc_read_char_descr(esp_gatt_if_t gattc_if, uint16_t conn_id, uint16_t handle,
esp_gatt_auth_req_t auth_req)

Read a characteristics descriptor.

Note:
a. This function triggers ESP_GATTC_READ_DESCR_EVT.
b. This function should be called only after the connection has been established.
c. handle must be greater than 0.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• handle -- [in] Descriptor handle to read
• auth_req -- [in] Authenticate request type

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: The connection has not been established.
• ESP_GATT_INVALID_HANDLE：Invalid handle
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gattc_write_char(esp_gatt_if_t gattc_if, uint16_t conn_id, uint16_t handle, uint16_t
value_len, uint8_t *value, esp_gatt_write_type_t write_type,
esp_gatt_auth_req_t auth_req)

Write the characteristic value of a given characteristic handle.

Note:
a. This function triggers ESP_GATTC_WRITE_CHAR_EVT.
b. This function should be called only after the connection has been established.
c. handle must be greater than 0.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• handle -- [in] The characteristic handle to write
• value_len -- [in] The length of the value to write in bytes
• value -- [in] The value to write
• write_type -- [in] The type of Attribute write operation
• auth_req -- [in] Authentication request type

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: The connection has not been established.
• ESP_GATT_INVALID_HANDLE：Invalid handle
• ESP_FAIL: Failure due to other reasons

Espressif Systems 299
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_gattc_write_char_descr(esp_gatt_if_t gattc_if, uint16_t conn_id, uint16_t handle,
uint16_t value_len, uint8_t *value, esp_gatt_write_type_t
write_type, esp_gatt_auth_req_t auth_req)

Write Characteristic descriptor value of a given descriptor handle.

Note:
a. This function triggers ESP_GATTC_WRITE_DESCR_EVT.
b. This function should be called only after the connection has been established.
c. handle must be greater than 0.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• handle -- [in] The descriptor handle to write.
• value_len -- [in] The length of the value to write in bytes.
• value -- [in] The value to write
• write_type -- [in] The type of Attribute write operation
• auth_req -- [in] Authentication request type

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: The connection has not been established.
• ESP_GATT_INVALID_HANDLE：Invalid handle
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gattc_prepare_write(esp_gatt_if_t gattc_if, uint16_t conn_id, uint16_t handle,
uint16_t offset, uint16_t value_len, uint8_t *value,
esp_gatt_auth_req_t auth_req)

Prepare to write a characteristic value which is longer than the MTU size to a specified characteristic handle.

Note:
a. This function should be called only after the connection has been established.
b. After using this API, use esp_ble_gattc_execute_write to write.
c. This function triggers ESP_GATTC_PREP_WRITE_EVT.
d. If value_len is less than or equal to MTU size, it is recommended to

esp_ble_gattc_write_char to write directly.
e. handle must be greater than 0.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• handle -- [in] Characteristic handle to prepare to write
• offset -- [in] The position offset to write
• value_len -- [in] The length of the value to write in bytes
• value -- [in] The value to write
• auth_req -- [in] Authentication request type

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: The connection has not been established.
• ESP_GATT_INVALID_HANDLE：Invalid handle
• ESP_FAIL: Failure due to other reasons

Espressif Systems 300
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_gattc_prepare_write_char_descr(esp_gatt_if_t gattc_if, uint16_t conn_id,
uint16_t handle, uint16_t offset, uint16_t
value_len, uint8_t *value,
esp_gatt_auth_req_t auth_req)

Prepare to write a characteristic descriptor value at a given handle.

Note:
a. This function triggers ESP_GATTC_WRITE_CHAR_EVT.
b. This function should be called only after the connection has been established.
c. handle must be greater than 0.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• handle -- [in] Characteristic descriptor handle to prepare to write
• offset -- [in] The position offset to write
• value_len -- [in] The length of the value to write in bytes
• value -- [in] The value to write
• auth_req -- [in] Authentication request type

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: The connection has not been established.
• ESP_GATT_INVALID_HANDLE：Invalid handle
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gattc_execute_write(esp_gatt_if_t gattc_if, uint16_t conn_id, bool is_execute)
Execute a prepared writing sequence.

Note: This function triggers ESP_GATTC_EXEC_EVT.

Parameters
• gattc_if -- [in] GATT Client access interface
• conn_id -- [in] Connection ID
• is_execute -- [in] True if it is to execute the writing sequence; false if it is to cancel
the writing sequence.

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gattc_register_for_notify(esp_gatt_if_t gattc_if, esp_bd_addr_t server_bda,
uint16_t handle)

Register to receive notification/indication of a characteristic.

Note:
a. This function triggers ESP_GATTC_REG_FOR_NOTIFY_EVT.
b. You should call esp_ble_gattc_write_char_descr() after this API to write Client Charac-

teristic Configuration (CCC) descriptor to the value of 1 (Enable Notification) or 2 (Enable Indication).
c. handle must be greater than 0.

Parameters
• gattc_if -- [in] GATT Client access interface
• server_bda -- [in] Target GATT server device address

Espressif Systems 301
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• handle -- [in] Target GATT characteristic handle
Returns

• ESP_OK: Success
• ESP_GATT_INVALID_HANDLE：Invalid handle
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gattc_unregister_for_notify(esp_gatt_if_t gattc_if, esp_bd_addr_t server_bda,
uint16_t handle)

Unregister the notification of a service.

Note:
a. This function triggers ESP_GATTC_UNREG_FOR_NOTIFY_EVT.
b. You should call esp_ble_gattc_write_char_descr() after this API to write Client Charac-

teristic Configuration (CCC) descriptor value to 0.
c. handle must be greater than 0

Parameters
• gattc_if -- [in] GATT Client access interface
• server_bda -- [in] Target GATT server device address
• handle -- [in] Target GATT characteristic handle

Returns
• ESP_OK: Success
• ESP_GATT_INVALID_HANDLE：Invalid handle
• ESP_FAIL: Failure due to other reasons

esp_err_t esp_ble_gattc_cache_refresh(esp_bd_addr_t remote_bda)
Refresh the cache of the remote device.

Note:
a. If the device is connected, this API will restart the discovery of service information of the remote device.
b. This function triggers ESP_GATTC_DIS_SRVC_CMPL_EVT only after the ACL connection is estab-

lished. Otherwise, no events will be triggered.

Parameters remote_bda -- [in] Remote device address
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gattc_cache_assoc(esp_gatt_if_t gattc_if, esp_bd_addr_t src_addr, esp_bd_addr_t
assoc_addr, bool is_assoc)

Add or remove the association between the address in the local GATTC cache with the source address of the
remote device.

Note:
a. This API is primarily used when the client has a stored server-side database (assoc_addr) and needs

to connect to another device (src_addr) with the same attribute database. By invoking this API, the
stored database is utilized as the peer server database, eliminating the need for attribute database search
and discovery. This reduces processing time and accelerates the connection process.

b. The attribute table of a device with assoc_addrmust be stored in the local GATTC cache first. Then,
the attribute table of the device with src_addr must be the same as the one with assoc_addr.

c. This function triggers ESP_GATTC_SET_ASSOC_EVT.

Espressif Systems 302
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• gattc_if -- [in] GATT Client access interface
• src_addr -- [in] The source address intended to be associated to the assoc_addr
which has been stored in the local GATTC cache

• assoc_addr -- [in] The associated device address intended to share the attribute table
with the source address

• is_assoc -- [in] True if adding the association; false if removing the association.
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gattc_cache_get_addr_list(esp_gatt_if_t gattc_if)
Get the address list stored in the local GATTC cache.

Note: This function triggers ESP_GATTC_GET_ADDR_LIST_EVT.

Parameters gattc_if -- [in] GATT Client access interface
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_ble_gattc_cache_clean(esp_bd_addr_t remote_bda)
Clean the service cache of the target device in the local GATTC cache.

Parameters remote_bda -- [in] Remote device address
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

Unions

union esp_ble_gattc_cb_param_t
#include <esp_gattc_api.h> GATT Client callback parameters.

Public Members

struct esp_ble_gattc_cb_param_t::gattc_reg_evt_param reg

Callback parameter for the event ESP_GATTC_REG_EVT

struct esp_ble_gattc_cb_param_t::gattc_open_evt_param open

Callback parameter for the event ESP_GATTC_OPEN_EVT

struct esp_ble_gattc_cb_param_t::gattc_close_evt_param close

Callback parameter for the event ESP_GATTC_CLOSE_EVT

struct esp_ble_gattc_cb_param_t::gattc_cfg_mtu_evt_param cfg_mtu

Callback parameter for the event ESP_GATTC_CFG_MTU_EVT

struct esp_ble_gattc_cb_param_t::gattc_search_cmpl_evt_param search_cmpl

Callback parameter for the event ESP_GATTC_SEARCH_CMPL_EVT

Espressif Systems 303
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_gattc_cb_param_t::gattc_search_res_evt_param search_res

Callback parameter for the event ESP_GATTC_SEARCH_RES_EVT

struct esp_ble_gattc_cb_param_t::gattc_read_char_evt_param read

Callback parameter for events: ESP_GATTC_READ_CHAR_EVT,
ESP_GATTC_READ_DESCR_EVT, ESP_GATTC_READ_MULTIPLE_EVT,
ESP_GATTC_READ_MULTI_VAR_EVT

struct esp_ble_gattc_cb_param_t::gattc_write_evt_param write

Callback parameter for the events: ESP_GATTC_WRITE_CHAR_EVT,
ESP_GATTC_PREP_WRITE_EVT, ESP_GATTC_WRITE_DESCR_EVT

struct esp_ble_gattc_cb_param_t::gattc_exec_cmpl_evt_param exec_cmpl

Callback parameter for the event ESP_GATTC_EXEC_EVT

struct esp_ble_gattc_cb_param_t::gattc_notify_evt_param notify

Callback parameter for the event ESP_GATTC_NOTIFY_EVT

struct esp_ble_gattc_cb_param_t::gattc_srvc_chg_evt_param srvc_chg

Callback parameter for the event ESP_GATTC_SRVC_CHG_EVT

struct esp_ble_gattc_cb_param_t::gattc_congest_evt_param congest

Callback parameter for the event ESP_GATTC_CONGEST_EVT

struct esp_ble_gattc_cb_param_t::gattc_reg_for_notify_evt_param reg_for_notify

Callback parameter for the event ESP_GATTC_REG_FOR_NOTIFY_EVT

struct esp_ble_gattc_cb_param_t::gattc_unreg_for_notify_evt_param unreg_for_notify

Callback parameter for the event ESP_GATTC_UNREG_FOR_NOTIFY_EVT

struct esp_ble_gattc_cb_param_t::gattc_connect_evt_param connect

Callback parameter for the event ESP_GATTC_CONNECT_EVT

struct esp_ble_gattc_cb_param_t::gattc_disconnect_evt_param disconnect

Callback parameter for the event ESP_GATTC_DISCONNECT_EVT

struct esp_ble_gattc_cb_param_t::gattc_set_assoc_addr_cmp_evt_param set_assoc_cmp

Callback parameter for the event ESP_GATTC_SET_ASSOC_EVT

struct esp_ble_gattc_cb_param_t::gattc_get_addr_list_evt_param get_addr_list

Callback parameter for the event ESP_GATTC_GET_ADDR_LIST_EVT

struct esp_ble_gattc_cb_param_t::gattc_queue_full_evt_param queue_full

Callback parameter for the event ESP_GATTC_QUEUE_FULL_EVT

struct esp_ble_gattc_cb_param_t::gattc_dis_srvc_cmpl_evt_param dis_srvc_cmpl

Callback parameter for the event ESP_GATTC_DIS_SRVC_CMPL_EVT

struct gattc_cfg_mtu_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_CFG_MTU_EVT

Espressif Systems 304
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

uint16_t mtu
MTU size

struct gattc_close_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_CLOSE_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

esp_bd_addr_t remote_bda

Remote bluetooth device address

esp_gatt_conn_reason_t reason

The reason of GATT connection close

struct gattc_congest_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_CONGEST_EVT

Public Members

uint16_t conn_id
Connection ID

bool congested
True indicates that the connection is congested, false otherwise

struct gattc_connect_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_CONNECT_EVT

Public Members

uint16_t conn_id
Connection ID

Espressif Systems 305
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t link_role
Link role : master role = 0; slave role = 1

esp_bd_addr_t remote_bda

Remote device address

esp_gatt_conn_params_t conn_params

Current connection parameters

esp_ble_addr_type_t ble_addr_type

Remote device address type

uint16_t conn_handle
HCI connection handle

struct gattc_dis_srvc_cmpl_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_DIS_SRVC_CMPL_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

struct gattc_disconnect_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_DISCONNECT_EVT

Public Members

esp_gatt_conn_reason_t reason

Disconnection reason

uint16_t conn_id
Connection ID

esp_bd_addr_t remote_bda

Remote device address

struct gattc_exec_cmpl_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_EXEC_EVT

Public Members

Espressif Systems 306
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

struct gattc_get_addr_list_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_GET_ADDR_LIST_EVT

Public Members

esp_gatt_status_t status

Operation status

uint8_t num_addr
The number of addresses in the local GATTC cache address list

esp_bd_addr_t *addr_list
The pointer to the address list which has been retrieved from the local GATTC cache

struct gattc_notify_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_NOTIFY_EVT

Public Members

uint16_t conn_id
Connection ID

esp_bd_addr_t remote_bda

Remote Bluetooth device address.

uint16_t handle
The characteristic or descriptor handle

uint16_t value_len
Notify attribute value length in bytes

uint8_t *value
Notify attribute value

bool is_notify
True means notification; false means indication

struct gattc_open_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_OPEN_EVT.

Espressif Systems 307
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

esp_bd_addr_t remote_bda

Remote Bluetooth device address

uint16_t mtu
MTU size

struct gattc_queue_full_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_QUEUE_FULL_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

bool is_full
True indicates the GATTC command queue is full; false otherwise.

struct gattc_read_char_evt_param
#include <esp_gattc_api.h> Callback parameter for the events: ESP_GATTC_READ_CHAR_EVT,
ESP_GATTC_READ_DESCR_EVT, ESP_GATTC_READ_MULTIPLE_EVT,
ESP_GATTC_READ_MULTI_VAR_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

uint16_t handle
Characteristic handle

uint8_t *value
Characteristic value

Espressif Systems 308
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t value_len
Characteristic value length

struct gattc_reg_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_REG_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t app_id
Application ID

struct gattc_reg_for_notify_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_REG_FOR_NOTIFY_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t handle
The characteristic or descriptor handle

struct gattc_search_cmpl_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_SEARCH_CMPL_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

esp_service_source_t searched_service_source

The source of the service information

struct gattc_search_res_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_SEARCH_RES_EVT

Public Members

uint16_t conn_id
Connection ID

Espressif Systems 309
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t start_handle
Service start handle

uint16_t end_handle
Service end handle

esp_gatt_id_t srvc_id

Service ID, including service UUID and other information

bool is_primary
True indicates a primary service, false otherwise

struct gattc_set_assoc_addr_cmp_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_SET_ASSOC_EVT

Public Members

esp_gatt_status_t status

Operation status

struct gattc_srvc_chg_evt_param
#include <esp_gattc_api.h> Callback parameter for the event ESP_GATTC_SRVC_CHG_EVT

Public Members

esp_bd_addr_t remote_bda

Remote Bluetooth device address

struct gattc_unreg_for_notify_evt_param
#include <esp_gattc_api.h>Callback parameter for the eventESP_GATTC_UNREG_FOR_NOTIFY_EVT

Public Members

esp_gatt_status_t status

Operation status

uint16_t handle
The characteristic or descriptor handle

struct gattc_write_evt_param
#include <esp_gattc_api.h> Callback parameter for the events: ESP_GATTC_WRITE_CHAR_EVT,
ESP_GATTC_PREP_WRITE_EVT, ESP_GATTC_WRITE_DESCR_EVT.

Espressif Systems 310
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_gatt_status_t status

Operation status

uint16_t conn_id
Connection ID

uint16_t handle
The characteristic or descriptor handle

uint16_t offset
The position offset to write. This value is valid only for prepare write operation.

Type Definitions

typedef void (*esp_gattc_cb_t)(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if, esp_ble_gattc_cb_param_t
*param)

GATT Client callback function type.
Param event [in] Event type
Param gattc_if [in] GATT Client access interface
Param param [in] The pointer to callback parameter

Enumerations

enum esp_gattc_cb_event_t

GATT Client callback function events.
Values:

enumerator ESP_GATTC_REG_EVT
This event is triggered when a GATT Client application is registered using
esp_ble_gattc_app_register.

enumerator ESP_GATTC_UNREG_EVT
This event is triggered when a GATT Client application is unregistered using
esp_ble_gattc_app_unregister.

enumerator ESP_GATTC_OPEN_EVT
This event is triggered when a GATT virtual connection is set up using esp_ble_gattc_open.

enumerator ESP_GATTC_READ_CHAR_EVT
This event is triggered upon the completion of a GATT characteristic read operation using
esp_ble_gattc_read_char.

enumerator ESP_GATTC_WRITE_CHAR_EVT
This event is triggered upon the completion of a GATT characteristic write operation using
esp_ble_gattc_write_char.

Espressif Systems 311
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GATTC_CLOSE_EVT
This event is triggered when a GATT virtual connection is closed via esp_ble_gattc_close, or
when the physical connection is terminated.

enumerator ESP_GATTC_SEARCH_CMPL_EVT
This event is triggered upon the completion of a service discovery using
esp_ble_gattc_search_service.

enumerator ESP_GATTC_SEARCH_RES_EVT
This event is triggered each time a service result is obtained using
esp_ble_gattc_search_service.

enumerator ESP_GATTC_READ_DESCR_EVT
This event is triggered upon the completion of a GATT characteristic descriptor read operation using
esp_ble_gattc_read_char_descr.

enumerator ESP_GATTC_WRITE_DESCR_EVT
This event is triggered upon the completion of a GATT characteristic descriptor write operation using
esp_ble_gattc_write_char_descr.

enumerator ESP_GATTC_NOTIFY_EVT
This event is triggered when a GATT notification or indication is received from the Server.

enumerator ESP_GATTC_PREP_WRITE_EVT
This event is triggered upon the completion of a GATT prepare-write operation using
esp_ble_gattc_prepare_write.

enumerator ESP_GATTC_EXEC_EVT
This event is triggered upon the completion of a GATT write execution using
esp_ble_gattc_execute_write .

enumerator ESP_GATTC_ACL_EVT
Deprecated.

enumerator ESP_GATTC_CANCEL_OPEN_EVT
Deprecated.

enumerator ESP_GATTC_SRVC_CHG_EVT
This event is triggered when a service changed indication is received from the Server, indicating that the
attribute database on the Server has been modified (e.g., services have been added, removed).

enumerator ESP_GATTC_ENC_CMPL_CB_EVT
Deprecated.

enumerator ESP_GATTC_CFG_MTU_EVT
This event is triggered upon the completion of the MTU configuration with
esp_ble_gattc_send_mtu_req.

enumerator ESP_GATTC_ADV_DATA_EVT
Deprecated.

Espressif Systems 312
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GATTC_MULT_ADV_ENB_EVT
Deprecated.

enumerator ESP_GATTC_MULT_ADV_UPD_EVT
Deprecated.

enumerator ESP_GATTC_MULT_ADV_DATA_EVT
Deprecated.

enumerator ESP_GATTC_MULT_ADV_DIS_EVT
Deprecated.

enumerator ESP_GATTC_CONGEST_EVT
This event is triggered when the GATT connection is congested.

enumerator ESP_GATTC_BTH_SCAN_ENB_EVT
Deprecated.

enumerator ESP_GATTC_BTH_SCAN_CFG_EVT
Deprecated.

enumerator ESP_GATTC_BTH_SCAN_RD_EVT
Deprecated.

enumerator ESP_GATTC_BTH_SCAN_THR_EVT
Deprecated.

enumerator ESP_GATTC_BTH_SCAN_PARAM_EVT
Deprecated.

enumerator ESP_GATTC_BTH_SCAN_DIS_EVT
Deprecated.

enumerator ESP_GATTC_SCAN_FLT_CFG_EVT
Deprecated.

enumerator ESP_GATTC_SCAN_FLT_PARAM_EVT
Deprecated.

enumerator ESP_GATTC_SCAN_FLT_STATUS_EVT
Deprecated.

enumerator ESP_GATTC_ADV_VSC_EVT
Deprecated.

enumerator ESP_GATTC_REG_FOR_NOTIFY_EVT
This event is triggered upon the completion of a service notification registration using
esp_ble_gattc_register_for_notify.

Espressif Systems 313
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_GATTC_UNREG_FOR_NOTIFY_EVT
This event is triggered upon the completion of a service notification unregistration using
esp_ble_gattc_unregister_for_notify.

enumerator ESP_GATTC_CONNECT_EVT
This event is triggered when the physical connection is set up.

enumerator ESP_GATTC_DISCONNECT_EVT
This event is triggered when the physical connection is terminated.

enumerator ESP_GATTC_READ_MULTIPLE_EVT
This event is triggered when the multiple characteristic or descriptor values are retrieved using
esp_ble_gattc_read_multiple.

enumerator ESP_GATTC_QUEUE_FULL_EVT
This event is triggered when the GATTC command queue is full.

enumerator ESP_GATTC_SET_ASSOC_EVT
This event is triggered when the association between the source and the remote address is added or deleted
using esp_ble_gattc_cache_assoc.

enumerator ESP_GATTC_GET_ADDR_LIST_EVT
This event is triggered when retrieving the address list from the GATTC cache is completed using
esp_ble_gattc_cache_get_addr_list.

enumerator ESP_GATTC_DIS_SRVC_CMPL_EVT
This event is triggered when the GATT service discovery is completed.

enumerator ESP_GATTC_READ_MULTI_VAR_EVT
This event is triggered when multiple variable length characteristic values are retrieved using
esp_ble_gattc_read_multiple.

BLUFI API

Overview BLUFI is a profile based GATT to config ESP32 WIFI to connect/disconnect AP or setup a softap and
etc. Use should concern these things:

1. The event sent from profile. Then you need to do something as the event indicate.
2. Security reference. You can write your own Security functions such as symmetrical encryption/decryption and

checksum functions. Even you can define the "Key Exchange/Negotiation" procedure.

Application Example Check bluetooth folder in ESP-IDF examples, which contains the following application:
• This is the BLUFI demo. This demo can set ESP32's wifi to softap/station/softap&station mode and config
wifi connections - bluetooth/blufi

API Reference

Header File
• components/bt/common/api/include/api/esp_blufi_api.h

Espressif Systems 314
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/blufi
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/common/api/include/api/esp_blufi_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_err_t esp_blufi_register_callbacks(esp_blufi_callbacks_t *callbacks)

This function is called to receive blufi callback event.
Parameters callbacks -- [in] callback functions
Returns ESP_OK - success, other - failed

esp_err_t esp_blufi_profile_init(void)
This function is called to initialize blufi_profile.

Returns ESP_OK - success, other - failed
esp_err_t esp_blufi_profile_deinit(void)

This function is called to de-initialize blufi_profile.
Returns ESP_OK - success, other - failed

esp_err_t esp_blufi_send_wifi_conn_report(wifi_mode_t opmode, esp_blufi_sta_conn_state_t
sta_conn_state, uint8_t softap_conn_num,
esp_blufi_extra_info_t *extra_info)

This function is called to send wifi connection report.
Parameters

• opmode -- : wifi opmode
• sta_conn_state -- : station is already in connection or not
• softap_conn_num -- : softap connection number
• extra_info -- : extra information, such as sta_ssid, softap_ssid and etc.

Returns ESP_OK - success, other - failed
esp_err_t esp_blufi_send_wifi_list(uint16_t apCount, esp_blufi_ap_record_t *list)

This function is called to send wifi list.
Parameters

• apCount -- : wifi list count
• list -- : wifi list

Returns ESP_OK - success, other - failed
uint16_t esp_blufi_get_version(void)

Get BLUFI profile version.
Returns Most 8bit significant is Great version, Least 8bit is Sub version

esp_err_t esp_blufi_send_error_info(esp_blufi_error_state_t state)
This function is called to send blufi error information.

Parameters state -- : error state
Returns ESP_OK - success, other - failed

esp_err_t esp_blufi_send_custom_data(uint8_t *data, uint32_t data_len)
This function is called to custom data.

Parameters
• data -- : custom data value
• data_len -- : the length of custom data

Returns ESP_OK - success, other - failed

Unions

union esp_blufi_cb_param_t
#include <esp_blufi_api.h> BLUFI callback parameters union.

Espressif Systems 315
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

struct esp_blufi_cb_param_t::blufi_init_finish_evt_param init_finish

Blufi callback param of ESP_BLUFI_EVENT_INIT_FINISH

struct esp_blufi_cb_param_t::blufi_deinit_finish_evt_param deinit_finish

Blufi callback param of ESP_BLUFI_EVENT_DEINIT_FINISH

struct esp_blufi_cb_param_t::blufi_set_wifi_mode_evt_param wifi_mode

Blufi callback param of ESP_BLUFI_EVENT_INIT_FINISH

struct esp_blufi_cb_param_t::blufi_connect_evt_param connect

Blufi callback param of ESP_BLUFI_EVENT_CONNECT

struct esp_blufi_cb_param_t::blufi_disconnect_evt_param disconnect

Blufi callback param of ESP_BLUFI_EVENT_DISCONNECT

struct esp_blufi_cb_param_t::blufi_recv_sta_bssid_evt_param sta_bssid

Blufi callback param of ESP_BLUFI_EVENT_RECV_STA_BSSID

struct esp_blufi_cb_param_t::blufi_recv_sta_ssid_evt_param sta_ssid

Blufi callback param of ESP_BLUFI_EVENT_RECV_STA_SSID

struct esp_blufi_cb_param_t::blufi_recv_sta_passwd_evt_param sta_passwd

Blufi callback param of ESP_BLUFI_EVENT_RECV_STA_PASSWD

struct esp_blufi_cb_param_t::blufi_recv_softap_ssid_evt_param softap_ssid

Blufi callback param of ESP_BLUFI_EVENT_RECV_SOFTAP_SSID

struct esp_blufi_cb_param_t::blufi_recv_softap_passwd_evt_param softap_passwd

Blufi callback param of ESP_BLUFI_EVENT_RECV_SOFTAP_PASSWD

struct esp_blufi_cb_param_t::blufi_recv_softap_max_conn_num_evt_param softap_max_conn_num

Blufi callback param of ESP_BLUFI_EVENT_RECV_SOFTAP_MAX_CONN_NUM

struct esp_blufi_cb_param_t::blufi_recv_softap_auth_mode_evt_param softap_auth_mode

Blufi callback param of ESP_BLUFI_EVENT_RECV_SOFTAP_AUTH_MODE

struct esp_blufi_cb_param_t::blufi_recv_softap_channel_evt_param softap_channel

Blufi callback param of ESP_BLUFI_EVENT_RECV_SOFTAP_CHANNEL

struct esp_blufi_cb_param_t::blufi_recv_username_evt_param username

Blufi callback param of ESP_BLUFI_EVENT_RECV_USERNAME

struct esp_blufi_cb_param_t::blufi_recv_ca_evt_param ca

Blufi callback param of ESP_BLUFI_EVENT_RECV_CA_CERT

struct esp_blufi_cb_param_t::blufi_recv_client_cert_evt_param client_cert

Blufi callback param of ESP_BLUFI_EVENT_RECV_CLIENT_CERT

Espressif Systems 316
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_blufi_cb_param_t::blufi_recv_server_cert_evt_param server_cert

Blufi callback param of ESP_BLUFI_EVENT_RECV_SERVER_CERT

struct esp_blufi_cb_param_t::blufi_recv_client_pkey_evt_param client_pkey

Blufi callback param of ESP_BLUFI_EVENT_RECV_CLIENT_PRIV_KEY

struct esp_blufi_cb_param_t::blufi_recv_server_pkey_evt_param server_pkey

Blufi callback param of ESP_BLUFI_EVENT_RECV_SERVER_PRIV_KEY

struct esp_blufi_cb_param_t::blufi_get_error_evt_param report_error

Blufi callback param of ESP_BLUFI_EVENT_REPORT_ERROR

struct esp_blufi_cb_param_t::blufi_recv_custom_data_evt_param custom_data

Blufi callback param of ESP_BLUFI_EVENT_RECV_CUSTOM_DATA

struct blufi_connect_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_CONNECT.

Public Members

esp_blufi_bd_addr_t remote_bda

Blufi Remote bluetooth device address

uint8_t server_if
server interface

uint16_t conn_id
Connection id

struct blufi_deinit_finish_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_DEINIT_FINISH.

Public Members

esp_blufi_deinit_state_t state

De-initial status

struct blufi_disconnect_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_DISCONNECT.

Public Members

esp_blufi_bd_addr_t remote_bda

Blufi Remote bluetooth device address

struct blufi_get_error_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_REPORT_ERROR.

Espressif Systems 317
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_blufi_error_state_t state

Blufi error state

struct blufi_init_finish_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_INIT_FINISH.

Public Members

esp_blufi_init_state_t state

Initial status

struct blufi_recv_ca_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_CA_CERT.

Public Members

uint8_t *cert
CA certificate point

int cert_len
CA certificate length

struct blufi_recv_client_cert_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_CLIENT_CERT

Public Members

uint8_t *cert
Client certificate point

int cert_len
Client certificate length

struct blufi_recv_client_pkey_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_CLIENT_PRIV_KEY

Public Members

uint8_t *pkey
Client Private Key point, if Client certificate not contain Key

int pkey_len
Client Private key length

Espressif Systems 318
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct blufi_recv_custom_data_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_CUSTOM_DATA.

Public Members

uint8_t *data
Custom data

uint32_t data_len
Custom data Length

struct blufi_recv_server_cert_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SERVER_CERT

Public Members

uint8_t *cert
Client certificate point

int cert_len
Client certificate length

struct blufi_recv_server_pkey_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SERVER_PRIV_KEY

Public Members

uint8_t *pkey
Client Private Key point, if Client certificate not contain Key

int pkey_len
Client Private key length

struct blufi_recv_softap_auth_mode_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SOFTAP_AUTH_MODE.

Public Members

wifi_auth_mode_t auth_mode

Authentication mode

struct blufi_recv_softap_channel_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SOFTAP_CHANNEL.

Espressif Systems 319
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t channel
Authentication mode

struct blufi_recv_softap_max_conn_num_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SOFTAP_MAX_CONN_NUM.

Public Members

int max_conn_num
SSID

struct blufi_recv_softap_passwd_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SOFTAP_PASSWD.

Public Members

uint8_t *passwd
Password

int passwd_len
Password Length

struct blufi_recv_softap_ssid_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_SOFTAP_SSID.

Public Members

uint8_t *ssid
SSID

int ssid_len
SSID length

struct blufi_recv_sta_bssid_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_STA_BSSID.

Public Members

uint8_t bssid[6]
BSSID

struct blufi_recv_sta_passwd_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_STA_PASSWD.

Espressif Systems 320
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t *passwd
Password

int passwd_len
Password Length

struct blufi_recv_sta_ssid_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_STA_SSID.

Public Members

uint8_t *ssid
SSID

int ssid_len
SSID length

struct blufi_recv_username_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_RECV_USERNAME.

Public Members

uint8_t *name
Username point

int name_len
Username length

struct blufi_set_wifi_mode_evt_param
#include <esp_blufi_api.h> ESP_BLUFI_EVENT_SET_WIFI_MODE.

Public Members

wifi_mode_t op_mode

Wifi operation mode

Structures

struct esp_blufi_extra_info_t
BLUFI extra information structure.

Espressif Systems 321
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t sta_bssid[6]
BSSID of station interface

bool sta_bssid_set
is BSSID of station interface set

uint8_t *sta_ssid
SSID of station interface

int sta_ssid_len
length of SSID of station interface

uint8_t *sta_passwd
password of station interface

int sta_passwd_len
length of password of station interface

uint8_t *softap_ssid
SSID of softap interface

int softap_ssid_len
length of SSID of softap interface

uint8_t *softap_passwd
password of station interface

int softap_passwd_len
length of password of station interface

uint8_t softap_authmode
authentication mode of softap interface

bool softap_authmode_set
is authentication mode of softap interface set

uint8_t softap_max_conn_num
max connection number of softap interface

bool softap_max_conn_num_set
is max connection number of softap interface set

uint8_t softap_channel
channel of softap interface

bool softap_channel_set
is channel of softap interface set

Espressif Systems 322
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t sta_max_conn_retry
max retry of sta establish connection

bool sta_max_conn_retry_set
is max retry of sta establish connection set

uint8_t sta_conn_end_reason
reason of sta connection end

bool sta_conn_end_reason_set
is reason of sta connection end set

int8_t sta_conn_rssi
rssi of sta connection

bool sta_conn_rssi_set
is rssi of sta connection set

struct esp_blufi_ap_record_t
Description of an WiFi AP.

Public Members

uint8_t ssid[33]
SSID of AP

int8_t rssi
signal strength of AP

struct esp_blufi_callbacks_t
BLUFI callback functions type.

Public Members

esp_blufi_event_cb_t event_cb

BLUFI event callback

esp_blufi_negotiate_data_handler_t negotiate_data_handler

BLUFI negotiate data function for negotiate share key

esp_blufi_encrypt_func_t encrypt_func

BLUFI encrypt data function with share key generated by negotiate_data_handler

esp_blufi_decrypt_func_t decrypt_func

BLUFI decrypt data function with share key generated by negotiate_data_handler

esp_blufi_checksum_func_t checksum_func

BLUFI check sum function (FCS)

Espressif Systems 323
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Macros

ESP_BLUFI_BD_ADDR_LEN

Bluetooth address length.

Type Definitions

typedef uint8_t esp_blufi_bd_addr_t[ESP_BLUFI_BD_ADDR_LEN]
Bluetooth device address.

typedef void (*esp_blufi_event_cb_t)(esp_blufi_cb_event_t event, esp_blufi_cb_param_t *param)
BLUFI event callback function type.

Param event : Event type
Param param : Point to callback parameter, currently is union type

typedef void (*esp_blufi_negotiate_data_handler_t)(uint8_t *data, int len, uint8_t **output_data,
int *output_len, bool *need_free)

BLUFI negotiate data handler.
Param data : data from phone
Param len : length of data from phone
Param output_data : data want to send to phone
Param output_len : length of data want to send to phone
Param need_free : output reporting if memory needs to be freed or not *

typedef int (*esp_blufi_encrypt_func_t)(uint8_t iv8, uint8_t *crypt_data, int crypt_len)
BLUFI encrypt the data after negotiate a share key.

Param iv8 : initial vector(8bit), normally, blufi core will input packet sequence number
Param crypt_data : plain text and encrypted data, the encrypt function must support au-

tochthonous encrypt
Param crypt_len : length of plain text
Return Nonnegative number is encrypted length, if error, return negative number;

typedef int (*esp_blufi_decrypt_func_t)(uint8_t iv8, uint8_t *crypt_data, int crypt_len)
BLUFI decrypt the data after negotiate a share key.

Param iv8 : initial vector(8bit), normally, blufi core will input packet sequence number
Param crypt_data : encrypted data and plain text, the encrypt function must support au-

tochthonous decrypt
Param crypt_len : length of encrypted text
Return Nonnegative number is decrypted length, if error, return negative number;

typedef uint16_t (*esp_blufi_checksum_func_t)(uint8_t iv8, uint8_t *data, int len)
BLUFI checksum.

Param iv8 : initial vector(8bit), normally, blufi core will input packet sequence number
Param data : data need to checksum
Param len : length of data

Enumerations

enum esp_blufi_cb_event_t

Values:

Espressif Systems 324
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLUFI_EVENT_INIT_FINISH

enumerator ESP_BLUFI_EVENT_DEINIT_FINISH

enumerator ESP_BLUFI_EVENT_SET_WIFI_OPMODE

enumerator ESP_BLUFI_EVENT_BLE_CONNECT

enumerator ESP_BLUFI_EVENT_BLE_DISCONNECT

enumerator ESP_BLUFI_EVENT_REQ_CONNECT_TO_AP

enumerator ESP_BLUFI_EVENT_REQ_DISCONNECT_FROM_AP

enumerator ESP_BLUFI_EVENT_GET_WIFI_STATUS

enumerator ESP_BLUFI_EVENT_DEAUTHENTICATE_STA

enumerator ESP_BLUFI_EVENT_RECV_STA_BSSID

enumerator ESP_BLUFI_EVENT_RECV_STA_SSID

enumerator ESP_BLUFI_EVENT_RECV_STA_PASSWD

enumerator ESP_BLUFI_EVENT_RECV_SOFTAP_SSID

enumerator ESP_BLUFI_EVENT_RECV_SOFTAP_PASSWD

enumerator ESP_BLUFI_EVENT_RECV_SOFTAP_MAX_CONN_NUM

enumerator ESP_BLUFI_EVENT_RECV_SOFTAP_AUTH_MODE

enumerator ESP_BLUFI_EVENT_RECV_SOFTAP_CHANNEL

enumerator ESP_BLUFI_EVENT_RECV_USERNAME

enumerator ESP_BLUFI_EVENT_RECV_CA_CERT

enumerator ESP_BLUFI_EVENT_RECV_CLIENT_CERT

enumerator ESP_BLUFI_EVENT_RECV_SERVER_CERT

enumerator ESP_BLUFI_EVENT_RECV_CLIENT_PRIV_KEY

enumerator ESP_BLUFI_EVENT_RECV_SERVER_PRIV_KEY

Espressif Systems 325
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLUFI_EVENT_RECV_SLAVE_DISCONNECT_BLE

enumerator ESP_BLUFI_EVENT_GET_WIFI_LIST

enumerator ESP_BLUFI_EVENT_REPORT_ERROR

enumerator ESP_BLUFI_EVENT_RECV_CUSTOM_DATA

enum esp_blufi_sta_conn_state_t

BLUFI config status.
Values:

enumerator ESP_BLUFI_STA_CONN_SUCCESS

enumerator ESP_BLUFI_STA_CONN_FAIL

enumerator ESP_BLUFI_STA_CONNECTING

enumerator ESP_BLUFI_STA_NO_IP

enum esp_blufi_init_state_t

BLUFI init status.
Values:

enumerator ESP_BLUFI_INIT_OK

enumerator ESP_BLUFI_INIT_FAILED

enum esp_blufi_deinit_state_t

BLUFI deinit status.
Values:

enumerator ESP_BLUFI_DEINIT_OK

enumerator ESP_BLUFI_DEINIT_FAILED

enum esp_blufi_error_state_t

Values:

enumerator ESP_BLUFI_SEQUENCE_ERROR

enumerator ESP_BLUFI_CHECKSUM_ERROR

enumerator ESP_BLUFI_DECRYPT_ERROR

enumerator ESP_BLUFI_ENCRYPT_ERROR

Espressif Systems 326
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLUFI_INIT_SECURITY_ERROR

enumerator ESP_BLUFI_DH_MALLOC_ERROR

enumerator ESP_BLUFI_DH_PARAM_ERROR

enumerator ESP_BLUFI_READ_PARAM_ERROR

enumerator ESP_BLUFI_MAKE_PUBLIC_ERROR

enumerator ESP_BLUFI_DATA_FORMAT_ERROR

enumerator ESP_BLUFI_CALC_MD5_ERROR

enumerator ESP_BLUFI_WIFI_SCAN_FAIL

enumerator ESP_BLUFI_MSG_STATE_ERROR

2.3.3 Controller & HCI

Application Example

Check bluetooth/hci folder in ESP-IDF examples, which contains the following application:
• This is a BLE advertising demo with virtual HCI interface. Send Re-
set/ADV_PARAM/ADV_DATA/ADV_ENABLE HCI command for BLE advertising - blue-
tooth/hci/controller_vhci_ble_adv.

API Reference

Header File
• components/bt/include/esp32/include/esp_bt.h

Functions
esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)

Initialize the Bluetooth Controller to allocate tasks and other resources.

Note: This function should be called only once, before any other Bluetooth functions.

Parameters cfg -- [in] Initial Bluetooth Controller configuration
Returns

• ESP_OK: Success
• ESP_ERR_INVALID_STATE: Invalid Bluetooth Controller state
• ESP_ERR_INVALID_ARG: Invalid arguments
• ESP_ERR_NO_MEM: Out of memory

Espressif Systems 327
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/hci
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/hci/controller_vhci_ble_adv
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/hci/controller_vhci_ble_adv
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/include/esp32/include/esp_bt.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_bt_controller_deinit(void)
De-initialize Bluetooth Controller to free resources and delete tasks.

Note:
a. You should stop advertising and scanning, and disconnect all existing connections before de-initializing

Bluetooth Controller.
b. This function should be called after esp_bt_controller_disable if the Controller was enabled

before.
c. This function should be called only once, after any other Bluetooth functions.

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: Invalid Bluetooth Controller state

esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
Enable Bluetooth Controller.

For API compatibility, retain this argument. This mode must match the mode specified in the cfg of
esp_bt_controller_init().

Note:
a. Bluetooth Controller cannot be enabled in ESP_BT_CONTROLLER_STATUS_IDLE status. It has to

be initialized first.
b. Due to a known issue, you cannot call esp_bt_controller_enable() for the sec-

ond time to change the Controller mode dynamically. To change the Controller mode, call
esp_bt_controller_disable() and then call esp_bt_controller_enable() with the
new mode.

Parameters mode -- [in] The Bluetooth Controller mode (BLE/Classic Bluetooth/BTDM) to en-
able

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: Invalid Bluetooth Controller state
• ESP_ERR_INVALID_ARG: Invalid arguments

esp_err_t esp_bt_controller_disable(void)
Disable Bluetooth Controller.

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: Invalid Bluetooth Controller state

esp_bt_controller_status_t esp_bt_controller_get_status(void)
Get Bluetooth Controller status.

Returns
• ESP_BT_CONTROLLER_STATUS_IDLE: The Controller is not initialized or has been
de-initialized.

• ESP_BT_CONTROLLER_STATUS_INITED: The Controller has been initialized, but
not enabled or has been disabled.

• ESP_BT_CONTROLLER_STATUS_ENABLED: The Controller has been initialized
and enabled.

Espressif Systems 328
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
Release the Controller memory as per the mode.
This function releases the BSS, data and other sections of the Controller to heap. The total size is about 70
KB.

If you never intend to use Bluetooth in a current boot-up cycle, calling
esp_bt_controller_mem_release(ESP_BT_MODE_BTDM) could release the BSS and data
consumed by both Classic Bluetooth and BLE Controller to heap.
If you intend to use BLE only, callingesp_bt_controller_mem_release(ESP_BT_MODE_CLASSIC_BT)
could release the BSS and data consumed by Classic Bluetooth Controller. You can then continue using BLE.
If you intend to use Classic Bluetooth only, callingesp_bt_controller_mem_release(ESP_BT_MODE_BLE)
could release the BSS and data consumed by BLE Controller. You can then continue using Classic Bluetooth.

Note:
a. This function is optional and should be called only if you want to free up memory for other components.
b. This function should only be called when the Controller is in ESP_BT_CONTROLLER_STATUS_IDLE

status.
c. Once Bluetooth Controller memory is released, the process cannot be reversed. This means you cannot

use the Bluetooth Controller mode that you have released using this function.
d. If your firmware will upgrade the Bluetooth Controller mode later (such as switching from BLE to Classic

Bluetooth or from disabled to enabled), then do not call this function.

Parameters mode -- [in] The Bluetooth Controller mode
Returns

• ESP_OK: Success
• ESP_ERR_INVALID_STATE: Invalid Bluetooth Controller state
• ESP_ERR_NOT_FOUND: Requested resource not found

esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
Release the Controller memory, BSS and data section of the Classic Bluetooth/BLE Host stack as per the
mode.

This function first releases Controller memory by internally calling
esp_bt_controller_mem_release(), then releases Host memory.
If you never intend to use Bluetooth in a current boot-up cycle, calling
esp_bt_mem_release(ESP_BT_MODE_BTDM) could release the BSS and data consumed by
both Classic Bluetooth and BLE stack to heap.
If you intend to use BLE only, calling esp_bt_mem_release(ESP_BT_MODE_CLASSIC_BT) could
release the BSS and data consumed by Classic Bluetooth. You can then continue using BLE.
If you intend to use Classic Bluetooth only, calling esp_bt_mem_release(ESP_BT_MODE_BLE) could
release the BSS and data consumed by BLE. You can then continue using Classic Bluetooth.
For example, if you only use Bluetooth for setting the Wi-Fi configuration, and do not use Bluetooth in the rest
of the product operation, after receiving the Wi-Fi configuration, you can disable/de-init Bluetooth and release
its memory. Below is the sequence of APIs to be called for such scenarios:

esp_bluedroid_disable();
esp_bluedroid_deinit();
esp_bt_controller_disable();
esp_bt_controller_deinit();
esp_bt_mem_release(ESP_BT_MODE_BTDM);

Espressif Systems 329
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note:
a. This function is optional and should be called only if you want to free up memory for other components.
b. This function should only be called when the Controller is in ESP_BT_CONTROLLER_STATUS_IDLE

status.
c. Once Bluetooth Controller memory is released, the process cannot be reversed. This means you cannot

use the Bluetooth Controller mode that you have released using this function.
d. If your firmware will upgrade the Bluetooth Controller mode later (such as switching from BLE to Classic

Bluetooth or from disabled to enabled), then do not call this function.

Parameters mode -- [in] The Bluetooth Controller mode
Returns

• ESP_OK: Success
• ESP_ERR_INVALID_STATE: Invalid Bluetooth Controller state
• ESP_ERR_NOT_FOUND: Requested resource not found

esp_err_t esp_bt_sleep_enable(void)
Enable Bluetooth modem sleep.
There are currently two options for Bluetooth modem sleep: ORIG mode and EVED mode. The latter is
intended for BLE only. The modem sleep mode could be configured in menuconfig.
In ORIG mode, if there is no event to process, the Bluetooth Controller will periodically switch off some
components and pause operation, then wake up according to the scheduled interval and resume work. It can
also wakeup earlier upon external request using function esp_bt_controller_wakeup_request().

Note: This function shall not be invoked before esp_bt_controller_enable().

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: Invalid Bluetooth Controller state
• ESP_ERR_NOT_SUPPORTED: Operation or feature not supported

esp_err_t esp_bt_sleep_disable(void)
Disable Bluetooth modem sleep.

Note:
a. Bluetooth Controller will not be allowed to enter modem sleep after calling this function.
b. In ORIG modem sleep mode, calling this function may not immediately wake up the Controller if it

is currently dormant. In this case, esp_bt_controller_wakeup_request() can be used to
shorten the wake-up time.

c. This function shall not be invoked before esp_bt_controller_enable().

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: Invalid Bluetooth Controller state
• ESP_ERR_NOT_SUPPORTED: The modem sleep mode is not supported

esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
Set BLE TX power.

Note: Connection TX power should only be set after the connection is established.

Espressif Systems 330
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• power_type -- [in] The type of TX power. It could be Advertising, Connection, De-
fault, etc.

• power_level -- [in] Power level (index) corresponding to the absolute value (dBm)
Returns

• ESP_OK: Success
• ESP_ERR_INVALID_ARG: Invalid argument

esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
Get BLE TX power.

Note: Connection TX power should only be retrieved after the connection is established.

Parameters power_type -- [in] The type of TX power. It could be Advertis-
ing/Connection/Default and etc.

Returns
• Power level

esp_err_t esp_ble_scan_duplicate_list_flush(void)
Manually clear the BLE scan duplicate list.

Note:
a. This function name is incorrectly spelled, it will be fixed in release 5.x version.
b. The scan duplicate list will be automatically cleared when the maximum amount of devices in the filter

is reached. The amount of devices in the filter can be configured in menuconfig.

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_STATE: Invalid Bluetooth Controller state

esp_err_t esp_ble_scan_dupilcate_list_flush(void)

esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t
max_power_level)

Set BR/EDR TX power.
BR/EDR power control will use the power within the range of minimum value and maximum value. The power
level will affect the global BR/EDR TX power for operations such as inquiry, page, and connection.

Note:
a. Please call this function after esp_bt_controller_enable() and before any functions that cause

RF transmission, such as performing discovery, profile initialization, and so on.
b. For BR/EDR to use the newTXpower for inquiry, call this function before starting an inquiry. If BR/EDR

is already inquiring, restart the inquiry after calling this function.

Parameters
• min_power_level -- [in] The minimum power level. The default value is
ESP_PWR_LVL_N0.

• max_power_level -- [in] The maximum power level. The default value is
ESP_PWR_LVL_P3.

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_ARG: Invalid argument

Espressif Systems 331
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_STATE: Invalid Bluetooth Controller state

esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t
*max_power_level)

Get BR/EDR TX power.
The corresponding power levels will be stored into the arguments.

Parameters
• min_power_level -- [out] Pointer to store the minimum power level
• max_power_level -- [out] The maximum power level

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_ARG: Invalid argument

esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
Set BR/EDR default SCO data path.

Note: This function should be called after the Controller is enabled, and before (e)SCO link is established.

Parameters data_path -- [in] SCO data path
Returns

• ESP_OK: Success
• ESP_ERR_INVALID_STATE: Invalid Bluetooth Controller state

bool esp_vhci_host_check_send_available(void)
Check whether the Controller is ready to receive the HCI data from the Host.
If the return value is True, the Host can send the HCI data to the Controller.

Note: This function should be called before each esp_vhci_host_send_packet().

Returns True if the Controller is ready to receive the HCI data; false otherwise

void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
Send the HCI data to the Controller.

Note:
a. This function shall not be called within a critical section or when the scheduler is suspended.
b. This function should be called only if esp_vhci_host_check_send_available() returns

True.

Parameters
• data -- [in] Pointer to the HCI data
• len -- [in] The HCI data length

esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
Register the VHCI callback functions defined in esp_vhci_host_callback structure.

Parameters callback -- [in] esp_vhci_host_callback type variable
Returns

• ESP_OK: Success
• ESP_FAIL: Failure

Espressif Systems 332
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void esp_wifi_bt_power_domain_on(void)
Power on Bluetooth Wi-Fi power domain.

Note: This function is not recommended to use due to potential risk.

void esp_wifi_bt_power_domain_off(void)
Power off Bluetooth Wi-Fi power domain.

Note: This function is not recommended to use due to potential risk.

esp_bt_sleep_clock_t esp_bt_get_lpclk_src(void)
Get the Bluetooth module sleep clock source.

Note: This function should be called after esp_bt_controller_init()

Returns
• Clock source used in Bluetooth low power mode

esp_err_t esp_bt_set_lpclk_src(esp_bt_sleep_clock_t lpclk)
Set the Bluetooth module sleep clock source.

Note: This function should be called before esp_bt_controller_init()

Parameters lpclk -- [in] Bluetooth sleep clock source
Returns

• ESP_OK: Success
• ESP_ERR_INVALID_ARG: Invalid argument

Structures

struct esp_bt_controller_config_t
Bluetooth Controller config options.

Note:
a. For parameters configurable through menuconfig, it is recommended to adjust them via the menuconfig

interface. Please refer to menuconfig for details on the range and default values.
b. It is not recommended to modify the values for parameters which are not configurable through menucon-

fig.

Public Members

uint16_t controller_task_stack_size
Bluetooth Controller task stack size in bytes

uint8_t controller_task_prio
Bluetooth Controller task priority

Espressif Systems 333
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t hci_uart_no
UART number as HCI I/O interface. Configurable in menuconfig.
• 1 - URAT 1 (default)
• 2 - URAT 2

uint32_t hci_uart_baudrate
UART baudrate. Configurable in menuconfig.
• Range: 115200 - 921600
• Default: 921600

uint8_t scan_duplicate_mode
Scan duplicate filtering mode. Configurable in menuconfig.
• 0 - Normal scan duplicate filtering mode (default)
• 1 - Special scan duplicate filtering mode for BLE Mesh

uint8_t scan_duplicate_type
Scan duplicate filtering type. If scan_duplicate_mode is set to 1, this parameter will be ignored.
Configurable in menuconfig.
• 0 - Filter scan duplicates by device address only (default)
• 1 - Filter scan duplicates by advertising data only, even if they originate from different devices.
• 2 - Filter scan duplicated by device address and advertising data.

uint16_t normal_adv_size
Maximum number of devices in scan duplicate filtering list. Configurable in menuconfig
• Range: 10 - 1000
• Default: 100

uint16_t mesh_adv_size
Maximum number ofMesh advertising packets in scan duplicate filtering list. Configurable inmenuconfig
• Range: 10 - 1000
• Default: 100

uint16_t send_adv_reserved_size
Controller minimum memory value in bytes. Internal use only

uint32_t controller_debug_flag
Controller debug log flag. Internal use only

uint8_t mode
Controller mode. Configurable in menuconfig
• 1 - BLE mode
• 2 - Classic Bluetooth mode
• 3 - Dual mode
• 4 - Others: Invalid

uint8_t ble_max_conn
Maximum number of BLE connections. Configurable in menuconfig
• Range: 1 - 9

Espressif Systems 334
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Default: 3

uint8_t bt_max_acl_conn
Maximum number of BR/EDR ACL connections. Configurable in menuconfig
• Range: 1 - 7
• Default: 2

uint8_t bt_sco_datapath
SCO data path. Configurable in menuconfig
• 0 - HCI module (default)
• 1 - PCM module

bool auto_latency
True if BLE auto latency is enabled, used to enhance Classic Bluetooth performance in the Dual mode;
false otherwise (default). Configurable in menuconfig

bool bt_legacy_auth_vs_evt
True if BR/EDR Legacy Authentication Vendor Specific Event is enabled (default in the classic blue-
tooth or Dual mode), which is required to protect from BIAS attack; false otherwise. Configurable in
menuconfig

uint8_t bt_max_sync_conn
Maximum number of BR/EDR synchronous connections. Configurable in menuconfig
• Range: 0 - 3
• Default: 0

uint8_t ble_sca
BLE low power crystal accuracy index. Configurable in menuconfig
• 0 - BTDM_BLE_DEFAULT_SCA_500PPM
• 1 - BTDM_BLE_DEFAULT_SCA_250PPM (default)

uint8_t pcm_role
PCM role. Configurable in menuconfig
• 0 - PCM master (default)
• 1 - PCM slave (default)

uint8_t pcm_polar
PCM polarity (falling clk edge & rising clk edge). Configurable in menuconfig
• 0 - Falling Edge (default)
• 1 - Rising Edge

uint8_t pcm_fsyncshp
Physical shape of the PCM Frame Synchronization signal. Configurable in menuconfig
• 0 - Stereo Mode (default)
• 1 - Mono Mode 1
• 2 - Mono Mode 2

bool hli
True if using high-level (level 4) interrupt (default); false otherwise. Configurable in menuconfig

Espressif Systems 335
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t enc_key_sz_min
Minimum size of the encryption key
• Range: 7 - 16
• Default: 7

uint16_t dup_list_refresh_period
Scan duplicate filtering list refresh period in seconds. Configurable in menuconfig
• Range: 0 - 100 seconds
• Default: 0 second

bool ble_scan_backoff
True if BLE scan backoff is enabled; false otherwise (default). Configurable in menuconfig

uint8_t ble_llcp_disc_flag
Flag indicating whether the Controller disconnects after Instant Passed (0x28) error occurs. Configurable
in menuconfig.
• The Controller does not disconnect after Instant Passed (0x28) by default.

bool ble_aa_check
True if adds a verification step for the Access Address within the CONNECT_IND PDU; false otherwise
(default). Configurable in menuconfig

uint8_t ble_chan_ass_en
True if BLE channel assessment is enabled (default), false otherwise. Configurable in menuconfig

uint8_t ble_ping_en
True if BLE ping procedure is enabled (default), false otherwise. Configurable in menuconfig

uint32_t magic
Magic number

struct esp_vhci_host_callback
Virtual HCI (VHCI) callback functions to notify the Host on the next operation.

Public Members

void (*notify_host_send_available)(void)
Callback to notify the Host that the Controller is ready to receive the HCI data

int (*notify_host_recv)(uint8_t *data, uint16_t len)
Callback to notify the Host that the Controller has the HCI data to send

Macros

ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL

Internal use only.

Note: Please do not modify this value.

Espressif Systems 336
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

BT_CONTROLLER_INIT_CONFIG_DEFAULT()

Default Bluetooth Controller configuration.

Type Definitions

typedef struct esp_vhci_host_callback esp_vhci_host_callback_t
Virtual HCI (VHCI) callback functions to notify the Host on the next operation.

Enumerations

enum esp_bt_mode_t

Bluetooth Controller mode.
Values:

enumerator ESP_BT_MODE_IDLE
Bluetooth is not operating.

enumerator ESP_BT_MODE_BLE
Bluetooth is operating in BLE mode.

enumerator ESP_BT_MODE_CLASSIC_BT
Bluetooth is operating in Classic Bluetooth mode.

enumerator ESP_BT_MODE_BTDM
Bluetooth is operating in Dual mode.

enum esp_ble_sca_t

BLE sleep clock accuracy (SCA)

Note: Currently only ESP_BLE_SCA_500PPM and ESP_BLE_SCA_250PPM are supported.

Values:

enumerator ESP_BLE_SCA_500PPM
BLE SCA at 500 ppm

enumerator ESP_BLE_SCA_250PPM
BLE SCA at 250 ppm

enumerator ESP_BLE_SCA_150PPM
BLE SCA at 150 ppm

enumerator ESP_BLE_SCA_100PPM
BLE SCA at 100 ppm

enumerator ESP_BLE_SCA_75PPM
BLE SCA at 75 ppm

enumerator ESP_BLE_SCA_50PPM
BLE SCA at 50 ppm

Espressif Systems 337
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_SCA_30PPM
BLE SCA at 30 ppm

enumerator ESP_BLE_SCA_20PPM
BLE SCA at 20 ppm

enum esp_bt_controller_status_t

Bluetooth Controller status.
Values:

enumerator ESP_BT_CONTROLLER_STATUS_IDLE
The Controller is not initialized or has been de-initialized.

enumerator ESP_BT_CONTROLLER_STATUS_INITED
The Controller has been initialized, but not enabled or has been disabled.

enumerator ESP_BT_CONTROLLER_STATUS_ENABLED
The Controller has been initialized and enabled.

enumerator ESP_BT_CONTROLLER_STATUS_NUM
Number of Controller statuses

enum esp_ble_power_type_t

BLE TX power type.

Note:
a. The connection TX power can only be set after the connection is established. After disconnecting, the

corresponding TX power will not be affected.
b. ESP_BLE_PWR_TYPE_DEFAULT can be used to set the TX power for power types that have not

been set before. It will not affect the TX power values which have been set for the following CONN0-
8/ADV/SCAN power types.

c. If none of power type is set, the system will use ESP_PWR_LVL_P3 as default for all power types.

Values:

enumerator ESP_BLE_PWR_TYPE_CONN_HDL0
TX power for connection handle 0

enumerator ESP_BLE_PWR_TYPE_CONN_HDL1
TX power for connection handle 1

enumerator ESP_BLE_PWR_TYPE_CONN_HDL2
TX power for connection handle 2

enumerator ESP_BLE_PWR_TYPE_CONN_HDL3
TX power for connection handle 3

enumerator ESP_BLE_PWR_TYPE_CONN_HDL4
TX power for connection handle 4

Espressif Systems 338
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_PWR_TYPE_CONN_HDL5
TX power for connection handle 5

enumerator ESP_BLE_PWR_TYPE_CONN_HDL6
TX power for connection handle 6

enumerator ESP_BLE_PWR_TYPE_CONN_HDL7
TX power for connection handle 7

enumerator ESP_BLE_PWR_TYPE_CONN_HDL8
TX power for connection handle 8

enumerator ESP_BLE_PWR_TYPE_ADV
TX power for advertising

enumerator ESP_BLE_PWR_TYPE_SCAN
TX power for scan

enumerator ESP_BLE_PWR_TYPE_DEFAULT
Default TX power type, which can be used to set the TX power for power types that have not been set
before.

enumerator ESP_BLE_PWR_TYPE_NUM
Number of types

enum esp_power_level_t

Bluetooth TX power level (index). Each index corresponds to a specific power value in dBm.
Values:

enumerator ESP_PWR_LVL_N12
Corresponding to -12 dBm

enumerator ESP_PWR_LVL_N9
Corresponding to -9 dBm

enumerator ESP_PWR_LVL_N6
Corresponding to -6 dBm

enumerator ESP_PWR_LVL_N3
Corresponding to -3 dBm

enumerator ESP_PWR_LVL_N0
Corresponding to 0 dBm

enumerator ESP_PWR_LVL_P3
Corresponding to +3 dBm

enumerator ESP_PWR_LVL_P6
Corresponding to +6 dBm

Espressif Systems 339
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_PWR_LVL_P9
Corresponding to +9 dBm

enumerator ESP_PWR_LVL_N14
Backward compatibility! Setting to -14 dBm will actually result in -12 dBm

enumerator ESP_PWR_LVL_N11
Backward compatibility! Setting to -11 dBm will actually result in -9 dBm

enumerator ESP_PWR_LVL_N8
Backward compatibility! Setting to -8 dBm will actually result in -6 dBm

enumerator ESP_PWR_LVL_N5
Backward compatibility! Setting to -5 dBm will actually result in -3 dBm

enumerator ESP_PWR_LVL_N2
Backward compatibility! Setting to -2 dBm will actually result in 0 dBm

enumerator ESP_PWR_LVL_P1
Backward compatibility! Setting to +1 dBm will actually result in +3 dBm

enumerator ESP_PWR_LVL_P4
Backward compatibility! Setting to +4 dBm will actually result in +6 dBm

enumerator ESP_PWR_LVL_P7
Backward compatibility! Setting to +7 dBm will actually result in +9 dBm

enum esp_sco_data_path_t

Bluetooth audio data transport path.
Values:

enumerator ESP_SCO_DATA_PATH_HCI
data over HCI transport

enumerator ESP_SCO_DATA_PATH_PCM
data over PCM interface

enum esp_bt_sleep_clock_t

Bluetooth sleep clock.
Values:

enumerator ESP_BT_SLEEP_CLOCK_NONE
Sleep clock not configured

enumerator ESP_BT_SLEEP_CLOCK_MAIN_XTAL
SoC main crystal

enumerator ESP_BT_SLEEP_CLOCK_EXT_32K_XTAL
External 32.768kHz crystal/oscillator

Espressif Systems 340
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

HCI Vendor-specific (VS) Commands

Espressif's HCI VS commands are exclusively designed for use with Espressif's Bluetooth Host stack or internal
debugging purposes. Application developers should not initialize or invoke these VS commands in their applications.
Please refer to bt_vhci for detailed information.

2.3.4 ESP-BLE-MESH

With various features of ESP-BLE-MESH, users can create a managed flooding mesh network for several scenarios,
such as lighting, sensor and etc.
For an ESP32 to join and work on a ESP-BLE-MESH network, it must be provisioned firstly. By provisioning, the
ESP32, as an unprovisioned device, will join the ESP-BLE-MESH network and become a ESP-BLE-MESH node,
communicating with other nodes within or beyond the radio range.
Apart from ESP-BLE-MESH nodes, inside ESP-BLE-MESH network, there is also ESP32 that works as ESP-BLE-
MESH Provisioner, which could provision unprovisioned devices into ESP-BLE-MESH nodes and configure the
nodes with various features.
For information how to start using ESP32 and ESP-BLE-MESH, please see the Section Getting Started. If you
are interested in information on ESP-BLE-MESH architecture, including some details of software implementation,
please see Section Architecture.

Application Examples and Demos

Please refer to Sections Examples and Demo Videos.

API Reference

ESP-BLE-MESH APIs are divided into the following parts:
• ESP-BLE-MESH Definitions
• ESP-BLE-MESH Core API Reference
• ESP-BLE-MESH Models API Reference

ESP-BLE-MESH Definitions

This section contains only one header file, which lists the following items of ESP-BLE-MESH.
• ID of all the models and related message opcodes
• Structs of model, element and Composition Data
• Structs of used by ESP-BLE-MESH Node/Provisioner for provisioning
• Structs used to transmit/receive messages
• Event types and related event parameters

Header File
• components/bt/esp_ble_mesh/api/esp_ble_mesh_defs.h

Unions

union esp_ble_mesh_prov_cb_param_t
#include <esp_ble_mesh_defs.h> BLE Mesh Node/Provisioner callback parameters union.

Espressif Systems 341
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/esp_ble_mesh_defs.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_prov_register_comp_param prov_register_comp

Event parameter of ESP_BLE_MESH_PROV_REGISTER_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_set_unprov_dev_name_comp_param
node_set_unprov_dev_name_comp

Event parameter of ESP_BLE_MESH_NODE_SET_UNPROV_DEV_NAME_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_prov_enable_comp_param
node_prov_enable_comp

Event parameter of ESP_BLE_MESH_NODE_PROV_ENABLE_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_prov_disable_comp_param
node_prov_disable_comp

Event parameter of ESP_BLE_MESH_NODE_PROV_DISABLE_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_link_open_evt_param node_prov_link_open

Event parameter of ESP_BLE_MESH_NODE_PROV_LINK_OPEN_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_link_close_evt_param node_prov_link_close

Event parameter of ESP_BLE_MESH_NODE_PROV_LINK_CLOSE_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_output_num_evt_param node_prov_output_num

Event parameter of ESP_BLE_MESH_NODE_PROV_OUTPUT_NUMBER_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_output_str_evt_param node_prov_output_str

Event parameter of ESP_BLE_MESH_NODE_PROV_OUTPUT_STRING_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_input_evt_param node_prov_input

Event parameter of ESP_BLE_MESH_NODE_PROV_INPUT_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provision_complete_evt_param node_prov_complete

Event parameter of ESP_BLE_MESH_NODE_PROV_COMPLETE_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provision_reset_param node_prov_reset

Event parameter of ESP_BLE_MESH_NODE_PROV_RESET_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_set_oob_pub_key_comp_param
node_prov_set_oob_pub_key_comp

Event parameter of ESP_BLE_MESH_NODE_PROV_SET_OOB_PUB_KEY_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_input_number_comp_param
node_prov_input_num_comp

Event parameter of ESP_BLE_MESH_NODE_PROV_INPUT_NUM_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_input_string_comp_param
node_prov_input_str_comp

Event parameter of ESP_BLE_MESH_NODE_PROV_INPUT_STR_COMP_EVT

Espressif Systems 342
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_identity_enable_comp_param
node_proxy_identity_enable_comp

Event parameter of ESP_BLE_MESH_NODE_PROXY_IDENTITY_ENABLE_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_gatt_enable_comp_param
node_proxy_gatt_enable_comp

Event parameter of ESP_BLE_MESH_NODE_PROXY_GATT_ENABLE_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_gatt_disable_comp_param
node_proxy_gatt_disable_comp

Event parameter of ESP_BLE_MESH_NODE_PROXY_GATT_DISABLE_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_node_add_local_net_key_comp_param
node_add_net_key_comp

Event parameter of ESP_BLE_MESH_NODE_ADD_LOCAL_NET_KEY_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_node_add_local_app_key_comp_param
node_add_app_key_comp

Event parameter of ESP_BLE_MESH_NODE_ADD_LOCAL_APP_KEY_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_node_bind_local_mod_app_comp_param
node_bind_app_key_to_model_comp

Event parameter of ESP_BLE_MESH_NODE_BIND_APP_KEY_TO_MODEL_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_recv_unprov_adv_pkt_param
provisioner_recv_unprov_adv_pkt

Event parameter of ESP_BLE_MESH_PROVISIONER_RECV_UNPROV_ADV_PKT_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_enable_comp_param
provisioner_prov_enable_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_ENABLE_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_disable_comp_param
provisioner_prov_disable_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_DISABLE_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_link_open_evt_param
provisioner_prov_link_open

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_LINK_OPEN_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_read_oob_pub_key_evt_param
provisioner_prov_read_oob_pub_key

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_READ_OOB_PUB_KEY_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_evt_param
provisioner_prov_input

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_INPUT_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_output_evt_param
provisioner_prov_output

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_OUTPUT_EVT

Espressif Systems 343
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_link_close_evt_param
provisioner_prov_link_close

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_LINK_CLOSE_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_comp_param
provisioner_prov_complete

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_COMPLETE_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_unprov_dev_comp_param
provisioner_add_unprov_dev_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_ADD_UNPROV_DEV_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_dev_with_addr_comp_param
provisioner_prov_dev_with_addr_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_DEV_WITH_ADDR_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_delete_dev_comp_param
provisioner_delete_dev_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_DELETE_DEV_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_dev_uuid_match_comp_param
provisioner_set_dev_uuid_match_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_SET_DEV_UUID_MATCH_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_prov_data_info_comp_param
provisioner_set_prov_data_info_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_SET_PROV_DATA_INFO_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_static_oob_val_comp_param
provisioner_set_static_oob_val_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_SET_STATIC_OOB_VALUE_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_primary_elem_addr_comp_param
provisioner_set_primary_elem_addr_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_SET_PRIMARY_ELEM_ADDR_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_read_oob_pub_key_comp_param
provisioner_prov_read_oob_pub_key_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_READ_OOB_PUB_KEY_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_num_comp_param
provisioner_prov_input_num_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_INPUT_NUMBER_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_str_comp_param
provisioner_prov_input_str_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_PROV_INPUT_STRING_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_node_name_comp_param
provisioner_set_node_name_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_SET_NODE_NAME_COMP_EVT

Espressif Systems 344
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_local_app_key_comp_param
provisioner_add_app_key_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_ADD_LOCAL_APP_KEY_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_update_local_app_key_comp_param
provisioner_update_app_key_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_UPDATE_LOCAL_APP_KEY_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_bind_local_mod_app_comp_param
provisioner_bind_app_key_to_model_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_BIND_APP_KEY_TO_MODEL_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_local_net_key_comp_param
provisioner_add_net_key_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_ADD_LOCAL_NET_KEY_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_update_local_net_key_comp_param
provisioner_update_net_key_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_UPDATE_LOCAL_NET_KEY_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_store_node_comp_data_comp_param
provisioner_store_node_comp_data_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_STORE_NODE_COMP_DATA_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_delete_node_with_uuid_comp_param
provisioner_delete_node_with_uuid_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_DELETE_NODE_WITH_UUID_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_delete_node_with_addr_comp_param
provisioner_delete_node_with_addr_comp

Event parameter of ESP_BLE_MESH_PROVISIONER_DELETE_NODE_WITH_ADDR_COMP_EVT

int err_code
Indicate the result of enabling/disabling to receive heartbeat messages by the Provisioner
Indicate the result of setting the heartbeat filter type by the Provisioner
Indicate the result of setting the heartbeat filter address by the Provisioner
Indicate the result of directly erasing settings by the Provisioner
Indicate the result of opening settings with index by the Provisioner
Indicate the result of opening settings with user id by the Provisioner
Indicate the result of closing settings with index by the Provisioner
Indicate the result of closing settings with user id by the Provisioner
Indicate the result of deleting settings with index by the Provisioner
Indicate the result of deleting settings with user id by the Provisioner

bool enable
Indicate enabling or disabling receiving heartbeat messages

Espressif Systems 345
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_prov_cb_param_t::[anonymous]
provisioner_enable_heartbeat_recv_comp

ESP_BLE_MESH_PROVISIONER_ENABLE_HEARTBEAT_RECV_COMP_EVT.
Event parameters of ESP_BLE_MESH_PROVISIONER_ENABLE_HEARTBEAT_RECV_COMP_EVT

uint8_t type
Type of the filter used for receiving heartbeat messages

struct esp_ble_mesh_prov_cb_param_t::[anonymous]
provisioner_set_heartbeat_filter_type_comp

ESP_BLE_MESH_PROVISIONER_SET_HEARTBEAT_FILTER_TYPE_COMP_EVT.
Event parameters of ESP_BLE_MESH_PROVISIONER_SET_HEARTBEAT_FILTER_TYPE_COMP_EVT

uint8_t op
Operation (add, remove, clean)

uint16_t hb_src
Heartbeat source address

uint16_t hb_dst
Heartbeat destination address

struct esp_ble_mesh_prov_cb_param_t::[anonymous]
provisioner_set_heartbeat_filter_info_comp

ESP_BLE_MESH_PROVISIONER_SET_HEARTBEAT_FILTER_INFO_COMP_EVT.
Event parameters of ESP_BLE_MESH_PROVISIONER_SET_HEARTBEAT_FILTER_INFO_COMP_EVT

uint8_t init_ttl
Heartbeat InitTTL

uint8_t rx_ttl
Heartbeat RxTTL

uint8_t hops
Heartbeat hops (InitTTL - RxTTL + 1)

uint16_t feature
Bit field of currently active features of the node

int8_t rssi
RSSI of the heartbeat message

struct esp_ble_mesh_prov_cb_param_t::[anonymous] provisioner_recv_heartbeat
ESP_BLE_MESH_PROVISIONER_RECV_HEARTBEAT_MESSAGE_EVT.
Event parameters of ESP_BLE_MESH_PROVISIONER_RECV_HEARTBEAT_MESSAGE_EVT

struct esp_ble_mesh_prov_cb_param_t::[anonymous]
provisioner_direct_erase_settings_comp

Espressif Systems 346
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_PROVISIONER_DIRECT_ERASE_SETTINGS_COMP_EVT.
Event parameters of ESP_BLE_MESH_PROVISIONER_DIRECT_ERASE_SETTINGS_COMP_EVT

uint8_t index
Index of Provisioner settings

struct esp_ble_mesh_prov_cb_param_t::[anonymous]
provisioner_open_settings_with_index_comp

ESP_BLE_MESH_PROVISIONER_OPEN_SETTINGS_WITH_INDEX_COMP_EVT.
Event parameter of ESP_BLE_MESH_PROVISIONER_OPEN_SETTINGS_WITH_INDEX_COMP_EVT

char uid[ESP_BLE_MESH_SETTINGS_UID_SIZE + 1]
Provisioner settings user id

struct esp_ble_mesh_prov_cb_param_t::[anonymous]
provisioner_open_settings_with_uid_comp

ESP_BLE_MESH_PROVISIONER_OPEN_SETTINGS_WITH_UID_COMP_EVT.
Event parameters of ESP_BLE_MESH_PROVISIONER_OPEN_SETTINGS_WITH_UID_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::[anonymous]
provisioner_close_settings_with_index_comp

ESP_BLE_MESH_PROVISIONER_CLOSE_SETTINGS_WITH_INDEX_COMP_EVT.
Event parameter of ESP_BLE_MESH_PROVISIONER_CLOSE_SETTINGS_WITH_INDEX_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::[anonymous]
provisioner_close_settings_with_uid_comp

ESP_BLE_MESH_PROVISIONER_CLOSE_SETTINGS_WITH_UID_COMP_EVT.
Event parameters of ESP_BLE_MESH_PROVISIONER_CLOSE_SETTINGS_WITH_UID_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::[anonymous]
provisioner_delete_settings_with_index_comp

ESP_BLE_MESH_PROVISIONER_DELETE_SETTINGS_WITH_INDEX_COMP_EVT.
Event parameter of ESP_BLE_MESH_PROVISIONER_DELETE_SETTINGS_WITH_INDEX_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::[anonymous]
provisioner_delete_settings_with_uid_comp

ESP_BLE_MESH_PROVISIONER_DELETE_SETTINGS_WITH_UID_COMP_EVT.
Event parameters of ESP_BLE_MESH_PROVISIONER_DELETE_SETTINGS_WITH_UID_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_set_fast_prov_info_comp_param
set_fast_prov_info_comp

Event parameter of ESP_BLE_MESH_SET_FAST_PROV_INFO_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_set_fast_prov_action_comp_param
set_fast_prov_action_comp

Event parameter of ESP_BLE_MESH_SET_FAST_PROV_ACTION_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_heartbeat_msg_recv_param heartbeat_msg_recv

Event parameter of ESP_BLE_MESH_HEARTBEAT_MESSAGE_RECV_EVT

Espressif Systems 347
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_enable_comp_param lpn_enable_comp

Event parameter of ESP_BLE_MESH_LPN_ENABLE_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_disable_comp_param lpn_disable_comp

Event parameter of ESP_BLE_MESH_LPN_DISABLE_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_poll_comp_param lpn_poll_comp

Event parameter of ESP_BLE_MESH_LPN_POLL_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_friendship_establish_param
lpn_friendship_establish

Event parameter of ESP_BLE_MESH_LPN_FRIENDSHIP_ESTABLISH_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_friendship_terminate_param
lpn_friendship_terminate

Event parameter of ESP_BLE_MESH_LPN_FRIENDSHIP_TERMINATE_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_establish_param
frnd_friendship_establish

Event parameter of ESP_BLE_MESH_FRIEND_FRIENDSHIP_ESTABLISH_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_terminate_param
frnd_friendship_terminate

Event parameter of ESP_BLE_MESH_FRIEND_FRIENDSHIP_TERMINATE_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_adv_pkt_param
proxy_client_recv_adv_pkt

Event parameter of ESP_BLE_MESH_PROXY_CLIENT_RECV_ADV_PKT_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connected_param
proxy_client_connected

Event parameter of ESP_BLE_MESH_PROXY_CLIENT_CONNECTED_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_disconnected_param
proxy_client_disconnected

Event parameter of ESP_BLE_MESH_PROXY_CLIENT_DISCONNECTED_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_filter_status_param
proxy_client_recv_filter_status

Event parameter of ESP_BLE_MESH_PROXY_CLIENT_RECV_FILTER_STATUS_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connect_comp_param
proxy_client_connect_comp

Event parameter of ESP_BLE_MESH_PROXY_CLIENT_CONNECT_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_disconnect_comp_param
proxy_client_disconnect_comp

Event parameter of ESP_BLE_MESH_PROXY_CLIENT_DISCONNECT_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_set_filter_type_comp_param
proxy_client_set_filter_type_comp

Event parameter of ESP_BLE_MESH_PROXY_CLIENT_SET_FILTER_TYPE_COMP_EVT

Espressif Systems 348
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_add_filter_addr_comp_param
proxy_client_add_filter_addr_comp

Event parameter of ESP_BLE_MESH_PROXY_CLIENT_ADD_FILTER_ADDR_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_remove_filter_addr_comp_param
proxy_client_remove_filter_addr_comp

Event parameter of ESP_BLE_MESH_PROXY_CLIENT_REMOVE_FILTER_ADDR_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_server_connected_param
proxy_server_connected

Event parameter of ESP_BLE_MESH_PROXY_SERVER_CONNECTED_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_server_disconnected_param
proxy_server_disconnected

Event parameter of ESP_BLE_MESH_PROXY_SERVER_DISCONNECTED_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_model_sub_group_addr_comp_param
model_sub_group_addr_comp

Event parameters of ESP_BLE_MESH_MODEL_SUBSCRIBE_GROUP_ADDR_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_model_unsub_group_addr_comp_param
model_unsub_group_addr_comp

Event parameters of ESP_BLE_MESH_MODEL_UNSUBSCRIBE_GROUP_ADDR_COMP_EVT

struct esp_ble_mesh_prov_cb_param_t::ble_mesh_deinit_mesh_comp_param deinit_mesh_comp

Event parameter of ESP_BLE_MESH_DEINIT_MESH_COMP_EVT

struct ble_mesh_deinit_mesh_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_DEINIT_MESH_COMP_EVT.

Public Members

int err_code
Indicate the result of BLE Mesh deinitialization

struct ble_mesh_friend_friendship_establish_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_FRIEND_FRIENDSHIP_ESTABLISH_EVT.

Public Members

uint16_t lpn_addr
Low Power Node unicast address

struct ble_mesh_friend_friendship_terminate_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_FRIEND_FRIENDSHIP_TERMINATE_EVT.

Espressif Systems 349
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Types

enum [anonymous]

This enum value is the reason of friendship termination on the friend node side
Values:

enumerator ESP_BLE_MESH_FRND_FRIENDSHIP_TERMINATE_ESTABLISH_FAIL
Friend Offer has been sent, but Friend Offer is not received within 1 second, friendship fails to
be established

enumerator ESP_BLE_MESH_FRND_FRIENDSHIP_TERMINATE_POLL_TIMEOUT
Friendship is established, PollTimeout timer expires and no Friend Poll/Sub Add/Sub Remove
is received

enumerator ESP_BLE_MESH_FRND_FRIENDSHIP_TERMINATE_RECV_FRND_REQ
Receive Friend Request from existing Low Power Node

enumerator ESP_BLE_MESH_FRND_FRIENDSHIP_TERMINATE_RECV_FRND_CLEAR
Receive Friend Clear from other friend node

enumerator ESP_BLE_MESH_FRND_FRIENDSHIP_TERMINATE_DISABLE
Friend feature disabled or corresponding NetKey is deleted

Public Members

uint16_t lpn_addr
Low Power Node unicast address

enum esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_terminate_param::[anonymous]
reason

This enum value is the reason of friendship termination on the friend node side Friendship terminated
reason

struct ble_mesh_heartbeat_msg_recv_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_HEARTBEAT_MESSAGE_RECV_EVT.

Public Members

uint8_t hops
Heartbeat hops (InitTTL - RxTTL + 1)

uint16_t feature
Bit field of currently active features of the node

struct ble_mesh_input_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_NODE_PROV_INPUT_EVT.

Espressif Systems 350
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_mesh_input_action_t action

Action of Input OOB Authentication

uint8_t size
Size of Input OOB Authentication

struct ble_mesh_input_number_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_NODE_PROV_INPUT_NUM_COMP_EVT.

Public Members

int err_code
Indicate the result of inputting number

struct ble_mesh_input_string_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_NODE_PROV_INPUT_STR_COMP_EVT.

Public Members

int err_code
Indicate the result of inputting string

struct ble_mesh_link_close_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_NODE_PROV_LINK_CLOSE_EVT.

Public Members

esp_ble_mesh_prov_bearer_t bearer

Type of the bearer used when device link is closed

struct ble_mesh_link_open_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_NODE_PROV_LINK_OPEN_EVT.

Public Members

esp_ble_mesh_prov_bearer_t bearer

Type of the bearer used when device link is open

struct ble_mesh_lpn_disable_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_LPN_DISABLE_COMP_EVT.

Espressif Systems 351
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int err_code
Indicate the result of disabling LPN functionality

struct ble_mesh_lpn_enable_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_LPN_ENABLE_COMP_EVT.

Public Members

int err_code
Indicate the result of enabling LPN functionality

struct ble_mesh_lpn_friendship_establish_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_LPN_FRIENDSHIP_ESTABLISH_EVT.

Public Members

uint16_t friend_addr
Friend Node unicast address

struct ble_mesh_lpn_friendship_terminate_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_LPN_FRIENDSHIP_TERMINATE_EVT.

Public Members

uint16_t friend_addr
Friend Node unicast address

struct ble_mesh_lpn_poll_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_LPN_POLL_COMP_EVT.

Public Members

int err_code
Indicate the result of sending Friend Poll

struct ble_mesh_model_sub_group_addr_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_MODEL_SUBSCRIBE_GROUP_ADDR_COMP_EVT.

Public Members

int err_code
Indicate the result of local model subscribing group address

Espressif Systems 352
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t element_addr
Element address

uint16_t company_id
Company ID

uint16_t model_id
Model ID

uint16_t group_addr
Group Address

struct ble_mesh_model_unsub_group_addr_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_MODEL_UNSUBSCRIBE_GROUP_ADDR_COMP_EVT.

Public Members

int err_code
Indicate the result of local model unsubscribing group address

uint16_t element_addr
Element address

uint16_t company_id
Company ID

uint16_t model_id
Model ID

uint16_t group_addr
Group Address

struct ble_mesh_node_add_local_app_key_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_NODE_ADD_LOCAL_APP_KEY_COMP_EVT.

Public Members

int err_code
Indicate the result of adding local AppKey by the node

uint16_t net_idx
NetKey Index

uint16_t app_idx
AppKey Index

struct ble_mesh_node_add_local_net_key_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_NODE_ADD_LOCAL_NET_KEY_COMP_EVT.

Espressif Systems 353
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int err_code
Indicate the result of adding local NetKey by the node

uint16_t net_idx
NetKey Index

struct ble_mesh_node_bind_local_mod_app_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_NODE_BIND_APP_KEY_TO_MODEL_COMP_EVT.

Public Members

int err_code
Indicate the result of binding AppKey with model by the node

uint16_t element_addr
Element address

uint16_t app_idx
AppKey Index

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct ble_mesh_output_num_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_NODE_PROV_OUTPUT_NUMBER_EVT.

Public Members

esp_ble_mesh_output_action_t action

Action of Output OOB Authentication

uint32_t number
Number of Output OOB Authentication

struct ble_mesh_output_str_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_NODE_PROV_OUTPUT_STRING_EVT.

Public Members

char string[8]
String of Output OOB Authentication

Espressif Systems 354
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct ble_mesh_prov_disable_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_NODE_PROV_DISABLE_COMP_EVT.

Public Members

int err_code
Indicate the result of disabling BLE Mesh device

struct ble_mesh_prov_enable_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_NODE_PROV_ENABLE_COMP_EVT.

Public Members

int err_code
Indicate the result of enabling BLE Mesh device

struct ble_mesh_prov_register_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROV_REGISTER_COMP_EVT.

Public Members

int err_code
Indicate the result of BLE Mesh initialization

struct ble_mesh_provision_complete_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_NODE_PROV_COMPLETE_EVT.

Public Members

uint16_t net_idx
NetKey Index

uint8_t net_key[16]
NetKey

uint16_t addr
Primary address

uint8_t flags
Flags

uint32_t iv_index
IV Index

struct ble_mesh_provision_reset_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_NODE_PROV_RESET_EVT.

Espressif Systems 355
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct ble_mesh_provisioner_add_local_app_key_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_ADD_LOCAL_APP_KEY_COMP_EVT.

Public Members

int err_code
Indicate the result of adding local AppKey by the Provisioner

uint16_t net_idx
NetKey Index

uint16_t app_idx
AppKey Index

struct ble_mesh_provisioner_add_local_net_key_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_ADD_LOCAL_NET_KEY_COMP_EVT.

Public Members

int err_code
Indicate the result of adding local NetKey by the Provisioner

uint16_t net_idx
NetKey Index

struct ble_mesh_provisioner_add_unprov_dev_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_ADD_UNPROV_DEV_COMP_EVT.

Public Members

int err_code
Indicate the result of adding device into queue by the Provisioner

struct ble_mesh_provisioner_bind_local_mod_app_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_BIND_APP_KEY_TO_MODEL_COMP_EVT.

Public Members

int err_code
Indicate the result of binding AppKey with model by the Provisioner

uint16_t element_addr
Element address

uint16_t app_idx
AppKey Index

Espressif Systems 356
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct ble_mesh_provisioner_delete_dev_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROVISIONER_DELETE_DEV_COMP_EVT.

Public Members

int err_code
Indicate the result of deleting device by the Provisioner

struct ble_mesh_provisioner_delete_node_with_addr_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_DELETE_NODE_WITH_ADDR_COMP_EVT.

Public Members

int err_code
Indicate the result of deleting node with unicast address by the Provisioner

uint16_t unicast_addr
Node unicast address

struct ble_mesh_provisioner_delete_node_with_uuid_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_DELETE_NODE_WITH_UUID_COMP_EVT.

Public Members

int err_code
Indicate the result of deleting node with uuid by the Provisioner

uint8_t uuid[16]
Node device uuid

struct ble_mesh_provisioner_link_close_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROVISIONER_PROV_LINK_CLOSE_EVT.

Public Members

esp_ble_mesh_prov_bearer_t bearer

Type of the bearer used when Provisioner link is closed

uint8_t reason
Reason of the closed provisioning link

Espressif Systems 357
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct ble_mesh_provisioner_link_open_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROVISIONER_PROV_LINK_OPEN_EVT.

Public Members

esp_ble_mesh_prov_bearer_t bearer

Type of the bearer used when Provisioner link is opened

struct ble_mesh_provisioner_prov_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROVISIONER_PROV_COMPLETE_EVT.

Public Members

uint16_t node_idx
Index of the provisioned device

esp_ble_mesh_octet16_t device_uuid

Device UUID of the provisioned device

uint16_t unicast_addr
Primary address of the provisioned device

uint8_t element_num
Element count of the provisioned device

uint16_t netkey_idx
NetKey Index of the provisioned device

struct ble_mesh_provisioner_prov_dev_with_addr_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_PROV_DEV_WITH_ADDR_COMP_EVT.

Public Members

int err_code
Indicate the result of Provisioner starting to provision a device

struct ble_mesh_provisioner_prov_disable_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_PROV_DISABLE_COMP_EVT.

Public Members

int err_code
Indicate the result of disabling BLE Mesh Provisioner

struct ble_mesh_provisioner_prov_enable_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_PROV_ENABLE_COMP_EVT.

Espressif Systems 358
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int err_code
Indicate the result of enabling BLE Mesh Provisioner

struct ble_mesh_provisioner_prov_input_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROVISIONER_PROV_INPUT_EVT.

Public Members

esp_ble_mesh_oob_method_t method

Method of device Output OOB Authentication

esp_ble_mesh_output_action_t action

Action of device Output OOB Authentication

uint8_t size
Size of device Output OOB Authentication

uint8_t link_idx
Index of the provisioning link

struct ble_mesh_provisioner_prov_input_num_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_PROV_INPUT_NUMBER_COMP_EVT.

Public Members

int err_code
Indicate the result of inputting number by the Provisioner

struct ble_mesh_provisioner_prov_input_str_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_PROV_INPUT_STRING_COMP_EVT.

Public Members

int err_code
Indicate the result of inputting string by the Provisioner

struct ble_mesh_provisioner_prov_output_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROVISIONER_PROV_OUTPUT_EVT.

Public Members

esp_ble_mesh_oob_method_t method

Method of device Input OOB Authentication

Espressif Systems 359
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_input_action_t action

Action of device Input OOB Authentication

uint8_t size
Size of device Input OOB Authentication

uint8_t link_idx
Index of the provisioning link

char string[8]
String output by the Provisioner

uint32_t number
Number output by the Provisioner

union esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_output_evt_param::[anonymous]
[anonymous]

struct ble_mesh_provisioner_prov_read_oob_pub_key_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_PROV_READ_OOB_PUB_KEY_COMP_EVT.

Public Members

int err_code
Indicate the result of setting OOB Public Key by the Provisioner

struct ble_mesh_provisioner_prov_read_oob_pub_key_evt_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_PROV_READ_OOB_PUB_KEY_EVT.

Public Members

uint8_t link_idx
Index of the provisioning link

struct ble_mesh_provisioner_recv_unprov_adv_pkt_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_RECV_UNPROV_ADV_PKT_EVT.

Public Members

uint8_t dev_uuid[16]
Device UUID of the unprovisioned device

esp_ble_mesh_bd_addr_t addr

Device address of the unprovisioned device

Espressif Systems 360
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_addr_type_t addr_type

Device address type

uint16_t oob_info
OOB Info of the unprovisioned device

uint8_t adv_type
Avertising type of the unprovisioned device

esp_ble_mesh_prov_bearer_t bearer

Bearer of the unprovisioned device

int8_t rssi
RSSI of the received advertising packet

struct ble_mesh_provisioner_set_dev_uuid_match_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_SET_DEV_UUID_MATCH_COMP_EVT.

Public Members

int err_code
Indicate the result of setting Device UUID match value by the Provisioner

struct ble_mesh_provisioner_set_node_name_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_SET_NODE_NAME_COMP_EVT.

Public Members

int err_code
Indicate the result of setting provisioned device name by the Provisioner

uint16_t node_index
Index of the provisioned device

struct ble_mesh_provisioner_set_primary_elem_addr_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_SET_PRIMARY_ELEM_ADDR_COMP_EVT.

Public Members

int err_code
Indicate the result of setting unicast address of primary element by the Provisioner

struct ble_mesh_provisioner_set_prov_data_info_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_SET_PROV_DATA_INFO_COMP_EVT.

Espressif Systems 361
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int err_code
Indicate the result of setting provisioning info by the Provisioner

struct ble_mesh_provisioner_set_static_oob_val_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_SET_STATIC_OOB_VALUE_COMP_EVT.

Public Members

int err_code
Indicate the result of setting static oob value by the Provisioner

struct ble_mesh_provisioner_store_node_comp_data_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_STORE_NODE_COMP_DATA_COMP_EVT.

Public Members

int err_code
Indicate the result of storing node composition data by the Provisioner

uint16_t addr
Node element address

struct ble_mesh_provisioner_update_local_app_key_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_UPDATE_LOCAL_APP_KEY_COMP_EVT.

Public Members

int err_code
Indicate the result of updating local AppKey by the Provisioner

uint16_t net_idx
NetKey Index

uint16_t app_idx
AppKey Index

struct ble_mesh_provisioner_update_local_net_key_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROVISIONER_UPDATE_LOCAL_NET_KEY_COMP_EVT.

Public Members

int err_code
Indicate the result of updating local NetKey by the Provisioner

Espressif Systems 362
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t net_idx
NetKey Index

struct ble_mesh_proxy_client_add_filter_addr_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROXY_CLIENT_ADD_FILTER_ADDR_COMP_EVT.

Public Members

int err_code
Indicate the result of Proxy Client add filter address

uint8_t conn_handle
Proxy connection handle

uint16_t net_idx
Corresponding NetKey Index

struct ble_mesh_proxy_client_connect_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROXY_CLIENT_CONNECT_COMP_EVT.

Public Members

int err_code
Indicate the result of Proxy Client connect

esp_ble_mesh_bd_addr_t addr

Device address of the Proxy Server

esp_ble_mesh_addr_type_t addr_type

Device address type

uint16_t net_idx
Corresponding NetKey Index

struct ble_mesh_proxy_client_connected_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROXY_CLIENT_CONNECTED_EVT.

Public Members

esp_ble_mesh_bd_addr_t addr

Device address of the Proxy Server

esp_ble_mesh_addr_type_t addr_type

Device address type

Espressif Systems 363
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t conn_handle
Proxy connection handle

uint16_t net_idx
Corresponding NetKey Index

struct ble_mesh_proxy_client_disconnect_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROXY_CLIENT_DISCONNECT_COMP_EVT.

Public Members

int err_code
Indicate the result of Proxy Client disconnect

uint8_t conn_handle
Proxy connection handle

struct ble_mesh_proxy_client_disconnected_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROXY_CLIENT_DISCONNECTED_EVT.

Public Members

esp_ble_mesh_bd_addr_t addr

Device address of the Proxy Server

esp_ble_mesh_addr_type_t addr_type

Device address type

uint8_t conn_handle
Proxy connection handle

uint16_t net_idx
Corresponding NetKey Index

uint8_t reason
Proxy disconnect reason

struct ble_mesh_proxy_client_recv_adv_pkt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROXY_CLIENT_RECV_ADV_PKT_EVT.

Public Members

esp_ble_mesh_bd_addr_t addr

Device address

Espressif Systems 364
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_addr_type_t addr_type

Device address type

uint16_t net_idx
Network ID related NetKey Index

uint8_t net_id[8]
Network ID contained in the advertising packet

int8_t rssi
RSSI of the received advertising packet

struct ble_mesh_proxy_client_recv_filter_status_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROXY_CLIENT_RECV_FILTER_STATUS_EVT.

Public Members

uint8_t conn_handle
Proxy connection handle

uint16_t server_addr
Proxy Server primary element address

uint16_t net_idx
Corresponding NetKey Index

uint8_t filter_type
Proxy Server filter type(whitelist or blacklist)

uint16_t list_size
Number of addresses in the Proxy Server filter list

struct ble_mesh_proxy_client_remove_filter_addr_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROXY_CLIENT_REMOVE_FILTER_ADDR_COMP_EVT.

Public Members

int err_code
Indicate the result of Proxy Client remove filter address

uint8_t conn_handle
Proxy connection handle

uint16_t net_idx
Corresponding NetKey Index

struct ble_mesh_proxy_client_set_filter_type_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_PROXY_CLIENT_SET_FILTER_TYPE_COMP_EVT.

Espressif Systems 365
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int err_code
Indicate the result of Proxy Client set filter type

uint8_t conn_handle
Proxy connection handle

uint16_t net_idx
Corresponding NetKey Index

struct ble_mesh_proxy_gatt_disable_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_NODE_PROXY_GATT_DISABLE_COMP_EVT.

Public Members

int err_code
Indicate the result of disabling Mesh Proxy Service

struct ble_mesh_proxy_gatt_enable_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_NODE_PROXY_GATT_ENABLE_COMP_EVT.

Public Members

int err_code
Indicate the result of enabling Mesh Proxy Service

struct ble_mesh_proxy_identity_enable_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_NODE_PROXY_IDENTITY_ENABLE_COMP_EVT.

Public Members

int err_code
Indicate the result of enabling Mesh Proxy advertising

struct ble_mesh_proxy_server_connected_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROXY_SERVER_CONNECTED_EVT.

Public Members

uint8_t conn_handle
Proxy connection handle

struct ble_mesh_proxy_server_disconnected_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_PROXY_SERVER_DISCONNECTED_EVT.

Espressif Systems 366
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t conn_handle
Proxy connection handle

uint8_t reason
Proxy disconnect reason

struct ble_mesh_set_fast_prov_action_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_SET_FAST_PROV_ACTION_COMP_EVT.

Public Members

uint8_t status_action
Indicate the result of setting action of fast provisioning

struct ble_mesh_set_fast_prov_info_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_SET_FAST_PROV_INFO_COMP_EVT.

Public Members

uint8_t status_unicast
Indicate the result of setting unicast address range of fast provisioning

uint8_t status_net_idx
Indicate the result of setting NetKey Index of fast provisioning

uint8_t status_match
Indicate the result of setting matching Device UUID of fast provisioning

struct ble_mesh_set_oob_pub_key_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_NODE_PROV_SET_OOB_PUB_KEY_COMP_EVT.

Public Members

int err_code
Indicate the result of setting OOB Public Key

struct ble_mesh_set_unprov_dev_name_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_NODE_SET_UNPROV_DEV_NAME_COMP_EVT.

Public Members

int err_code
Indicate the result of setting BLE Mesh device name

Espressif Systems 367
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

union esp_ble_mesh_server_state_value_t
#include <esp_ble_mesh_defs.h> Server model state value union.

Public Members

uint8_t onoff
The value of the Generic OnOff state
The value of the Light LC Light OnOff state

struct esp_ble_mesh_server_state_value_t::[anonymous] gen_onoff
The Generic OnOff state

int16_t level
The value of the Generic Level state

struct esp_ble_mesh_server_state_value_t::[anonymous] gen_level
The Generic Level state

uint8_t onpowerup
The value of the Generic OnPowerUp state

struct esp_ble_mesh_server_state_value_t::[anonymous] gen_onpowerup
The Generic OnPowerUp state

uint16_t power
The value of the Generic Power Actual state

struct esp_ble_mesh_server_state_value_t::[anonymous] gen_power_actual
The Generic Power Actual state

uint16_t lightness
The value of the Light Lightness Actual state
The value of the Light Lightness Linear state
The value of the Light CTL Lightness state
The value of the Light HSL Lightness state
The value of the Light xyL Lightness state

struct esp_ble_mesh_server_state_value_t::[anonymous] light_lightness_actual
The Light Lightness Actual state

struct esp_ble_mesh_server_state_value_t::[anonymous] light_lightness_linear
The Light Lightness Linear state

struct esp_ble_mesh_server_state_value_t::[anonymous] light_ctl_lightness
The Light CTL Lightness state

Espressif Systems 368
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t temperature
The value of the Light CTL Temperature state

int16_t delta_uv
The value of the Light CTL Delta UV state

struct esp_ble_mesh_server_state_value_t::[anonymous] light_ctl_temp_delta_uv
The Light CTL Temperature & Delta UV states

uint16_t hue
The value of the Light HSL Hue state

uint16_t saturation
The value of the Light HSL Saturation state

struct esp_ble_mesh_server_state_value_t::[anonymous] light_hsl
The Light HSL composite state

struct esp_ble_mesh_server_state_value_t::[anonymous] light_hsl_lightness
The Light HSL Lightness state

struct esp_ble_mesh_server_state_value_t::[anonymous] light_hsl_hue
The Light HSL Hue state

struct esp_ble_mesh_server_state_value_t::[anonymous] light_hsl_saturation
The Light HSL Saturation state

struct esp_ble_mesh_server_state_value_t::[anonymous] light_xyl_lightness
The Light xyL Lightness state

struct esp_ble_mesh_server_state_value_t::[anonymous] light_lc_light_onoff
The Light LC Light OnOff state

union esp_ble_mesh_model_cb_param_t
#include <esp_ble_mesh_defs.h> BLE Mesh model callback parameters union.

Public Members

struct esp_ble_mesh_model_cb_param_t::ble_mesh_model_operation_evt_param model_operation

Event parameter of ESP_BLE_MESH_MODEL_OPERATION_EVT

struct esp_ble_mesh_model_cb_param_t::ble_mesh_model_send_comp_param model_send_comp

Event parameter of ESP_BLE_MESH_MODEL_SEND_COMP_EVT

struct esp_ble_mesh_model_cb_param_t::ble_mesh_model_publish_comp_param model_publish_comp

Event parameter of ESP_BLE_MESH_MODEL_PUBLISH_COMP_EVT

Espressif Systems 369
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_model_cb_param_t::ble_mesh_mod_recv_publish_msg_param
client_recv_publish_msg

Event parameter of ESP_BLE_MESH_CLIENT_MODEL_RECV_PUBLISH_MSG_EVT

struct esp_ble_mesh_model_cb_param_t::ble_mesh_client_model_send_timeout_param
client_send_timeout

Event parameter of ESP_BLE_MESH_CLIENT_MODEL_SEND_TIMEOUT_EVT

struct esp_ble_mesh_model_cb_param_t::ble_mesh_model_publish_update_evt_param
model_publish_update

Event parameter of ESP_BLE_MESH_MODEL_PUBLISH_UPDATE_EVT

struct esp_ble_mesh_model_cb_param_t::ble_mesh_server_model_update_state_comp_param
server_model_update_state

Event parameter of ESP_BLE_MESH_SERVER_MODEL_UPDATE_STATE_COMP_EVT

struct ble_mesh_client_model_send_timeout_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_CLIENT_MODEL_SEND_TIMEOUT_EVT.

Public Members

uint32_t opcode
Opcode of the previously sent message

esp_ble_mesh_model_t *model
Pointer to the model which sends the previous message

esp_ble_mesh_msg_ctx_t *ctx
Pointer to the context of the previous message

struct ble_mesh_mod_recv_publish_msg_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_CLIENT_MODEL_RECV_PUBLISH_MSG_EVT.

Public Members

uint32_t opcode
Opcode of the unsolicited received message

esp_ble_mesh_model_t *model
Pointer to the model which receives the message

esp_ble_mesh_msg_ctx_t *ctx
Pointer to the context of the message

uint16_t length
Length of the received message

Espressif Systems 370
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t *msg
Value of the received message

struct ble_mesh_model_operation_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_MODEL_OPERATION_EVT.

Public Members

uint32_t opcode
Opcode of the received message

esp_ble_mesh_model_t *model
Pointer to the model which receives the message

esp_ble_mesh_msg_ctx_t *ctx
Pointer to the context of the received message

uint16_t length
Length of the received message

uint8_t *msg
Value of the received message

struct ble_mesh_model_publish_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_MODEL_PUBLISH_COMP_EVT.

Public Members

int err_code
Indicate the result of publishing a message

esp_ble_mesh_model_t *model
Pointer to the model which publishes the message

struct ble_mesh_model_publish_update_evt_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_MODEL_PUBLISH_UPDATE_EVT.

Public Members

esp_ble_mesh_model_t *model
Pointer to the model which is going to update its publish message

struct ble_mesh_model_send_comp_param
#include <esp_ble_mesh_defs.h> ESP_BLE_MESH_MODEL_SEND_COMP_EVT.

Espressif Systems 371
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int err_code
Indicate the result of sending a message

uint32_t opcode
Opcode of the message

esp_ble_mesh_model_t *model
Pointer to the model which sends the message

esp_ble_mesh_msg_ctx_t *ctx
Context of the message

struct ble_mesh_server_model_update_state_comp_param
#include <esp_ble_mesh_defs.h>ESP_BLE_MESH_SERVER_MODEL_UPDATE_STATE_COMP_EVT.

Public Members

int err_code
Indicate the result of updating server model state

esp_ble_mesh_model_t *model
Pointer to the server model which state value is updated

esp_ble_mesh_server_state_type_t type

Type of the updated server state

Structures

struct esp_ble_mesh_deinit_param_t
BLE Mesh deinit parameters

Public Members

bool erase_flash
Indicate if erasing flash when deinit mesh stack

struct esp_ble_mesh_elem_t
Abstraction that describes a BLE Mesh Element. This structure is associated with struct bt_mesh_elem in
mesh_access.h

Public Members

uint16_t element_addr
Element Address, assigned during provisioning.

Espressif Systems 372
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

const uint16_t location
Location Descriptor (GATT Bluetooth Namespace Descriptors)

const uint8_t sig_model_count
SIG Model count

const uint8_t vnd_model_count
Vendor Model count

esp_ble_mesh_model_t *sig_models
SIG Models

esp_ble_mesh_model_t *vnd_models
Vendor Models

struct esp_ble_mesh_model_pub_t
Abstraction that describes a model publication context. This structure is associated with struct
bt_mesh_model_pub in mesh_access.h

Public Members

esp_ble_mesh_model_t *model
Pointer to the model to which the context belongs. Initialized by the stack.

uint16_t publish_addr
Publish Address.

uint16_t app_idx
Publish AppKey Index.

uint16_t cred
Friendship Credentials Flag.

uint16_t send_rel
Force reliable sending (segment acks)

uint8_t ttl
Publish Time to Live.

uint8_t retransmit
Retransmit Count & Interval Steps.

uint8_t period
Publish Period.

uint8_t period_div
Divisor for the Period.

Espressif Systems 373
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t fast_period
Use FastPeriodDivisor

uint8_t count
Retransmissions left.

uint32_t period_start
Start of the current period.

struct net_buf_simple *msg
Publication buffer, containing the publication message.
This will get correctly created when the publication context has been defined using the
ESP_BLE_MESH_MODEL_PUB_DEFINE macro.
ESP_BLE_MESH_MODEL_PUB_DEFINE(name, size);

esp_ble_mesh_cb_t update

Callback used to update publish message. Initialized by the stack.

struct k_delayed_work timer
Publish Period Timer. Initialized by the stack.

uint8_t dev_role
Role of the device that is going to publish messages

struct esp_ble_mesh_model_op_t
Abstraction that describes a model operation context. This structure is associated with struct
bt_mesh_model_op in mesh_access.h

Public Members

const uint32_t opcode
Message opcode

const size_t min_len
Message minimum length

esp_ble_mesh_cb_t param_cb

Callback used to handle message. Initialized by the stack.

struct esp_ble_mesh_model_cbs_t
Abstraction that describes a model callback structure. This structure is associated with struct
bt_mesh_model_cb in mesh_access.h.

Public Members

esp_ble_mesh_cb_t init_cb

Callback used during model initialization. Initialized by the stack.

Espressif Systems 374
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_model
Abstraction that describes a Mesh Model instance. This structure is associated with struct bt_mesh_model in
mesh_access.h

Public Members

const uint16_t model_id
16-bit model identifier

uint16_t company_id
16-bit company identifier

uint16_t model_id
16-bit model identifier

struct esp_ble_mesh_model::[anonymous]::[anonymous] vnd
Structure encapsulating a model ID with a company ID

union esp_ble_mesh_model::[anonymous] [anonymous]
Model ID

uint8_t element_idx
Internal information, mainly for persistent storage Belongs to Nth element

uint8_t model_idx
Is the Nth model in the element

uint16_t flags
Information about what has changed

esp_ble_mesh_elem_t *element
The Element to which this Model belongs

esp_ble_mesh_model_pub_t *const pub
Model Publication

uint16_t keys[CONFIG_BLE_MESH_MODEL_KEY_COUNT]
AppKey List

uint16_t groups[CONFIG_BLE_MESH_MODEL_GROUP_COUNT]
Subscription List (group or virtual addresses)

esp_ble_mesh_model_op_t *op
Model operation context

esp_ble_mesh_model_cbs_t *cb
Model callback structure

Espressif Systems 375
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void *user_data
Model-specific user data

struct esp_ble_mesh_msg_ctx_t
Message sending context. This structure is associated with struct bt_mesh_msg_ctx in mesh_access.h

Public Members

uint16_t net_idx
NetKey Index of the subnet through which to send the message.

uint16_t app_idx
AppKey Index for message encryption.

uint16_t addr
Remote address.

uint16_t recv_dst
Destination address of a received message. Not used for sending.

int8_t recv_rssi
RSSI of received packet. Not used for sending.

uint8_t recv_ttl
Received TTL value. Not used for sending.

uint8_t send_rel
Force sending reliably by using segment acknowledgement

uint8_t send_ttl
TTL, or ESP_BLE_MESH_TTL_DEFAULT for default TTL.

uint32_t recv_op
Opcode of a received message. Not used for sending message.

esp_ble_mesh_model_t *model
Model corresponding to the message, no need to be initialized before sending message

bool srv_send
Indicate if the message is sent by a node server model, no need to be initialized before sending message

struct esp_ble_mesh_prov_t
Provisioning properties & capabilities. This structure is associated with struct bt_mesh_prov in mesh_access.h

struct esp_ble_mesh_comp_t
Node Composition data context. This structure is associated with struct bt_mesh_comp in mesh_access.h

Espressif Systems 376
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t cid
16-bit SIG-assigned company identifier

uint16_t pid
16-bit vendor-assigned product identifier

uint16_t vid
16-bit vendor-assigned product version identifier

size_t element_count
Element count

esp_ble_mesh_elem_t *elements
A sequence of elements

struct esp_ble_mesh_unprov_dev_add_t
Information of the device which is going to be added for provisioning.

Public Members

esp_ble_mesh_bd_addr_t addr

Device address

esp_ble_mesh_addr_type_t addr_type

Device address type

uint8_t uuid[16]
Device UUID

uint16_t oob_info
Device OOB Info ADD_DEV_START_PROV_NOW_FLAG shall not be set if the bearer has both
PB-ADV and PB-GATT enabled

esp_ble_mesh_prov_bearer_t bearer

Provisioning Bearer

struct esp_ble_mesh_device_delete_t
Information of the device which is going to be deleted.

Public Members

esp_ble_mesh_bd_addr_t addr

Device address

esp_ble_mesh_addr_type_t addr_type

Device address type

Espressif Systems 377
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t uuid[16]
Device UUID

uint8_t flag
BIT0: device address; BIT1: device UUID

struct esp_ble_mesh_prov_data_info_t
Information of the provisioner which is going to be updated.

Public Members

uint16_t net_idx
NetKey Index

uint8_t flags
Flags

uint32_t iv_index
IV Index

uint8_t flag
BIT0: net_idx; BIT1: flags; BIT2: iv_index

struct esp_ble_mesh_node_t
Information of the provisioned node

Public Members

esp_ble_mesh_bd_addr_t addr

Node device address

esp_ble_mesh_addr_type_t addr_type

Node device address type

uint8_t dev_uuid[16]
Device UUID

uint16_t oob_info
Node OOB information

uint16_t unicast_addr
Node unicast address

uint8_t element_num
Node element number

Espressif Systems 378
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t net_idx
Node NetKey Index

uint8_t flags
Node key refresh flag and iv update flag

uint32_t iv_index
Node IV Index

uint8_t dev_key[16]
Node device key

char name[ESP_BLE_MESH_NODE_NAME_MAX_LEN + 1]
Node name

uint16_t comp_length
Length of Composition Data

uint8_t *comp_data
Value of Composition Data

struct esp_ble_mesh_fast_prov_info_t
Context of fast provisioning which need to be set.

Public Members

uint16_t unicast_min
Minimum unicast address used for fast provisioning

uint16_t unicast_max
Maximum unicast address used for fast provisioning

uint16_t net_idx
Netkey index used for fast provisioning

uint8_t flags
Flags used for fast provisioning

uint32_t iv_index
IV Index used for fast provisioning

uint8_t offset
Offset of the UUID to be compared

uint8_t match_len
Length of the UUID to be compared

Espressif Systems 379
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t match_val[16]
Value of UUID to be compared

struct esp_ble_mesh_heartbeat_filter_info_t
Context of Provisioner heartbeat filter information to be set

Public Members

uint16_t hb_src
Heartbeat source address (unicast address)

uint16_t hb_dst
Heartbeat destination address (unicast address or group address)

struct esp_ble_mesh_client_op_pair_t
BLE Mesh client models related definitions.
Client model Get/Set message opcode and corresponding Status message opcode

Public Members

uint32_t cli_op
The client message opcode

uint32_t status_op
The server status opcode corresponding to the client message opcode

struct esp_ble_mesh_client_t
Client Model user data context.

Public Members

esp_ble_mesh_model_t *model
Pointer to the client model. Initialized by the stack.

int op_pair_size
Size of the op_pair

const esp_ble_mesh_client_op_pair_t *op_pair
Table containing get/set message opcode and corresponding status message opcode

uint32_t publish_status
Callback used to handle the received unsolicited message. Initialized by the stack.

void *internal_data
Pointer to the internal data of client model

Espressif Systems 380
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t msg_role
Role of the device (Node/Provisioner) that is going to send messages

struct esp_ble_mesh_client_common_param_t
Common parameters of the messages sent by Client Model.

Public Members

esp_ble_mesh_opcode_t opcode

Message opcode

esp_ble_mesh_model_t *model
Pointer to the client model structure

esp_ble_mesh_msg_ctx_t ctx

The context used to send message

int32_t msg_timeout
Timeout value (ms) to get response to the sentmessageNote: if using default timeout value inmenuconfig,
make sure to set this value to 0

uint8_t msg_role
Role of the device - Node/Provisioner

struct esp_ble_mesh_state_transition_t
Parameters of the server model state transition

Public Functions

BLE_MESH_ATOMIC_DEFINE(flag, ESP_BLE_MESH_SERVER_FLAG_MAX)
Flag used to indicate if the transition timer has been started internally.
If the model which contains esp_ble_mesh_state_transition_t sets "set_auto_rsp" to
ESP_BLE_MESH_SERVER_RSP_BY_APP, the handler of the timer shall be initialized by the
users.
And users can use this flag to indicate whether the timer is started or not.

Public Members

bool just_started
Indicate if the state transition has just started

uint8_t trans_time
State transition time

uint8_t remain_time
Remaining time of state transition

Espressif Systems 381
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t delay
Delay before starting state transition

uint32_t quo_tt
Duration of each divided transition step

uint32_t counter
Number of steps which the transition duration is divided

uint32_t total_duration
State transition total duration

int64_t start_timestamp
Time when the state transition is started

struct k_delayed_work timer
Timer used for state transition

struct esp_ble_mesh_last_msg_info_t
Parameters of the server model received last same set message.

Public Members

uint8_t tid
Transaction number of the last message

uint16_t src
Source address of the last message

uint16_t dst
Destination address of the last message

int64_t timestamp
Time when the last message is received

struct esp_ble_mesh_server_rsp_ctrl_t
Parameters of the Server Model response control

Public Members

uint8_t get_auto_rsp
BLE Mesh Server Response Option.

i. If get_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, then the response of Client
Get messages need to be replied by the application;

ii. If get_auto_rsp is set to ESP_BLE_MESH_SERVER_AUTO_RSP, then the response of Client Get
messages will be replied by the server models;

Espressif Systems 382
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

iii. If set_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, then the response of Client
Set messages need to be replied by the application;

iv. If set_auto_rsp is set to ESP_BLE_MESH_SERVER_AUTO_RSP, then the response of Client Set
messages will be replied by the server models;

v. If status_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, then the response of
Server Status messages need to be replied by the application;

vi. If status_auto_rsp is set to ESP_BLE_MESH_SERVER_AUTO_RSP, then the response of Server
Status messages will be replied by the server models; Response control for Client Get messages

uint8_t set_auto_rsp
Response control for Client Set messages

uint8_t status_auto_rsp
Response control for Server Status messages

Macros

ESP_BLE_MESH_SDU_MAX_LEN

< The maximum length of a BLE Mesh message, including Opcode, Payload and TransMIC Length of a short
Mesh MIC.

ESP_BLE_MESH_MIC_SHORT

Length of a long Mesh MIC.

ESP_BLE_MESH_MIC_LONG

The maximum length of a BLE Mesh provisioned node name

ESP_BLE_MESH_NODE_NAME_MAX_LEN

The maximum length of a BLE Mesh unprovisioned device name

ESP_BLE_MESH_DEVICE_NAME_MAX_LEN

The maximum length of settings user id

ESP_BLE_MESH_SETTINGS_UID_SIZE

Invalid settings index

ESP_BLE_MESH_INVALID_SETTINGS_IDX

Define the BLE Mesh octet 16 bytes size

ESP_BLE_MESH_OCTET16_LEN

ESP_BLE_MESH_OCTET8_LEN

ESP_BLE_MESH_CID_NVAL

Special TTL value to request using configured default TTL

ESP_BLE_MESH_TTL_DEFAULT

Maximum allowed TTL value

ESP_BLE_MESH_TTL_MAX

Espressif Systems 383
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_ADDR_UNASSIGNED

ESP_BLE_MESH_ADDR_ALL_NODES

ESP_BLE_MESH_ADDR_PROXIES

ESP_BLE_MESH_ADDR_FRIENDS

ESP_BLE_MESH_ADDR_RELAYS

ESP_BLE_MESH_KEY_UNUSED

ESP_BLE_MESH_KEY_DEV

ESP_BLE_MESH_KEY_PRIMARY

ESP_BLE_MESH_KEY_ANY

Internal macros used to initialize array members
ESP_BLE_MESH_KEY_UNUSED_ELT_(IDX, _)

ESP_BLE_MESH_ADDR_UNASSIGNED_ELT_(IDX, _)

ESP_BLE_MESH_MODEL_KEYS_UNUSED

ESP_BLE_MESH_MODEL_GROUPS_UNASSIGNED

Primary Network Key index

ESP_BLE_MESH_NET_PRIMARY

Relay state value

ESP_BLE_MESH_RELAY_DISABLED

ESP_BLE_MESH_RELAY_ENABLED

ESP_BLE_MESH_RELAY_NOT_SUPPORTED

Beacon state value

ESP_BLE_MESH_BEACON_DISABLED

ESP_BLE_MESH_BEACON_ENABLED

GATT Proxy state value

ESP_BLE_MESH_GATT_PROXY_DISABLED

ESP_BLE_MESH_GATT_PROXY_ENABLED

Espressif Systems 384
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_GATT_PROXY_NOT_SUPPORTED

Friend state value

ESP_BLE_MESH_FRIEND_DISABLED

ESP_BLE_MESH_FRIEND_ENABLED

ESP_BLE_MESH_FRIEND_NOT_SUPPORTED

Node identity state value

ESP_BLE_MESH_NODE_IDENTITY_STOPPED

ESP_BLE_MESH_NODE_IDENTITY_RUNNING

ESP_BLE_MESH_NODE_IDENTITY_NOT_SUPPORTED

Supported features

ESP_BLE_MESH_FEATURE_RELAY

ESP_BLE_MESH_FEATURE_PROXY

ESP_BLE_MESH_FEATURE_FRIEND

ESP_BLE_MESH_FEATURE_LOW_POWER

ESP_BLE_MESH_FEATURE_ALL_SUPPORTED

ESP_BLE_MESH_ADDR_IS_UNICAST(addr)

ESP_BLE_MESH_ADDR_IS_GROUP(addr)

ESP_BLE_MESH_ADDR_IS_VIRTUAL(addr)

ESP_BLE_MESH_ADDR_IS_RFU(addr)

ESP_BLE_MESH_INVALID_NODE_INDEX

ESP_BLE_MESH_TRANSMIT(count, int_ms)
Encode transmission count & interval steps.

Note: For example, ESP_BLE_MESH_TRANSMIT(2, 20) means that the message will be sent about
90ms(count is 3, step is 1, interval is 30 ms which includes 10ms of advertising interval random delay).

Parameters
• count -- Number of retransmissions (first transmission is excluded).
• int_ms -- Interval steps in milliseconds. Must be greater than 0 and a multiple of 10.

Returns BLEMesh transmit value that can be used e.g. for the default values of the Configuration
Model data.

Espressif Systems 385
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_GET_TRANSMIT_COUNT(transmit)
Decode transmit count from a transmit value.

Parameters
• transmit -- Encoded transmit count & interval value.

Returns Transmission count (actual transmissions equal to N + 1).
ESP_BLE_MESH_GET_TRANSMIT_INTERVAL(transmit)

Decode transmit interval from a transmit value.
Parameters

• transmit -- Encoded transmit count & interval value.
Returns Transmission interval in milliseconds.

ESP_BLE_MESH_PUBLISH_TRANSMIT(count, int_ms)
Encode Publish Retransmit count & interval steps.

Parameters
• count -- Number of retransmissions (first transmission is excluded).
• int_ms -- Interval steps in milliseconds. Must be greater than 0 and a multiple of 50.

Returns BLEMesh transmit value that can be used e.g. for the default values of the Configuration
Model data.

ESP_BLE_MESH_GET_PUBLISH_TRANSMIT_COUNT(transmit)
Decode Publish Retransmit count from a given value.

Parameters
• transmit -- Encoded Publish Retransmit count & interval value.

Returns Retransmission count (actual transmissions equal to N + 1).
ESP_BLE_MESH_GET_PUBLISH_TRANSMIT_INTERVAL(transmit)

Decode Publish Retransmit interval from a given value.

Callbacks which are not needed to be initialized by users (set with 0 and will be initialized internally)
Parameters

• transmit -- Encoded Publish Retransmit count & interval value.
Returns Transmission interval in milliseconds.

ESP_BLE_MESH_PROV_STATIC_OOB_MAX_LEN

Maximum length of string used by Output OOB authentication

ESP_BLE_MESH_PROV_OUTPUT_OOB_MAX_LEN

Maximum length of string used by Output OOB authentication

ESP_BLE_MESH_PROV_INPUT_OOB_MAX_LEN

Macros used to define message opcode
ESP_BLE_MESH_MODEL_OP_1(b0)

ESP_BLE_MESH_MODEL_OP_2(b0, b1)

ESP_BLE_MESH_MODEL_OP_3(b0, cid)
This macro is associated with BLE_MESH_MODEL_CB in mesh_access.h

ESP_BLE_MESH_SIG_MODEL(_id, _op, _pub, _user_data)
This macro is associated with BLE_MESH_MODEL_VND_CB in mesh_access.h

ESP_BLE_MESH_VENDOR_MODEL(_company, _id, _op, _pub, _user_data)

Espressif Systems 386
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_ELEMENT(_loc, _mods, _vnd_mods)
Helper to define a BLE Mesh element within an array.
In case the element has no SIG or Vendor models, the helper macro ESP_BLE_MESH_MODEL_NONE can
be given instead.

Note: This macro is associated with BLE_MESH_ELEM in mesh_access.h

Parameters
• _loc -- Location Descriptor.
• _mods -- Array of SIG models.
• _vnd_mods -- Array of vendor models.

ESP_BLE_MESH_PROV(uuid, sta_val, sta_val_len, out_size, out_act, in_size, in_act)

BT_OCTET32_LEN

BD_ADDR_LEN

ESP_BLE_MESH_ADDR_TYPE_PUBLIC

ESP_BLE_MESH_ADDR_TYPE_RANDOM

ESP_BLE_MESH_ADDR_TYPE_RPA_PUBLIC

ESP_BLE_MESH_ADDR_TYPE_RPA_RANDOM

ESP_BLE_MESH_MODEL_PUB_DEFINE(_name, _msg_len, _role)
Define a model publication context.

Parameters
• _name -- Variable name given to the context.
• _msg_len -- Length of the publication message.
• _role -- Role of the device which contains the model.

ESP_BLE_MESH_MODEL_OP(_opcode, _min_len)
Define a model operation context.

Parameters
• _opcode -- Message opcode.
• _min_len -- Message minimum length.

ESP_BLE_MESH_MODEL_OP_END

Define the terminator for the model operation table. Each model operation struct array must use this terminator
as the end tag of the operation unit.

ESP_BLE_MESH_MODEL_NONE

Helper to define an empty model array. This structure is associated with BLE_MESH_MODEL_NONE in
mesh_access.h

ADD_DEV_RM_AFTER_PROV_FLAG

Device will be removed from queue after provisioned successfully

Espressif Systems 387
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ADD_DEV_START_PROV_NOW_FLAG

Start provisioning device immediately

ADD_DEV_FLUSHABLE_DEV_FLAG

Device can be remove when queue is full and new device is going to added

DEL_DEV_ADDR_FLAG

DEL_DEV_UUID_FLAG

PROV_DATA_NET_IDX_FLAG

PROV_DATA_FLAGS_FLAG

PROV_DATA_IV_INDEX_FLAG

ESP_BLE_MESH_HEARTBEAT_FILTER_ACCEPTLIST

ESP_BLE_MESH_HEARTBEAT_FILTER_REJECTLIST

Provisioner heartbeat filter operation

ESP_BLE_MESH_HEARTBEAT_FILTER_ADD

ESP_BLE_MESH_HEARTBEAT_FILTER_REMOVE

ESP_BLE_MESH_MODEL_ID_CONFIG_SRV

BLE Mesh models related Model ID and Opcode definitions.
< Foundation Models

ESP_BLE_MESH_MODEL_ID_CONFIG_CLI

ESP_BLE_MESH_MODEL_ID_HEALTH_SRV

ESP_BLE_MESH_MODEL_ID_HEALTH_CLI

Models from the Mesh Model Specification

ESP_BLE_MESH_MODEL_ID_GEN_ONOFF_SRV

ESP_BLE_MESH_MODEL_ID_GEN_ONOFF_CLI

ESP_BLE_MESH_MODEL_ID_GEN_LEVEL_SRV

ESP_BLE_MESH_MODEL_ID_GEN_LEVEL_CLI

ESP_BLE_MESH_MODEL_ID_GEN_DEF_TRANS_TIME_SRV

Espressif Systems 388
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_ID_GEN_DEF_TRANS_TIME_CLI

ESP_BLE_MESH_MODEL_ID_GEN_POWER_ONOFF_SRV

ESP_BLE_MESH_MODEL_ID_GEN_POWER_ONOFF_SETUP_SRV

ESP_BLE_MESH_MODEL_ID_GEN_POWER_ONOFF_CLI

ESP_BLE_MESH_MODEL_ID_GEN_POWER_LEVEL_SRV

ESP_BLE_MESH_MODEL_ID_GEN_POWER_LEVEL_SETUP_SRV

ESP_BLE_MESH_MODEL_ID_GEN_POWER_LEVEL_CLI

ESP_BLE_MESH_MODEL_ID_GEN_BATTERY_SRV

ESP_BLE_MESH_MODEL_ID_GEN_BATTERY_CLI

ESP_BLE_MESH_MODEL_ID_GEN_LOCATION_SRV

ESP_BLE_MESH_MODEL_ID_GEN_LOCATION_SETUP_SRV

ESP_BLE_MESH_MODEL_ID_GEN_LOCATION_CLI

ESP_BLE_MESH_MODEL_ID_GEN_ADMIN_PROP_SRV

ESP_BLE_MESH_MODEL_ID_GEN_MANUFACTURER_PROP_SRV

ESP_BLE_MESH_MODEL_ID_GEN_USER_PROP_SRV

ESP_BLE_MESH_MODEL_ID_GEN_CLIENT_PROP_SRV

ESP_BLE_MESH_MODEL_ID_GEN_PROP_CLI

ESP_BLE_MESH_MODEL_ID_SENSOR_SRV

ESP_BLE_MESH_MODEL_ID_SENSOR_SETUP_SRV

ESP_BLE_MESH_MODEL_ID_SENSOR_CLI

ESP_BLE_MESH_MODEL_ID_TIME_SRV

ESP_BLE_MESH_MODEL_ID_TIME_SETUP_SRV

ESP_BLE_MESH_MODEL_ID_TIME_CLI

Espressif Systems 389
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_ID_SCENE_SRV

ESP_BLE_MESH_MODEL_ID_SCENE_SETUP_SRV

ESP_BLE_MESH_MODEL_ID_SCENE_CLI

ESP_BLE_MESH_MODEL_ID_SCHEDULER_SRV

ESP_BLE_MESH_MODEL_ID_SCHEDULER_SETUP_SRV

ESP_BLE_MESH_MODEL_ID_SCHEDULER_CLI

ESP_BLE_MESH_MODEL_ID_LIGHT_LIGHTNESS_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_LIGHTNESS_SETUP_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_LIGHTNESS_CLI

ESP_BLE_MESH_MODEL_ID_LIGHT_CTL_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_CTL_SETUP_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_CTL_CLI

ESP_BLE_MESH_MODEL_ID_LIGHT_CTL_TEMP_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_HSL_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_HSL_SETUP_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_HSL_CLI

ESP_BLE_MESH_MODEL_ID_LIGHT_HSL_HUE_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_HSL_SAT_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_XYL_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_XYL_SETUP_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_XYL_CLI

ESP_BLE_MESH_MODEL_ID_LIGHT_LC_SRV

ESP_BLE_MESH_MODEL_ID_LIGHT_LC_SETUP_SRV

Espressif Systems 390
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_ID_LIGHT_LC_CLI

ESP_BLE_MESH_MODEL_OP_BEACON_GET

Config Beacon Get

ESP_BLE_MESH_MODEL_OP_COMPOSITION_DATA_GET

Config Composition Data Get

ESP_BLE_MESH_MODEL_OP_DEFAULT_TTL_GET

Config Default TTL Get

ESP_BLE_MESH_MODEL_OP_GATT_PROXY_GET

Config GATT Proxy Get

ESP_BLE_MESH_MODEL_OP_RELAY_GET

Config Relay Get

ESP_BLE_MESH_MODEL_OP_MODEL_PUB_GET

Config Model Publication Get

ESP_BLE_MESH_MODEL_OP_FRIEND_GET

Config Friend Get

ESP_BLE_MESH_MODEL_OP_HEARTBEAT_PUB_GET

Config Heartbeat Publication Get

ESP_BLE_MESH_MODEL_OP_HEARTBEAT_SUB_GET

Config Heartbeat Subscription Get

ESP_BLE_MESH_MODEL_OP_NET_KEY_GET

Config NetKey Get

ESP_BLE_MESH_MODEL_OP_APP_KEY_GET

Config AppKey Get

ESP_BLE_MESH_MODEL_OP_NODE_IDENTITY_GET

Config Node Identity Get

ESP_BLE_MESH_MODEL_OP_SIG_MODEL_SUB_GET

Config SIG Model Subscription Get

ESP_BLE_MESH_MODEL_OP_VENDOR_MODEL_SUB_GET

Config Vendor Model Subscription Get

ESP_BLE_MESH_MODEL_OP_SIG_MODEL_APP_GET

Config SIG Model App Get

ESP_BLE_MESH_MODEL_OP_VENDOR_MODEL_APP_GET

Config Vendor Model App Get

Espressif Systems 391
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_KEY_REFRESH_PHASE_GET

Config Key Refresh Phase Get

ESP_BLE_MESH_MODEL_OP_LPN_POLLTIMEOUT_GET

Config Low Power Node PollTimeout Get

ESP_BLE_MESH_MODEL_OP_NETWORK_TRANSMIT_GET

Config Network Transmit Get

ESP_BLE_MESH_MODEL_OP_BEACON_SET

Config Beacon Set

ESP_BLE_MESH_MODEL_OP_DEFAULT_TTL_SET

Config Default TTL Set

ESP_BLE_MESH_MODEL_OP_GATT_PROXY_SET

Config GATT Proxy Set

ESP_BLE_MESH_MODEL_OP_RELAY_SET

Config Relay Set

ESP_BLE_MESH_MODEL_OP_MODEL_PUB_SET

Config Model Publication Set

ESP_BLE_MESH_MODEL_OP_MODEL_SUB_ADD

Config Model Subscription Add

ESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_ADD

Config Model Subscription Virtual Address Add

ESP_BLE_MESH_MODEL_OP_MODEL_SUB_DELETE

Config Model Subscription Delete

ESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_DELETE

Config Model Subscription Virtual Address Delete

ESP_BLE_MESH_MODEL_OP_MODEL_SUB_OVERWRITE

Config Model Subscription Overwrite

ESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_OVERWRITE

Config Model Subscription Virtual Address Overwrite

ESP_BLE_MESH_MODEL_OP_NET_KEY_ADD

Config NetKey Add

ESP_BLE_MESH_MODEL_OP_APP_KEY_ADD

Config AppKey Add

Espressif Systems 392
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_MODEL_APP_BIND

Config Model App Bind

ESP_BLE_MESH_MODEL_OP_NODE_RESET

Config Node Reset

ESP_BLE_MESH_MODEL_OP_FRIEND_SET

Config Friend Set

ESP_BLE_MESH_MODEL_OP_HEARTBEAT_PUB_SET

Config Heartbeat Publication Set

ESP_BLE_MESH_MODEL_OP_HEARTBEAT_SUB_SET

Config Heartbeat Subscription Set

ESP_BLE_MESH_MODEL_OP_NET_KEY_UPDATE

Config NetKey Update

ESP_BLE_MESH_MODEL_OP_NET_KEY_DELETE

Config NetKey Delete

ESP_BLE_MESH_MODEL_OP_APP_KEY_UPDATE

Config AppKey Update

ESP_BLE_MESH_MODEL_OP_APP_KEY_DELETE

Config AppKey Delete

ESP_BLE_MESH_MODEL_OP_NODE_IDENTITY_SET

Config Node Identity Set

ESP_BLE_MESH_MODEL_OP_KEY_REFRESH_PHASE_SET

Config Key Refresh Phase Set

ESP_BLE_MESH_MODEL_OP_MODEL_PUB_VIRTUAL_ADDR_SET

Config Model Publication Virtual Address Set

ESP_BLE_MESH_MODEL_OP_MODEL_SUB_DELETE_ALL

Config Model Subscription Delete All

ESP_BLE_MESH_MODEL_OP_MODEL_APP_UNBIND

Config Model App Unbind

ESP_BLE_MESH_MODEL_OP_NETWORK_TRANSMIT_SET

Config Network Transmit Set

ESP_BLE_MESH_MODEL_OP_BEACON_STATUS

ESP_BLE_MESH_MODEL_OP_COMPOSITION_DATA_STATUS

Espressif Systems 393
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_DEFAULT_TTL_STATUS

ESP_BLE_MESH_MODEL_OP_GATT_PROXY_STATUS

ESP_BLE_MESH_MODEL_OP_RELAY_STATUS

ESP_BLE_MESH_MODEL_OP_MODEL_PUB_STATUS

ESP_BLE_MESH_MODEL_OP_MODEL_SUB_STATUS

ESP_BLE_MESH_MODEL_OP_SIG_MODEL_SUB_LIST

ESP_BLE_MESH_MODEL_OP_VENDOR_MODEL_SUB_LIST

ESP_BLE_MESH_MODEL_OP_NET_KEY_STATUS

ESP_BLE_MESH_MODEL_OP_NET_KEY_LIST

ESP_BLE_MESH_MODEL_OP_APP_KEY_STATUS

ESP_BLE_MESH_MODEL_OP_APP_KEY_LIST

ESP_BLE_MESH_MODEL_OP_NODE_IDENTITY_STATUS

ESP_BLE_MESH_MODEL_OP_MODEL_APP_STATUS

ESP_BLE_MESH_MODEL_OP_SIG_MODEL_APP_LIST

ESP_BLE_MESH_MODEL_OP_VENDOR_MODEL_APP_LIST

ESP_BLE_MESH_MODEL_OP_NODE_RESET_STATUS

ESP_BLE_MESH_MODEL_OP_FRIEND_STATUS

ESP_BLE_MESH_MODEL_OP_KEY_REFRESH_PHASE_STATUS

ESP_BLE_MESH_MODEL_OP_HEARTBEAT_PUB_STATUS

ESP_BLE_MESH_MODEL_OP_HEARTBEAT_SUB_STATUS

ESP_BLE_MESH_MODEL_OP_LPN_POLLTIMEOUT_STATUS

ESP_BLE_MESH_MODEL_OP_NETWORK_TRANSMIT_STATUS

ESP_BLE_MESH_CFG_STATUS_SUCCESS

Espressif Systems 394
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_CFG_STATUS_INVALID_ADDRESS

ESP_BLE_MESH_CFG_STATUS_INVALID_MODEL

ESP_BLE_MESH_CFG_STATUS_INVALID_APPKEY

ESP_BLE_MESH_CFG_STATUS_INVALID_NETKEY

ESP_BLE_MESH_CFG_STATUS_INSUFFICIENT_RESOURCES

ESP_BLE_MESH_CFG_STATUS_KEY_INDEX_ALREADY_STORED

ESP_BLE_MESH_CFG_STATUS_INVALID_PUBLISH_PARAMETERS

ESP_BLE_MESH_CFG_STATUS_NOT_A_SUBSCRIBE_MODEL

ESP_BLE_MESH_CFG_STATUS_STORAGE_FAILURE

ESP_BLE_MESH_CFG_STATUS_FEATURE_NOT_SUPPORTED

ESP_BLE_MESH_CFG_STATUS_CANNOT_UPDATE

ESP_BLE_MESH_CFG_STATUS_CANNOT_REMOVE

ESP_BLE_MESH_CFG_STATUS_CANNOT_BIND

ESP_BLE_MESH_CFG_STATUS_TEMP_UNABLE_TO_CHANGE_STATE

ESP_BLE_MESH_CFG_STATUS_CANNOT_SET

ESP_BLE_MESH_CFG_STATUS_UNSPECIFIED_ERROR

ESP_BLE_MESH_CFG_STATUS_INVALID_BINDING

ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_GET

Health Fault Get

ESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_GET

Health Period Get

ESP_BLE_MESH_MODEL_OP_ATTENTION_GET

Health Attention Get

ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_CLEAR

Health Fault Clear

Espressif Systems 395
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_CLEAR_UNACK

Health Fault Clear Unacknowledged

ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_TEST

Health Fault Test

ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_TEST_UNACK

Health Fault Test Unacknowledged

ESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_SET

Health Period Set

ESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_SET_UNACK

Health Period Set Unacknowledged

ESP_BLE_MESH_MODEL_OP_ATTENTION_SET

Health Attention Set

ESP_BLE_MESH_MODEL_OP_ATTENTION_SET_UNACK

Health Attention Set Unacknowledged

ESP_BLE_MESH_MODEL_OP_HEALTH_CURRENT_STATUS

ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_STATUS

ESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_STATUS

ESP_BLE_MESH_MODEL_OP_ATTENTION_STATUS

ESP_BLE_MESH_MODEL_OP_GEN_ONOFF_GET

ESP_BLE_MESH_MODEL_OP_GEN_ONOFF_SET

ESP_BLE_MESH_MODEL_OP_GEN_ONOFF_SET_UNACK

ESP_BLE_MESH_MODEL_OP_GEN_ONOFF_STATUS

Generic Level Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_LEVEL_GET

ESP_BLE_MESH_MODEL_OP_GEN_LEVEL_SET

ESP_BLE_MESH_MODEL_OP_GEN_LEVEL_SET_UNACK

ESP_BLE_MESH_MODEL_OP_GEN_LEVEL_STATUS

ESP_BLE_MESH_MODEL_OP_GEN_DELTA_SET

Espressif Systems 396
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_GEN_DELTA_SET_UNACK

ESP_BLE_MESH_MODEL_OP_GEN_MOVE_SET

ESP_BLE_MESH_MODEL_OP_GEN_MOVE_SET_UNACK

Generic Default Transition Time Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_DEF_TRANS_TIME_GET

ESP_BLE_MESH_MODEL_OP_GEN_DEF_TRANS_TIME_SET

ESP_BLE_MESH_MODEL_OP_GEN_DEF_TRANS_TIME_SET_UNACK

ESP_BLE_MESH_MODEL_OP_GEN_DEF_TRANS_TIME_STATUS

Generic Power OnOff Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_ONPOWERUP_GET

ESP_BLE_MESH_MODEL_OP_GEN_ONPOWERUP_STATUS

Generic Power OnOff Setup Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_ONPOWERUP_SET

ESP_BLE_MESH_MODEL_OP_GEN_ONPOWERUP_SET_UNACK

Generic Power Level Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_POWER_LEVEL_GET

ESP_BLE_MESH_MODEL_OP_GEN_POWER_LEVEL_SET

ESP_BLE_MESH_MODEL_OP_GEN_POWER_LEVEL_SET_UNACK

ESP_BLE_MESH_MODEL_OP_GEN_POWER_LEVEL_STATUS

ESP_BLE_MESH_MODEL_OP_GEN_POWER_LAST_GET

ESP_BLE_MESH_MODEL_OP_GEN_POWER_LAST_STATUS

ESP_BLE_MESH_MODEL_OP_GEN_POWER_DEFAULT_GET

ESP_BLE_MESH_MODEL_OP_GEN_POWER_DEFAULT_STATUS

ESP_BLE_MESH_MODEL_OP_GEN_POWER_RANGE_GET

ESP_BLE_MESH_MODEL_OP_GEN_POWER_RANGE_STATUS

Generic Power Level Setup Message Opcode

Espressif Systems 397
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_GEN_POWER_DEFAULT_SET

ESP_BLE_MESH_MODEL_OP_GEN_POWER_DEFAULT_SET_UNACK

ESP_BLE_MESH_MODEL_OP_GEN_POWER_RANGE_SET

ESP_BLE_MESH_MODEL_OP_GEN_POWER_RANGE_SET_UNACK

Generic Battery Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_BATTERY_GET

ESP_BLE_MESH_MODEL_OP_GEN_BATTERY_STATUS

Generic Location Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_LOC_GLOBAL_GET

ESP_BLE_MESH_MODEL_OP_GEN_LOC_GLOBAL_STATUS

ESP_BLE_MESH_MODEL_OP_GEN_LOC_LOCAL_GET

ESP_BLE_MESH_MODEL_OP_GEN_LOC_LOCAL_STATUS

Generic Location Setup Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_LOC_GLOBAL_SET

ESP_BLE_MESH_MODEL_OP_GEN_LOC_GLOBAL_SET_UNACK

ESP_BLE_MESH_MODEL_OP_GEN_LOC_LOCAL_SET

ESP_BLE_MESH_MODEL_OP_GEN_LOC_LOCAL_SET_UNACK

Generic Manufacturer Property Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTIES_GET

ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTIES_STATUS

ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_GET

ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_SET

ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_SET_UNACK

ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_STATUS

Generic Admin Property Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTIES_GET

Espressif Systems 398
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTIES_STATUS

ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_GET

ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_SET

ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_SET_UNACK

ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_STATUS

Generic User Property Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTIES_GET

ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTIES_STATUS

ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_GET

ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_SET

ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_SET_UNACK

ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_STATUS

Generic Client Property Message Opcode

ESP_BLE_MESH_MODEL_OP_GEN_CLIENT_PROPERTIES_GET

ESP_BLE_MESH_MODEL_OP_GEN_CLIENT_PROPERTIES_STATUS

ESP_BLE_MESH_MODEL_OP_SENSOR_DESCRIPTOR_GET

ESP_BLE_MESH_MODEL_OP_SENSOR_DESCRIPTOR_STATUS

ESP_BLE_MESH_MODEL_OP_SENSOR_GET

ESP_BLE_MESH_MODEL_OP_SENSOR_STATUS

ESP_BLE_MESH_MODEL_OP_SENSOR_COLUMN_GET

ESP_BLE_MESH_MODEL_OP_SENSOR_COLUMN_STATUS

ESP_BLE_MESH_MODEL_OP_SENSOR_SERIES_GET

ESP_BLE_MESH_MODEL_OP_SENSOR_SERIES_STATUS

Sensor Setup Message Opcode

ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_GET

Espressif Systems 399
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_SET

ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_SET_UNACK

ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_STATUS

ESP_BLE_MESH_MODEL_OP_SENSOR_SETTINGS_GET

ESP_BLE_MESH_MODEL_OP_SENSOR_SETTINGS_STATUS

ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_GET

ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_SET

ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_SET_UNACK

ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_STATUS

ESP_BLE_MESH_MODEL_OP_TIME_GET

ESP_BLE_MESH_MODEL_OP_TIME_SET

ESP_BLE_MESH_MODEL_OP_TIME_STATUS

ESP_BLE_MESH_MODEL_OP_TIME_ROLE_GET

ESP_BLE_MESH_MODEL_OP_TIME_ROLE_SET

ESP_BLE_MESH_MODEL_OP_TIME_ROLE_STATUS

ESP_BLE_MESH_MODEL_OP_TIME_ZONE_GET

ESP_BLE_MESH_MODEL_OP_TIME_ZONE_SET

ESP_BLE_MESH_MODEL_OP_TIME_ZONE_STATUS

ESP_BLE_MESH_MODEL_OP_TAI_UTC_DELTA_GET

ESP_BLE_MESH_MODEL_OP_TAI_UTC_DELTA_SET

ESP_BLE_MESH_MODEL_OP_TAI_UTC_DELTA_STATUS

Scene Message Opcode

ESP_BLE_MESH_MODEL_OP_SCENE_GET

Espressif Systems 400
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_SCENE_RECALL

ESP_BLE_MESH_MODEL_OP_SCENE_RECALL_UNACK

ESP_BLE_MESH_MODEL_OP_SCENE_STATUS

ESP_BLE_MESH_MODEL_OP_SCENE_REGISTER_GET

ESP_BLE_MESH_MODEL_OP_SCENE_REGISTER_STATUS

Scene Setup Message Opcode

ESP_BLE_MESH_MODEL_OP_SCENE_STORE

ESP_BLE_MESH_MODEL_OP_SCENE_STORE_UNACK

ESP_BLE_MESH_MODEL_OP_SCENE_DELETE

ESP_BLE_MESH_MODEL_OP_SCENE_DELETE_UNACK

Scheduler Message Opcode

ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_GET

ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_STATUS

ESP_BLE_MESH_MODEL_OP_SCHEDULER_GET

ESP_BLE_MESH_MODEL_OP_SCHEDULER_STATUS

Scheduler Setup Message Opcode

ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_SET

ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LINEAR_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LINEAR_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LINEAR_SET_UNACK

Espressif Systems 401
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LINEAR_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LAST_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LAST_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_DEFAULT_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_DEFAULT_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_RANGE_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_RANGE_STATUS

Light Lightness Setup Message Opcode

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_DEFAULT_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_DEFAULT_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_RANGE_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_RANGE_SET_UNACK

Light CTL Message Opcode

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_RANGE_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_RANGE_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_DEFAULT_GET

Espressif Systems 402
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_DEFAULT_STATUS

Light CTL Setup Message Opcode

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_DEFAULT_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_DEFAULT_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_RANGE_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_RANGE_SET_UNACK

Light HSL Message Opcode

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_HUE_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_HUE_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_HUE_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_HUE_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SATURATION_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SATURATION_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SATURATION_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SATURATION_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_TARGET_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_TARGET_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_DEFAULT_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_DEFAULT_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_RANGE_GET

Espressif Systems 403
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_RANGE_STATUS

Light HSL Setup Message Opcode

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_DEFAULT_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_DEFAULT_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_RANGE_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_RANGE_SET_UNACK

Light xyL Message Opcode

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_TARGET_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_TARGET_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_DEFAULT_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_DEFAULT_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_RANGE_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_RANGE_STATUS

Light xyL Setup Message Opcode

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_DEFAULT_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_DEFAULT_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_RANGE_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_RANGE_SET_UNACK

Light Control Message Opcode

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_MODE_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_MODE_SET

Espressif Systems 404
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_MODE_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_MODE_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_OM_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_OM_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_OM_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_OM_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_LIGHT_ONOFF_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_LIGHT_ONOFF_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_LIGHT_ONOFF_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_LIGHT_ONOFF_STATUS

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_GET

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_SET

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_SET_UNACK

ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_STATUS

ESP_BLE_MESH_MODEL_STATUS_SUCCESS

ESP_BLE_MESH_MODEL_STATUS_CANNOT_SET_RANGE_MIN

ESP_BLE_MESH_MODEL_STATUS_CANNOT_SET_RANGE_MAX

ESP_BLE_MESH_SERVER_RSP_BY_APP

Response need to be sent in the application

ESP_BLE_MESH_SERVER_AUTO_RSP

Response will be sent internally

Type Definitions

typedef uint8_t esp_ble_mesh_octet16_t[ESP_BLE_MESH_OCTET16_LEN]
Define the BLE Mesh octet 8 bytes size

typedef uint8_t esp_ble_mesh_octet8_t[ESP_BLE_MESH_OCTET8_LEN]
Invalid Company ID

Espressif Systems 405
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef uint32_t esp_ble_mesh_cb_t

typedef uint8_t UINT8

typedef uint16_t UINT16

typedef uint32_t UINT32

typedef uint64_t UINT64

typedef UINT8 BT_OCTET32[BT_OCTET32_LEN]

typedef uint8_t BD_ADDR[BD_ADDR_LEN]

typedef uint8_t esp_ble_mesh_bd_addr_t[BD_ADDR_LEN]

typedef uint8_t esp_ble_mesh_addr_type_t
BLE device address type.

typedef struct esp_ble_mesh_model esp_ble_mesh_model_t

typedef uint8_t esp_ble_mesh_dev_add_flag_t

typedef uint32_t esp_ble_mesh_opcode_config_client_get_t
esp_ble_mesh_opcode_config_client_get_t belongs to esp_ble_mesh_opcode_t, this typedef is only used to
locate the opcodes used by esp_ble_mesh_config_client_get_state. The following opcodes will only be used in
the esp_ble_mesh_config_client_get_state function.

typedef uint32_t esp_ble_mesh_opcode_config_client_set_t
esp_ble_mesh_opcode_config_client_set_t belongs to esp_ble_mesh_opcode_t, this typedef is only used to
locate the opcodes used by esp_ble_mesh_config_client_set_state. The following opcodes will only be used in
the esp_ble_mesh_config_client_set_state function.

typedef uint32_t esp_ble_mesh_opcode_config_status_t
esp_ble_mesh_opcode_config_status_t belongs to esp_ble_mesh_opcode_t, this typedef is only used to locate
the opcodes used by the Config Model messages The following opcodes are used by the BLE Mesh Config
Server Model internally to respond to the Config Client Model's request messages.

typedef uint8_t esp_ble_mesh_cfg_status_t
This typedef is only used to indicate the status code contained in some of the Configuration Server Model status
message.

typedef uint32_t esp_ble_mesh_opcode_health_client_get_t
esp_ble_mesh_opcode_health_client_get_t belongs to esp_ble_mesh_opcode_t, this typedef is only used to
locate the opcodes used by esp_ble_mesh_health_client_get_state. The following opcodes will only be used in
the esp_ble_mesh_health_client_get_state function.

Espressif Systems 406
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef uint32_t esp_ble_mesh_opcode_health_client_set_t
esp_ble_mesh_opcode_health_client_set_t belongs to esp_ble_mesh_opcode_t, this typedef is only used to
locate the opcodes used by esp_ble_mesh_health_client_set_state. The following opcodes will only be used in
the esp_ble_mesh_health_client_set_state function.

typedef uint32_t esp_ble_mesh_health_model_status_t
esp_ble_mesh_health_model_status_t belongs to esp_ble_mesh_opcode_t, this typedef is only used to locate
the opcodes used by the Health Model messages. The following opcodes are used by the BLE Mesh Health
Server Model internally to respond to the Health Client Model's request messages.

typedef uint32_t esp_ble_mesh_generic_message_opcode_t
esp_ble_mesh_generic_message_opcode_t belongs to esp_ble_mesh_opcode_t, this typedef is
only used to locate the opcodes used by functions esp_ble_mesh_generic_client_get_state &
esp_ble_mesh_generic_client_set_state. Generic OnOff Message Opcode

typedef uint32_t esp_ble_mesh_sensor_message_opcode_t
esp_ble_mesh_sensor_message_opcode_t belongs to esp_ble_mesh_opcode_t, this typedef is
only used to locate the opcodes used by functions esp_ble_mesh_sensor_client_get_state &
esp_ble_mesh_sensor_client_set_state. Sensor Message Opcode

typedef uint32_t esp_ble_mesh_time_scene_message_opcode_t
esp_ble_mesh_time_scene_message_opcode_t belongs to esp_ble_mesh_opcode_t, this typedef is
only used to locate the opcodes used by functions esp_ble_mesh_time_scene_client_get_state &
esp_ble_mesh_time_scene_client_set_state. Time Message Opcode

typedef uint32_t esp_ble_mesh_light_message_opcode_t
esp_ble_mesh_light_message_opcode_t belongs to esp_ble_mesh_opcode_t, this typedef is only used to locate
the opcodes used by functions esp_ble_mesh_light_client_get_state & esp_ble_mesh_light_client_set_state.
Light Lightness Message Opcode

typedef uint32_t esp_ble_mesh_opcode_t
End of defines of esp_ble_mesh_opcode_t

typedef uint8_t esp_ble_mesh_model_status_t
This typedef is only used to indicate the status code contained in some of the server models (e.g. Generic
Server Model) status message.

Enumerations

enum esp_ble_mesh_cb_type_t

Values:

enumerator ESP_BLE_MESH_TYPE_PROV_CB

enumerator ESP_BLE_MESH_TYPE_OUTPUT_NUM_CB

enumerator ESP_BLE_MESH_TYPE_OUTPUT_STR_CB

enumerator ESP_BLE_MESH_TYPE_INTPUT_CB

Espressif Systems 407
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_TYPE_LINK_OPEN_CB

enumerator ESP_BLE_MESH_TYPE_LINK_CLOSE_CB

enumerator ESP_BLE_MESH_TYPE_COMPLETE_CB

enumerator ESP_BLE_MESH_TYPE_RESET_CB

enum esp_ble_mesh_oob_method_t

Values:

enumerator ESP_BLE_MESH_NO_OOB

enumerator ESP_BLE_MESH_STATIC_OOB

enumerator ESP_BLE_MESH_OUTPUT_OOB

enumerator ESP_BLE_MESH_INPUT_OOB

enum esp_ble_mesh_output_action_t

Values:

enumerator ESP_BLE_MESH_NO_OUTPUT

enumerator ESP_BLE_MESH_BLINK

enumerator ESP_BLE_MESH_BEEP

enumerator ESP_BLE_MESH_VIBRATE

enumerator ESP_BLE_MESH_DISPLAY_NUMBER

enumerator ESP_BLE_MESH_DISPLAY_STRING

enum esp_ble_mesh_input_action_t

Values:

enumerator ESP_BLE_MESH_NO_INPUT

enumerator ESP_BLE_MESH_PUSH

enumerator ESP_BLE_MESH_TWIST

enumerator ESP_BLE_MESH_ENTER_NUMBER

enumerator ESP_BLE_MESH_ENTER_STRING

Espressif Systems 408
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum esp_ble_mesh_prov_bearer_t

Values:

enumerator ESP_BLE_MESH_PROV_ADV

enumerator ESP_BLE_MESH_PROV_GATT

enum esp_ble_mesh_prov_oob_info_t

Values:

enumerator ESP_BLE_MESH_PROV_OOB_OTHER

enumerator ESP_BLE_MESH_PROV_OOB_URI

enumerator ESP_BLE_MESH_PROV_OOB_2D_CODE

enumerator ESP_BLE_MESH_PROV_OOB_BAR_CODE

enumerator ESP_BLE_MESH_PROV_OOB_NFC

enumerator ESP_BLE_MESH_PROV_OOB_NUMBER

enumerator ESP_BLE_MESH_PROV_OOB_STRING

enumerator ESP_BLE_MESH_PROV_OOB_ON_BOX

enumerator ESP_BLE_MESH_PROV_OOB_IN_BOX

enumerator ESP_BLE_MESH_PROV_OOB_ON_PAPER

enumerator ESP_BLE_MESH_PROV_OOB_IN_MANUAL

enumerator ESP_BLE_MESH_PROV_OOB_ON_DEV

enum esp_ble_mesh_dev_role_t

Values:

enumerator ROLE_NODE

enumerator ROLE_PROVISIONER

enumerator ROLE_FAST_PROV

enum esp_ble_mesh_fast_prov_action_t

Values:

Espressif Systems 409
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator FAST_PROV_ACT_NONE

enumerator FAST_PROV_ACT_ENTER

enumerator FAST_PROV_ACT_SUSPEND

enumerator FAST_PROV_ACT_EXIT

enumerator FAST_PROV_ACT_MAX

enum esp_ble_mesh_proxy_filter_type_t

Values:

enumerator PROXY_FILTER_WHITELIST

enumerator PROXY_FILTER_BLACKLIST

enum esp_ble_mesh_prov_cb_event_t

Values:

enumerator ESP_BLE_MESH_PROV_REGISTER_COMP_EVT
Initialize BLE Mesh provisioning capabilities and internal data information completion event

enumerator ESP_BLE_MESH_NODE_SET_UNPROV_DEV_NAME_COMP_EVT
Set the unprovisioned device name completion event

enumerator ESP_BLE_MESH_NODE_PROV_ENABLE_COMP_EVT
Enable node provisioning functionality completion event

enumerator ESP_BLE_MESH_NODE_PROV_DISABLE_COMP_EVT
Disable node provisioning functionality completion event

enumerator ESP_BLE_MESH_NODE_PROV_LINK_OPEN_EVT
Establish a BLE Mesh link event

enumerator ESP_BLE_MESH_NODE_PROV_LINK_CLOSE_EVT
Close a BLE Mesh link event

enumerator ESP_BLE_MESH_NODE_PROV_OOB_PUB_KEY_EVT
Generate Node input OOB public key event

enumerator ESP_BLE_MESH_NODE_PROV_OUTPUT_NUMBER_EVT
Generate Node Output Number event

enumerator ESP_BLE_MESH_NODE_PROV_OUTPUT_STRING_EVT
Generate Node Output String event

Espressif Systems 410
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_NODE_PROV_INPUT_EVT
Event requiring the user to input a number or string

enumerator ESP_BLE_MESH_NODE_PROV_COMPLETE_EVT
Provisioning done event

enumerator ESP_BLE_MESH_NODE_PROV_RESET_EVT
Provisioning reset event

enumerator ESP_BLE_MESH_NODE_PROV_SET_OOB_PUB_KEY_COMP_EVT
Node set oob public key completion event

enumerator ESP_BLE_MESH_NODE_PROV_INPUT_NUMBER_COMP_EVT
Node input number completion event

enumerator ESP_BLE_MESH_NODE_PROV_INPUT_STRING_COMP_EVT
Node input string completion event

enumerator ESP_BLE_MESH_NODE_PROXY_IDENTITY_ENABLE_COMP_EVT
Enable BLE Mesh Proxy Identity advertising completion event

enumerator ESP_BLE_MESH_NODE_PROXY_GATT_ENABLE_COMP_EVT
Enable BLE Mesh GATT Proxy Service completion event

enumerator ESP_BLE_MESH_NODE_PROXY_GATT_DISABLE_COMP_EVT
Disable BLE Mesh GATT Proxy Service completion event

enumerator ESP_BLE_MESH_NODE_ADD_LOCAL_NET_KEY_COMP_EVT
Node add NetKey locally completion event

enumerator ESP_BLE_MESH_NODE_ADD_LOCAL_APP_KEY_COMP_EVT
Node add AppKey locally completion event

enumerator ESP_BLE_MESH_NODE_BIND_APP_KEY_TO_MODEL_COMP_EVT
Node bind AppKey to model locally completion event

enumerator ESP_BLE_MESH_PROVISIONER_PROV_ENABLE_COMP_EVT
Provisioner enable provisioning functionality completion event

enumerator ESP_BLE_MESH_PROVISIONER_PROV_DISABLE_COMP_EVT
Provisioner disable provisioning functionality completion event

enumerator ESP_BLE_MESH_PROVISIONER_RECV_UNPROV_ADV_PKT_EVT
Provisioner receives unprovisioned device beacon event

enumerator ESP_BLE_MESH_PROVISIONER_PROV_READ_OOB_PUB_KEY_EVT
Provisioner read unprovisioned device OOB public key event

Espressif Systems 411
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_PROVISIONER_PROV_INPUT_EVT
Provisioner input value for provisioning procedure event

enumerator ESP_BLE_MESH_PROVISIONER_PROV_OUTPUT_EVT
Provisioner output value for provisioning procedure event

enumerator ESP_BLE_MESH_PROVISIONER_PROV_LINK_OPEN_EVT
Provisioner establish a BLE Mesh link event

enumerator ESP_BLE_MESH_PROVISIONER_PROV_LINK_CLOSE_EVT
Provisioner close a BLE Mesh link event

enumerator ESP_BLE_MESH_PROVISIONER_PROV_COMPLETE_EVT
Provisioner provisioning done event

enumerator ESP_BLE_MESH_PROVISIONER_ADD_UNPROV_DEV_COMP_EVT
Provisioner add a device to the list which contains devices that are waiting/going to be provisioned com-
pletion event

enumerator ESP_BLE_MESH_PROVISIONER_PROV_DEV_WITH_ADDR_COMP_EVT
Provisioner start to provision an unprovisioned device completion event

enumerator ESP_BLE_MESH_PROVISIONER_DELETE_DEV_COMP_EVT
Provisioner delete a device from the list, close provisioning link with the device completion event

enumerator ESP_BLE_MESH_PROVISIONER_SET_DEV_UUID_MATCH_COMP_EVT
Provisioner set the value to be compared with part of the unprovisioned device UUID completion event

enumerator ESP_BLE_MESH_PROVISIONER_SET_PROV_DATA_INFO_COMP_EVT
Provisioner set net_idx/flags/iv_index used for provisioning completion event

enumerator ESP_BLE_MESH_PROVISIONER_SET_STATIC_OOB_VALUE_COMP_EVT
Provisioner set static oob value used for provisioning completion event

enumerator ESP_BLE_MESH_PROVISIONER_SET_PRIMARY_ELEM_ADDR_COMP_EVT
Provisioner set unicast address of primary element completion event

enumerator ESP_BLE_MESH_PROVISIONER_PROV_READ_OOB_PUB_KEY_COMP_EVT
Provisioner read unprovisioned device OOB public key completion event

enumerator ESP_BLE_MESH_PROVISIONER_PROV_INPUT_NUMBER_COMP_EVT
Provisioner input number completion event

enumerator ESP_BLE_MESH_PROVISIONER_PROV_INPUT_STRING_COMP_EVT
Provisioner input string completion event

enumerator ESP_BLE_MESH_PROVISIONER_SET_NODE_NAME_COMP_EVT
Provisioner set node name completion event

Espressif Systems 412
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_PROVISIONER_ADD_LOCAL_APP_KEY_COMP_EVT
Provisioner add local app key completion event

enumerator ESP_BLE_MESH_PROVISIONER_UPDATE_LOCAL_APP_KEY_COMP_EVT
Provisioner update local app key completion event

enumerator ESP_BLE_MESH_PROVISIONER_BIND_APP_KEY_TO_MODEL_COMP_EVT
Provisioner bind local model with local app key completion event

enumerator ESP_BLE_MESH_PROVISIONER_ADD_LOCAL_NET_KEY_COMP_EVT
Provisioner add local network key completion event

enumerator ESP_BLE_MESH_PROVISIONER_UPDATE_LOCAL_NET_KEY_COMP_EVT
Provisioner update local network key completion event

enumerator ESP_BLE_MESH_PROVISIONER_STORE_NODE_COMP_DATA_COMP_EVT
Provisioner store node composition data completion event

enumerator ESP_BLE_MESH_PROVISIONER_DELETE_NODE_WITH_UUID_COMP_EVT
Provisioner delete node with uuid completion event

enumerator ESP_BLE_MESH_PROVISIONER_DELETE_NODE_WITH_ADDR_COMP_EVT
Provisioner delete node with unicast address completion event

enumerator ESP_BLE_MESH_PROVISIONER_ENABLE_HEARTBEAT_RECV_COMP_EVT
Provisioner start to receive heartbeat message completion event

enumerator ESP_BLE_MESH_PROVISIONER_SET_HEARTBEAT_FILTER_TYPE_COMP_EVT
Provisioner set the heartbeat filter type completion event

enumerator ESP_BLE_MESH_PROVISIONER_SET_HEARTBEAT_FILTER_INFO_COMP_EVT
Provisioner set the heartbeat filter information completion event

enumerator ESP_BLE_MESH_PROVISIONER_RECV_HEARTBEAT_MESSAGE_EVT
Provisioner receive heartbeat message event

enumerator ESP_BLE_MESH_PROVISIONER_DIRECT_ERASE_SETTINGS_COMP_EVT
Provisioner directly erase settings completion event

enumerator ESP_BLE_MESH_PROVISIONER_OPEN_SETTINGS_WITH_INDEX_COMP_EVT
Provisioner open settings with index completion event

enumerator ESP_BLE_MESH_PROVISIONER_OPEN_SETTINGS_WITH_UID_COMP_EVT
Provisioner open settings with user id completion event

enumerator ESP_BLE_MESH_PROVISIONER_CLOSE_SETTINGS_WITH_INDEX_COMP_EVT
Provisioner close settings with index completion event

Espressif Systems 413
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_PROVISIONER_CLOSE_SETTINGS_WITH_UID_COMP_EVT
Provisioner close settings with user id completion event

enumerator ESP_BLE_MESH_PROVISIONER_DELETE_SETTINGS_WITH_INDEX_COMP_EVT
Provisioner delete settings with index completion event

enumerator ESP_BLE_MESH_PROVISIONER_DELETE_SETTINGS_WITH_UID_COMP_EVT
Provisioner delete settings with user id completion event

enumerator ESP_BLE_MESH_SET_FAST_PROV_INFO_COMP_EVT
Set fast provisioning information (e.g. unicast address range, net_idx, etc.) completion event

enumerator ESP_BLE_MESH_SET_FAST_PROV_ACTION_COMP_EVT
Set fast provisioning action completion event

enumerator ESP_BLE_MESH_HEARTBEAT_MESSAGE_RECV_EVT
Receive Heartbeat message event

enumerator ESP_BLE_MESH_LPN_ENABLE_COMP_EVT
Enable Low Power Node completion event

enumerator ESP_BLE_MESH_LPN_DISABLE_COMP_EVT
Disable Low Power Node completion event

enumerator ESP_BLE_MESH_LPN_POLL_COMP_EVT
Low Power Node send Friend Poll completion event

enumerator ESP_BLE_MESH_LPN_FRIENDSHIP_ESTABLISH_EVT
Low Power Node establishes friendship event

enumerator ESP_BLE_MESH_LPN_FRIENDSHIP_TERMINATE_EVT
Low Power Node terminates friendship event

enumerator ESP_BLE_MESH_FRIEND_FRIENDSHIP_ESTABLISH_EVT
Friend Node establishes friendship event

enumerator ESP_BLE_MESH_FRIEND_FRIENDSHIP_TERMINATE_EVT
Friend Node terminates friendship event

enumerator ESP_BLE_MESH_PROXY_CLIENT_RECV_ADV_PKT_EVT
Proxy Client receives Network ID advertising packet event

enumerator ESP_BLE_MESH_PROXY_CLIENT_CONNECTED_EVT
Proxy Client establishes connection successfully event

enumerator ESP_BLE_MESH_PROXY_CLIENT_DISCONNECTED_EVT
Proxy Client terminates connection successfully event

Espressif Systems 414
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_PROXY_CLIENT_RECV_FILTER_STATUS_EVT
Proxy Client receives Proxy Filter Status event

enumerator ESP_BLE_MESH_PROXY_CLIENT_CONNECT_COMP_EVT
Proxy Client connect completion event

enumerator ESP_BLE_MESH_PROXY_CLIENT_DISCONNECT_COMP_EVT
Proxy Client disconnect completion event

enumerator ESP_BLE_MESH_PROXY_CLIENT_SET_FILTER_TYPE_COMP_EVT
Proxy Client set filter type completion event

enumerator ESP_BLE_MESH_PROXY_CLIENT_ADD_FILTER_ADDR_COMP_EVT
Proxy Client add filter address completion event

enumerator ESP_BLE_MESH_PROXY_CLIENT_REMOVE_FILTER_ADDR_COMP_EVT
Proxy Client remove filter address completion event

enumerator ESP_BLE_MESH_PROXY_SERVER_CONNECTED_EVT
Proxy Server establishes connection successfully event

enumerator ESP_BLE_MESH_PROXY_SERVER_DISCONNECTED_EVT
Proxy Server terminates connection successfully event

enumerator ESP_BLE_MESH_MODEL_SUBSCRIBE_GROUP_ADDR_COMP_EVT
Local model subscribes group address completion event

enumerator ESP_BLE_MESH_MODEL_UNSUBSCRIBE_GROUP_ADDR_COMP_EVT
Local model unsubscribes group address completion event

enumerator ESP_BLE_MESH_DEINIT_MESH_COMP_EVT
De-initialize BLE Mesh stack completion event

enumerator ESP_BLE_MESH_PROV_EVT_MAX

enum [anonymous]

BLE Mesh server models related definitions.
This enum value is the flag of transition timer operation
Values:

enumerator ESP_BLE_MESH_SERVER_TRANS_TIMER_START

enumerator ESP_BLE_MESH_SERVER_FLAG_MAX

enum esp_ble_mesh_server_state_type_t

This enum value is the type of server model states
Values:

Espressif Systems 415
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_GENERIC_ONOFF_STATE

enumerator ESP_BLE_MESH_GENERIC_LEVEL_STATE

enumerator ESP_BLE_MESH_GENERIC_ONPOWERUP_STATE

enumerator ESP_BLE_MESH_GENERIC_POWER_ACTUAL_STATE

enumerator ESP_BLE_MESH_LIGHT_LIGHTNESS_ACTUAL_STATE

enumerator ESP_BLE_MESH_LIGHT_LIGHTNESS_LINEAR_STATE

enumerator ESP_BLE_MESH_LIGHT_CTL_LIGHTNESS_STATE

enumerator ESP_BLE_MESH_LIGHT_CTL_TEMP_DELTA_UV_STATE

enumerator ESP_BLE_MESH_LIGHT_HSL_STATE

enumerator ESP_BLE_MESH_LIGHT_HSL_LIGHTNESS_STATE

enumerator ESP_BLE_MESH_LIGHT_HSL_HUE_STATE

enumerator ESP_BLE_MESH_LIGHT_HSL_SATURATION_STATE

enumerator ESP_BLE_MESH_LIGHT_XYL_LIGHTNESS_STATE

enumerator ESP_BLE_MESH_LIGHT_LC_LIGHT_ONOFF_STATE

enumerator ESP_BLE_MESH_SERVER_MODEL_STATE_MAX

enum esp_ble_mesh_model_cb_event_t

Values:

enumerator ESP_BLE_MESH_MODEL_OPERATION_EVT
User-defined models receive messages from peer devices (e.g. get, set, status, etc) event

enumerator ESP_BLE_MESH_MODEL_SEND_COMP_EVT
User-defined models send messages completion event

enumerator ESP_BLE_MESH_MODEL_PUBLISH_COMP_EVT
User-defined models publish messages completion event

enumerator ESP_BLE_MESH_CLIENT_MODEL_RECV_PUBLISH_MSG_EVT
User-defined client models receive publish messages event

enumerator ESP_BLE_MESH_CLIENT_MODEL_SEND_TIMEOUT_EVT
Timeout event for the user-defined client models that failed to receive response from peer server models

Espressif Systems 416
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_MODEL_PUBLISH_UPDATE_EVT
When a model is configured to publish messages periodically, this event will occur during every publish
period

enumerator ESP_BLE_MESH_SERVER_MODEL_UPDATE_STATE_COMP_EVT
Server models update state value completion event

enumerator ESP_BLE_MESH_MODEL_EVT_MAX

ESP-BLE-MESH Core API Reference

This section contains ESP-BLE-MESH Core related APIs, which can be used to initialize ESP-BLE-MESH stack,
provision, send/publish messages, etc.
This API reference covers six components:

• ESP-BLE-MESH Stack Initialization
• Reading of Local Data Information
• Low Power Operation (Updating)
• Send/Publish Messages, add Local AppKey, etc.
• ESP-BLE-MESH Node/Provisioner Provisioning
• ESP-BLE-MESH GATT Proxy Server

ESP-BLE-MESH Stack Initialization

Header File
• components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_common_api.h

Functions
esp_err_t esp_ble_mesh_init(esp_ble_mesh_prov_t *prov, esp_ble_mesh_comp_t *comp)

Initialize BLE Mesh module. This API initializes provisioning capabilities and composition data information.

Note: After calling this API, the device needs to call esp_ble_mesh_prov_enable() to enable provisioning
functionality again.

Parameters
• prov -- [in] Pointer to the device provisioning capabilities. This pointer must remain
valid during the lifetime of the BLE Mesh device.

• comp -- [in] Pointer to the device composition data information. This pointer must remain
valid during the lifetime of the BLE Mesh device.

Returns ESP_OK on success or error code otherwise.
esp_err_t esp_ble_mesh_deinit(esp_ble_mesh_deinit_param_t *param)

De-initialize BLE Mesh module.

Note:
a. This function shall be invoked after esp_ble_mesh_client_model_deinit().
b. This function is strictly forbidden to run in any BTC Task Context (e.g. registered Mesh Event Callback).

Parameters param -- [in] Pointer to the structure of BLE Mesh deinit parameters.
Returns ESP_OK on success or error code otherwise.

Espressif Systems 417
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_common_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Reading of Local Data Information

Header File
• components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_local_data_operation_api.h

Functions
int32_t esp_ble_mesh_get_model_publish_period(esp_ble_mesh_model_t *model)

Get the model publish period, the unit is ms.
Parameters model -- [in]Model instance pointer.
Returns Publish period value on success, 0 or (negative) error code from errno.h on failure.

uint16_t esp_ble_mesh_get_primary_element_address(void)
Get the address of the primary element.

Returns Address of the primary element on success, or
ESP_BLE_MESH_ADDR_UNASSIGNED on failure which means the device has not
been provisioned.

uint16_t *esp_ble_mesh_is_model_subscribed_to_group(esp_ble_mesh_model_t *model, uint16_t
group_addr)

Check if the model has subscribed to the given group address. Note: E.g., once a status message is received
and the destination address is a group address, the model uses this API to check if it is successfully subscribed
to the given group address.

Parameters
• model -- [in] Pointer to the model.
• group_addr -- [in] Group address.

Returns Pointer to the group address within the Subscription List of the model on success, or
NULL on failure which means the model has not subscribed to the given group address. Note:
With the pointer to the group address returned, you can reset the group address to 0x0000 in
order to unsubscribe the model from the group.

esp_ble_mesh_elem_t *esp_ble_mesh_find_element(uint16_t element_addr)
Find the BLE Mesh element pointer via the element address.

Parameters element_addr -- [in] Element address.
Returns Pointer to the element on success, or NULL on failure.

uint8_t esp_ble_mesh_get_element_count(void)
Get the number of elements that have been registered.

Returns Number of elements.
esp_ble_mesh_model_t *esp_ble_mesh_find_vendor_model(const esp_ble_mesh_elem_t *element,

uint16_t company_id, uint16_t model_id)
Find the Vendor specific model with the given element, the company ID and the Vendor Model ID.

Parameters
• element -- [in] Element to which the model belongs.
• company_id -- [in] A 16-bit company identifier assigned by the Bluetooth SIG.
• model_id -- [in] A 16-bit vendor-assigned model identifier.

Returns Pointer to the Vendor Model on success, or NULL on failure which means the Vendor
Model is not found.

esp_ble_mesh_model_t *esp_ble_mesh_find_sig_model(const esp_ble_mesh_elem_t *element, uint16_t
model_id)

Find the SIG model with the given element and Model id.
Parameters

• element -- [in] Element to which the model belongs.

Espressif Systems 418
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_local_data_operation_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• model_id -- [in] SIG model identifier.
Returns Pointer to the SIG Model on success, or NULL on failure which means the SIG Model is

not found.
const esp_ble_mesh_comp_t *esp_ble_mesh_get_composition_data(void)

Get the Composition data which has been registered.
Returns Pointer to the Composition data on success, or NULL on failure which means the Com-

position data is not initialized.
esp_err_t esp_ble_mesh_model_subscribe_group_addr(uint16_t element_addr, uint16_t

company_id, uint16_t model_id, uint16_t
group_addr)

A local model of node or Provisioner subscribes a group address.

Note: This function shall not be invoked before node is provisioned or Provisioner is enabled.

Parameters
• element_addr -- [in] Unicast address of the element to which the model belongs.
• company_id -- [in] A 16-bit company identifier.
• model_id -- [in] A 16-bit model identifier.
• group_addr -- [in] The group address to be subscribed.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_model_unsubscribe_group_addr(uint16_t element_addr, uint16_t
company_id, uint16_t model_id,
uint16_t group_addr)

A local model of node or Provisioner unsubscribes a group address.

Note: This function shall not be invoked before node is provisioned or Provisioner is enabled.

Parameters
• element_addr -- [in] Unicast address of the element to which the model belongs.
• company_id -- [in] A 16-bit company identifier.
• model_id -- [in] A 16-bit model identifier.
• group_addr -- [in] The subscribed group address.

Returns ESP_OK on success or error code otherwise.

const uint8_t *esp_ble_mesh_node_get_local_net_key(uint16_t net_idx)
This function is called by Node to get the local NetKey.

Parameters net_idx -- [in] NetKey index.
Returns NetKey on success, or NULL on failure.

const uint8_t *esp_ble_mesh_node_get_local_app_key(uint16_t app_idx)
This function is called by Node to get the local AppKey.

Parameters app_idx -- [in] AppKey index.
Returns AppKey on success, or NULL on failure.

esp_err_t esp_ble_mesh_node_add_local_net_key(const uint8_t net_key[16], uint16_t net_idx)
This function is called by Node to add a local NetKey.

Note: This function can only be called after the device is provisioned.

Parameters

Espressif Systems 419
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• net_key -- [in] NetKey to be added.
• net_idx -- [in] NetKey Index.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_node_add_local_app_key(const uint8_t app_key[16], uint16_t net_idx,
uint16_t app_idx)

This function is called by Node to add a local AppKey.

Note: The net_idx must be an existing one. This function can only be called after the device is provisioned.

Parameters
• app_key -- [in] AppKey to be added.
• net_idx -- [in] NetKey Index.
• app_idx -- [in] AppKey Index.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_node_bind_app_key_to_local_model(uint16_t element_addr, uint16_t
company_id, uint16_t model_id,
uint16_t app_idx)

This function is called by Node to bind AppKey to model locally.

Note: If going to bind app_key with local vendor model, the company_id shall be set to 0xFFFF. This function
can only be called after the device is provisioned.

Parameters
• element_addr -- [in] Node local element address
• company_id -- [in] Node local company id
• model_id -- [in] Node local model id
• app_idx -- [in] Node local appkey index

Returns ESP_OK on success or error code otherwise.

Low Power Operation (Updating)

Header File
• components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_low_power_api.h

Functions
esp_err_t esp_ble_mesh_lpn_enable(void)

Enable BLE Mesh device LPN functionality.

Note: This API enables LPN functionality. Once called, the proper Friend Request will be sent.

Returns ESP_OK on success or error code otherwise.
esp_err_t esp_ble_mesh_lpn_disable(bool force)

Disable BLE Mesh device LPN functionality.
Parameters force -- [in] when disabling LPN functionality, use this flag to indicate whether

directly clear corresponding information or just send friend clear to disable it if friendship has
already been established.

Returns ESP_OK on success or error code otherwise.

Espressif Systems 420
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_low_power_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_mesh_lpn_poll(void)
LPN tries to poll messages from the Friend Node.

Note: The Friend Poll message is sent by a Low Power node to ask the Friend node to send a message that it
has stored for the Low Power node. Users can call this API to send Friend Poll message manually. If this API
is not invoked, the bottom layer of the Low Power node will send Friend Poll before the PollTimeout timer
expires. If the corresponding Friend Update is received and MD is set to 0, which means there are no messages
for the Low Power node, then the Low Power node will stop scanning.

Returns ESP_OK on success or error code otherwise.

Send/Publish Messages, add Local AppKey, etc.

Header File
• components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_networking_api.h

Functions
esp_err_t esp_ble_mesh_register_custom_model_callback(esp_ble_mesh_model_cb_t callback)

Register BLEMesh callback for user-defined models' operations. This callback can report the following events
generated for the user-defined models:

• Call back the messages received by user-defined client and server models to the application layer;
• If users call esp_ble_mesh_server/client_model_send, this callback notifies the application layer of the
send_complete event;

• If user-defined client model sends a message that requires response, and the response message is received
after the timer expires, the response message will be reported to the application layer as published by a
peer device;

• If the user-defined client model fails to receive the response message during a specified period of time, a
timeout event will be reported to the application layer.

Note: The client models (i.e. Config Client model, Health Client model, Generic Client models, Sensor
Client model, Scene Client model and Lighting Client models) that have been realized internally have their
specific register functions. For example, esp_ble_mesh_register_config_client_callback is the register function
for Config Client Model.

Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_model_msg_opcode_init(uint8_t *data, uint32_t opcode)
Add the message opcode to the beginning of the model message before sending or publishing the model mes-
sage.

Note: This API is only used to set the opcode of the message.

Parameters
• data -- [in] Pointer to the message data.
• opcode -- [in] The message opcode.

Returns ESP_OK on success or error code otherwise.

Espressif Systems 421
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_networking_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_mesh_client_model_init(esp_ble_mesh_model_t *model)
Initialize the user-defined client model. All user-defined client models shall call this function to initialize the
client model internal data. Node: Before calling this API, the op_pair_size and op_pair variabled within the
user_data(defined using esp_ble_mesh_client_t_) of the client model need to be initialized.

Parameters model -- [in] BLE Mesh Client model to which the message belongs.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_client_model_deinit(esp_ble_mesh_model_t *model)
De-initialize the user-defined client model.

Note: This function shall be invoked before esp_ble_mesh_deinit() is called.

Parameters model -- [in] Pointer of the Client model.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_server_model_send_msg(esp_ble_mesh_model_t *model,
esp_ble_mesh_msg_ctx_t *ctx, uint32_t opcode,
uint16_t length, uint8_t *data)

Send server model messages(such as server model status messages).
Parameters

• model -- [in] BLE Mesh Server Model to which the message belongs.
• ctx -- [in]Message context, includes keys, TTL, etc.
• opcode -- [in]Message opcode.
• length -- [in]Message length (exclude the message opcode).
• data -- [in] Parameters of Access Payload (exclude the message opcode) to be sent.

Returns ESP_OK on success or error code otherwise.
esp_err_t esp_ble_mesh_client_model_send_msg(esp_ble_mesh_model_t *model,

esp_ble_mesh_msg_ctx_t *ctx, uint32_t opcode,
uint16_t length, uint8_t *data, int32_t
msg_timeout, bool need_rsp,
esp_ble_mesh_dev_role_t device_role)

Send client model message (such as model get, set, etc).
Parameters

• model -- [in] BLE Mesh Client Model to which the message belongs.
• ctx -- [in]Message context, includes keys, TTL, etc.
• opcode -- [in]Message opcode.
• length -- [in]Message length (exclude the message opcode).
• data -- [in] Parameters of the Access Payload (exclude the message opcode) to be sent.
• msg_timeout -- [in] Time to get response to the message (in milliseconds).
• need_rsp -- [in] TRUE if the opcode requires the peer device to reply, FALSE other-
wise.

• device_role -- [in] Role of the device (Node/Provisioner) that sends the message.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_model_publish(esp_ble_mesh_model_t *model, uint32_t opcode, uint16_t
length, uint8_t *data, esp_ble_mesh_dev_role_t device_role)

Send a model publication message.

Note: Before calling this function, the user needs to ensure that the model publication message
(esp_ble_mesh_model_pub_t::msg) contains a valid message to be sent. And if users want to update the pub-
lishing message, this API should be called in ESP_BLE_MESH_MODEL_PUBLISH_UPDATE_EVT with
the message updated.

Espressif Systems 422
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• model -- [in]Mesh (client) Model publishing the message.
• opcode -- [in]Message opcode.
• length -- [in]Message length (exclude the message opcode).
• data -- [in] Parameters of the Access Payload (exclude the message opcode) to be sent.
• device_role -- [in] Role of the device (node/provisioner) publishing the message of
the type esp_ble_mesh_dev_role_t.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_server_model_update_state(esp_ble_mesh_model_t *model,
esp_ble_mesh_server_state_type_t type,
esp_ble_mesh_server_state_value_t *value)

Update a server model state value. If the model publication state is set properly (e.g. publish address is set to
a valid address), it will publish corresponding status message.

Note: Currently this API is used to update bound state value, not for all server model states.

Parameters
• model -- [in] Server model which is going to update the state.
• type -- [in] Server model state type.
• value -- [in] Server model state value.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_node_local_reset(void)
Reset the provisioning procedure of the local BLE Mesh node.

Note: All provisioning information in this node will be deleted and the node needs to be reprovisioned. The
API function esp_ble_mesh_node_prov_enable() needs to be called to start a new provisioning procedure.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_set_node_name(uint16_t index, const char *name)
This function is called to set the node (provisioned device) name.

Note: index is obtained from the parameters of ESP_BLE_MESH_PROVISIONER_PROV_COMPLETE_EVT.

Parameters
• index -- [in] Index of the node in the node queue.
• name -- [in] Name (end by '\0') to be set for the node.

Returns ESP_OK on success or error code otherwise.

const char *esp_ble_mesh_provisioner_get_node_name(uint16_t index)
This function is called to get the node (provisioned device) name.

Note: index is obtained from the parameters of ESP_BLE_MESH_PROVISIONER_PROV_COMPLETE_EVT.

Parameters index -- [in] Index of the node in the node queue.
Returns Node name on success, or NULL on failure.

Espressif Systems 423
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t esp_ble_mesh_provisioner_get_node_index(const char *name)
This function is called to get the node (provisioned device) index.

Parameters name -- [in] Name of the node (end by '\0').
Returns Node index on success, or an invalid value (0xFFFF) on failure.

esp_err_t esp_ble_mesh_provisioner_store_node_comp_data(uint16_t unicast_addr, uint8_t
*data, uint16_t length)

This function is called to store the Composition Data of the node.
Parameters

• unicast_addr -- [in] Element address of the node
• data -- [in] Pointer of Composition Data
• length -- [in] Length of Composition Data

Returns ESP_OK on success or error code otherwise.
esp_ble_mesh_node_t *esp_ble_mesh_provisioner_get_node_with_uuid(const uint8_t uuid[16])

This function is called to get the provisioned node information with the node device uuid.
Parameters uuid -- [in] Device UUID of the node
Returns Pointer of the node info struct or NULL on failure.

esp_ble_mesh_node_t *esp_ble_mesh_provisioner_get_node_with_addr(uint16_t unicast_addr)
This function is called to get the provisioned node information with the node unicast address.

Parameters unicast_addr -- [in] Unicast address of the node
Returns Pointer of the node info struct or NULL on failure.

esp_ble_mesh_node_t *esp_ble_mesh_provisioner_get_node_with_name(const char *name)
This function is called to get the provisioned node information with the node name.

Parameters name -- [in] Name of the node (end by '\0').
Returns Pointer of the node info struct or NULL on failure.

uint16_t esp_ble_mesh_provisioner_get_prov_node_count(void)
This function is called by Provisioner to get provisioned node count.

Returns Number of the provisioned nodes.
const esp_ble_mesh_node_t **esp_ble_mesh_provisioner_get_node_table_entry(void)

This function is called by Provisioner to get the entry of the node table.

Note: After invoking the function to get the entry of nodes, users can use the "for" loop com-
bined with the macro CONFIG_BLE_MESH_MAX_PROV_NODES to get each node's infor-
mation. Before trying to read the node's information, users need to check if the node exists,
i.e. if the *(esp_ble_mesh_node_t **node) is NULL. For example: ``` const esp_ble_mesh_node_t
**entry = esp_ble_mesh_provisioner_get_node_table_entry(); for (int i = 0; i < CON-
FIG_BLE_MESH_MAX_PROV_NODES; i++) { const esp_ble_mesh_node_t *node = entry[i]; if (node) {
...... } } ```

Returns Pointer to the start of the node table.

esp_err_t esp_ble_mesh_provisioner_delete_node_with_uuid(const uint8_t uuid[16])
This function is called to delete the provisioned node information with the node device uuid.

Parameters uuid -- [in] Device UUID of the node
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_delete_node_with_addr(uint16_t unicast_addr)
This function is called to delete the provisioned node information with the node unicast address.

Parameters unicast_addr -- [in] Unicast address of the node

Espressif Systems 424
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns ESP_OK on success or error code otherwise.
esp_err_t esp_ble_mesh_provisioner_add_local_app_key(const uint8_t app_key[16], uint16_t

net_idx, uint16_t app_idx)
This function is called to add a local AppKey for Provisioner.

Note: app_key: If set to NULL, app_key will be generated internally. net_idx: Should be an existing one.
app_idx: If it is going to be generated internally, it should be set to 0xFFFF, and the new app_idx will be
reported via an event.

Parameters
• app_key -- [in] The app key to be set for the local BLE Mesh stack.
• net_idx -- [in] The network key index.
• app_idx -- [in] The app key index.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_update_local_app_key(const uint8_t app_key[16],
uint16_t net_idx, uint16_t
app_idx)

This function is used to update a local AppKey for Provisioner.
Parameters

• app_key -- [in] Value of the AppKey.
• net_idx -- [in] Corresponding NetKey Index.
• app_idx -- [in] The AppKey Index

Returns ESP_OK on success or error code otherwise.
const uint8_t *esp_ble_mesh_provisioner_get_local_app_key(uint16_t net_idx, uint16_t

app_idx)
This function is called by Provisioner to get the local app key value.

Parameters
• net_idx -- [in] Network key index.
• app_idx -- [in] Application key index.

Returns App key on success, or NULL on failure.
esp_err_t esp_ble_mesh_provisioner_bind_app_key_to_local_model(uint16_t element_addr,

uint16_t app_idx,
uint16_t model_id,
uint16_t company_id)

This function is called by Provisioner to bind own model with proper app key.

Note: company_id: If going to bind app_key with local vendor model, company_id should be set to 0xFFFF.

Parameters
• element_addr -- [in] Provisioner local element address
• app_idx -- [in] Provisioner local appkey index
• model_id -- [in] Provisioner local model id
• company_id -- [in] Provisioner local company id

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_add_local_net_key(const uint8_t net_key[16], uint16_t
net_idx)

This function is called by Provisioner to add local network key.

Espressif Systems 425
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: net_key: If set to NULL, net_key will be generated internally. net_idx: If it is going to be generated
internally, it should be set to 0xFFFF, and the new net_idx will be reported via an event.

Parameters
• net_key -- [in] The network key to be added to the Provisioner local BLE Mesh stack.
• net_idx -- [in] The network key index.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_update_local_net_key(const uint8_t net_key[16],
uint16_t net_idx)

This function is called by Provisioner to update a local network key.
Parameters

• net_key -- [in] Value of the NetKey.
• net_idx -- [in] The NetKey Index.

Returns ESP_OK on success or error code otherwise.
const uint8_t *esp_ble_mesh_provisioner_get_local_net_key(uint16_t net_idx)

This function is called by Provisioner to get the local network key value.
Parameters net_idx -- [in] Network key index.
Returns Network key on success, or NULL on failure.

esp_err_t esp_ble_mesh_provisioner_recv_heartbeat(bool enable)
This function is called by Provisioner to enable or disable receiving heartbeat messages.

Note: If enabling receiving heartbeat message successfully, the filter will be an empty rejectlist by default,
which means all heartbeat messages received by the Provisioner will be reported to the application layer.

Parameters enable -- [in] Enable or disable receiving heartbeat messages.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_set_heartbeat_filter_type(uint8_t type)
This function is called by Provisioner to set the heartbeat filter type.

Note: 1. If the filter type is not the same with the current value, then all the filter entries will be cleaned.
a. If the previous type is rejectlist, and changed to acceptlist, then the filter will be an empty acceptlist,

which means no heartbeat messages will be reported. Users need to add SRC or DST into the filter entry,
then heartbeat messages from the SRC or to the DST will be reported.

Parameters type -- [in] Heartbeat filter type (acceptlist or rejectlist).
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_set_heartbeat_filter_info(uint8_t op,
esp_ble_mesh_heartbeat_filter_info_t
*info)

This function is called by Provisioner to add or remove a heartbeat filter entry.

a. If the operation is "REMOVE", the "hb_src" can be set to the SRC (can only be a unicast address) of
heartbeat messages, and the "hb_dst" can be set to the DST (unicast address or group address), at least
one of them needs to be set.
• The filter entry with the same SRC or DST will be removed.

Espressif Systems 426
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: 1. If the operation is "ADD", the "hb_src" can be set to the SRC (can only be a unicast address) of
heartbeat messages, and the "hb_dst" can be set to the DST (unicast address or group address), at least one of
them needs to be set.

• If only one of them is set, the filter entry will only use the configured SRC or DST to filter heartbeat
messages.

• If both of them are set, the SRC and DST will both be used to decide if a heartbeat message will be
handled.

• If SRC or DST already exists in some filter entry, then the corresponding entry will be cleaned firstly,
then a new entry will be allocated to store the information.

Parameters
• op -- [in] Add or REMOVE
• info -- [in] Heartbeat filter entry information, including: hb_src - Heartbeat source ad-
dress; hb_dst - Heartbeat destination address;

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_direct_erase_settings(void)
This function is called by Provisioner to directly erase the mesh information from nvs namespace.

Note: This function can be invoked when the mesh stack is not initialized or has been de-initialized.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_open_settings_with_index(uint8_t index)
This function is called by Provisioner to open a nvs namespace for storing mesh information.

Note: Before open another nvs namespace, the previously opened nvs namespace must be closed firstly.

Parameters index -- [in] Settings index.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_open_settings_with_uid(const char *uid)
This function is called by Provisioner to open a nvs namespace for storing mesh information.

Note: Before open another nvs namespace, the previously opened nvs namespace must be closed firstly.

Parameters uid -- [in] Settings user id.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_close_settings_with_index(uint8_t index, bool erase)
This function is called by Provisioner to close a nvs namespace which is opened previously for storing mesh
information.

Note: 1. Before closing the nvs namespace, it must be open.
a. When the function is invoked, the Provisioner functionality will be disabled firstly, and: a) If the "erase"

flag is set to false, the mesh information will be cleaned (e.g. removing NetKey, AppKey, nodes, etc)
from the mesh stack. b) If the "erase" flag is set to true, the mesh information stored in the nvs namespace
will also be erased besides been cleaned from the mesh stack.

Espressif Systems 427
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

b. If Provisioner tries to work properly again, we can invoke the open function to open a new nvs namespace
or a previously added one, and restore the mesh information from it if not erased.

c. The working process shall be as following: a) Open settings A b) Start to provision and control nodes c)
Close settings A d) Open settings B e) Start to provision and control other nodes f) Close settings B g)
......

Parameters
• index -- [in] Settings index.
• erase -- [in] Indicate if erasing mesh information.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_close_settings_with_uid(const char *uid, bool erase)
This function is called by Provisioner to close a nvs namespace which is opened previously for storing mesh
information.

Note: 1. Before closing the nvs namespace, it must be open.
a. When the function is invoked, the Provisioner functionality will be disabled firstly, and: a) If the "erase"

flag is set to false, the mesh information will be cleaned (e.g. removing NetKey, AppKey, nodes, etc)
from the mesh stack. b) If the "erase" flag is set to true, the mesh information stored in the nvs namespace
will also be erased besides been cleaned from the mesh stack.

b. If Provisioner tries to work properly again, we can invoke the open function to open a new nvs namespace
or a previously added one, and restore the mesh information from it if not erased.

c. The working process shall be as following: a) Open settings A b) Start to provision and control nodes c)
Close settings A d) Open settings B e) Start to provision and control other nodes f) Close settings B g)
......

Parameters
• uid -- [in] Settings user id.
• erase -- [in] Indicate if erasing mesh information.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_delete_settings_with_index(uint8_t index)
This function is called by Provisioner to erase the mesh information and settings user id from a nvs namespace.

Note: When this function is called, the nvs namespace must not be open. This function is used to erase the
mesh information and settings user id which are not used currently.

Parameters index -- [in] Settings index.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_delete_settings_with_uid(const char *uid)
This function is called by Provisioner to erase the mesh information and settings user id from a nvs namespace.

Note: When this function is called, the nvs namespace must not be open. This function is used to erase the
mesh information and settings user id which are not used currently.

Parameters uid -- [in] Settings user id.
Returns ESP_OK on success or error code otherwise.

Espressif Systems 428
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

const char *esp_ble_mesh_provisioner_get_settings_uid(uint8_t index)
This function is called by Provisioner to get settings user id.

Parameters index -- [in] Settings index.
Returns Setting user id on success or NULL on failure.

uint8_t esp_ble_mesh_provisioner_get_settings_index(const char *uid)
This function is called by Provisioner to get settings index.

Parameters uid -- [in] Settings user id.
Returns Settings index.

uint8_t esp_ble_mesh_provisioner_get_free_settings_count(void)
This function is called by Provisioner to get the number of free settings user id.

Returns Number of free settings user id.
const uint8_t *esp_ble_mesh_get_fast_prov_app_key(uint16_t net_idx, uint16_t app_idx)

This function is called to get fast provisioning application key.
Parameters

• net_idx -- [in] Network key index.
• app_idx -- [in] Application key index.

Returns Application key on success, or NULL on failure.

Type Definitions

typedef void (*esp_ble_mesh_model_cb_t)(esp_ble_mesh_model_cb_event_t event,
esp_ble_mesh_model_cb_param_t *param)

: event, event code of user-defined model events; param, parameters of user-defined model events

ESP-BLE-MESH Node/Provisioner Provisioning

Header File
• components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_provisioning_api.h

Functions
esp_err_t esp_ble_mesh_register_prov_callback(esp_ble_mesh_prov_cb_t callback)

Register BLE Mesh provisioning callback.
Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

bool esp_ble_mesh_node_is_provisioned(void)
Check if a device has been provisioned.

Returns TRUE if the device is provisioned, FALSE if the device is unprovisioned.
esp_err_t esp_ble_mesh_node_prov_enable(esp_ble_mesh_prov_bearer_t bearers)

Enable specific provisioning bearers to get the device ready for provisioning.

Note: PB-ADV: send unprovisioned device beacon. PB-GATT: send connectable advertising packets.

Parameters bearers -- Bit-wise OR of provisioning bearers.
Returns ESP_OK on success or error code otherwise.

Espressif Systems 429
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_provisioning_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_mesh_node_prov_disable(esp_ble_mesh_prov_bearer_t bearers)
Disable specific provisioning bearers to make a device inaccessible for provisioning.

Parameters bearers -- Bit-wise OR of provisioning bearers.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_node_set_oob_pub_key(uint8_t pub_key_x[32], uint8_t pub_key_y[32],
uint8_t private_key[32])

Unprovisioned device set own oob public key & private key pair.

Note: In order to avoid suffering brute-forcing attack (CVE-2020-26559). The Bluetooth SIG recommends
that potentially vulnerable mesh provisioners use an out-of-band mechanism to exchange the public keys. So as
an unprovisioned device, it should use this function to input the Public Key exchanged through the out-of-band
mechanism.

Parameters
• pub_key_x -- [in] Unprovisioned device's Public Key X
• pub_key_y -- [in] Unprovisioned device's Public Key Y
• private_key -- [in] Unprovisioned device's Private Key

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_node_input_number(uint32_t number)
Provide provisioning input OOB number.

Note: This is intended to be called if the user has received ESP_BLE_MESH_NODE_PROV_INPUT_EVT
with ESP_BLE_MESH_ENTER_NUMBER as the action.

Parameters number -- [in] Number input by device.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_node_input_string(const char *string)
Provide provisioning input OOB string.

Note: This is intended to be called if the user has received ESP_BLE_MESH_NODE_PROV_INPUT_EVT
with ESP_BLE_MESH_ENTER_STRING as the action.

Parameters string -- [in] String input by device.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_set_unprovisioned_device_name(const char *name)
Using this function, an unprovisioned device can set its own device name, which will be broadcasted in its
advertising data.

Note: This API applicable to PB-GATT mode only by setting the name to the scan response data, it doesn't
apply to PB-ADV mode.

Parameters name -- [in] Unprovisioned device name
Returns ESP_OK on success or error code otherwise.

Espressif Systems 430
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_mesh_provisioner_read_oob_pub_key(uint8_t link_idx, uint8_t pub_key_x[32],
uint8_t pub_key_y[32])

Provisioner inputs unprovisioned device's oob public key.

Note: In order to avoid suffering brute-forcing attack (CVE-2020-26559). The Bluetooth SIG recommends
that potentially vulnerable mesh provisioners use an out-of-band mechanism to exchange the public keys.

Parameters
• link_idx -- [in] The provisioning link index
• pub_key_x -- [in] Unprovisioned device's Public Key X
• pub_key_y -- [in] Unprovisioned device's Public Key Y

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_input_string(const char *string, uint8_t link_idx)
Provide provisioning input OOB string.

This is intended to be called after the esp_ble_mesh_prov_t prov_
↪→input_num

callback has been called with ESP_BLE_MESH_ENTER_STRING as the␣
↪→action.

Parameters
• string -- [in] String input by Provisioner.
• link_idx -- [in] The provisioning link index.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_input_number(uint32_t number, uint8_t link_idx)
Provide provisioning input OOB number.

This is intended to be called after the esp_ble_mesh_prov_t prov_
↪→input_num

callback has been called with ESP_BLE_MESH_ENTER_NUMBER as the␣
↪→action.

Parameters
• number -- [in] Number input by Provisioner.
• link_idx -- [in] The provisioning link index.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_prov_enable(esp_ble_mesh_prov_bearer_t bearers)
Enable one or more provisioning bearers.

Note: PB-ADV: Enable BLE scan. PB-GATT: Initialize corresponding BLE Mesh Proxy info.

Parameters bearers -- [in] Bit-wise OR of provisioning bearers.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_prov_disable(esp_ble_mesh_prov_bearer_t bearers)
Disable one or more provisioning bearers.

Espressif Systems 431
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: PB-ADV: Disable BLE scan. PB-GATT: Break any existing BLE Mesh Provisioning connections.

Parameters bearers -- [in] Bit-wise OR of provisioning bearers.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_add_unprov_dev(esp_ble_mesh_unprov_dev_add_t
*add_dev, esp_ble_mesh_dev_add_flag_t
flags)

Add unprovisioned device info to the unprov_dev queue.

Note: : 1. Currently address type only supports public address and static random address.
a. If device UUID and/or device address as well as address type already exist in the device queue, but the

bearer is different from the existing one, add operation will also be successful and it will update the
provision bearer supported by the device.

b. For example, if the Provisioner wants to add an unprovisioned device info before receiving its unprovi-
sioned device beacon or Mesh Provisioning advertising packets, the Provisioner can use this API to add
the device info with each one or both of device UUID and device address added. When the Provisioner
gets the device's advertising packets, it will start provisioning the device internally.
• In this situation, the Provisioner can set bearers with each one or both of
ESP_BLE_MESH_PROV_ADV and ESP_BLE_MESH_PROV_GATT enabled, and cannot
set flags with ADD_DEV_START_PROV_NOW_FLAG enabled.

c. Another example is when the Provisioner receives the unprovisioned device's beacon or Mesh Provi-
sioning advertising packets, the advertising packets will be reported on to the application layer using
the callback registered by the function esp_ble_mesh_register_prov_callback. And in the callback, the
Provisioner can call this API to start provisioning the device.
• If the Provisioner uses PB-ADV to provision, either one or both of device UUID and device address
can be added, bearers shall be set with ESP_BLE_MESH_PROV_ADV enabled and the flags shall
be set with ADD_DEV_START_PROV_NOW_FLAG enabled.

• If the Provisioner uses PB-GATT to provision, both the device UUID and device address need to
be added, bearers shall be set with ESP_BLE_MESH_PROV_GATT enabled, and the flags shall be
set with ADD_DEV_START_PROV_NOW_FLAG enabled.

• If the Provisioner just wants to store the unprovisioned device info when receiving its advertis-
ing packets and start to provision it the next time (e.g. after receiving its advertising packets
again), then it can add the device info with either one or both of device UUID and device ad-
dress included. Bearers can be set with either one or both of ESP_BLE_MESH_PROV_ADV and
ESP_BLE_MESH_PROV_GATT enabled (recommend to enable the bearer which will receive its
advertising packets, because if the other bearer is enabled, the Provisioner is not aware if the de-
vice supports the bearer), and flags cannot be set with ADD_DEV_START_PROV_NOW_FLAG
enabled.

• Note: ESP_BLE_MESH_PROV_ADV, ESP_BLE_MESH_PROV_GATT and
ADD_DEV_START_PROV_NOW_FLAG can not be enabled at the same time.

Parameters
• add_dev -- [in] Pointer to a struct containing the device information
• flags -- [in] Flags indicate several operations on the device information
– Remove device information from queue after device has been provisioned (BIT0)
– Start provisioning immediately after device is added to queue (BIT1)
– Device can be removed if device queue is full (BIT2)

Returns ESP_OK on success or error code otherwise.

Espressif Systems 432
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_mesh_provisioner_prov_device_with_addr(const uint8_t uuid[16],
esp_ble_mesh_bd_addr_t addr,
esp_ble_mesh_addr_type_t
addr_type,
esp_ble_mesh_prov_bearer_t
bearer, uint16_t oob_info,
uint16_t unicast_addr)

Provision an unprovisioned device and assign a fixed unicast address for it in advance.

Note: : 1. Currently address type only supports public address and static random address.
a. Bearer must be equal to ESP_BLE_MESH_PROV_ADV or ESP_BLE_MESH_PROV_GATT,

since Provisioner will start to provision a device immediately once this function is in-
voked. And the input bearer must be identical with the one within the parameters of the
ESP_BLE_MESH_PROVISIONER_RECV_UNPROV_ADV_PKT_EVT event.

b. If this function is used by a Provisioner to provision devices, the application should take care of the
assigned unicast address and avoid overlap of the unicast addresses of different nodes.

c. Recommend to use only one of the functions "esp_ble_mesh_provisioner_add_unprov_dev" and
"esp_ble_mesh_provisioner_prov_device_with_addr" by a Provisioner.

Parameters
• uuid -- [in] Device UUID of the unprovisioned device
• addr -- [in] Device address of the unprovisioned device
• addr_type -- [in] Device address type of the unprovisioned device
• bearer -- [in] Provisioning bearer going to be used by Provisioner
• oob_info -- [in] OOB info of the unprovisioned device
• unicast_addr -- [in] Unicast address going to be allocated for the unprovisioned de-
vice

Returns Zero on success or (negative) error code otherwise.

esp_err_t esp_ble_mesh_provisioner_delete_dev(esp_ble_mesh_device_delete_t *del_dev)
Delete device from queue, and reset current provisioning link with the device.

Note: If the device is in the queue, remove it from the queue; if the device is being provisioned, terminate
the provisioning procedure. Either one of the device address or device UUID can be used as input.

Parameters del_dev -- [in] Pointer to a struct containing the device information.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_set_dev_uuid_match(const uint8_t *match_val, uint8_t
match_len, uint8_t offset, bool
prov_after_match)

This function is called by Provisioner to set the part of the device UUID to be compared before starting to
provision.

Parameters
• match_val -- [in] Value to be compared with the part of the device UUID.
• match_len -- [in] Length of the compared match value.
• offset -- [in] Offset of the device UUID to be compared (based on zero).
• prov_after_match -- [in] Flag used to indicate whether provisioner should start to
provision the device immediately if the part of the UUID matches.

Returns ESP_OK on success or error code otherwise.
esp_err_t esp_ble_mesh_provisioner_set_prov_data_info(esp_ble_mesh_prov_data_info_t

*prov_data_info)
This function is called by Provisioner to set provisioning data information before starting to provision.

Espressif Systems 433
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters prov_data_info -- [in] Pointer to a struct containing net_idx or flags or iv_index.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_set_static_oob_value(const uint8_t *value, uint8_t
length)

This function is called by Provisioner to set static oob value used for provisioning.

AuthValues selected using a cryptographically secure random or pseudorandom number generator and having
the maximum permitted entropy (128-bits) will be most difficult to brute-force. AuthValues with reduced
entropy or generated in a predictablemanner will not grant the same level of protection against this vulnerability.
Selecting a new AuthValue with each provisioning attempt can also make it more difficult to launch a brute-
force attack by requiring the attacker to restart the search with each provisioning attempt (CVE-2020-26556).

Note: The Bluetooth SIG recommends that mesh implementations enforce a randomly selected AuthValue
using all of the available bits, where permitted by the implementation. A large entropy helps ensure that a
brute-force of the AuthValue, even a static AuthValue, cannot normally be completed in a reasonable time
(CVE-2020-26557).

Parameters
• value -- [in] Pointer to the static oob value.
• length -- [in] Length of the static oob value.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_provisioner_set_primary_elem_addr(uint16_t addr)
This function is called by Provisioner to set own Primary element address.

Note: This API must be invoked when BLEMesh initialization is completed successfully, and can be invoked
before Provisioner functionality is enabled. Once this API is invoked successfully, the prov_unicast_addr value
in the struct esp_ble_mesh_prov_t will be ignored, and Provisioner will use this address as its own primary
element address. And if the unicast address going to assigned for the next unprovisioned device is smaller than
the input address + element number of Provisioner, then the address for the next unprovisioned device will be
recalculated internally.

Parameters addr -- [in] Unicast address of the Primary element of Provisioner.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_set_fast_prov_info(esp_ble_mesh_fast_prov_info_t *fast_prov_info)
This function is called to set provisioning data information before starting fast provisioning.

Parameters fast_prov_info -- [in] Pointer to a struct containing unicast address range,
net_idx, etc.

Returns ESP_OK on success or error code otherwise.
esp_err_t esp_ble_mesh_set_fast_prov_action(esp_ble_mesh_fast_prov_action_t action)

This function is called to start/suspend/exit fast provisioning.
Parameters action -- [in] fast provisioning action (i.e. enter, suspend, exit).
Returns ESP_OK on success or error code otherwise.

Type Definitions

typedef void (*esp_ble_mesh_prov_cb_t)(esp_ble_mesh_prov_cb_event_t event,
esp_ble_mesh_prov_cb_param_t *param)

: event, event code of provisioning events; param, parameters of provisioning events

Espressif Systems 434
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef void (*esp_ble_mesh_prov_adv_cb_t)(const esp_ble_mesh_bd_addr_t addr, const
esp_ble_mesh_addr_type_t addr_type, const uint8_t adv_type, const uint8_t *dev_uuid, uint16_t oob_info,
esp_ble_mesh_prov_bearer_t bearer)

Callback for Provisioner that received advertising packets from unprovisioned devices which are not in the
unprovisioned device queue.
Report on the unprovisioned device beacon and mesh provisioning service adv data to application.

Param addr [in] Pointer to the unprovisioned device address.
Param addr_type [in] Unprovisioned device address type.
Param adv_type [in] Adv packet type(ADV_IND or ADV_NONCONN_IND).
Param dev_uuid [in] Unprovisioned device UUID pointer.
Param oob_info [in] OOB information of the unprovisioned device.
Param bearer [in] Adv packet received from PB-GATT or PB-ADV bearer.

ESP-BLE-MESH GATT Proxy Server

Header File
• components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_proxy_api.h

Functions
esp_err_t esp_ble_mesh_proxy_identity_enable(void)

Enable advertising with Node Identity.

Note: This API requires that GATT Proxy support be enabled. Once called, each subnet starts advertising
using Node Identity for the next 60 seconds, and after 60s Network ID will be advertised. Under normal
conditions, the BLE Mesh Proxy Node Identity and Network ID advertising will be enabled automatically by
BLE Mesh stack after the device is provisioned.

Returns ESP_OK on success or error code otherwise.
esp_err_t esp_ble_mesh_proxy_gatt_enable(void)

Enable BLE Mesh GATT Proxy Service.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_proxy_gatt_disable(void)
Disconnect the BLE Mesh GATT Proxy connection if there is any, and disable the BLE Mesh GATT Proxy
Service.

Returns ESP_OK on success or error code otherwise.
esp_err_t esp_ble_mesh_proxy_client_connect(esp_ble_mesh_bd_addr_t addr,

esp_ble_mesh_addr_type_t addr_type, uint16_t
net_idx)

Proxy Client creates a connection with the Proxy Server.
Parameters

• addr -- [in] Device address of the Proxy Server.
• addr_type -- [in] Device address type(public or static random).
• net_idx -- [in] NetKey Index related with Network ID in the Mesh Proxy advertising
packet.

Returns ESP_OK on success or error code otherwise.

Espressif Systems 435
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/core/include/esp_ble_mesh_proxy_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_mesh_proxy_client_disconnect(uint8_t conn_handle)
Proxy Client terminates a connection with the Proxy Server.

Parameters conn_handle -- [in] Proxy connection handle.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_proxy_client_set_filter_type(uint8_t conn_handle, uint16_t net_idx,
esp_ble_mesh_proxy_filter_type_t
filter_type)

Proxy Client sets the filter type of the Proxy Server.
Parameters

• conn_handle -- [in] Proxy connection handle.
• net_idx -- [in] Corresponding NetKey Index.
• filter_type -- [in] whitelist or blacklist.

Returns ESP_OK on success or error code otherwise.
esp_err_t esp_ble_mesh_proxy_client_add_filter_addr(uint8_t conn_handle, uint16_t net_idx,

uint16_t *addr, uint16_t addr_num)
Proxy Client adds address to the Proxy Server filter list.

Parameters
• conn_handle -- [in] Proxy connection handle.
• net_idx -- [in] Corresponding NetKey Index.
• addr -- [in] Pointer to the filter address.
• addr_num -- [in] Number of the filter address.

Returns ESP_OK on success or error code otherwise.
esp_err_t esp_ble_mesh_proxy_client_remove_filter_addr(uint8_t conn_handle, uint16_t

net_idx, uint16_t *addr, uint16_t
addr_num)

Proxy Client removes address from the Proxy Server filter list.
Parameters

• conn_handle -- [in] Proxy connection handle.
• net_idx -- [in] Corresponding NetKey Index.
• addr -- [in] Pointer to the filter address.
• addr_num -- [in] Number of the filter address.

Returns ESP_OK on success or error code otherwise.

ESP-BLE-MESH Models API Reference

This section contains ESP-BLE-MESH Model related APIs, event types, event parameters, etc.
There are six categories of models:

• Configuration Client/Server Models
• Health Client/Server Models
• Generic Client/Server Models
• Sensor Client/Server Models
• Time and Scenes Client/Server Models
• Lighting Client/Server Models

Note: Definitions related to Server Models are being updated, and will be released soon.

Configuration Client/Server Models

Espressif Systems 436
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_config_model_api.h

Functions
esp_err_t esp_ble_mesh_register_config_client_callback(esp_ble_mesh_cfg_client_cb_t

callback)
Register BLE Mesh Config Client Model callback.

Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_register_config_server_callback(esp_ble_mesh_cfg_server_cb_t
callback)

Register BLE Mesh Config Server Model callback.
Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_config_client_get_state(esp_ble_mesh_client_common_param_t
*params, esp_ble_mesh_cfg_client_get_state_t
*get_state)

Get the value of Config Server Model states using the Config Client Model get messages.

Note: If you want to find the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_opcode_config_client_get_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• get_state -- [in] Pointer to a union, each kind of opcode corresponds to one structure
inside. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_config_client_set_state(esp_ble_mesh_client_common_param_t
*params, esp_ble_mesh_cfg_client_set_state_t
*set_state)

Set the value of the Configuration Server Model states using the Config Client Model set messages.

Note: If you want to find the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_opcode_config_client_set_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• set_state -- [in] Pointer to a union, each kind of opcode corresponds to one structure
inside. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

Unions

union esp_ble_mesh_cfg_client_get_state_t
#include <esp_ble_mesh_config_model_api.h> For ESP_BLE_MESH_MODEL_OP_BEACON_GET
ESP_BLE_MESH_MODEL_OP_COMPOSITION_DATA_GETESP_BLE_MESH_MODEL_OP_DEFAULT_TTL_GET
ESP_BLE_MESH_MODEL_OP_GATT_PROXY_GET ESP_BLE_MESH_MODEL_OP_RELAY_GET
ESP_BLE_MESH_MODEL_OP_MODEL_PUB_GET ESP_BLE_MESH_MODEL_OP_FRIEND_GET
ESP_BLE_MESH_MODEL_OP_HEARTBEAT_PUB_GETESP_BLE_MESH_MODEL_OP_HEARTBEAT_SUB_GET
the get_state parameter in the esp_ble_mesh_config_client_get_state function should not be set to NULL.

Espressif Systems 437
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_config_model_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_mesh_cfg_model_pub_get_t model_pub_get

For ESP_BLE_MESH_MODEL_OP_MODEL_PUB_GET.

esp_ble_mesh_cfg_composition_data_get_t comp_data_get

For ESP_BLE_MESH_MODEL_OP_COMPOSITION_DATA_GET.

esp_ble_mesh_cfg_sig_model_sub_get_t sig_model_sub_get

For ESP_BLE_MESH_MODEL_OP_SIG_MODEL_SUB_GET

esp_ble_mesh_cfg_vnd_model_sub_get_t vnd_model_sub_get

For ESP_BLE_MESH_MODEL_OP_VENDOR_MODEL_SUB_GET

esp_ble_mesh_cfg_app_key_get_t app_key_get

For ESP_BLE_MESH_MODEL_OP_APP_KEY_GET.

esp_ble_mesh_cfg_node_identity_get_t node_identity_get

For ESP_BLE_MESH_MODEL_OP_NODE_IDENTITY_GET.

esp_ble_mesh_cfg_sig_model_app_get_t sig_model_app_get

For ESP_BLE_MESH_MODEL_OP_SIG_MODEL_APP_GET

esp_ble_mesh_cfg_vnd_model_app_get_t vnd_model_app_get

For ESP_BLE_MESH_MODEL_OP_VENDOR_MODEL_APP_GET

esp_ble_mesh_cfg_kr_phase_get_t kr_phase_get

For ESP_BLE_MESH_MODEL_OP_KEY_REFRESH_PHASE_GET

esp_ble_mesh_cfg_lpn_polltimeout_get_t lpn_pollto_get

For ESP_BLE_MESH_MODEL_OP_LPN_POLLTIMEOUT_GET

union esp_ble_mesh_cfg_client_set_state_t
#include <esp_ble_mesh_config_model_api.h> For ESP_BLE_MESH_MODEL_OP_BEACON_SET
ESP_BLE_MESH_MODEL_OP_DEFAULT_TTL_SETESP_BLE_MESH_MODEL_OP_GATT_PROXY_SET
ESP_BLE_MESH_MODEL_OP_RELAY_SET ESP_BLE_MESH_MODEL_OP_MODEL_PUB_SET
ESP_BLE_MESH_MODEL_OP_MODEL_SUB_ADDESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_ADD
ESP_BLE_MESH_MODEL_OP_MODEL_SUB_DELETEESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_DELETE
ESP_BLE_MESH_MODEL_OP_MODEL_SUB_OVERWRITEESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_OVERWRITE
ESP_BLE_MESH_MODEL_OP_NET_KEY_ADD ESP_BLE_MESH_MODEL_OP_APP_KEY_ADD
ESP_BLE_MESH_MODEL_OP_MODEL_APP_BIND ESP_BLE_MESH_MODEL_OP_NODE_RESET
ESP_BLE_MESH_MODEL_OP_FRIEND_SETESP_BLE_MESH_MODEL_OP_HEARTBEAT_PUB_SET
ESP_BLE_MESH_MODEL_OP_HEARTBEAT_SUB_SET the set_state parameter in the
esp_ble_mesh_config_client_set_state function should not be set to NULL.

Public Members

esp_ble_mesh_cfg_beacon_set_t beacon_set

For ESP_BLE_MESH_MODEL_OP_BEACON_SET

Espressif Systems 438
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_cfg_default_ttl_set_t default_ttl_set

For ESP_BLE_MESH_MODEL_OP_DEFAULT_TTL_SET

esp_ble_mesh_cfg_friend_set_t friend_set

For ESP_BLE_MESH_MODEL_OP_FRIEND_SET

esp_ble_mesh_cfg_gatt_proxy_set_t gatt_proxy_set

For ESP_BLE_MESH_MODEL_OP_GATT_PROXY_SET

esp_ble_mesh_cfg_relay_set_t relay_set

For ESP_BLE_MESH_MODEL_OP_RELAY_SET

esp_ble_mesh_cfg_net_key_add_t net_key_add

For ESP_BLE_MESH_MODEL_OP_NET_KEY_ADD

esp_ble_mesh_cfg_app_key_add_t app_key_add

For ESP_BLE_MESH_MODEL_OP_APP_KEY_ADD

esp_ble_mesh_cfg_model_app_bind_t model_app_bind

For ESP_BLE_MESH_MODEL_OP_MODEL_APP_BIND

esp_ble_mesh_cfg_model_pub_set_t model_pub_set

For ESP_BLE_MESH_MODEL_OP_MODEL_PUB_SET

esp_ble_mesh_cfg_model_sub_add_t model_sub_add

For ESP_BLE_MESH_MODEL_OP_MODEL_SUB_ADD

esp_ble_mesh_cfg_model_sub_delete_t model_sub_delete

For ESP_BLE_MESH_MODEL_OP_MODEL_SUB_DELETE

esp_ble_mesh_cfg_model_sub_overwrite_t model_sub_overwrite

For ESP_BLE_MESH_MODEL_OP_MODEL_SUB_OVERWRITE

esp_ble_mesh_cfg_model_sub_va_add_t model_sub_va_add

For ESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_ADD

esp_ble_mesh_cfg_model_sub_va_delete_t model_sub_va_delete

For ESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_DELETE

esp_ble_mesh_cfg_model_sub_va_overwrite_t model_sub_va_overwrite

For ESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_OVERWRITE

esp_ble_mesh_cfg_heartbeat_pub_set_t heartbeat_pub_set

For ESP_BLE_MESH_MODEL_OP_HEARTBEAT_PUB_SET

esp_ble_mesh_cfg_heartbeat_sub_set_t heartbeat_sub_set

For ESP_BLE_MESH_MODEL_OP_HEARTBEAT_SUB_SET

Espressif Systems 439
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_cfg_model_pub_va_set_t model_pub_va_set

For ESP_BLE_MESH_MODEL_OP_MODEL_PUB_VIRTUAL_ADDR_SET

esp_ble_mesh_cfg_model_sub_delete_all_t model_sub_delete_all

For ESP_BLE_MESH_MODEL_OP_MODEL_SUB_DELETE_ALL

esp_ble_mesh_cfg_net_key_update_t net_key_update

For ESP_BLE_MESH_MODEL_OP_NET_KEY_UPDATE

esp_ble_mesh_cfg_net_key_delete_t net_key_delete

For ESP_BLE_MESH_MODEL_OP_NET_KEY_DELETE

esp_ble_mesh_cfg_app_key_update_t app_key_update

For ESP_BLE_MESH_MODEL_OP_APP_KEY_UPDATE

esp_ble_mesh_cfg_app_key_delete_t app_key_delete

For ESP_BLE_MESH_MODEL_OP_APP_KEY_DELETE

esp_ble_mesh_cfg_node_identity_set_t node_identity_set

For ESP_BLE_MESH_MODEL_OP_NODE_IDENTITY_SET

esp_ble_mesh_cfg_model_app_unbind_t model_app_unbind

For ESP_BLE_MESH_MODEL_OP_MODEL_APP_UNBIND

esp_ble_mesh_cfg_kr_phase_set_t kr_phase_set

For ESP_BLE_MESH_MODEL_OP_KEY_REFRESH_PHASE_SET

esp_ble_mesh_cfg_net_transmit_set_t net_transmit_set

For ESP_BLE_MESH_MODEL_OP_NETWORK_TRANSMIT_SET

union esp_ble_mesh_cfg_client_common_cb_param_t
#include <esp_ble_mesh_config_model_api.h> Configuration Client Model received message union.

Public Members

esp_ble_mesh_cfg_beacon_status_cb_t beacon_status

The beacon status value

esp_ble_mesh_cfg_comp_data_status_cb_t comp_data_status

The composition data status value

esp_ble_mesh_cfg_default_ttl_status_cb_t default_ttl_status

The default_ttl status value

esp_ble_mesh_cfg_gatt_proxy_status_cb_t gatt_proxy_status

The gatt_proxy status value

Espressif Systems 440
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_cfg_relay_status_cb_t relay_status

The relay status value

esp_ble_mesh_cfg_model_pub_status_cb_t model_pub_status

The model publication status value

esp_ble_mesh_cfg_model_sub_status_cb_t model_sub_status

The model subscription status value

esp_ble_mesh_cfg_net_key_status_cb_t netkey_status

The netkey status value

esp_ble_mesh_cfg_app_key_status_cb_t appkey_status

The appkey status value

esp_ble_mesh_cfg_mod_app_status_cb_t model_app_status

The model app status value

esp_ble_mesh_cfg_friend_status_cb_t friend_status

The friend status value

esp_ble_mesh_cfg_hb_pub_status_cb_t heartbeat_pub_status

The heartbeat publication status value

esp_ble_mesh_cfg_hb_sub_status_cb_t heartbeat_sub_status

The heartbeat subscription status value

esp_ble_mesh_cfg_net_trans_status_cb_t net_transmit_status

The network transmit status value

esp_ble_mesh_cfg_model_sub_list_cb_t model_sub_list

The model subscription list value

esp_ble_mesh_cfg_net_key_list_cb_t netkey_list

The network key index list value

esp_ble_mesh_cfg_app_key_list_cb_t appkey_list

The application key index list value

esp_ble_mesh_cfg_node_id_status_cb_t node_identity_status

The node identity status value

esp_ble_mesh_cfg_model_app_list_cb_t model_app_list

The model application key index list value

esp_ble_mesh_cfg_kr_phase_status_cb_t kr_phase_status

The key refresh phase status value

Espressif Systems 441
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_cfg_lpn_pollto_status_cb_t lpn_timeout_status

The low power node poll timeout status value

union esp_ble_mesh_cfg_server_state_change_t
#include <esp_ble_mesh_config_model_api.h> Configuration Server model state change value union.

Public Members

esp_ble_mesh_state_change_cfg_mod_pub_set_t mod_pub_set

The recv_op in ctx can be used to decide which state is changed. Config Model Publication Set

esp_ble_mesh_state_change_cfg_model_sub_add_t mod_sub_add

Config Model Subscription Add

esp_ble_mesh_state_change_cfg_model_sub_delete_t mod_sub_delete

Config Model Subscription Delete

esp_ble_mesh_state_change_cfg_netkey_add_t netkey_add

Config NetKey Add

esp_ble_mesh_state_change_cfg_netkey_update_t netkey_update

Config NetKey Update

esp_ble_mesh_state_change_cfg_netkey_delete_t netkey_delete

Config NetKey Delete

esp_ble_mesh_state_change_cfg_appkey_add_t appkey_add

Config AppKey Add

esp_ble_mesh_state_change_cfg_appkey_update_t appkey_update

Config AppKey Update

esp_ble_mesh_state_change_cfg_appkey_delete_t appkey_delete

Config AppKey Delete

esp_ble_mesh_state_change_cfg_model_app_bind_t mod_app_bind

Config Model App Bind

esp_ble_mesh_state_change_cfg_model_app_unbind_t mod_app_unbind

Config Model App Unbind

esp_ble_mesh_state_change_cfg_kr_phase_set_t kr_phase_set

Config Key Refresh Phase Set

union esp_ble_mesh_cfg_server_cb_value_t
#include <esp_ble_mesh_config_model_api.h> Configuration Server model callback value union.

Espressif Systems 442
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_mesh_cfg_server_state_change_t state_change

ESP_BLE_MESH_CFG_SERVER_STATE_CHANGE_EVT

Structures

struct esp_ble_mesh_cfg_srv
Configuration Server Model context

Public Members

esp_ble_mesh_model_t *model
Pointer to Configuration Server Model

uint8_t net_transmit
Network Transmit state

uint8_t relay
Relay Mode state

uint8_t relay_retransmit
Relay Retransmit state

uint8_t beacon
Secure Network Beacon state

uint8_t gatt_proxy
GATT Proxy state

uint8_t friend_state
Friend state

uint8_t default_ttl
Default TTL

struct k_delayed_work timer
Heartbeat Publication timer

uint16_t dst
Destination address for Heartbeat messages

uint16_t count
Number of Heartbeat messages to be sent
Number of Heartbeat messages received

uint8_t period
Period for sending Heartbeat messages

Espressif Systems 443
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t ttl
TTL to be used when sending Heartbeat messages

uint16_t feature
Bit field indicating features that trigger Heartbeat messages when changed

uint16_t net_idx
NetKey Index used by Heartbeat Publication

struct esp_ble_mesh_cfg_srv::[anonymous] heartbeat_pub
Heartbeat Publication

int64_t expiry
Timestamp when Heartbeat subscription period is expired

uint16_t src
Source address for Heartbeat messages

uint8_t min_hops
Minimum hops when receiving Heartbeat messages

uint8_t max_hops
Maximum hops when receiving Heartbeat messages

esp_ble_mesh_cb_t heartbeat_recv_cb

Optional heartbeat subscription tracking function

struct esp_ble_mesh_cfg_srv::[anonymous] heartbeat_sub
Heartbeat Subscription

struct esp_ble_mesh_cfg_composition_data_get_t
Parameters of Config Composition Data Get.

Public Members

uint8_t page
Page number of the Composition Data.

struct esp_ble_mesh_cfg_model_pub_get_t
Parameters of Config Model Publication Get.

Public Members

uint16_t element_addr
The element address

uint16_t model_id
The model id

Espressif Systems 444
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_sig_model_sub_get_t
Parameters of Config SIG Model Subscription Get.

Public Members

uint16_t element_addr
The element address

uint16_t model_id
The model id

struct esp_ble_mesh_cfg_vnd_model_sub_get_t
Parameters of Config Vendor Model Subscription Get.

Public Members

uint16_t element_addr
The element address

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_app_key_get_t
Parameters of Config AppKey Get.

Public Members

uint16_t net_idx
The network key index

struct esp_ble_mesh_cfg_node_identity_get_t
Parameters of Config Node Identity Get.

Public Members

uint16_t net_idx
The network key index

struct esp_ble_mesh_cfg_sig_model_app_get_t
Parameters of Config SIG Model App Get.

Espressif Systems 445
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t element_addr
The element address

uint16_t model_id
The model id

struct esp_ble_mesh_cfg_vnd_model_app_get_t
Parameters of Config Vendor Model App Get.

Public Members

uint16_t element_addr
The element address

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_kr_phase_get_t
Parameters of Config Key Refresh Phase Get.

Public Members

uint16_t net_idx
The network key index

struct esp_ble_mesh_cfg_lpn_polltimeout_get_t
Parameters of Config Low Power Node PollTimeout Get.

Public Members

uint16_t lpn_addr
The unicast address of the Low Power node

struct esp_ble_mesh_cfg_beacon_set_t
Parameters of Config Beacon Set.

Public Members

uint8_t beacon
New Secure Network Beacon state

Espressif Systems 446
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_cfg_default_ttl_set_t
Parameters of Config Default TTL Set.

Public Members

uint8_t ttl
The default TTL state value

struct esp_ble_mesh_cfg_friend_set_t
Parameters of Config Friend Set.

Public Members

uint8_t friend_state
The friend state value

struct esp_ble_mesh_cfg_gatt_proxy_set_t
Parameters of Config GATT Proxy Set.

Public Members

uint8_t gatt_proxy
The GATT Proxy state value

struct esp_ble_mesh_cfg_relay_set_t
Parameters of Config Relay Set.

Public Members

uint8_t relay
The relay value

uint8_t relay_retransmit
The relay retransmit value

struct esp_ble_mesh_cfg_net_key_add_t
Parameters of Config NetKey Add.

Public Members

uint16_t net_idx
The network key index

uint8_t net_key[16]
The network key value

Espressif Systems 447
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_cfg_app_key_add_t
Parameters of Config AppKey Add.

Public Members

uint16_t net_idx
The network key index

uint16_t app_idx
The app key index

uint8_t app_key[16]
The app key value

struct esp_ble_mesh_cfg_model_app_bind_t
Parameters of Config Model App Bind.

Public Members

uint16_t element_addr
The element address

uint16_t model_app_idx
Index of the app key to bind with the model

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_model_pub_set_t
Parameters of Config Model Publication Set.

Public Members

uint16_t element_addr
The element address

uint16_t publish_addr
Value of the publish address

uint16_t publish_app_idx
Index of the application key

Espressif Systems 448
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool cred_flag
Value of the Friendship Credential Flag

uint8_t publish_ttl
Default TTL value for the publishing messages

uint8_t publish_period
Period for periodic status publishing

uint8_t publish_retransmit
Number of retransmissions and number of 50-millisecond steps between retransmissions

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_model_sub_add_t
Parameters of Config Model Subscription Add.

Public Members

uint16_t element_addr
The element address

uint16_t sub_addr
The address to be added to the Subscription List

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_model_sub_delete_t
Parameters of Config Model Subscription Delete.

Public Members

uint16_t element_addr
The element address

uint16_t sub_addr
The address to be removed from the Subscription List

Espressif Systems 449
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_model_sub_overwrite_t
Parameters of Config Model Subscription Overwrite.

Public Members

uint16_t element_addr
The element address

uint16_t sub_addr
The address to be added to the Subscription List

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_model_sub_va_add_t
Parameters of Config Model Subscription Virtual Address Add.

Public Members

uint16_t element_addr
The element address

uint8_t label_uuid[16]
The Label UUID of the virtual address to be added to the Subscription List

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_model_sub_va_delete_t
Parameters of Config Model Subscription Virtual Address Delete.

Public Members

Espressif Systems 450
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t element_addr
The element address

uint8_t label_uuid[16]
The Label UUID of the virtual address to be removed from the Subscription List

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_model_sub_va_overwrite_t
Parameters of Config Model Subscription Virtual Address Overwrite.

Public Members

uint16_t element_addr
The element address

uint8_t label_uuid[16]
The Label UUID of the virtual address to be added to the Subscription List

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_model_pub_va_set_t
Parameters of Config Model Publication Virtual Address Set.

Public Members

uint16_t element_addr
The element address

uint8_t label_uuid[16]
Value of the Label UUID publish address

uint16_t publish_app_idx
Index of the application key

bool cred_flag
Value of the Friendship Credential Flag

Espressif Systems 451
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t publish_ttl
Default TTL value for the publishing messages

uint8_t publish_period
Period for periodic status publishing

uint8_t publish_retransmit
Number of retransmissions and number of 50-millisecond steps between retransmissions

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_model_sub_delete_all_t
Parameters of Config Model Subscription Delete All.

Public Members

uint16_t element_addr
The element address

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_net_key_update_t
Parameters of Config NetKey Update.

Public Members

uint16_t net_idx
The network key index

uint8_t net_key[16]
The network key value

struct esp_ble_mesh_cfg_net_key_delete_t
Parameters of Config NetKey Delete.

Public Members

Espressif Systems 452
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t net_idx
The network key index

struct esp_ble_mesh_cfg_app_key_update_t
Parameters of Config AppKey Update.

Public Members

uint16_t net_idx
The network key index

uint16_t app_idx
The app key index

uint8_t app_key[16]
The app key value

struct esp_ble_mesh_cfg_app_key_delete_t
Parameters of Config AppKey Delete.

Public Members

uint16_t net_idx
The network key index

uint16_t app_idx
The app key index

struct esp_ble_mesh_cfg_node_identity_set_t
Parameters of Config Node Identity Set.

Public Members

uint16_t net_idx
The network key index

uint8_t identity
New Node Identity state

struct esp_ble_mesh_cfg_model_app_unbind_t
Parameters of Config Model App Unbind.

Public Members

uint16_t element_addr
The element address

Espressif Systems 453
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t model_app_idx
Index of the app key to bind with the model

uint16_t model_id
The model id

uint16_t company_id
The company id, if not a vendor model, shall set to 0xFFFF

struct esp_ble_mesh_cfg_kr_phase_set_t
Parameters of Config Key Refresh Phase Set.

Public Members

uint16_t net_idx
The network key index

uint8_t transition
New Key Refresh Phase Transition

struct esp_ble_mesh_cfg_net_transmit_set_t
Parameters of Config Network Transmit Set.

Public Members

uint8_t net_transmit
Network Transmit State

struct esp_ble_mesh_cfg_heartbeat_pub_set_t
Parameters of Config Model Heartbeat Publication Set.

Public Members

uint16_t dst
Destination address for Heartbeat messages

uint8_t count
Number of Heartbeat messages to be sent

uint8_t period
Period for sending Heartbeat messages

uint8_t ttl
TTL to be used when sending Heartbeat messages

Espressif Systems 454
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t feature
Bit field indicating features that trigger Heartbeat messages when changed

uint16_t net_idx
NetKey Index

struct esp_ble_mesh_cfg_heartbeat_sub_set_t
Parameters of Config Model Heartbeat Subscription Set.

Public Members

uint16_t src
Source address for Heartbeat messages

uint16_t dst
Destination address for Heartbeat messages

uint8_t period
Period for receiving Heartbeat messages

struct esp_ble_mesh_cfg_beacon_status_cb_t
Parameter of Config Beacon Status

Public Members

uint8_t beacon
Secure Network Beacon state value

struct esp_ble_mesh_cfg_comp_data_status_cb_t
Parameters of Config Composition Data Status

Public Members

uint8_t page
Page number of the Composition Data

struct net_buf_simple *composition_data
Pointer to Composition Data for the identified page

struct esp_ble_mesh_cfg_default_ttl_status_cb_t
Parameter of Config Default TTL Status

Public Members

uint8_t default_ttl
Default TTL state value

Espressif Systems 455
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_cfg_gatt_proxy_status_cb_t
Parameter of Config GATT Proxy Status

Public Members

uint8_t gatt_proxy
GATT Proxy state value

struct esp_ble_mesh_cfg_relay_status_cb_t
Parameters of Config Relay Status

Public Members

uint8_t relay
Relay state value

uint8_t retransmit
Relay retransmit value(number of retransmissions and number of 10-millisecond steps between retrans-
missions)

struct esp_ble_mesh_cfg_model_pub_status_cb_t
Parameters of Config Model Publication Status

Public Members

uint8_t status
Status Code for the request message

uint16_t element_addr
Address of the element

uint16_t publish_addr
Value of the publish address

uint16_t app_idx
Index of the application key

bool cred_flag
Value of the Friendship Credential Flag

uint8_t ttl
Default TTL value for the outgoing messages

uint8_t period
Period for periodic status publishing

Espressif Systems 456
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t transmit
Number of retransmissions and number of 50-millisecond steps between retransmissions

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct esp_ble_mesh_cfg_model_sub_status_cb_t
Parameters of Config Model Subscription Status

Public Members

uint8_t status
Status Code for the request message

uint16_t element_addr
Address of the element

uint16_t sub_addr
Value of the address

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct esp_ble_mesh_cfg_net_key_status_cb_t
Parameters of Config NetKey Status

Public Members

uint8_t status
Status Code for the request message

uint16_t net_idx
Index of the NetKey

struct esp_ble_mesh_cfg_app_key_status_cb_t
Parameters of Config AppKey Status

Public Members

Espressif Systems 457
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t status
Status Code for the request message

uint16_t net_idx
Index of the NetKey

uint16_t app_idx
Index of the application key

struct esp_ble_mesh_cfg_mod_app_status_cb_t
Parameters of Config Model App Status

Public Members

uint8_t status
Status Code for the request message

uint16_t element_addr
Address of the element

uint16_t app_idx
Index of the application key

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct esp_ble_mesh_cfg_friend_status_cb_t
Parameter of Config Friend Status

Public Members

uint8_t friend_state
Friend state value

struct esp_ble_mesh_cfg_hb_pub_status_cb_t
Parameters of Config Heartbeat Publication Status

Public Members

uint8_t status
Status Code for the request message

Espressif Systems 458
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t dst
Destination address for Heartbeat messages

uint8_t count
Number of Heartbeat messages remaining to be sent

uint8_t period
Period for sending Heartbeat messages

uint8_t ttl
TTL to be used when sending Heartbeat messages

uint16_t features
Features that trigger Heartbeat messages when changed

uint16_t net_idx
Index of the NetKey

struct esp_ble_mesh_cfg_hb_sub_status_cb_t
Parameters of Config Heartbeat Subscription Status

Public Members

uint8_t status
Status Code for the request message

uint16_t src
Source address for Heartbeat messages

uint16_t dst
Destination address for Heartbeat messages

uint8_t period
Remaining Period for processing Heartbeat messages

uint8_t count
Number of Heartbeat messages received

uint8_t min_hops
Minimum hops when receiving Heartbeat messages

uint8_t max_hops
Maximum hops when receiving Heartbeat messages

struct esp_ble_mesh_cfg_net_trans_status_cb_t
Parameters of Config Network Transmit Status

Espressif Systems 459
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t net_trans_count
Number of transmissions for each Network PDU originating from the node

uint8_t net_trans_step
Maximum hops when receiving Heartbeat messages

struct esp_ble_mesh_cfg_model_sub_list_cb_t
Parameters of Config SIG/Vendor Subscription List

Public Members

uint8_t status
Status Code for the request message

uint16_t element_addr
Address of the element

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct net_buf_simple *sub_addr
A block of all addresses from the Subscription List

struct esp_ble_mesh_cfg_net_key_list_cb_t
Parameter of Config NetKey List

Public Members

struct net_buf_simple *net_idx
A list of NetKey Indexes known to the node

struct esp_ble_mesh_cfg_app_key_list_cb_t
Parameters of Config AppKey List

Public Members

uint8_t status
Status Code for the request message

uint16_t net_idx
NetKey Index of the NetKey that the AppKeys are bound to

Espressif Systems 460
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct net_buf_simple *app_idx
A list of AppKey indexes that are bound to the NetKey identified by NetKeyIndex

struct esp_ble_mesh_cfg_node_id_status_cb_t
Parameters of Config Node Identity Status

Public Members

uint8_t status
Status Code for the request message

uint16_t net_idx
Index of the NetKey

uint8_t identity
Node Identity state

struct esp_ble_mesh_cfg_model_app_list_cb_t
Parameters of Config SIG/Vendor Model App List

Public Members

uint8_t status
Status Code for the request message

uint16_t element_addr
Address of the element

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct net_buf_simple *app_idx
All AppKey indexes bound to the Model

struct esp_ble_mesh_cfg_kr_phase_status_cb_t
Parameters of Config Key Refresh Phase Status

Public Members

uint8_t status
Status Code for the request message

Espressif Systems 461
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t net_idx
Index of the NetKey

uint8_t phase
Key Refresh Phase state

struct esp_ble_mesh_cfg_lpn_pollto_status_cb_t
Parameters of Config Low Power Node PollTimeout Status

Public Members

uint16_t lpn_addr
The unicast address of the Low Power node

int32_t poll_timeout
The current value of the PollTimeout timer of the Low Power node

struct esp_ble_mesh_cfg_client_cb_param_t
Configuration Client Model callback parameters

Public Members

int error_code
Appropriate error code

esp_ble_mesh_client_common_param_t *params
The client common parameters

esp_ble_mesh_cfg_client_common_cb_param_t status_cb

The config status message callback values

struct esp_ble_mesh_state_change_cfg_mod_pub_set_t
Configuration Server model related context.

Public Members

uint16_t element_addr
Element Address

uint16_t pub_addr
Publish Address

uint16_t app_idx
AppKey Index

Espressif Systems 462
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool cred_flag
Friendship Credential Flag

uint8_t pub_ttl
Publish TTL

uint8_t pub_period
Publish Period

uint8_t pub_retransmit
Publish Retransmit

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct esp_ble_mesh_state_change_cfg_model_sub_add_t
Parameters of Config Model Subscription Add

Public Members

uint16_t element_addr
Element Address

uint16_t sub_addr
Subscription Address

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct esp_ble_mesh_state_change_cfg_model_sub_delete_t
Parameters of Config Model Subscription Delete

Public Members

uint16_t element_addr
Element Address

uint16_t sub_addr
Subscription Address

Espressif Systems 463
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct esp_ble_mesh_state_change_cfg_netkey_add_t
Parameters of Config NetKey Add

Public Members

uint16_t net_idx
NetKey Index

uint8_t net_key[16]
NetKey

struct esp_ble_mesh_state_change_cfg_netkey_update_t
Parameters of Config NetKey Update

Public Members

uint16_t net_idx
NetKey Index

uint8_t net_key[16]
NetKey

struct esp_ble_mesh_state_change_cfg_netkey_delete_t
Parameter of Config NetKey Delete

Public Members

uint16_t net_idx
NetKey Index

struct esp_ble_mesh_state_change_cfg_appkey_add_t
Parameters of Config AppKey Add

Public Members

uint16_t net_idx
NetKey Index

uint16_t app_idx
AppKey Index

Espressif Systems 464
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t app_key[16]
AppKey

struct esp_ble_mesh_state_change_cfg_appkey_update_t
Parameters of Config AppKey Update

Public Members

uint16_t net_idx
NetKey Index

uint16_t app_idx
AppKey Index

uint8_t app_key[16]
AppKey

struct esp_ble_mesh_state_change_cfg_appkey_delete_t
Parameters of Config AppKey Delete

Public Members

uint16_t net_idx
NetKey Index

uint16_t app_idx
AppKey Index

struct esp_ble_mesh_state_change_cfg_model_app_bind_t
Parameters of Config Model App Bind

Public Members

uint16_t element_addr
Element Address

uint16_t app_idx
AppKey Index

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct esp_ble_mesh_state_change_cfg_model_app_unbind_t
Parameters of Config Model App Unbind

Espressif Systems 465
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t element_addr
Element Address

uint16_t app_idx
AppKey Index

uint16_t company_id
Company ID

uint16_t model_id
Model ID

struct esp_ble_mesh_state_change_cfg_kr_phase_set_t
Parameters of Config Key Refresh Phase Set

Public Members

uint16_t net_idx
NetKey Index

uint8_t kr_phase
New Key Refresh Phase Transition

struct esp_ble_mesh_cfg_server_cb_param_t
Configuration Server model callback parameters

Public Members

esp_ble_mesh_model_t *model
Pointer to the server model structure

esp_ble_mesh_msg_ctx_t ctx

Context of the received message

esp_ble_mesh_cfg_server_cb_value_t value

Value of the received configuration messages

Macros
ESP_BLE_MESH_MODEL_CFG_SRV(srv_data)

Define a new Config Server Model.

Note: The Config Server Model can only be included by a Primary Element.

Parameters
• srv_data -- Pointer to a unique Config Server Model user_data.

Espressif Systems 466
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns New Config Server Model instance.
ESP_BLE_MESH_MODEL_CFG_CLI(cli_data)

Define a new Config Client Model.

Note: The Config Client Model can only be included by a Primary Element.

Parameters
• cli_data -- Pointer to a unique struct esp_ble_mesh_client_t.

Returns New Config Client Model instance.

Type Definitions

typedef struct esp_ble_mesh_cfg_srv esp_ble_mesh_cfg_srv_t

Configuration Server Model context

typedef void (*esp_ble_mesh_cfg_client_cb_t)(esp_ble_mesh_cfg_client_cb_event_t event,
esp_ble_mesh_cfg_client_cb_param_t *param)

Bluetooth Mesh Config Client and Server Model functions.
Configuration Client Model callback function type

Param event Event type
Param param Pointer to callback parameter

typedef void (*esp_ble_mesh_cfg_server_cb_t)(esp_ble_mesh_cfg_server_cb_event_t event,
esp_ble_mesh_cfg_server_cb_param_t *param)

Configuration Server Model callback function type.
Param event Event type
Param param Pointer to callback parameter

Enumerations

enum esp_ble_mesh_cfg_client_cb_event_t

This enum value is the event of Configuration Client Model
Values:

enumerator ESP_BLE_MESH_CFG_CLIENT_GET_STATE_EVT

enumerator ESP_BLE_MESH_CFG_CLIENT_SET_STATE_EVT

enumerator ESP_BLE_MESH_CFG_CLIENT_PUBLISH_EVT

enumerator ESP_BLE_MESH_CFG_CLIENT_TIMEOUT_EVT

enumerator ESP_BLE_MESH_CFG_CLIENT_EVT_MAX

enum esp_ble_mesh_cfg_server_cb_event_t

This enum value is the event of Configuration Server model
Values:

Espressif Systems 467
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_CFG_SERVER_STATE_CHANGE_EVT

enumerator ESP_BLE_MESH_CFG_SERVER_EVT_MAX

Health Client/Server Models

Header File
• components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_health_model_api.h

Functions
esp_err_t esp_ble_mesh_register_health_client_callback(esp_ble_mesh_health_client_cb_t

callback)
Register BLE Mesh Health Model callback, the callback will report Health Client & Server Model events.

Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_register_health_server_callback(esp_ble_mesh_health_server_cb_t
callback)

Register BLE Mesh Health Server Model callback.
Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_health_client_get_state(esp_ble_mesh_client_common_param_t
*params, esp_ble_mesh_health_client_get_state_t
*get_state)

This function is called to get the Health Server states using the Health Client Model get messages.

Note: If you want to find the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_opcode_health_client_get_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• get_state -- [in] Pointer to a union, each kind of opcode corresponds to one structure
inside. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_health_client_set_state(esp_ble_mesh_client_common_param_t
*params, esp_ble_mesh_health_client_set_state_t
*set_state)

This function is called to set the Health Server states using the Health Client Model set messages.

Note: If you want to find the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_opcode_health_client_set_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• set_state -- [in] Pointer to a union, each kind of opcode corresponds to one structure
inside. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

Espressif Systems 468
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_health_model_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_mesh_health_server_fault_update(esp_ble_mesh_elem_t *element)
This function is called by the Health Server Model to update the context of its Health Current status.

Parameters element -- [in] The element to which the Health Server Model belongs.
Returns ESP_OK on success or error code otherwise.

Unions

union esp_ble_mesh_health_client_get_state_t
#include <esp_ble_mesh_health_model_api.h> For ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_GET
ESP_BLE_MESH_MODEL_OP_ATTENTION_GETESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_GET
the get_state parameter in the esp_ble_mesh_health_client_get_state function should not be set to NULL.

Public Members

esp_ble_mesh_health_fault_get_t fault_get

For ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_GET.

union esp_ble_mesh_health_client_set_state_t
#include <esp_ble_mesh_health_model_api.h> For ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_CLEAR
ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_CLEAR_UNACKESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_TEST
ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_TEST_UNACKESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_SET
ESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_SET_UNACKESP_BLE_MESH_MODEL_OP_ATTENTION_SET
ESP_BLE_MESH_MODEL_OP_ATTENTION_SET_UNACK the set_state parameter in the
esp_ble_mesh_health_client_set_state function should not be set to NULL.

Public Members

esp_ble_mesh_health_attention_set_t attention_set

For ESP_BLE_MESH_MODEL_OP_ATTENTION_SET or ESP_BLE_MESH_MODEL_OP_ATTENTION_SET_UNACK.

esp_ble_mesh_health_period_set_t period_set

For ESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_SET or
ESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_SET_UNACK.

esp_ble_mesh_health_fault_test_t fault_test

For ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_TEST or
ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_TEST_UNACK.

esp_ble_mesh_health_fault_clear_t fault_clear

For ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_CLEAR or
ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_CLEAR_UNACK.

union esp_ble_mesh_health_client_common_cb_param_t
#include <esp_ble_mesh_health_model_api.h> Health Client Model received message union.

Public Members

esp_ble_mesh_health_current_status_cb_t current_status

The health current status value

Espressif Systems 469
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_health_fault_status_cb_t fault_status

The health fault status value

esp_ble_mesh_health_period_status_cb_t period_status

The health period status value

esp_ble_mesh_health_attention_status_cb_t attention_status

The health attention status value

union esp_ble_mesh_health_server_cb_param_t
#include <esp_ble_mesh_health_model_api.h> Health Server Model callback parameters union.

Public Members

esp_ble_mesh_health_fault_update_comp_cb_t fault_update_comp

ESP_BLE_MESH_HEALTH_SERVER_FAULT_UPDATE_COMP_EVT

esp_ble_mesh_health_fault_clear_cb_t fault_clear

ESP_BLE_MESH_HEALTH_SERVER_FAULT_CLEAR_EVT

esp_ble_mesh_health_fault_test_cb_t fault_test

ESP_BLE_MESH_HEALTH_SERVER_FAULT_TEST_EVT

esp_ble_mesh_health_attention_on_cb_t attention_on

ESP_BLE_MESH_HEALTH_SERVER_ATTENTION_ON_EVT

esp_ble_mesh_health_attention_off_cb_t attention_off

ESP_BLE_MESH_HEALTH_SERVER_ATTENTION_OFF_EVT

Structures

struct esp_ble_mesh_health_srv_cb_t
ESP BLE Mesh Health Server callback

Public Members

esp_ble_mesh_cb_t fault_clear

Clear health registered faults. Initialized by the stack.

esp_ble_mesh_cb_t fault_test

Run a specific health test. Initialized by the stack.

esp_ble_mesh_cb_t attention_on

Health attention on callback. Initialized by the stack.

esp_ble_mesh_cb_t attention_off

Health attention off callback. Initialized by the stack.

Espressif Systems 470
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_health_test_t
ESP BLE Mesh Health Server test Context

Public Members

uint8_t id_count
Number of Health self-test ID

const uint8_t *test_ids
Array of Health self-test IDs

uint16_t company_id
Company ID used to identify the Health Fault state

uint8_t prev_test_id
Current test ID of the health fault test

uint8_t current_faults[ESP_BLE_MESH_HEALTH_FAULT_ARRAY_SIZE]
Array of current faults

uint8_t registered_faults[ESP_BLE_MESH_HEALTH_FAULT_ARRAY_SIZE]
Array of registered faults

struct esp_ble_mesh_health_srv_t
ESP BLE Mesh Health Server Model Context

Public Members

esp_ble_mesh_model_t *model
Pointer to Health Server Model

esp_ble_mesh_health_srv_cb_t health_cb

Health callback struct

struct k_delayed_work attention_timer
Attention Timer state

bool attention_timer_start
Attention Timer start flag

esp_ble_mesh_health_test_t health_test

Health Server fault test

struct esp_ble_mesh_health_fault_get_t
Parameter of Health Fault Get

Espressif Systems 471
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t company_id
Bluetooth assigned 16-bit Company ID

struct esp_ble_mesh_health_attention_set_t
Parameter of Health Attention Set

Public Members

uint8_t attention
Value of the Attention Timer state

struct esp_ble_mesh_health_period_set_t
Parameter of Health Period Set

Public Members

uint8_t fast_period_divisor
Divider for the Publish Period

struct esp_ble_mesh_health_fault_test_t
Parameter of Health Fault Test

Public Members

uint16_t company_id
Bluetooth assigned 16-bit Company ID

uint8_t test_id
ID of a specific test to be performed

struct esp_ble_mesh_health_fault_clear_t
Parameter of Health Fault Clear

Public Members

uint16_t company_id
Bluetooth assigned 16-bit Company ID

struct esp_ble_mesh_health_current_status_cb_t
Parameters of Health Current Status

Espressif Systems 472
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t test_id
ID of a most recently performed test

uint16_t company_id
Bluetooth assigned 16-bit Company ID

struct net_buf_simple *fault_array
FaultArray field contains a sequence of 1-octet fault values

struct esp_ble_mesh_health_fault_status_cb_t
Parameters of Health Fault Status

Public Members

uint8_t test_id
ID of a most recently performed test

uint16_t company_id
Bluetooth assigned 16-bit Company ID

struct net_buf_simple *fault_array
FaultArray field contains a sequence of 1-octet fault values

struct esp_ble_mesh_health_period_status_cb_t
Parameter of Health Period Status

Public Members

uint8_t fast_period_divisor
Divider for the Publish Period

struct esp_ble_mesh_health_attention_status_cb_t
Parameter of Health Attention Status

Public Members

uint8_t attention
Value of the Attention Timer state

struct esp_ble_mesh_health_client_cb_param_t
Health Client Model callback parameters

Espressif Systems 473
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int error_code
Appropriate error code

esp_ble_mesh_client_common_param_t *params
The client common parameters.

esp_ble_mesh_health_client_common_cb_param_t status_cb

The health message status callback values

struct esp_ble_mesh_health_fault_update_comp_cb_t
Parameter of publishing Health Current Status completion event

Public Members

int error_code
The result of publishing Health Current Status

esp_ble_mesh_elem_t *element
Pointer to the element which contains the Health Server Model

struct esp_ble_mesh_health_fault_clear_cb_t
Parameters of Health Fault Clear event

Public Members

esp_ble_mesh_model_t *model
Pointer to the Health Server Model

uint16_t company_id
Bluetooth assigned 16-bit Company ID

struct esp_ble_mesh_health_fault_test_cb_t
Parameters of Health Fault Test event

Public Members

esp_ble_mesh_model_t *model
Pointer to the Health Server Model

uint8_t test_id
ID of a specific test to be performed

uint16_t company_id
Bluetooth assigned 16-bit Company ID

Espressif Systems 474
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_health_attention_on_cb_t
Parameter of Health Attention On event

Public Members

esp_ble_mesh_model_t *model
Pointer to the Health Server Model

uint8_t time
Duration of attention timer on (in seconds)

struct esp_ble_mesh_health_attention_off_cb_t
Parameter of Health Attention Off event

Public Members

esp_ble_mesh_model_t *model
Pointer to the Health Server Model

Macros
ESP_BLE_MESH_MODEL_HEALTH_SRV(srv, pub)

Define a new Health Server Model.

Note: The Health Server Model can only be included by a Primary Element.

Parameters
• srv -- Pointer to the unique struct esp_ble_mesh_health_srv_t.
• pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.

Returns New Health Server Model instance.
ESP_BLE_MESH_MODEL_HEALTH_CLI(cli_data)

Define a new Health Client Model.

Note: This API needs to be called for each element on which the application needs to have a Health Client
Model.

Parameters
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Health Client Model instance.

ESP_BLE_MESH_HEALTH_PUB_DEFINE(_name, _max, _role)
A helper to define a health publication context

Parameters
• _name -- Name given to the publication context variable.
• _max -- Maximum number of faults the element can have.
• _role -- Role of the device which contains the model.

Espressif Systems 475
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_HEALTH_STANDARD_TEST

SIG identifier of Health Fault Test. 0x01 ~ 0xFF: Vendor Specific Test.

ESP_BLE_MESH_NO_FAULT

Fault values of Health Fault Test. 0x33 ~ 0x7F: Reserved for Future Use. 0x80 ~ 0xFF: Vendor Specific
Warning/Error.

ESP_BLE_MESH_BATTERY_LOW_WARNING

ESP_BLE_MESH_BATTERY_LOW_ERROR

ESP_BLE_MESH_SUPPLY_VOLTAGE_TOO_LOW_WARNING

ESP_BLE_MESH_SUPPLY_VOLTAGE_TOO_LOW_ERROR

ESP_BLE_MESH_SUPPLY_VOLTAGE_TOO_HIGH_WARNING

ESP_BLE_MESH_SUPPLY_VOLTAGE_TOO_HIGH_ERROR

ESP_BLE_MESH_POWER_SUPPLY_INTERRUPTED_WARNING

ESP_BLE_MESH_POWER_SUPPLY_INTERRUPTED_ERROR

ESP_BLE_MESH_NO_LOAD_WARNING

ESP_BLE_MESH_NO_LOAD_ERROR

ESP_BLE_MESH_OVERLOAD_WARNING

ESP_BLE_MESH_OVERLOAD_ERROR

ESP_BLE_MESH_OVERHEAT_WARNING

ESP_BLE_MESH_OVERHEAT_ERROR

ESP_BLE_MESH_CONDENSATION_WARNING

ESP_BLE_MESH_CONDENSATION_ERROR

ESP_BLE_MESH_VIBRATION_WARNING

ESP_BLE_MESH_VIBRATION_ERROR

ESP_BLE_MESH_CONFIGURATION_WARNING

ESP_BLE_MESH_CONFIGURATION_ERROR

Espressif Systems 476
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_ELEMENT_NOT_CALIBRATED_WARNING

ESP_BLE_MESH_ELEMENT_NOT_CALIBRATED_ERROR

ESP_BLE_MESH_MEMORY_WARNING

ESP_BLE_MESH_MEMORY_ERROR

ESP_BLE_MESH_SELF_TEST_WARNING

ESP_BLE_MESH_SELF_TEST_ERROR

ESP_BLE_MESH_INPUT_TOO_LOW_WARNING

ESP_BLE_MESH_INPUT_TOO_LOW_ERROR

ESP_BLE_MESH_INPUT_TOO_HIGH_WARNING

ESP_BLE_MESH_INPUT_TOO_HIGH_ERROR

ESP_BLE_MESH_INPUT_NO_CHANGE_WARNING

ESP_BLE_MESH_INPUT_NO_CHANGE_ERROR

ESP_BLE_MESH_ACTUATOR_BLOCKED_WARNING

ESP_BLE_MESH_ACTUATOR_BLOCKED_ERROR

ESP_BLE_MESH_HOUSING_OPENED_WARNING

ESP_BLE_MESH_HOUSING_OPENED_ERROR

ESP_BLE_MESH_TAMPER_WARNING

ESP_BLE_MESH_TAMPER_ERROR

ESP_BLE_MESH_DEVICE_MOVED_WARNING

ESP_BLE_MESH_DEVICE_MOVED_ERROR

ESP_BLE_MESH_DEVICE_DROPPED_WARNING

ESP_BLE_MESH_DEVICE_DROPPED_ERROR

ESP_BLE_MESH_OVERFLOW_WARNING

Espressif Systems 477
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_OVERFLOW_ERROR

ESP_BLE_MESH_EMPTY_WARNING

ESP_BLE_MESH_EMPTY_ERROR

ESP_BLE_MESH_INTERNAL_BUS_WARNING

ESP_BLE_MESH_INTERNAL_BUS_ERROR

ESP_BLE_MESH_MECHANISM_JAMMED_WARNING

ESP_BLE_MESH_MECHANISM_JAMMED_ERROR

ESP_BLE_MESH_HEALTH_FAULT_ARRAY_SIZE

Type Definitions

typedef void (*esp_ble_mesh_health_client_cb_t)(esp_ble_mesh_health_client_cb_event_t event,
esp_ble_mesh_health_client_cb_param_t *param)

Bluetooth Mesh Health Client and Server Model function.
Health Client Model callback function type

Param event Event type
Param param Pointer to callback parameter

typedef void (*esp_ble_mesh_health_server_cb_t)(esp_ble_mesh_health_server_cb_event_t event,
esp_ble_mesh_health_server_cb_param_t *param)

Health Server Model callback function type.
Param event Event type
Param param Pointer to callback parameter

Enumerations

enum esp_ble_mesh_health_client_cb_event_t

This enum value is the event of Health Client Model
Values:

enumerator ESP_BLE_MESH_HEALTH_CLIENT_GET_STATE_EVT

enumerator ESP_BLE_MESH_HEALTH_CLIENT_SET_STATE_EVT

enumerator ESP_BLE_MESH_HEALTH_CLIENT_PUBLISH_EVT

enumerator ESP_BLE_MESH_HEALTH_CLIENT_TIMEOUT_EVT

enumerator ESP_BLE_MESH_HEALTH_CLIENT_EVT_MAX

Espressif Systems 478
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum esp_ble_mesh_health_server_cb_event_t

This enum value is the event of Health Server Model
Values:

enumerator ESP_BLE_MESH_HEALTH_SERVER_FAULT_UPDATE_COMP_EVT

enumerator ESP_BLE_MESH_HEALTH_SERVER_FAULT_CLEAR_EVT

enumerator ESP_BLE_MESH_HEALTH_SERVER_FAULT_TEST_EVT

enumerator ESP_BLE_MESH_HEALTH_SERVER_ATTENTION_ON_EVT

enumerator ESP_BLE_MESH_HEALTH_SERVER_ATTENTION_OFF_EVT

enumerator ESP_BLE_MESH_HEALTH_SERVER_EVT_MAX

Generic Client/Server Models

Header File
• components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_generic_model_api.h

Functions
esp_err_t esp_ble_mesh_register_generic_client_callback(esp_ble_mesh_generic_client_cb_t

callback)
Register BLE Mesh Generic Client Model callback.

Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_generic_client_get_state(esp_ble_mesh_client_common_param_t
*params,
esp_ble_mesh_generic_client_get_state_t
*get_state)

Get the value of Generic Server Model states using the Generic Client Model get messages.

Note: If you want to find the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_generic_message_opcode_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• get_state -- [in] Pointer to generic get message value. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_generic_client_set_state(esp_ble_mesh_client_common_param_t
*params,
esp_ble_mesh_generic_client_set_state_t
*set_state)

Set the value of Generic Server Model states using the Generic Client Model set messages.

Espressif Systems 479
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_generic_model_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: If you want to find the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_generic_message_opcode_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• set_state -- [in] Pointer to generic set message value. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_register_generic_server_callback(esp_ble_mesh_generic_server_cb_t
callback)

Register BLE Mesh Generic Server Model callback.
Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

Unions

union esp_ble_mesh_generic_client_get_state_t
#include <esp_ble_mesh_generic_model_api.h> Generic Client Model get message union.

Public Members

esp_ble_mesh_gen_user_property_get_t user_property_get

For ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_GET

esp_ble_mesh_gen_admin_property_get_t admin_property_get

For ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_GET

esp_ble_mesh_gen_manufacturer_property_get_t manufacturer_property_get

For ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_SET

esp_ble_mesh_gen_client_properties_get_t client_properties_get

For ESP_BLE_MESH_MODEL_OP_GEN_CLIENT_PROPERTIES_GET

union esp_ble_mesh_generic_client_set_state_t
#include <esp_ble_mesh_generic_model_api.h> Generic Client Model set message union.

Public Members

esp_ble_mesh_gen_onoff_set_t onoff_set

For ESP_BLE_MESH_MODEL_OP_GEN_ONOFF_SET&ESP_BLE_MESH_MODEL_OP_GEN_ONOFF_SET_UNACK

esp_ble_mesh_gen_level_set_t level_set

For ESP_BLE_MESH_MODEL_OP_GEN_LEVEL_SET&ESP_BLE_MESH_MODEL_OP_GEN_LEVEL_SET_UNACK

esp_ble_mesh_gen_delta_set_t delta_set

For ESP_BLE_MESH_MODEL_OP_GEN_DELTA_SET&ESP_BLE_MESH_MODEL_OP_GEN_DELTA_SET_UNACK

Espressif Systems 480
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_gen_move_set_t move_set

For ESP_BLE_MESH_MODEL_OP_GEN_MOVE_SET&ESP_BLE_MESH_MODEL_OP_GEN_MOVE_SET_UNACK

esp_ble_mesh_gen_def_trans_time_set_t def_trans_time_set

For ESP_BLE_MESH_MODEL_OP_GEN_DEF_TRANS_TIME_SET &
ESP_BLE_MESH_MODEL_OP_GEN_DEF_TRANS_TIME_SET_UNACK

esp_ble_mesh_gen_onpowerup_set_t power_set

For ESP_BLE_MESH_MODEL_OP_GEN_ONPOWERUP_SET &
ESP_BLE_MESH_MODEL_OP_GEN_ONPOWERUP_SET_UNACK

esp_ble_mesh_gen_power_level_set_t power_level_set

For ESP_BLE_MESH_MODEL_OP_GEN_POWER_LEVEL_SET &
ESP_BLE_MESH_MODEL_OP_GEN_POWER_LEVEL_SET_UNACK

esp_ble_mesh_gen_power_default_set_t power_default_set

For ESP_BLE_MESH_MODEL_OP_GEN_POWER_DEFAULT_SET &
ESP_BLE_MESH_MODEL_OP_GEN_POWER_DEFAULT_SET_UNACK

esp_ble_mesh_gen_power_range_set_t power_range_set

For ESP_BLE_MESH_MODEL_OP_GEN_POWER_RANGE_SET &
ESP_BLE_MESH_MODEL_OP_GEN_POWER_RANGE_SET_UNACK

esp_ble_mesh_gen_loc_global_set_t loc_global_set

For ESP_BLE_MESH_MODEL_OP_GEN_LOC_GLOBAL_SET &
ESP_BLE_MESH_MODEL_OP_GEN_LOC_GLOBAL_SET_UNACK

esp_ble_mesh_gen_loc_local_set_t loc_local_set

For ESP_BLE_MESH_MODEL_OP_GEN_LOC_LOCAL_SET &
ESP_BLE_MESH_MODEL_OP_GEN_LOC_LOCAL_SET_UNACK

esp_ble_mesh_gen_user_property_set_t user_property_set

For ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_SET &
ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_SET_UNACK

esp_ble_mesh_gen_admin_property_set_t admin_property_set

For ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_SET &
ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_SET_UNACK

esp_ble_mesh_gen_manufacturer_property_set_t manufacturer_property_set

For ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_SET &
ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_SET_UNACK

union esp_ble_mesh_gen_client_status_cb_t
#include <esp_ble_mesh_generic_model_api.h> Generic Client Model received message union.

Public Members

esp_ble_mesh_gen_onoff_status_cb_t onoff_status

For ESP_BLE_MESH_MODEL_OP_GEN_ONOFF_STATUS

Espressif Systems 481
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_gen_level_status_cb_t level_status

For ESP_BLE_MESH_MODEL_OP_GEN_LEVEL_STATUS

esp_ble_mesh_gen_def_trans_time_status_cb_t def_trans_time_status

For ESP_BLE_MESH_MODEL_OP_GEN_DEF_TRANS_TIME_STATUS

esp_ble_mesh_gen_onpowerup_status_cb_t onpowerup_status

For ESP_BLE_MESH_MODEL_OP_GEN_ONPOWERUP_STATUS

esp_ble_mesh_gen_power_level_status_cb_t power_level_status

For ESP_BLE_MESH_MODEL_OP_GEN_POWER_LEVEL_STATUS

esp_ble_mesh_gen_power_last_status_cb_t power_last_status

For ESP_BLE_MESH_MODEL_OP_GEN_POWER_LAST_STATUS

esp_ble_mesh_gen_power_default_status_cb_t power_default_status

For ESP_BLE_MESH_MODEL_OP_GEN_POWER_DEFAULT_STATUS

esp_ble_mesh_gen_power_range_status_cb_t power_range_status

For ESP_BLE_MESH_MODEL_OP_GEN_POWER_RANGE_STATUS

esp_ble_mesh_gen_battery_status_cb_t battery_status

For ESP_BLE_MESH_MODEL_OP_GEN_BATTERY_STATUS

esp_ble_mesh_gen_loc_global_status_cb_t location_global_status

For ESP_BLE_MESH_MODEL_OP_GEN_LOC_GLOBAL_STATUS

esp_ble_mesh_gen_loc_local_status_cb_t location_local_status

ESP_BLE_MESH_MODEL_OP_GEN_LOC_LOCAL_STATUS

esp_ble_mesh_gen_user_properties_status_cb_t user_properties_status

ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTIES_STATUS

esp_ble_mesh_gen_user_property_status_cb_t user_property_status

ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_STATUS

esp_ble_mesh_gen_admin_properties_status_cb_t admin_properties_status

ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTIES_STATUS

esp_ble_mesh_gen_admin_property_status_cb_t admin_property_status

ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_STATUS

esp_ble_mesh_gen_manufacturer_properties_status_cb_t manufacturer_properties_status

ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTIES_STATUS

esp_ble_mesh_gen_manufacturer_property_status_cb_t manufacturer_property_status

ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_STATUS

Espressif Systems 482
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_gen_client_properties_status_cb_t client_properties_status

ESP_BLE_MESH_MODEL_OP_GEN_CLIENT_PROPERTIES_STATUS

union esp_ble_mesh_generic_server_state_change_t
#include <esp_ble_mesh_generic_model_api.h> Generic Server Model state change value union.

Public Members

esp_ble_mesh_state_change_gen_onoff_set_t onoff_set

The recv_op in ctx can be used to decide which state is changed. Generic OnOff Set

esp_ble_mesh_state_change_gen_level_set_t level_set

Generic Level Set

esp_ble_mesh_state_change_gen_delta_set_t delta_set

Generic Delta Set

esp_ble_mesh_state_change_gen_move_set_t move_set

Generic Move Set

esp_ble_mesh_state_change_gen_def_trans_time_set_t def_trans_time_set

Generic Default Transition Time Set

esp_ble_mesh_state_change_gen_onpowerup_set_t onpowerup_set

Generic OnPowerUp Set

esp_ble_mesh_state_change_gen_power_level_set_t power_level_set

Generic Power Level Set

esp_ble_mesh_state_change_gen_power_default_set_t power_default_set

Generic Power Default Set

esp_ble_mesh_state_change_gen_power_range_set_t power_range_set

Generic Power Range Set

esp_ble_mesh_state_change_gen_loc_global_set_t loc_global_set

Generic Location Global Set

esp_ble_mesh_state_change_gen_loc_local_set_t loc_local_set

Generic Location Local Set

esp_ble_mesh_state_change_gen_user_property_set_t user_property_set

Generic User Property Set

esp_ble_mesh_state_change_gen_admin_property_set_t admin_property_set

Generic Admin Property Set

Espressif Systems 483
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_state_change_gen_manu_property_set_t manu_property_set

Generic Manufacturer Property Set

union esp_ble_mesh_generic_server_recv_get_msg_t
#include <esp_ble_mesh_generic_model_api.h> Generic Server Model received get message union.

Public Members

esp_ble_mesh_server_recv_gen_user_property_get_t user_property

Generic User Property Get

esp_ble_mesh_server_recv_gen_admin_property_get_t admin_property

Generic Admin Property Get

esp_ble_mesh_server_recv_gen_manufacturer_property_get_t manu_property

Generic Manufacturer Property Get

esp_ble_mesh_server_recv_gen_client_properties_get_t client_properties

Generic Client Properties Get

union esp_ble_mesh_generic_server_recv_set_msg_t
#include <esp_ble_mesh_generic_model_api.h> Generic Server Model received set message union.

Public Members

esp_ble_mesh_server_recv_gen_onoff_set_t onoff

Generic OnOff Set/Generic OnOff Set Unack

esp_ble_mesh_server_recv_gen_level_set_t level

Generic Level Set/Generic Level Set Unack

esp_ble_mesh_server_recv_gen_delta_set_t delta

Generic Delta Set/Generic Delta Set Unack

esp_ble_mesh_server_recv_gen_move_set_t move

Generic Move Set/Generic Move Set Unack

esp_ble_mesh_server_recv_gen_def_trans_time_set_t def_trans_time

Generic Default Transition Time Set/Generic Default Transition Time Set Unack

esp_ble_mesh_server_recv_gen_onpowerup_set_t onpowerup

Generic OnPowerUp Set/Generic OnPowerUp Set Unack

esp_ble_mesh_server_recv_gen_power_level_set_t power_level

Generic Power Level Set/Generic Power Level Set Unack

Espressif Systems 484
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_server_recv_gen_power_default_set_t power_default

Generic Power Default Set/Generic Power Default Set Unack

esp_ble_mesh_server_recv_gen_power_range_set_t power_range

Generic Power Range Set/Generic Power Range Set Unack

esp_ble_mesh_server_recv_gen_loc_global_set_t location_global

Generic Location Global Set/Generic Location Global Set Unack

esp_ble_mesh_server_recv_gen_loc_local_set_t location_local

Generic Location Local Set/Generic Location Local Set Unack

esp_ble_mesh_server_recv_gen_user_property_set_t user_property

Generic User Property Set/Generic User Property Set Unack

esp_ble_mesh_server_recv_gen_admin_property_set_t admin_property

Generic Admin Property Set/Generic Admin Property Set Unack

esp_ble_mesh_server_recv_gen_manufacturer_property_set_t manu_property

Generic Manufacturer Property Set/Generic Manufacturer Property Set Unack

union esp_ble_mesh_generic_server_cb_value_t
#include <esp_ble_mesh_generic_model_api.h> Generic Server Model callback value union.

Public Members

esp_ble_mesh_generic_server_state_change_t state_change

ESP_BLE_MESH_GENERIC_SERVER_STATE_CHANGE_EVT

esp_ble_mesh_generic_server_recv_get_msg_t get

ESP_BLE_MESH_GENERIC_SERVER_RECV_GET_MSG_EVT

esp_ble_mesh_generic_server_recv_set_msg_t set

ESP_BLE_MESH_GENERIC_SERVER_RECV_SET_MSG_EVT

Structures

struct esp_ble_mesh_gen_onoff_set_t
Bluetooth Mesh Generic Client Model Get and Set parameters structure.
Parameters of Generic OnOff Set.

Public Members

bool op_en
Indicate if optional parameters are included

Espressif Systems 485
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t onoff
Target value of Generic OnOff state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_gen_level_set_t
Parameters of Generic Level Set.

Public Members

bool op_en
Indicate if optional parameters are included

int16_t level
Target value of Generic Level state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_gen_delta_set_t
Parameters of Generic Delta Set.

Public Members

bool op_en
Indicate if optional parameters are included

int32_t level
Delta change of Generic Level state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

Espressif Systems 486
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_gen_move_set_t
Parameters of Generic Move Set.

Public Members

bool op_en
Indicate if optional parameters are included

int16_t delta_level
Delta Level step to calculate Move speed for Generic Level state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_gen_def_trans_time_set_t
Parameter of Generic Default Transition Time Set.

Public Members

uint8_t trans_time
The value of the Generic Default Transition Time state

struct esp_ble_mesh_gen_onpowerup_set_t
Parameter of Generic OnPowerUp Set.

Public Members

uint8_t onpowerup
The value of the Generic OnPowerUp state

struct esp_ble_mesh_gen_power_level_set_t
Parameters of Generic Power Level Set.

Public Members

bool op_en
Indicate if optional parameters are included

Espressif Systems 487
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t power
Target value of Generic Power Actual state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_gen_power_default_set_t
Parameter of Generic Power Default Set.

Public Members

uint16_t power
The value of the Generic Power Default state

struct esp_ble_mesh_gen_power_range_set_t
Parameters of Generic Power Range Set.

Public Members

uint16_t range_min
Value of Range Min field of Generic Power Range state

uint16_t range_max
Value of Range Max field of Generic Power Range state

struct esp_ble_mesh_gen_loc_global_set_t
Parameters of Generic Location Global Set.

Public Members

int32_t global_latitude
Global Coordinates (Latitude)

int32_t global_longitude
Global Coordinates (Longitude)

int16_t global_altitude
Global Altitude

struct esp_ble_mesh_gen_loc_local_set_t
Parameters of Generic Location Local Set.

Espressif Systems 488
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int16_t local_north
Local Coordinates (North)

int16_t local_east
Local Coordinates (East)

int16_t local_altitude
Local Altitude

uint8_t floor_number
Floor Number

uint16_t uncertainty
Uncertainty

struct esp_ble_mesh_gen_user_property_get_t
Parameter of Generic User Property Get.

Public Members

uint16_t property_id
Property ID identifying a Generic User Property

struct esp_ble_mesh_gen_user_property_set_t
Parameters of Generic User Property Set.

Public Members

uint16_t property_id
Property ID identifying a Generic User Property

struct net_buf_simple *property_value
Raw value for the User Property

struct esp_ble_mesh_gen_admin_property_get_t
Parameter of Generic Admin Property Get.

Public Members

uint16_t property_id
Property ID identifying a Generic Admin Property

struct esp_ble_mesh_gen_admin_property_set_t
Parameters of Generic Admin Property Set.

Espressif Systems 489
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t property_id
Property ID identifying a Generic Admin Property

uint8_t user_access
Enumeration indicating user access

struct net_buf_simple *property_value
Raw value for the Admin Property

struct esp_ble_mesh_gen_manufacturer_property_get_t
Parameter of Generic Manufacturer Property Get.

Public Members

uint16_t property_id
Property ID identifying a Generic Manufacturer Property

struct esp_ble_mesh_gen_manufacturer_property_set_t
Parameters of Generic Manufacturer Property Set.

Public Members

uint16_t property_id
Property ID identifying a Generic Manufacturer Property

uint8_t user_access
Enumeration indicating user access

struct esp_ble_mesh_gen_client_properties_get_t
Parameter of Generic Client Properties Get.

Public Members

uint16_t property_id
A starting Client Property ID present within an element

struct esp_ble_mesh_gen_onoff_status_cb_t
Bluetooth Mesh Generic Client Model Get and Set callback parameters structure.
Parameters of Generic OnOff Status.

Public Members

Espressif Systems 490
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool op_en
Indicate if optional parameters are included

uint8_t present_onoff
Current value of Generic OnOff state

uint8_t target_onoff
Target value of Generic OnOff state (optional)

uint8_t remain_time
Time to complete state transition (C.1)

struct esp_ble_mesh_gen_level_status_cb_t
Parameters of Generic Level Status.

Public Members

bool op_en
Indicate if optional parameters are included

int16_t present_level
Current value of Generic Level state

int16_t target_level
Target value of the Generic Level state (optional)

uint8_t remain_time
Time to complete state transition (C.1)

struct esp_ble_mesh_gen_def_trans_time_status_cb_t
Parameter of Generic Default Transition Time Status.

Public Members

uint8_t trans_time
The value of the Generic Default Transition Time state

struct esp_ble_mesh_gen_onpowerup_status_cb_t
Parameter of Generic OnPowerUp Status.

Public Members

uint8_t onpowerup
The value of the Generic OnPowerUp state

struct esp_ble_mesh_gen_power_level_status_cb_t
Parameters of Generic Power Level Status.

Espressif Systems 491
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t present_power
Current value of Generic Power Actual state

uint16_t target_power
Target value of Generic Power Actual state (optional)

uint8_t remain_time
Time to complete state transition (C.1)

struct esp_ble_mesh_gen_power_last_status_cb_t
Parameter of Generic Power Last Status.

Public Members

uint16_t power
The value of the Generic Power Last state

struct esp_ble_mesh_gen_power_default_status_cb_t
Parameter of Generic Power Default Status.

Public Members

uint16_t power
The value of the Generic Default Last state

struct esp_ble_mesh_gen_power_range_status_cb_t
Parameters of Generic Power Range Status.

Public Members

uint8_t status_code
Status Code for the request message

uint16_t range_min
Value of Range Min field of Generic Power Range state

uint16_t range_max
Value of Range Max field of Generic Power Range state

struct esp_ble_mesh_gen_battery_status_cb_t
Parameters of Generic Battery Status.

Espressif Systems 492
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint32_t battery_level
Value of Generic Battery Level state

uint32_t time_to_discharge
Value of Generic Battery Time to Discharge state

uint32_t time_to_charge
Value of Generic Battery Time to Charge state

uint32_t flags
Value of Generic Battery Flags state

struct esp_ble_mesh_gen_loc_global_status_cb_t
Parameters of Generic Location Global Status.

Public Members

int32_t global_latitude
Global Coordinates (Latitude)

int32_t global_longitude
Global Coordinates (Longitude)

int16_t global_altitude
Global Altitude

struct esp_ble_mesh_gen_loc_local_status_cb_t
Parameters of Generic Location Local Status.

Public Members

int16_t local_north
Local Coordinates (North)

int16_t local_east
Local Coordinates (East)

int16_t local_altitude
Local Altitude

uint8_t floor_number
Floor Number

uint16_t uncertainty
Uncertainty

Espressif Systems 493
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_gen_user_properties_status_cb_t
Parameter of Generic User Properties Status.

Public Members

struct net_buf_simple *property_ids
Buffer contains a sequence of N User Property IDs

struct esp_ble_mesh_gen_user_property_status_cb_t
Parameters of Generic User Property Status.

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t property_id
Property ID identifying a Generic User Property

uint8_t user_access
Enumeration indicating user access (optional)

struct net_buf_simple *property_value
Raw value for the User Property (C.1)

struct esp_ble_mesh_gen_admin_properties_status_cb_t
Parameter of Generic Admin Properties Status.

Public Members

struct net_buf_simple *property_ids
Buffer contains a sequence of N Admin Property IDs

struct esp_ble_mesh_gen_admin_property_status_cb_t
Parameters of Generic Admin Property Status.

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t property_id
Property ID identifying a Generic Admin Property

uint8_t user_access
Enumeration indicating user access (optional)

Espressif Systems 494
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct net_buf_simple *property_value
Raw value for the Admin Property (C.1)

struct esp_ble_mesh_gen_manufacturer_properties_status_cb_t
Parameter of Generic Manufacturer Properties Status.

Public Members

struct net_buf_simple *property_ids
Buffer contains a sequence of N Manufacturer Property IDs

struct esp_ble_mesh_gen_manufacturer_property_status_cb_t
Parameters of Generic Manufacturer Property Status.

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t property_id
Property ID identifying a Generic Manufacturer Property

uint8_t user_access
Enumeration indicating user access (optional)

struct net_buf_simple *property_value
Raw value for the Manufacturer Property (C.1)

struct esp_ble_mesh_gen_client_properties_status_cb_t
Parameter of Generic Client Properties Status.

Public Members

struct net_buf_simple *property_ids
Buffer contains a sequence of N Client Property IDs

struct esp_ble_mesh_generic_client_cb_param_t
Generic Client Model callback parameters

Public Members

int error_code
Appropriate error code

esp_ble_mesh_client_common_param_t *params
The client common parameters.

Espressif Systems 495
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_gen_client_status_cb_t status_cb

The generic status message callback values

struct esp_ble_mesh_gen_onoff_state_t
Parameters of Generic OnOff state

Public Members

uint8_t onoff
The present value of the Generic OnOff state

uint8_t target_onoff
The target value of the Generic OnOff state

struct esp_ble_mesh_gen_onoff_srv_t
User data of Generic OnOff Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic OnOff Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_gen_onoff_state_t state

Parameters of the Generic OnOff state

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

esp_ble_mesh_state_transition_t transition

Parameters of state transition

struct esp_ble_mesh_gen_level_state_t
Parameters of Generic Level state

Public Members

int16_t level
The present value of the Generic Level state

int16_t target_level
The target value of the Generic Level state

Espressif Systems 496
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int16_t last_level
When a new transaction starts, level should be set to last_last, and use "level + incoming delta" to cal-
culate the target level. In another word, "last_level" is used to record "level" of the last transaction, and
"last_delta" is used to record the previously received delta_level value. The last value of the Generic
Level state

int32_t last_delta
The last delta change of the Generic Level state

bool move_start
Indicate if the transition of the Generic Level state has been started

bool positive
Indicate if the transition is positive or negative

struct esp_ble_mesh_gen_level_srv_t
User data of Generic Level Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Level Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_gen_level_state_t state

Parameters of the Generic Level state

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

esp_ble_mesh_state_transition_t transition

Parameters of state transition

int32_t tt_delta_level
Delta change value of level state transition

struct esp_ble_mesh_gen_def_trans_time_state_t
Parameter of Generic Default Transition Time state

Public Members

uint8_t trans_time
The value of the Generic Default Transition Time state

struct esp_ble_mesh_gen_def_trans_time_srv_t
User data of Generic Default Transition Time Server Model

Espressif Systems 497
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Default Transition Time Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_gen_def_trans_time_state_t state

Parameters of the Generic Default Transition Time state

struct esp_ble_mesh_gen_onpowerup_state_t
Parameter of Generic OnPowerUp state

Public Members

uint8_t onpowerup
The value of the Generic OnPowerUp state

struct esp_ble_mesh_gen_power_onoff_srv_t
User data of Generic Power OnOff Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Power OnOff Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_gen_onpowerup_state_t *state
Parameters of the Generic OnPowerUp state

struct esp_ble_mesh_gen_power_onoff_setup_srv_t
User data of Generic Power OnOff Setup Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Power OnOff Setup Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_gen_onpowerup_state_t *state
Parameters of the Generic OnPowerUp state

Espressif Systems 498
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_gen_power_level_state_t
Parameters of Generic Power Level state

Public Members

uint16_t power_actual
The present value of the Generic Power Actual state

uint16_t target_power_actual
The target value of the Generic Power Actual state

uint16_t power_last
The value of the Generic Power Last state

uint16_t power_default
The value of the Generic Power Default state

uint8_t status_code
The status code of setting Generic Power Range state

uint16_t power_range_min
The minimum value of the Generic Power Range state

uint16_t power_range_max
The maximum value of the Generic Power Range state

struct esp_ble_mesh_gen_power_level_srv_t
User data of Generic Power Level Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Power Level Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_gen_power_level_state_t *state
Parameters of the Generic Power Level state

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

esp_ble_mesh_state_transition_t transition

Parameters of state transition

Espressif Systems 499
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int32_t tt_delta_level
Delta change value of level state transition

struct esp_ble_mesh_gen_power_level_setup_srv_t
User data of Generic Power Level Setup Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Power Level Setup Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_gen_power_level_state_t *state
Parameters of the Generic Power Level state

struct esp_ble_mesh_gen_battery_state_t
Parameters of Generic Battery state

Public Members

uint32_t battery_level
The value of the Generic Battery Level state

uint32_t time_to_discharge
The value of the Generic Battery Time to Discharge state

uint32_t time_to_charge
The value of the Generic Battery Time to Charge state

uint32_t battery_flags
The value of the Generic Battery Flags state

struct esp_ble_mesh_gen_battery_srv_t
User data of Generic Battery Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Battery Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

Espressif Systems 500
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_gen_battery_state_t state

Parameters of the Generic Battery state

struct esp_ble_mesh_gen_location_state_t
Parameters of Generic Location state

Public Members

int32_t global_latitude
The value of the Global Latitude field

int32_t global_longitude
The value of the Global Longitude field

int16_t global_altitude
The value of the Global Altitude field

int16_t local_north
The value of the Local North field

int16_t local_east
The value of the Local East field

int16_t local_altitude
The value of the Local Altitude field

uint8_t floor_number
The value of the Floor Number field

uint16_t uncertainty
The value of the Uncertainty field

struct esp_ble_mesh_gen_location_srv_t
User data of Generic Location Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Location Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_gen_location_state_t *state
Parameters of the Generic Location state

struct esp_ble_mesh_gen_location_setup_srv_t
User data of Generic Location Setup Server Model

Espressif Systems 501
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Location Setup Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_gen_location_state_t *state
Parameters of the Generic Location state

struct esp_ble_mesh_generic_property_t
Parameters of Generic Property states

Public Members

uint16_t id
The value of User/Admin/Manufacturer Property ID

uint8_t user_access
The value of User Access field

uint8_t admin_access
The value of Admin Access field

uint8_t manu_access
The value of Manufacturer Access field

struct net_buf_simple *val
The value of User/Admin/Manufacturer Property

struct esp_ble_mesh_gen_user_prop_srv_t
User data of Generic User Property Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic User Property Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

uint8_t property_count
Generic User Property count

esp_ble_mesh_generic_property_t *properties
Parameters of the Generic User Property state

Espressif Systems 502
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_gen_admin_prop_srv_t
User data of Generic Admin Property Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Admin Property Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

uint8_t property_count
Generic Admin Property count

esp_ble_mesh_generic_property_t *properties
Parameters of the Generic Admin Property state

struct esp_ble_mesh_gen_manu_prop_srv_t
User data of Generic Manufacturer Property Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Manufacturer Property Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

uint8_t property_count
Generic Manufacturer Property count

esp_ble_mesh_generic_property_t *properties
Parameters of the Generic Manufacturer Property state

struct esp_ble_mesh_gen_client_prop_srv_t
User data of Generic Client Property Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Generic Client Property Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

Espressif Systems 503
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t id_count
Generic Client Property ID count

uint16_t *property_ids
Parameters of the Generic Client Property state

struct esp_ble_mesh_state_change_gen_onoff_set_t
Parameter of Generic OnOff Set state change event

Public Members

uint8_t onoff
The value of Generic OnOff state

struct esp_ble_mesh_state_change_gen_level_set_t
Parameter of Generic Level Set state change event

Public Members

int16_t level
The value of Generic Level state

struct esp_ble_mesh_state_change_gen_delta_set_t
Parameter of Generic Delta Set state change event

Public Members

int16_t level
The value of Generic Level state

struct esp_ble_mesh_state_change_gen_move_set_t
Parameter of Generic Move Set state change event

Public Members

int16_t level
The value of Generic Level state

struct esp_ble_mesh_state_change_gen_def_trans_time_set_t
Parameter of Generic Default Transition Time Set state change event

Public Members

uint8_t trans_time
The value of Generic Default Transition Time state

Espressif Systems 504
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_state_change_gen_onpowerup_set_t
Parameter of Generic OnPowerUp Set state change event

Public Members

uint8_t onpowerup
The value of Generic OnPowerUp state

struct esp_ble_mesh_state_change_gen_power_level_set_t
Parameter of Generic Power Level Set state change event

Public Members

uint16_t power
The value of Generic Power Actual state

struct esp_ble_mesh_state_change_gen_power_default_set_t
Parameter of Generic Power Default Set state change event

Public Members

uint16_t power
The value of Generic Power Default state

struct esp_ble_mesh_state_change_gen_power_range_set_t
Parameters of Generic Power Range Set state change event

Public Members

uint16_t range_min
The minimum value of Generic Power Range state

uint16_t range_max
The maximum value of Generic Power Range state

struct esp_ble_mesh_state_change_gen_loc_global_set_t
Parameters of Generic Location Global Set state change event

Public Members

int32_t latitude
The Global Latitude value of Generic Location state

int32_t longitude
The Global Longitude value of Generic Location state

Espressif Systems 505
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int16_t altitude
The Global Altitude value of Generic Location state

struct esp_ble_mesh_state_change_gen_loc_local_set_t
Parameters of Generic Location Local Set state change event

Public Members

int16_t north
The Local North value of Generic Location state

int16_t east
The Local East value of Generic Location state

int16_t altitude
The Local Altitude value of Generic Location state

uint8_t floor_number
The Floor Number value of Generic Location state

uint16_t uncertainty
The Uncertainty value of Generic Location state

struct esp_ble_mesh_state_change_gen_user_property_set_t
Parameters of Generic User Property Set state change event

Public Members

uint16_t id
The property id of Generic User Property state

struct net_buf_simple *value
The property value of Generic User Property state

struct esp_ble_mesh_state_change_gen_admin_property_set_t
Parameters of Generic Admin Property Set state change event

Public Members

uint16_t id
The property id of Generic Admin Property state

uint8_t access
The property access of Generic Admin Property state

Espressif Systems 506
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct net_buf_simple *value
The property value of Generic Admin Property state

struct esp_ble_mesh_state_change_gen_manu_property_set_t
Parameters of Generic Manufacturer Property Set state change event

Public Members

uint16_t id
The property id of Generic Manufacturer Property state

uint8_t access
The property value of Generic Manufacturer Property state

struct esp_ble_mesh_server_recv_gen_user_property_get_t
Context of the received Generic User Property Get message

Public Members

uint16_t property_id
Property ID identifying a Generic User Property

struct esp_ble_mesh_server_recv_gen_admin_property_get_t
Context of the received Generic Admin Property Get message

Public Members

uint16_t property_id
Property ID identifying a Generic Admin Property

struct esp_ble_mesh_server_recv_gen_manufacturer_property_get_t
Context of the received Generic Manufacturer Property message

Public Members

uint16_t property_id
Property ID identifying a Generic Manufacturer Property

struct esp_ble_mesh_server_recv_gen_client_properties_get_t
Context of the received Generic Client Properties Get message

Public Members

uint16_t property_id
A starting Client Property ID present within an element

Espressif Systems 507
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_server_recv_gen_onoff_set_t
Context of the received Generic OnOff Set message

Public Members

bool op_en
Indicate if optional parameters are included

uint8_t onoff
Target value of Generic OnOff state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_gen_level_set_t
Context of the received Generic Level Set message

Public Members

bool op_en
Indicate if optional parameters are included

int16_t level
Target value of Generic Level state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_gen_delta_set_t
Context of the received Generic Delta Set message

Public Members

Espressif Systems 508
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool op_en
Indicate if optional parameters are included

int32_t delta_level
Delta change of Generic Level state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_gen_move_set_t
Context of the received Generic Move Set message

Public Members

bool op_en
Indicate if optional parameters are included

int16_t delta_level
Delta Level step to calculate Move speed for Generic Level state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_gen_def_trans_time_set_t
Context of the received Generic Default Transition Time Set message

Public Members

uint8_t trans_time
The value of the Generic Default Transition Time state

struct esp_ble_mesh_server_recv_gen_onpowerup_set_t
Context of the received Generic OnPowerUp Set message

Espressif Systems 509
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t onpowerup
The value of the Generic OnPowerUp state

struct esp_ble_mesh_server_recv_gen_power_level_set_t
Context of the received Generic Power Level Set message

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t power
Target value of Generic Power Actual state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_gen_power_default_set_t
Context of the received Generic Power Default Set message

Public Members

uint16_t power
The value of the Generic Power Default state

struct esp_ble_mesh_server_recv_gen_power_range_set_t
Context of the received Generic Power Range Set message

Public Members

uint16_t range_min
Value of Range Min field of Generic Power Range state

uint16_t range_max
Value of Range Max field of Generic Power Range state

struct esp_ble_mesh_server_recv_gen_loc_global_set_t
Context of the received Generic Location Global Set message

Espressif Systems 510
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int32_t global_latitude
Global Coordinates (Latitude)

int32_t global_longitude
Global Coordinates (Longitude)

int16_t global_altitude
Global Altitude

struct esp_ble_mesh_server_recv_gen_loc_local_set_t
Context of the received Generic Location Local Set message

Public Members

int16_t local_north
Local Coordinates (North)

int16_t local_east
Local Coordinates (East)

int16_t local_altitude
Local Altitude

uint8_t floor_number
Floor Number

uint16_t uncertainty
Uncertainty

struct esp_ble_mesh_server_recv_gen_user_property_set_t
Context of the received Generic User Property Set message

Public Members

uint16_t property_id
Property ID identifying a Generic User Property

struct net_buf_simple *property_value
Raw value for the User Property

struct esp_ble_mesh_server_recv_gen_admin_property_set_t
Context of the received Generic Admin Property Set message

Espressif Systems 511
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t property_id
Property ID identifying a Generic Admin Property

uint8_t user_access
Enumeration indicating user access

struct net_buf_simple *property_value
Raw value for the Admin Property

struct esp_ble_mesh_server_recv_gen_manufacturer_property_set_t
Context of the received Generic Manufacturer Property Set message

Public Members

uint16_t property_id
Property ID identifying a Generic Manufacturer Property

uint8_t user_access
Enumeration indicating user access

struct esp_ble_mesh_generic_server_cb_param_t
Generic Server Model callback parameters

Public Members

esp_ble_mesh_model_t *model
Pointer to Generic Server Models

esp_ble_mesh_msg_ctx_t ctx

Context of the received messages

esp_ble_mesh_generic_server_cb_value_t value

Value of the received Generic Messages

Macros
ESP_BLE_MESH_MODEL_GEN_ONOFF_CLI(cli_pub, cli_data)

Define a new Generic OnOff Client Model.

Note: This API needs to be called for each element on which the application needs to have a Generic OnOff
Client Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Generic OnOff Client Model instance.

Espressif Systems 512
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_GEN_LEVEL_CLI(cli_pub, cli_data)
Define a new Generic Level Client Model.

Note: This API needs to be called for each element on which the application needs to have a Generic Level
Client Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Generic Level Client Model instance.

ESP_BLE_MESH_MODEL_GEN_DEF_TRANS_TIME_CLI(cli_pub, cli_data)
Define a new Generic Default Transition Time Client Model.

Note: This API needs to be called for each element on which the application needs to have a Generic Default
Transition Time Client Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Generic Default Transition Time Client Model instance.

ESP_BLE_MESH_MODEL_GEN_POWER_ONOFF_CLI(cli_pub, cli_data)
Define a new Generic Power OnOff Client Model.

Note: This API needs to be called for each element on which the application needs to have a Generic Power
OnOff Client Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Generic Power OnOff Client Model instance.

ESP_BLE_MESH_MODEL_GEN_POWER_LEVEL_CLI(cli_pub, cli_data)
Define a new Generic Power Level Client Model.

Note: This API needs to be called for each element on which the application needs to have a Generic Power
Level Client Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Generic Power Level Client Model instance.

ESP_BLE_MESH_MODEL_GEN_BATTERY_CLI(cli_pub, cli_data)
Define a new Generic Battery Client Model.

Note: This API needs to be called for each element on which the application needs to have a Generic Battery
Client Model.

Espressif Systems 513
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Generic Battery Client Model instance.

ESP_BLE_MESH_MODEL_GEN_LOCATION_CLI(cli_pub, cli_data)
Define a new Generic Location Client Model.

Note: This API needs to be called for each element on which the application needs to have a Generic Location
Client Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Generic Location Client Model instance.

ESP_BLE_MESH_MODEL_GEN_PROPERTY_CLI(cli_pub, cli_data)
Define a new Generic Property Client Model.

Note: This API needs to be called for each element on which the application needs to have a Generic Property
Client Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Generic Location Client Model instance.

ESP_BLE_MESH_MODEL_GEN_ONOFF_SRV(srv_pub, srv_data)
Generic Server Models related context.
Define a new Generic OnOff Server Model.

Note: 1. The Generic OnOff Server Model is a root model.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_onoff_srv_t.

Returns New Generic OnOff Server Model instance.

ESP_BLE_MESH_MODEL_GEN_LEVEL_SRV(srv_pub, srv_data)
Define a new Generic Level Server Model.

Note: 1. The Generic Level Server Model is a root model.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_level_srv_t.

Returns New Generic Level Server Model instance.

Espressif Systems 514
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_GEN_DEF_TRANS_TIME_SRV(srv_pub, srv_data)
Define a new Generic Default Transition Time Server Model.

Note: 1. The Generic Default Transition Time Server Model is a root model.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_def_trans_time_srv_t.

Returns New Generic Default Transition Time Server Model instance.

ESP_BLE_MESH_MODEL_GEN_POWER_ONOFF_SRV(srv_pub, srv_data)
Define a new Generic Power OnOff Server Model.

Note: 1. The Generic Power OnOff Server model extends the Generic OnOff Server model. When this model
is present on an element, the corresponding Generic Power OnOff Setup Server model shall also be present.
a. This model may be used to represent a variety of devices that do not fit any of the model descriptions

that have been defined but support the generic properties of On/Off.
b. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_power_onoff_srv_t.

Returns New Generic Power OnOff Server Model instance.

ESP_BLE_MESH_MODEL_GEN_POWER_ONOFF_SETUP_SRV(srv_pub, srv_data)
Define a new Generic Power OnOff Setup Server Model.

Note: 1. The Generic Power OnOff Setup Server model extends the Generic Power OnOff Server model and
the Generic Default Transition Time Server model.
a. This model shall support model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_power_onoff_setup_srv_t.

Returns New Generic Power OnOff Setup Server Model instance.

ESP_BLE_MESH_MODEL_GEN_POWER_LEVEL_SRV(srv_pub, srv_data)
Define a new Generic Power Level Server Model.

Note: 1. The Generic Power Level Server model extends the Generic Power OnOff Server model and the
Generic Level Server model. When this model is present on an Element, the corresponding Generic Power
Level Setup Server model shall also be present.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_power_level_srv_t.

Returns New Generic Power Level Server Model instance.

Espressif Systems 515
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_GEN_POWER_LEVEL_SETUP_SRV(srv_pub, srv_data)
Define a new Generic Power Level Setup Server Model.

Note: 1. The Generic Power Level Setup Server model extends the Generic Power Level Server model and
the Generic Power OnOff Setup Server model.
a. This model shall support model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_power_level_setup_srv_t.

Returns New Generic Power Level Setup Server Model instance.

ESP_BLE_MESH_MODEL_GEN_BATTERY_SRV(srv_pub, srv_data)
Define a new Generic Battery Server Model.

Note: 1. The Generic Battery Server Model is a root model.
a. This model shall support model publication and model subscription.
b. The model may be used to represent an element that is powered by a battery.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_battery_srv_t.

Returns New Generic Battery Server Model instance.

ESP_BLE_MESH_MODEL_GEN_LOCATION_SRV(srv_pub, srv_data)
Define a new Generic Location Server Model.

Note: 1. The Generic Location Server model is a root model. When this model is present on an Element, the
corresponding Generic Location Setup Server model shall also be present.
a. This model shall support model publication and model subscription.
b. The model may be used to represent an element that knows its location (global or local).

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_location_srv_t.

Returns New Generic Location Server Model instance.

ESP_BLE_MESH_MODEL_GEN_LOCATION_SETUP_SRV(srv_pub, srv_data)
Define a new Generic Location Setup Server Model.

Note: 1. The Generic Location Setup Server model extends the Generic Location Server model.
a. This model shall support model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_location_setup_srv_t.

Returns New Generic Location Setup Server Model instance.

Espressif Systems 516
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_GEN_USER_PROP_SRV(srv_pub, srv_data)
Define a new Generic User Property Server Model.

Note: 1. The Generic User Property Server model is a root model.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_user_prop_srv_t.

Returns New Generic User Property Server Model instance.

ESP_BLE_MESH_MODEL_GEN_ADMIN_PROP_SRV(srv_pub, srv_data)
Define a new Generic Admin Property Server Model.

Note: 1. The Generic Admin Property Server model extends the Generic User Property Server model.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_admin_prop_srv_t.

Returns New Generic Admin Property Server Model instance.

ESP_BLE_MESH_MODEL_GEN_MANUFACTURER_PROP_SRV(srv_pub, srv_data)
Define a new Generic Manufacturer Property Server Model.

Note: 1. The Generic Manufacturer Property Server model extends the Generic User Property Server model.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_manu_prop_srv_t.

Returns New Generic Manufacturer Property Server Model instance.

ESP_BLE_MESH_MODEL_GEN_CLIENT_PROP_SRV(srv_pub, srv_data)
Define a new Generic User Property Server Model.

Note: 1. The Generic Client Property Server model is a root model.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_gen_client_prop_srv_t.

Returns New Generic Client Property Server Model instance.

Type Definitions

Espressif Systems 517
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef void (*esp_ble_mesh_generic_client_cb_t)(esp_ble_mesh_generic_client_cb_event_t event,
esp_ble_mesh_generic_client_cb_param_t *param)

Bluetooth Mesh Generic Client Model function.
Generic Client Model callback function type

Param event Event type
Param param Pointer to callback parameter

typedef void (*esp_ble_mesh_generic_server_cb_t)(esp_ble_mesh_generic_server_cb_event_t event,
esp_ble_mesh_generic_server_cb_param_t *param)

Bluetooth Mesh Generic Server Model function.
Generic Server Model callback function type

Param event Event type
Param param Pointer to callback parameter

Enumerations

enum esp_ble_mesh_generic_client_cb_event_t

This enum value is the event of Generic Client Model
Values:

enumerator ESP_BLE_MESH_GENERIC_CLIENT_GET_STATE_EVT

enumerator ESP_BLE_MESH_GENERIC_CLIENT_SET_STATE_EVT

enumerator ESP_BLE_MESH_GENERIC_CLIENT_PUBLISH_EVT

enumerator ESP_BLE_MESH_GENERIC_CLIENT_TIMEOUT_EVT

enumerator ESP_BLE_MESH_GENERIC_CLIENT_EVT_MAX

enum esp_ble_mesh_gen_user_prop_access_t

This enum value is the access value of Generic User Property
Values:

enumerator ESP_BLE_MESH_GEN_USER_ACCESS_PROHIBIT

enumerator ESP_BLE_MESH_GEN_USER_ACCESS_READ

enumerator ESP_BLE_MESH_GEN_USER_ACCESS_WRITE

enumerator ESP_BLE_MESH_GEN_USER_ACCESS_READ_WRITE

enum esp_ble_mesh_gen_admin_prop_access_t

This enum value is the access value of Generic Admin Property
Values:

enumerator ESP_BLE_MESH_GEN_ADMIN_NOT_USER_PROP

Espressif Systems 518
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_GEN_ADMIN_ACCESS_READ

enumerator ESP_BLE_MESH_GEN_ADMIN_ACCESS_WRITE

enumerator ESP_BLE_MESH_GEN_ADMIN_ACCESS_READ_WRITE

enum esp_ble_mesh_gen_manu_prop_access_t

This enum value is the access value of Generic Manufacturer Property
Values:

enumerator ESP_BLE_MESH_GEN_MANU_NOT_USER_PROP

enumerator ESP_BLE_MESH_GEN_MANU_ACCESS_READ

enum esp_ble_mesh_generic_server_cb_event_t

This enum value is the event of Generic Server Model
Values:

enumerator ESP_BLE_MESH_GENERIC_SERVER_STATE_CHANGE_EVT

i. When get_auto_rsp is set to ESP_BLE_MESH_SERVER_AUTO_RSP, no event will be callback
to the application layer when Generic Get messages are received.

ii. When set_auto_rsp is set to ESP_BLE_MESH_SERVER_AUTO_RSP, this event will be callback
to the application layer when Generic Set/Set Unack messages are received.

enumerator ESP_BLE_MESH_GENERIC_SERVER_RECV_GET_MSG_EVT
When get_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, this event will be callback to
the application layer when Generic Get messages are received.

enumerator ESP_BLE_MESH_GENERIC_SERVER_RECV_SET_MSG_EVT
When set_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, this event will be callback to
the application layer when Generic Set/Set Unack messages are received.

enumerator ESP_BLE_MESH_GENERIC_SERVER_EVT_MAX

Sensor Client/Server Models

Header File
• components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_sensor_model_api.h

Functions
esp_err_t esp_ble_mesh_register_sensor_client_callback(esp_ble_mesh_sensor_client_cb_t

callback)
Register BLE Mesh Sensor Client Model callback.

Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

Espressif Systems 519
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_sensor_model_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_mesh_sensor_client_get_state(esp_ble_mesh_client_common_param_t
*params, esp_ble_mesh_sensor_client_get_state_t
*get_state)

Get the value of Sensor Server Model states using the Sensor Client Model get messages.

Note: If you want to know the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_sensor_message_opcode_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• get_state -- [in] Pointer to sensor get message value. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_sensor_client_set_state(esp_ble_mesh_client_common_param_t
*params, esp_ble_mesh_sensor_client_set_state_t
*set_state)

Set the value of Sensor Server Model states using the Sensor Client Model set messages.

Note: If you want to know the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_sensor_message_opcode_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• set_state -- [in] Pointer to sensor set message value. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_register_sensor_server_callback(esp_ble_mesh_sensor_server_cb_t
callback)

Register BLE Mesh Sensor Server Model callback.
Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

Unions

union esp_ble_mesh_sensor_client_get_state_t
#include <esp_ble_mesh_sensor_model_api.h> Sensor Client Model get message union.

Public Members

esp_ble_mesh_sensor_descriptor_get_t descriptor_get

For ESP_BLE_MESH_MODEL_OP_SENSOR_DESCRIPTOR_GET

esp_ble_mesh_sensor_cadence_get_t cadence_get

For ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_GET

esp_ble_mesh_sensor_settings_get_t settings_get

For ESP_BLE_MESH_MODEL_OP_SENSOR_SETTINGS_GET

Espressif Systems 520
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_sensor_setting_get_t setting_get

For ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_GET

esp_ble_mesh_sensor_get_t sensor_get

For ESP_BLE_MESH_MODEL_OP_SENSOR_GET

esp_ble_mesh_sensor_column_get_t column_get

For ESP_BLE_MESH_MODEL_OP_SENSOR_COLUMN_GET

esp_ble_mesh_sensor_series_get_t series_get

For ESP_BLE_MESH_MODEL_OP_SENSOR_SERIES_GET

union esp_ble_mesh_sensor_client_set_state_t
#include <esp_ble_mesh_sensor_model_api.h> Sensor Client Model set message union.

Public Members

esp_ble_mesh_sensor_cadence_set_t cadence_set

For ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_SET &
ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_SET_UNACK

esp_ble_mesh_sensor_setting_set_t setting_set

For ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_SET &
ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_SET_UNACK

union esp_ble_mesh_sensor_client_status_cb_t
#include <esp_ble_mesh_sensor_model_api.h> Sensor Client Model received message union.

Public Members

esp_ble_mesh_sensor_descriptor_status_cb_t descriptor_status

For ESP_BLE_MESH_MODEL_OP_SENSOR_DESCRIPTOR_STATUS

esp_ble_mesh_sensor_cadence_status_cb_t cadence_status

For ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_STATUS

esp_ble_mesh_sensor_settings_status_cb_t settings_status

For ESP_BLE_MESH_MODEL_OP_SENSOR_SETTINGS_STATUS

esp_ble_mesh_sensor_setting_status_cb_t setting_status

For ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_STATUS

esp_ble_mesh_sensor_status_cb_t sensor_status

For ESP_BLE_MESH_MODEL_OP_SENSOR_STATUS

esp_ble_mesh_sensor_column_status_cb_t column_status

For ESP_BLE_MESH_MODEL_OP_SENSOR_COLUMN_STATUS

Espressif Systems 521
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_sensor_series_status_cb_t series_status

For ESP_BLE_MESH_MODEL_OP_SENSOR_SERIES_STATUS

union esp_ble_mesh_sensor_server_state_change_t
#include <esp_ble_mesh_sensor_model_api.h> Sensor Server Model state change value union.

Public Members

esp_ble_mesh_state_change_sensor_cadence_set_t sensor_cadence_set

The recv_op in ctx can be used to decide which state is changed. Sensor Cadence Set

esp_ble_mesh_state_change_sensor_setting_set_t sensor_setting_set

Sensor Setting Set

union esp_ble_mesh_sensor_server_recv_get_msg_t
#include <esp_ble_mesh_sensor_model_api.h> Sensor Server Model received get message union.

Public Members

esp_ble_mesh_server_recv_sensor_descriptor_get_t sensor_descriptor

Sensor Descriptor Get

esp_ble_mesh_server_recv_sensor_cadence_get_t sensor_cadence

Sensor Cadence Get

esp_ble_mesh_server_recv_sensor_settings_get_t sensor_settings

Sensor Settings Get

esp_ble_mesh_server_recv_sensor_setting_get_t sensor_setting

Sensor Setting Get

esp_ble_mesh_server_recv_sensor_get_t sensor_data

Sensor Get

esp_ble_mesh_server_recv_sensor_column_get_t sensor_column

Sensor Column Get

esp_ble_mesh_server_recv_sensor_series_get_t sensor_series

Sensor Series Get

union esp_ble_mesh_sensor_server_recv_set_msg_t
#include <esp_ble_mesh_sensor_model_api.h> Sensor Server Model received set message union.

Public Members

Espressif Systems 522
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_server_recv_sensor_cadence_set_t sensor_cadence

Sensor Cadence Set

esp_ble_mesh_server_recv_sensor_setting_set_t sensor_setting

Sensor Setting Set

union esp_ble_mesh_sensor_server_cb_value_t
#include <esp_ble_mesh_sensor_model_api.h> Sensor Server Model callback value union.

Public Members

esp_ble_mesh_sensor_server_state_change_t state_change

ESP_BLE_MESH_SENSOR_SERVER_STATE_CHANGE_EVT

esp_ble_mesh_sensor_server_recv_get_msg_t get

ESP_BLE_MESH_SENSOR_SERVER_RECV_GET_MSG_EVT

esp_ble_mesh_sensor_server_recv_set_msg_t set

ESP_BLE_MESH_SENSOR_SERVER_RECV_SET_MSG_EVT

Structures

struct esp_ble_mesh_sensor_descriptor_get_t
Bluetooth Mesh Sensor Client Model Get and Set parameters structure.
Parameters of Sensor Descriptor Get

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t property_id
Property ID of a sensor (optional)

struct esp_ble_mesh_sensor_cadence_get_t
Parameter of Sensor Cadence Get

Public Members

uint16_t property_id
Property ID of a sensor

struct esp_ble_mesh_sensor_cadence_set_t
Parameters of Sensor Cadence Set

Espressif Systems 523
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t property_id
Property ID for the sensor

uint8_t fast_cadence_period_divisor
Divisor for the publish period

uint8_t status_trigger_type
The unit and format of the Status Trigger Delta fields

struct net_buf_simple *status_trigger_delta_down
Delta down value that triggers a status message

struct net_buf_simple *status_trigger_delta_up
Delta up value that triggers a status message

uint8_t status_min_interval
Minimum interval between two consecutive Status messages

struct net_buf_simple *fast_cadence_low
Low value for the fast cadence range

struct net_buf_simple *fast_cadence_high
Fast value for the fast cadence range

struct esp_ble_mesh_sensor_settings_get_t
Parameter of Sensor Settings Get

Public Members

uint16_t sensor_property_id
Property ID of a sensor

struct esp_ble_mesh_sensor_setting_get_t
Parameters of Sensor Setting Get

Public Members

uint16_t sensor_property_id
Property ID of a sensor

uint16_t sensor_setting_property_id
Setting ID identifying a setting within a sensor

struct esp_ble_mesh_sensor_setting_set_t
Parameters of Sensor Setting Set

Espressif Systems 524
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t sensor_property_id
Property ID identifying a sensor

uint16_t sensor_setting_property_id
Setting ID identifying a setting within a sensor

struct net_buf_simple *sensor_setting_raw
Raw value for the setting

struct esp_ble_mesh_sensor_get_t
Parameters of Sensor Get

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t property_id
Property ID for the sensor (optional)

struct esp_ble_mesh_sensor_column_get_t
Parameters of Sensor Column Get

Public Members

uint16_t property_id
Property identifying a sensor

struct net_buf_simple *raw_value_x
Raw value identifying a column

struct esp_ble_mesh_sensor_series_get_t
Parameters of Sensor Series Get

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t property_id
Property identifying a sensor

struct net_buf_simple *raw_value_x1
Raw value identifying a starting column (optional)

Espressif Systems 525
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct net_buf_simple *raw_value_x2
Raw value identifying an ending column (C.1)

struct esp_ble_mesh_sensor_descriptor_status_cb_t
Bluetooth Mesh Sensor Client Model Get and Set callback parameters structure.
Parameter of Sensor Descriptor Status

Public Members

struct net_buf_simple *descriptor
Sequence of 8-octet sensor descriptors (optional)

struct esp_ble_mesh_sensor_cadence_status_cb_t
Parameters of Sensor Cadence Status

Public Members

uint16_t property_id
Property for the sensor

struct net_buf_simple *sensor_cadence_value
Value of sensor cadence state

struct esp_ble_mesh_sensor_settings_status_cb_t
Parameters of Sensor Settings Status

Public Members

uint16_t sensor_property_id
Property ID identifying a sensor

struct net_buf_simple *sensor_setting_property_ids
A sequence of N sensor setting property IDs (optional)

struct esp_ble_mesh_sensor_setting_status_cb_t
Parameters of Sensor Setting Status

Public Members

bool op_en
Indicate id optional parameters are included

uint16_t sensor_property_id
Property ID identifying a sensor

Espressif Systems 526
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t sensor_setting_property_id
Setting ID identifying a setting within a sensor

uint8_t sensor_setting_access
Read/Write access rights for the setting (optional)

struct net_buf_simple *sensor_setting_raw
Raw value for the setting

struct esp_ble_mesh_sensor_status_cb_t
Parameter of Sensor Status

Public Members

struct net_buf_simple *marshalled_sensor_data
Value of sensor data state (optional)

struct esp_ble_mesh_sensor_column_status_cb_t
Parameters of Sensor Column Status

Public Members

uint16_t property_id
Property identifying a sensor and the Y axis

struct net_buf_simple *sensor_column_value
Left values of sensor column status

struct esp_ble_mesh_sensor_series_status_cb_t
Parameters of Sensor Series Status

Public Members

uint16_t property_id
Property identifying a sensor and the Y axis

struct net_buf_simple *sensor_series_value
Left values of sensor series status

struct esp_ble_mesh_sensor_client_cb_param_t
Sensor Client Model callback parameters

Public Members

Espressif Systems 527
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int error_code
0: success, otherwise failure. For the error code values please refer to errno.h file. A negative sign is
added to the standard error codes in errno.h.

esp_ble_mesh_client_common_param_t *params
The client common parameters.

esp_ble_mesh_sensor_client_status_cb_t status_cb

The sensor status message callback values

struct esp_ble_mesh_sensor_descriptor_t
Parameters of Sensor Descriptor state

Public Members

uint32_t positive_tolerance
The value of Sensor Positive Tolerance field

uint32_t negative_tolerance
The value of Sensor Negative Tolerance field

uint32_t sampling_function
The value of Sensor Sampling Function field

uint8_t measure_period
The value of Sensor Measurement Period field

uint8_t update_interval
The value of Sensor Update Interval field

struct esp_ble_mesh_sensor_setting_t
Parameters of Sensor Setting state

Public Members

uint16_t property_id
The value of Sensor Setting Property ID field

uint8_t access
The value of Sensor Setting Access field

struct net_buf_simple *raw
The value of Sensor Setting Raw field

struct esp_ble_mesh_sensor_cadence_t
Parameters of Sensor Cadence state

Espressif Systems 528
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t period_divisor
The value of Fast Cadence Period Divisor field

uint8_t trigger_type
The value of Status Trigger Type field

struct net_buf_simple *trigger_delta_down
Note: The parameter "size" in trigger_delta_down, trigger_delta_up, fast_cadence_low &
fast_cadence_high indicates the exact length of these four parameters, and they are associated
with the Sensor Property ID. Users need to initialize the "size" precisely. The value of Status Trigger
Delta Down field

struct net_buf_simple *trigger_delta_up
The value of Status Trigger Delta Up field

uint8_t min_interval
The value of Status Min Interval field

struct net_buf_simple *fast_cadence_low
The value of Fast Cadence Low field

struct net_buf_simple *fast_cadence_high
The value of Fast Cadence High field

struct esp_ble_mesh_sensor_data_t
Parameters of Sensor Data state

Public Members

uint8_t format
Format A: The Length field is a 1-based uint4 value (valid range 0x0–0xF, representing range of 1 –16).
Format B: The Length field is a 1-based uint7 value (valid range 0x0–0x7F, representing range of 1 –
127). The value 0x7F represents a length of zero. The value of the Sensor Data format

uint8_t length
The value of the Sensor Data length

struct net_buf_simple *raw_value
The value of Sensor Data raw value

struct esp_ble_mesh_sensor_series_column_t
Parameters of Sensor Series Column state

Public Members

Espressif Systems 529
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct net_buf_simple *raw_value_x
The value of Sensor Raw Value X field

struct net_buf_simple *column_width
The value of Sensor Column Width field

struct net_buf_simple *raw_value_y
The value of Sensor Raw Value Y field

struct esp_ble_mesh_sensor_state_t
Parameters of Sensor states

Public Members

uint16_t sensor_property_id
The value of Sensor Property ID field

esp_ble_mesh_sensor_descriptor_t descriptor

Parameters of the Sensor Descriptor state

const uint8_t setting_count
Multiple Sensor Setting states may be present for each sensor. The Sensor Setting Property ID values
shall be unique for each Sensor Property ID that identifies a sensor within an element.

esp_ble_mesh_sensor_setting_t *settings
Parameters of the Sensor Setting state

esp_ble_mesh_sensor_cadence_t *cadence
The Sensor Cadence state may be not supported by sensors based on device properties referencing "non-
scalar characteristics" such as "histograms" or "composite characteristics". Parameters of the Sensor
Cadence state

esp_ble_mesh_sensor_data_t sensor_data

Parameters of the Sensor Data state

esp_ble_mesh_sensor_series_column_t series_column

Parameters of the Sensor Series Column state

struct esp_ble_mesh_sensor_srv_t
User data of Sensor Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Sensor Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

Espressif Systems 530
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

const uint8_t state_count
Sensor state count

esp_ble_mesh_sensor_state_t *states
Parameters of the Sensor states

struct esp_ble_mesh_sensor_setup_srv_t
User data of Sensor Setup Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Sensor Setup Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

const uint8_t state_count
Sensor state count

esp_ble_mesh_sensor_state_t *states
Parameters of the Sensor states

struct esp_ble_mesh_state_change_sensor_cadence_set_t
Parameters of Sensor Cadence Set state change event

Public Members

uint16_t property_id
The value of Sensor Property ID state

uint8_t period_divisor
The value of Fast Cadence Period Divisor state

uint8_t trigger_type
The value of Status Trigger Type state

struct net_buf_simple *trigger_delta_down
The value of Status Trigger Delta Down state

struct net_buf_simple *trigger_delta_up
The value of Status Trigger Delta Up state

uint8_t min_interval
The value of Status Min Interval state

Espressif Systems 531
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct net_buf_simple *fast_cadence_low
The value of Fast Cadence Low state

struct net_buf_simple *fast_cadence_high
The value of Fast Cadence High state

struct esp_ble_mesh_state_change_sensor_setting_set_t
Parameters of Sensor Setting Set state change event

Public Members

uint16_t property_id
The value of Sensor Property ID state

uint16_t setting_property_id
The value of Sensor Setting Property ID state

struct net_buf_simple *setting_value
The value of Sensor Property Value state

struct esp_ble_mesh_server_recv_sensor_descriptor_get_t
Context of the received Sensor Descriptor Get message

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t property_id
Property ID of a sensor (optional)

struct esp_ble_mesh_server_recv_sensor_cadence_get_t
Context of the received Sensor Cadence Get message

Public Members

uint16_t property_id
Property ID of a sensor

struct esp_ble_mesh_server_recv_sensor_settings_get_t
Context of the received Sensor Settings Get message

Public Members

uint16_t property_id
Property ID of a sensor

Espressif Systems 532
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_server_recv_sensor_setting_get_t
Context of the received Sensor Setting Get message

Public Members

uint16_t property_id
Property ID of a sensor

uint16_t setting_property_id
Setting ID identifying a setting within a sensor

struct esp_ble_mesh_server_recv_sensor_get_t
Context of the received Sensor Get message

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t property_id
Property ID for the sensor (optional)

struct esp_ble_mesh_server_recv_sensor_column_get_t
Context of the received Sensor Column Get message

Public Members

uint16_t property_id
Property identifying a sensor

struct net_buf_simple *raw_value_x
Raw value identifying a column

struct esp_ble_mesh_server_recv_sensor_series_get_t
Context of the received Sensor Series Get message

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t property_id
Property identifying a sensor

struct net_buf_simple *raw_value
Raw value containing X1 and X2 (optional)

Espressif Systems 533
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_server_recv_sensor_cadence_set_t
Context of the received Sensor Cadence Set message

Public Members

uint16_t property_id
Property ID for the sensor

struct net_buf_simple *cadence
Value of Sensor Cadence state

struct esp_ble_mesh_server_recv_sensor_setting_set_t
Context of the received Sensor Setting Set message

Public Members

uint16_t property_id
Property ID identifying a sensor

uint16_t setting_property_id
Setting ID identifying a setting within a sensor

struct net_buf_simple *setting_raw
Raw value for the setting

struct esp_ble_mesh_sensor_server_cb_param_t
Sensor Server Model callback parameters

Public Members

esp_ble_mesh_model_t *model
Pointer to Sensor Server Models

esp_ble_mesh_msg_ctx_t ctx

Context of the received messages

esp_ble_mesh_sensor_server_cb_value_t value

Value of the received Sensor Messages

Macros
ESP_BLE_MESH_MODEL_SENSOR_CLI(cli_pub, cli_data)

Define a new Sensor Client Model.

Note: This API needs to be called for each element on which the application needs to have a Sensor Client
Model.

Espressif Systems 534
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Sensor Client Model instance.
ESP_BLE_MESH_MODEL_SENSOR_SRV(srv_pub, srv_data)

Sensor Server Models related context.
Define a new Sensor Server Model.

Note: 1. The Sensor Server model is a root model. When this model is present on an element, the corre-
sponding Sensor Setup Server model shall also be present.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_sensor_srv_t.

Returns New Sensor Server Model instance.

ESP_BLE_MESH_MODEL_SENSOR_SETUP_SRV(srv_pub, srv_data)
Define a new Sensor Setup Server Model.

Note: 1. The Sensor Setup Server model extends the Sensor Server model.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_sensor_setup_srv_t.

Returns New Sensor Setup Server Model instance.

ESP_BLE_MESH_INVALID_SENSOR_PROPERTY_ID

Invalid Sensor Property ID

ESP_BLE_MESH_SENSOR_PROPERTY_ID_LEN

Length of Sensor Property ID

ESP_BLE_MESH_SENSOR_DESCRIPTOR_LEN

Length of Sensor Descriptor state

ESP_BLE_MESH_SENSOR_UNSPECIFIED_POS_TOLERANCE

Unspecified Sensor Positive Tolerance

ESP_BLE_MESH_SENSOR_UNSPECIFIED_NEG_TOLERANCE

Unspecified Sensor Negative Tolerance

ESP_BLE_MESH_SENSOR_NOT_APPL_MEASURE_PERIOD

Not applicable Sensor Measurement Period

ESP_BLE_MESH_SENSOR_NOT_APPL_UPDATE_INTERVAL

Not applicable Sensor Update Interval

Espressif Systems 535
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_INVALID_SENSOR_SETTING_PROPERTY_ID

Invalid Sensor Setting Property ID

ESP_BLE_MESH_SENSOR_SETTING_PROPERTY_ID_LEN

Length of Sensor Setting Property ID

ESP_BLE_MESH_SENSOR_SETTING_ACCESS_LEN

Length of Sensor Setting Access

ESP_BLE_MESH_SENSOR_SETTING_ACCESS_READ

Sensor Setting Access - Read

ESP_BLE_MESH_SENSOR_SETTING_ACCESS_READ_WRITE

Sensor Setting Access - Read & Write

ESP_BLE_MESH_SENSOR_DIVISOR_TRIGGER_TYPE_LEN

Length of Sensor Divisor Trigger Type

ESP_BLE_MESH_SENSOR_STATUS_MIN_INTERVAL_LEN

Length of Sensor Status Min Interval

ESP_BLE_MESH_SENSOR_PERIOD_DIVISOR_MAX_VALUE

Maximum value of Sensor Period Divisor

ESP_BLE_MESH_SENSOR_STATUS_MIN_INTERVAL_MAX

Maximum value of Sensor Status Min Interval

ESP_BLE_MESH_SENSOR_STATUS_TRIGGER_TYPE_CHAR

Sensor Status Trigger Type - Format Type of the characteristic that the Sensor Property ID state references

ESP_BLE_MESH_SENSOR_STATUS_TRIGGER_TYPE_UINT16

Sensor Status Trigger Type - Format Type "uint16"

ESP_BLE_MESH_SENSOR_DATA_FORMAT_A

Sensor Data Format A

ESP_BLE_MESH_SENSOR_DATA_FORMAT_B

Sensor Data Format B

ESP_BLE_MESH_SENSOR_DATA_FORMAT_A_MPID_LEN

MPID length of Sensor Data Format A

ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID_LEN

MPID length of Sensor Data Format B

ESP_BLE_MESH_SENSOR_DATA_ZERO_LEN

Zero length of Sensor Data.
Note: The Length field is a 1-based uint7 value (valid range 0x0–0x7F, representing range of 1–127). The
value 0x7F represents a length of zero.

Espressif Systems 536
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_GET_SENSOR_DATA_FORMAT(_data)
Get format of the sensor data.

Note: Multiple sensor data may be concatenated. Make sure the _data pointer is updated before getting the
format of the corresponding sensor data.

Parameters
• _data -- Pointer to the start of the sensor data.

Returns Format of the sensor data.

ESP_BLE_MESH_GET_SENSOR_DATA_LENGTH(_data, _fmt)
Get length of the sensor data.

Note: Multiple sensor data may be concatenated. Make sure the _data pointer is updated before getting the
length of the corresponding sensor data.

Parameters
• _data -- Pointer to the start of the sensor data.
• _fmt -- Format of the sensor data.

Returns Length (zero-based) of the sensor data.

ESP_BLE_MESH_GET_SENSOR_DATA_PROPERTY_ID(_data, _fmt)
Get Sensor Property ID of the sensor data.

Note: Multiple sensor data may be concatenated. Make sure the _data pointer is updated before getting
Sensor Property ID of the corresponding sensor data.

Parameters
• _data -- Pointer to the start of the sensor data.
• _fmt -- Format of the sensor data.

Returns Sensor Property ID of the sensor data.

ESP_BLE_MESH_SENSOR_DATA_FORMAT_A_MPID(_len, _id)
Generate a MPID value for sensor data with Format A.

Note: 1. The Format field is 0b0 and indicates that Format A is used.
a. The Length field is a 1-based uint4 value (valid range 0x0–0xF, representing range of 1–16).
b. The Property ID is an 11-bit bit field representing 11 LSb of a Property ID.
c. This format may be used for Property Values that are not longer than 16 octets and for Property IDs less

than 0x0800.

Parameters
• _len -- Length of Sensor Raw value.
• _id -- Sensor Property ID.

Returns 2-octet MPID value for sensor data with Format A.

ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID(_len, _id)
Generate a MPID value for sensor data with Format B.

Note: 1. The Format field is 0b1 and indicates Format B is used.

Espressif Systems 537
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

a. The Length field is a 1-based uint7 value (valid range 0x0–0x7F, representing range of 1–127). The
value 0x7F represents a length of zero.

b. The Property ID is a 16-bit bit field representing a Property ID.
c. This format may be used for Property Values not longer than 128 octets and for any Property IDs. Prop-

erty values longer than 128 octets are not supported by the Sensor Status message.
d. Exclude the generated 1-octet value, the 2-octet Sensor Property ID

Parameters
• _len -- Length of Sensor Raw value.
• _id -- Sensor Property ID.

Returns 3-octet MPID value for sensor data with Format B.

Type Definitions

typedef void (*esp_ble_mesh_sensor_client_cb_t)(esp_ble_mesh_sensor_client_cb_event_t event,
esp_ble_mesh_sensor_client_cb_param_t *param)

Bluetooth Mesh Sensor Client Model function.
Sensor Client Model callback function type

Param event Event type
Param param Pointer to callback parameter

typedef void (*esp_ble_mesh_sensor_server_cb_t)(esp_ble_mesh_sensor_server_cb_event_t event,
esp_ble_mesh_sensor_server_cb_param_t *param)

Bluetooth Mesh Sensor Server Model function.
Sensor Server Model callback function type

Param event Event type
Param param Pointer to callback parameter

Enumerations

enum esp_ble_mesh_sensor_client_cb_event_t

This enum value is the event of Sensor Client Model
Values:

enumerator ESP_BLE_MESH_SENSOR_CLIENT_GET_STATE_EVT

enumerator ESP_BLE_MESH_SENSOR_CLIENT_SET_STATE_EVT

enumerator ESP_BLE_MESH_SENSOR_CLIENT_PUBLISH_EVT

enumerator ESP_BLE_MESH_SENSOR_CLIENT_TIMEOUT_EVT

enumerator ESP_BLE_MESH_SENSOR_CLIENT_EVT_MAX

enum esp_ble_mesh_sensor_sample_func

This enum value is value of Sensor Sampling Function
Values:

enumerator ESP_BLE_MESH_SAMPLE_FUNC_UNSPECIFIED

Espressif Systems 538
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_SAMPLE_FUNC_INSTANTANEOUS

enumerator ESP_BLE_MESH_SAMPLE_FUNC_ARITHMETIC_MEAN

enumerator ESP_BLE_MESH_SAMPLE_FUNC_RMS

enumerator ESP_BLE_MESH_SAMPLE_FUNC_MAXIMUM

enumerator ESP_BLE_MESH_SAMPLE_FUNC_MINIMUM

enumerator ESP_BLE_MESH_SAMPLE_FUNC_ACCUMULATED

enumerator ESP_BLE_MESH_SAMPLE_FUNC_COUNT

enum esp_ble_mesh_sensor_server_cb_event_t

This enum value is the event of Sensor Server Model
Values:

enumerator ESP_BLE_MESH_SENSOR_SERVER_STATE_CHANGE_EVT

i. When get_auto_rsp is set to ESP_BLE_MESH_SERVER_AUTO_RSP, no event will be callback
to the application layer when Sensor Get messages are received.

ii. When set_auto_rsp is set to ESP_BLE_MESH_SERVER_AUTO_RSP, this event will be callback
to the application layer when Sensor Set/Set Unack messages are received.

enumerator ESP_BLE_MESH_SENSOR_SERVER_RECV_GET_MSG_EVT
When get_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, this event will be callback to
the application layer when Sensor Get messages are received.

enumerator ESP_BLE_MESH_SENSOR_SERVER_RECV_SET_MSG_EVT
When set_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, this event will be callback to
the application layer when Sensor Set/Set Unack messages are received.

enumerator ESP_BLE_MESH_SENSOR_SERVER_EVT_MAX

Time and Scenes Client/Server Models

Header File
• components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_time_scene_model_api.h

Functions
esp_err_t esp_ble_mesh_register_time_scene_client_callback(esp_ble_mesh_time_scene_client_cb_t

callback)
Register BLE Mesh Time Scene Client Model callback.

Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

Espressif Systems 539
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_time_scene_model_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ble_mesh_time_scene_client_get_state(esp_ble_mesh_client_common_param_t
*params,
esp_ble_mesh_time_scene_client_get_state_t
*get_state)

Get the value of Time Scene Server Model states using the Time Scene Client Model get messages.

Note: If you want to know the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_time_scene_message_opcode_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• get_state -- [in] Pointer to time scene get message value. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_time_scene_client_set_state(esp_ble_mesh_client_common_param_t
*params,
esp_ble_mesh_time_scene_client_set_state_t
*set_state)

Set the value of Time Scene Server Model states using the Time Scene Client Model set messages.

Note: If you want to know the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_time_scene_message_opcode_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• set_state -- [in] Pointer to time scene set message value. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_register_time_scene_server_callback(esp_ble_mesh_time_scene_server_cb_t
callback)

Register BLE Mesh Time and Scenes Server Model callback.
Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

Unions

union esp_ble_mesh_time_scene_client_get_state_t
#include <esp_ble_mesh_time_scene_model_api.h> Time Scene Client Model get message union.

Public Members

esp_ble_mesh_scheduler_act_get_t scheduler_act_get

For ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_GET

union esp_ble_mesh_time_scene_client_set_state_t
#include <esp_ble_mesh_time_scene_model_api.h> Time Scene Client Model set message union.

Public Members

Espressif Systems 540
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_time_set_t time_set

For ESP_BLE_MESH_MODEL_OP_TIME_SET

esp_ble_mesh_time_zone_set_t time_zone_set

For ESP_BLE_MESH_MODEL_OP_TIME_ZONE_SET

esp_ble_mesh_tai_utc_delta_set_t tai_utc_delta_set

For ESP_BLE_MESH_MODEL_OP_TAI_UTC_DELTA_SET

esp_ble_mesh_time_role_set_t time_role_set

For ESP_BLE_MESH_MODEL_OP_TIME_ROLE_SET

esp_ble_mesh_scene_store_t scene_store

For ESP_BLE_MESH_MODEL_OP_SCENE_STORE&ESP_BLE_MESH_MODEL_OP_SCENE_STORE_UNACK

esp_ble_mesh_scene_recall_t scene_recall

For ESP_BLE_MESH_MODEL_OP_SCENE_RECALL&ESP_BLE_MESH_MODEL_OP_SCENE_RECALL_UNACK

esp_ble_mesh_scene_delete_t scene_delete

For ESP_BLE_MESH_MODEL_OP_SCENE_DELETE&ESP_BLE_MESH_MODEL_OP_SCENE_DELETE_UNACK

esp_ble_mesh_scheduler_act_set_t scheduler_act_set

For ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_SET &
ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_SET_UNACK

union esp_ble_mesh_time_scene_client_status_cb_t
#include <esp_ble_mesh_time_scene_model_api.h> Time Scene Client Model received message union.

Public Members

esp_ble_mesh_time_status_cb_t time_status

For ESP_BLE_MESH_MODEL_OP_TIME_STATUS

esp_ble_mesh_time_zone_status_cb_t time_zone_status

For ESP_BLE_MESH_MODEL_OP_TIME_ZONE_STATUS

esp_ble_mesh_tai_utc_delta_status_cb_t tai_utc_delta_status

For ESP_BLE_MESH_MODEL_OP_TAI_UTC_DELTA_STATUS

esp_ble_mesh_time_role_status_cb_t time_role_status

For ESP_BLE_MESH_MODEL_OP_TIME_ROLE_STATUS

esp_ble_mesh_scene_status_cb_t scene_status

For ESP_BLE_MESH_MODEL_OP_SCENE_STATUS

esp_ble_mesh_scene_register_status_cb_t scene_register_status

For ESP_BLE_MESH_MODEL_OP_SCENE_REGISTER_STATUS

Espressif Systems 541
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_scheduler_status_cb_t scheduler_status

For ESP_BLE_MESH_MODEL_OP_SCHEDULER_STATUS

esp_ble_mesh_scheduler_act_status_cb_t scheduler_act_status

For ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_STATUS

union esp_ble_mesh_time_scene_server_state_change_t
#include <esp_ble_mesh_time_scene_model_api.h> Time Scene Server Model state change value union.

Public Members

esp_ble_mesh_state_change_time_set_t time_set

The recv_op in ctx can be used to decide which state is changed. Time Set

esp_ble_mesh_state_change_time_status_t time_status

Time Status

esp_ble_mesh_state_change_time_zone_set_t time_zone_set

Time Zone Set

esp_ble_mesh_state_change_tai_utc_delta_set_t tai_utc_delta_set

TAI UTC Delta Set

esp_ble_mesh_state_change_time_role_set_t time_role_set

Time Role Set

esp_ble_mesh_state_change_scene_store_t scene_store

Scene Store

esp_ble_mesh_state_change_scene_recall_t scene_recall

Scene Recall

esp_ble_mesh_state_change_scene_delete_t scene_delete

Scene Delete

esp_ble_mesh_state_change_scheduler_act_set_t scheduler_act_set

Scheduler Action Set

union esp_ble_mesh_time_scene_server_recv_get_msg_t
#include <esp_ble_mesh_time_scene_model_api.h> Time Scene Server Model received get message union.

Public Members

esp_ble_mesh_server_recv_scheduler_act_get_t scheduler_act

Scheduler Action Get

union esp_ble_mesh_time_scene_server_recv_set_msg_t
#include <esp_ble_mesh_time_scene_model_api.h> Time Scene Server Model received set message union.

Espressif Systems 542
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_mesh_server_recv_time_set_t time

Time Set

esp_ble_mesh_server_recv_time_zone_set_t time_zone

Time Zone Set

esp_ble_mesh_server_recv_tai_utc_delta_set_t tai_utc_delta

TAI-UTC Delta Set

esp_ble_mesh_server_recv_time_role_set_t time_role

Time Role Set

esp_ble_mesh_server_recv_scene_store_t scene_store

Scene Store/Scene Store Unack

esp_ble_mesh_server_recv_scene_recall_t scene_recall

Scene Recall/Scene Recall Unack

esp_ble_mesh_server_recv_scene_delete_t scene_delete

Scene Delete/Scene Delete Unack

esp_ble_mesh_server_recv_scheduler_act_set_t scheduler_act

Scheduler Action Set/Scheduler Action Set Unack

union esp_ble_mesh_time_scene_server_recv_status_msg_t
#include <esp_ble_mesh_time_scene_model_api.h> Time Scene Server Model received status message union.

Public Members

esp_ble_mesh_server_recv_time_status_t time_status

Time Status

union esp_ble_mesh_time_scene_server_cb_value_t
#include <esp_ble_mesh_time_scene_model_api.h> Time Scene Server Model callback value union.

Public Members

esp_ble_mesh_time_scene_server_state_change_t state_change

ESP_BLE_MESH_TIME_SCENE_SERVER_STATE_CHANGE_EVT

esp_ble_mesh_time_scene_server_recv_get_msg_t get

ESP_BLE_MESH_TIME_SCENE_SERVER_RECV_GET_MSG_EVT

esp_ble_mesh_time_scene_server_recv_set_msg_t set

ESP_BLE_MESH_TIME_SCENE_SERVER_RECV_SET_MSG_EVT

Espressif Systems 543
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_time_scene_server_recv_status_msg_t status

ESP_BLE_MESH_TIME_SCENE_SERVER_RECV_STATUS_MSG_EVT

Structures

struct esp_ble_mesh_time_set_t
Bluetooth Mesh Time Scene Client Model Get and Set parameters structure.
Parameters of Time Set

Public Members

uint8_t tai_seconds[5]
The current TAI time in seconds

uint8_t sub_second
The sub-second time in units of 1/256 second

uint8_t uncertainty
The estimated uncertainty in 10-millisecond steps

uint16_t time_authority
0 = No Time Authority, 1 = Time Authority

uint16_t tai_utc_delta
Current difference between TAI and UTC in seconds

uint8_t time_zone_offset
The local time zone offset in 15-minute increments

struct esp_ble_mesh_time_zone_set_t
Parameters of Time Zone Set

Public Members

uint8_t time_zone_offset_new
Upcoming local time zone offset

uint8_t tai_zone_change[5]
TAI Seconds time of the upcoming Time Zone Offset change

struct esp_ble_mesh_tai_utc_delta_set_t
Parameters of TAI-UTC Delta Set

Public Members

uint16_t tai_utc_delta_new
Upcoming difference between TAI and UTC in seconds

Espressif Systems 544
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t padding
Always 0b0. Other values are Prohibited.

uint8_t tai_delta_change[5]
TAI Seconds time of the upcoming TAI-UTC Delta change

struct esp_ble_mesh_time_role_set_t
Parameter of Time Role Set

Public Members

uint8_t time_role
The Time Role for the element

struct esp_ble_mesh_scene_store_t
Parameter of Scene Store

Public Members

uint16_t scene_number
The number of scenes to be stored

struct esp_ble_mesh_scene_recall_t
Parameters of Scene Recall

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t scene_number
The number of scenes to be recalled

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_scene_delete_t
Parameter of Scene Delete

Espressif Systems 545
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t scene_number
The number of scenes to be deleted

struct esp_ble_mesh_scheduler_act_get_t
Parameter of Scheduler Action Get

Public Members

uint8_t index
Index of the Schedule Register entry to get

struct esp_ble_mesh_scheduler_act_set_t
Parameters of Scheduler Action Set

Public Members

uint64_t index
Index of the Schedule Register entry to set

uint64_t year
Scheduled year for the action

uint64_t month
Scheduled month for the action

uint64_t day
Scheduled day of the month for the action

uint64_t hour
Scheduled hour for the action

uint64_t minute
Scheduled minute for the action

uint64_t second
Scheduled second for the action

uint64_t day_of_week
Schedule days of the week for the action

uint64_t action
Action to be performed at the scheduled time

uint64_t trans_time
Transition time for this action

Espressif Systems 546
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t scene_number
Transition time for this action

struct esp_ble_mesh_time_status_cb_t
Bluetooth Mesh Time Scene Client Model Get and Set callback parameters structure.
Parameters of Time Status

Public Members

uint8_t tai_seconds[5]
The current TAI time in seconds

uint8_t sub_second
The sub-second time in units of 1/256 second

uint8_t uncertainty
The estimated uncertainty in 10-millisecond steps

uint16_t time_authority
0 = No Time Authority, 1 = Time Authority

uint16_t tai_utc_delta
Current difference between TAI and UTC in seconds

uint8_t time_zone_offset
The local time zone offset in 15-minute increments

struct esp_ble_mesh_time_zone_status_cb_t
Parameters of Time Zone Status

Public Members

uint8_t time_zone_offset_curr
Current local time zone offset

uint8_t time_zone_offset_new
Upcoming local time zone offset

uint8_t tai_zone_change[5]
TAI Seconds time of the upcoming Time Zone Offset change

struct esp_ble_mesh_tai_utc_delta_status_cb_t
Parameters of TAI-UTC Delta Status

Espressif Systems 547
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t tai_utc_delta_curr
Current difference between TAI and UTC in seconds

uint16_t padding_1
Always 0b0. Other values are Prohibited.

uint16_t tai_utc_delta_new
Upcoming difference between TAI and UTC in seconds

uint16_t padding_2
Always 0b0. Other values are Prohibited.

uint8_t tai_delta_change[5]
TAI Seconds time of the upcoming TAI-UTC Delta change

struct esp_ble_mesh_time_role_status_cb_t
Parameter of Time Role Status

Public Members

uint8_t time_role
The Time Role for the element

struct esp_ble_mesh_scene_status_cb_t
Parameters of Scene Status

Public Members

bool op_en
Indicate if optional parameters are included

uint8_t status_code
Status code of the last operation

uint16_t current_scene
Scene Number of the current scene

uint16_t target_scene
Scene Number of the target scene (optional)

uint8_t remain_time
Time to complete state transition (C.1)

struct esp_ble_mesh_scene_register_status_cb_t
Parameters of Scene Register Status

Espressif Systems 548
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t status_code
Status code for the previous operation

uint16_t current_scene
Scene Number of the current scene

struct net_buf_simple *scenes
A list of scenes stored within an element

struct esp_ble_mesh_scheduler_status_cb_t
Parameter of Scheduler Status

Public Members

uint16_t schedules
Bit field indicating defined Actions in the Schedule Register

struct esp_ble_mesh_scheduler_act_status_cb_t
Parameters of Scheduler Action Status

Public Members

uint64_t index
Enumerates (selects) a Schedule Register entry

uint64_t year
Scheduled year for the action

uint64_t month
Scheduled month for the action

uint64_t day
Scheduled day of the month for the action

uint64_t hour
Scheduled hour for the action

uint64_t minute
Scheduled minute for the action

uint64_t second
Scheduled second for the action

uint64_t day_of_week
Schedule days of the week for the action

Espressif Systems 549
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint64_t action
Action to be performed at the scheduled time

uint64_t trans_time
Transition time for this action

uint16_t scene_number
Transition time for this action

struct esp_ble_mesh_time_scene_client_cb_param_t
Time Scene Client Model callback parameters

Public Members

int error_code
Appropriate error code

esp_ble_mesh_client_common_param_t *params
The client common parameters.

esp_ble_mesh_time_scene_client_status_cb_t status_cb

The scene status message callback values

struct esp_ble_mesh_time_state_t
Parameters of Time state

Public Members

uint8_t tai_seconds[5]
The value of the TAI Seconds state

uint8_t subsecond
The value of the Subsecond field

uint8_t uncertainty
The value of the Uncertainty field

uint8_t time_zone_offset_curr
The value of the Time Zone Offset Current field

uint8_t time_zone_offset_new
The value of the Time Zone Offset New state

uint8_t tai_zone_change[5]
The value of the TAI of Zone Chaneg field

Espressif Systems 550
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t time_authority
The value of the Time Authority bit

uint16_t tai_utc_delta_curr
The value of the TAI-UTC Delta Current state

uint16_t tai_utc_delta_new
The value of the TAI-UTC Delta New state

uint8_t tai_delta_change[5]
The value of the TAI of Delta Change field

struct esp_ble_mesh_time_state_t::[anonymous] time
Parameters of the Time state

uint8_t time_role
The value of the Time Role state

struct esp_ble_mesh_time_srv_t
User data of Time Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Time Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_time_state_t *state
Parameters of the Time state

struct esp_ble_mesh_time_setup_srv_t
User data of Time Setup Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Time Setup Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_time_state_t *state
Parameters of the Time state

Espressif Systems 551
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_scene_register_t

a. Scene Store is an operation of storing values of a present state of an element.
b. The structure and meaning of the stored state is determined by a model. States to be stored are specified

by each model.
c. The Scene Store operation shall persistently store all values of all states marked as Stored with Scene for

all models present on all elements of a node.
d. If a model is extending another model, the extending model shall determine the Stored with Scene be-

havior of that model. Parameters of Scene Register state

Public Members

uint16_t scene_number
The value of the Scene Number

uint8_t scene_type
The value of the Scene Type

struct net_buf_simple *scene_value
Scene value may use a union to represent later, the union contains structures of all the model states which
can be stored in a scene. The value of the Scene Value

struct esp_ble_mesh_scenes_state_t
Parameters of Scenes state.
Scenes serve as memory banks for storage of states (e.g., a power level or a light level/color). Values of states
of an element can be stored as a scene and can be recalled later from the scene memory.
A scene is represented by a Scene Number, which is a 16-bit non-zero, mesh-wide value. (There can be a
maximum of 65535 scenes in a mesh network.) The meaning of a scene, as well as the state storage container
associated with it, are determined by a model.
The Scenes state change may start numerous parallel model transitions. In that case, each individual model
handles the transition internally.
The scene transition is defined as a group of individual model transitions started by a Scene Recall operation.
The scene transition is in progress when at least one transition from the group of individual model transitions
is in progress.

Public Members

const uint16_t scene_count
The Scenes state's scene count

esp_ble_mesh_scene_register_t *scenes
Parameters of the Scenes state

uint16_t current_scene
The Current Scene state is a 16-bit value that contains either the Scene Number of the currently active
scene or a value of 0x0000 when no scene is active.
When a Scene Store operation or a Scene Recall operation completes with success, the Current Scene
state value shall be to the Scene Number used during that operation.

Espressif Systems 552
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

When the Current Scene Number is deleted from a Scene Register state as a result of Scene Delete
operation, the Current Scene state shall be set to 0x0000.
When any of the element's state that is marked as“Stored with Scene”has changed not as a result of a
Scene Recall operation, the value of the Current Scene state shall be set to 0x0000.
When a scene transition is in progress, the value of the Current Scene state shall be set to 0x0000. The
value of the Current Scene state

uint16_t target_scene
The Target Scene state is a 16-bit value that contains the target Scene Number when a scene transition is
in progress.
When the scene transition is in progress and the target Scene Number is deleted from a Scene Register
state as a result of Scene Delete operation, the Target Scene state shall be set to 0x0000.
When the scene transition is in progress and a new Scene Number is stored in the Scene Register as a
result of Scene Store operation, the Target Scene state shall be set to the new Scene Number.
When the scene transition is not in progress, the value of the Target Scene state shall be set to 0x0000.
The value of the Target Scene state

uint8_t status_code
The status code of the last scene operation

bool in_progress
Indicate if the scene transition is in progress

struct esp_ble_mesh_scene_srv_t
User data of Scene Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Scene Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_scenes_state_t *state
Parameters of the Scenes state

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

esp_ble_mesh_state_transition_t transition

Parameters of state transition

struct esp_ble_mesh_scene_setup_srv_t
User data of Scene Setup Server Model

Espressif Systems 553
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_mesh_model_t *model
Pointer to the Scene Setup Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_scenes_state_t *state
Parameters of the Scenes state

struct esp_ble_mesh_schedule_register_t
Parameters of Scheduler Register state

Public Members

bool in_use
Indicate if the registered schedule is in use

uint64_t year
The value of Scheduled year for the action

uint64_t month
The value of Scheduled month for the action

uint64_t day
The value of Scheduled day of the month for the action

uint64_t hour
The value of Scheduled hour for the action

uint64_t minute
The value of Scheduled minute for the action

uint64_t second
The value of Scheduled second for the action

uint64_t day_of_week
The value of Schedule days of the week for the action

uint64_t action
The value of Action to be performed at the scheduled time

uint64_t trans_time
The value of Transition time for this action

uint16_t scene_number
The value of Scene Number to be used for some actions

Espressif Systems 554
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_scheduler_state_t
Parameters of Scheduler state

Public Members

const uint8_t schedule_count
Scheduler count

esp_ble_mesh_schedule_register_t *schedules
Up to 16 scheduled entries

struct esp_ble_mesh_scheduler_srv_t
User data of Scheduler Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Scheduler Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_scheduler_state_t *state
Parameters of the Scheduler state

struct esp_ble_mesh_scheduler_setup_srv_t
User data of Scheduler Setup Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Scheduler Setup Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_scheduler_state_t *state
Parameters of the Scheduler state

struct esp_ble_mesh_state_change_time_set_t
Parameters of Time Set state change event

Public Members

uint8_t tai_seconds[5]
The current TAI time in seconds

Espressif Systems 555
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t subsecond
The sub-second time in units of 1/256 second

uint8_t uncertainty
The estimated uncertainty in 10-millisecond steps

uint16_t time_authority
0 = No Time Authority, 1 = Time Authority

uint16_t tai_utc_delta_curr
Current difference between TAI and UTC in seconds

uint8_t time_zone_offset_curr
The local time zone offset in 15-minute increments

struct esp_ble_mesh_state_change_time_status_t
Parameters of Time Status state change event

Public Members

uint8_t tai_seconds[5]
The current TAI time in seconds

uint8_t subsecond
The sub-second time in units of 1/256 second

uint8_t uncertainty
The estimated uncertainty in 10-millisecond steps

uint16_t time_authority
0 = No Time Authority, 1 = Time Authority

uint16_t tai_utc_delta_curr
Current difference between TAI and UTC in seconds

uint8_t time_zone_offset_curr
The local time zone offset in 15-minute increments

struct esp_ble_mesh_state_change_time_zone_set_t
Parameters of Time Zone Set state change event

Public Members

uint8_t time_zone_offset_new
Upcoming local time zone offset

Espressif Systems 556
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t tai_zone_change[5]
TAI Seconds time of the upcoming Time Zone Offset change

struct esp_ble_mesh_state_change_tai_utc_delta_set_t
Parameters of TAI UTC Delta Set state change event

Public Members

uint16_t tai_utc_delta_new
Upcoming difference between TAI and UTC in seconds

uint8_t tai_delta_change[5]
TAI Seconds time of the upcoming TAI-UTC Delta change

struct esp_ble_mesh_state_change_time_role_set_t
Parameter of Time Role Set state change event

Public Members

uint8_t time_role
The Time Role for the element

struct esp_ble_mesh_state_change_scene_store_t
Parameter of Scene Store state change event

Public Members

uint16_t scene_number
The number of scenes to be stored

struct esp_ble_mesh_state_change_scene_recall_t
Parameter of Scene Recall state change event

Public Members

uint16_t scene_number
The number of scenes to be recalled

struct esp_ble_mesh_state_change_scene_delete_t
Parameter of Scene Delete state change event

Public Members

uint16_t scene_number
The number of scenes to be deleted

Espressif Systems 557
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_ble_mesh_state_change_scheduler_act_set_t
Parameter of Scheduler Action Set state change event

Public Members

uint64_t index
Index of the Schedule Register entry to set

uint64_t year
Scheduled year for the action

uint64_t month
Scheduled month for the action

uint64_t day
Scheduled day of the month for the action

uint64_t hour
Scheduled hour for the action

uint64_t minute
Scheduled minute for the action

uint64_t second
Scheduled second for the action

uint64_t day_of_week
Schedule days of the week for the action

uint64_t action
Action to be performed at the scheduled time

uint64_t trans_time
Transition time for this action

uint16_t scene_number
Scene number to be used for some actions

struct esp_ble_mesh_server_recv_scheduler_act_get_t
Context of the received Scheduler Action Get message

Public Members

uint8_t index
Index of the Schedule Register entry to get

struct esp_ble_mesh_server_recv_time_set_t
Context of the received Time Set message

Espressif Systems 558
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t tai_seconds[5]
The current TAI time in seconds

uint8_t subsecond
The sub-second time in units of 1/256 second

uint8_t uncertainty
The estimated uncertainty in 10-millisecond steps

uint16_t time_authority
0 = No Time Authority, 1 = Time Authority

uint16_t tai_utc_delta
Current difference between TAI and UTC in seconds

uint8_t time_zone_offset
The local time zone offset in 15-minute increments

struct esp_ble_mesh_server_recv_time_zone_set_t
Context of the received Time Zone Set message

Public Members

uint8_t time_zone_offset_new
Upcoming local time zone offset

uint8_t tai_zone_change[5]
TAI Seconds time of the upcoming Time Zone Offset change

struct esp_ble_mesh_server_recv_tai_utc_delta_set_t
Context of the received TAI UTC Delta Set message

Public Members

uint16_t tai_utc_delta_new
Upcoming difference between TAI and UTC in seconds

uint16_t padding
Always 0b0. Other values are Prohibited.

uint8_t tai_delta_change[5]
TAI Seconds time of the upcoming TAI-UTC Delta change

struct esp_ble_mesh_server_recv_time_role_set_t
Context of the received Time Role Set message

Espressif Systems 559
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t time_role
The Time Role for the element

struct esp_ble_mesh_server_recv_scene_store_t
Context of the received Scene Store message

Public Members

uint16_t scene_number
The number of scenes to be stored

struct esp_ble_mesh_server_recv_scene_recall_t
Context of the received Scene Recall message

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t scene_number
The number of scenes to be recalled

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_scene_delete_t
Context of the received Scene Delete message

Public Members

uint16_t scene_number
The number of scenes to be deleted

struct esp_ble_mesh_server_recv_scheduler_act_set_t
Context of the received Scheduler Action Set message

Espressif Systems 560
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint64_t index
Index of the Schedule Register entry to set

uint64_t year
Scheduled year for the action

uint64_t month
Scheduled month for the action

uint64_t day
Scheduled day of the month for the action

uint64_t hour
Scheduled hour for the action

uint64_t minute
Scheduled minute for the action

uint64_t second
Scheduled second for the action

uint64_t day_of_week
Schedule days of the week for the action

uint64_t action
Action to be performed at the scheduled time

uint64_t trans_time
Transition time for this action

uint16_t scene_number
Scene number to be used for some actions

struct esp_ble_mesh_server_recv_time_status_t
Context of the received Time Status message

Public Members

uint8_t tai_seconds[5]
The current TAI time in seconds

uint8_t subsecond
The sub-second time in units of 1/256 second

uint8_t uncertainty
The estimated uncertainty in 10-millisecond steps

Espressif Systems 561
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t time_authority
0 = No Time Authority, 1 = Time Authority

uint16_t tai_utc_delta
Current difference between TAI and UTC in seconds

uint8_t time_zone_offset
The local time zone offset in 15-minute increments

struct esp_ble_mesh_time_scene_server_cb_param_t
Time Scene Server Model callback parameters

Public Members

esp_ble_mesh_model_t *model
Pointer to Time and Scenes Server Models

esp_ble_mesh_msg_ctx_t ctx

Context of the received messages

esp_ble_mesh_time_scene_server_cb_value_t value

Value of the received Time and Scenes Messages

Macros
ESP_BLE_MESH_MODEL_TIME_CLI(cli_pub, cli_data)

Define a new Time Client Model.

Note: This API needs to be called for each element on which the application needs to have a Time Client
Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Time Client Model instance.
ESP_BLE_MESH_MODEL_SCENE_CLI(cli_pub, cli_data)

Define a new Scene Client Model.

Note: This API needs to be called for each element on which the application needs to have a Scene Client
Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Scene Client Model instance.

Espressif Systems 562
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_SCHEDULER_CLI(cli_pub, cli_data)
Define a new Scheduler Client Model.

Note: This API needs to be called for each element on which the application needs to have a Scheduler Client
Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Scheduler Client Model instance.

ESP_BLE_MESH_MODEL_TIME_SRV(srv_pub, srv_data)
Time Scene Server Models related context.
Define a new Time Server Model.

Note: 1. The Time Servermodel is a rootmodel. When thismodel is present on an Element, the corresponding
Time Setup Server model shall also be present.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_time_srv_t.

Returns New Time Server Model instance.

ESP_BLE_MESH_MODEL_TIME_SETUP_SRV(srv_data)
Define a new Time Setup Server Model.

Note: 1. The Time Setup Server model extends the Time Server model. Time is sensitive information that is
propagated across a mesh network.
a. Only an authorized Time Client should be allowed to change the Time and Time Role states. A dedicated

application key Bluetooth SIG Proprietary should be used on the Time Setup Server to restrict access to
the server to only authorized Time Clients.

b. This model does not support subscribing nor publishing.

Parameters
• srv_data -- Pointer to the unique struct esp_ble_mesh_time_setup_srv_t.

Returns New Time Setup Server Model instance.

ESP_BLE_MESH_MODEL_SCENE_SRV(srv_pub, srv_data)
Define a new Scene Server Model.

Note: 1. The Scene Server model is a root model. When this model is present on an Element, the corre-
sponding Scene Setup Server model shall also be present.
a. This model shall support model publication and model subscription.
b. The model may be present only on the Primary element of a node.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_scene_srv_t.

Espressif Systems 563
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns New Scene Server Model instance.

ESP_BLE_MESH_MODEL_SCENE_SETUP_SRV(srv_pub, srv_data)
Define a new Scene Setup Server Model.

Note: 1. The Scene Setup Server model extends the Scene Server model and the Generic Default Transition
Time Server model.
a. This model shall support model subscription.
b. The model may be present only on the Primary element of a node.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_scene_setup_srv_t.

Returns New Scene Setup Server Model instance.

ESP_BLE_MESH_MODEL_SCHEDULER_SRV(srv_pub, srv_data)
Define a new Scheduler Server Model.

Note: 1. The Scheduler Server model extends the Scene Server model. When this model is present on an
Element, the corresponding Scheduler Setup Server model shall also be present.
a. This model shall support model publication and model subscription.
b. The model may be present only on the Primary element of a node.
c. The model requires the Time Server model shall be present on the element.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_scheduler_srv_t.

Returns New Scheduler Server Model instance.

ESP_BLE_MESH_MODEL_SCHEDULER_SETUP_SRV(srv_pub, srv_data)
Define a new Scheduler Setup Server Model.

Note: 1. The Scheduler Setup Server model extends the Scheduler Server and the Scene Setup Server models.
a. This model shall support model subscription.
b. The model may be present only on the Primary element of a node.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_scheduler_setup_srv_t.

Returns New Scheduler Setup Server Model instance.

ESP_BLE_MESH_UNKNOWN_TAI_SECONDS

Unknown TAI Seconds

ESP_BLE_MESH_UNKNOWN_TAI_ZONE_CHANGE

Unknown TAI of Zone Change

ESP_BLE_MESH_UNKNOWN_TAI_DELTA_CHANGE

Unknown TAI of Delta Change

Espressif Systems 564
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_TAI_UTC_DELTA_MAX_VALUE

Maximum TAI-UTC Delta value

ESP_BLE_MESH_TAI_SECONDS_LEN

Length of TAI Seconds

ESP_BLE_MESH_TAI_OF_ZONE_CHANGE_LEN

Length of TAI of Zone Change

ESP_BLE_MESH_TAI_OF_DELTA_CHANGE_LEN

Length of TAI of Delta Change

ESP_BLE_MESH_INVALID_SCENE_NUMBER

Invalid Scene Number

ESP_BLE_MESH_SCENE_NUMBER_LEN

Length of the Scene Number

ESP_BLE_MESH_SCHEDULE_YEAR_ANY_YEAR

Any year of the Scheduled year

ESP_BLE_MESH_SCHEDULE_DAY_ANY_DAY

Any day of the Scheduled day

ESP_BLE_MESH_SCHEDULE_HOUR_ANY_HOUR

Any hour of the Scheduled hour

ESP_BLE_MESH_SCHEDULE_HOUR_ONCE_A_DAY

Any hour of the Scheduled Day

ESP_BLE_MESH_SCHEDULE_SEC_ANY_OF_HOUR

Any minute of the Scheduled hour

ESP_BLE_MESH_SCHEDULE_SEC_EVERY_15_MIN

Every 15 minutes of the Scheduled hour

ESP_BLE_MESH_SCHEDULE_SEC_EVERY_20_MIN

Every 20 minutes of the Scheduled hour

ESP_BLE_MESH_SCHEDULE_SEC_ONCE_AN_HOUR

Once of the Scheduled hour

ESP_BLE_MESH_SCHEDULE_SEC_ANY_OF_MIN

Any second of the Scheduled minute

ESP_BLE_MESH_SCHEDULE_SEC_EVERY_15_SEC

Every 15 seconds of the Scheduled minute

Espressif Systems 565
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_SCHEDULE_SEC_EVERY_20_SEC

Every 20 seconds of the Scheduled minute

ESP_BLE_MESH_SCHEDULE_SEC_ONCE_AN_MIN

Once of the Scheduled minute

ESP_BLE_MESH_SCHEDULE_ACT_TURN_OFF

Scheduled Action - Turn Off

ESP_BLE_MESH_SCHEDULE_ACT_TURN_ON

Scheduled Action - Turn On

ESP_BLE_MESH_SCHEDULE_ACT_SCENE_RECALL

Scheduled Action - Scene Recall

ESP_BLE_MESH_SCHEDULE_ACT_NO_ACTION

Scheduled Action - No Action

ESP_BLE_MESH_SCHEDULE_SCENE_NO_SCENE

Scheduled Scene - No Scene

ESP_BLE_MESH_SCHEDULE_ENTRY_MAX_INDEX

Maximum number of Scheduled entries

ESP_BLE_MESH_TIME_NONE

Time Role - None

ESP_BLE_MESH_TIME_AUTHORITY

Time Role - Mesh Time Authority

ESP_BLE_MESH_TIME_RELAY

Time Role - Mesh Time Relay

ESP_BLE_MESH_TIME_CLINET

Time Role - Mesh Time Client

ESP_BLE_MESH_SCENE_SUCCESS

Scene operation - Success

ESP_BLE_MESH_SCENE_REG_FULL

Scene operation - Scene Register Full

ESP_BLE_MESH_SCENE_NOT_FOUND

Scene operation - Scene Not Found

Type Definitions

Espressif Systems 566
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef void (*esp_ble_mesh_time_scene_client_cb_t)(esp_ble_mesh_time_scene_client_cb_event_t
event, esp_ble_mesh_time_scene_client_cb_param_t *param)

Bluetooth Mesh Time Scene Client Model function.
Time Scene Client Model callback function type

Param event Event type
Param param Pointer to callback parameter

typedef void (*esp_ble_mesh_time_scene_server_cb_t)(esp_ble_mesh_time_scene_server_cb_event_t
event, esp_ble_mesh_time_scene_server_cb_param_t *param)

Bluetooth Mesh Time and Scenes Server Model function.
Time Scene Server Model callback function type

Param event Event type
Param param Pointer to callback parameter

Enumerations

enum esp_ble_mesh_time_scene_client_cb_event_t

This enum value is the event of Time Scene Client Model
Values:

enumerator ESP_BLE_MESH_TIME_SCENE_CLIENT_GET_STATE_EVT

enumerator ESP_BLE_MESH_TIME_SCENE_CLIENT_SET_STATE_EVT

enumerator ESP_BLE_MESH_TIME_SCENE_CLIENT_PUBLISH_EVT

enumerator ESP_BLE_MESH_TIME_SCENE_CLIENT_TIMEOUT_EVT

enumerator ESP_BLE_MESH_TIME_SCENE_CLIENT_EVT_MAX

enum esp_ble_mesh_time_scene_server_cb_event_t

This enum value is the event of Time Scene Server Model
Values:

enumerator ESP_BLE_MESH_TIME_SCENE_SERVER_STATE_CHANGE_EVT

i. When get_auto_rsp is set to ESP_BLE_MESH_SERVER_AUTO_RSP, no event will be callback
to the application layer when Time Scene Get messages are received.

ii. When set_auto_rsp is set to ESP_BLE_MESH_SERVER_AUTO_RSP, this event will be callback
to the application layer when Time Scene Set/Set Unack messages are received.

enumerator ESP_BLE_MESH_TIME_SCENE_SERVER_RECV_GET_MSG_EVT
When get_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, this event will be callback to
the application layer when Time Scene Get messages are received.

enumerator ESP_BLE_MESH_TIME_SCENE_SERVER_RECV_SET_MSG_EVT
When set_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, this event will be callback to
the application layer when Time Scene Set/Set Unack messages are received.

Espressif Systems 567
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_TIME_SCENE_SERVER_RECV_STATUS_MSG_EVT
When status_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, this event will be callback
to the application layer when TIme Status message is received.

enumerator ESP_BLE_MESH_TIME_SCENE_SERVER_EVT_MAX

Lighting Client/Server Models

Header File
• components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_lighting_model_api.h

Functions
esp_err_t esp_ble_mesh_register_light_client_callback(esp_ble_mesh_light_client_cb_t

callback)
Register BLE Mesh Light Client Model callback.

Parameters callback -- [in] pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_light_client_get_state(esp_ble_mesh_client_common_param_t *params,
esp_ble_mesh_light_client_get_state_t *get_state)

Get the value of Light Server Model states using the Light Client Model get messages.

Note: If you want to know the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_light_message_opcode_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• get_state -- [in] Pointer of light get message value. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_light_client_set_state(esp_ble_mesh_client_common_param_t *params,
esp_ble_mesh_light_client_set_state_t *set_state)

Set the value of Light Server Model states using the Light Client Model set messages.

Note: If you want to know the opcodes and corresponding meanings accepted by this API, please refer to
esp_ble_mesh_light_message_opcode_t in esp_ble_mesh_defs.h

Parameters
• params -- [in] Pointer to BLE Mesh common client parameters.
• set_state -- [in] Pointer of light set message value. Shall not be set to NULL.

Returns ESP_OK on success or error code otherwise.

esp_err_t esp_ble_mesh_register_lighting_server_callback(esp_ble_mesh_lighting_server_cb_t
callback)

Register BLE Mesh Lighting Server Model callback.
Parameters callback -- [in] Pointer to the callback function.
Returns ESP_OK on success or error code otherwise.

Espressif Systems 568
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/models/include/esp_ble_mesh_lighting_model_api.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Unions

union esp_ble_mesh_light_client_get_state_t
#include <esp_ble_mesh_lighting_model_api.h> Lighting Client Model get message union.

Public Members

esp_ble_mesh_light_lc_property_get_t lc_property_get

For ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_GET

union esp_ble_mesh_light_client_set_state_t
#include <esp_ble_mesh_lighting_model_api.h> Lighting Client Model set message union.

Public Members

esp_ble_mesh_light_lightness_set_t lightness_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_SET_UNACK

esp_ble_mesh_light_lightness_linear_set_t lightness_linear_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LINEAR_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LINEAR_SET_UNACK

esp_ble_mesh_light_lightness_default_set_t lightness_default_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_DEFAULT_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_DEFAULT_SET_UNACK

esp_ble_mesh_light_lightness_range_set_t lightness_range_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_RANGE_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_RANGE_SET_UNACK

esp_ble_mesh_light_ctl_set_t ctl_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_SET&ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_SET_UNACK

esp_ble_mesh_light_ctl_temperature_set_t ctl_temperature_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_SET_UNACK

esp_ble_mesh_light_ctl_temperature_range_set_t ctl_temperature_range_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_RANGE_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_RANGE_SET_UNACK

esp_ble_mesh_light_ctl_default_set_t ctl_default_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_DEFAULT_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_DEFAULT_SET_UNACK

esp_ble_mesh_light_hsl_set_t hsl_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SET&ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SET_UNACK

Espressif Systems 569
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_light_hsl_hue_set_t hsl_hue_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_HUE_SET&ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_HUE_SET_UNACK

esp_ble_mesh_light_hsl_saturation_set_t hsl_saturation_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SATURATION_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SATURATION_SET_UNACK

esp_ble_mesh_light_hsl_default_set_t hsl_default_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_DEFAULT_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_DEFAULT_SET_UNACK

esp_ble_mesh_light_hsl_range_set_t hsl_range_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_RANGE_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_RANGE_SET_UNACK

esp_ble_mesh_light_xyl_set_t xyl_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_SET&ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_SET_UNACK

esp_ble_mesh_light_xyl_default_set_t xyl_default_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_DEFAULT_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_DEFAULT_SET_UNACK

esp_ble_mesh_light_xyl_range_set_t xyl_range_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_RANGE_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_RANGE_SET_UNACK

esp_ble_mesh_light_lc_mode_set_t lc_mode_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_LC_MODE_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_MODE_SET_UNACK

esp_ble_mesh_light_lc_om_set_t lc_om_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_LC_OM_SET&ESP_BLE_MESH_MODEL_OP_LIGHT_LC_OM_SET_UNACK

esp_ble_mesh_light_lc_light_onoff_set_t lc_light_onoff_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_LC_LIGHT_ONOFF_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_LIGHT_ONOFF_SET_UNACK

esp_ble_mesh_light_lc_property_set_t lc_property_set

For ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_SET &
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_SET_UNACK

union esp_ble_mesh_light_client_status_cb_t
#include <esp_ble_mesh_lighting_model_api.h> Lighting Client Model received message union.

Public Members

esp_ble_mesh_light_lightness_status_cb_t lightness_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_STATUS

Espressif Systems 570
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_light_lightness_linear_status_cb_t lightness_linear_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LINEAR_STATUS

esp_ble_mesh_light_lightness_last_status_cb_t lightness_last_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LAST_STATUS

esp_ble_mesh_light_lightness_default_status_cb_t lightness_default_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_DEFAULT_STATUS

esp_ble_mesh_light_lightness_range_status_cb_t lightness_range_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_RANGE_STATUS

esp_ble_mesh_light_ctl_status_cb_t ctl_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_STATUS

esp_ble_mesh_light_ctl_temperature_status_cb_t ctl_temperature_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_STATUS

esp_ble_mesh_light_ctl_temperature_range_status_cb_t ctl_temperature_range_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_RANGE_STATUS

esp_ble_mesh_light_ctl_default_status_cb_t ctl_default_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_DEFAULT_STATUS

esp_ble_mesh_light_hsl_status_cb_t hsl_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_STATUS

esp_ble_mesh_light_hsl_target_status_cb_t hsl_target_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_TARGET_STATUS

esp_ble_mesh_light_hsl_hue_status_cb_t hsl_hue_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_HUE_STATUS

esp_ble_mesh_light_hsl_saturation_status_cb_t hsl_saturation_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SATURATION_STATUS

esp_ble_mesh_light_hsl_default_status_cb_t hsl_default_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_DEFAULT_STATUS

esp_ble_mesh_light_hsl_range_status_cb_t hsl_range_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_RANGE_STATUS

esp_ble_mesh_light_xyl_status_cb_t xyl_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_STATUS

esp_ble_mesh_light_xyl_target_status_cb_t xyl_target_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_TARGET_STATUS

Espressif Systems 571
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_light_xyl_default_status_cb_t xyl_default_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_DEFAULT_STATUS

esp_ble_mesh_light_xyl_range_status_cb_t xyl_range_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_RANGE_STATUS

esp_ble_mesh_light_lc_mode_status_cb_t lc_mode_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_LC_MODE_STATUS

esp_ble_mesh_light_lc_om_status_cb_t lc_om_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_LC_OM_STATUS

esp_ble_mesh_light_lc_light_onoff_status_cb_t lc_light_onoff_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_LC_LIGHT_ONOFF_STATUS

esp_ble_mesh_light_lc_property_status_cb_t lc_property_status

For ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_STATUS

union esp_ble_mesh_lighting_server_state_change_t
#include <esp_ble_mesh_lighting_model_api.h> Lighting Server Model state change value union.

Public Members

esp_ble_mesh_state_change_light_lightness_set_t lightness_set

The recv_op in ctx can be used to decide which state is changed. Light Lightness Set

esp_ble_mesh_state_change_light_lightness_linear_set_t lightness_linear_set

Light Lightness Linear Set

esp_ble_mesh_state_change_light_lightness_default_set_t lightness_default_set

Light Lightness Default Set

esp_ble_mesh_state_change_light_lightness_range_set_t lightness_range_set

Light Lightness Range Set

esp_ble_mesh_state_change_light_ctl_set_t ctl_set

Light CTL Set

esp_ble_mesh_state_change_light_ctl_temperature_set_t ctl_temp_set

Light CTL Temperature Set

esp_ble_mesh_state_change_light_ctl_temperature_range_set_t ctl_temp_range_set

Light CTL Temperature Range Set

esp_ble_mesh_state_change_light_ctl_default_set_t ctl_default_set

Light CTL Default Set

Espressif Systems 572
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_state_change_light_hsl_set_t hsl_set

Light HSL Set

esp_ble_mesh_state_change_light_hsl_hue_set_t hsl_hue_set

Light HSL Hue Set

esp_ble_mesh_state_change_light_hsl_saturation_set_t hsl_saturation_set

Light HSL Saturation Set

esp_ble_mesh_state_change_light_hsl_default_set_t hsl_default_set

Light HSL Default Set

esp_ble_mesh_state_change_light_hsl_range_set_t hsl_range_set

Light HSL Range Set

esp_ble_mesh_state_change_light_xyl_set_t xyl_set

Light xyL Set

esp_ble_mesh_state_change_light_xyl_default_set_t xyl_default_set

Light xyL Default Set

esp_ble_mesh_state_change_light_xyl_range_set_t xyl_range_set

Light xyL Range Set

esp_ble_mesh_state_change_light_lc_mode_set_t lc_mode_set

Light LC Mode Set

esp_ble_mesh_state_change_light_lc_om_set_t lc_om_set

Light LC Occupancy Mode Set

esp_ble_mesh_state_change_light_lc_light_onoff_set_t lc_light_onoff_set

Light LC Light OnOff Set

esp_ble_mesh_state_change_light_lc_property_set_t lc_property_set

Light LC Property Set

esp_ble_mesh_state_change_sensor_status_t sensor_status

Sensor Status

union esp_ble_mesh_lighting_server_recv_get_msg_t
#include <esp_ble_mesh_lighting_model_api.h> Lighting Server Model received get message union.

Public Members

esp_ble_mesh_server_recv_light_lc_property_get_t lc_property

Light LC Property Get

union esp_ble_mesh_lighting_server_recv_set_msg_t
#include <esp_ble_mesh_lighting_model_api.h> Lighting Server Model received set message union.

Espressif Systems 573
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_mesh_server_recv_light_lightness_set_t lightness

Light Lightness Set/Light Lightness Set Unack

esp_ble_mesh_server_recv_light_lightness_linear_set_t lightness_linear

Light Lightness Linear Set/Light Lightness Linear Set Unack

esp_ble_mesh_server_recv_light_lightness_default_set_t lightness_default

Light Lightness Default Set/Light Lightness Default Set Unack

esp_ble_mesh_server_recv_light_lightness_range_set_t lightness_range

Light Lightness Range Set/Light Lightness Range Set Unack

esp_ble_mesh_server_recv_light_ctl_set_t ctl

Light CTL Set/Light CTL Set Unack

esp_ble_mesh_server_recv_light_ctl_temperature_set_t ctl_temp

Light CTL Temperature Set/Light CTL Temperature Set Unack

esp_ble_mesh_server_recv_light_ctl_temperature_range_set_t ctl_temp_range

Light CTL Temperature Range Set/Light CTL Temperature Range Set Unack

esp_ble_mesh_server_recv_light_ctl_default_set_t ctl_default

Light CTL Default Set/Light CTL Default Set Unack

esp_ble_mesh_server_recv_light_hsl_set_t hsl

Light HSL Set/Light HSL Set Unack

esp_ble_mesh_server_recv_light_hsl_hue_set_t hsl_hue

Light HSL Hue Set/Light HSL Hue Set Unack

esp_ble_mesh_server_recv_light_hsl_saturation_set_t hsl_saturation

Light HSL Saturation Set/Light HSL Saturation Set Unack

esp_ble_mesh_server_recv_light_hsl_default_set_t hsl_default

Light HSL Default Set/Light HSL Default Set Unack

esp_ble_mesh_server_recv_light_hsl_range_set_t hsl_range

Light HSL Range Set/Light HSL Range Set Unack

esp_ble_mesh_server_recv_light_xyl_set_t xyl

Light xyL Set/Light xyL Set Unack

esp_ble_mesh_server_recv_light_xyl_default_set_t xyl_default

Light xyL Default Set/Light xyL Default Set Unack

esp_ble_mesh_server_recv_light_xyl_range_set_t xyl_range

Light xyL Range Set/Light xyL Range Set Unack

Espressif Systems 574
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_server_recv_light_lc_mode_set_t lc_mode

Light LC Mode Set/Light LC Mode Set Unack

esp_ble_mesh_server_recv_light_lc_om_set_t lc_om

Light LC OM Set/Light LC OM Set Unack

esp_ble_mesh_server_recv_light_lc_light_onoff_set_t lc_light_onoff

Light LC Light OnOff Set/Light LC Light OnOff Set Unack

esp_ble_mesh_server_recv_light_lc_property_set_t lc_property

Light LC Property Set/Light LC Property Set Unack

union esp_ble_mesh_lighting_server_recv_status_msg_t
#include <esp_ble_mesh_lighting_model_api.h> Lighting Server Model received status message union.

Public Members

esp_ble_mesh_server_recv_sensor_status_t sensor_status

Sensor Status

union esp_ble_mesh_lighting_server_cb_value_t
#include <esp_ble_mesh_lighting_model_api.h> Lighting Server Model callback value union.

Public Members

esp_ble_mesh_lighting_server_state_change_t state_change

ESP_BLE_MESH_LIGHTING_SERVER_STATE_CHANGE_EVT

esp_ble_mesh_lighting_server_recv_get_msg_t get

ESP_BLE_MESH_LIGHTING_SERVER_RECV_GET_MSG_EVT

esp_ble_mesh_lighting_server_recv_set_msg_t set

ESP_BLE_MESH_LIGHTING_SERVER_RECV_SET_MSG_EVT

esp_ble_mesh_lighting_server_recv_status_msg_t status

ESP_BLE_MESH_LIGHTING_SERVER_RECV_STATUS_MSG_EVT

Structures

struct esp_ble_mesh_light_lightness_set_t
Bluetooth Mesh Light Lightness Client Model Get and Set parameters structure.
Parameters of Light Lightness Set

Public Members

Espressif Systems 575
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool op_en
Indicate if optional parameters are included

uint16_t lightness
Target value of light lightness actual state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_light_lightness_linear_set_t
Parameters of Light Lightness Linear Set

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t lightness
Target value of light lightness linear state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_light_lightness_default_set_t
Parameter of Light Lightness Default Set

Public Members

uint16_t lightness
The value of the Light Lightness Default state

struct esp_ble_mesh_light_lightness_range_set_t
Parameters of Light Lightness Range Set

Espressif Systems 576
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t range_min
Value of range min field of light lightness range state

uint16_t range_max
Value of range max field of light lightness range state

struct esp_ble_mesh_light_ctl_set_t
Parameters of Light CTL Set

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t ctl_lightness
Target value of light ctl lightness state

uint16_t ctl_temperatrue
Target value of light ctl temperature state

int16_t ctl_delta_uv
Target value of light ctl delta UV state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_light_ctl_temperature_set_t
Parameters of Light CTL Temperature Set

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t ctl_temperatrue
Target value of light ctl temperature state

int16_t ctl_delta_uv
Target value of light ctl delta UV state

Espressif Systems 577
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_light_ctl_temperature_range_set_t
Parameters of Light CTL Temperature Range Set

Public Members

uint16_t range_min
Value of temperature range min field of light ctl temperature range state

uint16_t range_max
Value of temperature range max field of light ctl temperature range state

struct esp_ble_mesh_light_ctl_default_set_t
Parameters of Light CTL Default Set

Public Members

uint16_t lightness
Value of light lightness default state

uint16_t temperature
Value of light temperature default state

int16_t delta_uv
Value of light delta UV default state

struct esp_ble_mesh_light_hsl_set_t
Parameters of Light HSL Set

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t hsl_lightness
Target value of light hsl lightness state

Espressif Systems 578
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t hsl_hue
Target value of light hsl hue state

uint16_t hsl_saturation
Target value of light hsl saturation state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_light_hsl_hue_set_t
Parameters of Light HSL Hue Set

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t hue
Target value of light hsl hue state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_light_hsl_saturation_set_t
Parameters of Light HSL Saturation Set

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t saturation
Target value of light hsl hue state

Espressif Systems 579
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_light_hsl_default_set_t
Parameters of Light HSL Default Set

Public Members

uint16_t lightness
Value of light lightness default state

uint16_t hue
Value of light hue default state

uint16_t saturation
Value of light saturation default state

struct esp_ble_mesh_light_hsl_range_set_t
Parameters of Light HSL Range Set

Public Members

uint16_t hue_range_min
Value of hue range min field of light hsl hue range state

uint16_t hue_range_max
Value of hue range max field of light hsl hue range state

uint16_t saturation_range_min
Value of saturation range min field of light hsl saturation range state

uint16_t saturation_range_max
Value of saturation range max field of light hsl saturation range state

struct esp_ble_mesh_light_xyl_set_t
Parameters of Light xyL Set

Public Members

Espressif Systems 580
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool op_en
Indicate whether optional parameters included

uint16_t xyl_lightness
The target value of the Light xyL Lightness state

uint16_t xyl_x
The target value of the Light xyL x state

uint16_t xyl_y
The target value of the Light xyL y state

uint8_t tid
Transaction Identifier

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_light_xyl_default_set_t
Parameters of Light xyL Default Set

Public Members

uint16_t lightness
The value of the Light Lightness Default state

uint16_t xyl_x
The value of the Light xyL x Default state

uint16_t xyl_y
The value of the Light xyL y Default state

struct esp_ble_mesh_light_xyl_range_set_t
Parameters of Light xyL Range Set

Public Members

uint16_t xyl_x_range_min
The value of the xyL x Range Min field of the Light xyL x Range state

uint16_t xyl_x_range_max
The value of the xyL x Range Max field of the Light xyL x Range state

Espressif Systems 581
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t xyl_y_range_min
The value of the xyL y Range Min field of the Light xyL y Range state

uint16_t xyl_y_range_max
The value of the xyL y Range Max field of the Light xyL y Range state

struct esp_ble_mesh_light_lc_mode_set_t
Parameter of Light LC Mode Set

Public Members

uint8_t mode
The target value of the Light LC Mode state

struct esp_ble_mesh_light_lc_om_set_t
Parameter of Light LC OM Set

Public Members

uint8_t mode
The target value of the Light LC Occupancy Mode state

struct esp_ble_mesh_light_lc_light_onoff_set_t
Parameters of Light LC Light OnOff Set

Public Members

bool op_en
Indicate whether optional parameters included

uint8_t light_onoff
The target value of the Light LC Light OnOff state

uint8_t tid
Transaction Identifier

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_light_lc_property_get_t
Parameter of Light LC Property Get

Espressif Systems 582
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t property_id
Property ID identifying a Light LC Property

struct esp_ble_mesh_light_lc_property_set_t
Parameters of Light LC Property Set

Public Members

uint16_t property_id
Property ID identifying a Light LC Property

struct net_buf_simple *property_value
Raw value for the Light LC Property

struct esp_ble_mesh_light_lightness_status_cb_t
Bluetooth Mesh Light Lightness Client Model Get and Set callback parameters structure.
Parameters of Light Lightness Status

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t present_lightness
Current value of light lightness actual state

uint16_t target_lightness
Target value of light lightness actual state (optional)

uint8_t remain_time
Time to complete state transition (C.1)

struct esp_ble_mesh_light_lightness_linear_status_cb_t
Parameters of Light Lightness Linear Status

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t present_lightness
Current value of light lightness linear state

Espressif Systems 583
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t target_lightness
Target value of light lightness linear state (optional)

uint8_t remain_time
Time to complete state transition (C.1)

struct esp_ble_mesh_light_lightness_last_status_cb_t
Parameter of Light Lightness Last Status

Public Members

uint16_t lightness
The value of the Light Lightness Last state

struct esp_ble_mesh_light_lightness_default_status_cb_t
Parameter of Light Lightness Default Status

Public Members

uint16_t lightness
The value of the Light Lightness default State

struct esp_ble_mesh_light_lightness_range_status_cb_t
Parameters of Light Lightness Range Status

Public Members

uint8_t status_code
Status Code for the request message

uint16_t range_min
Value of range min field of light lightness range state

uint16_t range_max
Value of range max field of light lightness range state

struct esp_ble_mesh_light_ctl_status_cb_t
Parameters of Light CTL Status

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t present_ctl_lightness
Current value of light ctl lightness state

Espressif Systems 584
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t present_ctl_temperature
Current value of light ctl temperature state

uint16_t target_ctl_lightness
Target value of light ctl lightness state (optional)

uint16_t target_ctl_temperature
Target value of light ctl temperature state (C.1)

uint8_t remain_time
Time to complete state transition (C.1)

struct esp_ble_mesh_light_ctl_temperature_status_cb_t
Parameters of Light CTL Temperature Status

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t present_ctl_temperature
Current value of light ctl temperature state

uint16_t present_ctl_delta_uv
Current value of light ctl delta UV state

uint16_t target_ctl_temperature
Target value of light ctl temperature state (optional)

uint16_t target_ctl_delta_uv
Target value of light ctl delta UV state (C.1)

uint8_t remain_time
Time to complete state transition (C.1)

struct esp_ble_mesh_light_ctl_temperature_range_status_cb_t
Parameters of Light CTL Temperature Range Status

Public Members

uint8_t status_code
Status code for the request message

uint16_t range_min
Value of temperature range min field of light ctl temperature range state

Espressif Systems 585
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t range_max
Value of temperature range max field of light ctl temperature range state

struct esp_ble_mesh_light_ctl_default_status_cb_t
Parameters of Light CTL Default Status

Public Members

uint16_t lightness
Value of light lightness default state

uint16_t temperature
Value of light temperature default state

int16_t delta_uv
Value of light delta UV default state

struct esp_ble_mesh_light_hsl_status_cb_t
Parameters of Light HSL Status

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t hsl_lightness
Current value of light hsl lightness state

uint16_t hsl_hue
Current value of light hsl hue state

uint16_t hsl_saturation
Current value of light hsl saturation state

uint8_t remain_time
Time to complete state transition (optional)

struct esp_ble_mesh_light_hsl_target_status_cb_t
Parameters of Light HSL Target Status

Public Members

bool op_en
Indicate if optional parameters are included

Espressif Systems 586
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t hsl_lightness_target
Target value of light hsl lightness state

uint16_t hsl_hue_target
Target value of light hsl hue state

uint16_t hsl_saturation_target
Target value of light hsl saturation state

uint8_t remain_time
Time to complete state transition (optional)

struct esp_ble_mesh_light_hsl_hue_status_cb_t
Parameters of Light HSL Hue Status

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t present_hue
Current value of light hsl hue state

uint16_t target_hue
Target value of light hsl hue state (optional)

uint8_t remain_time
Time to complete state transition (C.1)

struct esp_ble_mesh_light_hsl_saturation_status_cb_t
Parameters of Light HSL Saturation Status

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t present_saturation
Current value of light hsl saturation state

uint16_t target_saturation
Target value of light hsl saturation state (optional)

uint8_t remain_time
Time to complete state transition (C.1)

struct esp_ble_mesh_light_hsl_default_status_cb_t
Parameters of Light HSL Default Status

Espressif Systems 587
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t lightness
Value of light lightness default state

uint16_t hue
Value of light hue default state

uint16_t saturation
Value of light saturation default state

struct esp_ble_mesh_light_hsl_range_status_cb_t
Parameters of Light HSL Range Status

Public Members

uint8_t status_code
Status code for the request message

uint16_t hue_range_min
Value of hue range min field of light hsl hue range state

uint16_t hue_range_max
Value of hue range max field of light hsl hue range state

uint16_t saturation_range_min
Value of saturation range min field of light hsl saturation range state

uint16_t saturation_range_max
Value of saturation range max field of light hsl saturation range state

struct esp_ble_mesh_light_xyl_status_cb_t
Parameters of Light xyL Status

Public Members

bool op_en
Indicate whether optional parameters included

uint16_t xyl_lightness
The present value of the Light xyL Lightness state

uint16_t xyl_x
The present value of the Light xyL x state

uint16_t xyl_y
The present value of the Light xyL y state

Espressif Systems 588
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t remain_time
Time to complete state transition (optional)

struct esp_ble_mesh_light_xyl_target_status_cb_t
Parameters of Light xyL Target Status

Public Members

bool op_en
Indicate whether optional parameters included

uint16_t target_xyl_lightness
The target value of the Light xyL Lightness state

uint16_t target_xyl_x
The target value of the Light xyL x state

uint16_t target_xyl_y
The target value of the Light xyL y state

uint8_t remain_time
Time to complete state transition (optional)

struct esp_ble_mesh_light_xyl_default_status_cb_t
Parameters of Light xyL Default Status

Public Members

uint16_t lightness
The value of the Light Lightness Default state

uint16_t xyl_x
The value of the Light xyL x Default state

uint16_t xyl_y
The value of the Light xyL y Default state

struct esp_ble_mesh_light_xyl_range_status_cb_t
Parameters of Light xyL Range Status

Public Members

uint8_t status_code
Status Code for the requesting message

Espressif Systems 589
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t xyl_x_range_min
The value of the xyL x Range Min field of the Light xyL x Range state

uint16_t xyl_x_range_max
The value of the xyL x Range Max field of the Light xyL x Range state

uint16_t xyl_y_range_min
The value of the xyL y Range Min field of the Light xyL y Range state

uint16_t xyl_y_range_max
The value of the xyL y Range Max field of the Light xyL y Range state

struct esp_ble_mesh_light_lc_mode_status_cb_t
Parameter of Light LC Mode Status

Public Members

uint8_t mode
The present value of the Light LC Mode state

struct esp_ble_mesh_light_lc_om_status_cb_t
Parameter of Light LC OM Status

Public Members

uint8_t mode
The present value of the Light LC Occupancy Mode state

struct esp_ble_mesh_light_lc_light_onoff_status_cb_t
Parameters of Light LC Light OnOff Status

Public Members

bool op_en
Indicate whether optional parameters included

uint8_t present_light_onoff
The present value of the Light LC Light OnOff state

uint8_t target_light_onoff
The target value of the Light LC Light OnOff state (Optional)

uint8_t remain_time
Time to complete state transition (C.1)

struct esp_ble_mesh_light_lc_property_status_cb_t
Parameters of Light LC Property Status

Espressif Systems 590
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t property_id
Property ID identifying a Light LC Property

struct net_buf_simple *property_value
Raw value for the Light LC Property

struct esp_ble_mesh_light_client_cb_param_t
Lighting Client Model callback parameters

Public Members

int error_code
Appropriate error code

esp_ble_mesh_client_common_param_t *params
The client common parameters.

esp_ble_mesh_light_client_status_cb_t status_cb

The light status message callback values

struct esp_ble_mesh_light_lightness_state_t
Parameters of Light Lightness state

Public Members

uint16_t lightness_linear
The present value of Light Lightness Linear state

uint16_t target_lightness_linear
The target value of Light Lightness Linear state

uint16_t lightness_actual
The present value of Light Lightness Actual state

uint16_t target_lightness_actual
The target value of Light Lightness Actual state

uint16_t lightness_last
The value of Light Lightness Last state

uint16_t lightness_default
The value of Light Lightness Default state

uint8_t status_code
The status code of setting Light Lightness Range state

Espressif Systems 591
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t lightness_range_min
The minimum value of Light Lightness Range state

uint16_t lightness_range_max
The maximum value of Light Lightness Range state

struct esp_ble_mesh_light_lightness_srv_t
User data of Light Lightness Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting Lightness Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_lightness_state_t *state
Parameters of the Light Lightness state

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

esp_ble_mesh_state_transition_t actual_transition

Parameters of state transition

esp_ble_mesh_state_transition_t linear_transition

Parameters of state transition

int32_t tt_delta_lightness_actual
Delta change value of lightness actual state transition

int32_t tt_delta_lightness_linear
Delta change value of lightness linear state transition

struct esp_ble_mesh_light_lightness_setup_srv_t
User data of Light Lightness Setup Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting Lightness Setup Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

Espressif Systems 592
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_light_lightness_state_t *state
Parameters of the Light Lightness state

struct esp_ble_mesh_light_ctl_state_t
Parameters of Light CTL state

Public Members

uint16_t lightness
The present value of Light CTL Lightness state

uint16_t target_lightness
The target value of Light CTL Lightness state

uint16_t temperature
The present value of Light CTL Temperature state

uint16_t target_temperature
The target value of Light CTL Temperature state

int16_t delta_uv
The present value of Light CTL Delta UV state

int16_t target_delta_uv
The target value of Light CTL Delta UV state

uint8_t status_code
The statue code of setting Light CTL Temperature Range state

uint16_t temperature_range_min
The minimum value of Light CTL Temperature Range state

uint16_t temperature_range_max
The maximum value of Light CTL Temperature Range state

uint16_t lightness_default
The value of Light Lightness Default state

uint16_t temperature_default
The value of Light CTL Temperature Default state

int16_t delta_uv_default
The value of Light CTL Delta UV Default state

struct esp_ble_mesh_light_ctl_srv_t
User data of Light CTL Server Model

Espressif Systems 593
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting CTL Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_ctl_state_t *state
Parameters of the Light CTL state

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

esp_ble_mesh_state_transition_t transition

Parameters of state transition

int32_t tt_delta_lightness
Delta change value of lightness state transition

int32_t tt_delta_temperature
Delta change value of temperature state transition

int32_t tt_delta_delta_uv
Delta change value of delta uv state transition

struct esp_ble_mesh_light_ctl_setup_srv_t
User data of Light CTL Setup Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting CTL Setup Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_ctl_state_t *state
Parameters of the Light CTL state

struct esp_ble_mesh_light_ctl_temp_srv_t
User data of Light CTL Temperature Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting CTL Temperature Server Model. Initialized internally.

Espressif Systems 594
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_ctl_state_t *state
Parameters of the Light CTL state

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

esp_ble_mesh_state_transition_t transition

Parameters of state transition

int32_t tt_delta_temperature
Delta change value of temperature state transition

int32_t tt_delta_delta_uv
Delta change value of delta uv state transition

struct esp_ble_mesh_light_hsl_state_t
Parameters of Light HSL state

Public Members

uint16_t lightness
The present value of Light HSL Lightness state

uint16_t target_lightness
The target value of Light HSL Lightness state

uint16_t hue
The present value of Light HSL Hue state

uint16_t target_hue
The target value of Light HSL Hue state

uint16_t saturation
The present value of Light HSL Saturation state

uint16_t target_saturation
The target value of Light HSL Saturation state

uint16_t lightness_default
The value of Light Lightness Default state

uint16_t hue_default
The value of Light HSL Hue Default state

Espressif Systems 595
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t saturation_default
The value of Light HSL Saturation Default state

uint8_t status_code
The status code of setting Light HSL Hue & Saturation Range state

uint16_t hue_range_min
The minimum value of Light HSL Hue Range state

uint16_t hue_range_max
The maximum value of Light HSL Hue Range state

uint16_t saturation_range_min
The minimum value of Light HSL Saturation state

uint16_t saturation_range_max
The maximum value of Light HSL Saturation state

struct esp_ble_mesh_light_hsl_srv_t
User data of Light HSL Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting HSL Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_hsl_state_t *state
Parameters of the Light HSL state

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

esp_ble_mesh_state_transition_t transition

Parameters of state transition

int32_t tt_delta_lightness
Delta change value of lightness state transition

int32_t tt_delta_hue
Delta change value of hue state transition

int32_t tt_delta_saturation
Delta change value of saturation state transition

struct esp_ble_mesh_light_hsl_setup_srv_t
User data of Light HSL Setup Server Model

Espressif Systems 596
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting HSL Setup Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_hsl_state_t *state
Parameters of the Light HSL state

struct esp_ble_mesh_light_hsl_hue_srv_t
User data of Light HSL Hue Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting HSL Hue Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_hsl_state_t *state
Parameters of the Light HSL state

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

esp_ble_mesh_state_transition_t transition

Parameters of state transition

int32_t tt_delta_hue
Delta change value of hue state transition

struct esp_ble_mesh_light_hsl_sat_srv_t
User data of Light HSL Saturation Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting HSL Saturation Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_hsl_state_t *state
Parameters of the Light HSL state

Espressif Systems 597
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

esp_ble_mesh_state_transition_t transition

Parameters of state transition

int32_t tt_delta_saturation
Delta change value of saturation state transition

struct esp_ble_mesh_light_xyl_state_t
Parameters of Light xyL state

Public Members

uint16_t lightness
The present value of Light xyL Lightness state

uint16_t target_lightness
The target value of Light xyL Lightness state

uint16_t x
The present value of Light xyL x state

uint16_t target_x
The target value of Light xyL x state

uint16_t y
The present value of Light xyL y state

uint16_t target_y
The target value of Light xyL y state

uint16_t lightness_default
The value of Light Lightness Default state

uint16_t x_default
The value of Light xyL x Default state

uint16_t y_default
The value of Light xyL y Default state

uint8_t status_code
The status code of setting Light xyL x & y Range state

uint16_t x_range_min
The minimum value of Light xyL x Range state

Espressif Systems 598
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t x_range_max
The maximum value of Light xyL x Range state

uint16_t y_range_min
The minimum value of Light xyL y Range state

uint16_t y_range_max
The maximum value of Light xyL y Range state

struct esp_ble_mesh_light_xyl_srv_t
User data of Light xyL Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting xyL Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_xyl_state_t *state
Parameters of the Light xyL state

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

esp_ble_mesh_state_transition_t transition

Parameters of state transition

int32_t tt_delta_lightness
Delta change value of lightness state transition

int32_t tt_delta_x
Delta change value of x state transition

int32_t tt_delta_y
Delta change value of y state transition

struct esp_ble_mesh_light_xyl_setup_srv_t
User data of Light xyL Setup Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting xyL Setup Server Model. Initialized internally.

Espressif Systems 599
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_xyl_state_t *state
Parameters of the Light xyL state

struct esp_ble_mesh_light_lc_state_t
Parameters of Light LC states

Public Members

uint32_t mode
0b0 The controller is turned off.
• The binding with the Light Lightness state is disabled. 0b1 The controller is turned on.
• The binding with the Light Lightness state is enabled. The value of Light LC Mode state

uint32_t occupancy_mode
The value of Light LC Occupancy Mode state

uint32_t light_onoff
The present value of Light LC Light OnOff state

uint32_t target_light_onoff
The target value of Light LC Light OnOff state

uint32_t occupancy
The value of Light LC Occupancy state

uint32_t ambient_luxlevel
The value of Light LC Ambient LuxLevel state

uint16_t linear_output

i. Light LC Linear Output = max((Lightness Out)^2/65535, Regulator Output)
ii. If the Light LC Mode state is set to 0b1, the binding is enabled and upon a change of the Light LC

Linear Output state, the following operation shall be performed: Light Lightness Linear = Light LC
Linear Output

iii. If the Light LC Mode state is set to 0b0, the binding is disabled (i.e., upon a change of the Light
LC Linear Output state, no operation on the Light Lightness Linear state is performed). The value
of Light LC Linear Output state

struct esp_ble_mesh_light_lc_property_state_t
Parameters of Light Property states. The Light LC Property states are read / write states that determine the
configuration of a Light Lightness Controller. Each state is represented by a device property and is controlled
by Light LC Property messages.

Public Members

Espressif Systems 600
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t time_occupancy_delay
A timing state that determines the delay for changing the Light LC Occupancy state upon receiving a
Sensor Status message from an occupancy sensor. The value of Light LC Time Occupancy Delay state

uint32_t time_fade_on
A timing state that determines the time the controlled lights fade to the level determined by the Light LC
Lightness On state. The value of Light LC Time Fade On state

uint32_t time_run_on
A timing state that determines the time the controlled lights stay at the level determined by the Light LC
Lightness On state. The value of Light LC Time Run On state

uint32_t time_fade
A timing state that determines the time the controlled lights fade from the level determined by the Light
LC Lightness On state to the level determined by the Light Lightness Prolong state. The value of Light
LC Time Fade state

uint32_t time_prolong
A timing state that determines the time the controlled lights stay at the level determined by the Light LC
Lightness Prolong state. The value of Light LC Time Prolong state

uint32_t time_fade_standby_auto
A timing state that determines the time the controlled lights fade from the level determined by the Light
LC Lightness Prolong state to the level determined by the Light LC Lightness Standby state when the
transition is automatic. The value of Light LC Time Fade Standby Auto state

uint32_t time_fade_standby_manual
A timing state that determines the time the controlled lights fade from the level determined by the Light
LC Lightness Prolong state to the level determined by the Light LC Lightness Standby state when the
transition is triggered by a change in the Light LC Light OnOff state. The value of Light LC Time Fade
Standby Manual state

uint16_t lightness_on
A lightness state that determines the perceptive light lightness at the Occupancy and Run internal con-
troller states. The value of Light LC Lightness On state

uint16_t lightness_prolong
A lightness state that determines the light lightness at the Prolong internal controller state. The value of
Light LC Lightness Prolong state

uint16_t lightness_standby
A lightness state that determines the light lightness at the Standby internal controller state. The value of
Light LC Lightness Standby state

uint16_t ambient_luxlevel_on
A uint16 state representing the Ambient LuxLevel level that determines if the controller transitions from
the Light Control Standby state. The value of Light LC Ambient LuxLevel On state

uint16_t ambient_luxlevel_prolong
A uint16 state representing the required Ambient LuxLevel level in the Prolong state. The value of Light
LC Ambient LuxLevel Prolong state

Espressif Systems 601
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t ambient_luxlevel_standby
A uint16 state representing the required Ambient LuxLevel level in the Standby state. The value of Light
LC Ambient LuxLevel Standby state

float regulator_kiu
A float32 state representing the integral coefficient that determines the integral part of the equation defin-
ing the output of the Light LC PI Feedback Regulator, when Light LC Ambient LuxLevel is less than
LuxLevel Out. Valid range: 0.0 ~ 1000.0. The default value is 250.0. The value of Light LC Regulator
Kiu state

float regulator_kid
A float32 state representing the integral coefficient that determines the integral part of the equation defin-
ing the output of the Light LC PI Feedback Regulator, when Light LC Ambient LuxLevel is greater than
or equal to the value of the LuxLevel Out state. Valid range: 0.0 ~ 1000.0. The default value is 25.0.
The value of Light LC Regulator Kid state

float regulator_kpu
A float32 state representing the proportional coefficient that determines the proportional part of the equa-
tion defining the output of the Light LC PI Feedback Regulator, when Light LC Ambient LuxLevel is
less than the value of the LuxLevel Out state. Valid range: 0.0 ~ 1000.0. The default value is 80.0. The
value of Light LC Regulator Kpu state

float regulator_kpd
A float32 state representing the proportional coefficient that determines the proportional part of the equa-
tion defining the output of the Light LC PI Feedback Regulator, when Light LC Ambient LuxLevel is
greater than or equal to the value of the LuxLevel Out state. Valid range: 0.0 ~ 1000.0. The default value
is 80.0. The value of Light LC Regulator Kpd state

int8_t regulator_accuracy
A int8 state representing the percentage accuracy of the Light LC PI Feedback Regulator. Valid range:
0.0 ~ 100.0. The default value is 2.0. The value of Light LC Regulator Accuracy state

uint32_t set_occupancy_to_1_delay
If the message Raw field contains a Raw Value for the Time Since Motion Sensed device property,
which represents a value less than or equal to the value of the Light LC Occupancy Delay state, it shall
delay setting the Light LC Occupancy state to 0b1 by the difference between the value of the Light LC
Occupancy Delay state and the received Time Since Motion value. The value of the difference between
value of the Light LC Occupancy Delay state and the received Time Since Motion value

struct esp_ble_mesh_light_lc_state_machine_t
Parameters of Light LC state machine

Public Members

uint8_t fade_on
The value of transition time of Light LC Time Fade On

uint8_t fade
The value of transition time of Light LC Time Fade

Espressif Systems 602
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t fade_standby_auto
The value of transition time of Light LC Time Fade Standby Auto

uint8_t fade_standby_manual
The value of transition time of Light LC Time Fade Standby Manual

struct esp_ble_mesh_light_lc_state_machine_t::[anonymous] trans_time
The Fade On, Fade, Fade Standby Auto, and Fade Standby Manual states are transition states that define
the transition of the Lightness Out and LuxLevel Out states. This transition can be started as a result of
the Light LC State Machine change or as a result of receiving the Light LC Light OnOff Set or Light LC
Light Set Unacknowledged message. The value of transition time

esp_ble_mesh_lc_state_t state

The value of Light LC state machine state

struct k_delayed_work timer
Timer of Light LC state machine

struct esp_ble_mesh_light_control_t
Parameters of Light Lightness controller

Public Members

esp_ble_mesh_light_lc_state_t state

Parameters of Light LC state

esp_ble_mesh_light_lc_property_state_t prop_state

Parameters of Light LC Property state

esp_ble_mesh_light_lc_state_machine_t state_machine

Parameters of Light LC state machine

struct esp_ble_mesh_light_lc_srv_t
User data of Light LC Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting LC Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_control_t *lc
Parameters of the Light controller

esp_ble_mesh_last_msg_info_t last

Parameters of the last received set message

Espressif Systems 603
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ble_mesh_state_transition_t transition

Parameters of state transition

struct esp_ble_mesh_light_lc_setup_srv_t
User data of Light LC Setup Server Model

Public Members

esp_ble_mesh_model_t *model
Pointer to the Lighting LC Setup Server Model. Initialized internally.

esp_ble_mesh_server_rsp_ctrl_t rsp_ctrl

Response control of the server model received messages

esp_ble_mesh_light_control_t *lc
Parameters of the Light controller

struct esp_ble_mesh_state_change_light_lightness_set_t
Parameter of Light Lightness Actual state change event

Public Members

uint16_t lightness
The value of Light Lightness Actual state

struct esp_ble_mesh_state_change_light_lightness_linear_set_t
Parameter of Light Lightness Linear state change event

Public Members

uint16_t lightness
The value of Light Lightness Linear state

struct esp_ble_mesh_state_change_light_lightness_default_set_t
Parameter of Light Lightness Default state change event

Public Members

uint16_t lightness
The value of Light Lightness Default state

struct esp_ble_mesh_state_change_light_lightness_range_set_t
Parameters of Light Lightness Range state change event

Espressif Systems 604
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t range_min
The minimum value of Light Lightness Range state

uint16_t range_max
The maximum value of Light Lightness Range state

struct esp_ble_mesh_state_change_light_ctl_set_t
Parameters of Light CTL state change event

Public Members

uint16_t lightness
The value of Light CTL Lightness state

uint16_t temperature
The value of Light CTL Temperature state

int16_t delta_uv
The value of Light CTL Delta UV state

struct esp_ble_mesh_state_change_light_ctl_temperature_set_t
Parameters of Light CTL Temperature state change event

Public Members

uint16_t temperature
The value of Light CTL Temperature state

int16_t delta_uv
The value of Light CTL Delta UV state

struct esp_ble_mesh_state_change_light_ctl_temperature_range_set_t
Parameters of Light CTL Temperature Range state change event

Public Members

uint16_t range_min
The minimum value of Light CTL Temperature Range state

uint16_t range_max
The maximum value of Light CTL Temperature Range state

struct esp_ble_mesh_state_change_light_ctl_default_set_t
Parameters of Light CTL Default state change event

Espressif Systems 605
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t lightness
The value of Light Lightness Default state

uint16_t temperature
The value of Light CTL Temperature Default state

int16_t delta_uv
The value of Light CTL Delta UV Default state

struct esp_ble_mesh_state_change_light_hsl_set_t
Parameters of Light HSL state change event

Public Members

uint16_t lightness
The value of Light HSL Lightness state

uint16_t hue
The value of Light HSL Hue state

uint16_t saturation
The value of Light HSL Saturation state

struct esp_ble_mesh_state_change_light_hsl_hue_set_t
Parameter of Light HSL Hue state change event

Public Members

uint16_t hue
The value of Light HSL Hue state

struct esp_ble_mesh_state_change_light_hsl_saturation_set_t
Parameter of Light HSL Saturation state change event

Public Members

uint16_t saturation
The value of Light HSL Saturation state

struct esp_ble_mesh_state_change_light_hsl_default_set_t
Parameters of Light HSL Default state change event

Espressif Systems 606
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t lightness
The value of Light HSL Lightness Default state

uint16_t hue
The value of Light HSL Hue Default state

uint16_t saturation
The value of Light HSL Saturation Default state

struct esp_ble_mesh_state_change_light_hsl_range_set_t
Parameters of Light HSL Range state change event

Public Members

uint16_t hue_range_min
The minimum hue value of Light HSL Range state

uint16_t hue_range_max
The maximum hue value of Light HSL Range state

uint16_t saturation_range_min
The minimum saturation value of Light HSL Range state

uint16_t saturation_range_max
The maximum saturation value of Light HSL Range state

struct esp_ble_mesh_state_change_light_xyl_set_t
Parameters of Light xyL state change event

Public Members

uint16_t lightness
The value of Light xyL Lightness state

uint16_t x
The value of Light xyL x state

uint16_t y
The value of Light xyL y state

struct esp_ble_mesh_state_change_light_xyl_default_set_t
Parameters of Light xyL Default state change event

Espressif Systems 607
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t lightness
The value of Light Lightness Default state

uint16_t x
The value of Light xyL x Default state

uint16_t y
The value of Light xyL y Default state

struct esp_ble_mesh_state_change_light_xyl_range_set_t
Parameters of Light xyL Range state change event

Public Members

uint16_t x_range_min
The minimum value of Light xyL x Range state

uint16_t x_range_max
The maximum value of Light xyL x Range state

uint16_t y_range_min
The minimum value of Light xyL y Range state

uint16_t y_range_max
The maximum value of Light xyL y Range state

struct esp_ble_mesh_state_change_light_lc_mode_set_t
Parameter of Light LC Mode state change event

Public Members

uint8_t mode
The value of Light LC Mode state

struct esp_ble_mesh_state_change_light_lc_om_set_t
Parameter of Light LC Occupancy Mode state change event

Public Members

uint8_t mode
The value of Light LC Occupancy Mode state

struct esp_ble_mesh_state_change_light_lc_light_onoff_set_t
Parameter of Light LC Light OnOff state change event

Espressif Systems 608
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t onoff
The value of Light LC Light OnOff state

struct esp_ble_mesh_state_change_light_lc_property_set_t
Parameters of Light LC Property state change event

Public Members

uint16_t property_id
The property id of Light LC Property state

struct net_buf_simple *property_value
The property value of Light LC Property state

struct esp_ble_mesh_state_change_sensor_status_t
Parameters of Sensor Status state change event

Public Members

uint16_t property_id
The value of Sensor Property ID

uint8_t occupancy
The value of Light LC Occupancy state

uint32_t set_occupancy_to_1_delay
The value of Light LC Set Occupancy to 1 Delay state

uint32_t ambient_luxlevel
The value of Light LC Ambient Luxlevel state

union esp_ble_mesh_state_change_sensor_status_t::[anonymous] state
Parameters of Sensor Status related state

struct esp_ble_mesh_server_recv_light_lc_property_get_t
Context of the received Light LC Property Get message

Public Members

uint16_t property_id
Property ID identifying a Light LC Property

struct esp_ble_mesh_server_recv_light_lightness_set_t
Context of the received Light Lightness Set message

Espressif Systems 609
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t lightness
Target value of light lightness actual state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_light_lightness_linear_set_t
Context of the received Light Lightness Linear Set message

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t lightness
Target value of light lightness linear state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_light_lightness_default_set_t
Context of the received Light Lightness Default Set message

Public Members

uint16_t lightness
The value of the Light Lightness Default state

struct esp_ble_mesh_server_recv_light_lightness_range_set_t
Context of the received Light Lightness Range Set message

Espressif Systems 610
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t range_min
Value of range min field of light lightness range state

uint16_t range_max
Value of range max field of light lightness range state

struct esp_ble_mesh_server_recv_light_ctl_set_t
Context of the received Light CTL Set message

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t lightness
Target value of light ctl lightness state

uint16_t temperature
Target value of light ctl temperature state

int16_t delta_uv
Target value of light ctl delta UV state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_light_ctl_temperature_set_t
Context of the received Light CTL Temperature Set message

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t temperature
Target value of light ctl temperature state

int16_t delta_uv
Target value of light ctl delta UV state

Espressif Systems 611
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_light_ctl_temperature_range_set_t
Context of the received Light CTL Temperature Range Set message

Public Members

uint16_t range_min
Value of temperature range min field of light ctl temperature range state

uint16_t range_max
Value of temperature range max field of light ctl temperature range state

struct esp_ble_mesh_server_recv_light_ctl_default_set_t
Context of the received Light CTL Default Set message

Public Members

uint16_t lightness
Value of light lightness default state

uint16_t temperature
Value of light temperature default state

int16_t delta_uv
Value of light delta UV default state

struct esp_ble_mesh_server_recv_light_hsl_set_t
Context of the received Light HSL Set message

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t lightness
Target value of light hsl lightness state

Espressif Systems 612
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t hue
Target value of light hsl hue state

uint16_t saturation
Target value of light hsl saturation state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_light_hsl_hue_set_t
Context of the received Light HSL Hue Set message

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t hue
Target value of light hsl hue state

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_light_hsl_saturation_set_t
Context of the received Light HSL Saturation Set message

Public Members

bool op_en
Indicate if optional parameters are included

uint16_t saturation
Target value of light hsl hue state

Espressif Systems 613
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t tid
Transaction ID

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_light_hsl_default_set_t
Context of the received Light HSL Default Set message

Public Members

uint16_t lightness
Value of light lightness default state

uint16_t hue
Value of light hue default state

uint16_t saturation
Value of light saturation default state

struct esp_ble_mesh_server_recv_light_hsl_range_set_t
Context of the received Light HSL Range Set message

Public Members

uint16_t hue_range_min
Value of hue range min field of light hsl hue range state

uint16_t hue_range_max
Value of hue range max field of light hsl hue range state

uint16_t saturation_range_min
Value of saturation range min field of light hsl saturation range state

uint16_t saturation_range_max
Value of saturation range max field of light hsl saturation range state

struct esp_ble_mesh_server_recv_light_xyl_set_t
Context of the received Light xyL Set message

Public Members

Espressif Systems 614
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool op_en
Indicate whether optional parameters included

uint16_t lightness
The target value of the Light xyL Lightness state

uint16_t x
The target value of the Light xyL x state

uint16_t y
The target value of the Light xyL y state

uint8_t tid
Transaction Identifier

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_light_xyl_default_set_t
Context of the received Light xyL Default Set message

Public Members

uint16_t lightness
The value of the Light Lightness Default state

uint16_t x
The value of the Light xyL x Default state

uint16_t y
The value of the Light xyL y Default state

struct esp_ble_mesh_server_recv_light_xyl_range_set_t
Context of the received Light xyl Range Set message

Public Members

uint16_t x_range_min
The value of the xyL x Range Min field of the Light xyL x Range state

uint16_t x_range_max
The value of the xyL x Range Max field of the Light xyL x Range state

Espressif Systems 615
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t y_range_min
The value of the xyL y Range Min field of the Light xyL y Range state

uint16_t y_range_max
The value of the xyL y Range Max field of the Light xyL y Range state

struct esp_ble_mesh_server_recv_light_lc_mode_set_t
Context of the received Light LC Mode Set message

Public Members

uint8_t mode
The target value of the Light LC Mode state

struct esp_ble_mesh_server_recv_light_lc_om_set_t
Context of the received Light OM Set message

Public Members

uint8_t mode
The target value of the Light LC Occupancy Mode state

struct esp_ble_mesh_server_recv_light_lc_light_onoff_set_t
Context of the received Light LC Light OnOff Set message

Public Members

bool op_en
Indicate whether optional parameters included

uint8_t light_onoff
The target value of the Light LC Light OnOff state

uint8_t tid
Transaction Identifier

uint8_t trans_time
Time to complete state transition (optional)

uint8_t delay
Indicate message execution delay (C.1)

struct esp_ble_mesh_server_recv_light_lc_property_set_t
Context of the received Light LC Property Set message

Espressif Systems 616
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint16_t property_id
Property ID identifying a Light LC Property

struct net_buf_simple *property_value
Raw value for the Light LC Property

struct esp_ble_mesh_server_recv_sensor_status_t
Context of the received Sensor Status message

Public Members

struct net_buf_simple *data
Value of sensor data state (optional)

struct esp_ble_mesh_lighting_server_cb_param_t
Lighting Server Model callback parameters

Public Members

esp_ble_mesh_model_t *model
Pointer to Lighting Server Models

esp_ble_mesh_msg_ctx_t ctx

Context of the received messages

esp_ble_mesh_lighting_server_cb_value_t value

Value of the received Lighting Messages

Macros
ESP_BLE_MESH_MODEL_LIGHT_LIGHTNESS_CLI(cli_pub, cli_data)

Define a new Light Lightness Client Model.

Note: This API needs to be called for each element on which the application needs to have a Light Lightness
Client Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Light Lightness Client Model instance.
ESP_BLE_MESH_MODEL_LIGHT_CTL_CLI(cli_pub, cli_data)

Define a new Light CTL Client Model.

Note: This API needs to be called for each element on which the application needs to have a Light CTL Client
Model.

Espressif Systems 617
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Light CTL Client Model instance.

ESP_BLE_MESH_MODEL_LIGHT_HSL_CLI(cli_pub, cli_data)
Define a new Light HSL Client Model.

Note: This API needs to be called for each element on which the application needs to have a Light HSL Client
Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Light HSL Client Model instance.

ESP_BLE_MESH_MODEL_LIGHT_XYL_CLI(cli_pub, cli_data)
Define a new Light xyL Client Model.

Note: This API needs to be called for each element on which the application needs to have a Light xyL Client
Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Light xyL Client Model instance.

ESP_BLE_MESH_MODEL_LIGHT_LC_CLI(cli_pub, cli_data)
Define a new Light LC Client Model.

Note: This API needs to be called for each element on which the application needs to have a Light LC Client
Model.

Parameters
• cli_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• cli_data -- Pointer to the unique struct esp_ble_mesh_client_t.

Returns New Light LC Client Model instance.

ESP_BLE_MESH_MODEL_LIGHT_LIGHTNESS_SRV(srv_pub, srv_data)
Lighting Server Models related context.
Define a new Light Lightness Server Model.

Note: 1. The Light Lightness Server model extends the Generic Power OnOff Server model and the Generic
Level Server model. When this model is present on an Element, the corresponding Light Lightness Setup
Server model shall also be present.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_lightness_srv_t.

Espressif Systems 618
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns New Light Lightness Server Model instance.

ESP_BLE_MESH_MODEL_LIGHT_LIGHTNESS_SETUP_SRV(srv_pub, srv_data)
Define a new Light Lightness Setup Server Model.

Note: 1. The Light Lightness Setup Server model extends the Light Lightness Server model and the Generic
Power OnOff Setup Server model.
a. This model shall support model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_lightness_setup_srv_t.

Returns New Light Lightness Setup Server Model instance.

ESP_BLE_MESH_MODEL_LIGHT_CTL_SRV(srv_pub, srv_data)
Define a new Light CTL Server Model.

Note: 1. The Light CTL Server model extends the Light Lightness Server model. When this model is present
on an Element, the corresponding Light CTL Temperature Server model and the corresponding Light CTL
Setup Server model shall also be present.
a. This model shall support model publication and model subscription.
b. The model requires two elements: the main element and the Temperature element. The Temperature

element contains the corresponding Light CTL Temperature Server model and an instance of a Generic
Level state bound to the Light CTL Temperature state on the Temperature element. The Light CTL
Temperature state on the Temperature element is bound to the Light CTL state on the main element.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_ctl_srv_t.

Returns New Light CTL Server Model instance.

ESP_BLE_MESH_MODEL_LIGHT_CTL_SETUP_SRV(srv_pub, srv_data)
Define a new Light CTL Setup Server Model.

Note: 1. The Light CTL Setup Server model extends the Light CTL Server and the Light Lightness Setup
Server.
a. This model shall support model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_ctl_setup_srv_t.

Returns New Light CTL Setup Server Model instance.

ESP_BLE_MESH_MODEL_LIGHT_CTL_TEMP_SRV(srv_pub, srv_data)
Define a new Light CTL Temperature Server Model.

Note: 1. The Light CTL Temperature Server model extends the Generic Level Server model.
a. This model shall support model publication and model subscription.

Espressif Systems 619
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_ctl_temp_srv_t.

Returns New Light CTL Temperature Server Model instance.

ESP_BLE_MESH_MODEL_LIGHT_HSL_SRV(srv_pub, srv_data)
Define a new Light HSL Server Model.

Note: 1. The Light HSL Server model extends the Light Lightness Server model. When this model is present
on an Element, the corresponding Light HSL Hue Server model and the corresponding Light HSL Saturation
Server model and the corresponding Light HSL Setup Server model shall also be present.
a. This model shall support model publication and model subscription.
b. The model requires three elements: the main element and the Hue element and the Saturation element.

The Hue element contains the corresponding Light HSL Hue Server model and an instance of a Generic
Level state bound to the Light HSL Hue state on the Hue element. The Saturation element contains the
corresponding Light HSL Saturation Server model and an instance of a Generic Level state bound to the
Light HSL Saturation state on the Saturation element. The Light HSL Hue state on the Hue element is
bound to the Light HSL state on the main element and the Light HSL Saturation state on the Saturation
element is bound to the Light HSL state on the main element.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_hsl_srv_t.

Returns New Light HSL Server Model instance.

ESP_BLE_MESH_MODEL_LIGHT_HSL_SETUP_SRV(srv_pub, srv_data)
Define a new Light HSL Setup Server Model.

Note: 1. The Light HSL Setup Server model extends the Light HSL Server and the Light Lightness Setup
Server.
a. This model shall support model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_hsl_setup_srv_t.

Returns New Light HSL Setup Server Model instance.

ESP_BLE_MESH_MODEL_LIGHT_HSL_HUE_SRV(srv_pub, srv_data)
Define a new Light HSL Hue Server Model.

Note: 1. The Light HSL Hue Server model extends the Generic Level Server model. This model is associated
with the Light HSL Server model.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_hsl_hue_srv_t.

Returns New Light HSL Hue Server Model instance.

Espressif Systems 620
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_BLE_MESH_MODEL_LIGHT_HSL_SAT_SRV(srv_pub, srv_data)
Define a new Light HSL Saturation Server Model.

Note: 1. The Light HSL Saturation Server model extends the Generic Level Server model. This model is
associated with the Light HSL Server model.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_hsl_sat_srv_t.

Returns New Light HSL Saturation Server Model instance.

ESP_BLE_MESH_MODEL_LIGHT_XYL_SRV(srv_pub, srv_data)
Define a new Light xyL Server Model.

Note: 1. The Light xyL Server model extends the Light Lightness Server model. When this model is present
on an Element, the corresponding Light xyL Setup Server model shall also be present.
a. This model shall support model publication and model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_xyl_srv_t.

Returns New Light xyL Server Model instance.

ESP_BLE_MESH_MODEL_LIGHT_XYL_SETUP_SRV(srv_pub, srv_data)
Define a new Light xyL Setup Server Model.

Note: 1. The Light xyL Setup Server model extends the Light xyL Server and the Light Lightness Setup
Server.
a. This model shall support model subscription.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_xyl_setup_srv_t.

Returns New Light xyL Setup Server Model instance.

ESP_BLE_MESH_MODEL_LIGHT_LC_SRV(srv_pub, srv_data)
Define a new Light LC Server Model.

Note: 1. The Light LC (Lightness Control) Server model extends the Light Lightness Server model and the
Generic OnOff Server model. When this model is present on an Element, the corresponding Light LC Setup
Server model shall also be present.
a. This model shall support model publication and model subscription.
b. This model may be used to represent an element that is a client to a Sensor Server model and controls the

Light Lightness Actual state via defined state bindings.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_lc_srv_t.

Espressif Systems 621
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns New Light LC Server Model instance.

ESP_BLE_MESH_MODEL_LIGHT_LC_SETUP_SRV(srv_pub, srv_data)
Define a new Light LC Setup Server Model.

Note: 1. The Light LC (Lightness Control) Setup model extends the Light LC Server model.
a. This model shall support model publication and model subscription.
b. This model may be used to configure setup parameters for the Light LC Server model.

Parameters
• srv_pub -- Pointer to the unique struct esp_ble_mesh_model_pub_t.
• srv_data -- Pointer to the unique struct esp_ble_mesh_light_lc_setup_srv_t.

Returns New Light LC Setup Server Model instance.

Type Definitions

typedef void (*esp_ble_mesh_light_client_cb_t)(esp_ble_mesh_light_client_cb_event_t event,
esp_ble_mesh_light_client_cb_param_t *param)

Bluetooth Mesh Light Client Model function.
Lighting Client Model callback function type

Param event Event type
Param param Pointer to callback parameter

typedef void (*esp_ble_mesh_lighting_server_cb_t)(esp_ble_mesh_lighting_server_cb_event_t event,
esp_ble_mesh_lighting_server_cb_param_t *param)

Bluetooth Mesh Lighting Server Model function.
Lighting Server Model callback function type

Param event Event type
Param param Pointer to callback parameter

Enumerations

enum esp_ble_mesh_light_client_cb_event_t

This enum value is the event of Lighting Client Model
Values:

enumerator ESP_BLE_MESH_LIGHT_CLIENT_GET_STATE_EVT

enumerator ESP_BLE_MESH_LIGHT_CLIENT_SET_STATE_EVT

enumerator ESP_BLE_MESH_LIGHT_CLIENT_PUBLISH_EVT

enumerator ESP_BLE_MESH_LIGHT_CLIENT_TIMEOUT_EVT

enumerator ESP_BLE_MESH_LIGHT_CLIENT_EVT_MAX

enum esp_ble_mesh_lc_state_t

This enum value is the Light LC State Machine states
Values:

Espressif Systems 622
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_BLE_MESH_LC_OFF

enumerator ESP_BLE_MESH_LC_STANDBY

enumerator ESP_BLE_MESH_LC_FADE_ON

enumerator ESP_BLE_MESH_LC_RUN

enumerator ESP_BLE_MESH_LC_FADE

enumerator ESP_BLE_MESH_LC_PROLONG

enumerator ESP_BLE_MESH_LC_FADE_STANDBY_AUTO

enumerator ESP_BLE_MESH_LC_FADE_STANDBY_MANUAL

enum esp_ble_mesh_lighting_server_cb_event_t

This enum value is the event of Lighting Server Model
Values:

enumerator ESP_BLE_MESH_LIGHTING_SERVER_STATE_CHANGE_EVT

i. When get_auto_rsp is set to ESP_BLE_MESH_SERVER_AUTO_RSP, no event will be callback
to the application layer when Lighting Get messages are received.

ii. When set_auto_rsp is set to ESP_BLE_MESH_SERVER_AUTO_RSP, this event will be callback
to the application layer when Lighting Set/Set Unack messages are received.

enumerator ESP_BLE_MESH_LIGHTING_SERVER_RECV_GET_MSG_EVT
When get_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, this event will be callback to
the application layer when Lighting Get messages are received.

enumerator ESP_BLE_MESH_LIGHTING_SERVER_RECV_SET_MSG_EVT
When set_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, this event will be callback to
the application layer when Lighting Set/Set Unack messages are received.

enumerator ESP_BLE_MESH_LIGHTING_SERVER_RECV_STATUS_MSG_EVT
When status_auto_rsp is set to ESP_BLE_MESH_SERVER_RSP_BY_APP, this event will be callback
to the application layer when Sensor Status message is received.

enumerator ESP_BLE_MESH_LIGHTING_SERVER_EVT_MAX

2.3.5 NimBLE-based host APIs

Overview

Apache MyNewt NimBLE is a highly configurable and BT SIG qualifiable BLE stack providing both host and con-
troller functionalities. ESP-IDF supports NimBLE host stack which is specifically ported for ESP32 platform and
FreeRTOS. The underlying controller is still the same (as in case of Bluedroid) providing VHCI interface. Refer
to NimBLE user guide for a complete list of features and additional information on NimBLE stack. Most features

Espressif Systems 623
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://mynewt.apache.org/latest/network/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

of NimBLE including BLE Mesh are supported by ESP-IDF. The porting layer is kept cleaner by maintaining all
the existing APIs of NimBLE along with a single ESP-NimBLE API for initialization, making it simpler for the
application developers.

Architecture

Currently, NimBLE host and controller support different transports such as UART and RAM between them. How-
ever, RAM transport cannot be used as is in case of ESP as ESP controller supports VHCI interface and buffering
schemes used by NimBLE host is incompatible with that used by ESP controller. Therefore, a new transport between
NimBLE host and ESP controller has been added. This is depicted in the figure below. This layer is responsible for
maintaining pool of transport buffers and formatting buffers exchanges between host and controller as per the re-
quirements.

Fig. 1: ESP NimBLE Stack

Threading Model

The NimBLE host can run inside the application thread or can have its own independent thread. This flexibil-
ity is inherently provided by NimBLE design. By default, a thread is spawned by the porting function nim-
ble_port_freertos_init. This behavior can be changed by overriding the same function. For BLE Mesh,
additional thread (advertising thread) is used which keeps on feeding advertisement events to the main thread.

Programming Sequence

To begin with, make sure that the NimBLE stack is enabled from menuconfig choose NimBLE for the Bluetooth host.
Typical programming sequence with NimBLE stack consists of the following steps:

• Initialize NVS flash using nvs_flash_init() API. This is because ESP controller uses NVS during
initialization.

• Initialize the host and controller stack using nimble_port_init.
• Initialize the required NimBLE host configuration parameters and callbacks
• Perform application specific tasks/initialization
• Run the thread for host stack using nimble_port_freertos_init

This documentation does not cover NimBLE APIs. Refer to NimBLE tutorial for more details on the programming
sequence/NimBLE APIs for different scenarios.

API Reference

Header File
• components/bt/host/nimble/esp-hci/include/esp_nimble_hci.h

Functions

Espressif Systems 624
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://mynewt.apache.org/latest/network/index.html#ble-user-guide
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/host/nimble/esp-hci/include/esp_nimble_hci.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_nimble_hci_init(void)
Initialize VHCI transport layer between NimBLE Host and ESP Bluetooth controller.
This function initializes the transport buffers to be exchanged between NimBLE host and ESP controller. It
also registers required host callbacks with the controller.

Returns
• ESP_OK if the initialization is successful
• Appropriate error code from esp_err_t in case of an error

esp_err_t esp_nimble_hci_deinit(void)
Deinitialize VHCI transport layer between NimBLE Host and ESP Bluetooth controller.

Note: This function should be called after the NimBLE host is deinitialized.

Returns
• ESP_OK if the deinitialization is successful
• Appropriate error codes from esp_err_t in case of an error

Macros

BLE_HCI_UART_H4_NONE

BLE_HCI_UART_H4_CMD

BLE_HCI_UART_H4_ACL

BLE_HCI_UART_H4_SCO

BLE_HCI_UART_H4_EVT

ESP-IDF currently supports two host stacks. The Bluedroid based stack (default) supports classic Bluetooth as well
as BLE. On the other hand, Apache NimBLE based stack is BLE only. For users to make a choice:

• For usecases involving classic Bluetooth as well as BLE, Bluedroid should be used.
• For BLE-only usecases, using NimBLE is recommended. It is less demanding in terms of code footprint and
runtime memory, making it suitable for such scenarios.

Code examples for this API section are provided in the bluetooth/bluedroid directory of ESP-IDF examples.
The following examples contain detailed walkthroughs:

• GATT Client Example Walkthrough
• GATT Server Service Table Example Walkthrough
• GATT Server Example Walkthrough
• GATT Security Client Example Walkthrough
• GATT Security Server Example Walkthrough
• GATT Client Multi-connection Example Walkthrough

2.4 Error Codes Reference

This section lists various error code constants defined in ESP-IDF.
For general information about error codes in ESP-IDF, see Error Handling.
ESP_FAIL (-1): Generic esp_err_t code indicating failure
ESP_OK (0): esp_err_t value indicating success (no error)

Espressif Systems 625
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_client/tutorial/Gatt_Client_Example_Walkthrough.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_server_service_table/tutorial/Gatt_Server_Service_Table_Example_Walkthrough.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_server/tutorial/Gatt_Server_Example_Walkthrough.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_security_client/tutorial/Gatt_Security_Client_Example_Walkthrough.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gatt_security_server/tutorial/Gatt_Security_Server_Example_Walkthrough.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/bluedroid/ble/gattc_multi_connect/tutorial/Gatt_Client_Multi_Connection_Example_Walkthrough.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_NO_MEM (0x101): Out of memory
ESP_ERR_INVALID_ARG (0x102): Invalid argument
ESP_ERR_INVALID_STATE (0x103): Invalid state
ESP_ERR_INVALID_SIZE (0x104): Invalid size
ESP_ERR_NOT_FOUND (0x105): Requested resource not found
ESP_ERR_NOT_SUPPORTED (0x106): Operation or feature not supported
ESP_ERR_TIMEOUT (0x107): Operation timed out
ESP_ERR_INVALID_RESPONSE (0x108): Received response was invalid
ESP_ERR_INVALID_CRC (0x109): CRC or checksum was invalid
ESP_ERR_INVALID_VERSION (0x10a): Version was invalid
ESP_ERR_INVALID_MAC (0x10b): MAC address was invalid
ESP_ERR_NOT_FINISHED (0x10c): There are items remained to retrieve
ESP_ERR_NOT_ALLOWED (0x10d): Operation is not allowed
ESP_ERR_ROC_IN_PROGRESS (0x10e): ROC Operation is in progress
ESP_ERR_NVS_BASE (0x1100): Starting number of error codes
ESP_ERR_NVS_NOT_INITIALIZED (0x1101): The storage driver is not initialized
ESP_ERR_NVS_NOT_FOUND (0x1102): A requested entry couldn't be found or namespace doesn’t exist yet and
mode is NVS_READONLY
ESP_ERR_NVS_TYPE_MISMATCH (0x1103): The type of set or get operation doesn't match the type of value
stored in NVS
ESP_ERR_NVS_READ_ONLY (0x1104): Storage handle was opened as read only
ESP_ERR_NVS_NOT_ENOUGH_SPACE (0x1105): There is not enough space in the underlying storage to save the
value
ESP_ERR_NVS_INVALID_NAME (0x1106): Namespace name doesn’t satisfy constraints
ESP_ERR_NVS_INVALID_HANDLE (0x1107): Handle has been closed or is NULL
ESP_ERR_NVS_REMOVE_FAILED (0x1108): The value wasn’t updated because flash write operation has failed.
The value was written however, and update will be finished after re-initialization of nvs, provided that flash operation
doesn’t fail again.
ESP_ERR_NVS_KEY_TOO_LONG (0x1109): Key name is too long
ESP_ERR_NVS_PAGE_FULL (0x110a): Internal error; never returned by nvs API functions
ESP_ERR_NVS_INVALID_STATE (0x110b): NVS is in an inconsistent state due to a previous error. Call
nvs_flash_init and nvs_open again, then retry.
ESP_ERR_NVS_INVALID_LENGTH (0x110c): String or blob length is not sufficient to store data
ESP_ERR_NVS_NO_FREE_PAGES (0x110d): NVS partition doesn't contain any empty pages. This may happen
if NVS partition was truncated. Erase the whole partition and call nvs_flash_init again.
ESP_ERR_NVS_VALUE_TOO_LONG (0x110e): Value doesn't fit into the entry or string or blob length is longer
than supported by the implementation
ESP_ERR_NVS_PART_NOT_FOUND (0x110f): Partition with specified name is not found in the partition table
ESP_ERR_NVS_NEW_VERSION_FOUND (0x1110): NVS partition contains data in new format and cannot be
recognized by this version of code
ESP_ERR_NVS_XTS_ENCR_FAILED (0x1111): XTS encryption failed while writing NVS entry
ESP_ERR_NVS_XTS_DECR_FAILED (0x1112): XTS decryption failed while reading NVS entry

Espressif Systems 626
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_NVS_XTS_CFG_FAILED (0x1113): XTS configuration setting failed
ESP_ERR_NVS_XTS_CFG_NOT_FOUND (0x1114): XTS configuration not found
ESP_ERR_NVS_ENCR_NOT_SUPPORTED (0x1115): NVS encryption is not supported in this version
ESP_ERR_NVS_KEYS_NOT_INITIALIZED (0x1116): NVS key partition is uninitialized
ESP_ERR_NVS_CORRUPT_KEY_PART (0x1117): NVS key partition is corrupt
ESP_ERR_NVS_CONTENT_DIFFERS (0x1118): Internal error; never returned by nvs API functions. NVS key is
different in comparison
ESP_ERR_NVS_WRONG_ENCRYPTION (0x1119): NVS partition is marked as encrypted with generic flash en-
cryption. This is forbidden since the NVS encryption works differently.
ESP_ERR_ULP_BASE (0x1200): Offset for ULP-related error codes
ESP_ERR_ULP_SIZE_TOO_BIG (0x1201): Program doesn't fit into RTC memory reserved for the ULP
ESP_ERR_ULP_INVALID_LOAD_ADDR (0x1202): Load address is outside of RTC memory reserved for the
ULP
ESP_ERR_ULP_DUPLICATE_LABEL (0x1203): More than one label with the same number was defined
ESP_ERR_ULP_UNDEFINED_LABEL (0x1204): Branch instructions references an undefined label
ESP_ERR_ULP_BRANCH_OUT_OF_RANGE (0x1205): Branch target is out of range of B instruction (try replacing
with BX)
ESP_ERR_OTA_BASE (0x1500): Base error code for ota_ops api
ESP_ERR_OTA_PARTITION_CONFLICT (0x1501): Error if request was to write or erase the current running
partition
ESP_ERR_OTA_SELECT_INFO_INVALID (0x1502): Error if OTA data partition contains invalid content
ESP_ERR_OTA_VALIDATE_FAILED (0x1503): Error if OTA app image is invalid
ESP_ERR_OTA_SMALL_SEC_VER (0x1504): Error if the firmware has a secure version less than the running
firmware.
ESP_ERR_OTA_ROLLBACK_FAILED (0x1505): Error if flash does not have valid firmware in passive partition
and hence rollback is not possible
ESP_ERR_OTA_ROLLBACK_INVALID_STATE (0x1506): Error if current active firmware is still marked in
pending validation state (ESP_OTA_IMG_PENDING_VERIFY), essentially first boot of firmware image post up-
grade and hence firmware upgrade is not possible
ESP_ERR_EFUSE (0x1600): Base error code for efuse api.
ESP_OK_EFUSE_CNT (0x1601): OK the required number of bits is set.
ESP_ERR_EFUSE_CNT_IS_FULL (0x1602): Error field is full.
ESP_ERR_EFUSE_REPEATED_PROG (0x1603): Error repeated programming of programmed bits is strictly for-
bidden.
ESP_ERR_CODING (0x1604): Error while a encoding operation.
ESP_ERR_NOT_ENOUGH_UNUSED_KEY_BLOCKS (0x1605): Error not enough unused key blocks available
ESP_ERR_DAMAGED_READING (0x1606): Error. Burn or reset was done during a reading operation leads to
damage read data. This error is internal to the efuse component and not returned by any public API.
ESP_ERR_IMAGE_BASE (0x2000)
ESP_ERR_IMAGE_FLASH_FAIL (0x2001)
ESP_ERR_IMAGE_INVALID (0x2002)
ESP_ERR_WIFI_BASE (0x3000): Starting number of WiFi error codes
ESP_ERR_WIFI_NOT_INIT (0x3001): WiFi driver was not installed by esp_wifi_init

Espressif Systems 627
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_WIFI_NOT_STARTED (0x3002): WiFi driver was not started by esp_wifi_start
ESP_ERR_WIFI_NOT_STOPPED (0x3003): WiFi driver was not stopped by esp_wifi_stop
ESP_ERR_WIFI_IF (0x3004): WiFi interface error
ESP_ERR_WIFI_MODE (0x3005): WiFi mode error
ESP_ERR_WIFI_STATE (0x3006): WiFi internal state error
ESP_ERR_WIFI_CONN (0x3007): WiFi internal control block of station or soft-AP error
ESP_ERR_WIFI_NVS (0x3008): WiFi internal NVS module error
ESP_ERR_WIFI_MAC (0x3009): MAC address is invalid
ESP_ERR_WIFI_SSID (0x300a): SSID is invalid
ESP_ERR_WIFI_PASSWORD (0x300b): Password is invalid
ESP_ERR_WIFI_TIMEOUT (0x300c): Timeout error
ESP_ERR_WIFI_WAKE_FAIL (0x300d): WiFi is in sleep state(RF closed) and wakeup fail
ESP_ERR_WIFI_WOULD_BLOCK (0x300e): The caller would block
ESP_ERR_WIFI_NOT_CONNECT (0x300f): Station still in disconnect status
ESP_ERR_WIFI_POST (0x3012): Failed to post the event to WiFi task
ESP_ERR_WIFI_INIT_STATE (0x3013): Invalid WiFi state when init/deinit is called
ESP_ERR_WIFI_STOP_STATE (0x3014): Returned when WiFi is stopping
ESP_ERR_WIFI_NOT_ASSOC (0x3015): The WiFi connection is not associated
ESP_ERR_WIFI_TX_DISALLOW (0x3016): The WiFi TX is disallowed
ESP_ERR_WIFI_TWT_FULL (0x3017): no available flow id
ESP_ERR_WIFI_TWT_SETUP_TIMEOUT (0x3018): Timeout of receiving twt setup response frame, timeout
times can be set during twt setup
ESP_ERR_WIFI_TWT_SETUP_TXFAIL (0x3019): TWT setup frame tx failed
ESP_ERR_WIFI_TWT_SETUP_REJECT (0x301a): The twt setup request was rejected by the AP
ESP_ERR_WIFI_DISCARD (0x301b): Discard frame
ESP_ERR_WIFI_REGISTRAR (0x3033): WPS registrar is not supported
ESP_ERR_WIFI_WPS_TYPE (0x3034): WPS type error
ESP_ERR_WIFI_WPS_SM (0x3035): WPS state machine is not initialized
ESP_ERR_ESPNOW_BASE (0x3064): ESPNOW error number base.
ESP_ERR_ESPNOW_NOT_INIT (0x3065): ESPNOW is not initialized.
ESP_ERR_ESPNOW_ARG (0x3066): Invalid argument
ESP_ERR_ESPNOW_NO_MEM (0x3067): Out of memory
ESP_ERR_ESPNOW_FULL (0x3068): ESPNOW peer list is full
ESP_ERR_ESPNOW_NOT_FOUND (0x3069): ESPNOW peer is not found
ESP_ERR_ESPNOW_INTERNAL (0x306a): Internal error
ESP_ERR_ESPNOW_EXIST (0x306b): ESPNOW peer has existed
ESP_ERR_ESPNOW_IF (0x306c): Interface error
ESP_ERR_DPP_FAILURE (0x3097): Generic failure during DPP Operation
ESP_ERR_DPP_TX_FAILURE (0x3098): DPP Frame Tx failed OR not Acked

Espressif Systems 628
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_DPP_INVALID_ATTR (0x3099): Encountered invalid DPP Attribute
ESP_ERR_DPP_AUTH_TIMEOUT (0x309a): DPP Auth response was not recieved in time
ESP_ERR_MESH_BASE (0x4000): Starting number of MESH error codes
ESP_ERR_MESH_WIFI_NOT_START (0x4001)
ESP_ERR_MESH_NOT_INIT (0x4002)
ESP_ERR_MESH_NOT_CONFIG (0x4003)
ESP_ERR_MESH_NOT_START (0x4004)
ESP_ERR_MESH_NOT_SUPPORT (0x4005)
ESP_ERR_MESH_NOT_ALLOWED (0x4006)
ESP_ERR_MESH_NO_MEMORY (0x4007)
ESP_ERR_MESH_ARGUMENT (0x4008)
ESP_ERR_MESH_EXCEED_MTU (0x4009)
ESP_ERR_MESH_TIMEOUT (0x400a)
ESP_ERR_MESH_DISCONNECTED (0x400b)
ESP_ERR_MESH_QUEUE_FAIL (0x400c)
ESP_ERR_MESH_QUEUE_FULL (0x400d)
ESP_ERR_MESH_NO_PARENT_FOUND (0x400e)
ESP_ERR_MESH_NO_ROUTE_FOUND (0x400f)
ESP_ERR_MESH_OPTION_NULL (0x4010)
ESP_ERR_MESH_OPTION_UNKNOWN (0x4011)
ESP_ERR_MESH_XON_NO_WINDOW (0x4012)
ESP_ERR_MESH_INTERFACE (0x4013)
ESP_ERR_MESH_DISCARD_DUPLICATE (0x4014)
ESP_ERR_MESH_DISCARD (0x4015)
ESP_ERR_MESH_VOTING (0x4016)
ESP_ERR_MESH_XMIT (0x4017)
ESP_ERR_MESH_QUEUE_READ (0x4018)
ESP_ERR_MESH_PS (0x4019)
ESP_ERR_MESH_RECV_RELEASE (0x401a)
ESP_ERR_ESP_NETIF_BASE (0x5000)
ESP_ERR_ESP_NETIF_INVALID_PARAMS (0x5001)
ESP_ERR_ESP_NETIF_IF_NOT_READY (0x5002)
ESP_ERR_ESP_NETIF_DHCPC_START_FAILED (0x5003)
ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED (0x5004)
ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED (0x5005)
ESP_ERR_ESP_NETIF_NO_MEM (0x5006)
ESP_ERR_ESP_NETIF_DHCP_NOT_STOPPED (0x5007)
ESP_ERR_ESP_NETIF_DRIVER_ATTACH_FAILED (0x5008)
ESP_ERR_ESP_NETIF_INIT_FAILED (0x5009)

Espressif Systems 629
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_ESP_NETIF_DNS_NOT_CONFIGURED (0x500a)
ESP_ERR_ESP_NETIF_MLD6_FAILED (0x500b)
ESP_ERR_ESP_NETIF_IP6_ADDR_FAILED (0x500c)
ESP_ERR_ESP_NETIF_DHCPS_START_FAILED (0x500d)
ESP_ERR_FLASH_BASE (0x6000): Starting number of flash error codes
ESP_ERR_FLASH_OP_FAIL (0x6001)
ESP_ERR_FLASH_OP_TIMEOUT (0x6002)
ESP_ERR_FLASH_NOT_INITIALISED (0x6003)
ESP_ERR_FLASH_UNSUPPORTED_HOST (0x6004)
ESP_ERR_FLASH_UNSUPPORTED_CHIP (0x6005)
ESP_ERR_FLASH_PROTECTED (0x6006)
ESP_ERR_HTTP_BASE (0x7000): Starting number of HTTP error codes
ESP_ERR_HTTP_MAX_REDIRECT (0x7001): The error exceeds the number of HTTP redirects
ESP_ERR_HTTP_CONNECT (0x7002): Error open the HTTP connection
ESP_ERR_HTTP_WRITE_DATA (0x7003): Error write HTTP data
ESP_ERR_HTTP_FETCH_HEADER (0x7004): Error read HTTP header from server
ESP_ERR_HTTP_INVALID_TRANSPORT (0x7005): There are no transport support for the input scheme
ESP_ERR_HTTP_CONNECTING (0x7006): HTTP connection hasn't been established yet
ESP_ERR_HTTP_EAGAIN (0x7007): Mapping of errno EAGAIN to esp_err_t
ESP_ERR_HTTP_CONNECTION_CLOSED (0x7008): Read FIN from peer and the connection closed
ESP_ERR_ESP_TLS_BASE (0x8000): Starting number of ESP-TLS error codes
ESP_ERR_ESP_TLS_CANNOT_RESOLVE_HOSTNAME (0x8001): Error if hostname couldn't be resolved upon
tls connection
ESP_ERR_ESP_TLS_CANNOT_CREATE_SOCKET (0x8002): Failed to create socket
ESP_ERR_ESP_TLS_UNSUPPORTED_PROTOCOL_FAMILY (0x8003): Unsupported protocol family
ESP_ERR_ESP_TLS_FAILED_CONNECT_TO_HOST (0x8004): Failed to connect to host
ESP_ERR_ESP_TLS_SOCKET_SETOPT_FAILED (0x8005): failed to set/get socket option
ESP_ERR_ESP_TLS_CONNECTION_TIMEOUT (0x8006): new connection in esp_tls_low_level_conn connec-
tion timeouted
ESP_ERR_ESP_TLS_SE_FAILED (0x8007)
ESP_ERR_ESP_TLS_TCP_CLOSED_FIN (0x8008)
ESP_ERR_MBEDTLS_CERT_PARTLY_OK (0x8010): mbedtls parse certificates was partly successful
ESP_ERR_MBEDTLS_CTR_DRBG_SEED_FAILED (0x8011): mbedtls api returned error
ESP_ERR_MBEDTLS_SSL_SET_HOSTNAME_FAILED (0x8012): mbedtls api returned error
ESP_ERR_MBEDTLS_SSL_CONFIG_DEFAULTS_FAILED (0x8013): mbedtls api returned error
ESP_ERR_MBEDTLS_SSL_CONF_ALPN_PROTOCOLS_FAILED (0x8014): mbedtls api returned error
ESP_ERR_MBEDTLS_X509_CRT_PARSE_FAILED (0x8015): mbedtls api returned error
ESP_ERR_MBEDTLS_SSL_CONF_OWN_CERT_FAILED (0x8016): mbedtls api returned error
ESP_ERR_MBEDTLS_SSL_SETUP_FAILED (0x8017): mbedtls api returned error
ESP_ERR_MBEDTLS_SSL_WRITE_FAILED (0x8018): mbedtls api returned error

Espressif Systems 630
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_MBEDTLS_PK_PARSE_KEY_FAILED (0x8019): mbedtls api returned failed
ESP_ERR_MBEDTLS_SSL_HANDSHAKE_FAILED (0x801a): mbedtls api returned failed
ESP_ERR_MBEDTLS_SSL_CONF_PSK_FAILED (0x801b): mbedtls api returned failed
ESP_ERR_MBEDTLS_SSL_TICKET_SETUP_FAILED (0x801c): mbedtls api returned failed
ESP_ERR_WOLFSSL_SSL_SET_HOSTNAME_FAILED (0x8031): wolfSSL api returned error
ESP_ERR_WOLFSSL_SSL_CONF_ALPN_PROTOCOLS_FAILED (0x8032): wolfSSL api returned error
ESP_ERR_WOLFSSL_CERT_VERIFY_SETUP_FAILED (0x8033): wolfSSL api returned error
ESP_ERR_WOLFSSL_KEY_VERIFY_SETUP_FAILED (0x8034): wolfSSL api returned error
ESP_ERR_WOLFSSL_SSL_HANDSHAKE_FAILED (0x8035): wolfSSL api returned failed
ESP_ERR_WOLFSSL_CTX_SETUP_FAILED (0x8036): wolfSSL api returned failed
ESP_ERR_WOLFSSL_SSL_SETUP_FAILED (0x8037): wolfSSL api returned failed
ESP_ERR_WOLFSSL_SSL_WRITE_FAILED (0x8038): wolfSSL api returned failed
ESP_ERR_HTTPS_OTA_BASE (0x9000)
ESP_ERR_HTTPS_OTA_IN_PROGRESS (0x9001)
ESP_ERR_PING_BASE (0xa000)
ESP_ERR_PING_INVALID_PARAMS (0xa001)
ESP_ERR_PING_NO_MEM (0xa002)
ESP_ERR_HTTPD_BASE (0xb000): Starting number of HTTPD error codes
ESP_ERR_HTTPD_HANDLERS_FULL (0xb001): All slots for registering URI handlers have been consumed
ESP_ERR_HTTPD_HANDLER_EXISTS (0xb002): URI handler with same method and target URI already regis-
tered
ESP_ERR_HTTPD_INVALID_REQ (0xb003): Invalid request pointer
ESP_ERR_HTTPD_RESULT_TRUNC (0xb004): Result string truncated
ESP_ERR_HTTPD_RESP_HDR (0xb005): Response header field larger than supported
ESP_ERR_HTTPD_RESP_SEND (0xb006): Error occured while sending response packet
ESP_ERR_HTTPD_ALLOC_MEM (0xb007): Failed to dynamically allocate memory for resource
ESP_ERR_HTTPD_TASK (0xb008): Failed to launch server task/thread
ESP_ERR_HW_CRYPTO_BASE (0xc000): Starting number of HW cryptography module error codes
ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL (0xc001): HMAC peripheral problem
ESP_ERR_HW_CRYPTO_DS_INVALID_KEY (0xc002)
ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST (0xc004)
ESP_ERR_HW_CRYPTO_DS_INVALID_PADDING (0xc005)
ESP_ERR_MEMPROT_BASE (0xd000): Starting number of Memory Protection API error codes
ESP_ERR_MEMPROT_MEMORY_TYPE_INVALID (0xd001)
ESP_ERR_MEMPROT_SPLIT_ADDR_INVALID (0xd002)
ESP_ERR_MEMPROT_SPLIT_ADDR_OUT_OF_RANGE (0xd003)
ESP_ERR_MEMPROT_SPLIT_ADDR_UNALIGNED (0xd004)
ESP_ERR_MEMPROT_UNIMGMT_BLOCK_INVALID (0xd005)
ESP_ERR_MEMPROT_WORLD_INVALID (0xd006)

Espressif Systems 631
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_MEMPROT_AREA_INVALID (0xd007)
ESP_ERR_MEMPROT_CPUID_INVALID (0xd008)
ESP_ERR_TCP_TRANSPORT_BASE (0xe000): Starting number of TCP Transport error codes
ESP_ERR_TCP_TRANSPORT_CONNECTION_TIMEOUT (0xe001): Connection has timed out
ESP_ERR_TCP_TRANSPORT_CONNECTION_CLOSED_BY_FIN (0xe002): Read FIN from peer and the con-
nection has closed (in a clean way)
ESP_ERR_TCP_TRANSPORT_CONNECTION_FAILED (0xe003): Failed to connect to the peer
ESP_ERR_TCP_TRANSPORT_NO_MEM (0xe004): Memory allocation failed

2.5 Networking APIs

2.5.1 Wi-Fi

ESP-NOW

Overview ESP-NOW is a kind of connectionless Wi-Fi communication protocol that is defined by Espressif. In
ESP-NOW, application data is encapsulated in a vendor-specific action frame and then transmitted from one Wi-Fi
device to another without connection. CTR with CBC-MAC Protocol(CCMP) is used to protect the action frame for
security. ESP-NOW is widely used in smart light, remote controlling, sensor, etc.

Frame Format ESP-NOW uses a vendor-specific action frame to transmit ESP-NOW data. The default ESP-
NOW bit rate is 1 Mbps.
Currently, ESP-NOW supports one version: v1.0. The maximum packet length supported by v1.0 devices is
ESP_NOW_MAX_DATA_LEN bytes. The v1.0 devices can receive packets if the packet length is less than or
equal to ESP_NOW_MAX_IE_DATA_LEN. For packets exceeding this length, the v1.0 devices will discard the
packet entirely.
The format of the vendor-specific action frame is as follows:

↪→-------------------------
| MAC Header | Category Code | Organization Identifier | Random Values | Vendor␣
↪→Specific Content | FCS |

↪→-------------------------
24 bytes 1 byte 3 bytes 4 bytes 7-

↪→x bytes 4 bytes

• Category Code: The Category Code field is set to the value(127) indicating the vendor-specific category.
• Organization Identifier: The Organization Identifier contains a unique identifier (0x18fe34), which is the first
three bytes of MAC address applied by Espressif.

• Random Value: The Random Value filed is used to prevents relay attacks.
• Vendor Specific Content: The Vendor Specific Content contains one vendor-specific element field, x = 257(250
+ 7).

The format of the vendor-specific element frame is as follows:

Espressif Systems 632
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

↪→-------
| Element ID | Length | Organization Identifier | Type | Reserved | Version | ␣
↪→Body
↪→-------

7~4 bits | 3~0 bits
1 byte 1 byte 3 bytes 1 byte 1 byte 0-

↪→250 bytes

• Element ID: The Element ID field is set to the value (221), indicating the vendor-specific element.
• Length: The length is the total length of Organization Identifier, Type, Version and Body, the maximum value
is 255.

• Organization Identifier: The Organization Identifier contains a unique identifier (0x18fe34), which is the first
three bytes of MAC address applied by Espressif.

• Type: The Type field is set to the value (4) indicating ESP-NOW.
• Version: The Version field is set to the version of ESP-NOW.
• Body: The Body contains the actual ESP-NOW data to be transmitted.

As ESP-NOW is connectionless, the MAC header is a little different from that of standard frames. The FromDS and
ToDS bits of FrameControl field are both 0. The first address field is set to the destination address. The second address
field is set to the source address. The third address field is set to broadcast address (0xff:0xff:0xff:0xff:0xff:0xff).

Security
ESP-NOW uses the CCMP method, which is described in IEEE Std. 802.11-2012, to protect the vendor-specific action frame. The Wi-Fi device maintains a Primary Master Key (PMK) and several Local Master Keys (LMKs, each paired device has one LMK). The lengths of both PMK and LMK are 16 bytes.

• PMK is used to encrypt LMK with the AES-128 algorithm. Call esp_now_set_pmk() to set PMK.
If PMK is not set, a default PMK will be used.

• LMK of the paired device is used to encrypt the vendor-specific action frame with the CCMP method.
If the LMK of the paired device is not set, the vendor-specific action frame will not be encrypted.

Encrypting multicast vendor-specific action frame is not supported.

Initialization and De-initialization Call esp_now_init() to initialize ESP-NOW and
esp_now_deinit() to de-initialize ESP-NOW. ESP-NOW data must be transmitted after Wi-Fi is started,
so it is recommended to start Wi-Fi before initializing ESP-NOW and stop Wi-Fi after de-initializing ESP-NOW.
When esp_now_deinit() is called, all of the information of paired devices will be deleted.

Add Paired Device Call esp_now_add_peer() to add the device to the paired device list before you send
data to this device. If security is enabled, the LMK must be set. A device with a broadcast MAC address must be
added before sending broadcast data.
You can send ESP-NOW data via both the Station and the SoftAP interface. Make sure that the interface is enabled
before sending ESP-NOW data.
The range of the channel of paired devices is from 0 to 14. If the channel is set to 0, data will be sent on the current
channel. Otherwise, the channel must be set as the channel that the local device is on.
For the receiving device, calling esp_now_add_peer() is not required. If no paired device is added, it can only
receive broadcast packets and unencrypted unicast packets. To receive encrypted unicast packets, a paired device
must be added, and the same LMK must be set.
The maximum number of paired devices is 20, and the paired encryption devices are no more than
17, the default is 7. If you want to change the number of paired encryption devices, set CON-
FIG_ESP_WIFI_ESPNOW_MAX_ENCRYPT_NUM in the Wi-Fi component configuration menu.

Espressif Systems 633
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Send ESP-NOW Data Call esp_now_send() to send ESP-NOW data and
esp_now_register_send_cb() to register sending callback function. It will return
ESP_NOW_SEND_SUCCESS in sending callback function if the data is received successfully on the MAC
layer. Otherwise, it will return ESP_NOW_SEND_FAIL. Several reasons can lead to ESP-NOW fails to send data.
For example, the destination device doesn't exist; the channels of the devices are not the same; the action frame is
lost when transmitting on the air, etc. It is not guaranteed that application layer can receive the data. If necessary,
send back ack data when receiving ESP-NOW data. If receiving ack data timeouts, retransmit the ESP-NOW data.
A sequence number can also be assigned to ESP-NOW data to drop the duplicate data.
If there is a lot of ESP-NOW data to send, call esp_now_send() to send less than or equal to 250 bytes of
data once a time. Note that too short interval between sending two ESP-NOW data may lead to disorder of sending
callback function. So, it is recommended that sending the next ESP-NOW data after the sending callback function
of the previous sending has returned. The sending callback function runs from a high-priority Wi-Fi task. So, do not
do lengthy operations in the callback function. Instead, post the necessary data to a queue and handle it from a lower
priority task.

Receiving ESP-NOW Data Call esp_now_register_recv_cb() to register receiving callback function.
Call the receiving callback function when receiving ESP-NOW. The receiving callback function also runs from the
Wi-Fi task. So, do not do lengthy operations in the callback function. Instead, post the necessary data to a queue and
handle it from a lower priority task.

Config ESP-NOW Rate Call esp_now_set_peer_rate_config() to configure ESP-NOW rate of
each peer. Make sure that the peer is added before configuring the rate. This API should be called after
esp_wifi_start() and esp_now_add_peer().

Note: esp_wifi_config_espnow_rate() is deprecated, please use
cpp:esp_now_set_peer_rate_config() instead.

Config ESP-NOW Power-saving Parameter Sleep is supported only when ESP32-C6 is configured as station.
Call esp_now_set_wake_window() to configure Window for ESP-NOW RX at sleep. The default value is
the maximum, which allowing RX all the time.
If Power-saving is needed for ESP-NOW, callesp_wifi_connectionless_module_set_wake_interval()
to configure Interval as well.
Please refer to connectionless module power save to get more detail.

Application Examples
• Example of sending and receiving ESP-NOW data between two devices: wifi/espnow.
• For more application examples of how to use ESP-NOW, please visit ESP-NOW repository.

API Reference

Header File
• components/esp_wifi/include/esp_now.h

Functions
esp_err_t esp_now_init(void)

Initialize ESPNOW function.
Returns

• ESP_OK : succeed

Espressif Systems 634
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/espnow
https://github.com/espressif/esp-now
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_wifi/include/esp_now.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_ESPNOW_INTERNAL : Internal error
esp_err_t esp_now_deinit(void)

De-initialize ESPNOW function.
Returns

• ESP_OK : succeed
esp_err_t esp_now_get_version(uint32_t *version)

Get the version of ESPNOW. Currently, ESPNOW supports one version: v1.0.

The v1.0 devices can receive packets if the packet length is less than␣
↪→or equal to ESP_NOW_MAX_IE_DATA_LEN.

For packets exceeding this length, the v1.0 devices will discard the␣
↪→packet entirely.

Parameters version -- ESPNOW version
Returns

• ESP_OK : succeed
• ESP_ERR_ESPNOW_ARG : invalid argument

esp_err_t esp_now_register_recv_cb(esp_now_recv_cb_t cb)
Register callback function of receiving ESPNOW data.

Parameters cb -- callback function of receiving ESPNOW data
Returns

• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
• ESP_ERR_ESPNOW_INTERNAL : internal error

esp_err_t esp_now_unregister_recv_cb(void)
Unregister callback function of receiving ESPNOW data.

Returns
• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized

esp_err_t esp_now_register_send_cb(esp_now_send_cb_t cb)
Register callback function of sending ESPNOW data.

Parameters cb -- callback function of sending ESPNOW data
Returns

• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
• ESP_ERR_ESPNOW_INTERNAL : internal error

esp_err_t esp_now_unregister_send_cb(void)
Unregister callback function of sending ESPNOW data.

Returns
• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized

esp_err_t esp_now_send(const uint8_t *peer_addr, const uint8_t *data, size_t len)
Send ESPNOW data.

Attention 1. If peer_addr is not NULL, send data to the peer whose MAC address matches peer_addr
Attention 2. If peer_addr is NULL, send data to all of the peers that are added to the peer list
Attention 3. The maximum length of data must be less than ESP_NOW_MAX_DATA_LEN
Attention 4. The buffer pointed to by data argument does not need to be valid after esp_now_send returns

Espressif Systems 635
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• peer_addr -- peer MAC address
• data -- data to send
• len -- length of data

Returns
• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
• ESP_ERR_ESPNOW_ARG : invalid argument
• ESP_ERR_ESPNOW_INTERNAL : internal error
• ESP_ERR_ESPNOW_NO_MEM : out of memory, when this happens, you can delay a
while before sending the next data

• ESP_ERR_ESPNOW_NOT_FOUND : peer is not found
• ESP_ERR_ESPNOW_IF : current WiFi interface doesn't match that of peer

esp_err_t esp_now_add_peer(const esp_now_peer_info_t *peer)
Add a peer to peer list.

Parameters peer -- peer information
Returns

• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
• ESP_ERR_ESPNOW_ARG : invalid argument
• ESP_ERR_ESPNOW_FULL : peer list is full
• ESP_ERR_ESPNOW_NO_MEM : out of memory
• ESP_ERR_ESPNOW_EXIST : peer has existed

esp_err_t esp_now_del_peer(const uint8_t *peer_addr)
Delete a peer from peer list.

Parameters peer_addr -- peer MAC address
Returns

• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
• ESP_ERR_ESPNOW_ARG : invalid argument
• ESP_ERR_ESPNOW_NOT_FOUND : peer is not found

esp_err_t esp_now_mod_peer(const esp_now_peer_info_t *peer)
Modify a peer.

Parameters peer -- peer information
Returns

• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
• ESP_ERR_ESPNOW_ARG : invalid argument
• ESP_ERR_ESPNOW_FULL : peer list is full

esp_err_t esp_wifi_config_espnow_rate(wifi_interface_t ifx, wifi_phy_rate_t rate)
Config ESPNOW rate of specified interface.

Deprecated:

please use esp_now_set_peer_rate_config() instead.

Attention 1. This API should be called after esp_wifi_start().
Attention 2. This API only work when not use Wi-Fi 6 and esp_now_set_peer_rate_config() not called.

Parameters
• ifx -- Interface to be configured.
• rate -- Phy rate to be configured.

Espressif Systems 636
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK: succeed
• others: failed

esp_err_t esp_now_set_peer_rate_config(const uint8_t *peer_addr, esp_now_rate_config_t *config)
Set ESPNOW rate config for each peer.

Attention 1. This API should be called after esp_wifi_start() and esp_now_init().

Parameters
• peer_addr -- peer MAC address
• config -- rate config to be configured.

Returns
• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
• ESP_ERR_ESPNOW_ARG : invalid argument
• ESP_ERR_ESPNOW_INTERNAL : internal error

esp_err_t esp_now_get_peer(const uint8_t *peer_addr, esp_now_peer_info_t *peer)
Get a peer whose MAC address matches peer_addr from peer list.

Parameters
• peer_addr -- peer MAC address
• peer -- peer information

Returns
• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
• ESP_ERR_ESPNOW_ARG : invalid argument
• ESP_ERR_ESPNOW_NOT_FOUND : peer is not found

esp_err_t esp_now_fetch_peer(bool from_head, esp_now_peer_info_t *peer)
Fetch a peer from peer list. Only return the peer which address is unicast, for the multicast/broadcast address,
the function will ignore and try to find the next in the peer list.

Parameters
• from_head -- fetch from head of list or not
• peer -- peer information

Returns
• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
• ESP_ERR_ESPNOW_ARG : invalid argument
• ESP_ERR_ESPNOW_NOT_FOUND : peer is not found

bool esp_now_is_peer_exist(const uint8_t *peer_addr)
Peer exists or not.

Parameters peer_addr -- peer MAC address
Returns

• true : peer exists
• false : peer not exists

esp_err_t esp_now_get_peer_num(esp_now_peer_num_t *num)
Get the number of peers.

Parameters num -- number of peers
Returns

• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
• ESP_ERR_ESPNOW_ARG : invalid argument

Espressif Systems 637
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_now_set_pmk(const uint8_t *pmk)
Set the primary master key.

Attention 1. primary master key is used to encrypt local master key

Parameters pmk -- primary master key
Returns

• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized
• ESP_ERR_ESPNOW_ARG : invalid argument

esp_err_t esp_now_set_wake_window(uint16_t window)
Set wake window for esp_now to wake up in interval unit.

Attention 1. This configuration could work at connected status. When
ESP_WIFI_STA_DISCONNECTED_PM_ENABLE is enabled, this configuration could work at
disconnected status.

Attention 2. Default value is the maximum.

Parameters window -- Milliseconds would the chip keep waked each interval, from 0 to 65535.
Returns

• ESP_OK : succeed
• ESP_ERR_ESPNOW_NOT_INIT : ESPNOW is not initialized

Structures

struct esp_now_peer_info
ESPNOW peer information parameters.

Public Members

uint8_t peer_addr[ESP_NOW_ETH_ALEN]
ESPNOW peer MAC address that is also the MAC address of station or softap

uint8_t lmk[ESP_NOW_KEY_LEN]
ESPNOW peer local master key that is used to encrypt data

uint8_t channel
Wi-Fi channel that peer uses to send/receive ESPNOW data. If the value is 0, use the current channel
which station or softap is on. Otherwise, it must be set as the channel that station or softap is on.

wifi_interface_t ifidx

Wi-Fi interface that peer uses to send/receive ESPNOW data

bool encrypt
ESPNOW data that this peer sends/receives is encrypted or not

void *priv
ESPNOW peer private data

Espressif Systems 638
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct esp_now_peer_num
Number of ESPNOW peers which exist currently.

Public Members

int total_num
Total number of ESPNOW peers, maximum value is ESP_NOW_MAX_TOTAL_PEER_NUM

int encrypt_num
Number of encrypted ESPNOWpeers, maximumvalue is ESP_NOW_MAX_ENCRYPT_PEER_NUM

struct esp_now_recv_info
ESPNOW packet information.

Public Members

uint8_t *src_addr
Source address of ESPNOW packet

uint8_t *des_addr
Destination address of ESPNOW packet

wifi_pkt_rx_ctrl_t *rx_ctrl
Rx control info of ESPNOW packet

Macros

ESP_ERR_ESPNOW_BASE

ESPNOW error number base.

ESP_ERR_ESPNOW_NOT_INIT

ESPNOW is not initialized.

ESP_ERR_ESPNOW_ARG

Invalid argument

ESP_ERR_ESPNOW_NO_MEM

Out of memory

ESP_ERR_ESPNOW_FULL

ESPNOW peer list is full

ESP_ERR_ESPNOW_NOT_FOUND

ESPNOW peer is not found

ESP_ERR_ESPNOW_INTERNAL

Internal error

Espressif Systems 639
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_ESPNOW_EXIST

ESPNOW peer has existed

ESP_ERR_ESPNOW_IF

Interface error

ESP_NOW_ETH_ALEN

Length of ESPNOW peer MAC address

ESP_NOW_KEY_LEN

Length of ESPNOW peer local master key

ESP_NOW_MAX_TOTAL_PEER_NUM

Maximum number of ESPNOW total peers

ESP_NOW_MAX_ENCRYPT_PEER_NUM

Maximum number of ESPNOW encrypted peers

ESP_NOW_MAX_IE_DATA_LEN

Maximum data length in a vendor-specific element

ESP_NOW_MAX_DATA_LEN

Maximum length of data sent in each ESPNOW transmission for v1.0

Type Definitions

typedef struct esp_now_peer_info esp_now_peer_info_t

ESPNOW peer information parameters.

typedef struct esp_now_peer_num esp_now_peer_num_t

Number of ESPNOW peers which exist currently.

typedef struct esp_now_recv_info esp_now_recv_info_t

ESPNOW packet information.

typedef wifi_tx_rate_config_t esp_now_rate_config_t

ESPNOW rate config.

typedef void (*esp_now_recv_cb_t)(const esp_now_recv_info_t *esp_now_info, const uint8_t *data, int
data_len)

Callback function of receiving ESPNOW data.

Attention esp_now_info is a local variable，it can only be used in the callback.

Param esp_now_info received ESPNOW packet information
Param data received data
Param data_len length of received data

Espressif Systems 640
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef void (*esp_now_send_cb_t)(const uint8_t *mac_addr, esp_now_send_status_t status)
Callback function of sending ESPNOW data.

Param mac_addr peer MAC address
Param status status of sending ESPNOW data (succeed or fail)

Enumerations

enum esp_now_send_status_t

Status of sending ESPNOW data .
Values:

enumerator ESP_NOW_SEND_SUCCESS
Send ESPNOW data successfully

enumerator ESP_NOW_SEND_FAIL
Send ESPNOW data fail

ESP-WIFI-MESH Programming Guide

This is a programming guide for ESP-WIFI-MESH, including the API reference and coding examples. This guide is
split into the following parts:

1. ESP-WIFI-MESH Programming Model
2. Writing an ESP-WIFI-MESH Application
3. Self Organized Networking
4. Application Examples
5. API Reference

For documentation regarding the ESP-WIFI-MESH protocol, please see the ESP-WIFI-MESH API Guide. For more
information about ESP-WIFI-MESH Development Framework, please see ESP-WIFI-MESH Development Frame-
work.

ESP-WIFI-MESH Programming Model

Software Stack The ESP-WIFI-MESH software stack is built atop the Wi-Fi Driver/FreeRTOS and may use the
LwIP Stack in some instances (i.e. the root node). The following diagram illustrates the ESP-WIFI-MESH software
stack.

System Events An application interfaces with ESP-WIFI-MESH via ESP-WIFI-MESH Events. Since ESP-
WIFI-MESH is built atop the Wi-Fi stack, it is also possible for the application to interface with the Wi-Fi driver
via the Wi-Fi Event Task. The following diagram illustrates the interfaces for the various System Events in an
ESP-WIFI-MESH application.
The mesh_event_id_t defines all possible ESP-WIFI-MESH events and can indicate events such as the con-
nection/disconnection of parent/child. Before ESP-WIFI-MESH events can be used, the application must register
a Mesh Events handler via esp_event_handler_register() to the default event task. The Mesh Events
handler that is registered contain handlers for each ESP-WIFI-MESH event relevant to the application.
Typical use cases of mesh events include using events such as MESH_EVENT_PARENT_CONNECTED and
MESH_EVENT_CHILD_CONNECTED to indicate when a node can begin transmitting data upstream and down-
stream respectively. Likewise, IP_EVENT_STA_GOT_IP and IP_EVENT_STA_LOST_IP can be used to indi-
cate when the root node can and cannot transmit data to the external IP network.

Espressif Systems 641
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-mdf
https://github.com/espressif/esp-mdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 2: ESP-WIFI-MESH Software Stack

Fig. 3: ESP-WIFI-MESH System Events Delivery

Warning: When using ESP-WIFI-MESH under self-organized mode, users must ensure that no calls to Wi-
Fi API are made. This is due to the fact that the self-organizing mode will internally make Wi-Fi API calls
to connect/disconnect/scan etc. Any Wi-Fi calls from the application (including calls from callbacks and
handlers of Wi-Fi events) may interfere with ESP-WIFI-MESH's self-organizing behavior. Therefore,
users should not call Wi-Fi APIs after esp_mesh_start() is called, and before esp_mesh_stop() is
called.

LwIP & ESP-WIFI-MESH The application can access the ESP-WIFI-MESH stack directly without having to
go through the LwIP stack. The LwIP stack is only required by the root node to transmit/receive data to/from an
external IP network. However, since every node can potentially become the root node (due to automatic root node
selection), each node must still initialize the LwIP stack.
Each node that could become root is required to initialize LwIP by calling esp_netif_init(). In order
to prevent non-root node access to LwIP, the application should not create or register any network interfaces using
esp_netif APIs.

ESP-WIFI-MESH requires a root node to be connected with a router. Therefore, in the event that a node
becomes the root, the corresponding handler must start the DHCP client service and immediately
obtain an IP address. Doing so will allow other nodes to begin transmitting/receiving packets to/from
the external IP network. However, this step is unnecessary if static IP settings are used.

Writing an ESP-WIFI-MESHApplication The prerequisites for starting ESP-WIFI-MESH is to initialize LwIP
and Wi-Fi, The following code snippet demonstrates the necessary prerequisite steps before ESP-WIFI-MESH itself
can be initialized.

Espressif Systems 642
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERROR_CHECK(esp_netif_init());

/* event initialization */
ESP_ERROR_CHECK(esp_event_loop_create_default());

/* Wi-Fi initialization */
wifi_init_config_t config = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&config));
/* register IP events handler */
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &ip_
↪→event_handler, NULL));
ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_FLASH));
ESP_ERROR_CHECK(esp_wifi_start());

After initializing LwIP and Wi-Fi, the process of getting an ESP-WIFI-MESH network up and running can be
summarized into the following three steps:

1. Initialize Mesh
2. Configuring an ESP-WIFI-MESH Network
3. Start Mesh

Initialize Mesh The following code snippet demonstrates how to initialize ESP-WIFI-MESH

/* mesh initialization */
ESP_ERROR_CHECK(esp_mesh_init());
/* register mesh events handler */
ESP_ERROR_CHECK(esp_event_handler_register(MESH_EVENT, ESP_EVENT_ANY_ID, &mesh_
↪→event_handler, NULL));

Configuring an ESP-WIFI-MESH Network ESP-WIFI-MESH is configured via
esp_mesh_set_config() which receives its arguments using the mesh_cfg_t structure. The struc-
ture contains the following parameters used to configure ESP-WIFI-MESH:

Parameter Description
Channel Range from 1 to 14
Mesh ID ID of ESP-WIFI-MESH Network, see mesh_addr_t
Router Router Configuration, see mesh_router_t
Mesh AP Mesh AP Configuration, see mesh_ap_cfg_t
Crypto Functions Crypto Functions for Mesh IE, see mesh_crypto_funcs_t

The following code snippet demonstrates how to configure ESP-WIFI-MESH.

/* Enable the Mesh IE encryption by default */
mesh_cfg_t cfg = MESH_INIT_CONFIG_DEFAULT();
/* mesh ID */
memcpy((uint8_t *) &cfg.mesh_id, MESH_ID, 6);
/* channel (must match the router's channel) */
cfg.channel = CONFIG_MESH_CHANNEL;
/* router */
cfg.router.ssid_len = strlen(CONFIG_MESH_ROUTER_SSID);
memcpy((uint8_t *) &cfg.router.ssid, CONFIG_MESH_ROUTER_SSID, cfg.router.ssid_len);
memcpy((uint8_t *) &cfg.router.password, CONFIG_MESH_ROUTER_PASSWD,

strlen(CONFIG_MESH_ROUTER_PASSWD));
/* mesh softAP */
cfg.mesh_ap.max_connection = CONFIG_MESH_AP_CONNECTIONS;
memcpy((uint8_t *) &cfg.mesh_ap.password, CONFIG_MESH_AP_PASSWD,

strlen(CONFIG_MESH_AP_PASSWD));
ESP_ERROR_CHECK(esp_mesh_set_config(&cfg));

Espressif Systems 643
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Start Mesh The following code snippet demonstrates how to start ESP-WIFI-MESH.

/* mesh start */
ESP_ERROR_CHECK(esp_mesh_start());

After starting ESP-WIFI-MESH, the application should check for ESP-WIFI-MESH events to determine when it
has connected to the network. After connecting, the application can start transmitting and receiving packets over the
ESP-WIFI-MESH network using esp_mesh_send() and esp_mesh_recv().

Self Organized Networking Self organized networking is a feature of ESP-WIFI-MESH where nodes can au-
tonomously scan/select/connect/reconnect to other nodes and routers. This feature allows an ESP-WIFI-MESH net-
work to operate with high degree of autonomy by making the network robust to dynamic network topologies and
conditions. With self organized networking enabled, nodes in an ESP-WIFI-MESH network are able to carry out the
following actions without autonomously:

• Selection or election of the root node (see Automatic Root Node Selection in Building a Network)
• Selection of a preferred parent node (see Parent Node Selection in Building a Network)
• Automatic reconnection upon detecting a disconnection (see Intermediate Parent Node Failure inManaging

a Network)
When self organized networking is enabled, the ESP-WIFI-MESH stack will internally make calls to Wi-Fi APIs.
Therefore, the application layer should not make any calls to Wi-Fi APIs whilst self organized networking is
enabled as doing so would risk interfering with ESP-WIFI-MESH.

Toggling Self Organized Networking Self organized networking can be enabled or disabled by the application
at runtime by calling the esp_mesh_set_self_organized() function. The function has the two following
parameters:

• bool enable specifies whether to enable or disable self organized networking.
• bool select_parent specifies whether a new parent node should be selected when enabling self orga-
nized networking. Selecting a new parent has different effects depending the node type and the node's current
state. This parameter is unused when disabling self organized networking.

Disabling Self Organized Networking The following code snippet demonstrates how to disable self organized
networking.

//Disable self organized networking
esp_mesh_set_self_organized(false, false);

ESP-WIFI-MESH will attempt to maintain the node's current Wi-Fi state when disabling self organized networking.
• If the node was previously connected to other nodes, it will remain connected.
• If the node was previously disconnected and was scanning for a parent node or router, it will stop scanning.
• If the node was previously attempting to reconnect to a parent node or router, it will stop reconnecting.

Enabling Self Organized Networking ESP-WIFI-MESH will attempt to maintain the node's current Wi-Fi state
when enabling self organized networking. However, depending on the node type and whether a new parent is selected,
the Wi-Fi state of the node can change. The following table shows effects of enabling self organized networking.

Espressif Systems 644
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Select Parent Is Root Node Effects
N N • Nodes already connected to a

parent node will remain con-
nected.

• Nodes previously scan-
ning for a parent nodes
will stop scanning. Call
esp_mesh_connect()
to restart.

Y • A root node already con-
nected to router will stay con-
nected.

• A root node disconnected
from router will need to call
esp_mesh_connect()
to reconnect.

Y N • Nodes without a parent node
will automatically select a
preferred parent and connect.

• Nodes already connected to
a parent node will discon-
nect, reselect a preferred par-
ent node, and connect.

Y • For a root node to connect to
a parent node, it must give up
it's role as root. Therefore,
a root node will disconnect
from the router and all child
nodes, select a preferred par-
ent node, and connect.

The following code snipping demonstrates how to enable self organized networking.

//Enable self organized networking and select a new parent
esp_mesh_set_self_organized(true, true);

...

//Enable self organized networking and manually reconnect
esp_mesh_set_self_organized(true, false);
esp_mesh_connect();

Calling Wi-Fi API There can be instances in which an application may want to directly call Wi-Fi API whilst
using ESP-WIFI-MESH. For example, an application may want to manually scan for neighboring APs. However,
self organized networking must be disabled before the application calls any Wi-Fi APIs. This will prevent the
ESP-WIFI-MESH stack from attempting to call any Wi-Fi APIs and potentially interfering with the application's
calls.
Therefore, application calls to Wi-Fi APIs should be placed in between calls of
esp_mesh_set_self_organized() which disable and enable self organized networking. The follow-
ing code snippet demonstrates how an application can safely call esp_wifi_scan_start() whilst using

Espressif Systems 645
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP-WIFI-MESH.

//Disable self organized networking
esp_mesh_set_self_organized(0, 0);

//Stop any scans already in progress
esp_wifi_scan_stop();
//Manually start scan. Will automatically stop when run to completion
esp_wifi_scan_start();

//Process scan results

...

//Re-enable self organized networking if still connected
esp_mesh_set_self_organized(1, 0);

...

//Re-enable self organized networking if non-root and disconnected
esp_mesh_set_self_organized(1, 1);

...

//Re-enable self organized networking if root and disconnected
esp_mesh_set_self_organized(1, 0); //Don't select new parent
esp_mesh_connect(); //Manually reconnect to router

Application Examples ESP-IDF contains these ESP-WIFI-MESH example projects:
The Internal Communication Example demonstrates how to set up a ESP-WIFI-MESH network and have the root
node send a data packet to every node within the network.
The Manual Networking Example demonstrates how to use ESP-WIFI-MESH without the self-organizing features.
This example shows how to program a node to manually scan for a list of potential parent nodes and select a parent
node based on custom criteria.

API Reference

Header File
• components/esp_wifi/include/esp_mesh.h

Functions
esp_err_t esp_mesh_init(void)

Mesh initialization.

• Check whether Wi-Fi is started.
• Initialize mesh global variables with default values.

Attention This API shall be called after Wi-Fi is started.

Returns
• ESP_OK
• ESP_FAIL

Espressif Systems 646
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/mesh/internal_communication
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/mesh/manual_networking
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_wifi/include/esp_mesh.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_mesh_deinit(void)
Mesh de-initialization.

- Release resources and stop the mesh

Returns
• ESP_OK
• ESP_FAIL

esp_err_t esp_mesh_start(void)
Start mesh.

• Initialize mesh IE.
• Start mesh network management service.
• Create TX and RX queues according to the configuration.
• Register mesh packets receive callback.

Attention 　　 This API shall be called after mesh initialization and configuration.

Returns
• ESP_OK
• ESP_FAIL
• ESP_ERR_MESH_NOT_INIT
• ESP_ERR_MESH_NOT_CONFIG
• ESP_ERR_MESH_NO_MEMORY

esp_err_t esp_mesh_stop(void)
Stop mesh.

• Deinitialize mesh IE.
• Disconnect with current parent.
• Disassociate all currently associated children.
• Stop mesh network management service.
• Unregister mesh packets receive callback.
• Delete TX and RX queues.
• Release resources.
• Restore Wi-Fi softAP to default settings if Wi-Fi dual mode is enabled.
• Set Wi-Fi Power Save type to WIFI_PS_NONE.

Returns
• ESP_OK
• ESP_FAIL

esp_err_t esp_mesh_send(const mesh_addr_t *to, const mesh_data_t *data, int flag, const mesh_opt_t opt[],
int opt_count)

Send a packet over the mesh network.

• Send a packet to any device in the mesh network.
• Send a packet to external IP network.

Espressif Systems 647
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Attention This API is not reentrant.

Parameters
• to -- [in] the address of the final destination of the packet
– If the packet is to the root, set this parameter to NULL.
– If the packet is to an external IP network, set this parameter to the IPv4:PORT combi-
nation. This packet will be delivered to the root firstly, then the root will forward this
packet to the final IP server address.

• data -- [in] pointer to a sending mesh packet
– Field size should not exceed MESH_MPS. Note that the size of one mesh packet should
not exceed MESH_MTU.

– Field proto should be set to data protocol in use (default is MESH_PROTO_BIN for
binary).

– Field tos should be set to transmission tos (type of service) in use (default is
MESH_TOS_P2P for point-to-point reliable).
∗ If the packet is to the root, MESH_TOS_P2P must be set to ensure reliable trans-
mission.

∗ As long as the MESH_TOS_P2P is set, the API is blocking, even if the flag is set
with MESH_DATA_NONBLOCK.

∗ As long as the MESH_TOS_DEF is set, the API is non-blocking.
• flag -- [in] bitmap for data sent
– Flag is at least one of the threeMESH_DATA_P2P/MESH_DATA_FROMDS/MESH_DATA_TODS,
which represents the direction of packet sending.

– Speed up the route search
∗ If the packet is to an internal device, MESH_DATA_P2P should be set.
∗ If the packet is to the root ("to" parameter isn't NULL) or to external IP network,
MESH_DATA_TODS should be set.

∗ If the packet is from the root to an internal device, MESH_DATA_FROMDS should
be set.

– Specify whether this API is blocking or non-blocking, blocking by default.
– In the situation of the root change, MESH_DATA_DROP identifies this packet can be
dropped by the new root for upstream data to external IP network, we try our best to
avoid data loss caused by the root change, but there is a risk that the new root is running
out of memory because most of memory is occupied by the pending data which isn't
read out in time by esp_mesh_recv_toDS().
Generally, we suggest esp_mesh_recv_toDS() is called after a connection with IP net-
work is created. Thus data outgoing to external IP network via socket is just from
reading esp_mesh_recv_toDS() which avoids unnecessary memory copy.

• opt -- [in] options
– In case of sending a packet to a certain group, MESH_OPT_SEND_GROUP is a good
choice. In this option, the value field should be set to the target receiver addresses in
this group.

– Root sends a packet to an internal device, this packet is from external IP network in case
the receiver device responds this packet, MESH_OPT_RECV_DS_ADDR is required
to attach the target DS address.

• opt_count -- [in] option count
– Currently, this API only takes one option, so opt_count is only supported to be 1.

Returns
• ESP_OK
• ESP_FAIL
• ESP_ERR_MESH_ARGUMENT
• ESP_ERR_MESH_NOT_START
• ESP_ERR_MESH_DISCONNECTED
• ESP_ERR_MESH_OPT_UNKNOWN
• ESP_ERR_MESH_EXCEED_MTU
• ESP_ERR_MESH_NO_MEMORY
• ESP_ERR_MESH_TIMEOUT
• ESP_ERR_MESH_QUEUE_FULL

Espressif Systems 648
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_MESH_NO_ROUTE_FOUND
• ESP_ERR_MESH_DISCARD
• ESP_ERR_MESH_NOT_SUPPORT
• ESP_ERR_MESH_XMIT

esp_err_t esp_mesh_send_block_time(uint32_t time_ms)
Set blocking time of esp_mesh_send()

• Suggest to set the blocking time to at least 5s when the environment is poor. Otherwise, esp_mesh_send()
may timeout frequently.

Attention This API shall be called before mesh is started.

Parameters time_ms -- [in] blocking time of esp_mesh_send(), unit:ms
Returns

• ESP_OK

esp_err_t esp_mesh_recv(mesh_addr_t *from, mesh_data_t *data, int timeout_ms, int *flag, mesh_opt_t
opt[], int opt_count)

Receive a packet targeted to self over the mesh network.

flag could be MESH_DATA_FROMDS or MESH_DATA_TODS.
Attention Mesh RX queue should be checked regularly to avoid running out of memory.

• Use esp_mesh_get_rx_pending() to check the number of packets available in the queue waiting to
be received by applications.

Parameters
• from -- [out] the address of the original source of the packet
• data -- [out] pointer to the received mesh packet
– Field proto is the data protocol in use. Should follow it to parse the received data.
– Field tos is the transmission tos (type of service) in use.

• timeout_ms -- [in] wait time if a packet isn't immediately available (0:no wait, port-
MAX_DELAY:wait forever)

• flag -- [out] bitmap for data received
– MESH_DATA_FROMDS represents data from external IP network
– MESH_DATA_TODS represents data directed upward within the mesh network

• opt -- [out] options desired to receive
– MESH_OPT_RECV_DS_ADDR attaches the DS address

• opt_count -- [in] option count desired to receive
– Currently, this API only takes one option, so opt_count is only supported to be 1.

Returns
• ESP_OK
• ESP_ERR_MESH_ARGUMENT
• ESP_ERR_MESH_NOT_START
• ESP_ERR_MESH_TIMEOUT
• ESP_ERR_MESH_DISCARD

esp_err_t esp_mesh_recv_toDS(mesh_addr_t *from, mesh_addr_t *to, mesh_data_t *data, int timeout_ms,
int *flag, mesh_opt_t opt[], int opt_count)

Receive a packet targeted to external IP network.

• Root uses this API to receive packets destined to external IP network
• Root forwards the received packets to the final destination via socket.

Espressif Systems 649
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• If no socket connection is ready to send out the received packets and this esp_mesh_recv_toDS() hasn't
been called by applications, packets from the whole mesh network will be pending in toDS queue.

Use esp_mesh_get_rx_pending() to check the number of packets available in the queue waiting to be received
by applications in case of running out of memory in the root.
Using esp_mesh_set_xon_qsize() users may configure the RX queue size, default:32. If this size is too large,
and esp_mesh_recv_toDS() isn't called in time, there is a risk that a great deal of memory is occupied by the
pending packets. If this size is too small, it will impact the efficiency on upstream. How to decide this value
depends on the specific application scenarios.

flag could be MESH_DATA_TODS.
Attention This API is only called by the root.

Parameters
• from -- [out] the address of the original source of the packet
• to -- [out] the address contains remote IP address and port (IPv4:PORT)
• data -- [out] pointer to the received packet
– Contain the protocol and applications should follow it to parse the data.

• timeout_ms -- [in] wait time if a packet isn't immediately available (0:no wait, port-
MAX_DELAY:wait forever)

• flag -- [out] bitmap for data received
– MESH_DATA_TODS represents the received data target to external IP network. Root
shall forward this data to external IP network via the association with router.

• opt -- [out] options desired to receive
• opt_count -- [in] option count desired to receive

Returns
• ESP_OK
• ESP_ERR_MESH_ARGUMENT
• ESP_ERR_MESH_NOT_START
• ESP_ERR_MESH_TIMEOUT
• ESP_ERR_MESH_DISCARD
• ESP_ERR_MESH_RECV_RELEASE

esp_err_t esp_mesh_set_config(const mesh_cfg_t *config)
Set mesh stack configuration.

• Use MESH_INIT_CONFIG_DEFAULT() to initialize the default values, mesh IE is encrypted by de-
fault.

• Mesh network is established on a fixed channel (1-14).
• Mesh event callback is mandatory.
• Mesh ID is an identifier of an MBSS. Nodes with the same mesh ID can communicate with each other.
• Regarding to the router configuration, if the router is hidden, BSSID field is mandatory.

If BSSID field isn't set and there exists more than one router with same SSID, there is a risk that more roots
than one connected with different BSSID will appear. It means more than one mesh network is established
with the same mesh ID.
Root conflict function could eliminate redundant roots connected with the same BSSID, but couldn't handle
roots connected with different BSSID. Because users might have such requirements of setting up routers with
same SSID for the future replacement. But in that case, if the above situations happen, please make sure
applications implement forward functions on the root to guarantee devices in different mesh networks can
communicate with each other. max_connection of mesh softAP is limited by the max number ofWi-Fi softAP
supported (max:10).

Attention This API shall be called before mesh is started after mesh is initialized.

Espressif Systems 650
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters config -- [in] pointer to mesh stack configuration
Returns

• ESP_OK
• ESP_ERR_MESH_ARGUMENT
• ESP_ERR_MESH_NOT_ALLOWED

esp_err_t esp_mesh_get_config(mesh_cfg_t *config)
Get mesh stack configuration.

Parameters config -- [out] pointer to mesh stack configuration
Returns

• ESP_OK
• ESP_ERR_MESH_ARGUMENT

esp_err_t esp_mesh_set_router(const mesh_router_t *router)
Get router configuration.

Attention This API is used to dynamically modify the router configuration after mesh is configured.

Parameters router -- [in] pointer to router configuration
Returns

• ESP_OK
• ESP_ERR_MESH_ARGUMENT

esp_err_t esp_mesh_get_router(mesh_router_t *router)
Get router configuration.

Parameters router -- [out] pointer to router configuration
Returns

• ESP_OK
• ESP_ERR_MESH_ARGUMENT

esp_err_t esp_mesh_set_id(const mesh_addr_t *id)
Set mesh network ID.

Attention This API is used to dynamically modify the mesh network ID.

Parameters id -- [in] pointer to mesh network ID
Returns

• ESP_OK
• ESP_ERR_MESH_ARGUMENT: invalid argument

esp_err_t esp_mesh_get_id(mesh_addr_t *id)
Get mesh network ID.

Parameters id -- [out] pointer to mesh network ID
Returns

• ESP_OK
• ESP_ERR_MESH_ARGUMENT

esp_err_t esp_mesh_set_type(mesh_type_t type)
Designate device type over the mesh network.

• MESH_IDLE: designates a device as a self-organized node for a mesh network
• MESH_ROOT: designates the root node for a mesh network
• MESH_LEAF: designates a device as a standalone Wi-Fi station that connects to a parent
• MESH_STA: designates a device as a standalone Wi-Fi station that connects to a router

Espressif Systems 651
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters type -- [in] device type
Returns

• ESP_OK
• ESP_ERR_MESH_NOT_ALLOWED

mesh_type_t esp_mesh_get_type(void)
Get device type over mesh network.

Attention This API shall be called after having received the event
MESH_EVENT_PARENT_CONNECTED.

Returns mesh type

esp_err_t esp_mesh_set_max_layer(int max_layer)
Set network max layer value.

• for tree topology, the max is 25.
• for chain topology, the max is 1000.
• Network max layer limits the max hop count.

Attention This API shall be called before mesh is started.

Parameters max_layer -- [in] max layer value
Returns

• ESP_OK
• ESP_ERR_MESH_ARGUMENT
• ESP_ERR_MESH_NOT_ALLOWED

int esp_mesh_get_max_layer(void)
Get max layer value.

Returns max layer value
esp_err_t esp_mesh_set_ap_password(const uint8_t *pwd, int len)

Set mesh softAP password.

Attention This API shall be called before mesh is started.

Parameters
• pwd -- [in] pointer to the password
• len -- [in] password length

Returns
• ESP_OK
• ESP_ERR_MESH_ARGUMENT
• ESP_ERR_MESH_NOT_ALLOWED

esp_err_t esp_mesh_set_ap_authmode(wifi_auth_mode_t authmode)
Set mesh softAP authentication mode.

Attention This API shall be called before mesh is started.

Parameters authmode -- [in] authentication mode
Returns

Espressif Systems 652
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK
• ESP_ERR_MESH_ARGUMENT
• ESP_ERR_MESH_NOT_ALLOWED

wifi_auth_mode_t esp_mesh_get_ap_authmode(void)
Get mesh softAP authentication mode.

Returns authentication mode
esp_err_t esp_mesh_set_ap_connections(int connections)

Set mesh max connection value.

• Set mesh softAP max connection = mesh max connection + non-mesh max connection

Attention This API shall be called before mesh is started.

Parameters connections -- [in] the number of max connections
Returns

• ESP_OK
• ESP_ERR_MESH_ARGUMENT

int esp_mesh_get_ap_connections(void)
Get mesh max connection configuration.

Returns the number of mesh max connections
int esp_mesh_get_non_mesh_connections(void)

Get non-mesh max connection configuration.
Returns the number of non-mesh max connections

int esp_mesh_get_layer(void)
Get current layer value over the mesh network.

Attention This API shall be called after having received the event
MESH_EVENT_PARENT_CONNECTED.

Returns layer value

esp_err_t esp_mesh_get_parent_bssid(mesh_addr_t *bssid)
Get the parent BSSID.

Attention This API shall be called after having received the event
MESH_EVENT_PARENT_CONNECTED.

Parameters bssid -- [out] pointer to parent BSSID
Returns

• ESP_OK
• ESP_FAIL

bool esp_mesh_is_root(void)
Return whether the device is the root node of the network.

Returns true/false

Espressif Systems 653
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_mesh_set_self_organized(bool enable, bool select_parent)
Enable/disable self-organized networking.

• Self-organized networking has three main functions: select the root node; find a preferred parent; initiate
reconnection if a disconnection is detected.

• Self-organized networking is enabled by default.
• If self-organized is disabled, users should set a parent for the device via esp_mesh_set_parent().

Attention This API is used to dynamically modify whether to enable the self organizing.

Parameters
• enable -- [in] enable or disable self-organized networking
• select_parent -- [in] Only valid when self-organized networking is enabled.
– if select_parent is set to true, the root will give up its mesh root status and search for a
new parent like other non-root devices.

Returns
• ESP_OK
• ESP_FAIL

bool esp_mesh_get_self_organized(void)
Return whether enable self-organized networking or not.

Returns true/false
esp_err_t esp_mesh_waive_root(const mesh_vote_t *vote, int reason)

Cause the root device to give up (waive) its mesh root status.

• A device is elected root primarily based on RSSI from the external router.
• If external router conditions change, users can call this API to perform a root switch.
• In this API, users could specify a desired root address to replace itself or specify an attempts value to
ask current root to initiate a new round of voting. During the voting, a better root candidate would be
expected to find to replace the current one.

• If no desired root candidate, the vote will try a specified number of attempts (at least 15). If no better
root candidate is found, keep the current one. If a better candidate is found, the new better one will send
a root switch request to the current root, current root will respond with a root switch acknowledgment.

• After that, the new candidate will connect to the router to be a new root, the previous root will disconnect
with the router and choose another parent instead.

Root switch is completed with minimal disruption to the whole mesh network.

Attention This API is only called by the root.

Parameters
• vote -- [in] vote configuration
– If this parameter is set NULL, the vote will perform the default 15 times.
– Field percentage threshold is 0.9 by default.
– Field is_rc_specified shall be false.
– Field attempts shall be at least 15 times.

• reason -- [in] only accept MESH_VOTE_REASON_ROOT_INITIATED for now
Returns

• ESP_OK
• ESP_ERR_MESH_QUEUE_FULL
• ESP_ERR_MESH_DISCARD
• ESP_FAIL

Espressif Systems 654
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_mesh_set_vote_percentage(float percentage)
Set vote percentage threshold for approval of being a root (default:0.9)

• During the networking, only obtaining vote percentage reaches this threshold, the device could be a root.

Attention This API shall be called before mesh is started.

Parameters percentage -- [in] vote percentage threshold
Returns

• ESP_OK
• ESP_FAIL

float esp_mesh_get_vote_percentage(void)
Get vote percentage threshold for approval of being a root.

Returns percentage threshold
esp_err_t esp_mesh_set_ap_assoc_expire(int seconds)

Set mesh softAP associate expired time (default:10 seconds)

• If mesh softAP hasn't received any data from an associated child within this time, mesh softAP will take
this child inactive and disassociate it.

• If mesh softAP is encrypted, this value should be set a greater value, such as 30 seconds.

Parameters seconds -- [in] the expired time
Returns

• ESP_OK
• ESP_FAIL

int esp_mesh_get_ap_assoc_expire(void)
Get mesh softAP associate expired time.

Returns seconds
int esp_mesh_get_total_node_num(void)

Get total number of devices in current network (including the root)

Attention The returned value might be incorrect when the network is changing.

Returns total number of devices (including the root)

int esp_mesh_get_routing_table_size(void)
Get the number of devices in this device's sub-network (including self)

Returns the number of devices over this device's sub-network (including self)
esp_err_t esp_mesh_get_routing_table(mesh_addr_t *mac, int len, int *size)

Get routing table of this device's sub-network (including itself)
Parameters

• mac -- [out] pointer to routing table
• len -- [in] routing table size(in bytes)
• size -- [out] pointer to the number of devices in routing table (including itself)

Returns
• ESP_OK
• ESP_ERR_MESH_ARGUMENT

Espressif Systems 655
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_mesh_post_toDS_state(bool reachable)
Post the toDS state to the mesh stack.

Attention This API is only for the root.

Parameters reachable -- [in] this state represents whether the root is able to access external
IP network

Returns
• ESP_OK
• ESP_FAIL

esp_err_t esp_mesh_get_tx_pending(mesh_tx_pending_t *pending)
Return the number of packets pending in the queue waiting to be sent by the mesh stack.

Parameters pending -- [out] pointer to the TX pending
Returns

• ESP_OK
• ESP_FAIL

esp_err_t esp_mesh_get_rx_pending(mesh_rx_pending_t *pending)
Return the number of packets available in the queue waiting to be received by applications.

Parameters pending -- [out] pointer to the RX pending
Returns

• ESP_OK
• ESP_FAIL

int esp_mesh_available_txupQ_num(const mesh_addr_t *addr, uint32_t *xseqno_in)
Return the number of packets could be accepted from the specified address.

Parameters
• addr -- [in] self address or an associate children address
• xseqno_in -- [out] sequence number of the last received packet from the specified
address

Returns the number of upQ for a certain address
esp_err_t esp_mesh_set_xon_qsize(int qsize)

Set the number of RX queue for the node, the average number of window allocated to one of its child node is:
wnd = xon_qsize / (2 * max_connection + 1). However, the window of each child node is not strictly equal to
the average value, it is affected by the traffic also.

Attention This API shall be called before mesh is started.

Parameters qsize -- [in] default:32 (min:16)
Returns

• ESP_OK
• ESP_FAIL

int esp_mesh_get_xon_qsize(void)
Get queue size.

Returns the number of queue
esp_err_t esp_mesh_allow_root_conflicts(bool allowed)

Set whether allow more than one root existing in one network.

• The default value is true, that is, multiple roots are allowed.

Espressif Systems 656
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters allowed -- [in] allow or not
Returns

• ESP_OK
• ESP_WIFI_ERR_NOT_INIT
• ESP_WIFI_ERR_NOT_START

bool esp_mesh_is_root_conflicts_allowed(void)
Check whether allow more than one root to exist in one network.

Returns true/false
esp_err_t esp_mesh_set_group_id(const mesh_addr_t *addr, int num)

Set group ID addresses.
Parameters

• addr -- [in] pointer to new group ID addresses
• num -- [in] the number of group ID addresses

Returns
• ESP_OK
• ESP_MESH_ERR_ARGUMENT

esp_err_t esp_mesh_delete_group_id(const mesh_addr_t *addr, int num)
Delete group ID addresses.

Parameters
• addr -- [in] pointer to deleted group ID address
• num -- [in] the number of group ID addresses

Returns
• ESP_OK
• ESP_MESH_ERR_ARGUMENT

int esp_mesh_get_group_num(void)
Get the number of group ID addresses.

Returns the number of group ID addresses
esp_err_t esp_mesh_get_group_list(mesh_addr_t *addr, int num)

Get group ID addresses.
Parameters

• addr -- [out] pointer to group ID addresses
• num -- [in] the number of group ID addresses

Returns
• ESP_OK
• ESP_MESH_ERR_ARGUMENT

bool esp_mesh_is_my_group(const mesh_addr_t *addr)
Check whether the specified group address is my group.

Returns true/false
esp_err_t esp_mesh_set_capacity_num(int num)

Set mesh network capacity (max:1000, default:300)

Attention This API shall be called before mesh is started.

Parameters num -- [in] mesh network capacity
Returns

• ESP_OK
• ESP_ERR_MESH_NOT_ALLOWED
• ESP_MESH_ERR_ARGUMENT

Espressif Systems 657
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int esp_mesh_get_capacity_num(void)
Get mesh network capacity.

Returns mesh network capacity
esp_err_t esp_mesh_set_ie_crypto_funcs(const mesh_crypto_funcs_t *crypto_funcs)

Set mesh IE crypto functions.

Attention This API can be called at any time after mesh is configured.

Parameters crypto_funcs -- [in] crypto functions for mesh IE
• If crypto_funcs is set to NULL, mesh IE is no longer encrypted.

Returns
• ESP_OK

esp_err_t esp_mesh_set_ie_crypto_key(const char *key, int len)
Set mesh IE crypto key.

Attention This API can be called at any time after mesh is configured.

Parameters
• key -- [in] ASCII crypto key
• len -- [in] length in bytes, range:8~64

Returns
• ESP_OK
• ESP_MESH_ERR_ARGUMENT

esp_err_t esp_mesh_get_ie_crypto_key(char *key, int len)
Get mesh IE crypto key.

Parameters
• key -- [out] ASCII crypto key
• len -- [in] length in bytes, range:8~64

Returns
• ESP_OK
• ESP_MESH_ERR_ARGUMENT

esp_err_t esp_mesh_set_root_healing_delay(int delay_ms)
Set delay time before starting root healing.

Parameters delay_ms -- [in] delay time in milliseconds
Returns

• ESP_OK
int esp_mesh_get_root_healing_delay(void)

Get delay time before network starts root healing.
Returns delay time in milliseconds

esp_err_t esp_mesh_fix_root(bool enable)
Enable network Fixed Root Setting.

• Enabling fixed root disables automatic election of the root node via voting.
• All devices in the network shall use the same Fixed Root Setting (enabled or disabled).
• If Fixed Root is enabled, users should make sure a root node is designated for the network.

Parameters enable -- [in] enable or not

Espressif Systems 658
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK

bool esp_mesh_is_root_fixed(void)
Check whether network Fixed Root Setting is enabled.

• Enable/disable network Fixed Root Setting by API esp_mesh_fix_root().
• Network Fixed Root Setting also changes with the "flag" value in parent networking IE.

Returns true/false

esp_err_t esp_mesh_set_parent(const wifi_config_t *parent, const mesh_addr_t *parent_mesh_id,
mesh_type_t my_type, int my_layer)

Set a specified parent for the device.

Attention This API can be called at any time after mesh is configured.

Parameters
• parent -- [in] parent configuration, the SSID and the channel of the parent are manda-
tory.
– If the BSSID is set, make sure that the SSID and BSSID represent the same parent,
otherwise the device will never find this specified parent.

• parent_mesh_id -- [in] parent mesh ID,
– If this value is not set, the original mesh ID is used.

• my_type -- [in] mesh type
– MESH_STA is not supported.
– If the parent set for the device is the same as the router in the network configuration,
then my_type shall set MESH_ROOT and my_layer shall set MESH_ROOT_LAYER.

• my_layer -- [in] mesh layer
– my_layer of the device may change after joining the network.
– If my_type is set MESH_NODE, my_layer shall be greater than
MESH_ROOT_LAYER.

– If my_type is set MESH_LEAF, the device becomes a standalone Wi-Fi station and no
longer has the ability to extend the network.

Returns
• ESP_OK
• ESP_ERR_ARGUMENT
• ESP_ERR_MESH_NOT_CONFIG

esp_err_t esp_mesh_scan_get_ap_ie_len(int *len)
Get mesh networking IE length of one AP.

Parameters len -- [out] mesh networking IE length
Returns

• ESP_OK
• ESP_ERR_WIFI_NOT_INIT
• ESP_ERR_INVALID_ARG
• ESP_ERR_WIFI_FAIL

esp_err_t esp_mesh_scan_get_ap_record(wifi_ap_record_t *ap_record, void *buffer)
Get AP record.

Attention Different from esp_wifi_scan_get_ap_records(), this API only gets one of APs scanned each time.
See "manual_networking" example.

Espressif Systems 659
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• ap_record -- [out] pointer to one AP record
• buffer -- [out] pointer to the mesh networking IE of this AP

Returns
• ESP_OK
• ESP_ERR_WIFI_NOT_INIT
• ESP_ERR_INVALID_ARG
• ESP_ERR_WIFI_FAIL

esp_err_t esp_mesh_flush_upstream_packets(void)
Flush upstream packets pending in to_parent queue and to_parent_p2p queue.

Returns
• ESP_OK

esp_err_t esp_mesh_get_subnet_nodes_num(const mesh_addr_t *child_mac, int *nodes_num)
Get the number of nodes in the subnet of a specific child.

Parameters
• child_mac -- [in] an associated child address of this device
• nodes_num -- [out] pointer to the number of nodes in the subnet of a specific child

Returns
• ESP_OK
• ESP_ERR_MESH_NOT_START
• ESP_ERR_MESH_ARGUMENT

esp_err_t esp_mesh_get_subnet_nodes_list(const mesh_addr_t *child_mac, mesh_addr_t *nodes, int
nodes_num)

Get nodes in the subnet of a specific child.
Parameters

• child_mac -- [in] an associated child address of this device
• nodes -- [out] pointer to nodes in the subnet of a specific child
• nodes_num -- [in] the number of nodes in the subnet of a specific child

Returns
• ESP_OK
• ESP_ERR_MESH_NOT_START
• ESP_ERR_MESH_ARGUMENT

esp_err_t esp_mesh_disconnect(void)
Disconnect from current parent.

Returns
• ESP_OK

esp_err_t esp_mesh_connect(void)
Connect to current parent.

Returns
• ESP_OK

esp_err_t esp_mesh_flush_scan_result(void)
Flush scan result.

Returns
• ESP_OK

esp_err_t esp_mesh_switch_channel(const uint8_t *new_bssid, int csa_newchan, int csa_count)
Cause the root device to add Channel Switch Announcement Element (CSA IE) to beacon.

• Set the new channel

Espressif Systems 660
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Set how many beacons with CSA IE will be sent before changing a new channel
• Enable the channel switch function

Attention This API is only called by the root.

Parameters
• new_bssid -- [in] the new router BSSID if the router changes
• csa_newchan -- [in] the new channel number to which the whole network is moving
• csa_count -- [in] channel switch period(beacon count), unit is based on beacon interval
of its softAP, the default value is 15.

Returns
• ESP_OK

esp_err_t esp_mesh_get_router_bssid(uint8_t *router_bssid)
Get the router BSSID.

Parameters router_bssid -- [out] pointer to the router BSSID
Returns

• ESP_OK
• ESP_ERR_WIFI_NOT_INIT
• ESP_ERR_INVALID_ARG

int64_t esp_mesh_get_tsf_time(void)
Get the TSF time.

Returns the TSF time
esp_err_t esp_mesh_set_topology(esp_mesh_topology_t topo)

Set mesh topology. The default value is MESH_TOPO_TREE.

• MESH_TOPO_CHAIN supports up to 1000 layers

Attention This API shall be called before mesh is started.

Parameters topo -- [in]MESH_TOPO_TREE or MESH_TOPO_CHAIN
Returns

• ESP_OK
• ESP_MESH_ERR_ARGUMENT
• ESP_ERR_MESH_NOT_ALLOWED

esp_mesh_topology_t esp_mesh_get_topology(void)
Get mesh topology.

Returns MESH_TOPO_TREE or MESH_TOPO_CHAIN
esp_err_t esp_mesh_enable_ps(void)

Enable mesh Power Save function.

Attention This API shall be called before mesh is started.

Returns
• ESP_OK
• ESP_ERR_WIFI_NOT_INIT
• ESP_ERR_MESH_NOT_ALLOWED

Espressif Systems 661
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_mesh_disable_ps(void)
Disable mesh Power Save function.

Attention This API shall be called before mesh is started.

Returns
• ESP_OK
• ESP_ERR_WIFI_NOT_INIT
• ESP_ERR_MESH_NOT_ALLOWED

bool esp_mesh_is_ps_enabled(void)
Check whether the mesh Power Save function is enabled.

Returns true/false
bool esp_mesh_is_device_active(void)

Check whether the device is in active state.

• If the device is not in active state, it will neither transmit nor receive frames.

Returns true/false

esp_err_t esp_mesh_set_active_duty_cycle(int dev_duty, int dev_duty_type)
Set the device duty cycle and type.

• The range of dev_duty values is 1 to 100. The default value is 10.
• dev_duty = 100, the PS will be stopped.
• dev_duty is better to not less than 5.
• dev_duty_type could be MESH_PS_DEVICE_DUTY_REQUEST or
MESH_PS_DEVICE_DUTY_DEMAND.

• If dev_duty_type is set to MESH_PS_DEVICE_DUTY_REQUEST, the device will use a nwk_duty
provided by the network.

• If dev_duty_type is set to MESH_PS_DEVICE_DUTY_DEMAND, the device will use the specified
dev_duty.

Attention This API can be called at any time after mesh is started.

Parameters
• dev_duty -- [in] device duty cycle
• dev_duty_type -- [in] device PS duty cycle type, not accept
MESH_PS_NETWORK_DUTY_MASTER

Returns
• ESP_OK
• ESP_FAIL

esp_err_t esp_mesh_get_active_duty_cycle(int *dev_duty, int *dev_duty_type)
Get device duty cycle and type.

Parameters
• dev_duty -- [out] device duty cycle
• dev_duty_type -- [out] device PS duty cycle type

Returns
• ESP_OK

Espressif Systems 662
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_mesh_set_network_duty_cycle(int nwk_duty, int duration_mins, int applied_rule)
Set the network duty cycle, duration and rule.

• The range of nwk_duty values is 1 to 100. The default value is 10.
• nwk_duty is the network duty cycle the entire network or the up-link path will use. A device that suc-
cessfully sets the nwk_duty is known as a NWK-DUTY-MASTER.

• duration_mins specifies how long the specified nwk_duty will be used. Once duration_mins expires, the
root will take over as the NWK-DUTY-MASTER. If an existing NWK-DUTY-MASTER leaves the
network, the root will take over as the NWK-DUTY-MASTER again.

• duration_mins = (-1) represents nwk_duty will be used until a new NWK-DUTY-MASTER with a dif-
ferent nwk_duty appears.

• Only the root can set duration_mins to (-1).
• If applied_rule is set to MESH_PS_NETWORK_DUTY_APPLIED_ENTIRE, the nwk_duty will be
used by the entire network.

• If applied_rule is set to MESH_PS_NETWORK_DUTY_APPLIED_UPLINK, the nwk_duty will only
be used by the up-link path nodes.

• The root does not accept MESH_PS_NETWORK_DUTY_APPLIED_UPLINK.
• A nwk_duty with duration_mins(-1) set by the root is the default network duty cycle used by the entire
network.

Attention This API can be called at any time after mesh is started.
• In self-organized network, if this API is called before mesh is started in all devices, (1)nwk_duty
shall be set to the same value for all devices; (2)duration_mins shall be set to (-1); (3)applied_rule
shall be set to MESH_PS_NETWORK_DUTY_APPLIED_ENTIRE; after the voted root appears,
the root will become the NWK-DUTY-MASTER and broadcast the nwk_duty and its identity of
NWK-DUTY-MASTER.

• If the root is specified (FIXED-ROOT), call this API in the root to provide a default nwk_duty for
the entire network.

• After joins the network, any device can call this API to change the nwk_duty, duration_mins or
applied_rule.

Parameters
• nwk_duty -- [in] network duty cycle
• duration_mins -- [in] duration (unit: minutes)
• applied_rule -- [in] only supportMESH_PS_NETWORK_DUTY_APPLIED_ENTIRE

Returns
• ESP_OK
• ESP_FAIL

esp_err_t esp_mesh_get_network_duty_cycle(int *nwk_duty, int *duration_mins, int *dev_duty_type,
int *applied_rule)

Get the network duty cycle, duration, type and rule.
Parameters

• nwk_duty -- [out] current network duty cycle
• duration_mins -- [out] the duration of current nwk_duty
• dev_duty_type -- [out] if it includes MESH_PS_DEVICE_DUTY_MASTER, this
device is the current NWK-DUTY-MASTER.

• applied_rule -- [out]MESH_PS_NETWORK_DUTY_APPLIED_ENTIRE
Returns

• ESP_OK
int esp_mesh_get_running_active_duty_cycle(void)

Get the running active duty cycle.

Espressif Systems 663
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• The running active duty cycle of the root is 100.
• If duty type is set toMESH_PS_DEVICE_DUTY_REQUEST, the running active duty cycle is nwk_duty
provided by the network.

• If duty type is set to MESH_PS_DEVICE_DUTY_DEMAND, the running active duty cycle is dev_duty
specified by the users.

• In a mesh network, devices are typically working with a certain duty-cycle (transmitting, receiving and
sleep) to reduce the power consumption. The running active duty cycle decides the amount of awake
time within a beacon interval. At each start of beacon interval, all devices wake up, broadcast beacons,
and transmit packets if they do have pending packets for their parents or for their children. Note that
Low-duty-cycle means devices may not be active in most of the time, the latency of data transmission
might be greater.

Returns the running active duty cycle

esp_err_t esp_mesh_ps_duty_signaling(int fwd_times)
Duty signaling.

Parameters fwd_times -- [in] the times of forwarding duty signaling packets
Returns

• ESP_OK

Unions

union mesh_addr_t
#include <esp_mesh.h> Mesh address.

Public Members

uint8_t addr[6]
mac address

mip_t mip

mip address

union mesh_event_info_t
#include <esp_mesh.h> Mesh event information.

Public Members

mesh_event_channel_switch_t channel_switch

channel switch

mesh_event_child_connected_t child_connected

child connected

mesh_event_child_disconnected_t child_disconnected

child disconnected

mesh_event_routing_table_change_t routing_table

routing table change

Espressif Systems 664
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

mesh_event_connected_t connected

parent connected

mesh_event_disconnected_t disconnected

parent disconnected

mesh_event_no_parent_found_t no_parent

no parent found

mesh_event_layer_change_t layer_change

layer change

mesh_event_toDS_state_t toDS_state

toDS state, devices shall check this state firstly before trying to send packets to external IP network. This
state indicates right now whether the root is capable of sending packets out. If not, devices had better to
wait until this state changes to be MESH_TODS_REACHABLE.

mesh_event_vote_started_t vote_started

vote started

mesh_event_root_address_t root_addr

root address

mesh_event_root_switch_req_t switch_req

root switch request

mesh_event_root_conflict_t root_conflict

other powerful root

mesh_event_root_fixed_t root_fixed

fixed root

mesh_event_scan_done_t scan_done

scan done

mesh_event_network_state_t network_state

network state, such as whether current mesh network has a root.

mesh_event_find_network_t find_network

network found that can join

mesh_event_router_switch_t router_switch

new router information

mesh_event_ps_duty_t ps_duty

PS duty information

union mesh_rc_config_t
#include <esp_mesh.h> Vote address configuration.

Espressif Systems 665
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int attempts
max vote attempts before a new root is elected automatically by mesh network. (min:15, 15 by default)

mesh_addr_t rc_addr

a new root address specified by users for API esp_mesh_waive_root()

Structures

struct mip_t
IP address and port.

Public Members

esp_ip4_addr_t ip4

IP address

uint16_t port
port

struct mesh_event_channel_switch_t
Channel switch information.

Public Members

uint8_t channel
new channel

struct mesh_event_connected_t
Parent connected information.

Public Members

wifi_event_sta_connected_t connected

parent information, same as Wi-Fi event SYSTEM_EVENT_STA_CONNECTED does

uint16_t self_layer
layer

uint8_t duty
parent duty

struct mesh_event_no_parent_found_t
No parent found information.

Espressif Systems 666
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int scan_times
scan times being through

struct mesh_event_layer_change_t
Layer change information.

Public Members

uint16_t new_layer
new layer

struct mesh_event_vote_started_t
vote started information

Public Members

int reason
vote reason, vote could be initiated by children or by the root itself

int attempts
max vote attempts before stopped

mesh_addr_t rc_addr

root address specified by users via API esp_mesh_waive_root()

struct mesh_event_find_network_t
find a mesh network that this device can join

Public Members

uint8_t channel
channel number of the new found network

uint8_t router_bssid[6]
router BSSID

struct mesh_event_root_switch_req_t
Root switch request information.

Public Members

int reason
root switch reason, generally root switch is initialized by users via API esp_mesh_waive_root()

Espressif Systems 667
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

mesh_addr_t rc_addr

the address of root switch requester

struct mesh_event_root_conflict_t
Other powerful root address.

Public Members

int8_t rssi
rssi with router

uint16_t capacity
the number of devices in current network

uint8_t addr[6]
other powerful root address

struct mesh_event_routing_table_change_t
Routing table change.

Public Members

uint16_t rt_size_new
the new value

uint16_t rt_size_change
the changed value

struct mesh_event_root_fixed_t
Root fixed.

Public Members

bool is_fixed
status

struct mesh_event_scan_done_t
Scan done　 event information.

Public Members

uint8_t number
the number of APs scanned

struct mesh_event_network_state_t
Network state information.

Espressif Systems 668
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

bool is_rootless
whether current mesh network has a root

struct mesh_event_ps_duty_t
PS duty information.

Public Members

uint8_t duty
parent or child duty

mesh_event_child_connected_t child_connected

child info

struct mesh_opt_t
Mesh option.

Public Members

uint8_t type
option type

uint16_t len
option length

uint8_t *val
option value

struct mesh_data_t
Mesh data for esp_mesh_send() and esp_mesh_recv()

Public Members

uint8_t *data
data

uint16_t size
data size

mesh_proto_t proto

data protocol

mesh_tos_t tos

data type of service

Espressif Systems 669
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct mesh_router_t
Router configuration.

Public Members

uint8_t ssid[32]
SSID

uint8_t ssid_len
length of SSID

uint8_t bssid[6]
BSSID, if this value is specified, users should also specify "allow_router_switch".

uint8_t password[64]
password

bool allow_router_switch
if the BSSID is specified and this value is also set, when the router of this specified BSSID fails to be
found after "fail" (mesh_attempts_t) times, the whole network is allowed to switch to another router with
the same SSID. The new router might also be on a different channel. The default value is false. There is
a risk that if the password is different between the new switched router and the previous one, the mesh
network could be established but the root will never connect to the new switched router.

struct mesh_ap_cfg_t
Mesh softAP configuration.

Public Members

uint8_t password[64]
mesh softAP password

uint8_t max_connection
max number of stations allowed to connect in, default 6, max 10 = max_connection + non-
mesh_max_connection max mesh connections

uint8_t nonmesh_max_connection
max non-mesh connections

struct mesh_cfg_t
Mesh initialization configuration.

Public Members

uint8_t channel
channel, the mesh network on

Espressif Systems 670
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool allow_channel_switch
if this value is set, when "fail" (mesh_attempts_t) times is reached, device will change to a full channel
scan for a network that could join. The default value is false.

mesh_addr_t mesh_id

mesh network identification

mesh_router_t router

router configuration

mesh_ap_cfg_t mesh_ap

mesh softAP configuration

const mesh_crypto_funcs_t *crypto_funcs
crypto functions

struct mesh_vote_t
Vote.

Public Members

float percentage
vote percentage threshold for approval of being a root

bool is_rc_specified
if true, rc_addr shall be specified (Unimplemented). if false, attempts value shall be specified to make
network start root election.

mesh_rc_config_t config

vote address configuration

struct mesh_tx_pending_t
The number of packets pending in the queue waiting to be sent by the mesh stack.

Public Members

int to_parent
to parent queue

int to_parent_p2p
to parent (P2P) queue

int to_child
to child queue

int to_child_p2p
to child (P2P) queue

Espressif Systems 671
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int mgmt
management queue

int broadcast
broadcast and multicast queue

struct mesh_rx_pending_t
The number of packets available in the queue waiting to be received by applications.

Public Members

int toDS
to external DS

int toSelf
to self

Macros

MESH_ROOT_LAYER

root layer value

MESH_MTU

max transmit unit(in bytes)

MESH_MPS

max payload size(in bytes)

ESP_ERR_MESH_WIFI_NOT_START

Mesh error code definition.
Wi-Fi isn't started

ESP_ERR_MESH_NOT_INIT

mesh isn't initialized

ESP_ERR_MESH_NOT_CONFIG

mesh isn't configured

ESP_ERR_MESH_NOT_START

mesh isn't started

ESP_ERR_MESH_NOT_SUPPORT

not supported yet

ESP_ERR_MESH_NOT_ALLOWED

operation is not allowed

Espressif Systems 672
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_MESH_NO_MEMORY

out of memory

ESP_ERR_MESH_ARGUMENT

illegal argument

ESP_ERR_MESH_EXCEED_MTU

packet size exceeds MTU

ESP_ERR_MESH_TIMEOUT

timeout

ESP_ERR_MESH_DISCONNECTED

disconnected with parent on station interface

ESP_ERR_MESH_QUEUE_FAIL

queue fail

ESP_ERR_MESH_QUEUE_FULL

queue full

ESP_ERR_MESH_NO_PARENT_FOUND

no parent found to join the mesh network

ESP_ERR_MESH_NO_ROUTE_FOUND

no route found to forward the packet

ESP_ERR_MESH_OPTION_NULL

no option found

ESP_ERR_MESH_OPTION_UNKNOWN

unknown option

ESP_ERR_MESH_XON_NO_WINDOW

no window for software flow control on upstream

ESP_ERR_MESH_INTERFACE

low-level Wi-Fi interface error

ESP_ERR_MESH_DISCARD_DUPLICATE

discard the packet due to the duplicate sequence number

ESP_ERR_MESH_DISCARD

discard the packet

ESP_ERR_MESH_VOTING

vote in progress

Espressif Systems 673
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_MESH_XMIT

TX fail, the tx state is a value other than timeout and disconnect

ESP_ERR_MESH_QUEUE_READ

error in reading queue

ESP_ERR_MESH_PS

mesh PS is not specified as enable or disable

ESP_ERR_MESH_RECV_RELEASE

release esp_mesh_recv_toDS

MESH_DATA_ENC

Flags bitmap for esp_mesh_send() and esp_mesh_recv()
data encrypted (Unimplemented)

MESH_DATA_P2P

point-to-point delivery over the mesh network

MESH_DATA_FROMDS

receive from external IP network

MESH_DATA_TODS

identify this packet is target to external IP network

MESH_DATA_NONBLOCK

esp_mesh_send() non-block

MESH_DATA_DROP

in the situation of the root having been changed, identify this packet can be dropped by new root

MESH_DATA_GROUP

identify this packet is target to a group address

MESH_OPT_SEND_GROUP

Option definitions for esp_mesh_send() and esp_mesh_recv()
data transmission by group; used with esp_mesh_send() and shall have payload

MESH_OPT_RECV_DS_ADDR

return a remote IP address; used with esp_mesh_send() and esp_mesh_recv()

MESH_ASSOC_FLAG_MAP_ASSOC

Flag of mesh networking IE.
Mesh AP doesn't detect children leave yet

MESH_ASSOC_FLAG_VOTE_IN_PROGRESS

station in vote, set when root vote start, clear when connect to router or when root switch

Espressif Systems 674
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

MESH_ASSOC_FLAG_STA_VOTED

station vote done, set when connect to router

MESH_ASSOC_FLAG_NETWORK_FREE

no root in current network

MESH_ASSOC_FLAG_STA_VOTE_EXPIRE

the voted address is expired, means the voted device lose the chance to be root

MESH_ASSOC_FLAG_ROOTS_FOUND

roots conflict is found, means that there are at least two roots in the mesh network

MESH_ASSOC_FLAG_ROOT_FIXED

the root is fixed in the mesh network

MESH_PS_DEVICE_DUTY_REQUEST

Mesh PS (Power Save) duty cycle type.
requests to join a network PS without specifying a device duty cycle. After the device joins the network, a
network duty cycle will be provided by the network

MESH_PS_DEVICE_DUTY_DEMAND

requests to join a network PS and specifies a demanded device duty cycle

MESH_PS_NETWORK_DUTY_MASTER

indicates the device is the NWK-DUTY-MASTER (network duty cycle master)

MESH_PS_NETWORK_DUTY_APPLIED_ENTIRE

Mesh PS (Power Save) duty cycle applied rule.

MESH_PS_NETWORK_DUTY_APPLIED_UPLINK

MESH_INIT_CONFIG_DEFAULT()

Type Definitions

typedef mesh_addr_t mesh_event_root_address_t

Root address.

typedef wifi_event_sta_disconnected_t mesh_event_disconnected_t

Parent disconnected information.

typedef wifi_event_ap_staconnected_t mesh_event_child_connected_t

Child connected information.

typedef wifi_event_ap_stadisconnected_t mesh_event_child_disconnected_t

Child disconnected information.

typedef wifi_event_sta_connected_t mesh_event_router_switch_t

New router information.

Espressif Systems 675
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enumerations

enum mesh_event_id_t

Enumerated list of mesh event id.
Values:

enumerator MESH_EVENT_STARTED
mesh is started

enumerator MESH_EVENT_STOPPED
mesh is stopped

enumerator MESH_EVENT_CHANNEL_SWITCH
channel switch

enumerator MESH_EVENT_CHILD_CONNECTED
a child is connected on softAP interface

enumerator MESH_EVENT_CHILD_DISCONNECTED
a child is disconnected on softAP interface

enumerator MESH_EVENT_ROUTING_TABLE_ADD
routing table is changed by adding newly joined children

enumerator MESH_EVENT_ROUTING_TABLE_REMOVE
routing table is changed by removing leave children

enumerator MESH_EVENT_PARENT_CONNECTED
parent is connected on station interface

enumerator MESH_EVENT_PARENT_DISCONNECTED
parent is disconnected on station interface

enumerator MESH_EVENT_NO_PARENT_FOUND
no parent found

enumerator MESH_EVENT_LAYER_CHANGE
layer changes over the mesh network

enumerator MESH_EVENT_TODS_STATE
state represents whether the root is able to access external IP network. This state is a manual event that
needs to be triggered with esp_mesh_post_toDS_state().

enumerator MESH_EVENT_VOTE_STARTED
the process of voting a new root is started either by children or by the root

enumerator MESH_EVENT_VOTE_STOPPED
the process of voting a new root is stopped

Espressif Systems 676
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator MESH_EVENT_ROOT_ADDRESS
the root address is obtained. It is posted by mesh stack automatically.

enumerator MESH_EVENT_ROOT_SWITCH_REQ
root switch request sent from a new voted root candidate

enumerator MESH_EVENT_ROOT_SWITCH_ACK
root switch acknowledgment responds the above request sent from current root

enumerator MESH_EVENT_ROOT_ASKED_YIELD
the root is asked yield by a more powerful existing root. If self organized is disabled and this device is
specified to be a root by users, users should set a new parent for this device. if self organized is enabled,
this device will find a new parent by itself, users could ignore this event.

enumerator MESH_EVENT_ROOT_FIXED
when devices join a network, if the setting of Fixed Root for one device is different from that of its parent,
the device will update the setting the same as its parent's. Fixed Root Setting of each device is variable
as that setting changes of the root.

enumerator MESH_EVENT_SCAN_DONE
if self-organized networking is disabled, user can call esp_wifi_scan_start() to trigger this event, and add
the corresponding scan done handler in this event.

enumerator MESH_EVENT_NETWORK_STATE
network state, such as whether current mesh network has a root.

enumerator MESH_EVENT_STOP_RECONNECTION
the root stops reconnecting to the router and non-root devices stop reconnecting to their parents.

enumerator MESH_EVENT_FIND_NETWORK
when the channel field in mesh configuration is set to zero, mesh stack will perform a full channel scan
to find a mesh network that can join, and return the channel value after finding it.

enumerator MESH_EVENT_ROUTER_SWITCH
if users specify BSSID of the router in mesh configuration, when the root connects to another router with
the same SSID, this event will be posted and the new router information is attached.

enumerator MESH_EVENT_PS_PARENT_DUTY
parent duty

enumerator MESH_EVENT_PS_CHILD_DUTY
child duty

enumerator MESH_EVENT_PS_DEVICE_DUTY
device duty

enumerator MESH_EVENT_MAX

enum mesh_type_t

Device type.
Values:

Espressif Systems 677
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator MESH_IDLE
hasn't joined the mesh network yet

enumerator MESH_ROOT
the only sink of the mesh network. Has the ability to access external IP network

enumerator MESH_NODE
intermediate device. Has the ability to forward packets over the mesh network

enumerator MESH_LEAF
has no forwarding ability

enumerator MESH_STA
connect to router with a standalone Wi-Fi station mode, no network expansion capability

enum mesh_proto_t

Protocol of transmitted application data.
Values:

enumerator MESH_PROTO_BIN
binary

enumerator MESH_PROTO_HTTP
HTTP protocol

enumerator MESH_PROTO_JSON
JSON format

enumerator MESH_PROTO_MQTT
MQTT protocol

enumerator MESH_PROTO_AP
IP network mesh communication of node's AP interface

enumerator MESH_PROTO_STA
IP network mesh communication of node's STA interface

enum mesh_tos_t

For reliable transmission, mesh stack provides three type of services.
Values:

enumerator MESH_TOS_P2P
provide P2P (point-to-point) retransmission on mesh stack by default

enumerator MESH_TOS_E2E
provide E2E (end-to-end) retransmission on mesh stack (Unimplemented)

Espressif Systems 678
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator MESH_TOS_DEF
no retransmission on mesh stack

enum mesh_vote_reason_t

Vote reason.
Values:

enumerator MESH_VOTE_REASON_ROOT_INITIATED
vote is initiated by the root

enumerator MESH_VOTE_REASON_CHILD_INITIATED
vote is initiated by children

enum mesh_disconnect_reason_t

Mesh disconnect reason code.
Values:

enumerator MESH_REASON_CYCLIC
cyclic is detected

enumerator MESH_REASON_PARENT_IDLE
parent is idle

enumerator MESH_REASON_LEAF
the connected device is changed to a leaf

enumerator MESH_REASON_DIFF_ID
in different mesh ID

enumerator MESH_REASON_ROOTS
root conflict is detected

enumerator MESH_REASON_PARENT_STOPPED
parent has stopped the mesh

enumerator MESH_REASON_SCAN_FAIL
scan fail

enumerator MESH_REASON_IE_UNKNOWN
unknown IE

enumerator MESH_REASON_WAIVE_ROOT
waive root

enumerator MESH_REASON_PARENT_WORSE
parent with very poor RSSI

Espressif Systems 679
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator MESH_REASON_EMPTY_PASSWORD
use an empty password to connect to an encrypted parent

enumerator MESH_REASON_PARENT_UNENCRYPTED
connect to an unencrypted parent/router

enum esp_mesh_topology_t

Mesh topology.
Values:

enumerator MESH_TOPO_TREE
tree topology

enumerator MESH_TOPO_CHAIN
chain topology

enum mesh_event_toDS_state_t

The reachability of the root to a DS (distribute system)
Values:

enumerator MESH_TODS_UNREACHABLE
the root isn't able to access external IP network

enumerator MESH_TODS_REACHABLE
the root is able to access external IP network

SmartConfig

Introduction The SmartConfigTM is a provisioning technology developed by TI to connect a new Wi-Fi device to
a Wi-Fi network. It uses a mobile application to broadcast the network credentials from a smartphone, or a tablet, to
an un-provisioned Wi-Fi device.
The advantage of this technology is that the device does not need to directly know SSID or password of an Access
Point (AP). This information is provided using the smartphone. This is particularly important to headless device and
systems, due to their lack of a user interface.
Currently, ESP32-C6 support three types of SmartConfig: Airkiss, ESPTouch, and ESPTouch v2. ES-
PTouch v2 has been supported since SmartConfig v3.0 (the version of SmartConfig can be get from
esp_smartconfig_get_version()), and it employs a completely different algorithm compared to ESP-
Touch, resulting in faster setup times. Additionally, ESPTouch v2 introduces AES encryption and custom data fields.
Starting from SmartConfig v3.0.2, ESPTouch v2 introduces support for random IV in AES encryption. On the
application side, when the option for random IV is disabled, the default IV is set to 0, maintaining consistency with
previous versions. When the random IV option is enabled, the IV will be a random value. It is important to note that
when AES encryption is enabled with a random IV, the provision time will be extended due to the need of transmitting
the IV to the provisioning device. On the provisioning device side, the device will identify whether the random IV
for AES is enabled based on the flag in the provisioning packet.
If you are looking for other options to provision your ESP32-C6 devices, check Provisioning API.

Application Example Connect ESP32-C6 to target AP using SmartConfig: wifi/smart_config.

Espressif Systems 680
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/smart_config
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/esp_wifi/include/esp_smartconfig.h

Functions
const char *esp_smartconfig_get_version(void)

Get the version of SmartConfig.
Returns

• SmartConfig version const char.
esp_err_t esp_smartconfig_start(const smartconfig_start_config_t *config)

Start SmartConfig, config ESP device to connect AP. You need to broadcast information by phone APP. Device
sniffer special packets from the air that containing SSID and password of target AP.

Attention 1. This API can be called in station or softAP-station mode.
Attention 2. Can not call esp_smartconfig_start twice before it finish, please call esp_smartconfig_stop first.

Parameters config -- pointer to smartconfig start configure structure
Returns

• ESP_OK: succeed
• others: fail

esp_err_t esp_smartconfig_stop(void)
Stop SmartConfig, free the buffer taken by esp_smartconfig_start.

Attention Whether connect to AP succeed or not, this API should be called to free memory taken by smart-
config_start.

Returns
• ESP_OK: succeed
• others: fail

esp_err_t esp_esptouch_set_timeout(uint8_t time_s)
Set timeout of SmartConfig process.

Attention Timing starts from SC_STATUS_FIND_CHANNEL status. SmartConfig will restart if timeout.

Parameters time_s -- range 15s~255s, offset:45s.
Returns

• ESP_OK: succeed
• others: fail

esp_err_t esp_smartconfig_set_type(smartconfig_type_t type)
Set protocol type of SmartConfig.

Attention If users need to set the SmartConfig type, please set it before calling esp_smartconfig_start.

Parameters type -- Choose from the smartconfig_type_t.
Returns

• ESP_OK: succeed

Espressif Systems 681
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_wifi/include/esp_smartconfig.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• others: fail

esp_err_t esp_smartconfig_fast_mode(bool enable)
Set mode of SmartConfig. default normal mode.

Attention 1. Please call it before API esp_smartconfig_start.
Attention 2. Fast mode have corresponding APP(phone).
Attention 3. Two mode is compatible.

Parameters enable -- false-disable(default); true-enable;
Returns

• ESP_OK: succeed
• others: fail

esp_err_t esp_smartconfig_get_rvd_data(uint8_t *rvd_data, uint8_t len)
Get reserved data of ESPTouch v2.

Parameters
• rvd_data -- reserved data
• len -- length of reserved data

Returns
• ESP_OK: succeed
• others: fail

Structures

struct smartconfig_event_got_ssid_pswd_t
Argument structure for SC_EVENT_GOT_SSID_PSWD event

Public Members

uint8_t ssid[32]
SSID of the AP. Null terminated string.

uint8_t password[64]
Password of the AP. Null terminated string.

bool bssid_set
whether set MAC address of target AP or not.

uint8_t bssid[6]
MAC address of target AP.

smartconfig_type_t type

Type of smartconfig(ESPTouch or AirKiss).

uint8_t token
Token from cellphone which is used to send ACK to cellphone.

uint8_t cellphone_ip[4]
IP address of cellphone.

Espressif Systems 682
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct smartconfig_start_config_t
Configure structure for esp_smartconfig_start

Public Members

bool enable_log
Enable smartconfig logs.

bool esp_touch_v2_enable_crypt
Enable ESPTouch v2 crypt.

char *esp_touch_v2_key
ESPTouch v2 crypt key, len should be 16.

Macros
SMARTCONFIG_START_CONFIG_DEFAULT()

Enumerations

enum smartconfig_type_t

Values:

enumerator SC_TYPE_ESPTOUCH
protocol: ESPTouch

enumerator SC_TYPE_AIRKISS
protocol: AirKiss

enumerator SC_TYPE_ESPTOUCH_AIRKISS
protocol: ESPTouch and AirKiss

enumerator SC_TYPE_ESPTOUCH_V2
protocol: ESPTouch v2

enum smartconfig_event_t

Smartconfig event declarations
Values:

enumerator SC_EVENT_SCAN_DONE
Station smartconfig has finished to scan for APs

enumerator SC_EVENT_FOUND_CHANNEL
Station smartconfig has found the channel of the target AP

enumerator SC_EVENT_GOT_SSID_PSWD
Station smartconfig got the SSID and password

enumerator SC_EVENT_SEND_ACK_DONE
Station smartconfig has sent ACK to cellphone

Espressif Systems 683
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Wi-Fi

Introduction TheWi-Fi libraries provide support for configuring and monitoring the ESP32-C6Wi-Fi networking
functionality. This includes configuration for:

• Station mode (aka STA mode or Wi-Fi client mode). ESP32-C6 connects to an access point.
• AP mode (aka Soft-AP mode or Access Point mode). Stations connect to the ESP32-C6.
• Station/AP-coexistence mode (ESP32-C6 is concurrently an access point and a station connected to another
access point).

• Various security modes for the above (WPA, WPA2, WPA3, etc.)
• Scanning for access points (active & passive scanning).
• Promiscuous mode for monitoring of IEEE802.11 Wi-Fi packets.

Application Examples Several application examples demonstrating the functionality ofWi-Fi library are provided
in wifi directory of ESP-IDF repository. Please check the README for more details.

API Reference

Header File
• components/esp_wifi/include/esp_wifi.h

Functions
esp_err_t esp_wifi_init(const wifi_init_config_t *config)

Initialize WiFi Allocate resource for WiFi driver, such as WiFi control structure, RX/TX buffer, WiFi NVS
structure etc. This WiFi also starts WiFi task.

Attention 1. This API must be called before all other WiFi API can be called
Attention 2. Always use WIFI_INIT_CONFIG_DEFAULT macro to initialize the configuration to default

values, this can guarantee all the fields get correct value when more fields are added intowifi_init_config_t
in future release. If you want to set your own initial values, overwrite the default values which are set by
WIFI_INIT_CONFIG_DEFAULT. Please be notified that the field 'magic' of wifi_init_config_t should
always be WIFI_INIT_CONFIG_MAGIC!

Parameters config -- pointer to WiFi initialized configuration structure; can point to a tempo-
rary variable.

Returns
• ESP_OK: succeed
• ESP_ERR_NO_MEM: out of memory
• others: refer to error code esp_err.h

esp_err_t esp_wifi_deinit(void)
Deinit WiFi Free all resource allocated in esp_wifi_init and stop WiFi task.

Attention 1. This API should be called if you want to remove WiFi driver from the system

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

Espressif Systems 684
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/README.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_wifi/include/esp_wifi.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_wifi_set_mode(wifi_mode_t mode)
Set the WiFi operating mode.

Set the WiFi operating mode as station, soft-AP, station+soft-AP or NAN.
The default mode is station mode.

Parameters mode -- WiFi operating mode
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument
• others: refer to error code in esp_err.h

esp_err_t esp_wifi_get_mode(wifi_mode_t *mode)
Get current operating mode of WiFi.

Parameters mode -- [out] store current WiFi mode
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_start(void)
Start WiFi according to current configuration If mode is WIFI_MODE_STA, it creates station control block
and starts station If mode is WIFI_MODE_AP, it creates soft-AP control block and starts soft-AP If mode is
WIFI_MODE_APSTA, it creates soft-AP and station control block and starts soft-AP and station If mode is
WIFI_MODE_NAN, it creates NAN control block and starts NAN.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: It doesn't normally happen, the function called inside the
API was passed invalid argument, user should check if the wifi related config is correct

• ESP_ERR_NO_MEM: out of memory
• ESP_ERR_WIFI_CONN: WiFi internal error, station or soft-AP control block wrong
• ESP_FAIL: other WiFi internal errors

esp_err_t esp_wifi_stop(void)
Stop WiFi If mode is WIFI_MODE_STA, it stops station and frees station control block If mode is
WIFI_MODE_AP, it stops soft-AP and frees soft-AP control block If mode is WIFI_MODE_APSTA, it
stops station/soft-AP and frees station/soft-AP control block If mode is WIFI_MODE_NAN, it stops NAN
and frees NAN control block.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

esp_err_t esp_wifi_restore(void)
Restore WiFi stack persistent settings to default values.
This function will reset settings made using the following APIs:

• esp_wifi_set_bandwidth,
• esp_wifi_set_protocol,
• esp_wifi_set_config related
• esp_wifi_set_mode

Returns
• ESP_OK: succeed

Espressif Systems 685
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

esp_err_t esp_wifi_connect(void)
Connect WiFi station to the AP.

Attention 1. This API only impact WIFI_MODE_STA or WIFI_MODE_APSTA mode
Attention 2. If station interface is connected to an AP, call esp_wifi_disconnect to disconnect.
Attention 3. The scanning triggered by esp_wifi_scan_start() will not be effective until connection between

device and the AP is established. If device is scanning and connecting at the same time, it will abort
scanning and return a warning message and error number ESP_ERR_WIFI_STATE.

Attention 4. This API attempts to connect to an Access Point (AP) only once. To enable reconnection in
case of a connection failure, please use the 'failure_retry_cnt' feature in the 'wifi_sta_config_t'. Users are
suggested to implement reconnection logic in their application for scenarios where the specified AP does
not exist, or reconnection is desired after the device has received a disconnect event.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
• ESP_ERR_WIFI_MODE: WiFi mode error
• ESP_ERR_WIFI_CONN: WiFi internal error, station or soft-AP control block wrong
• ESP_ERR_WIFI_SSID: SSID of AP which station connects is invalid

esp_err_t esp_wifi_disconnect(void)
Disconnect WiFi station from the AP.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi was not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi was not started by esp_wifi_start
• ESP_FAIL: other WiFi internal errors

esp_err_t esp_wifi_clear_fast_connect(void)
Currently this API is just an stub API.

Returns
• ESP_OK: succeed
• others: fail

esp_err_t esp_wifi_deauth_sta(uint16_t aid)
deauthenticate all stations or associated id equals to aid

Parameters aid -- when aid is 0, deauthenticate all stations, otherwise deauthenticate station
whose associated id is aid

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi was not started by esp_wifi_start
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_ERR_WIFI_MODE: WiFi mode is wrong

esp_err_t esp_wifi_scan_start(const wifi_scan_config_t *config, bool block)
Scan all available APs.

Attention If this API is called, the found APs are stored in WiFi driver dynamic allocated mem-
ory. And then can be freed in esp_wifi_scan_get_ap_records(), esp_wifi_scan_get_ap_record() or
esp_wifi_clear_ap_list(), so call any one to free the memory once the scan is done.

Espressif Systems 686
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Attention The values of maximum active scan time and passive scan time per channel are limited to 1500
milliseconds. Values above 1500ms may cause station to disconnect from AP and are not recommended.

Parameters
• config -- configuration settings for scanning, if set to NULL default settings will be used
of which default values are show_hidden:false, scan_type:active, scan_time.active.min:0,
scan_time.active.max:120 miliseconds, scan_time.passive:360 miliseconds

• block -- if block is true, this API will block the caller until the scan is done, otherwise
it will return immediately

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi was not started by esp_wifi_start
• ESP_ERR_WIFI_TIMEOUT: blocking scan is timeout
• ESP_ERR_WIFI_STATE: wifi still connecting when invoke esp_wifi_scan_start
• others: refer to error code in esp_err.h

esp_err_t esp_wifi_scan_stop(void)
Stop the scan in process.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
• ESP_ERR_WIFI_STATE:WiFi is still connecting when esp_wifi_scan_stop() is invoked.

esp_err_t esp_wifi_scan_get_ap_num(uint16_t *number)
Get number of APs found in last scan.

Attention This API can only be called when the scan is completed, otherwise it may get wrong value.

Parameters number -- [out] store number of APs found in last scan
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_scan_get_ap_records(uint16_t *number, wifi_ap_record_t *ap_records)
Get AP list found in last scan.

Attention This API will free all memory occupied by scanned AP list.

Parameters
• number -- [inout] As input param, it stores max AP number ap_records can hold. As
output param, it receives the actual AP number this API returns.

• ap_records -- wifi_ap_record_t array to hold the found APs
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_ERR_NO_MEM: out of memory

Espressif Systems 687
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_wifi_scan_get_ap_record(wifi_ap_record_t *ap_record)
Get one AP record from the scanned AP list.

Attention Different from esp_wifi_scan_get_ap_records(), this API only gets one AP record from the scanned
AP list each time. This API will free the memory of one AP record, if the user doesn't get all records in
the scannned AP list, then needs to call esp_wifi_clear_ap_list() to free the remaining memory.

Parameters ap_record -- [out] pointer to one AP record
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_FAIL: scan APs is NULL, means all AP records fetched or no AP found

esp_err_t esp_wifi_clear_ap_list(void)
Clear AP list found in last scan.

Attention This API will free all memory occupied by scanned AP list. When the obtained AP list fails, AP
records must be cleared,otherwise it may cause memory leakage.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
• ESP_ERR_WIFI_MODE: WiFi mode is wrong
• ESP_ERR_INVALID_ARG: It doesn't normally happen, the function called inside the
API was passed invalid argument, user should check if the wifi related config is correct

esp_err_t esp_wifi_sta_get_ap_info(wifi_ap_record_t *ap_info)
Get information of AP to which the device is associated with.

Attention When the obtained country information is empty, it means that the AP does not carry country
information

Parameters ap_info -- the wifi_ap_record_t to hold AP information sta can get the connected
ap's phy mode info through the struct member phy_11b，phy_11g，phy_11n，phy_lr in the
wifi_ap_record_t struct. For example, phy_11b = 1 imply that ap support 802.11b mode

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_CONN: The station interface don't initialized
• ESP_ERR_WIFI_NOT_CONNECT: The station is in disconnect status

esp_err_t esp_wifi_set_ps(wifi_ps_type_t type)
Set current WiFi power save type.

Attention Default power save type is WIFI_PS_MIN_MODEM.

Parameters type -- power save type
Returns ESP_OK: succeed

Espressif Systems 688
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_wifi_get_ps(wifi_ps_type_t *type)
Get current WiFi power save type.

Attention Default power save type is WIFI_PS_MIN_MODEM.

Parameters type -- [out] store current power save type
Returns ESP_OK: succeed

esp_err_t esp_wifi_set_protocol(wifi_interface_t ifx, uint8_t protocol_bitmap)
Set protocol type of specified interface The default protocol is (WIFI_PROTOCOL_11B|WIFI_PROTOCOL_11G|WIFI_PROTOCOL_11N).
if CONFIG_SOC_WIFI_HE_SUPPORT, the default protocol is (WIFI_PROTOCOL_11B|WIFI_PROTOCOL_11G|WIFI_PROTOCOL_11N|WIFI_PROTOCOL_11AX).

Attention Support 802.11b or 802.11bg or 802.11bgn or 802.11bgnax or LR mode

Parameters
• ifx -- interfaces
• protocol_bitmap -- WiFi protocol bitmap

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_IF: invalid interface
• others: refer to error codes in esp_err.h

esp_err_t esp_wifi_get_protocol(wifi_interface_t ifx, uint8_t *protocol_bitmap)
Get the current protocol bitmap of the specified interface.

Parameters
• ifx -- interface
• protocol_bitmap -- [out] store current WiFi protocol bitmap of interface ifx

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_IF: invalid interface
• ESP_ERR_INVALID_ARG: invalid argument
• others: refer to error codes in esp_err.h

esp_err_t esp_wifi_set_bandwidth(wifi_interface_t ifx, wifi_bandwidth_t bw)
Set the bandwidth of specified interface.

Attention 1. API return false if try to configure an interface that is not enabled
Attention 2. WIFI_BW_HT40 is supported only when the interface support 11N

Parameters
• ifx -- interface to be configured
• bw -- bandwidth

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_IF: invalid interface
• ESP_ERR_INVALID_ARG: invalid argument
• others: refer to error codes in esp_err.h

esp_err_t esp_wifi_get_bandwidth(wifi_interface_t ifx, wifi_bandwidth_t *bw)
Get the bandwidth of specified interface.

Espressif Systems 689
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Attention 1. API return false if try to get a interface that is not enable

Parameters
• ifx -- interface to be configured
• bw -- [out] store bandwidth of interface ifx

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_IF: invalid interface
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_set_channel(uint8_t primary, wifi_second_chan_t second)
Set primary/secondary channel of device.

Attention 1. This API should be called after esp_wifi_start() and before esp_wifi_stop()
Attention 2. When device is in STAmode, this API should not be called when STA is scanning or connecting

to an external AP
Attention 3. When device is in softAP mode, this API should not be called when softAP has connected to

external STAs
Attention 4. When device is in STA+softAP mode, this API should not be called when in the scenarios

described above
Attention 5. The channel info set by this API will not be stored in NVS. So If you want to remeber

the channel used before wifi stop, you need to call this API again after wifi start, or you can call
esp_wifi_set_config() to store the channel info in NVS.

Parameters
• primary -- for HT20, primary is the channel number, for HT40, primary is the primary
channel

• second -- for HT20, second is ignored, for HT40, second is the second channel
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_IF: invalid interface
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start

esp_err_t esp_wifi_get_channel(uint8_t *primary, wifi_second_chan_t *second)
Get the primary/secondary channel of device.

Attention 1. API return false if try to get a interface that is not enable

Parameters
• primary -- store current primary channel
• second -- [out] store current second channel

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_set_country(const wifi_country_t *country)
configure country info

Attention 1. It is discouraged to call this API since this doesn't validate the per-country rules, it's up to the
user to fill in all fields according to local regulations. Please use esp_wifi_set_country_code instead.

Espressif Systems 690
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Attention 2. The default country is "01" (world safe mode) {.cc="01", .schan=1, .nchan=11, .pol-
icy=WIFI_COUNTRY_POLICY_AUTO}.

Attention 3. The third octet of country code string is one of the following: ' ', 'O', 'I', 'X', otherwise it is
considered as ' '.

Attention 4. When the country policy is WIFI_COUNTRY_POLICY_AUTO, the country info of the AP
to which the station is connected is used. E.g. if the configured country info is {.cc="US", .schan=1,
.nchan=11} and the country info of the AP to which the station is connected is {.cc="JP", .schan=1,
.nchan=14} then the country info that will be used is {.cc="JP", .schan=1, .nchan=14}. If the station
disconnected from the AP the country info is set back to the country info of the station automatically,
{.cc="US", .schan=1, .nchan=11} in the example.

Attention 5. When the country policy isWIFI_COUNTRY_POLICY_MANUAL, then the configured coun-
try info is used always.

Attention 6. When the country info is changed because of configuration or because the station connects to a
different external AP, the country IE in probe response/beacon of the soft-AP is also changed.

Attention 7. The country configuration is stored into flash.
Attention 8. When this API is called, the PHY init data will switch to the PHY init data type corresponding

to the country info.

Parameters country -- the configured country info
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_get_country(wifi_country_t *country)
get the current country info

Parameters country -- country info
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_set_mac(wifi_interface_t ifx, const uint8_t mac[6])
Set MAC address of WiFi station, soft-AP or NAN interface.

Attention 1. This API can only be called when the interface is disabled
Attention 2. Above mentioned interfaces have different MAC addresses, do not set them to be the same.
Attention 3. The bit 0 of the first byte of MAC address can not be 1. For example, the MAC address can set

to be "1a:XX:XX:XX:XX:XX", but can not be "15:XX:XX:XX:XX:XX".

Parameters
• ifx -- interface
• mac -- the MAC address

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_ERR_WIFI_IF: invalid interface
• ESP_ERR_WIFI_MAC: invalid mac address
• ESP_ERR_WIFI_MODE: WiFi mode is wrong
• others: refer to error codes in esp_err.h

esp_err_t esp_wifi_get_mac(wifi_interface_t ifx, uint8_t mac[6])
Get mac of specified interface.

Parameters
• ifx -- interface

Espressif Systems 691
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• mac -- [out] store mac of the interface ifx
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_ERR_WIFI_IF: invalid interface

esp_err_t esp_wifi_set_promiscuous_rx_cb(wifi_promiscuous_cb_t cb)
Register the RX callback function in the promiscuous mode.
Each time a packet is received, the registered callback function will be called.

Parameters cb -- callback
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

esp_err_t esp_wifi_set_promiscuous(bool en)
Enable the promiscuous mode.

Parameters en -- false - disable, true - enable
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

esp_err_t esp_wifi_get_promiscuous(bool *en)
Get the promiscuous mode.

Parameters en -- [out] store the current status of promiscuous mode
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_set_promiscuous_filter(const wifi_promiscuous_filter_t *filter)
Enable the promiscuous mode packet type filter.

Note: The default filter is to filter all packets except WIFI_PKT_MISC

Parameters filter -- the packet type filtered in promiscuous mode.
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

esp_err_t esp_wifi_get_promiscuous_filter(wifi_promiscuous_filter_t *filter)
Get the promiscuous filter.

Parameters filter -- [out] store the current status of promiscuous filter
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_set_promiscuous_ctrl_filter(const wifi_promiscuous_filter_t *filter)
Enable subtype filter of the control packet in promiscuous mode.

Note: The default filter is to filter none control packet.

Parameters filter -- the subtype of the control packet filtered in promiscuous mode.

Espressif Systems 692
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

esp_err_t esp_wifi_get_promiscuous_ctrl_filter(wifi_promiscuous_filter_t *filter)
Get the subtype filter of the control packet in promiscuous mode.

Parameters filter -- [out] store the current status of subtype filter of the control packet in
promiscuous mode

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_set_config(wifi_interface_t interface, wifi_config_t *conf)
Set the configuration of the STA, AP or NAN.

Attention 1. This API can be called only when specified interface is enabled, otherwise, API fail
Attention 2. For station configuration, bssid_set needs to be 0; and it needs to be 1 only when users need to

check the MAC address of the AP.
Attention 3. ESP devices are limited to only one channel, so when in the soft-AP+station mode, the soft-AP

will adjust its channel automatically to be the same as the channel of the station.
Attention 4. The configuration will be stored in NVS for station and soft-AP

Parameters
• interface -- interface
• conf -- station, soft-AP or NAN configuration

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_ERR_WIFI_IF: invalid interface
• ESP_ERR_WIFI_MODE: invalid mode
• ESP_ERR_WIFI_PASSWORD: invalid password
• ESP_ERR_WIFI_NVS: WiFi internal NVS error
• ESP_ERR_WIFI_STATE: WiFi still connecting when invoke esp_wifi_set_config
• others: refer to the error code in esp_err.h

esp_err_t esp_wifi_get_config(wifi_interface_t interface, wifi_config_t *conf)
Get configuration of specified interface.

Parameters
• interface -- interface
• conf -- [out] station or soft-AP configuration

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_ERR_WIFI_IF: invalid interface

esp_err_t esp_wifi_ap_get_sta_list(wifi_sta_list_t *sta)
Get STAs associated with soft-AP.

Attention SSC only API

Espressif Systems 693
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters sta -- [out] station list ap can get the connected sta's phymode info through the struct
member phy_11b，phy_11g，phy_11n，phy_lr in the wifi_sta_info_t struct. For example,
phy_11b = 1 imply that sta support 802.11b mode

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_ERR_WIFI_MODE: WiFi mode is wrong
• ESP_ERR_WIFI_CONN:WiFi internal error, the station/soft-AP control block is invalid

esp_err_t esp_wifi_ap_get_sta_aid(const uint8_t mac[6], uint16_t *aid)
Get AID of STA connected with soft-AP.

Parameters
• mac -- STA's mac address
• aid -- [out] Store the AID corresponding to STA mac

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_ERR_NOT_FOUND: Requested resource not found
• ESP_ERR_WIFI_MODE: WiFi mode is wrong
• ESP_ERR_WIFI_CONN:WiFi internal error, the station/soft-AP control block is invalid

esp_err_t esp_wifi_set_storage(wifi_storage_t storage)
Set the WiFi API configuration storage type.

Attention 1. The default value is WIFI_STORAGE_FLASH

Parameters storage -- : storage type
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_set_vendor_ie(bool enable, wifi_vendor_ie_type_t type, wifi_vendor_ie_id_t idx,
const void *vnd_ie)

Set 802.11 Vendor-Specific Information Element.

Attention If user set the same vendor ie twice, the second set will fail and return ESP_ERR_INVALID_ARG.
Please clear the vendor ie before setting again.

Parameters
• enable -- If true, specified IE is enabled. If false, specified IE is removed.
• type -- Information Element type. Determines the frame type to associate with the IE.
• idx -- Index to set or clear. Each IE type can be associated with up to two elements
(indices 0 & 1).

• vnd_ie -- Pointer to vendor specific element data. First 6 bytes should be a header with
fields matching vendor_ie_data_t. If enable is false, this argument is ignored and can be
NULL. Data does not need to remain valid after the function returns.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init()
• ESP_ERR_INVALID_ARG: Invalid argument, including if first byte of vnd_ie is not
WIFI_VENDOR_IE_ELEMENT_ID (0xDD) or second byte is an invalid length.

• ESP_ERR_NO_MEM: Out of memory

Espressif Systems 694
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_wifi_set_vendor_ie_cb(esp_vendor_ie_cb_t cb, void *ctx)
Register Vendor-Specific Information Element monitoring callback.

Parameters
• cb -- Callback function
• ctx -- Context argument, passed to callback function.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

esp_err_t esp_wifi_set_max_tx_power(int8_t power)
Set maximum transmitting power after WiFi start.

Attention 1. Maximum power before wifi startup is limited by PHY init data bin.
Attention 2. The value set by this API will be mapped to the max_tx_power of the structure wifi_country_t

variable.
Attention 3. Mapping Table {Power, max_tx_power} = {{8, 2}, {20, 5}, {28, 7}, {34, 8}, {44, 11}, {52,

13}, {56, 14}, {60, 15}, {66, 16}, {72, 18}, {80, 20}}.
Attention 4. Param power unit is 0.25dBm, range is [8, 84] corresponding to 2dBm - 20dBm.
Attention 5. Relationship between set value and actual value. As follows: {set value range, actual value} =

{{[8, 19],8}, {[20, 27],20}, {[28, 33],28}, {[34, 43],34}, {[44, 51],44}, {[52, 55],52}, {[56, 59],56},
{[60, 65],60}, {[66, 71],66}, {[72, 79],72}, {[80, 84],80}}.

Parameters power -- Maximum WiFi transmitting power.
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
• ESP_ERR_INVALID_ARG: invalid argument, e.g. parameter is out of range

esp_err_t esp_wifi_get_max_tx_power(int8_t *power)
Get maximum transmiting power after WiFi start.

Parameters power -- Maximum WiFi transmitting power, unit is 0.25dBm.
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_set_event_mask(uint32_t mask)
Set mask to enable or disable some WiFi events.

Attention 1. Mask can be created by logical OR of various WIFI_EVENT_MASK_ constants. Events which
have corresponding bit set in the mask will not be delivered to the system event handler.

Attention 2. Default WiFi event mask is WIFI_EVENT_MASK_AP_PROBEREQRECVED.
Attention 3. There may be lots of stations sending probe request data around. Don't unmask this event unless

you need to receive probe request data.

Parameters mask -- WiFi event mask.
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

esp_err_t esp_wifi_get_event_mask(uint32_t *mask)
Get mask of WiFi events.

Espressif Systems 695
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters mask -- WiFi event mask.
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_80211_tx(wifi_interface_t ifx, const void *buffer, int len, bool en_sys_seq)
Send raw ieee80211 data.

Attention Currently only support for sending beacon/probe request/probe response/action and non-QoS data
frame

Parameters
• ifx -- interface if the Wi-Fi mode is Station, the ifx should be WIFI_IF_STA. If the Wi-
Fi mode is SoftAP, the ifx should be WIFI_IF_AP. If the Wi-Fi mode is Station+SoftAP,
the ifx should be WIFI_IF_STA or WIFI_IF_AP. If the ifx is wrong, the API returns
ESP_ERR_WIFI_IF.

• buffer -- raw ieee80211 buffer
• len -- the length of raw buffer, the len must be <= 1500 Bytes and >= 24 Bytes
• en_sys_seq -- indicate whether use the internal sequence number. If en_sys_seq is
false, the sequence in raw buffer is unchanged, otherwise it will be overwritten by WiFi
driver with the system sequence number. Generally, if esp_wifi_80211_tx is called before
the Wi-Fi connection has been set up, both en_sys_seq==true and en_sys_seq==false are
fine. However, if the API is called after the Wi-Fi connection has been set up, en_sys_seq
must be true, otherwise ESP_ERR_INVALID_ARG is returned.

Returns
• ESP_OK: success
• ESP_ERR_WIFI_IF: Invalid interface
• ESP_ERR_INVALID_ARG: Invalid parameter
• ESP_ERR_WIFI_NO_MEM: out of memory

esp_err_t esp_wifi_set_csi_rx_cb(wifi_csi_cb_t cb, void *ctx)
Register the RX callback function of CSI data.

Each time a CSI data is received, the callback function will be called.

Parameters
• cb -- callback
• ctx -- context argument, passed to callback function

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init

esp_err_t esp_wifi_set_csi_config(const wifi_csi_config_t *config)
Set CSI data configuration.

return
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start or promiscuous mode is not
enabled

• ESP_ERR_INVALID_ARG: invalid argument

Parameters config -- configuration

Espressif Systems 696
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_wifi_set_csi(bool en)
Enable or disable CSI.

return
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start or promiscuous mode is not
enabled

• ESP_ERR_INVALID_ARG: invalid argument

Parameters en -- true - enable, false - disable

esp_err_t esp_wifi_set_ant_gpio(const wifi_ant_gpio_config_t *config)
Set antenna GPIO configuration.

Parameters config -- Antenna GPIO configuration.
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: Invalid argument, e.g. parameter is NULL, invalid GPIO
number etc

esp_err_t esp_wifi_get_ant_gpio(wifi_ant_gpio_config_t *config)
Get current antenna GPIO configuration.

Parameters config -- Antenna GPIO configuration.
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument, e.g. parameter is NULL

esp_err_t esp_wifi_set_ant(const wifi_ant_config_t *config)
Set antenna configuration.

Parameters config -- Antenna configuration.
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: Invalid argument, e.g. parameter is NULL, invalid antenna
mode or invalid GPIO number

esp_err_t esp_wifi_get_ant(wifi_ant_config_t *config)
Get current antenna configuration.

Parameters config -- Antenna configuration.
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument, e.g. parameter is NULL

int64_t esp_wifi_get_tsf_time(wifi_interface_t interface)
Get the TSF time In Station mode or SoftAP+Station mode if station is not connected or station doesn't receive
at least one beacon after connected, will return 0.

Attention Enabling power save may cause the return value inaccurate, except WiFi modem sleep

Parameters interface -- The interface whose tsf_time is to be retrieved.
Returns 0 or the TSF time

Espressif Systems 697
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_wifi_set_inactive_time(wifi_interface_t ifx, uint16_t sec)
Set the inactive time of the STA or AP.

Attention 1. For Station, If the station does not receive a beacon frame from the connected SoftAP during
the inactive time, disconnect from SoftAP. Default 6s.

Attention 2. For SoftAP, If the softAP doesn't receive any data from the connected STA during inactive time,
the softAP will force deauth the STA. Default is 300s.

Attention 3. The inactive time configuration is not stored into flash

Parameters
• ifx -- interface to be configured.
• sec -- Inactive time. Unit seconds.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
• ESP_ERR_INVALID_ARG: invalid argument, For Station, if sec is less than 3. For Sof-
tAP, if sec is less than 10.

esp_err_t esp_wifi_get_inactive_time(wifi_interface_t ifx, uint16_t *sec)
Get inactive time of specified interface.

Parameters
• ifx -- Interface to be configured.
• sec -- Inactive time. Unit seconds.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_statis_dump(uint32_t modules)
Dump WiFi statistics.

Parameters modules -- statistic modules to be dumped
Returns

• ESP_OK: succeed
• others: failed

esp_err_t esp_wifi_set_rssi_threshold(int32_t rssi)
Set RSSI threshold, if average rssi gets lower than threshold, WiFi task will post event
WIFI_EVENT_STA_BSS_RSSI_LOW.

Attention If the user wants to receive another WIFI_EVENT_STA_BSS_RSSI_LOW event after receiving
one, this API needs to be called again with an updated/same RSSI threshold.

Parameters rssi -- threshold value in dbm between -100 to 10 Note that in some rare cases
where signal strength is very strong, rssi values can be slightly positive.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_ftm_initiate_session(wifi_ftm_initiator_cfg_t *cfg)
Start an FTM Initiator session by sending FTM request If successful, event WIFI_EVENT_FTM_REPORT
is generated with the result of the FTM procedure.

Espressif Systems 698
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Attention 1. Use this API only in Station mode.
Attention 2. If FTM is initiated on a different channel than Station is connected in or internal SoftAP is

started in, FTM defaults to a single burst in ASAP mode.

Parameters cfg -- FTM Initiator session configuration
Returns

• ESP_OK: succeed
• others: failed

esp_err_t esp_wifi_ftm_end_session(void)
End the ongoing FTM Initiator session.

Attention This API works only on FTM Initiator

Returns
• ESP_OK: succeed
• others: failed

esp_err_t esp_wifi_ftm_resp_set_offset(int16_t offset_cm)
Set offset in cm for FTM Responder. An equivalent offset is calculated in picoseconds and added in TOD of
FTM Measurement frame (T1).

Attention Use this API only in AP mode before performing FTM as responder

Parameters offset_cm -- T1 Offset to be added in centimeters
Returns

• ESP_OK: succeed
• others: failed

esp_err_t esp_wifi_ftm_get_report(wifi_ftm_report_entry_t *report, uint8_t num_entries)
Get FTM measurements report copied into a user provided buffer.

Attention 1. To get the FTM report, user first needs to allocate a buffer of size
(sizeof(wifi_ftm_report_entry_t) * num_entries) where the API will fill up to num_entries
valid FTM measurements in the buffer. Total number of entries can be found in the event
WIFI_EVENT_FTM_REPORT as ftm_report_num_entries

Attention 2. The internal FTM report is freed upon use of this API which means the API can only be used
once afer every FTM session initiated

Attention 3. Passing the buffer as NULL merely frees the FTM report

Parameters
• report -- Pointer to the buffer for receiving the FTM report
• num_entries -- Number of FTM report entries to be filled in the report

Returns
• ESP_OK: succeed
• others: failed

esp_err_t esp_wifi_config_11b_rate(wifi_interface_t ifx, bool disable)
Enable or disable 11b rate of specified interface.

Attention 1. This API should be called after esp_wifi_init() and before esp_wifi_start().
Attention 2. Only when really need to disable 11b rate call this API otherwise don't call this.

Espressif Systems 699
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• ifx -- Interface to be configured.
• disable -- true means disable 11b rate while false means enable 11b rate.

Returns
• ESP_OK: succeed
• others: failed

esp_err_t esp_wifi_connectionless_module_set_wake_interval(uint16_t wake_interval)
Set wake interval for connectionless modules to wake up periodically.

Attention 1. Only one wake interval for all connectionless modules.
Attention 2. This configuration could work at connected status. When

ESP_WIFI_STA_DISCONNECTED_PM_ENABLE is enabled, this configuration could work at
disconnected status.

Attention 3. Event WIFI_EVENT_CONNECTIONLESS_MODULE_WAKE_INTERVAL_START
would be posted each time wake interval starts.

Attention 4. Recommend to configure interval in multiples of hundred. (e.g. 100ms)
Attention 5. Recommend to configure interval to ESP_WIFI_CONNECTIONLESS_INTERVAL_DEFAULT_MODE

to get stable performance at coexistence mode.

Parameters wake_interval -- Milliseconds after would the chip wake up, from 1 to 65535.

esp_err_t esp_wifi_force_wakeup_acquire(void)
Request extra reference of Wi-Fi radio. Wi-Fi keep active state(RF opened) to be able to receive packets.

Attention Please pair the use of esp_wifi_force_wakeup_acquire with
esp_wifi_force_wakeup_release.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start

esp_err_t esp_wifi_force_wakeup_release(void)
Release extra reference of Wi-Fi radio. Wi-Fi go to sleep state(RF closed) if no more use of radio.

Attention Please pair the use of esp_wifi_force_wakeup_acquire with
esp_wifi_force_wakeup_release.

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_WIFI_NOT_STARTED: WiFi is not started by esp_wifi_start

esp_err_t esp_wifi_set_country_code(const char *country, bool ieee80211d_enabled)
configure country

Attention 1. When ieee80211d_enabled is enabled, the country info of the AP to which the station is con-
nected is used. E.g. if the configured country is US and the country info of the AP to which the station
is connected is JP then the country info that will be used is JP. If the station disconnected from the AP
the country info is set back to the country info of the station automatically, US in the example.

Attention 2. When ieee80211d_enabled is disabled, then the configured country info is used always.

Espressif Systems 700
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Attention 3. When the country info is changed because of configuration or because the station connects to a
different external AP, the country IE in probe response/beacon of the soft-AP is also changed.

Attention 4. The country configuration is stored into flash.
Attention 5. When this API is called, the PHY init data will switch to the PHY init data type corresponding

to the country info.
Attention 6. Supported country codes are "01"(world safe mode) "AT","AU","BE","BG","BR",

"CA","CH","CN","CY","CZ","DE","DK","EE","ES","FI","FR","GB","GR","HK","HR","HU",
"IE","IN","IS","IT","JP","KR","LI","LT","LU","LV","MT","MX","NL","NO","NZ","PL","PT",
"RO","SE","SI","SK","TW","US"

Attention 7. When country code "01" (world safe mode) is set, SoftAP mode won't contain country IE.
Attention 8. The default country is "01" (world safe mode) and ieee80211d_enabled is TRUE.
Attention 9. The third octet of country code string is one of the following: ' ', 'O', 'I', 'X', otherwise it is

considered as ' '.

Parameters
• country -- the configured country ISO code
• ieee80211d_enabled -- 802.11d is enabled or not

Returns
• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_get_country_code(char *country)
get the current country code

Parameters country -- country code
Returns

• ESP_OK: succeed
• ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by esp_wifi_init
• ESP_ERR_INVALID_ARG: invalid argument

esp_err_t esp_wifi_config_80211_tx_rate(wifi_interface_t ifx, wifi_phy_rate_t rate)
Config 80211 tx rate of specified interface.

Attention 1. This API should be called after esp_wifi_init() and before esp_wifi_start().
Attention 2. Can not set 80211 tx rate under 11A/11AC/11AX protocol, you can use

esp_wifi_config_80211_tx instead.

Parameters
• ifx -- Interface to be configured.
• rate -- Phy rate to be configured.

Returns
• ESP_OK: succeed
• others: failed

esp_err_t esp_wifi_config_80211_tx(wifi_interface_t ifx, wifi_tx_rate_config_t *config)
Config 80211 tx rate and phymode of specified interface.

Attention 1. This API should be called after esp_wifi_init() and before esp_wifi_start().

Parameters
• ifx -- Interface to be configured.
• config -- rate_config to be configured.

Returns
• ESP_OK: succeed
• others: failed

Espressif Systems 701
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_wifi_disable_pmf_config(wifi_interface_t ifx)
Disable PMF configuration for specified interface.

Attention This API should be called after esp_wifi_set_config() and before esp_wifi_start().

Parameters ifx -- Interface to be configured.
Returns

• ESP_OK: succeed
• others: failed

esp_err_t esp_wifi_sta_get_aid(uint16_t *aid)
Get the Association id assigned to STA by AP.

Attention aid = 0 if station is not connected to AP.

Parameters aid -- [out] store the aid
Returns

• ESP_OK: succeed

esp_err_t esp_wifi_sta_get_negotiated_phymode(wifi_phy_mode_t *phymode)
Get the negotiated phymode after connection.

Parameters phymode -- [out] store the negotiated phymode.
Returns

• ESP_OK: succeed
esp_err_t esp_wifi_set_dynamic_cs(bool enabled)

Config dynamic carrier sense.

Attention This API should be called after esp_wifi_start().

Parameters enabled -- Dynamic carrier sense is enabled or not.
Returns

• ESP_OK: succeed
• others: failed

esp_err_t esp_wifi_sta_get_rssi(int *rssi)
Get the rssi information of AP to which the device is associated with.

Attention 1. This API should be called after station connected to AP.
Attention 2. Use this API only in WIFI_MODE_STA or WIFI_MODE_APSTA mode.

Parameters rssi -- store the rssi info received from last beacon.
Returns

• ESP_OK: succeed
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_FAIL: failed

Structures

struct wifi_init_config_t
WiFi stack configuration parameters passed to esp_wifi_init call.

Espressif Systems 702
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

wifi_osi_funcs_t *osi_funcs
WiFi OS functions

wpa_crypto_funcs_t wpa_crypto_funcs
WiFi station crypto functions when connect

int static_rx_buf_num
WiFi static RX buffer number

int dynamic_rx_buf_num
WiFi dynamic RX buffer number

int tx_buf_type
WiFi TX buffer type

int static_tx_buf_num
WiFi static TX buffer number

int dynamic_tx_buf_num
WiFi dynamic TX buffer number

int rx_mgmt_buf_type
WiFi RX MGMT buffer type

int rx_mgmt_buf_num
WiFi RX MGMT buffer number

int cache_tx_buf_num
WiFi TX cache buffer number

int csi_enable
WiFi channel state information enable flag

int ampdu_rx_enable
WiFi AMPDU RX feature enable flag

int ampdu_tx_enable
WiFi AMPDU TX feature enable flag

int amsdu_tx_enable
WiFi AMSDU TX feature enable flag

int nvs_enable
WiFi NVS flash enable flag

int nano_enable
Nano option for printf/scan family enable flag

Espressif Systems 703
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int rx_ba_win
WiFi Block Ack RX window size

int wifi_task_core_id
WiFi Task Core ID

int beacon_max_len
WiFi softAP maximum length of the beacon

int mgmt_sbuf_num
WiFi management short buffer number, the minimum value is 6, the maximum value is 32

uint64_t feature_caps
Enables additional WiFi features and capabilities

bool sta_disconnected_pm
WiFi Power Management for station at disconnected status

int espnow_max_encrypt_num
Maximum encrypt number of peers supported by espnow

int magic
WiFi init magic number, it should be the last field

Macros

ESP_ERR_WIFI_NOT_INIT

WiFi driver was not installed by esp_wifi_init

ESP_ERR_WIFI_NOT_STARTED

WiFi driver was not started by esp_wifi_start

ESP_ERR_WIFI_NOT_STOPPED

WiFi driver was not stopped by esp_wifi_stop

ESP_ERR_WIFI_IF

WiFi interface error

ESP_ERR_WIFI_MODE

WiFi mode error

ESP_ERR_WIFI_STATE

WiFi internal state error

ESP_ERR_WIFI_CONN

WiFi internal control block of station or soft-AP error

ESP_ERR_WIFI_NVS

WiFi internal NVS module error

Espressif Systems 704
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_WIFI_MAC

MAC address is invalid

ESP_ERR_WIFI_SSID

SSID is invalid

ESP_ERR_WIFI_PASSWORD

Password is invalid

ESP_ERR_WIFI_TIMEOUT

Timeout error

ESP_ERR_WIFI_WAKE_FAIL

WiFi is in sleep state(RF closed) and wakeup fail

ESP_ERR_WIFI_WOULD_BLOCK

The caller would block

ESP_ERR_WIFI_NOT_CONNECT

Station still in disconnect status

ESP_ERR_WIFI_POST

Failed to post the event to WiFi task

ESP_ERR_WIFI_INIT_STATE

Invalid WiFi state when init/deinit is called

ESP_ERR_WIFI_STOP_STATE

Returned when WiFi is stopping

ESP_ERR_WIFI_NOT_ASSOC

The WiFi connection is not associated

ESP_ERR_WIFI_TX_DISALLOW

The WiFi TX is disallowed

ESP_ERR_WIFI_TWT_FULL

no available flow id

ESP_ERR_WIFI_TWT_SETUP_TIMEOUT

Timeout of receiving twt setup response frame, timeout times can be set during twt setup

ESP_ERR_WIFI_TWT_SETUP_TXFAIL

TWT setup frame tx failed

ESP_ERR_WIFI_TWT_SETUP_REJECT

The twt setup request was rejected by the AP

Espressif Systems 705
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_WIFI_DISCARD

Discard frame

WIFI_STATIC_TX_BUFFER_NUM

WIFI_CACHE_TX_BUFFER_NUM

WIFI_DYNAMIC_TX_BUFFER_NUM

WIFI_RX_MGMT_BUF_NUM_DEF

WIFI_CSI_ENABLED

WIFI_AMPDU_RX_ENABLED

WIFI_AMPDU_TX_ENABLED

WIFI_AMSDU_TX_ENABLED

WIFI_NVS_ENABLED

WIFI_NANO_FORMAT_ENABLED

WIFI_INIT_CONFIG_MAGIC

WIFI_DEFAULT_RX_BA_WIN

WIFI_TASK_CORE_ID

WIFI_SOFTAP_BEACON_MAX_LEN

WIFI_MGMT_SBUF_NUM

WIFI_STA_DISCONNECTED_PM_ENABLED

WIFI_ENABLE_WPA3_SAE

WIFI_ENABLE_CACHE_TX_BUFFER

WIFI_FTM_INITIATOR

WIFI_FTM_RESPONDER

WIFI_ENABLE_GCMP

Espressif Systems 706
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

WIFI_ENABLE_GMAC

WIFI_ENABLE_11R

WIFI_ENABLE_ENTERPRISE

CONFIG_FEATURE_WPA3_SAE_BIT

CONFIG_FEATURE_CACHE_TX_BUF_BIT

CONFIG_FEATURE_FTM_INITIATOR_BIT

CONFIG_FEATURE_FTM_RESPONDER_BIT

CONFIG_FEATURE_GCMP_BIT

CONFIG_FEATURE_GMAC_BIT

CONFIG_FEATURE_11R_BIT

CONFIG_FEATURE_WIFI_ENT_BIT

WIFI_FEATURE_CAPS

WIFI_INIT_CONFIG_DEFAULT()

ESP_WIFI_CONNECTIONLESS_INTERVAL_DEFAULT_MODE

Type Definitions

typedef void (*wifi_promiscuous_cb_t)(void *buf, wifi_promiscuous_pkt_type_t type)
The RX callback function in the promiscuous mode. Each time a packet is received, the callback function will
be called.

Param buf Data received. Type of data in buffer (wifi_promiscuous_pkt_t or wifi_pkt_rx_ctrl_t)
indicated by 'type' parameter.

Param type promiscuous packet type.

typedef void (*esp_vendor_ie_cb_t)(void *ctx, wifi_vendor_ie_type_t type, const uint8_t sa[6], const
vendor_ie_data_t *vnd_ie, int rssi)

Function signature for received Vendor-Specific Information Element callback.
Param ctx Context argument, as passed to esp_wifi_set_vendor_ie_cb() when registering call-

back.
Param type Information element type, based on frame type received.
Param sa Source 802.11 address.
Param vnd_ie Pointer to the vendor specific element data received.
Param rssi Received signal strength indication.

Espressif Systems 707
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef void (*wifi_csi_cb_t)(void *ctx, wifi_csi_info_t *data)
The RX callback function of Channel State Information(CSI) data.

Each time a CSI data is received, the callback function will be called.

Param ctx context argument, passed to esp_wifi_set_csi_rx_cb() when registering callback func-
tion.

Param data CSI data received. The memory that it points to will be deallocated after callback
function returns.

Header File
• components/esp_wifi/include/esp_wifi_types.h

Unions

union wifi_config_t
#include <esp_wifi_types.h> Configuration data for device's AP or STA or NAN.
The usage of this union (for ap, sta or nan configuration) is determined by the accompanying interface argument
passed to esp_wifi_set_config() or esp_wifi_get_config()

Public Members

wifi_ap_config_t ap

configuration of AP

wifi_sta_config_t sta

configuration of STA

wifi_nan_config_t nan

configuration of NAN

Structures

struct wifi_country_t
Structure describing WiFi country-based regional restrictions.

Public Members

char cc[3]
country code string

uint8_t schan
start channel

uint8_t nchan
total channel number

Espressif Systems 708
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_wifi/include/esp_wifi_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int8_t max_tx_power
This field is used for getting WiFi maximum transmitting power, call esp_wifi_set_max_tx_power to set
the maximum transmitting power.

wifi_country_policy_t policy

country policy

struct wifi_active_scan_time_t
Range of active scan times per channel.

Public Members

uint32_t min
minimum active scan time per channel, units: millisecond

uint32_t max
maximum active scan time per channel, units: millisecond, values above 1500ms may cause station to
disconnect from AP and are not recommended.

struct wifi_scan_time_t
Aggregate of active & passive scan time per channel.

Public Members

wifi_active_scan_time_t active

active scan time per channel, units: millisecond.

uint32_t passive
passive scan time per channel, units: millisecond, values above 1500ms may cause station to disconnect
from AP and are not recommended.

struct wifi_scan_config_t
Parameters for an SSID scan.

Public Members

uint8_t *ssid
SSID of AP

uint8_t *bssid
MAC address of AP

uint8_t channel
channel, scan the specific channel

bool show_hidden
enable to scan AP whose SSID is hidden

Espressif Systems 709
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

wifi_scan_type_t scan_type

scan type, active or passive

wifi_scan_time_t scan_time

scan time per channel

uint8_t home_chan_dwell_time
time spent at home channel between scanning consecutive channels.

struct wifi_he_ap_info_t
Description of a WiFi AP HE Info.

Public Members

uint8_t bss_color
an unsigned integer whose value is the BSS Color of the BSS corresponding to the AP

uint8_t partial_bss_color
indicate if an AID assignment rule based on the BSS color

uint8_t bss_color_disabled
indicate if the use of BSS color is disabled

uint8_t bssid_index
in M-BSSID set, identifies the nontransmitted BSSID

struct wifi_ap_record_t
Description of a WiFi AP.

Public Members

uint8_t bssid[6]
MAC address of AP

uint8_t ssid[33]
SSID of AP

uint8_t primary
channel of AP

wifi_second_chan_t second

secondary channel of AP

int8_t rssi
signal strength of AP. Note that in some rare cases where signal strength is very strong, rssi values can
be slightly positive

Espressif Systems 710
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

wifi_auth_mode_t authmode

authmode of AP

wifi_cipher_type_t pairwise_cipher

pairwise cipher of AP

wifi_cipher_type_t group_cipher

group cipher of AP

wifi_ant_t ant

antenna used to receive beacon from AP

uint32_t phy_11b
bit: 0 flag to identify if 11b mode is enabled or not

uint32_t phy_11g
bit: 1 flag to identify if 11g mode is enabled or not

uint32_t phy_11n
bit: 2 flag to identify if 11n mode is enabled or not

uint32_t phy_lr
bit: 3 flag to identify if low rate is enabled or not

uint32_t phy_11ax
bit: 4 flag to identify if 11ax mode is enabled or not

uint32_t wps
bit: 5 flag to identify if WPS is supported or not

uint32_t ftm_responder
bit: 6 flag to identify if FTM is supported in responder mode

uint32_t ftm_initiator
bit: 7 flag to identify if FTM is supported in initiator mode

uint32_t reserved
bit: 8..31 reserved

wifi_country_t country

country information of AP

wifi_he_ap_info_t he_ap

HE AP info

struct wifi_scan_threshold_t
Structure describing parameters for a WiFi fast scan.

Espressif Systems 711
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int8_t rssi
The minimum rssi to accept in the fast scan mode. Defaults to -127 if set to >= 0

wifi_auth_mode_t authmode

The weakest authmode to accept in the fast scan mode Note: Incase this value is not set and
password is set as per WPA2 standards(password len >= 8), it will be defaulted to WPA2 and
device won't connect to deprecated WEP/WPA networks. Please set authmode threshold as
WIFI_AUTH_WEP/WIFI_AUTH_WPA_PSK to connect to WEP/WPA networks

struct wifi_pmf_config_t
Configuration structure for Protected Management Frame

Public Members

bool capable
Deprecated variable. Device will always connect in PMF mode if other device also advertizes PMF
capability.

bool required
Advertizes that Protected Management Frame is required. Device will not associate to non-PMF capable
devices.

struct wifi_ap_config_t
Soft-AP configuration settings for the device.

Public Members

uint8_t ssid[32]
SSID of soft-AP. If ssid_len field is 0, this must be a Null terminated string. Otherwise, length is set
according to ssid_len.

uint8_t password[64]
Password of soft-AP.

uint8_t ssid_len
Optional length of SSID field.

uint8_t channel
Channel of soft-AP

wifi_auth_mode_t authmode

Auth mode of soft-AP. Do not support AUTH_WEP, AUTH_WAPI_PSK and AUTH_OWE in soft-AP
mode. When the auth mode is set to WPA2_PSK, WPA2_WPA3_PSK or WPA3_PSK, the pairwise
cipher will be overwritten with WIFI_CIPHER_TYPE_CCMP.

uint8_t ssid_hidden
Broadcast SSID or not, default 0, broadcast the SSID

Espressif Systems 712
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t max_connection
Max number of stations allowed to connect in

uint16_t beacon_interval
Beacon interval which should be multiples of 100. Unit: TU(time unit, 1 TU = 1024 us). Range: 100 ~
60000. Default value: 100

uint8_t csa_count
Channel Switch Announcement Count. Notify the station that the channel will switch after the csa_count
beacon intervals. Default value: 3

uint8_t dtim_period
Dtim period of soft-AP. Range: 1 ~ 10. Default value: 1

wifi_cipher_type_t pairwise_cipher

Pairwise cipher of SoftAP, group cipher will be derived using this. Cipher values are
valid starting from WIFI_CIPHER_TYPE_TKIP, enum values before that will be consid-
ered as invalid and default cipher suites(TKIP+CCMP) will be used. Valid cipher suites
in softAP mode are WIFI_CIPHER_TYPE_TKIP, WIFI_CIPHER_TYPE_CCMP and
WIFI_CIPHER_TYPE_TKIP_CCMP.

bool ftm_responder
Enable FTM Responder mode

wifi_pmf_config_t pmf_cfg

Configuration for Protected Management Frame

wifi_sae_pwe_method_t sae_pwe_h2e

Configuration for SAE PWE derivation method. Default value :2 (WPA3_SAE_PWE_BOTH)

uint8_t transition_disable
Whether to enable transition disable feature

struct wifi_sta_config_t
STA configuration settings for the device.

Public Members

uint8_t ssid[32]
SSID of target AP.

uint8_t password[64]
Password of target AP.

wifi_scan_method_t scan_method

do all channel scan or fast scan

Espressif Systems 713
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool bssid_set
whether set MAC address of target AP or not. Generally, station_config.bssid_set needs to be 0; and it
needs to be 1 only when users need to check the MAC address of the AP.

uint8_t bssid[6]
MAC address of target AP

uint8_t channel
Channel hint for target AP. Set to 1~13 to scan starting from the specified channel before connecting to
AP. Set to 0 for no preference

uint16_t listen_interval
Listen interval for ESP32 station to receive beacon when WIFI_PS_MAX_MODEM is set. Units: AP
beacon intervals. Defaults to 3 if set to 0.

wifi_sort_method_t sort_method

sort the connect AP in the list by rssi or security mode

wifi_scan_threshold_t threshold

When scan_threshold is set, only APs which have an auth mode that is more secure than the selected auth
mode and a signal stronger than the minimum RSSI will be used.

wifi_pmf_config_t pmf_cfg

Configuration for Protected Management Frame. Will be advertised in RSN Capabilities in RSN IE.

uint32_t rm_enabled
Whether Radio Measurements are enabled for the connection

uint32_t btm_enabled
Whether BSS Transition Management is enabled for the connection

uint32_t mbo_enabled
Whether MBO is enabled for the connection

uint32_t ft_enabled
Whether FT is enabled for the connection

uint32_t owe_enabled
Whether OWE is enabled for the connection

uint32_t transition_disable
Whether to enable transition disable feature

uint32_t reserved
Reserved for future feature set

wifi_sae_pwe_method_t sae_pwe_h2e

Configuration for SAE PWE derivation method. Default value :2 (WPA3_SAE_PWE_BOTH)

Espressif Systems 714
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

wifi_sae_pk_mode_t sae_pk_mode

Configuration for SAE-PK (Public Key) Authentication method

uint8_t failure_retry_cnt
Number of connection retries station will do before moving to next AP. scan_method should be set as
WIFI_ALL_CHANNEL_SCAN to use this config. Note: Enabling this may cause connection time to
increase incase best AP doesn't behave properly.

uint32_t he_dcm_set
Whether DCM max.constellation for transmission and reception is set.

uint32_t he_dcm_max_constellation_tx
Indicate the max.constellation for DCM in TB PPDU the STA supported. 0: not supported. 1: BPSK,
2: QPSK, 3: 16-QAM. The default value is 3.

uint32_t he_dcm_max_constellation_rx
Indicate the max.constellation for DCM in both Data field and HE-SIG-B field the STA supported. 0:
not supported. 1: BPSK, 2: QPSK, 3: 16-QAM. The default value is 3.

uint32_t he_mcs9_enabled
Whether to support HE-MCS 0 to 9. The default value is 0.

uint32_t he_su_beamformee_disabled
Whether to disable support for operation as an SU beamformee.

uint32_t he_trig_su_bmforming_feedback_disabled
Whether to disable support the transmission of SU feedback in an HE TB sounding sequence.

uint32_t he_trig_mu_bmforming_partial_feedback_disabled
Whether to disable support the transmission of partial-bandwidth MU feedback in an HE TB sounding
sequence.

uint32_t he_trig_cqi_feedback_disabled
Whether to disable support the transmission of CQI feedback in an HE TB sounding sequence.

uint32_t he_reserved
Reserved for future feature set

uint8_t sae_h2e_identifier[SAE_H2E_IDENTIFIER_LEN]
Password identifier for H2E. Strings null-terminated (length < SAE_H2E_IDENTIFIER_LEN) or non-
null terminated (length = SAE_H2E_IDENTIFIER_LEN) are accepted. Non-null terminated string with
0xFF for full length of SAE_H2E_IDENTIFIER_LEN is not considered a valid identifier

struct wifi_nan_config_t
NAN Discovery start configuration.

Public Members

Espressif Systems 715
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t op_channel
NAN Discovery operating channel

uint8_t master_pref
Device's preference value to serve as NAN Master

uint8_t scan_time
Scan time in seconds while searching for a NAN cluster

uint16_t warm_up_sec
Warm up time before assuming NAN Anchor Master role

struct wifi_sta_info_t
Description of STA associated with AP.

Public Members

uint8_t mac[6]
mac address

int8_t rssi
current average rssi of sta connected

uint32_t phy_11b
bit: 0 flag to identify if 11b mode is enabled or not

uint32_t phy_11g
bit: 1 flag to identify if 11g mode is enabled or not

uint32_t phy_11n
bit: 2 flag to identify if 11n mode is enabled or not

uint32_t phy_lr
bit: 3 flag to identify if low rate is enabled or not

uint32_t phy_11ax
bit: 4 flag to identify if 11ax mode is enabled or not

uint32_t is_mesh_child
bit: 5 flag to identify mesh child

uint32_t reserved
bit: 6..31 reserved

struct wifi_sta_list_t
List of stations associated with the Soft-AP.

Espressif Systems 716
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

wifi_sta_info_t sta[ESP_WIFI_MAX_CONN_NUM]
station list

int num
number of stations in the list (other entries are invalid)

struct vendor_ie_data_t
Vendor Information Element header.
The first bytes of the Information Element will match this header. Payload follows.

Public Members

uint8_t element_id
Should be set to WIFI_VENDOR_IE_ELEMENT_ID (0xDD)

uint8_t length
Length of all bytes in the element data following this field. Minimum 4.

uint8_t vendor_oui[3]
Vendor identifier (OUI).

uint8_t vendor_oui_type
Vendor-specific OUI type.

uint8_t payload[0]
Payload. Length is equal to value in 'length' field, minus 4.

struct wifi_promiscuous_pkt_t
Payload passed to 'buf' parameter of promiscuous mode RX callback.

Public Members

wifi_pkt_rx_ctrl_t rx_ctrl

metadata header

uint8_t payload[0]
Data or management payload. Length of payload is described by rx_ctrl.sig_len. Type of content deter-
mined by packet type argument of callback.

struct wifi_promiscuous_filter_t
Mask for filtering different packet types in promiscuous mode.

Espressif Systems 717
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint32_t filter_mask
OR of one or more filter values WIFI_PROMIS_FILTER_*

struct wifi_csi_info_t
CSI data type.

Public Members

wifi_pkt_rx_ctrl_t rx_ctrl

received packet radio metadata header of the CSI data

uint8_t mac[6]
source MAC address of the CSI data

uint8_t dmac[6]
destination MAC address of the CSI data

bool first_word_invalid
first four bytes of the CSI data is invalid or not, true indicates the first four bytes is invalid due to hardware
limition

int8_t *buf
valid buffer of CSI data

uint16_t len
valid length of CSI data

uint8_t *hdr
header of the wifi packet

uint8_t *payload
payload of the wifi packet

uint16_t payload_len
payload len of the wifi packet

uint16_t rx_seq
rx sequence number of the wifi packet

struct wifi_ant_gpio_t
WiFi GPIO configuration for antenna selection.

Public Members

uint8_t gpio_select
Whether this GPIO is connected to external antenna switch

Espressif Systems 718
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t gpio_num
The GPIO number that connects to external antenna switch

struct wifi_ant_gpio_config_t
WiFi GPIOs configuration for antenna selection.

Public Members

wifi_ant_gpio_t gpio_cfg[4]
The configurations of GPIOs that connect to external antenna switch

struct wifi_ant_config_t
WiFi antenna configuration.

Public Members

wifi_ant_mode_t rx_ant_mode

WiFi antenna mode for receiving

wifi_ant_t rx_ant_default

Default antenna mode for receiving, it's ignored if rx_ant_mode is not WIFI_ANT_MODE_AUTO

wifi_ant_mode_t tx_ant_mode

WiFi antenna mode for transmission, it can be set to WIFI_ANT_MODE_AUTO only if rx_ant_mode
is set to WIFI_ANT_MODE_AUTO

uint8_t enabled_ant0
Index (in antenna GPIO configuration) of enabled WIFI_ANT_MODE_ANT0

uint8_t enabled_ant1
Index (in antenna GPIO configuration) of enabled WIFI_ANT_MODE_ANT1

struct wifi_action_tx_req_t
Action Frame Tx Request.

Public Members

wifi_interface_t ifx

WiFi interface to send request to

uint8_t dest_mac[6]
Destination MAC address

bool no_ack
Indicates no ack required

Espressif Systems 719
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

wifi_action_rx_cb_t rx_cb

Rx Callback to receive any response

uint32_t data_len
Length of the appended Data

uint8_t data[0]
Appended Data payload

struct wifi_ftm_initiator_cfg_t
FTM Initiator configuration.

Public Members

uint8_t resp_mac[6]
MAC address of the FTM Responder

uint8_t channel
Primary channel of the FTM Responder

uint8_t frm_count
No. of FTM frames requested in terms of 4 or 8 bursts (allowed values - 0(No pref), 16, 24, 32, 64)

uint16_t burst_period
Requested period between FTM bursts in 100's of milliseconds (allowed values 0(No pref) - 100)

bool use_get_report_api
True - Using esp_wifi_ftm_get_report to get FTM report, False - Using ftm_report_data from
WIFI_EVENT_FTM_REPORT to get FTM report

struct wifi_beacon_monitor_config_t
WiFi beacon monitor parameter configuration.

Public Members

bool enable
Enable or disable beacon monitor

uint8_t loss_timeout
Beacon lost timeout

uint8_t loss_threshold
Maximum number of consecutive lost beacons allowed

uint8_t delta_intr_early
Delta early time for RF PHY on

Espressif Systems 720
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t delta_loss_timeout
Delta timeout time for RF PHY off

uint8_t beacon_abort
Enable or disable beacon abort

uint8_t broadcast_wakeup
Enable or disable TIM element multicast wakeup

uint8_t reserved
Reserved

uint8_t tsf_time_sync_deviation
Deviation range to sync with AP TSF timestamp

uint16_t modem_state_consecutive
PMU MODEM state consecutive count limit

uint16_t rf_ctrl_wait_cycle
RF on wait time (unit: Modem APB clock cycle)

struct wifi_nan_publish_cfg_t
NAN Publish service configuration parameters.

Public Members

char service_name[ESP_WIFI_MAX_SVC_NAME_LEN]
Service name identifier

wifi_nan_service_type_t type

Service type

char matching_filter[ESP_WIFI_MAX_FILTER_LEN]
Comma separated filters for filtering services

char svc_info[ESP_WIFI_MAX_SVC_INFO_LEN]
Service info shared in Publish frame

uint8_t single_replied_event
Give single Replied event or every time

uint8_t datapath_reqd
NAN Datapath required for the service

uint8_t reserved
Reserved

struct wifi_nan_subscribe_cfg_t
NAN Subscribe service configuration parameters.

Espressif Systems 721
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

char service_name[ESP_WIFI_MAX_SVC_NAME_LEN]
Service name identifier

wifi_nan_service_type_t type

Service type

char matching_filter[ESP_WIFI_MAX_FILTER_LEN]
Comma separated filters for filtering services

char svc_info[ESP_WIFI_MAX_SVC_INFO_LEN]
Service info shared in Subscribe frame

uint8_t single_match_event
Give single Match event or every time

uint8_t reserved
Reserved

struct wifi_nan_followup_params_t
NAN Follow-up parameters.

Public Members

uint8_t inst_id
Own service instance id

uint8_t peer_inst_id
Peer's service instance id

uint8_t peer_mac[6]
Peer's MAC address

char svc_info[ESP_WIFI_MAX_SVC_INFO_LEN]
Service info(or message) to be shared

struct wifi_nan_datapath_req_t
NAN Datapath Request parameters.

Public Members

uint8_t pub_id
Publisher's service instance id

uint8_t peer_mac[6]
Peer's MAC address

Espressif Systems 722
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool confirm_required
NDP Confirm frame required

struct wifi_nan_datapath_resp_t
NAN Datapath Response parameters.

Public Members

bool accept
True - Accept incoming NDP, False - Reject it

uint8_t ndp_id
NAN Datapath Identifier

uint8_t peer_mac[6]
Peer's MAC address

struct wifi_nan_datapath_end_req_t
NAN Datapath End parameters.

Public Members

uint8_t ndp_id
NAN Datapath Identifier

uint8_t peer_mac[6]
Peer's MAC address

struct wifi_event_sta_scan_done_t
Argument structure for WIFI_EVENT_SCAN_DONE event

Public Members

uint32_t status
status of scanning APs: 0—success, 1 - failure

uint8_t number
number of scan results

uint8_t scan_id
scan sequence number, used for block scan

struct wifi_event_sta_connected_t
Argument structure for WIFI_EVENT_STA_CONNECTED event

Espressif Systems 723
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t ssid[32]
SSID of connected AP

uint8_t ssid_len
SSID length of connected AP

uint8_t bssid[6]
BSSID of connected AP

uint8_t channel
channel of connected AP

wifi_auth_mode_t authmode

authentication mode used by the connection

uint16_t aid
authentication id assigned by the connected AP

struct wifi_event_sta_disconnected_t
Argument structure for WIFI_EVENT_STA_DISCONNECTED event

Public Members

uint8_t ssid[32]
SSID of disconnected AP

uint8_t ssid_len
SSID length of disconnected AP

uint8_t bssid[6]
BSSID of disconnected AP

uint8_t reason
reason of disconnection

int8_t rssi
rssi of disconnection

struct wifi_event_sta_authmode_change_t
Argument structure for WIFI_EVENT_STA_AUTHMODE_CHANGE event

Public Members

wifi_auth_mode_t old_mode

the old auth mode of AP

Espressif Systems 724
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

wifi_auth_mode_t new_mode

the new auth mode of AP

struct wifi_event_sta_wps_er_pin_t
Argument structure for WIFI_EVENT_STA_WPS_ER_PIN event

Public Members

uint8_t pin_code[8]
PIN code of station in enrollee mode

struct wifi_event_sta_wps_er_success_t
Argument structure for WIFI_EVENT_STA_WPS_ER_SUCCESS event

Public Members

uint8_t ap_cred_cnt
Number of AP credentials received

uint8_t ssid[MAX_SSID_LEN]
SSID of AP

uint8_t passphrase[MAX_PASSPHRASE_LEN]
Passphrase for the AP

struct wifi_event_sta_wps_er_success_t::[anonymous] ap_cred[MAX_WPS_AP_CRED]
All AP credentials received from WPS handshake

struct wifi_event_ap_staconnected_t
Argument structure for WIFI_EVENT_AP_STACONNECTED event

Public Members

uint8_t mac[6]
MAC address of the station connected to Soft-AP

uint8_t aid
the aid that soft-AP gives to the station connected to

bool is_mesh_child
flag to identify mesh child

struct wifi_event_ap_stadisconnected_t
Argument structure for WIFI_EVENT_AP_STADISCONNECTED event

Espressif Systems 725
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t mac[6]
MAC address of the station disconnects to soft-AP

uint8_t aid
the aid that soft-AP gave to the station disconnects to

bool is_mesh_child
flag to identify mesh child

uint8_t reason
reason of disconnection

struct wifi_event_ap_probe_req_rx_t
Argument structure for WIFI_EVENT_AP_PROBEREQRECVED event

Public Members

int rssi
Received probe request signal strength

uint8_t mac[6]
MAC address of the station which send probe request

struct wifi_event_bss_rssi_low_t
Argument structure for WIFI_EVENT_STA_BSS_RSSI_LOW event

Public Members

int32_t rssi
RSSI value of bss

struct wifi_ftm_report_entry_t
Argument structure for

Public Members

uint8_t dlog_token
Dialog Token of the FTM frame

int8_t rssi
RSSI of the FTM frame received

uint32_t rtt
Round Trip Time in pSec with a peer

Espressif Systems 726
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint64_t t1
Time of departure of FTM frame from FTM Responder in pSec

uint64_t t2
Time of arrival of FTM frame at FTM Initiator in pSec

uint64_t t3
Time of departure of ACK from FTM Initiator in pSec

uint64_t t4
Time of arrival of ACK at FTM Responder in pSec

struct wifi_event_ftm_report_t
Argument structure for WIFI_EVENT_FTM_REPORT event

Public Members

uint8_t peer_mac[6]
MAC address of the FTM Peer

wifi_ftm_status_t status

Status of the FTM operation

uint32_t rtt_raw
Raw average Round-Trip-Time with peer in Nano-Seconds

uint32_t rtt_est
Estimated Round-Trip-Time with peer in Nano-Seconds

uint32_t dist_est
Estimated one-way distance in Centi-Meters

wifi_ftm_report_entry_t *ftm_report_data
Pointer to FTM Report, should be freed after use. Note: Highly recommended to use API
esp_wifi_ftm_get_report to get the report instead of using this

uint8_t ftm_report_num_entries
Number of entries in the FTM Report data

struct wifi_event_action_tx_status_t
Argument structure for WIFI_EVENT_ACTION_TX_STATUS event

Public Members

wifi_interface_t ifx

WiFi interface to send request to

Espressif Systems 727
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t context
Context to identify the request

uint8_t da[6]
Destination MAC address

uint8_t status
Status of the operation

struct wifi_event_roc_done_t
Argument structure for WIFI_EVENT_ROC_DONE event

Public Members

uint32_t context
Context to identify the request

struct wifi_event_ap_wps_rg_pin_t
Argument structure for WIFI_EVENT_AP_WPS_RG_PIN event

Public Members

uint8_t pin_code[8]
PIN code of station in enrollee mode

struct wifi_event_ap_wps_rg_fail_reason_t
Argument structure for WIFI_EVENT_AP_WPS_RG_FAILED event

Public Members

wps_fail_reason_t reason

WPS failure reason wps_fail_reason_t

uint8_t peer_macaddr[6]
Enrollee mac address

struct wifi_event_ap_wps_rg_success_t
Argument structure for WIFI_EVENT_AP_WPS_RG_SUCCESS event

Public Members

uint8_t peer_macaddr[6]
Enrollee mac address

struct wifi_event_nan_svc_match_t
Argument structure for WIFI_EVENT_NAN_SVC_MATCH event

Espressif Systems 728
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t subscribe_id
Subscribe Service Identifier

uint8_t publish_id
Publish Service Identifier

uint8_t pub_if_mac[6]
NAN Interface MAC of the Publisher

bool update_pub_id
Indicates whether publisher's service ID needs to be updated

struct wifi_event_nan_replied_t
Argument structure for WIFI_EVENT_NAN_REPLIED event

Public Members

uint8_t publish_id
Publish Service Identifier

uint8_t subscribe_id
Subscribe Service Identifier

uint8_t sub_if_mac[6]
NAN Interface MAC of the Subscriber

struct wifi_event_nan_receive_t
Argument structure for WIFI_EVENT_NAN_RECEIVE event

Public Members

uint8_t inst_id
Our Service Identifier

uint8_t peer_inst_id
Peer's Service Identifier

uint8_t peer_if_mac[6]
Peer's NAN Interface MAC

uint8_t peer_svc_info[ESP_WIFI_MAX_SVC_INFO_LEN]
Peer Service Info

struct wifi_event_ndp_indication_t
Argument structure for WIFI_EVENT_NDP_INDICATION event

Espressif Systems 729
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t publish_id
Publish Id for NAN Service

uint8_t ndp_id
NDP instance id

uint8_t peer_nmi[6]
Peer's NAN Management Interface MAC

uint8_t peer_ndi[6]
Peer's NAN Data Interface MAC

uint8_t svc_info[ESP_WIFI_MAX_SVC_INFO_LEN]
Service Specific Info

struct wifi_event_ndp_confirm_t
Argument structure for WIFI_EVENT_NDP_CONFIRM event

Public Members

uint8_t status
NDP status code

uint8_t ndp_id
NDP instance id

uint8_t peer_nmi[6]
Peer's NAN Management Interface MAC

uint8_t peer_ndi[6]
Peer's NAN Data Interface MAC

uint8_t own_ndi[6]
Own NAN Data Interface MAC

uint8_t svc_info[ESP_WIFI_MAX_SVC_INFO_LEN]
Service Specific Info

struct wifi_event_ndp_terminated_t
Argument structure for WIFI_EVENT_NDP_TERMINATED event

Public Members

uint8_t reason
Termination reason code

Espressif Systems 730
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t ndp_id
NDP instance id

uint8_t init_ndi[6]
Initiator's NAN Data Interface MAC

struct wifi_tx_rate_config_t
Argument structure for wifi_tx_rate_config.

Public Members

wifi_phy_mode_t phymode

Phymode of specified interface

wifi_phy_rate_t rate

Rate of specified interface

bool ersu
Using ERSU to send frame, ERSU is a transmission mode related to 802.11 ax. ERSU is always used in
long distance transmission, and its frame has lower rate compared with SU mode

bool dcm
Using dcm rate to send frame

struct wifi_event_ap_wrong_password_t
Argument structure for WIFI_EVENT_AP_WRONG_PASSWORD event

Public Members

uint8_t mac[6]
MAC address of the station trying to connect to Soft-AP

Macros

WIFI_OFFCHAN_TX_REQ

WIFI_OFFCHAN_TX_CANCEL

WIFI_ROC_REQ

WIFI_ROC_CANCEL

WIFI_PROTOCOL_11B

WIFI_PROTOCOL_11G

WIFI_PROTOCOL_11N

Espressif Systems 731
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

WIFI_PROTOCOL_LR

WIFI_PROTOCOL_11AX

SAE_H2E_IDENTIFIER_LEN

ESP_WIFI_MAX_CONN_NUM

max number of stations which can connect to ESP32C3 soft-AP

WIFI_VENDOR_IE_ELEMENT_ID

WIFI_PROMIS_FILTER_MASK_ALL

filter all packets

WIFI_PROMIS_FILTER_MASK_MGMT

filter the packets with type of WIFI_PKT_MGMT

WIFI_PROMIS_FILTER_MASK_CTRL

filter the packets with type of WIFI_PKT_CTRL

WIFI_PROMIS_FILTER_MASK_DATA

filter the packets with type of WIFI_PKT_DATA

WIFI_PROMIS_FILTER_MASK_MISC

filter the packets with type of WIFI_PKT_MISC

WIFI_PROMIS_FILTER_MASK_DATA_MPDU

filter the MPDU which is a kind of WIFI_PKT_DATA

WIFI_PROMIS_FILTER_MASK_DATA_AMPDU

filter the AMPDU which is a kind of WIFI_PKT_DATA

WIFI_PROMIS_FILTER_MASK_FCSFAIL

filter the FCS failed packets, do not open it in general

WIFI_PROMIS_CTRL_FILTER_MASK_ALL

filter all control packets

WIFI_PROMIS_CTRL_FILTER_MASK_WRAPPER

filter the control packets with subtype of Control Wrapper

WIFI_PROMIS_CTRL_FILTER_MASK_BAR

filter the control packets with subtype of Block Ack Request

WIFI_PROMIS_CTRL_FILTER_MASK_BA

filter the control packets with subtype of Block Ack

Espressif Systems 732
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

WIFI_PROMIS_CTRL_FILTER_MASK_PSPOLL

filter the control packets with subtype of PS-Poll

WIFI_PROMIS_CTRL_FILTER_MASK_RTS

filter the control packets with subtype of RTS

WIFI_PROMIS_CTRL_FILTER_MASK_CTS

filter the control packets with subtype of CTS

WIFI_PROMIS_CTRL_FILTER_MASK_ACK

filter the control packets with subtype of ACK

WIFI_PROMIS_CTRL_FILTER_MASK_CFEND

filter the control packets with subtype of CF-END

WIFI_PROMIS_CTRL_FILTER_MASK_CFENDACK

filter the control packets with subtype of CF-END+CF-ACK

WIFI_EVENT_MASK_ALL

mask all WiFi events

WIFI_EVENT_MASK_NONE

mask none of the WiFi events

WIFI_EVENT_MASK_AP_PROBEREQRECVED

mask SYSTEM_EVENT_AP_PROBEREQRECVED event

ESP_WIFI_NAN_MAX_SVC_SUPPORTED

ESP_WIFI_NAN_DATAPATH_MAX_PEERS

ESP_WIFI_NDP_ROLE_INITIATOR

ESP_WIFI_NDP_ROLE_RESPONDER

ESP_WIFI_MAX_SVC_NAME_LEN

ESP_WIFI_MAX_FILTER_LEN

ESP_WIFI_MAX_SVC_INFO_LEN

MAX_SSID_LEN

MAX_PASSPHRASE_LEN

MAX_WPS_AP_CRED

Espressif Systems 733
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

WIFI_STATIS_BUFFER

WIFI_STATIS_RXTX

WIFI_STATIS_HW

WIFI_STATIS_DIAG

WIFI_STATIS_PS

WIFI_STATIS_ALL

Type Definitions

typedef esp_wifi_rxctrl_t wifi_pkt_rx_ctrl_t

typedef wifi_csi_acquire_config_t wifi_csi_config_t
Channel state information(CSI) configuration type.

typedef int (*wifi_action_rx_cb_t)(uint8_t *hdr, uint8_t *payload, size_t len, uint8_t channel)
The Rx callback function of Action Tx operations.

Param hdr pointer to the IEEE 802.11 Header structure
Param payload pointer to the Payload following 802.11 Header
Param len length of the Payload
Param channel channel number the frame is received on

Enumerations

enum wifi_mode_t

Values:

enumerator WIFI_MODE_NULL
null mode

enumerator WIFI_MODE_STA
WiFi station mode

enumerator WIFI_MODE_AP
WiFi soft-AP mode

enumerator WIFI_MODE_APSTA
WiFi station + soft-AP mode

enumerator WIFI_MODE_NAN
WiFi NAN mode

enumerator WIFI_MODE_MAX

Espressif Systems 734
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum wifi_interface_t

Values:

enumerator WIFI_IF_STA

enumerator WIFI_IF_AP

enumerator WIFI_IF_MAX

enum wifi_country_policy_t

Values:

enumerator WIFI_COUNTRY_POLICY_AUTO
Country policy is auto, use the country info of AP to which the station is connected

enumerator WIFI_COUNTRY_POLICY_MANUAL
Country policy is manual, always use the configured country info

enum wifi_auth_mode_t

Wi-Fi authmode type Strength of authmodes Personal Networks : OPEN < WEP < WPA_PSK
< OWE < WPA2_PSK = WPA_WPA2_PSK < WAPI_PSK < WPA3_PSK = WPA2_WPA3_PSK
Enterprise Networks : WIFI_AUTH_WPA_ENTERPRISE < WIFI_AUTH_WPA2_ENTERPRISE <
WIFI_AUTH_WPA3_ENT_192.
Values:

enumerator WIFI_AUTH_OPEN
authenticate mode : open

enumerator WIFI_AUTH_WEP
authenticate mode : WEP

enumerator WIFI_AUTH_WPA_PSK
authenticate mode : WPA_PSK

enumerator WIFI_AUTH_WPA2_PSK
authenticate mode : WPA2_PSK

enumerator WIFI_AUTH_WPA_WPA2_PSK
authenticate mode : WPA_WPA2_PSK

enumerator WIFI_AUTH_ENTERPRISE
authenticate mode : WiFi EAP security, treated the same as WIFI_AUTH_WPA2_ENTERPRISE

enumerator WIFI_AUTH_WPA2_ENTERPRISE
authenticate mode : WPA2-Enterprise security

enumerator WIFI_AUTH_WPA3_PSK
authenticate mode : WPA3_PSK

Espressif Systems 735
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_AUTH_WPA2_WPA3_PSK
authenticate mode : WPA2_WPA3_PSK

enumerator WIFI_AUTH_WAPI_PSK
authenticate mode : WAPI_PSK

enumerator WIFI_AUTH_OWE
authenticate mode : OWE

enumerator WIFI_AUTH_WPA3_ENT_192
authenticate mode : WPA3_ENT_SUITE_B_192_BIT

enumerator WIFI_AUTH_DUMMY1

enumerator WIFI_AUTH_DUMMY2

enumerator WIFI_AUTH_DUMMY3

enumerator WIFI_AUTH_DUMMY4

enumerator WIFI_AUTH_DUMMY5

enumerator WIFI_AUTH_WPA_ENTERPRISE
Authenticate mode : WPA-Enterprise security

enumerator WIFI_AUTH_MAX

enum wifi_err_reason_t

Values:

enumerator WIFI_REASON_UNSPECIFIED

enumerator WIFI_REASON_AUTH_EXPIRE

enumerator WIFI_REASON_AUTH_LEAVE

enumerator WIFI_REASON_ASSOC_EXPIRE

enumerator WIFI_REASON_DISASSOC_DUE_TO_INACTIVITY

enumerator WIFI_REASON_ASSOC_TOOMANY

enumerator WIFI_REASON_NOT_AUTHED

enumerator WIFI_REASON_CLASS2_FRAME_FROM_NONAUTH_STA

Espressif Systems 736
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_REASON_NOT_ASSOCED

enumerator WIFI_REASON_CLASS3_FRAME_FROM_NONASSOC_STA

enumerator WIFI_REASON_ASSOC_LEAVE

enumerator WIFI_REASON_ASSOC_NOT_AUTHED

enumerator WIFI_REASON_DISASSOC_PWRCAP_BAD

enumerator WIFI_REASON_DISASSOC_SUPCHAN_BAD

enumerator WIFI_REASON_BSS_TRANSITION_DISASSOC

enumerator WIFI_REASON_IE_INVALID

enumerator WIFI_REASON_MIC_FAILURE

enumerator WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT

enumerator WIFI_REASON_GROUP_KEY_UPDATE_TIMEOUT

enumerator WIFI_REASON_IE_IN_4WAY_DIFFERS

enumerator WIFI_REASON_GROUP_CIPHER_INVALID

enumerator WIFI_REASON_PAIRWISE_CIPHER_INVALID

enumerator WIFI_REASON_AKMP_INVALID

enumerator WIFI_REASON_UNSUPP_RSN_IE_VERSION

enumerator WIFI_REASON_INVALID_RSN_IE_CAP

enumerator WIFI_REASON_802_1X_AUTH_FAILED

enumerator WIFI_REASON_CIPHER_SUITE_REJECTED

enumerator WIFI_REASON_TDLS_PEER_UNREACHABLE

enumerator WIFI_REASON_TDLS_UNSPECIFIED

enumerator WIFI_REASON_SSP_REQUESTED_DISASSOC

enumerator WIFI_REASON_NO_SSP_ROAMING_AGREEMENT

Espressif Systems 737
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_REASON_BAD_CIPHER_OR_AKM

enumerator WIFI_REASON_NOT_AUTHORIZED_THIS_LOCATION

enumerator WIFI_REASON_SERVICE_CHANGE_PERCLUDES_TS

enumerator WIFI_REASON_UNSPECIFIED_QOS

enumerator WIFI_REASON_NOT_ENOUGH_BANDWIDTH

enumerator WIFI_REASON_MISSING_ACKS

enumerator WIFI_REASON_EXCEEDED_TXOP

enumerator WIFI_REASON_STA_LEAVING

enumerator WIFI_REASON_END_BA

enumerator WIFI_REASON_UNKNOWN_BA

enumerator WIFI_REASON_TIMEOUT

enumerator WIFI_REASON_PEER_INITIATED

enumerator WIFI_REASON_AP_INITIATED

enumerator WIFI_REASON_INVALID_FT_ACTION_FRAME_COUNT

enumerator WIFI_REASON_INVALID_PMKID

enumerator WIFI_REASON_INVALID_MDE

enumerator WIFI_REASON_INVALID_FTE

enumerator WIFI_REASON_TRANSMISSION_LINK_ESTABLISH_FAILED

enumerator WIFI_REASON_ALTERATIVE_CHANNEL_OCCUPIED

enumerator WIFI_REASON_BEACON_TIMEOUT

enumerator WIFI_REASON_NO_AP_FOUND

enumerator WIFI_REASON_AUTH_FAIL

enumerator WIFI_REASON_ASSOC_FAIL

Espressif Systems 738
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_REASON_HANDSHAKE_TIMEOUT

enumerator WIFI_REASON_CONNECTION_FAIL

enumerator WIFI_REASON_AP_TSF_RESET

enumerator WIFI_REASON_ROAMING

enumerator WIFI_REASON_ASSOC_COMEBACK_TIME_TOO_LONG

enumerator WIFI_REASON_SA_QUERY_TIMEOUT

enum wifi_second_chan_t

Values:

enumerator WIFI_SECOND_CHAN_NONE
the channel width is HT20

enumerator WIFI_SECOND_CHAN_ABOVE
the channel width is HT40 and the secondary channel is above the primary channel

enumerator WIFI_SECOND_CHAN_BELOW
the channel width is HT40 and the secondary channel is below the primary channel

enum wifi_scan_type_t

Values:

enumerator WIFI_SCAN_TYPE_ACTIVE
active scan

enumerator WIFI_SCAN_TYPE_PASSIVE
passive scan

enum wifi_cipher_type_t

Values:

enumerator WIFI_CIPHER_TYPE_NONE
the cipher type is none

enumerator WIFI_CIPHER_TYPE_WEP40
the cipher type is WEP40

enumerator WIFI_CIPHER_TYPE_WEP104
the cipher type is WEP104

enumerator WIFI_CIPHER_TYPE_TKIP
the cipher type is TKIP

Espressif Systems 739
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_CIPHER_TYPE_CCMP
the cipher type is CCMP

enumerator WIFI_CIPHER_TYPE_TKIP_CCMP
the cipher type is TKIP and CCMP

enumerator WIFI_CIPHER_TYPE_AES_CMAC128
the cipher type is AES-CMAC-128

enumerator WIFI_CIPHER_TYPE_SMS4
the cipher type is SMS4

enumerator WIFI_CIPHER_TYPE_GCMP
the cipher type is GCMP

enumerator WIFI_CIPHER_TYPE_GCMP256
the cipher type is GCMP-256

enumerator WIFI_CIPHER_TYPE_AES_GMAC128
the cipher type is AES-GMAC-128

enumerator WIFI_CIPHER_TYPE_AES_GMAC256
the cipher type is AES-GMAC-256

enumerator WIFI_CIPHER_TYPE_UNKNOWN
the cipher type is unknown

enum wifi_ant_t

WiFi antenna.
Values:

enumerator WIFI_ANT_ANT0
WiFi antenna 0

enumerator WIFI_ANT_ANT1
WiFi antenna 1

enumerator WIFI_ANT_MAX
Invalid WiFi antenna

enum wifi_scan_method_t

Values:

enumerator WIFI_FAST_SCAN
Do fast scan, scan will end after find SSID match AP

enumerator WIFI_ALL_CHANNEL_SCAN
All channel scan, scan will end after scan all the channel

Espressif Systems 740
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum wifi_sort_method_t

Values:

enumerator WIFI_CONNECT_AP_BY_SIGNAL
Sort match AP in scan list by RSSI

enumerator WIFI_CONNECT_AP_BY_SECURITY
Sort match AP in scan list by security mode

enum wifi_ps_type_t

Values:

enumerator WIFI_PS_NONE
No power save

enumerator WIFI_PS_MIN_MODEM
Minimum modem power saving. In this mode, station wakes up to receive beacon every DTIM period

enumerator WIFI_PS_MAX_MODEM
Maximum modem power saving. In this mode, interval to receive beacons is determined by the lis-
ten_interval parameter in wifi_sta_config_t

enum wifi_bandwidth_t

Values:

enumerator WIFI_BW_HT20

enumerator WIFI_BW_HT40

enum wifi_sae_pwe_method_t

Configuration for SAE PWE derivation
Values:

enumerator WPA3_SAE_PWE_UNSPECIFIED

enumerator WPA3_SAE_PWE_HUNT_AND_PECK

enumerator WPA3_SAE_PWE_HASH_TO_ELEMENT

enumerator WPA3_SAE_PWE_BOTH

enum wifi_sae_pk_mode_t

Configuration for SAE-PK
Values:

enumerator WPA3_SAE_PK_MODE_AUTOMATIC

Espressif Systems 741
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WPA3_SAE_PK_MODE_ONLY

enumerator WPA3_SAE_PK_MODE_DISABLED

enum wifi_storage_t

Values:

enumerator WIFI_STORAGE_FLASH
all configuration will store in both memory and flash

enumerator WIFI_STORAGE_RAM
all configuration will only store in the memory

enum wifi_vendor_ie_type_t

Vendor Information Element type.
Determines the frame type that the IE will be associated with.
Values:

enumerator WIFI_VND_IE_TYPE_BEACON

enumerator WIFI_VND_IE_TYPE_PROBE_REQ

enumerator WIFI_VND_IE_TYPE_PROBE_RESP

enumerator WIFI_VND_IE_TYPE_ASSOC_REQ

enumerator WIFI_VND_IE_TYPE_ASSOC_RESP

enum wifi_vendor_ie_id_t

Vendor Information Element index.
Each IE type can have up to two associated vendor ID elements.
Values:

enumerator WIFI_VND_IE_ID_0

enumerator WIFI_VND_IE_ID_1

enum wifi_phy_mode_t

Operation Phymode.
Values:

enumerator WIFI_PHY_MODE_LR
PHY mode for Low Rate

enumerator WIFI_PHY_MODE_11B
PHY mode for 11b

Espressif Systems 742
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_PHY_MODE_11G
PHY mode for 11g

enumerator WIFI_PHY_MODE_HT20
PHY mode for Bandwidth HT20

enumerator WIFI_PHY_MODE_HT40
PHY mode for Bandwidth HT40

enumerator WIFI_PHY_MODE_HE20
PHY mode for Bandwidth HE20

enum wifi_promiscuous_pkt_type_t

Promiscuous frame type.
Passed to promiscuous mode RX callback to indicate the type of parameter in the buffer.
Values:

enumerator WIFI_PKT_MGMT
Management frame, indicates 'buf' argument is wifi_promiscuous_pkt_t

enumerator WIFI_PKT_CTRL
Control frame, indicates 'buf' argument is wifi_promiscuous_pkt_t

enumerator WIFI_PKT_DATA
Data frame, indiciates 'buf' argument is wifi_promiscuous_pkt_t

enumerator WIFI_PKT_MISC
Other type, such as MIMO etc. 'buf' argument is wifi_promiscuous_pkt_t but the payload is zero length.

enum wifi_ant_mode_t

WiFi antenna mode.
Values:

enumerator WIFI_ANT_MODE_ANT0
Enable WiFi antenna 0 only

enumerator WIFI_ANT_MODE_ANT1
Enable WiFi antenna 1 only

enumerator WIFI_ANT_MODE_AUTO
Enable WiFi antenna 0 and 1, automatically select an antenna

enumerator WIFI_ANT_MODE_MAX
Invalid WiFi enabled antenna

enum wifi_nan_service_type_t

NAN Services types.
Values:

Espressif Systems 743
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator NAN_PUBLISH_SOLICITED
Send unicast Publish frame to Subscribers that match the requirement

enumerator NAN_PUBLISH_UNSOLICITED
Send broadcast Publish frames in every Discovery Window(DW)

enumerator NAN_SUBSCRIBE_ACTIVE
Send broadcast Subscribe frames in every DW

enumerator NAN_SUBSCRIBE_PASSIVE
Passively listens to Publish frames

enum wifi_phy_rate_t

WiFi PHY rate encodings.
Values:

enumerator WIFI_PHY_RATE_1M_L
1 Mbps with long preamble

enumerator WIFI_PHY_RATE_2M_L
2 Mbps with long preamble

enumerator WIFI_PHY_RATE_5M_L
5.5 Mbps with long preamble

enumerator WIFI_PHY_RATE_11M_L
11 Mbps with long preamble

enumerator WIFI_PHY_RATE_2M_S
2 Mbps with short preamble

enumerator WIFI_PHY_RATE_5M_S
5.5 Mbps with short preamble

enumerator WIFI_PHY_RATE_11M_S
11 Mbps with short preamble

enumerator WIFI_PHY_RATE_48M
48 Mbps

enumerator WIFI_PHY_RATE_24M
24 Mbps

enumerator WIFI_PHY_RATE_12M
12 Mbps

enumerator WIFI_PHY_RATE_6M
6 Mbps

Espressif Systems 744
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_PHY_RATE_54M
54 Mbps

enumerator WIFI_PHY_RATE_36M
36 Mbps

enumerator WIFI_PHY_RATE_18M
18 Mbps

enumerator WIFI_PHY_RATE_9M
9 Mbps rate table and guard interval information for each MCS rate

enumerator WIFI_PHY_RATE_MCS0_LGI
MCS0 with long GI

enumerator WIFI_PHY_RATE_MCS1_LGI
MCS1 with long GI

enumerator WIFI_PHY_RATE_MCS2_LGI
MCS2 with long GI

enumerator WIFI_PHY_RATE_MCS3_LGI
MCS3 with long GI

enumerator WIFI_PHY_RATE_MCS4_LGI
MCS4 with long GI

enumerator WIFI_PHY_RATE_MCS5_LGI
MCS5 with long GI

enumerator WIFI_PHY_RATE_MCS6_LGI
MCS6 with long GI

enumerator WIFI_PHY_RATE_MCS7_LGI
MCS7 with long GI

enumerator WIFI_PHY_RATE_MCS8_LGI
MCS8 with long GI

enumerator WIFI_PHY_RATE_MCS9_LGI
MCS9 with long GI

enumerator WIFI_PHY_RATE_MCS0_SGI
MCS0 with short GI

enumerator WIFI_PHY_RATE_MCS1_SGI
MCS1 with short GI

Espressif Systems 745
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_PHY_RATE_MCS2_SGI
MCS2 with short GI

enumerator WIFI_PHY_RATE_MCS3_SGI
MCS3 with short GI

enumerator WIFI_PHY_RATE_MCS4_SGI
MCS4 with short GI

enumerator WIFI_PHY_RATE_MCS5_SGI
MCS5 with short GI

enumerator WIFI_PHY_RATE_MCS6_SGI
MCS6 with short GI

enumerator WIFI_PHY_RATE_MCS7_SGI
MCS7 with short GI

enumerator WIFI_PHY_RATE_MCS8_SGI
MCS8 with short GI

enumerator WIFI_PHY_RATE_MCS9_SGI
MCS9 with short GI

enumerator WIFI_PHY_RATE_LORA_250K
250 Kbps

enumerator WIFI_PHY_RATE_LORA_500K
500 Kbps

enumerator WIFI_PHY_RATE_MAX

enum wifi_event_t

WiFi event declarations
Values:

enumerator WIFI_EVENT_WIFI_READY
WiFi ready

enumerator WIFI_EVENT_SCAN_DONE
Finished scanning AP

enumerator WIFI_EVENT_STA_START
Station start

enumerator WIFI_EVENT_STA_STOP
Station stop

Espressif Systems 746
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_EVENT_STA_CONNECTED
Station connected to AP

enumerator WIFI_EVENT_STA_DISCONNECTED
Station disconnected from AP

enumerator WIFI_EVENT_STA_AUTHMODE_CHANGE
the auth mode of AP connected by device's station changed

enumerator WIFI_EVENT_STA_WPS_ER_SUCCESS
Station wps succeeds in enrollee mode

enumerator WIFI_EVENT_STA_WPS_ER_FAILED
Station wps fails in enrollee mode

enumerator WIFI_EVENT_STA_WPS_ER_TIMEOUT
Station wps timeout in enrollee mode

enumerator WIFI_EVENT_STA_WPS_ER_PIN
Station wps pin code in enrollee mode

enumerator WIFI_EVENT_STA_WPS_ER_PBC_OVERLAP
Station wps overlap in enrollee mode

enumerator WIFI_EVENT_AP_START
Soft-AP start

enumerator WIFI_EVENT_AP_STOP
Soft-AP stop

enumerator WIFI_EVENT_AP_STACONNECTED
a station connected to Soft-AP

enumerator WIFI_EVENT_AP_STADISCONNECTED
a station disconnected from Soft-AP

enumerator WIFI_EVENT_AP_PROBEREQRECVED
Receive probe request packet in soft-AP interface

enumerator WIFI_EVENT_FTM_REPORT
Receive report of FTM procedure

enumerator WIFI_EVENT_STA_BSS_RSSI_LOW
AP's RSSI crossed configured threshold

enumerator WIFI_EVENT_ACTION_TX_STATUS
Status indication of Action Tx operation

Espressif Systems 747
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_EVENT_ROC_DONE
Remain-on-Channel operation complete

enumerator WIFI_EVENT_STA_BEACON_TIMEOUT
Station beacon timeout

enumerator WIFI_EVENT_CONNECTIONLESS_MODULE_WAKE_INTERVAL_START
Connectionless module wake interval start

enumerator WIFI_EVENT_AP_WPS_RG_SUCCESS
Soft-AP wps succeeds in registrar mode

enumerator WIFI_EVENT_AP_WPS_RG_FAILED
Soft-AP wps fails in registrar mode

enumerator WIFI_EVENT_AP_WPS_RG_TIMEOUT
Soft-AP wps timeout in registrar mode

enumerator WIFI_EVENT_AP_WPS_RG_PIN
Soft-AP wps pin code in registrar mode

enumerator WIFI_EVENT_AP_WPS_RG_PBC_OVERLAP
Soft-AP wps overlap in registrar mode

enumerator WIFI_EVENT_ITWT_SETUP
iTWT setup

enumerator WIFI_EVENT_ITWT_TEARDOWN
iTWT teardown

enumerator WIFI_EVENT_ITWT_PROBE
iTWT probe

enumerator WIFI_EVENT_ITWT_SUSPEND
iTWT suspend

enumerator WIFI_EVENT_TWT_WAKEUP
TWT wakeup

enumerator WIFI_EVENT_NAN_STARTED
NAN Discovery has started

enumerator WIFI_EVENT_NAN_STOPPED
NAN Discovery has stopped

enumerator WIFI_EVENT_NAN_SVC_MATCH
NAN Service Discovery match found

Espressif Systems 748
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_EVENT_NAN_REPLIED
Replied to a NAN peer with Service Discovery match

enumerator WIFI_EVENT_NAN_RECEIVE
Received a Follow-up message

enumerator WIFI_EVENT_NDP_INDICATION
Received NDP Request from a NAN Peer

enumerator WIFI_EVENT_NDP_CONFIRM
NDP Confirm Indication

enumerator WIFI_EVENT_NDP_TERMINATED
NAN Datapath terminated indication

enumerator WIFI_EVENT_AP_WRONG_PASSWORD
a station tried to connect with wrong password

enumerator WIFI_EVENT_MAX
Invalid WiFi event ID

enum wifi_event_sta_wps_fail_reason_t

Argument structure for WIFI_EVENT_STA_WPS_ER_FAILED event
Values:

enumerator WPS_FAIL_REASON_NORMAL
WPS normal fail reason

enumerator WPS_FAIL_REASON_RECV_M2D
WPS receive M2D frame

enumerator WPS_FAIL_REASON_RECV_DEAUTH
Recv deauth from AP while wps handshake

enumerator WPS_FAIL_REASON_MAX

enum wifi_ftm_status_t

FTM operation status types.
Values:

enumerator FTM_STATUS_SUCCESS
FTM exchange is successful

enumerator FTM_STATUS_UNSUPPORTED
Peer does not support FTM

enumerator FTM_STATUS_CONF_REJECTED
Peer rejected FTM configuration in FTM Request

Espressif Systems 749
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator FTM_STATUS_NO_RESPONSE
Peer did not respond to FTM Requests

enumerator FTM_STATUS_FAIL
Unknown error during FTM exchange

enumerator FTM_STATUS_NO_VALID_MSMT
FTM session did not result in any valid measurements

enumerator FTM_STATUS_USER_TERM
User triggered termination

enum wps_fail_reason_t

Values:

enumerator WPS_AP_FAIL_REASON_NORMAL
WPS normal fail reason

enumerator WPS_AP_FAIL_REASON_CONFIG
WPS failed due to incorrect config

enumerator WPS_AP_FAIL_REASON_AUTH
WPS failed during auth

enumerator WPS_AP_FAIL_REASON_MAX

Header File
• components/wpa_supplicant/esp_supplicant/include/esp_eap_client.h

Functions
esp_err_t esp_wifi_sta_enterprise_enable(void)

Enable EAP authentication(WiFi Enterprise) for the station mode.
This function enables Extensible Authentication Protocol (EAP) authentication for the Wi-Fi station mode.
When EAP authentication is enabled, the ESP device will attempt to authenticate with the configured EAP
credentials when connecting to a secure Wi-Fi network.

Note: Before calling this function, ensure that theWi-Fi configuration and EAP credentials (such as username
and password) have been properly set using the appropriate configuration APIs.

Returns
• ESP_OK: EAP authentication enabled successfully.
• ESP_ERR_NO_MEM: Failed to enable EAP authentication due to memory allocation
failure.

esp_err_t esp_wifi_sta_enterprise_disable(void)
Disable EAP authentication(WiFi Enterprise) for the station mode.
This function disables Extensible Authentication Protocol (EAP) authentication for the Wi-Fi station mode.
When EAP authentication is disabled, the ESP device will not attempt to authenticate using EAP credentials
when connecting to a secure Wi-Fi network.

Espressif Systems 750
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wpa_supplicant/esp_supplicant/include/esp_eap_client.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: Disabling EAP authentication may cause the device to connect to the Wi-Fi network using other
available authentication methods, if configured using esp_wifi_set_config().

Returns
• ESP_OK: EAP authentication disabled successfully.
• ESP_ERR_INVALID_STATE: EAP client is in an invalid state for disabling.

esp_err_t esp_eap_client_set_identity(const unsigned char *identity, int len)
Set identity for PEAP/TTLS authentication method.
This function sets the identity to be used during PEAP/TTLS authentication.

Parameters
• identity -- [in] Pointer to the identity data.
• len -- [in] Length of the identity data (limited to 1~127 bytes).

Returns
• ESP_OK: The identity was set successfully.
• ESP_ERR_INVALID_ARG: Invalid argument (len <= 0 or len >= 128).
• ESP_ERR_NO_MEM: Memory allocation failure.

void esp_eap_client_clear_identity(void)
Clear the previously set identity for PEAP/TTLS authentication.
This function clears the identity that was previously set for the EAP client. After calling this function, the EAP
client will no longer use the previously configured identity during the authentication process.

esp_err_t esp_eap_client_set_username(const unsigned char *username, int len)
Set username for PEAP/TTLS authentication method.
This function sets the username to be used during PEAP/TTLS authentication.

Parameters
• username -- [in] Pointer to the username data.
• len -- [in] Length of the username data (limited to 1~127 bytes).

Returns
• ESP_OK: The username was set successfully.
• ESP_ERR_INVALID_ARG: Failed due to an invalid argument (len <= 0 or len >= 128).
• ESP_ERR_NO_MEM: Failed due to memory allocation failure.

void esp_eap_client_clear_username(void)
Clear username for PEAP/TTLS method.
This function clears the previously set username for the EAP client.

esp_err_t esp_eap_client_set_password(const unsigned char *password, int len)
Set password for PEAP/TTLS authentication method.
This function sets the password to be used during PEAP/TTLS authentication.

Parameters
• password -- [in] Pointer to the password data.
• len -- [in] Length of the password data (len > 0).

Returns
• ESP_OK: The password was set successfully.
• ESP_ERR_INVALID_ARG: Failed due to an invalid argument (len <= 0).
• ESP_ERR_NO_MEM: Failed due to memory allocation failure.

void esp_eap_client_clear_password(void)
Clear password for PEAP/TTLS method.
This function clears the previously set password for the EAP client.

Espressif Systems 751
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_eap_client_set_new_password(const unsigned char *new_password, int len)
Set a new password for MSCHAPv2 authentication method.
This function sets the new password to be used during MSCHAPv2 authentication. The new password is
used to substitute the old password when an eap-mschapv2 failure request message with error code ER-
ROR_PASSWD_EXPIRED is received.

Parameters
• new_password -- [in] Pointer to the new password data.
• len -- [in] Length of the new password data.

Returns
• ESP_OK: The new password was set successfully.
• ESP_ERR_INVALID_ARG: Failed due to an invalid argument (len <= 0).
• ESP_ERR_NO_MEM: Failed due to memory allocation failure.

void esp_eap_client_clear_new_password(void)
Clear new password for MSCHAPv2 method.
This function clears the previously set new password for the EAP client.

esp_err_t esp_eap_client_set_ca_cert(const unsigned char *ca_cert, int ca_cert_len)
Set CA certificate for EAP authentication.
This function sets the Certificate Authority (CA) certificate to be used during EAP authentication. The CA
certificate is passed to the EAP client module through a global pointer.

Parameters
• ca_cert -- [in] Pointer to the CA certificate data.
• ca_cert_len -- [in] Length of the CA certificate data.

Returns
• ESP_OK: The CA certificate was set successfully.

void esp_eap_client_clear_ca_cert(void)
Clear the previously set Certificate Authority (CA) certificate for EAP authentication.
This function clears the CA certificate that was previously set for the EAP client. After calling this function,
the EAP client will no longer use the previously configured CA certificate during the authentication process.

esp_err_t esp_eap_client_set_certificate_and_key(const unsigned char *client_cert, int
client_cert_len, const unsigned char
*private_key, int private_key_len, const
unsigned char *private_key_password, int
private_key_passwd_len)

Set client certificate and private key for EAP authentication.
This function sets the client certificate and private key to be used during authentication. Optionally, a private
key password can be provided for encrypted private keys.

Attention 1. The client certificate, private key, and private key password are provided as pointers to the
respective data arrays.

Attention 2. The client_cert, private_key, and private_key_password should be zero-terminated.

Parameters
• client_cert -- [in] Pointer to the client certificate data.
• client_cert_len -- [in] Length of the client certificate data.
• private_key -- [in] Pointer to the private key data.
• private_key_len -- [in] Length of the private key data (limited to 1~4096 bytes).
• private_key_password -- [in] Pointer to the private key password data (optional).
• private_key_passwd_len -- [in] Length of the private key password data (can be
0 for no password).

Returns

Espressif Systems 752
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK: The certificate, private key, and password (if provided) were set successfully.

void esp_eap_client_clear_certificate_and_key(void)
Clear the previously set client certificate and private key for EAP authentication.
This function clears the client certificate and private key that were previously set for the EAP client. After
calling this function, the EAP client will no longer use the previously configured certificate and private key
during the authentication process.

esp_err_t esp_eap_client_set_disable_time_check(bool disable)
Set EAP client certificates time check (disable or not).
This function enables or disables the time check for EAP client certificates. When disabled, the certificates'
expiration time will not be checked during the authentication process.

Parameters disable -- [in] True to disable EAP client certificates time check, false to enable
it.

Returns
• ESP_OK: The EAP client certificates time check setting was updated successfully.

esp_err_t esp_eap_client_get_disable_time_check(bool *disable)
Get EAP client certificates time check status.
This function retrieves the current status of the EAP client certificates time check.

Parameters disable -- [out] Pointer to a boolean variable to store the disable status.
Returns

• ESP_OK: The status of EAP client certificates time check was retrieved successfully.
esp_err_t esp_eap_client_set_ttls_phase2_method(esp_eap_ttls_phase2_types type)

Set EAP-TTLS phase 2 method.
This function sets the phase 2 method to be used during EAP-TTLS authentication.

Parameters type -- [in] The type of phase 2 method to be used (e.g., EAP, MSCHAPv2,
MSCHAP, PAP, CHAP).

Returns
• ESP_OK: The EAP-TTLS phase 2 method was set successfully.

esp_err_t esp_eap_client_set_suiteb_192bit_certification(bool enable)
Enable or disable Suite-B 192-bit certification checks.
This function enables or disables the 192-bit Suite-B certification checks during EAP-TLS authentication.
Suite-B is a set of cryptographic algorithms which generally are considered more secure.

Parameters enable -- [in] True to enable 192-bit Suite-B certification checks, false to disable
it.

Returns
• ESP_OK: The 192-bit Suite-B certification checks were set successfully.

esp_err_t esp_eap_client_set_pac_file(const unsigned char *pac_file, int pac_file_len)
Set the PAC (Protected Access Credential) file for EAP-FAST authentication.
EAP-FAST requires a PAC file that contains the client's credentials.

Attention 1. For files read from the file system, length has to be decremented by 1 byte.
Attention 2. Disabling the ESP_WIFI_MBEDTLS_TLS_CLIENT config is required to use EAP-FAST.

Parameters
• pac_file -- [in] Pointer to the PAC file buffer.
• pac_file_len -- [in] Length of the PAC file buffer.

Returns
• ESP_OK: The PAC file for EAP-FAST authentication was set successfully.

Espressif Systems 753
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_eap_client_set_fast_params(esp_eap_fast_config config)
Set the parameters for EAP-FAST Phase 1 authentication.
EAP-FAST supports Fast Provisioning, where clients can be authenticated faster using precomputed keys
(PAC). This function allows configuring parameters for Fast Provisioning.

Attention 1. Disabling the ESP_WIFI_MBEDTLS_TLS_CLIENT config is required to use EAP-FAST.

Parameters config -- [in] Configuration structure with Fast Provisioning parameters.
Returns

• ESP_OK: The parameters for EAP-FAST Phase 1 authentication were set successfully.

esp_err_t esp_eap_client_use_default_cert_bundle(bool use_default_bundle)
Use the default certificate bundle for EAP authentication.
By default, the EAP client uses a built-in certificate bundle for server verification. Enabling this option allows
the use of the default certificate bundle.

Parameters use_default_bundle -- [in] True to use the default certificate bundle, false to
use a custom bundle.

Returns
• ESP_OK: The option to use the default certificate bundle was set successfully.

esp_err_t esp_eap_client_set_domain_name(const char *domain_name)
This function sets the expected domain name for validating the certificate's subject name. If the provided
domain name does not match the certificate's subject name, validation will fail.

Attention 1. The domain_name should be a NULL-terminated string.

Parameters domain_name -- [in] The expected domain name. Pass NULL to clear the domain
matching.

Returns
• ESP_OK: The domain match was set successfully.
• ESP_ERR_INVALID_ARG: Invalid argument (length > 255).
• ESP_ERR_NO_MEM: Memory allocation failure.
• ESP_ERR_NOT_SUPPORTED: Feature not supported.

Structures

struct esp_eap_fast_config
Configuration settings for EAP-FAST (Extensible Authentication Protocol - Flexible Authentication via Secure
Tunneling).
This structure defines the configuration options that can be used to customize the behavior of the EAP-FAST
authentication protocol, specifically for Fast Provisioning and PAC (Protected Access Credential) handling.

Public Members

int fast_provisioning
Enable or disable Fast Provisioning in EAP-FAST (0 = disabled, 1 = enabled)

int fast_max_pac_list_len
Maximum length of the PAC (Protected Access Credential) list

Espressif Systems 754
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool fast_pac_format_binary
Set to true for binary format PAC, false for ASCII format PAC

Enumerations

enum esp_eap_ttls_phase2_types

Enumeration of phase 2 authentication types for EAP-TTLS.
This enumeration defines the supported phase 2 authentication methods that can be used in the EAP-TTLS
(Extensible Authentication Protocol - Tunneled Transport Layer Security) protocol for the second authentica-
tion phase.
Values:

enumerator ESP_EAP_TTLS_PHASE2_EAP
EAP (Extensible Authentication Protocol)

enumerator ESP_EAP_TTLS_PHASE2_MSCHAPV2
MS-CHAPv2 (Microsoft Challenge Handshake Authentication Protocol - Version 2)

enumerator ESP_EAP_TTLS_PHASE2_MSCHAP
MS-CHAP (Microsoft Challenge Handshake Authentication Protocol)

enumerator ESP_EAP_TTLS_PHASE2_PAP
PAP (Password Authentication Protocol)

enumerator ESP_EAP_TTLS_PHASE2_CHAP
CHAP (Challenge Handshake Authentication Protocol)

Header File
• components/wpa_supplicant/esp_supplicant/include/esp_wps.h

Functions
esp_err_t esp_wifi_wps_enable(const esp_wps_config_t *config)

Enable Wi-Fi WPS function.
Parameters config -- : WPS config to be used in connection
Returns

• ESP_OK : succeed
• ESP_ERR_WIFI_WPS_TYPE : wps type is invalid
• ESP_ERR_WIFI_WPS_MODE : wifi is not in station mode or sniffer mode is on
• ESP_FAIL : wps initialization fails

esp_err_t esp_wifi_wps_disable(void)
Disable Wi-Fi WPS function and release resource it taken.

Returns
• ESP_OK : succeed
• ESP_ERR_WIFI_WPS_MODE : wifi is not in station mode or sniffer mode is on

esp_err_t esp_wifi_wps_start(int timeout_ms)
Start WPS session.

Attention WPS can only be used when station is enabled. WPS needs to be enabled first for using this API.

Espressif Systems 755
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wpa_supplicant/esp_supplicant/include/esp_wps.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters timeout_ms -- : deprecated: This argument's value will have not effect in func-
tionality of API. The argument will be removed in future. The app should start WPS and
register for WIFI events to get the status. WPS status is updated through WPS events. See
wifi_event_t enum for more info.

Returns
• ESP_OK : succeed
• ESP_ERR_WIFI_WPS_TYPE : wps type is invalid
• ESP_ERR_WIFI_WPS_MODE : wifi is not in station mode or sniffer mode is on
• ESP_ERR_WIFI_WPS_SM : wps state machine is not initialized
• ESP_FAIL : wps initialization fails

esp_err_t esp_wifi_ap_wps_enable(const esp_wps_config_t *config)
Enable Wi-Fi AP WPS function.

Attention WPS can only be used when softAP is enabled.

Parameters config -- wps configuration to be used.
Returns

• ESP_OK : succeed
• ESP_ERR_WIFI_WPS_TYPE : wps type is invalid
• ESP_ERR_WIFI_WPS_MODE : wifi is not in station mode or sniffer mode is on
• ESP_FAIL : wps initialization fails

esp_err_t esp_wifi_ap_wps_disable(void)
Disable Wi-Fi SoftAP WPS function and release resource it taken.

Returns
• ESP_OK : succeed
• ESP_ERR_WIFI_WPS_MODE : wifi is not in station mode or sniffer mode is on

esp_err_t esp_wifi_ap_wps_start(const unsigned char *pin)
WPS starts to work.

Attention WPS can only be used when softAP is enabled.

Parameters pin -- : Pin to be used in case of WPS mode is pin. If Pin is not provided, de-
vice will use the pin generated/provided during esp_wifi_ap_wps_enable() and reported in
WIFI_EVENT_AP_WPS_RG_PIN

Returns
• ESP_OK : succeed
• ESP_ERR_WIFI_WPS_TYPE : wps type is invalid
• ESP_ERR_WIFI_WPS_MODE : wifi is not in station mode or sniffer mode is on
• ESP_ERR_WIFI_WPS_SM : wps state machine is not initialized
• ESP_FAIL : wps initialization fails

Structures

struct wps_factory_information_t
Structure representing WPS factory information for ESP device.
This structure holds various strings representing factory information for a device, such as the manufacturer,
model number, model name, and device name. Each string is a null-terminated character array. If any of the
strings are empty, the default values are used.

Espressif Systems 756
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

char manufacturer[WPS_MAX_MANUFACTURER_LEN]
Manufacturer of the device. If empty, the default manufacturer is used.

char model_number[WPS_MAX_MODEL_NUMBER_LEN]
Model number of the device. If empty, the default model number is used.

char model_name[WPS_MAX_MODEL_NAME_LEN]
Model name of the device. If empty, the default model name is used.

char device_name[WPS_MAX_DEVICE_NAME_LEN]
Device name. If empty, the default device name is used.

struct esp_wps_config_t
Structure representing configuration settings for WPS (Wi-Fi Protected Setup).
This structure encapsulates various configuration settings for WPS, including the WPS type (PBC or PIN),
factory information that will be shown in the WPS Information Element (IE), and a PIN if the WPS type is set
to PIN.

Public Members

wps_type_t wps_type

The type of WPS to be used (PBC or PIN).

wps_factory_information_t factory_info

Factory information to be shown in the WPS Information Element (IE). Vendor can choose to display
their own information.

char pin[PIN_LEN]
WPS PIN (Personal Identification Number) used when wps_type is set to WPS_TYPE_PIN.

Macros

ESP_ERR_WIFI_REGISTRAR

WPS registrar is not supported

ESP_ERR_WIFI_WPS_TYPE

WPS type error

ESP_ERR_WIFI_WPS_SM

WPS state machine is not initialized

WPS_MAX_MANUFACTURER_LEN

Maximum length of the manufacturer name in WPS information

WPS_MAX_MODEL_NUMBER_LEN

Maximum length of the model number in WPS information

Espressif Systems 757
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

WPS_MAX_MODEL_NAME_LEN

Maximum length of the model name in WPS information

WPS_MAX_DEVICE_NAME_LEN

Maximum length of the device name in WPS information

PIN_LEN

The length of the WPS PIN (Personal Identification Number).
WPS_CONFIG_INIT_DEFAULT(type)

Initialize a default WPS configuration structure with specified WPS type.
This macro initializes a esp_wps_config_t structure with default values for the specified WPS type. It
sets the WPS type, factory information (including default manufacturer, model number, model name, and
device name), and a default PIN value if applicable.

Parameters
• type -- The WPS type to be used (PBC or PIN).

Returns An initialized esp_wps_config_t structure with the specified WPS type and default
values.

Type Definitions

typedef enum wps_type wps_type_t

Enumeration of WPS (Wi-Fi Protected Setup) types.

Enumerations

enum wps_type

Enumeration of WPS (Wi-Fi Protected Setup) types.
Values:

enumerator WPS_TYPE_DISABLE
WPS is disabled

enumerator WPS_TYPE_PBC
WPS Push Button Configuration method

enumerator WPS_TYPE_PIN
WPS PIN (Personal Identification Number) method

enumerator WPS_TYPE_MAX
Maximum value for WPS type enumeration

Header File
• components/wpa_supplicant/esp_supplicant/include/esp_rrm.h

Functions

Espressif Systems 758
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wpa_supplicant/esp_supplicant/include/esp_rrm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int esp_rrm_send_neighbor_rep_request(neighbor_rep_request_cb cb, void *cb_ctx)
Send Radio measurement neighbor report request to connected AP.

Parameters
• cb -- callback function for neighbor report
• cb_ctx -- callback context

Returns
• 0: success
• -1: AP does not support RRM
• -2: station not connected to AP

bool esp_rrm_is_rrm_supported_connection(void)
Check RRM capability of connected AP.

Returns
• true: AP supports RRM
• false: AP does not support RRM or station not connected to AP

Type Definitions

typedef void (*neighbor_rep_request_cb)(void *ctx, const uint8_t *report, size_t report_len)
Callback function type to get neighbor report.

Param ctx neighbor report context
Param report neighbor report
Param report_len neighbor report length
Return

• void

Header File
• components/wpa_supplicant/esp_supplicant/include/esp_wnm.h

Functions
int esp_wnm_send_bss_transition_mgmt_query(enum btm_query_reason query_reason, const char

*btm_candidates, int cand_list)
Send bss transition query to connected AP.

Parameters
• query_reason -- reason for sending query
• btm_candidates -- btm candidates list if available
• cand_list -- whether candidate list to be included from scan results available in sup-
plicant's cache.

Returns
• 0: success
• -1: AP does not support BTM
• -2: station not connected to AP

bool esp_wnm_is_btm_supported_connection(void)
Check bss trasition capability of connected AP.

Returns
• true: AP supports BTM
• false: AP does not support BTM or station not connected to AP

Enumerations

enum btm_query_reason

Espressif Systems 759
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wpa_supplicant/esp_supplicant/include/esp_wnm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum btm_query_reason: Reason code for sending btm query
Values:

enumerator REASON_UNSPECIFIED

enumerator REASON_FRAME_LOSS

enumerator REASON_DELAY

enumerator REASON_BANDWIDTH

enumerator REASON_LOAD_BALANCE

enumerator REASON_RSSI

enumerator REASON_RETRANSMISSIONS

enumerator REASON_INTERFERENCE

enumerator REASON_GRAY_ZONE

enumerator REASON_PREMIUM_AP

Header File
• components/wpa_supplicant/esp_supplicant/include/esp_mbo.h

Functions
int esp_mbo_update_non_pref_chan(struct non_pref_chan_s *non_pref_chan)

Update channel preference for MBO IE.
Parameters non_pref_chan -- Non preference channel list
Returns

• 0: success else failure

Structures

struct non_pref_chan
Structure representing a non-preferred channel in a wireless network.
This structure encapsulates information about a non-preferred channel including the reason for its non-
preference, the operating class, channel number, and preference level.

Public Members

enum non_pref_chan_reason reason

Reason for the channel being non-preferred

Espressif Systems 760
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wpa_supplicant/esp_supplicant/include/esp_mbo.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t oper_class
Operating class of the channel

uint8_t chan
Channel number

uint8_t preference
Preference level of the channel

struct non_pref_chan_s
Structure representing a list of non-preferred channels in a wireless network.
This structure encapsulates information about a list of non-preferred channels including the number of non-
preferred channels and an array of structures representing individual non-preferred channels.

Public Members

size_t non_pref_chan_num
Number of non-preferred channels in the list

struct non_pref_chan chan[]
Array of structures representing individual non-preferred channels

Enumerations

enum non_pref_chan_reason

Enumeration of reasons for a channel being non-preferred in a wireless network.
This enumeration defines various reasons why a specific channel might be considered non-preferred in a wireless
network configuration.
Values:

enumerator NON_PREF_CHAN_REASON_UNSPECIFIED
Unspecified reason for non-preference

enumerator NON_PREF_CHAN_REASON_RSSI
Non-preferred due to low RSSI (Received Signal Strength Indication)

enumerator NON_PREF_CHAN_REASON_EXT_INTERFERENCE
Non-preferred due to external interference

enumerator NON_PREF_CHAN_REASON_INT_INTERFERENCE
Non-preferred due to internal interference

Wi-Fi Easy ConnectTM (DPP)

Wi-Fi Easy ConnectTM, also known as Device Provisioning Protocol (DPP) or Easy Connect, is a provisioning pro-
tocol certified by Wi-Fi Alliance. It is a secure and standardized provisioning protocol for configuration of Wi-Fi
Devices. With Easy Connect adding a new device to a network is as simple as scanning a QR Code. This reduces
complexity and enhances user experience while onboarding devices without UI like Smart Home and IoT products.
Unlike old protocols like WiFi Protected Setup (WPS), Wi-Fi Easy Connect incorporates strong encryption through

Espressif Systems 761
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

public key cryptography to ensure networks remain secure as new devices are added. Easy Connect brings many
benefits in the User Experience:

• Simple and intuitive to use; no lengthy instructions to follow for new device setup
• No need to remember and enter passwords into the device being provisioned
• Works with electronic or printed QR codes, or human-readable strings
• Supports both WPA2 and WPA3 networks

Please refer to Wi-Fi Alliance's official page on Easy Connect for more information.
ESP32-C6 supports Enrollee mode of Easy Connect with QR Code as the provisioning method. A display is required
to display this QR Code. Users can scan this QR Code using their capable device and provision the ESP32-C6 to
their Wi-Fi network. The provisioning device needs to be connected to the AP which need not support Wi-Fi Easy
Connect™. Easy Connect is still an evolving protocol. Of known platforms that support the QR Code method are
some Android smartphones with Android 10 or higher. To use Easy Connect no additional App needs to be installed
on the supported smartphone.

Application Example Example on how to provision ESP32-C6 using a supported smartphone:
wifi/wifi_easy_connect/dpp-enrollee.

API Reference

Header File
• components/wpa_supplicant/esp_supplicant/include/esp_dpp.h

Functions
esp_err_t esp_supp_dpp_init(esp_supp_dpp_event_cb_t evt_cb)

Initialize DPP Supplicant.

Starts DPP Supplicant and initializes related Data Structures.

return
• ESP_OK: Success
• ESP_FAIL: Failure

Parameters evt_cb -- Callback function to receive DPP related events
void esp_supp_dpp_deinit(void)

De-initalize DPP Supplicant.

Frees memory from DPP Supplicant Data Structures.

esp_err_t esp_supp_dpp_bootstrap_gen(const char *chan_list, esp_supp_dpp_bootstrap_t type, const
char *key, const char *info)

Generates Bootstrap Information as an Enrollee.

Generates Out Of Band Bootstrap information as an Enrollee which can be
used by a DPP Configurator to provision the Enrollee.

Parameters

Espressif Systems 762
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.wi-fi.org/discover-wi-fi/wi-fi-easy-connect
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/wifi_easy_connect/dpp-enrollee
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wpa_supplicant/esp_supplicant/include/esp_dpp.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• chan_list -- List of channels device will be available on for listening
• type -- Bootstrap method type, only QR Code method is supported for now.
• key -- (Optional) 32 byte Raw Private Key for generating a Bootstrapping Public Key
• info -- (Optional) Ancilliary Device Information like Serial Number

Returns
• ESP_OK: Success
• ESP_FAIL: Failure

esp_err_t esp_supp_dpp_start_listen(void)
Start listening on Channels provided during esp_supp_dpp_bootstrap_gen.

Listens on every Channel from Channel List for a pre-defined wait time.

Returns
• ESP_OK: Success
• ESP_FAIL: Generic Failure
• ESP_ERR_INVALID_STATE: ROC attempted before WiFi is started
• ESP_ERR_NO_MEM: Memory allocation failed while posting ROC request

void esp_supp_dpp_stop_listen(void)
Stop listening on Channels.

Stops listening on Channels and cancels ongoing listen operation.

Macros

ESP_DPP_AUTH_TIMEOUT_SECS

ESP_ERR_DPP_FAILURE

Generic failure during DPP Operation

ESP_ERR_DPP_TX_FAILURE

DPP Frame Tx failed OR not Acked

ESP_ERR_DPP_INVALID_ATTR

Encountered invalid DPP Attribute

ESP_ERR_DPP_AUTH_TIMEOUT

DPP Auth response was not recieved in time

Type Definitions

typedef enum dpp_bootstrap_type esp_supp_dpp_bootstrap_t

Types of Bootstrap Methods for DPP.

typedef void (*esp_supp_dpp_event_cb_t)(esp_supp_dpp_event_t evt, void *data)
Callback function for receiving DPP Events from Supplicant.

Callback function will be called with DPP related information.

Espressif Systems 763
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Param evt DPP event ID
Param data Event data payload

Enumerations

enum dpp_bootstrap_type

Types of Bootstrap Methods for DPP.
Values:

enumerator DPP_BOOTSTRAP_QR_CODE
QR Code Method

enumerator DPP_BOOTSTRAP_PKEX
Proof of Knowledge Method

enumerator DPP_BOOTSTRAP_NFC_URI
NFC URI record Method

enum esp_supp_dpp_event_t

Types of Callback Events received from DPP Supplicant.
Values:

enumerator ESP_SUPP_DPP_URI_READY
URI is ready through Bootstrapping

enumerator ESP_SUPP_DPP_CFG_RECVD
Config received via DPP Authentication

enumerator ESP_SUPP_DPP_FAIL
DPP Authentication failure

Code examples for the Wi-Fi API are provided in the wifi directory of ESP-IDF examples.
Code examples for ESP-WIFI-MESH are provided in the mesh directory of ESP-IDF examples.

2.5.2 Ethernet

Ethernet

Overview ESP-IDF provides a set of consistent and flexible APIs to support both internal Ethernet MAC (EMAC)
controller and external SPI-Ethernet modules.
This programming guide is split into the following sections:

1. Basic Ethernet Concepts
2. Configure MAC and PHY
3. Connect Driver to TCP/IP Stack
4. Misc Control of Ethernet Driver

Espressif Systems 764
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/mesh
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Basic Ethernet Concepts Ethernet is an asynchronous Carrier Sense Multiple Access with Collision Detect
(CSMA/CD) protocol/interface. It is generally not well suited for low-power applications. However, with ubiqui-
tous deployment, internet connectivity, high data rates, and limitless-range expandability, Ethernet can accommodate
nearly all wired communications.
Normal IEEE 802.3 compliant Ethernet frames are between 64 and 1518 bytes in length. They are made up of five
or six different fields: a destination MAC address (DA), a source MAC address (SA), a type/length field, a data
payload, an optional padding field and a Cyclic Redundancy Check (CRC). Additionally, when transmitted on the
Ethernet medium, a 7-byte preamble field and Start-of-Frame (SOF) delimiter byte are appended to the beginning
of the Ethernet packet.
Thus the traffic on the twist-pair cabling will appear as shown below:

Fig. 4: Ethernet Data Frame Format

Preamble and Start-of-Frame Delimiter The preamble contains seven bytes of 55H. It allows the receiver to
lock onto the stream of data before the actual frame arrives.
The Start-of-Frame Delimiter (SFD) is a binary sequence 10101011 (as seen on the physical medium). It is some-
times considered to be part of the preamble.
When transmitting and receiving data, the preamble and SFD bytes will automatically be generated or stripped from
the packets.

Destination Address The destination address field contains a 6-byte length MAC address of the device that the
packet is directed to. If the Least Significant bit in the first byte of the MAC address is set, the address is a multicast
destination. For example, 01-00-00-00-F0-00 and 33-45-67-89-AB-CD are multi-cast addresses, while 00-00-00-
00-F0-00 and 32-45-67-89-AB-CD are not.
Packets with multi-cast destination addresses are designed to arrive and be important to a selected group of Ethernet
nodes. If the destination address field is the reserved multicast address, i.e. FF-FF-FF-FF-FF-FF, the packet is a
broadcast packet and it will be directed to everyone sharing the network. If the Least Significant bit in the first byte

Espressif Systems 765
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

of the MAC address is clear, the address is a unicast address and will be designed for usage by only the addressed
node.
Normally the EMAC controller incorporates receive filters which can be used to discard or accept packets with multi-
cast, broadcast and/or unicast destination addresses. When transmitting packets, the host controller is responsible for
writing the desired destination address into the transmit buffer.

Source Address The source address field contains a 6-byte length MAC address of the node which created the
Ethernet packet. Users of Ethernet must generate a unique MAC address for each controller used. MAC addresses
consist of two portions. The first three bytes are known as the Organizationally Unique Identifier (OUI). OUIs are
distributed by the IEEE. The last three bytes are address bytes at the discretion of the company that purchased the
OUI. For more information about MAC Address used in ESP-IDF, please see MAC Address Allocation.
When transmitting packets, the assigned source MAC address must be written into the transmit buffer by the host
controller.

Type/Length The type/length field is a 2-byte field. If the value in this field is <= 1500 (decimal), it is considered
a length field and it specifies the amount of non-padding data which follows in the data field. If the value is >= 1536,
it represents the protocol the following packet data belongs to. The followings are the most common type values:

• IPv4 = 0800H
• IPv6 = 86DDH
• ARP = 0806H

Users implementing proprietary networks may choose to treat this field as a length field, while applications imple-
menting protocols such as the Internet Protocol (IP) or Address Resolution Protocol (ARP), should program this field
with the appropriate type defined by the protocol’s specification when transmitting packets.

Payload The payload field is a variable length field, anywhere from 0 to 1500 bytes. Larger data packets will violate
Ethernet standards and will be dropped by most Ethernet nodes.
This field contains the client data, such as an IP datagram.

Padding and FCS The padding field is a variable length field added to meet the IEEE 802.3 specification require-
ments when small data payloads are used.
The DA, SA, type, payload, and padding of an Ethernet packet must be no smaller than 60 bytes in total. If the
required 4-byte FCS field is added, packets must be no smaller than 64 bytes. If the payload field is less than 46-byte
long, a padding field is required.
The FCS field is a 4-byte field that contains an industry-standard 32-bit CRC calculated with the data from the
DA, SA, type, payload, and padding fields. Given the complexity of calculating a CRC, the hardware normally will
automatically generate a valid CRC and transmit it. Otherwise, the host controller must generate the CRC and place
it in the transmit buffer.
Normally, the host controller does not need to concern itself with padding and the CRC which the hardware EMAC
will also be able to automatically generate when transmitting and verify when receiving. However, the padding and
CRC fields will be written into the receive buffer when packets arrive, so they may be evaluated by the host controller
if needed.

Note: Besides the basic data frame described above, there're two other common frame types in 10/100 Mbps
Ethernet: control frames and VLAN-tagged frames. They're not supported in ESP-IDF.

Configure MAC and PHY The Ethernet driver is composed of two parts: MAC and PHY.
You need to set up the necessary parameters for MAC and PHY respectively based on your Ethernet board design,
and then combine the two together to complete the driver installation.

Espressif Systems 766
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Configuration for MAC is described in eth_mac_config_t, including:

• eth_mac_config_t::sw_reset_timeout_ms: software reset timeout value, in milliseconds. Typ-
ically, MAC reset should be finished within 100 ms.

• eth_mac_config_t::rx_task_stack_size and eth_mac_config_t::rx_task_prio:
the MAC driver creates a dedicated task to process incoming packets. These two parameters are used to
set the stack size and priority of the task.

• eth_mac_config_t::flags: specifying extra features that the MAC driver should have, it could
be useful in some special situations. The value of this field can be OR'd with macros prefixed with
ETH_MAC_FLAG_. For example, if the MAC driver should work when the cache is disabled, then you should
configure this field with ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE.

Configuration for PHY is described in eth_phy_config_t, including:

• eth_phy_config_t::phy_addr: multiple PHY devices can share the same SMI bus, so each PHY
needs a unique address. Usually, this address is configured during hardware design by pulling up/down some
PHY strapping pins. You can set the value from 0 to 15 based on your Ethernet board. Especially, if the SMI
bus is shared by only one PHY device, setting this value to -1 can enable the driver to detect the PHY address
automatically.

• eth_phy_config_t::reset_timeout_ms: reset timeout value, in milliseconds. Typically, PHY
reset should be finished within 100 ms.

• eth_phy_config_t::autonego_timeout_ms: auto-negotiation timeout value, in milliseconds.
The Ethernet driver will start negotiation with the peer Ethernet node automatically, to determine to duplex
and speed mode. This value usually depends on the ability of the PHY device on your board.

• eth_phy_config_t::reset_gpio_num: if your board also connects the PHY reset pin to one of the
GPIO, then set it here. Otherwise, set this field to -1.

ESP-IDF provides a default configuration for MAC and PHY in macro ETH_MAC_DEFAULT_CONFIG and
ETH_PHY_DEFAULT_CONFIG.

Create MAC and PHY Instance The Ethernet driver is implemented in an Object-Oriented style. Any operation
on MAC and PHY should be based on the instance of the two.

SPI-Ethernet Module
eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG(); // apply default␣
↪→common MAC configuration
eth_phy_config_t phy_config = ETH_PHY_DEFAULT_CONFIG(); // apply default PHY␣
↪→configuration
phy_config.phy_addr = CONFIG_EXAMPLE_ETH_PHY_ADDR; // alter the PHY␣
↪→address according to your board design
phy_config.reset_gpio_num = CONFIG_EXAMPLE_ETH_PHY_RST_GPIO; // alter the GPIO␣
↪→used for PHY reset
// Install GPIO interrupt service (as the SPI-Ethernet module is interrupt-driven)
gpio_install_isr_service(0);
// SPI bus configuration
spi_device_handle_t spi_handle = NULL;
spi_bus_config_t buscfg = {

.miso_io_num = CONFIG_EXAMPLE_ETH_SPI_MISO_GPIO,

.mosi_io_num = CONFIG_EXAMPLE_ETH_SPI_MOSI_GPIO,

.sclk_io_num = CONFIG_EXAMPLE_ETH_SPI_SCLK_GPIO,

.quadwp_io_num = -1,

.quadhd_io_num = -1,
};
ESP_ERROR_CHECK(spi_bus_initialize(CONFIG_EXAMPLE_ETH_SPI_HOST, &buscfg, 1));
// Configure SPI device
spi_device_interface_config_t spi_devcfg = {

(continues on next page)

Espressif Systems 767
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
.mode = 0,
.clock_speed_hz = CONFIG_EXAMPLE_ETH_SPI_CLOCK_MHZ * 1000 * 1000,
.spics_io_num = CONFIG_EXAMPLE_ETH_SPI_CS_GPIO,
.queue_size = 20

};
/* dm9051 ethernet driver is based on spi driver */
eth_dm9051_config_t dm9051_config = ETH_DM9051_DEFAULT_CONFIG(CONFIG_EXAMPLE_ETH_
↪→SPI_HOST, &spi_devcfg);
dm9051_config.int_gpio_num = CONFIG_EXAMPLE_ETH_SPI_INT_GPIO;
esp_eth_mac_t *mac = esp_eth_mac_new_dm9051(&dm9051_config, &mac_config);
esp_eth_phy_t *phy = esp_eth_phy_new_dm9051(&phy_config);

Note:
• When creating MAC and PHY instances for SPI-Ethernet modules (e.g. DM9051), the constructor function
must have the same suffix (e.g. esp_eth_mac_new_dm9051 and esp_eth_phy_new_dm9051). This is because
we don't have other choices but the integrated PHY.

• The SPI device configuration (i.e. spi_device_interface_config_t) may slightly differ for other Ethernet modules
or to meet SPI timing on specific PCB. Please check out your module's specs and the examples in ESP-IDF.

Install Driver To install the Ethernet driver, we need to combine the instance of MAC and PHY and set some
additional high-level configurations (i.e. not specific to either MAC or PHY) in esp_eth_config_t:

• esp_eth_config_t::mac: instance that created from MAC generator (e.g.
esp_eth_mac_new_esp32()).

• esp_eth_config_t::phy: instance that created from PHY generator (e.g.
esp_eth_phy_new_ip101()).

• esp_eth_config_t::check_link_period_ms: Ethernet driver starts an OS timer to check the link
status periodically, this field is used to set the interval, in milliseconds.

• esp_eth_config_t::stack_input: In most Ethernet IoT applications, any Ethernet frame received
by a driver should be passed to the upper layer (e.g. TCP/IP stack). This field is set to a function that
is responsible to deal with the incoming frames. You can even update this field at runtime via function
esp_eth_update_input_path() after driver installation.

• esp_eth_config_t::on_lowlevel_init_done andesp_eth_config_t::on_lowlevel_deinit_done:
These two fields are used to specify the hooks which get invoked when low-level hardware has been initialized
or de-initialized.

ESP-IDF provides a default configuration for driver installation in macro ETH_DEFAULT_CONFIG.

esp_eth_config_t config = ETH_DEFAULT_CONFIG(mac, phy); // apply default driver␣
↪→configuration
esp_eth_handle_t eth_handle = NULL; // after the driver is installed, we will get␣
↪→the handle of the driver
esp_eth_driver_install(&config, ð_handle); // install driver

The Ethernet driver also includes an event-driven model, which will send useful and important events to user space.
We need to initialize the event loop before installing the Ethernet driver. For more information about event-driven
programming, please refer to ESP Event.

/** Event handler for Ethernet events */
static void eth_event_handler(void *arg, esp_event_base_t event_base,

int32_t event_id, void *event_data)
{

uint8_t mac_addr[6] = {0};
/* we can get the ethernet driver handle from event data */
esp_eth_handle_t eth_handle = *(esp_eth_handle_t *)event_data;

(continues on next page)

Espressif Systems 768
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
switch (event_id) {
case ETHERNET_EVENT_CONNECTED:

esp_eth_ioctl(eth_handle, ETH_CMD_G_MAC_ADDR, mac_addr);
ESP_LOGI(TAG, "Ethernet Link Up");
ESP_LOGI(TAG, "Ethernet HW Addr %02x:%02x:%02x:%02x:%02x:%02x",

mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_
↪→addr[4], mac_addr[5]);

break;
case ETHERNET_EVENT_DISCONNECTED:

ESP_LOGI(TAG, "Ethernet Link Down");
break;

case ETHERNET_EVENT_START:
ESP_LOGI(TAG, "Ethernet Started");
break;

case ETHERNET_EVENT_STOP:
ESP_LOGI(TAG, "Ethernet Stopped");
break;

default:
break;

}
}

esp_event_loop_create_default(); // create a default event loop that runs in the␣
↪→background
esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, ð_event_handler, NULL);␣
↪→// register Ethernet event handler (to deal with user-specific stuff when events␣
↪→like link up/down happened)

Start Ethernet Driver After driver installation, we can start Ethernet immediately.

esp_eth_start(eth_handle); // start Ethernet driver state machine

Connect Driver to TCP/IP Stack Up until now, we have installed the Ethernet driver. From the view of OSI
(Open System Interconnection), we're still on level 2 (i.e. Data Link Layer). While we can detect link up and down
events and gain MAC address in user space, it's infeasible to obtain the IP address, let alone send an HTTP request.
The TCP/IP stack used in ESP-IDF is called LwIP. For more information about it, please refer to LwIP.
To connect the Ethernet driver to TCP/IP stack, follow these three steps:

1. Create a network interface for the Ethernet driver
2. Attach the network interface to the Ethernet driver
3. Register IP event handlers

For more information about the network interface, please refer to Network Interface.

/** Event handler for IP_EVENT_ETH_GOT_IP */
static void got_ip_event_handler(void *arg, esp_event_base_t event_base,

int32_t event_id, void *event_data)
{

ip_event_got_ip_t *event = (ip_event_got_ip_t *) event_data;
const esp_netif_ip_info_t *ip_info = &event->ip_info;

ESP_LOGI(TAG, "Ethernet Got IP Address");
ESP_LOGI(TAG, "~~~~~~~~~~~");
ESP_LOGI(TAG, "ETHIP:" IPSTR, IP2STR(&ip_info->ip));
ESP_LOGI(TAG, "ETHMASK:" IPSTR, IP2STR(&ip_info->netmask));
ESP_LOGI(TAG, "ETHGW:" IPSTR, IP2STR(&ip_info->gw));
ESP_LOGI(TAG, "~~~~~~~~~~~");

}

(continues on next page)

Espressif Systems 769
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

esp_netif_init()); // Initialize TCP/IP network interface (should be called only␣
↪→once in application)
esp_netif_config_t cfg = ESP_NETIF_DEFAULT_ETH(); // apply default network␣
↪→interface configuration for Ethernet
esp_netif_t *eth_netif = esp_netif_new(&cfg); // create network interface for␣
↪→Ethernet driver

esp_netif_attach(eth_netif, esp_eth_new_netif_glue(eth_handle)); // attach␣
↪→Ethernet driver to TCP/IP stack
esp_event_handler_register(IP_EVENT, IP_EVENT_ETH_GOT_IP, &got_ip_event_handler,␣
↪→NULL); // register user defined IP event handlers
esp_eth_start(eth_handle); // start Ethernet driver state machine

Warning: It is recommended to fully initialize the Ethernet driver and network interface before registering the
user's Ethernet/IP event handlers, i.e. register the event handlers as the last thing prior to starting the Ethernet
driver. Such an approach ensures that Ethernet/IP events get executed first by the Ethernet driver or network
interface so the system is in the expected state when executing the user's handlers.

Misc Control of Ethernet Driver The following functions should only be invoked after the Ethernet driver has
been installed.

• Stop Ethernet driver: esp_eth_stop()
• Update Ethernet data input path: esp_eth_update_input_path()
• Misc get/set of Ethernet driver attributes: esp_eth_ioctl()

/* get MAC address */
uint8_t mac_addr[6];
memset(mac_addr, 0, sizeof(mac_addr));
esp_eth_ioctl(eth_handle, ETH_CMD_G_MAC_ADDR, mac_addr);
ESP_LOGI(TAG, "Ethernet MAC Address: %02x:%02x:%02x:%02x:%02x:%02x",

mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_
↪→addr[5]);

/* get PHY address */
int phy_addr = -1;
esp_eth_ioctl(eth_handle, ETH_CMD_G_PHY_ADDR, &phy_addr);
ESP_LOGI(TAG, "Ethernet PHY Address: %d", phy_addr);

Flow Control Ethernet on MCU usually has a limitation in the number of frames it can handle during network
congestion, because of the limitation in RAM size. A sending station might be transmitting data faster than the peer
end can accept it. The ethernet flow control mechanism allows the receiving node to signal the sender requesting
the suspension of transmissions until the receiver catches up. The magic behind that is the pause frame, which was
defined in IEEE 802.3x.
Pause frame is a special Ethernet frame used to carry the pause command, whose EtherType field is 0x8808, with
the Control opcode set to 0x0001. Only stations configured for full-duplex operation may send pause frames. When
a station wishes to pause the other end of a link, it sends a pause frame to the 48-bit reserved multicast address
of 01-80-C2-00-00-01. The pause frame also includes the period of pause time being requested, in the form of a
two-byte integer, ranging from 0 to 65535.
After the Ethernet driver installation, the flow control feature is disabled by default. You can enable it by:

bool flow_ctrl_enable = true;
esp_eth_ioctl(eth_handle, ETH_CMD_S_FLOW_CTRL, &flow_ctrl_enable);

Espressif Systems 770
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

One thing that should be kept in mind is that the pause frame ability will be advertised to the peer end by PHY during
auto-negotiation. The Ethernet driver sends a pause frame only when both sides of the link support it.

Application Examples
• Ethernet basic example: ethernet/basic
• Ethernet iperf example: ethernet/iperf
• Ethernet to Wi-Fi AP "router": ethernet/eth2ap
• Most protocol examples should also work for Ethernet: protocols

Advanced Topics

Custom PHY Driver There are multiple PHY manufacturers with wide portfolios of chips available. The ESP-
IDF already supports several PHY chips however one can easily get to a point where none of them satisfies the user's
actual needs due to price, features, stock availability, etc.
Luckily, a management interface between EMAC and PHY is standardized by IEEE 802.3 in Section 22.2.4Manage-
ment Functions. It defines provisions of the so-called“MIIManagement Interface”to control the PHY and gather sta-
tus from the PHY. A set of management registers is defined to control chip behavior, link properties, auto-negotiation
configuration, etc. This basic management functionality is addressed by esp_eth/src/esp_eth_phy_802_3.c in ESP-
IDF and so it makes the creation of a new custom PHY chip driver quite a simple task.

Note: Always consult with PHY datasheet since some PHY chips may not comply with IEEE 802.3, Section 22.2.4.
It does not mean you are not able to create a custom PHY driver, it will just require more effort. You will have to
define all PHY management functions.

The majority of PHY management functionality required by the ESP-IDF Ethernet driver is covered by the
esp_eth/src/esp_eth_phy_802_3.c. However, the following may require developing chip-specific management func-
tions:

• Link status which is almost always chip-specific
• Chip initialization, even though not strictly required, should be customized to at least ensure that the expected
chip is used

• Chip-specific features configuration
Steps to create a custom PHY driver:

1. Define vendor-specific registry layout based on the PHY datasheet. See esp_eth/src/esp_eth_phy_ip101.c as
an example.

2. Prepare derived PHY management object info structure which:
• must contain at least parent IEEE 802.3 phy_802_3_t object
• optionally contain additional variables needed to support non-IEEE 802.3 or customized functionality.
See esp_eth/src/esp_eth_phy_ksz80xx.c as an example.

3. Define chip-specific management call-back functions.
4. Initialize parent IEEE 802.3 object and re-assign chip-specific management call-back functions.

Once you finish the new custom PHY driver implementation, consider sharing it among other users via IDF Compo-
nent Registry.

API Reference

Header File
• components/esp_eth/include/esp_eth.h

Espressif Systems 771
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/ethernet/basic
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/ethernet/iperf
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/ethernet/eth2ap
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/src/esp_eth_phy_802_3.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/src/esp_eth_phy_802_3.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/src/esp_eth_phy_ip101.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/src/esp_eth_phy_ksz80xx.c
https://components.espressif.com/
https://components.espressif.com/
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/include/esp_eth.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/esp_eth/include/esp_eth_driver.h

Functions
esp_err_t esp_eth_driver_install(const esp_eth_config_t *config, esp_eth_handle_t *out_hdl)

Install Ethernet driver.
Parameters

• config -- [in] configuration of the Ethernet driver
• out_hdl -- [out] handle of Ethernet driver

Returns
• ESP_OK: install esp_eth driver successfully
• ESP_ERR_INVALID_ARG: install esp_eth driver failed because of some invalid argu-
ment

• ESP_ERR_NO_MEM: install esp_eth driver failed because there's no memory for driver
• ESP_FAIL: install esp_eth driver failed because some other error occurred

esp_err_t esp_eth_driver_uninstall(esp_eth_handle_t hdl)
Uninstall Ethernet driver.

Note: It's not recommended to uninstall Ethernet driver unless it won't get used any more in application code.
To uninstall Ethernet driver, you have to make sure, all references to the driver are released. Ethernet driver
can only be uninstalled successfully when reference counter equals to one.

Parameters hdl -- [in] handle of Ethernet driver
Returns

• ESP_OK: uninstall esp_eth driver successfully
• ESP_ERR_INVALID_ARG: uninstall esp_eth driver failed because of some invalid ar-
gument

• ESP_ERR_INVALID_STATE: uninstall esp_eth driver failed because it has more than
one reference

• ESP_FAIL: uninstall esp_eth driver failed because some other error occurred

esp_err_t esp_eth_start(esp_eth_handle_t hdl)
Start Ethernet driver ONLY in standalone mode (i.e. without TCP/IP stack)

Note: This API will start driver state machine and internal software timer (for checking link status).

Parameters hdl -- [in] handle of Ethernet driver
Returns

• ESP_OK: start esp_eth driver successfully
• ESP_ERR_INVALID_ARG: start esp_eth driver failed because of some invalid argument
• ESP_ERR_INVALID_STATE: start esp_eth driver failed because driver has started al-
ready

• ESP_FAIL: start esp_eth driver failed because some other error occurred

esp_err_t esp_eth_stop(esp_eth_handle_t hdl)
Stop Ethernet driver.

Note: This function does the oppsite operation of esp_eth_start.

Parameters hdl -- [in] handle of Ethernet driver
Returns

Espressif Systems 772
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/include/esp_eth_driver.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK: stop esp_eth driver successfully
• ESP_ERR_INVALID_ARG: stop esp_eth driver failed because of some invalid argument
• ESP_ERR_INVALID_STATE: stop esp_eth driver failed because driver has not started
yet

• ESP_FAIL: stop esp_eth driver failed because some other error occurred

esp_err_t esp_eth_update_input_path(esp_eth_handle_t hdl, esp_err_t (*stack_input)(esp_eth_handle_t
hdl, uint8_t *buffer, uint32_t length, void *priv), void *priv)

Update Ethernet data input path (i.e. specify where to pass the input buffer)

Note: After install driver, Ethernet still don't know where to deliver the input buffer. In fact, this API registers
a callback function which get invoked when Ethernet received new packets.

Parameters
• hdl -- [in] handle of Ethernet driver
• stack_input -- [in] function pointer, which does the actual process on incoming pack-
ets

• priv -- [in] private resource, which gets passed to stack_input callback without any
modification

Returns
• ESP_OK: update input path successfully
• ESP_ERR_INVALID_ARG: update input path failed because of some invalid argument
• ESP_FAIL: update input path failed because some other error occurred

esp_err_t esp_eth_transmit(esp_eth_handle_t hdl, void *buf, size_t length)
General Transmit.

Parameters
• hdl -- [in] handle of Ethernet driver
• buf -- [in] buffer of the packet to transfer
• length -- [in] length of the buffer to transfer

Returns
• ESP_OK: transmit frame buffer successfully
• ESP_ERR_INVALID_ARG: transmit frame buffer failed because of some invalid argu-
ment

• ESP_ERR_INVALID_STATE: invalid driver state (e.i. driver is not started)
• ESP_ERR_TIMEOUT: transmit frame buffer failed because HW was not get available in
predefined period

• ESP_FAIL: transmit frame buffer failed because some other error occurred
esp_err_t esp_eth_transmit_vargs(esp_eth_handle_t hdl, uint32_t argc, ...)

Special Transmit with variable number of arguments.
Parameters

• hdl -- [in] handle of Ethernet driver
• argc -- [in] number variable arguments
• ... -- variable arguments

Returns
• ESP_OK: transmit successfull
• ESP_ERR_INVALID_STATE: invalid driver state (e.i. driver is not started)
• ESP_ERR_TIMEOUT: transmit frame buffer failed because HW was not get available in
predefined period

• ESP_FAIL: transmit frame buffer failed because some other error occurred
esp_err_t esp_eth_ioctl(esp_eth_handle_t hdl, esp_eth_io_cmd_t cmd, void *data)

Misc IO function of Etherent driver.

Espressif Systems 773
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The following common IO control commands are supported:
• ETH_CMD_S_MAC_ADDR sets Ethernet interface MAC address. data argument is pointer to MAC
address buffer with expected size of 6 bytes.

• ETH_CMD_G_MAC_ADDR gets Ethernet interface MAC address. data argument is pointer to a buffer
to which MAC address is to be copied. The buffer size must be at least 6 bytes.

• ETH_CMD_S_PHY_ADDR sets PHY address in range of <0-31>. data argument is pointer to memory
of uint32_t datatype from where the configuration option is read.

• ETH_CMD_G_PHY_ADDR gets PHY address. data argument is pointer to memory of uint32_t
datatype to which the PHY address is to be stored.

• ETH_CMD_S_AUTONEGO enables or disables Ethernet link speed and duplex mode autonegotiation.
data argument is pointer to memory of bool datatype from which the configuration option is read.
Preconditions: Ethernet driver needs to be stopped.

• ETH_CMD_G_AUTONEGO gets current configuration of the Ethernet link speed and duplex mode au-
tonegotiation. data argument is pointer to memory of bool datatype to which the current configuration
is to be stored.

• ETH_CMD_S_SPEED sets the Ethernet link speed. data argument is pointer tomemory of eth_speed_t
datatype from which the configuration option is read. Preconditions: Ethernet driver needs to be stopped
and auto-negotiation disabled.

• ETH_CMD_G_SPEED gets current Ethernet link speed. data argument is pointer to memory of
eth_speed_t datatype to which the speed is to be stored.

• ETH_CMD_S_PROMISCUOUS sets/resets Ethernet interface promiscuous mode. data argument is
pointer to memory of bool datatype from which the configuration option is read.

• ETH_CMD_S_FLOW_CTRL sets/resets Ethernet interface flow control. data argument is pointer to
memory of bool datatype from which the configuration option is read.

• ETH_CMD_S_DUPLEX_MODE sets the Ethernet duplex mode. data argument is pointer to memory of
eth_duplex_t datatype from which the configuration option is read. Preconditions: Ethernet driver needs
to be stopped and auto-negotiation disabled.

• ETH_CMD_G_DUPLEX_MODE gets current Ethernet link duplex mode. data argument is pointer to
memory of eth_duplex_t datatype to which the duplex mode is to be stored.

• ETH_CMD_S_PHY_LOOPBACK sets/resets PHY to/from loopback mode. data argument is pointer
to memory of bool datatype from which the configuration option is read.

• Note that additional control commands may be available for specific MAC or PHY chips. Please consult
specific MAC or PHY documentation or driver code.

Parameters
• hdl -- [in] handle of Ethernet driver
• cmd -- [in] IO control command
• data -- [inout] address of data for set command or address where to store the data
when used with get command

Returns
• ESP_OK: process io command successfully
• ESP_ERR_INVALID_ARG: process io command failed because of some invalid argu-
ment

• ESP_FAIL: process io command failed because some other error occurred
• ESP_ERR_NOT_SUPPORTED: requested feature is not supported

esp_err_t esp_eth_increase_reference(esp_eth_handle_t hdl)
Increase Ethernet driver reference.

Note: Ethernet driver handle can be obtained by os timer, netif, etc. It's dangerous when thread A is using
Ethernet but thread B uninstall the driver. Using reference counter can prevent such risk, but care should be
taken, when you obtain Ethernet driver, this API must be invoked so that the driver won't be uninstalled during
your using time.

Parameters hdl -- [in] handle of Ethernet driver

Espressif Systems 774
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK: increase reference successfully
• ESP_ERR_INVALID_ARG: increase reference failed because of some invalid argument

esp_err_t esp_eth_decrease_reference(esp_eth_handle_t hdl)
Decrease Ethernet driver reference.

Parameters hdl -- [in] handle of Ethernet driver
Returns

• ESP_OK: increase reference successfully
• ESP_ERR_INVALID_ARG: increase reference failed because of some invalid argument

Structures

struct esp_eth_config_t
Configuration of Ethernet driver.

Public Members

esp_eth_mac_t *mac
Ethernet MAC object.

esp_eth_phy_t *phy
Ethernet PHY object.

uint32_t check_link_period_ms
Period time of checking Ethernet link status.

esp_err_t (*stack_input)(esp_eth_handle_t eth_handle, uint8_t *buffer, uint32_t length, void *priv)
Input frame buffer to user's stack.

Param eth_handle [in] handle of Ethernet driver
Param buffer [in] frame buffer that will get input to upper stack
Param length [in] length of the frame buffer
Return

• ESP_OK: input frame buffer to upper stack successfully
• ESP_FAIL: error occurred when inputting buffer to upper stack

esp_err_t (*on_lowlevel_init_done)(esp_eth_handle_t eth_handle)
Callback function invoked when lowlevel initialization is finished.

Param eth_handle [in] handle of Ethernet driver
Return

• ESP_OK: process extra lowlevel initialization successfully
• ESP_FAIL: error occurred when processing extra lowlevel initialization

esp_err_t (*on_lowlevel_deinit_done)(esp_eth_handle_t eth_handle)
Callback function invoked when lowlevel deinitialization is finished.

Param eth_handle [in] handle of Ethernet driver
Return

• ESP_OK: process extra lowlevel deinitialization successfully
• ESP_FAIL: error occurred when processing extra lowlevel deinitialization

Espressif Systems 775
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t (*read_phy_reg)(esp_eth_handle_t eth_handle, uint32_t phy_addr, uint32_t phy_reg, uint32_t
*reg_value)

Read PHY register.

Note: Usually the PHY register read/write function is provided by MAC (SMI interface), but if the
PHY device is managed by other interface (e.g. I2C), then user needs to implement the corresponding
read/write. Setting this to NULL means your PHY device is managed by MAC's SMI interface.

Param eth_handle [in] handle of Ethernet driver
Param phy_addr [in] PHY chip address (0~31)
Param phy_reg [in] PHY register index code
Param reg_value [out] PHY register value
Return

• ESP_OK: read PHY register successfully
• ESP_ERR_INVALID_ARG: read PHY register failed because of invalid argument
• ESP_ERR_TIMEOUT: read PHY register failed because of timeout
• ESP_FAIL: read PHY register failed because some other error occurred

esp_err_t (*write_phy_reg)(esp_eth_handle_t eth_handle, uint32_t phy_addr, uint32_t phy_reg,
uint32_t reg_value)

Write PHY register.

Note: Usually the PHY register read/write function is provided by MAC (SMI interface), but if the
PHY device is managed by other interface (e.g. I2C), then user needs to implement the corresponding
read/write. Setting this to NULL means your PHY device is managed by MAC's SMI interface.

Param eth_handle [in] handle of Ethernet driver
Param phy_addr [in] PHY chip address (0~31)
Param phy_reg [in] PHY register index code
Param reg_value [in] PHY register value
Return

• ESP_OK: write PHY register successfully
• ESP_ERR_INVALID_ARG: read PHY register failed because of invalid argument
• ESP_ERR_TIMEOUT: write PHY register failed because of timeout
• ESP_FAIL: write PHY register failed because some other error occurred

struct esp_eth_phy_reg_rw_data_t
Data structure to Read/Write PHY register via ioctl API.

Public Members

uint32_t reg_addr
PHY register address

uint32_t *reg_value_p
Pointer to a memory where the register value is read/written

Macros
ETH_DEFAULT_CONFIG(emac, ephy)

Default configuration for Ethernet driver.

Espressif Systems 776
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef void *esp_eth_handle_t
Handle of Ethernet driver.

Enumerations

enum esp_eth_io_cmd_t

Command list for ioctl API.
Values:

enumerator ETH_CMD_G_MAC_ADDR
Get MAC address

enumerator ETH_CMD_S_MAC_ADDR
Set MAC address

enumerator ETH_CMD_G_PHY_ADDR
Get PHY address

enumerator ETH_CMD_S_PHY_ADDR
Set PHY address

enumerator ETH_CMD_G_AUTONEGO
Get PHY Auto Negotiation

enumerator ETH_CMD_S_AUTONEGO
Set PHY Auto Negotiation

enumerator ETH_CMD_G_SPEED
Get Speed

enumerator ETH_CMD_S_SPEED
Set Speed

enumerator ETH_CMD_S_PROMISCUOUS
Set promiscuous mode

enumerator ETH_CMD_S_FLOW_CTRL
Set flow control

enumerator ETH_CMD_G_DUPLEX_MODE
Get Duplex mode

enumerator ETH_CMD_S_DUPLEX_MODE
Set Duplex mode

enumerator ETH_CMD_S_PHY_LOOPBACK
Set PHY loopback

Espressif Systems 777
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ETH_CMD_READ_PHY_REG
Read PHY register

enumerator ETH_CMD_WRITE_PHY_REG
Write PHY register

enumerator ETH_CMD_CUSTOM_MAC_CMDS

enumerator ETH_CMD_CUSTOM_PHY_CMDS

Header File
• components/esp_eth/include/esp_eth_com.h

Structures

struct esp_eth_mediator_s
Ethernet mediator.

Public Members

esp_err_t (*phy_reg_read)(esp_eth_mediator_t *eth, uint32_t phy_addr, uint32_t phy_reg, uint32_t
*reg_value)

Read PHY register.
Param eth [in] mediator of Ethernet driver
Param phy_addr [in] PHY Chip address (0~31)
Param phy_reg [in] PHY register index code
Param reg_value [out] PHY register value
Return

• ESP_OK: read PHY register successfully
• ESP_FAIL: read PHY register failed because some error occurred

esp_err_t (*phy_reg_write)(esp_eth_mediator_t *eth, uint32_t phy_addr, uint32_t phy_reg, uint32_t
reg_value)

Write PHY register.
Param eth [in] mediator of Ethernet driver
Param phy_addr [in] PHY Chip address (0~31)
Param phy_reg [in] PHY register index code
Param reg_value [in] PHY register value
Return

• ESP_OK: write PHY register successfully
• ESP_FAIL: write PHY register failed because some error occurred

esp_err_t (*stack_input)(esp_eth_mediator_t *eth, uint8_t *buffer, uint32_t length)
Deliver packet to upper stack.

Param eth [in] mediator of Ethernet driver
Param buffer [in] packet buffer
Param length [in] length of the packet
Return

• ESP_OK: deliver packet to upper stack successfully
• ESP_FAIL: deliver packet failed because some error occurred

Espressif Systems 778
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/include/esp_eth_com.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t (*on_state_changed)(esp_eth_mediator_t *eth, esp_eth_state_t state, void *args)
Callback on Ethernet state changed.

Param eth [in] mediator of Ethernet driver
Param state [in] new state
Param args [in] optional argument for the new state
Return

• ESP_OK: process the new state successfully
• ESP_FAIL: process the new state failed because some error occurred

Type Definitions

typedef struct esp_eth_mediator_s esp_eth_mediator_t

Ethernet mediator.

Enumerations

enum esp_eth_state_t

Ethernet driver state.
Values:

enumerator ETH_STATE_LLINIT
Lowlevel init done

enumerator ETH_STATE_DEINIT
Deinit done

enumerator ETH_STATE_LINK
Link status changed

enumerator ETH_STATE_SPEED
Speed updated

enumerator ETH_STATE_DUPLEX
Duplex updated

enumerator ETH_STATE_PAUSE
Pause ability updated

enum eth_event_t

Ethernet event declarations.
Values:

enumerator ETHERNET_EVENT_START
Ethernet driver start

enumerator ETHERNET_EVENT_STOP
Ethernet driver stop

Espressif Systems 779
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ETHERNET_EVENT_CONNECTED
Ethernet got a valid link

enumerator ETHERNET_EVENT_DISCONNECTED
Ethernet lost a valid link

Header File
• components/esp_eth/include/esp_eth_mac.h

Unions

union eth_mac_clock_config_t
#include <esp_eth_mac.h> Ethernet MAC Clock Configuration.

Public Members

struct eth_mac_clock_config_t::[anonymous] mii
EMAC MII Clock Configuration

emac_rmii_clock_mode_t clock_mode

RMII Clock Mode Configuration

emac_rmii_clock_gpio_t clock_gpio

RMII Clock GPIO Configuration

struct eth_mac_clock_config_t::[anonymous] rmii
EMAC RMII Clock Configuration

Structures

struct esp_eth_mac_s
Ethernet MAC.

Public Members

esp_err_t (*set_mediator)(esp_eth_mac_t *mac, esp_eth_mediator_t *eth)
Set mediator for Ethernet MAC.

Param mac [in] Ethernet MAC instance
Param eth [in] Ethernet mediator
Return

• ESP_OK: set mediator for Ethernet MAC successfully
• ESP_ERR_INVALID_ARG: set mediator for Ethernet MAC failed because of invalid
argument

esp_err_t (*init)(esp_eth_mac_t *mac)
Initialize Ethernet MAC.

Param mac [in] Ethernet MAC instance

Espressif Systems 780
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/include/esp_eth_mac.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Return
• ESP_OK: initialize Ethernet MAC successfully
• ESP_ERR_TIMEOUT: initialize Ethernet MAC failed because of timeout
• ESP_FAIL: initialize Ethernet MAC failed because some other error occurred

esp_err_t (*deinit)(esp_eth_mac_t *mac)
Deinitialize Ethernet MAC.

Param mac [in] Ethernet MAC instance
Return

• ESP_OK: deinitialize Ethernet MAC successfully
• ESP_FAIL: deinitialize Ethernet MAC failed because some error occurred

esp_err_t (*start)(esp_eth_mac_t *mac)
Start Ethernet MAC.

Param mac [in] Ethernet MAC instance
Return

• ESP_OK: start Ethernet MAC successfully
• ESP_FAIL: start Ethernet MAC failed because some other error occurred

esp_err_t (*stop)(esp_eth_mac_t *mac)
Stop Ethernet MAC.

Param mac [in] Ethernet MAC instance
Return

• ESP_OK: stop Ethernet MAC successfully
• ESP_FAIL: stop Ethernet MAC failed because some error occurred

esp_err_t (*transmit)(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length)
Transmit packet from Ethernet MAC.

Note: Returned error codes may differ for each specific MAC chip.

Param mac [in] Ethernet MAC instance
Param buf [in] packet buffer to transmit
Param length [in] length of packet
Return

• ESP_OK: transmit packet successfully
• ESP_ERR_INVALID_SIZE: number of actually sent bytes differs to expected
• ESP_FAIL: transmit packet failed because some other error occurred

esp_err_t (*transmit_vargs)(esp_eth_mac_t *mac, uint32_t argc, va_list args)
Transmit packet from Ethernet MAC constructed with special parameters at Layer2.

Note: Typical intended use case is to make possible to construct a frame from multiple higher layer
buffers without a need of buffer reallocations. However, other use cases are not limited.

Note: Returned error codes may differ for each specific MAC chip.

Param mac [in] Ethernet MAC instance
Param argc [in] number variable arguments

Espressif Systems 781
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Param args [in] variable arguments
Return

• ESP_OK: transmit packet successfully
• ESP_ERR_INVALID_SIZE: number of actually sent bytes differs to expected
• ESP_FAIL: transmit packet failed because some other error occurred

esp_err_t (*receive)(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length)
Receive packet from Ethernet MAC.

Note: Memory of buf is allocated in the Layer2, make sure it get free after process.

Note: Before this function got invoked, the value of "length" should set by user, equals the size of buffer.
After the function returned, the value of "length" means the real length of received data.

Param mac [in] Ethernet MAC instance
Param buf [out] packet buffer which will preserve the received frame
Param length [out] length of the received packet
Return

• ESP_OK: receive packet successfully
• ESP_ERR_INVALID_ARG: receive packet failed because of invalid argument
• ESP_ERR_INVALID_SIZE: input buffer size is not enough to hold the incoming data.
in this case, value of returned "length" indicates the real size of incoming data.

• ESP_FAIL: receive packet failed because some other error occurred

esp_err_t (*read_phy_reg)(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t
*reg_value)

Read PHY register.
Param mac [in] Ethernet MAC instance
Param phy_addr [in] PHY chip address (0~31)
Param phy_reg [in] PHY register index code
Param reg_value [out] PHY register value
Return

• ESP_OK: read PHY register successfully
• ESP_ERR_INVALID_ARG: read PHY register failed because of invalid argument
• ESP_ERR_INVALID_STATE: read PHY register failed because of wrong state of
MAC

• ESP_ERR_TIMEOUT: read PHY register failed because of timeout
• ESP_FAIL: read PHY register failed because some other error occurred

esp_err_t (*write_phy_reg)(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t
reg_value)

Write PHY register.
Param mac [in] Ethernet MAC instance
Param phy_addr [in] PHY chip address (0~31)
Param phy_reg [in] PHY register index code
Param reg_value [in] PHY register value
Return

• ESP_OK: write PHY register successfully
• ESP_ERR_INVALID_STATE: write PHY register failed because of wrong state of
MAC

• ESP_ERR_TIMEOUT: write PHY register failed because of timeout
• ESP_FAIL: write PHY register failed because some other error occurred

Espressif Systems 782
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t (*set_addr)(esp_eth_mac_t *mac, uint8_t *addr)
Set MAC address.

Param mac [in] Ethernet MAC instance
Param addr [in]MAC address
Return

• ESP_OK: set MAC address successfully
• ESP_ERR_INVALID_ARG: set MAC address failed because of invalid argument
• ESP_FAIL: set MAC address failed because some other error occurred

esp_err_t (*get_addr)(esp_eth_mac_t *mac, uint8_t *addr)
Get MAC address.

Param mac [in] Ethernet MAC instance
Param addr [out]MAC address
Return

• ESP_OK: get MAC address successfully
• ESP_ERR_INVALID_ARG: get MAC address failed because of invalid argument
• ESP_FAIL: get MAC address failed because some other error occurred

esp_err_t (*set_speed)(esp_eth_mac_t *mac, eth_speed_t speed)
Set speed of MAC.

Param ma:c [in] Ethernet MAC instance
Param speed [in]MAC speed
Return

• ESP_OK: set MAC speed successfully
• ESP_ERR_INVALID_ARG: set MAC speed failed because of invalid argument
• ESP_FAIL: set MAC speed failed because some other error occurred

esp_err_t (*set_duplex)(esp_eth_mac_t *mac, eth_duplex_t duplex)
Set duplex mode of MAC.

Param mac [in] Ethernet MAC instance
Param duplex [in]MAC duplex
Return

• ESP_OK: set MAC duplex mode successfully
• ESP_ERR_INVALID_ARG: set MAC duplex failed because of invalid argument
• ESP_FAIL: set MAC duplex failed because some other error occurred

esp_err_t (*set_link)(esp_eth_mac_t *mac, eth_link_t link)
Set link status of MAC.

Param mac [in] Ethernet MAC instance
Param link [in] Link status
Return

• ESP_OK: set link status successfully
• ESP_ERR_INVALID_ARG: set link status failed because of invalid argument
• ESP_FAIL: set link status failed because some other error occurred

esp_err_t (*set_promiscuous)(esp_eth_mac_t *mac, bool enable)
Set promiscuous of MAC.

Param mac [in] Ethernet MAC instance
Param enable [in] set true to enable promiscuousmode; set false to disable promiscuousmode
Return

• ESP_OK: set promiscuous mode successfully
• ESP_FAIL: set promiscuous mode failed because some error occurred

Espressif Systems 783
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t (*enable_flow_ctrl)(esp_eth_mac_t *mac, bool enable)
Enable flow control on MAC layer or not.

Param mac [in] Ethernet MAC instance
Param enable [in] set true to enable flow control; set false to disable flow control
Return

• ESP_OK: set flow control successfully
• ESP_FAIL: set flow control failed because some error occurred

esp_err_t (*set_peer_pause_ability)(esp_eth_mac_t *mac, uint32_t ability)
Set the PAUSE ability of peer node.

Param mac [in] Ethernet MAC instance
Param ability [in] zero indicates that pause function is supported by link partner; non-zero

indicates that pause function is not supported by link partner
Return

• ESP_OK: set peer pause ability successfully
• ESP_FAIL: set peer pause ability failed because some error occurred

esp_err_t (*custom_ioctl)(esp_eth_mac_t *mac, uint32_t cmd, void *data)
Custom IO function ofMAC driver. This function is intended to extend common options of esp_eth_ioctl
to cover specifics of MAC chip.

Note: This function may not be assigned when the MAC chip supports only most common set of
configuration options.

Param mac [in] Ethernet MAC instance
Param cmd [in] IO control command
Param data [inout] address of data for set command or address where to store the data

when used with get command
Return

• ESP_OK: process io command successfully
• ESP_ERR_INVALID_ARG: process io command failed because of some invalid argu-
ment

• ESP_FAIL: process io command failed because some other error occurred
• ESP_ERR_NOT_SUPPORTED: requested feature is not supported

esp_err_t (*del)(esp_eth_mac_t *mac)
Free memory of Ethernet MAC.

Param mac [in] Ethernet MAC instance
Return

• ESP_OK: free Ethernet MAC instance successfully
• ESP_FAIL: free Ethernet MAC instance failed because some error occurred

struct eth_mac_config_t
Configuration of Ethernet MAC object.

Public Members

uint32_t sw_reset_timeout_ms
Software reset timeout value (Unit: ms)

Espressif Systems 784
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t rx_task_stack_size
Stack size of the receive task

uint32_t rx_task_prio
Priority of the receive task

uint32_t flags
Flags that specify extra capability for mac driver

struct eth_spi_custom_driver_config_t
Custom SPI Driver Configuration. This structure declares configuration and callback functions to access Eth-
ernet SPI module via user's custom SPI driver.

Public Members

void *config
Custom driver specific configuration data used by init() function.

Note: Type and its content is fully under user's control

void *(*init)(const void *spi_config)
Custom driver SPI Initialization.

Note: return type and its content is fully under user's control

Param spi_config [in] Custom driver specific configuration
Return

• spi_ctx: when initialization is successful, a pointer to context structure holding all vari-
ables needed for subsequent SPI access operations (e.g. SPI bus identification, mutexes,
etc.)

• NULL: driver initialization failed

esp_err_t (*deinit)(void *spi_ctx)
Custom driver De-initialization.

Param spi_ctx [in] a pointer to driver specific context structure
Return

• ESP_OK: driver de-initialization was successful
• ESP_FAIL: driver de-initialization failed
• any other failure codes are allowed to be used to provide failure isolation

esp_err_t (*read)(void *spi_ctx, uint32_t cmd, uint32_t addr, void *data, uint32_t data_len)
Custom driver SPI read.

Note: The read function is responsible to construct command, address and data fields of the SPI frame
in format expected by particular SPI Ethernet module

Param spi_ctx [in] a pointer to driver specific context structure

Espressif Systems 785
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Param cmd [in] command
Param addr [in] register address
Param data [out] read data
Param data_len [in] read data length in bytes
Return

• ESP_OK: read was successful
• ESP_FAIL: read failed
• any other failure codes are allowed to be used to provide failure isolation

esp_err_t (*write)(void *spi_ctx, uint32_t cmd, uint32_t addr, const void *data, uint32_t data_len)
Custom driver SPI write.

Note: The write function is responsible to construct command, address and data fields of the SPI frame
in format expected by particular SPI Ethernet module

Param spi_ctx [in] a pointer to driver specific context structure
Param cmd [in] command
Param addr [in] register address
Param data [in] data to write
Param data_len [in] length of data to write in bytes
Return

• ESP_OK: write was successful
• ESP_FAIL: write failed
• any other failure codes are allowed to be used to provide failure isolation

Macros

ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE

MAC driver can work when cache is disabled

ETH_MAC_FLAG_PIN_TO_CORE

Pin MAC task to the CPU core where driver installation happened
ETH_MAC_DEFAULT_CONFIG()

Default configuration for Ethernet MAC object.

ETH_DEFAULT_SPI

Default configuration of the custom SPI driver. Internal ESP-IDF SPI Master driver is used by default.

Type Definitions

typedef struct esp_eth_mac_s esp_eth_mac_t

Ethernet MAC.

Enumerations

enum emac_rmii_clock_mode_t

RMII Clock Mode Options.
Values:

enumerator EMAC_CLK_DEFAULT
Default values configured using Kconfig are going to be used when "Default" selected.

Espressif Systems 786
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator EMAC_CLK_EXT_IN
Input RMII Clock from external. EMAC Clock GPIO number needs to be configured when this option
is selected.

Note: MACwill get RMII clock from outside. Note that ESP32 only supports GPIO0 to input the RMII
clock.

enumerator EMAC_CLK_OUT
Output RMII Clock from internal APLL Clock. EMAC Clock GPIO number needs to be configured
when this option is selected.

enum emac_rmii_clock_gpio_t

RMII Clock GPIO number Options.

Warning: If you want the Ethernet to work with WiFi, don’t select ESP32 as RMII CLK output as it
would result in clock instability.

Values:

enumerator EMAC_CLK_IN_GPIO
MAC will get RMII clock from outside at this GPIO.

Note: ESP32 only supports GPIO0 to input the RMII clock.

enumerator EMAC_APPL_CLK_OUT_GPIO
Output RMII Clock from internal APLL Clock available at GPIO0.

Note: GPIO0 can be set to output a pre-divided PLL clock. Enabling this option will configure GPIO0
to output a 50MHz clock. In fact this clock doesn’t have directly relationship with EMAC peripheral.
Sometimes this clock may not work well with your PHY chip.

enumerator EMAC_CLK_OUT_GPIO
Output RMII Clock from internal APLL Clock available at GPIO16.

enumerator EMAC_CLK_OUT_180_GPIO
Inverted Output RMII Clock from internal APLL Clock available at GPIO17.

Header File
• components/esp_eth/include/esp_eth_phy.h

Functions
esp_eth_phy_t *esp_eth_phy_new_ip101(const eth_phy_config_t *config)

Create a PHY instance of IP101.
Parameters config -- [in] configuration of PHY
Returns

• instance: create PHY instance successfully

Espressif Systems 787
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/include/esp_eth_phy.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• NULL: create PHY instance failed because some error occurred
esp_eth_phy_t *esp_eth_phy_new_rtl8201(const eth_phy_config_t *config)

Create a PHY instance of RTL8201.
Parameters config -- [in] configuration of PHY
Returns

• instance: create PHY instance successfully
• NULL: create PHY instance failed because some error occurred

esp_eth_phy_t *esp_eth_phy_new_lan87xx(const eth_phy_config_t *config)
Create a PHY instance of LAN87xx.

Parameters config -- [in] configuration of PHY
Returns

• instance: create PHY instance successfully
• NULL: create PHY instance failed because some error occurred

esp_eth_phy_t *esp_eth_phy_new_dp83848(const eth_phy_config_t *config)
Create a PHY instance of DP83848.

Parameters config -- [in] configuration of PHY
Returns

• instance: create PHY instance successfully
• NULL: create PHY instance failed because some error occurred

esp_eth_phy_t *esp_eth_phy_new_ksz80xx(const eth_phy_config_t *config)
Create a PHY instance of KSZ80xx.
The phy model from the KSZ80xx series is detected automatically. If the driver is unable to detect a supported
model, NULL is returned.
Currently, the following models are supported: KSZ8001, KSZ8021, KSZ8031, KSZ8041, KSZ8051,
KSZ8061, KSZ8081, KSZ8091

Parameters config -- [in] configuration of PHY
Returns

• instance: create PHY instance successfully
• NULL: create PHY instance failed because some error occurred

Structures

struct esp_eth_phy_s
Ethernet PHY.

Public Members

esp_err_t (*set_mediator)(esp_eth_phy_t *phy, esp_eth_mediator_t *mediator)
Set mediator for PHY.

Param phy [in] Ethernet PHY instance
Param mediator [in] mediator of Ethernet driver
Return

• ESP_OK: set mediator for Ethernet PHY instance successfully
• ESP_ERR_INVALID_ARG: set mediator for Ethernet PHY instance failed because of
some invalid arguments

esp_err_t (*reset)(esp_eth_phy_t *phy)
Software Reset Ethernet PHY.

Param phy [in] Ethernet PHY instance

Espressif Systems 788
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Return
• ESP_OK: reset Ethernet PHY successfully
• ESP_FAIL: reset Ethernet PHY failed because some error occurred

esp_err_t (*reset_hw)(esp_eth_phy_t *phy)
Hardware Reset Ethernet PHY.

Note: Hardware reset is mostly done by pull down and up PHY's nRST pin

Param phy [in] Ethernet PHY instance
Return

• ESP_OK: reset Ethernet PHY successfully
• ESP_FAIL: reset Ethernet PHY failed because some error occurred

esp_err_t (*init)(esp_eth_phy_t *phy)
Initialize Ethernet PHY.

Param phy [in] Ethernet PHY instance
Return

• ESP_OK: initialize Ethernet PHY successfully
• ESP_FAIL: initialize Ethernet PHY failed because some error occurred

esp_err_t (*deinit)(esp_eth_phy_t *phy)
Deinitialize Ethernet PHY.

Param phy [in] Ethernet PHY instance
Return

• ESP_OK: deinitialize Ethernet PHY successfully
• ESP_FAIL: deinitialize Ethernet PHY failed because some error occurred

esp_err_t (*autonego_ctrl)(esp_eth_phy_t *phy, eth_phy_autoneg_cmd_t cmd, bool *autonego_en_stat)
Configure auto negotiation.

Param phy [in] Ethernet PHY instance
Param cmd [in] Configuration command, it is possible to Enable (restart), Disable or get cur-

rent status of PHY auto negotiation
Param autonego_en_stat [out]Address where to store current status of auto negotiation con-

figuration
Return

• ESP_OK: restart auto negotiation successfully
• ESP_FAIL: restart auto negotiation failed because some error occurred
• ESP_ERR_INVALID_ARG: invalid command

esp_err_t (*get_link)(esp_eth_phy_t *phy)
Get Ethernet PHY link status.

Param phy [in] Ethernet PHY instance
Return

• ESP_OK: get Ethernet PHY link status successfully
• ESP_FAIL: get Ethernet PHY link status failed because some error occurred

esp_err_t (*set_link)(esp_eth_phy_t *phy, eth_link_t link)
Set Ethernet PHY link status.

Param phy [in] Ethernet PHY instance

Espressif Systems 789
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Param link [in] new link status
Return

• ESP_OK: set Ethernet PHY link status successfully
• ESP_FAIL: set Ethernet PHY link status failed because some error occurred

esp_err_t (*pwrctl)(esp_eth_phy_t *phy, bool enable)
Power control of Ethernet PHY.

Param phy [in] Ethernet PHY instance
Param enable [in] set true to power on Ethernet PHY; ser false to power off Ethernet PHY
Return

• ESP_OK: control Ethernet PHY power successfully
• ESP_FAIL: control Ethernet PHY power failed because some error occurred

esp_err_t (*set_addr)(esp_eth_phy_t *phy, uint32_t addr)
Set PHY chip address.

Param phy [in] Ethernet PHY instance
Param addr [in] PHY chip address
Return

• ESP_OK: set Ethernet PHY address successfully
• ESP_FAIL: set Ethernet PHY address failed because some error occurred

esp_err_t (*get_addr)(esp_eth_phy_t *phy, uint32_t *addr)
Get PHY chip address.

Param phy [in] Ethernet PHY instance
Param addr [out] PHY chip address
Return

• ESP_OK: get Ethernet PHY address successfully
• ESP_ERR_INVALID_ARG: get Ethernet PHY address failed because of invalid argu-
ment

esp_err_t (*advertise_pause_ability)(esp_eth_phy_t *phy, uint32_t ability)
Advertise pause function supported by MAC layer.

Param phy [in] Ethernet PHY instance
Param addr [out] Pause ability
Return

• ESP_OK: Advertise pause ability successfully
• ESP_ERR_INVALID_ARG: Advertise pause ability failed because of invalid argument

esp_err_t (*loopback)(esp_eth_phy_t *phy, bool enable)
Sets the PHY to loopback mode.

Param phy [in] Ethernet PHY instance
Param enable [in] enables or disables PHY loopback
Return

• ESP_OK: PHY instance loopback mode has been configured successfully
• ESP_FAIL: PHY instance loopback configuration failed because some error occurred

esp_err_t (*set_speed)(esp_eth_phy_t *phy, eth_speed_t speed)
Sets PHY speed mode.

Note: Autonegotiation feature needs to be disabled prior to calling this function for the new setting to
be applied

Espressif Systems 790
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Param phy [in] Ethernet PHY instance
Param speed [in] Speed mode to be set
Return

• ESP_OK: PHY instance speed mode has been configured successfully
• ESP_FAIL: PHY instance speed mode configuration failed because some error occurred

esp_err_t (*set_duplex)(esp_eth_phy_t *phy, eth_duplex_t duplex)
Sets PHY duplex mode.

Note: Autonegotiation feature needs to be disabled prior to calling this function for the new setting to
be applied

Param phy [in] Ethernet PHY instance
Param duplex [in] Duplex mode to be set
Return

• ESP_OK: PHY instance duplex mode has been configured successfully
• ESP_FAIL: PHY instance duplex mode configuration failed because some error oc-
curred

esp_err_t (*custom_ioctl)(esp_eth_phy_t *phy, uint32_t cmd, void *data)
Custom IO function of PHY driver. This function is intended to extend common options of esp_eth_ioctl
to cover specifics of PHY chip.

Note: This function may not be assigned when the PHY chip supports only most common set of con-
figuration options.

Param phy [in] Ethernet PHY instance
Param cmd [in] IO control command
Param data [inout] address of data for set command or address where to store the data

when used with get command
Return

• ESP_OK: process io command successfully
• ESP_ERR_INVALID_ARG: process io command failed because of some invalid argu-
ment

• ESP_FAIL: process io command failed because some other error occurred
• ESP_ERR_NOT_SUPPORTED: requested feature is not supported

esp_err_t (*del)(esp_eth_phy_t *phy)
Free memory of Ethernet PHY instance.

Param phy [in] Ethernet PHY instance
Return

• ESP_OK: free PHY instance successfully
• ESP_FAIL: free PHY instance failed because some error occurred

struct eth_phy_config_t
Ethernet PHY configuration.

Public Members

Espressif Systems 791
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int32_t phy_addr
PHY address, set -1 to enable PHY address detection at initialization stage

uint32_t reset_timeout_ms
Reset timeout value (Unit: ms)

uint32_t autonego_timeout_ms
Auto-negotiation timeout value (Unit: ms)

int reset_gpio_num
Reset GPIO number, -1 means no hardware reset

Macros

ESP_ETH_PHY_ADDR_AUTO

ETH_PHY_DEFAULT_CONFIG()

Default configuration for Ethernet PHY object.

Type Definitions

typedef struct esp_eth_phy_s esp_eth_phy_t
Ethernet PHY.

Enumerations

enum eth_phy_autoneg_cmd_t

Auto-negotiation controll commands.
Values:

enumerator ESP_ETH_PHY_AUTONEGO_RESTART

enumerator ESP_ETH_PHY_AUTONEGO_EN

enumerator ESP_ETH_PHY_AUTONEGO_DIS

enumerator ESP_ETH_PHY_AUTONEGO_G_STAT

Header File
• components/esp_eth/include/esp_eth_phy_802_3.h

Functions
esp_err_t esp_eth_phy_802_3_set_mediator(phy_802_3_t *phy_802_3, esp_eth_mediator_t *eth)

Set Ethernet mediator.
Parameters

• phy_802_3 -- IEEE 802.3 PHY object infostructure
• eth -- Ethernet mediator pointer

Returns
• ESP_OK: Ethermet mediator set successfuly
• ESP_ERR_INVALID_ARG: if eth is NULL

Espressif Systems 792
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/include/esp_eth_phy_802_3.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_eth_phy_802_3_reset(phy_802_3_t *phy_802_3)
Reset PHY.

Parameters phy_802_3 -- IEEE 802.3 PHY object infostructure
Returns

• ESP_OK: Ethernet PHY reset successfuly
• ESP_FAIL: reset Ethernet PHY failed because some error occured

esp_err_t esp_eth_phy_802_3_autonego_ctrl(phy_802_3_t *phy_802_3, eth_phy_autoneg_cmd_t
cmd, bool *autonego_en_stat)

Control autonegotiation mode of Ethernet PHY.
Parameters

• phy_802_3 -- IEEE 802.3 PHY object infostructure
• cmd -- autonegotiation command enumeration
• autonego_en_stat -- [out] autonegotiation enabled flag

Returns
• ESP_OK: Ethernet PHY autonegotiation configured successfuly
• ESP_FAIL: Ethernet PHY autonegotiation configuration fail because some error occured
• ESP_ERR_INVALID_ARG: invalid value of cmd

esp_err_t esp_eth_phy_802_3_pwrctl(phy_802_3_t *phy_802_3, bool enable)
Power control of Ethernet PHY.

Parameters
• phy_802_3 -- IEEE 802.3 PHY object infostructure
• enable -- set true to power ON Ethernet PHY; set false to power OFF Ethernet PHY

Returns
• ESP_OK: Ethernet PHY power down mode set successfuly
• ESP_FAIL: Ethernet PHY power up or power down failed because some error occured

esp_err_t esp_eth_phy_802_3_set_addr(phy_802_3_t *phy_802_3, uint32_t addr)
Set Ethernet PHY address.

Parameters
• phy_802_3 -- IEEE 802.3 PHY object infostructure
• addr -- new PHY address

Returns
• ESP_OK: Ethernet PHY address set

esp_err_t esp_eth_phy_802_3_get_addr(phy_802_3_t *phy_802_3, uint32_t *addr)
Get Ethernet PHY address.

Parameters
• phy_802_3 -- IEEE 802.3 PHY object infostructure
• addr -- [out] Ethernet PHY address

Returns
• ESP_OK: Ethernet PHY address read successfuly
• ESP_ERR_INVALID_ARG: addr pointer is NULL

esp_err_t esp_eth_phy_802_3_advertise_pause_ability(phy_802_3_t *phy_802_3, uint32_t
ability)

Advertise pause function ability.
Parameters

• phy_802_3 -- IEEE 802.3 PHY object infostructure
• ability -- enable or disable pause ability

Returns
• ESP_OK: pause ability set successfuly
• ESP_FAIL: Advertise pause function ability failed because some error occured

Espressif Systems 793
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_eth_phy_802_3_loopback(phy_802_3_t *phy_802_3, bool enable)
Set Ethernet PHY loopback mode.

Parameters
• phy_802_3 -- IEEE 802.3 PHY object infostructure
• enable -- set true to enable loopback; set false to disable loopback

Returns
• ESP_OK: Ethernet PHY loopback mode set successfuly
• ESP_FAIL: Ethernet PHY loopback configuration failed because some error occured

esp_err_t esp_eth_phy_802_3_set_speed(phy_802_3_t *phy_802_3, eth_speed_t speed)
Set Ethernet PHY speed.

Parameters
• phy_802_3 -- IEEE 802.3 PHY object infostructure
• speed -- new speed of Ethernet PHY link

Returns
• ESP_OK: Ethernet PHY speed set successfuly
• ESP_FAIL: Set Ethernet PHY speed failed because some error occured

esp_err_t esp_eth_phy_802_3_set_duplex(phy_802_3_t *phy_802_3, eth_duplex_t duplex)
Set Ethernet PHY duplex mode.

Parameters
• phy_802_3 -- IEEE 802.3 PHY object infostructure
• duplex -- new duplex mode for Ethernet PHY link

Returns
• ESP_OK: Ethernet PHY duplex mode set successfuly
• ESP_ERR_INVALID_STATE: unable to set duplex mode to Half if loopback is enabled
• ESP_FAIL: Set Ethernet PHY duplex mode failed because some error occured

esp_err_t esp_eth_phy_802_3_set_link(phy_802_3_t *phy_802_3, eth_link_t link)
Set Ethernet PHY link status.

Parameters
• phy_802_3 -- IEEE 802.3 PHY object infostructure
• link -- new link status

Returns
• ESP_OK: Ethernet PHY link set successfuly

esp_err_t esp_eth_phy_802_3_init(phy_802_3_t *phy_802_3)
Initialize Ethernet PHY.

Parameters phy_802_3 -- IEEE 802.3 PHY object infostructure
Returns

• ESP_OK: Ethernet PHY initialized successfuly
esp_err_t esp_eth_phy_802_3_deinit(phy_802_3_t *phy_802_3)

Power off Eternet PHY.
Parameters phy_802_3 -- IEEE 802.3 PHY object infostructure
Returns

• ESP_OK: Ethernet PHY powered off successfuly
esp_err_t esp_eth_phy_802_3_del(phy_802_3_t *phy_802_3)

Delete Ethernet PHY infostructure.
Parameters phy_802_3 -- IEEE 802.3 PHY object infostructure
Returns

• ESP_OK: Ethrnet PHY infostructure deleted
esp_err_t esp_eth_phy_802_3_reset_hw(phy_802_3_t *phy_802_3, uint32_t reset_assert_us)

Performs hardware reset with specific reset pin assertion time.

Espressif Systems 794
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• phy_802_3 -- IEEE 802.3 PHY object infostructure
• reset_assert_us -- Hardware reset pin assertion time

Returns
• ESP_OK: reset Ethernet PHY successfully

esp_err_t esp_eth_phy_802_3_detect_phy_addr(esp_eth_mediator_t *eth, int *detected_addr)
Detect PHY address.

Parameters
• eth -- Mediator of Ethernet driver
• detected_addr -- [out] a valid address after detection

Returns
• ESP_OK: detect phy address successfully
• ESP_ERR_INVALID_ARG: invalid parameter
• ESP_ERR_NOT_FOUND: can't detect any PHY device
• ESP_FAIL: detect phy address failed because some error occurred

esp_err_t esp_eth_phy_802_3_basic_phy_init(phy_802_3_t *phy_802_3)
Performs basic PHY chip initialization.

Note: It should be called as the first function in PHY specific driver instance

Parameters phy_802_3 -- IEEE 802.3 PHY object infostructure
Returns

• ESP_OK: initialized Ethernet PHY successfully
• ESP_FAIL: initialization of Ethernet PHY failed because some error occurred
• ESP_ERR_INVALID_ARG: invalid argument
• ESP_ERR_NOT_FOUND: PHY device not detected
• ESP_ERR_TIMEOUT: MII Management read/write operation timeout
• ESP_ERR_INVALID_STATE: PHY is in invalid state to perform requested operation

esp_err_t esp_eth_phy_802_3_basic_phy_deinit(phy_802_3_t *phy_802_3)
Performs basic PHY chip de-initialization.

Note: It should be called as the last function in PHY specific driver instance

Parameters phy_802_3 -- IEEE 802.3 PHY object infostructure
Returns

• ESP_OK: de-initialized Ethernet PHY successfully
• ESP_FAIL: de-initialization of Ethernet PHY failed because some error occurred
• ESP_ERR_TIMEOUT: MII Management read/write operation timeout
• ESP_ERR_INVALID_STATE: PHY is in invalid state to perform requested operation

esp_err_t esp_eth_phy_802_3_read_oui(phy_802_3_t *phy_802_3, uint32_t *oui)
Reads raw content of OUI field.

Parameters
• phy_802_3 -- IEEE 802.3 PHY object infostructure
• oui -- [out] OUI value

Returns
• ESP_OK: OUI field read successfully
• ESP_FAIL: OUI field read failed because some error occurred
• ESP_ERR_INVALID_ARG: invalid oui argument
• ESP_ERR_TIMEOUT: MII Management read/write operation timeout
• ESP_ERR_INVALID_STATE: PHY is in invalid state to perform requested operation

Espressif Systems 795
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_eth_phy_802_3_read_manufac_info(phy_802_3_t *phy_802_3, uint8_t *model,
uint8_t *rev)

Reads manufacturer’s model and revision number.
Parameters

• phy_802_3 -- IEEE 802.3 PHY object infostructure
• model -- [out]Manufacturer’s model number (can be NULL when not required)
• rev -- [out]Manufacturer’s revision number (can be NULL when not required)

Returns
• ESP_OK: Manufacturer’s info read successfully
• ESP_FAIL: Manufacturer’s info read failed because some error occurred
• ESP_ERR_TIMEOUT: MII Management read/write operation timeout
• ESP_ERR_INVALID_STATE: PHY is in invalid state to perform requested operation

esp_err_t esp_eth_phy_802_3_get_mmd_addr(phy_802_3_t *phy_802_3, uint8_t devaddr, uint16_t
*mmd_addr)

Reads MDIO device's internal address register.
Parameters

• phy_802_3 -- IEEE 802.3 PHY object infostructure
• devaddr -- Address of MDIO device
• mmd_addr -- [out] Current address stored in device's register

Returns
• ESP_OK: Address register read successfuly
• ESP_FAIL: Address register read failed because of some error occured
• ESP_ERR_INVALID_ARG: Device address provided is out of range (hardware limits
device address to 5 bits)

esp_err_t esp_eth_phy_802_3_set_mmd_addr(phy_802_3_t *phy_802_3, uint8_t devaddr, uint16_t
mmd_addr)

Write to DIO device's internal address register.
Parameters

• phy_802_3 -- IEEE 802.3 PHY object infostructure
• devaddr -- Address of MDIO device
• mmd_addr -- [out] New value of MDIO device's address register value

Returns
• ESP_OK: Address register written to successfuly
• ESP_FAIL: Address register write failed because of some error occured
• ESP_ERR_INVALID_ARG: Device address provided is out of range (hardware limits
device address to 5 bits)

esp_err_t esp_eth_phy_802_3_read_mmd_data(phy_802_3_t *phy_802_3, uint8_t devaddr,
esp_eth_phy_802_3_mmd_func_t function, uint32_t
*data)

Read data of MDIO device's memory at address register.
Parameters

• phy_802_3 -- IEEE 802.3 PHY object infostructure
• devaddr -- Address of MDIO device
• function -- MMD function
• data -- [out] Data read from the device's memory

Returns
• ESP_OK: Memory read successfuly
• ESP_FAIL: Memory read failed because of some error occured
• ESP_ERR_INVALID_ARG: Device address provided is out of range (hardware limits
device address to 5 bits) or MMD access function is invalid

esp_err_t esp_eth_phy_802_3_write_mmd_data(phy_802_3_t *phy_802_3, uint8_t devaddr,
esp_eth_phy_802_3_mmd_func_t function, uint32_t
data)

Espressif Systems 796
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Write data to MDIO device's memory at address register.
Parameters

• phy_802_3 -- IEEE 802.3 PHY object infostructure
• devaddr -- Address of MDIO device
• function -- MMD function
• data -- [out] Data to write to the device's memory

Returns
• ESP_OK: Memory written successfuly
• ESP_FAIL: Memory write failed because of some error occured
• ESP_ERR_INVALID_ARG: Device address provided is out of range (hardware limits
device address to 5 bits) or MMD access function is invalid

esp_err_t esp_eth_phy_802_3_read_mmd_register(phy_802_3_t *phy_802_3, uint8_t devaddr,
uint16_t mmd_addr, uint32_t *data)

Set MMD address to mmd_addr with function MMD_FUNC_NOINCR and read contents to *data.
Parameters

• phy_802_3 -- IEEE 802.3 PHY object infostructure
• devaddr -- Address of MDIO device
• mmd_addr -- Address of MDIO device register
• data -- [out] Data read from the device's memory

Returns
• ESP_OK: Memory read successfuly
• ESP_FAIL: Memory read failed because of some error occured
• ESP_ERR_INVALID_ARG: Device address provided is out of range (hardware limits
device address to 5 bits)

esp_err_t esp_eth_phy_802_3_write_mmd_register(phy_802_3_t *phy_802_3, uint8_t devaddr,
uint16_t mmd_addr, uint32_t data)

Set MMD address to mmd_addr with function MMD_FUNC_NOINCR and write data.
Parameters

• phy_802_3 -- IEEE 802.3 PHY object infostructure
• devaddr -- Address of MDIO device
• mmd_addr -- Address of MDIO device register
• data -- [out] Data to write to the device's memory

Returns
• ESP_OK: Memory written to successfuly
• ESP_FAIL: Memory write failed because of some error occured
• ESP_ERR_INVALID_ARG: Device address provided is out of range (hardware limits
device address to 5 bits)

inline phy_802_3_t *esp_eth_phy_into_phy_802_3(esp_eth_phy_t *phy)
Returns address to parent IEEE 802.3 PHY object infostructure.

Parameters phy -- Ethernet PHY instance
Returns phy_802_3_t*

• address to parent IEEE 802.3 PHY object infostructure
esp_err_t esp_eth_phy_802_3_obj_config_init(phy_802_3_t *phy_802_3, const eth_phy_config_t

*config)
Initializes configuration of parent IEEE 802.3 PHY object infostructure.

Parameters
• phy_802_3 -- Address to IEEE 802.3 PHY object infostructure
• config -- Configuration of the IEEE 802.3 PHY object

Returns
• ESP_OK: configuration initialized successfully
• ESP_ERR_INVALID_ARG: invalid config argument

Espressif Systems 797
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Structures

struct phy_802_3_t
IEEE 802.3 PHY object infostructure.

Public Members

esp_eth_phy_t parent

Parent Ethernet PHY instance

esp_eth_mediator_t *eth
Mediator of Ethernet driver

int addr
PHY address

uint32_t reset_timeout_ms
Reset timeout value (Unit: ms)

uint32_t autonego_timeout_ms
Auto-negotiation timeout value (Unit: ms)

eth_link_t link_status
Current Link status

int reset_gpio_num
Reset GPIO number, -1 means no hardware reset

Enumerations

enum esp_eth_phy_802_3_mmd_func_t

IEEE 802.3 MMD modes enumeration.
Values:

enumerator MMD_FUNC_ADDRESS

enumerator MMD_FUNC_DATA_NOINCR

enumerator MMD_FUNC_DATA_RWINCR

enumerator MMD_FUNC_DATA_WINCR

Header File
• components/esp_eth/include/esp_eth_netif_glue.h

Espressif Systems 798
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/include/esp_eth_netif_glue.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_eth_netif_glue_handle_t esp_eth_new_netif_glue(esp_eth_handle_t eth_hdl)

Create a netif glue for Ethernet driver.

Note: netif glue is used to attach io driver to TCP/IP netif

Parameters eth_hdl -- Ethernet driver handle
Returns glue object, which inherits esp_netif_driver_base_t

esp_err_t esp_eth_del_netif_glue(esp_eth_netif_glue_handle_t eth_netif_glue)
Delete netif glue of Ethernet driver.

Parameters eth_netif_glue -- netif glue
Returns -ESP_OK: delete netif glue successfully

Type Definitions

typedef struct esp_eth_netif_glue_t *esp_eth_netif_glue_handle_t
Handle of netif glue - an intermediate layer between netif and Ethernet driver.

Code examples for the Ethernet API are provided in the ethernet directory of ESP-IDF examples.

2.5.3 Thread

Thread

Introduction Thread is a IP-based mesh networking protocol. It's based on the 802.15.4 physical and MAC layer.

Application Examples The openthread directory of ESP-IDF examples contains the following applications:
• The OpenThread interactive shell openthread/ot_cli.
• The Thread border router openthread/ot_br.
• The Thread radio co-processor openthread/ot_rcp.
• openthread/ot_trel demonstrates Thread Radio Encapsulation Link (TREL) function. This requires a board
equipped with a Wi-Fi module.

• openthread/ot_sleepy_device/deep_sleep demonstrates Thread Deep-sleep function.
• openthread/ot_sleepy_device/light_sleep demonstrates Thread Light-sleep function.

API Reference For manipulating the Thread network, the OpenThread api shall be used. The OpenThread api
docs can be found at the OpenThread official website.
ESP-IDF provides extra apis for launching and managing the OpenThread stack, binding to network interfaces and
border routing features.

Header File
• components/openthread/include/esp_openthread.h

Functions
esp_err_t esp_openthread_init(const esp_openthread_platform_config_t *init_config)

Initializes the full OpenThread stack.

Note: The OpenThread instance will also be initialized in this function.

Espressif Systems 799
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/ethernet
https://www.threadgroup.org
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/openthread
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/openthread/ot_cli
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/openthread/ot_br
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/openthread/ot_rcp
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/openthread/ot_trel
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/openthread/ot_sleepy_device/deep_sleep
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/openthread/ot_sleepy_device/light_sleep
https://openthread.io/reference
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/openthread/include/esp_openthread.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters init_config -- [in] The initialization configuration.
Returns

• ESP_OK on success
• ESP_ERR_NO_MEM if allocation has failed
• ESP_ERR_INVALID_ARG if radio or host connection mode not supported
• ESP_ERR_INVALID_STATE if already initialized

esp_err_t esp_openthread_auto_start(otOperationalDatasetTlvs *datasetTlvs)
Starts the Thread protocol operation and attaches to a Thread network.

Parameters datasetTlvs -- [in] The operational dataset (TLV encoded), if it's NULL, the
function will generate the dataset based on the configurations from kconfig.

Returns
• ESP_OK on success
• ESP_FAIL on failures

esp_err_t esp_openthread_launch_mainloop(void)
Launches the OpenThread main loop.

Note: This function will not return unless error happens when running the OpenThread stack.

Returns
• ESP_OK on success
• ESP_ERR_NO_MEM if allocation has failed
• ESP_FAIL on other failures

esp_err_t esp_openthread_deinit(void)
This function performs OpenThread stack and platform driver deinitialization.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if not initialized

otInstance *esp_openthread_get_instance(void)
This function acquires the underlying OpenThread instance.

Note: This function can be called on other tasks without lock.

Returns The OpenThread instance pointer

esp_err_t esp_openthread_mainloop_exit(void)
Signals the OpenThread main loop to exit.

Returns
• ESP_OK on success
• ESP_FAIL on failures

esp_err_t esp_openthread_start(const esp_openthread_config_t *config)
Starts the full OpenThread stack and create a handle task.

Note: The OpenThread instance will also be initialized in this function.

Parameters config -- [in] The OpenThread platform configuration.
Returns

• ESP_OK on success
• ESP_ERR_INVALID_STATE if already initialized

Espressif Systems 800
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_openthread_stop(void)
This function performs OpenThread stack and platform driver deinitialization and delete the handle task.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if Thread is already active

Header File
• components/openthread/include/esp_openthread_types.h

Structures

struct esp_openthread_role_changed_event_t
OpenThread role changed event data.

Public Members

otDeviceRole previous_role
Previous Thread role

otDeviceRole current_role
Current Thread role

struct esp_openthread_dataset_changed_event_t
OpenThread dataset changed event data.

Public Members

esp_openthread_dataset_type_t type

Dataset type

otOperationalDataset new_dataset
New dataset

struct esp_openthread_mainloop_context_t
This structure represents a context for a select() based mainloop.

Public Members

fd_set read_fds
The read file descriptors

fd_set write_fds
The write file descriptors

fd_set error_fds
The error file descriptors

Espressif Systems 801
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/openthread/include/esp_openthread_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int max_fd
The max file descriptor

struct timeval timeout
The timeout

struct esp_openthread_uart_config_t
The uart port config for OpenThread.

Public Members

uart_port_t port

UART port number

uart_config_t uart_config

UART configuration, see uart_config_t docs

gpio_num_t rx_pin

UART RX pin

gpio_num_t tx_pin

UART TX pin

struct esp_openthread_spi_host_config_t
The spi port config for OpenThread.

Public Members

spi_host_device_t host_device

SPI host device

spi_dma_chan_t dma_channel

DMA channel

spi_bus_config_t spi_interface

SPI bus

spi_device_interface_config_t spi_device

SPI peripheral device

gpio_num_t intr_pin

SPI interrupt pin

struct esp_openthread_spi_slave_config_t
The spi slave config for OpenThread.

Espressif Systems 802
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

spi_host_device_t host_device

SPI host device

spi_bus_config_t bus_config

SPI bus config

spi_slave_interface_config_t slave_config

SPI slave config

gpio_num_t intr_pin

SPI interrupt pin

struct esp_openthread_radio_config_t
The OpenThread radio configuration.

Public Members

esp_openthread_radio_mode_t radio_mode

The radio mode

esp_openthread_uart_config_t radio_uart_config

The uart configuration to RCP

esp_openthread_spi_host_config_t radio_spi_config

The spi configuration to RCP

struct esp_openthread_host_connection_config_t
The OpenThread host connection configuration.

Public Members

esp_openthread_host_connection_mode_t host_connection_mode

The host connection mode

esp_openthread_uart_config_t host_uart_config

The uart configuration to host

usb_serial_jtag_driver_config_t host_usb_config
The usb configuration to host

esp_openthread_spi_slave_config_t spi_slave_config

The spi configuration to host

struct esp_openthread_port_config_t
The OpenThread port specific configuration.

Espressif Systems 803
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

const char *storage_partition_name
The partition for storing OpenThread dataset

uint8_t netif_queue_size
The packet queue size for the network interface

uint8_t task_queue_size
The task queue size

struct esp_openthread_platform_config_t
The OpenThread platform configuration.

Public Members

esp_openthread_radio_config_t radio_config

The radio configuration

esp_openthread_host_connection_config_t host_config

The host connection configuration

esp_openthread_port_config_t port_config

The port configuration

struct esp_openthread_config_t
The OpenThread configuration.

Public Members

esp_netif_config_t netif_config

The netif configuration

esp_openthread_platform_config_t platform_config

The platform configuration

Type Definitions

typedef void (*esp_openthread_rcp_failure_handler)(void)
The OpenThread rcp failure handler.

typedef void (*esp_openthread_compatibility_error_callback)(void)
The OpenThread compatibility error callback.

typedef void (*esp_openthread_coprocessor_reset_failure_callback)(void)
The OpenThread co-processor reset failure callback.

Espressif Systems 804
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enumerations

enum esp_openthread_event_t

OpenThread event declarations.
Values:

enumerator OPENTHREAD_EVENT_START
OpenThread stack start

enumerator OPENTHREAD_EVENT_STOP
OpenThread stack stop

enumerator OPENTHREAD_EVENT_DETACHED
OpenThread detached

enumerator OPENTHREAD_EVENT_ATTACHED
OpenThread attached

enumerator OPENTHREAD_EVENT_ROLE_CHANGED
OpenThread role changed

enumerator OPENTHREAD_EVENT_IF_UP
OpenThread network interface up

enumerator OPENTHREAD_EVENT_IF_DOWN
OpenThread network interface down

enumerator OPENTHREAD_EVENT_GOT_IP6
OpenThread stack added IPv6 address

enumerator OPENTHREAD_EVENT_LOST_IP6
OpenThread stack removed IPv6 address

enumerator OPENTHREAD_EVENT_MULTICAST_GROUP_JOIN
OpenThread stack joined IPv6 multicast group

enumerator OPENTHREAD_EVENT_MULTICAST_GROUP_LEAVE
OpenThread stack left IPv6 multicast group

enumerator OPENTHREAD_EVENT_TREL_ADD_IP6
OpenThread stack added TREL IPv6 address

enumerator OPENTHREAD_EVENT_TREL_REMOVE_IP6
OpenThread stack removed TREL IPv6 address

enumerator OPENTHREAD_EVENT_TREL_MULTICAST_GROUP_JOIN
OpenThread stack joined TREL IPv6 multicast group

enumerator OPENTHREAD_EVENT_SET_DNS_SERVER
OpenThread stack set DNS server >

Espressif Systems 805
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator OPENTHREAD_EVENT_PUBLISH_MESHCOP_E
OpenThread stack start to publish meshcop-e service >

enumerator OPENTHREAD_EVENT_REMOVE_MESHCOP_E
OpenThread stack start to remove meshcop-e service >

enumerator OPENTHREAD_EVENT_DATASET_CHANGED
OpenThread dataset changed >

enum esp_openthread_dataset_type_t

OpenThread dataset type.
Values:

enumerator OPENTHREAD_ACTIVE_DATASET
Active dataset

enumerator OPENTHREAD_PENDING_DATASET
Pending dataset

enum esp_openthread_radio_mode_t

The radio mode of OpenThread.
Values:

enumerator RADIO_MODE_NATIVE
Use the native 15.4 radio

enumerator RADIO_MODE_UART_RCP
UART connection to a 15.4 capable radio co-processor (RCP)

enumerator RADIO_MODE_SPI_RCP
SPI connection to a 15.4 capable radio co-processor (RCP)

enumerator RADIO_MODE_TREL
Use the Thread Radio Encapsulation Link (TREL)

enumerator RADIO_MODE_MAX
Using for parameter check

enum esp_openthread_host_connection_mode_t

How OpenThread connects to the host.
Values:

enumerator HOST_CONNECTION_MODE_NONE
Disable host connection

enumerator HOST_CONNECTION_MODE_CLI_UART
CLI UART connection to the host

Espressif Systems 806
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator HOST_CONNECTION_MODE_CLI_USB
CLI USB connection to the host

enumerator HOST_CONNECTION_MODE_RCP_UART
RCP UART connection to the host

enumerator HOST_CONNECTION_MODE_RCP_SPI
RCP SPI connection to the host

enumerator HOST_CONNECTION_MODE_MAX
Using for parameter check

Header File
• components/openthread/include/esp_openthread_lock.h

Functions
esp_err_t esp_openthread_lock_init(void)

This function initializes the OpenThread API lock.
Returns

• ESP_OK on success
• ESP_ERR_NO_MEM if allocation has failed
• ESP_ERR_INVALID_STATE if already initialized

void esp_openthread_lock_deinit(void)
This function deinitializes the OpenThread API lock.

bool esp_openthread_lock_acquire(TickType_t block_ticks)
This function acquires the OpenThread API lock.

Note: Every Openthread APIs that takes an otInstance argument MUST be protected with this API lock
except that the call site is in Openthread callbacks.

Parameters block_ticks -- [in] The maximum number of RTOS ticks to wait for the lock.
Returns

• True on lock acquired
• False on failing to acquire the lock with the timeout.

void esp_openthread_lock_release(void)
This function releases the OpenThread API lock.

bool esp_openthread_task_switching_lock_acquire(TickType_t block_ticks)
This function acquires the OpenThread API task switching lock.

Note: In OpenThread API context, it waits for some actions to be done in other tasks (like lwip), after task
switching, it needs to call OpenThread API again. Normally it's not allowed, since the previous OpenThread
API lock is not released yet. This task_switching lock allows the OpenThread API can be called in this case.

Note: Please use esp_openthread_lock_acquire() for normal cases.

Parameters block_ticks -- [in] The maximum number of RTOS ticks to wait for the lock.

Espressif Systems 807
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/openthread/include/esp_openthread_lock.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• True on lock acquired
• False on failing to acquire the lock with the timeout.

void esp_openthread_task_switching_lock_release(void)
This function releases the OpenThread API task switching lock.

Note: This API must be called after esp_openthread_task_switching_lock_acquire or
esp_openthread_lock_acquire and will cause a crash if the current task is not the task switching
lock holder. This error could be caused by calling OpenThread APIs without locking OpenThread stack.

Header File
• components/openthread/include/esp_openthread_netif_glue.h

Functions
void *esp_openthread_netif_glue_init(const esp_openthread_platform_config_t *config)

This function initializes the OpenThread network interface glue.
Parameters config -- [in] The platform configuration.
Returns

• glue pointer on success
• NULL on failure

void esp_openthread_netif_glue_deinit(void)
This function deinitializes the OpenThread network interface glue.

esp_netif_t *esp_openthread_get_netif(void)
This function acquires the OpenThread netif.

Returns The OpenThread netif or NULL if not initialzied.
void esp_openthread_register_meshcop_e_handler(esp_event_handler_t handler, bool

for_publish)
This function register a handler for meshcop-e service publish event and remove event.

Parameters
• handler -- [in] The handler.
• for_publish -- [in] The usage of handler, true for publish event and false for remove
event.

bool is_openthread_internal_mesh_local_addr(const otIp6Address *address)
This function judges the target address is openthread mesh local or not.

Parameters address -- [in] The address.
Returns

• True if the address is openthread mesh local, otherwise false

Macros
ESP_NETIF_INHERENT_DEFAULT_OPENTHREAD()

Default configuration reference of OpenThread esp-netif.
ESP_NETIF_DEFAULT_OPENTHREAD()

Header File
• components/openthread/include/esp_openthread_border_router.h

Espressif Systems 808
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/openthread/include/esp_openthread_netif_glue.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/openthread/include/esp_openthread_border_router.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
void esp_openthread_set_backbone_netif(esp_netif_t *backbone_netif)

Sets the backbone interface used for border routing.

Note: This function must be called before esp_openthread_init

Parameters backbone_netif -- [in] The backbone network interface (WiFi or ethernet)
esp_err_t esp_openthread_border_router_init(void)

Initializes the border router features of OpenThread.

Note: Calling this function will make the device behave as an OpenThread border router. Kconfig option
CONFIG_OPENTHREAD_BORDER_ROUTER is required.

Returns
• ESP_OK on success
• ESP_ERR_NOT_SUPPORTED if feature not supported
• ESP_ERR_INVALID_STATE if already initialized
• ESP_FIAL on other failures

esp_err_t esp_openthread_border_router_deinit(void)
Deinitializes the border router features of OpenThread.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if not initialized
• ESP_FIAL on other failures

esp_netif_t *esp_openthread_get_backbone_netif(void)
Gets the backbone interface of OpenThread border router.

Returns The backbone interface or NULL if border router not initialized.
esp_err_t esp_openthread_set_meshcop_instance_name(const char *instance_name)

Sets the meshcop(e) instance name.

Note: This function can only be called before esp_openthread_border_router_init. If in-
stance_name is NULL, then the service will use the hostname as instance name.

Parameters instance_name -- [in] The instance name, can be NULL.
Returns

• ESP_OK on success
• ESP_FAIL if fail to initialize RCP

const char *esp_openthread_get_meshcop_instance_name(void)
Gets the meshcop(e) instance name.

Returns The instance name.
Thread is an IPv6-based mesh networking technology for IoT. Code examples for the Thread API are provided in
the openthread directory of ESP-IDF examples.

Espressif Systems 809
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/openthread
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.5.4 ESP-NETIF

ESP-NETIF

The purpose of ESP-NETIF library is twofold:
• It provides an abstraction layer for the application on top of the TCP/IP stack. This will allow applications to
choose between IP stacks in the future.

• The APIs it provides are thread safe, even if the underlying TCP/IP stack APIs are not.
ESP-IDF currently implements ESP-NETIF for the lwIP TCP/IP stack only. However, the adapter itself is TCP/IP
implementation agnostic and different implementations are possible.
It is also possible to use a custom TCP/IP stack with ESP-IDF, provided it implements BSD API. For more infor-
mation on building ESP-IDF without lwIP, please refer to components/esp_netif_stack/README.md.
Some ESP-NETIF API functions are intended to be called by application code, for example to get/set interface IP
addresses, configure DHCP. Other functions are intended for internal ESP-IDF use by the network driver layer.
In many cases, applications do not need to call ESP-NETIF APIs directly as they are called from the default network
event handlers.

ESP-NETIF architecture
| (A) USER CODE |
| Apps |

.................| init settings events |

. +--+

. . | *

. . | *
--------+ +===========================+ * +---------------------

↪→--+
| | new/config get/set/apps | * | init ␣

↪→ |
| | |...*.....| Apps (DHCP, SNTP) ␣

↪→ |
| |---------------------------| * | ␣

↪→ |
init | | |**** | ␣

↪→ |
start |************| event handler |*********| DHCP ␣

↪→ |
stop | | | | ␣

↪→ |
| |---------------------------| | ␣

↪→ |
| | | | NETIF ␣

↪→ |
+-----| | | +-----------------+ ␣

↪→ |
| glue|---<----|---| esp_netif_transmit |--<------| netif_output | ␣

↪→ |
| | | | | | | ␣

↪→ |
| |--->----|---| esp_netif_receive |-->------| netif_input | ␣

↪→ |
| | | | | + ----------------+ ␣

↪→ |
| |...<....|...| esp_netif_free_rx_buffer |...<.....| packet buffer ␣

↪→ |
+-----| | | | | | ␣

↪→ |
| | | | | | (D) ␣

↪→ | (continues on next page)

Espressif Systems 810
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif_stack/README.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
(B) | | | | (C) | +---------------------

↪→--+
--------+ | | +===========================+

communication | | NETWORK STACK
DRIVER | | ESP-NETIF

| | +------------------+
	+---------------------------+.........	open/close		
-<--	l2tap_write	-----<---	write	
---->--| esp_vfs_l2tap_eth_filter |----->---| read |

| | | |
| (E) | +------------------+
+---------------------------+

USER CODE
ESP-NETIF L2 TAP

Data and event flow in the diagram
• Initialization line from user code to ESP-NETIF and communication driver
• --<--->-- Data packets going from communication media to TCP/IP stack and back
• ******** Events aggregated in ESP-NETIF propagates to driver, user code and network stack
• | User settings and runtime configuration

ESP-NETIF interaction

A) User code, boiler plate Overall application interaction with a specific IO driver for communication media and
configured TCP/IP network stack is abstracted using ESP-NETIF APIs and outlined as below:
A) Initialization code

1) Initializes IO driver
2) Creates a new instance of ESP-NETIF and configure with
• ESP-NETIF specific options (flags, behaviour, name)
• Network stack options (netif init and input functions, not publicly available)
• IO driver specific options (transmit, free rx buffer functions, IO driver handle)
3) Attaches the IO driver handle to the ESP-NETIF instance created in the above steps
4) Configures event handlers
• use default handlers for common interfaces defined in IO drivers; or define a specific handlers for
customised behaviour/new interfaces

• register handlers for app related events (such as IP lost/acquired)
B) Interaction with network interfaces using ESP-NETIF API
• Getting and setting TCP/IP related parameters (DHCP, IP, etc)
• Receiving IP events (connect/disconnect)
• Controlling application lifecycle (set interface up/down)

B) Communication driver, IO driver, media driver Communication driver plays these two important roles in
relation with ESP-NETIF:

1) Event handlers: Define behaviour patterns of interaction with ESP-NETIF (for example: ethernet link-up ->
turn netif on)

2) Glue IO layer: Adapts the input/output functions to use ESP-NETIF transmit, receive and free receive buffer
• Installs driver_transmit to appropriate ESP-NETIF object, so that outgoing packets from network stack are
passed to the IO driver

Espressif Systems 811
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Calls esp_netif_receive() to pass incoming data to network stack

C) ESP-NETIF ESP-NETIF is an intermediary between an IO driver and a network stack, connecting packet data
path between these two. As that it provides a set of interfaces for attaching a driver to ESP-NETIF object (runtime)
and configuring a network stack (compile time). In addition to that a set of API is provided to control network
interface lifecycle and its TCP/IP properties. As an overview, the ESP-NETIF public interface could be divided into
these 6 groups:

1) Initialization APIs (to create and configure ESP-NETIF instance)
2) Input/Output API (for passing data between IO driver and network stack)
3) Event or Action API
• Used for network interface lifecycle management
• ESP-NETIF provides building blocks for designing event handlers
4) Setters and Getters for basic network interface properties
5) Network stack abstraction: enabling user interaction with TCP/IP stack
• Set interface up or down
• DHCP server and client API
• DNS API
• SNTP API

6) Driver conversion utilities

D) Network stack Network stack has no public interaction with application code with regard to public interfaces
and shall be fully abstracted by ESP-NETIF API.

E) ESP-NETIF L2 TAP Interface The ESP-NETIF L2 TAP interface is ESP-IDF mechanism utilized to access
Data Link Layer (L2 per OSI/ISO) for frame reception and transmission from user application. Its typical usage in
embedded world might be implementation of non-IP related protocols such as PTP, Wake on LAN and others. Note
that only Ethernet (IEEE 802.3) is currently supported.
From user perspective, the ESP-NETIF L2 TAP interface is accessed using file descriptors of VFS which provides a
file-like interfacing (using functions like open(), read(), write(), etc). Refer to Virtual filesystem component
to learn more.
There is only one ESP-NETIF L2 TAP interface device (path name) available. However multiple file descriptors with
different configuration can be opened at a time since the ESP-NETIF L2 TAP interface can be understood as generic
entry point to Layer 2 infrastructure. Important is then specific configuration of particular file descriptor. It can be
configured to give an access to specific Network Interface identified by if_key (e.g. ETH_DEF) and to filter only
specific frames based on their type (e.g. Ethernet type in case of IEEE 802.3). Filtering only specific frames is crucial
since the ESP-NETIF L2 TAP needs to exist along with IP stack and so the IP related traffic (IP, ARP, etc.) should
not be passed directly to the user application. Even though such option is still configurable, it is not recommended in
standard use cases. Filtering is also advantageous from a perspective the user’s application gets access only to frame
types it is interested in and the remaining traffic is either passed to other L2 TAP file descriptors or to IP stack.

ESP-NETIF L2 TAP Interface Usage Manual

Initialization To be able to use the ESP-NETIF L2 TAP interface, it needs to be enabled in Kconfig by CON-
FIG_ESP_NETIF_L2_TAP first and then registered by esp_vfs_l2tap_intf_register() prior usage of
any VFS function.

open() Once the ESP-NETIF L2 TAP is registered, it can be opened at path name“/dev/net/tap”. The same path
name can be opened multiple times up to CONFIG_ESP_NETIF_L2_TAP_MAX_FDS and multiple file descriptors
with with different configuration may access the Data Link Layer frames.

Espressif Systems 812
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The ESP-NETIF L2 TAP can be opened with O_NONBLOCK file status flag to the read() does not block. Note that
the write()may block in current implementation when accessing a Network interface since it is a shared resource
among multiple ESP-NETIF L2 TAP file descriptors and IP stack, and there is currently no queuing mechanism
deployed. The file status flag can be retrieved and modified using fcntl().
On success, open() returns the new file descriptor (a nonnegative integer). On error, -1 is returned and errno is
set to indicate the error.

ioctl() The newly opened ESP-NETIF L2 TAP file descriptor needs to be configured prior its usage since it is not
bounded to any specific Network Interface and no frame type filter is configured. The following configuration options
are available to do so:

• L2TAP_S_INTF_DEVICE - bounds the file descriptor to specific Network Interface which is identified by its
if_key. ESP-NETIF Network Interface if_key is passed to ioctl() as the third parameter. Note that
default Network Interfaces if_key's used in ESP-IDF can be found in esp_netif/include/esp_netif_defaults.h.

• L2TAP_S_DEVICE_DRV_HNDL - is other way how to bound the file descriptor to specificNetwork Interface.
In this case the Network interface is identified directly by IO Driver handle (e.g. esp_eth_handle_t in
case of Ethernet). The IO Driver handle is passed to ioctl() as the third parameter.

• L2TAP_S_RCV_FILTER - sets the filter to frames with this type to be passed to the file descriptor. In case of
Ethernet frames, the frames are to be filtered based on Length/Ethernet type field. In case the filter value is set
less than or equal to 0x05DC, the Ethernet type field is considered to represent IEEE802.3 Length Field and all
frames with values in interval <0, 0x05DC> at that field are to be passed to the file descriptor. The IEEE802.2
logical link control (LLC) resolution is then expected to be performed by user’s application. In case the filter
value is set greater than 0x05DC, the Ethernet type field is considered to represent protocol identification and
only frames which are equal to the set value are to be passed to the file descriptor.

All above set configuration options have getter counterpart option to read the current settings.

Warning: The file descriptor needs to be firstly bounded to specific Network Interface by
L2TAP_S_INTF_DEVICE or L2TAP_S_DEVICE_DRV_HNDL to be L2TAP_S_RCV_FILTER option
available.

Note: VLAN tagged frames are currently not recognized. If user needs to process VLAN tagged frames, they need
set filter to be equal to VLAN tag (i.e. 0x8100 or 0x88A8) and process the VLAN tagged frames in user application.

Note: L2TAP_S_DEVICE_DRV_HNDL is particularly useful when user's application does not require usage of IP
stack and so ESP-NETIF is not required to be initialized too. As a result, Network Interface cannot be identified by
its if_key and hence it needs to be identified directly by its IO Driver handle.

On success, ioctl() returns 0. On error, -1 is returned, and errno is set to indicate the error.
EBADF - not a valid file descriptor.
EACCES - option change is denied in this state (e.g. file descriptor has not be bounded to Network interface yet).
EINVAL - invalid configuration argument. Ethernet type filter is already used by other file descriptor on that same
Network interface.
ENODEV - no such Network Interface which is tried to be assigned to the file descriptor exists.
ENOSYS - unsupported operation, passed configuration option does not exists.

fcntl() fcntl() is used to manipulate with properties of opened ESP-NETIF L2 TAP file descriptor.
The following commands manipulate the status flags associated with file descriptor:

• F_GETFD - the function returns the file descriptor flags, the third argument is ignored.

Espressif Systems 813
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif_defaults.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• F_SETFD - sets the file descriptor flags to the value specified by the third argument. Zero is returned.

On error, -1 is returned, and errno is set to indicate the error.
EBADF - not a valid file descriptor.
ENOSYS - unsupported command.

read() Opened and configured ESP-NETIF L2 TAP file descriptor can be accessed by read() to get inbound
frames. The read operation can be either blocking or non-blocking based on actual state of O_NONBLOCK file status
flag. When the file status flag is set blocking, the read operation waits until a frame is received and context is switched
to other task. When the file status flag is set non-blocking, the read operation returns immediately. In such case,
either a frame is returned if it was already queued or the function indicates the queue is empty. The number of
queued frames associated with one file descriptor is limited by CONFIG_ESP_NETIF_L2_TAP_RX_QUEUE_SIZE
Kconfig option. Once the number of queued frames reach configured threshold, the newly arriving frames are dropped
until the queue has enough room to accept incoming traffic (Tail Drop queue management).

On success, read() returns the number of bytes read. Zero is returned when size of the destination buffer is 0. On
error, -1 is returned, and errno is set to indicate the error.
EBADF - not a valid file descriptor.
EAGAIN - the file descriptor has been marked non-blocking (O_NONBLOCK), and the read would block.

write() A raw Data Link Layer frame can be sent to Network Interface via opened and configured ESP-NETIF L2
TAP file descriptor. User’s application is responsible to construct the whole frame except for fields which are added
automatically by the physical interface device. The following fields need to be constructed by the user's application in
case of Ethernet link: source/destination MAC addresses, Ethernet type, actual protocol header and user data. See
below for more information about Ethernet frame structure.

+-------------------+-------------------+-------------+----------------------------
↪→--- --+
| Destination MAC | Source MAC | Type/Length | Payload (protocol header/
↪→data) ... |
+-------------------+-------------------+-------------+----------------------------
↪→--- --+

6B 6B 2B 0-1486B

In other words, there is no additional frame processing performed by the ESP-NETIF L2 TAP interface. It only
checks the Ethernet type of the frame is the same as the filter configured in the file descriptor. If the Ethernet type is
different, an error is returned and the frame is not sent. Note that the write()may block in current implementation
when accessing a Network interface since it is a shared resource among multiple ESP-NETIF L2 TAP file descriptors
and IP stack, and there is currently no queuing mechanism deployed.

On success, write() returns the number of bytes written. Zero is returned when size of the input buffer is 0. On
error, -1 is returned, and errno is set to indicate the error.
EBADF - not a valid file descriptor.
EBADMSG - Ethernet type of the frame is different then file descriptor configured filter.
EIO - Network interface not available or busy.

close() Opened ESP-NETIF L2 TAP file descriptor can be closed by the close() to free its allocated resources.
The ESP-NETIF L2 TAP implementation of close() may block. On the other hand, it is thread safe and can be
called from different task than the file descriptor is actually used. If such situation occurs and one task is blocked
in I/O operation and another task tries to close the file descriptor, the first task is unblocked. The first's task read
operation then ends with error.

Espressif Systems 814
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

On success, close() returns zero. On error, -1 is returned, and errno is set to indicate the error.
EBADF - not a valid file descriptor.

select() Select is used in a standard way, just CONFIG_VFS_SUPPORT_SELECT needs to be enabled to be the
select() function available.

SNTP API You can find a brief introduction to SNTP in general, its initialization code and basic modes in SNTP
Time Synchronization section in the System Time Document.
This section provides more details about specific use cases of SNTP service, with statically configured servers, or
using DHCP provided servers, or both. The workflow is usually very simple:

1) Initialize and configure the service using esp_netif_sntp_init(). This operations can only be called
once (unless the SNTP service has been destroyed by esp_netif_sntp_deinit())

2) Start the service via esp_netif_sntp_start(). This step is not needed if we auto-started the service
in the previous step (default). It is useful to start the service explicitly after connecting if we want to use the
DHCP-obtained NTP servers. Please note, this option needs to be enabled before connecting, but the SNTP
service should be started after.

3) Wait for the system time to synchronize using esp_netif_sntp_sync_wait() (only if needed).
4) Stop and destroy the service using esp_netif_sntp_deinit().

Basic mode with statically defined server(s) Initialize the module with the default configuration after connecting
to network. Note that it's possible to provide multiple NTP servers in the configuration struct:

esp_sntp_config_t config = ESP_NETIF_SNTP_DEFAULT_CONFIG_MULTIPLE(2,
ESP_SNTP_SERVER_LIST("time.windows.com", "pool.ntp.org"␣

↪→));
esp_netif_sntp_init(&config);

Note: If we want to configure multiple SNTP servers, we have to update lwIP configuration CON-
FIG_LWIP_SNTP_MAX_SERVERS.

Use DHCP obtained SNTP server(s) First of all, we have to enable lwIP configuration option CON-
FIG_LWIP_DHCP_GET_NTP_SRV. Then we have to initialize the SNTP module with the DHCP option and no
NTP server:

esp_sntp_config_t config = ESP_NETIF_SNTP_DEFAULT_CONFIG_MULTIPLE(0, {});
config.start = false; // start SNTP service explicitly
config.server_from_dhcp = true; // accept NTP offer from DHCP server
esp_netif_sntp_init(&config);

Then, once we're connected, we could start the service using:

esp_netif_sntp_start();

Note: It's also possible to start the service during initialization (default config.start=true). This would likely
cause the initial SNTP request to fail (since we are not connected yet) and thus some backoff time for subsequent
requests.

Use both static and dynamic servers Very similar to the scenario above (DHCP provided SNTP server), but in
this configuration we need to make sure that the static server configuration is refreshed when obtaining NTP servers
by DHCP. The underlying lwIP code cleans up the rest of the list of NTP servers when DHCP provided information

Espressif Systems 815
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

gets accepted. Thus the ESP-NETIF SNTP module saves the statically configured server(s) and reconfigures them
after obtaining DHCP lease.
The typical configuration now looks as per below, providing the specific IP_EVENT to update the config and index of
the first server to reconfigure (for example setting config.index_of_first_server=1 would keep DHCP
provided server at index 0, and the statically configured server at index 1).

esp_sntp_config_t config = ESP_NETIF_SNTP_DEFAULT_CONFIG("pool.ntp.org");
config.start = false; // start SNTP service explicitly␣
↪→(after connecting)
config.server_from_dhcp = true; // accept NTP offers from DHCP server
config.renew_servers_after_new_IP = true; // let esp-netif update configured␣
↪→SNTP server(s) after receiving DHCP lease
config.index_of_first_server = 1; // updates from server num 1, leaving␣
↪→server 0 (from DHCP) intact
config.ip_event_to_renew = IP_EVENT_STA_GOT_IP; // IP event on which we refresh␣
↪→the configuration

Then we start the service normally with esp_netif_sntp_start().

ESP-NETIF programmer's manual Please refer to the example section for basic initialization of default inter-
faces:

• WiFi Station: wifi/getting_started/station/main/station_example_main.c
• Ethernet: ethernet/basic/main/ethernet_example_main.c
• L2 TAP: protocols/l2tap/main/l2tap_main.c
• WiFi Access Point: wifi/getting_started/softAP/main/softap_example_main.c

For more specific cases please consult this guide: ESP-NETIF Custom I/O Driver.

WiFi default initialization The initialization code as well as registering event handlers for default interfaces, such
as softAP and station, are provided in separate APIs to facilitate simple startup code for most applications:

• esp_netif_create_default_wifi_sta()

• esp_netif_create_default_wifi_ap()

Please note that these functions return the esp_netif handle, i.e. a pointer to a network interface object allocated
and configured with default settings, which as a consequence, means that:

• The created object has to be destroyed if a network de-initialization is provided by an application using
esp_netif_destroy_default_wifi().

• These default interfaces must not be created multiple times, unless the created handle is deleted using
esp_netif_destroy().

• When using Wifi in AP+STA mode, both these interfaces has to be created.

API Reference

Header File
• components/esp_netif/include/esp_netif.h

Functions
esp_err_t esp_netif_init(void)

Initialize the underlying TCP/IP stack.

Note: This function should be called exactly once from application code, when the application starts up.

Espressif Systems 816
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/getting_started/station/main/station_example_main.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/ethernet/basic/main/ethernet_example_main.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/protocols/l2tap/main/l2tap_main.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/getting_started/softAP/main/softap_example_main.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK on success
• ESP_FAIL if initializing failed

esp_err_t esp_netif_deinit(void)
Deinitialize the esp-netif component (and the underlying TCP/IP stack)

Note: Deinitialization is not supported yet

Returns
• ESP_ERR_INVALID_STATE if esp_netif not initialized
• ESP_ERR_NOT_SUPPORTED otherwise

esp_netif_t *esp_netif_new(const esp_netif_config_t *esp_netif_config)
Creates an instance of new esp-netif object based on provided config.

Parameters esp_netif_config -- pointer esp-netif configuration
Returns

• pointer to esp-netif object on success
• NULL otherwise

void esp_netif_destroy(esp_netif_t *esp_netif)
Destroys the esp_netif object.

Parameters esp_netif -- [in] pointer to the object to be deleted
esp_err_t esp_netif_set_driver_config(esp_netif_t *esp_netif, const esp_netif_driver_ifconfig_t

*driver_config)
Configures driver related options of esp_netif object.

Parameters
• esp_netif -- [inout] pointer to the object to be configured
• driver_config -- [in] pointer esp-netif io driver related configuration

Returns
• ESP_OK on success
• ESP_ERR_ESP_NETIF_INVALID_PARAMS if invalid parameters provided

esp_err_t esp_netif_attach(esp_netif_t *esp_netif, esp_netif_iodriver_handle driver_handle)
Attaches esp_netif instance to the io driver handle.
Calling this function enables connecting specific esp_netif object with already initialized io driver to update
esp_netif object with driver specific configuration (i.e. calls post_attach callback, which typically sets io driver
callbacks to esp_netif instance and starts the driver)

Parameters
• esp_netif -- [inout] pointer to esp_netif object to be attached
• driver_handle -- [in] pointer to the driver handle

Returns
• ESP_OK on success
• ESP_ERR_ESP_NETIF_DRIVER_ATTACH_FAILED if driver's pot_attach callback
failed

esp_err_t esp_netif_receive(esp_netif_t *esp_netif, void *buffer, size_t len, void *eb)
Passes the raw packets from communication media to the appropriate TCP/IP stack.
This function is called from the configured (peripheral) driver layer. The data are then forwarded as frames to
the TCP/IP stack.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• buffer -- [in] Received data

Espressif Systems 817
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• len -- [in] Length of the data frame
• eb -- [in] Pointer to internal buffer (used in Wi-Fi driver)

Returns
• ESP_OK

void esp_netif_action_start(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)
Default building block for network interface action upon IO driver start event Creates network interface, if
AUTOUP enabled turns the interface on, if DHCPS enabled starts dhcp server.

Note: This API can be directly used as event handler

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• base --
• event_id --
• data --

void esp_netif_action_stop(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)
Default building block for network interface action upon IO driver stop event.

Note: This API can be directly used as event handler

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• base --
• event_id --
• data --

void esp_netif_action_connected(void *esp_netif, esp_event_base_t base, int32_t event_id, void
*data)

Default building block for network interface action upon IO driver connected event.

Note: This API can be directly used as event handler

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• base --
• event_id --
• data --

void esp_netif_action_disconnected(void *esp_netif, esp_event_base_t base, int32_t event_id, void
*data)

Default building block for network interface action upon IO driver disconnected event.

Note: This API can be directly used as event handler

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• base --
• event_id --
• data --

Espressif Systems 818
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void esp_netif_action_got_ip(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)
Default building block for network interface action upon network got IP event.

Note: This API can be directly used as event handler

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• base --
• event_id --
• data --

void esp_netif_action_join_ip6_multicast_group(void *esp_netif, esp_event_base_t base,
int32_t event_id, void *data)

Default building block for network interface action upon IPv6 multicast group join.

Note: This API can be directly used as event handler

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• base --
• event_id --
• data --

void esp_netif_action_leave_ip6_multicast_group(void *esp_netif, esp_event_base_t base,
int32_t event_id, void *data)

Default building block for network interface action upon IPv6 multicast group leave.

Note: This API can be directly used as event handler

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• base --
• event_id --
• data --

void esp_netif_action_add_ip6_address(void *esp_netif, esp_event_base_t base, int32_t event_id,
void *data)

Default building block for network interface action upon IPv6 address added by the underlying stack.

Note: This API can be directly used as event handler

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• base --
• event_id --
• data --

void esp_netif_action_remove_ip6_address(void *esp_netif, esp_event_base_t base, int32_t
event_id, void *data)

Default building block for network interface action upon IPv6 address removed by the underlying stack.

Espressif Systems 819
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: This API can be directly used as event handler

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• base --
• event_id --
• data --

esp_err_t esp_netif_set_default_netif(esp_netif_t *esp_netif)
Manual configuration of the default netif.
This API overrides the automatic configuration of the default interface based on the route_prio If the selected
netif is set default using this API, no other interface could be set-default disregarding its route_prio number
(unless the selected netif gets destroyed)

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns ESP_OK on success

esp_netif_t *esp_netif_get_default_netif(void)
Getter function of the default netif.
This API returns the selected default netif.

Returns Handle to esp-netif instance of the default netif.
esp_err_t esp_netif_join_ip6_multicast_group(esp_netif_t *esp_netif, const esp_ip6_addr_t

*addr)
Cause the TCP/IP stack to join a IPv6 multicast group.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• addr -- [in] The multicast group to join

Returns
• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS
• ESP_ERR_ESP_NETIF_MLD6_FAILED
• ESP_ERR_NO_MEM

esp_err_t esp_netif_leave_ip6_multicast_group(esp_netif_t *esp_netif, const esp_ip6_addr_t
*addr)

Cause the TCP/IP stack to leave a IPv6 multicast group.
Parameters

• esp_netif -- [in] Handle to esp-netif instance
• addr -- [in] The multicast group to leave

Returns
• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS
• ESP_ERR_ESP_NETIF_MLD6_FAILED
• ESP_ERR_NO_MEM

esp_err_t esp_netif_set_mac(esp_netif_t *esp_netif, uint8_t mac[])
Set the mac address for the interface instance.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• mac -- [in] Desired mac address for the related network interface

Returns
• ESP_OK - success
• ESP_ERR_ESP_NETIF_IF_NOT_READY - interface status error

Espressif Systems 820
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_NOT_SUPPORTED - mac not supported on this interface
esp_err_t esp_netif_get_mac(esp_netif_t *esp_netif, uint8_t mac[])

Get the mac address for the interface instance.
Parameters

• esp_netif -- [in] Handle to esp-netif instance
• mac -- [out] Resultant mac address for the related network interface

Returns
• ESP_OK - success
• ESP_ERR_ESP_NETIF_IF_NOT_READY - interface status error
• ESP_ERR_NOT_SUPPORTED - mac not supported on this interface

esp_err_t esp_netif_set_hostname(esp_netif_t *esp_netif, const char *hostname)
Set the hostname of an interface.
The configured hostname overrides the default configuration value CONFIG_LWIP_LOCAL_HOSTNAME.
Please note that when the hostname is altered after interface started/connected the changes would only be
reflected once the interface restarts/reconnects

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• hostname -- [in] New hostname for the interface. Maximum length 32 bytes.

Returns
• ESP_OK - success
• ESP_ERR_ESP_NETIF_IF_NOT_READY - interface status error
• ESP_ERR_ESP_NETIF_INVALID_PARAMS - parameter error

esp_err_t esp_netif_get_hostname(esp_netif_t *esp_netif, const char **hostname)
Get interface hostname.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• hostname -- [out] Returns a pointer to the hostname. May be NULL if no hostname
is set. If set non-NULL, pointer remains valid (and string may change if the hostname
changes).

Returns
• ESP_OK - success
• ESP_ERR_ESP_NETIF_IF_NOT_READY - interface status error
• ESP_ERR_ESP_NETIF_INVALID_PARAMS - parameter error

bool esp_netif_is_netif_up(esp_netif_t *esp_netif)
Test if supplied interface is up or down.

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns

• true - Interface is up
• false - Interface is down

esp_err_t esp_netif_get_ip_info(esp_netif_t *esp_netif, esp_netif_ip_info_t *ip_info)
Get interface's IP address information.
If the interface is up, IP information is read directly from the TCP/IP stack. If the interface is down, IP
information is read from a copy kept in the ESP-NETIF instance

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• ip_info -- [out] If successful, IP information will be returned in this argument.

Returns
• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS

Espressif Systems 821
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_netif_get_old_ip_info(esp_netif_t *esp_netif, esp_netif_ip_info_t *ip_info)
Get interface's old IP information.
Returns an "old" IP address previously stored for the interface when the valid IP changed.
If the IP lost timer has expired (meaning the interface was down for longer than the configured interval) then
the old IP information will be zero.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• ip_info -- [out] If successful, IP information will be returned in this argument.

Returns
• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS

esp_err_t esp_netif_set_ip_info(esp_netif_t *esp_netif, const esp_netif_ip_info_t *ip_info)
Set interface's IP address information.
This function is mainly used to set a static IP on an interface.
If the interface is up, the new IP information is set directly in the TCP/IP stack.
The copy of IP information kept in the ESP-NETIF instance is also updated (this copy is returned if the IP is
queried while the interface is still down.)

Note: DHCP client/server must be stopped (if enabled for this interface) before setting new IP information.

Note: Calling this interface for may generate a SYSTEM_EVENT_STA_GOT_IP or SYS-
TEM_EVENT_ETH_GOT_IP event.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• ip_info -- [in] IP information to set on the specified interface

Returns
• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS
• ESP_ERR_ESP_NETIF_DHCP_NOT_STOPPED If DHCP server or client is still run-
ning

esp_err_t esp_netif_set_old_ip_info(esp_netif_t *esp_netif, const esp_netif_ip_info_t *ip_info)
Set interface old IP information.
This function is called from the DHCP client (if enabled), before a new IP is set. It is also called from the default
handlers for the SYSTEM_EVENT_STA_CONNECTED and SYSTEM_EVENT_ETH_CONNECTED
events.
Calling this function stores the previously configured IP, which can be used to determine if the IP changes in
the future.
If the interface is disconnected or down for too long, the "IP lost timer" will expire (after the configured interval)
and set the old IP information to zero.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• ip_info -- [in] Store the old IP information for the specified interface

Returns
• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS

Espressif Systems 822
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int esp_netif_get_netif_impl_index(esp_netif_t *esp_netif)
Get net interface index from network stack implementation.

Note: This index could be used in setsockopt() to bind socket with multicast interface

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns implementation specific index of interface represented with supplied esp_netif

esp_err_t esp_netif_get_netif_impl_name(esp_netif_t *esp_netif, char *name)
Get net interface name from network stack implementation.

Note: This name could be used in setsockopt() to bind socket with appropriate interface

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• name -- [out] Interface name as specified in underlying TCP/IP stack. Note that the actual
name will be copied to the specified buffer, which must be allocated to hold maximum
interface name size (6 characters for lwIP)

Returns
• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS

esp_err_t esp_netif_napt_enable(esp_netif_t *esp_netif)
Enable NAPT on an interface.

Note: Enable operation can be performed only on one interface at a time. NAPT cannot be enabled on
multiple interfaces according to this implementation.

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns

• ESP_OK
• ESP_FAIL
• ESP_ERR_NOT_SUPPORTED

esp_err_t esp_netif_napt_disable(esp_netif_t *esp_netif)
Disable NAPT on an interface.

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns

• ESP_OK
• ESP_FAIL
• ESP_ERR_NOT_SUPPORTED

esp_err_t esp_netif_dhcps_option(esp_netif_t *esp_netif, esp_netif_dhcp_option_mode_t opt_op,
esp_netif_dhcp_option_id_t opt_id, void *opt_val, uint32_t opt_len)

Set or Get DHCP server option.
Parameters

• esp_netif -- [in] Handle to esp-netif instance
• opt_op -- [in] ESP_NETIF_OP_SET to set an option, ESP_NETIF_OP_GET to get an
option.

• opt_id -- [in] Option index to get or set, must be one of the supported enum values.
• opt_val -- [inout] Pointer to the option parameter.
• opt_len -- [in] Length of the option parameter.

Espressif Systems 823
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS
• ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED
• ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED

esp_err_t esp_netif_dhcpc_option(esp_netif_t *esp_netif, esp_netif_dhcp_option_mode_t opt_op,
esp_netif_dhcp_option_id_t opt_id, void *opt_val, uint32_t opt_len)

Set or Get DHCP client option.
Parameters

• esp_netif -- [in] Handle to esp-netif instance
• opt_op -- [in] ESP_NETIF_OP_SET to set an option, ESP_NETIF_OP_GET to get an
option.

• opt_id -- [in] Option index to get or set, must be one of the supported enum values.
• opt_val -- [inout] Pointer to the option parameter.
• opt_len -- [in] Length of the option parameter.

Returns
• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS
• ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED
• ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED

esp_err_t esp_netif_dhcpc_start(esp_netif_t *esp_netif)
Start DHCP client (only if enabled in interface object)

Note: The default event handlers for the SYSTEM_EVENT_STA_CONNECTED and SYS-
TEM_EVENT_ETH_CONNECTED events call this function.

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns

• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS
• ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED
• ESP_ERR_ESP_NETIF_DHCPC_START_FAILED

esp_err_t esp_netif_dhcpc_stop(esp_netif_t *esp_netif)
Stop DHCP client (only if enabled in interface object)

Note: Calling action_netif_stop() will also stop the DHCP Client if it is running.

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns

• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS
• ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED
• ESP_ERR_ESP_NETIF_IF_NOT_READY

esp_err_t esp_netif_dhcpc_get_status(esp_netif_t *esp_netif, esp_netif_dhcp_status_t *status)
Get DHCP client status.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• status -- [out] If successful, the status of DHCP client will be returned in this argument.

Returns
• ESP_OK

Espressif Systems 824
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_netif_dhcps_get_status(esp_netif_t *esp_netif, esp_netif_dhcp_status_t *status)
Get DHCP Server status.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• status -- [out] If successful, the status of the DHCP server will be returned in this
argument.

Returns
• ESP_OK

esp_err_t esp_netif_dhcps_start(esp_netif_t *esp_netif)
Start DHCP server (only if enabled in interface object)

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns

• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS
• ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED

esp_err_t esp_netif_dhcps_stop(esp_netif_t *esp_netif)
Stop DHCP server (only if enabled in interface object)

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns

• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS
• ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED
• ESP_ERR_ESP_NETIF_IF_NOT_READY

esp_err_t esp_netif_dhcps_get_clients_by_mac(esp_netif_t *esp_netif, int num,
esp_netif_pair_mac_ip_t *mac_ip_pair)

Populate IP addresses of clients connected to DHCP server listed by their MAC addresses.
Parameters

• esp_netif -- [in] Handle to esp-netif instance
• num -- [in] Number of clients with specified MAC addresses in the array of pairs
• mac_ip_pair -- [inout] Array of pairs of MAC and IP addresses (MAC are inputs, IP
outputs)

Returns
• ESP_OK on success
• ESP_ERR_ESP_NETIF_INVALID_PARAMS on invalid params
• ESP_ERR_NOT_SUPPORTED if DHCP server not enabled

esp_err_t esp_netif_set_dns_info(esp_netif_t *esp_netif, esp_netif_dns_type_t type,
esp_netif_dns_info_t *dns)

Set DNS Server information.
This function behaves differently if DHCP server or client is enabled
If DHCP client is enabled, main and backup DNS servers will be updated automatically from the DHCP lease
if the relevant DHCP options are set. Fallback DNS Server is never updated from the DHCP lease and is
designed to be set via this API. If DHCP client is disabled, all DNS server types can be set via this API only.
If DHCP server is enabled, the Main DNS Server setting is used by the DHCP server to provide a DNS Server
option to DHCP clients (Wi-Fi stations).

• The default Main DNS server is typically the IP of the DHCP server itself.
• This function can override it by setting server type ESP_NETIF_DNS_MAIN.
• Other DNS Server types are not supported for the DHCP server.
• To propagate the DNS info to client, please stop the DHCP server before using this API.

Parameters
• esp_netif -- [in] Handle to esp-netif instance

Espressif Systems 825
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• type -- [in] Type of DNS Server to set: ESP_NETIF_DNS_MAIN,
ESP_NETIF_DNS_BACKUP, ESP_NETIF_DNS_FALLBACK

• dns -- [in] DNS Server address to set
Returns

• ESP_OK on success
• ESP_ERR_ESP_NETIF_INVALID_PARAMS invalid params

esp_err_t esp_netif_get_dns_info(esp_netif_t *esp_netif, esp_netif_dns_type_t type,
esp_netif_dns_info_t *dns)

Get DNS Server information.
Return the currently configured DNS Server address for the specified interface and Server type.
This may be result of a previous call to esp_netif_set_dns_info(). If the interface's DHCP client is enabled, the
Main or Backup DNS Server may be set by the current DHCP lease.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• type -- [in] Type of DNS Server to get: ESP_NETIF_DNS_MAIN,
ESP_NETIF_DNS_BACKUP, ESP_NETIF_DNS_FALLBACK

• dns -- [out] DNS Server result is written here on success
Returns

• ESP_OK on success
• ESP_ERR_ESP_NETIF_INVALID_PARAMS invalid params

esp_err_t esp_netif_create_ip6_linklocal(esp_netif_t *esp_netif)
Create interface link-local IPv6 address.
Cause the TCP/IP stack to create a link-local IPv6 address for the specified interface.
This function also registers a callback for the specified interface, so that if the link-local address becomes
verified as the preferred address then a SYSTEM_EVENT_GOT_IP6 event will be sent.

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns

• ESP_OK
• ESP_ERR_ESP_NETIF_INVALID_PARAMS

esp_err_t esp_netif_get_ip6_linklocal(esp_netif_t *esp_netif, esp_ip6_addr_t *if_ip6)
Get interface link-local IPv6 address.
If the specified interface is up and a preferred link-local IPv6 address has been created for the interface, return
a copy of it.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• if_ip6 -- [out] IPv6 information will be returned in this argument if successful.

Returns
• ESP_OK
• ESP_FAIL If interface is down, does not have a link-local IPv6 address, or the link-local
IPv6 address is not a preferred address.

esp_err_t esp_netif_get_ip6_global(esp_netif_t *esp_netif, esp_ip6_addr_t *if_ip6)
Get interface global IPv6 address.
If the specified interface is up and a preferred global IPv6 address has been created for the interface, return a
copy of it.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• if_ip6 -- [out] IPv6 information will be returned in this argument if successful.

Returns
• ESP_OK

Espressif Systems 826
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_FAIL If interface is down, does not have a global IPv6 address, or the global IPv6
address is not a preferred address.

int esp_netif_get_all_ip6(esp_netif_t *esp_netif, esp_ip6_addr_t if_ip6[])
Get all IPv6 addresses of the specified interface.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• if_ip6 -- [out] Array of IPv6 addresses will be copied to the argument

Returns number of returned IPv6 addresses
int esp_netif_get_all_preferred_ip6(esp_netif_t *esp_netif, esp_ip6_addr_t if_ip6[])

Get all preferred IPv6 addresses of the specified interface.
Parameters

• esp_netif -- [in] Handle to esp-netif instance
• if_ip6 -- [out] Array of IPv6 addresses will be copied to the argument

Returns number of returned IPv6 addresses
void esp_netif_set_ip4_addr(esp_ip4_addr_t *addr, uint8_t a, uint8_t b, uint8_t c, uint8_t d)

Sets IPv4 address to the specified octets.
Parameters

• addr -- [out] IP address to be set
• a -- the first octet (127 for IP 127.0.0.1)
• b --
• c --
• d --

char *esp_ip4addr_ntoa(const esp_ip4_addr_t *addr, char *buf, int buflen)
Converts numeric IP address into decimal dotted ASCII representation.

Parameters
• addr -- ip address in network order to convert
• buf -- target buffer where the string is stored
• buflen -- length of buf

Returns either pointer to buf which now holds the ASCII representation of addr or NULL if buf
was too small

uint32_t esp_ip4addr_aton(const char *addr)
Ascii internet address interpretation routine The value returned is in network order.

Parameters addr -- IP address in ascii representation (e.g. "127.0.0.1")
Returns ip address in network order

esp_err_t esp_netif_str_to_ip4(const char *src, esp_ip4_addr_t *dst)
Converts Ascii internet IPv4 address into esp_ip4_addr_t.

Parameters
• src -- [in] IPv4 address in ascii representation (e.g. "127.0.0.1")
• dst -- [out] Address of the target esp_ip4_addr_t structure to receive converted address

Returns
• ESP_OK on success
• ESP_FAIL if conversion failed
• ESP_ERR_INVALID_ARG if invalid parameter is passed into

esp_err_t esp_netif_str_to_ip6(const char *src, esp_ip6_addr_t *dst)
Converts Ascii internet IPv6 address into esp_ip4_addr_t Zeros in the IP address can be stripped or completely
ommited: "2001:db8:85a3:0:0:0:2:1" or "2001:db8::2:1")

Parameters
• src -- [in] IPv6 address in ascii representation (e.g.
""2001:0db8:85a3:0000:0000:0000:0002:0001")

Espressif Systems 827
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• dst -- [out] Address of the target esp_ip6_addr_t structure to receive converted address
Returns

• ESP_OK on success
• ESP_FAIL if conversion failed
• ESP_ERR_INVALID_ARG if invalid parameter is passed into

esp_netif_iodriver_handle esp_netif_get_io_driver(esp_netif_t *esp_netif)
Gets media driver handle for this esp-netif instance.

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns opaque pointer of related IO driver

esp_netif_t *esp_netif_get_handle_from_ifkey(const char *if_key)
Searches over a list of created objects to find an instance with supplied if key.

Parameters if_key -- Textual description of network interface
Returns Handle to esp-netif instance

esp_netif_flags_t esp_netif_get_flags(esp_netif_t *esp_netif)
Returns configured flags for this interface.

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns Configuration flags

const char *esp_netif_get_ifkey(esp_netif_t *esp_netif)
Returns configured interface key for this esp-netif instance.

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns Textual description of related interface

const char *esp_netif_get_desc(esp_netif_t *esp_netif)
Returns configured interface type for this esp-netif instance.

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns Enumerated type of this interface, such as station, AP, ethernet

int esp_netif_get_route_prio(esp_netif_t *esp_netif)
Returns configured routing priority number.

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns Integer representing the instance's route-prio, or -1 if invalid paramters

int32_t esp_netif_get_event_id(esp_netif_t *esp_netif, esp_netif_ip_event_type_t event_type)
Returns configured event for this esp-netif instance and supplied event type.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• event_type -- (either get or lost IP)

Returns specific event id which is configured to be raised if the interface lost or acquired IP address
-1 if supplied event_type is not known

esp_netif_t *esp_netif_next(esp_netif_t *esp_netif)
Iterates over list of interfaces. Returns first netif if NULL given as parameter.

You can use esp_netif_next_unsafe() directly if all the system interfaces are under your control and
you can safely iterate over them. Otherwise, iterate over interfaces using esp_netif_tcpip_exec(), or use
esp_netif_find_if() to search in the list of netifs with defined predicate.

Note: This API doesn't lock the list, nor the TCPIP context, as this it's usually required to get atomic access
between iteration steps rather that within a single iteration. Therefore it is recommended to iterate over the
interfaces inside esp_netif_tcpip_exec()

Espressif Systems 828
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns First netif from the list if supplied parameter is NULL, next one otherwise

esp_netif_t *esp_netif_next_unsafe(esp_netif_t *esp_netif)
Iterates over list of interfaces without list locking. Returns first netif if NULL given as parameter.
Used for bulk search loops within TCPIP context, e.g. using esp_netif_tcpip_exec(), or if we're sure that the
iteration is safe from our application perspective (e.g. no interface is removed between iterations)

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns First netif from the list if supplied parameter is NULL, next one otherwise

esp_netif_t *esp_netif_find_if(esp_netif_find_predicate_t fn, void *ctx)
Return a netif pointer for the first interface that meets criteria defined by the callback.

Parameters
• fn -- Predicate function returning true for the desired interface
• ctx -- Context pointer passed to the predicate, typically a descriptor to compare with

Returns valid netif pointer if found, NULL if not
size_t esp_netif_get_nr_of_ifs(void)

Returns number of registered esp_netif objects.
Returns Number of esp_netifs

void esp_netif_netstack_buf_ref(void *netstack_buf)
increase the reference counter of net stack buffer

Parameters netstack_buf -- [in] the net stack buffer
void esp_netif_netstack_buf_free(void *netstack_buf)

free the netstack buffer
Parameters netstack_buf -- [in] the net stack buffer

esp_err_t esp_netif_tcpip_exec(esp_netif_callback_fn fn, void *ctx)
Utility to execute the supplied callback in TCP/IP context.

Parameters
• fn -- Pointer to the callback
• ctx -- Parameter to the callback

Returns The error code (esp_err_t) returned by the callback

Type Definitions

typedef bool (*esp_netif_find_predicate_t)(esp_netif_t *netif, void *ctx)
Predicate callback for esp_netif_find_if() used to find interface which meets defined criteria.

typedef esp_err_t (*esp_netif_callback_fn)(void *ctx)
TCPIP thread safe callback used with esp_netif_tcpip_exec()

Header File
• components/esp_netif/include/esp_netif_sntp.h

Functions
esp_err_t esp_netif_sntp_init(const esp_sntp_config_t *config)

Initialize SNTP with supplied config struct.
Parameters config -- Config struct
Returns ESP_OK on success

Espressif Systems 829
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif_sntp.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_netif_sntp_start(void)
Start SNTP service if it wasn't started during init (config.start = false) or restart it if already started.

Returns ESP_OK on success
void esp_netif_sntp_deinit(void)

Deinitialize esp_netif SNTP module.
esp_err_t esp_netif_sntp_sync_wait(TickType_t tout)

Wait for time sync event.
Parameters tout -- Specified timeout in RTOS ticks
Returns ESP_TIMEOUT if sync event didn't came withing the timeout

ESP_ERR_NOT_FINISHED if the sync event came, but we're in smooth update mode
and still in progress (SNTP_SYNC_STATUS_IN_PROGRESS) ESP_OK if time sync'ed

esp_err_t esp_netif_sntp_reachability(unsigned int index, unsigned int *reachability)
Returns SNTP server's reachability shift register as described in RFC 5905.

Parameters
• index -- Index of the SERVER
• reachability -- reachability shift register

Returns ESP_OK on success, ESP_ERR_INVALID_STATE if SNTP not initialized
ESP_ERR_INVALID_ARG if invalid arguments

Structures

struct esp_sntp_config
SNTP configuration struct.

Public Members

bool smooth_sync
set to true if smooth sync required

bool server_from_dhcp
set to true to request NTP server config from DHCP

bool wait_for_sync
if true, we create a semaphore to signal time sync event

bool start
set to true to automatically start the SNTP service

esp_sntp_time_cb_t sync_cb

optionally sets callback function on time sync event

bool renew_servers_after_new_IP
this is used to refresh server list if NTP provided by DHCP (which cleans other pre-configured servers)

ip_event_t ip_event_to_renew

set the IP event id on which we refresh server list (if renew_servers_after_new_IP=true)

Espressif Systems 830
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

size_t index_of_first_server
refresh server list after this server (if renew_servers_after_new_IP=true)

size_t num_of_servers
number of preconfigured NTP servers

const char *servers[1]
list of servers

Macros
ESP_SNTP_SERVER_LIST(...)

Utility macro for providing multiple servers in parentheses.
ESP_NETIF_SNTP_DEFAULT_CONFIG_MULTIPLE(servers_in_list, list_of_servers)

Default configuration to init SNTP with multiple servers.
Parameters

• servers_in_list -- Number of servers in the list
• list_of_servers -- List of servers (use ESP_SNTP_SERVER_LIST(...))

ESP_NETIF_SNTP_DEFAULT_CONFIG(server)
Default configuration with a single server.

Type Definitions

typedef void (*esp_sntp_time_cb_t)(struct timeval *tv)
Time sync notification function.

typedef struct esp_sntp_config esp_sntp_config_t
SNTP configuration struct.

Header File
• components/esp_netif/include/esp_netif_types.h

Structures

struct esp_netif_dns_info_t
DNS server info.

Public Members

esp_ip_addr_t ip

IPV4 address of DNS server

struct esp_netif_ip_info_t
Event structure for IP_EVENT_STA_GOT_IP, IP_EVENT_ETH_GOT_IP events

Public Members

Espressif Systems 831
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_ip4_addr_t ip

Interface IPV4 address

esp_ip4_addr_t netmask

Interface IPV4 netmask

esp_ip4_addr_t gw

Interface IPV4 gateway address

struct esp_netif_ip6_info_t
IPV6 IP address information.

Public Members

esp_ip6_addr_t ip

Interface IPV6 address

struct ip_event_got_ip_t
Event structure for IP_EVENT_GOT_IP event.

Public Members

esp_netif_t *esp_netif
Pointer to corresponding esp-netif object

esp_netif_ip_info_t ip_info

IP address, netmask, gatway IP address

bool ip_changed
Whether the assigned IP has changed or not

struct ip_event_got_ip6_t
Event structure for IP_EVENT_GOT_IP6 event

Public Members

esp_netif_t *esp_netif
Pointer to corresponding esp-netif object

esp_netif_ip6_info_t ip6_info

IPv6 address of the interface

int ip_index
IPv6 address index

struct ip_event_add_ip6_t
Event structure for ADD_IP6 event

Espressif Systems 832
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

esp_ip6_addr_t addr

The address to be added to the interface

bool preferred
The default preference of the address

struct ip_event_ap_staipassigned_t
Event structure for IP_EVENT_AP_STAIPASSIGNED event

Public Members

esp_netif_t *esp_netif
Pointer to the associated netif handle

esp_ip4_addr_t ip

IP address which was assigned to the station

uint8_t mac[6]
MAC address of the connected client

struct bridgeif_config
LwIP bridge configuration

Public Members

uint16_t max_fdb_dyn_entries
maximum number of entries in dynamic forwarding database

uint16_t max_fdb_sta_entries
maximum number of entries in static forwarding database

uint8_t max_ports
maximum number of ports the bridge can consist of

struct esp_netif_inherent_config
ESP-netif inherent config parameters.

Public Members

esp_netif_flags_t flags

flags that define esp-netif behavior

uint8_t mac[6]
initial mac address for this interface

Espressif Systems 833
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

const esp_netif_ip_info_t *ip_info
initial ip address for this interface

uint32_t get_ip_event
event id to be raised when interface gets an IP

uint32_t lost_ip_event
event id to be raised when interface losts its IP

const char *if_key
string identifier of the interface

const char *if_desc
textual description of the interface

int route_prio
numeric priority of this interface to become a default routing if (if other netifs are up). A higher value
of route_prio indicates a higher priority

bridgeif_config_t *bridge_info
LwIP bridge configuration

struct esp_netif_driver_base_s
ESP-netif driver base handle.

Public Members

esp_err_t (*post_attach)(esp_netif_t *netif, esp_netif_iodriver_handle h)
post attach function pointer

esp_netif_t *netif
netif handle

struct esp_netif_driver_ifconfig
Specific IO driver configuration.

Public Members

esp_netif_iodriver_handle handle

io-driver handle

esp_err_t (*transmit)(void *h, void *buffer, size_t len)
transmit function pointer

esp_err_t (*transmit_wrap)(void *h, void *buffer, size_t len, void *netstack_buffer)
transmit wrap function pointer

Espressif Systems 834
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void (*driver_free_rx_buffer)(void *h, void *buffer)
free rx buffer function pointer

struct esp_netif_config
Generic esp_netif configuration.

Public Members

const esp_netif_inherent_config_t *base
base config

const esp_netif_driver_ifconfig_t *driver
driver config

const esp_netif_netstack_config_t *stack
stack config

struct esp_netif_pair_mac_ip_t
DHCP client's addr info (pair of MAC and IP address)

Public Members

uint8_t mac[6]
Clients MAC address

esp_ip4_addr_t ip

Clients IP address

Macros

ESP_ERR_ESP_NETIF_BASE

Definition of ESP-NETIF based errors.

ESP_ERR_ESP_NETIF_INVALID_PARAMS

ESP_ERR_ESP_NETIF_IF_NOT_READY

ESP_ERR_ESP_NETIF_DHCPC_START_FAILED

ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED

ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED

ESP_ERR_ESP_NETIF_NO_MEM

ESP_ERR_ESP_NETIF_DHCP_NOT_STOPPED

Espressif Systems 835
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_ESP_NETIF_DRIVER_ATTACH_FAILED

ESP_ERR_ESP_NETIF_INIT_FAILED

ESP_ERR_ESP_NETIF_DNS_NOT_CONFIGURED

ESP_ERR_ESP_NETIF_MLD6_FAILED

ESP_ERR_ESP_NETIF_IP6_ADDR_FAILED

ESP_ERR_ESP_NETIF_DHCPS_START_FAILED

ESP_NETIF_BR_FLOOD

Definition of ESP-NETIF bridge controll.

ESP_NETIF_BR_DROP

ESP_NETIF_BR_FDW_CPU

Type Definitions

typedef struct esp_netif_obj esp_netif_t

typedef enum esp_netif_flags esp_netif_flags_t

typedef enum esp_netif_ip_event_type esp_netif_ip_event_type_t

typedef struct bridgeif_config bridgeif_config_t
LwIP bridge configuration

typedef struct esp_netif_inherent_config esp_netif_inherent_config_t
ESP-netif inherent config parameters.

typedef struct esp_netif_config esp_netif_config_t

typedef void *esp_netif_iodriver_handle
IO driver handle type.

typedef struct esp_netif_driver_base_s esp_netif_driver_base_t
ESP-netif driver base handle.

typedef struct esp_netif_driver_ifconfig esp_netif_driver_ifconfig_t

typedef struct esp_netif_netstack_config esp_netif_netstack_config_t
Specific L3 network stack configuration.

typedef esp_err_t (*esp_netif_receive_t)(esp_netif_t *esp_netif, void *buffer, size_t len, void *eb)
ESP-NETIF Receive function type.

Espressif Systems 836
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enumerations

enum esp_netif_dns_type_t

Type of DNS server.
Values:

enumerator ESP_NETIF_DNS_MAIN
DNS main server address

enumerator ESP_NETIF_DNS_BACKUP
DNS backup server address (Wi-Fi STA and Ethernet only)

enumerator ESP_NETIF_DNS_FALLBACK
DNS fallback server address (Wi-Fi STA and Ethernet only)

enumerator ESP_NETIF_DNS_MAX

enum esp_netif_dhcp_status_t

Status of DHCP client or DHCP server.
Values:

enumerator ESP_NETIF_DHCP_INIT
DHCP client/server is in initial state (not yet started)

enumerator ESP_NETIF_DHCP_STARTED
DHCP client/server has been started

enumerator ESP_NETIF_DHCP_STOPPED
DHCP client/server has been stopped

enumerator ESP_NETIF_DHCP_STATUS_MAX

enum esp_netif_dhcp_option_mode_t

Mode for DHCP client or DHCP server option functions.
Values:

enumerator ESP_NETIF_OP_START

enumerator ESP_NETIF_OP_SET
Set option

enumerator ESP_NETIF_OP_GET
Get option

enumerator ESP_NETIF_OP_MAX

enum esp_netif_dhcp_option_id_t

Supported options for DHCP client or DHCP server.
Values:

Espressif Systems 837
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_NETIF_SUBNET_MASK
Network mask

enumerator ESP_NETIF_DOMAIN_NAME_SERVER
Domain name server

enumerator ESP_NETIF_ROUTER_SOLICITATION_ADDRESS
Solicitation router address

enumerator ESP_NETIF_REQUESTED_IP_ADDRESS
Request specific IP address

enumerator ESP_NETIF_IP_ADDRESS_LEASE_TIME
Request IP address lease time

enumerator ESP_NETIF_IP_REQUEST_RETRY_TIME
Request IP address retry counter

enumerator ESP_NETIF_VENDOR_CLASS_IDENTIFIER
Vendor Class Identifier of a DHCP client

enumerator ESP_NETIF_VENDOR_SPECIFIC_INFO
Vendor Specific Information of a DHCP server

enum ip_event_t

IP event declarations
Values:

enumerator IP_EVENT_STA_GOT_IP
station got IP from connected AP

enumerator IP_EVENT_STA_LOST_IP
station lost IP and the IP is reset to 0

enumerator IP_EVENT_AP_STAIPASSIGNED
soft-AP assign an IP to a connected station

enumerator IP_EVENT_GOT_IP6
station or ap or ethernet interface v6IP addr is preferred

enumerator IP_EVENT_ETH_GOT_IP
ethernet got IP from connected AP

enumerator IP_EVENT_ETH_LOST_IP
ethernet lost IP and the IP is reset to 0

enumerator IP_EVENT_PPP_GOT_IP
PPP interface got IP

Espressif Systems 838
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator IP_EVENT_PPP_LOST_IP
PPP interface lost IP

enum esp_netif_flags

Values:

enumerator ESP_NETIF_DHCP_CLIENT

enumerator ESP_NETIF_DHCP_SERVER

enumerator ESP_NETIF_FLAG_AUTOUP

enumerator ESP_NETIF_FLAG_GARP

enumerator ESP_NETIF_FLAG_EVENT_IP_MODIFIED

enumerator ESP_NETIF_FLAG_IS_PPP

enumerator ESP_NETIF_FLAG_IS_BRIDGE

enumerator ESP_NETIF_FLAG_MLDV6_REPORT

enum esp_netif_ip_event_type

Values:

enumerator ESP_NETIF_IP_EVENT_GOT_IP

enumerator ESP_NETIF_IP_EVENT_LOST_IP

Header File
• components/esp_netif/include/esp_netif_ip_addr.h

Functions
esp_ip6_addr_type_t esp_netif_ip6_get_addr_type(esp_ip6_addr_t *ip6_addr)

Get the IPv6 address type.
Parameters ip6_addr -- [in] IPv6 type
Returns IPv6 type in form of enum esp_ip6_addr_type_t

static inline void esp_netif_ip_addr_copy(esp_ip_addr_t *dest, const esp_ip_addr_t *src)
Copy IP addresses.

Parameters
• dest -- [out] destination IP
• src -- [in] source IP

Structures

struct esp_ip6_addr
IPv6 address.

Espressif Systems 839
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif_ip_addr.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint32_t addr[4]
IPv6 address

uint8_t zone
zone ID

struct esp_ip4_addr
IPv4 address.

Public Members

uint32_t addr
IPv4 address

struct _ip_addr
IP address.

Public Members

esp_ip6_addr_t ip6

IPv6 address type

esp_ip4_addr_t ip4

IPv4 address type

union _ip_addr::[anonymous] u_addr
IP address union

uint8_t type
ipaddress type

Macros
esp_netif_htonl(x)
esp_netif_ip4_makeu32(a, b, c, d)

ESP_IP6_ADDR_BLOCK1(ip6addr)

ESP_IP6_ADDR_BLOCK2(ip6addr)

ESP_IP6_ADDR_BLOCK3(ip6addr)

ESP_IP6_ADDR_BLOCK4(ip6addr)

ESP_IP6_ADDR_BLOCK5(ip6addr)

ESP_IP6_ADDR_BLOCK6(ip6addr)

ESP_IP6_ADDR_BLOCK7(ip6addr)

Espressif Systems 840
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_IP6_ADDR_BLOCK8(ip6addr)

IPSTR

esp_ip4_addr_get_byte(ipaddr, idx)

esp_ip4_addr1(ipaddr)

esp_ip4_addr2(ipaddr)

esp_ip4_addr3(ipaddr)

esp_ip4_addr4(ipaddr)

esp_ip4_addr1_16(ipaddr)

esp_ip4_addr2_16(ipaddr)

esp_ip4_addr3_16(ipaddr)

esp_ip4_addr4_16(ipaddr)

IP2STR(ipaddr)

IPV6STR

IPV62STR(ipaddr)

ESP_IPADDR_TYPE_V4

ESP_IPADDR_TYPE_V6

ESP_IPADDR_TYPE_ANY

ESP_IP4TOUINT32(a, b, c, d)

ESP_IP4TOADDR(a, b, c, d)

ESP_IP4ADDR_INIT(a, b, c, d)

ESP_IP6ADDR_INIT(a, b, c, d)

IP4ADDR_STRLEN_MAX

ESP_IP_IS_ANY(addr)

Type Definitions

typedef struct esp_ip4_addr esp_ip4_addr_t

typedef struct esp_ip6_addr esp_ip6_addr_t

typedef struct _ip_addr esp_ip_addr_t
IP address.

Espressif Systems 841
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enumerations

enum esp_ip6_addr_type_t

Values:

enumerator ESP_IP6_ADDR_IS_UNKNOWN

enumerator ESP_IP6_ADDR_IS_GLOBAL

enumerator ESP_IP6_ADDR_IS_LINK_LOCAL

enumerator ESP_IP6_ADDR_IS_SITE_LOCAL

enumerator ESP_IP6_ADDR_IS_UNIQUE_LOCAL

enumerator ESP_IP6_ADDR_IS_IPV4_MAPPED_IPV6

Header File
• components/esp_netif/include/esp_vfs_l2tap.h

Functions
esp_err_t esp_vfs_l2tap_intf_register(l2tap_vfs_config_t *config)

Add L2 TAP virtual filesystem driver.
This function must be called prior usage of ESP-NETIF L2 TAP Interface

Parameters config -- L2 TAP virtual filesystem driver configuration. Default base path
/dev/net/tap is used when this paramenter is NULL.

Returns esp_err_t
• ESP_OK on success

esp_err_t esp_vfs_l2tap_intf_unregister(const char *base_path)
Removes L2 TAP virtual filesystem driver.

Parameters base_path -- Base path to the L2 TAP virtual filesystem driver. Default path
/dev/net/tap is used when this paramenter is NULL.

Returns esp_err_t
• ESP_OK on success

esp_err_t esp_vfs_l2tap_eth_filter(l2tap_iodriver_handle driver_handle, void *buff, size_t *size)
Filters received Ethernet L2 frames into L2 TAP infrastructure.

Parameters
• driver_handle -- handle of driver at which the frame was received
• buff -- received L2 frame
• size -- input length of the L2 frame which is set to 0 when frame is filtered into L2 TAP

Returns esp_err_t
• ESP_OK is always returned

Structures

struct l2tap_vfs_config_t
L2Tap VFS config parameters.

Espressif Systems 842
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_vfs_l2tap.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

const char *base_path
vfs base path

Macros

L2TAP_VFS_DEFAULT_PATH

L2TAP_VFS_CONFIG_DEFAULT()

Type Definitions

typedef void *l2tap_iodriver_handle

Enumerations

enum l2tap_ioctl_opt_t

Values:

enumerator L2TAP_S_RCV_FILTER

enumerator L2TAP_G_RCV_FILTER

enumerator L2TAP_S_INTF_DEVICE

enumerator L2TAP_G_INTF_DEVICE

enumerator L2TAP_S_DEVICE_DRV_HNDL

enumerator L2TAP_G_DEVICE_DRV_HNDL

WiFi default API reference

Header File
• components/esp_wifi/include/esp_wifi_default.h

Functions
esp_err_t esp_netif_attach_wifi_station(esp_netif_t *esp_netif)

Attaches wifi station interface to supplied netif.
Parameters esp_netif -- instance to attach the wifi station to
Returns

• ESP_OK on success
• ESP_FAIL if attach failed

esp_err_t esp_netif_attach_wifi_ap(esp_netif_t *esp_netif)
Attaches wifi soft AP interface to supplied netif.

Parameters esp_netif -- instance to attach the wifi AP to
Returns

Espressif Systems 843
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_wifi/include/esp_wifi_default.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK on success
• ESP_FAIL if attach failed

esp_err_t esp_wifi_set_default_wifi_sta_handlers(void)
Sets default wifi event handlers for STA interface.

Returns
• ESP_OK on success, error returned from esp_event_handler_register if failed

esp_err_t esp_wifi_set_default_wifi_ap_handlers(void)
Sets default wifi event handlers for AP interface.

Returns
• ESP_OK on success, error returned from esp_event_handler_register if failed

esp_err_t esp_wifi_set_default_wifi_nan_handlers(void)
Sets default wifi event handlers for NAN interface.

Returns
• ESP_OK on success, error returned from esp_event_handler_register if failed

esp_err_t esp_wifi_clear_default_wifi_driver_and_handlers(void *esp_netif)
Clears default wifi event handlers for supplied network interface.

Parameters esp_netif -- instance of corresponding if object
Returns

• ESP_OK on success, error returned from esp_event_handler_register if failed
esp_netif_t *esp_netif_create_default_wifi_ap(void)

Creates default WIFI AP. In case of any init error this API aborts.

Note: The API creates esp_netif object with default WiFi access point config, attaches the netif to wifi and
registers wifi handlers to the default event loop. This API uses assert() to check for potential errors, so it could
abort the program. (Note that the default event loop needs to be created prior to calling this API)

Returns pointer to esp-netif instance

esp_netif_t *esp_netif_create_default_wifi_sta(void)
Creates default WIFI STA. In case of any init error this API aborts.

Note: The API creates esp_netif object with default WiFi station config, attaches the netif to wifi and registers
wifi handlers to the default event loop. This API uses assert() to check for potential errors, so it could abort
the program. (Note that the default event loop needs to be created prior to calling this API)

Returns pointer to esp-netif instance

esp_netif_t *esp_netif_create_default_wifi_nan(void)
Creates default WIFI NAN. In case of any init error this API aborts.

Note: The API creates esp_netif object with default WiFi station config, attaches the netif to wifi and registers
wifi handlers to the default event loop. (Note that the default event loop needs to be created prior to calling this
API)

Returns pointer to esp-netif instance

Espressif Systems 844
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void esp_netif_destroy_default_wifi(void *esp_netif)
Destroys default WIFI netif created with esp_netif_create_default_wifi_...() API.

Note: This API unregisters wifi handlers and detaches the created object from the wifi. (this function is a
no-operation if esp_netif is NULL)

Parameters esp_netif -- [in] object to detach from WiFi and destroy

esp_netif_t *esp_netif_create_wifi(wifi_interface_t wifi_if, const esp_netif_inherent_config_t
*esp_netif_config)

Creates esp_netif WiFi object based on the custom configuration.

Attention This API DOES NOT register default handlers!

Parameters
• wifi_if -- [in] type of wifi interface
• esp_netif_config -- inherent esp-netif configuration pointer

Returns pointer to esp-netif instance

esp_err_t esp_netif_create_default_wifi_mesh_netifs(esp_netif_t **p_netif_sta, esp_netif_t
**p_netif_ap)

Creates default STA and AP network interfaces for esp-mesh.
Both netifs are almost identical to the default station and softAP, but with DHCP client and server disabled.
Please note that the DHCP client is typically enabled only if the device is promoted to a root node.
Returns created interfaces which could be ignored setting parameters to NULL if an application code does not
need to save the interface instances for further processing.

Parameters
• p_netif_sta -- [out] pointer where the resultant STA interface is saved (if nonNULL)
• p_netif_ap -- [out] pointer where the resultant AP interface is saved (if non NULL)

Returns ESP_OK on success

2.5.5 IP Network Layer

ESP-NETIF Custom I/O Driver

This section outlines implementing a new I/O driver with esp-netif connection capabilities. By convention the I/O
driver has to register itself as an esp-netif driver and thus holds a dependency on esp-netif component and is responsible
for providing data path functions, post-attach callback and in most cases also default event handlers to define network
interface actions based on driver's lifecycle transitions.

Packet input/output As shown in the diagram, the following three API functions for the packet data path must be
defined for connecting with esp-netif:

• esp_netif_transmit()
• esp_netif_free_rx_buffer()
• esp_netif_receive()

The first two functions for transmitting and freeing the rx buffer are provided as callbacks, i.e. they get called from
esp-netif (and its underlying TCP/IP stack) and I/O driver provides their implementation.
The receiving function on the other hand gets called from the I/O driver, so that the driver's code simply calls
esp_netif_receive() on a new data received event.

Espressif Systems 845
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Post attach callback A final part of the network interface initialization consists of attaching the esp-netif instance
to the I/O driver, by means of calling the following API:

esp_err_t esp_netif_attach(esp_netif_t *esp_netif, esp_netif_iodriver_handle␣
↪→driver_handle);

It is assumed that the esp_netif_iodriver_handle is a pointer to driver's object, a struct derived from
struct esp_netif_driver_base_s, so that the first member of I/O driver structure must be this base
structure with pointers to

• post-attach function callback
• related esp-netif instance

As a consequence the I/O driver has to create an instance of the struct per below:

typedef struct my_netif_driver_s {
esp_netif_driver_base_t base; /*!< base structure reserved as␣

↪→esp-netif driver */
driver_impl *h; /*!< handle of driver␣

↪→implementation */
} my_netif_driver_t;

with actual values of my_netif_driver_t::base.post_attach and the actual drivers handle
my_netif_driver_t::h. So when the esp_netif_attach() gets called from the initialization code,
the post-attach callback from I/O driver's code gets executed to mutually register callbacks between esp-netif and
I/O driver instances. Typically the driver is started as well in the post-attach callback. An example of a simple
post-attach callback is outlined below:

static esp_err_t my_post_attach_start(esp_netif_t * esp_netif, void * args)
{

my_netif_driver_t *driver = args;
const esp_netif_driver_ifconfig_t driver_ifconfig = {

.driver_free_rx_buffer = my_free_rx_buf,

.transmit = my_transmit,

.handle = driver->driver_impl
};
driver->base.netif = esp_netif;
ESP_ERROR_CHECK(esp_netif_set_driver_config(esp_netif, &driver_ifconfig));
my_driver_start(driver->driver_impl);
return ESP_OK;

}

Default handlers I/O drivers also typically provide default definitions of lifecycle behaviour of related network
interfaces based on state transitions of I/O drivers. For example driver start -> network start, etc. An example of
such a default handler is provided below:

esp_err_t my_driver_netif_set_default_handlers(my_netif_driver_t *driver, esp_
↪→netif_t * esp_netif)
{

driver_set_event_handler(driver->driver_impl, esp_netif_action_start, MY_DRV_
↪→EVENT_START, esp_netif);

driver_set_event_handler(driver->driver_impl, esp_netif_action_stop, MY_DRV_
↪→EVENT_STOP, esp_netif);

return ESP_OK;
}

Network stack connection The packet data path functions for transmitting and freeing the rx buffer (defined in
the I/O driver) are called from the esp-netif, specifically from its TCP/IP stack connecting layer.
Note, that IDF provides several network stack configurations for the most common network interfaces, such as for
the WiFi station or Ethernet. These configurations are defined in esp_netif/include/esp_netif_defaults.h and should

Espressif Systems 846
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif_defaults.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

be sufficient for most network drivers. (In rare cases, expert users might want to define custom lwIP based interface
layers; it is possible, but an explicit dependency to lwIP needs to be set)
The following API reference outlines these network stack interaction with the esp-netif:

Header File
• components/esp_netif/include/esp_netif_net_stack.h

Functions
esp_netif_t *esp_netif_get_handle_from_netif_impl(void *dev)

Returns esp-netif handle.
Parameters dev -- [in] opaque ptr to network interface of specific TCP/IP stack
Returns handle to related esp-netif instance

void *esp_netif_get_netif_impl(esp_netif_t *esp_netif)
Returns network stack specific implementation handle (if supported)
Note that it is not supported to acquire PPP netif impl pointer and this function will return NULL for esp_netif
instances configured to PPP mode

Parameters esp_netif -- [in] Handle to esp-netif instance
Returns handle to related network stack netif handle

esp_err_t esp_netif_set_link_speed(esp_netif_t *esp_netif, uint32_t speed)
Set link-speed for the specified network interface.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• speed -- [in] Link speed in bit/s

Returns ESP_OK on success
esp_err_t esp_netif_transmit(esp_netif_t *esp_netif, void *data, size_t len)

Outputs packets from the TCP/IP stack to the media to be transmitted.
This function gets called from network stack to output packets to IO driver.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• data -- [in] Data to be transmitted
• len -- [in] Length of the data frame

Returns ESP_OK on success, an error passed from the I/O driver otherwise
esp_err_t esp_netif_transmit_wrap(esp_netif_t *esp_netif, void *data, size_t len, void *netstack_buf)

Outputs packets from the TCP/IP stack to the media to be transmitted.
This function gets called from network stack to output packets to IO driver.

Parameters
• esp_netif -- [in] Handle to esp-netif instance
• data -- [in] Data to be transmitted
• len -- [in] Length of the data frame
• netstack_buf -- [in] net stack buffer

Returns ESP_OK on success, an error passed from the I/O driver otherwise
void esp_netif_free_rx_buffer(void *esp_netif, void *buffer)

Free the rx buffer allocated by the media driver.
This function gets called from network stack when the rx buffer to be freed in IO driver context, i.e. to
deallocate a buffer owned by io driver (when data packets were passed to higher levels to avoid copying)

Parameters
• esp_netif -- [in] Handle to esp-netif instance

Espressif Systems 847
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif_net_stack.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• buffer -- [in] Rx buffer pointer
Code examples for TCP/IP socket APIs are provided in the protocols/sockets directory of ESP-IDF examples.

2.5.6 Application Layer

Documentation for Application layer network protocols (above the IP Network layer) are provided in Application
Protocols.

2.6 Peripherals API

2.6.1 Analog to Digital Converter (ADC) Oneshot Mode Driver

Introduction

The Analog to Digital Converter is integrated on the chip and is capable of measuring analog signals from specific
analog IO pins.
ESP32-C6 has one ADC unit(s), which can be used in scenario(s) like:

• Generate one-shot ADC conversion result
• Generate continuous ADC conversion results

This guide introduces ADC oneshot mode conversion.

Functional Overview

The following sections of this document cover the typical steps to install and operate an ADC:
• Resource Allocation - covers which parameters should be set up to get an ADC handle and how to recycle the
resources when ADC finishes working.

• Unit Configuration - covers the parameters that should be set up to configure the ADC unit, so as to get ADC
conversion raw result.

• Read Conversion Result - covers how to get ADC conversion raw result.
• Hardware Limitations - describes the ADC-related hardware limitations.
• Power Management - covers power management-related information.
• IRAM Safe - describes tips on how to read ADC conversion raw results when the cache is disabled.
• Thread Safety - lists which APIs are guaranteed to be thread-safe by the driver.
• Kconfig Options - lists the supported Kconfig options that can be used to make a different effect on driver
behavior.

Resource Allocation The ADC oneshot mode driver is implemented based on ESP32-C6 SAR ADC module.
Different ESP chips might have different numbers of independent ADCs. From the oneshot mode driver's point of
view, an ADC instance is represented by adc_oneshot_unit_handle_t.
To install an ADC instance, set up the required initial configuration structure
adc_oneshot_unit_init_cfg_t:

• adc_oneshot_unit_init_cfg_t::unit_id selects the ADC. Please refer to the datasheet to know
dedicated analog IOs for this ADC.

Espressif Systems 848
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/sockets
https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• adc_oneshot_unit_init_cfg_t::clk_src selects the source clock of the ADC. If set to 0, the
driver will fall back to using a default clock source, see adc_oneshot_clk_src_t to know the details.

• adc_oneshot_unit_init_cfg_t::ulp_mode sets if the ADC will be working under ULP mode.
After setting up the initial configurations for the ADC, call adc_oneshot_new_unit() with the prepared
adc_oneshot_unit_init_cfg_t. This function will return an ADC unit handle if the allocation is success-
ful.
This function may fail due to various errors such as invalid arguments, insufficient memory, etc. Specifically, when the
to-be-allocated ADC instance is registered already, this function will return ESP_ERR_NOT_FOUND error. Number
of available ADC(s) is recorded by SOC_ADC_PERIPH_NUM .
If a previously created ADC instance is no longer required, you should recycle the ADC instance by calling
adc_oneshot_del_unit(), related hardware and software resources will be recycled as well.

Create an ADC Unit Handle Under Normal Oneshot Mode
adc_oneshot_unit_handle_t adc1_handle;
adc_oneshot_unit_init_cfg_t init_config1 = {

.unit_id = ADC_UNIT_1,

.ulp_mode = ADC_ULP_MODE_DISABLE,
};
ESP_ERROR_CHECK(adc_oneshot_new_unit(&init_config1, &adc1_handle));

Recycle the ADC Unit
ESP_ERROR_CHECK(adc_oneshot_del_unit(adc1_handle));

Unit Configuration After an ADC instance is created, set up the adc_oneshot_chan_cfg_t to configure
ADC IOs to measure analog signal:

• adc_oneshot_chan_cfg_t::atten, ADC attenuation. Refer to TRM > On-Chip Sensor and
Analog Signal Processing.

• adc_oneshot_chan_cfg_t::bitwidth, the bitwidth of the raw conversion result.

Note: For the IO corresponding ADC channel number, check datasheet to know the ADC IOs.
Additionally, adc_continuous_io_to_channel() and adc_continuous_channel_to_io() can
be used to know the ADC channels and ADC IOs.

To make these settings take effect, call adc_oneshot_config_channel() with the above
configuration structure. You should specify an ADC channel to be configured as well. Function
adc_oneshot_config_channel() can be called multiple times to configure different ADC channels.
The Driver will save each of these channel configurations internally.

Configure Two ADC Channels
adc_oneshot_chan_cfg_t config = {

.bitwidth = ADC_BITWIDTH_DEFAULT,

.atten = ADC_ATTEN_DB_12,
};
ESP_ERROR_CHECK(adc_oneshot_config_channel(adc1_handle, EXAMPLE_ADC1_CHAN0, &
↪→config));
ESP_ERROR_CHECK(adc_oneshot_config_channel(adc1_handle, EXAMPLE_ADC1_CHAN1, &
↪→config));

Espressif Systems 849
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Read Conversion Result After above configurations, the ADC is ready to measure the analog signal(s) from the
configured ADC channel(s). Call adc_oneshot_read() to get the conversion raw result of an ADC channel.

• adc_oneshot_read() is safe to use. ADC(s) are shared by some other drivers/peripherals, seeHardware
Limitations. This function uses mutexes to avoid concurrent hardware usage. Therefore, this function should
not be used in an ISR context. This function may fail when the ADC is in use by other drivers/peripherals, and
return ESP_ERR_TIMEOUT. Under this condition, the ADC raw result is invalid.

This function will fail due to invalid arguments.
The ADC conversion results read from this function are raw data. To calculate the voltage based on the ADC raw
results, this formula can be used:

Vout = Dout * Vmax / Dmax (1)

where:

Vout Digital output result, standing for the voltage.
Dout ADC raw digital reading result.
Vmax Maximum measurable input analog voltage, this is related to the ADC attenuation, please

refer to TRM > On-Chip Sensor and Analog Signal Processing.
Dmax Maximum of the output ADC raw digital reading result, which is 2^bitwidth, where

bitwidth is the adc_oneshot_chan_cfg_t::bitwidth configured before.

To do further calibration to convert the ADC raw result to voltage in mV, please refer to calibration doc Analog to
Digital Converter (ADC) Calibration Driver.

Read Raw Result
ESP_ERROR_CHECK(adc_oneshot_read(adc1_handle, EXAMPLE_ADC1_CHAN0, &adc_raw[0][0]));
ESP_LOGI(TAG, "ADC%d Channel[%d] Raw Data: %d", ADC_UNIT_1 + 1, EXAMPLE_ADC1_CHAN0,
↪→ adc_raw[0][0]);

ESP_ERROR_CHECK(adc_oneshot_read(adc1_handle, EXAMPLE_ADC1_CHAN1, &adc_raw[0][1]));
ESP_LOGI(TAG, "ADC%d Channel[%d] Raw Data: %d", ADC_UNIT_1 + 1, EXAMPLE_ADC1_CHAN1,
↪→ adc_raw[0][1]);

Hardware Limitations
• Random Number Generator (RNG) uses ADC as an input source. When ADC adc_oneshot_read()
works, the random number generated from RNG will be less random.

• A specific ADC unit can only work under one operating mode at any one time, either continuous mode or
oneshot mode. adc_oneshot_read() has provided the protection.

Power Management When power management is enabled, i.e., CONFIG_PM_ENABLE is on, the system clock
frequency may be adjusted when the system is in an idle state. However, the ADC oneshot mode driver works in a
polling routine, the adc_oneshot_read() will poll the CPU until the function returns. During this period of
time, the task in which ADC oneshot mode driver resides will not be blocked. Therefore the clock frequency is stable
when reading.

IRAM Safe By default, all the ADC oneshot mode driver APIs are not supposed to be run when the Cache is
disabled. Cache may be disabled due to many reasons, such as Flash writing/erasing, OTA, etc. If these APIs
execute when the Cache is disabled, you will probably see errors like Illegal Instruction or Load/Store
Prohibited.

Espressif Systems 850
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Thread Safety
• adc_oneshot_new_unit()
• adc_oneshot_config_channel()
• adc_oneshot_read()

Above functions are guaranteed to be thread-safe. Therefore, you can call them from different RTOS tasks without
protection by extra locks.

• adc_oneshot_del_unit() is not thread-safe. Besides, concurrently calling this function may result in
failures of the above thread-safe APIs.

Kconfig Options
• CONFIG_ADC_ONESHOT_CTRL_FUNC_IN_IRAM controls where to place the ADC fast read function
(IRAM or Flash), see IRAM Safe for more details.

Application Examples

• ADC oneshot mode example: peripherals/adc/oneshot_read.

API Reference

Header File
• components/hal/include/hal/adc_types.h

Structures

struct adc_digi_pattern_config_t
ADC digital controller pattern configuration.

Public Members

uint8_t atten
Attenuation of this ADC channel.

uint8_t channel
ADC channel.

uint8_t unit
ADC unit.

uint8_t bit_width
ADC output bit width.

struct adc_digi_output_data_t
ADC digital controller (DMA mode) output data format. Used to analyze the acquired ADC (DMA) data.

Espressif Systems 851
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/adc/oneshot_read
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/adc_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint32_t data
ADC real output data info. Resolution: 12 bit.

uint32_t reserved12
Reserved12.

uint32_t channel
ADC channel index info. If (channel < ADC_CHANNEL_MAX), The data is valid. If (channel >
ADC_CHANNEL_MAX), The data is invalid.

uint32_t reserved17_31
Reserved 17-31.

struct adc_digi_output_data_t::[anonymous]::[anonymous] type2
When the configured output format is 12bit.

uint32_t val
Raw data value

Type Definitions

typedef soc_periph_adc_digi_clk_src_t adc_oneshot_clk_src_t
Clock source type of oneshot mode which uses digital controller.

typedef soc_periph_adc_digi_clk_src_t adc_continuous_clk_src_t
Clock source type of continuous mode which uses digital controller.

Enumerations

enum adc_unit_t

ADC unit.
Values:

enumerator ADC_UNIT_1
SAR ADC 1.

enumerator ADC_UNIT_2
SAR ADC 2.

enum adc_channel_t

ADC channels.
Values:

enumerator ADC_CHANNEL_0
ADC channel.

enumerator ADC_CHANNEL_1
ADC channel.

Espressif Systems 852
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ADC_CHANNEL_2
ADC channel.

enumerator ADC_CHANNEL_3
ADC channel.

enumerator ADC_CHANNEL_4
ADC channel.

enumerator ADC_CHANNEL_5
ADC channel.

enumerator ADC_CHANNEL_6
ADC channel.

enumerator ADC_CHANNEL_7
ADC channel.

enumerator ADC_CHANNEL_8
ADC channel.

enumerator ADC_CHANNEL_9
ADC channel.

enum adc_atten_t

ADC attenuation parameter. Different parameters determine the range of the ADC.
Values:

enumerator ADC_ATTEN_DB_0
No input attenuation, ADC can measure up to approx.

enumerator ADC_ATTEN_DB_2_5
The input voltage of ADC will be attenuated extending the range of measurement by about 2.5 dB.

enumerator ADC_ATTEN_DB_6
The input voltage of ADC will be attenuated extending the range of measurement by about 6 dB.

enumerator ADC_ATTEN_DB_12
The input voltage of ADC will be attenuated extending the range of measurement by about 12 dB.

enumerator ADC_ATTEN_DB_11
This is deprecated, it behaves the same as ADC_ATTEN_DB_12

enum adc_bitwidth_t

Values:

enumerator ADC_BITWIDTH_DEFAULT
Default ADC output bits, max supported width will be selected.

Espressif Systems 853
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ADC_BITWIDTH_9
ADC output width is 9Bit.

enumerator ADC_BITWIDTH_10
ADC output width is 10Bit.

enumerator ADC_BITWIDTH_11
ADC output width is 11Bit.

enumerator ADC_BITWIDTH_12
ADC output width is 12Bit.

enumerator ADC_BITWIDTH_13
ADC output width is 13Bit.

enum adc_ulp_mode_t

Values:

enumerator ADC_ULP_MODE_DISABLE
ADC ULP mode is disabled.

enumerator ADC_ULP_MODE_FSM
ADC is controlled by ULP FSM.

enumerator ADC_ULP_MODE_RISCV
ADC is controlled by ULP RISCV.

enum adc_digi_convert_mode_t

ADC digital controller (DMA mode) work mode.
Values:

enumerator ADC_CONV_SINGLE_UNIT_1
Only use ADC1 for conversion.

enumerator ADC_CONV_SINGLE_UNIT_2
Only use ADC2 for conversion.

enumerator ADC_CONV_BOTH_UNIT
Use Both ADC1 and ADC2 for conversion simultaneously.

enumerator ADC_CONV_ALTER_UNIT
Use both ADC1 and ADC2 for conversion by turn. e.g. ADC1 -> ADC2 -> ADC1 -> ADC2

enum adc_digi_output_format_t

ADC digital controller (DMA mode) output data format option.
Values:

Espressif Systems 854
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ADC_DIGI_OUTPUT_FORMAT_TYPE1
See adc_digi_output_data_t.type1

enumerator ADC_DIGI_OUTPUT_FORMAT_TYPE2
See adc_digi_output_data_t.type2

enum adc_digi_iir_filter_t

ADC IIR Filter ID.
Values:

enumerator ADC_DIGI_IIR_FILTER_0
Filter 0.

enumerator ADC_DIGI_IIR_FILTER_1
Filter 1.

enum adc_digi_iir_filter_coeff_t

IIR Filter Coefficient.
Values:

enumerator ADC_DIGI_IIR_FILTER_COEFF_2
The filter coefficient is 2.

enumerator ADC_DIGI_IIR_FILTER_COEFF_4
The filter coefficient is 4.

enumerator ADC_DIGI_IIR_FILTER_COEFF_8
The filter coefficient is 8.

enumerator ADC_DIGI_IIR_FILTER_COEFF_16
The filter coefficient is 16.

enumerator ADC_DIGI_IIR_FILTER_COEFF_64
The filter coefficient is 64.

Header File
• components/esp_adc/include/esp_adc/adc_oneshot.h

Functions
esp_err_t adc_oneshot_new_unit(const adc_oneshot_unit_init_cfg_t *init_config,

adc_oneshot_unit_handle_t *ret_unit)
Create a handle to a specific ADC unit.

Note: This API is thread-safe. For more details, see ADC programming guide

Parameters
• init_config -- [in] Driver initial configurations

Espressif Systems 855
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_adc/include/esp_adc/adc_oneshot.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ret_unit -- [out] ADC unit handle
Returns

• ESP_OK: On success
• ESP_ERR_INVALID_ARG: Invalid arguments
• ESP_ERR_NO_MEM: No memory
• ESP_ERR_NOT_FOUND: The ADC peripheral to be claimed is already in use
• ESP_FAIL: Clock source isn't initialised correctly

esp_err_t adc_oneshot_config_channel(adc_oneshot_unit_handle_t handle, adc_channel_t channel,
const adc_oneshot_chan_cfg_t *config)

Set ADC oneshot mode required configurations.

Note: This API is thread-safe. For more details, see ADC programming guide

Parameters
• handle -- [in] ADC handle
• channel -- [in] ADC channel to be configured
• config -- [in] ADC configurations

Returns
• ESP_OK: On success
• ESP_ERR_INVALID_ARG: Invalid arguments

esp_err_t adc_oneshot_read(adc_oneshot_unit_handle_t handle, adc_channel_t chan, int *out_raw)
Get one ADC conversion raw result.

Note: This API is thread-safe. For more details, see ADC programming guide

Note: This API should NOT be called in an ISR context

Parameters
• handle -- [in] ADC handle
• chan -- [in] ADC channel
• out_raw -- [out] ADC conversion raw result

Returns
• ESP_OK: On success
• ESP_ERR_INVALID_ARG: Invalid arguments
• ESP_ERR_TIMEOUT: Timeout, the ADC result is invalid

esp_err_t adc_oneshot_del_unit(adc_oneshot_unit_handle_t handle)
Delete the ADC unit handle.

Note: This API is thread-safe. For more details, see ADC programming guide

Parameters handle -- [in] ADC handle
Returns

• ESP_OK: On success
• ESP_ERR_INVALID_ARG: Invalid arguments
• ESP_ERR_NOT_FOUND: The ADC peripheral to be disclaimed isn't in use

esp_err_t adc_oneshot_io_to_channel(int io_num, adc_unit_t *unit_id, adc_channel_t *channel)
Get ADC channel from the given GPIO number.

Espressif Systems 856
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• io_num -- [in] GPIO number
• unit_id -- [out] ADC unit
• channel -- [out] ADC channel

Returns
• ESP_OK: On success
• ESP_ERR_INVALID_ARG: Invalid argument
• ESP_ERR_NOT_FOUND: The IO is not a valid ADC pad

esp_err_t adc_oneshot_channel_to_io(adc_unit_t unit_id, adc_channel_t channel, int *io_num)
Get GPIO number from the given ADC channel.

Parameters
• unit_id -- [in] ADC unit
• channel -- [in] ADC channel
• io_num -- [out] GPIO number
• - -- ESP_OK: On success
– ESP_ERR_INVALID_ARG: Invalid argument

esp_err_t adc_oneshot_get_calibrated_result(adc_oneshot_unit_handle_t handle,
adc_cali_handle_t cali_handle, adc_channel_t chan,
int *cali_result)

Convenience function to get ADC calibrated result.
This is an all-in-one function which does:

• oneshot read ADC raw result
• calibrate the raw result and convert it into calibrated result (in mV)

Parameters
• handle -- [in] ADC oneshot handle, you should call adc_oneshot_new_unit() to get this
handle

• cali_handle -- [in] ADC calibration handle, you should call
adc_cali_create_scheme_x() in adc_cali_scheme.h to create a handle

• chan -- [in] ADC channel
• cali_result -- [out] Calibrated ADC result (in mV)

Returns
• ESP_OK Other return errors from adc_oneshot_read() and adc_cali_raw_to_voltage()

Structures

struct adc_oneshot_unit_init_cfg_t
ADC oneshot driver initial configurations.

Public Members

adc_unit_t unit_id

ADC unit.

adc_oneshot_clk_src_t clk_src

Clock source.

adc_ulp_mode_t ulp_mode

ADC controlled by ULP, see adc_ulp_mode_t

struct adc_oneshot_chan_cfg_t
ADC channel configurations.

Espressif Systems 857
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

adc_atten_t atten

ADC attenuation.

adc_bitwidth_t bitwidth

ADC conversion result bits.

Type Definitions

typedef struct adc_oneshot_unit_ctx_t *adc_oneshot_unit_handle_t
Type of ADC unit handle for oneshot mode.

2.6.2 Analog to Digital Converter (ADC) Continuous Mode Driver

Introduction

The Analog to Digital Converter is an on-chip sensor which is able to measure analog signals from specific analog IO
pads.
ESP32-C6 has one ADC unit(s), which can be used in scenario(s) like:

• Generate one-shot ADC conversion result
• Generate continuous ADC conversion results

This guide will introduce ADC continuous mode conversion.

Driver Concepts ADC continuous mode conversion is made up with multiple Conversion Frames.
• Conversion Frame: One Conversion Frame contains multiple Conversion Results. Conversion Frame size is
configured in adc_continuous_new_handle(), in bytes.

• Conversion Result: One Conversion Result contains multiple bytes (see
SOC_ADC_DIGI_RESULT_BYTES). Its structure is adc_digi_output_data_t, including ADC
unit, ADC channel and raw data.

Functional Overview

The following sections of this document cover the typical steps to install the ADC continuous mode driver, and read
ADC conversion results from group of ADC channels continuously:

• Resource Allocation - covers which parameters should be set up to initialize the ADC continuous mode driver
and how to deinitialize it.

• ADC Configurations - describes how to configure the ADC(s) to make it work under continuous mode.
• ADC Control - describes ADC control functions.
• Register Event Callbacks - describes how to hook user specific code to an ADC continuous mode event callback
function.

• Read Conversion Result - covers how to get ADC conversion result.

Espressif Systems 858
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Hardware Limitations - describes the ADC related hardware limitations.
• Power Management - covers power management related.
• IRAM Safe - covers the IRAM safe functions.
• Thread Safety - lists which APIs are guaranteed to be thread safe by the driver.

Resource Allocation The ADC continuous mode driver is implemented based on ESP32-C6 SAR ADC module.
Different ESP targets might have different number of independent ADCs.
To create an ADC continuous mode driver handle, set up the required configuration structure
adc_continuous_handle_cfg_t:

• adc_continuous_handle_cfg_t::max_store_buf_size set the maximum size (in bytes) of
the pool that the driver saves ADC conversion result into. If this pool is full, new conversion results will be
lost.

• adc_continuous_handle_cfg_t::conv_frame_size set the size of the ADC conversion frame,
in bytes.

After setting up above configurations for the ADC, call adc_continuous_new_handle() with the prepared
adc_continuous_handle_cfg_t. This function may fail due to various errors such as invalid argumemts,
insufficient memory, etc.
Especially, when this function returns ESP_ERR_NOT_FOUND, this means there is no free GDMA channel.
If the ADC continuous mode driver is no longer used, you should deinitialize the driver by calling
adc_continuous_deinit().
Two IIR filters are available when ADC is working under continuous mode. To create an
ADC IIR filter, you should set up the adc_continuous_iir_filter_config_t, and call
adc_new_continuous_iir_filter().

• adc_digi_filter_config_t::unit, ADC unit.
• adc_digi_filter_config_t::channel, ADC channel to be filtered.
• adc_digi_filter_config_t::coeff, filter coefficient.

To recycle a filter, you should call adc_del_continuous_iir_filter().

Note: If you use both the filters on a same ADC channel, then only the first one will take effect.

Initialize the ADC Continuous Mode Driver
adc_continuous_handle_cfg_t adc_config = {

.max_store_buf_size = 1024,

.conv_frame_size = 100,
};
ESP_ERROR_CHECK(adc_continuous_new_handle(&adc_config));

Recycle the ADC Unit
ESP_ERROR_CHECK(adc_continuous_deinit());

ADC Configurations After the ADC continuous mode driver is initialized, set up the
adc_continuous_config_t to configure ADC IOs to measure analog signal:

• adc_continuous_config_t::pattern_num, number of ADC channels that will be used.
• adc_continuous_config_t::adc_pattern, list of configs for each ADC channel that will be used,
see below description.

• adc_continuous_config_t::sample_freq_hz, expected ADC sampling frequency in Hz.
• adc_continuous_config_t::conv_mode, continuous conversion mode.
• adc_continuous_config_t::format, conversion output format.

Espressif Systems 859
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

For adc_digi_pattern_config_t:
• adc_digi_pattern_config_t::atten, ADC attenuation. Refer to the On-Chip Sensor chapter in
TRM.

• adc_digi_pattern_config_t::channel, the IO corresponding ADC channel number. See below
note.

• adc_digi_pattern_config_t::unit, the ADC that the IO is subordinate to.
• adc_digi_pattern_config_t::bit_width, the bitwidth of the raw conversion result.

Note: For the IO corresponding ADC channel number. Check datasheet to acquire the ADC IOs. On the other
hand, adc_continuous_io_to_channel() and adc_continuous_channel_to_io() can be used
to acquire the ADC channels and ADC IOs.

To make these settings take effect, call adc_continuous_config() with the configuration structure above.
This API may fail due to reasons like ESP_ERR_INVALID_ARG. When it returns ESP_ERR_INVALID_STATE,
this means the ADC continuous mode driver is started, you shouldn't call this API at this moment.
See ADC continuous mode example peripherals/adc/continuous_read to see configuration codes.
To enable / disable the ADC IIR filter, you should call adc_continuous_iir_filter_enable() /
adc_continuous_iir_filter_disable().

ADC Control

Start and Stop Calling adc_continuous_start() will make the ADC start to measure analog sig-
nals from the configured ADC channels, and generate the conversion results. On the contrary, calling
adc_continuous_stop() will stop the ADC conversion.

ESP_ERROR_CHECK(adc_continuous_stop());

Register Event Callbacks By calling adc_continuous_register_event_callbacks(), you can
hook your own function to the driver ISR. Supported event callbacks are listed inadc_continuous_evt_cbs_t
- adc_continuous_evt_cbs_t::on_conv_done, this is invoked when one conversion frame finishes. -
adc_continuous_evt_cbs_t::on_pool_ovf, this is invoked when internal pool is full. Newer conver-
sion results will be discarded.
As above callbacks are called in an ISR context, you should always ensure the callback function is suitable for
an ISR context. Blocking logics should not appear in these callbacks. Callback function prototype is declared in
adc_continuous_callback_t.
You can also register your own context when calling adc_continuous_register_event_callbacks(),
by the parameter user_data. This user data will be passed to the callback functions directly.
This function may fail due to reasons like ESP_ERR_INVALID_ARG. Specially, when CON-
FIG_ADC_CONTINUOUS_ISR_IRAM_SAFE is enabled, this error may indicate that the callback functions
aren't in internal RAM. Check error log to know this. Besides, when it fails due to ESP_ERR_INVALID_STATE,
this means the ADC continuous mode driver is started, you shouldn't add callback at this moment.

Conversion Done Event The driver will fill in the event data of a
adc_continuous_evt_cbs_t::on_conv_done event. Event data contains a buffer pointer to a
conversion frame buffer, together with the size. Refer to adc_continuous_evt_data_t to know the event
data structure.

Note: It is worth noting that, the data buffer adc_continuous_evt_data_t::conv_frame_buffer is
maintained by the driver itself. Therefore, never free this piece of memory.

Espressif Systems 860
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/adc/continuous_read
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: When the Kconfig option CONFIG_ADC_CONTINUOUS_ISR_IRAM_SAFE is enabled, the registered call-
backs and the functions called by the callbacks should be placed in IRAM. The involved variables should be placed
in internal RAM as well.

Pool Overflow Event The ADC continuous mode driver has an internal pool to save the conversion results. When
the pool is full, a pool overflow event will emerge. Under this condition, the driver won't fill in the event data. This
usually happens the speed to read data from the pool (by calling adc_continuous_read()) is much slower
than the ADC conversion speed.

Read Conversion Result After calling adc_continuous_start(), the ADC continuous conversion starts.
Call adc_continuous_read() to get the conversion results of the ADC channels. You need to provide a buffer
to get the raw results.
This function will try to read the expected length of conversion results each time.

• If the requested length isn't reached, the function will still move the data from the internal pool to the buffer
you prepared. Therefore, check the out_length to know the actual size of conversion results.

• If there is no conversion result generated in the internal pool, the function will block for timeout_ms un-
til the conversion results are generated. If there is still no generated results, the function will return
ESP_ERR_TIMEOUT.

• If the generated results fill up the internal pool, new generated results will be lost. Next time when the
adc_continuous_read() is called, this function will return ESP_ERR_INVALID_STATE indicating
this situation.

This API aims to give you a chance to read all the ADC continuous conversion results.
The ADC conversion results read from above function are raw data. To calculate the voltage based on the ADC raw
results, this formula can be used:

Vout = Dout * Vmax / Dmax (1)

where:

Vout Digital output result, standing for the voltage.
Dout ADC raw digital reading result.
Vmax Maximum measurable input analog voltage, this is related to the ADC attenuation, please refer to the

On-Chip Sensor chapter in TRM.
Dmax Maximum of the output ADC raw digital reading result, which is 2^bitwidth, where bitwidth is the

:cpp:member::adc_digi_pattern_config_t:bit_width configured before.

To do further calbration to convert the ADC raw result to voltage in mV, please refer to calibration doc Analog to
Digital Converter (ADC) Calibration Driver.

Hardware Limitations
• A specific ADC unit can only work under one operating mode at any one time, either continuous mode or
oneshot mode. adc_continuous_start() has provided the protection.

• Random Number Generator uses ADC as an input source. When ADC continuous mode driver works, the
random number generated from RNG will be less random.

Power Management When power management is enabled (i.e. CONFIG_PM_ENABLE is on), the APB clock fre-
quency may be adjusted when the system is in an idle state, thus potentially changing the behavior of ADC continuous
conversion.
However, the continuous mode driver can prevent this change by acquiring a power management lock
of type ESP_PM_APB_FREQ_MAX. The lock is acquired after the continuous conversion is started by

Espressif Systems 861
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

adc_continuous_start(). Similarly, the lock will be released after adc_continuous_stop(). There-
fore, adc_continuous_start() and adc_continuous_stop() should appear in pairs, otherwise the
power management will be out of action.

IRAM Safe All the ADC continuous mode driver APIs are not IRAM-safe. They are not supposed to be run
when the Cache is disabled. By enabling the Kconfig optionCONFIG_ADC_CONTINUOUS_ISR_IRAM_SAFE, driver
internal ISR handler is IRAM-safe, which means even when the Cache is disabled, the driver will still save the
conversion results into its internal pool.

Thread Safety ADC continuous mode driver APIs are not guaranteed to be thread safe. However, the share
hardware mutual exclusion is provided by the driver. See Hardware Limitations for more details.

Application Examples

• ADC continuous mode example: peripherals/adc/continuous_read.

API Reference

Header File
• components/esp_adc/include/esp_adc/adc_continuous.h

Functions
esp_err_t adc_continuous_new_handle(const adc_continuous_handle_cfg_t *hdl_config,

adc_continuous_handle_t *ret_handle)
Initialize ADC continuous driver and get a handle to it.

Parameters
• hdl_config -- [in] Pointer to ADC initilization config. Refer to
adc_continuous_handle_cfg_t.

• ret_handle -- [out] ADC continuous mode driver handle
Returns

• ESP_ERR_INVALID_ARG If the combination of arguments is invalid.
• ESP_ERR_NOT_FOUND No free interrupt found with the specified flags
• ESP_ERR_NO_MEM If out of memory
• ESP_OK On success

esp_err_t adc_continuous_config(adc_continuous_handle_t handle, const adc_continuous_config_t
*config)

Set ADC continuous mode required configurations.
Parameters

• handle -- [in] ADC continuous mode driver handle
• config -- [in] Refer to adc_digi_config_t.

Returns
• ESP_ERR_INVALID_STATE: Driver state is invalid, you shouldn't call this API at this
moment

• ESP_ERR_INVALID_ARG: If the combination of arguments is invalid.
• ESP_OK: On success

esp_err_t adc_continuous_register_event_callbacks(adc_continuous_handle_t handle, const
adc_continuous_evt_cbs_t *cbs, void
*user_data)

Register callbacks.

Espressif Systems 862
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/adc/continuous_read
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_adc/include/esp_adc/adc_continuous.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: User can deregister a previously registered callback by calling this function and setting the to-be-
deregistered callback member in the cbs structure to NULL.

Note: When CONFIG_ADC_CONTINUOUS_ISR_IRAM_SAFE is enabled, the callback itself and func-
tions called by it should be placed in IRAM. Involved variables (including user_data) should be in internal
RAM as well.

Note: You should only call this API when the ADC continuous mode driver isn't started. Check return value
to know this.

Parameters
• handle -- [in] ADC continuous mode driver handle
• cbs -- [in] Group of callback functions
• user_data -- [in] User data, which will be delivered to the callback functions directly

Returns
• ESP_OK: On success
• ESP_ERR_INVALID_ARG: Invalid arguments
• ESP_ERR_INVALID_STATE: Driver state is invalid, you shouldn't call this API at this
moment

esp_err_t adc_continuous_start(adc_continuous_handle_t handle)
Start the ADC under continuous mode. After this, the hardware starts working.

Parameters handle -- [in] ADC continuous mode driver handle
Returns

• ESP_ERR_INVALID_STATE Driver state is invalid.
• ESP_OK On success

esp_err_t adc_continuous_read(adc_continuous_handle_t handle, uint8_t *buf, uint32_t length_max,
uint32_t *out_length, uint32_t timeout_ms)

Read bytes from ADC under continuous mode.
Parameters

• handle -- [in] ADC continuous mode driver handle
• buf -- [out] Conversion result buffer to read from ADC. Suggest convert to
adc_digi_output_data_t for ADC Conversion Results. See @brief
Driver Backgrounds to know this concept.

• length_max -- [in] Expected length of the Conversion Results read from the ADC, in
bytes.

• out_length -- [out] Real length of the Conversion Results read from the ADC via this
API, in bytes.

• timeout_ms -- [in] Time to wait for data via this API, in millisecond.
Returns

• ESP_ERR_INVALID_STATEDriver state is invalid. Usually it means the ADC sampling
rate is faster than the task processing rate.

• ESP_ERR_TIMEOUT Operation timed out
• ESP_OK On success

esp_err_t adc_continuous_stop(adc_continuous_handle_t handle)
Stop the ADC. After this, the hardware stops working.

Parameters handle -- [in] ADC continuous mode driver handle
Returns

• ESP_ERR_INVALID_STATE Driver state is invalid.
• ESP_OK On success

Espressif Systems 863
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t adc_continuous_deinit(adc_continuous_handle_t handle)
Deinitialize the ADC continuous driver.

Parameters handle -- [in] ADC continuous mode driver handle
Returns

• ESP_ERR_INVALID_STATE Driver state is invalid.
• ESP_OK On success

esp_err_t adc_continuous_io_to_channel(int io_num, adc_unit_t *unit_id, adc_channel_t *channel)
Get ADC channel from the given GPIO number.

Parameters
• io_num -- [in] GPIO number
• unit_id -- [out] ADC unit
• channel -- [out] ADC channel

Returns
• ESP_OK: On success
• ESP_ERR_INVALID_ARG: Invalid argument
• ESP_ERR_NOT_FOUND: The IO is not a valid ADC pad

esp_err_t adc_continuous_channel_to_io(adc_unit_t unit_id, adc_channel_t channel, int *io_num)
Get GPIO number from the given ADC channel.

Parameters
• unit_id -- [in] ADC unit
• channel -- [in] ADC channel
• io_num -- [out] GPIO number
• - -- ESP_OK: On success
– ESP_ERR_INVALID_ARG: Invalid argument

Structures

struct adc_continuous_handle_cfg_t
ADC continuous mode driver initial configurations.

Public Members

uint32_t max_store_buf_size
Max length of the conversion Results that driver can store, in bytes.

uint32_t conv_frame_size
Conversion frame size, in bytes. This should be in multiples of
SOC_ADC_DIGI_DATA_BYTES_PER_CONV.

struct adc_continuous_config_t
ADC continuous mode driver configurations.

Public Members

uint32_t pattern_num
Number of ADC channels that will be used.

adc_digi_pattern_config_t *adc_pattern
List of configs for each ADC channel that will be used.

Espressif Systems 864
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t sample_freq_hz
The expected ADC sampling frequency in Hz. Please refer to soc/soc_caps.h to know available
sampling frequency range

adc_digi_convert_mode_t conv_mode

ADC DMA conversion mode, see adc_digi_convert_mode_t.

adc_digi_output_format_t format

ADC DMA conversion output format, see adc_digi_output_format_t.

struct adc_continuous_evt_data_t
Event data structure.

Note: The conv_frame_buffer is maintained by the driver itself, so never free this piece of memory.

Public Members

uint8_t *conv_frame_buffer
Pointer to conversion result buffer for one conversion frame.

uint32_t size
Conversion frame size.

struct adc_continuous_evt_cbs_t
Group of ADC continuous mode callbacks.

Note: These callbacks are all running in an ISR environment.

Note: When CONFIG_ADC_CONTINUOUS_ISR_IRAM_SAFE is enabled, the callback itself and func-
tions called by it should be placed in IRAM. Involved variables should be in internal RAM as well.

Public Members

adc_continuous_callback_t on_conv_done

Event callback, invoked when one conversion frame is done. See @brief Driver Backgrounds
to konw conversion frame concept.

adc_continuous_callback_t on_pool_ovf

Event callback, invoked when the internal pool is full.

Macros

ADC_MAX_DELAY

Driver Backgrounds.

Espressif Systems 865
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef struct adc_continuous_ctx_t *adc_continuous_handle_t
Type of adc continuous mode driver handle.

typedef bool (*adc_continuous_callback_t)(adc_continuous_handle_t handle, const
adc_continuous_evt_data_t *edata, void *user_data)

Prototype of ADC continuous mode event callback.
Param handle [in] ADC continuous mode driver handle
Param edata [in] Pointer to ADC contunuous mode event data
Param user_data [in] User registered context, registered when in

adc_continuous_register_event_callbacks()
Return Whether a high priority task is woken up by this function

2.6.3 Analog to Digital Converter (ADC) Calibration Driver

Introduction

In ESP32-C6, the analog-to-digital converter (ADC) compares the input analog voltage to the reference, and deter-
mines each bit of the output digital result. By design, the ADC reference voltage for ESP32-C6 is 1100mV. However,
the true reference voltage can range from 1000 mV to 1200 mV among different chips. This guide introduces the
ADC calibration driver to minimize the effect of different reference voltages, and get more accurate output results.

Functional Overview

The following sections of this document cover the typical steps to install and use the ADC calibration driver:

• Calibration Scheme Creation - covers how to create a calibration scheme handle and delete the calibration
scheme handle.

• Result Conversion - covers how to convert ADC raw result to calibrated result.
• Thread Safety - lists which APIs are guaranteed to be thread-safe by the driver.
• Minimize Noise - describes a general way to minimize the noise.

Calibration Scheme Creation The ADC calibration driver provides ADC calibration scheme(s). From
the calibration driver's point of view, an ADC calibration scheme is created for an ADC calibration handle
adc_cali_handle_t.
adc_cali_check_scheme() can be used to know which calibration scheme is supported on the chip. If you
already know the supported schemes, this step can be skipped. Just call the corresponding function to create the
scheme handle.
If you use your custom ADC calibration schemes, you could either modify this function
adc_cali_check_scheme(), or just skip this step and call your custom creation function.

ADCCalibration Curve Fitting Scheme ESP32-C6 supports ADC_CALI_SCHEME_VER_CURVE_FITTING
scheme. To create this scheme, set up adc_cali_curve_fitting_config_t first.

• adc_cali_curve_fitting_config_t::unit_id, the ADC that your ADC raw results are from.
• adc_cali_curve_fitting_config_t::chan, the ADC channel that your ADC raw results are
from. The calibration scheme not only differs by attenuation but is also related to the channels.

• adc_cali_curve_fitting_config_t::atten, ADC attenuation that your ADC raw results use.
• adc_cali_curve_fitting_config_t::bitwidth, bit width of ADC raw result.

Espressif Systems 866
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

After setting up the configuration structure, call adc_cali_create_scheme_curve_fitting() to create
a Curve Fitting calibration scheme handle. This function may fail due to reasons such as ESP_ERR_INVALID_ARG
or ESP_ERR_NO_MEM . Especially, when the function return ESP_ERR_NOT_SUPPORTED, this means the cali-
bration scheme required eFuse bits are not burnt on your board.

Create Curve Fitting Scheme
ESP_LOGI(TAG, "calibration scheme version is %s", "Curve Fitting");
adc_cali_curve_fitting_config_t cali_config = {

.unit_id = unit,

.atten = atten,

.bitwidth = ADC_BITWIDTH_DEFAULT,
};
ESP_ERROR_CHECK(adc_cali_create_scheme_curve_fitting(&cali_config, &handle));

When the ADC calibration is no longer used, please delete the calibration scheme driver from the calibration handle
by calling adc_cali_delete_scheme_curve_fitting().

Delete Curve Fitting Scheme
ESP_LOGI(TAG, "delete %s calibration scheme", "Curve Fitting");
ESP_ERROR_CHECK(adc_cali_delete_scheme_curve_fitting(handle));

Note: If you want to use your custom calibration schemes, you could provide a creation function to create your
calibration scheme handle. Check the function table adc_cali_scheme_t in components/esp_adc/
interface/adc_cali_interface.h to know the ESP ADC calibration interface.

Result Conversion After setting up the calibration characteristics, you can call
adc_cali_raw_to_voltage() to convert the ADC raw result into calibrated result. The calibrated
result is in the unit of mV. This function may fail due to an invalid argument. Especially, if this function returns
ESP_ERR_INVALID_STATE, this means the calibration scheme is not created. You need to create a calibration
scheme handle, use adc_cali_check_scheme() to know the supported calibration scheme. On the other
hand, you could also provide a custom calibration scheme and create the handle.

Get Voltage
ESP_ERROR_CHECK(adc_cali_raw_to_voltage(adc_cali_handle, adc_raw[0][0], &
↪→voltage[0][0]));
ESP_LOGI(TAG, "ADC%d Channel[%d] Cali Voltage: %d mV", ADC_UNIT_1 + 1, EXAMPLE_
↪→ADC1_CHAN0, voltage[0][0]);

Thread Safety The factory function esp_adc_cali_new_scheme() is guaranteed to be thread-safe by the
driver. Therefore, you can call them from different RTOS tasks without protection by extra locks.
Other functions that take the adc_cali_handle_t as the first positional parameter are not thread-safe, you
should avoid calling them from multiple tasks.

Minimize Noise The ESP32-C6 ADC is sensitive to noise, leading to large discrepancies in ADC readings. De-
pending on the usage scenario, you may need to connect a bypass capacitor (e.g., a 100 nF ceramic capacitor) to the
ADC input pad in use, to minimize noise. Besides, multisampling may also be used to further mitigate the effects of
noise.

Espressif Systems 867
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/esp_adc/include/esp_adc/adc_cali.h

Functions
esp_err_t adc_cali_check_scheme(adc_cali_scheme_ver_t *scheme_mask)

Check the supported ADC calibration scheme.
Parameters scheme_mask -- [out] Supported ADC calibration scheme(s)
Returns

• ESP_OK: On success
• ESP_ERR_INVALID_ARG: Invalid argument
• ESP_ERR_NOT_SUPPORTED: No supported calibration scheme

esp_err_t adc_cali_raw_to_voltage(adc_cali_handle_t handle, int raw, int *voltage)
Convert ADC raw data to calibrated voltage.

Parameters
• handle -- [in] ADC calibration handle
• raw -- [in] ADC raw data
• voltage -- [out] Calibrated ADC voltage (in mV)

Returns
• ESP_OK: On success
• ESP_ERR_INVALID_ARG: Invalid argument
• ESP_ERR_INVALID_STATE: Invalid state, scheme didn't registered

Type Definitions

typedef struct adc_cali_scheme_t *adc_cali_handle_t
ADC calibration handle.

Enumerations

enum adc_cali_scheme_ver_t

ADC calibration scheme.
Values:

enumerator ADC_CALI_SCHEME_VER_LINE_FITTING
Line fitting scheme.

enumerator ADC_CALI_SCHEME_VER_CURVE_FITTING
Curve fitting scheme.

Header File
• components/esp_adc/include/esp_adc/adc_cali_scheme.h

2.6.4 Clock Tree

The clock subsystem of ESP32-C6 is used to source and distribute system/module clocks from a range of root clocks.
The clock tree driver maintains the basic functionality of the system clock and the intricate relationship amongmodule
clocks.

Espressif Systems 868
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_adc/include/esp_adc/adc_cali.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_adc/include/esp_adc/adc_cali_scheme.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This document starts with the introduction to root and module clocks. Then it covers the clock tree APIs that can be
called to monitor the status of the module clocks at runtime.

Introduction

This section lists definitions of ESP32-C6's supported root clocks andmodule clocks. These definitions are commonly
used in the driver configuration, to help select a proper source clock for the peripheral.

Root Clocks Root clocks generate reliable clock signals. These clock signals then pass through various gates,
muxes, dividers, or multipliers to become the clock sources for every functional module: the CPU core(s), Wi-Fi,
Bluetooth, the RTC, and the peripherals.
ESP32-C6's root clocks are listed in soc_root_clk_t:

• Internal 17.5 MHz RC Oscillator (RC_FAST)
This RC oscillator generates a about 17.5 MHz clock signal output as the
RC_FAST_CLK.
The exact frequency of RC_FAST_CLK can be computed in runtime through calibration.

• External 40 MHz Crystal (XTAL)
• Internal 136 kHz RC Oscillator (RC_SLOW)

This RC oscillator generates a about 136kHz clock signal output as the RC_SLOW_CLK.
The exact frequency of this clock can be computed in runtime through calibration.

• External 32 kHz Crystal - optional (XTAL32K)
The clock source for this XTAL32K_CLK can be either a 32 kHz crystal connecting to
the XTAL_32K_P and XTAL_32K_N pins or a 32 kHz clock signal generated by an
external circuit. The external signal must be connected to the XTAL_32K_P pin.
XTAL32K_CLK can also be calibrated to get its exact frequency.

• External Slow Clock - optional (OSC_SLOW)
A clock signal generated by an external circuit can be connected to GPIO0 to be the
clock source for the RTC_SLOW_CLK. This clock can also be calibrated to get its exact
frequency.

Typically, the frequency of the signal generated from an RC oscillator circuit is less accurate and more sensitive to
the environment compared to the signal generated from a crystal. ESP32-C6 provides several clock source options
for the RTC_SLOW_CLK, and it is possible to make the choice based on the requirements for system time accuracy
and power consumption. For more details, please refer to RTC Timer Clock Sources.

Module Clocks ESP32-C6's available module clocks are listed in soc_module_clk_t. Each module clock
has a unique ID. You can get more information on each clock by checking the documented enum value.

API Usage

The clock tree driver provides an all-in-one API to get the frequency of the module clocks,
esp_clk_tree_src_get_freq_hz(). This function allows you to obtain the clock frequency at any
time by providing the clock name soc_module_clk_t and specifying the desired precision level for the returned
frequency value esp_clk_tree_src_freq_precision_t.

API Reference

Header File
• components/soc/esp32c6/include/soc/clk_tree_defs.h

Espressif Systems 869
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/soc/esp32c6/include/soc/clk_tree_defs.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Macros

SOC_CLK_RC_FAST_FREQ_APPROX

Approximate RC_FAST_CLK frequency in Hz

SOC_CLK_RC_SLOW_FREQ_APPROX

Approximate RC_SLOW_CLK frequency in Hz

SOC_CLK_RC32K_FREQ_APPROX

Approximate RC32K_CLK frequency in Hz

SOC_CLK_XTAL32K_FREQ_APPROX

Approximate XTAL32K_CLK frequency in Hz

SOC_CLK_OSC_SLOW_FREQ_APPROX

Approximate OSC_SLOW_CLK (external slow clock) frequency in Hz

SOC_GPTIMER_CLKS

Array initializer for all supported clock sources of GPTimer.
The following code can be used to iterate all possible clocks:

soc_periph_gptimer_clk_src_t gptimer_clks[] = (soc_periph_gptimer_clk_src_
↪→t)SOC_GPTIMER_CLKS;
for (size_t i = 0; i< sizeof(gptimer_clks) / sizeof(gptimer_clks[0]); i++) {

soc_periph_gptimer_clk_src_t clk = gptimer_clks[i];
// Test GPTimer with the clock `clk`

}

SOC_RMT_CLKS

Array initializer for all supported clock sources of RMT.

SOC_TEMP_SENSOR_CLKS

Array initializer for all supported clock sources of Temperature Sensor.

SOC_MCPWM_TIMER_CLKS

Array initializer for all supported clock sources of MCPWM Timer.

SOC_MCPWM_CAPTURE_CLKS

Array initializer for all supported clock sources of MCPWM Capture Timer.

SOC_MCPWM_CARRIER_CLKS

Array initializer for all supported clock sources of MCPWM Carrier.

SOC_I2S_CLKS

Array initializer for all supported clock sources of I2S.

SOC_I2C_CLKS

Array initializer for all supported clock sources of I2C.

SOC_LP_I2C_CLKS

Array initializer for all supported clock sources of LP_I2C.

Espressif Systems 870
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_SPI_CLKS

Array initializer for all supported clock sources of SPI.

SOC_SDM_CLKS

Array initializer for all supported clock sources of SDM.

SOC_GLITCH_FILTER_CLKS

Array initializer for all supported clock sources of Glitch Filter.

SOC_TWAI_CLKS

Array initializer for all supported clock sources of TWAI.

SOC_ADC_DIGI_CLKS

Array initializer for all supported clock sources of ADC digital controller.

SOC_MWDT_CLKS

Array initializer for all supported clock sources of MWDT.

SOC_LEDC_CLKS

Array initializer for all supported clock sources of LEDC.

SOC_PARLIO_CLKS

Array initializer for all supported clock sources of PARLIO.

Enumerations

enum soc_root_clk_t

Root clock.
Values:

enumerator SOC_ROOT_CLK_INT_RC_FAST
Internal 17.5MHz RC oscillator

enumerator SOC_ROOT_CLK_INT_RC_SLOW
Internal 136kHz RC oscillator

enumerator SOC_ROOT_CLK_EXT_XTAL
External 40MHz crystal

enumerator SOC_ROOT_CLK_EXT_XTAL32K
External 32kHz crystal

enumerator SOC_ROOT_CLK_INT_RC32K
Internal 32kHz RC oscillator

enumerator SOC_ROOT_CLK_EXT_OSC_SLOW
External slow clock signal at pin0

Espressif Systems 871
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum soc_cpu_clk_src_t

CPU_CLK mux inputs, which are the supported clock sources for the CPU_CLK.

Note: Enum values are matched with the register field values on purpose

Values:

enumerator SOC_CPU_CLK_SRC_XTAL
Select XTAL_CLK as CPU_CLK source

enumerator SOC_CPU_CLK_SRC_PLL
Select PLL_CLK as CPU_CLK source (PLL_CLK is the output of 40MHz crystal oscillator frequency
multiplier, 480MHz)

enumerator SOC_CPU_CLK_SRC_RC_FAST
Select RC_FAST_CLK as CPU_CLK source

enumerator SOC_CPU_CLK_SRC_INVALID
Invalid CPU_CLK source

enum soc_rtc_slow_clk_src_t

RTC_SLOW_CLK mux inputs, which are the supported clock sources for the RTC_SLOW_CLK.

Note: Enum values are matched with the register field values on purpose

Values:

enumerator SOC_RTC_SLOW_CLK_SRC_RC_SLOW
Select RC_SLOW_CLK as RTC_SLOW_CLK source

enumerator SOC_RTC_SLOW_CLK_SRC_XTAL32K
Select XTAL32K_CLK as RTC_SLOW_CLK source

enumerator SOC_RTC_SLOW_CLK_SRC_RC32K
Select RC32K_CLK as RTC_SLOW_CLK source

enumerator SOC_RTC_SLOW_CLK_SRC_OSC_SLOW
Select OSC_SLOW_CLK (external slow clock) as RTC_SLOW_CLK source

enumerator SOC_RTC_SLOW_CLK_SRC_INVALID
Invalid RTC_SLOW_CLK source

enum soc_rtc_fast_clk_src_t

RTC_FAST_CLK mux inputs, which are the supported clock sources for the RTC_FAST_CLK.

Note: Enum values are matched with the register field values on purpose

Values:

Espressif Systems 872
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator SOC_RTC_FAST_CLK_SRC_RC_FAST
Select RC_FAST_CLK as RTC_FAST_CLK source

enumerator SOC_RTC_FAST_CLK_SRC_XTAL_D2
Select XTAL_D2_CLK as RTC_FAST_CLK source

enumerator SOC_RTC_FAST_CLK_SRC_XTAL_DIV
Alias name for SOC_RTC_FAST_CLK_SRC_XTAL_D2

enumerator SOC_RTC_FAST_CLK_SRC_INVALID
Invalid RTC_FAST_CLK source

enum soc_module_clk_t

Supported clock sources for modules (CPU, peripherals, RTC, etc.)

Note: enum starts from 1, to save 0 for special purpose

Values:

enumerator SOC_MOD_CLK_CPU
CPU_CLK can be sourced from XTAL, PLL, or RC_FAST by configuring soc_cpu_clk_src_t

enumerator SOC_MOD_CLK_RTC_FAST
RTC_FAST_CLK can be sourced from XTAL_D2 or RC_FAST by configuring soc_rtc_fast_clk_src_t

enumerator SOC_MOD_CLK_RTC_SLOW
RTC_SLOW_CLK can be sourced from RC_SLOW, XTAL32K, RC32K, or OSC_SLOW by config-
uring soc_rtc_slow_clk_src_t

enumerator SOC_MOD_CLK_PLL_F80M
PLL_F80M_CLK is derived from PLL (clock gating + fixed divider of 6), it has a fixed frequency of
80MHz

enumerator SOC_MOD_CLK_PLL_F160M
PLL_F160M_CLK is derived from PLL (clock gating + fixed divider of 3), it has a fixed frequency of
160MHz

enumerator SOC_MOD_CLK_PLL_F240M
PLL_F240M_CLK is derived from PLL (clock gating + fixed divider of 2), it has a fixed frequency of
240MHz

enumerator SOC_MOD_CLK_XTAL32K
XTAL32K_CLK comes from the external 32kHz crystal, passing a clock gating to the peripherals

enumerator SOC_MOD_CLK_RC_FAST
RC_FAST_CLK comes from the internal 20MHz rc oscillator, passing a clock gating to the peripherals

enumerator SOC_MOD_CLK_XTAL
XTAL_CLK comes from the external 40MHz crystal

Espressif Systems 873
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator SOC_MOD_CLK_XTAL_D2
XTAL_D2_CLK comes from the external 40MHz crystal, passing a div of 2 to the LP peripherals

enumerator SOC_MOD_CLK_INVALID
Indication of the end of the available module clock sources

enum soc_periph_systimer_clk_src_t

Type of SYSTIMER clock source.
Values:

enumerator SYSTIMER_CLK_SRC_XTAL
SYSTIMER source clock is XTAL

enumerator SYSTIMER_CLK_SRC_RC_FAST
SYSTIMER source clock is RC_FAST

enumerator SYSTIMER_CLK_SRC_DEFAULT
SYSTIMER source clock default choice is XTAL

enum soc_periph_gptimer_clk_src_t

Type of GPTimer clock source.
Values:

enumerator GPTIMER_CLK_SRC_PLL_F80M
Select PLL_F80M as the source clock

enumerator GPTIMER_CLK_SRC_RC_FAST
Select RC_FAST as the source clock

enumerator GPTIMER_CLK_SRC_XTAL
Select XTAL as the source clock

enumerator GPTIMER_CLK_SRC_DEFAULT
Select PLL_F80M as the default choice

enum soc_periph_tg_clk_src_legacy_t

Type of Timer Group clock source, reserved for the legacy timer group driver.
Values:

enumerator TIMER_SRC_CLK_PLL_F80M
Timer group clock source is PLL_F80M

enumerator TIMER_SRC_CLK_XTAL
Timer group clock source is XTAL

enumerator TIMER_SRC_CLK_DEFAULT
Timer group clock source default choice is PLL_F80M

Espressif Systems 874
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum soc_periph_rmt_clk_src_t

Type of RMT clock source.
Values:

enumerator RMT_CLK_SRC_PLL_F80M
Select PLL_F80M as the source clock

enumerator RMT_CLK_SRC_RC_FAST
Select RC_FAST as the source clock

enumerator RMT_CLK_SRC_XTAL
Select XTAL as the source clock

enumerator RMT_CLK_SRC_DEFAULT
Select PLL_F80M as the default choice

enum soc_periph_rmt_clk_src_legacy_t

Type of RMT clock source, reserved for the legacy RMT driver.
Values:

enumerator RMT_BASECLK_PLL_F80M
RMT source clock is PLL_F80M

enumerator RMT_BASECLK_XTAL
RMT source clock is XTAL

enumerator RMT_BASECLK_DEFAULT
RMT source clock default choice is PLL_F80M

enum soc_periph_temperature_sensor_clk_src_t

Type of Temp Sensor clock source.
Values:

enumerator TEMPERATURE_SENSOR_CLK_SRC_XTAL
Select XTAL as the source clock

enumerator TEMPERATURE_SENSOR_CLK_SRC_RC_FAST
Select RC_FAST as the source clock

enumerator TEMPERATURE_SENSOR_CLK_SRC_DEFAULT
Select XTAL as the default choice

enum soc_periph_uart_clk_src_legacy_t

Type of UART clock source, reserved for the legacy UART driver.
Values:

enumerator UART_SCLK_PLL_F80M
UART source clock is PLL_F80M

Espressif Systems 875
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator UART_SCLK_RTC
UART source clock is RC_FAST

enumerator UART_SCLK_XTAL
UART source clock is XTAL

enumerator UART_SCLK_DEFAULT
UART source clock default choice is PLL_F80M

enum soc_periph_mcpwm_timer_clk_src_t

Type of MCPWM timer clock source.
Values:

enumerator MCPWM_TIMER_CLK_SRC_PLL160M
Select PLL_F160M as the source clock

enumerator MCPWM_TIMER_CLK_SRC_XTAL
Select XTAL as the source clock

enumerator MCPWM_TIMER_CLK_SRC_DEFAULT
Select PLL_F160M as the default clock choice

enum soc_periph_mcpwm_capture_clk_src_t

Type of MCPWM capture clock source.
Values:

enumerator MCPWM_CAPTURE_CLK_SRC_PLL160M
Select PLL_F160M as the source clock

enumerator MCPWM_CAPTURE_CLK_SRC_XTAL
Select XTAL as the source clock

enumerator MCPWM_CAPTURE_CLK_SRC_DEFAULT
Select PLL_F160M as the default clock choice

enum soc_periph_mcpwm_carrier_clk_src_t

Type of MCPWM carrier clock source.
Values:

enumerator MCPWM_CARRIER_CLK_SRC_PLL160M
Select PLL_F160M as the source clock

enumerator MCPWM_CARRIER_CLK_SRC_XTAL
Select XTAL as the source clock

enumerator MCPWM_CARRIER_CLK_SRC_DEFAULT
Select PLL_F160M as the default clock choice

Espressif Systems 876
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum soc_periph_i2s_clk_src_t

I2S clock source enum.
Values:

enumerator I2S_CLK_SRC_DEFAULT
Select PLL_F160M as the default source clock

enumerator I2S_CLK_SRC_PLL_240M
Select PLL_F240M as the source clock

enumerator I2S_CLK_SRC_PLL_160M
Select PLL_F160M as the source clock

enumerator I2S_CLK_SRC_XTAL
Select XTAL as the source clock

enum soc_periph_i2c_clk_src_t

Type of I2C clock source.
Values:

enumerator I2C_CLK_SRC_XTAL
Select XTAL as the source clock

enumerator I2C_CLK_SRC_RC_FAST
Select RC_FAST as the source clock

enumerator I2C_CLK_SRC_DEFAULT
Select XTAL as the default source clock

enum soc_periph_lp_i2c_clk_src_t

Type of LP_I2C clock source.
Values:

enumerator LP_I2C_SCLK_LP_FAST
LP_I2C source clock is RTC_FAST

enumerator LP_I2C_SCLK_XTAL_D2
LP_I2C source clock is XTAL_D2

enumerator LP_I2C_SCLK_DEFAULT
LP_I2C source clock default choice is RTC_FAST

enum soc_periph_spi_clk_src_t

Type of SPI clock source.
Values:

enumerator SPI_CLK_SRC_DEFAULT
Select PLL_80M as SPI source clock

Espressif Systems 877
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator SPI_CLK_SRC_PLL_F80M
Select PLL_80M as SPI source clock

enumerator SPI_CLK_SRC_XTAL
Select XTAL as SPI source clock

enumerator SPI_CLK_SRC_RC_FAST
Select RC_FAST as SPI source clock

enum soc_periph_sdm_clk_src_t

Sigma Delta Modulator clock source.
Values:

enumerator SDM_CLK_SRC_XTAL
Select XTAL clock as the source clock

enumerator SDM_CLK_SRC_PLL_F80M
Select PLL_F80M clock as the source clock

enumerator SDM_CLK_SRC_DEFAULT
Select PLL_F80M clock as the default clock choice

enum soc_periph_glitch_filter_clk_src_t

Glitch filter clock source.
Values:

enumerator GLITCH_FILTER_CLK_SRC_XTAL
Select XTAL clock as the source clock

enumerator GLITCH_FILTER_CLK_SRC_PLL_F80M
Select PLL_F80M clock as the source clock

enumerator GLITCH_FILTER_CLK_SRC_DEFAULT
Select PLL_F80M clock as the default clock choice

enum soc_periph_twai_clk_src_t

TWAI clock source.
Values:

enumerator TWAI_CLK_SRC_XTAL
Select XTAL as the source clock

enumerator TWAI_CLK_SRC_DEFAULT
Select XTAL as the default clock choice

enum soc_periph_adc_digi_clk_src_t

ADC digital controller clock source.
Values:

Espressif Systems 878
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ADC_DIGI_CLK_SRC_XTAL
Select XTAL as the source clock

enumerator ADC_DIGI_CLK_SRC_PLL_F80M
Select PLL_F80M as the source clock

enumerator ADC_DIGI_CLK_SRC_RC_FAST
Select RC_FAST as the source clock

enumerator ADC_DIGI_CLK_SRC_DEFAULT
Select PLL_F80M as the default clock choice

enum soc_periph_mwdt_clk_src_t

MWDT clock source.
Values:

enumerator MWDT_CLK_SRC_XTAL
Select XTAL as the source clock

enumerator MWDT_CLK_SRC_PLL_F80M
Select PLL fixed 80 MHz as the source clock

enumerator MWDT_CLK_SRC_RC_FAST
Select RTC fast as the source clock

enumerator MWDT_CLK_SRC_DEFAULT
Select PLL fixed 80 MHz as the default clock choice

enum soc_periph_ledc_clk_src_legacy_t

Type of LEDC clock source, reserved for the legacy LEDC driver.
Values:

enumerator LEDC_AUTO_CLK
LEDC source clock will be automatically selected based on the giving resolution and duty parameter
when init the timer

enumerator LEDC_USE_PLL_DIV_CLK
Select PLL_F80M clock as the source clock

enumerator LEDC_USE_RC_FAST_CLK
Select RC_FAST as the source clock

enumerator LEDC_USE_XTAL_CLK
Select XTAL as the source clock

enumerator LEDC_USE_RTC8M_CLK
Alias of 'LEDC_USE_RC_FAST_CLK'

Espressif Systems 879
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum soc_periph_parlio_clk_src_t

PARLIO clock source.
Values:

enumerator PARLIO_CLK_SRC_XTAL
Select XTAL as the source clock

enumerator PARLIO_CLK_SRC_PLL_F240M
Select PLL_F240M as the source clock

enumerator PARLIO_CLK_SRC_DEFAULT
Select PLL_F240M as the default clock choice

Header File
• components/esp_hw_support/include/esp_clk_tree.h

Functions
esp_err_t esp_clk_tree_src_get_freq_hz(soc_module_clk_t clk_src, esp_clk_tree_src_freq_precision_t

precision, uint32_t *freq_value)
Get frequency of module clock source.

Parameters
• clk_src -- [in] Clock source available to modules, in soc_module_clk_t
• precision -- [in] Degree of precision, one of esp_clk_tree_src_freq_precision_t
values This arg only applies to the clock sources that their frequencies
can vary: SOC_MOD_CLK_RTC_FAST, SOC_MOD_CLK_RTC_SLOW,
SOC_MOD_CLK_RC_FAST, SOC_MOD_CLK_RC_FAST_D256,
SOC_MOD_CLK_XTAL32K For other clock sources, this field is ignored.

• freq_value -- [out] Frequency of the clock source, in Hz
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Calibration failed

Enumerations

enum esp_clk_tree_src_freq_precision_t

Degree of precision of frequency value to be returned by esp_clk_tree_src_get_freq_hz()
Values:

enumerator ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED

enumerator ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX

enumerator ESP_CLK_TREE_SRC_FREQ_PRECISION_EXACT

enumerator ESP_CLK_TREE_SRC_FREQ_PRECISION_INVALID

Espressif Systems 880
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_clk_tree.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.6.5 Event Task Matrix (ETM)

Introduction

Normally, if a peripheral X needs to notify peripheral Y of a particular event, this could only be done via a CPU
interrupt from peripheral X, where the CPU notifies peripheral Y on behalf of peripheral X. However, in time-critical
applications, the latency introduced by CPU interrupts is non-negligible.
With the help of the Event Task Matrix (ETM) module, some peripherals can directly notify other peripherals of
events through pre-set connections without the intervention of CPU interrupts. This allows precise and low latency
synchronization between peripherals, and lessens the CPU's workload as the CPU no longer needs to handle these
events.

Fig. 5: ETM channels Overview

The ETM module has multiple programmable channels, they are used to connect a particular Event to a particular
Task. When an event is activated, the ETM channel will trigger the corresponding task automatically.
Peripherals that support ETM functionality provide their or unique set of events and tasks to be connected by the ETM.
An ETM channel can connect any event to any task, even looping back an event to a task on the same peripheral.
However, an ETM channel can only connect one event to one task at a time (i.e., 1 to 1 relation). If you want to use
different events to trigger the same task, you can set up more ETM channels.
Typically, with the help of the ETM module, you can implement features like:

• Toggle the GPIO when a timer alarm event happens
• Start an ADC conversion when a pulse edge is detected on a GPIO

Functional Overview

The following sections of this document cover the typical steps to configure and use the ETM module.
• ETM Channel Allocation - describes how to install and uninstall the ETM channel.
• ETM Event - describes how to allocate a new ETM event handle or fetch an existing handle from various
peripherals.

• ETM Task - describes how to allocate a new ETM task handle or fetch an existing handle from various periph-
erals.

• ETM Channel Control - describes common ETM channel control functions.
• Thread Safety - lists which APIs are guaranteed to be thread-safe by the driver.
• Kconfig Options - lists the supported Kconfig options that can be used to make a different effect on driver
behavior.

Espressif Systems 881
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ETM Channel Allocation There are many identical ETM channels in ESP32-C61, and each channel is rep-
resented by esp_etm_channel_handle_t in the software. The ETM core driver manages all available
hardware resources in a pool so that you do not need to care about which channel is in use and which is not.
The ETM core driver will allocate a channel for you when you call esp_etm_new_channel() and delete it
when you call esp_etm_del_channel(). All requirements needed for allocating a channel are provided in
esp_etm_channel_config_t.
Before deleting an ETM channel, please disable it by esp_etm_channel_disable() in advance or make sure
it has not been enabled yet by esp_etm_channel_enable().

ETMEvent ETMEvent abstracts the event source, masking the details of specific event sources, and is represented
by esp_etm_event_handle_t in the software, allowing applications to handle different types of events more
easily. ETM events can be generated from a variety of peripherals, thus the way to get the event handle differs from
peripherals. When an ETM event is no longer used, you should call esp_etm_channel_connect() with a
NULL event handle to disconnect it and then call esp_etm_del_event() to free the event resource.

GPIO Events GPIO edge event is the most common event type, it can be generated by any GPIO pin.
You can call gpio_new_etm_event() to create a GPIO event handle, with the configurations provided in
gpio_etm_event_config_t:

• gpio_etm_event_config_t::edge or gpio_etm_event_config_t::edges decides which
edge(s) to trigger the event(s), supported edge types are listed in the gpio_etm_event_edge_t.

You need to build a connection between the GPIO ETM event handle and the GPIO number. So you should
call gpio_etm_event_bind_gpio() afterwards. Please note, only the ETM event handle that created by
gpio_new_etm_event() can set a GPIO number. Calling this function with other kinds of ETM events returns
ESP_ERR_INVALID_ARG error. Needless to say, this function does not help with the GPIO initialization, you still
need to call gpio_config() to set the property like direction, pull up/down mode separately.

Other Peripheral Events
• You can call esp_systick_new_etm_alarm_event() to get the ETM event from RTOS Systick, one
per CPU core.

• Refer to High Resolution Timer (ESP Timer) for how to get the ETM event handle from esp_timer.
• Refer to General Purpose Timer (GPTimer) for how to get the ETM event handle from GPTimer.
• Refer to The Async memcpy API for how to get the ETM event handle from async memcpy.

ETM Task ETM Task abstracts the task action and is represented by esp_etm_task_handle_t in the soft-
ware, allowing tasks to be managed and represented in the same way. ETM tasks can be assigned to a variety
of peripherals, thus the way to get the task handle differs from peripherals. When an ETM task is no longer
used, you should call esp_etm_channel_connect() with a NULL task handle to disconnect it and then call
esp_etm_del_task() to free the task resource.

GPIO Tasks GPIO task is the most common task type. One GPIO can take one or more GPIO ETM task actions,
and one GPIO ETM task action can even manage multiple GPIOs. When the task gets activated by the ETM channel,
all managed GPIOs can set/clear/toggle at the same time. You can call gpio_new_etm_task() to create a GPIO
task handle, with the configurations provided in gpio_etm_task_config_t:

• gpio_etm_task_config_t::action or gpio_etm_task_config_t::actions de-
cides what GPIO action(s) would be taken by the ETM task. Supported actions are listed in the
gpio_etm_task_action_t. If one GPIO needs to take more than one actions, the action tasks
have to be created in one gpio_new_etm_task() call with filling the actions into the array of
gpio_etm_task_config_t::actions.

1 Different ESP chip series might have different numbers of ETM channels. For more details, please refer to ESP32-C6 Technical Ref-
erence Manual > Chapter Event Task Matrix (ETM) [PDF]. The driver does not forbid you from applying for more channels, but it will
return an error when all available hardware resources are used up. Please always check the return value when doing channel allocation (i.e.,
esp_etm_new_channel()).

Espressif Systems 882
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#evntaskmatrix
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

To build a connection between the GPIO ETM task and the GPIO number, you should call
gpio_etm_task_add_gpio(). You can call this function by several times if you want the task handle
to manage more GPIOs. Please note, only the ETM task handle that created by gpio_new_etm_task() can
manage a GPIO. Calling this function with other kinds of ETM tasks returns ESP_ERR_INVALID_ARG error.
Needless to say, this function does not help with the GPIO initialization, you still need to call gpio_config() to
set the property like direction, pull up/down mode separately.
Before you call esp_etm_del_task() to delete the GPIO ETM task, make sure that all previously added GPIOs
are removed by gpio_etm_task_rm_gpio() in advance.

Other Peripheral Tasks
• Refer to GPTimer for how to get the ETM task handle from GPTimer.

ETM Channel Control

Connect Event and Task An ETM event has no association with an ETM task, until they are connected to the
same ETM channel by calling esp_etm_channel_connect(). Especially, calling the function with a NULL
task/event handle means disconnecting the channel from any task or event. Note that, this function can be called either
before or after the channel is enabled. But calling this function at runtime to change the connection can be dangerous,
because the channel may be in the middle of a cycle, and the new connection may not take effect immediately.

Enable and Disable Channel You can call esp_etm_channel_enable() and
esp_etm_channel_disable() to enable and disable the ETM channel from working.

ETM Channel Profiling To check if the ETM channels are set with proper events and tasks, you can call
esp_etm_dump() to dump all working ETM channels with their associated events and tasks. The dumping format
is like:

===========ETM Dump Start==========
channel 0: event 48 ==> task 17
channel 1: event 48 ==> task 90
channel 2: event 48 ==> task 94
===========ETM Dump End============

The digital ID printed in the dump information is defined in the soc/soc_etm_source.h file.

Thread Safety The factory functions like esp_etm_new_channel() and gpio_new_etm_task() are
guaranteed to be thread-safe by the driver, which means, you can call them from different RTOS tasks without
protection by extra locks.
No functions are allowed to run within the ISR environment.
Other functions that take esp_etm_channel_handle_t, esp_etm_task_handle_t and
esp_etm_event_handle_t as the first positional parameter, are not treated as thread-safe, which means you
should avoid calling them from multiple tasks.

Kconfig Options
• CONFIG_ETM_ENABLE_DEBUG_LOG is used to enable the debug log output. Enabling this option increases
the firmware binary size as well.

Espressif Systems 883
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/esp_hw_support/include/esp_etm.h

Functions
esp_err_t esp_etm_new_channel(const esp_etm_channel_config_t *config, esp_etm_channel_handle_t

*ret_chan)
Allocate an ETM channel.

Note: The channel can later be freed by esp_etm_del_channel

Parameters
• config -- [in] ETM channel configuration
• ret_chan -- [out] Returned ETM channel handle

Returns
• ESP_OK: Allocate ETM channel successfully
• ESP_ERR_INVALID_ARG: Allocate ETM channel failed because of invalid argument
• ESP_ERR_NO_MEM: Allocate ETM channel failed because of out of memory
• ESP_ERR_NOT_FOUND: Allocate ETM channel failed because all channels are used
up and no more free one

• ESP_FAIL: Allocate ETM channel failed because of other reasons
esp_err_t esp_etm_del_channel(esp_etm_channel_handle_t chan)

Delete an ETM channel.
Parameters chan -- [in] ETM channel handle that created by esp_etm_new_channel
Returns

• ESP_OK: Delete ETM channel successfully
• ESP_ERR_INVALID_ARG: Delete ETM channel failed because of invalid argument
• ESP_FAIL: Delete ETM channel failed because of other reasons

esp_err_t esp_etm_channel_enable(esp_etm_channel_handle_t chan)
Enable ETM channel.

Note: This function will transit the channel state from init to enable.

Parameters chan -- [in] ETM channel handle that created by esp_etm_new_channel
Returns

• ESP_OK: Enable ETM channel successfully
• ESP_ERR_INVALID_ARG: Enable ETM channel failed because of invalid argument
• ESP_ERR_INVALID_STATE: Enable ETM channel failed because the channel has been
enabled already

• ESP_FAIL: Enable ETM channel failed because of other reasons

esp_err_t esp_etm_channel_disable(esp_etm_channel_handle_t chan)
Disable ETM channel.

Note: This function will transit the channel state from enable to init.

Parameters chan -- [in] ETM channel handle that created by esp_etm_new_channel
Returns

• ESP_OK: Disable ETM channel successfully

Espressif Systems 884
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_etm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_ARG: Disable ETM channel failed because of invalid argument
• ESP_ERR_INVALID_STATE: Disable ETM channel failed because the channel is not
enabled yet

• ESP_FAIL: Disable ETM channel failed because of other reasons

esp_err_t esp_etm_channel_connect(esp_etm_channel_handle_t chan, esp_etm_event_handle_t event,
esp_etm_task_handle_t task)

Connect an ETM event to an ETM task via a previously allocated ETM channel.

Note: Setting the ETM event/task handle to NULL means to disconnect the channel from any event/task

Parameters
• chan -- [in] ETM channel handle that created by esp_etm_new_channel
• event -- [in] ETM event handle obtained from a driver/peripheral, e.g.
xxx_new_etm_event

• task -- [in] ETM task handle obtained from a driver/peripheral, e.g.
xxx_new_etm_task

Returns
• ESP_OK: Connect ETM event and task to the channel successfully
• ESP_ERR_INVALID_ARG: Connect ETM event and task to the channel failed because
of invalid argument

• ESP_FAIL: Connect ETM event and task to the channel failed because of other reasons

esp_err_t esp_etm_del_event(esp_etm_event_handle_t event)
Delete ETM event.

Note: Although the ETM event comes from various peripherals, we provide the same user API to delete the
event handle seamlessly.

Parameters event -- [in] ETM event handle obtained from a driver/peripheral, e.g.
xxx_new_etm_event

Returns
• ESP_OK: Delete ETM event successfully
• ESP_ERR_INVALID_ARG: Delete ETM event failed because of invalid argument
• ESP_FAIL: Delete ETM event failed because of other reasons

esp_err_t esp_etm_del_task(esp_etm_task_handle_t task)
Delete ETM task.

Note: Although the ETM task comes from various peripherals, we provide the same user API to delete the
task handle seamlessly.

Parameters task -- [in] ETM task handle obtained from a driver/peripheral, e.g.
xxx_new_etm_task

Returns
• ESP_OK: Delete ETM task successfully
• ESP_ERR_INVALID_ARG: Delete ETM task failed because of invalid argument
• ESP_FAIL: Delete ETM task failed because of other reasons

esp_err_t esp_etm_dump(FILE *out_stream)
Dump ETM channel usages to the given IO stream.

Parameters out_stream -- [in] IO stream (e.g. stdout)

Espressif Systems 885
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK: Dump ETM channel usages successfully
• ESP_ERR_INVALID_ARG: Dump ETM channel usages failed because of invalid argu-
ment

• ESP_FAIL: Dump ETM channel usages failed because of other reasons

Structures

struct esp_etm_channel_config_t
ETM channel configuration.

Type Definitions

typedef struct esp_etm_channel_t *esp_etm_channel_handle_t
ETM channel handle.

typedef struct esp_etm_event_t *esp_etm_event_handle_t
ETM event handle.

typedef struct esp_etm_task_t *esp_etm_task_handle_t
ETM task handle.

Header File
• components/driver/gpio/include/driver/gpio_etm.h

Functions
esp_err_t gpio_new_etm_event(const gpio_etm_event_config_t *config, esp_etm_event_handle_t *ret_event,

...)
Create an ETM event object for the GPIO peripheral.

Note: The created ETM event object can be deleted later by calling esp_etm_del_event

Note: The newly created ETM event object is not bind to any GPIO, you need to call
gpio_etm_event_bind_gpio to bind the wanted GPIO

Note: Every success call to this function will acquire a free GPIO ETM event channel

Parameters
• config -- [in] GPIO ETM event configuration
• ret_event -- [out] Returned ETM event handle
• ... -- [out]Other returned ETMevent handles if any (the order of the returned event han-
dles is aligned with the array order in field edges in gpio_etm_event_config_t)

Returns
• ESP_OK: Create ETM event successfully
• ESP_ERR_INVALID_ARG: Create ETM event failed because of invalid argument
• ESP_ERR_NO_MEM: Create ETM event failed because of out of memory
• ESP_ERR_NOT_FOUND: Create ETM event failed because all events are used up and
no more free one

• ESP_FAIL: Create ETM event failed because of other reasons

Espressif Systems 886
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/gpio/include/driver/gpio_etm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t gpio_etm_event_bind_gpio(esp_etm_event_handle_t event, int gpio_num)
Bind the GPIO with the ETM event.

Note: Calling this function multiple times with different GPIO number can override the previous setting
immediately.

Note: Only GPIO ETM object can call this function

Parameters
• event -- [in] ETM event handle that created by gpio_new_etm_event
• gpio_num -- [in] GPIO number that can trigger the ETM event

Returns
• ESP_OK: Set the GPIO for ETM event successfully
• ESP_ERR_INVALID_ARG: Set the GPIO for ETM event failed because of invalid ar-
gument, e.g. GPIO is not input capable, ETM event is not of GPIO type

• ESP_FAIL: Set the GPIO for ETM event failed because of other reasons

esp_err_t gpio_new_etm_task(const gpio_etm_task_config_t *config, esp_etm_task_handle_t *ret_task, ...)
Create an ETM task object for the GPIO peripheral.

Note: The created ETM task object can be deleted later by calling esp_etm_del_task

Note: The GPIO ETM task works like a container, a newly created ETM task object doesn't have GPIO
members to be managed. You need to call gpio_etm_task_add_gpio to put one or more GPIOs to the
container.

Note: Every success call to this function will acquire a free GPIO ETM task channel

Parameters
• config -- [in] GPIO ETM task configuration
• ret_task -- [out] Returned ETM task handle
• ... -- [out] Other returned ETM task handles if any (the order of the returned task han-
dles is alignedwith the array order in fieldactions ingpio_etm_task_config_t)

Returns
• ESP_OK: Create ETM task successfully
• ESP_ERR_INVALID_ARG: Create ETM task failed because of invalid argument
• ESP_ERR_NO_MEM: Create ETM task failed because of out of memory
• ESP_ERR_NOT_FOUND: Create ETM task failed because all tasks are used up and no
more free one

• ESP_FAIL: Create ETM task failed because of other reasons

esp_err_t gpio_etm_task_add_gpio(esp_etm_task_handle_t task, int gpio_num)
Add GPIO to the ETM task.

Note: You can call this function multiple times to add more GPIOs

Note: Only GPIO ETM object can call this function

Espressif Systems 887
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• task -- [in] ETM task handle that created by gpio_new_etm_task
• gpio_num -- [in] GPIO number that can be controlled by the ETM task

Returns
• ESP_OK: Add GPIO to the ETM task successfully
• ESP_ERR_INVALID_ARG: Add GPIO to the ETM task failed because of invalid argu-
ment, e.g. GPIO is not output capable, ETM task is not of GPIO type

• ESP_ERR_INVALID_STATE: Add GPIO to the ETM task failed because the GPIO is
used by other ETM task already

• ESP_FAIL: Add GPIO to the ETM task failed because of other reasons

esp_err_t gpio_etm_task_rm_gpio(esp_etm_task_handle_t task, int gpio_num)
Remove the GPIO from the ETM task.

Note: Before deleting the ETM task, you need to remove all the GPIOs from the ETM task by this function

Note: Only GPIO ETM object can call this function

Parameters
• task -- [in] ETM task handle that created by gpio_new_etm_task
• gpio_num -- [in] GPIO number that to be remove from the ETM task

Returns
• ESP_OK: Remove the GPIO from the ETM task successfully
• ESP_ERR_INVALID_ARG: Remove the GPIO from the ETM task failed because of
invalid argument

• ESP_ERR_INVALID_STATE: Remove the GPIO from the ETM task failed because the
GPIO is not controlled by this ETM task

• ESP_FAIL: Remove the GPIO from the ETM task failed because of other reasons

Structures

struct gpio_etm_event_config_t
GPIO ETM event configuration.
If more than one kind of ETM edge event want to be triggered on the same GPIO pin, you can configure them
together. It helps to save GPIO ETM event channel resources for other GPIOs.

Public Members

gpio_etm_event_edge_t edge

Which kind of edge can trigger the ETM event module

gpio_etm_event_edge_t edges[GPIO_ETM_EVENT_EDGE_TYPES]
Array of kinds of edges to trigger the ETM event module on the same GPIO

struct gpio_etm_task_config_t
GPIO ETM task configuration.
If multiple actions wants to be added to the same GPIO pin, you have to configure all the GPIO ETM tasks
together.

Espressif Systems 888
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

gpio_etm_task_action_t action

Action to take by the ETM task module

gpio_etm_task_action_t actions[GPIO_ETM_TASK_ACTION_TYPES]
Array of actions to take by the ETM task module on the same GPIO

Macros

GPIO_ETM_EVENT_EDGE_TYPES

GPIO ETM edge events are POS/NEG/ANY

GPIO_ETM_TASK_ACTION_TYPES

GPIO ETM action tasks are SET/CLEAR/TOGGLE

Enumerations

enum gpio_etm_event_edge_t

GPIO edges that can be used as ETM event.
Values:

enumerator GPIO_ETM_EVENT_EDGE_POS
A rising edge on the GPIO will generate an ETM event signal

enumerator GPIO_ETM_EVENT_EDGE_NEG
A falling edge on the GPIO will generate an ETM event signal

enumerator GPIO_ETM_EVENT_EDGE_ANY
Any edge on the GPIO can generate an ETM event signal

enum gpio_etm_task_action_t

GPIO actions that can be taken by the ETM task.
Values:

enumerator GPIO_ETM_TASK_ACTION_SET
Set the GPIO level to high

enumerator GPIO_ETM_TASK_ACTION_CLR
Clear the GPIO level to low

enumerator GPIO_ETM_TASK_ACTION_TOG
Toggle the GPIO level

Header File
• components/esp_system/include/esp_systick_etm.h

Espressif Systems 889
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/include/esp_systick_etm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_err_t esp_systick_new_etm_alarm_event(int core_id, esp_etm_event_handle_t *out_event)

Get the ETM event handle of systick hardware's alarm/heartbeat event.

Note: The created ETM event object can be deleted later by calling esp_etm_del_event

Parameters
• core_id -- [in] CPU core ID
• out_event -- [out] Returned ETM event handle

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

2.6.6 GPIO & RTC GPIO

GPIO Summary

The ESP32-C6 chip features 31 physical GPIO pins (GPIO0 ~ GPIO30). Each pin can be used as a general-purpose
I/O, or to be connected to an internal peripheral signal. Through GPIO matrix and IO MUX, peripheral input signals
can be from any IO pins, and peripheral output signals can be routed to any IO pins. Together these modules provide
highly configurable I/O. For more details, see ESP32-C6 Technical Reference Manual > IO MUX and GPIO Matrix
(GPIO, IO_MUX) [PDF].
The table below provides more information on pin usage, and please note the comments in the table for GPIOs with
restrictions.

GPIO Analog Function LP GPIO Comments
GPIO0 ADC1_CH0 LP_GPIO0
GPIO1 ADC1_CH1 LP_GPIO1
GPIO2 ADC1_CH2 LP_GPIO2
GPIO3 ADC1_CH3 LP_GPIO3
GPIO4 ADC1_CH4 LP_GPIO4 Strapping pin
GPIO5 ADC1_CH5 LP_GPIO5 Strapping pin
GPIO6 ADC1_CH6 LP_GPIO6
GPIO7 LP_GPIO7
GPIO8 Strapping pin
GPIO9 Strapping pin
GPIO10
GPIO11
GPIO12 USB-JTAG
GPIO13 USB-JTAG
GPIO14
GPIO15 Strapping pin
GPIO16
GPIO17
GPIO18
GPIO19
GPIO20
GPIO21
GPIO22
GPIO23

continues on next page

Espressif Systems 890
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#iomuxgpio
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Table 2 – continued from previous page
GPIO Analog Function LP GPIO Comments
GPIO24 SPI0/1
GPIO25 SPI0/1
GPIO26 SPI0/1
GPIO27 SPI0/1
GPIO28 SPI0/1
GPIO29 SPI0/1
GPIO30 SPI0/1

Note:
• Strapping pin: GPIO4, GPIO5, GPIO8, GPIO9, and GPIO15 are strapping pins. For more infomation, please refer to datasheet.

– SPI0/1: GPIO24-30 are usually used for SPI flash and not recommended for other uses.
– USB-JTAG: GPIO 12 and 13 are used by USB-JTAG by default. In order to use them as GPIOs,
USB-JTAG will be disabled by the drivers.

• For chip variants with an SiP flash built in, GPIO24 ~ GPIO30 are dedicated to connecting the SiP flash;
GPIO10 ~ GPIO11 are not led out to any chip pins; therefore, only the remaining 22 GPIO pins are available.

• For chip variants without an in-package flash, GPIO14 is not led out to any chip pins.

GPIO driver offers a dump function gpio_dump_io_configuration() to show the configurations of the IOs
at the moment, such as pull-up / pull-down, input / output enable, pin mapping etc. Below is an example dump:

================IO DUMP Start================
IO[4] -

Pullup: 1, Pulldown: 0, DriveCap: 2
InputEn: 1, OutputEn: 0, OpenDrain: 0
FuncSel: 1 (GPIO)
GPIO Matrix SigIn ID: (simple GPIO input)
SleepSelEn: 1

IO[18] -
Pullup: 0, Pulldown: 0, DriveCap: 2
InputEn: 0, OutputEn: 1, OpenDrain: 0
FuncSel: 1 (GPIO)
GPIO Matrix SigOut ID: 256 (simple GPIO output)
SleepSelEn: 1

IO[26] **RESERVED** -
Pullup: 1, Pulldown: 0, DriveCap: 2
InputEn: 1, OutputEn: 0, OpenDrain: 0
FuncSel: 0 (IOMUX)
SleepSelEn: 1

=================IO DUMP End==================

If an IO pin is routed to a peripheral signal through the GPIO matrix, the signal ID printed in the dump information
is defined in the soc/gpio_sig_map.h file. The word **RESERVED** indicates the IO is occupied by either
FLASH or PSRAM. It is strongly not recommended to reconfigure them for other application purposes.
There is also separate "RTC GPIO" support, which functions when GPIOs are routed to the "RTC" low-power and
analog subsystem. These pin functions can be used when:

• In Deep-sleep mode
• Analog functions such as ADC/DAC/etc are in use.

Espressif Systems 891
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

GPIO Glitch Filter

The ESP32-C6 chip features hardware filters to remove unwanted glitch pulses from the input GPIO,
which can help reduce false triggering of the interrupt and prevent a noise being routed to the peripheral
side.
Each GPIO can be configured with a glitch filter, which can be used to filter out pulses shorter than two
sample clock cycles. The duration of the filter is not configurable. The sample clock is the clock source
of the IO_MUX. In the driver, we call this kind of filter as pin glitch filter. You can create
the filter handle by calling gpio_new_pin_glitch_filter(). All the configurations for a pin
glitch filter are listed in the gpio_pin_glitch_filter_config_t structure.

• gpio_pin_glitch_filter_config_t::gpio_num sets the GPIO number to enable
the glitch filter.

ESP32-C6 provides 8 flexible glitch filters, whose duration is configurable. We refer to this kind of filter
as flex flitch filter. Each of them can be applied to any input GPIO. However, applying
multiple filters to the same GPIO doesn't make difference from one. You can create the filter handle by
calling gpio_new_flex_glitch_filter(). All the configurations for a flexible glitch filter are
listed in the gpio_flex_glitch_filter_config_t structure.

• gpio_flex_glitch_filter_config_t::gpio_num sets the GPIO that will be ap-
plied to the flex glitch filter.

• gpio_flex_glitch_filter_config_t::window_width_ns and
gpio_flex_glitch_filter_config_t::window_thres_ns are the key parame-
ters of the glitch filter. Duringgpio_flex_glitch_filter_config_t::window_width_ns,
any pulse whosewidth is shorter thangpio_flex_glitch_filter_config_t::window_thres_ns
will be discarded. Please note that, you can't setgpio_flex_glitch_filter_config_t::window_thres_ns
bigger than gpio_flex_glitch_filter_config_t::window_width_ns.

Please note, the pin glitch filter and flex glitch filter are independent. You can
enable both of them for the same GPIO.
The glitch filter is disabled by default, and can be enabled by calling
gpio_glitch_filter_enable(). To recycle the filter, you can call
gpio_del_glitch_filter(). Please note, before deleting the filter, you should disable it
first by calling gpio_glitch_filter_disable().

Application Example

• GPIO output and input interrupt example: peripherals/gpio/generic_gpio.

API Reference - Normal GPIO

Header File
• components/driver/gpio/include/driver/gpio.h

Functions
esp_err_t gpio_config(const gpio_config_t *pGPIOConfig)

GPIO common configuration.

Configure GPIO's Mode,pull-up,PullDown,IntrType

Parameters pGPIOConfig -- Pointer to GPIO configure struct
Returns

• ESP_OK success

Espressif Systems 892
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/gpio/generic_gpio
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/gpio/include/driver/gpio.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_ARG Parameter error
esp_err_t gpio_reset_pin(gpio_num_t gpio_num)

Reset an gpio to default state (select gpio function, enable pullup and disable input and output).

Note: This function also configures the IOMUX for this pin to the GPIO function, and disconnects any other
peripheral output configured via GPIO Matrix.

Parameters gpio_num -- GPIO number.
Returns Always return ESP_OK.

esp_err_t gpio_set_intr_type(gpio_num_t gpio_num, gpio_int_type_t intr_type)
GPIO set interrupt trigger type.

Parameters
• gpio_num -- GPIO number. If you want to set the trigger type of e.g. of GPIO16,
gpio_num should be GPIO_NUM_16 (16);

• intr_type -- Interrupt type, select from gpio_int_type_t
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_intr_enable(gpio_num_t gpio_num)
Enable GPIO module interrupt signal.

Note: ESP32: Please do not use the interrupt of GPIO36 and GPIO39 when using ADC or Wi-Fi and
Bluetooth with sleep mode enabled. Please refer to the comments of adc1_get_raw. Please refer to Section
3.11 of ESP32 ECO and Workarounds for Bugs for the description of this issue.

Parameters gpio_num -- GPIO number. If you want to enable an interrupt on e.g. GPIO16,
gpio_num should be GPIO_NUM_16 (16);

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_intr_disable(gpio_num_t gpio_num)
Disable GPIO module interrupt signal.

Note: This function is allowed to be executed when Cache is disabled within ISR context, by enabling CON-
FIG_GPIO_CTRL_FUNC_IN_IRAM

Parameters gpio_num -- GPIO number. If you want to disable the interrupt of e.g. GPIO16,
gpio_num should be GPIO_NUM_16 (16);

Returns
• ESP_OK success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_set_level(gpio_num_t gpio_num, uint32_t level)
GPIO set output level.

Note: This function is allowed to be executed when Cache is disabled within ISR context, by enabling CON-
FIG_GPIO_CTRL_FUNC_IN_IRAM

Espressif Systems 893
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://espressif.com/sites/default/files/documentation/eco_and_workarounds_for_bugs_in_esp32_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• gpio_num -- GPIO number. If you want to set the output level of e.g. GPIO16,
gpio_num should be GPIO_NUM_16 (16);

• level -- Output level. 0: low ; 1: high
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO number error

int gpio_get_level(gpio_num_t gpio_num)
GPIO get input level.

Warning: If the pad is not configured for input (or input and output) the returned value is always 0.

Parameters gpio_num -- GPIO number. If you want to get the logic level of e.g. pin GPIO16,
gpio_num should be GPIO_NUM_16 (16);

Returns
• 0 the GPIO input level is 0
• 1 the GPIO input level is 1

esp_err_t gpio_set_direction(gpio_num_t gpio_num, gpio_mode_t mode)
GPIO set direction.
Configure GPIO direction,such as output_only,input_only,output_and_input

Parameters
• gpio_num -- Configure GPIO pins number, it should be GPIO number. If you want to
set direction of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);

• mode -- GPIO direction
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO error

esp_err_t gpio_set_pull_mode(gpio_num_t gpio_num, gpio_pull_mode_t pull)
Configure GPIO pull-up/pull-down resistors.

Note: ESP32: Only pins that support both input & output have integrated pull-up and pull-down resistors.
Input-only GPIOs 34-39 do not.

Parameters
• gpio_num -- GPIO number. If you want to set pull up or down mode for e.g. GPIO16,
gpio_num should be GPIO_NUM_16 (16);

• pull -- GPIO pull up/down mode.
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG : Parameter error

esp_err_t gpio_wakeup_enable(gpio_num_t gpio_num, gpio_int_type_t intr_type)
Enable GPIO wake-up function.

Parameters
• gpio_num -- GPIO number.
• intr_type -- GPIO wake-up type. Only GPIO_INTR_LOW_LEVEL or
GPIO_INTR_HIGH_LEVEL can be used.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

Espressif Systems 894
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t gpio_wakeup_disable(gpio_num_t gpio_num)
Disable GPIO wake-up function.

Parameters gpio_num -- GPIO number
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_isr_register(void (*fn)(void*), void *arg, int intr_alloc_flags, gpio_isr_handle_t *handle)
Register GPIO interrupt handler, the handler is an ISR. The handler will be attached to the same CPU core
that this function is running on.
This ISR function is called whenever any GPIO interrupt occurs. See the alternative gpio_install_isr_service()
and gpio_isr_handler_add() API in order to have the driver support per-GPIO ISRs.
To disable or remove the ISR, pass the returned handle to the interrupt allocation functions.

Parameters
• fn -- Interrupt handler function.
• arg -- Parameter for handler function
• intr_alloc_flags -- Flags used to allocate the interrupt. One or multiple (ORred)
ESP_INTR_FLAG_* values. See esp_intr_alloc.h for more info.

• handle -- Pointer to return handle. If non-NULL, a handle for the interrupt will be
returned here.

Returns
• ESP_OK Success ;
• ESP_ERR_INVALID_ARG GPIO error
• ESP_ERR_NOT_FOUND No free interrupt found with the specified flags

esp_err_t gpio_pullup_en(gpio_num_t gpio_num)
Enable pull-up on GPIO.

Parameters gpio_num -- GPIO number
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_pullup_dis(gpio_num_t gpio_num)
Disable pull-up on GPIO.

Parameters gpio_num -- GPIO number
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_pulldown_en(gpio_num_t gpio_num)
Enable pull-down on GPIO.

Parameters gpio_num -- GPIO number
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_pulldown_dis(gpio_num_t gpio_num)
Disable pull-down on GPIO.

Parameters gpio_num -- GPIO number
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_install_isr_service(int intr_alloc_flags)
Install the GPIO driver's ETS_GPIO_INTR_SOURCE ISR handler service, which allows per-pin GPIO in-
terrupt handlers.

Espressif Systems 895
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This function is incompatible with gpio_isr_register() - if that function is used, a single global ISR is registered
for all GPIO interrupts. If this function is used, the ISR service provides a global GPIO ISR and individual pin
handlers are registered via the gpio_isr_handler_add() function.

Parameters intr_alloc_flags -- Flags used to allocate the interrupt. One or multiple
(ORred) ESP_INTR_FLAG_* values. See esp_intr_alloc.h for more info.

Returns
• ESP_OK Success
• ESP_ERR_NO_MEM No memory to install this service
• ESP_ERR_INVALID_STATE ISR service already installed.
• ESP_ERR_NOT_FOUND No free interrupt found with the specified flags
• ESP_ERR_INVALID_ARG GPIO error

void gpio_uninstall_isr_service(void)
Uninstall the driver's GPIO ISR service, freeing related resources.

esp_err_t gpio_isr_handler_add(gpio_num_t gpio_num, gpio_isr_t isr_handler, void *args)
Add ISR handler for the corresponding GPIO pin.
Call this function after using gpio_install_isr_service() to install the driver's GPIO ISR handler service.
The pin ISR handlers no longer need to be declared with IRAM_ATTR, unless you pass the
ESP_INTR_FLAG_IRAM flag when allocating the ISR in gpio_install_isr_service().
This ISR handler will be called from an ISR. So there is a stack size limit (configurable as "ISR stack size" in
menuconfig). This limit is smaller compared to a global GPIO interrupt handler due to the additional level of
indirection.

Parameters
• gpio_num -- GPIO number
• isr_handler -- ISR handler function for the corresponding GPIO number.
• args -- parameter for ISR handler.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_STATE Wrong state, the ISR service has not been initialized.
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_isr_handler_remove(gpio_num_t gpio_num)
Remove ISR handler for the corresponding GPIO pin.

Parameters gpio_num -- GPIO number
Returns

• ESP_OK Success
• ESP_ERR_INVALID_STATE Wrong state, the ISR service has not been initialized.
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_set_drive_capability(gpio_num_t gpio_num, gpio_drive_cap_t strength)
Set GPIO pad drive capability.

Parameters
• gpio_num -- GPIO number, only support output GPIOs
• strength -- Drive capability of the pad

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_get_drive_capability(gpio_num_t gpio_num, gpio_drive_cap_t *strength)
Get GPIO pad drive capability.

Parameters
• gpio_num -- GPIO number, only support output GPIOs
• strength -- Pointer to accept drive capability of the pad

Returns

Espressif Systems 896
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_hold_en(gpio_num_t gpio_num)
Enable gpio pad hold function.
When a GPIO is set to hold, its state is latched at that moment and will not change when the internal signal or
the IO MUX/GPIO configuration is modified (including input enable, output enable, output value, function,
and drive strength values). This function can be used to retain the state of GPIOs when the power domain of
where GPIO/IOMUX belongs to becomes off. For example, chip or system is reset (e.g. watchdog time-out,
deep-sleep events are triggered), or peripheral power-down in light-sleep.
This function works in both input and output modes, and only applicable to output-capable GPIOs. If this
function is enabled: in output mode: the output level of the GPIO will be locked and can not be changed. in
input mode: the input read value can still reflect the changes of the input signal.
However, on ESP32/S2/C3/S3/C2, this function cannot be used to hold the state of a digital GPIO during
Deep-sleep. Even if this function is enabled, the digital GPIO will be reset to its default state when the chip
wakes up from Deep-sleep. If you want to hold the state of a digital GPIO during Deep-sleep, please call
gpio_deep_sleep_hold_en.
Power down or call gpio_hold_dis will disable this function.

Parameters gpio_num -- GPIO number, only support output-capable GPIOs
Returns

• ESP_OK Success
• ESP_ERR_NOT_SUPPORTED Not support pad hold function

esp_err_t gpio_hold_dis(gpio_num_t gpio_num)
Disable gpio pad hold function.
When the chip is woken up from peripheral power-down sleep, the gpio will be set to the default mode, so, the
gpio will output the default level if this function is called. If you don't want the level changes, the gpio should
be configured to a known state before this function is called. e.g. If you hold gpio18 high during Deep-sleep,
after the chip is woken up and gpio_hold_dis is called, gpio18 will output low level(because gpio18 is
input mode by default). If you don't want this behavior, you should configure gpio18 as output mode and set it
to hight level before calling gpio_hold_dis.

Parameters gpio_num -- GPIO number, only support output-capable GPIOs
Returns

• ESP_OK Success
• ESP_ERR_NOT_SUPPORTED Not support pad hold function

void gpio_iomux_in(uint32_t gpio_num, uint32_t signal_idx)
SOC_GPIO_SUPPORT_HOLD_SINGLE_IO_IN_DSLP.
Set pad input to a peripheral signal through the IOMUX.

Parameters
• gpio_num -- GPIO number of the pad.
• signal_idx -- Peripheral signal id to input. One of the *_IN_IDX signals in soc/
gpio_sig_map.h.

void gpio_iomux_out(uint8_t gpio_num, int func, bool oen_inv)
Set peripheral output to an GPIO pad through the IOMUX.

Parameters
• gpio_num -- gpio_num GPIO number of the pad.
• func -- The function number of the peripheral pin to output pin. One of the FUNC_X_*
of specified pin (X) in soc/io_mux_reg.h.

• oen_inv -- True if the output enable needs to be inverted, otherwise False.
esp_err_t gpio_force_hold_all(void)

Force hold all digital and rtc gpio pads.

Espressif Systems 897
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

GPIO force hold, no matter the chip in active mode or sleep modes.
This function will immediately cause all pads to latch the current values of input enable, output enable, output
value, function, and drive strength values.

Warning:
a. This function will hold flash and UART pins as well. Therefore, this function, and all code run

afterwards (till calling gpio_force_unhold_all to disable this feature), MUST be placed in
internal RAM as holding the flash pins will halt SPI flash operation, and holding the UART pins will
halt any UART logging.

b. The hold state of all pads will be cancelled during ROM boot, so it is not recommended to use this
API to hold the pads state during deepsleep and reset.

esp_err_t gpio_force_unhold_all(void)
Unhold all digital and rtc gpio pads.

Note: The global hold signal and the hold signal of each IO act on the PAD through 'or' logic, so if a pad has
already been configured to hold by gpio_hold_en, this API can't release its hold state.

esp_err_t gpio_sleep_sel_en(gpio_num_t gpio_num)
Enable SLP_SEL to change GPIO status automantically in lightsleep.

Parameters gpio_num -- GPIO number of the pad.
Returns

• ESP_OK Success
esp_err_t gpio_sleep_sel_dis(gpio_num_t gpio_num)

Disable SLP_SEL to change GPIO status automantically in lightsleep.
Parameters gpio_num -- GPIO number of the pad.
Returns

• ESP_OK Success
esp_err_t gpio_sleep_set_direction(gpio_num_t gpio_num, gpio_mode_t mode)

GPIO set direction at sleep.
Configure GPIO direction,such as output_only,input_only,output_and_input

Parameters
• gpio_num -- Configure GPIO pins number, it should be GPIO number. If you want to
set direction of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);

• mode -- GPIO direction
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO error

esp_err_t gpio_sleep_set_pull_mode(gpio_num_t gpio_num, gpio_pull_mode_t pull)
Configure GPIO pull-up/pull-down resistors at sleep.

Note: ESP32: Only pins that support both input & output have integrated pull-up and pull-down resistors.
Input-only GPIOs 34-39 do not.

Parameters
• gpio_num -- GPIO number. If you want to set pull up or down mode for e.g. GPIO16,
gpio_num should be GPIO_NUM_16 (16);

• pull -- GPIO pull up/down mode.
Returns

Espressif Systems 898
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK Success
• ESP_ERR_INVALID_ARG : Parameter error

esp_err_t gpio_deep_sleep_wakeup_enable(gpio_num_t gpio_num, gpio_int_type_t intr_type)
Enable GPIO deep-sleep wake-up function.

Note: Called by the SDK. User shouldn't call this directly in the APP.

Parameters
• gpio_num -- GPIO number.
• intr_type -- GPIO wake-up type. Only GPIO_INTR_LOW_LEVEL or
GPIO_INTR_HIGH_LEVEL can be used.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_deep_sleep_wakeup_disable(gpio_num_t gpio_num)
Disable GPIO deep-sleep wake-up function.

Parameters gpio_num -- GPIO number
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t gpio_dump_io_configuration(FILE *out_stream, uint64_t io_bit_mask)
Dump IO configuration information to console.

Parameters
• out_stream -- IO stream (e.g. stdout)
• io_bit_mask -- IO pin bit mask, each bit maps to an IO

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

Structures

struct gpio_config_t
Configuration parameters of GPIO pad for gpio_config function.

Public Members

uint64_t pin_bit_mask
GPIO pin: set with bit mask, each bit maps to a GPIO

gpio_mode_t mode

GPIO mode: set input/output mode

gpio_pullup_t pull_up_en

GPIO pull-up

gpio_pulldown_t pull_down_en

GPIO pull-down

Espressif Systems 899
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

gpio_int_type_t intr_type

GPIO interrupt type

Macros

GPIO_PIN_COUNT

GPIO_IS_VALID_GPIO(gpio_num)
Check whether it is a valid GPIO number.

GPIO_IS_VALID_OUTPUT_GPIO(gpio_num)
Check whether it can be a valid GPIO number of output mode.

GPIO_IS_VALID_DIGITAL_IO_PAD(gpio_num)
Check whether it can be a valid digital I/O pad.

GPIO_IS_DEEP_SLEEP_WAKEUP_VALID_GPIO(gpio_num)

Type Definitions

typedef intr_handle_t gpio_isr_handle_t

typedef void (*gpio_isr_t)(void *arg)
GPIO interrupt handler.

Param arg User registered data

Header File
• components/hal/include/hal/gpio_types.h

Macros

GPIO_PIN_REG_0

GPIO_PIN_REG_1

GPIO_PIN_REG_2

GPIO_PIN_REG_3

GPIO_PIN_REG_4

GPIO_PIN_REG_5

GPIO_PIN_REG_6

GPIO_PIN_REG_7

GPIO_PIN_REG_8

GPIO_PIN_REG_9

Espressif Systems 900
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/gpio_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

GPIO_PIN_REG_10

GPIO_PIN_REG_11

GPIO_PIN_REG_12

GPIO_PIN_REG_13

GPIO_PIN_REG_14

GPIO_PIN_REG_15

GPIO_PIN_REG_16

GPIO_PIN_REG_17

GPIO_PIN_REG_18

GPIO_PIN_REG_19

GPIO_PIN_REG_20

GPIO_PIN_REG_21

GPIO_PIN_REG_22

GPIO_PIN_REG_23

GPIO_PIN_REG_24

GPIO_PIN_REG_25

GPIO_PIN_REG_26

GPIO_PIN_REG_27

GPIO_PIN_REG_28

GPIO_PIN_REG_29

GPIO_PIN_REG_30

GPIO_PIN_REG_31

GPIO_PIN_REG_32

Espressif Systems 901
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

GPIO_PIN_REG_33

GPIO_PIN_REG_34

GPIO_PIN_REG_35

GPIO_PIN_REG_36

GPIO_PIN_REG_37

GPIO_PIN_REG_38

GPIO_PIN_REG_39

GPIO_PIN_REG_40

GPIO_PIN_REG_41

GPIO_PIN_REG_42

GPIO_PIN_REG_43

GPIO_PIN_REG_44

GPIO_PIN_REG_45

GPIO_PIN_REG_46

GPIO_PIN_REG_47

GPIO_PIN_REG_48

Enumerations

enum gpio_port_t

Values:

enumerator GPIO_PORT_0

enumerator GPIO_PORT_MAX

enum gpio_num_t

Values:

enumerator GPIO_NUM_NC
Use to signal not connected to S/W

Espressif Systems 902
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator GPIO_NUM_0
GPIO0, input and output

enumerator GPIO_NUM_1
GPIO1, input and output

enumerator GPIO_NUM_2
GPIO2, input and output

enumerator GPIO_NUM_3
GPIO3, input and output

enumerator GPIO_NUM_4
GPIO4, input and output

enumerator GPIO_NUM_5
GPIO5, input and output

enumerator GPIO_NUM_6
GPIO6, input and output

enumerator GPIO_NUM_7
GPIO7, input and output

enumerator GPIO_NUM_8
GPIO8, input and output

enumerator GPIO_NUM_9
GPIO9, input and output

enumerator GPIO_NUM_10
GPIO10, input and output

enumerator GPIO_NUM_11
GPIO11, input and output

enumerator GPIO_NUM_12
GPIO12, input and output

enumerator GPIO_NUM_13
GPIO13, input and output

enumerator GPIO_NUM_14
GPIO14, input and output

enumerator GPIO_NUM_15
GPIO15, input and output

Espressif Systems 903
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator GPIO_NUM_16
GPIO16, input and output

enumerator GPIO_NUM_17
GPIO17, input and output

enumerator GPIO_NUM_18
GPIO18, input and output

enumerator GPIO_NUM_19
GPIO19, input and output

enumerator GPIO_NUM_20
GPIO20, input and output

enumerator GPIO_NUM_21
GPIO21, input and output

enumerator GPIO_NUM_22
GPIO22, input and output

enumerator GPIO_NUM_23
GPIO23, input and output

enumerator GPIO_NUM_24
GPIO24, input and output

enumerator GPIO_NUM_25
GPIO25, input and output

enumerator GPIO_NUM_26
GPIO26, input and output

enumerator GPIO_NUM_27
GPIO27, input and output

enumerator GPIO_NUM_28
GPIO28, input and output

enumerator GPIO_NUM_29
GPIO29, input and output

enumerator GPIO_NUM_30
GPIO30, input and output

enumerator GPIO_NUM_MAX

enum gpio_int_type_t

Values:

Espressif Systems 904
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator GPIO_INTR_DISABLE
Disable GPIO interrupt

enumerator GPIO_INTR_POSEDGE
GPIO interrupt type : rising edge

enumerator GPIO_INTR_NEGEDGE
GPIO interrupt type : falling edge

enumerator GPIO_INTR_ANYEDGE
GPIO interrupt type : both rising and falling edge

enumerator GPIO_INTR_LOW_LEVEL
GPIO interrupt type : input low level trigger

enumerator GPIO_INTR_HIGH_LEVEL
GPIO interrupt type : input high level trigger

enumerator GPIO_INTR_MAX

enum gpio_mode_t

Values:

enumerator GPIO_MODE_DISABLE
GPIO mode : disable input and output

enumerator GPIO_MODE_INPUT
GPIO mode : input only

enumerator GPIO_MODE_OUTPUT
GPIO mode : output only mode

enumerator GPIO_MODE_OUTPUT_OD
GPIO mode : output only with open-drain mode

enumerator GPIO_MODE_INPUT_OUTPUT_OD
GPIO mode : output and input with open-drain mode

enumerator GPIO_MODE_INPUT_OUTPUT
GPIO mode : output and input mode

enum gpio_pullup_t

Values:

enumerator GPIO_PULLUP_DISABLE
Disable GPIO pull-up resistor

enumerator GPIO_PULLUP_ENABLE
Enable GPIO pull-up resistor

Espressif Systems 905
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum gpio_pulldown_t

Values:

enumerator GPIO_PULLDOWN_DISABLE
Disable GPIO pull-down resistor

enumerator GPIO_PULLDOWN_ENABLE
Enable GPIO pull-down resistor

enum gpio_pull_mode_t

Values:

enumerator GPIO_PULLUP_ONLY
Pad pull up

enumerator GPIO_PULLDOWN_ONLY
Pad pull down

enumerator GPIO_PULLUP_PULLDOWN
Pad pull up + pull down

enumerator GPIO_FLOATING
Pad floating

enum gpio_drive_cap_t

Values:

enumerator GPIO_DRIVE_CAP_0
Pad drive capability: weak

enumerator GPIO_DRIVE_CAP_1
Pad drive capability: stronger

enumerator GPIO_DRIVE_CAP_2
Pad drive capability: medium

enumerator GPIO_DRIVE_CAP_DEFAULT
Pad drive capability: medium

enumerator GPIO_DRIVE_CAP_3
Pad drive capability: strongest

enumerator GPIO_DRIVE_CAP_MAX

enum gpio_hys_ctrl_mode_t

Available option for configuring hysteresis feature of GPIOs.
Values:

Espressif Systems 906
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator GPIO_HYS_CTRL_EFUSE
Pad input hysteresis ctrl by efuse

enumerator GPIO_HYS_SOFT_ENABLE
Pad input hysteresis enable by software

enumerator GPIO_HYS_SOFT_DISABLE
Pad input hysteresis disable by software

API Reference - RTC GPIO

Header File
• components/driver/gpio/include/driver/rtc_io.h

Functions
bool rtc_gpio_is_valid_gpio(gpio_num_t gpio_num)

Determine if the specified GPIO is a valid RTC GPIO.
Parameters gpio_num -- GPIO number
Returns true if GPIO is valid for RTC GPIO use. false otherwise.

int rtc_io_number_get(gpio_num_t gpio_num)
Get RTC IO index number by gpio number.

Parameters gpio_num -- GPIO number
Returns >=0: Index of rtcio. -1 : The gpio is not rtcio.

esp_err_t rtc_gpio_init(gpio_num_t gpio_num)
Init a GPIO as RTC GPIO.
This function must be called when initializing a pad for an analog function.

Parameters gpio_num -- GPIO number (e.g. GPIO_NUM_12)
Returns

• ESP_OK success
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

esp_err_t rtc_gpio_deinit(gpio_num_t gpio_num)
Init a GPIO as digital GPIO.

Parameters gpio_num -- GPIO number (e.g. GPIO_NUM_12)
Returns

• ESP_OK success
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

uint32_t rtc_gpio_get_level(gpio_num_t gpio_num)
Get the RTC IO input level.

Parameters gpio_num -- GPIO number (e.g. GPIO_NUM_12)
Returns

• 1 High level
• 0 Low level
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

esp_err_t rtc_gpio_set_level(gpio_num_t gpio_num, uint32_t level)
Set the RTC IO output level.

Parameters
• gpio_num -- GPIO number (e.g. GPIO_NUM_12)

Espressif Systems 907
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/gpio/include/driver/rtc_io.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• level -- output level
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

esp_err_t rtc_gpio_set_direction(gpio_num_t gpio_num, rtc_gpio_mode_t mode)
RTC GPIO set direction.
Configure RTC GPIO direction, such as output only, input only, output and input.

Parameters
• gpio_num -- GPIO number (e.g. GPIO_NUM_12)
• mode -- GPIO direction

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

esp_err_t rtc_gpio_set_direction_in_sleep(gpio_num_t gpio_num, rtc_gpio_mode_t mode)
RTC GPIO set direction in deep sleep mode or disable sleep status (default). In some application scenarios,
IO needs to have another states during deep sleep.
NOTE: ESP32 support INPUT_ONLY mode. ESP32S2 support INPUT_ONLY, OUTPUT_ONLY, IN-
PUT_OUTPUT mode.

Parameters
• gpio_num -- GPIO number (e.g. GPIO_NUM_12)
• mode -- GPIO direction

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

esp_err_t rtc_gpio_pullup_en(gpio_num_t gpio_num)
RTC GPIO pullup enable.
This function only works for RTC IOs. In general, call gpio_pullup_en, which will work both for normal
GPIOs and RTC IOs.

Parameters gpio_num -- GPIO number (e.g. GPIO_NUM_12)
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

esp_err_t rtc_gpio_pulldown_en(gpio_num_t gpio_num)
RTC GPIO pulldown enable.
This function only works for RTC IOs. In general, call gpio_pulldown_en, which will work both for normal
GPIOs and RTC IOs.

Parameters gpio_num -- GPIO number (e.g. GPIO_NUM_12)
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

esp_err_t rtc_gpio_pullup_dis(gpio_num_t gpio_num)
RTC GPIO pullup disable.
This function only works for RTC IOs. In general, call gpio_pullup_dis, which will work both for normal
GPIOs and RTC IOs.

Parameters gpio_num -- GPIO number (e.g. GPIO_NUM_12)
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

Espressif Systems 908
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t rtc_gpio_pulldown_dis(gpio_num_t gpio_num)
RTC GPIO pulldown disable.
This function only works for RTC IOs. In general, call gpio_pulldown_dis, which will work both for normal
GPIOs and RTC IOs.

Parameters gpio_num -- GPIO number (e.g. GPIO_NUM_12)
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

esp_err_t rtc_gpio_set_drive_capability(gpio_num_t gpio_num, gpio_drive_cap_t strength)
Set RTC GPIO pad drive capability.

Parameters
• gpio_num -- GPIO number, only support output GPIOs
• strength -- Drive capability of the pad

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t rtc_gpio_get_drive_capability(gpio_num_t gpio_num, gpio_drive_cap_t *strength)
Get RTC GPIO pad drive capability.

Parameters
• gpio_num -- GPIO number, only support output GPIOs
• strength -- Pointer to accept drive capability of the pad

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t rtc_gpio_hold_en(gpio_num_t gpio_num)
Enable hold function on an RTC IO pad.
Enabling HOLD function will cause the pad to latch current values of input enable, output enable, output value,
function, drive strength values. This function is useful when going into light or deep sleep mode to prevent the
pin configuration from changing.

Parameters gpio_num -- GPIO number (e.g. GPIO_NUM_12)
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

esp_err_t rtc_gpio_hold_dis(gpio_num_t gpio_num)
Disable hold function on an RTC IO pad.
Disabling hold function will allow the pad receive the values of input enable, output enable, output value,
function, drive strength from RTC_IO peripheral.

Parameters gpio_num -- GPIO number (e.g. GPIO_NUM_12)
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG GPIO is not an RTC IO

esp_err_t rtc_gpio_force_hold_en_all(void)
Enable force hold signal for all RTC IOs.
Each RTC pad has a "force hold" input signal from the RTC controller. If this signal is set, pad latches current
values of input enable, function, output enable, and other signals which come from the RTC mux. Force hold
signal is enabled before going into deep sleep for pins which are used for EXT1 wakeup.

esp_err_t rtc_gpio_force_hold_dis_all(void)
Disable force hold signal for all RTC IOs.

Espressif Systems 909
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t rtc_gpio_wakeup_enable(gpio_num_t gpio_num, gpio_int_type_t intr_type)
Enable wakeup from sleep mode using specific GPIO.

Parameters
• gpio_num -- GPIO number
• intr_type -- Wakeup on high level (GPIO_INTR_HIGH_LEVEL) or low level
(GPIO_INTR_LOW_LEVEL)

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if gpio_num is not an RTC IO, or intr_type is not one of
GPIO_INTR_HIGH_LEVEL, GPIO_INTR_LOW_LEVEL.

esp_err_t rtc_gpio_wakeup_disable(gpio_num_t gpio_num)
Disable wakeup from sleep mode using specific GPIO.

Parameters gpio_num -- GPIO number
Returns

• ESP_OK on success
• ESP_ERR_INVALID_ARG if gpio_num is not an RTC IO

Macros
RTC_GPIO_IS_VALID_GPIO(gpio_num)

Header File
• components/hal/include/hal/rtc_io_types.h

Enumerations

enum rtc_gpio_mode_t

RTCIO output/input mode type.
Values:

enumerator RTC_GPIO_MODE_INPUT_ONLY
Pad input

enumerator RTC_GPIO_MODE_OUTPUT_ONLY
Pad output

enumerator RTC_GPIO_MODE_INPUT_OUTPUT
Pad input + output

enumerator RTC_GPIO_MODE_DISABLED
Pad (output + input) disable

enumerator RTC_GPIO_MODE_OUTPUT_OD
Pad open-drain output

enumerator RTC_GPIO_MODE_INPUT_OUTPUT_OD
Pad input + open-drain output

Espressif Systems 910
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/rtc_io_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference - GPIO Glitch Filter

Header File
• components/driver/gpio/include/driver/gpio_filter.h

Functions
esp_err_t gpio_new_pin_glitch_filter(const gpio_pin_glitch_filter_config_t *config,

gpio_glitch_filter_handle_t *ret_filter)
Create a pin glitch filter.

Note: Pin glitch filter parameters are fixed, pulses shorter than two sample clocks (IO-MUX's source clock)
will be filtered out. It's independent with "flex" glitch filter. See also gpio_new_flex_glitch_filter.

Note: The created filter handle can later be deleted by gpio_del_glitch_filter.

Parameters
• config -- [in] Glitch filter configuration
• ret_filter -- [out] Returned glitch filter handle

Returns
• ESP_OK: Create a pin glitch filter successfully
• ESP_ERR_INVALID_ARG: Create a pin glitch filter failed because of invalid arguments
(e.g. wrong GPIO number)

• ESP_ERR_NO_MEM: Create a pin glitch filter failed because of out of memory
• ESP_FAIL: Create a pin glitch filter failed because of other error

esp_err_t gpio_new_flex_glitch_filter(const gpio_flex_glitch_filter_config_t *config,
gpio_glitch_filter_handle_t *ret_filter)

Allocate a flex glitch filter.

Note: "flex" means the filter parameters (window, threshold) are adjustable. It's independent with pin glitch
filter. See also gpio_new_pin_glitch_filter.

Note: The created filter handle can later be deleted by gpio_del_glitch_filter.

Parameters
• config -- [in] Glitch filter configuration
• ret_filter -- [out] Returned glitch filter handle

Returns
• ESP_OK: Allocate a flex glitch filter successfully
• ESP_ERR_INVALID_ARG: Allocate a flex glitch filter failed because of invalid argu-
ments (e.g. wrong GPIO number, filter parameters out of range)

• ESP_ERR_NO_MEM: Allocate a flex glitch filter failed because of out of memory
• ESP_ERR_NOT_FOUND: Allocate a flex glitch filter failed because the underlying hard-
ware resources are used up

• ESP_FAIL: Allocate a flex glitch filter failed because of other error

esp_err_t gpio_del_glitch_filter(gpio_glitch_filter_handle_t filter)
Delete a glitch filter.

Parameters filter -- [in] Glitch filter handle returned from
gpio_new_flex_glitch_filter or gpio_new_pin_glitch_filter

Espressif Systems 911
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/gpio/include/driver/gpio_filter.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK: Delete glitch filter successfully
• ESP_ERR_INVALID_ARG: Delete glitch filter failed because of invalid arguments
• ESP_ERR_INVALID_STATE: Delete glitch filter failed because the glitch filter is still in
working

• ESP_FAIL: Delete glitch filter failed because of other error
esp_err_t gpio_glitch_filter_enable(gpio_glitch_filter_handle_t filter)

Enable a glitch filter.
Parameters filter -- [in] Glitch filter handle returned from

gpio_new_flex_glitch_filter or gpio_new_pin_glitch_filter
Returns

• ESP_OK: Enable glitch filter successfully
• ESP_ERR_INVALID_ARG: Enable glitch filter failed because of invalid arguments
• ESP_ERR_INVALID_STATE: Enable glitch filter failed because the glitch filter is already
enabled

• ESP_FAIL: Enable glitch filter failed because of other error
esp_err_t gpio_glitch_filter_disable(gpio_glitch_filter_handle_t filter)

Disable a glitch filter.
Parameters filter -- [in] Glitch filter handle returned from

gpio_new_flex_glitch_filter or gpio_new_pin_glitch_filter
Returns

• ESP_OK: Disable glitch filter successfully
• ESP_ERR_INVALID_ARG: Disable glitch filter failed because of invalid arguments
• ESP_ERR_INVALID_STATE: Disable glitch filter failed because the glitch filter is not
enabled yet

• ESP_FAIL: Disable glitch filter failed because of other error

Structures

struct gpio_pin_glitch_filter_config_t
Configuration of GPIO pin glitch filter.

Public Members

glitch_filter_clock_source_t clk_src
Clock source for the glitch filter

gpio_num_t gpio_num

GPIO number

struct gpio_flex_glitch_filter_config_t
Configuration of GPIO flex glitch filter.

Public Members

glitch_filter_clock_source_t clk_src
Clock source for the glitch filter

gpio_num_t gpio_num

GPIO number

Espressif Systems 912
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t window_width_ns
Sample window width (in ns)

uint32_t window_thres_ns
Sample window threshold (in ns), during the window_width_ns sample window, any pulse whose
width < window_thres_ns will be discarded.

Type Definitions

typedef struct gpio_glitch_filter_t *gpio_glitch_filter_handle_t
Typedef of GPIO glitch filter handle.

2.6.7 General Purpose Timer (GPTimer)

Introduction

GPTimer (General Purpose Timer) is the driver of ESP32-C6 Timer Group peripheral. The hardware timer features
high resolution and flexible alarm action. The behavior when the internal counter of a timer reaches a specific target
value is called a timer alarm. When a timer alarms, a user registered per-timer callback would be called.
Typically, a general purpose timer can be used in scenarios like:

• Free running as a wall clock, fetching a high-resolution timestamp at any time and any places
• Generate period alarms, trigger events periodically
• Generate one-shot alarm, respond in target time

Functional Overview

The following sections of this document cover the typical steps to install and operate a timer:

• Resource Allocation - covers which parameters should be set up to get a timer handle and how to recycle the
resources when GPTimer finishes working.

• Set and Get Count Value - covers how to force the timer counting from a start point and how to get the count
value at anytime.

• Set up Alarm Action - covers the parameters that should be set up to enable the alarm event.
• Register Event Callbacks - covers how to hook user specific code to the alarm event callback function.
• Enable and Disable Timer - covers how to enable and disable the timer.
• Start and Stop Timer - shows some typical use cases that start the timer with different alarm behavior.
• ETM Event and Task - describes what the events and tasks can be connected to the ETM channel.
• Power Management - describes how different source clock selections can affect power consumption.
• IRAM Safe - describes tips on how to make the timer interrupt and IO control functions work better along with
a disabled cache.

• Thread Safety - lists which APIs are guaranteed to be thread safe by the driver.
• Kconfig Options - lists the supported Kconfig options that can be used to make a different effect on driver
behavior.

Resource Allocation Different ESP chips might have different numbers of independent timer groups, and within
each group, there could also be several independent timers.1

AGPTimer instance is represented by gptimer_handle_t. The driver behind will manage all available hardware
resources in a pool, so that you do not need to care about which timer and which group it belongs to.

1 Different ESP chip series might have different numbers of GPTimer instances. For more details, please refer to ESP32-C6 Technical Reference
Manual > Chapter Timer Group (TIMG) [PDF]. The driver will not forbid you from applying for more timers, but it will return error when all
available hardware resources are used up. Please always check the return value when doing resource allocation (e.g. gptimer_new_timer()).

Espressif Systems 913
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#timg
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

To install a timer instance, there is a configuration structure that needs to be given in advance: gpti-
mer_config_t:

• gptimer_config_t::clk_src selects the source clock for the timer. The available clocks are listed
in gptimer_clock_source_t, you can only pick one of them. For the effect on power consumption of
different clock source, please refer to Section Power Management.

• gptimer_config_t::direction sets the counting direction of the timer, supported directions are
listed in gptimer_count_direction_t, you can only pick one of them.

• gptimer_config_t::resolution_hz sets the resolution of the internal counter. Each count step is
equivalent to 1 / resolution_hz seconds.

• gptimer_config::intr_priority sets the priority of the timer interrupt. If it is set to 0, the driver
will allocate an interrupt with a default priority. Otherwise, the driver will use the given priority.

• Optional gptimer_config_t::intr_shared sets whether or not mark the timer interrupt source as
a shared one. For the pros/cons of a shared interrupt, you can refer to Interrupt Handling.

With all the above configurations set in the structure, the structure can be passed to gptimer_new_timer()
which will instantiate the timer instance and return a handle of the timer.
The function can fail due to various errors such as insufficient memory, invalid arguments, etc. Specifically, when
there are no more free timers (i.e. all hardware resources have been used up), then ESP_ERR_NOT_FOUND will be
returned. The total number of available timers is represented by the SOC_TIMER_GROUP_TOTAL_TIMERS and
its value will depend on the ESP chip.
If a previously created GPTimer instance is no longer required, you should recycle the timer by calling gpti-
mer_del_timer(). This will allow the underlying HW timer to be used for other purposes. Before deleting a
GPTimer handle, please disable it by gptimer_disable() in advance or make sure it has not enabled yet by
gptimer_enable().

Creating a GPTimer Handle with Resolution of 1 MHz
gptimer_handle_t gptimer = NULL;
gptimer_config_t timer_config = {

.clk_src = GPTIMER_CLK_SRC_DEFAULT,

.direction = GPTIMER_COUNT_UP,

.resolution_hz = 1 * 1000 * 1000, // 1MHz, 1 tick = 1us
};
ESP_ERROR_CHECK(gptimer_new_timer(&timer_config, &gptimer));

Set and Get Count Value When the GPTimer is created, the internal counter will be reset to zero by de-
fault. The counter value can be updated asynchronously by gptimer_set_raw_count(). The maximum
count value is dependent on the bit width of the hardware timer, which is also reflected by the SOC macro
SOC_TIMER_GROUP_COUNTER_BIT_WIDTH. When updating the raw count of an active timer, the timer will
immediately start counting from the new value.
Count value can be retrieved by gptimer_get_raw_count(), at any time.

Set up Alarm Action For most of the use cases of GPTimer, you should set up the alarm action before starting the
timer, except for the simple wall-clock scenario, where a free running timer is enough. To set up the alarm action,
you should configure several members of gptimer_alarm_config_t based on how you make use of the alarm
event:

• gptimer_alarm_config_t::alarm_count sets the target count value that will trig-
ger the alarm event. You should also take the counting direction into consideration when set-
ting the alarm value. Specially, gptimer_alarm_config_t::alarm_count and gpti-
mer_alarm_config_t::reload_count cannot be set to the same value when gpti-
mer_alarm_config_t::auto_reload_on_alarm is true, as keeping reload with a target
alarm count is meaningless. Please also note, because of the interrupt latency, it's not recommended to set the
alarm period smaller than 5 us.

Espressif Systems 914
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• gptimer_alarm_config_t::reload_count sets the count value to be reloaded
when the alarm event happens. This configuration only takes effect when gpti-
mer_alarm_config_t::auto_reload_on_alarm is set to true.

• gptimer_alarm_config_t::auto_reload_on_alarm flag sets whether to enable
the auto-reload feature. If enabled, the hardware timer will reload the value of gpti-
mer_alarm_config_t::reload_count into counter immediately when an alarm event happens.

To make the alarm configurations take effect, you should call gptimer_set_alarm_action(). Especially, if
gptimer_alarm_config_t is set to NULL, the alarm function will be disabled.

Note: If an alarm value is set and the timer has already exceeded this value, the alarm will be triggered immediately.

Register Event Callbacks After the timer starts up, it can generate a specific event (e.g. the "Alarm Event")
dynamically. If you have some functions that should be called when the event happens, please hook your function
to the interrupt service routine by calling gptimer_register_event_callbacks(). All supported event
callbacks are listed in gptimer_event_callbacks_t:

• gptimer_event_callbacks_t::on_alarm sets a callback function for alarm events. As this func-
tion is called within the ISR context, you must ensure that the function does not attempt to block (e.g., by
making sure that only FreeRTOS APIs with ISR suffix are called from within the function). The function
prototype is declared in gptimer_alarm_cb_t.

You can save your own context to gptimer_register_event_callbacks() as well, via the parameter
user_data. The user data will be directly passed to the callback function.
This function will lazy install the interrupt service for the timer but not enable it. So please call this function before
gptimer_enable(), otherwise the ESP_ERR_INVALID_STATE error will be returned. See Section Enable
and Disable Timer for more information.

Enable and Disable Timer Before doing IO control to the timer, you needs to enable the timer first, by calling
gptimer_enable(). This function will:

• Switch the timer driver state from init to enable.
• Enable the interrupt service if it has been lazy installed bygptimer_register_event_callbacks().
• Acquire a proper power management lock if a specific clock source (e.g. APB clock) is selected. See Section

Power Management for more information.
Calling gptimer_disable() will do the opposite, that is, put the timer driver back to the init state, disable the
interrupts service and release the power management lock.

Start and Stop Timer The basic IO operation of a timer is to start and stop. Calling gptimer_start()
can make the internal counter work, while calling gptimer_stop() can make the counter stop working. The
following illustrates how to start a timer with or without an alarm event. Calling gptimer_start() will transit
the driver state from enable to run, and vice versa. You need to make sure the start and stop functions are used in
pairs, otherwise, the functions may return ESP_ERR_INVALID_STATE. Most of the time, this error means that
the timer is already stopped or in the "start protection" state (i.e. gptimer_start() is called but not finished).

Start Timer as a Wall Clock
ESP_ERROR_CHECK(gptimer_enable(gptimer));
ESP_ERROR_CHECK(gptimer_start(gptimer));
// Retrieve the timestamp at any time
uint64_t count;
ESP_ERROR_CHECK(gptimer_get_raw_count(gptimer, &count));

Espressif Systems 915
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Trigger Period Events
typedef struct {

uint64_t event_count;
} example_queue_element_t;

static bool example_timer_on_alarm_cb(gptimer_handle_t timer, const gptimer_alarm_
↪→event_data_t *edata, void *user_ctx)
{

BaseType_t high_task_awoken = pdFALSE;
QueueHandle_t queue = (QueueHandle_t)user_ctx;
// Retrieve the count value from event data
example_queue_element_t ele = {

.event_count = edata->count_value
};
// Optional: send the event data to other task by OS queue
// Do not introduce complex logics in callbacks
// Suggest dealing with event data in the main loop, instead of in this␣

↪→callback
xQueueSendFromISR(queue, &ele, &high_task_awoken);
// return whether we need to yield at the end of ISR
return high_task_awoken == pdTRUE;

}

gptimer_alarm_config_t alarm_config = {
.reload_count = 0, // counter will reload with 0 on alarm event
.alarm_count = 1000000, // period = 1s @resolution 1MHz
.flags.auto_reload_on_alarm = true, // enable auto-reload

};
ESP_ERROR_CHECK(gptimer_set_alarm_action(gptimer, &alarm_config));

gptimer_event_callbacks_t cbs = {
.on_alarm = example_timer_on_alarm_cb, // register user callback

};
ESP_ERROR_CHECK(gptimer_register_event_callbacks(gptimer, &cbs, queue));
ESP_ERROR_CHECK(gptimer_enable(gptimer));
ESP_ERROR_CHECK(gptimer_start(gptimer));

Trigger One-Shot Event
typedef struct {

uint64_t event_count;
} example_queue_element_t;

static bool example_timer_on_alarm_cb(gptimer_handle_t timer, const gptimer_alarm_
↪→event_data_t *edata, void *user_ctx)
{

BaseType_t high_task_awoken = pdFALSE;
QueueHandle_t queue = (QueueHandle_t)user_ctx;
// Stop timer the sooner the better
gptimer_stop(timer);
// Retrieve the count value from event data
example_queue_element_t ele = {

.event_count = edata->count_value
};
// Optional: send the event data to other task by OS queue
xQueueSendFromISR(queue, &ele, &high_task_awoken);
// return whether we need to yield at the end of ISR
return high_task_awoken == pdTRUE;

}

gptimer_alarm_config_t alarm_config = {

(continues on next page)

Espressif Systems 916
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
.alarm_count = 1 * 1000 * 1000, // alarm target = 1s @resolution 1MHz

};
ESP_ERROR_CHECK(gptimer_set_alarm_action(gptimer, &alarm_config));

gptimer_event_callbacks_t cbs = {
.on_alarm = example_timer_on_alarm_cb, // register user callback

};
ESP_ERROR_CHECK(gptimer_register_event_callbacks(gptimer, &cbs, queue));
ESP_ERROR_CHECK(gptimer_enable(gptimer));
ESP_ERROR_CHECK(gptimer_start(gptimer));

Dynamic Alarm Update Alarm value can be updated dynamically inside the ISR handler callback, by changing
gptimer_alarm_event_data_t::alarm_value. Then the alarm value will be updated after the callback
function returns.

typedef struct {
uint64_t event_count;

} example_queue_element_t;

static bool example_timer_on_alarm_cb(gptimer_handle_t timer, const gptimer_alarm_
↪→event_data_t *edata, void *user_ctx)
{

BaseType_t high_task_awoken = pdFALSE;
QueueHandle_t queue = (QueueHandle_t)user_data;
// Retrieve the count value from event data
example_queue_element_t ele = {

.event_count = edata->count_value
};
// Optional: send the event data to other task by OS queue
xQueueSendFromISR(queue, &ele, &high_task_awoken);
// reconfigure alarm value
gptimer_alarm_config_t alarm_config = {

.alarm_count = edata->alarm_value + 1000000, // alarm in next 1s
};
gptimer_set_alarm_action(timer, &alarm_config);
// return whether we need to yield at the end of ISR
return high_task_awoken == pdTRUE;

}

gptimer_alarm_config_t alarm_config = {
.alarm_count = 1000000, // initial alarm target = 1s @resolution 1MHz

};
ESP_ERROR_CHECK(gptimer_set_alarm_action(gptimer, &alarm_config));

gptimer_event_callbacks_t cbs = {
.on_alarm = example_timer_on_alarm_cb, // register user callback

};
ESP_ERROR_CHECK(gptimer_register_event_callbacks(gptimer, &cbs, queue));
ESP_ERROR_CHECK(gptimer_enable(gptimer));
ESP_ERROR_CHECK(gptimer_start(gptimer));

ETMEvent and Task GPTimer is able to generate various events that can interact with the ETM module. The sup-
ported events are listed in the gptimer_etm_event_type_t. You can call gptimer_new_etm_event()
to get the corresponding ETM event handle. Likewise, GPTimer exposes several tasks that can be triggered by
other ETM events. The supported tasks are listed in the gptimer_etm_task_type_t. You can call gpti-
mer_new_etm_task() to get the corresponding ETM task handle.
For how to connect the event and task to an ETM channel, please refer to the ETM documentation.

Espressif Systems 917
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Power Management There're some power management strategies, which might turn off or change the frequency
of GPTimer's source clock to save power consumption. For example, during DFS, APB clock will be scaled down.
If light-sleep is also enabled, PLL and XTAL clocks will be powered off. Both of them can result in an inaccurate
time keeping.
The driver can prevent the above situation from happening by creating different power management lock according
to different clock source. The driver will increase the reference count of that power management lock in the gp-
timer_enable() and decrease it in the gptimer_disable(). So we can ensure the clock source is stable
between gptimer_enable() and gptimer_disable().

IRAM Safe By default, the GPTimer interrupt will be deferred when the cache is disabled because of writing
or erasing the flash. Thus the alarm interrupt will not get executed in time, which is not expected in a real-time
application.
There is a Kconfig option CONFIG_GPTIMER_ISR_IRAM_SAFE that will:

• Enable the interrupt being serviced even when the cache is disabled
• Place all functions that used by the ISR into IRAM2

• Place driver object into DRAM (in case it is mapped to PSRAM by accident)
This will allow the interrupt to run while the cache is disabled, but will come at the cost of increased IRAM con-
sumption.
There is another Kconfig option CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM that can put commonly used IO con-
trol functions into IRAM as well. So, these functions can also be executable when the cache is disabled. These IO
control functions are as follows:

• gptimer_start()
• gptimer_stop()
• gptimer_get_raw_count()
• gptimer_set_raw_count()
• gptimer_set_alarm_action()

Thread Safety All the APIs provided by the driver are guaranteed to be thread safe, which means you can call
them from different RTOS tasks without protection by extra locks. The following functions are allowed to run under
ISR context.

• gptimer_start()
• gptimer_stop()
• gptimer_get_raw_count()
• gptimer_set_raw_count()
• gptimer_get_captured_count()
• gptimer_set_alarm_action()

Kconfig Options
• CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM controls where to place the GPTimer control functions (IRAM
or flash).

• CONFIG_GPTIMER_ISR_HANDLER_IN_IRAM controls where to place the GPTimer ISR handler (IRAM or
flash).

• CONFIG_GPTIMER_ISR_IRAM_SAFE controls whether the default ISR handler should be masked when the
cache is disabled, see Section IRAM Safe for more information.

• CONFIG_GPTIMER_ENABLE_DEBUG_LOG is used to enabled the debug log output. Enable this option will
increase the firmware binary size.

2 gptimer_event_callbacks_t::on_alarm callback and the functions invoked by the callback should also be placed in IRAM,
please take care of them by yourself.

Espressif Systems 918
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Application Examples

• Typical use cases of GPTimer are listed in the example peripherals/timer_group/gptimer.
• GPTimer capture external event's timestamp, with the help of ETM module: peripher-
als/timer_group/gptimer_capture_hc_sr04.

API Reference

Header File
• components/driver/gptimer/include/driver/gptimer.h

Functions
esp_err_t gptimer_new_timer(const gptimer_config_t *config, gptimer_handle_t *ret_timer)

Create a new General Purpose Timer, and return the handle.

Note: The newly created timer is put in the "init" state.

Parameters
• config -- [in] GPTimer configuration
• ret_timer -- [out] Returned timer handle

Returns
• ESP_OK: Create GPTimer successfully
• ESP_ERR_INVALID_ARG: Create GPTimer failed because of invalid argument
• ESP_ERR_NO_MEM: Create GPTimer failed because out of memory
• ESP_ERR_NOT_FOUND: Create GPTimer failed because all hardware timers are used
up and no more free one

• ESP_FAIL: Create GPTimer failed because of other error
esp_err_t gptimer_del_timer(gptimer_handle_t timer)

Delete the GPTimer handle.

Note: A timer must be in the "init" state before it can be deleted.

Parameters timer -- [in] Timer handle created by gptimer_new_timer
Returns

• ESP_OK: Delete GPTimer successfully
• ESP_ERR_INVALID_ARG: Delete GPTimer failed because of invalid argument
• ESP_ERR_INVALID_STATE: Delete GPTimer failed because the timer is not in init
state

• ESP_FAIL: Delete GPTimer failed because of other error

esp_err_t gptimer_set_raw_count(gptimer_handle_t timer, uint64_t value)
Set GPTimer raw count value.

Note: When updating the raw count of an active timer, the timer will immediately start counting from the
new value.

Note: This function is allowed to run within ISR context

Espressif Systems 919
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/timer_group/gptimer
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/timer_group/gptimer_capture_hc_sr04
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/timer_group/gptimer_capture_hc_sr04
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/gptimer/include/driver/gptimer.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: IfCONFIG_GPTIMER_CTRL_FUNC_IN_IRAM is enabled, this functionwill be placed in the IRAM
by linker, makes it possible to execute even when the Flash Cache is disabled.

Parameters
• timer -- [in] Timer handle created by gptimer_new_timer
• value -- [in] Count value to be set

Returns
• ESP_OK: Set GPTimer raw count value successfully
• ESP_ERR_INVALID_ARG: Set GPTimer raw count value failed because of invalid ar-
gument

• ESP_FAIL: Set GPTimer raw count value failed because of other error

esp_err_t gptimer_get_raw_count(gptimer_handle_t timer, uint64_t *value)
Get GPTimer raw count value.

Note: This function will trigger a software capture event and then return the captured count value.

Note: With the raw count value and the resolution returned from gptimer_get_resolution, you can
convert the count value into seconds.

Note: This function is allowed to run within ISR context

Note: IfCONFIG_GPTIMER_CTRL_FUNC_IN_IRAM is enabled, this functionwill be placed in the IRAM
by linker, makes it possible to execute even when the Flash Cache is disabled.

Parameters
• timer -- [in] Timer handle created by gptimer_new_timer
• value -- [out] Returned GPTimer count value

Returns
• ESP_OK: Get GPTimer raw count value successfully
• ESP_ERR_INVALID_ARG: Get GPTimer raw count value failed because of invalid ar-
gument

• ESP_FAIL: Get GPTimer raw count value failed because of other error

esp_err_t gptimer_get_resolution(gptimer_handle_t timer, uint32_t *out_resolution)
Return the real resolution of the timer.

Note: usually the timer resolution is same as what you configured in the gpti-
mer_config_t::resolution_hz, but some unstable clock source (e.g. RC_FAST) will do a
calibration, the real resolution can be different from the configured one.

Parameters
• timer -- [in] Timer handle created by gptimer_new_timer
• out_resolution -- [out] Returned timer resolution, in Hz

Returns
• ESP_OK: Get GPTimer resolution successfully
• ESP_ERR_INVALID_ARG: Get GPTimer resolution failed because of invalid argument
• ESP_FAIL: Get GPTimer resolution failed because of other error

Espressif Systems 920
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t gptimer_get_captured_count(gptimer_handle_t timer, uint64_t *value)
Get GPTimer captured count value.

Note: The capture action can be issued either by ETM event or by software (see also gpti-
mer_get_raw_count).

Note: This function is allowed to run within ISR context

Note: IfCONFIG_GPTIMER_CTRL_FUNC_IN_IRAM is enabled, this functionwill be placed in the IRAM
by linker, makes it possible to execute even when the Flash Cache is disabled.

Parameters
• timer -- [in] Timer handle created by gptimer_new_timer
• value -- [out] Returned captured count value

Returns
• ESP_OK: Get GPTimer captured count value successfully
• ESP_ERR_INVALID_ARG: Get GPTimer captured count value failed because of invalid
argument

• ESP_FAIL: Get GPTimer captured count value failed because of other error

esp_err_t gptimer_register_event_callbacks(gptimer_handle_t timer, const
gptimer_event_callbacks_t *cbs, void *user_data)

Set callbacks for GPTimer.

Note: User registered callbacks are expected to be runnable within ISR context

Note: The first call to this function needs to be before the call to gptimer_enable

Note: User can deregister a previously registered callback by calling this function and setting the callback
member in the cbs structure to NULL.

Parameters
• timer -- [in] Timer handle created by gptimer_new_timer
• cbs -- [in] Group of callback functions
• user_data -- [in] User data, which will be passed to callback functions directly

Returns
• ESP_OK: Set event callbacks successfully
• ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument
• ESP_ERR_INVALID_STATE: Set event callbacks failed because the timer is not in init
state

• ESP_FAIL: Set event callbacks failed because of other error

esp_err_t gptimer_set_alarm_action(gptimer_handle_t timer, const gptimer_alarm_config_t *config)
Set alarm event actions for GPTimer.

Note: This function is allowed to run within ISR context, so that user can set new alarm action immediately
in the ISR callback.

Espressif Systems 921
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: IfCONFIG_GPTIMER_CTRL_FUNC_IN_IRAM is enabled, this functionwill be placed in the IRAM
by linker, makes it possible to execute even when the Flash Cache is disabled.

Parameters
• timer -- [in] Timer handle created by gptimer_new_timer
• config -- [in] Alarm configuration, especially, set config to NULL means disabling the
alarm function

Returns
• ESP_OK: Set alarm action for GPTimer successfully
• ESP_ERR_INVALID_ARG: Set alarm action for GPTimer failed because of invalid ar-
gument

• ESP_FAIL: Set alarm action for GPTimer failed because of other error

esp_err_t gptimer_enable(gptimer_handle_t timer)
Enable GPTimer.

Note: This function will transit the timer state from "init" to "enable".

Note: This function will enable the interrupt service, if it's lazy installed in gpti-
mer_register_event_callbacks.

Note: This function will acquire a PM lock, if a specific source clock (e.g. APB) is selected in the gpti-
mer_config_t, while CONFIG_PM_ENABLE is enabled.

Note: Enable a timer doesn't mean to start it. See also gptimer_start for how to make the timer start
counting.

Parameters timer -- [in] Timer handle created by gptimer_new_timer
Returns

• ESP_OK: Enable GPTimer successfully
• ESP_ERR_INVALID_ARG: Enable GPTimer failed because of invalid argument
• ESP_ERR_INVALID_STATE: Enable GPTimer failed because the timer is already en-
abled

• ESP_FAIL: Enable GPTimer failed because of other error

esp_err_t gptimer_disable(gptimer_handle_t timer)
Disable GPTimer.

Note: This function will transit the timer state from "enable" to "init".

Note: This function will disable the interrupt service if it's installed.

Note: This function will release the PM lock if it's acquired in the gptimer_enable.

Espressif Systems 922
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: Disable a timer doesn't mean to stop it. See also gptimer_stop for how to make the timer stop
counting.

Parameters timer -- [in] Timer handle created by gptimer_new_timer
Returns

• ESP_OK: Disable GPTimer successfully
• ESP_ERR_INVALID_ARG: Disable GPTimer failed because of invalid argument
• ESP_ERR_INVALID_STATE: Disable GPTimer failed because the timer is not enabled
yet

• ESP_FAIL: Disable GPTimer failed because of other error

esp_err_t gptimer_start(gptimer_handle_t timer)
Start GPTimer (internal counter starts counting)

Note: This function will transit the timer state from "enable" to "run".

Note: This function is allowed to run within ISR context

Note: IfCONFIG_GPTIMER_CTRL_FUNC_IN_IRAM is enabled, this functionwill be placed in the IRAM
by linker, makes it possible to execute even when the Flash Cache is disabled.

Parameters timer -- [in] Timer handle created by gptimer_new_timer
Returns

• ESP_OK: Start GPTimer successfully
• ESP_ERR_INVALID_ARG: Start GPTimer failed because of invalid argument
• ESP_ERR_INVALID_STATE: Start GPTimer failed because the timer is not enabled or
is already in running

• ESP_FAIL: Start GPTimer failed because of other error

esp_err_t gptimer_stop(gptimer_handle_t timer)
Stop GPTimer (internal counter stops counting)

Note: This function will transit the timer state from "run" to "enable".

Note: This function is allowed to run within ISR context

Note: IfCONFIG_GPTIMER_CTRL_FUNC_IN_IRAM is enabled, this functionwill be placed in the IRAM
by linker, makes it possible to execute even when the Flash Cache is disabled.

Parameters timer -- [in] Timer handle created by gptimer_new_timer
Returns

• ESP_OK: Stop GPTimer successfully
• ESP_ERR_INVALID_ARG: Stop GPTimer failed because of invalid argument
• ESP_ERR_INVALID_STATE: Stop GPTimer failed because the timer is not in running.
• ESP_FAIL: Stop GPTimer failed because of other error

Espressif Systems 923
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Structures

struct gptimer_config_t
General Purpose Timer configuration.

Public Members

gptimer_clock_source_t clk_src

GPTimer clock source

gptimer_count_direction_t direction

Count direction

uint32_t resolution_hz
Counter resolution (working frequency) in Hz, hence, the step size of each count tick equals to (1 /
resolution_hz) seconds

int intr_priority
GPTimer interrupt priority, if set to 0, the driver will try to allocate an interrupt with a relative low
priority (1,2,3)

uint32_t intr_shared
Set true, the timer interrupt number can be shared with other peripherals

struct gptimer_config_t::[anonymous] flags
GPTimer config flags

struct gptimer_event_callbacks_t
Group of supported GPTimer callbacks.

Note: The callbacks are all running under ISR environment

Note: When CONFIG_GPTIMER_ISR_IRAM_SAFE is enabled, the callback itself and functions called by
it should be placed in IRAM.

Public Members

gptimer_alarm_cb_t on_alarm

Timer alarm callback

struct gptimer_alarm_config_t
General Purpose Timer alarm configuration.

Public Members

Espressif Systems 924
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint64_t alarm_count
Alarm target count value

uint64_t reload_count
Alarm reload count value, effect only when auto_reload_on_alarm is set to true

uint32_t auto_reload_on_alarm
Reload the count value by hardware, immediately at the alarm event

struct gptimer_alarm_config_t::[anonymous] flags
Alarm config flags

Header File
• components/driver/gptimer/include/driver/gptimer_etm.h

Functions
esp_err_t gptimer_new_etm_event(gptimer_handle_t timer, const gptimer_etm_event_config_t *config,

esp_etm_event_handle_t *out_event)
Get the ETM event for GPTimer.

Note: The created ETM event object can be deleted later by calling esp_etm_del_event

Parameters
• timer -- [in] Timer handle created by gptimer_new_timer
• config -- [in] GPTimer ETM event configuration
• out_event -- [out] Returned ETM event handle

Returns
• ESP_OK: Get ETM event successfully
• ESP_ERR_INVALID_ARG: Get ETM event failed because of invalid argument
• ESP_FAIL: Get ETM event failed because of other error

esp_err_t gptimer_new_etm_task(gptimer_handle_t timer, const gptimer_etm_task_config_t *config,
esp_etm_task_handle_t *out_task)

Get the ETM task for GPTimer.

Note: The created ETM task object can be deleted later by calling esp_etm_del_task

Parameters
• timer -- [in] Timer handle created by gptimer_new_timer
• config -- [in] GPTimer ETM task configuration
• out_task -- [out] Returned ETM task handle

Returns
• ESP_OK: Get ETM task successfully
• ESP_ERR_INVALID_ARG: Get ETM task failed because of invalid argument
• ESP_FAIL: Get ETM task failed because of other error

Structures

struct gptimer_etm_event_config_t
GPTimer ETM event configuration.

Espressif Systems 925
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/gptimer/include/driver/gptimer_etm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

gptimer_etm_event_type_t event_type

GPTimer ETM event type

struct gptimer_etm_task_config_t
GPTimer ETM task configuration.

Public Members

gptimer_etm_task_type_t task_type

GPTimer ETM task type

Header File
• components/driver/gptimer/include/driver/gptimer_types.h

Structures

struct gptimer_alarm_event_data_t
GPTimer alarm event data.

Public Members

uint64_t count_value
Current count value

uint64_t alarm_value
Current alarm value

Type Definitions

typedef struct gptimer_t *gptimer_handle_t
Type of General Purpose Timer handle.

typedef bool (*gptimer_alarm_cb_t)(gptimer_handle_t timer, const gptimer_alarm_event_data_t *edata,
void *user_ctx)

Timer alarm callback prototype.
Param timer [in] Timer handle created by gptimer_new_timer
Param edata [in] Alarm event data, fed by driver
Param user_ctx [in] User data, passed from gptimer_register_event_callbacks
Return Whether a high priority task has been waken up by this function

Header File
• components/hal/include/hal/timer_types.h

Espressif Systems 926
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/gptimer/include/driver/gptimer_types.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/timer_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef soc_periph_gptimer_clk_src_t gptimer_clock_source_t

GPTimer clock source.

Note: User should select the clock source based on the power and resolution requirement

Enumerations

enum gptimer_count_direction_t

GPTimer count direction.
Values:

enumerator GPTIMER_COUNT_DOWN
Decrease count value

enumerator GPTIMER_COUNT_UP
Increase count value

enum gptimer_etm_task_type_t

GPTimer specific tasks that supported by the ETM module.
Values:

enumerator GPTIMER_ETM_TASK_START_COUNT
Start the counter

enumerator GPTIMER_ETM_TASK_STOP_COUNT
Stop the counter

enumerator GPTIMER_ETM_TASK_EN_ALARM
Enable the alarm

enumerator GPTIMER_ETM_TASK_RELOAD
Reload preset value into counter

enumerator GPTIMER_ETM_TASK_CAPTURE
Capture current count value into specific register

enumerator GPTIMER_ETM_TASK_MAX
Maximum number of tasks

enum gptimer_etm_event_type_t

GPTimer specific events that supported by the ETM module.
Values:

enumerator GPTIMER_ETM_EVENT_ALARM_MATCH
Count value matches the alarm target value

enumerator GPTIMER_ETM_EVENT_MAX
Maximum number of events

Espressif Systems 927
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.6.8 Dedicated GPIO

Overview

The dedicated GPIO is designed for CPU interaction with GPIO matrix and IO MUX. Any GPIO that is configured
as "dedicated" can be access by CPU instructions directly, which makes it easy to achieve a high GPIO flip speed,
and simulate serial/parallel interface in a bit-banging way. As toggling a GPIO in this "CPU Dedicated" way costs
few overhead, it would be great for cases like performance measurement using an oscilloscope.

Create/Destroy GPIO Bundle

A GPIO bundle is a group of GPIOs, which can be manipulated at the same time in one CPU cycle. The maximal
number of GPIOs that a bundle can contain is limited by each CPU. What's more, the GPIO bundle has a strong
relevance to the CPU which it derives from. Any operations on the GPIO bundle should be put inside a task
which is running on the same CPU core to the GPIO bundle belongs to. Likewise, only those ISRs who are
installed on the same CPU core are allowed to do operations on that GPIO bundle.

Note: Dedicated GPIO is more of a CPU peripheral, so it has a strong relationship with CPU core. It's highly
recommended to install and operate GPIO bundle in a pin-to-core task. For example, if GPIOA is connected to
CPU0, and the dedicated GPIO instruction is issued from CPU1, then it's impossible to control GPIOA.

To install a GPIO bundle, one needs to call dedic_gpio_new_bundle() to allocate the software resources
and connect the dedicated channels to user selected GPIOs. Configurations for a GPIO bundle are covered in
dedic_gpio_bundle_config_t structure:

• gpio_array: An array that contains GPIO number.
• array_size: Element number of gpio_array.
• flags: Extra flags to control the behavior of GPIO Bundle.

– in_en and out_en are used to select whether to enable the input and output function (note, they can
be enabled together).

– in_invert and out_invert are used to select whether to invert the GPIO signal.
The following code shows how to install a output only GPIO bundle:

// configure GPIO
const int bundleA_gpios[] = {0, 1};
gpio_config_t io_conf = {

.mode = GPIO_MODE_OUTPUT,
};
for (int i = 0; i < sizeof(bundleA_gpios) / sizeof(bundleA_gpios[0]); i++) {

io_conf.pin_bit_mask = 1ULL << bundleA_gpios[i];
gpio_config(&io_conf);

}
// Create bundleA, output only
dedic_gpio_bundle_handle_t bundleA = NULL;
dedic_gpio_bundle_config_t bundleA_config = {

.gpio_array = bundleA_gpios,

.array_size = sizeof(bundleA_gpios) / sizeof(bundleA_gpios[0]),

.flags = {
.out_en = 1,

},
};
ESP_ERROR_CHECK(dedic_gpio_new_bundle(&bundleA_config, &bundleA));

To uninstall the GPIO bundle, one needs to call dedic_gpio_del_bundle().

Espressif Systems 928
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: dedic_gpio_new_bundle() doesn't cover any GPIO pad configuration (e.g. pull up/down, drive
ability, output/input enable), so before installing a dedicated GPIO bundle, you have to configure the GPIO separately
using GPIO driver API (e.g. gpio_config()). For more information about GPIO driver, please refer to GPIO
API Reference.

GPIO Bundle Operations

Operations Functions
Write to GPIOs in the bundle by mask dedic_gpio_bundle_write()
Read the value that output from the given GPIO bundle dedic_gpio_bundle_read_out()
Read the value that input to the given GPIO bundle dedic_gpio_bundle_read_in()

Note: Using the above functions might not get a high GPIO flip speed because of the overhead of function calls and
the bit operations involved inside. Users can try Manipulate GPIOs by Writing Assembly Code instead to reduce the
overhead but should take care of the thread safety by themselves.

Manipulate GPIOs by Writing Assembly Code

For advanced users, they can always manipulate the GPIOs by writing assembly code or invoking CPU Low Level
APIs. The usual procedure could be:

1. Allocate a GPIO bundle: dedic_gpio_new_bundle()
2. Query the mask occupied by that bundle: dedic_gpio_get_out_mask() or/and

dedic_gpio_get_in_mask()
3. Call CPU LL apis (e.g. dedic_gpio_cpu_ll_write_mask) or write assembly code with that mask
4. The fasted way of toggling IO is to use the dedicated "set/clear" instructions:

• Set bits of GPIO: csrrsi rd, csr, imm[4:0]
• Clear bits of GPIO: csrrci rd, csr, imm[4:0]
• Note: Can only control the lowest 4 GPIO channels

Code examples for manipulating dedicated GPIOs from assembly are provided in the peripherals/dedicated_gpio
directory of ESP-IDF examples. These examples show how to emulate a UART, an I2C and an SPI bus in assembly
thanks to dedicated GPIOs.
For details of supported dedicated GPIO instructions, please refer to ESP32-C6 Technical Reference Manual > ESP-
RISC-V CPU [PDF].
Some of the dedicated CPU instructions are also wrapped inside hal/dedic_gpio_cpu_ll.h as helper inline
functions.

Note: Writing assembly code in application could make your code hard to port between targets, because those
customized instructions are not guaranteed to remain the same format on different targets.

API Reference

Header File
• components/driver/gpio/include/driver/dedic_gpio.h

Espressif Systems 929
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/dedicated_gpio
https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#riscvcpu
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/gpio/include/driver/dedic_gpio.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_err_t dedic_gpio_get_out_mask(dedic_gpio_bundle_handle_t bundle, uint32_t *mask)

Get allocated channel mask.

Note: Each bundle should have at least one mask (in or/and out), based on bundle configuration.

Note: With the returned mask, user can directly invoke LL function like "dedic_gpio_cpu_ll_write_mask"
or write assembly code with dedicated GPIO instructions, to get better performance on GPIO manipulation.

Parameters
• bundle -- [in] Handle of GPIO bundle that returned from "dedic_gpio_new_bundle"
• mask -- [out] Returned mask value for on specific direction (in or out)

Returns
• ESP_OK: Get channel mask successfully
• ESP_ERR_INVALID_ARG: Get channel mask failed because of invalid argument
• ESP_FAIL: Get channel mask failed because of other error

esp_err_t dedic_gpio_get_in_mask(dedic_gpio_bundle_handle_t bundle, uint32_t *mask)

esp_err_t dedic_gpio_get_out_offset(dedic_gpio_bundle_handle_t bundle, uint32_t *offset)
Get the channel offset of the GPIO bundle.
A GPIO bundle maps the GPIOS of a particular direction to a consecutive set of channels within a particular
GPIO bank of a particular CPU. This function returns the offset to the bundle's first channel of a particular
direction within the bank.

Parameters
• bundle -- [in] Handle of GPIO bundle that returned from "dedic_gpio_new_bundle"
• offset -- [out] Offset value to the first channel of a specific direction (in or out)

Returns
• ESP_OK: Get channel offset successfully
• ESP_ERR_INVALID_ARG: Get channel offset failed because of invalid argument
• ESP_FAIL: Get channel offset failed because of other error

esp_err_t dedic_gpio_get_in_offset(dedic_gpio_bundle_handle_t bundle, uint32_t *offset)

esp_err_t dedic_gpio_new_bundle(const dedic_gpio_bundle_config_t *config, dedic_gpio_bundle_handle_t
*ret_bundle)

Create GPIO bundle and return the handle.

Note: One has to enable at least input or output mode in "config" parameter.

Parameters
• config -- [in] Configuration of GPIO bundle
• ret_bundle -- [out] Returned handle of the new created GPIO bundle

Returns
• ESP_OK: Create GPIO bundle successfully
• ESP_ERR_INVALID_ARG: Create GPIO bundle failed because of invalid argument
• ESP_ERR_NO_MEM: Create GPIO bundle failed because of no capable memory
• ESP_ERR_NOT_FOUND: Create GPIO bundle failed because of no enough continuous
dedicated channels

• ESP_FAIL: Create GPIO bundle failed because of other error

esp_err_t dedic_gpio_del_bundle(dedic_gpio_bundle_handle_t bundle)
Destroy GPIO bundle.

Espressif Systems 930
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters bundle -- [in] Handle of GPIO bundle that returned from
"dedic_gpio_new_bundle"

Returns
• ESP_OK: Destroy GPIO bundle successfully
• ESP_ERR_INVALID_ARG: Destroy GPIO bundle failed because of invalid argument
• ESP_FAIL: Destroy GPIO bundle failed because of other error

void dedic_gpio_bundle_write(dedic_gpio_bundle_handle_t bundle, uint32_t mask, uint32_t value)
Write value to GPIO bundle.

Note: The mask is seen from the view of GPIO bundle. For example, bundleA contains [GPIO10, GPIO12,
GPIO17], to set GPIO17 individually, the mask should be 0x04.

Note: For performance reasons, this function doesn't check the validity of any parameters, and is placed in
IRAM.

Parameters
• bundle -- [in] Handle of GPIO bundle that returned from "dedic_gpio_new_bundle"
• mask -- [in]Mask of the GPIOs to be written in the given bundle
• value -- [in] Value to write to given GPIO bundle, low bit represents low member in the
bundle

uint32_t dedic_gpio_bundle_read_out(dedic_gpio_bundle_handle_t bundle)
Read the value that output from the given GPIO bundle.

Note: For performance reasons, this function doesn't check the validity of any parameters, and is placed in
IRAM.

Parameters bundle -- [in] Handle of GPIO bundle that returned from
"dedic_gpio_new_bundle"

Returns Value that output from the GPIO bundle, low bit represents low member in the bundle

uint32_t dedic_gpio_bundle_read_in(dedic_gpio_bundle_handle_t bundle)
Read the value that input to the given GPIO bundle.

Note: For performance reasons, this function doesn't check the validity of any parameters, and is placed in
IRAM.

Parameters bundle -- [in] Handle of GPIO bundle that returned from
"dedic_gpio_new_bundle"

Returns Value that input to the GPIO bundle, low bit represents low member in the bundle

Structures

struct dedic_gpio_bundle_config_t
Type of Dedicated GPIO bundle configuration.

Public Members

Espressif Systems 931
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

const int *gpio_array
Array of GPIO numbers, gpio_array[0] ~ gpio_array[size-1] <=> low_dedic_channel_num ~
high_dedic_channel_num

size_t array_size
Number of GPIOs in gpio_array

unsigned int in_en
Enable input

unsigned int in_invert
Invert input signal

unsigned int out_en
Enable output

unsigned int out_invert
Invert output signal

struct dedic_gpio_bundle_config_t::[anonymous] flags
Flags to control specific behaviour of GPIO bundle

Type Definitions

typedef struct dedic_gpio_bundle_t *dedic_gpio_bundle_handle_t
Type of Dedicated GPIO bundle.

2.6.9 Hash-based Message Authentication Code (HMAC)

The HMAC (Hash-based Message Authentication Code) module provides hardware acceleration for SHA256-
HMAC generation using a key burned into an eFuse block. HMACs work with pre-shared secret keys and provide
authenticity and integrity to a message.
For more detailed information on the application workflow and the HMAC calculation process, see ESP32-C6 Tech-
nical Reference Manual > HMAC Accelerator (HMAC) [PDF].

Generalized Application Scheme

Let there be two parties, A and B. They want to verify the authenticity and integrity of messages sent between each
other. Before they can start sending messages, they need to exchange the secret key via a secure channel. To verify
A's messages, B can do the following:

• A calculates the HMAC of the message it wants to send.
• A sends the message and the HMAC to B.
• B calculates HMAC of the received message itself.
• B checks wether the received and calculated HMACs match. If they do match, the message is authentic.

However, the HMAC itself isn't bound to this use case. It can also be used for challenge-response protocols supporting
HMAC or as a key input for further security modules (see below), etc.

Espressif Systems 932
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#hmac
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

HMAC on the ESP32-C6

On the ESP32-C6, the HMAC module works with a secret key burnt into the eFuses. This eFuse key can be made
completely inaccessible for any resources outside the cryptographic modules, thus avoiding key leakage.
Furthermore, the ESP32-C6 has three different application scenarios for its HMAC module:

1. HMAC is generated for software use
2. HMAC is used as a key for the Digital Signature (DS) module
3. HMAC is used for enabling the soft-disabled JTAG interface

The first mode is called Upstream mode, while the last two modes are called Downstream modes.

eFuse Keys for HMAC Six physical eFuse blocks can be used as keys for the HMAC module: block 4 up to
block 9. The enum hmac_key_id_t in the API maps them to HMAC_KEY0 ... HMAC_KEY5. Each key has a
corresponding eFuse parameter key purpose determining for which of the three HMAC application scenarios (see
below) the key may be used:

Key Purpose Application Scenario
8 HMAC generated for software use
7 HMAC used as a key for the Digital Signature (DS) module
6 HMAC used for enabling the soft-disabled JTAG interface
5 HMAC both as a key for the DS module and for enabling JTAG

This is to prevent the usage of a key for a different function than originally intended.
To calculate an HMAC, the software has to provide the ID of the key block containing the secret key as well as the
key purpose (see ESP32-C6 Technical Reference Manual > eFuse Controller (eFuse) [PDF]). Before the HMAC key
calculation, the HMAC module looks up the purpose of the provided key block. The calculation only proceeds if the
purpose of the provided key block matches the purpose stored in the eFuses of the key block provided by the ID.

HMAC Generation for Software Key Purpose value: 8
In this case, the HMAC is given out to the software (e.g. to authenticate a message).
The API to calculate the HMAC is esp_hmac_calculate(). The input arguments for the function are the
message, message length and the eFuse key block ID which contains the secret and has efuse key purpose set to
Upstream mode.

HMAC for Digital Signature Key Purpose values: 7, 5
The HMAC can be used as a key derivation function to decrypt private key parameters which are used by the Digital
Signature module. A standard message is used by the hardware in that case. The user only needs to provide the eFuse
key block and purpose on the HMAC side (additional parameters are required for the Digital Signature component in
that case). Neither the key nor the actual HMAC are ever exposed to outside the HMACmodule and DS component.
The calculation of the HMAC and its hand-over to the DS component happen internally.
For more details, see ESP32-C6 Technical Reference Manual > Digital Signature (DS) [PDF].

HMAC for Enabling JTAG Key Purpose values: 6, 5
The third application is using the HMAC as a key to enable JTAG if it was soft-disabled before. Following is the
procedure to re-enable the JTAG
Setup

1. Generate a 256-bit HMAC secret key to use for JTAG re-enable.
2. Write the key to an eFuse block with key purpose HMAC_DOWN_ALL (5) or HMAC_DOWN_JTAG (6).

This can be done using the ets_efuse_write_key() function in the firmware or using espefuse.py from the host.

Espressif Systems 933
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#efuse
https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#digsig
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

3. Configure the eFuse key block to be read protected using the esp_efuse_set_read_protect(), so that software
cannot read back the value.

4. Burn the "soft JTAG disable" bit/bits on ESP32-C6. This will permanently disable JTAG unless the correct
key value is provided by software.

Note: The API esp_efuse_write_field_cnt(ESP_EFUSE_SOFT_DIS_JTAG, ESP_EFUSE_SOFT_DIS_JTAG[0]-
>bit_count) can be used to burn "soft JTAG disable" bits on ESP32-C6.

Note: If DIS_PAD_JTAG eFuse is set, then SOFT_DIS_JTAG functionality does not work because JTAG is
permanently disabled.

JTAG enable
1. The key to re-enable JTAG is the output of the HMAC-SHA256 function using the secret key in eFuse and

32 0x00 bytes as the message.
2. Pass this key value when calling the esp_hmac_jtag_enable() function from the firmware.
3. To re-disable JTAG in the firmware, reset the system or call esp_hmac_jtag_disable().

For more details, see ESP32-C6 Technical Reference Manual > HMAC Accelerator (HMAC) [PDF].

Application Outline

Following code is an outline of how to set an eFuse key and then use it to calculate an HMAC for software usage.
We use ets_efuse_write_key to set physical key block 4 in the eFuse for the HMACmodule together with its purpose.
ETS_EFUSE_KEY_PURPOSE_HMAC_UP (8)means that this key can only be used for HMACgeneration for software
usage:

#include "esp32c6/rom/efuse.h"

const uint8_t key_data[32] = { ... };

int ets_status = ets_efuse_write_key(ETS_EFUSE_BLOCK_KEY4,
ETS_EFUSE_KEY_PURPOSE_HMAC_UP,
key_data, sizeof(key_data));

if (ets_status == ESP_OK) {
// written key

} else {
// writing key failed, maybe written already

}

Now we can use the saved key to calculate an HMAC for software usage.

#include "esp_hmac.h"

uint8_t hmac[32];

const char *message = "Hello, HMAC!";
const size_t msg_len = 12;

esp_err_t result = esp_hmac_calculate(HMAC_KEY4, message, msg_len, hmac);

if (result == ESP_OK) {
// HMAC written to hmac now

} else {
// failure calculating HMAC

}

Espressif Systems 934
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#hmac
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/esp_hw_support/include/esp_hmac.h

Functions
esp_err_t esp_hmac_calculate(hmac_key_id_t key_id, const void *message, size_t message_len, uint8_t

*hmac)
Calculate the HMAC of a given message.
Calculate the HMAC hmac of a given message message with length message_len. SHA256 is used for
the calculation.

Note: Uses the HMAC peripheral in "upstream" mode.

Parameters
• key_id -- Determines which of the 6 key blocks in the efuses should be used for the
HMAC calcuation. The corresponding purpose field of the key block in the efuse must be
set to the HMAC upstream purpose value.

• message -- the message for which to calculate the HMAC
• message_len -- message length return ESP_ERR_INVALID_STATE if unsuccessful
• hmac -- [out] the hmac result; the buffer behind the provided pointer must be a writeable
buffer of 32 bytes

Returns
• ESP_OK, if the calculation was successful,
• ESP_ERR_INVALID_ARG if message or hmac is a nullptr or if key_id out of range
• ESP_FAIL, if the hmac calculation failed

esp_err_t esp_hmac_jtag_enable(hmac_key_id_t key_id, const uint8_t *token)
Use HMAC peripheral in Downstream mode to re-enable the JTAG, if it is not permanently disabled by HW.
In downstream mode, HMAC calculations performed by peripheral are used internally and not provided back
to user.

Note: Return value of the API does not indicate the JTAG status.

Parameters
• key_id -- Determines which of the 6 key blocks in the efuses should be used for the
HMAC calculation. The corresponding purpose field of the key block in the efuse must
be set to HMAC downstream purpose.

• token -- Pre calculated HMAC value of the 32-byte 0x00 using SHA-256 and the known
private HMAC key. The key is already programmed to a eFuse key block. The key block
number is provided as the first parameter to this function.

Returns
• ESP_OK, if the key_purpose of the key_id matches to HMAC downstread mode, The
API returns success even if calculated HMAC does not match with the provided token.
However, The JTAG will be re-enabled only if the calculated HMAC value matches with
provided token, otherwise JTAG will remain disabled.

• ESP_FAIL, if the key_purpose of the key_id is not set to HMAC downstream purpose or
JTAG is permanently disabled by EFUSE_HARD_DIS_JTAG eFuse parameter.

• ESP_ERR_INVALID_ARG, invalid input arguments

esp_err_t esp_hmac_jtag_disable(void)
Disable the JTAG which might be enabled using the HMAC downstream mode. This function just clears the
result generated by calling esp_hmac_jtag_enable() API.

Espressif Systems 935
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_hmac.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK return ESP_OK after writing the HMAC_SET_INVALIDATE_JTAG_REG
with value 1.

Enumerations

enum hmac_key_id_t

The possible efuse keys for the HMAC peripheral
Values:

enumerator HMAC_KEY0

enumerator HMAC_KEY1

enumerator HMAC_KEY2

enumerator HMAC_KEY3

enumerator HMAC_KEY4

enumerator HMAC_KEY5

enumerator HMAC_KEY_MAX

2.6.10 Digital Signature (DS)

The Digital Signature (DS) module provides hardware acceleration of signing messages based on RSA. It uses pre-
encrypted parameters to calculate a signature. The parameters are encrypted using HMAC as a key-derivation func-
tion. In turn, the HMAC uses eFuses as input key. The whole process happens in hardware so that neither the
decryption key for the RSA parameters nor the input key for the HMAC key derivation function can be seen by the
software while calculating the signature.
For more detailed information on the hardware involved in signature calculation and the registers used, see ESP32-C6
Technical Reference Manual > Digital Signature (DS) [PDF].

Private Key Parameters

The private key parameters for the RSA signature are stored in flash. To prevent unauthorized access, they are AES-
encrypted. The HMACmodule is used as a key-derivation function to calculate the AES encryption key for the private
key parameters. In turn, the HMAC module uses a key from the eFuses key block which can be read-protected to
prevent unauthorized access as well.
Upon signature calculation invocation, the software only specifies which eFuse key to use, the corresponding eFuse
key purpose, the location of the encrypted RSA parameters and the message.

Key Generation

Both the HMAC key and the RSA private key have to be created and stored before the DS peripheral can be used.
This needs to be done in software on the ESP32-C6 or alternatively on a host. For this context, the IDF provides
esp_efuse_write_block() to set the HMAC key and esp_hmac_calculate() to encrypt the private
RSA key parameters.

Espressif Systems 936
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#digsig
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

You can find instructions on how to calculate and assemble the private key parameters in ESP32-C6 Technical Ref-
erence Manual > Digital Signature (DS) [PDF].

Signature Calculation with IDF

For more detailed information on the workflow and the registers used, see ESP32-C6 Technical Reference Manual >
Digital Signature (DS) [PDF].
Three parameters need to be prepared to calculate the digital signature:

1. the eFuse key block ID which is used as key for the HMAC,
2. the location of the encrypted private key parameters,
3. and the message to be signed.

Since the signature calculation takes some time, there are two possible API versions to use in IDF. The first one is
esp_ds_sign() and simply blocks until the calculation is finished. If software needs to do something else during
the calculation, esp_ds_start_sign() can be called, followed by periodic calls to esp_ds_is_busy() to
check when the calculation has finished. Once the calculation has finished, esp_ds_finish_sign() can be
called to get the resulting signature.
The APIs esp_ds_sign() and esp_ds_start_sign() calculate a plain RSA signature with help of the DS
peripheral. This signature needs to be converted to appropriate format for further use. For example, MbedTLS SSL
stack supports PKCS#1 format. The API esp_ds_rsa_sign() can be used to obtain the signature directly in
the PKCS#1 v1.5 format. It internally uses esp_ds_start_sign() and converts the signature into PKCS#1
v1.5 format.

Note: Note that this is only the basic DS building block, the message length is fixed. To create signatures of arbitrary
messages, the input is normally a hash of the actual message, padded up to the required length. An API to do this is
planned in the future.

Configure the DS peripheral for a TLS connection

The DS peripheral on ESP32-C6 chip must be configured before it can be used for a TLS connection. The configu-
ration involves the following steps -

1) Randomly generate a 256 bit value called the Initialization Vector (IV).
2) Randomly generate a 256 bit value called the HMAC_KEY.
3) Calculate the encrypted private key paramters from the client private key (RSA) and the parameters generated

in the above steps.
4) Then burn the 256 bit HMAC_KEY on the efuse, which can only be read by the DS peripheral.

For more details, see ESP32-C6 Technical Reference Manual > Digital Signature (DS) [PDF].
To configure the DS peripheral for development purposes, you can use the esp-secure-cert-tool.
The encrypted private key parameters obtained after the DS peripheral configuration are then to be kept in flash.
Furthermore, they are to be passed to the DS peripheral whichmakes use of those parameters for the Digital Signature
operation. The application then needs to read the ds data from the flash which has been done through the API's
provided by the esp_secure_cert_mgr component. Please refer the component/README. for more details.
The process of initializing the DS peripheral and then performing the Digital Signature operation is done internally
with help of ESP-TLS. Please refer to Digital Signature with ESP-TLS in ESP-TLS for more details. As mentioned in
the ESP-TLS documentation, the application only needs to provide the encrypted private key parameters to the esp_tls
context (as ds_data), which internally performs all necessary operations for initializing the DS peripheral and then
performing the DS operation.

Espressif Systems 937
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#digsig
https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#digsig
https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#digsig
https://pypi.org/project/esp-secure-cert-tool
https://github.com/espressif/esp_secure_cert_mgr
https://github.com/espressif/esp_secure_cert_mgr#readme
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Example for SSL Mutual Authentication using DS

The example ssl_ds shows how to use the DS peripheral for mutual authentication. The example uses mqtt_client
(Implemented through ESP-MQTT) to connect to broker test.mosquitto.org using ssl transport with mutual authenti-
cation. The ssl part is internally performed with ESP-TLS. See example README for more details.

API Reference

Header File
• components/esp_hw_support/include/esp_ds.h

Functions
esp_err_t esp_ds_sign(const void *message, const esp_ds_data_t *data, hmac_key_id_t key_id, void

*signature)
Sign the message with a hardware key from specific key slot. The function calculates a plain RSA signature
with help of the DS peripheral. The RSA encryption operation is as follows: Z = XY mod M where, Z is the
signature, X is the input message, Y and M are the RSA private key parameters.
This function is a wrapper around esp_ds_finish_sign() and esp_ds_start_sign(), so do not
use them in parallel. It blocks until the signing is finished and then returns the signature.

Note: Please see note section of esp_ds_start_sign() for more details about the input parameters.

Parameters
• message -- the message to be signed; its length should be (data->rsa_length + 1)*4
bytes, and those bytes must be in little endian format. It is your responsibility to apply
your hash function and padding before calling this function, if required. (e.g. message =
padding(hash(inputMsg)))

• data -- the encrypted signing key data (AES encrypted RSA key + IV)
• key_id -- the HMAC key ID determining the HMAC key of the HMAC which will be
used to decrypt the signing key data

• signature -- the destination of the signature, should be (data->rsa_length + 1)*4 bytes
long

Returns
• ESP_OK if successful, the signature was written to the parameter signature.
• ESP_ERR_INVALID_ARG if one of the parameters is NULL or data->rsa_length is too
long or 0

• ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL if there was an HMAC failure during re-
trieval of the decryption key

• ESP_ERR_NO_MEM if there hasn't been enough memory to allocate the context object
• ESP_ERR_HW_CRYPTO_DS_INVALID_KEY if there's a problem with passing the
HMAC key to the DS component

• ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST if the message digest didn't match;
the signature is invalid.

• ESP_ERR_HW_CRYPTO_DS_INVALID_PADDING if the message padding is incor-
rect, the signature can be read though since the message digest matches.

esp_err_t esp_ds_start_sign(const void *message, const esp_ds_data_t *data, hmac_key_id_t key_id,
esp_ds_context_t **esp_ds_ctx)

Start the signing process.
This function yields a context object which needs to be passed to esp_ds_finish_sign() to finish the
signing process. The function calculates a plain RSA signature with help of the DS peripheral. The RSA
encryption operation is as follows: Z = XY mod M where, Z is the signature, X is the input message, Y and M
are the RSA private key parameters.

Espressif Systems 938
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/mqtt/ssl_ds
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/protocols/mqtt/ssl_ds/README.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_ds.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: This function locks the HMAC, SHA, AES and RSA components, so the user has to ensure to call
esp_ds_finish_sign() in a timely manner. The numbers Y, M, Rb which are a part of esp_ds_data_t
should be provided in little endian format and should be of length equal to the RSA private key bit length The
message length in bits should also be equal to the RSA private key bit length. No padding is applied to the
message automatically, Please ensure the message is appropriate padded before calling the API.

Parameters
• message -- the message to be signed; its length should be (data->rsa_length + 1)*4
bytes, and those bytes must be in little endian format. It is your responsibility to apply
your hash function and padding before calling this function, if required. (e.g. message =
padding(hash(inputMsg)))

• data -- the encrypted signing key data (AES encrypted RSA key + IV)
• key_id -- the HMAC key ID determining the HMAC key of the HMAC which will be
used to decrypt the signing key data

• esp_ds_ctx -- the context object which is needed for finishing the signing process later
Returns

• ESP_OK if successful, the ds operation was started now and has to be finished with
esp_ds_finish_sign()

• ESP_ERR_INVALID_ARG if one of the parameters is NULL or data->rsa_length is too
long or 0

• ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL if there was an HMAC failure during re-
trieval of the decryption key

• ESP_ERR_NO_MEM if there hasn't been enough memory to allocate the context object
• ESP_ERR_HW_CRYPTO_DS_INVALID_KEY if there's a problem with passing the
HMAC key to the DS component

bool esp_ds_is_busy(void)
Return true if the DS peripheral is busy, otherwise false.

Note: Only valid if esp_ds_start_sign() was called before.

esp_err_t esp_ds_finish_sign(void *signature, esp_ds_context_t *esp_ds_ctx)
Finish the signing process.

Parameters
• signature -- the destination of the signature, should be (data->rsa_length + 1)*4 bytes
long, the resultant signature bytes shall be written in little endian format.

• esp_ds_ctx -- the context object retreived by esp_ds_start_sign()
Returns

• ESP_OK if successful, the ds operation has been finished and the result is written to sig-
nature.

• ESP_ERR_INVALID_ARG if one of the parameters is NULL
• ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST if the message digest didn't match;
the signature is invalid. This means that the encrypted RSA key parameters are invalid,
indicating that they may have been tampered with or indicating a flash error, etc.

• ESP_ERR_HW_CRYPTO_DS_INVALID_PADDING if the message padding is incor-
rect, the signature can be read though since the message digest matches (see TRM for
more details).

esp_err_t esp_ds_encrypt_params(esp_ds_data_t *data, const void *iv, const esp_ds_p_data_t *p_data,
const void *key)

Encrypt the private key parameters.
The encryption is a prerequisite step before any signature operation can be done. It is not strictly necessary to
use this encryption function, the encryption could also happen on an external device.

Espressif Systems 939
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: The numbers Y, M, Rb which are a part of esp_ds_data_t should be provided in little endian format and
should be of length equal to the RSA private key bit length The message length in bits should also be equal to
the RSA private key bit length. No padding is applied to the message automatically, Please ensure the message
is appropriate padded before calling the API.

Parameters
• data -- Output buffer to store encrypted data, suitable for later use generating signatures.
• iv -- Pointer to 16 byte IV buffer, will be copied into 'data'. Should be randomly generated
bytes each time.

• p_data -- Pointer to input plaintext key data. The expectation is this data will be deleted
after this process is done and 'data' is stored.

• key -- Pointer to 32 bytes of key data. Type determined by key_type parameter. The
expectation is the corresponding HMAC key will be stored to efuse and then permanently
erased.

Returns
• ESP_OK if successful, the ds operation has been finished and the result is written to sig-
nature.

• ESP_ERR_INVALID_ARG if one of the parameters is NULL or p_data->rsa_length is
too long

Structures

struct esp_digital_signature_data
Encrypted private key data. Recommended to store in flash in this format.

Note: This struct has to match to one from the ROM code! This documentation is mostly taken from there.

Public Members

esp_digital_signature_length_t rsa_length

RSA LENGTH register parameters (number of words in RSA key & operands, minus one).
This value must match the length field encrypted and stored in 'c', or invalid results will be returned. (The
DS peripheral will always use the value in 'c', not this value, so an attacker can't alter the DS peripheral
results this way, it will just truncate or extend the message and the resulting signature in software.)

Note: In IDF, the enum type length is the same as of type unsigned, so they can be used interchangably.
See the ROM code for the original declaration of struct ets_ds_data_t.

uint32_t iv[ESP_DS_IV_BIT_LEN / 32]
IV value used to encrypt 'c'

uint8_t c[ESP_DS_C_LEN]
Encrypted Digital Signature parameters. Result of AES-CBC encryption of plaintext values. Includes an
encrypted message digest.

struct esp_ds_p_data_t
Plaintext parameters used by Digital Signature.

Espressif Systems 940
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This is only used for encrypting the RSA parameters by calling esp_ds_encrypt_params(). Afterwards, the
result can be stored in flash or in other persistent memory. The encryption is a prerequisite step before any
signature operation can be done.

Note: Y, M, Rb, & M_Prime must all be in little endian format.

Public Members

uint32_t Y[ESP_DS_SIGNATURE_MAX_BIT_LEN / 32]
RSA exponent.

uint32_t M[ESP_DS_SIGNATURE_MAX_BIT_LEN / 32]
RSA modulus.

uint32_t Rb[ESP_DS_SIGNATURE_MAX_BIT_LEN / 32]
RSA r inverse operand.

uint32_t M_prime
RSA M prime operand.

uint32_t length
RSA length in words (32 bit)

Macros

ESP_DS_IV_BIT_LEN

ESP_DS_IV_LEN

ESP_DS_SIGNATURE_MAX_BIT_LEN

ESP_DS_SIGNATURE_MD_BIT_LEN

ESP_DS_SIGNATURE_M_PRIME_BIT_LEN

ESP_DS_SIGNATURE_L_BIT_LEN

ESP_DS_SIGNATURE_PADDING_BIT_LEN

ESP_DS_C_LEN

Type Definitions

typedef struct esp_ds_context esp_ds_context_t

Espressif Systems 941
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef struct esp_digital_signature_data esp_ds_data_t
Encrypted private key data. Recommended to store in flash in this format.

Note: This struct has to match to one from the ROM code! This documentation is mostly taken from there.

Enumerations

enum esp_digital_signature_length_t

Values:

enumerator ESP_DS_RSA_1024

enumerator ESP_DS_RSA_2048

enumerator ESP_DS_RSA_3072

enumerator ESP_DS_RSA_4096

2.6.11 Inter-Integrated Circuit (I2C)

Overview

I2C is a serial, synchronous, half-duplex communication protocol that allows co-existence of multiple masters and
slaves on the same bus. The I2C bus consists of two lines: serial data line (SDA) and serial clock (SCL). Both lines
require pull-up resistors.
With such advantages as simplicity and low manufacturing cost, I2C is mostly used for communication of low-speed
peripheral devices over short distances (within one foot).
ESP32-C6 has 1 I2C controller (also referred to as port), responsible for handling communications on the I2C bus.
A single I2C controller can operate as master or slave.

Driver Features

I2C driver governs communications of devices over the I2C bus. The driver supports the following features:
• Reading and writing bytes in Master mode
• Slave mode
• Reading and writing to registers which are in turn read/written by the master

Driver Usage

The following sections describe typical steps of configuring and operating the I2C driver:
1. Configuration - set the initialization parameters (master or slave mode, GPIO pins for SDA and SCL, clock

speed, etc.)
2. Install Driver- activate the driver on one of the two I2C controllers as a master or slave
3. Depending on whether you configure the driver for a master or slave, choose the appropriate item

Espressif Systems 942
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

a) Communication as Master - handle communications (master)
b) Communication as Slave - respond to messages from the master (slave)

4. Interrupt Handling - configure and service I2C interrupts
5. Customized Configuration - adjust default I2C communication parameters (timings, bit order, etc.)
6. Error Handling - how to recognize and handle driver configuration and communication errors
7. Delete Driver- release resources used by the I2C driver when communication ends

Configuration To establish I2C communication, start by configuring the driver. This is done by setting the param-
eters of the structure i2c_config_t:

• Set I2C mode of operation - master or slave from i2c_mode_t
• Configure communication pins

– Assign GPIO pins for SDA and SCL signals
– Set whether to enable ESP32-C6's internal pull-ups

• (Master only) Set I2C clock speed
• (Slave only) Configure the following

– Whether to enable 10 bit address mode
– Define slave address

After that, initialize the configuration for a given I2C port. For this, call the function i2c_param_config() and
pass to it the port number and the structure i2c_config_t.
Configuration example (master):

int i2c_master_port = 0;
i2c_config_t conf = {

.mode = I2C_MODE_MASTER,

.sda_io_num = I2C_MASTER_SDA_IO, // select SDA GPIO specific to your␣
↪→project

.sda_pullup_en = GPIO_PULLUP_ENABLE,

.scl_io_num = I2C_MASTER_SCL_IO, // select SCL GPIO specific to your␣
↪→project

.scl_pullup_en = GPIO_PULLUP_ENABLE,

.master.clk_speed = I2C_MASTER_FREQ_HZ, // select frequency specific to your␣
↪→project

.clk_flags = 0, // optional; you can use I2C_SCLK_SRC_
↪→FLAG_* flags to choose i2c source clock here
};

Configuration example (slave):

int i2c_slave_port = I2C_SLAVE_NUM;
i2c_config_t conf_slave = {

.sda_io_num = I2C_SLAVE_SDA_IO, // select SDA GPIO specific to your␣
↪→project

.sda_pullup_en = GPIO_PULLUP_ENABLE,

.scl_io_num = I2C_SLAVE_SCL_IO, // select SCL GPIO specific to your␣
↪→project

.scl_pullup_en = GPIO_PULLUP_ENABLE,

.mode = I2C_MODE_SLAVE,

.slave.addr_10bit_en = 0,

.slave.slave_addr = ESP_SLAVE_ADDR, // slave address of your project

.slave.maximum_speed = I2C_SLAVE_MAX_SPEED // expected maximum clock speed

.clk_flags = 0, // optional; you can use I2C_SCLK_
↪→SRC_FLAG_* flags to choose I2C source clock here
};

At this stage, i2c_param_config() also sets a few other I2C configuration parameters to default values that are
defined by the I2C specification. For more details on the values and how to modify them, see Customized Configura-
tion.

Espressif Systems 943
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Source Clock Configuration Clock sources allocator is added for supporting different clock sources. The clock
allocator will choose one clock source that meets all the requirements of frequency and capability (as requested in
i2c_config_t::clk_flags).
When i2c_config_t::clk_flags is 0, the clock allocator will select only according to the desired frequency.
If no special capabilities are needed, such as APB, you can configure the clock allocator to select the source clock only
according to the desired frequency. For this, set i2c_config_t::clk_flags to 0. For clock characteristics,
see the table below.

Note: A clock is not a valid option, if it doesn't meet the requested capabilities, i.e. any bit of requested capabilities
(clk_flags) is 0 in the clock's capabilities.

Explanations for i2c_config_t::clk_flags are as follows:
1. I2C_SCLK_SRC_FLAG_AWARE_DFS: Clock's baud rate will not change while APB clock is changing.
2. I2C_SCLK_SRC_FLAG_LIGHT_SLEEP: It supports Light-sleep mode, which APB clock cannot do.
3. Some flags may not be supported on ESP32-C6, reading technical reference manual before using it.

Note: The clock frequency of SCL in master mode should not be lager than max frequency for SCL mentioned in
the table above.

Note: The clock frequency of SCL will be influenced by the pull-up resistors and wire capacitance (or might slave
capacitance) together. Therefore, users need to choose correct pull-up resistors by themselves to make the frequency
accurate. It is recommended by I2C protocol that the pull-up resistors commonly range from 1KOhms to 10KOhms,
but different frequencies need different resistors.
Generally speaking, the higher frequency is selected, the smaller resistor should be used (but not less than 1KOhms).
This is because high resistor will decline the current, which will lengthen the rising time and reduce the frequency.
Usually, range 2KOhms to 5KOhms is what we recommend, but users also might need to make some adjustment
depends on their reality.

Install Driver After the I2C driver is configured, install it by calling the function i2c_driver_install()
with the following parameters:

• Port number, one of the two port numbers from i2c_port_t
• master or slave, selected from i2c_mode_t

• (Slave only) Size of buffers to allocate for sending and receiving data. As I2C is a master-centric bus, data can
only go from the slave to the master at the master's request. Therefore, the slave will usually have a send buffer
where the slave application writes data. The data remains in the send buffer to be read by the master at the
master's own discretion.

• Flags for allocating the interrupt (see ESP_INTR_FLAG_* values in
esp_hw_support/include/esp_intr_alloc.h)

Communication as Master After installing the I2C driver, ESP32-C6 is ready to communicate with other I2C
devices.
ESP32-C6's I2C controller operating as master is responsible for establishing communication with I2C slave devices
and sending commands to trigger a slave to action, for example, to take a measurement and send the readings back
to the master.
For better process organization, the driver provides a container, called a "command link", that should be populated
with a sequence of commands and then passed to the I2C controller for execution.

Espressif Systems 944
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_intr_alloc.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 6: I2C command link - master write example

MasterWrite The example below shows how to build a command link for an I2C master to send n bytes to a slave.
The following describes how a command link for a "master write" is set up and what comes inside:

1. Create a command link with i2c_cmd_link_create().
Then, populate it with the series of data to be sent to the slave:

a) Start bit - i2c_master_start()
b) Slave address - i2c_master_write_byte(). The single byte address is provided as an argument

of this function call.
c) Data - One or more bytes as an argument of i2c_master_write()
d) Stop bit - i2c_master_stop()

Both functions i2c_master_write_byte() and i2c_master_write() have an addi-
tional argument specifying whether the master should ensure that it has received the ACK bit.

2. Trigger the execution of the command link by I2C controller by calling i2c_master_cmd_begin().
Once the execution is triggered, the command link cannot be modified.

3. After the commands are transmitted, release the resources used by the command link by calling
i2c_cmd_link_delete().

Master Read The example below shows how to build a command link for an I2C master to read n bytes from a
slave.
Compared to writing data, the command link is populated in Step 4 not with i2c_master_write... func-
tions but with i2c_master_read_byte() and/or i2c_master_read(). Also, the last read in Step 5 is
configured so that the master does not provide the ACK bit.

Indicating Write or Read After sending a slave address (see Step 3 on both diagrams above), the master either
writes or reads from the slave.
The information on what the master will actually do is hidden in the least significant bit of the slave's address.
For this reason, the command link sent by the master to write data to the slave contains the address
(ESP_SLAVE_ADDR << 1) | I2C_MASTER_WRITE and looks as follows:

i2c_master_write_byte(cmd, (ESP_SLAVE_ADDR << 1) | I2C_MASTER_WRITE, ACK_EN);

Likewise, the command link to read from the slave looks as follows:

Espressif Systems 945
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 7: I2C command link - master read example

i2c_master_write_byte(cmd, (ESP_SLAVE_ADDR << 1) | I2C_MASTER_READ, ACK_EN);

Communication as Slave After installing the I2C driver, ESP32-C6 is ready to communicate with other I2C
devices.
The API provides the following functions for slaves

• i2c_slave_read_buffer()
Whenever the master writes data to the slave, the slave will automatically store it in the receive
buffer. This allows the slave application to call the function i2c_slave_read_buffer() at
its own discretion. This function also has a parameter to specify block time if no data is in the
receive buffer. This will allow the slave application to wait with a specified timeout for data to
arrive to the buffer.

• i2c_slave_write_buffer()
The send buffer is used to store all the data that the slave wants to send to the mas-
ter in FIFO order. The data stays there until the master requests for it. The function
i2c_slave_write_buffer() has a parameter to specify block time if the send buffer is
full. This will allow the slave application to wait with a specified timeout for the adequate amount
of space to become available in the send buffer.

A code example showing how to use these functions can be found in peripherals/i2c.

Interrupt Handling During driver installation, an interrupt handler is installed by default.

Customized Configuration As mentioned at the end of Section Configuration, when the function
i2c_param_config() initializes the driver configuration for an I2C port, it also sets several I2C communication
parameters to default values defined in the I2C specification. Some other related parameters are pre-configured in
registers of the I2C controller.
All these parameters can be changed to user-defined values by calling dedicated functions given in the table below.
Please note that the timing values are defined in APB clock cycles.

Espressif Systems 946
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/i2c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Table 3: Other Configurable I2C Communication Parameters
Parameters to Change Function
High time and low time for SCL pulses i2c_set_period()
SCL and SDA signal timing used during generation of start signals i2c_set_start_timing()
SCL and SDA signal timing used during generation of stop signals i2c_set_stop_timing()
Timing relationship between SCL and SDA signals when slave samples,
as well as when master toggles

i2c_set_data_timing()

I2C timeout i2c_set_timeout()
Choice between transmitting / receiving the LSB or MSB first, choose
one of the modes defined in i2c_trans_mode_t

i2c_set_data_mode()

Each of the above functions has a _get_ counterpart to check the currently set value. For example, to check the I2C
timeout value, call i2c_get_timeout().
To check the default parameter values which are set during the driver configuration process, please refer to the file
driver/i2c/i2c.c and look for defines with the suffix _DEFAULT.
You can also select different pins for SDA and SCL signals and alter the configuration of pull-ups with the function
i2c_set_pin(). If you want to modify already entered values, use the function i2c_param_config().

Note: ESP32-C6's internal pull-ups are in the range of tens of kOhm, which is, in most cases, insufficient for use
as I2C pull-ups. Users are advised to use external pull-ups with values described in the I2C specification. For help
with calculating the resistor values see TI Application Note

Error Handling The majority of I2C driver functions either return ESP_OK on successful completion or a specific
error code on failure. It is a good practice to always check the returned values and implement error handling. The
driver also prints out log messages that contain error details, e.g., when checking the validity of entered configuration.
For details please refer to the file driver/i2c/i2c.c and look for defines with the suffix _ERR_STR.
Use dedicated interrupts to capture communication failures. For instance, if a slave stretches the clock for too long
while preparing the data to send back to master, the interrupt I2C_TIME_OUT_INT will be triggered. For detailed
information, see Interrupt Handling.
In case of a communication failure, you can reset the internal hardware buffers by calling the functions
i2c_reset_tx_fifo() and i2c_reset_rx_fifo() for the send and receive buffers respectively.

Delete Driver When the I2C communication is established with the function i2c_driver_install() and
is not required for some substantial amount of time, the driver may be deinitialized to release allocated resources by
calling i2c_driver_delete().
Before calling i2c_driver_delete() to remove i2c driver, please make sure that all threads have stopped using
the driver in any way, because this function does not guarantee thread safety.

Application Example

I2C examples: peripherals/i2c.

API Reference

Header File
• components/driver/i2c/include/driver/i2c.h

Espressif Systems 947
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2c/i2c.c
https://www.ti.com/lit/an/slva689/slva689.pdf
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2c/i2c.c
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/i2c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2c/include/driver/i2c.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_err_t i2c_driver_install(i2c_port_t i2c_num, i2c_mode_t mode, size_t slv_rx_buf_len, size_t

slv_tx_buf_len, int intr_alloc_flags)
Install an I2C driver.

Note: Not all Espressif chips can support slave mode (e.g. ESP32C2)

Note: In master mode, if the cache is likely to be disabled(such as write flash) and the slave is time-sensitive,
ESP_INTR_FLAG_IRAM is suggested to be used. In this case, please use the memory allocated from internal
RAM in i2c read and write function, because we can not access the psram(if psram is enabled) in interrupt
handle function when cache is disabled.

Parameters
• i2c_num -- I2C port number
• mode -- I2C mode (either master or slave).
• slv_rx_buf_len -- Receiving buffer size. Only slave mode will use this value, it is
ignored in master mode.

• slv_tx_buf_len -- Sending buffer size. Only slave mode will use this value, it is
ignored in master mode.

• intr_alloc_flags -- Flags used to allocate the interrupt. One or multiple (ORred)
ESP_INTR_FLAG_* values. See esp_intr_alloc.h for more info.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Driver installation error

esp_err_t i2c_driver_delete(i2c_port_t i2c_num)
Delete I2C driver.

Note: This function does not guarantee thread safety. Please make sure that no thread will continuously hold
semaphores before calling the delete function.

Parameters i2c_num -- I2C port to delete
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_param_config(i2c_port_t i2c_num, const i2c_config_t *i2c_conf)
Configure an I2C bus with the given configuration.

Parameters
• i2c_num -- I2C port to configure
• i2c_conf -- Pointer to the I2C configuration

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_reset_tx_fifo(i2c_port_t i2c_num)
reset I2C tx hardware fifo

Parameters i2c_num -- I2C port number
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

Espressif Systems 948
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t i2c_reset_rx_fifo(i2c_port_t i2c_num)
reset I2C rx fifo

Parameters i2c_num -- I2C port number
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_set_pin(i2c_port_t i2c_num, int sda_io_num, int scl_io_num, bool sda_pullup_en, bool
scl_pullup_en, i2c_mode_t mode)

Configure GPIO pins for I2C SCK and SDA signals.
Parameters

• i2c_num -- I2C port number
• sda_io_num -- GPIO number for I2C SDA signal
• scl_io_num -- GPIO number for I2C SCL signal
• sda_pullup_en -- Enable the internal pullup for SDA pin
• scl_pullup_en -- Enable the internal pullup for SCL pin
• mode -- I2C mode

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_master_write_to_device(i2c_port_t i2c_num, uint8_t device_address, const uint8_t
*write_buffer, size_t write_size, TickType_t ticks_to_wait)

Perform a write to a device connected to a particular I2C port. This function is a wrapper to
i2c_master_start(), i2c_master_write(), i2c_master_read(), etc... It shall only be
called in I2C master mode.

Parameters
• i2c_num -- I2C port number to perform the transfer on
• device_address -- I2C device's 7-bit address
• write_buffer -- Bytes to send on the bus
• write_size -- Size, in bytes, of the write buffer
• ticks_to_wait -- Maximum ticks to wait before issuing a timeout.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Sending command error, slave hasn't ACK the transfer.
• ESP_ERR_INVALID_STATE I2C driver not installed or not in master mode.
• ESP_ERR_TIMEOUT Operation timeout because the bus is busy.

esp_err_t i2c_master_read_from_device(i2c_port_t i2c_num, uint8_t device_address, uint8_t
*read_buffer, size_t read_size, TickType_t ticks_to_wait)

Perform a read to a device connected to a particular I2C port. This function is a wrapper to
i2c_master_start(), i2c_master_write(), i2c_master_read(), etc... It shall only be
called in I2C master mode.

Parameters
• i2c_num -- I2C port number to perform the transfer on
• device_address -- I2C device's 7-bit address
• read_buffer -- Buffer to store the bytes received on the bus
• read_size -- Size, in bytes, of the read buffer
• ticks_to_wait -- Maximum ticks to wait before issuing a timeout.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Sending command error, slave hasn't ACK the transfer.
• ESP_ERR_INVALID_STATE I2C driver not installed or not in master mode.
• ESP_ERR_TIMEOUT Operation timeout because the bus is busy.

Espressif Systems 949
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t i2c_master_write_read_device(i2c_port_t i2c_num, uint8_t device_address, const uint8_t
*write_buffer, size_t write_size, uint8_t *read_buffer, size_t
read_size, TickType_t ticks_to_wait)

Perform a write followed by a read to a device on the I2C bus. A repeated start signal is used between the
write and read, thus, the bus is not released until the two transactions are finished. This function is a
wrapper to i2c_master_start(), i2c_master_write(), i2c_master_read(), etc... It shall
only be called in I2C master mode.

Parameters
• i2c_num -- I2C port number to perform the transfer on
• device_address -- I2C device's 7-bit address
• write_buffer -- Bytes to send on the bus
• write_size -- Size, in bytes, of the write buffer
• read_buffer -- Buffer to store the bytes received on the bus
• read_size -- Size, in bytes, of the read buffer
• ticks_to_wait -- Maximum ticks to wait before issuing a timeout.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Sending command error, slave hasn't ACK the transfer.
• ESP_ERR_INVALID_STATE I2C driver not installed or not in master mode.
• ESP_ERR_TIMEOUT Operation timeout because the bus is busy.

i2c_cmd_handle_t i2c_cmd_link_create_static(uint8_t *buffer, uint32_t size)
Create and initialize an I2C commands list with a given buffer. All the allocations for data or signals (START,
STOP, ACK, ...) will be performed within this buffer. This buffer must be valid during the whole transaction.
After finishing the I2C transactions, it is required to call i2c_cmd_link_delete_static().

Note: It is highly advised to not allocate this buffer on the stack. The size of the data used underneath may
increase in the future, resulting in a possible stack overflow as the macro I2C_LINK_RECOMMENDED_SIZE
would also return a bigger value. A better option is to use a buffer allocated statically or dynamically (with
malloc).

Parameters
• buffer -- Buffer to use for commands allocations
• size -- Size in bytes of the buffer

Returns Handle to the I2C command link or NULL if the buffer provided is too small, please use
I2C_LINK_RECOMMENDED_SIZE macro to get the recommended size for the buffer.

i2c_cmd_handle_t i2c_cmd_link_create(void)
Create and initialize an I2C commands list with a given buffer. After finishing the I2C transactions, it is
required to call i2c_cmd_link_delete() to release and return the resources. The required bytes will
be dynamically allocated.

Returns Handle to the I2C command link or NULL in case of insufficient dynamic memory.
void i2c_cmd_link_delete_static(i2c_cmd_handle_t cmd_handle)

Free the I2C commands list allocated statically with i2c_cmd_link_create_static.
Parameters cmd_handle -- I2C commands list allocated statically. This handle should be cre-

ated thanks to i2c_cmd_link_create_static() function
void i2c_cmd_link_delete(i2c_cmd_handle_t cmd_handle)

Free the I2C commands list.
Parameters cmd_handle -- I2C commands list. This handle should be created thanks to

i2c_cmd_link_create() function

Espressif Systems 950
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t i2c_master_start(i2c_cmd_handle_t cmd_handle)
Queue a "START signal" to the given commands list. This function shall only be called in I2C master mode.
Call i2c_master_cmd_begin() to send all the queued commands.

Parameters cmd_handle -- I2C commands list
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_NO_MEM The static buffer used to create cmd_handler is too small
• ESP_FAIL No more memory left on the heap

esp_err_t i2c_master_write_byte(i2c_cmd_handle_t cmd_handle, uint8_t data, bool ack_en)
Queue a "write byte" command to the commands list. A single byte will be sent on the I2C port. This function
shall only be called in I2C master mode. Call i2c_master_cmd_begin() to send all queued commands.

Parameters
• cmd_handle -- I2C commands list
• data -- Byte to send on the port
• ack_en -- Enable ACK signal

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_NO_MEM The static buffer used to create cmd_handler is too small
• ESP_FAIL No more memory left on the heap

esp_err_t i2c_master_write(i2c_cmd_handle_t cmd_handle, const uint8_t *data, size_t data_len, bool
ack_en)

Queue a "write (multiple) bytes" command to the commands list. This function shall only be called in I2C
master mode. Call i2c_master_cmd_begin() to send all queued commands.

Parameters
• cmd_handle -- I2C commands list
• data -- Bytes to send. This buffer shall remain valid until the transaction is finished.
If the PSRAM is enabled and intr_flag is set to ESP_INTR_FLAG_IRAM, data
should be allocated from internal RAM.

• data_len -- Length, in bytes, of the data buffer
• ack_en -- Enable ACK signal

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_NO_MEM The static buffer used to create cmd_handler is too small
• ESP_FAIL No more memory left on the heap

esp_err_t i2c_master_read_byte(i2c_cmd_handle_t cmd_handle, uint8_t *data, i2c_ack_type_t ack)
Queue a "read byte" command to the commands list. A single byte will be read on the I2C bus. This function
shall only be called in I2C master mode. Call i2c_master_cmd_begin() to send all queued commands.

Parameters
• cmd_handle -- I2C commands list
• data -- Pointer where the received byte will the stored. This buffer shall remain valid
until the transaction is finished.

• ack -- ACK signal
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_NO_MEM The static buffer used to create cmd_handler is too small
• ESP_FAIL No more memory left on the heap

esp_err_t i2c_master_read(i2c_cmd_handle_t cmd_handle, uint8_t *data, size_t data_len, i2c_ack_type_t
ack)

Queue a "read (multiple) bytes" command to the commands list. Multiple bytes will be read on the I2C bus.

Espressif Systems 951
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This function shall only be called in I2C master mode. Call i2c_master_cmd_begin() to send all
queued commands.

Parameters
• cmd_handle -- I2C commands list
• data -- Pointer where the received bytes will the stored. This buffer shall remain valid
until the transaction is finished.

• data_len -- Size, in bytes, of the data buffer
• ack -- ACK signal

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_NO_MEM The static buffer used to create cmd_handler is too small
• ESP_FAIL No more memory left on the heap

esp_err_t i2c_master_stop(i2c_cmd_handle_t cmd_handle)
Queue a "STOP signal" to the given commands list. This function shall only be called in I2C master mode.
Call i2c_master_cmd_begin() to send all the queued commands.

Parameters cmd_handle -- I2C commands list
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_NO_MEM The static buffer used to create cmd_handler is too small
• ESP_FAIL No more memory left on the heap

esp_err_t i2c_master_cmd_begin(i2c_port_t i2c_num, i2c_cmd_handle_t cmd_handle, TickType_t
ticks_to_wait)

Send all the queued commands on the I2C bus, in master mode. The task will be blocked until all the commands
have been sent out. The I2C port is protected by mutex, so this function is thread-safe. This function shall only
be called in I2C master mode.

Parameters
• i2c_num -- I2C port number
• cmd_handle -- I2C commands list
• ticks_to_wait -- Maximum ticks to wait before issuing a timeout.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Sending command error, slave hasn't ACK the transfer.
• ESP_ERR_INVALID_STATE I2C driver not installed or not in master mode.
• ESP_ERR_TIMEOUT Operation timeout because the bus is busy.

int i2c_slave_write_buffer(i2c_port_t i2c_num, const uint8_t *data, int size, TickType_t ticks_to_wait)
Write bytes to internal ringbuffer of the I2C slave data. When the TX fifo empty, the ISR will fill the hardware
FIFO with the internal ringbuffer's data.

Note: This function shall only be called in I2C slave mode.

Parameters
• i2c_num -- I2C port number
• data -- Bytes to write into internal buffer
• size -- Size, in bytes, of data buffer
• ticks_to_wait -- Maximum ticks to wait.

Returns
• ESP_FAIL (-1) Parameter error
• Other (>=0) The number of data bytes pushed to the I2C slave buffer.

Espressif Systems 952
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int i2c_slave_read_buffer(i2c_port_t i2c_num, uint8_t *data, size_t max_size, TickType_t
ticks_to_wait)

Read bytes from I2C internal buffer. When the I2C bus receives data, the ISRwill copy them from the hardware
RX FIFO to the internal ringbuffer. Calling this function will then copy bytes from the internal ringbuffer to
the data user buffer.

Note: This function shall only be called in I2C slave mode.

Parameters
• i2c_num -- I2C port number
• data -- Buffer to fill with ringbuffer's bytes
• max_size -- Maximum bytes to read
• ticks_to_wait -- Maximum waiting ticks

Returns
• ESP_FAIL(-1) Parameter error
• Others(>=0) The number of data bytes read from I2C slave buffer.

esp_err_t i2c_set_period(i2c_port_t i2c_num, int high_period, int low_period)
Set I2C master clock period.

Parameters
• i2c_num -- I2C port number
• high_period -- Clock cycle number during SCL is high level, high_period is a 14 bit
value

• low_period -- Clock cycle number during SCL is low level, low_period is a 14 bit value
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_get_period(i2c_port_t i2c_num, int *high_period, int *low_period)
Get I2C master clock period.

Parameters
• i2c_num -- I2C port number
• high_period -- pointer to get clock cycle number during SCL is high level, will get a
14 bit value

• low_period -- pointer to get clock cycle number during SCL is low level, will get a 14
bit value

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_filter_enable(i2c_port_t i2c_num, uint8_t cyc_num)
Enable hardware filter on I2C bus Sometimes the I2C bus is disturbed by high frequency noise(about 20ns),
or the rising edge of the SCL clock is very slow, these may cause the master state machine to break. Enable
hardware filter can filter out high frequency interference and make the master more stable.

Note: Enable filter will slow down the SCL clock.

Parameters
• i2c_num -- I2C port number to filter
• cyc_num -- the APB cycles need to be filtered (0<= cyc_num <=7). When the period of
a pulse is less than cyc_num * APB_cycle, the I2C controller will ignore this pulse.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

Espressif Systems 953
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t i2c_filter_disable(i2c_port_t i2c_num)
Disable filter on I2C bus.

Parameters i2c_num -- I2C port number
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_set_start_timing(i2c_port_t i2c_num, int setup_time, int hold_time)
set I2C master start signal timing

Parameters
• i2c_num -- I2C port number
• setup_time -- clock number between the falling-edge of SDA and rising-edge of SCL
for start mark, it's a 10-bit value.

• hold_time -- clock num between the falling-edge of SDA and falling-edge of SCL for
start mark, it's a 10-bit value.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_get_start_timing(i2c_port_t i2c_num, int *setup_time, int *hold_time)
get I2C master start signal timing

Parameters
• i2c_num -- I2C port number
• setup_time -- pointer to get setup time
• hold_time -- pointer to get hold time

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_set_stop_timing(i2c_port_t i2c_num, int setup_time, int hold_time)
set I2C master stop signal timing

Parameters
• i2c_num -- I2C port number
• setup_time -- clock num between the rising-edge of SCL and the rising-edge of SDA,
it's a 10-bit value.

• hold_time -- clock number after the STOP bit's rising-edge, it's a 14-bit value.
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_get_stop_timing(i2c_port_t i2c_num, int *setup_time, int *hold_time)
get I2C master stop signal timing

Parameters
• i2c_num -- I2C port number
• setup_time -- pointer to get setup time.
• hold_time -- pointer to get hold time.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_set_data_timing(i2c_port_t i2c_num, int sample_time, int hold_time)
set I2C data signal timing

Parameters
• i2c_num -- I2C port number
• sample_time -- clock number I2C used to sample data on SDA after the rising-edge
of SCL, it's a 10-bit value

Espressif Systems 954
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• hold_time -- clock number I2C used to hold the data after the falling-edge of SCL, it's
a 10-bit value

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_get_data_timing(i2c_port_t i2c_num, int *sample_time, int *hold_time)
get I2C data signal timing

Parameters
• i2c_num -- I2C port number
• sample_time -- pointer to get sample time
• hold_time -- pointer to get hold time

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_set_timeout(i2c_port_t i2c_num, int timeout)
set I2C timeout value

Parameters
• i2c_num -- I2C port number
• timeout -- timeout value for I2C bus (unit: APB 80Mhz clock cycle)

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_get_timeout(i2c_port_t i2c_num, int *timeout)
get I2C timeout value

Parameters
• i2c_num -- I2C port number
• timeout -- pointer to get timeout value

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_set_data_mode(i2c_port_t i2c_num, i2c_trans_mode_t tx_trans_mode, i2c_trans_mode_t
rx_trans_mode)

set I2C data transfer mode
Parameters

• i2c_num -- I2C port number
• tx_trans_mode -- I2C sending data mode
• rx_trans_mode -- I2C receving data mode

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t i2c_get_data_mode(i2c_port_t i2c_num, i2c_trans_mode_t *tx_trans_mode, i2c_trans_mode_t
*rx_trans_mode)

get I2C data transfer mode
Parameters

• i2c_num -- I2C port number
• tx_trans_mode -- pointer to get I2C sending data mode
• rx_trans_mode -- pointer to get I2C receiving data mode

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

Espressif Systems 955
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Structures

struct i2c_config_t
I2C initialization parameters.

Public Members

i2c_mode_t mode

I2C mode

int sda_io_num
GPIO number for I2C sda signal

int scl_io_num
GPIO number for I2C scl signal

bool sda_pullup_en
Internal GPIO pull mode for I2C sda signal

bool scl_pullup_en
Internal GPIO pull mode for I2C scl signal

uint32_t clk_speed
I2C clock frequency for master mode, (no higher than 1MHz for now)

struct i2c_config_t::[anonymous]::[anonymous] master
I2C master config

uint8_t addr_10bit_en
I2C 10bit address mode enable for slave mode

uint16_t slave_addr
I2C address for slave mode

uint32_t maximum_speed
I2C expected clock speed from SCL.

struct i2c_config_t::[anonymous]::[anonymous] slave
I2C slave config

uint32_t clk_flags
Bitwise of I2C_SCLK_SRC_FLAG_**FOR_DFS** for clk source choice

Macros

I2C_SCLK_SRC_FLAG_FOR_NOMAL

Any one clock source that is available for the specified frequency may be choosen

I2C_SCLK_SRC_FLAG_AWARE_DFS

For REF tick clock, it won't change with APB.

Espressif Systems 956
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

I2C_SCLK_SRC_FLAG_LIGHT_SLEEP

For light sleep mode.

I2C_INTERNAL_STRUCT_SIZE

Minimum size, in bytes, of the internal private structure used to describe I2C commands link.
I2C_LINK_RECOMMENDED_SIZE(TRANSACTIONS)

The following macro is used to determine the recommended size of the buffer to pass to
i2c_cmd_link_create_static() function. It requires one parameter, TRANSACTIONS, de-
scribing the number of transactions intended to be performed on the I2C port. For example, if one wants
to perform a read on an I2C device register, TRANSACTIONS must be at least 2, because the commands
required are the following:

• write device register
• read register content

Signals such as "(repeated) start", "stop", "nack", "ack" shall not be counted.

Type Definitions

typedef void *i2c_cmd_handle_t
I2C command handle

Header File
• components/hal/include/hal/i2c_types.h

Structures

struct i2c_hal_clk_config_t
Data structure for calculating I2C bus timing.

Public Members

uint16_t clkm_div
I2C core clock devider

uint16_t scl_low
I2C scl low period

uint16_t scl_high
I2C scl hight period

uint16_t scl_wait_high
I2C scl wait_high period

uint16_t sda_hold
I2C scl low period

Espressif Systems 957
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/i2c_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint16_t sda_sample
I2C sda sample time

uint16_t setup
I2C start and stop condition setup period

uint16_t hold
I2C start and stop condition hold period

uint16_t tout
I2C bus timeout period

struct i2c_hal_timing_config_t
Timing configuration structure. Used for I2C reset internally.

Public Members

int high_period
high_period time

int low_period
low_period time

int wait_high_period
wait_high_period time

int rstart_setup
restart setup

int start_hold
start hold time

int stop_setup
stop setup

int stop_hold
stop hold time

int sda_sample
high_period time

int sda_hold
sda hold time

int timeout
timeout value

Espressif Systems 958
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef soc_periph_i2c_clk_src_t i2c_clock_source_t
I2C group clock source.

Enumerations

enum i2c_port_t

I2C port number, can be I2C_NUM_0 ~ (I2C_NUM_MAX-1).
Values:

enumerator I2C_NUM_0
I2C port 0

enumerator LP_I2C_NUM_0

enumerator I2C_NUM_MAX
I2C port max

enum i2c_mode_t

Values:

enumerator I2C_MODE_SLAVE
I2C slave mode

enumerator I2C_MODE_MASTER
I2C master mode

enumerator I2C_MODE_MAX

enum i2c_rw_t

Values:

enumerator I2C_MASTER_WRITE
I2C write data

enumerator I2C_MASTER_READ
I2C read data

enum i2c_trans_mode_t

Values:

enumerator I2C_DATA_MODE_MSB_FIRST
I2C data msb first

enumerator I2C_DATA_MODE_LSB_FIRST
I2C data lsb first

enumerator I2C_DATA_MODE_MAX

Espressif Systems 959
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum i2c_addr_mode_t

Values:

enumerator I2C_ADDR_BIT_7
I2C 7bit address for slave mode

enumerator I2C_ADDR_BIT_10
I2C 10bit address for slave mode

enumerator I2C_ADDR_BIT_MAX

enum i2c_ack_type_t

Values:

enumerator I2C_MASTER_ACK
I2C ack for each byte read

enumerator I2C_MASTER_NACK
I2C nack for each byte read

enumerator I2C_MASTER_LAST_NACK
I2C nack for the last byte

enumerator I2C_MASTER_ACK_MAX

2.6.12 Inter-IC Sound (I2S)

Introduction

I2S (Inter-IC Sound) is a synchronous serial communication protocol usually used for transmitting audio data between
two digital audio devices.
ESP32-C6 contains one I2S peripheral(s). These peripherals can be configured to input and output sample data via
the I2S driver.
An I2S bus that communicates in standard or TDM mode consists of the following lines:

• MCLK: Master clock line. It is an optional signal depending on the slave side, mainly used for offering a
reference clock to the I2S slave device.

• BCLK: Bit clock line. The bit clock for data line.
• WS:Word (Slot) select line. It is usually used to identify the vocal tract except PDM mode.
• DIN/DOUT: Serial data input/output line. Data will loopback internally if DIN and DOUT are set to a same
GPIO.

An I2S bus that communicates in PDM mode consists of the following lines:
• CLK: PDM clock line.
• DIN/DOUT: Serial data input/output line.

Each I2S controller has the following features that can be configured by the I2S driver:
• Operation as system master or slave
• Capable of acting as transmitter or receiver

Espressif Systems 960
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• DMA controller that allows stream sampling of data without requiring the CPU to copy each data sample
Each controller has separate RX and TX channels. That means they are able to work under different clocks and slot
configurations with separate GPIO pins. Note that although the internal MCLKs of TX channel and RX channel are
separate on a controller, the output MCLK signal can only be attached to one channel. If independent MCLK output
is required for each channel, they must be allocated on different I2S controllers.

I2S File Structure

Fig. 8: I2S File Structure

Public headers that need to be included in the I2S application are as follows:
• i2s.h: The header file that provides legacy I2S APIs (for apps using legacy driver).
• i2s_std.h: The header file that provides standard communication mode specific APIs (for apps using new
driver with standard mode).

• i2s_pdm.h: The header file that provides PDM communication mode specific APIs (for apps using new
driver with PDM mode).

• i2s_tdm.h: The header file that provides TDM communication mode specific APIs (for apps using new
driver with TDM mode).

Note: The legacy driver cannot coexist with the new driver. Include i2s.h to use the legacy driver, or include the
other three headers to use the new driver. The legacy driver might be removed in future.

Public headers that have been included in the headers above are as follows:
• i2s_types_legacy.h: The header file that provides legacy public types that are only used in the legacy
driver.

• i2s_types.h: The header file that provides public types.
• i2s_common.h: The header file that provides common APIs for all communication modes.

I2S Clock

Clock Source
• i2s_clock_src_t::I2S_CLK_SRC_DEFAULT: Default PLL clock.

Espressif Systems 961
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• i2s_clock_src_t::I2S_CLK_SRC_PLL_160M: 160 MHz PLL clock.

Clock Terminology
• Sample rate: The number of sampled data in one second per slot.
• SCLK: Source clock frequency. It is the frequency of the clock source.
• MCLK: Master clock frequency. BCLK is generated from this clock. The MCLK signal usually serves as a
reference clock and is mostly needed to synchronize BCLK and WS between I2S master and slave roles.

• BCLK: Bit clock frequency. Every tick of this clock stands for one data bit on data pin. The slot bit width
configured in i2s_std_slot_config_t::slot_bit_width is equal to the number of BCLK ticks,
which means there will be 8/16/24/32 BCLK ticks in one slot.

• LRCK /WS: Left/right clock or word select clock. For non-PDM mode, its frequency is equal to the sample
rate.

Note: Normally, MCLK should be the multiple of sample rate and BCLK at the same
time. The field i2s_std_clk_config_t::mclk_multiple indicates the multiple of MCLK to
the sample rate. In most cases, I2S_MCLK_MULTIPLE_256 should be enough. However, if
slot_bit_width is set to I2S_SLOT_BIT_WIDTH_24BIT, to keep MCLK a multiple to the BCLK,
i2s_std_clk_config_t::mclk_multiple should be set to multiples that are divisible by 3 such as
I2S_MCLK_MULTIPLE_384. Otherwise, WS will be inaccurate.

I2S Communication Mode

Overview of All Modes

Target Standard PDM TX PDM RX TDM ADC/DAC LCD/Camera
ESP32 I2S 0/1 I2S 0 I2S 0 none I2S 0 I2S 0
ESP32-S2 I2S 0 none none none none I2S 0
ESP32-C3 I2S 0 I2S 0 none I2S 0 none none
ESP32-C6 I2S 0 I2S 0 none I2S 0 none none
ESP32-S3 I2S 0/1 I2S 0 I2S 0 I2S 0/1 none none
ESP32-H2 I2S 0 I2S 0 none I2S 0 none none

Standard Mode In standard mode, there are always two sound channels, i.e., the left and right channels, which are
called "slots". These slots support 8/16/24/32-bit width sample data. The communication format for the slots mainly
includes the followings:

• Philips Format: Data signal has one-bit shift comparing to the WS signal, and the duty of WS signal is 50%.

Standard Philips Timing Diagram

BCLK

WS

DIN / DOUT MSB LSB MSB LSB MSB

slot_bit_width

data_bit_width

bit shift Left Slot Right Slot

• MSB Format: Basically the same as Philips format, but without data shift.

Espressif Systems 962
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Standard MSB Timing Diagram

BCLK

WS

DIN / DOUT MSB LSB MSB LSB MSB

slot_bit_width

data_bit_width

Left Slot Right Slot

• PCM Short Format: Data has one-bit shift and meanwhile the WS signal becomes a pulse lasting for one
BCLK cycle.

Standard PCM Timing Diagram

BCLK

WS

DIN / DOUT MSB LSB MSB LSB MSB

slot_bit_width

data_bit_width

bit shift Left Slot Right Slot

PDM Mode (TX) PDM (Pulse-density Modulation) mode for the TX channel can convert PCM data into PDM
format which always has left and right slots. PDMTX is only supported on I2S0 and it only supports 16-bit width sam-
ple data. It needs at least a CLK pin for clock signal and a DOUT pin for data signal (i.e., the WS and SD signal in the
following figure; the BCK signal is an internal bit sampling clock, which is not needed between PDM devices). This
mode allows users to configure the up-sampling parameters i2s_pdm_tx_clk_config_t::up_sample_fp
and i2s_pdm_tx_clk_config_t::up_sample_fs. The up-sampling rate can be cal-
culated by up_sample_rate = i2s_pdm_tx_clk_config_t::up_sample_fp /
i2s_pdm_tx_clk_config_t::up_sample_fs. There are two up-sampling modes in PDM TX:

• Fixed Clock Frequency: In this mode, the up-sampling rate changes according to the sample rate. Setting fp
= 960 and fs = sample_rate / 100, then the clock frequency (Fpdm) on CLK pin will be fixed to
128 * 48 KHz = 6.144 MHz. Note that this frequency is not equal to the sample rate (Fpcm).

• Fixed Up-sampling Rate: In this mode, the up-sampling rate is fixed to 2. Setting fp = 960 and fs =
480, then the clock frequency (Fpdm) on CLK pin will be 128 * sample_rate.

PDM Timing Diagram

CLK

DIN / DOUT LMSB RMSB LLSB RLSB LMSB RMSB

left right left right left right

left slot & right slot

TDM Mode TDM (Time Division Multiplexing) mode supports up to 16 slots. These slots can be enabled by
i2s_tdm_slot_config_t::slot_mask.
But due to the hardware limitation, only up to 4 slots are supported while the slot is set to 32 bit-width, and 8 slots
for 16 bit-width, 16 slots for 8 bit-width. The slot communication format of TDM is almost the same as the standard

Espressif Systems 963
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

mode, yet with some small differences.
• Philips Format: Data signal has one-bit shift comparing to the WS signal. And no matter how many slots are
contained in one frame, the duty of WS signal always keeps 50%.

TDM Philips Timing Diagram

BCLK

WS

DIN / DOUT MSB LSB MSB LSB MSB LSB MSB LSB MSB

Left Slots Right Slots

bit shift Slot 1 Slot 2 ... Slot n Slot n+1 ...

• MSB Format: Basically the same as the Philips format, but without data shift.

TDM MSB Timing Diagram

BCLK

WS

DIN / DOUT MSB LSB MSB LSB MSB LSB MSB LSB MSB

Left Slots Right Slots

Slot 1 Slot 2 ... Slot n Slot n+1 ...

• PCM Short Format: Data has one-bit shift and the WS signal becomes a pulse lasting one BCLK cycle for
every frame.

TDM PCM (short) Timing Diagram

BCLK

WS

DIN / DOUT MSB LSB MSB LSB MSB

pulse Frame

bit shift Slot 1 ... Slot n

• PCM Long Format: Data has one-bit shift and the WS signal lasts one-slot bit width for every frame. For
example, the duty of WS will be 25% if there are four slots enabled, and 20% if there are five slots.

TDM PCM (long) Timing Diagram

BCLK

WS

DIN / DOUT MSB LSB MSB LSB MSB

one slot pulse

bit shift Frame

Slot 1 ... Slot n

Functional Overview

The I2S driver offers the following services:

Resource Management There are three levels of resources in the I2S driver:

Espressif Systems 964
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• platform level: Resources of all I2S controllers in the current target.
• controller level: Resources in one I2S controller.
• channel level: Resources of TX or RX channel in one I2S controller.

The public APIs are all channel-level APIs. The channel handle i2s_chan_handle_t can help users to manage
the resources under a specific channel without considering the other two levels. The other two upper levels' resources
are private and aremanaged by the driver automatically. Users can calli2s_new_channel() to allocate a channel
handle and call i2s_del_channel() to delete it.

Power Management When the power management is enabled (i.e., CONFIG_PM_ENABLE is on), the system will
adjust or stop the source clock of I2S before entering Light-sleep, thus potentially changing the I2S signals and leading
to transmitting or receiving invalid data.
The I2S driver can prevent the system from changing or stopping the source clock by acquiring a
power management lock. When the source clock is generated from APB, the lock type will be set to
esp_pm_lock_type_t::ESP_PM_APB_FREQ_MAX and when the source clock is APLL (if supported), it
will be set to esp_pm_lock_type_t::ESP_PM_NO_LIGHT_SLEEP. Whenever the user is reading or writ-
ing via I2S (i.e., calling i2s_channel_read() or i2s_channel_write()), the driver will guarantee that
the power management lock is acquired. Likewise, the driver releases the lock after the reading or writing finishes.

Finite State Machine There are three states for an I2S channel, namely, registered, ready, and running.
Their relationship is shown in the following diagram:

Fig. 9: I2S Finite State Machine

The <mode> in the diagram can be replaced by corresponding I2S communication modes, e.g., std for standard
two-slot mode. For more information about communication modes, please refer to the I2S Communication Mode
section.

Espressif Systems 965
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Data Transport The data transport of the I2S peripheral, including sending and receiving, is realized by DMA.
Before transporting data, please call i2s_channel_enable() to enable the specific channel. When the sent
or received data reaches the size of one DMA buffer, the I2S_OUT_EOF or I2S_IN_SUC_EOF interrupt will
be triggered. Note that the DMA buffer size is not equal to i2s_chan_config_t::dma_frame_num. One
frame here refers to all the sampled data in oneWS circle. Therefore, dma_buffer_size = dma_frame_num
* slot_num * slot_bit_width / 8. For the data transmitting, users can input the data by calling
i2s_channel_write(). This function helps users to copy the data from the source buffer to the DMA TX
buffer and wait for the transmission to finish. Then it will repeat until the sent bytes reach the given size. For the
data receiving, the function i2s_channel_read() waits to receive the message queue which contains the DMA
buffer address. It helps users copy the data from the DMA RX buffer to the destination buffer.
Both i2s_channel_write() and i2s_channel_read() are blocking functions. They keeps waiting until
the whole source buffer is sent or the whole destination buffer is loaded, unless they exceed the max blocking time,
where the error code ESP_ERR_TIMEOUT returns. To send or receive data asynchronously, callbacks can be regis-
tered by i2s_channel_register_event_callback(). Users are able to access the DMA buffer directly
in the callback function instead of transmitting or receiving by the two blocking functions. However, please be aware
that it is an interrupt callback, so do not add complex logic, run floating operation, or call non-reentrant functions in
the callback.

Configuration Users can initialize a channel by calling corresponding functions
(i.e., i2s_channel_init_std_mode(), i2s_channel_init_pdm_rx_mode(),
i2s_channel_init_pdm_tx_mode(), or i2s_channel_init_tdm_mode()) to a spe-
cific mode. If the configurations need to be updated after initialization, users have to first call
i2s_channel_disable() to ensure that the channel has stopped, and then call corresponding 'reconfig'
functions, like i2s_channel_reconfig_std_slot(), i2s_channel_reconfig_std_clock(),
and i2s_channel_reconfig_std_gpio().

IRAMSafe By default, the I2S interrupt will be deferred when the cache is disabled for reasons like writing/erasing
flash. Thus the EOF interrupt will not get executed in time.
To avoid such case in real-time applications, you can enable the Kconfig option CONFIG_I2S_ISR_IRAM_SAFE that
will:

1. Keep the interrupt being serviced even when the cache is disabled.
2. Place driver object into DRAM (in case it is linked to PSRAM by accident).

This will allow the interrupt to run while the cache is disabled, but will come at the cost of increased IRAM con-
sumption.

Thread Safety All the public I2S APIs are guaranteed to be thread safe by the driver, which means users can call
them from different RTOS tasks without protection by extra locks. Notice that the I2S driver uses mutex lock to
ensure the thread safety, thus these APIs are not allowed to be used in ISR.

Kconfig Options
• CONFIG_I2S_ISR_IRAM_SAFE controls whether the default ISR handler can work when the cache is disabled.
See IRAM Safe for more information.

• CONFIG_I2S_SUPPRESS_DEPRECATE_WARN controls whether to suppress the compiling warning message
while using the legacy I2S driver.

• CONFIG_I2S_ENABLE_DEBUG_LOG is used to enable the debug log output. Enable this option will increase
the firmware binary size.

Application Example

The examples of the I2S driver can be found in the directory peripherals/i2s. Here are some simple usages of each
mode:

Espressif Systems 966
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/i2s
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Standard TX/RX Usage Different slot communication formats can be generated by the following helper macros
for standard mode. As described above, there are three formats in standard mode, and their helper macros are:

• I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG
• I2S_STD_PCM_SLOT_DEFAULT_CONFIG
• I2S_STD_MSB_SLOT_DEFAULT_CONFIG

The clock config helper macro is:
• I2S_STD_CLK_DEFAULT_CONFIG

Please refer to Standard Mode for information about STD API. And for more details, please refer to
driver/i2s/include/driver/i2s_std.h.

STD TX Mode Take 16-bit data width for example. When the data in a uint16_t writing buffer are:

data 0 data 1 data 2 data 3 data 4 data 5 data 6 data 7 ...
0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 ...

Here is the table of the real data on the line with different i2s_std_slot_config_t::slot_mode and
i2s_std_slot_config_t::slot_mask.

data bit
width

slot
mode

slot
mask

WS
low

WS
high

WS
low

WS
high

WS
low

WS
high

WS
low

WS
high

16 bit mono left 0x0001 0x0000 0x0002 0x0000 0x0003 0x0000 0x0004 0x0000
right 0x0000 0x0001 0x0000 0x0002 0x0000 0x0003 0x0000 0x0004
both 0x0001 0x0001 0x0002 0x0002 0x0003 0x0003 0x0004 0x0004

stereo left 0x0001 0x0000 0x0003 0x0000 0x0005 0x0000 0x0007 0x0000
right 0x0000 0x0002 0x0000 0x0004 0x0000 0x0006 0x0000 0x0008
both 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008

Note: Similar for 8-bit and 32-bit data widths, the type of the buffer is better to be uint8_t and
uint32_t. But specially, when the data width is 24-bit, the data buffer should be aligned with 3-byte (i.e., ev-
ery 3 bytes stands for a 24-bit data in one slot). Additionally, i2s_chan_config_t::dma_frame_num,
i2s_std_clk_config_t::mclk_multiple, and the writing buffer size should be the multiple of 3, other-
wise the data on the line or the sample rate will be incorrect.

#include "driver/i2s_std.h"
#include "driver/gpio.h"

i2s_chan_handle_t tx_handle;
/* Get the default channel configuration by the helper macro.
* This helper macro is defined in 'i2s_common.h' and shared by all the I2S␣
↪→communication modes.
* It can help to specify the I2S role and port ID */

i2s_chan_config_t chan_cfg = I2S_CHANNEL_DEFAULT_CONFIG(I2S_NUM_AUTO, I2S_ROLE_
↪→MASTER);
/* Allocate a new TX channel and get the handle of this channel */
i2s_new_channel(&chan_cfg, &tx_handle, NULL);

/* Setting the configurations, the slot configuration and clock configuration can␣
↪→be generated by the macros
* These two helper macros are defined in 'i2s_std.h' which can only be used in␣
↪→STD mode.
* They can help to specify the slot and clock configurations for initialization␣
↪→or updating */
i2s_std_config_t std_cfg = {

(continues on next page)

Espressif Systems 967
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_std.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
.clk_cfg = I2S_STD_CLK_DEFAULT_CONFIG(48000),
.slot_cfg = I2S_STD_MSB_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_32BIT, I2S_SLOT_

↪→MODE_STEREO),
.gpio_cfg = {

.mclk = I2S_GPIO_UNUSED,

.bclk = GPIO_NUM_4,

.ws = GPIO_NUM_5,

.dout = GPIO_NUM_18,

.din = I2S_GPIO_UNUSED,

.invert_flags = {
.mclk_inv = false,
.bclk_inv = false,
.ws_inv = false,

},
},

};
/* Initialize the channel */
i2s_channel_init_std_mode(tx_handle, &std_cfg);

/* Before writing data, start the TX channel first */
i2s_channel_enable(tx_handle);
i2s_channel_write(tx_handle, src_buf, bytes_to_write, bytes_written, ticks_to_
↪→wait);

/* If the configurations of slot or clock need to be updated,
* stop the channel first and then update it */

// i2s_channel_disable(tx_handle);
// std_cfg.slot_cfg.slot_mode = I2S_SLOT_MODE_MONO; // Default is stereo
// i2s_channel_reconfig_std_slot(tx_handle, &std_cfg.slot_cfg);
// std_cfg.clk_cfg.sample_rate_hz = 96000;
// i2s_channel_reconfig_std_clock(tx_handle, &std_cfg.clk_cfg);

/* Have to stop the channel before deleting it */
i2s_channel_disable(tx_handle);
/* If the handle is not needed any more, delete it to release the channel␣
↪→resources */
i2s_del_channel(tx_handle);

STD RX Mode Taking 16-bit data width for example, when the data on the line are:

WS low WS high WS low WS high WS low WS high WS low WS high ...
0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 ...

Here is the table of the data received in the buffer with different i2s_std_slot_config_t::slot_mode
and i2s_std_slot_config_t::slot_mask.

data bit
width

slot
mode

slot
mask

data
0

data
1

data
2

data
3

data
4

data
5

data
6

data
7

16 bit mono left 0x0001 0x0003 0x0005 0x0007 0x0009 0x000b 0x000d 0x000f
right 0x0002 0x0004 0x0006 0x0008 0x000a 0x000c 0x000e 0x0010

stereo any 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008

Note: 8-bit, 24-bit, and 32-bit are similar as 16-bit, the data bit-width in the receiving buffer is equal to the data
bit-width on the line. Additionally, when using 24-bit data width, i2s_chan_config_t::dma_frame_num,
i2s_std_clk_config_t::mclk_multiple, and the receiving buffer size should be the multiple of 3, oth-
erwise the data on the line or the sample rate will be incorrect.

Espressif Systems 968
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

#include "driver/i2s_std.h"
#include "driver/gpio.h"

i2s_chan_handle_t rx_handle;
/* Get the default channel configuration by helper macro.
* This helper macro is defined in 'i2s_common.h' and shared by all the I2S␣
↪→communication modes.
* It can help to specify the I2S role and port ID */

i2s_chan_config_t chan_cfg = I2S_CHANNEL_DEFAULT_CONFIG(I2S_NUM_AUTO, I2S_ROLE_
↪→MASTER);
/* Allocate a new RX channel and get the handle of this channel */
i2s_new_channel(&chan_cfg, NULL, &rx_handle);

/* Setting the configurations, the slot configuration and clock configuration can␣
↪→be generated by the macros
* These two helper macros are defined in 'i2s_std.h' which can only be used in␣
↪→STD mode.
* They can help to specify the slot and clock configurations for initialization␣
↪→or updating */
i2s_std_config_t std_cfg = {

.clk_cfg = I2S_STD_CLK_DEFAULT_CONFIG(48000),

.slot_cfg = I2S_STD_MSB_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_32BIT, I2S_SLOT_
↪→MODE_STEREO),

.gpio_cfg = {
.mclk = I2S_GPIO_UNUSED,
.bclk = GPIO_NUM_4,
.ws = GPIO_NUM_5,
.dout = I2S_GPIO_UNUSED,
.din = GPIO_NUM_19,
.invert_flags = {

.mclk_inv = false,

.bclk_inv = false,

.ws_inv = false,
},

},
};
/* Initialize the channel */
i2s_channel_init_std_mode(rx_handle, &std_cfg);

/* Before reading data, start the RX channel first */
i2s_channel_enable(rx_handle);
i2s_channel_read(rx_handle, desc_buf, bytes_to_read, bytes_read, ticks_to_wait);

/* Have to stop the channel before deleting it */
i2s_channel_disable(rx_handle);
/* If the handle is not needed any more, delete it to release the channel␣
↪→resources */
i2s_del_channel(rx_handle);

PDM TX Usage For PDM mode in TX channel, the slot configuration helper macro is:
• I2S_PDM_TX_SLOT_DEFAULT_CONFIG

The clock configuration helper macro is:
• I2S_PDM_TX_CLK_DEFAULT_CONFIG

Please refer to PDM Mode for information about PDM TX API. And for more details, please refer to
driver/i2s/include/driver/i2s_pdm.h.
The PDM data width is fixed to 16-bit. When the data in an int16_t writing buffer is:

Espressif Systems 969
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_pdm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

data 0 data 1 data 2 data 3 data 4 data 5 data 6 data 7 ...
0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 ...

Here is the table of the real data on the line with different i2s_pdm_tx_slot_config_t::slot_mode and
i2s_pdm_tx_slot_config_t::line_mode (The PDM format on the line is transferred to PCM format for
easier comprehension).

line mode slot
mode

line left right left right left right left right

one-line
Codec

mono dout 0x0001 0x0000 0x0002 0x0000 0x0003 0x0000 0x0004 0x0000
stereo dout 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008

one-line
DAC

mono dout 0x0001 0x0001 0x0002 0x0002 0x0003 0x0003 0x0004 0x0004

two-line
DAC

mono dout 0x0002 0x0002 0x0004 0x0004 0x0006 0x0006 0x0008 0x0008
dout2 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

stereo dout 0x0002 0x0002 0x0004 0x0004 0x0006 0x0006 0x0008 0x0008
dout2 0x0001 0x0001 0x0003 0x0003 0x0005 0x0005 0x0007 0x0007

Note: There are three line modes for PDM TX mode, i.e., I2S_PDM_TX_ONE_LINE_CODEC,
I2S_PDM_TX_ONE_LINE_DAC, and I2S_PDM_TX_TWO_LINE_DAC. One-line codec is for the PDM codecs
that require clock signal. The PDM codec can differentiate the left and right slots by the clock level. The other two
modes are used to drive power amplifiers directly with a low-pass filter. They do not need the clock signal, so there
are two lines to differentiate the left and right slots. Additionally, for the mono mode of one-line codec, users can
force change the slot to the right by setting the clock invert flag in GPIO configuration.

#include "driver/i2s_pdm.h"
#include "driver/gpio.h"

/* Allocate an I2S TX channel */
i2s_chan_config_t chan_cfg = I2S_CHANNEL_DEFAULT_CONFIG(I2S_NUM_0, I2S_ROLE_
↪→MASTER);
i2s_new_channel(&chan_cfg, &tx_handle, NULL);

/* Init the channel into PDM TX mode */
i2s_pdm_tx_config_t pdm_tx_cfg = {

.clk_cfg = I2S_PDM_TX_CLK_DEFAULT_CONFIG(36000),

.slot_cfg = I2S_PDM_TX_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_16BIT, I2S_SLOT_
↪→MODE_MONO),

.gpio_cfg = {
.clk = GPIO_NUM_5,
.dout = GPIO_NUM_18,
.invert_flags = {

.clk_inv = false,
},

},
};
i2s_channel_init_pdm_tx_mode(tx_handle, &pdm_tx_cfg);

...

TDM TX/RX Usage Different slot communication formats can be generated by the following helper macros for
TDM mode. As described above, there are four formats in TDM mode, and their helper macros are:

• I2S_TDM_PHILIPS_SLOT_DEFAULT_CONFIG
• I2S_TDM_MSB_SLOT_DEFAULT_CONFIG
• I2S_TDM_PCM_SHORT_SLOT_DEFAULT_CONFIG

Espressif Systems 970
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• I2S_TDM_PCM_LONG_SLOT_DEFAULT_CONFIG

The clock config helper macro is:
• I2S_TDM_CLK_DEFAULT_CONFIG

Please refer to TDM Mode for information about TDM API. And for more details, please refer to
driver/i2s/include/driver/i2s_tdm.h.

Note: Due to hardware limitation, when setting the clock configuration for a slave role, please be aware that
i2s_tdm_clk_config_t::bclk_div should not be smaller than 8. Increasing this field can reduce the lag-
ging of the data sent from the slave. In the high sample rate case, the data might lag behind for more than one BCLK
which will lead to data malposition. Users may gradually increase i2s_tdm_clk_config_t::bclk_div to
correct it.
As i2s_tdm_clk_config_t::bclk_div is the division of MCLK to BCLK, increasing it will also increase
the MCLK frequency. Therefore, the clock calculation may fail if MCLK is too high to divide from the source clock.
This means that a larger value for i2s_tdm_clk_config_t::bclk_div is not necessarily better.

TDM TXMode
#include "driver/i2s_tdm.h"
#include "driver/gpio.h"

/* Allocate an I2S TX channel */
i2s_chan_config_t chan_cfg = I2S_CHANNEL_DEFAULT_CONFIG(I2S_NUM_AUTO, I2S_ROLE_
↪→MASTER);
i2s_new_channel(&chan_cfg, &tx_handle, NULL);

/* Init the channel into TDM mode */
i2s_tdm_config_t tdm_cfg = {

.clk_cfg = I2S_TDM_CLK_DEFAULT_CONFIG(44100),

.slot_cfg = I2S_TDM_MSB_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_16BIT, I2S_SLOT_
↪→MODE_STEREO,

I2S_TDM_SLOT0 | I2S_TDM_SLOT1 | I2S_TDM_SLOT2 | I2S_TDM_SLOT3),
.gpio_cfg = {

.mclk = I2S_GPIO_UNUSED,

.bclk = GPIO_NUM_4,

.ws = GPIO_NUM_5,

.dout = GPIO_NUM_18,

.din = I2S_GPIO_UNUSED,

.invert_flags = {
.mclk_inv = false,
.bclk_inv = false,
.ws_inv = false,

},
},

};
i2s_channel_init_tdm_mode(tx_handle, &tdm_cfg);

...

TDM RX Mode
#include "driver/i2s_tdm.h"
#include "driver/gpio.h"

/* Set the channel mode to TDM */
i2s_chan_config_t chan_cfg = I2S_CHANNEL_CONFIG(I2S_ROLE_MASTER, I2S_COMM_MODE_TDM,
↪→ &i2s_pin);

(continues on next page)

Espressif Systems 971
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_tdm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
i2s_new_channel(&chan_cfg, NULL, &rx_handle);

/* Init the channel into TDM mode */
i2s_tdm_config_t tdm_cfg = {

.clk_cfg = I2S_TDM_CLK_DEFAULT_CONFIG(44100),

.slot_cfg = I2S_TDM_MSB_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_16BIT, I2S_SLOT_
↪→MODE_STEREO,

I2S_TDM_SLOT0 | I2S_TDM_SLOT1 | I2S_TDM_SLOT2 | I2S_TDM_SLOT3),
.gpio_cfg = {

.mclk = I2S_GPIO_UNUSED,

.bclk = GPIO_NUM_4,

.ws = GPIO_NUM_5,

.dout = I2S_GPIO_UNUSED,

.din = GPIO_NUM_18,

.invert_flags = {
.mclk_inv = false,
.bclk_inv = false,
.ws_inv = false,

},
},

};
i2s_channel_init_tdm_mode(rx_handle, &tdm_cfg);
...

Full-duplex Full-duplex mode registers TX and RX channel in an I2S port at the same time, and the channels
share the BCLK and WS signals. Currently, STD and TDM communication modes supports full-duplex mode in the
following way, but PDM full-duplex is not supported because due to different PDM TX and RX clocks.
Note that one handle can only stand for one channel. Therefore, it is still necessary to configure the slot and clock for
both TX and RX channels one by one.
There are two methods to allocate a pair of full-duplex channels:

1. Allocate both TX and RX handles in a single call of i2s_new_channel().

#include "driver/i2s_std.h"
#include "driver/gpio.h"

i2s_chan_handle_t tx_handle;
i2s_chan_handle_t rx_handle;

/* Allocate a pair of I2S channel */
i2s_chan_config_t chan_cfg = I2S_CHANNEL_DEFAULT_CONFIG(I2S_NUM_AUTO, I2S_ROLE_
↪→MASTER);
/* Allocate for TX and RX channel at the same time, then they will work in full-
↪→duplex mode */
i2s_new_channel(&chan_cfg, &tx_handle, &rx_handle);

/* Set the configurations for BOTH TWO channels, since TX and RX channel have to␣
↪→be same in full-duplex mode */
i2s_std_config_t std_cfg = {

.clk_cfg = I2S_STD_CLK_DEFAULT_CONFIG(32000),

.slot_cfg = I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_16BIT, I2S_
↪→SLOT_MODE_STEREO),

.gpio_cfg = {
.mclk = I2S_GPIO_UNUSED,
.bclk = GPIO_NUM_4,
.ws = GPIO_NUM_5,
.dout = GPIO_NUM_18,
.din = GPIO_NUM_19,
.invert_flags = {

(continues on next page)

Espressif Systems 972
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
.mclk_inv = false,
.bclk_inv = false,
.ws_inv = false,

},
},

};
i2s_channel_init_std_mode(tx_handle, &std_cfg);
i2s_channel_init_std_mode(rx_handle, &std_cfg);

i2s_channel_enable(tx_handle);
i2s_channel_enable(rx_handle);

...

2. Allocate TX and RX handles separately, and initialize them with the same configuration.

#include "driver/i2s_std.h"
#include "driver/gpio.h"

i2s_chan_handle_t tx_handle;
i2s_chan_handle_t rx_handle;

/* Allocate a pair of I2S channels on a same port */
i2s_chan_config_t chan_cfg = I2S_CHANNEL_DEFAULT_CONFIG(I2S_NUM_0, I2S_ROLE_
↪→MASTER);
/* Allocate for TX and RX channel separately, they are not full-duplex yet */
ESP_ERROR_CHECK(i2s_new_channel(&chan_cfg, &tx_handle, NULL));

/* Set the configurations for BOTH TWO channels, they will constitute in full-
↪→duplex mode automatically */
i2s_std_config_t std_cfg = {

.clk_cfg = I2S_STD_CLK_DEFAULT_CONFIG(32000),

.slot_cfg = I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_16BIT, I2S_
↪→SLOT_MODE_STEREO),

.gpio_cfg = {
.mclk = I2S_GPIO_UNUSED,
.bclk = GPIO_NUM_4,
.ws = GPIO_NUM_5,
.dout = GPIO_NUM_18,
.din = GPIO_NUM_19,
.invert_flags = {

.mclk_inv = false,

.bclk_inv = false,

.ws_inv = false,
},

},
};
ESP_ERROR_CHECK(i2s_channel_init_std_mode(tx_handle, &std_cfg));
ESP_ERROR_CHECK(i2s_channel_enable(tx_handle));
// ...
ESP_ERROR_CHECK(i2s_new_channel(&chan_cfg, NULL, &rx_handle));
ESP_ERROR_CHECK(i2s_channel_init_std_mode(rx_handle, &std_cfg));
ESP_ERROR_CHECK(i2s_channel_enable(rx_handle));

...

SimplexMode To allocate a channel in simplexmode, i2s_new_channel() should be called for each channel.
The clock and GPIO pins of TX/RX channel on ESP32-C6 are independent, so they can be configured with different
modes and clocks, and are able to coexist on the same I2S port in simplex mode. PDM duplex can be realized by
registering PDM TX simplex and PDM RX simplex on the same I2S port. But in this way, PDM TX/RX might work

Espressif Systems 973
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

with different clocks, so take care when configuring the GPIO pins and clocks.
The following example offers a use case for the simplex mode, but note that although the internal MCLK signals for
TX and RX channel are separate, the output MCLK can only be bound to one of them if they are from the same
controller. If MCLK has been initialized by both channels, it will be bound to the channel that initializes later.

#include "driver/i2s_std.h"
#include "driver/gpio.h"

i2s_chan_handle_t tx_handle;
i2s_chan_handle_t rx_handle;
i2s_chan_config_t chan_cfg = I2S_CHANNEL_DEFAULT_CONFIG(I2S_NUM_0, I2S_ROLE_
↪→MASTER);
ESP_ERROR_CHECK(i2s_new_channel(&chan_cfg, &tx_handle, NULL));
i2s_std_config_t std_tx_cfg = {

.clk_cfg = I2S_STD_CLK_DEFAULT_CONFIG(48000),

.slot_cfg = I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_16BIT, I2S_
↪→SLOT_MODE_STEREO),

.gpio_cfg = {
.mclk = GPIO_NUM_0,
.bclk = GPIO_NUM_4,
.ws = GPIO_NUM_5,
.dout = GPIO_NUM_18,
.din = I2S_GPIO_UNUSED,
.invert_flags = {

.mclk_inv = false,

.bclk_inv = false,

.ws_inv = false,
},

},
};
/* Initialize the channel */
ESP_ERROR_CHECK(i2s_channel_init_std_mode(tx_handle, &std_tx_cfg));
ESP_ERROR_CHECK(i2s_channel_enable(tx_handle));

/* RX channel will be registered on another I2S, if no other available I2S unit␣
↪→found
* it will return ESP_ERR_NOT_FOUND */

ESP_ERROR_CHECK(i2s_new_channel(&chan_cfg, NULL, &rx_handle)); // Both RX and TX␣
↪→channel will be registered on I2S0, but they can work with different␣
↪→configurations.
i2s_std_config_t std_rx_cfg = {

.clk_cfg = I2S_STD_CLK_DEFAULT_CONFIG(16000),

.slot_cfg = I2S_STD_MSB_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_32BIT, I2S_SLOT_
↪→MODE_STEREO),

.gpio_cfg = {
.mclk = I2S_GPIO_UNUSED,
.bclk = GPIO_NUM_6,
.ws = GPIO_NUM_7,
.dout = I2S_GPIO_UNUSED,
.din = GPIO_NUM_19,
.invert_flags = {

.mclk_inv = false,

.bclk_inv = false,

.ws_inv = false,
},

},
};
ESP_ERROR_CHECK(i2s_channel_init_std_mode(rx_handle, &std_rx_cfg));
ESP_ERROR_CHECK(i2s_channel_enable(rx_handle));

Espressif Systems 974
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Application Notes

How to Prevent Data Lost For applications that need a high frequency sample rate, the massive data throughput
may cause data lost. Users can receive data lost event by registering the ISR callback function to receive the event
queue:

static IRAM_ATTR bool i2s_rx_queue_overflow_callback(i2s_chan_handle_t␣
↪→handle, i2s_event_data_t *event, void *user_ctx)
{

// handle RX queue overflow event ...
return false;

}

i2s_event_callbacks_t cbs = {
.on_recv = NULL,
.on_recv_q_ovf = i2s_rx_queue_overflow_callback,
.on_sent = NULL,
.on_send_q_ovf = NULL,

};
TEST_ESP_OK(i2s_channel_register_event_callback(rx_handle, &cbs, NULL));

Please follow these steps to prevent data lost:
1. Determine the interrupt interval. Generally, when data lost happens, the bigger the interval, the better, which

helps to reduce the interrupt times. This means dma_frame_num should be as big as possible while the
DMA buffer size is below the maximum value of 4092. The relationships are:

interrupt_interval(unit: sec) = dma_frame_num / sample_rate
dma_buffer_size = dma_frame_num * slot_num * data_bit_width / 8 <= 4092

2. Determinedma_desc_num. dma_desc_num is decided by themaximum time ofi2s_channel_read
polling cycle. All the received data is supposed to be stored between two i2s_channel_read. This cycle
can be measured by a timer or an outputting GPIO signal. The relationship is:

dma_desc_num > polling_cycle / interrupt_interval

3. Determine the receiving buffer size. The receiving buffer offered by users in i2s_channel_read should
be able to take all the data in all DMA buffers, which means that it should be larger than the total size of all
the DMA buffers:

recv_buffer_size > dma_desc_num * dma_buffer_size

For example, if there is an I2S application, and the known values are:

sample_rate = 144000 Hz
data_bit_width = 32 bits
slot_num = 2
polling_cycle = 10 ms

Then the parameters dma_frame_num, dma_desc_num, and recv_buf_size can be calculated as follows:

dma_frame_num * slot_num * data_bit_width / 8 = dma_buffer_size <= 4092
dma_frame_num <= 511
interrupt_interval = dma_frame_num / sample_rate = 511 / 144000 = 0.003549 s = 3.
↪→549 ms
dma_desc_num > polling_cycle / interrupt_interval = cell(10 / 3.549) = cell(2.818)␣
↪→= 3
recv_buffer_size > dma_desc_num * dma_buffer_size = 3 * 4092 = 12276 bytes

API Reference

Standard Mode

Espressif Systems 975
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/driver/i2s/include/driver/i2s_std.h

Functions
esp_err_t i2s_channel_init_std_mode(i2s_chan_handle_t handle, const i2s_std_config_t *std_cfg)

Initialize i2s channel to standard mode.

Note: Only allowed to be called when the channel state is REGISTERED, (i.e., channel has been allocated,
but not initialized) and the state will be updated to READY if initialization success, otherwise the state will
return to REGISTERED.

Note: When initialize the STD mode with a same configuration as another channel on a same port, these two
channels can constitude as full-duplex mode automatically

Parameters
• handle -- [in] I2S channel handler
• std_cfg -- [in] Configurations for standard mode, including clock, slot
and gpio The clock configuration can be generated by the helper macro
I2S_STD_CLK_DEFAULT_CONFIG The slot configuration can be gener-
ated by the helper macro I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG,
I2S_STD_PCM_SLOT_DEFAULT_CONFIG orI2S_STD_MSB_SLOT_DEFAULT_CONFIG

Returns
• ESP_OK Initialize successfully
• ESP_ERR_NO_MEM No memory for storing the channel information
• ESP_ERR_INVALID_ARG NULL pointer or invalid configuration
• ESP_ERR_INVALID_STATE This channel is not registered

esp_err_t i2s_channel_reconfig_std_clock(i2s_chan_handle_t handle, const i2s_std_clk_config_t
*clk_cfg)

Reconfigure the I2S clock for standard mode.

Note: Only allowed to be called when the channel state is READY, i.e., channel has been initialized, but not
started this function won't change the state. 'i2s_channel_disable' should be called before calling this function
if i2s has started.

Note: The input channel handle has to be initialized to standard mode, i.e., 'i2s_channel_init_std_mode' has
been called before reconfiguring

Parameters
• handle -- [in] I2S channel handler
• clk_cfg -- [in] Standard mode clock configuration, can be generated by
I2S_STD_CLK_DEFAULT_CONFIG

Returns
• ESP_OK Set clock successfully
• ESP_ERR_INVALID_ARG NULL pointer, invalid configuration or not standard mode
• ESP_ERR_INVALID_STATE This channel is not initialized or not stopped

esp_err_t i2s_channel_reconfig_std_slot(i2s_chan_handle_t handle, const i2s_std_slot_config_t
*slot_cfg)

Reconfigure the I2S slot for standard mode.

Espressif Systems 976
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_std.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: Only allowed to be called when the channel state is READY, i.e., channel has been initialized, but not
started this function won't change the state. 'i2s_channel_disable' should be called before calling this function
if i2s has started.

Note: The input channel handle has to be initialized to standard mode, i.e., 'i2s_channel_init_std_mode' has
been called before reconfiguring

Parameters
• handle -- [in] I2S channel handler
• slot_cfg -- [in] Standard mode slot configuration, can be
generated by I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG,
I2S_STD_PCM_SLOT_DEFAULT_CONFIG andI2S_STD_MSB_SLOT_DEFAULT_CONFIG.

Returns
• ESP_OK Set clock successfully
• ESP_ERR_NO_MEM No memory for DMA buffer
• ESP_ERR_INVALID_ARG NULL pointer, invalid configuration or not standard mode
• ESP_ERR_INVALID_STATE This channel is not initialized or not stopped

esp_err_t i2s_channel_reconfig_std_gpio(i2s_chan_handle_t handle, const i2s_std_gpio_config_t
*gpio_cfg)

Reconfigure the I2S gpio for standard mode.

Note: Only allowed to be called when the channel state is READY, i.e., channel has been initialized, but not
started this function won't change the state. 'i2s_channel_disable' should be called before calling this function
if i2s has started.

Note: The input channel handle has to be initialized to standard mode, i.e., 'i2s_channel_init_std_mode' has
been called before reconfiguring

Parameters
• handle -- [in] I2S channel handler
• gpio_cfg -- [in] Standard mode gpio configuration, specified by user

Returns
• ESP_OK Set clock successfully
• ESP_ERR_INVALID_ARG NULL pointer, invalid configuration or not standard mode
• ESP_ERR_INVALID_STATE This channel is not initialized or not stopped

Structures

struct i2s_std_slot_config_t
I2S slot configuration for standard mode.

Public Members

i2s_data_bit_width_t data_bit_width

I2S sample data bit width (valid data bits per sample)

Espressif Systems 977
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

i2s_slot_bit_width_t slot_bit_width

I2S slot bit width (total bits per slot)

i2s_slot_mode_t slot_mode

Set mono or stereo mode with I2S_SLOT_MODE_MONO or I2S_SLOT_MODE_STEREO In TX di-
rection, mono means the written buffer contains only one slot data and stereo means the written buffer
contains both left and right data

i2s_std_slot_mask_t slot_mask

Select the left, right or both slot

uint32_t ws_width
WS signal width (i.e. the number of bclk ticks that ws signal is high)

bool ws_pol
WS signal polarity, set true to enable high lever first

bool bit_shift
Set to enable bit shift in Philips mode

bool left_align
Set to enable left alignment

bool big_endian
Set to enable big endian

bool bit_order_lsb
Set to enable lsb first

struct i2s_std_clk_config_t
I2S clock configuration for standard mode.

Public Members

uint32_t sample_rate_hz
I2S sample rate

i2s_clock_src_t clk_src

Choose clock source

i2s_mclk_multiple_t mclk_multiple

The multiple of mclk to the sample rate Default is 256 in the helper macro, it can satisfy most of cases,
but please set this field a multiple of '3' (like 384) when using 24-bit data width, otherwise the sample
rate might be inaccurate

struct i2s_std_gpio_config_t
I2S standard mode GPIO pins configuration.

Espressif Systems 978
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

gpio_num_t mclk

MCK pin, output

gpio_num_t bclk

BCK pin, input in slave role, output in master role

gpio_num_t ws

WS pin, input in slave role, output in master role

gpio_num_t dout

DATA pin, output

gpio_num_t din

DATA pin, input

uint32_t mclk_inv
Set 1 to invert the mclk output

uint32_t bclk_inv
Set 1 to invert the bclk input/output

uint32_t ws_inv
Set 1 to invert the ws input/output

struct i2s_std_gpio_config_t::[anonymous] invert_flags
GPIO pin invert flags

struct i2s_std_config_t
I2S standard mode major configuration that including clock/slot/gpio configuration.

Public Members

i2s_std_clk_config_t clk_cfg

Standard mode clock configuration, can be generated by macro I2S_STD_CLK_DEFAULT_CONFIG

i2s_std_slot_config_t slot_cfg

Standard mode slot configuration, can be generated by macros
I2S_STD_[mode]_SLOT_DEFAULT_CONFIG, [mode] can be replaced with PHILIPS/MSB/PCM

i2s_std_gpio_config_t gpio_cfg

Standard mode gpio configuration, specified by user

Macros
I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG(bits_per_sample, mono_or_stereo)

Philips format in 2 slots.
This file is specified for I2S standard communication mode Features:

Espressif Systems 979
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Philips/MSB/PCM are supported in standard mode
• Fixed to 2 slots

Parameters
• bits_per_sample -- i2s data bit width
• mono_or_stereo -- I2S_SLOT_MODE_MONO or I2S_SLOT_MODE_STEREO

I2S_STD_PCM_SLOT_DEFAULT_CONFIG(bits_per_sample, mono_or_stereo)
PCM(short) format in 2 slots.

Note: PCM(long) is same as philips in 2 slots

Parameters
• bits_per_sample -- i2s data bit width
• mono_or_stereo -- I2S_SLOT_MODE_MONO or I2S_SLOT_MODE_STEREO

I2S_STD_MSB_SLOT_DEFAULT_CONFIG(bits_per_sample, mono_or_stereo)
MSB format in 2 slots.

Parameters
• bits_per_sample -- i2s data bit width
• mono_or_stereo -- I2S_SLOT_MODE_MONO or I2S_SLOT_MODE_STEREO

I2S_STD_CLK_DEFAULT_CONFIG(rate)
i2s default standard clock configuration

Note: Please set the mclk_multiple to I2S_MCLK_MULTIPLE_384 while using 24 bits data width Other-
wise the sample rate might be imprecise since the bclk division is not a integer

Parameters
• rate -- sample rate

PDMMode

Header File
• components/driver/i2s/include/driver/i2s_pdm.h

Functions
esp_err_t i2s_channel_init_pdm_tx_mode(i2s_chan_handle_t handle, const i2s_pdm_tx_config_t

*pdm_tx_cfg)
Initialize i2s channel to PDM TX mode.

Note: Only allowed to be called when the channel state is REGISTERED, (i.e., channel has been allocated,
but not initialized) and the state will be updated to READY if initialization success, otherwise the state will
return to REGISTERED.

Parameters
• handle -- [in] I2S tx channel handler
• pdm_tx_cfg -- [in] Configurations for PDM TX mode, including clock,
slot and gpio The clock configuration can be generated by the helper macro
I2S_PDM_TX_CLK_DEFAULT_CONFIG The slot configuration can be generated by
the helper macro I2S_PDM_TX_SLOT_DEFAULT_CONFIG

Espressif Systems 980
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_pdm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK Initialize successfully
• ESP_ERR_NO_MEM No memory for storing the channel information
• ESP_ERR_INVALID_ARG NULL pointer or invalid configuration
• ESP_ERR_INVALID_STATE This channel is not registered

esp_err_t i2s_channel_reconfig_pdm_tx_clock(i2s_chan_handle_t handle, const
i2s_pdm_tx_clk_config_t *clk_cfg)

Reconfigure the I2S clock for PDM TX mode.

Note: Only allowed to be called when the channel state is READY, i.e., channel has been initialized, but not
started this function won't change the state. 'i2s_channel_disable' should be called before calling this function
if i2s has started.

Note: The input channel handle has to be initialized to PDMTXmode, i.e., 'i2s_channel_init_pdm_tx_mode'
has been called before reconfiguring

Parameters
• handle -- [in] I2S tx channel handler
• clk_cfg -- [in] PDM TX mode clock configuration, can be generated by
I2S_PDM_TX_CLK_DEFAULT_CONFIG

Returns
• ESP_OK Set clock successfully
• ESP_ERR_INVALID_ARG NULL pointer, invalid configuration or not PDM mode
• ESP_ERR_INVALID_STATE This channel is not initialized or not stopped

esp_err_t i2s_channel_reconfig_pdm_tx_slot(i2s_chan_handle_t handle, const
i2s_pdm_tx_slot_config_t *slot_cfg)

Reconfigure the I2S slot for PDM TX mode.

Note: Only allowed to be called when the channel state is READY, i.e., channel has been initialized, but not
started this function won't change the state. 'i2s_channel_disable' should be called before calling this function
if i2s has started.

Note: The input channel handle has to be initialized to PDMTXmode, i.e., 'i2s_channel_init_pdm_tx_mode'
has been called before reconfiguring

Parameters
• handle -- [in] I2S tx channel handler
• slot_cfg -- [in] PDM TX mode slot configuration, can be generated by
I2S_PDM_TX_SLOT_DEFAULT_CONFIG

Returns
• ESP_OK Set clock successfully
• ESP_ERR_NO_MEM No memory for DMA buffer
• ESP_ERR_INVALID_ARG NULL pointer, invalid configuration or not PDM mode
• ESP_ERR_INVALID_STATE This channel is not initialized or not stopped

esp_err_t i2s_channel_reconfig_pdm_tx_gpio(i2s_chan_handle_t handle, const
i2s_pdm_tx_gpio_config_t *gpio_cfg)

Reconfigure the I2S gpio for PDM TX mode.

Espressif Systems 981
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: Only allowed to be called when the channel state is READY, i.e., channel has been initialized, but not
started this function won't change the state. 'i2s_channel_disable' should be called before calling this function
if i2s has started.

Note: The input channel handle has to be initialized to PDMTXmode, i.e., 'i2s_channel_init_pdm_tx_mode'
has been called before reconfiguring

Parameters
• handle -- [in] I2S tx channel handler
• gpio_cfg -- [in] PDM TX mode gpio configuration, specified by user

Returns
• ESP_OK Set clock successfully
• ESP_ERR_INVALID_ARG NULL pointer, invalid configuration or not PDM mode
• ESP_ERR_INVALID_STATE This channel is not initialized or not stopped

Structures

struct i2s_pdm_tx_slot_config_t
I2S slot configuration for pdm tx mode.

Public Members

i2s_data_bit_width_t data_bit_width

I2S sample data bit width (valid data bits per sample), only support 16 bits for PDM mode

i2s_slot_bit_width_t slot_bit_width

I2S slot bit width (total bits per slot), only support 16 bits for PDM mode

i2s_slot_mode_t slot_mode

Set mono or stereo mode with I2S_SLOT_MODE_MONO or I2S_SLOT_MODE_STEREO For PDM
TX mode, mono means the data buffer only contains one slot data, Stereo means the data buffer contains
two slots data

uint32_t sd_prescale
Sigma-delta filter prescale

i2s_pdm_sig_scale_t sd_scale

Sigma-delta filter scaling value

i2s_pdm_sig_scale_t hp_scale

High pass filter scaling value

i2s_pdm_sig_scale_t lp_scale

Low pass filter scaling value

i2s_pdm_sig_scale_t sinc_scale

Sinc filter scaling value

Espressif Systems 982
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

i2s_pdm_tx_line_mode_t line_mode

PDM TX line mode, one-line codec, one-line dac, two-line dac mode can be selected

bool hp_en
High pass filter enable

float hp_cut_off_freq_hz
High pass filter cut-off frequency, range 23.3Hz ~ 185Hz, see cut-off frequency sheet above

uint32_t sd_dither
Sigma-delta filter dither

uint32_t sd_dither2
Sigma-delta filter dither2

struct i2s_pdm_tx_clk_config_t
I2S clock configuration for pdm tx mode.

Public Members

uint32_t sample_rate_hz
I2S sample rate, not suggest to exceed 48000 Hz, otherwise more glitches and noise may appear

i2s_clock_src_t clk_src

Choose clock source

i2s_mclk_multiple_t mclk_multiple

The multiple of mclk to the sample rate

uint32_t up_sample_fp
Up-sampling param fp

uint32_t up_sample_fs
Up-sampling param fs, not allowed to be greater than 480

struct i2s_pdm_tx_gpio_config_t
I2S PDM tx mode GPIO pins configuration.

Public Members

gpio_num_t clk

PDM clk pin, output

gpio_num_t dout

DATA pin, output

Espressif Systems 983
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

gpio_num_t dout2

The second data pin for the DAC dual-line mode, only take effect when the line mode is
I2S_PDM_TX_TWO_LINE_DAC

uint32_t clk_inv
Set 1 to invert the clk output

struct i2s_pdm_tx_gpio_config_t::[anonymous] invert_flags
GPIO pin invert flags

struct i2s_pdm_tx_config_t
I2S PDM TX mode major configuration that including clock/slot/gpio configuration.

Public Members

i2s_pdm_tx_clk_config_t clk_cfg

PDM TX clock configurations, can be generated by macro I2S_PDM_TX_CLK_DEFAULT_CONFIG

i2s_pdm_tx_slot_config_t slot_cfg

PDM TX slot configurations, can be generated by macro I2S_PDM_TX_SLOT_DEFAULT_CONFIG

i2s_pdm_tx_gpio_config_t gpio_cfg

PDM TX gpio configurations, specified by user

Macros
I2S_PDM_TX_SLOT_DEFAULT_CONFIG(bits_per_sample, mono_or_stereo)

PDM style in 2 slots(TX)
This file is specified for I2S PDM communication mode Features:

• Only support PDM tx/rx mode
• Fixed to 2 slots
• Data bit width only support 16 bits

Parameters
• bits_per_sample -- i2s data bit width, only support 16 bits for PDM mode
• mono_or_stereo -- I2S_SLOT_MODE_MONO or I2S_SLOT_MODE_STEREO

I2S_PDM_TX_CLK_DEFAULT_CONFIG(rate)
i2s default pdm tx clock configuration

Note: TX PDM can only be set to the following two up-sampling rate configurations: 1: fp = 960, fs =
sample_rate_hz / 100, in this case, Fpdm = 128*48000 2: fp = 960, fs = 480, in this case, Fpdm = 128*Fpcm
= 128*sample_rate_hz If the pdm receiver do not care the pdm serial clock, it's recommended set Fpdm =
128*48000. Otherwise, the second configuration should be adopted.

Parameters
• rate -- sample rate (not suggest to exceed 48000 Hz, otherwise more glitches and noise
may appear)

TDMMode

Espressif Systems 984
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/driver/i2s/include/driver/i2s_tdm.h

Functions
esp_err_t i2s_channel_init_tdm_mode(i2s_chan_handle_t handle, const i2s_tdm_config_t *tdm_cfg)

Initialize i2s channel to TDM mode.

Note: Only allowed to be called when the channel state is REGISTERED, (i.e., channel has been allocated,
but not initialized) and the state will be updated to READY if initialization success, otherwise the state will
return to REGISTERED.

Note: When initialize the TDMmode with a same configuration as another channel on a same port, these two
channels can constitude as full-duplex mode automatically

Parameters
• handle -- [in] I2S channel handler
• tdm_cfg -- [in] Configurations for TDM mode, including clock, slot
and gpio The clock configuration can be generated by the helper macro
I2S_TDM_CLK_DEFAULT_CONFIG The slot configuration can be gener-
ated by the helper macro I2S_TDM_PHILIPS_SLOT_DEFAULT_CONFIG,
I2S_TDM_PCM_SHORT_SLOT_DEFAULT_CONFIG,
I2S_TDM_PCM_LONG_SLOT_DEFAULT_CONFIG or
I2S_TDM_MSB_SLOT_DEFAULT_CONFIG

Returns
• ESP_OK Initialize successfully
• ESP_ERR_NO_MEM No memory for storing the channel information
• ESP_ERR_INVALID_ARG NULL pointer or invalid configuration
• ESP_ERR_INVALID_STATE This channel is not registered

esp_err_t i2s_channel_reconfig_tdm_clock(i2s_chan_handle_t handle, const i2s_tdm_clk_config_t
*clk_cfg)

Reconfigure the I2S clock for TDM mode.

Note: Only allowed to be called when the channel state is READY, i.e., channel has been initialized, but not
started this function won't change the state. 'i2s_channel_disable' should be called before calling this function
if i2s has started.

Note: The input channel handle has to be initialized to TDM mode, i.e., 'i2s_channel_init_tdm_mode' has
been called before reconfiguring

Parameters
• handle -- [in] I2S channel handler
• clk_cfg -- [in] Standard mode clock configuration, can be generated by
I2S_TDM_CLK_DEFAULT_CONFIG

Returns
• ESP_OK Set clock successfully
• ESP_ERR_INVALID_ARG NULL pointer, invalid configuration or not TDM mode
• ESP_ERR_INVALID_STATE This channel is not initialized or not stopped

Espressif Systems 985
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_tdm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t i2s_channel_reconfig_tdm_slot(i2s_chan_handle_t handle, const i2s_tdm_slot_config_t
*slot_cfg)

Reconfigure the I2S slot for TDM mode.

Note: Only allowed to be called when the channel state is READY, i.e., channel has been initialized, but not
started this function won't change the state. 'i2s_channel_disable' should be called before calling this function
if i2s has started.

Note: The input channel handle has to be initialized to TDM mode, i.e., 'i2s_channel_init_tdm_mode' has
been called before reconfiguring

Parameters
• handle -- [in] I2S channel handler
• slot_cfg -- [in] Standard mode slot configuration, can be
generated by I2S_TDM_PHILIPS_SLOT_DEFAULT_CONFIG,
I2S_TDM_PCM_SHORT_SLOT_DEFAULT_CONFIG,
I2S_TDM_PCM_LONG_SLOT_DEFAULT_CONFIG or
I2S_TDM_MSB_SLOT_DEFAULT_CONFIG.

Returns
• ESP_OK Set clock successfully
• ESP_ERR_NO_MEM No memory for DMA buffer
• ESP_ERR_INVALID_ARG NULL pointer, invalid configuration or not TDM mode
• ESP_ERR_INVALID_STATE This channel is not initialized or not stopped

esp_err_t i2s_channel_reconfig_tdm_gpio(i2s_chan_handle_t handle, const i2s_tdm_gpio_config_t
*gpio_cfg)

Reconfigure the I2S gpio for TDM mode.

Note: Only allowed to be called when the channel state is READY, i.e., channel has been initialized, but not
started this function won't change the state. 'i2s_channel_disable' should be called before calling this function
if i2s has started.

Note: The input channel handle has to be initialized to TDM mode, i.e., 'i2s_channel_init_tdm_mode' has
been called before reconfiguring

Parameters
• handle -- [in] I2S channel handler
• gpio_cfg -- [in] Standard mode gpio configuration, specified by user

Returns
• ESP_OK Set clock successfully
• ESP_ERR_INVALID_ARG NULL pointer, invalid configuration or not TDM mode
• ESP_ERR_INVALID_STATE This channel is not initialized or not stopped

Structures

struct i2s_tdm_slot_config_t
I2S slot configuration for tdm mode.

Public Members

Espressif Systems 986
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

i2s_data_bit_width_t data_bit_width

I2S sample data bit width (valid data bits per sample)

i2s_slot_bit_width_t slot_bit_width

I2S slot bit width (total bits per slot)

i2s_slot_mode_t slot_mode

Set mono or stereo mode with I2S_SLOT_MODE_MONO or I2S_SLOT_MODE_STEREO

i2s_tdm_slot_mask_t slot_mask

Slot mask. Activating slots by setting 1 to corresponding bits. When the activated slots is not consecutive,
those data in inactivated slots will be ignored

uint32_t ws_width
WS signal width (i.e. the number of bclk ticks that ws signal is high)

bool ws_pol
WS signal polarity, set true to enable high lever first

bool bit_shift
Set true to enable bit shift in Philips mode

bool left_align
Set true to enable left alignment

bool big_endian
Set true to enable big endian

bool bit_order_lsb
Set true to enable lsb first

bool skip_mask
Set true to enable skip mask. If it is enabled, only the data of the enabled channels will be sent, otherwise
all data stored in DMA TX buffer will be sent

uint32_t total_slot
I2S total number of slots. If it is smaller than the biggest activated channel number, it will be set to this
number automatically.

struct i2s_tdm_clk_config_t
I2S clock configuration for tdm mode.

Public Members

uint32_t sample_rate_hz
I2S sample rate

i2s_clock_src_t clk_src

Choose clock source

Espressif Systems 987
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

i2s_mclk_multiple_t mclk_multiple

The multiple of mclk to the sample rate, only take effect for master role

uint32_t bclk_div
The division from mclk to bclk, only take effect for slave role, it shouldn't be smaller than 8. Increase
this field when data sent by slave lag behind

struct i2s_tdm_gpio_config_t
I2S TDM mode GPIO pins configuration.

Public Members

gpio_num_t mclk

MCK pin, output

gpio_num_t bclk

BCK pin, input in slave role, output in master role

gpio_num_t ws

WS pin, input in slave role, output in master role

gpio_num_t dout

DATA pin, output

gpio_num_t din

DATA pin, input

uint32_t mclk_inv
Set 1 to invert the mclk output

uint32_t bclk_inv
Set 1 to invert the bclk input/output

uint32_t ws_inv
Set 1 to invert the ws input/output

struct i2s_tdm_gpio_config_t::[anonymous] invert_flags
GPIO pin invert flags

struct i2s_tdm_config_t
I2S TDM mode major configuration that including clock/slot/gpio configuration.

Public Members

i2s_tdm_clk_config_t clk_cfg

TDM mode clock configuration, can be generated by macro I2S_TDM_CLK_DEFAULT_CONFIG

Espressif Systems 988
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

i2s_tdm_slot_config_t slot_cfg

TDMmode slot configuration, can be generated bymacros I2S_TDM_[mode]_SLOT_DEFAULT_CONFIG,
[mode] can be replaced with PHILIPS/MSB/PCM_SHORT/PCM_LONG

i2s_tdm_gpio_config_t gpio_cfg

TDM mode gpio configuration, specified by user

Macros

I2S_TDM_AUTO_SLOT_NUM

This file is specified for I2S TDM communication mode Features:
• More than 2 slots

I2S_TDM_AUTO_WS_WIDTH

I2S_TDM_PHILIPS_SLOT_DEFAULT_CONFIG(bits_per_sample, mono_or_stereo, mask)
Philips format in active slot that enabled by mask.

Parameters
• bits_per_sample -- i2s data bit width
• mono_or_stereo -- I2S_SLOT_MODE_MONO or I2S_SLOT_MODE_STEREO
• mask -- active slot mask

I2S_TDM_MSB_SLOT_DEFAULT_CONFIG(bits_per_sample, mono_or_stereo, mask)
MSB format in active slot enabled that by mask.

Parameters
• bits_per_sample -- i2s data bit width
• mono_or_stereo -- I2S_SLOT_MODE_MONO or I2S_SLOT_MODE_STEREO
• mask -- active slot mask

I2S_TDM_PCM_SHORT_SLOT_DEFAULT_CONFIG(bits_per_sample, mono_or_stereo, mask)
PCM(short) format in active slot that enabled by mask.

Parameters
• bits_per_sample -- i2s data bit width
• mono_or_stereo -- I2S_SLOT_MODE_MONO or I2S_SLOT_MODE_STEREO
• mask -- active slot mask

I2S_TDM_PCM_LONG_SLOT_DEFAULT_CONFIG(bits_per_sample, mono_or_stereo, mask)
PCM(long) format in active slot that enabled by mask.

Parameters
• bits_per_sample -- i2s data bit width
• mono_or_stereo -- I2S_SLOT_MODE_MONO or I2S_SLOT_MODE_STEREO
• mask -- active slot mask

I2S_TDM_CLK_DEFAULT_CONFIG(rate)
i2s default tdm clock configuration

Note: Please set the mclk_multiple to I2S_MCLK_MULTIPLE_384 while the data width in slot configura-
tion is set to 24 bits Otherwise the sample rate might be imprecise since the bclk division is not a integer

Parameters
• rate -- sample rate

I2S Driver

Espressif Systems 989
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/driver/i2s/include/driver/i2s_common.h

Functions
esp_err_t i2s_new_channel(const i2s_chan_config_t *chan_cfg, i2s_chan_handle_t *ret_tx_handle,

i2s_chan_handle_t *ret_rx_handle)
Allocate new I2S channel(s)

Note: The new created I2S channel handle will be REGISTERED state after it is allocated successfully.

Note: When the port id in channel configuration is I2S_NUM_AUTO, driver will allocate I2S port auto-
matically on one of the i2s controller, otherwise driver will try to allocate the new channel on the selected
port.

Note: If both tx_handle and rx_handle are not NULL, it means this I2S controller will work at full-duplex
mode, the rx and tx channels will be allocated on a same I2S port in this case. Note that some configurations
of tx/rx channel are shared on ESP32 and ESP32S2, so please make sure they are working at same condi-
tion and under same status(start/stop). Currently, full-duplex mode can't guarantee tx/rx channels write/read
synchronously, they can only share the clock signals for now.

Note: If tx_handle OR rx_handle is NULL, it means this I2S controller will work at simplex mode. For
ESP32 and ESP32S2, the whole I2S controller (i.e. both rx and tx channel) will be occupied, even if only one
of rx or tx channel is registered. For the other targets, another channel on this controller will still available.

Parameters
• chan_cfg -- [in] I2S controller channel configurations
• ret_tx_handle -- [out] I2S channel handler used for managing the sending chan-
nel(optional)

• ret_rx_handle -- [out] I2S channel handler used for managing the receiving chan-
nel(optional)

Returns
• ESP_OK Allocate new channel(s) success
• ESP_ERR_NOT_SUPPORTED The communication mode is not supported on the cur-
rent chip

• ESP_ERR_INVALID_ARG NULL pointer or illegal parameter in i2s_chan_config_t
• ESP_ERR_NOT_FOUND No available I2S channel found

esp_err_t i2s_del_channel(i2s_chan_handle_t handle)
Delete the i2s channel.

Note: Only allowed to be called when the i2s channel is at REGISTERED or READY state (i.e., it should
stop before deleting it).

Note: Resource will be free automatically if all channels in one port are deleted

Parameters handle -- [in] I2S channel handler
• ESP_OK Delete successfully
• ESP_ERR_INVALID_ARG NULL pointer

Espressif Systems 990
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_common.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t i2s_channel_get_info(i2s_chan_handle_t handle, i2s_chan_info_t *chan_info)
Get I2S channel information.

Parameters
• handle -- [in] I2S channel handler
• chan_info -- [out] I2S channel basic information

Returns
• ESP_OK Get i2s channel information success
• ESP_ERR_NOT_FOUND The input handle doesn't match any registered I2S channels,
it may not an i2s channel handle or not available any more

• ESP_ERR_INVALID_ARG The input handle or chan_info pointer is NULL
esp_err_t i2s_channel_enable(i2s_chan_handle_t handle)

Enable the i2s channel.

Note: Only allowed to be called when the channel state is READY, (i.e., channel has been initialized, but not
started) the channel will enter RUNNING state once it is enabled successfully.

Note: Enable the channel can start the I2S communication on hardware. It will start outputting bclk and ws
signal. For mclk signal, it will start to output when initialization is finished

Parameters handle -- [in] I2S channel handler
• ESP_OK Start successfully
• ESP_ERR_INVALID_ARG NULL pointer
• ESP_ERR_INVALID_STATE This channel has not initialized or already started

esp_err_t i2s_channel_disable(i2s_chan_handle_t handle)
Disable the i2s channel.

Note: Only allowed to be called when the channel state is RUNNING, (i.e., channel has been started) the
channel will enter READY state once it is disabled successfully.

Note: Disable the channel can stop the I2S communication on hardware. It will stop bclk and ws signal but
not mclk signal

Parameters handle -- [in] I2S channel handler
Returns

• ESP_OK Stop successfully
• ESP_ERR_INVALID_ARG NULL pointer
• ESP_ERR_INVALID_STATE This channel has not stated

esp_err_t i2s_channel_preload_data(i2s_chan_handle_t tx_handle, const void *src, size_t size, size_t
*bytes_loaded)

Preload the data into TX DMA buffer.

Note: Only allowed to be called when the channel state is READY, (i.e., channel has been initialized, but not
started)

Note: As the initial DMA buffer has no data inside, it will transmit the empty buffer after enabled the
channel, this function is used to preload the data into the DMA buffer, so that the valid data can be transmitted

Espressif Systems 991
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

immediately after the channel is enabled.

Note: This function can be called multiple times before enabling the channel, the buffer that loaded later will
be concatenated behind the former loaded buffer. But when all the DMA buffers have been loaded, no more
data can be preload then, please check the bytes_loaded parameter to see how many bytes are loaded
successfully, when the bytes_loaded is smaller than the size, it means the DMA buffers are full.

Parameters
• tx_handle -- [in] I2S TX channel handler
• src -- [in] The pointer of the source buffer to be loaded
• size -- [in] The source buffer size
• bytes_loaded -- [out] The bytes that successfully been loaded into the TX DMA
buffer

Returns
• ESP_OK Load data successful
• ESP_FAIL Failed to push the message queue
• ESP_ERR_INVALID_ARG NULL pointer or not TX direction
• ESP_ERR_INVALID_STATE This channel has not stated

esp_err_t i2s_channel_write(i2s_chan_handle_t handle, const void *src, size_t size, size_t *bytes_written,
uint32_t timeout_ms)

I2S write data.

Note: Only allowed to be called when the channel state is RUNNING, (i.e., tx channel has been started and
is not writing now) but the RUNNING only stands for the software state, it doesn't mean there is no the signal
transporting on line.

Parameters
• handle -- [in] I2S channel handler
• src -- [in] The pointer of sent data buffer
• size -- [in]Max data buffer length
• bytes_written -- [out]Byte number that actually be sent, can be NULL if not needed
• timeout_ms -- [in]Max block time

Returns
• ESP_OK Write successfully
• ESP_ERR_INVALID_ARG NULL pointer or this handle is not tx handle
• ESP_ERR_TIMEOUT Writing timeout, no writing event received from ISR within
ticks_to_wait

• ESP_ERR_INVALID_STATE I2S is not ready to write

esp_err_t i2s_channel_read(i2s_chan_handle_t handle, void *dest, size_t size, size_t *bytes_read, uint32_t
timeout_ms)

I2S read data.

Note: Only allowed to be called when the channel state is RUNNING but the RUNNING only stands for the
software state, it doesn't mean there is no the signal transporting on line.

Parameters
• handle -- [in] I2S channel handler
• dest -- [in] The pointer of receiving data buffer
• size -- [in]Max data buffer length
• bytes_read -- [out] Byte number that actually be read, can be NULL if not needed

Espressif Systems 992
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• timeout_ms -- [in]Max block time
Returns

• ESP_OK Read successfully
• ESP_ERR_INVALID_ARG NULL pointer or this handle is not rx handle
• ESP_ERR_TIMEOUT Reading timeout, no reading event received from ISR within
ticks_to_wait

• ESP_ERR_INVALID_STATE I2S is not ready to read

esp_err_t i2s_channel_register_event_callback(i2s_chan_handle_t handle, const
i2s_event_callbacks_t *callbacks, void
*user_data)

Set event callbacks for I2S channel.

Note: Only allowed to be called when the channel state is REGISTERED / READY, (i.e., before channel
starts)

Note: User can deregister a previously registered callback by calling this function and setting the callback
member in the callbacks structure to NULL.

Note: When CONFIG_I2S_ISR_IRAM_SAFE is enabled, the callback itself and functions called by it should
be placed in IRAM. The variables used in the function should be in the SRAM as well. The user_data
should also reside in SRAM or internal RAM as well.

Parameters
• handle -- [in] I2S channel handler
• callbacks -- [in] Group of callback functions
• user_data -- [in] User data, which will be passed to callback functions directly

Returns
• ESP_OK Set event callbacks successfully
• ESP_ERR_INVALID_ARG Set event callbacks failed because of invalid argument
• ESP_ERR_INVALID_STATE Set event callbacks failed because the current channel state
is not REGISTERED or READY

Structures

struct i2s_event_callbacks_t
Group of I2S callbacks.

Note: The callbacks are all running under ISR environment

Note: When CONFIG_I2S_ISR_IRAM_SAFE is enabled, the callback itself and functions called by it should
be placed in IRAM. The variables used in the function should be in the SRAM as well.

Public Members

i2s_isr_callback_t on_recv

Callback of data received event, only for rx channel The event data includes DMA buffer address and
size that just finished receiving data

Espressif Systems 993
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

i2s_isr_callback_t on_recv_q_ovf

Callback of receiving queue overflowed event, only for rx channel The event data includes buffer size that
has been overwritten

i2s_isr_callback_t on_sent

Callback of data sent event, only for tx channel The event data includes DMA buffer address and size
that just finished sending data

i2s_isr_callback_t on_send_q_ovf

Callback of sending queue overflowed event, only for tx channel The event data includes buffer size that
has been overwritten

struct i2s_chan_config_t
I2S controller channel configuration.

Public Members

i2s_port_t id

I2S port id

i2s_role_t role

I2S role, I2S_ROLE_MASTER or I2S_ROLE_SLAVE

uint32_t dma_desc_num
I2S DMA buffer number, it is also the number of DMA descriptor

uint32_t dma_frame_num
I2S frame number in one DMA buffer. One frame means one-time sample data in all slots, it should be
the multiple of '3' when the data bit width is 24.

bool auto_clear
Set to auto clear DMA TX buffer, i2s will always send zero automatically if no data to send

struct i2s_chan_info_t
I2S channel information.

Public Members

i2s_port_t id

I2S port id

i2s_role_t role

I2S role, I2S_ROLE_MASTER or I2S_ROLE_SLAVE

i2s_dir_t dir

I2S channel direction

Espressif Systems 994
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

i2s_comm_mode_t mode

I2S channel communication mode

i2s_chan_handle_t pair_chan

I2S pair channel handle in duplex mode, always NULL in simplex mode

Macros
I2S_CHANNEL_DEFAULT_CONFIG(i2s_num, i2s_role)

get default I2S property

I2S_GPIO_UNUSED

Used in i2s_gpio_config_t for signals which are not used

I2S Types

Header File
• components/driver/i2s/include/driver/i2s_types.h

Structures

struct i2s_event_data_t
Event structure used in I2S event queue.

Public Members

void *data
The pointer of DMA buffer that just finished sending or receiving for on_recv and on_sent callback
NULL for on_recv_q_ovf and on_send_q_ovf callback

size_t size
The buffer size of DMA buffer when success to send or receive, also the buffer size that dropped when
queue overflow. It is related to the dma_frame_num and data_bit_width, typically it is fixed when
data_bit_width is not changed.

Type Definitions

typedef struct i2s_channel_obj_t *i2s_chan_handle_t
i2s channel object handle, the control unit of the i2s driver

typedef bool (*i2s_isr_callback_t)(i2s_chan_handle_t handle, i2s_event_data_t *event, void *user_ctx)
I2S event callback.

Param handle [in] I2S channel handle, created from i2s_new_channel()
Param event [in] I2S event data
Param user_ctx [in] User registered context, passed from

i2s_channel_register_event_callback()
Return Whether a high priority task has been waken up by this callback function

Espressif Systems 995
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enumerations

enum i2s_port_t

I2S controller port number, the max port number is (SOC_I2S_NUM -1).
Values:

enumerator I2S_NUM_0
I2S controller port 0

enumerator I2S_NUM_AUTO
Select whichever port is available

enum i2s_comm_mode_t

I2S controller communication mode.
Values:

enumerator I2S_COMM_MODE_STD
I2S controller using standard communication mode, support philips/MSB/PCM format

enumerator I2S_COMM_MODE_PDM
I2S controller using PDM communication mode, support PDM output or input

enumerator I2S_COMM_MODE_TDM
I2S controller using TDM communication mode, support up to 16 slots per frame

enumerator I2S_COMM_MODE_NONE
Unspecified I2S controller mode

enum i2s_mclk_multiple_t

The multiple of mclk to sample rate.
Values:

enumerator I2S_MCLK_MULTIPLE_128
mclk = sample_rate * 128

enumerator I2S_MCLK_MULTIPLE_256
mclk = sample_rate * 256

enumerator I2S_MCLK_MULTIPLE_384
mclk = sample_rate * 384

enumerator I2S_MCLK_MULTIPLE_512
mclk = sample_rate * 512

Header File
• components/hal/include/hal/i2s_types.h

Espressif Systems 996
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/i2s_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef soc_periph_i2s_clk_src_t i2s_clock_src_t
I2S clock source

Enumerations

enum i2s_slot_mode_t

I2S channel slot mode.
Values:

enumerator I2S_SLOT_MODE_MONO
I2S channel slot format mono, transmit same data in all slots for tx mode, only receive the data in the first
slots for rx mode.

enumerator I2S_SLOT_MODE_STEREO
I2S channel slot format stereo, transmit different data in different slots for tx mode, receive the data in
all slots for rx mode.

enum i2s_dir_t

I2S channel direction.
Values:

enumerator I2S_DIR_RX
I2S channel direction RX

enumerator I2S_DIR_TX
I2S channel direction TX

enum i2s_role_t

I2S controller role.
Values:

enumerator I2S_ROLE_MASTER
I2S controller master role, bclk and ws signal will be set to output

enumerator I2S_ROLE_SLAVE
I2S controller slave role, bclk and ws signal will be set to input

enum i2s_data_bit_width_t

Available data bit width in one slot.
Values:

enumerator I2S_DATA_BIT_WIDTH_8BIT
I2S channel data bit-width: 8

enumerator I2S_DATA_BIT_WIDTH_16BIT
I2S channel data bit-width: 16

Espressif Systems 997
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator I2S_DATA_BIT_WIDTH_24BIT
I2S channel data bit-width: 24

enumerator I2S_DATA_BIT_WIDTH_32BIT
I2S channel data bit-width: 32

enum i2s_slot_bit_width_t

Total slot bit width in one slot.
Values:

enumerator I2S_SLOT_BIT_WIDTH_AUTO
I2S channel slot bit-width equals to data bit-width

enumerator I2S_SLOT_BIT_WIDTH_8BIT
I2S channel slot bit-width: 8

enumerator I2S_SLOT_BIT_WIDTH_16BIT
I2S channel slot bit-width: 16

enumerator I2S_SLOT_BIT_WIDTH_24BIT
I2S channel slot bit-width: 24

enumerator I2S_SLOT_BIT_WIDTH_32BIT
I2S channel slot bit-width: 32

enum i2s_pcm_compress_t

A/U-law decompress or compress configuration.
Values:

enumerator I2S_PCM_DISABLE
Disable A/U law decompress or compress

enumerator I2S_PCM_A_DECOMPRESS
A-law decompress

enumerator I2S_PCM_A_COMPRESS
A-law compress

enumerator I2S_PCM_U_DECOMPRESS
U-law decompress

enumerator I2S_PCM_U_COMPRESS
U-law compress

enum i2s_pdm_sig_scale_t

pdm tx singnal scaling mode
Values:

Espressif Systems 998
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator I2S_PDM_SIG_SCALING_DIV_2
I2S TX PDM signal scaling: /2

enumerator I2S_PDM_SIG_SCALING_MUL_1
I2S TX PDM signal scaling: x1

enumerator I2S_PDM_SIG_SCALING_MUL_2
I2S TX PDM signal scaling: x2

enumerator I2S_PDM_SIG_SCALING_MUL_4
I2S TX PDM signal scaling: x4

enum i2s_pdm_tx_line_mode_t

PDM TX line mode.

Note: For the standard codec mode, PDM pins are connect to a codec which requires both clock signal and
data signal For the DAC output mode, PDM data signal can be connected to a power amplifier directly with a
low-pass filter, normally, DAC output mode doesn't need the clock signal.

Values:

enumerator I2S_PDM_TX_ONE_LINE_CODEC
Standard PDM format output, left and right slot data on a single line

enumerator I2S_PDM_TX_ONE_LINE_DAC
PDM DAC format output, left or right slot data on a single line

enumerator I2S_PDM_TX_TWO_LINE_DAC
PDM DAC format output, left and right slot data on separated lines

enum i2s_std_slot_mask_t

I2S slot select in standard mode.

Note: It has different meanings in tx/rx/mono/stereo mode, and it may have differen behaviors on different
targets For the details, please refer to the I2S API reference

Values:

enumerator I2S_STD_SLOT_LEFT
I2S transmits or receives left slot

enumerator I2S_STD_SLOT_RIGHT
I2S transmits or receives right slot

enumerator I2S_STD_SLOT_BOTH
I2S transmits or receives both left and right slot

Espressif Systems 999
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum i2s_pdm_slot_mask_t

I2S slot select in PDM mode.
Values:

enumerator I2S_PDM_SLOT_RIGHT
I2S PDM only transmits or receives the PDM device whose 'select' pin is pulled up

enumerator I2S_PDM_SLOT_LEFT
I2S PDM only transmits or receives the PDM device whose 'select' pin is pulled down

enumerator I2S_PDM_SLOT_BOTH
I2S PDM transmits or receives both two slots

enum i2s_tdm_slot_mask_t

tdm slot number

Note: Multiple slots in TDM mode. For TX module, only the active slot send the audio data, the inactive slot
send a constant or will be skipped if 'skip_msk' is set. For RX module, only receive the audio data in active
slots, the data in inactive slots will be ignored. the bit map of active slot can not exceed (0x1<<total_slot_num).
e.g: slot_mask = (I2S_TDM_SLOT0 | I2S_TDM_SLOT3), here the active slot number is 2 and total_slot is
not supposed to be smaller than 4.

Values:

enumerator I2S_TDM_SLOT0
I2S slot 0 enabled

enumerator I2S_TDM_SLOT1
I2S slot 1 enabled

enumerator I2S_TDM_SLOT2
I2S slot 2 enabled

enumerator I2S_TDM_SLOT3
I2S slot 3 enabled

enumerator I2S_TDM_SLOT4
I2S slot 4 enabled

enumerator I2S_TDM_SLOT5
I2S slot 5 enabled

enumerator I2S_TDM_SLOT6
I2S slot 6 enabled

enumerator I2S_TDM_SLOT7
I2S slot 7 enabled

Espressif Systems 1000
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator I2S_TDM_SLOT8
I2S slot 8 enabled

enumerator I2S_TDM_SLOT9
I2S slot 9 enabled

enumerator I2S_TDM_SLOT10
I2S slot 10 enabled

enumerator I2S_TDM_SLOT11
I2S slot 11 enabled

enumerator I2S_TDM_SLOT12
I2S slot 12 enabled

enumerator I2S_TDM_SLOT13
I2S slot 13 enabled

enumerator I2S_TDM_SLOT14
I2S slot 14 enabled

enumerator I2S_TDM_SLOT15
I2S slot 15 enabled

2.6.13 LCD

Introduction

ESP chips can generate various kinds of timings that needed by common LCDs on the market, like SPI LCD, I80
LCD (a.k.a Intel 8080 parallel LCD), RGB/SRGB LCD, I2C LCD, etc. The esp_lcd component is officially to
support those LCDs with a group of universal APIs across chips.

Functional Overview

In esp_lcd, an LCD panel is represented by esp_lcd_panel_handle_t, which plays the role of an abstract
frame buffer, regardless of the frame memory is allocated inside ESP chip or in external LCD controller. Based on
the location of the frame buffer and the hardware connection interface, the LCD panel drivers are mainly grouped
into the following categories:

• Controller based LCD driver involves multiple steps to get a panel handle, like bus allocation, IO device regis-
tration and controller driver install. The frame buffer is located in the controller's internal GRAM (Graphical
RAM). ESP-IDF provides only a limited number of LCD controller drivers out of the box (e.g., ST7789,
SSD1306), More Controller Based LCD Drivers are maintained in the Espressif Component Registry.

• SPI Interfaced LCD describes the steps to install the SPI LCD IO driver and then get the panel handle.
• I2C Interfaced LCD describes the steps to install the I2C LCD IO driver and then get the panel handle.
• LCD Panel IO Operations - provides a set of APIs to operate the LCD panel, like turning on/off the display,
setting the orientation, etc. These operations are common for either controller-based LCD panel driver or RGB
LCD panel driver.

Espressif Systems 1001
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://components.espressif.com/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SPI Interfaced LCD

1. Create an SPI bus. Please refer to SPI Master API doc for more details.

spi_bus_config_t buscfg = {
.sclk_io_num = EXAMPLE_PIN_NUM_SCLK,
.mosi_io_num = EXAMPLE_PIN_NUM_MOSI,
.miso_io_num = EXAMPLE_PIN_NUM_MISO,
.quadwp_io_num = -1, // Quad SPI LCD driver is not yet supported
.quadhd_io_num = -1, // Quad SPI LCD driver is not yet supported
.max_transfer_sz = EXAMPLE_LCD_H_RES * 80 * sizeof(uint16_t), //␣

↪→transfer 80 lines of pixels (assume pixel is RGB565) at most in one␣
↪→SPI transaction
};
ESP_ERROR_CHECK(spi_bus_initialize(LCD_HOST, &buscfg, SPI_DMA_CH_
↪→AUTO)); // Enable the DMA feature

2. Allocate an LCD IO device handle from the SPI bus. In this step, you need to provide the following information:
• esp_lcd_panel_io_spi_config_t::dc_gpio_num: Sets the gpio number for the
DC signal line (some LCD calls this RS line). The LCD driver will use this GPIO to switch
between sending command and sending data.

• esp_lcd_panel_io_spi_config_t::cs_gpio_num: Sets the gpio number for the
CS signal line. The LCD driver will use this GPIO to select the LCD chip. If the SPI bus only
has one device attached (i.e. this LCD), you can set the gpio number to -1 to occupy the bus
exclusively.

• esp_lcd_panel_io_spi_config_t::pclk_hz sets the frequency of the pixel
clock, in Hz. The value should not exceed the range recommended in the LCD spec.

• esp_lcd_panel_io_spi_config_t::spi_mode sets the SPI mode. The LCD
driver will use this mode to communicate with the LCD. For the meaning of the SPI mode,
please refer to the SPI Master API doc.

• esp_lcd_panel_io_spi_config_t::lcd_cmd_bits and
esp_lcd_panel_io_spi_config_t::lcd_param_bits set the bit width of
the command and parameter that recognized by the LCD controller chip. This is chip specific,
you should refer to your LCD spec in advance.

• esp_lcd_panel_io_spi_config_t::trans_queue_depth sets the depth of
the SPI transaction queue. A bigger value means more transactions can be queued up, but
it also consumes more memory.

esp_lcd_panel_io_handle_t io_handle = NULL;
esp_lcd_panel_io_spi_config_t io_config = {

.dc_gpio_num = EXAMPLE_PIN_NUM_LCD_DC,

.cs_gpio_num = EXAMPLE_PIN_NUM_LCD_CS,

.pclk_hz = EXAMPLE_LCD_PIXEL_CLOCK_HZ,

.lcd_cmd_bits = EXAMPLE_LCD_CMD_BITS,

.lcd_param_bits = EXAMPLE_LCD_PARAM_BITS,

.spi_mode = 0,

.trans_queue_depth = 10,
};
// Attach the LCD to the SPI bus
ESP_ERROR_CHECK(esp_lcd_new_panel_io_spi((esp_lcd_spi_bus_handle_t)LCD_
↪→HOST, &io_config, &io_handle));

3. Install the LCD controller driver. The LCD controller driver is responsible for sending the commands and
parameters to the LCD controller chip. In this step, you need to specify the SPI IO device handle that allocated
in the last step, and some panel specific configurations:

• esp_lcd_panel_dev_config_t::reset_gpio_num sets the LCD's hardware re-
set GPIO number. If the LCD does not have a hardware reset pin, set this to -1.

• esp_lcd_panel_dev_config_t::rgb_ele_order sets the R-G-B element order
of each color data.

• esp_lcd_panel_dev_config_t::bits_per_pixel sets the bit width of the pixel
color data. The LCD driver uses this value to calculate the number of bytes to send to the LCD
controller chip.

Espressif Systems 1002
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• esp_lcd_panel_dev_config_t::data_endian specifies the data endian to be
transmitted to the screen. No need to specify for color data within 1 byte, like RGB232.
For drivers that do not support specifying data endian, this field would be ignored.

esp_lcd_panel_handle_t panel_handle = NULL;
esp_lcd_panel_dev_config_t panel_config = {

.reset_gpio_num = EXAMPLE_PIN_NUM_RST,

.rgb_ele_order = LCD_RGB_ELEMENT_ORDER_BGR,

.bits_per_pixel = 16,
};
// Create LCD panel handle for ST7789, with the SPI IO device handle
ESP_ERROR_CHECK(esp_lcd_new_panel_st7789(io_handle, &panel_config, &
↪→panel_handle));

I2C Interfaced LCD

1. Create I2C bus. Please refer to I2C API doc for more details.

i2c_config_t i2c_conf = {
.mode = I2C_MODE_MASTER, // I2C LCD is a master node
.sda_io_num = EXAMPLE_PIN_NUM_SDA,
.scl_io_num = EXAMPLE_PIN_NUM_SCL,
.sda_pullup_en = GPIO_PULLUP_ENABLE,
.scl_pullup_en = GPIO_PULLUP_ENABLE,
.master.clk_speed = EXAMPLE_LCD_PIXEL_CLOCK_HZ,

};
ESP_ERROR_CHECK(i2c_param_config(I2C_HOST, &i2c_conf));
ESP_ERROR_CHECK(i2c_driver_install(I2C_HOST, I2C_MODE_MASTER, 0, 0,␣
↪→0));

2. Allocate an LCD IO device handle from the I2C bus. In this step, you need to provide the following information:
• esp_lcd_panel_io_i2c_config_t::dev_addr sets the I2C device address of the
LCD controller chip. The LCD driver will use this address to communicate with the LCD
controller chip.

• esp_lcd_panel_io_i2c_config_t::lcd_cmd_bits and
esp_lcd_panel_io_i2c_config_t::lcd_param_bits set the bit width of
the command and parameter that recognized by the LCD controller chip. This is chip specific,
you should refer to your LCD spec in advance.

esp_lcd_panel_io_handle_t io_handle = NULL;
esp_lcd_panel_io_i2c_config_t io_config = {

.dev_addr = EXAMPLE_I2C_HW_ADDR,

.control_phase_bytes = 1, // refer to LCD spec

.dc_bit_offset = 6, // refer to LCD spec

.lcd_cmd_bits = EXAMPLE_LCD_CMD_BITS,

.lcd_param_bits = EXAMPLE_LCD_CMD_BITS,
};
ESP_ERROR_CHECK(esp_lcd_new_panel_io_i2c((esp_lcd_i2c_bus_handle_t)I2C_
↪→HOST, &io_config, &io_handle));

3. Install the LCD controller driver. The LCD controller driver is responsible for sending the commands and
parameters to the LCD controller chip. In this step, you need to specify the I2C IO device handle that allocated
in the last step, and some panel specific configurations:

• esp_lcd_panel_dev_config_t::reset_gpio_num sets the LCD's hardware re-
set GPIO number. If the LCD does not have a hardware reset pin, set this to -1.

• esp_lcd_panel_dev_config_t::bits_per_pixel sets the bit width of the pixel
color data. The LCD driver will use this value to calculate the number of bytes to send to the
LCD controller chip.

esp_lcd_panel_handle_t panel_handle = NULL;
esp_lcd_panel_dev_config_t panel_config = {

(continues on next page)

Espressif Systems 1003
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
.bits_per_pixel = 1,
.reset_gpio_num = EXAMPLE_PIN_NUM_RST,

};
ESP_ERROR_CHECK(esp_lcd_new_panel_ssd1306(io_handle, &panel_config, &
↪→panel_handle));

More Controller Based LCD Drivers

More LCD panel drivers and touch drivers are available in IDF Component Registry. The list of available and planned
drivers with links is in this table.

LCD Panel IO Operations

• esp_lcd_panel_reset() can reset the LCD panel.
• Useesp_lcd_panel_swap_xy() andesp_lcd_panel_mirror(), you can rotate the LCD screen.
• esp_lcd_panel_disp_on_off() can turn on or off the LCD screen (different from LCD backlight).
• esp_lcd_panel_draw_bitmap() is the most significant function, that will do the magic to draw the
user provided color buffer to the LCD screen, where the draw window is also configurable.

Application Example

LCD examples are located under: peripherals/lcd:

• Universal SPI LCD example with SPI touch - peripherals/lcd/spi_lcd_touch
• Jpeg decoding and LCD display - peripherals/lcd/tjpgd
• I2C interfaced OLED display scrolling text - peripherals/lcd/i2c_oled

API Reference

Header File
• components/hal/include/hal/lcd_types.h

Enumerations

enum lcd_rgb_element_order_t

RGB color endian.
Values:

enumerator LCD_RGB_ELEMENT_ORDER_RGB
RGB element order: RGB

enumerator LCD_RGB_ELEMENT_ORDER_BGR
RGB element order: BGR

enum lcd_rgb_data_endian_t

RGB data endian.
Values:

Espressif Systems 1004
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://components.espressif.com/search/lcd
https://github.com/espressif/esp-bsp/blob/master/LCD.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/lcd
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/lcd/spi_lcd_touch
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/lcd/tjpgd
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/lcd/i2c_oled
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/lcd_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator LCD_RGB_DATA_ENDIAN_BIG
RGB data endian: MSB first

enumerator LCD_RGB_DATA_ENDIAN_LITTLE
RGB data endian: LSB first

enum lcd_color_space_t

LCD color space.
Values:

enumerator LCD_COLOR_SPACE_RGB
Color space: RGB

enumerator LCD_COLOR_SPACE_YUV
Color space: YUV

enum lcd_color_range_t

LCD color range.
Values:

enumerator LCD_COLOR_RANGE_LIMIT
Limited color range

enumerator LCD_COLOR_RANGE_FULL
Full color range

enum lcd_yuv_sample_t

YUV sampling method.
Values:

enumerator LCD_YUV_SAMPLE_422
YUV 4:2:2 sampling

enumerator LCD_YUV_SAMPLE_420
YUV 4:2:0 sampling

enumerator LCD_YUV_SAMPLE_411
YUV 4:1:1 sampling

enum lcd_yuv_conv_std_t

The standard used for conversion between RGB and YUV.
Values:

enumerator LCD_YUV_CONV_STD_BT601
YUV<->RGB conversion standard: BT.601

enumerator LCD_YUV_CONV_STD_BT709
YUV<->RGB conversion standard: BT.709

Espressif Systems 1005
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/esp_lcd/include/esp_lcd_types.h

Type Definitions

typedef struct esp_lcd_panel_io_t *esp_lcd_panel_io_handle_t
Type of LCD panel IO handle

typedef struct esp_lcd_panel_t *esp_lcd_panel_handle_t
Type of LCD panel handle

Header File
• components/esp_lcd/include/esp_lcd_panel_io.h

Functions
esp_err_t esp_lcd_panel_io_rx_param(esp_lcd_panel_io_handle_t io, int lcd_cmd, void *param, size_t

param_size)
Transmit LCD command and receive corresponding parameters.

Note: Commands sent by this function are short, so they are sent using polling transactions. The
function does not return before the command transfer is completed. If any queued transactions sent by
esp_lcd_panel_io_tx_color() are still pending when this function is called, this function will wait
until they are finished and the queue is empty before sending the command(s).

Parameters
• io -- [in] LCD panel IO handle, which is created by other factory API like
esp_lcd_new_panel_io_spi()

• lcd_cmd -- [in] The specific LCD command, set to -1 if no command needed
• param -- [out] Buffer for the command data
• param_size -- [in] Size of param buffer

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_NOT_SUPPORTED if read is not supported by transport
• ESP_OK on success

esp_err_t esp_lcd_panel_io_tx_param(esp_lcd_panel_io_handle_t io, int lcd_cmd, const void *param,
size_t param_size)

Transmit LCD command and corresponding parameters.

Note: Commands sent by this function are short, so they are sent using polling transactions. The
function does not return before the command transfer is completed. If any queued transactions sent by
esp_lcd_panel_io_tx_color() are still pending when this function is called, this function will wait
until they are finished and the queue is empty before sending the command(s).

Parameters
• io -- [in] LCD panel IO handle, which is created by other factory API like
esp_lcd_new_panel_io_spi()

• lcd_cmd -- [in] The specific LCD command, set to -1 if no command needed
• param -- [in] Buffer that holds the command specific parameters, set to NULL if no
parameter is needed for the command

• param_size -- [in] Size of param in memory, in bytes, set to zero if no parameter is
needed for the command

Espressif Systems 1006
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_lcd/include/esp_lcd_types.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_lcd/include/esp_lcd_panel_io.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_OK on success

esp_err_t esp_lcd_panel_io_tx_color(esp_lcd_panel_io_handle_t io, int lcd_cmd, const void *color,
size_t color_size)

Transmit LCD RGB data.

Note: This function will package the command and RGB data into a transaction, and push into a queue. The
real transmission is performed in the background (DMA+interrupt). The caller should take care of the lifecycle
of thecolor buffer. Recycling of color buffer should be done in the callbackon_color_trans_done().

Parameters
• io -- [in] LCD panel IO handle, which is created by factory API like
esp_lcd_new_panel_io_spi()

• lcd_cmd -- [in] The specific LCD command, set to -1 if no command needed
• color -- [in] Buffer that holds the RGB color data
• color_size -- [in] Size of color in memory, in bytes

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_OK on success

esp_err_t esp_lcd_panel_io_del(esp_lcd_panel_io_handle_t io)
Destroy LCD panel IO handle (deinitialize panel and free all corresponding resource)

Parameters io -- [in] LCD panel IO handle, which is created by factory API like
esp_lcd_new_panel_io_spi()

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_OK on success

esp_err_t esp_lcd_panel_io_register_event_callbacks(esp_lcd_panel_io_handle_t io, const
esp_lcd_panel_io_callbacks_t *cbs, void
*user_ctx)

Register LCD panel IO callbacks.
Parameters

• io -- [in] LCD panel IO handle, which is created by factory API like
esp_lcd_new_panel_io_spi()

• cbs -- [in] structure with all LCD panel IO callbacks
• user_ctx -- [in] User private data, passed directly to callback's user_ctx

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_OK on success

esp_err_t esp_lcd_new_panel_io_spi(esp_lcd_spi_bus_handle_t bus, const esp_lcd_panel_io_spi_config_t
*io_config, esp_lcd_panel_io_handle_t *ret_io)

Create LCD panel IO handle, for SPI interface.
Parameters

• bus -- [in] SPI bus handle
• io_config -- [in] IO configuration, for SPI interface
• ret_io -- [out] Returned IO handle

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_NO_MEM if out of memory
• ESP_OK on success

Espressif Systems 1007
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_lcd_new_panel_io_i2c(esp_lcd_i2c_bus_handle_t bus, const
esp_lcd_panel_io_i2c_config_t *io_config,
esp_lcd_panel_io_handle_t *ret_io)

Create LCD panel IO handle, for I2C interface.
Parameters

• bus -- [in] I2C bus handle
• io_config -- [in] IO configuration, for I2C interface
• ret_io -- [out] Returned IO handle

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_NO_MEM if out of memory
• ESP_OK on success

Structures

struct esp_lcd_panel_io_event_data_t
Type of LCD panel IO event data.

struct esp_lcd_panel_io_callbacks_t
Type of LCD panel IO callbacks.

Public Members

esp_lcd_panel_io_color_trans_done_cb_t on_color_trans_done

Callback invoked when color data transfer has finished

struct esp_lcd_panel_io_spi_config_t
Panel IO configuration structure, for SPI interface.

Public Members

int cs_gpio_num
GPIO used for CS line

int dc_gpio_num
GPIO used to select the D/C line, set this to -1 if the D/C line is not used

int spi_mode
Traditional SPI mode (0~3)

unsigned int pclk_hz
Frequency of pixel clock

size_t trans_queue_depth
Size of internal transaction queue

esp_lcd_panel_io_color_trans_done_cb_t on_color_trans_done

Callback invoked when color data transfer has finished

Espressif Systems 1008
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void *user_ctx
User private data, passed directly to on_color_trans_done's user_ctx

int lcd_cmd_bits
Bit-width of LCD command

int lcd_param_bits
Bit-width of LCD parameter

unsigned int dc_high_on_cmd
If enabled, DC level = 1 indicates command transfer

unsigned int dc_low_on_data
If enabled, DC level = 0 indicates color data transfer

unsigned int dc_low_on_param
If enabled, DC level = 0 indicates parameter transfer

unsigned int octal_mode
transmit with octal mode (8 data lines), this mode is used to simulate Intel 8080 timing

unsigned int quad_mode
transmit with quad mode (4 data lines), this mode is useful when transmitting LCD parameters (Only use
one line for command)

unsigned int sio_mode
Read and write through a single data line (MOSI)

unsigned int lsb_first
transmit LSB bit first

unsigned int cs_high_active
CS line is high active

struct esp_lcd_panel_io_spi_config_t::[anonymous] flags
Extra flags to fine-tune the SPI device

struct esp_lcd_panel_io_i2c_config_t
Panel IO configuration structure, for I2C interface.

Public Members

uint32_t dev_addr
I2C device address

esp_lcd_panel_io_color_trans_done_cb_t on_color_trans_done

Callback invoked when color data transfer has finished

Espressif Systems 1009
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void *user_ctx
User private data, passed directly to on_color_trans_done's user_ctx

size_t control_phase_bytes
I2C LCD panel will encode control information (e.g. D/C selection) into control phase, in several bytes

unsigned int dc_bit_offset
Offset of the D/C selection bit in control phase

int lcd_cmd_bits
Bit-width of LCD command

int lcd_param_bits
Bit-width of LCD parameter

unsigned int dc_low_on_data
If this flag is enabled, DC line = 0 means transfer data, DC line = 1 means transfer command; vice versa

unsigned int disable_control_phase
If this flag is enabled, the control phase isn't used

struct esp_lcd_panel_io_i2c_config_t::[anonymous] flags
Extra flags to fine-tune the I2C device

Type Definitions

typedef void *esp_lcd_spi_bus_handle_t
Type of LCD SPI bus handle

typedef void *esp_lcd_i2c_bus_handle_t
Type of LCD I2C bus handle

typedef struct esp_lcd_i80_bus_t *esp_lcd_i80_bus_handle_t
Type of LCD intel 8080 bus handle

typedef bool (*esp_lcd_panel_io_color_trans_done_cb_t)(esp_lcd_panel_io_handle_t panel_io,
esp_lcd_panel_io_event_data_t *edata, void *user_ctx)

Declare the prototype of the function that will be invoked when panel IO finishes transferring color data.
Param panel_io [in] LCD panel IO handle, which is created by factory API like

esp_lcd_new_panel_io_spi()
Param edata [in] Panel IO event data, fed by driver
Param user_ctx [in] User data, passed from esp_lcd_panel_io_xxx_config_t
Return Whether a high priority task has been waken up by this function

Header File
• components/esp_lcd/include/esp_lcd_panel_ops.h

Espressif Systems 1010
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_lcd/include/esp_lcd_panel_ops.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_err_t esp_lcd_panel_reset(esp_lcd_panel_handle_t panel)

Reset LCD panel.

Note: Panel reset must be called before attempting to initialize the panel using esp_lcd_panel_init().

Parameters panel -- [in] LCD panel handle, which is created by other factory API like
esp_lcd_new_panel_st7789()

Returns
• ESP_OK on success

esp_err_t esp_lcd_panel_init(esp_lcd_panel_handle_t panel)
Initialize LCD panel.

Note: Before calling this function, make sure the LCD panel has finished the reset stage by
esp_lcd_panel_reset().

Parameters panel -- [in] LCD panel handle, which is created by other factory API like
esp_lcd_new_panel_st7789()

Returns
• ESP_OK on success

esp_err_t esp_lcd_panel_del(esp_lcd_panel_handle_t panel)
Deinitialize the LCD panel.

Parameters panel -- [in] LCD panel handle, which is created by other factory API like
esp_lcd_new_panel_st7789()

Returns
• ESP_OK on success

esp_err_t esp_lcd_panel_draw_bitmap(esp_lcd_panel_handle_t panel, int x_start, int y_start, int x_end,
int y_end, const void *color_data)

Draw bitmap on LCD panel.
Parameters

• panel -- [in] LCD panel handle, which is created by other factory API like
esp_lcd_new_panel_st7789()

• x_start -- [in] Start index on x-axis (x_start included)
• y_start -- [in] Start index on y-axis (y_start included)
• x_end -- [in] End index on x-axis (x_end not included)
• y_end -- [in] End index on y-axis (y_end not included)
• color_data -- [in] RGB color data that will be dumped to the specific window range

Returns
• ESP_OK on success

esp_err_t esp_lcd_panel_mirror(esp_lcd_panel_handle_t panel, bool mirror_x, bool mirror_y)
Mirror the LCD panel on specific axis.

Note: Combined with esp_lcd_panel_swap_xy(), one can realize screen rotation

Parameters
• panel -- [in] LCD panel handle, which is created by other factory API like
esp_lcd_new_panel_st7789()

• mirror_x -- [in]Whether the panel will be mirrored about the x axis
• mirror_y -- [in]Whether the panel will be mirrored about the y axis

Espressif Systems 1011
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK on success
• ESP_ERR_NOT_SUPPORTED if this function is not supported by the panel

esp_err_t esp_lcd_panel_swap_xy(esp_lcd_panel_handle_t panel, bool swap_axes)
Swap/Exchange x and y axis.

Note: Combined with esp_lcd_panel_mirror(), one can realize screen rotation

Parameters
• panel -- [in] LCD panel handle, which is created by other factory API like
esp_lcd_new_panel_st7789()

• swap_axes -- [in]Whether to swap the x and y axis
Returns

• ESP_OK on success
• ESP_ERR_NOT_SUPPORTED if this function is not supported by the panel

esp_err_t esp_lcd_panel_set_gap(esp_lcd_panel_handle_t panel, int x_gap, int y_gap)
Set extra gap in x and y axis.
The gap is the space (in pixels) between the left/top sides of the LCD panel and the first row/column respectively
of the actual contents displayed.

Note: Setting a gap is useful when positioning or centering a frame that is smaller than the LCD.

Parameters
• panel -- [in] LCD panel handle, which is created by other factory API like
esp_lcd_new_panel_st7789()

• x_gap -- [in] Extra gap on x axis, in pixels
• y_gap -- [in] Extra gap on y axis, in pixels

Returns
• ESP_OK on success

esp_err_t esp_lcd_panel_invert_color(esp_lcd_panel_handle_t panel, bool invert_color_data)
Invert the color (bit-wise invert the color data line)

Parameters
• panel -- [in] LCD panel handle, which is created by other factory API like
esp_lcd_new_panel_st7789()

• invert_color_data -- [in]Whether to invert the color data
Returns

• ESP_OK on success
esp_err_t esp_lcd_panel_disp_on_off(esp_lcd_panel_handle_t panel, bool on_off)

Turn on or off the display.
Parameters

• panel -- [in] LCD panel handle, which is created by other factory API like
esp_lcd_new_panel_st7789()

• on_off -- [in] True to turns on display, False to turns off display
Returns

• ESP_OK on success
• ESP_ERR_NOT_SUPPORTED if this function is not supported by the panel

esp_err_t esp_lcd_panel_disp_off(esp_lcd_panel_handle_t panel, bool off)
Turn off the display.

Espressif Systems 1012
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• panel -- [in] LCD panel handle, which is created by other factory API like
esp_lcd_new_panel_st7789()

• off -- [in]Whether to turn off the screen
Returns

• ESP_OK on success
• ESP_ERR_NOT_SUPPORTED if this function is not supported by the panel

Header File
• components/esp_lcd/include/esp_lcd_panel_rgb.h

Header File
• components/esp_lcd/include/esp_lcd_panel_vendor.h

Functions
esp_err_t esp_lcd_new_panel_st7789(const esp_lcd_panel_io_handle_t io, const

esp_lcd_panel_dev_config_t *panel_dev_config,
esp_lcd_panel_handle_t *ret_panel)

Create LCD panel for model ST7789.
Parameters

• io -- [in] LCD panel IO handle
• panel_dev_config -- [in] general panel device configuration
• ret_panel -- [out] Returned LCD panel handle

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_NO_MEM if out of memory
• ESP_OK on success

esp_err_t esp_lcd_new_panel_nt35510(const esp_lcd_panel_io_handle_t io, const
esp_lcd_panel_dev_config_t *panel_dev_config,
esp_lcd_panel_handle_t *ret_panel)

Create LCD panel for model NT35510.
Parameters

• io -- [in] LCD panel IO handle
• panel_dev_config -- [in] general panel device configuration
• ret_panel -- [out] Returned LCD panel handle

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_NO_MEM if out of memory
• ESP_OK on success

esp_err_t esp_lcd_new_panel_ssd1306(const esp_lcd_panel_io_handle_t io, const
esp_lcd_panel_dev_config_t *panel_dev_config,
esp_lcd_panel_handle_t *ret_panel)

Create LCD panel for model SSD1306.
Parameters

• io -- [in] LCD panel IO handle
• panel_dev_config -- [in] general panel device configuration
• ret_panel -- [out] Returned LCD panel handle

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_NO_MEM if out of memory
• ESP_OK on success

Espressif Systems 1013
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_lcd/include/esp_lcd_panel_rgb.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_lcd/include/esp_lcd_panel_vendor.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Structures

struct esp_lcd_panel_dev_config_t
Configuration structure for panel device.

Public Members

int reset_gpio_num
GPIO used to reset the LCD panel, set to -1 if it's not used

esp_lcd_color_space_t color_space

Deprecated:

Set RGB color space, please use rgb_ele_order instead

lcd_color_rgb_endian_t rgb_endian

Deprecated:
Set RGB data endian, please use rgb_ele_order instead

lcd_rgb_element_order_t rgb_ele_order

Set RGB element order, RGB or BGR

lcd_rgb_data_endian_t data_endian

Set the data endian for color data larger than 1 byte

unsigned int bits_per_pixel
Color depth, in bpp

unsigned int reset_active_high
Setting this if the panel reset is high level active

struct esp_lcd_panel_dev_config_t::[anonymous] flags
LCD panel config flags

void *vendor_config
vendor specific configuration, optional, left as NULL if not used

2.6.14 LED Control (LEDC)

Introduction

The LED control (LEDC) peripheral is primarily designed to control the intensity of LEDs, although it can also be
used to generate PWM signals for other purposes. It has 6 channels which can generate independent waveforms that
can be used, for example, to drive RGB LED devices.
The PWM controller can automatically increase or decrease the duty cycle gradually, allowing for fades without any
processor interference.

Espressif Systems 1014
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functionality Overview

Setting up a channel of the LEDC is done in three steps. Note that unlike ESP32, ESP32-C6 only supports configuring
channels in "low speed" mode.

1. Timer Configuration by specifying the PWM signal's frequency and duty cycle resolution.
2. Channel Configuration by associating it with the timer and GPIO to output the PWM signal.
3. Change PWM Signal that drives the output in order to change LED's intensity. This can be done under the full

control of software or with hardware fading functions.
As an optional step, it is also possible to set up an interrupt on fade end.

Fig. 10: Key Settings of LED PWM Controller's API

Note: For an initial setup, it is recommended to configure for the timers first (by calling
ledc_timer_config()), and then for the channels (by calling ledc_channel_config()). This
ensures the PWM frequency is at the desired value since the appearance of the PWM signal from the IO pad.

Timer Configuration Setting the timer is done by calling the function ledc_timer_config() and passing
the data structure ledc_timer_config_t that contains the following configuration settings:

• Speed mode (value must be LEDC_LOW_SPEED_MODE)
• Timer number ledc_timer_t
• PWM signal frequency
• Resolution of PWM duty
• Source clock ledc_clk_cfg_t

The frequency and the duty resolution are interdependent. The higher the PWM frequency, the lower the duty
resolution which is available, and vice versa. This relationship might be important if you are planning to use this API
for purposes other than changing the intensity of LEDs. For more details, see Section Supported Range of Frequency
and Duty Resolutions.
The source clock can also limit the PWM frequency. The higher the source clock frequency, the higher the maximum
PWM frequency can be configured.

Espressif Systems 1015
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Table 4: Characteristics of ESP32-C6 LEDC source clocks
Clock name Clock freq Clock capabilities
PLL_80M_CLK 80 MHz /
RC_FAST_CLK ~20 MHz Dynamic Frequency Scaling compatible, Light sleep

compatible
XTAL_CLK 40 MHz Dynamic Frequency Scaling compatible

Note:
1. On ESP32-C6, if RC_FAST_CLK is chosen as the LEDC clock source, an internal calibration will be per-

formed to get the exact frequency of the clock. This ensures the accuracy of output PWM signal frequency.
2. For ESP32-C6, all timers share one clock source. In other words, it is impossible to use different clock sources

for different timers.

Channel Configuration When the timer is set up, configure the desired channel (one out of ledc_channel_t).
This is done by calling the function ledc_channel_config().
Similar to the timer configuration, the channel setup function should be passed a structure
ledc_channel_config_t that contains the channel's configuration parameters.
At this point, the channel should start operating and generating the PWM signal on the selected GPIO, as configured
in ledc_channel_config_t, with the frequency specified in the timer settings and the given duty cycle. The
channel operation (signal generation) can be suspended at any time by calling the function ledc_stop().

Change PWM Signal Once the channel starts operating and generating the PWM signal with the constant duty
cycle and frequency, there are a couple of ways to change this signal. When driving LEDs, primarily the duty cycle
is changed to vary the light intensity.
The following two sections describe how to change the duty cycle using software and hardware fading. If required,
the signal's frequency can also be changed; it is covered in Section Change PWM Frequency.

Note: All the timers and channels in the ESP32-C6's LED PWM Controller only support low speed mode. Any
change of PWM settings must be explicitly triggered by software (see below).

Change PWM Duty Cycle Using Software To set the duty cycle, use the dedicated function
ledc_set_duty(). After that, call ledc_update_duty() to activate the changes. To check the
currently set value, use the corresponding _get_ function ledc_get_duty().
Another way to set the duty cycle, as well as some other channel parameters, is by calling
ledc_channel_config() covered in Section Channel Configuration.
The range of the duty cycle values passed to functions depends on selected duty_resolution and should be
from 0 to (2 ** duty_resolution). For example, if the selected duty resolution is 10, then the duty cycle
values can range from 0 to 1024. This provides the resolution of ~ 0.1%.

Warning: On ESP32-C6, when channel's binded timer selects its maximum duty resolution, the duty cycle
value cannot be set to (2 ** duty_resolution). Otherwise, the internal duty counter in the hardware
will overflow and be messed up.

Espressif Systems 1016
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Change PWMDuty Cycle using Hardware The LEDC hardware provides the means to gradually transition from
one duty cycle value to another. To use this functionality, enable fading with ledc_fade_func_install()
and then configure it by calling one of the available fading functions:

• ledc_set_fade_with_time()
• ledc_set_fade_with_step()
• ledc_set_fade()

On ESP32-C6, the hardware additionally allows to perform up to 16 consecutive linear fades without CPU interven-
tion. This feature can be useful if you want to do a fade with gamma correction.
The luminance perceived by human eyes does not have a linear relationship with the PWMduty cycle. In order tomake
human feel the LED is dimming or lightening linearly, the change in duty cycle should be non-linear, which is the so-
called gamma correction. The LED controller can simulate a gamma curve fading by piecewise linear approximation.
ledc_fill_multi_fade_param_list() is a function that can help to construct the parameters for the
piecewise linear fades. First, you need to allocate a memory block for saving the fade parameters, then by providing
start/end PWM duty cycle values, gamma correction function, and the total number of desired linear segments to
the helper function, it will fill the calculation results into the allocated space. You can also construct the array of
ledc_fade_param_config_t manually. Once the fade parameter structs are prepared, a consecutive fading
can be configured by passing the pointer to the preparedledc_fade_param_config_t list and the total number
of fade ranges to ledc_set_multi_fade().
Start fading with ledc_fade_start(). A fade can be operated in blocking or non-blocking mode, please check
ledc_fade_mode_t for the difference between the two available fade modes. Note that with either fade mode,
the next fade or fixed-duty update will not take effect until the last fade finishes or is stopped. ledc_fade_stop()
has to be called to stop a fade that is in progress.
To get a notification about the completion of a fade operation, a fade end callback function can be registered for each
channel by calling ledc_cb_register() after the fade service being installed. The fade end callback prototype
is defined in ledc_cb_t, where you should return a boolean value from the callback function, indicating whether a
high priority task is woken up by this callback function. It is worth mentioning, the callback and the function invoked
by itself should be placed in IRAM, as the interrupt service routine is in IRAM. ledc_cb_register()will print
a warning message if it finds the addresses of callback and user context are incorrect.
If not required anymore, fading and an associated interrupt can be disabled with
ledc_fade_func_uninstall().

Change PWM Frequency The LEDC API provides several ways to change the PWM frequency "on the fly":
• Set the frequency by calling ledc_set_freq(). There is a corresponding function ledc_get_freq()
to check the current frequency.

• Change the frequency and the duty resolution by calling ledc_bind_channel_timer() to bind some
other timer to the channel.

• Change the channel's timer by calling ledc_channel_config().

More Control Over PWM There are several individual timer-specific functions that can be used to change PWM
output:

• ledc_timer_set()
• ledc_timer_rst()
• ledc_timer_pause()
• ledc_timer_resume()

The first two functions are called "behind the scenes" by ledc_timer_config() to provide a startup of a timer
after it is configured.

Use Interrupts When configuring an LEDC channel, one of the parameters selected within
ledc_channel_config_t is ledc_intr_type_t which triggers an interrupt on fade completion.
For registration of a handler to address this interrupt, call ledc_isr_register().

Espressif Systems 1017
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Supported Range of Frequency and Duty Resolutions

The LED PWM Controller is designed primarily to drive LEDs. It provides a large flexibility of PWM duty cycle
settings. For instance, the PWM frequency of 5 kHz can have the maximum duty resolution of 13 bits. This means
that the duty can be set anywhere from 0 to 100% with a resolution of ~0.012% (2 ** 13 = 8192 discrete levels of the
LED intensity). Note, however, that these parameters depend on the clock signal clocking the LED PWMController
timer which in turn clocks the channel (see timer configuration and the ESP32-C6 Technical Reference Manual > LED
PWM Controller (LEDC) [PDF]).
The LEDC can be used for generating signals at much higher frequencies that are sufficient enough to clock other
devices, e.g., a digital camera module. In this case, the maximum available frequency is 40 MHz with duty resolution
of 1 bit. This means that the duty cycle is fixed at 50% and cannot be adjusted.
The LEDC API is designed to report an error when trying to set a frequency and a duty resolution that exceed the
range of LEDC's hardware. For example, an attempt to set the frequency to 20 MHz and the duty resolution to 3 bits
will result in the following error reported on a serial monitor:

E (196) ledc: requested frequency and duty resolution cannot be achieved, try␣
↪→reducing freq_hz or duty_resolution. div_param=128

In such a situation, either the duty resolution or the frequency must be reduced. For example, setting the duty
resolution to 2 will resolve this issue and will make it possible to set the duty cycle at 25% steps, i.e., at 25%, 50%
or 75%.
The LEDC driver will also capture and report attempts to configure frequency / duty resolution combinations that are
below the supported minimum, e.g.:

E (196) ledc: requested frequency and duty resolution cannot be achieved, try␣
↪→increasing freq_hz or duty_resolution. div_param=128000000

The duty resolution is normally set using ledc_timer_bit_t. This enumeration covers the range from 10 to 15
bits. If a smaller duty resolution is required (from 10 down to 1), enter the equivalent numeric values directly.

Application Example

The LEDC basic example: peripherals/ledc/ledc_basic.
The LEDC change duty cycle and fading control example: peripherals/ledc/ledc_fade.
The LEDC color control with Gamma correction on RGB LED example: peripherals/ledc/ledc_gamma_curve_fade.

API Reference

Header File
• components/driver/ledc/include/driver/ledc.h

Functions
esp_err_t ledc_channel_config(const ledc_channel_config_t *ledc_conf)

LEDC channel configuration Configure LEDC channel with the given channel/output
gpio_num/interrupt/source timer/frequency(Hz)/LEDC duty resolution.

Parameters ledc_conf -- Pointer of LEDC channel configure struct
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t ledc_timer_config(const ledc_timer_config_t *timer_conf)
LEDC timer configuration Configure LEDC timer with the given source timer/frequency(Hz)/duty_resolution.

Parameters timer_conf -- Pointer of LEDC timer configure struct

Espressif Systems 1018
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#ledpwm
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/ledc/ledc_basic
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/ledc/ledc_fade
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/ledc/ledc_gamma_curve_fade
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/ledc/include/driver/ledc.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Can not find a proper pre-divider number base on the given frequency and the
current duty_resolution.

esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
LEDC update channel parameters.

Note: Call this function to activate the LEDC updated parameters. After ledc_set_duty, we need to call this
function to update the settings. And the new LEDC parameters don't take effect until the next PWM cycle.

Note: ledc_set_duty, ledc_set_duty_with_hpoint and ledc_update_duty are not thread-safe, do not call these
functions to control one LEDC channel in different tasks at the same time. A thread-safe version of API is
ledc_set_duty_and_update

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel)
Set LEDC output gpio.

Note: This function only routes the LEDC signal to GPIO throughmatrix, other LEDC resources initialization
are not involved. Please use ledc_channel_config() instead to fully configure a LEDC channel.

Parameters
• gpio_num -- The LEDC output gpio
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• ledc_channel -- LEDC channel (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
LEDC stop. Disable LEDC output, and set idle level.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• idle_level -- Set output idle level after LEDC stops.
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

Espressif Systems 1019
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
LEDC set channel frequency (Hz)

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• timer_num -- LEDC timer index (0-3), select from ledc_timer_t
• freq_hz -- Set the LEDC frequency

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Can not find a proper pre-divider number base on the given frequency and the
current duty_resolution.

uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
LEDC get channel frequency (Hz)

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• timer_num -- LEDC timer index (0-3), select from ledc_timer_t
Returns

• 0 error
• Others Current LEDC frequency

esp_err_t ledc_set_duty_with_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty,
uint32_t hpoint)

LEDC set duty and hpoint value Only after calling ledc_update_duty will the duty update.

Note: ledc_set_duty, ledc_set_duty_with_hpoint and ledc_update_duty are not thread-safe, do not call these
functions to control one LEDC channel in different tasks at the same time. A thread-safe version of API is
ledc_set_duty_and_update

Note: For ESP32, hardware does not support any duty change while a fade operation is running in progress
on that channel. Other duty operations will have to wait until the fade operation has finished.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• duty -- Set the LEDC duty, the range of duty setting is [0, (2**duty_resolution)]
• hpoint -- Set the LEDC hpoint value, the range is [0, (2**duty_resolution)-1]

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

int ledc_get_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel)
LEDC get hpoint value, the counter value when the output is set high level.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

Returns
• LEDC_ERR_VAL if parameter error

Espressif Systems 1020
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Others Current hpoint value of LEDC channel
esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)

LEDC set duty This function do not change the hpoint value of this channel. if needed, please call
ledc_set_duty_with_hpoint. only after calling ledc_update_duty will the duty update.

Note: ledc_set_duty, ledc_set_duty_with_hpoint and ledc_update_duty are not thread-safe, do not call these
functions to control one LEDC channel in different tasks at the same time. A thread-safe version of API is
ledc_set_duty_and_update.

Note: For ESP32, hardware does not support any duty change while a fade operation is running in progress
on that channel. Other duty operations will have to wait until the fade operation has finished.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• duty -- Set the LEDC duty, the range of duty setting is [0, (2**duty_resolution)]
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

uint32_t ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
LEDC get duty This function returns the duty at the present PWM cycle. You shouldn't expect the function
to return the new duty in the same cycle of calling ledc_update_duty, because duty update doesn't take effect
until the next cycle.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

Returns
• LEDC_ERR_DUTY if parameter error
• Others Current LEDC duty

esp_err_t ledc_set_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty,
ledc_duty_direction_t fade_direction, uint32_t step_num, uint32_t duty_cycle_num,
uint32_t duty_scale)

LEDC set gradient Set LEDC gradient, After the function calls the ledc_update_duty function, the function
can take effect.

Note: For ESP32, hardware does not support any duty change while a fade operation is running in progress
on that channel. Other duty operations will have to wait until the fade operation has finished.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• duty -- Set the start of the gradient duty, the range of duty setting is [0,
(2**duty_resolution)]

• fade_direction -- Set the direction of the gradient

Espressif Systems 1021
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• step_num -- Set the number of the gradient
• duty_cycle_num -- Set how many LEDC tick each time the gradient lasts
• duty_scale -- Set gradient change amplitude

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t ledc_isr_register(void (*fn)(void*), void *arg, int intr_alloc_flags, ledc_isr_handle_t *handle)
Register LEDC interrupt handler, the handler is an ISR. The handler will be attached to the same CPU core
that this function is running on.

Parameters
• fn -- Interrupt handler function.
• arg -- User-supplied argument passed to the handler function.
• intr_alloc_flags -- Flags used to allocate the interrupt. One or multiple (ORred)
ESP_INTR_FLAG_* values. See esp_intr_alloc.h for more info.

• handle -- Pointer to return handle. If non-NULL, a handle for the interrupt will be
returned here.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_NOT_FOUND Failed to find available interrupt source

esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider,
uint32_t duty_resolution, ledc_clk_src_t clk_src)

Configure LEDC settings.
Parameters

• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• timer_sel -- Timer index (0-3), there are 4 timers in LEDC module
• clock_divider -- Timer clock divide value, the timer clock is divided from the se-
lected clock source

• duty_resolution -- Resolution of duty setting in number of bits. The range is [1,
SOC_LEDC_TIMER_BIT_WIDTH]

• clk_src -- Select LEDC source clock.
Returns

• (-1) Parameter error
• Other Current LEDC duty

esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
Reset LEDC timer.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• timer_sel -- LEDC timer index (0-3), select from ledc_timer_t
Returns

• ESP_ERR_INVALID_ARG Parameter error
• ESP_OK Success

esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
Pause LEDC timer counter.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• timer_sel -- LEDC timer index (0-3), select from ledc_timer_t
Returns

• ESP_ERR_INVALID_ARG Parameter error
• ESP_OK Success

Espressif Systems 1022
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
Resume LEDC timer.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• timer_sel -- LEDC timer index (0-3), select from ledc_timer_t
Returns

• ESP_ERR_INVALID_ARG Parameter error
• ESP_OK Success

esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_timer_t
timer_sel)

Bind LEDC channel with the selected timer.
Parameters

• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel index (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• timer_sel -- LEDC timer index (0-3), select from ledc_timer_t
Returns

• ESP_ERR_INVALID_ARG Parameter error
• ESP_OK Success

esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t
target_duty, uint32_t scale, uint32_t cycle_num)

Set LEDC fade function.

Note: Call ledc_fade_func_install() once before calling this function. Call ledc_fade_start() after this to start
fading.

Note: ledc_set_fade_with_step, ledc_set_fade_with_time and ledc_fade_start are not thread-safe, do not call
these functions to control one LEDC channel in different tasks at the same time. A thread-safe version of API
is ledc_set_fade_step_and_start

Note: For ESP32, hardware does not support any duty change while a fade operation is running in progress
on that channel. Other duty operations will have to wait until the fade operation has finished.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel index (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• target_duty -- Target duty of fading [0, (2**duty_resolution)]
• scale -- Controls the increase or decrease step scale.
• cycle_num -- increase or decrease the duty every cycle_num cycles

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Channel not initialized
• ESP_FAIL Fade function init error

esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t
target_duty, int desired_fade_time_ms)

Espressif Systems 1023
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Set LEDC fade function, with a limited time.

Note: Call ledc_fade_func_install() once before calling this function. Call ledc_fade_start() after this to start
fading.

Note: ledc_set_fade_with_step, ledc_set_fade_with_time and ledc_fade_start are not thread-safe, do not call
these functions to control one LEDC channel in different tasks at the same time. A thread-safe version of API
is ledc_set_fade_step_and_start

Note: For ESP32, hardware does not support any duty change while a fade operation is running in progress
on that channel. Other duty operations will have to wait until the fade operation has finished.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel index (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• target_duty -- Target duty of fading [0, (2**duty_resolution)]
• desired_fade_time_ms -- The intended time of the fading (ms). Note that the
actual time it takes to complete the fade could vary by a factor of up to 2x shorter or longer
than the expected time due to internal rounding errors in calculations. Specifically:
– The total number of cycles (total_cycle_num = desired_fade_time_ms * freq / 1000)
– The difference in duty cycle (duty_delta = |target_duty - current_duty|) The fade may
complete faster than expected if total_cycle_num larger than duty_delta. Conversely,
it may take longer than expected if total_cycle_num is less than duty_delta. The
closer the ratio of total_cycle_num/duty_delta (or its inverse) is to a whole number
(the floor value), the more accurately the actual fade duration will match the intended
time. If an exact fade time is expected, please consider to split the entire fade into
several smaller linear fades. The split should make each fade step has a divisible to-
tal_cycle_num/duty_delta (or its inverse) ratio.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Channel not initialized
• ESP_FAIL Fade function init error

esp_err_t ledc_fade_func_install(int intr_alloc_flags)
Install LEDC fade function. This function will occupy interrupt of LEDC module.

Parameters intr_alloc_flags -- Flags used to allocate the interrupt. One or multiple
(ORred) ESP_INTR_FLAG_* values. See esp_intr_alloc.h for more info.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Intr flag error
• ESP_ERR_NOT_FOUND Failed to find available interrupt source
• ESP_ERR_INVALID_STATE Fade function already installed

void ledc_fade_func_uninstall(void)
Uninstall LEDC fade function.

esp_err_t ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t
fade_mode)

Start LEDC fading.

Espressif Systems 1024
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: Call ledc_fade_func_install() once before calling this function. Call this API right after
ledc_set_fade_with_time or ledc_set_fade_with_step before to start fading.

Note: Starting fade operation with this API is not thread-safe, use with care.

Note: For ESP32, hardware does not support any duty change while a fade operation is running in progress
on that channel. Other duty operations will have to wait until the fade operation has finished.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel number
• fade_mode -- Whether to block until fading done. See ledc_types.h ledc_fade_mode_t
for more info. Note that this function will not return until fading to the target duty if
LEDC_FADE_WAIT_DONE mode is selected.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_STATE Channel not initialized or fade function not installed.
• ESP_ERR_INVALID_ARG Parameter error.

esp_err_t ledc_fade_stop(ledc_mode_t speed_mode, ledc_channel_t channel)
Stop LEDC fading. The duty of the channel is garanteed to be fixed at most one PWM cycle after the function
returns.

Note: This API can be called if a new fixed duty or a new fade want to be set while the last fade operation is
still running in progress.

Note: Call this API will abort the fading operation only if it was started by calling ledc_fade_start with
LEDC_FADE_NO_WAIT mode.

Note: If a fade was started with LEDC_FADE_WAIT_DONE mode, calling this API afterwards HAS no
use in stopping the fade. Fade will continue until it reachs the target duty.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel number
Returns

• ESP_OK Success
• ESP_ERR_INVALID_STATE Channel not initialized
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Fade function init error

esp_err_t ledc_set_duty_and_update(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty,
uint32_t hpoint)

A thread-safe API to set duty for LEDC channel and return when duty updated.

Espressif Systems 1025
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: For ESP32, hardware does not support any duty change while a fade operation is running in progress
on that channel. Other duty operations will have to wait until the fade operation has finished.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• duty -- Set the LEDC duty, the range of duty setting is [0, (2**duty_resolution)]
• hpoint -- Set the LEDC hpoint value, the range is [0, (2**duty_resolution)-1]

Returns
• ESP_OK Success
• ESP_ERR_INVALID_STATE Channel not initialized
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Fade function init error

esp_err_t ledc_set_fade_time_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t
target_duty, uint32_t desired_fade_time_ms,
ledc_fade_mode_t fade_mode)

A thread-safe API to set and start LEDC fade function, with a limited time.

Note: Call ledc_fade_func_install() once, before calling this function.

Note: For ESP32, hardware does not support any duty change while a fade operation is running in progress
on that channel. Other duty operations will have to wait until the fade operation has finished.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel index (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• target_duty -- Target duty of fading [0, (2**duty_resolution)]
• desired_fade_time_ms -- The intended time of the fading (ms). Note that the
actual time it takes to complete the fade could vary by a factor of up to 2x shorter or longer
than the expected time due to internal rounding errors in calculations. Specifically:
– The total number of cycles (total_cycle_num = desired_fade_time_ms * freq / 1000)
– The difference in duty cycle (duty_delta = |target_duty - current_duty|) The fade may
complete faster than expected if total_cycle_num larger than duty_delta. Conversely,
it may take longer than expected if total_cycle_num is less than duty_delta. The
closer the ratio of total_cycle_num/duty_delta (or its inverse) is to a whole number
(the floor value), the more accurately the actual fade duration will match the intended
time. If an exact fade time is expected, please consider to split the entire fade into
several smaller linear fades. The split should make each fade step has a divisible to-
tal_cycle_num/duty_delta (or its inverse) ratio.

• fade_mode -- choose blocking or non-blocking mode
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Channel not initialized
• ESP_FAIL Fade function init error

Espressif Systems 1026
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t ledc_set_fade_step_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t
target_duty, uint32_t scale, uint32_t cycle_num,
ledc_fade_mode_t fade_mode)

A thread-safe API to set and start LEDC fade function.

Note: Call ledc_fade_func_install() once before calling this function.

Note: For ESP32, hardware does not support any duty change while a fade operation is running in progress
on that channel. Other duty operations will have to wait until the fade operation has finished.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel index (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• target_duty -- Target duty of fading [0, (2**duty_resolution)]
• scale -- Controls the increase or decrease step scale.
• cycle_num -- increase or decrease the duty every cycle_num cycles
• fade_mode -- choose blocking or non-blocking mode

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Channel not initialized
• ESP_FAIL Fade function init error

esp_err_t ledc_cb_register(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_cbs_t *cbs, void
*user_arg)

LEDC callback registration function.

Note: The callback is called from an ISR, it must never attempt to block, and any FreeRTOS API called must
be ISR capable.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel index (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• cbs -- Group of LEDC callback functions
• user_arg -- user registered data for the callback function

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Channel not initialized
• ESP_FAIL Fade function init error

esp_err_t ledc_set_multi_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t start_duty,
const ledc_fade_param_config_t *fade_params_list, uint32_t list_len)

Set a LEDC multi-fade.

Note: Call ledc_fade_func_install() once before calling this function. Call
ledc_fade_start() after this to start fading.

Espressif Systems 1027
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: This function is not thread-safe, do not call it to control one LEDC channel in different tasks at the
same time. A thread-safe version of API is ledc_set_multi_fade_and_start

Note: This function does not prohibit from duty overflow. User should take care of this by themselves. If
duty overflow happens, the PWM signal will suddenly change from 100% duty cycle to 0%, or the other way
around.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel index (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• start_duty -- Set the start of the gradient duty, the range of duty setting is [0,
(2**duty_resolution)]

• fade_params_list -- Pointer to the array of fade parameters for a multi-fade
• list_len -- Length of the fade_params_list, i.e. number of fade ranges for a multi-fade
(1 - SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX)

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Channel not initialized
• ESP_FAIL Fade function init error

esp_err_t ledc_set_multi_fade_and_start(ledc_mode_t speed_mode, ledc_channel_t channel,
uint32_t start_duty, const ledc_fade_param_config_t
*fade_params_list, uint32_t list_len, ledc_fade_mode_t
fade_mode)

A thread-safe API to set and start LEDC multi-fade function.

Note: Call ledc_fade_func_install() once before calling this function.

Note: Fade will always begin from the current duty cycle. Make sure it is stable and synchronized to the
desired initial value before calling this function. Otherwise, you may see unexpected duty change.

Note: This function does not prohibit from duty overflow. User should take care of this by themselves. If
duty overflow happens, the PWM signal will suddenly change from 100% duty cycle to 0%, or the other way
around.

Parameters
• speed_mode -- Select the LEDC channel group with specified speed mode. Note that
not all targets support high speed mode.

• channel -- LEDC channel index (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• start_duty -- Set the start of the gradient duty, the range of duty setting is [0,
(2**duty_resolution)]

• fade_params_list -- Pointer to the array of fade parameters for a multi-fade
• list_len -- Length of the fade_params_list, i.e. number of fade ranges for a multi-fade
(1 - SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX)

• fade_mode -- Choose blocking or non-blocking mode
Returns

Espressif Systems 1028
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Channel not initialized
• ESP_FAIL Fade function init error

esp_err_t ledc_fill_multi_fade_param_list(ledc_mode_t speed_mode, ledc_channel_t channel,
uint32_t start_duty, uint32_t end_duty, uint32_t
linear_phase_num, uint32_t max_fade_time_ms,
uint32_t (*gamma_correction_operator)(uint32_t),
uint32_t fade_params_list_size,
ledc_fade_param_config_t *fade_params_list, uint32_t
*hw_fade_range_num)

Helper function to fill the fade params for a multi-fade. Useful if desires a gamma curve fading.

Note: The fade params are calculated based on the given start_duty and end_duty. If the duty is not at
the start duty (gamma-corrected) when the fade begins, you may see undesired brightness change. There-
fore, please always remember thet when passing the fade_params to either ledc_set_multi_fade
or ledc_set_multi_fade_and start, the start_duty argument has to be the gamma-corrected
start_duty.

Parameters
• speed_mode -- [in] Select the LEDC channel group with specified speed mode. Note
that not all targets support high speed mode.

• channel -- [in] LEDC channel index (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• start_duty -- [in] Duty cycle [0, (2**duty_resolution)] where the multi-fade begins
with. This value should be a non-gamma-corrected duty cycle.

• end_duty -- [in] Duty cycle [0, (2**duty_resolution)] where the multi-fade ends with.
This value should be a non-gamma-corrected duty cycle.

• linear_phase_num -- [in] Number of linear fades to simulate a gamma curved fade
(1 - SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX)

• max_fade_time_ms -- [in] The maximum time of the fading (ms).
• gamma_correction_operator -- [in] User provided gamma correction function.
The function argument should be able to take any value within [0, (2**duty_resolution)].
And returns the gamma-corrected duty cycle.

• fade_params_list_size -- [in] The size of the fade_params_list user allocated (1
- SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX)

• fade_params_list -- [out] Pointer to the array of ledc_fade_param_config_t struc-
ture

• hw_fade_range_num -- [out] Number of fade ranges for this multi-fade
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Channel not initialized
• ESP_FAIL Required number of hardware ranges exceeds the size of the

ledc_fade_param_config_t array user allocated

esp_err_t ledc_read_fade_param(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t range,
uint32_t *dir, uint32_t *cycle, uint32_t *scale, uint32_t *step)

Get the fade parameters that are stored in gamma ram for a certain fade range.
Gamma ram is where saves the fade parameters for each fade range. The fade parameters are written in during
fade configuration. When fade begins, the duty will change according to the parameters in gamma ram.

Parameters
• speed_mode -- [in] Select the LEDC channel group with specified speed mode. Note
that not all targets support high speed mode.

Espressif Systems 1029
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• channel -- [in] LEDC channel index (0 - LEDC_CHANNEL_MAX-1), select from
ledc_channel_t

• range -- [in]Range index (0 - (SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX-
1)), it specifies to which range in gamma ram to read

• dir -- [out] Pointer to accept fade direction value
• cycle -- [out] Pointer to accept fade cycle value
• scale -- [out] Pointer to accept fade scale value
• step -- [out] Pointer to accept fade step value

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Channel not initialized

Structures

struct ledc_channel_config_t
Configuration parameters of LEDC channel for ledc_channel_config function.

Public Members

int gpio_num
the LEDC output gpio_num, if you want to use gpio16, gpio_num = 16

ledc_mode_t speed_mode

LEDC speed speed_mode, high-speed mode (only exists on esp32) or low-speed mode

ledc_channel_t channel

LEDC channel (0 - LEDC_CHANNEL_MAX-1)

ledc_intr_type_t intr_type

configure interrupt, Fade interrupt enable or Fade interrupt disable

ledc_timer_t timer_sel

Select the timer source of channel (0 - LEDC_TIMER_MAX-1)

uint32_t duty
LEDC channel duty, the range of duty setting is [0, (2**duty_resolution)]

int hpoint
LEDC channel hpoint value, the range is [0, (2**duty_resolution)-1]

unsigned int output_invert
Enable (1) or disable (0) gpio output invert

struct ledc_channel_config_t::[anonymous] flags
LEDC flags

struct ledc_timer_config_t
Configuration parameters of LEDC Timer timer for ledc_timer_config function.

Espressif Systems 1030
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

ledc_mode_t speed_mode

LEDC speed speed_mode, high-speed mode (only exists on esp32) or low-speed mode

ledc_timer_bit_t duty_resolution

LEDC channel duty resolution

ledc_timer_t timer_num

The timer source of channel (0 - LEDC_TIMER_MAX-1)

uint32_t freq_hz
LEDC timer frequency (Hz)

ledc_clk_cfg_t clk_cfg

Configure LEDC source clock from ledc_clk_cfg_t. Note that LEDC_USE_RC_FAST_CLK and
LEDC_USE_XTAL_CLK are non-timer-specific clock sources. You can not have one LEDC timer
uses RC_FAST_CLK as the clock source and have another LEDC timer uses XTAL_CLK as its clock
source. All chips except esp32 and esp32s2 do not have timer-specific clock sources, which means clock
source for all timers must be the same one.

struct ledc_cb_param_t
LEDC callback parameter.

Public Members

ledc_cb_event_t event

Event name

uint32_t speed_mode
Speed mode of the LEDC channel group

uint32_t channel
LEDC channel (0 - LEDC_CHANNEL_MAX-1)

uint32_t duty
LEDC current duty of the channel, the range of duty is [0, (2**duty_resolution)]

struct ledc_cbs_t
Group of supported LEDC callbacks.

Note: The callbacks are all running under ISR environment

Public Members

ledc_cb_t fade_cb

LEDC fade_end callback function

Espressif Systems 1031
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct ledc_fade_param_config_t
Structure for the fade parameters for one hardware fade to be written to gamma wr register.

* duty ^ ONE HW LINEAR FADE
* |
* |
* |
* |
* start_duty + scale * n = end_duty |.␣
↪→.+-
* | ␣
↪→ |
* | ␣
↪→ |
* | ␣
↪→ +--------+
* | ␣
↪→ | .
* | ␣
↪→ | .
* | ---
↪→----+ .
* | . ␣
↪→ .
* | . ␣
↪→ .
* | . ␣
↪→ .
* | . ␣
↪→ .
* ^ --- |.+-------- ␣
↪→ .
* scale| | | ␣
↪→ .
* | | | ␣
↪→ .
* v --- |.+---------+ ␣
↪→ .
* | | . ␣
↪→ .
* | | . ␣
↪→ .
* start_duty +---------+ . ␣
↪→ .
* | . . ␣
↪→ .
* | . . ␣
↪→ .
* +--------------------------------------
↪→--------------------->
* ␣
↪→ PWM cycle
* | | | ␣
↪→ |
* | 1 step | 1 step | ␣
↪→ |
* |<------->|<------->| ␣
↪→ |
* | m cycles m cycles ␣
↪→ |

(continues on next page)

Espressif Systems 1032
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
* | ␣
↪→ |
* <--------------------------------------
↪→------------->
* n total steps
* cycles = m * n
*

Note: Be aware of the maximum value available on each element

Public Members

uint32_t dir
Duty change direction. Set 1 as increase, 0 as decrease

uint32_t cycle_num
Number of PWM cycles of each step [0, 2**SOC_LEDC_FADE_PARAMS_BIT_WIDTH-1]

uint32_t scale
Duty change of each step [0, 2**SOC_LEDC_FADE_PARAMS_BIT_WIDTH-1]

uint32_t step_num
Total number of steps in one hardware fade [0, 2**SOC_LEDC_FADE_PARAMS_BIT_WIDTH-1]

Macros

LEDC_ERR_DUTY

LEDC_ERR_VAL

Type Definitions

typedef intr_handle_t ledc_isr_handle_t

typedef bool (*ledc_cb_t)(const ledc_cb_param_t *param, void *user_arg)
Type of LEDC event callback.

Param param LEDC callback parameter
Param user_arg User registered data
Return Whether a high priority task has been waken up by this function

Enumerations

enum ledc_cb_event_t

LEDC callback event type.
Values:

enumerator LEDC_FADE_END_EVT
LEDC fade end event

Espressif Systems 1033
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/hal/include/hal/ledc_types.h

Type Definitions

typedef soc_periph_ledc_clk_src_legacy_t ledc_clk_cfg_t
LEDC clock source configuration struct.
In theory, the following enumeration shall be placed in LEDC driver's header. However, as the next enumera-
tion, ledc_clk_src_t, makes the use of some of these values and to avoid mutual inclusion of the headers,
we must define it here.

Enumerations

enum ledc_mode_t

Values:

enumerator LEDC_LOW_SPEED_MODE
LEDC low speed speed_mode

enumerator LEDC_SPEED_MODE_MAX
LEDC speed limit

enum ledc_intr_type_t

Values:

enumerator LEDC_INTR_DISABLE
Disable LEDC interrupt

enumerator LEDC_INTR_FADE_END
Enable LEDC interrupt

enumerator LEDC_INTR_MAX

enum ledc_duty_direction_t

Values:

enumerator LEDC_DUTY_DIR_DECREASE
LEDC duty decrease direction

enumerator LEDC_DUTY_DIR_INCREASE
LEDC duty increase direction

enumerator LEDC_DUTY_DIR_MAX

enum ledc_slow_clk_sel_t

LEDC global clock sources.
Values:

Espressif Systems 1034
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/ledc_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator LEDC_SLOW_CLK_RC_FAST
LEDC low speed timer clock source is RC_FAST clock

enumerator LEDC_SLOW_CLK_PLL_DIV
LEDC low speed timer clock source is a PLL_DIV clock

enumerator LEDC_SLOW_CLK_XTAL
LEDC low speed timer clock source XTAL clock

enumerator LEDC_SLOW_CLK_RTC8M
Alias of 'LEDC_SLOW_CLK_RC_FAST'

enum ledc_clk_src_t

LEDC timer-specific clock sources.
Note: Setting numeric values to match ledc_clk_cfg_t values are a hack to avoid collision with
LEDC_AUTO_CLK in the driver, as these enums have very similar names and user may pass one of these by
mistake.
Values:

enumerator LEDC_SCLK
Selecting this value for LEDC_TICK_SEL_TIMER let the hardware take its source clock from
LEDC_CLK_SEL

enum ledc_timer_t

Values:

enumerator LEDC_TIMER_0
LEDC timer 0

enumerator LEDC_TIMER_1
LEDC timer 1

enumerator LEDC_TIMER_2
LEDC timer 2

enumerator LEDC_TIMER_3
LEDC timer 3

enumerator LEDC_TIMER_MAX

enum ledc_channel_t

Values:

enumerator LEDC_CHANNEL_0
LEDC channel 0

enumerator LEDC_CHANNEL_1
LEDC channel 1

Espressif Systems 1035
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator LEDC_CHANNEL_2
LEDC channel 2

enumerator LEDC_CHANNEL_3
LEDC channel 3

enumerator LEDC_CHANNEL_4
LEDC channel 4

enumerator LEDC_CHANNEL_5
LEDC channel 5

enumerator LEDC_CHANNEL_MAX

enum ledc_timer_bit_t

Values:

enumerator LEDC_TIMER_1_BIT
LEDC PWM duty resolution of 1 bits

enumerator LEDC_TIMER_2_BIT
LEDC PWM duty resolution of 2 bits

enumerator LEDC_TIMER_3_BIT
LEDC PWM duty resolution of 3 bits

enumerator LEDC_TIMER_4_BIT
LEDC PWM duty resolution of 4 bits

enumerator LEDC_TIMER_5_BIT
LEDC PWM duty resolution of 5 bits

enumerator LEDC_TIMER_6_BIT
LEDC PWM duty resolution of 6 bits

enumerator LEDC_TIMER_7_BIT
LEDC PWM duty resolution of 7 bits

enumerator LEDC_TIMER_8_BIT
LEDC PWM duty resolution of 8 bits

enumerator LEDC_TIMER_9_BIT
LEDC PWM duty resolution of 9 bits

enumerator LEDC_TIMER_10_BIT
LEDC PWM duty resolution of 10 bits

enumerator LEDC_TIMER_11_BIT
LEDC PWM duty resolution of 11 bits

Espressif Systems 1036
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator LEDC_TIMER_12_BIT
LEDC PWM duty resolution of 12 bits

enumerator LEDC_TIMER_13_BIT
LEDC PWM duty resolution of 13 bits

enumerator LEDC_TIMER_14_BIT
LEDC PWM duty resolution of 14 bits

enumerator LEDC_TIMER_15_BIT
LEDC PWM duty resolution of 15 bits

enumerator LEDC_TIMER_16_BIT
LEDC PWM duty resolution of 16 bits

enumerator LEDC_TIMER_17_BIT
LEDC PWM duty resolution of 17 bits

enumerator LEDC_TIMER_18_BIT
LEDC PWM duty resolution of 18 bits

enumerator LEDC_TIMER_19_BIT
LEDC PWM duty resolution of 19 bits

enumerator LEDC_TIMER_20_BIT
LEDC PWM duty resolution of 20 bits

enumerator LEDC_TIMER_BIT_MAX

enum ledc_fade_mode_t

Values:

enumerator LEDC_FADE_NO_WAIT
LEDC fade function will return immediately

enumerator LEDC_FADE_WAIT_DONE
LEDC fade function will block until fading to the target duty

enumerator LEDC_FADE_MAX

2.6.15 Motor Control Pulse Width Modulator (MCPWM)

The MCPWM peripheral is a versatile PWM generator, which contains various submodules to make it a key element
in power electronic applications like motor control, digital power and so on. Typically, the MCPWM peripheral can
be used in the following scenarios:

• Digital motor control, e.g. brushed/brushless DC motor, RC servo motor
• Switch mode based digital power conversion
• Power DAC, where the duty cycle is equivalent to a DAC analog value
• Calculate external pulse width, and convert it into other analog value like speed, distance

Espressif Systems 1037
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Generate Space Vector PWM (SVPWM) signals for Field Oriented Control (FOC)
The main submodules are listed in the following diagram:

Fig. 11: MCPWM Overview

• MCPWM Timer: The time base of the final PWM signal. It also determines the event timing of other
submodules.

• MCPWM Operator: The key module that is responsible for generating the PWM waveforms. It consists of
other submodules, like comparator, PWM generator, dead time, and carrier modulator.

• MCPWM Comparator: The compare module takes the time-base count value as input, and continuously
compares it to the threshold value configured. When the timer is equal to any of the threshold values, a
compare event will be generated and the MCPWM generator can update its level accordingly.

• MCPWM Generator: One MCPWM generator can generate a pair of PWM waves, complementarily or
independently, based on various events triggered by other submodules like MCPWM Timer and MCPWM
Comparator.

• MCPWM Fault: The fault module is used to detect the fault condition from outside, mainly via the GPIO
matrix. Once the fault signal is active, MCPWM Operator will force all the generators into a predefined state
to protect the system from damage.

• MCPWM Sync: The sync module is used to synchronize the MCPWM timers, so that the final PWM signals
generated by different MCPWM generators can have a fixed phase difference. The sync signal can be routed
from the GPIO matrix or from an MCPWM Timer event.

• Dead Time: This submodule is used to insert extra delay to the existing PWM edges generated in the previous
steps.

• Carrier Modulation: The carrier submodule can modulate a high-frequency carrier signal into PWM wave-
forms by the generator and dead time submodules. This capability is mandatory for controlling the power-
switching elements.

• Brake: MCPWM operator can set how to brake the generators when a particular fault is detected. You can
shut down the PWM output immediately or regulate the PWM output cycle by cycle, depending on how critical
the fault is.

• MCPWMCapture: This is a standalone submodule that can work evenwithout the aboveMCPWMoperators.
The capture consists one dedicated timer and several independent channels, with each channel connected to
the GPIO. A pulse on the GPIO triggers the capture timer to store the time-base count value and then notify
you by an interrupt. Using this feature, you can measure a pulse width precisely. What is more, the capture
timer can also be synchronized by the MCPWM Sync submodule.

Functional Overview

Description of the MCPWM functionality is divided into the following sections:
• Resource Allocation and Initialization - covers how to allocate various MCPWM objects, like timers, operators,
comparators, generators and so on. These objects are the basis of the following IO setting and control functions.

• Timer Operations and Events - describes control functions and event callbacks that supported by the MCPWM
timer.

Espressif Systems 1038
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Comparator Operations and Events - describes control functions and event callbacks that supported by the
MCPWM comparator.

• Generator Actions on Events - describes how to set actions for MCPWM generators on particular events that
generated by the MCPWM timer and comparators.

• Classical PWM Waveforms and Generator Configurations - demonstrates some classical PWM waveforms that
can be achieved by configuring generator actions.

• Dead Time - describes how to set dead time for MCPWM generators.
• Classical PWMWaveforms and Dead Time Configurations - demonstrates some classical PWMwaveforms that
can be achieved by configuring dead time.

• Carrier Modulation - describes how to set modulate a high frequency onto the final PWM waveforms.
• Faults and Brake Actions - describes how to set brake actions for MCPWM operators on particular fault event.
• Generator Force Actions - describes how to control the generator output level asynchronously in a forceful way.
• Synchronization - describes how to synchronize the MCPWM timers and get a fixed phase difference between
the generated PWM signals.

• Capture - describes how to use the MCPWM capture module to measure the pulse width of a signal.
• Power Management - describes how different source clock will affect power consumption.
• IRAM Safe - describes tips on how to make the RMT interrupt work better along with a disabled cache.
• Thread Safety - lists which APIs are guaranteed to be thread safe by the driver.
• Kconfig Options - lists the supported Kconfig options that can bring different effects to the driver.

Resource Allocation and Initialization As displayed in the diagram above, the MCPWM peripheral consists of
several submodules. Each submodule has its own resource allocation, which is described in the following sections.

MCPWM Timers You can allocate a MCPWM timer object by calling mcpwm_new_timer() function, with
a configuration structure mcpwm_timer_config_t as the parameter. The configuration structure is defined as:

• mcpwm_timer_config_t::group_id specifies the MCPWM group ID. The ID should belong to [0,
SOC_MCPWM_GROUPS - 1] range. Please note, timers located in different groups are totally independent.

• mcpwm_timer_config_t::intr_priority sets the priority of the interrupt. If it is set to 0, the
driver will allocate an interrupt with a default priority. Otherwise, the driver will use the given priority.

• mcpwm_timer_config_t::clk_src sets the clock source of the timer.
• mcpwm_timer_config_t::resolution_hz set the expected resolution of the timer, the driver in-
ternally will set a proper divider based on the clock source and the resolution.

• mcpwm_timer_config_t::count_mode sets the count mode of the timer.
• mcpwm_timer_config_t::period_ticks sets the period of the timer, in ticks (the tick resolution is
set in the mcpwm_timer_config_t::resolution_hz).

• mcpwm_timer_config_t::update_period_on_empty sets whether to update the period value
when the timer counts to zero.

• mcpwm_timer_config_t::update_period_on_sync sets whether to update the period value
when the timer takes a sync signal.

The mcpwm_new_timer()will return a pointer to the allocated timer object if the allocation succeeds. Otherwise,
it will return error code. Specifically, when there are no more free timers in the MCPWM group, this function will
return ESP_ERR_NOT_FOUND error.1

On the contrary, calling mcpwm_del_timer() function will free the allocated timer object.

MCPWM Operators You can allocate a MCPWM operator object by calling mcpwm_new_operator()()
function, with a configuration structuremcpwm_operator_config_t as the parameter. The configuration struc-
ture is defined as:

• mcpwm_operator_config_t::group_id specifies the MCPWM group ID. The ID should belong to
[0, SOC_MCPWM_GROUPS - 1] range. Please note, operators located in different groups are totally indepen-
dent.

1 Different ESP chip series might have different number of MCPWM resources (e.g. groups, timers, comparators, operators, generators and
so on). Please refer to the [TRM] for details. The driver won't forbid you from applying for more MCPWM resources, but it will return error
when there's no hardware resources available. Please always check the return value when doing Resource Allocation.

Espressif Systems 1039
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#mcpwm
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• mcpwm_operator_config_t::intr_priority sets the priority of the interrupt. If it is set to 0, the
driver will allocate an interrupt with a default priority. Otherwise, the driver will use the given priority.

• mcpwm_operator_config_t::update_gen_action_on_tez sets whether to update the gener-
ator action when the timer counts to zero. Here and below, the timer refers to the one that is connected to the
operator by mcpwm_operator_connect_timer().

• mcpwm_operator_config_t::update_gen_action_on_tep sets whether to update the gener-
ator action when the timer counts to peak.

• mcpwm_operator_config_t::update_gen_action_on_sync sets whether to update the gen-
erator action when the timer takes a sync signal.

• mcpwm_operator_config_t::update_dead_time_on_tez sets whether to update the dead
time when the timer counts to zero.

• mcpwm_operator_config_t::update_dead_time_on_tep sets whether to update the dead
time when the timer counts to peak.

• mcpwm_operator_config_t::update_dead_time_on_sync sets whether to update the dead
time when the timer takes a sync signal.

The mcpwm_new_operator()() will return a pointer to the allocated operator object if the allocation succeeds.
Otherwise, it will return error code. Specifically, when there are no more free operators in the MCPWM group, this
function will return ESP_ERR_NOT_FOUND error.Page 1039, 1

On the contrary, calling mcpwm_del_operator()() function will free the allocated operator object.

MCPWM Comparators You can allocate a MCPWM comparator object by calling
mcpwm_new_comparator() function, with a MCPWM operator handle and configuration struc-
ture mcpwm_comparator_config_t as the parameter. The operator handle is created by
mcpwm_new_operator()(). The configuration structure is defined as:

• mcpwm_comparator_config_t::intr_priority sets the priority of the interrupt. If it is set to 0,
the driver will allocate an interrupt with a default priority. Otherwise, the driver will use the given priority.

• mcpwm_comparator_config_t::update_cmp_on_tez sets whether to update the compare
threshold when the timer counts to zero.

• mcpwm_comparator_config_t::update_cmp_on_tep sets whether to update the compare
threshold when the timer counts to peak.

• mcpwm_comparator_config_t::update_cmp_on_sync sets whether to update the compare
threshold when the timer takes a sync signal.

The mcpwm_new_comparator() will return a pointer to the allocated comparator object if the allocation suc-
ceeds. Otherwise, it will return error code. Specifically, when there are no more free comparators in the MCPWM
operator, this function will return ESP_ERR_NOT_FOUND error.Page 1039, 1

On the contrary, calling mcpwm_del_comparator() function will free the allocated comparator object.

MCPWM Generators You can allocate a MCPWM generator object by calling mcpwm_new_generator()
function, with a MCPWM operator handle and configuration structure mcpwm_generator_config_t as the
parameter. The operator handle is created by mcpwm_new_operator()(). The configuration structure is de-
fined as:

• mcpwm_generator_config_t::gen_gpio_num sets the GPIO number used by the generator.
• mcpwm_generator_config_t::invert_pwm sets whether to invert the PWM signal.
• mcpwm_generator_config_t::io_loop_back sets whether to enable the Loop-back mode. It is
for debugging purposes only. It enables both the GPIO's input and output ability through the GPIO matrix
peripheral.

• mcpwm_generator_config_t::io_od_mode configures the PWM GPIO as open-drain output.
• mcpwm_generator_config_t::pull_up and mcpwm_generator_config_t::pull_down
controls whether to enable the internal pull-up and pull-down resistors accordingly.

The mcpwm_new_generator() will return a pointer to the allocated generator object if the allocation succeeds.
Otherwise, it will return error code. Specifically, when there are no more free generators in the MCPWM operator,
this function will return ESP_ERR_NOT_FOUND error.Page 1039, 1

On the contrary, calling mcpwm_del_generator() function will free the allocated generator object.

Espressif Systems 1040
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

MCPWM Faults There are two types of faults: A fault signal reflected from the GPIO and a fault generated by
software. To allocate a GPIO fault object, you can call mcpwm_new_gpio_fault() function, with configuration
structure mcpwm_gpio_fault_config_t as the parameter. The configuration structure is defined as:
To allocate a GPIO fault object, you can call the mcpwm_new_gpio_fault() function, with the configuration
structure mcpwm_gpio_fault_config_t as the parameter. The configuration structure is defined as:

• mcpwm_gpio_fault_config_t::group_id sets theMCPWMgroup ID. The ID should belong to [0,
SOC_MCPWM_GROUPS - 1] range. Please note, GPIO faults located in different groups are totally independent,
i.e., GPIO faults in group 0 can not be detected by the operator in group 1.

• mcpwm_gpio_fault_config_t::intr_priority sets the priority of the interrupt. If it is set to 0,
the driver will allocate an interrupt with a default priority. Otherwise, the driver will use the given priority.

• mcpwm_gpio_fault_config_t::gpio_num sets the GPIO number used by the fault.
• mcpwm_gpio_fault_config_t::active_level sets the active level of the fault signal.
• mcpwm_gpio_fault_config_t::pull_up andmcpwm_gpio_fault_config_t::pull_down
set whether to pull up and/or pull down the GPIO internally.

• mcpwm_gpio_fault_config_t::io_loop_back sets whether to enable the loop back mode. It is
for debugging purposes only. It enables both the GPIO's input and output ability through the GPIO matrix
peripheral.

The mcpwm_new_gpio_fault() will return a pointer to the allocated fault object if the allocation succeeds.
Otherwise, it will return error code. Specifically, when there are no more free GPIO faults in the MCPWM group,
this function will return ESP_ERR_NOT_FOUND error.Page 1039, 1

Software fault object can be used to trigger a fault by calling a function mcpwm_soft_fault_activate()
instead of waiting for a real fault signal on the GPIO. A software fault object can be allocated by calling
mcpwm_new_soft_fault() function, with configuration structure mcpwm_soft_fault_config_t as the
parameter. Currently this configuration structure is left for future purpose. mcpwm_new_soft_fault() func-
tion will return a pointer to the allocated fault object if the allocation succeeds. Otherwise, it will return error code.
Specifically, when there are no memory left for the fault object, this function will return ESP_ERR_NO_MEM error.
Although the software fault and GPIO fault are of different types, but the returned fault handle is of the same type.
On the contrary, calling mcpwm_del_fault() function will free the allocated fault object, this function works
for both software and GPIO fault.

MCPWM Sync Sources The sync source is what can be used to synchronize the MCPWM timer and MCPWM
capture timer. There're three types of sync sources: A sync source reflected from the GPIO, a sync source generated
by software and a sync source generated by MCPWM timer event.
To allocate a GPIO sync source, you can call mcpwm_new_gpio_sync_src() function, with configuration
structure mcpwm_gpio_sync_src_config_t as the parameter. The configuration structure is defined as:

• mcpwm_gpio_sync_src_config_t::group_id sets the MCPWM group ID. The ID should belong
to [0, SOC_MCPWM_GROUPS - 1] range. Please note, GPIO sync source located in different groups are totally
independent, i.e. GPIO sync source in group 0 can not be detected by the timers in group 1.

• mcpwm_gpio_sync_src_config_t::gpio_num sets the GPIO number used by the sync source.
• mcpwm_gpio_sync_src_config_t::active_neg sets whether the sync signal is active on falling
edges.

• mcpwm_gpio_sync_src_config_t::pull_up andmcpwm_gpio_sync_src_config_t::pull_down
set whether to pull up and/or pull down the GPIO internally.

• mcpwm_gpio_sync_src_config_t::io_loop_back sets whether to enable the loop back mode.
It is for debugging purposes only. It enables both the GPIO's input and output ability through the GPIO matrix
peripheral.

The mcpwm_new_gpio_sync_src() will return a pointer to the allocated sync source object if the allocation
succeeds. Otherwise, it will return error code. Specifically, when there are no more free GPIO sync sources in the
MCPWM group, this function will return ESP_ERR_NOT_FOUND error.Page 1039, 1

To allocate a Timer event sync source, you can call mcpwm_new_timer_sync_src() function, with configura-
tion structure mcpwm_timer_sync_src_config_t as the parameter. The configuration structure is defined
as:

Espressif Systems 1041
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• mcpwm_timer_sync_src_config_t::timer_event specifies on what timer event to generate the
sync signal.

• mcpwm_timer_sync_src_config_t::propagate_input_sync sets whether to propagate the
input sync signal (i.e. the input sync signal will be routed to its sync output).

The mcpwm_new_timer_sync_src() will return a pointer to the allocated sync source object if the allocation
succeeds. Otherwise, it will return error code. Specifically, if a sync source has been allocated from the same timer
before, this function will return ESP_ERR_INVALID_STATE error.
Last but not least, to allocate a software sync source, you can callmcpwm_new_soft_sync_src() function, with
configuration structure mcpwm_soft_sync_config_t as the parameter. Currently this configuration structure
is left for future purpose. mcpwm_new_soft_sync_src() will return a pointer to the allocated sync source
object if the allocation succeeds. Otherwise, it will return error code. Specifically, when there are no memory left
for the sync source object, this function will return ESP_ERR_NO_MEM error. Please note, to make a software sync
source take effect, don't forget to call mcpwm_soft_sync_activate().
On the contrary, calling mcpwm_del_sync_src() function will free the allocated sync source object, this func-
tion works for all types of sync sources.

MCPWM Capture Timer and Channels The MCPWM group has a dedicated timer which is used to capture
the timestamp when specific event occurred. The capture timer is connected with several independent channels, each
channel is assigned with a GPIO.
To allocate a capture timer, you can call mcpwm_new_capture_timer() function, with configuration structure
mcpwm_capture_timer_config_t as the parameter. The configuration structure is defined as:

• mcpwm_capture_timer_config_t::group_id sets the MCPWM group ID. The ID should belong
to [0, SOC_MCPWM_GROUPS - 1] range.

• mcpwm_capture_timer_config_t::clk_src sets the clock source of the capture timer.
• mcpwm_capture_timer_config_t::resolution_hz The driver internally will set a proper
divider based on the clock source and the resolution. If it is set to 0, the driver will pick an
appropriate resolution on its own, and you can subsequently view the current timer resolution via
mcpwm_capture_timer_get_resolution().

The mcpwm_new_capture_timer() will return a pointer to the allocated capture timer object if the allocation
succeeds. Otherwise, it will return error code. Specifically, when there are no free capture timer left in the MCPWM
group, this function will return ESP_ERR_NOT_FOUND error.Page 1039, 1

Next, to allocate a capture channel, you can call mcpwm_new_capture_channel() function, with a capture
timer handle and configuration structure mcpwm_capture_channel_config_t as the parameter. The con-
figuration structure is defined as:

• mcpwm_capture_channel_config_t::intr_priority sets the priority of the interrupt. If it is
set to 0, the driver will allocate an interrupt with a default priority. Otherwise, the driver will use the given
priority.

• mcpwm_capture_channel_config_t::gpio_num sets the GPIO number used by the capture chan-
nel.

• mcpwm_capture_channel_config_t::prescale sets the prescaler of the input signal.
• mcpwm_capture_channel_config_t::pos_edge andmcpwm_capture_channel_config_t::neg_edge
set whether to capture on the positive and/or falling edge of the input signal.

• mcpwm_capture_channel_config_t::pull_up andmcpwm_capture_channel_config_t::pull_down
set whether to pull up and/or pull down the GPIO internally.

• mcpwm_capture_channel_config_t::invert_cap_signal sets whether to invert the capture
signal.

• mcpwm_capture_channel_config_t::io_loop_back sets whether to enable the loop back
mode. It is for debugging purposes only. It enables both the GPIO's input and output ability through the
GPIO matrix peripheral.

The mcpwm_new_capture_channel() will return a pointer to the allocated capture channel object if the
allocation succeeds. Otherwise, it will return error code. Specifically, when there are no free capture channel left in
the capture timer, this function will return ESP_ERR_NOT_FOUND error.

Espressif Systems 1042
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

On the contrary, calling mcpwm_del_capture_channel() and mcpwm_del_capture_timer() will
free the allocated capture channel and timer object accordingly.

MCPWM interrupt priority MCPWM allows configuring interrupts separately for timer, operator, comparator,
fault, and capture events. The interrupt priority is determined by the respective config_t::intr_priority.
Additionally, events within the same MCPWM group share a common interrupt source. When registering multiple
interrupt events, the interrupt priorities need to remain consistent.

Note: When registering multiple interrupt events within anMCPWM group, the driver will use the interrupt priority
of the first registered event as the MCPWM group's interrupt priority.

Timer Operations and Events

Update Period The timer period is initialized by the mcpwm_timer_config_t::period_ticks
parameter in mcpwm_timer_config_t. You can update the period at runtime by call-
ing mcpwm_timer_set_period() function. The new period will take effect based
on how you set the mcpwm_timer_config_t::update_period_on_empty and
mcpwm_timer_config_t::update_period_on_sync parameters in mcpwm_timer_config_t. If
none of them are set, the timer period will take effect immediately.

Register Timer Event Callbacks The MCPWM timer can generate different events at runtime. If you have
some function that should be called when particular event happens, you should hook your function to the in-
terrupt service routine by calling mcpwm_timer_register_event_callbacks(). The callback func-
tion prototype is declared in mcpwm_timer_event_cb_t. All supported event callbacks are listed in the
mcpwm_timer_event_callbacks_t:

• mcpwm_timer_event_callbacks_t::on_full sets callback function for timer when it counts to
peak value.

• mcpwm_timer_event_callbacks_t::on_empty sets callback function for timer when it counts to
zero.

• mcpwm_timer_event_callbacks_t::on_stop sets callback function for timer when it is stopped.
The callback functions above are called within the ISR context, so they should not attempt to block (e.g., make sure
that only FreeRTOS APIs with ISR suffix is called within the function).
The parameter user_data of mcpwm_timer_register_event_callbacks() function is used to save
user's own context, it will be passed to each callback function directly.
This function will lazy install interrupt service for the MCPWM timer without enabling it. It is only allowed to be
called before mcpwm_timer_enable(), otherwise the ESP_ERR_INVALID_STATE error will be returned.
See also Enable and Disable timer for more information.

Enable and Disable Timer Before doing IO control to the timer, user needs to enable the timer first, by calling
mcpwm_timer_enable(). Internally, this function will:

• switch the timer state from init to enable.
• enable the interrupt service if it has been lazy installed bymcpwm_timer_register_event_callbacks().
• acquire a proper power management lock if a specific clock source (e.g. PLL_160M clock) is selected. See
also Power management for more information.

On the contrary, calling mcpwm_timer_disable() will put the timer driver back to init state, disable the
interrupts service and release the power management lock.

Espressif Systems 1043
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Start and Stop Timer The basic IO operation of a timer is to start and stop. Calling
mcpwm_timer_start_stop() with different mcpwm_timer_start_stop_cmd_t commands can
start the timer immediately or stop the timer at a specific event. What're more, you can even start the timer for only
one round, that means, the timer will count to peak value or zero, and then stop itself.

Connect Timer with Operator The allocated MCPWM Timer should be connected with a MCPWM operator by
calling mcpwm_operator_connect_timer(), so that the operator can take that timer as its time base, and
generate the required PWM waves. Make sure the MCPWM timer and operator are in the same group, otherwise,
this function will return ESP_ERR_INVALID_ARG error.

Comparator Operations and Events

Register Event Callbacks The MCPWM comparator can inform the user when the timer counter equals to the
compare value. If you have some function that should be called when this event happens, you should hook your
function to the interrupt service routine by calling mcpwm_comparator_register_event_callbacks().
The callback function prototype is declared in mcpwm_compare_event_cb_t. All supported event callbacks
are listed in the mcpwm_comparator_event_callbacks_t:

• mcpwm_comparator_event_callbacks_t::on_reach sets callback function for comparator
when the timer counter equals to the compare value.

The callback function will provide event specific data of type mcpwm_compare_event_data_t to the user.
The callback function is called within the ISR context, so is should not attempt to block (e.g., make sure that only
FreeRTOS APIs with ISR suffix is called within the function).
The parameter user_data of mcpwm_comparator_register_event_callbacks() function is used
to save user's own context, it will be passed to the callback function directly.
This function will lazy install interrupt service for theMCPWMcomparator, whereas the service can only be removed
in mcpwm_del_comparator.

Set Compare Value You can set the compare value for the MCPWM comparator at runtime by calling
mcpwm_comparator_set_compare_value(). There're a few points to note:

• New compare value might won't take effect immediately. The update time for the com-
pare value is set by mcpwm_comparator_config_t::update_cmp_on_tez or
mcpwm_comparator_config_t::update_cmp_on_tep ormcpwm_comparator_config_t::update_cmp_on_sync.

• Make sure the operator has connected to one MCPWM timer already by
mcpwm_operator_connect_timer(). Otherwise, it will return error code
ESP_ERR_INVALID_STATE.

• The compare value shouldn't exceed timer's count peak, otherwise, the compare event will never got triggered.

Generator Actions on Events

Set Generator Action on Timer Event One generator can set multiple actions on different timer events, by calling
mcpwm_generator_set_actions_on_timer_event() with variable number of action configurations.
The action configuration is defined in mcpwm_gen_timer_event_action_t:

• mcpwm_gen_timer_event_action_t::direction specific the timer direction. The supported di-
rections are listed in mcpwm_timer_direction_t.

• mcpwm_gen_timer_event_action_t::event specifies the timer event. The supported timer events
are listed in mcpwm_timer_event_t.

• mcpwm_gen_timer_event_action_t::action specifies the generator action to be taken. The sup-
ported actions are listed in mcpwm_generator_action_t.

Espressif Systems 1044
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

There's a helper macro MCPWM_GEN_TIMER_EVENT_ACTION to simplify the construction of a timer event action
entry.
Please note, the argument list of mcpwm_generator_set_actions_on_timer_event()must be termi-
nated by MCPWM_GEN_TIMER_EVENT_ACTION_END.
You can also set the timer action one by one by callingmcpwm_generator_set_action_on_timer_event()
without varargs.

Set Generator Action on Compare Event One generator can set multiple actions on different compare events, by
calling mcpwm_generator_set_actions_on_compare_event() with variable number of action con-
figurations. The action configuration is defined in mcpwm_gen_compare_event_action_t:

• mcpwm_gen_compare_event_action_t::direction specific the timer direction. The supported
directions are listed in mcpwm_timer_direction_t.

• mcpwm_gen_compare_event_action_t::comparator specifies the comparator handle. See
MCPWM Comparators for how to allocate a comparator.

• mcpwm_gen_compare_event_action_t::action specifies the generator action to be taken. The
supported actions are listed in mcpwm_generator_action_t.

There's a helper macro MCPWM_GEN_COMPARE_EVENT_ACTION to simplify the construction of a compare event
action entry.
Please note, the argument list of mcpwm_generator_set_actions_on_compare_event()must be ter-
minated by MCPWM_GEN_COMPARE_EVENT_ACTION_END.
You can also set the compare action one by one by callingmcpwm_generator_set_action_on_compare_event()
without varargs.

Set Generator Action on Fault Event One generator can set action on fault based trigger events, by calling
mcpwm_generator_set_action_on_fault_event() with an action configurations. The action config-
uration is defined in mcpwm_gen_fault_event_action_t:

• mcpwm_gen_fault_event_action_t::direction specifies the timer direction. The supported
directions are listed in mcpwm_timer_direction_t.

• mcpwm_gen_fault_event_action_t::fault specifies the fault used for the trigger. See MCPWM
Faults for how to allocate a fault.

• mcpwm_gen_fault_event_action_t::action specifies the generator action to be taken. The sup-
ported actions are listed in mcpwm_generator_action_t.

When no free trigger slot is left in the operator to which the generator belongs, this function will return the
ESP_ERR_NOT_FOUND error.Page 1039, 1

The trigger only support GPOI fault. when the input is not a GPIO fault, this function will return the
ESP_ERR_NOT_SUPPORTED error.
There's a helper macro MCPWM_GEN_FAULT_EVENT_ACTION to simplify the construction of a trigger event
action entry.
Please note, fault event does not have variadic function likemcpwm_generator_set_actions_on_fault_event().

Set Generator Action on Sync Event One generator can set action on sync based trigger events, by calling
mcpwm_generator_set_action_on_sync_event() with an action configurations. The action config-
uration is defined in mcpwm_gen_sync_event_action_t:

• mcpwm_gen_sync_event_action_t::direction specifies the timer direction. The supported di-
rections are listed in mcpwm_timer_direction_t.

• mcpwm_gen_sync_event_action_t::sync specifies the sync source used for the trigger. See
MCPWM Sync Sources for how to allocate a sync source.

• mcpwm_gen_sync_event_action_t::action specifies the generator action to be taken. The sup-
ported actions are listed in mcpwm_generator_action_t.

Espressif Systems 1045
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

When no free trigger slot is left in the operator to which the generator belongs, this function will return the
ESP_ERR_NOT_FOUND error.Page 1039, 1

The trigger only support one sync action, regardless of the kinds. When set sync actions more than once, this function
will return the ESP_ERR_INVALID_STATE error.
There's a helper macro MCPWM_GEN_SYNC_EVENT_ACTION to simplify the construction of a trigger event action
entry.
Please note, sync event does not have variadic function likemcpwm_generator_set_actions_on_sync_event().

Classical PWM Waveforms and Generator Configurations This section will demonstrate the classical PWM
waveforms that can be generated by the pair of the generators. The code snippet that is used to generate the waveforms
is also provided below the diagram. Some general summary:

• The Symmetric or Asymmetric of the waveforms are determined by the count mode of the MCPWM timer.
• The active level of the waveform pair is determined by the level of the PWM with a smaller duty cycle.
• The period of the PWM waveform is determined by the timer's period and count mode.
• The duty cycle of the PWM waveform is determined by the generator's various action combinations.

Asymmetric Single EdgeActiveHigh

Single Edge Asymmetric Waveform, Active High

pwm_A

pwm_B

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(gena,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(gena,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣
↪→MCPWM_GEN_ACTION_LOW)));

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(genb,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(genb,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpb,␣
↪→MCPWM_GEN_ACTION_LOW)));
}

Asymmetric Single EdgeActiveLow

Single Edge Asymmetric Waveform, Active Low

pwm_A

pwm_B

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(gena,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_FULL, MCPWM_GEN_ACTION_LOW)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(gena,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣
↪→MCPWM_GEN_ACTION_HIGH)));

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(genb,

(continues on next page)

Espressif Systems 1046
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_FULL, MCPWM_GEN_ACTION_LOW)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(genb,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpb,␣
↪→MCPWM_GEN_ACTION_HIGH)));
}

Asymmetric Pulse Placement

Pulse Placement Asymmetric Waveform

pwm_A

pwm_B

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_actions_on_compare_event(gena,
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣

↪→MCPWM_GEN_ACTION_HIGH),
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpb,␣

↪→MCPWM_GEN_ACTION_LOW),
MCPWM_GEN_COMPARE_EVENT_ACTION_END()));

ESP_ERROR_CHECK(mcpwm_generator_set_actions_on_timer_event(genb,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_TOGGLE),
MCPWM_GEN_TIMER_EVENT_ACTION_END()));

}

AsymmetricDual EdgeActiveLow

Dual Edge Asymmetric Waveform, Active Low

pwm_A

pwm_B

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_actions_on_compare_event(gena,
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣

↪→MCPWM_GEN_ACTION_HIGH),
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_DOWN,␣

↪→cmpb, MCPWM_GEN_ACTION_LOW),
MCPWM_GEN_COMPARE_EVENT_ACTION_END()));

ESP_ERROR_CHECK(mcpwm_generator_set_actions_on_timer_event(genb,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_LOW),
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_DOWN, MCPWM_

↪→TIMER_EVENT_FULL, MCPWM_GEN_ACTION_HIGH),
MCPWM_GEN_TIMER_EVENT_ACTION_END()));

}

SymmetricDual EdgeActiveLow

Dual Edge Symmetric Waveform, Active Low

pwm_A

pwm_B

Espressif Systems 1047
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_actions_on_compare_event(gena,
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣

↪→MCPWM_GEN_ACTION_HIGH),
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_DOWN,␣

↪→cmpa, MCPWM_GEN_ACTION_LOW),
MCPWM_GEN_COMPARE_EVENT_ACTION_END()));

ESP_ERROR_CHECK(mcpwm_generator_set_actions_on_compare_event(genb,
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpb,␣

↪→MCPWM_GEN_ACTION_HIGH),
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_DOWN,␣

↪→cmpb, MCPWM_GEN_ACTION_LOW),
MCPWM_GEN_COMPARE_EVENT_ACTION_END()));

}

SymmetricDual EdgeComplementary

Dual Edge Symmetric Waveform, Complementary

pwm_A

pwm_B

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_actions_on_compare_event(gena,
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣

↪→MCPWM_GEN_ACTION_HIGH),
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_DOWN,␣

↪→cmpa, MCPWM_GEN_ACTION_LOW),
MCPWM_GEN_COMPARE_EVENT_ACTION_END()));

ESP_ERROR_CHECK(mcpwm_generator_set_actions_on_compare_event(genb,
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpb,␣

↪→MCPWM_GEN_ACTION_LOW),
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_DOWN,␣

↪→cmpb, MCPWM_GEN_ACTION_HIGH),
MCPWM_GEN_COMPARE_EVENT_ACTION_END()));

}

Dead Time In power electronics, the rectifier and inverter are commonly used. This requires the use of rectifier
bridge and inverter bridge. Each bridge arm has two power electronic devices, such as MOSFET, IGBT, etc. The
two MOSFETs on the same arm can't conduct at the same time, otherwise there will be a short circuit. The fact is
that, although the PWM wave shows it is turning off the switch, but the MOSFET still needs a small time window
to make that happen. This requires an extra delay to be added to the existing PWM wave that generated by setting
Generator Actions on Events.
The dead time driver works like a decorator. This is also reflected in the function parameters of
mcpwm_generator_set_dead_time(), where it takes the primary generator handle (in_generator),
and returns a new generator (out_generator) after applying the dead time. Please note, if the
out_generator and in_generator are the same, it means you are adding the time delay to the PWM wave-
form in an "in-place" fashion. In turn, if the out_generator and in_generator are different, it means you
are deriving a new PWM waveform from the existing in_generator.
Dead-time specific configuration is listed in the mcpwm_dead_time_config_t structure:

• mcpwm_dead_time_config_t::posedge_delay_ticks andmcpwm_dead_time_config_t::negedge_delay_ticks
set the number of ticks to delay the PWM waveform on the rising and falling edge. Specifically, setting both

Espressif Systems 1048
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

of them to zero means to bypass the dead-time module. The resolution of the dead-time tick is the same to
the timer that is connected with the operator by mcpwm_operator_connect_timer().

• mcpwm_dead_time_config_t::invert_output: Whether to invert the signal after applying the
dead-time, which can be used to control the delay edge polarity.

Warning: Due to the hardware limitation, one delay module (either posedge delay or negedge delay) can't be
applied to multiple MCPWM generators at the same time. e.g. the following configuration is invalid:
mcpwm_dead_time_config_t dt_config = {

.posedge_delay_ticks = 10,
};
// Set posedge delay to generator A
mcpwm_generator_set_dead_time(mcpwm_gen_a, mcpwm_gen_a, &dt_config);
// NOTE: This is invalid, you can't apply the posedge delay to another generator
mcpwm_generator_set_dead_time(mcpwm_gen_b, mcpwm_gen_b, &dt_config);

However, you can apply posedge delay to generator A and negedge delay to generator B. You can also set both
posedge delay and negedge delay for generator B, while letting generator A bypass the dead time module. Note
that if negedge delay and posedge delay are both set for generator A, generator B will not be available. Where
generator A is the first generator requested through the operator handle and generator B is the second generator
requested through an operator handle.

Note: It is also possible to generate the required dead time by setting Generator Actions on Events, especially by
controlling edge placement using different comparators. However, if the more classical edge delay-based dead time
with polarity control is required, then the dead-time submodule should be used.

Classical PWM Waveforms and Dead Time Configurations This section will demonstrate the classical PWM
waveforms that can be generated by the dead-time submodule. The code snippet that is used to generate the waveforms
is also provided below the diagram.

ActiveHighComplementary

Active High, Complementary

origin

pwm_A

pwm_B

RED

FEDInvert

a e b

c

f d

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(gena,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(gena,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣
↪→MCPWM_GEN_ACTION_LOW)));
}

static void dead_time_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb)
{

mcpwm_dead_time_config_t dead_time_config = {
.posedge_delay_ticks = 50,
.negedge_delay_ticks = 0

(continues on next page)

Espressif Systems 1049
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
};
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(gena, gena, &dead_time_config));
dead_time_config.posedge_delay_ticks = 0;
dead_time_config.negedge_delay_ticks = 100;
dead_time_config.flags.invert_output = true;
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(gena, genb, &dead_time_config));

}

ActiveLowComplementary

Active Low, Complementary

origin

pwm_A

pwm_B

RED

FED

Invert

a e b

c f

d

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(gena,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(gena,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣
↪→MCPWM_GEN_ACTION_LOW)));
}

static void dead_time_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb)
{

mcpwm_dead_time_config_t dead_time_config = {
.posedge_delay_ticks = 50,
.negedge_delay_ticks = 0,
.flags.invert_output = true

};
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(gena, gena, &dead_time_config));
dead_time_config.posedge_delay_ticks = 0;
dead_time_config.negedge_delay_ticks = 100;
dead_time_config.flags.invert_output = false;
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(gena, genb, &dead_time_config));

}

ActiveHigh

Active High

origin

pwm_A

pwm_B

RED

FED

a b

c

d

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(gena,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(gena,

(continues on next page)

Espressif Systems 1050
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣

↪→MCPWM_GEN_ACTION_LOW)));
}

static void dead_time_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb)
{

mcpwm_dead_time_config_t dead_time_config = {
.posedge_delay_ticks = 50,
.negedge_delay_ticks = 0,

};
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(gena, gena, &dead_time_config));
dead_time_config.posedge_delay_ticks = 0;
dead_time_config.negedge_delay_ticks = 100;
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(gena, genb, &dead_time_config));

}

ActiveLow

Active Low

origin

pwm_A

pwm_B

RED

FED

Invert

Invert

a e f b

c g

h d

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(gena,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(gena,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣
↪→MCPWM_GEN_ACTION_LOW)));
}

static void dead_time_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb)
{

mcpwm_dead_time_config_t dead_time_config = {
.posedge_delay_ticks = 50,
.negedge_delay_ticks = 0,
.flags.invert_output = true

};
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(gena, gena, &dead_time_config));
dead_time_config.posedge_delay_ticks = 0;
dead_time_config.negedge_delay_ticks = 100;
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(gena, genb, &dead_time_config));

}

Espressif Systems 1051
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

RisingDelay onPWMA,Bypass deadtime for PWMB

RED on A, Bypass B

origin_A

origin_B

pwm_A

pwm_B

RED

a

b

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(gena,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(gena,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣
↪→MCPWM_GEN_ACTION_LOW)));

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(genb,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(genb,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpb,␣
↪→MCPWM_GEN_ACTION_LOW)));
}

static void dead_time_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb)
{

mcpwm_dead_time_config_t dead_time_config = {
.posedge_delay_ticks = 50,
.negedge_delay_ticks = 0,

};
// apply deadtime to generator_a
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(gena, gena, &dead_time_config));
// bypass deadtime module for generator_b
dead_time_config.posedge_delay_ticks = 0;
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(genb, genb, &dead_time_config));

}

FallingDelay onPWMB,Bypass deadtime for PWMA

FED on B, Bypass A

origin_A

origin_B

pwm_A

pwm_B

FED

a

b

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(gena,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(gena,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣
↪→MCPWM_GEN_ACTION_LOW)));

(continues on next page)

Espressif Systems 1052
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(genb,

MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_
↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(genb,
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpb,␣

↪→MCPWM_GEN_ACTION_LOW)));
}

static void dead_time_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb)
{

mcpwm_dead_time_config_t dead_time_config = {
.posedge_delay_ticks = 0,
.negedge_delay_ticks = 0,

};
// generator_a bypass the deadtime module (no delay)
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(gena, gena, &dead_time_config));
// apply dead time to generator_b
dead_time_config.negedge_delay_ticks = 50;
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(genb, genb, &dead_time_config));

}

Rising and Falling Delay on PWMB, Bypass deadtime for PWMA

Bypass A, RED + FED on B

origin_A

origin_B

pwm_A

pwm_B

RED FED

a b

c d

static void gen_action_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb,␣
↪→mcpwm_cmpr_handle_t cmpa, mcpwm_cmpr_handle_t cmpb)
{

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(gena,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(gena,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpa,␣
↪→MCPWM_GEN_ACTION_LOW)));

ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(genb,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_

↪→TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(genb,

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, cmpb,␣
↪→MCPWM_GEN_ACTION_LOW)));
}

static void dead_time_config(mcpwm_gen_handle_t gena, mcpwm_gen_handle_t genb)
{

mcpwm_dead_time_config_t dead_time_config = {
.posedge_delay_ticks = 0,
.negedge_delay_ticks = 0,

};
// generator_a bypass the deadtime module (no delay)
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(gena, gena, &dead_time_config));

(continues on next page)

Espressif Systems 1053
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// apply dead time on both edge for generator_b
dead_time_config.negedge_delay_ticks = 50;
dead_time_config.posedge_delay_ticks = 50;
ESP_ERROR_CHECK(mcpwm_generator_set_dead_time(genb, genb, &dead_time_config));

}

Carrier Modulation The MCPWM operator has a carrier submodule that can be used if galvanic isolation from
the motor driver is required (e.g. isolated digital power application) by passing the PWM output signals through
transformers. Any of PWM output signals may be at 100% duty and not changing whenever motor is required to
run steady at the full load. Coupling of non alternating signals with a transformer is problematic, so the signals are
modulated by the carrier submodule to create an AC waveform, to make the coupling possible.
To configure the carrier submodule, you can call mcpwm_operator_apply_carrier(), and provide config-
uration structure mcpwm_carrier_config_t:

• mcpwm_carrier_config_t::clk_src sets the clock source of the carrier.
• mcpwm_carrier_config_t::frequency_hz indicates carrier frequency in Hz.
• mcpwm_carrier_config_t::duty_cycle indicates the duty cycle of the carrier. Note that, the sup-
ported choices of the duty cycle are discrete, the driver will search for the nearest one based on your configu-
ration.

• mcpwm_carrier_config_t::first_pulse_duration_us indicates the duration of the first
pulse in microseconds. The resolution of the first pulse duration is determined by the carrier frequency you
set in the mcpwm_carrier_config_t::frequency_hz. The first pulse duration can't be zero, and it
has to be at least one period of the carrier. A longer pulse width can help conduct the inductance quicker.

• mcpwm_carrier_config_t::invert_before_modulate and
mcpwm_carrier_config_t::invert_after_modulate set whether to invert the carrier
output before and after modulation.

Specifically, the carrier submodule can be disabled by calling mcpwm_operator_apply_carrier() with a
NULL configuration.

Faults and Brake Actions The MCPWM operator is able to sense external signals with information about failure
of the motor, the power driver or any other device connected. These failure signals are encapsulated into MCPWM
fault objects.
You should determine possible failure modes of the motor and what action should be performed on detection of a
particular fault, e.g., drive all outputs low for a brushed motor, lock current state for a stepper motor, etc. Because
of this action, the motor should be put into a safe state to reduce the likelihood of damage caused by the fault.

Set Operator Brake Mode on Fault The way that MCPWM operator reacts to the fault is called Brake.
The MCPWM operator can be configured to perform different brake modes for each fault object by call-
ing mcpwm_operator_set_brake_on_fault(). Brake specific configuration is passed as a structure
mcpwm_brake_config_t:

• mcpwm_brake_config_t::fault set which fault that the operator should react to.
• mcpwm_brake_config_t::brake_mode set the brake mode that should be used for the
fault. The supported brake modes are listed in the mcpwm_operator_brake_mode_t. For
MCPWM_OPER_BRAKE_MODE_CBC mode, the operator will recover itself automatically as long as the fault
disappears. You can specify the recovery time inmcpwm_brake_config_t::cbc_recover_on_tez
and mcpwm_brake_config_t::cbc_recover_on_tep. For MCPWM_OPER_BRAKE_MODE_OST
mode, the operator can't recover even though the fault disappears. User has to call
mcpwm_operator_recover_from_fault() to manually recover it.

Set Generator Action on Brake Event One generator can set multiple actions on different brake events, by calling
mcpwm_generator_set_actions_on_brake_event() with variable number of action configurations.
The action configuration is defined in mcpwm_gen_brake_event_action_t:

Espressif Systems 1054
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• mcpwm_gen_brake_event_action_t::direction specific the timer direction. The supported di-
rections are listed in mcpwm_timer_direction_t.

• mcpwm_gen_brake_event_action_t::brake_mode specifies the brake mode. The supported
brake modes are listed in the mcpwm_operator_brake_mode_t.

• mcpwm_gen_brake_event_action_t::action specifies the generator action to be taken. The sup-
ported actions are listed in mcpwm_generator_action_t.

There's a helper macroMCPWM_GEN_BRAKE_EVENT_ACTION to simplify the construction of a brake event action
entry.
Please note, the argument list of mcpwm_generator_set_actions_on_brake_event()must be termi-
nated by MCPWM_GEN_BRAKE_EVENT_ACTION_END.
You can also set the brake action one by one by callingmcpwm_generator_set_action_on_brake_event()
without varargs.

Register Fault Event Callbacks The MCPWM fault detector can inform the user when it detects a valid fault or
a fault signal disappears. If you have some function that should be called when such event happens, you should hook
your function to the interrupt service routine by calling mcpwm_fault_register_event_callbacks().
The callback function prototype is declared in mcpwm_fault_event_cb_t. All supported event callbacks are
listed in the mcpwm_fault_event_callbacks_t:

• mcpwm_fault_event_callbacks_t::on_fault_enter sets callback function that will be called
when a fault is detected.

• mcpwm_fault_event_callbacks_t::on_fault_exit sets callback function that will be called
when a fault is cleared.

The callback function is called within the ISR context, so is should not attempt to block (e.g., make sure that only
FreeRTOS APIs with ISR suffix is called within the function).
The parameter user_data of mcpwm_fault_register_event_callbacks() function is used to save
user's own context, it will be passed to the callback function directly.
This function will lazy install interrupt service for the MCPWM fault, whereas the service can only be removed in
mcpwm_del_fault.

Register Brake Event Callbacks The MCPWM operator can inform the user when it going to take a brake ac-
tion. If you have some function that should be called when this event happens, you should hook your function to
the interrupt service routine by calling mcpwm_operator_register_event_callbacks(). The callback
function prototype is declared in mcpwm_brake_event_cb_t. All supported event callbacks are listed in the
mcpwm_operator_event_callbacks_t:

• mcpwm_operator_event_callbacks_t::on_brake_cbc sets callback function that will be
called when the operator is going to take a CBC action.

• mcpwm_operator_event_callbacks_t::on_brake_ost sets callback function that will be
called when the operator is going to take an OST action.

The callback function is called within the ISR context, so is should not attempt to block (e.g., make sure that only
FreeRTOS APIs with ISR suffix is called within the function).
The parameter user_data of mcpwm_operator_register_event_callbacks() function is used to
save user's own context, it will be passed to the callback function directly.
This function will lazy install interrupt service for the MCPWM operator, whereas the service can only be removed
in mcpwm_del_operator.

Generator Force Actions Software can override generator output level at runtime, by calling
mcpwm_generator_set_force_level(). The software force level always has a higher priority than
other event actions set in e.g. mcpwm_generator_set_actions_on_timer_event().

• Set the level to -1 means to disable the force action, and the generator's output level will be controlled by
the event actions again.

Espressif Systems 1055
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Set the hold_on to true, the force output level will keep alive, until it's removed by assigning level to -1.
• Set the hole_on to false, the force output level will only be active for a short time, any upcoming event can
override it.

Synchronization When a sync signal is taken by the MCPWM timer, the timer will be forced into a pre-
defined phase, where the phase is determined by count value and count direction. You can set the sync
phase by calling mcpwm_timer_set_phase_on_sync(). The sync phase configuration is defined in
mcpwm_timer_sync_phase_config_t structure:

• mcpwm_timer_sync_phase_config_t::sync_src sets the sync signal source. SeeMCPWM Sync
Sources for how to create a sync source object. Specifically, if this is set to NULL, the driver will disable the
sync feature for the MCPWM timer.

• mcpwm_timer_sync_phase_config_t::count_value sets the count value to load when the sync
signal is taken.

• mcpwm_timer_sync_phase_config_t::direction sets the count direction when the sync signal
is taken.

Likewise, the MCPWM capture timerMCPWM Capture Timer can be synced as well. You can set the sync phase for
the capture timer by calling mcpwm_capture_timer_set_phase_on_sync(). The sync phase configura-
tion is defined in mcpwm_capture_timer_sync_phase_config_t structure:

• mcpwm_capture_timer_sync_phase_config_t::sync_src sets the sync signal source. See
MCPWM Sync Sources for how to create a sync source object. Specifically, if this is set to NULL, the driver
will disable the sync feature for the MCPWM capture timer.

• mcpwm_capture_timer_sync_phase_config_t::count_value sets the count value to load
when the sync signal is taken.

• mcpwm_capture_timer_sync_phase_config_t::direction sets the count direction when the
sync signal is taken. Note that, different from MCPWM Timer, the capture timer can only support one count
direction: MCPWM_TIMER_DIRECTION_UP.

Fig. 12: GPIO Sync All MCPWM Timers

Sync Timers by GPIO

Espressif Systems 1056
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

static void example_setup_sync_strategy(mcpwm_timer_handle_t timers[])
{

mcpwm_sync_handle_t gpio_sync_source = NULL;
mcpwm_gpio_sync_src_config_t gpio_sync_config = {

.group_id = 0, // GPIO fault should be in the same group of␣
↪→the above timers

.gpio_num = EXAMPLE_SYNC_GPIO,

.flags.pull_down = true,

.flags.active_neg = false, // by default, a posedge pulse can trigger a␣
↪→sync event

};
ESP_ERROR_CHECK(mcpwm_new_gpio_sync_src(&gpio_sync_config, &gpio_sync_source));

mcpwm_timer_sync_phase_config_t sync_phase_config = {
.count_value = 0, // sync phase: target count value
.direction = MCPWM_TIMER_DIRECTION_UP, // sync phase: count direction
.sync_src = gpio_sync_source, // sync source

};
for (int i = 0; i < 3; i++) {

ESP_ERROR_CHECK(mcpwm_timer_set_phase_on_sync(timers[i], &sync_phase_
↪→config));

}
}

Capture The basic functionality of MCPWM capture is to record the time when any pulse edge of the capture
signal turns active. Then you can get the pulse width and convert it into other physical quantities like distance or
speed in the capture callback function. For example, in the BLDC (Brushless DC, see figure below) scenario, you
can use the capture submodule to sense the rotor position from the Hall sensor.

Fig. 13: MCPWM BLDC with Hall Sensor

The capture timer is usually connected with several capture channels, please refer to MCPWM Capture Timer and
Channels for resource allocation.

Espressif Systems 1057
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Register Event Callbacks The MCPWM capture channel can inform the user when there's a valid edge de-
tected on the signal. You have to register a callback function to get the timer count value of the capture mo-
ment, by calling mcpwm_capture_channel_register_event_callbacks(). The callback function
prototype is declared in mcpwm_capture_event_cb_t. All supported capture callbacks are listed in the
mcpwm_capture_event_callbacks_t:

• mcpwm_capture_event_callbacks_t::on_cap sets callback function for the capture channel
when a valid edge is detected.

The callback function will provide event specific data of type mcpwm_capture_event_data_t, so
that you can get the edge of the capture signal in mcpwm_capture_event_data_t::cap_edge
and the count value of that moment in mcpwm_capture_event_data_t::cap_value. To con-
vert the capture count into timestamp, you need to know the resolution of the capture timer by calling
mcpwm_capture_timer_get_resolution().
The callback function is called within the ISR context, so is should not attempt to block (e.g., make sure that only
FreeRTOS APIs with ISR suffix is called within the function).
The parameter user_data of mcpwm_capture_channel_register_event_callbacks() function
is used to save user's own context, it will be passed to the callback function directly.
This function will lazy install interrupt service for the MCPWM capture channel, whereas the service can only be
removed in mcpwm_del_capture_channel.

Enable and Disable Capture Channel The capture channel is not enabled after allocation by
mcpwm_new_capture_channel(). You should call mcpwm_capture_channel_enable()
and mcpwm_capture_channel_disable() accordingly to enable or disable the
channel. If the interrupt service is lazy installed during registering event callbacks
for the channel in mcpwm_capture_channel_register_event_callbacks(),
mcpwm_capture_channel_enable() will enable the interrupt service as well.

Enable and Disable Capture Timer Before doing IO control to the capture timer, user needs to enable the timer
first, by calling mcpwm_capture_timer_enable(). Internally, this function will:

• switch the capture timer state from init to enable.
• acquire a proper power management lock if a specific clock source (e.g. APB clock) is selected. See also

Power management for more information.
On the contrary, calling mcpwm_capture_timer_disable() will put the timer driver back to init state, and
release the power management lock.

Start and Stop Capture Timer The basic IO operation of a capture timer is to start and stop. Calling
mcpwm_capture_timer_start() can start the timer and calling mcpwm_capture_timer_stop() can
stop the timer immediately.

Trigger a Software Capture Event Sometime, the software also wants to trigger a "fake" capture event. The
mcpwm_capture_channel_trigger_soft_catch() is provided for that purpose. Please note that, even
though it's a "fake" capture event, it can still cause an interrupt, thus your capture event callback function will get
invoked as well.

Power Management When power management is enabled (i.e. CONFIG_PM_ENABLE is on), the system will
adjust the PLL, APB frequency before going into light sleep, thus potentially changing the period of a MCPWM
timers' counting step and leading to inaccurate time keeping.
However, the driver can prevent the system from going into Light-sleep by acquiring a power management lock of
type ESP_PM_NO_LIGHT_SLEEP. Whenever the driver creates an MCPWM timer instance that has selected PLL
as its clock source, the driver guarantees that the power management lock is acquired when enabling the timer by
mcpwm_timer_enable(). On the contrary, the driver releases the lock when mcpwm_timer_disable()
is called for that timer.

Espressif Systems 1058
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Likewise, whenever the driver creates an MCPWM capture timer instance, the driver guarantees that the power
management lock is acquired when enabling the timer by mcpwm_capture_timer_enable(). And releases
the lock in mcpwm_capture_timer_disable().

IRAM Safe By default, the MCPWM interrupt will be deferred when the Cache is disabled for reasons like writ-
ing/erasing Flash. Thus the event callback functions will not get executed in time, which is not expected in a real-time
application.
There's a Kconfig option CONFIG_MCPWM_ISR_IRAM_SAFE that will:

1. Enable the interrupt being serviced even when cache is disabled
2. Place all functions that used by the ISR into IRAM2

3. Place driver object into DRAM (in case it's mapped to PSRAM by accident)
This will allow the interrupt to run while the cache is disabled but will come at the cost of increased IRAM consump-
tion.
There is another Kconfig option CONFIG_MCPWM_CTRL_FUNC_IN_IRAM that can put commonly used IO control
functions into IRAM as well. So, these functions can also be executable when the cache is disabled. These IO control
functions are as follows:

• mcpwm_comparator_set_compare_value()
• mcpwm_timer_set_period()

Thread Safety The factory functions like mcpwm_new_timer() are guaranteed to be thread safe by the driver,
which means, you can call it from different RTOS tasks without protection by extra locks.
The following functions are allowed to run under ISR context, as the driver uses a critical section to prevent them
being called concurrently in the task and ISR.

• mcpwm_comparator_set_compare_value()
• mcpwm_timer_set_period()

Other functions that are not related to Resource Allocation, are not thread safe. Thus, you should avoid calling them
in different tasks without mutex protection.

Kconfig Options
• CONFIG_MCPWM_ISR_IRAM_SAFE controls whether the default ISR handler can work when cache is dis-
abled, see IRAM Safe for more information.

• CONFIG_MCPWM_CTRL_FUNC_IN_IRAM controls where to place the MCPWM control functions (IRAM
or flash), see IRAM Safe for more information.

• CONFIG_MCPWM_ENABLE_DEBUG_LOG is used to enabled the debug log output. Enable this option will
increase the firmware binary size.

Application Examples

• Brushed DC motor speed control by PID algorithm: peripherals/mcpwm/mcpwm_bdc_speed_control
• BLDC motor control with hall sensor feedback: peripherals/mcpwm/mcpwm_bldc_hall_control
• Ultrasonic sensor (HC-SR04) distance measurement: peripherals/mcpwm/mcpwm_capture_hc_sr04
• Servo motor angle control: peripherals/mcpwm/mcpwm_servo_control
• MCPWM synchronization between timers: peripherals/mcpwm/mcpwm_sync

API Reference

Header File
• components/driver/mcpwm/include/driver/mcpwm_timer.h

2 Callback function and the sub-functions invoked by itself should also be placed in IRAM, users need to take care of this by themselves.

Espressif Systems 1059
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/mcpwm/mcpwm_bdc_speed_control
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/mcpwm/mcpwm_bldc_hall_control
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/mcpwm/mcpwm_capture_hc_sr04
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/mcpwm/mcpwm_servo_control
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/mcpwm/mcpwm_sync
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/mcpwm/include/driver/mcpwm_timer.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_err_t mcpwm_new_timer(const mcpwm_timer_config_t *config, mcpwm_timer_handle_t *ret_timer)

Create MCPWM timer.
Parameters

• config -- [in]MCPWM timer configuration
• ret_timer -- [out] Returned MCPWM timer handle

Returns
• ESP_OK: Create MCPWM timer successfully
• ESP_ERR_INVALID_ARG: Create MCPWM timer failed because of invalid argument
• ESP_ERR_NO_MEM: Create MCPWM timer failed because out of memory
• ESP_ERR_NOT_FOUND: CreateMCPWM timer failed because all hardware timers are
used up and no more free one

• ESP_FAIL: Create MCPWM timer failed because of other error
esp_err_t mcpwm_del_timer(mcpwm_timer_handle_t timer)

Delete MCPWM timer.
Parameters timer -- [in]MCPWM timer handle, allocated by mcpwm_new_timer()
Returns

• ESP_OK: Delete MCPWM timer successfully
• ESP_ERR_INVALID_ARG: Delete MCPWM timer failed because of invalid argument
• ESP_ERR_INVALID_STATE: Delete MCPWM timer failed because timer is not in init
state

• ESP_FAIL: Delete MCPWM timer failed because of other error
esp_err_t mcpwm_timer_set_period(mcpwm_timer_handle_t timer, uint32_t period_ticks)

Set a new period for MCPWM timer.

Note: If mcpwm_timer_config_t::update_period_on_empty and
mcpwm_timer_config_t::update_period_on_sync are not set, the new period will take
effect immediately. Otherwise, the new period will take effect when timer counts to zero or on sync event.

Note: You may need to use mcpwm_comparator_set_compare_value to set a new compare value
for MCPWM comparator in order to keep the same PWM duty cycle.

Parameters
• timer -- [in]MCPWM timer handle, allocated by mcpwm_new_timer
• period_ticks -- [in] New period in count ticks

Returns
• ESP_OK: Set new period for MCPWM timer successfully
• ESP_ERR_INVALID_ARG: Set new period forMCPWM timer failed because of invalid
argument

• ESP_FAIL: Set new period for MCPWM timer failed because of other error

esp_err_t mcpwm_timer_enable(mcpwm_timer_handle_t timer)
Enable MCPWM timer.

Parameters timer -- [in]MCPWM timer handle, allocated by mcpwm_new_timer()
Returns

• ESP_OK: Enable MCPWM timer successfully
• ESP_ERR_INVALID_ARG: Enable MCPWM timer failed because of invalid argument
• ESP_ERR_INVALID_STATE: Enable MCPWM timer failed because timer is enabled
already

• ESP_FAIL: Enable MCPWM timer failed because of other error
esp_err_t mcpwm_timer_disable(mcpwm_timer_handle_t timer)

Disable MCPWM timer.

Espressif Systems 1060
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters timer -- [in]MCPWM timer handle, allocated by mcpwm_new_timer()
Returns

• ESP_OK: Disable MCPWM timer successfully
• ESP_ERR_INVALID_ARG: Disable MCPWM timer failed because of invalid argument
• ESP_ERR_INVALID_STATE: Disable MCPWM timer failed because timer is disabled
already

• ESP_FAIL: Disable MCPWM timer failed because of other error
esp_err_t mcpwm_timer_start_stop(mcpwm_timer_handle_t timer, mcpwm_timer_start_stop_cmd_t

command)
Send specific start/stop commands to MCPWM timer.

Parameters
• timer -- [in]MCPWM timer handle, allocated by mcpwm_new_timer()
• command -- [in] Supported command list for MCPWM timer

Returns
• ESP_OK: Start or stop MCPWM timer successfully
• ESP_ERR_INVALID_ARG: Start or stop MCPWM timer failed because of invalid ar-
gument

• ESP_ERR_INVALID_STATE: Start or stop MCPWM timer failed because timer is not
enabled

• ESP_FAIL: Start or stop MCPWM timer failed because of other error
esp_err_t mcpwm_timer_register_event_callbacks(mcpwm_timer_handle_t timer, const

mcpwm_timer_event_callbacks_t *cbs, void
*user_data)

Set event callbacks for MCPWM timer.

Note: The first call to this function needs to be before the call to mcpwm_timer_enable

Note: User can deregister a previously registered callback by calling this function and setting the callback
member in the cbs structure to NULL.

Parameters
• timer -- [in]MCPWM timer handle, allocated by mcpwm_new_timer()
• cbs -- [in] Group of callback functions
• user_data -- [in] User data, which will be passed to callback functions directly

Returns
• ESP_OK: Set event callbacks successfully
• ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument
• ESP_ERR_INVALID_STATE: Set event callbacks failed because timer is not in init state
• ESP_FAIL: Set event callbacks failed because of other error

esp_err_t mcpwm_timer_set_phase_on_sync(mcpwm_timer_handle_t timer, const
mcpwm_timer_sync_phase_config_t *config)

Set sync phase for MCPWM timer.
Parameters

• timer -- [in]MCPWM timer handle, allocated by mcpwm_new_timer()
• config -- [in]MCPWM timer sync phase configuration

Returns
• ESP_OK: Set sync phase for MCPWM timer successfully
• ESP_ERR_INVALID_ARG: Set sync phase for MCPWM timer failed because of invalid
argument

• ESP_FAIL: Set sync phase for MCPWM timer failed because of other error

Espressif Systems 1061
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Structures

struct mcpwm_timer_event_callbacks_t
Group of supported MCPWM timer event callbacks.

Note: The callbacks are all running under ISR environment

Public Members

mcpwm_timer_event_cb_t on_full

callback function when MCPWM timer counts to peak value

mcpwm_timer_event_cb_t on_empty

callback function when MCPWM timer counts to zero

mcpwm_timer_event_cb_t on_stop

callback function when MCPWM timer stops

struct mcpwm_timer_config_t
MCPWM timer configuration.

Public Members

int group_id
Specify from which group to allocate the MCPWM timer

mcpwm_timer_clock_source_t clk_src

MCPWM timer clock source

uint32_t resolution_hz
Counter resolution in Hz The step size of each count tick equals to (1 / resolution_hz) seconds

mcpwm_timer_count_mode_t count_mode

Count mode

uint32_t period_ticks
Number of count ticks within a period

int intr_priority
MCPWM timer interrupt priority, if set to 0, the driver will try to allocate an interrupt with a relative
low priority (1,2,3)

uint32_t update_period_on_empty
Whether to update period when timer counts to zero

uint32_t update_period_on_sync
Whether to update period on sync event

Espressif Systems 1062
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct mcpwm_timer_config_t::[anonymous] flags
Extra configuration flags for timer

struct mcpwm_timer_sync_phase_config_t
MCPWM Timer sync phase configuration.

Public Members

mcpwm_sync_handle_t sync_src

The sync event source. Set to NULL will disable the timer being synced by others

uint32_t count_value
The count value that should lock to upon sync event

mcpwm_timer_direction_t direction

The count direction that should lock to upon sync event

Header File
• components/driver/mcpwm/include/driver/mcpwm_oper.h

Functions
esp_err_t mcpwm_new_operator(const mcpwm_operator_config_t *config, mcpwm_oper_handle_t *ret_oper)

Create MCPWM operator.
Parameters

• config -- [in]MCPWM operator configuration
• ret_oper -- [out] Returned MCPWM operator handle

Returns
• ESP_OK: Create MCPWM operator successfully
• ESP_ERR_INVALID_ARG: Create MCPWM operator failed because of invalid argu-
ment

• ESP_ERR_NO_MEM: Create MCPWM operator failed because out of memory
• ESP_ERR_NOT_FOUND: Create MCPWM operator failed because can't find free re-
source

• ESP_FAIL: Create MCPWM operator failed because of other error
esp_err_t mcpwm_del_operator(mcpwm_oper_handle_t oper)

Delete MCPWM operator.
Parameters oper -- [in]MCPWM operator, allocated by mcpwm_new_operator()
Returns

• ESP_OK: Delete MCPWM operator successfully
• ESP_ERR_INVALID_ARG: Delete MCPWM operator failed because of invalid argu-
ment

• ESP_FAIL: Delete MCPWM operator failed because of other error
esp_err_t mcpwm_operator_connect_timer(mcpwm_oper_handle_t oper, mcpwm_timer_handle_t timer)

Connect MCPWM operator and timer, so that the operator can be driven by the timer.
Parameters

• oper -- [in]MCPWM operator handle, allocated by mcpwm_new_operator()
• timer -- [in]MCPWM timer handle, allocated by mcpwm_new_timer()

Returns
• ESP_OK: Connect MCPWM operator and timer successfully

Espressif Systems 1063
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/mcpwm/include/driver/mcpwm_oper.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_ARG: Connect MCPWM operator and timer failed because of in-
valid argument

• ESP_FAIL: Connect MCPWM operator and timer failed because of other error
esp_err_t mcpwm_operator_set_brake_on_fault(mcpwm_oper_handle_t oper, const

mcpwm_brake_config_t *config)
Set brake method for MCPWM operator.

Parameters
• oper -- [in]MCPWM operator, allocated by mcpwm_new_operator()
• config -- [in]MCPWM brake configuration

Returns
• ESP_OK: Set trip for operator successfully
• ESP_ERR_INVALID_ARG: Set trip for operator failed because of invalid argument
• ESP_FAIL: Set trip for operator failed because of other error

esp_err_t mcpwm_operator_recover_from_fault(mcpwm_oper_handle_t oper, mcpwm_fault_handle_t
fault)

Try to make the operator recover from fault.

Note: To recover from fault or escape from trip, you make sure the fault signal has dissappeared already.
Otherwise the recovery can't succeed.

Parameters
• oper -- [in]MCPWM operator, allocated by mcpwm_new_operator()
• fault -- [in]MCPWM fault handle

Returns
• ESP_OK: Recover from fault successfully
• ESP_ERR_INVALID_ARG: Recover from fault failed because of invalid argument
• ESP_ERR_INVALID_STATE: Recover from fault failed because the fault source is still
active

• ESP_FAIL: Recover from fault failed because of other error

esp_err_t mcpwm_operator_register_event_callbacks(mcpwm_oper_handle_t oper, const
mcpwm_operator_event_callbacks_t *cbs,
void *user_data)

Set event callbacks for MCPWM operator.

Note: User can deregister a previously registered callback by calling this function and setting the callback
member in the cbs structure to NULL.

Parameters
• oper -- [in]MCPWM operator handle, allocated by mcpwm_new_operator()
• cbs -- [in] Group of callback functions
• user_data -- [in] User data, which will be passed to callback functions directly

Returns
• ESP_OK: Set event callbacks successfully
• ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument
• ESP_FAIL: Set event callbacks failed because of other error

esp_err_t mcpwm_operator_apply_carrier(mcpwm_oper_handle_t oper, const mcpwm_carrier_config_t
*config)

Apply carrier feature for MCPWM operator.
Parameters

• oper -- [in]MCPWM operator, allocated by mcpwm_new_operator()

Espressif Systems 1064
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• config -- [in]MCPWM carrier specific configuration
Returns

• ESP_OK: Set carrier for operator successfully
• ESP_ERR_INVALID_ARG: Set carrier for operator failed because of invalid argument
• ESP_FAIL: Set carrier for operator failed because of other error

Structures

struct mcpwm_operator_config_t
MCPWM operator configuration.

Public Members

int group_id
Specify from which group to allocate the MCPWM operator

int intr_priority
MCPWM operator interrupt priority, if set to 0, the driver will try to allocate an interrupt with a relative
low priority (1,2,3)

uint32_t update_gen_action_on_tez
Whether to update generator action when timer counts to zero

uint32_t update_gen_action_on_tep
Whether to update generator action when timer counts to peak

uint32_t update_gen_action_on_sync
Whether to update generator action on sync event

uint32_t update_dead_time_on_tez
Whether to update dead time when timer counts to zero

uint32_t update_dead_time_on_tep
Whether to update dead time when timer counts to peak

uint32_t update_dead_time_on_sync
Whether to update dead time on sync event

struct mcpwm_operator_config_t::[anonymous] flags
Extra configuration flags for operator

struct mcpwm_brake_config_t
MCPWM brake configuration structure.

Public Members

mcpwm_fault_handle_t fault

Which fault causes the operator to brake

Espressif Systems 1065
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

mcpwm_operator_brake_mode_t brake_mode

Brake mode

uint32_t cbc_recover_on_tez
Recovery CBC brake state on tez event

uint32_t cbc_recover_on_tep
Recovery CBC brake state on tep event

struct mcpwm_brake_config_t::[anonymous] flags
Extra flags for brake configuration

struct mcpwm_operator_event_callbacks_t
Group of supported MCPWM operator event callbacks.

Note: The callbacks are all running under ISR environment

Public Members

mcpwm_brake_event_cb_t on_brake_cbc

callback function when mcpwm operator brakes in CBC

mcpwm_brake_event_cb_t on_brake_ost

callback function when mcpwm operator brakes in OST

struct mcpwm_carrier_config_t
MCPWM carrier configuration structure.

Public Members

mcpwm_carrier_clock_source_t clk_src

MCPWM carrier clock source

uint32_t frequency_hz
Carrier frequency in Hz

uint32_t first_pulse_duration_us
The duration of the first PWM pulse, in us

float duty_cycle
Carrier duty cycle

uint32_t invert_before_modulate
Invert the raw signal

Espressif Systems 1066
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t invert_after_modulate
Invert the modulated signal

struct mcpwm_carrier_config_t::[anonymous] flags
Extra flags for carrier configuration

Header File
• components/driver/mcpwm/include/driver/mcpwm_cmpr.h

Functions
esp_err_t mcpwm_new_comparator(mcpwm_oper_handle_t oper, const mcpwm_comparator_config_t *config,

mcpwm_cmpr_handle_t *ret_cmpr)
Create MCPWM comparator.

Parameters
• oper -- [in] MCPWM operator, allocated by mcpwm_new_operator(), the new
comparator will be allocated from this operator

• config -- [in]MCPWM comparator configuration
• ret_cmpr -- [out] Returned MCPWM comparator

Returns
• ESP_OK: Create MCPWM comparator successfully
• ESP_ERR_INVALID_ARG: Create MCPWM comparator failed because of invalid ar-
gument

• ESP_ERR_NO_MEM: Create MCPWM comparator failed because out of memory
• ESP_ERR_NOT_FOUND: Create MCPWM comparator failed because can't find free
resource

• ESP_FAIL: Create MCPWM comparator failed because of other error
esp_err_t mcpwm_del_comparator(mcpwm_cmpr_handle_t cmpr)

Delete MCPWM comparator.
Parameters cmpr -- [in] MCPWM comparator handle, allocated by

mcpwm_new_comparator()
Returns

• ESP_OK: Delete MCPWM comparator successfully
• ESP_ERR_INVALID_ARG: Delete MCPWM comparator failed because of invalid ar-
gument

• ESP_FAIL: Delete MCPWM comparator failed because of other error
esp_err_t mcpwm_comparator_register_event_callbacks(mcpwm_cmpr_handle_t cmpr, const

mcpwm_comparator_event_callbacks_t
*cbs, void *user_data)

Set event callbacks for MCPWM comparator.

Note: User can deregister a previously registered callback by calling this function and setting the callback
member in the cbs structure to NULL.

Parameters
• cmpr -- [in] MCPWM comparator handle, allocated by
mcpwm_new_comparator()

• cbs -- [in] Group of callback functions
• user_data -- [in] User data, which will be passed to callback functions directly

Returns
• ESP_OK: Set event callbacks successfully
• ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument

Espressif Systems 1067
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/mcpwm/include/driver/mcpwm_cmpr.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_FAIL: Set event callbacks failed because of other error

esp_err_t mcpwm_comparator_set_compare_value(mcpwm_cmpr_handle_t cmpr, uint32_t cmp_ticks)
Set MCPWM comparator's compare value.

Parameters
• cmpr -- [in] MCPWM comparator handle, allocated by
mcpwm_new_comparator()

• cmp_ticks -- [in] The new compare value
Returns

• ESP_OK: Set MCPWM compare value successfully
• ESP_ERR_INVALID_ARG: Set MCPWM compare value failed because of invalid ar-
gument (e.g. the cmp_ticks is out of range)

• ESP_ERR_INVALID_STATE: Set MCPWM compare value failed because the operator
doesn't have a timer connected

• ESP_FAIL: Set MCPWM compare value failed because of other error

Structures

struct mcpwm_comparator_config_t
MCPWM comparator configuration.

Public Members

int intr_priority
MCPWM comparator interrupt priority, if set to 0, the driver will try to allocate an interrupt with a
relative low priority (1,2,3)

uint32_t update_cmp_on_tez
Whether to update compare value when timer count equals to zero (tez)

uint32_t update_cmp_on_tep
Whether to update compare value when timer count equals to peak (tep)

uint32_t update_cmp_on_sync
Whether to update compare value on sync event

struct mcpwm_comparator_config_t::[anonymous] flags
Extra configuration flags for comparator

struct mcpwm_comparator_event_callbacks_t
Group of supported MCPWM compare event callbacks.

Note: The callbacks are all running under ISR environment

Public Members

mcpwm_compare_event_cb_t on_reach

ISR callback function which would be invoked when counter reaches compare value

Espressif Systems 1068
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/driver/mcpwm/include/driver/mcpwm_gen.h

Functions
esp_err_t mcpwm_new_generator(mcpwm_oper_handle_t oper, const mcpwm_generator_config_t *config,

mcpwm_gen_handle_t *ret_gen)
Allocate MCPWM generator from given operator.

Parameters
• oper -- [in]MCPWM operator, allocated by mcpwm_new_operator()
• config -- [in]MCPWM generator configuration
• ret_gen -- [out] Returned MCPWM generator

Returns
• ESP_OK: Create MCPWM generator successfully
• ESP_ERR_INVALID_ARG: Create MCPWM generator failed because of invalid argu-
ment

• ESP_ERR_NO_MEM: Create MCPWM generator failed because out of memory
• ESP_ERR_NOT_FOUND: Create MCPWM generator failed because can't find free re-
source

• ESP_FAIL: Create MCPWM generator failed because of other error
esp_err_t mcpwm_del_generator(mcpwm_gen_handle_t gen)

Delete MCPWM generator.
Parameters gen -- [in]MCPWMgenerator handle, allocated by mcpwm_new_generator()
Returns

• ESP_OK: Delete MCPWM generator successfully
• ESP_ERR_INVALID_ARG: Delete MCPWM generator failed because of invalid argu-
ment

• ESP_FAIL: Delete MCPWM generator failed because of other error
esp_err_t mcpwm_generator_set_force_level(mcpwm_gen_handle_t gen, int level, bool hold_on)

Set force level for MCPWM generator.

Note: The force level will be applied to the generator immediately, regardless any other events that would
change the generator's behaviour.

Note: If the hold_on is true, the force level will retain forever, until user removes the force level by setting
the force level to -1.

Note: If the hold_on is false, the force level can be overridden by the next event action.

Note: The force level set by this function can be inverted by GPIO matrix or dead-time module. So the level
set here doesn't equal to the final output level.

Parameters
• gen -- [in]MCPWM generator handle, allocated by mcpwm_new_generator()
• level -- [in] GPIO level to be applied to MCPWM generator, specially, -1 means to
remove the force level

• hold_on -- [in]Whether the forced PWM level should retain (i.e. will remain unchanged
until manually remove the force level)

Returns
• ESP_OK: Set force level for MCPWM generator successfully

Espressif Systems 1069
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/mcpwm/include/driver/mcpwm_gen.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_ARG: Set force level for MCPWM generator failed because of
invalid argument

• ESP_FAIL: Set force level for MCPWM generator failed because of other error

esp_err_t mcpwm_generator_set_action_on_timer_event(mcpwm_gen_handle_t gen,
mcpwm_gen_timer_event_action_t
ev_act)

Set generator action on MCPWM timer event.
Parameters

• gen -- [in]MCPWM generator handle, allocated by mcpwm_new_generator()
• ev_act -- [in] MCPWM timer event action, can be constructed by
MCPWM_GEN_TIMER_EVENT_ACTION helper macro

Returns
• ESP_OK: Set generator action successfully
• ESP_ERR_INVALID_ARG: Set generator action failed because of invalid argument
• ESP_ERR_INVALID_STATE: Set generator action failed because of timer is not con-
nected to operator

• ESP_FAIL: Set generator action failed because of other error
esp_err_t mcpwm_generator_set_actions_on_timer_event(mcpwm_gen_handle_t gen,

mcpwm_gen_timer_event_action_t
ev_act, ...)

Set generator actions on multiple MCPWM timer events.

Note: This is an aggregation version ofmcpwm_generator_set_action_on_timer_event, which
allows user to set multiple actions in one call.

Parameters
• gen -- [in]MCPWM generator handle, allocated by mcpwm_new_generator()
• ev_act -- [in] MCPWM timer event action list, must be terminated by
MCPWM_GEN_TIMER_EVENT_ACTION_END()

Returns
• ESP_OK: Set generator actions successfully
• ESP_ERR_INVALID_ARG: Set generator actions failed because of invalid argument
• ESP_ERR_INVALID_STATE: Set generator actions failed because of timer is not con-
nected to operator

• ESP_FAIL: Set generator actions failed because of other error

esp_err_t mcpwm_generator_set_action_on_compare_event(mcpwm_gen_handle_t generator,
mcpwm_gen_compare_event_action_t
ev_act)

Set generator action on MCPWM compare event.
Parameters

• generator -- [in] MCPWM generator handle, allocated by
mcpwm_new_generator()

• ev_act -- [in] MCPWM compare event action, can be constructed by
MCPWM_GEN_COMPARE_EVENT_ACTION helper macro

Returns
• ESP_OK: Set generator action successfully
• ESP_ERR_INVALID_ARG: Set generator action failed because of invalid argument
• ESP_FAIL: Set generator action failed because of other error

esp_err_t mcpwm_generator_set_actions_on_compare_event(mcpwm_gen_handle_t generator,
mcpwm_gen_compare_event_action_t
ev_act, ...)

Espressif Systems 1070
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Set generator actions on multiple MCPWM compare events.

Note: This is an aggregation version of mcpwm_generator_set_action_on_compare_event,
which allows user to set multiple actions in one call.

Parameters
• generator -- [in] MCPWM generator handle, allocated by
mcpwm_new_generator()

• ev_act -- [in] MCPWM compare event action list, must be terminated by
MCPWM_GEN_COMPARE_EVENT_ACTION_END()

Returns
• ESP_OK: Set generator actions successfully
• ESP_ERR_INVALID_ARG: Set generator actions failed because of invalid argument
• ESP_FAIL: Set generator actions failed because of other error

esp_err_t mcpwm_generator_set_action_on_brake_event(mcpwm_gen_handle_t generator,
mcpwm_gen_brake_event_action_t
ev_act)

Set generator action on MCPWM brake event.
Parameters

• generator -- [in] MCPWM generator handle, allocated by
mcpwm_new_generator()

• ev_act -- [in] MCPWM brake event action, can be constructed by
MCPWM_GEN_BRAKE_EVENT_ACTION helper macro

Returns
• ESP_OK: Set generator action successfully
• ESP_ERR_INVALID_ARG: Set generator action failed because of invalid argument
• ESP_FAIL: Set generator action failed because of other error

esp_err_t mcpwm_generator_set_actions_on_brake_event(mcpwm_gen_handle_t generator,
mcpwm_gen_brake_event_action_t
ev_act, ...)

Set generator actions on multiple MCPWM brake events.

Note: This is an aggregation version ofmcpwm_generator_set_action_on_brake_event, which
allows user to set multiple actions in one call.

Parameters
• generator -- [in] MCPWM generator handle, allocated by
mcpwm_new_generator()

• ev_act -- [in] MCPWM brake event action list, must be terminated by
MCPWM_GEN_BRAKE_EVENT_ACTION_END()

Returns
• ESP_OK: Set generator actions successfully
• ESP_ERR_INVALID_ARG: Set generator actions failed because of invalid argument
• ESP_FAIL: Set generator actions failed because of other error

esp_err_t mcpwm_generator_set_action_on_fault_event(mcpwm_gen_handle_t generator,
mcpwm_gen_fault_event_action_t
ev_act)

Set generator action on MCPWM Fault event.
Parameters

Espressif Systems 1071
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• generator -- [in] MCPWM generator handle, allocated by
mcpwm_new_generator()

• ev_act -- [in] MCPWM trigger event action, can be constructed by
MCPWM_GEN_FAULT_EVENT_ACTION helper macro

Returns
• ESP_OK: Set generator action successfully
• ESP_ERR_INVALID_ARG: Set generator action failed because of invalid argument
• ESP_FAIL: Set generator action failed because of other error

esp_err_t mcpwm_generator_set_action_on_sync_event(mcpwm_gen_handle_t generator,
mcpwm_gen_sync_event_action_t ev_act)

Set generator action on MCPWM Sync event.

Note: The trigger only support one sync action, regardless of the kinds. Should not call this function more
than once.

Parameters
• generator -- [in] MCPWM generator handle, allocated by
mcpwm_new_generator()

• ev_act -- [in] MCPWM trigger event action, can be constructed by
MCPWM_GEN_SYNC_EVENT_ACTION helper macro

Returns
• ESP_OK: Set generator action successfully
• ESP_ERR_INVALID_ARG: Set generator action failed because of invalid argument
• ESP_FAIL: Set generator action failed because of other error

esp_err_t mcpwm_generator_set_dead_time(mcpwm_gen_handle_t in_generator, mcpwm_gen_handle_t
out_generator, const mcpwm_dead_time_config_t *config)

Set dead time for MCPWM generator.

Note: Due to a hardware limitation, you can't set rising edge delay for both MCPWM generator 0 and 1 at
the same time, otherwise, there will be a conflict inside the dead time module. The same goes for the falling
edge setting. But you can set both the rising edge and falling edge delay for the same MCPWM generator.

Parameters
• in_generator -- [in]MCPWM generator, before adding the dead time
• out_generator -- [in]MCPWM generator, after adding the dead time
• config -- [in]MCPWM dead time configuration

Returns
• ESP_OK: Set dead time for MCPWM generator successfully
• ESP_ERR_INVALID_ARG: Set dead time for MCPWM generator failed because of in-
valid argument

• ESP_ERR_INVALID_STATE: Set dead time for MCPWM generator failed because of
invalid state (e.g. delay module is already in use by other generator)

• ESP_FAIL: Set dead time for MCPWM generator failed because of other error

Structures

struct mcpwm_generator_config_t
MCPWM generator configuration.

Public Members

Espressif Systems 1072
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int gen_gpio_num
The GPIO number used to output the PWM signal

uint32_t invert_pwm
Whether to invert the PWM signal (done by GPIO matrix)

uint32_t io_loop_back
For debug/test, the signal output from the GPIO will be fed to the input path as well

uint32_t io_od_mode
Configure the GPIO as open-drain mode

uint32_t pull_up
Whether to pull up internally

uint32_t pull_down
Whether to pull down internally

struct mcpwm_generator_config_t::[anonymous] flags
Extra configuration flags for generator

struct mcpwm_gen_timer_event_action_t
Generator action on specific timer event.

Public Members

mcpwm_timer_direction_t direction

Timer direction

mcpwm_timer_event_t event

Timer event

mcpwm_generator_action_t action

Generator action should perform

struct mcpwm_gen_compare_event_action_t
Generator action on specific comparator event.

Public Members

mcpwm_timer_direction_t direction

Timer direction

mcpwm_cmpr_handle_t comparator

Comparator handle

mcpwm_generator_action_t action

Generator action should perform

Espressif Systems 1073
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct mcpwm_gen_brake_event_action_t
Generator action on specific brake event.

Public Members

mcpwm_timer_direction_t direction

Timer direction

mcpwm_operator_brake_mode_t brake_mode

Brake mode

mcpwm_generator_action_t action

Generator action should perform

struct mcpwm_gen_fault_event_action_t
Generator action on specific fault event.

Public Members

mcpwm_timer_direction_t direction

Timer direction

mcpwm_fault_handle_t fault

Which fault as the trigger. Only support GPIO fault

mcpwm_generator_action_t action

Generator action should perform

struct mcpwm_gen_sync_event_action_t
Generator action on specific sync event.

Public Members

mcpwm_timer_direction_t direction

Timer direction

mcpwm_sync_handle_t sync

Which sync as the trigger

mcpwm_generator_action_t action

Generator action should perform

struct mcpwm_dead_time_config_t
MCPWM dead time configuration structure.

Espressif Systems 1074
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint32_t posedge_delay_ticks
delay time applied to rising edge, 0 means no rising delay time

uint32_t negedge_delay_ticks
delay time applied to falling edge, 0 means no falling delay time

uint32_t invert_output
Invert the signal after applied the dead time

struct mcpwm_dead_time_config_t::[anonymous] flags
Extra flags for dead time configuration

Macros
MCPWM_GEN_TIMER_EVENT_ACTION(dir, ev, act)

Help macros to construct a mcpwm_gen_timer_event_action_t entry.
MCPWM_GEN_TIMER_EVENT_ACTION_END()

MCPWM_GEN_COMPARE_EVENT_ACTION(dir, cmp, act)
Help macros to construct a mcpwm_gen_compare_event_action_t entry.

MCPWM_GEN_COMPARE_EVENT_ACTION_END()

MCPWM_GEN_BRAKE_EVENT_ACTION(dir, mode, act)
Help macros to construct a mcpwm_gen_brake_event_action_t entry.

MCPWM_GEN_BRAKE_EVENT_ACTION_END()

MCPWM_GEN_FAULT_EVENT_ACTION(dir, flt, act)
Help macros to construct a mcpwm_gen_fault_event_action_t entry.

MCPWM_GEN_SYNC_EVENT_ACTION(dir, syn, act)
Help macros to construct a mcpwm_gen_sync_event_action_t entry.

Header File
• components/driver/mcpwm/include/driver/mcpwm_fault.h

Functions
esp_err_t mcpwm_new_gpio_fault(const mcpwm_gpio_fault_config_t *config, mcpwm_fault_handle_t

*ret_fault)
Create MCPWM GPIO fault.

Parameters
• config -- [in]MCPWM GPIO fault configuration
• ret_fault -- [out] Returned GPIO fault handle

Returns
• ESP_OK: Create MCPWM GPIO fault successfully
• ESP_ERR_INVALID_ARG: Create MCPWM GPIO fault failed because of invalid ar-
gument

• ESP_ERR_NO_MEM: Create MCPWM GPIO fault failed because out of memory
• ESP_ERR_NOT_FOUND: Create MCPWM GPIO fault failed because can't find free
resource

• ESP_FAIL: Create MCPWM GPIO fault failed because of other error

Espressif Systems 1075
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/mcpwm/include/driver/mcpwm_fault.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t mcpwm_new_soft_fault(const mcpwm_soft_fault_config_t *config, mcpwm_fault_handle_t
*ret_fault)

Create MCPWM software fault.
Parameters

• config -- [in]MCPWM software fault configuration
• ret_fault -- [out] Returned software fault handle

Returns
• ESP_OK: Create MCPWM software fault successfully
• ESP_ERR_INVALID_ARG: Create MCPWM software fault failed because of invalid
argument

• ESP_ERR_NO_MEM: Create MCPWM software fault failed because out of memory
• ESP_FAIL: Create MCPWM software fault failed because of other error

esp_err_t mcpwm_del_fault(mcpwm_fault_handle_t fault)
Delete MCPWM fault.

Parameters fault -- [in]MCPWM fault handle allocated by mcpwm_new_gpio_fault()
or mcpwm_new_soft_fault()

Returns
• ESP_OK: Delete MCPWM fault successfully
• ESP_ERR_INVALID_ARG: Delete MCPWM fault failed because of invalid argument
• ESP_FAIL: Delete MCPWM fault failed because of other error

esp_err_t mcpwm_soft_fault_activate(mcpwm_fault_handle_t fault)
Activate the software fault, trigger the fault event for once.

Parameters fault -- [in]MCPWM soft fault, allocated by mcpwm_new_soft_fault()
Returns

• ESP_OK: Trigger MCPWM software fault event successfully
• ESP_ERR_INVALID_ARG: Trigger MCPWM software fault event failed because of in-
valid argument

• ESP_FAIL: Trigger MCPWM software fault event failed because of other error
esp_err_t mcpwm_fault_register_event_callbacks(mcpwm_fault_handle_t fault, const

mcpwm_fault_event_callbacks_t *cbs, void
*user_data)

Set event callbacks for MCPWM fault.

Note: User can deregister a previously registered callback by calling this function and setting the callback
member in the cbs structure to NULL.

Parameters
• fault -- [in] MCPWM GPIO fault handle, allocated by
mcpwm_new_gpio_fault()

• cbs -- [in] Group of callback functions
• user_data -- [in] User data, which will be passed to callback functions directly

Returns
• ESP_OK: Set event callbacks successfully
• ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument
• ESP_FAIL: Set event callbacks failed because of other error

Structures

struct mcpwm_gpio_fault_config_t
MCPWM GPIO fault configuration structure.

Espressif Systems 1076
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

int group_id
In which MCPWM group that the GPIO fault belongs to

int intr_priority
MCPWM GPIO fault interrupt priority, if set to 0, the driver will try to allocate an interrupt with a
relative low priority (1,2,3)

int gpio_num
GPIO used by the fault signal

uint32_t active_level
On which level the fault signal is treated as active

uint32_t io_loop_back
For debug/test, the signal output from the GPIO will be fed to the input path as well

uint32_t pull_up
Whether to pull up internally

uint32_t pull_down
Whether to pull down internally

struct mcpwm_gpio_fault_config_t::[anonymous] flags
Extra configuration flags for GPIO fault

struct mcpwm_soft_fault_config_t
MCPWM software fault configuration structure.

struct mcpwm_fault_event_callbacks_t
Group of supported MCPWM fault event callbacks.

Note: The callbacks are all running under ISR environment

Public Members

mcpwm_fault_event_cb_t on_fault_enter

ISR callback function that would be invoked when fault signal becomes active

mcpwm_fault_event_cb_t on_fault_exit

ISR callback function that would be invoked when fault signal becomes inactive

Header File
• components/driver/mcpwm/include/driver/mcpwm_sync.h

Espressif Systems 1077
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/mcpwm/include/driver/mcpwm_sync.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_err_t mcpwm_new_timer_sync_src(mcpwm_timer_handle_t timer, const

mcpwm_timer_sync_src_config_t *config, mcpwm_sync_handle_t
*ret_sync)

Create MCPWM timer sync source.
Parameters

• timer -- [in]MCPWM timer handle, allocated by mcpwm_new_timer()
• config -- [in]MCPWM timer sync source configuration
• ret_sync -- [out] Returned MCPWM sync handle

Returns
• ESP_OK: Create MCPWM timer sync source successfully
• ESP_ERR_INVALID_ARG: CreateMCPWM timer sync source failed because of invalid
argument

• ESP_ERR_NO_MEM: Create MCPWM timer sync source failed because out of memory
• ESP_ERR_INVALID_STATE: Create MCPWM timer sync source failed because the
timer has created a sync source before

• ESP_FAIL: Create MCPWM timer sync source failed because of other error
esp_err_t mcpwm_new_gpio_sync_src(const mcpwm_gpio_sync_src_config_t *config,

mcpwm_sync_handle_t *ret_sync)
Create MCPWM GPIO sync source.

Parameters
• config -- [in]MCPWM GPIO sync source configuration
• ret_sync -- [out] Returned MCPWM GPIO sync handle

Returns
• ESP_OK: Create MCPWM GPIO sync source successfully
• ESP_ERR_INVALID_ARG: Create MCPWM GPIO sync source failed because of in-
valid argument

• ESP_ERR_NO_MEM:CreateMCPWMGPIO sync source failed because out ofmemory
• ESP_ERR_NOT_FOUND: Create MCPWM GPIO sync source failed because can't find
free resource

• ESP_FAIL: Create MCPWM GPIO sync source failed because of other error
esp_err_t mcpwm_new_soft_sync_src(const mcpwm_soft_sync_config_t *config, mcpwm_sync_handle_t

*ret_sync)
Create MCPWM software sync source.

Parameters
• config -- [in]MCPWM software sync source configuration
• ret_sync -- [out] Returned software sync handle

Returns
• ESP_OK: Create MCPWM software sync successfully
• ESP_ERR_INVALID_ARG: Create MCPWM software sync failed because of invalid
argument

• ESP_ERR_NO_MEM: Create MCPWM software sync failed because out of memory
• ESP_FAIL: Create MCPWM software sync failed because of other error

esp_err_t mcpwm_del_sync_src(mcpwm_sync_handle_t sync)
Delete MCPWM sync source.

Parameters sync -- [in] MCPWM sync handle, allocated by
mcpwm_new_timer_sync_src() or mcpwm_new_gpio_sync_src() or
mcpwm_new_soft_sync_src()

Returns
• ESP_OK: Delete MCPWM sync source successfully
• ESP_ERR_INVALID_ARG: Delete MCPWM sync source failed because of invalid ar-
gument

• ESP_FAIL: Delete MCPWM sync source failed because of other error

Espressif Systems 1078
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t mcpwm_soft_sync_activate(mcpwm_sync_handle_t sync)
Activate the software sync, trigger the sync event for once.

Parameters sync -- [in] MCPWM soft sync handle, allocated by
mcpwm_new_soft_sync_src()

Returns
• ESP_OK: Trigger MCPWM software sync event successfully
• ESP_ERR_INVALID_ARG: Trigger MCPWM software sync event failed because of in-
valid argument

• ESP_FAIL: Trigger MCPWM software sync event failed because of other error

Structures

struct mcpwm_timer_sync_src_config_t
MCPWM timer sync source configuration.

Public Members

mcpwm_timer_event_t timer_event

Timer event, upon which MCPWM timer will generate the sync signal

uint32_t propagate_input_sync
The input sync signal would be routed to its sync output

struct mcpwm_timer_sync_src_config_t::[anonymous] flags
Extra configuration flags for timer sync source

struct mcpwm_gpio_sync_src_config_t
MCPWM GPIO sync source configuration.

Public Members

int group_id
MCPWM group ID

int gpio_num
GPIO used by sync source

uint32_t active_neg
Whether the sync signal is active on negedge, by default, the sync signal's posedge is treated as active

uint32_t io_loop_back
For debug/test, the signal output from the GPIO will be fed to the input path as well

uint32_t pull_up
Whether to pull up internally

uint32_t pull_down
Whether to pull down internally

Espressif Systems 1079
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct mcpwm_gpio_sync_src_config_t::[anonymous] flags
Extra configuration flags for GPIO sync source

struct mcpwm_soft_sync_config_t
MCPWM software sync configuration structure.

Header File
• components/driver/mcpwm/include/driver/mcpwm_cap.h

Functions
esp_err_t mcpwm_new_capture_timer(const mcpwm_capture_timer_config_t *config,

mcpwm_cap_timer_handle_t *ret_cap_timer)
Create MCPWM capture timer.

Parameters
• config -- [in]MCPWM capture timer configuration
• ret_cap_timer -- [out] Returned MCPWM capture timer handle

Returns
• ESP_OK: Create MCPWM capture timer successfully
• ESP_ERR_INVALID_ARG: Create MCPWM capture timer failed because of invalid
argument

• ESP_ERR_NO_MEM: Create MCPWM capture timer failed because out of memory
• ESP_ERR_NOT_FOUND: Create MCPWM capture timer failed because can't find free
resource

• ESP_FAIL: Create MCPWM capture timer failed because of other error
esp_err_t mcpwm_del_capture_timer(mcpwm_cap_timer_handle_t cap_timer)

Delete MCPWM capture timer.
Parameters cap_timer -- [in] MCPWM capture timer, allocated by

mcpwm_new_capture_timer()
Returns

• ESP_OK: Delete MCPWM capture timer successfully
• ESP_ERR_INVALID_ARG: Delete MCPWM capture timer failed because of invalid
argument

• ESP_FAIL: Delete MCPWM capture timer failed because of other error
esp_err_t mcpwm_capture_timer_enable(mcpwm_cap_timer_handle_t cap_timer)

Enable MCPWM capture timer.
Parameters cap_timer -- [in] MCPWM capture timer handle, allocated by

mcpwm_new_capture_timer()
Returns

• ESP_OK: Enable MCPWM capture timer successfully
• ESP_ERR_INVALID_ARG: Enable MCPWM capture timer failed because of invalid
argument

• ESP_ERR_INVALID_STATE: Enable MCPWM capture timer failed because timer is
enabled already

• ESP_FAIL: Enable MCPWM capture timer failed because of other error
esp_err_t mcpwm_capture_timer_disable(mcpwm_cap_timer_handle_t cap_timer)

Disable MCPWM capture timer.
Parameters cap_timer -- [in] MCPWM capture timer handle, allocated by

mcpwm_new_capture_timer()
Returns

• ESP_OK: Disable MCPWM capture timer successfully

Espressif Systems 1080
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/mcpwm/include/driver/mcpwm_cap.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_ARG: Disable MCPWM capture timer failed because of invalid
argument

• ESP_ERR_INVALID_STATE: Disable MCPWM capture timer failed because timer is
disabled already

• ESP_FAIL: Disable MCPWM capture timer failed because of other error
esp_err_t mcpwm_capture_timer_start(mcpwm_cap_timer_handle_t cap_timer)

Start MCPWM capture timer.
Parameters cap_timer -- [in] MCPWM capture timer, allocated by

mcpwm_new_capture_timer()
Returns

• ESP_OK: Start MCPWM capture timer successfully
• ESP_ERR_INVALID_ARG: Start MCPWM capture timer failed because of invalid ar-
gument

• ESP_FAIL: Start MCPWM capture timer failed because of other error
esp_err_t mcpwm_capture_timer_stop(mcpwm_cap_timer_handle_t cap_timer)

Stop MCPWM capture timer.
Parameters cap_timer -- [in] MCPWM capture timer, allocated by

mcpwm_new_capture_timer()
Returns

• ESP_OK: Stop MCPWM capture timer successfully
• ESP_ERR_INVALID_ARG: Stop MCPWM capture timer failed because of invalid ar-
gument

• ESP_FAIL: Stop MCPWM capture timer failed because of other error
esp_err_t mcpwm_capture_timer_get_resolution(mcpwm_cap_timer_handle_t cap_timer, uint32_t

*out_resolution)
Get MCPWM capture timer resolution, in Hz.

Parameters
• cap_timer -- [in] MCPWM capture timer, allocated by
mcpwm_new_capture_timer()

• out_resolution -- [out] Returned capture timer resolution, in Hz
Returns

• ESP_OK: Get capture timer resolution successfully
• ESP_ERR_INVALID_ARG: Get capture timer resolution failed because of invalid argu-
ment

• ESP_FAIL: Get capture timer resolution failed because of other error
esp_err_t mcpwm_capture_timer_set_phase_on_sync(mcpwm_cap_timer_handle_t cap_timer, const

mcpwm_capture_timer_sync_phase_config_t
*config)

Set sync phase for MCPWM capture timer.
Parameters

• cap_timer -- [in] MCPWM capture timer, allocated by
mcpwm_new_capture_timer()

• config -- [in]MCPWM capture timer sync phase configuration
Returns

• ESP_OK: Set sync phase for MCPWM capture timer successfully
• ESP_ERR_INVALID_ARG: Set sync phase for MCPWM capture timer failed because
of invalid argument

• ESP_FAIL: Set sync phase for MCPWM capture timer failed because of other error
esp_err_t mcpwm_new_capture_channel(mcpwm_cap_timer_handle_t cap_timer, const

mcpwm_capture_channel_config_t *config,
mcpwm_cap_channel_handle_t *ret_cap_channel)

Create MCPWM capture channel.

Espressif Systems 1081
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: The created capture channel won't be enabled until calling mcpwm_capture_channel_enable

Parameters
• cap_timer -- [in] MCPWM capture timer, allocated by
mcpwm_new_capture_timer(), will be connected to the new capture chan-
nel

• config -- [in]MCPWM capture channel configuration
• ret_cap_channel -- [out] Returned MCPWM capture channel

Returns
• ESP_OK: Create MCPWM capture channel successfully
• ESP_ERR_INVALID_ARG: Create MCPWM capture channel failed because of invalid
argument

• ESP_ERR_NO_MEM: Create MCPWM capture channel failed because out of memory
• ESP_ERR_NOT_FOUND: Create MCPWM capture channel failed because can't find
free resource

• ESP_FAIL: Create MCPWM capture channel failed because of other error

esp_err_t mcpwm_del_capture_channel(mcpwm_cap_channel_handle_t cap_channel)
Delete MCPWM capture channel.

Parameters cap_channel -- [in] MCPWM capture channel handle, allocated by
mcpwm_new_capture_channel()

Returns
• ESP_OK: Delete MCPWM capture channel successfully
• ESP_ERR_INVALID_ARG: Delete MCPWM capture channel failed because of invalid
argument

• ESP_FAIL: Delete MCPWM capture channel failed because of other error
esp_err_t mcpwm_capture_channel_enable(mcpwm_cap_channel_handle_t cap_channel)

Enable MCPWM capture channel.

Note: This function will transit the channel state from init to enable.

Note: This function will enable the interrupt service, if it's lazy installed in
mcpwm_capture_channel_register_event_callbacks().

Parameters cap_channel -- [in] MCPWM capture channel handle, allocated by
mcpwm_new_capture_channel()

Returns
• ESP_OK: Enable MCPWM capture channel successfully
• ESP_ERR_INVALID_ARG: Enable MCPWM capture channel failed because of invalid
argument

• ESP_ERR_INVALID_STATE: Enable MCPWM capture channel failed because the
channel is already enabled

• ESP_FAIL: Enable MCPWM capture channel failed because of other error

esp_err_t mcpwm_capture_channel_disable(mcpwm_cap_channel_handle_t cap_channel)
Disable MCPWM capture channel.

Parameters cap_channel -- [in] MCPWM capture channel handle, allocated by
mcpwm_new_capture_channel()

Returns
• ESP_OK: Disable MCPWM capture channel successfully

Espressif Systems 1082
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_ARG: Disable MCPWM capture channel failed because of invalid
argument

• ESP_ERR_INVALID_STATE: Disable MCPWM capture channel failed because the
channel is not enabled yet

• ESP_FAIL: Disable MCPWM capture channel failed because of other error
esp_err_t mcpwm_capture_channel_register_event_callbacks(mcpwm_cap_channel_handle_t

cap_channel, const
mcpwm_capture_event_callbacks_t
*cbs, void *user_data)

Set event callbacks for MCPWM capture channel.

Note: The first call to this function needs to be before the call to mcpwm_capture_channel_enable

Note: User can deregister a previously registered callback by calling this function and setting the callback
member in the cbs structure to NULL.

Parameters
• cap_channel -- [in] MCPWM capture channel handle, allocated by
mcpwm_new_capture_channel()

• cbs -- [in] Group of callback functions
• user_data -- [in] User data, which will be passed to callback functions directly

Returns
• ESP_OK: Set event callbacks successfully
• ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument
• ESP_ERR_INVALID_STATE: Set event callbacks failed because the channel is not in
init state

• ESP_FAIL: Set event callbacks failed because of other error

esp_err_t mcpwm_capture_channel_trigger_soft_catch(mcpwm_cap_channel_handle_t
cap_channel)

Trigger a catch by software.
Parameters cap_channel -- [in] MCPWM capture channel handle, allocated by

mcpwm_new_capture_channel()
Returns

• ESP_OK: Trigger software catch successfully
• ESP_ERR_INVALID_ARG: Trigger software catch failed because of invalid argument
• ESP_ERR_INVALID_STATE: Trigger software catch failed because the channel is not
enabled yet

• ESP_FAIL: Trigger software catch failed because of other error

Structures

struct mcpwm_capture_timer_config_t
MCPWM capture timer configuration structure.

Public Members

int group_id
Specify from which group to allocate the capture timer

Espressif Systems 1083
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

mcpwm_capture_clock_source_t clk_src

MCPWM capture timer clock source

uint32_t resolution_hz
Resolution of capture timer

struct mcpwm_capture_timer_sync_phase_config_t
MCPWM Capture timer sync phase configuration.

Public Members

mcpwm_sync_handle_t sync_src

The sync event source

uint32_t count_value
The count value that should lock to upon sync event

mcpwm_timer_direction_t direction

The count direction that should lock to upon sync event

struct mcpwm_capture_channel_config_t
MCPWM capture channel configuration structure.

Public Members

int gpio_num
GPIO used capturing input signal

int intr_priority
MCPWM capture interrupt priority, if set to 0, the driver will try to allocate an interrupt with a relative
low priority (1,2,3)

uint32_t prescale
Prescale of input signal, effective frequency = cap_input_clk/prescale

uint32_t pos_edge
Whether to capture on positive edge

uint32_t neg_edge
Whether to capture on negative edge

uint32_t pull_up
Whether to pull up internally

uint32_t pull_down
Whether to pull down internally

Espressif Systems 1084
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t invert_cap_signal
Invert the input capture signal

uint32_t io_loop_back
For debug/test, the signal output from the GPIO will be fed to the input path as well

uint32_t keep_io_conf_at_exit
For debug/test, whether to keep the GPIO configuration when capture channel is deleted. By default,
driver will reset the GPIO pin at exit.

struct mcpwm_capture_channel_config_t::[anonymous] flags
Extra configuration flags for capture channel

struct mcpwm_capture_event_callbacks_t
Group of supported MCPWM capture event callbacks.

Note: The callbacks are all running under ISR environment

Public Members

mcpwm_capture_event_cb_t on_cap

Callback function that would be invoked when capture event occurred

Header File
• components/driver/mcpwm/include/driver/mcpwm_types.h

Structures

struct mcpwm_timer_event_data_t
MCPWM timer event data.

Public Members

uint32_t count_value
MCPWM timer count value

mcpwm_timer_direction_t direction

MCPWM timer count direction

struct mcpwm_brake_event_data_t
MCPWM brake event data.

struct mcpwm_fault_event_data_t
MCPWM fault event data.

struct mcpwm_compare_event_data_t
MCPWM compare event data.

Espressif Systems 1085
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/mcpwm/include/driver/mcpwm_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint32_t compare_ticks
Compare value

mcpwm_timer_direction_t direction

Count direction

struct mcpwm_capture_event_data_t
MCPWM capture event data.

Public Members

uint32_t cap_value
Captured value

mcpwm_capture_edge_t cap_edge

Capture edge

Type Definitions

typedef struct mcpwm_timer_t *mcpwm_timer_handle_t
Type of MCPWM timer handle.

typedef struct mcpwm_oper_t *mcpwm_oper_handle_t
Type of MCPWM operator handle.

typedef struct mcpwm_cmpr_t *mcpwm_cmpr_handle_t
Type of MCPWM comparator handle.

typedef struct mcpwm_gen_t *mcpwm_gen_handle_t
Type of MCPWM generator handle.

typedef struct mcpwm_fault_t *mcpwm_fault_handle_t
Type of MCPWM fault handle.

typedef struct mcpwm_sync_t *mcpwm_sync_handle_t
Type of MCPWM sync handle.

typedef struct mcpwm_cap_timer_t *mcpwm_cap_timer_handle_t
Type of MCPWM capture timer handle.

typedef struct mcpwm_cap_channel_t *mcpwm_cap_channel_handle_t
Type of MCPWM capture channel handle.

typedef bool (*mcpwm_timer_event_cb_t)(mcpwm_timer_handle_t timer, const
mcpwm_timer_event_data_t *edata, void *user_ctx)

MCPWM timer event callback function.
Param timer [in]MCPWM timer handle

Espressif Systems 1086
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Param edata [in]MCPWM timer event data, fed by driver
Param user_ctx [in] User data, set in mcpwm_timer_register_event_callbacks()
Return Whether a high priority task has been waken up by this function

typedef bool (*mcpwm_brake_event_cb_t)(mcpwm_oper_handle_t oper, const mcpwm_brake_event_data_t
*edata, void *user_ctx)

MCPWM operator brake event callback function.
Param oper [in]MCPWM operator handle
Param edata [in]MCPWM brake event data, fed by driver
Param user_ctx [in]User data, set inmcpwm_operator_register_event_callbacks()
Return Whether a high priority task has been waken up by this function

typedef bool (*mcpwm_fault_event_cb_t)(mcpwm_fault_handle_t fault, const mcpwm_fault_event_data_t
*edata, void *user_ctx)

MCPWM fault event callback function.
Param fault MCPWM fault handle
Param edata MCPWM fault event data, fed by driver
Param user_ctx User data, set in mcpwm_fault_register_event_callbacks()
Return whether a task switch is needed after the callback returns

typedef bool (*mcpwm_compare_event_cb_t)(mcpwm_cmpr_handle_t comparator, const
mcpwm_compare_event_data_t *edata, void *user_ctx)

MCPWM comparator event callback function.
Param comparator MCPWM comparator handle
Param edata MCPWM comparator event data, fed by driver
Param user_ctx User data, set inmcpwm_comparator_register_event_callbacks()
Return Whether a high priority task has been waken up by this function

typedef bool (*mcpwm_capture_event_cb_t)(mcpwm_cap_channel_handle_t cap_channel, const
mcpwm_capture_event_data_t *edata, void *user_ctx)

MCPWM capture event callback function.
Param cap_channel MCPWM capture channel handle
Param edata MCPWM capture event data, fed by driver
Param user_ctx User data, set inmcpwm_capture_channel_register_event_callbacks()
Return Whether a high priority task has been waken up by this function

Header File
• components/hal/include/hal/mcpwm_types.h

Type Definitions

typedef soc_periph_mcpwm_timer_clk_src_t mcpwm_timer_clock_source_t

MCPWM timer clock source.

typedef soc_periph_mcpwm_capture_clk_src_t mcpwm_capture_clock_source_t

MCPWM capture clock source.

typedef soc_periph_mcpwm_carrier_clk_src_t mcpwm_carrier_clock_source_t

MCPWM carrier clock source.

Espressif Systems 1087
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/mcpwm_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enumerations

enum mcpwm_timer_direction_t

MCPWM timer count direction.
Values:

enumerator MCPWM_TIMER_DIRECTION_UP
Counting direction: Increase

enumerator MCPWM_TIMER_DIRECTION_DOWN
Counting direction: Decrease

enum mcpwm_timer_event_t

MCPWM timer events.
Values:

enumerator MCPWM_TIMER_EVENT_EMPTY
MCPWM timer counts to zero (i.e. counter is empty)

enumerator MCPWM_TIMER_EVENT_FULL
MCPWM timer counts to peak (i.e. counter is full)

enumerator MCPWM_TIMER_EVENT_INVALID
MCPWM timer invalid event

enum mcpwm_timer_count_mode_t

MCPWM timer count modes.
Values:

enumerator MCPWM_TIMER_COUNT_MODE_PAUSE
MCPWM timer paused

enumerator MCPWM_TIMER_COUNT_MODE_UP
MCPWM timer counting up

enumerator MCPWM_TIMER_COUNT_MODE_DOWN
MCPWM timer counting down

enumerator MCPWM_TIMER_COUNT_MODE_UP_DOWN
MCPWM timer counting up and down

enum mcpwm_timer_start_stop_cmd_t

MCPWM timer commands, specify the way to start or stop the timer.
Values:

enumerator MCPWM_TIMER_STOP_EMPTY
MCPWM timer stops when next count reaches zero

Espressif Systems 1088
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator MCPWM_TIMER_STOP_FULL
MCPWM timer stops when next count reaches peak

enumerator MCPWM_TIMER_START_NO_STOP
MCPWM timer starts couting, and don't stop until received stop command

enumerator MCPWM_TIMER_START_STOP_EMPTY
MCPWM timer starts counting and stops when next count reaches zero

enumerator MCPWM_TIMER_START_STOP_FULL
MCPWM timer starts counting and stops when next count reaches peak

enum mcpwm_generator_action_t

MCPWM generator actions.
Values:

enumerator MCPWM_GEN_ACTION_KEEP
Generator action: Keep the same level

enumerator MCPWM_GEN_ACTION_LOW
Generator action: Force to low level

enumerator MCPWM_GEN_ACTION_HIGH
Generator action: Force to high level

enumerator MCPWM_GEN_ACTION_TOGGLE
Generator action: Toggle level

enum mcpwm_operator_brake_mode_t

MCPWM operator brake mode.
Values:

enumerator MCPWM_OPER_BRAKE_MODE_CBC
Brake mode: CBC (cycle by cycle)

enumerator MCPWM_OPER_BRAKE_MODE_OST
Brake mode: OST (one shot)

enumerator MCPWM_OPER_BRAKE_MODE_INVALID
MCPWM operator invalid brake mode

enum mcpwm_capture_edge_t

MCPWM capture edge.
Values:

enumerator MCPWM_CAP_EDGE_POS
Capture on the positive edge

Espressif Systems 1089
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator MCPWM_CAP_EDGE_NEG
Capture on the negative edge

2.6.16 Parallel IO

Introduction

The Parallel IO peripheral is a general purpose parallel interface that can be used to connect to external devices such
as LED matrix, LCD display, Printer and Camera. The peripheral has independent TX and RX units. Each unit can
have up to 8 or 16 data signals plus 1 or 2 clock signals.1

Warning: At the moment, the Parallel IO driver only supports TX mode. The RX feature is still working in
progress.

Application Examples

• Simple REG LED Matrix with HUB75 interface: peripherals/parlio/simple_rgb_led_matrix.

API Reference

Header File
• components/driver/parlio/include/driver/parlio_tx.h

Functions
esp_err_t parlio_new_tx_unit(const parlio_tx_unit_config_t *config, parlio_tx_unit_handle_t *ret_unit)

Create a Parallel IO TX unit.
Parameters

• config -- [in] Parallel IO TX unit configuration
• ret_unit -- [out] Returned Parallel IO TX unit handle

Returns
• ESP_OK: Create Parallel IO TX unit successfully
• ESP_ERR_INVALID_ARG: Create Parallel IO TX unit failed because of invalid argu-
ment

• ESP_ERR_NO_MEM: Create Parallel IO TX unit failed because of out of memory
• ESP_ERR_NOT_FOUND: Create Parallel IO TX unit failed because all TX units are
used up and no more free one

• ESP_ERR_NOT_SUPPORTED: Create Parallel IO TX unit failed because some feature
is not supported by hardware, e.g. clock gating

• ESP_FAIL: Create Parallel IO TX unit failed because of other error
esp_err_t parlio_del_tx_unit(parlio_tx_unit_handle_t unit)

Delete a Parallel IO TX unit.
Parameters unit -- [in] Parallel IO TX unit that created by parlio_new_tx_unit
Returns

• ESP_OK: Delete Parallel IO TX unit successfully
• ESP_ERR_INVALID_ARG: Delete Parallel IO TX unit failed because of invalid argu-
ment

1 Different ESP chip series might have different numbers of PARLIO TX/RX instances, and the maximum data bus can also be different. For
more details, please refer to ESP32-C6 Technical Reference Manual > Chapter Parallel IO (PARLIO) [PDF]. The driver will not forbid you from
applying for more driver objects, but it will return error when all available hardware resources are used up. Please always check the return value
when doing resource allocation (e.g. parlio_new_tx_unit()).

Espressif Systems 1090
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/parlio/simple_rgb_led_matrix
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/parlio/include/driver/parlio_tx.h
https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#parlio
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_STATE: Delete Parallel IO TX unit failed because it is still in
working

• ESP_FAIL: Delete Parallel IO TX unit failed because of other error
esp_err_t parlio_tx_unit_enable(parlio_tx_unit_handle_t unit)

Enable the Parallel IO TX unit.

Note: This function will transit the driver state from init to enable

Note: This function will acquire a PM lock that might be installed during channel allocation

Note: If there're transaction pending in the queue, this function will pick up the first one and start the transfer

Parameters unit -- [in] Parallel IO TX unit that created by parlio_new_tx_unit
Returns

• ESP_OK: Enable Parallel IO TX unit successfully
• ESP_ERR_INVALID_ARG: Enable Parallel IO TX unit failed because of invalid argu-
ment

• ESP_ERR_INVALID_STATE: Enable Parallel IO TX unit failed because it is already
enabled

• ESP_FAIL: Enable Parallel IO TX unit failed because of other error

esp_err_t parlio_tx_unit_disable(parlio_tx_unit_handle_t unit)
Disable the Parallel IO TX unit.

Note: This function will transit the driver state from enable to init

Note: This function will release the PM lock that might be installed during channel allocation

Note: If one transaction is undergoing, this function will terminate it immediately

Parameters unit -- [in] Parallel IO TX unit that created by parlio_new_tx_unit
Returns

• ESP_OK: Disable Parallel IO TX unit successfully
• ESP_ERR_INVALID_ARG: Disable Parallel IO TX unit failed because of invalid argu-
ment

• ESP_ERR_INVALID_STATE: Disable Parallel IO TX unit failed because it's not enabled
yet

• ESP_FAIL: Disable Parallel IO TX unit failed because of other error

esp_err_t parlio_tx_unit_register_event_callbacks(parlio_tx_unit_handle_t tx_unit, const
parlio_tx_event_callbacks_t *cbs, void
*user_data)

Set event callbacks for Parallel IO TX unit.

Note: User can deregister a previously registered callback by calling this function and setting the callback
member in the cbs structure to NULL.

Espressif Systems 1091
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: When CONFIG_PARLIO_ISR_IRAM_SAFE is enabled, the callback itself and functions called by it
should be placed in IRAM. The variables used in the function should be in the SRAMaswell. Theuser_data
should also reside in SRAM.

Parameters
• tx_unit -- [in] Parallel IO TX unit that created by parlio_new_tx_unit
• cbs -- [in] Group of callback functions
• user_data -- [in] User data, which will be passed to callback functions directly

Returns
• ESP_OK: Set event callbacks successfully
• ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument
• ESP_FAIL: Set event callbacks failed because of other error

esp_err_t parlio_tx_unit_transmit(parlio_tx_unit_handle_t tx_unit, const void *payload, size_t
payload_bits, const parlio_transmit_config_t *config)

Transmit data on by Parallel IO TX unit.

Note: After the function returns, it doesn't mean the transaction is finished. This function only constructs a
transcation structure and push into a queue.

Parameters
• tx_unit -- [in] Parallel IO TX unit that created by parlio_new_tx_unit
• payload -- [in] Pointer to the data to be transmitted
• payload_bits -- [in] Length of the data to be transmitted, in bits
• config -- [in] Transmit configuration

Returns
• ESP_OK: Transmit data successfully
• ESP_ERR_INVALID_ARG: Transmit data failed because of invalid argument
• ESP_ERR_INVALID_STATE: Transmit data failed because the Parallel IO TX unit is
not enabled

• ESP_FAIL: Transmit data failed because of other error

esp_err_t parlio_tx_unit_wait_all_done(parlio_tx_unit_handle_t tx_unit, int timeout_ms)
Wait for all pending TX transactions done.

Parameters
• tx_unit -- [in] Parallel IO TX unit that created by parlio_new_tx_unit
• timeout_ms -- [in] Timeout in milliseconds, -1 means to wait forever

Returns
• ESP_OK: All pending TX transactions is finished and recycled
• ESP_ERR_INVALID_ARG: Wait for all pending TX transactions done failed because of
invalid argument

• ESP_ERR_TIMEOUT: Wait for all pending TX transactions done timeout
• ESP_FAIL: Wait for all pending TX transactions done failed because of other error

Structures

struct parlio_tx_unit_config_t
Parallel IO TX unit configuration.

Public Members

Espressif Systems 1092
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

parlio_clock_source_t clk_src

Parallel IO internal clock source

gpio_num_t clk_in_gpio_num

If the clock source is input from external, set the corresponding GPIO number. Otherwise, set to -1 and
the driver will use the internal clk_src as clock source. This option has higher priority than clk_src

uint32_t input_clk_src_freq_hz
Frequency of the input clock source, valid only if clk_in_gpio_num is not -1

uint32_t output_clk_freq_hz
Frequency of the output clock. It's divided from either internal clk_src or external clock source

size_t data_width
Parallel IO data width, can set to 1/2/4/8/..., but can't bigger than PAR-
LIO_TX_UNIT_MAX_DATA_WIDTH

gpio_num_t data_gpio_nums[PARLIO_TX_UNIT_MAX_DATA_WIDTH]
Parallel IO data GPIO numbers, if any GPIO is not used, you can set it to -1

gpio_num_t clk_out_gpio_num

GPIO number of the output clock signal, the clock is synced with TX data

gpio_num_t valid_gpio_num

GPIO number of the valid signal, which stays high when transferring data. Note that, the valid signal will
always occupy the MSB data bit

size_t trans_queue_depth
Depth of internal transaction queue

size_t max_transfer_size
Maximum transfer size in one transaction, in bytes. This decides the number of DMA nodes will be used
for each transaction

parlio_sample_edge_t sample_edge

Parallel IO sample edge

parlio_bit_pack_order_t bit_pack_order

Set the order of packing the bits into bytes (only works when data_width < 8)

uint32_t clk_gate_en
Enable TX clock gating, the output clock will be controlled by the MSB bit of the data bus, i.e. by
data_gpio_nums[PARLIO_TX_UNIT_MAX_DATA_WIDTH-1]. High level to enable the clock out-
put, low to disable

uint32_t io_loop_back
For debug/test, the signal output from the GPIO will be fed to the input path as well

struct parlio_tx_unit_config_t::[anonymous] flags
Extra configuration flags

Espressif Systems 1093
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct parlio_tx_done_event_data_t
Type of Parallel IO TX done event data.

struct parlio_tx_event_callbacks_t
Group of Parallel IO TX callbacks.

Note: The callbacks are all running under ISR environment

Note: When CONFIG_PARLIO_ISR_IRAM_SAFE is enabled, the callback itself and functions called by it
should be placed in IRAM. The variables used in the function should be in the SRAM as well.

Public Members

parlio_tx_done_callback_t on_trans_done

Event callback, invoked when one transmission is finished

struct parlio_transmit_config_t
Parallel IO transmit configuration.

Public Members

uint32_t idle_value
The value on the data line when the parallel IO is in idle state

uint32_t queue_nonblocking
If set, when the transaction queue is full, driver will not block the thread but return directly

struct parlio_transmit_config_t::[anonymous] flags
Transmit specific config flags

Type Definitions

typedef bool (*parlio_tx_done_callback_t)(parlio_tx_unit_handle_t tx_unit, const
parlio_tx_done_event_data_t *edata, void *user_ctx)

Prototype of parlio tx event callback.
Param tx_unit [in] Parallel IO TX unit that created by parlio_new_tx_unit
Param edata [in] Point to Parallel IO TX event data. The lifecycle of this pointer memory is

inside this function, user should copy it into static memory if used outside this function.
Param user_ctx [in] User registered context, passed from par-

lio_tx_unit_register_event_callbacks
Return Whether a high priority task has been waken up by this callback function

Header File
• components/driver/parlio/include/driver/parlio_types.h

Espressif Systems 1094
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/parlio/include/driver/parlio_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef struct parlio_tx_unit_t *parlio_tx_unit_handle_t
Type of Parallel IO TX unit handle.

Header File
• components/hal/include/hal/parlio_types.h

Macros

PARLIO_TX_UNIT_MAX_DATA_WIDTH

Maximum data width of TX unit.

Type Definitions

typedef soc_periph_parlio_clk_src_t parlio_clock_source_t
Parallel IO clock source.

Note: User should select the clock source based on the power and resolution requirement

Enumerations

enum parlio_sample_edge_t

Parallel IO sample edge.
Values:

enumerator PARLIO_SAMPLE_EDGE_NEG
Sample data on falling edge of clock

enumerator PARLIO_SAMPLE_EDGE_POS
Sample data on rising edge of clock

enum parlio_bit_pack_order_t

Parallel IO bit packing order.
Data in memory: Byte 0: MSB < B0.7 B0.6 B0.5 B0.4 B0.3 B0.2 B0.1 B0.0 > LSB Byte 1: MSB < B1.7 B1.6
B1.5 B1.4 B1.3 B1.2 B1.1 B1.0 > LSB
Output on line (PARLIO_BIT_PACK_ORDER_LSB): Cycle 0 Cycle 1 Cycle 2 —> time GPIO 0: B0.0
B0.4 B1.0 GPIO 1: B0.1 B0.5 B1.1 GPIO 2: B0.2 B0.6 B1.2 GPIO 3: B0.3 B0.7 B1.3
Output on line (PARLIO_BIT_PACK_ORDER_MSB): Cycle 0 Cycle 1 Cycle 2 —> time GPIO 0:
B0.4 B0.0 B1.4 GPIO 1: B0.5 B0.1 B1.5 GPIO 2: B0.6 B0.2 B1.6 GPIO 3: B0.7 B0.3 B1.7
Values:

enumerator PARLIO_BIT_PACK_ORDER_LSB
Bit pack order: LSB

enumerator PARLIO_BIT_PACK_ORDER_MSB
Bit pack order: MSB

Espressif Systems 1095
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/parlio_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.6.17 Pulse Counter (PCNT)

Introduction

The PCNT (Pulse Counter) module is designed to count the number of rising and/or falling edges of input signals. The
ESP32-C6 contains multiple pulse counter units in the module.1 Each unit is in effect an independent counter with
multiple channels, where each channel can increment/decrement the counter on a rising/falling edge. Furthermore,
each channel can be configured separately.
PCNT channels can react to signals of edge type and level type, however for simple applications, detecting the edge
signal is usually sufficient. PCNT channels can be configured react to both pulse edges (i.e., rising and falling edge),
and can be configured to increase, decrease or do nothing to the unit's counter on each edge. The level signal is the
so-called control signal, which is used to control the counting mode of the edge signals that are attached to the same
channel. By combining the usage of both edge and level signals, a PCNT unit can act as a quadrature decoder.
Besides that, PCNT unit is equipped with a separate glitch filter, which is helpful to remove noise from the signal.
Typically, a PCNT module can be used in scenarios like:

• Calculate periodic signal's frequency by counting the pulse numbers within a time slice
• Decode quadrature signals into speed and direction

Functional Overview

Description of the PCNT functionality is divided into the following sections:
• Resource Allocation - covers how to allocate PCNT units and channels with properly set of configurations. It
also covers how to recycle the resources when they finished working.

• Set Up Channel Actions - covers how to configure the PCNT channel to behave on different signal edges and
levels.

• Watch Points - describes how to configure PCNT watch points (i.e., tell PCNT unit to trigger an event when
the count reaches a certain value).

• Register Event Callbacks - describes how to hook your specific code to the watch point event callback function.
• Set Glitch Filter - describes how to enable and set the timing parameters for the internal glitch filter.
• Enable and Disable Unit - describes how to enable and disable the PCNT unit.
• Unit IO Control - describes IO control functions of PCNT unit, like enable glitch filter, start and stop unit, get
and clear count value.

• Power Management - describes what functionality will prevent the chip from going into low power mode.
• IRAM Safe - describes tips on how to make the PCNT interrupt and IO control functions work better along
with a disabled cache.

• Thread Safety - lists which APIs are guaranteed to be thread safe by the driver.
• Kconfig Options - lists the supported Kconfig options that can be used to make a different effect on driver
behavior.

Resource Allocation The PCNT unit and channel are represented by pcnt_unit_handle_t and
pcnt_channel_handle_t respectively. All available units and channels are maintained by the driver in a re-
source pool, so you do not need to know the exact underlying instance ID.

Install PCNT Unit To install a PCNT unit, there's a configuration structure that needs to be given in advance:
pcnt_unit_config_t:

• pcnt_unit_config_t::low_limit and pcnt_unit_config_t::high_limit specify the
range for the internal hardware counter. The counter will reset to zero automatically when it crosses either
the high or low limit.

1 Different ESP chip series might have different number of PCNT units and channels. Please refer to the [TRM] for details. The driver won't
forbid you from applying for more PCNT units and channels, but it will return error when all available hardware resources are used up. Please
always check the return value when doing resource allocation (e.g. pcnt_new_unit()).

Espressif Systems 1096
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#pcnt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• pcnt_unit_config_t::accum_count sets whether to create an internal accumulator for the counter.
This is helpful when you want to extend the counter's width, which by default is 16bit at most, defined in the
hardware. See also Compensate Overflow Loss for how to use this feature to compensate the overflow loss.

• pcnt_unit_config_t::intr_priority sets the priority of the timer interrupt. If it is set to 0, the
driver will allocate an interrupt with a default priority. Otherwise, the driver will use the given priority.

Note: Since all PCNT units share the same interrupt source, when installing multiple PCNT units make sure that
the interrupt priority pcnt_unit_config_t::intr_priority is the same for each unit.

Unit allocation and initialization is done by calling a function pcnt_new_unit()with pcnt_unit_config_t
as an input parameter. The function will return a PCNT unit handle only when it runs correctly. Specifi-
cally, when there are no more free PCNT units in the pool (i.e. unit resources have been used up), then this
function will return ESP_ERR_NOT_FOUND error. The total number of available PCNT units is recorded by
SOC_PCNT_UNITS_PER_GROUP for reference.
If a previously created PCNT unit is no longer needed, it's recommended to recycle the resource by calling
pcnt_del_unit(). Which in return allows the underlying unit hardware to be used for other purposes. Be-
fore deleting a PCNT unit, one should ensure the following prerequisites:

• The unit is in the init state, in other words, the unit is either disabled by pcnt_unit_disable() or not
enabled yet.

• The attached PCNT channels are all removed by pcnt_del_channel().

#define EXAMPLE_PCNT_HIGH_LIMIT 100
#define EXAMPLE_PCNT_LOW_LIMIT -100

pcnt_unit_config_t unit_config = {
.high_limit = EXAMPLE_PCNT_HIGH_LIMIT,
.low_limit = EXAMPLE_PCNT_LOW_LIMIT,

};
pcnt_unit_handle_t pcnt_unit = NULL;
ESP_ERROR_CHECK(pcnt_new_unit(&unit_config, &pcnt_unit));

Install PCNT Channel To install a PCNT channel, you must initialize a pcnt_chan_config_t structure
in advance, and then call pcnt_new_channel(). The configuration fields of the pcnt_chan_config_t
structure are described below:

• pcnt_chan_config_t::edge_gpio_num and pcnt_chan_config_t::level_gpio_num
specify the GPIO numbers used by edge type signal and level type signal. Please note, either of them can
be assigned to -1 if it's not actually used, and thus it will become a virtual IO. For some simple pulse counting
applications where one of the level/edge signals is fixed (i.e., never changes), you can reclaim a GPIO by setting
the signal as a virtual IO on channel allocation. Setting the level/edge signal as a virtual IO will cause that signal
to be internally routed to a fixed High/Low logic level, thus allowing you to save a GPIO for other purposes.

• pcnt_chan_config_t::virt_edge_io_level andpcnt_chan_config_t::virt_level_io_level
specify the virtual IO level for edge and level input signal, to ensure a deterministic state for such control
signal. Please note, they are only valid when either pcnt_chan_config_t::edge_gpio_num or
pcnt_chan_config_t::level_gpio_num is assigned to -1.

• pcnt_chan_config_t::invert_edge_input andpcnt_chan_config_t::invert_level_input
are used to decide whether to invert the input signals before they going into PCNT hardware. The invert is
done by GPIO matrix instead of PCNT hardware.

• pcnt_chan_config_t::io_loop_back is for debug only, which enables both the GPIO's input and
output paths. This can help to simulate the pulse signals by function gpio_set_level() on the same
GPIO.

Channel allocating and initialization is done by calling a function pcnt_new_channel() with the above
pcnt_chan_config_t as an input parameter plus a PCNT unit handle returned from pcnt_new_unit().
This function will return a PCNT channel handle if it runs correctly. Specifically, when there are no more
free PCNT channel within the unit (i.e. channel resources have been used up), then this function will return
ESP_ERR_NOT_FOUND error. The total number of available PCNT channels within the unit is recorded by

Espressif Systems 1097
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_PCNT_CHANNELS_PER_UNIT for reference. Note that, when install a PCNT channel for a specific unit,
one should ensure the unit is in the init state, otherwise this function will return ESP_ERR_INVALID_STATE
error.
If a previously created PCNT channel is no longer needed, it's recommended to recycle the resources by calling
pcnt_del_channel(). Which in return allows the underlying channel hardware to be used for other purposes.

#define EXAMPLE_CHAN_GPIO_A 0
#define EXAMPLE_CHAN_GPIO_B 2

pcnt_chan_config_t chan_config = {
.edge_gpio_num = EXAMPLE_CHAN_GPIO_A,
.level_gpio_num = EXAMPLE_CHAN_GPIO_B,

};
pcnt_channel_handle_t pcnt_chan = NULL;
ESP_ERROR_CHECK(pcnt_new_channel(pcnt_unit, &chan_config, &pcnt_chan));

Set UpChannel Actions The PCNTwill increase/decrease/hold its internal count value when the input pulse signal
toggles. You can set different actions for edge signal and/or level signal.

• pcnt_channel_set_edge_action() function is to set specific actions for rising and falling edge of
the signal attached to the pcnt_chan_config_t::edge_gpio_num. Supported actions are listed in
pcnt_channel_edge_action_t.

• pcnt_channel_set_level_action() function is to set specific actions for high and low
level of the signal attached to the pcnt_chan_config_t::level_gpio_num. Supported ac-
tions are listed in pcnt_channel_level_action_t. This function is not mandatory if the
pcnt_chan_config_t::level_gpio_num is set to -1 when allocating PCNT channel by
pcnt_new_channel().

// decrease the counter on rising edge, increase the counter on falling edge
ESP_ERROR_CHECK(pcnt_channel_set_edge_action(pcnt_chan, PCNT_CHANNEL_EDGE_ACTION_
↪→DECREASE, PCNT_CHANNEL_EDGE_ACTION_INCREASE));
// keep the counting mode when the control signal is high level, and reverse the␣
↪→counting mode when the control signal is low level
ESP_ERROR_CHECK(pcnt_channel_set_level_action(pcnt_chan, PCNT_CHANNEL_LEVEL_ACTION_
↪→KEEP, PCNT_CHANNEL_LEVEL_ACTION_INVERSE));

Watch Points Each PCNT unit can be configured to watch several different values that you're in-
terested in. The value to be watched is also called Watch Point. The watch point itself can't ex-
ceed the range set in pcnt_unit_config_t by pcnt_unit_config_t::low_limit and
pcnt_unit_config_t::high_limit. When the counter reaches either watch point, a watch
event will be triggered and notify you by interrupt if any watch event callback has ever registered in
pcnt_unit_register_event_callbacks(). See Register Event Callbacks for how to register event
callbacks.
The watch point can be added and removed by pcnt_unit_add_watch_point() and
pcnt_unit_remove_watch_point(). The commonly used watch points are: zero cross, max-
imum / minimum count and other threshold values. The number of available watch point is limited,
pcnt_unit_add_watch_point() will return error ESP_ERR_NOT_FOUND if it can't find any free
hardware resource to save the watch point. You can't add the same watch point for multiple times, otherwise it will
return error ESP_ERR_INVALID_STATE.
It is recommended to remove the unused watch point by pcnt_unit_remove_watch_point() to recycle the
watch point resources.

// add zero across watch point
ESP_ERROR_CHECK(pcnt_unit_add_watch_point(pcnt_unit, 0));
// add high limit watch point
ESP_ERROR_CHECK(pcnt_unit_add_watch_point(pcnt_unit, EXAMPLE_PCNT_HIGH_LIMIT));

Espressif Systems 1098
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Register Event Callbacks When PCNT unit reaches any enabled watch point, specific event will be generated and
notify the CPU by interrupt. If you have some function that want to get executed when event happens, you should
hook your function to the interrupt service routine by calling pcnt_unit_register_event_callbacks().
All supported event callbacks are listed in the pcnt_event_callbacks_t:

• pcnt_event_callbacks_t::on_reach sets a callback function for watch point event. As this func-
tion is called within the ISR context, you must ensure that the function doesn't attempt to block (e.g., by making
sure that only FreeRTOS APIs with ISR suffix are called from within the function). The function prototype
is declared in pcnt_watch_cb_t.

You can save their own context to pcnt_unit_register_event_callbacks() as well, via the parameter
user_ctx. This user data will be directly passed to the callback functions.
In the callback function, the driver will fill in the event data of specific event. For example, the watch point event
data is declared as pcnt_watch_event_data_t:

• pcnt_watch_event_data_t::watch_point_value saves the watch point value that triggers the
event.

• pcnt_watch_event_data_t::zero_cross_mode saves how the PCNT unit crosses the zero point
in the latest time. The possible zero cross modes are listed in the pcnt_unit_zero_cross_mode_t.
Usually different zero cross mode means different counting direction and counting step size.

Registering callback function will result in lazy installation of interrupt service, thus this function should only be called
before the unit is enabled by pcnt_unit_enable(). Otherwise, it can return ESP_ERR_INVALID_STATE
error.

static bool example_pcnt_on_reach(pcnt_unit_handle_t unit, const pcnt_watch_event_
↪→data_t *edata, void *user_ctx)
{

BaseType_t high_task_wakeup;
QueueHandle_t queue = (QueueHandle_t)user_ctx;
// send watch point to queue, from this interrupt callback
xQueueSendFromISR(queue, &(edata->watch_point_value), &high_task_wakeup);
// return whether a high priority task has been waken up by this function
return (high_task_wakeup == pdTRUE);

}

pcnt_event_callbacks_t cbs = {
.on_reach = example_pcnt_on_reach,

};
QueueHandle_t queue = xQueueCreate(10, sizeof(int));
ESP_ERROR_CHECK(pcnt_unit_register_event_callbacks(pcnt_unit, &cbs, queue));

Set Glitch Filter The PCNT unit features filters to ignore possible short glitches in the signals. The parameters
that can be configured for the glitch filter are listed in pcnt_glitch_filter_config_t:

• pcnt_glitch_filter_config_t::max_glitch_ns sets the maximum glitch width, in nano sec-
onds. If a signal pulse's width is smaller than this value, then it will be treated as noise and won't in-
crease/decrease the internal counter.

You can enable the glitch filter for PCNT unit by calling pcnt_unit_set_glitch_filter() with
the filter configuration provided above. Particularly, you can disable the glitch filter later by calling
pcnt_unit_set_glitch_filter() with a NULL filter configuration.
This function should be called when the unit is in the init state. Otherwise, it will return
ESP_ERR_INVALID_STATE error.

Note: The glitch filter is clocked from APB. For the counter not to miss any pulses, the maximum glitch width
should be longer than one APB_CLK cycle (usually 12.5 ns if APB equals 80MHz). As the APB frequency would
be changed after DFS (Dynamic Frequency Scaling) enabled, which means the filter won't work as expect in that

Espressif Systems 1099
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

case. So the driver will install a PM lock for PCNT unit during the first time you enable the glitch filter. For more
information related to power management strategy used in PCNT driver, please see Power Management.

pcnt_glitch_filter_config_t filter_config = {
.max_glitch_ns = 1000,

};
ESP_ERROR_CHECK(pcnt_unit_set_glitch_filter(pcnt_unit, &filter_config));

Enable and Disable Unit Before doing IO control to the PCNT unit, you need to enable it first, by calling
pcnt_unit_enable(). Internally, this function will:

• switch the PCNT driver state from init to enable.
• enable the interrupt service if it has been lazy installed inpcnt_unit_register_event_callbacks().
• acquire a proper power management lock if it has been lazy installed in
pcnt_unit_set_glitch_filter(). See also Power Management for more information.

On the contrary, calling pcnt_unit_disable() will do the opposite, that is, put the PCNT driver back to the
init state, disable the interrupts service and release the power management lock.

Unit IO Control

Start/Stop and Clear Calling pcnt_unit_start() will make the PCNT unit start to work, increase
or decrease counter according to pulse signals. On the contrary, calling pcnt_unit_stop() will stop
the PCNT unit but retain current count value. Instead, clearing counter can only be done by calling
pcnt_unit_clear_count().
Note, pcnt_unit_start() and pcnt_unit_stop() should be called when the unit has been enabled by
pcnt_unit_enable(). Otherwise, it will return ESP_ERR_INVALID_STATE error.

Get Count Value You can read current count value at any time by calling pcnt_unit_get_count(). The
returned count value is a signed integer, where the sign can be used to reflect the direction.

int pulse_count = 0;
ESP_ERROR_CHECK(pcnt_unit_get_count(pcnt_unit, &pulse_count));

Compensate Overflow Loss The internal hardware counter will be cleared to zero automatically when it reaches
high or low limit. If you want to compensate for that count loss and extend the counter's bit-width, you can:

1. Enable pcnt_unit_config_t::accum_count when installing the PCNT unit.
2. Add the high/low limit as theWatch Points.
3. Now, the returned count value from the pcnt_unit_get_count() function not only reflects the hard-

ware's count value, but also accumulates the high/low overflow loss to it.

Note: pcnt_unit_clear_count() will reset the accumulated count value as well.

Note: When enabling the count overflow compensation, it is recommended to use as large a high/low count limit as
possible, as it can avoid frequent interrupt triggering, improve system performance, and avoid compensation failure
due to multiple overflows.

Espressif Systems 1100
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Power Management When power management is enabled (i.e. CONFIG_PM_ENABLE is on), the system will
adjust the APB frequency before going into light sleep, thus potentially changing the behavior of PCNT glitch filter
and leading to valid signal being treated as noise.
However, the driver can prevent the system from changing APB frequency by acquiring a power
management lock of type ESP_PM_APB_FREQ_MAX. Whenever you enable the glitch filter by
pcnt_unit_set_glitch_filter(), the driver will guarantee that the power management lock is ac-
quired after the PCNT unit is enabled by pcnt_unit_enable(). Likewise, the driver releases the lock after
pcnt_unit_disable() is called.

IRAM Safe By default, the PCNT interrupt will be deferred when the Cache is disabled for reasons like writ-
ing/erasing Flash. Thus the alarm interrupt will not get executed in time, which is not expected in a real-time appli-
cation.
There's a Kconfig option CONFIG_PCNT_ISR_IRAM_SAFE that will:

1. Enable the interrupt being serviced even when cache is disabled
2. Place all functions that used by the ISR into IRAM2

3. Place driver object into DRAM (in case it's mapped to PSRAM by accident)
This will allow the interrupt to run while the cache is disabled but will come at the cost of increased IRAM consump-
tion.
There's another Kconfig option CONFIG_PCNT_CTRL_FUNC_IN_IRAM that can put commonly used IO control
functions into IRAM as well. So that these functions can also be executable when the cache is disabled. These IO
control functions are as follows:

• pcnt_unit_start()
• pcnt_unit_stop()
• pcnt_unit_clear_count()
• pcnt_unit_get_count()

Thread Safety The factory functions pcnt_new_unit() and pcnt_new_channel() are guaranteed to be
thread safe by the driver, which means, you can call them from different RTOS tasks without protection by extra
locks. The following functions are allowed to run under ISR context, the driver uses a critical section to prevent them
being called concurrently in both task and ISR.

• pcnt_unit_start()
• pcnt_unit_stop()
• pcnt_unit_clear_count()
• pcnt_unit_get_count()

Other functions that take the pcnt_unit_handle_t and pcnt_channel_handle_t as the first positional
parameter, are not treated as thread safe. This means you should avoid calling them from multiple tasks.

Kconfig Options
• CONFIG_PCNT_CTRL_FUNC_IN_IRAM controls where to place the PCNT control functions (IRAM or
Flash), see IRAM Safe for more information.

• CONFIG_PCNT_ISR_IRAM_SAFE controls whether the default ISR handler can work when cache is disabled,
see IRAM Safe for more information.

• CONFIG_PCNT_ENABLE_DEBUG_LOG is used to enabled the debug log output. Enable this option will
increase the firmware binary size.

Application Examples

• Decode the quadrature signals from rotary encoder: peripherals/pcnt/rotary_encoder.
2 pcnt_event_callbacks_t::on_reach callback and the functions invoked by itself should also be placed in IRAM, you need to

take care of them by themselves.

Espressif Systems 1101
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/pcnt/rotary_encoder
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/driver/pcnt/include/driver/pulse_cnt.h

Functions
esp_err_t pcnt_new_unit(const pcnt_unit_config_t *config, pcnt_unit_handle_t *ret_unit)

Create a new PCNT unit, and return the handle.

Note: The newly created PCNT unit is put in the init state.

Parameters
• config -- [in] PCNT unit configuration
• ret_unit -- [out] Returned PCNT unit handle

Returns
• ESP_OK: Create PCNT unit successfully
• ESP_ERR_INVALID_ARG: Create PCNT unit failed because of invalid argument (e.g.
high/low limit value out of the range)

• ESP_ERR_NO_MEM: Create PCNT unit failed because out of memory
• ESP_ERR_NOT_FOUND: Create PCNT unit failed because all PCNT units are used up
and no more free one

• ESP_FAIL: Create PCNT unit failed because of other error
esp_err_t pcnt_del_unit(pcnt_unit_handle_t unit)

Delete the PCNT unit handle.

Note: A PCNT unit can't be in the enable state when this function is invoked. See also
pcnt_unit_disable() for how to disable a unit.

Parameters unit -- [in] PCNT unit handle created by pcnt_new_unit()
Returns

• ESP_OK: Delete the PCNT unit successfully
• ESP_ERR_INVALID_ARG: Delete the PCNT unit failed because of invalid argument
• ESP_ERR_INVALID_STATE: Delete the PCNT unit failed because the unit is not in init
state or some PCNT channel is still in working

• ESP_FAIL: Delete the PCNT unit failed because of other error

esp_err_t pcnt_unit_set_glitch_filter(pcnt_unit_handle_t unit, const pcnt_glitch_filter_config_t
*config)

Set glitch filter for PCNT unit.

Note: The glitch filter module is clocked from APB, and APB frequency can be changed during DFS, which
in return make the filter out of action. So this function will lazy-install a PM lock internally when the power
management is enabled. With this lock, the APB frequency won't be changed. The PM lock can be uninstalled
in pcnt_del_unit().

Note: This function should be called when the PCNT unit is in the init state (i.e. before calling
pcnt_unit_enable())

Parameters
• unit -- [in] PCNT unit handle created by pcnt_new_unit()

Espressif Systems 1102
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/pcnt/include/driver/pulse_cnt.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• config -- [in] PCNT filter configuration, set config to NULL means disabling the filter
function

Returns
• ESP_OK: Set glitch filter successfully
• ESP_ERR_INVALID_ARG: Set glitch filter failed because of invalid argument (e.g.
glitch width is too big)

• ESP_ERR_INVALID_STATE: Set glitch filter failed because the unit is not in the init
state

• ESP_FAIL: Set glitch filter failed because of other error

esp_err_t pcnt_unit_enable(pcnt_unit_handle_t unit)
Enable the PCNT unit.

Note: This function will transit the unit state from init to enable.

Note: This function will enable the interrupt service, if it's lazy installed in
pcnt_unit_register_event_callbacks().

Note: This function will acquire the PM lock if it's lazy installed in
pcnt_unit_set_glitch_filter().

Note: Enable a PCNT unit doesn't mean to start it. See also pcnt_unit_start() for how to start the
PCNT counter.

Parameters unit -- [in] PCNT unit handle created by pcnt_new_unit()
Returns

• ESP_OK: Enable PCNT unit successfully
• ESP_ERR_INVALID_ARG: Enable PCNT unit failed because of invalid argument
• ESP_ERR_INVALID_STATE: Enable PCNT unit failed because the unit is already en-
abled

• ESP_FAIL: Enable PCNT unit failed because of other error

esp_err_t pcnt_unit_disable(pcnt_unit_handle_t unit)
Disable the PCNT unit.

Note: This function will do the opposite work to the pcnt_unit_enable()

Note: Disable a PCNT unit doesn't mean to stop it. See also pcnt_unit_stop() for how to stop the
PCNT counter.

Parameters unit -- [in] PCNT unit handle created by pcnt_new_unit()
Returns

• ESP_OK: Disable PCNT unit successfully
• ESP_ERR_INVALID_ARG: Disable PCNT unit failed because of invalid argument
• ESP_ERR_INVALID_STATE: Disable PCNT unit failed because the unit is not enabled
yet

• ESP_FAIL: Disable PCNT unit failed because of other error

Espressif Systems 1103
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t pcnt_unit_start(pcnt_unit_handle_t unit)
Start the PCNT unit, the counter will start to count according to the edge and/or level input signals.

Note: This function should be called when the unit is in the enable state (i.e. after calling
pcnt_unit_enable())

Note: This function is allowed to run within ISR context

Note: This function will be placed into IRAM if CONFIG_PCNT_CTRL_FUNC_IN_IRAM is on, so that
it's allowed to be executed when Cache is disabled

Parameters unit -- [in] PCNT unit handle created by pcnt_new_unit()
Returns

• ESP_OK: Start PCNT unit successfully
• ESP_ERR_INVALID_ARG: Start PCNT unit failed because of invalid argument
• ESP_ERR_INVALID_STATE: Start PCNT unit failed because the unit is not enabled yet
• ESP_FAIL: Start PCNT unit failed because of other error

esp_err_t pcnt_unit_stop(pcnt_unit_handle_t unit)
Stop PCNT from counting.

Note: This function should be called when the unit is in the enable state (i.e. after calling
pcnt_unit_enable())

Note: The stop operation won't clear the counter. Also see pcnt_unit_clear_count() for how to
clear pulse count value.

Note: This function is allowed to run within ISR context

Note: This function will be placed into IRAM if CONFIG_PCNT_CTRL_FUNC_IN_IRAM, so that it is
allowed to be executed when Cache is disabled

Parameters unit -- [in] PCNT unit handle created by pcnt_new_unit()
Returns

• ESP_OK: Stop PCNT unit successfully
• ESP_ERR_INVALID_ARG: Stop PCNT unit failed because of invalid argument
• ESP_ERR_INVALID_STATE: Stop PCNT unit failed because the unit is not enabled yet
• ESP_FAIL: Stop PCNT unit failed because of other error

esp_err_t pcnt_unit_clear_count(pcnt_unit_handle_t unit)
Clear PCNT pulse count value to zero.

Note: It's recommended to call this function after adding a watch point by
pcnt_unit_add_watch_point(), so that the newly added watch point is effective immediately.

Espressif Systems 1104
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: This function is allowed to run within ISR context

Note: This function will be placed into IRAM if CONFIG_PCNT_CTRL_FUNC_IN_IRAM, so that it's
allowed to be executed when Cache is disabled

Parameters unit -- [in] PCNT unit handle created by pcnt_new_unit()
Returns

• ESP_OK: Clear PCNT pulse count successfully
• ESP_ERR_INVALID_ARG: Clear PCNT pulse count failed because of invalid argument
• ESP_FAIL: Clear PCNT pulse count failed because of other error

esp_err_t pcnt_unit_get_count(pcnt_unit_handle_t unit, int *value)
Get PCNT count value.

Note: This function is allowed to run within ISR context

Note: This function will be placed into IRAM if CONFIG_PCNT_CTRL_FUNC_IN_IRAM, so that it's
allowed to be executed when Cache is disabled

Parameters
• unit -- [in] PCNT unit handle created by pcnt_new_unit()
• value -- [out] Returned count value

Returns
• ESP_OK: Get PCNT pulse count successfully
• ESP_ERR_INVALID_ARG: Get PCNT pulse count failed because of invalid argument
• ESP_FAIL: Get PCNT pulse count failed because of other error

esp_err_t pcnt_unit_register_event_callbacks(pcnt_unit_handle_t unit, const
pcnt_event_callbacks_t *cbs, void *user_data)

Set event callbacks for PCNT unit.

Note: User registered callbacks are expected to be runnable within ISR context

Note: The first call to this function needs to be before the call to pcnt_unit_enable

Note: User can deregister a previously registered callback by calling this function and setting the callback
member in the cbs structure to NULL.

Parameters
• unit -- [in] PCNT unit handle created by pcnt_new_unit()
• cbs -- [in] Group of callback functions
• user_data -- [in] User data, which will be passed to callback functions directly

Returns
• ESP_OK: Set event callbacks successfully
• ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument
• ESP_ERR_INVALID_STATE: Set event callbacks failed because the unit is not in init
state

Espressif Systems 1105
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_FAIL: Set event callbacks failed because of other error

esp_err_t pcnt_unit_add_watch_point(pcnt_unit_handle_t unit, int watch_point)
Add a watch point for PCNT unit, PCNT will generate an event when the counter value reaches the watch
point value.

Parameters
• unit -- [in] PCNT unit handle created by pcnt_new_unit()
• watch_point -- [in] Value to be watched

Returns
• ESP_OK: Add watch point successfully
• ESP_ERR_INVALID_ARG: Add watch point failed because of invalid argument (e.g.
the value to be watched is out of the limitation set in pcnt_unit_config_t)

• ESP_ERR_INVALID_STATE: Add watch point failed because the same watch point has
already been added

• ESP_ERR_NOT_FOUND:Addwatch point failed because nomore hardware watch point
can be configured

• ESP_FAIL: Add watch point failed because of other error
esp_err_t pcnt_unit_remove_watch_point(pcnt_unit_handle_t unit, int watch_point)

Remove a watch point for PCNT unit.
Parameters

• unit -- [in] PCNT unit handle created by pcnt_new_unit()
• watch_point -- [in]Watch point value

Returns
• ESP_OK: Remove watch point successfully
• ESP_ERR_INVALID_ARG: Remove watch point failed because of invalid argument
• ESP_ERR_INVALID_STATE: Remove watch point failed because the watch point was
not added by pcnt_unit_add_watch_point() yet

• ESP_FAIL: Remove watch point failed because of other error
esp_err_t pcnt_new_channel(pcnt_unit_handle_t unit, const pcnt_chan_config_t *config,

pcnt_channel_handle_t *ret_chan)
Create PCNT channel for specific unit, each PCNT has several channels associated with it.

Note: This function should be called when the unit is in init state (i.e. before calling
pcnt_unit_enable())

Parameters
• unit -- [in] PCNT unit handle created by pcnt_new_unit()
• config -- [in] PCNT channel configuration
• ret_chan -- [out] Returned channel handle

Returns
• ESP_OK: Create PCNT channel successfully
• ESP_ERR_INVALID_ARG: Create PCNT channel failed because of invalid argument
• ESP_ERR_NO_MEM: Create PCNT channel failed because of insufficient memory
• ESP_ERR_NOT_FOUND: Create PCNT channel failed because all PCNT channels are
used up and no more free one

• ESP_ERR_INVALID_STATE: Create PCNT channel failed because the unit is not in the
init state

• ESP_FAIL: Create PCNT channel failed because of other error

esp_err_t pcnt_del_channel(pcnt_channel_handle_t chan)
Delete the PCNT channel.

Parameters chan -- [in] PCNT channel handle created by pcnt_new_channel()
Returns

Espressif Systems 1106
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK: Delete the PCNT channel successfully
• ESP_ERR_INVALID_ARG: Delete the PCNT channel failed because of invalid argu-
ment

• ESP_FAIL: Delete the PCNT channel failed because of other error
esp_err_t pcnt_channel_set_edge_action(pcnt_channel_handle_t chan, pcnt_channel_edge_action_t

pos_act, pcnt_channel_edge_action_t neg_act)
Set channel actions when edge signal changes (e.g. falling or rising edge occurred). The edge signal is input
from the edge_gpio_num configured in pcnt_chan_config_t. We use these actions to control when
and how to change the counter value.

Parameters
• chan -- [in] PCNT channel handle created by pcnt_new_channel()
• pos_act -- [in] Action on posedge signal
• neg_act -- [in] Action on negedge signal

Returns
• ESP_OK: Set edge action for PCNT channel successfully
• ESP_ERR_INVALID_ARG: Set edge action for PCNT channel failed because of invalid
argument

• ESP_FAIL: Set edge action for PCNT channel failed because of other error
esp_err_t pcnt_channel_set_level_action(pcnt_channel_handle_t chan, pcnt_channel_level_action_t

high_act, pcnt_channel_level_action_t low_act)
Set channel actions when level signal changes (e.g. signal level goes from high to low). The level signal is input
from the level_gpio_num configured in pcnt_chan_config_t. We use these actions to control when
and how to change the counting mode.

Parameters
• chan -- [in] PCNT channel handle created by pcnt_new_channel()
• high_act -- [in] Action on high level signal
• low_act -- [in] Action on low level signal

Returns
• ESP_OK: Set level action for PCNT channel successfully
• ESP_ERR_INVALID_ARG: Set level action for PCNT channel failed because of invalid
argument

• ESP_FAIL: Set level action for PCNT channel failed because of other error

Structures

struct pcnt_watch_event_data_t
PCNT watch event data.

Public Members

int watch_point_value
Watch point value that triggered the event

pcnt_unit_zero_cross_mode_t zero_cross_mode

Zero cross mode

struct pcnt_event_callbacks_t
Group of supported PCNT callbacks.

Note: The callbacks are all running under ISR environment

Espressif Systems 1107
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: When CONFIG_PCNT_ISR_IRAM_SAFE is enabled, the callback itself and functions callbed by it
should be placed in IRAM.

Public Members

pcnt_watch_cb_t on_reach

Called when PCNT unit counter reaches any watch point

struct pcnt_unit_config_t
PCNT unit configuration.

Public Members

int low_limit
Low limitation of the count unit, should be lower than 0

int high_limit
High limitation of the count unit, should be higher than 0

int intr_priority
PCNT interrupt priority, if set to 0, the driver will try to allocate an interrupt with a relative low priority
(1,2,3)

uint32_t accum_count
Whether to accumulate the count value when overflows at the high/low limit

struct pcnt_unit_config_t::[anonymous] flags
Extra flags

struct pcnt_chan_config_t
PCNT channel configuration.

Public Members

int edge_gpio_num
GPIO number used by the edge signal, input mode with pull up enabled. Set to -1 if unused

int level_gpio_num
GPIO number used by the level signal, input mode with pull up enabled. Set to -1 if unused

uint32_t invert_edge_input
Invert the input edge signal

uint32_t invert_level_input
Invert the input level signal

Espressif Systems 1108
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t virt_edge_io_level
Virtual edge IO level, 0: low, 1: high. Only valid when edge_gpio_num is set to -1

uint32_t virt_level_io_level
Virtual level IO level, 0: low, 1: high. Only valid when level_gpio_num is set to -1

uint32_t io_loop_back
For debug/test, the signal output from the GPIO will be fed to the input path as well

struct pcnt_chan_config_t::[anonymous] flags
Channel config flags

struct pcnt_glitch_filter_config_t
PCNT glitch filter configuration.

Public Members

uint32_t max_glitch_ns
Pulse width smaller than this threshold will be treated as glitch and ignored, in the unit of ns

Type Definitions

typedef struct pcnt_unit_t *pcnt_unit_handle_t
Type of PCNT unit handle.

typedef struct pcnt_chan_t *pcnt_channel_handle_t
Type of PCNT channel handle.

typedef bool (*pcnt_watch_cb_t)(pcnt_unit_handle_t unit, const pcnt_watch_event_data_t *edata, void
*user_ctx)

PCNT watch event callback prototype.

Note: The callback function is invoked from an ISR context, so it should meet the restrictions of not calling
any blocking APIs when implementing the callback. e.g. must use ISR version of FreeRTOS APIs.

Param unit [in] PCNT unit handle
Param edata [in] PCNT event data, fed by the driver
Param user_ctx [in]User data, passed frompcnt_unit_register_event_callbacks()
Return Whether a high priority task has been woken up by this function

Header File
• components/hal/include/hal/pcnt_types.h

Enumerations

enum pcnt_channel_level_action_t

PCNT channel action on control level.
Values:

Espressif Systems 1109
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/pcnt_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator PCNT_CHANNEL_LEVEL_ACTION_KEEP
Keep current count mode

enumerator PCNT_CHANNEL_LEVEL_ACTION_INVERSE
Invert current count mode (increase -> decrease, decrease -> increase)

enumerator PCNT_CHANNEL_LEVEL_ACTION_HOLD
Hold current count value

enum pcnt_channel_edge_action_t

PCNT channel action on signal edge.
Values:

enumerator PCNT_CHANNEL_EDGE_ACTION_HOLD
Hold current count value

enumerator PCNT_CHANNEL_EDGE_ACTION_INCREASE
Increase count value

enumerator PCNT_CHANNEL_EDGE_ACTION_DECREASE
Decrease count value

enum pcnt_unit_zero_cross_mode_t

PCNT unit zero cross mode.
Values:

enumerator PCNT_UNIT_ZERO_CROSS_POS_ZERO
start from positive value, end to zero, i.e. +N->0

enumerator PCNT_UNIT_ZERO_CROSS_NEG_ZERO
start from negative value, end to zero, i.e. -N->0

enumerator PCNT_UNIT_ZERO_CROSS_NEG_POS
start from negative value, end to positive value, i.e. -N->+M

enumerator PCNT_UNIT_ZERO_CROSS_POS_NEG
start from positive value, end to negative value, i.e. +N->-M

2.6.18 Remote Control Transceiver (RMT)

Introduction

The RMT (Remote Control Transceiver) peripheral was designed to act as an infrared transceiver. However, due to
the flexibility of its data format, RMT can be extended to a versatile and general-purpose transceiver, transmitting or
receiving many other types of signals. From the perspective of network layering, the RMT hardware contains both
physical and data link layers. The physical layer defines the communication media and bit signal representation. The

Espressif Systems 1110
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

data link layer defines the format of an RMT frame. The minimal data unit in the frame is called the RMT symbol,
which is represented by rmt_symbol_word_t in the driver.
ESP32-C6 contains multiple channels in the RMT peripheral1. Each channel can be independently configured as
either transmitter or receiver.
Typically, the RMT peripheral can be used in the following scenarios:

• Transmit or receive infrared signals, with any IR protocols, e.g., NEC
• General-purpose sequence generator
• Transmit signals in a hardware-controlled loop, with a finite or infinite number of times
• Multi-channel simultaneous transmission
• Modulate the carrier to the output signal or demodulate the carrier from the input signal

Layout of RMT Symbols The RMT hardware defines data in its own pattern -- the RMT symbol. The diagram
below illustrates the bit fields of an RMT symbol. Each symbol consists of two pairs of two values. The first value
in the pair is a 15-bit value representing the signal's duration in units of RMT ticks. The second in the pair is a 1-bit
value representing the signal's logic level, i.e., high or low.

Fig. 14: Structure of RMT symbols (L - signal level)

RMT Transmitter Overview The data path and control path of an RMT TX channel is illustrated in the figure
below:

Fig. 15: RMT Transmitter Overview

The driver encodes the user's data into RMT data format, then the RMT transmitter can generate the waveforms
according to the encoding artifacts. It is also possible to modulate a high-frequency carrier signal before being routed
to a GPIO pad.

1 Different ESP chip series might have different numbers of RMT channels. Please refer to [TRM] for details. The driver does not forbid you
from applying for more RMT channels, but it returns an error when there are no hardware resources available. Please always check the return
value when doing Resource Allocation.

Espressif Systems 1111
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#rmt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

RMT Receiver Overview The data path and control path of an RMT RX channel is illustrated in the figure below:

Fig. 16: RMT Receiver Overview

The RMT receiver can sample incoming signals into RMT data format, and store the data in memory. It is also
possible to tell the receiver the basic characteristics of the incoming signal, so that the signal's stop condition can be
recognized, and signal glitches and noise can be filtered out. The RMT peripheral also supports demodulating the
high-frequency carrier from the base signal.

Functional Overview

The description of the RMT functionality is divided into the following sections:
• Resource Allocation - covers how to allocate and properly configure RMT channels. It also covers how to recycle
channels and other resources when they are no longer used.

• Carrier Modulation and Demodulation - describes how to modulate and demodulate the carrier signals for TX
and RX channels respectively.

• Register Event Callbacks - covers how to register user-provided event callbacks to receive RMT channel events.
• Enable and Disable Channel - shows how to enable and disable the RMT channel.
• Initiate TX Transaction - describes the steps to initiate a transaction for a TX channel.
• Initiate RX Transaction - describes the steps to initiate a transaction for an RX channel.
• Multiple Channels Simultaneous Transmission - describes how to collect multiple channels into a sync group so
that their transmissions can be started simultaneously.

• RMT Encoder - focuses on how to write a customized encoder by combining multiple primitive encoders that
are provided by the driver.

• Power Management - describes how different clock sources affects power consumption.
• IRAM Safe - describes how disabling the cache affects the RMT driver, and tips to mitigate it.
• Thread Safety - lists which APIs are guaranteed to be thread-safe by the driver.
• Kconfig Options - describes the various Kconfig options supported by the RMT driver.

Resource Allocation Both RMT TX and RX channels are represented by rmt_channel_handle_t in the
driver. The driver internally manages which channels are available and hands out a free channel on request.

Install RMT TX Channel To install an RMT TX channel, there is a configuration structure that needs to be
given in advance rmt_tx_channel_config_t. The following list describes each member of the configuration
structure.

• rmt_tx_channel_config_t::gpio_num sets the GPIO number used by the transmitter.
• rmt_tx_channel_config_t::clk_src selects the source clock for the RMT channel. The available
clocks are listed in rmt_clock_source_t. Note that, the selected clock is also used by other channels,
which means the user should ensure this configuration is the same when allocating other channels, regardless
of TX or RX. For the effect on the power consumption of different clock sources, please refer to the Power
Management section.

Espressif Systems 1112
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• rmt_tx_channel_config_t::resolution_hz sets the resolution of the internal tick counter. The
timing parameter of the RMT signal is calculated based on this tick.

• rmt_tx_channel_config_t::mem_block_symbols has a slightly different meaning based on if
the DMA backend is enabled or not.

– If the DMA is enabled via rmt_tx_channel_config_t::with_dma, then this field controls the
size of the internal DMA buffer. To achieve a better throughput and smaller CPU overhead, you can set
a larger value, e.g., 1024.

– If DMA is not used, this field controls the size of the dedicated memory block owned by the channel,
which should be at least 48.

• rmt_tx_channel_config_t::trans_queue_depth sets the depth of the internal transaction
queue, the deeper the queue, the more transactions can be prepared in the backlog.

• rmt_tx_channel_config_t::invert_out is used to decide whether to invert the RMT signal be-
fore sending it to the GPIO pad.

• rmt_tx_channel_config_t::with_dma enables the DMAbackend for the channel. Using the DMA
allows a significant amount of the channel's workload to be offloaded from the CPU. However, the DMA
backend is not available on all ESP chips, please refer to [TRM] before you enable this option. Or you might
encounter a ESP_ERR_NOT_SUPPORTED error.

• rmt_tx_channel_config_t::io_loop_back enables both input and output capabilities on the
channel's assigned GPIO. Thus, by binding a TX and RX channel to the same GPIO, loopback can be achieved.

• rmt_tx_channel_config_t::io_od_mode configures the channel's assigned GPIO as open-drain.
When combined with rmt_tx_channel_config_t::io_loop_back, a bi-directional bus (e.g., 1-
wire) can be achieved.

• rmt_tx_channel_config_t::intr_priority Set the priority of the interrupt. If set to 0 , then the
driver will use a interrupt with low or medium priority (priority level may be one of 1,2 or 3), otherwise use the
priority indicated by rmt_tx_channel_config_t::intr_priority. Please use the number form
(1,2,3) , not the bitmask form ((1<<1),(1<<2),(1<<3)). Please pay attention that once the interrupt priority is
set, it cannot be changed until rmt_del_channel() is called.

Once the rmt_tx_channel_config_t structure is populated with mandatory parameters, users can call
rmt_new_tx_channel() to allocate and initialize a TX channel. This function returns an RMT channel handle
if it runs correctly. Specifically, when there are no more free channels in the RMT resource pool, this function returns
ESP_ERR_NOT_FOUND error. If some feature (e.g., DMA backend) is not supported by the hardware, it returns
ESP_ERR_NOT_SUPPORTED error.

rmt_channel_handle_t tx_chan = NULL;
rmt_tx_channel_config_t tx_chan_config = {

.clk_src = RMT_CLK_SRC_DEFAULT, // select source clock

.gpio_num = 0, // GPIO number

.mem_block_symbols = 64, // memory block size, 64 * 4 = 256 Bytes

.resolution_hz = 1 * 1000 * 1000, // 1 MHz tick resolution, i.e., 1 tick = 1 µs

.trans_queue_depth = 4, // set the number of transactions that can␣
↪→pend in the background

.flags.invert_out = false, // do not invert output signal

.flags.with_dma = false, // do not need DMA backend
};
ESP_ERROR_CHECK(rmt_new_tx_channel(&tx_chan_config, &tx_chan));

Install RMT RX Channel To install an RMT RX channel, there is a configuration structure that needs to be
given in advance rmt_rx_channel_config_t. The following list describes each member of the configuration
structure.

• rmt_rx_channel_config_t::gpio_num sets the GPIO number used by the receiver.
• rmt_rx_channel_config_t::clk_src selects the source clock for the RMT channel. The available
clocks are listed in rmt_clock_source_t. Note that, the selected clock is also used by other channels,
which means the user should ensure this configuration is the same when allocating other channels, regardless
of TX or RX. For the effect on the power consumption of different clock sources, please refer to the Power
Management section.

• rmt_rx_channel_config_t::resolution_hz sets the resolution of the internal tick counter. The
timing parameter of the RMT signal is calculated based on this tick.

Espressif Systems 1113
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#rmt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• rmt_rx_channel_config_t::mem_block_symbols has a slightly different meaning based on
whether the DMA backend is enabled.

– If the DMA is enabled via rmt_rx_channel_config_t::with_dma, this field controls the max-
imum size of the DMA buffer.

– If DMA is not used, this field controls the size of the dedicated memory block owned by the channel,
which should be at least 48.

• rmt_rx_channel_config_t::invert_in is used to invert the input signals before it is passed to the
RMT receiver. The inversion is done by the GPIO matrix instead of by the RMT peripheral.

• rmt_rx_channel_config_t::with_dma enables the DMAbackend for the channel. Using the DMA
allows a significant amount of the channel's workload to be offloaded from the CPU. However, the DMA
backend is not available on all ESP chips, please refer to [TRM] before you enable this option. Or you might
encounter a ESP_ERR_NOT_SUPPORTED error.

• rmt_rx_channel_config_t::io_loop_back enables both input and output capabilities on the
channel's assigned GPIO. Thus, by binding a TX and RX channel to the same GPIO, loopback can be achieved.

• rmt_rx_channel_config_t::intr_priority Set the priority of the interrupt. If set to 0 , then the
driver will use a interrupt with low or medium priority (priority level may be one of 1,2 or 3), otherwise use the
priority indicated by rmt_rx_channel_config_t::intr_priority. Please use the number form
(1,2,3) , not the bitmask form ((1<<1),(1<<2),(1<<3)). Please pay attention that once the interrupt priority is
set, it cannot be changed until rmt_del_channel() is called.

Once the rmt_rx_channel_config_t structure is populated with mandatory parameters, users can call
rmt_new_rx_channel() to allocate and initialize an RX channel. This function returns an RMT channel han-
dle if it runs correctly. Specifically, when there are no more free channels in the RMT resource pool, this function
returns ESP_ERR_NOT_FOUND error. If some feature (e.g., DMA backend) is not supported by the hardware, it
returns ESP_ERR_NOT_SUPPORTED error.

rmt_channel_handle_t rx_chan = NULL;
rmt_rx_channel_config_t rx_chan_config = {

.clk_src = RMT_CLK_SRC_DEFAULT, // select source clock

.resolution_hz = 1 * 1000 * 1000, // 1 MHz tick resolution, i.e., 1 tick = 1 µs

.mem_block_symbols = 64, // memory block size, 64 * 4 = 256 Bytes

.gpio_num = 2, // GPIO number

.flags.invert_in = false, // do not invert input signal

.flags.with_dma = false, // do not need DMA backend
};
ESP_ERROR_CHECK(rmt_new_rx_channel(&rx_chan_config, &rx_chan));

Note: Due to a software limitation in the GPIO driver, when both TX and RX channels are bound to the same
GPIO, ensure the RX Channel is initialized before the TX Channel. If the TX Channel was set up first, then during
the RX Channel setup, the previous RMT TX Channel signal will be overridden by the GPIO control signal.

Uninstall RMT Channel If a previously installed RMT channel is no longer needed, it is recommended to recycle
the resources by calling rmt_del_channel(), which in return allows the underlying software and hardware
resources to be reused for other purposes.

Carrier Modulation and Demodulation The RMT transmitter can generate a carrier wave and modulate it onto
the message signal. Compared to the message signal, the carrier signal's frequency is significantly higher. In addition,
the user can only set the frequency and duty cycle for the carrier signal. The RMT receiver can demodulate the carrier
signal from the incoming signal. Note that, carrier modulation and demodulation are not supported on all ESP chips,
please refer to [TRM] before configuring the carrier, or you might encounter a ESP_ERR_NOT_SUPPORTED error.
Carrier-related configurations lie in rmt_carrier_config_t:

• rmt_carrier_config_t::frequency_hz sets the carrier frequency, in Hz.
• rmt_carrier_config_t::duty_cycle sets the carrier duty cycle.
• rmt_carrier_config_t::polarity_active_low sets the carrier polarity, i.e., on which level the
carrier is applied.

Espressif Systems 1114
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#rmt
https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#rmt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• rmt_carrier_config_t::always_on sets whether to output the carrier even when the data trans-
mission has finished. This configuration is only valid for the TX channel.

Note: For the RX channel, we should not set the carrier frequency exactly to the theoretical value. It is recommended
to leave a tolerance for the carrier frequency. For example, in the snippet below, we set the frequency to 25 KHz,
instead of the 38 KHz configured on the TX side. The reason is that reflection and refraction occur when a signal
travels through the air, leading to distortion on the receiver side.

rmt_carrier_config_t tx_carrier_cfg = {
.duty_cycle = 0.33, // duty cycle 33%
.frequency_hz = 38000, // 38 KHz
.flags.polarity_active_low = false, // carrier should be modulated to high␣

↪→level
};
// modulate carrier to TX channel
ESP_ERROR_CHECK(rmt_apply_carrier(tx_chan, &tx_carrier_cfg));

rmt_carrier_config_t rx_carrier_cfg = {
.duty_cycle = 0.33, // duty cycle 33%
.frequency_hz = 25000, // 25 KHz carrier, should be smaller than␣

↪→the transmitter's carrier frequency
.flags.polarity_active_low = false, // the carrier is modulated to high level

};
// demodulate carrier from RX channel
ESP_ERROR_CHECK(rmt_apply_carrier(rx_chan, &rx_carrier_cfg));

Register Event Callbacks When an event occurs on an RMT channel (e.g., transmission or receiving is com-
pleted), the CPU is notified of this event via an interrupt. If you have some function that needs to be called when a
particular events occur, you can register a callback for that event to the RMT driver's ISR (Interrupt Service Routine)
by calling rmt_tx_register_event_callbacks() and rmt_rx_register_event_callbacks()
for TX and RX channel respectively. Since the registered callback functions are called in the interrupt context, the
user should ensure the callback function does not block, e.g., by making sure that only FreeRTOS APIs with the
FromISR suffix are called from within the function. The callback function has a boolean return value used to
indicate whether a higher priority task has been unblocked by the callback.
The TX channel-supported event callbacks are listed in the rmt_tx_event_callbacks_t:

• rmt_tx_event_callbacks_t::on_trans_done sets a callback function for the "trans-done" event.
The function prototype is declared in rmt_tx_done_callback_t.

The RX channel-supported event callbacks are listed in the rmt_rx_event_callbacks_t:
• rmt_rx_event_callbacks_t::on_recv_done sets a callback function for "receive-done" event.
The function prototype is declared in rmt_rx_done_callback_t.

Users can save their own context in rmt_tx_register_event_callbacks() and
rmt_rx_register_event_callbacks() as well, via the parameter user_data. The user data is
directly passed to each callback function.
In the callback function, users can fetch the event-specific data that is filled by the driver in the edata. Note that
the edata pointer is only valid during the callback.
The TX-done event data is defined in rmt_tx_done_event_data_t:

• rmt_tx_done_event_data_t::num_symbols indicates the number of transmitted RMT symbols.
This also reflects the size of the encoding artifacts. Please note, this value accounts for the EOF symbol as well,
which is appended by the driver to mark the end of one transaction.

The RX-complete event data is defined in rmt_rx_done_event_data_t:
• rmt_rx_done_event_data_t::received_symbols points to the received RMT symbols. These
symbols are saved in the buffer parameter of the rmt_receive() function. Users should not free this

Espressif Systems 1115
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

receive buffer before the callback returns.
• rmt_rx_done_event_data_t::num_symbols indicates the number of receivedRMT symbols. This
value is not larger than thebuffer_size parameter ofrmt_receive() function. If thebuffer_size
is not sufficient to accommodate all the received RMT symbols, the driver only keeps the maximum number
of symbols that the buffer can hold, and excess symbols are discarded or ignored.

Enable and Disable Channel rmt_enable()must be called in advance before transmitting or receiving RMT
symbols. For TX channels, enabling a channel enables a specific interrupt and prepares the hardware to dispatch
transactions. For RX channels, enabling a channel enables an interrupt, but the receiver is not started during this time,
as the characteristics of the incoming signal have yet to be specified. The receiver is started in rmt_receive().
rmt_disable() does the opposite by disabling the interrupt and clearing any pending interrupts. The transmitter
and receiver are disabled as well.

ESP_ERROR_CHECK(rmt_enable(tx_chan));
ESP_ERROR_CHECK(rmt_enable(rx_chan));

Initiate TX Transaction RMT is a special communication peripheral, as it is unable to transmit raw byte streams
like SPI and I2C. RMT can only send data in its own format rmt_symbol_word_t. However, the hardware does
not help to convert the user data into RMT symbols, this can only be done in software by the so-calledRMTEncoder.
The encoder is responsible for encoding user data into RMT symbols and then writing to the RMT memory block or
the DMA buffer. For how to create an RMT encoder, please refer to RMT Encoder.
Once you created an encoder, you can initiate a TX transaction by calling rmt_transmit(). This function takes
several positional parameters like channel handle, encoder handle, and payload buffer. Besides, you also need to
provide a transmission-specific configuration in rmt_transmit_config_t:

• rmt_transmit_config_t::loop_count sets the number of transmission loops. After the transmitter
has finished one round of transmission, it can restart the same transmission again if this value is not set to zero.
As the loop is controlled by hardware, the RMT channel can be used to generate many periodic sequences with
minimal CPU intervention.

– Setting rmt_transmit_config_t::loop_count to -1 means an infinite loop trans-
mission. In this case, the channel does not stop until rmt_disable() is called. The "trans-
done" event is not generated as well.

– Setting rmt_transmit_config_t::loop_count to a positive number means finite
number of iterations. In this case, the "trans-done" event is when the specified number of
iterations have completed.

Note: The loop transmit feature is not supported on all ESP chips, please refer to [TRM] before
you configure this option, or you might encounter ESP_ERR_NOT_SUPPORTED error.

• rmt_transmit_config_t::eot_level sets the output level when the transmitter finishes working or
stops working by calling rmt_disable().

• rmt_transmit_config_t::queue_nonblocking sets whether to wait for a free slot in the trans-
action queue when it is full. If this value is set to true, then the function will return with an error code
ESP_ERR_INVALID_STATE when the queue is full. Otherwise, the function will block until a free slot is
available in the queue.

Note: There is a limitation in the transmission size if the rmt_transmit_config_t::loop_count is set
to non-zero, i.e., to enable the loop feature. The total amount of symbols returned by the encoder should not exceed
the capacity of SOC_RMT_MEM_WORDS_PER_CHANNEL, or you might see an error message like encoding
artifacts can't exceed hw memory block for loop transmission. If you have to start a
large transaction by loop, you can try either of the following methods.

• Increase the rmt_tx_channel_config_t::mem_block_symbols. This approach does not work if
the DMA backend is also enabled.

• Customize an encoder and construct an infinite loop in the encoding function. See also RMT Encoder.

Espressif Systems 1116
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#rmt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Internally, rmt_transmit() constructs a transaction descriptor and sends it to a job queue, which is dispatched
in the ISR. So it is possible that the transaction is not started yet when rmt_transmit() returns. To ensure all
pending transactions to complete, the user can use rmt_tx_wait_all_done().

Multiple Channels Simultaneous Transmission In some real-time control applications (e.g., to make two
robotic arms move simultaneously), you do not want any time drift between different channels. The RMT
driver can help to manage this by creating a so-called Sync Manager. The sync manager is represented by
rmt_sync_manager_handle_t in the driver. The procedure of RMT sync transmission is shown as follows:

Fig. 17: RMT TX Sync

Install RMT Sync Manager To create a sync manager, the user needs to tell which channels are going to be
managed in the rmt_sync_manager_config_t:

• rmt_sync_manager_config_t::tx_channel_array points to the array of TX channels to be
managed.

• rmt_sync_manager_config_t::array_size sets the number of channels to be managed.
rmt_new_sync_manager() can return a manager handle on success. This function could also fail due to various
errors such as invalid arguments, etc. Especially, when the sync manager has been installed before, and there are no
hardware resources to create another manager, this function reports ESP_ERR_NOT_FOUND error. In addition, if
the sync manager is not supported by the hardware, it reports a ESP_ERR_NOT_SUPPORTED error. Please refer
to [TRM] before using the sync manager feature.

Start Transmission Simultaneously For any managed TX channel, it does not
start the machine until rmt_transmit() has been called on all channels in
rmt_sync_manager_config_t::tx_channel_array. Before that, the channel is just put in a
waiting state. TX channels will usually complete their transactions at different times due to differing transac-
tions, thus resulting in a loss of sync. So before restarting a simultaneous transmission, the user needs to call
rmt_sync_reset() to synchronize all channels again.
Callingrmt_del_sync_manager() can recycle the syncmanager and enable the channels to initiate transactions
independently afterward.

rmt_channel_handle_t tx_channels[2] = {NULL}; // declare two channels
int tx_gpio_number[2] = {0, 2};
// install channels one by one
for (int i = 0; i < 2; i++) {

(continues on next page)

Espressif Systems 1117
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#rmt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
rmt_tx_channel_config_t tx_chan_config = {

.clk_src = RMT_CLK_SRC_DEFAULT, // select source clock

.gpio_num = tx_gpio_number[i], // GPIO number

.mem_block_symbols = 64, // memory block size, 64 * 4 = 256 Bytes

.resolution_hz = 1 * 1000 * 1000, // 1 MHz resolution

.trans_queue_depth = 1, // set the number of transactions that␣
↪→can pend in the background

};
ESP_ERROR_CHECK(rmt_new_tx_channel(&tx_chan_config, &tx_channels[i]));

}
// install sync manager
rmt_sync_manager_handle_t synchro = NULL;
rmt_sync_manager_config_t synchro_config = {

.tx_channel_array = tx_channels,

.array_size = sizeof(tx_channels) / sizeof(tx_channels[0]),
};
ESP_ERROR_CHECK(rmt_new_sync_manager(&synchro_config, &synchro));

ESP_ERROR_CHECK(rmt_transmit(tx_channels[0], led_strip_encoders[0], led_data, led_
↪→num * 3, &transmit_config));
// tx_channels[0] does not start transmission until call of `rmt_transmit()` for␣
↪→tx_channels[1] returns
ESP_ERROR_CHECK(rmt_transmit(tx_channels[1], led_strip_encoders[1], led_data, led_
↪→num * 3, &transmit_config));

Initiate RX Transaction As also discussed in the Enable and Disable Channel, calling rmt_enable() does not
prepare an RX to receive RMT symbols. The user needs to specify the basic characteristics of the incoming signals
in rmt_receive_config_t:

• rmt_receive_config_t::signal_range_min_ns specifies the minimal valid pulse duration in
either high or low logic levels. A pulse width that is smaller than this value is treated as a glitch, and ignored
by the hardware.

• rmt_receive_config_t::signal_range_max_ns specifies the maximum valid pulse duration in
either high or low logic levels. A pulse width that is bigger than this value is treated as Stop Signal, and the
receiver generates receive-complete event immediately.

The RMT receiver starts the RX machine after the user calls rmt_receive() with the provided configuration
above. Note that, this configuration is transaction specific, which means, to start a new round of reception, the user
needs to set the rmt_receive_config_t again. The receiver saves the incoming signals into its internal memory
block or DMA buffer, in the format of rmt_symbol_word_t.
Due to the limited size of the memory block, the RMT receiver notifies the driver to copy away the accumulated
symbols in a ping-pong way.
The copy destination should be provided in the buffer parameter of rmt_receive() function. If this buffer
overlfows due to an insufficient buffer size, the receiver can continue to work, but overflowed symbols are dropped and
the following error message is reported: user buffer too small, received symbols truncated.
Please take care of the lifecycle of the buffer parameter, ensuring that the buffer is not recycled before the receiver
is finished or stopped.
The receiver is stopped by the driver when it finishes working, i.e., receive a signal whose dura-
tion is bigger than rmt_receive_config_t::signal_range_max_ns. The user needs to call
rmt_receive() again to restart the receiver, if necessary. The user can get the received data in the
rmt_rx_event_callbacks_t::on_recv_done callback. See also Register Event Callbacks for more in-
formation.

static bool example_rmt_rx_done_callback(rmt_channel_handle_t channel, const rmt_
↪→rx_done_event_data_t *edata, void *user_data)
{

BaseType_t high_task_wakeup = pdFALSE;

(continues on next page)

Espressif Systems 1118
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
QueueHandle_t receive_queue = (QueueHandle_t)user_data;
// send the received RMT symbols to the parser task
xQueueSendFromISR(receive_queue, edata, &high_task_wakeup);
// return whether any task is woken up
return high_task_wakeup == pdTRUE;

}

QueueHandle_t receive_queue = xQueueCreate(1, sizeof(rmt_rx_done_event_data_t));
rmt_rx_event_callbacks_t cbs = {

.on_recv_done = example_rmt_rx_done_callback,
};
ESP_ERROR_CHECK(rmt_rx_register_event_callbacks(rx_channel, &cbs, receive_queue));

// the following timing requirement is based on NEC protocol
rmt_receive_config_t receive_config = {

.signal_range_min_ns = 1250, // the shortest duration for NEC signal is␣
↪→560 µs, 1250 ns < 560 µs, valid signal is not treated as noise

.signal_range_max_ns = 12000000, // the longest duration for NEC signal is␣
↪→9000 µs, 12000000 ns > 9000 µs, the receive does not stop early
};

rmt_symbol_word_t raw_symbols[64]; // 64 symbols should be sufficient for a␣
↪→standard NEC frame
// ready to receive
ESP_ERROR_CHECK(rmt_receive(rx_channel, raw_symbols, sizeof(raw_symbols), &receive_
↪→config));
// wait for the RX-done signal
rmt_rx_done_event_data_t rx_data;
xQueueReceive(receive_queue, &rx_data, portMAX_DELAY);
// parse the received symbols
example_parse_nec_frame(rx_data.received_symbols, rx_data.num_symbols);

RMT Encoder An RMT encoder is part of the RMT TX transaction, whose responsibility is to generate and write
the correct RMT symbols into hardware memory or DMA buffer at a specific time. There are some special restrictions
for an encoding function:

• During a single transaction, the encoding function may be called multiple times. This is necessary because the
target RMT memory block cannot hold all the artifacts at once. To overcome this limitation, the driver utilizes
a ping-pong approach, where the encoding session is divided into multiple parts. This means that the encoder
needs to keep track of its state to continue encoding from where it left off in the previous part.

• The encoding function is running in the ISR context. To speed up the encoding session, it is highly recom-
mended to put the encoding function into IRAM. This can also avoid the cache miss during encoding.

To help get started with the RMT driver faster, some commonly used encoders are provided out-of-the-box. They
can either work alone or be chained together into a new encoder. See also Composite Pattern for the principle behind
it. The driver has defined the encoder interface in rmt_encoder_t, it contains the following functions:

• rmt_encoder_t::encode is the fundamental function of an encoder. This is where the encoding session
happens.

– The function might be called multiple times within a single transaction. The encode function should
return the state of the current encoding session.

– The supported states are listed in the rmt_encode_state_t. If the result contains
RMT_ENCODING_COMPLETE, it means the current encoder has finished work.

– If the result contains RMT_ENCODING_MEM_FULL, the program needs to yield from the current ses-
sion, as there is no space to save more encoding artifacts.

• rmt_encoder_t::reset should reset the encoder state back to the initial state (the RMT encoder is
stateful).

– If the RMT transmitter is manually stopped without resetting its corresponding encoder, subsequent en-
coding session can be erroneous.

– This function is also called implicitly in rmt_disable().

Espressif Systems 1119
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://en.wikipedia.org/wiki/Composite_pattern
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• rmt_encoder_t::del should free the resources allocated by the encoder.

Copy Encoder A copy encoder is created by calling rmt_new_copy_encoder(). A copy encoder's main
functionality is to copy the RMT symbols from user space into the driver layer. It is usually used to encode const
data, i.e., data does not change at runtime after initialization such as the leading code in the IR protocol.
A configuration structure rmt_copy_encoder_config_t should be provided in advance before calling
rmt_new_copy_encoder(). Currently, this configuration is reserved for future expansion, and has no spe-
cific use or setting items for now.

Bytes Encoder Abytes encoder is created by calling rmt_new_bytes_encoder(). The bytes encoder's main
functionality is to convert the user space byte stream into RMT symbols dynamically. It is usually used to encode
dynamic data, e.g., the address and command fields in the IR protocol.
A configuration structure rmt_bytes_encoder_config_t should be provided in advance before calling
rmt_new_bytes_encoder():

• rmt_bytes_encoder_config_t::bit0 and rmt_bytes_encoder_config_t::bit1
are necessary to specify the encoder how to represent bit zero and bit one in the format of
rmt_symbol_word_t.

• rmt_bytes_encoder_config_t::msb_first sets the bit endianess of each byte. If it is set to true,
the encoder encodes theMost Significant Bit first. Otherwise, it encodes the Least Significant Bit first.

Besides the primitive encoders provided by the driver, the user can implement his own encoder by chaining the
existing encoders together. A common encoder chain is shown as follows:

Fig. 18: RMT Encoder Chain

Customize RMTEncoder for NEC Protocol This section demonstrates how to write an NEC encoder. The NEC
IR protocol uses pulse distance encoding of the message bits. Each pulse burst is 562.5 µs in length, logical bits
are transmitted as follows. It is worth mentioning that the least significant bit of each byte is sent first.

• Logical 0: a 562.5 µs pulse burst followed by a 562.5 µs space, with a total transmit time of 1.125
ms

• Logical 1: a 562.5 µs pulse burst followed by a 1.6875 ms space, with a total transmit time of 2.25
ms

When a key is pressed on the remote controller, the transmitted message includes the following elements in the
specified order:

• 9 ms leading pulse burst, also called the "AGC pulse"

Espressif Systems 1120
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 19: IR NEC Frame

• 4.5 ms space
• 8-bit address for the receiving device
• 8-bit logical inverse of the address
• 8-bit command
• 8-bit logical inverse of the command
• a final 562.5 µs pulse burst to signify the end of message transmission

Then you can construct the NEC rmt_encoder_t::encode function in the same order, for example:

// IR NEC scan code representation
typedef struct {

uint16_t address;
uint16_t command;

} ir_nec_scan_code_t;

// construct an encoder by combining primitive encoders
typedef struct {

rmt_encoder_t base; // the base "class" declares the standard␣
↪→encoder interface

rmt_encoder_t *copy_encoder; // use the copy_encoder to encode the leading␣
↪→and ending pulse

rmt_encoder_t *bytes_encoder; // use the bytes_encoder to encode the address␣
↪→and command data

rmt_symbol_word_t nec_leading_symbol; // NEC leading code with RMT␣
↪→representation

rmt_symbol_word_t nec_ending_symbol; // NEC ending code with RMT␣
↪→representation

int state; // record the current encoding state, i.e., we are in which␣
↪→encoding phase
} rmt_ir_nec_encoder_t;

static size_t rmt_encode_ir_nec(rmt_encoder_t *encoder, rmt_channel_handle_t␣
↪→channel, const void *primary_data, size_t data_size, rmt_encode_state_t *ret_
↪→state)
{

rmt_ir_nec_encoder_t *nec_encoder = __containerof(encoder, rmt_ir_nec_encoder_
↪→t, base);

rmt_encode_state_t session_state = RMT_ENCODING_RESET;
rmt_encode_state_t state = RMT_ENCODING_RESET;
size_t encoded_symbols = 0;
ir_nec_scan_code_t *scan_code = (ir_nec_scan_code_t *)primary_data;
rmt_encoder_handle_t copy_encoder = nec_encoder->copy_encoder;
rmt_encoder_handle_t bytes_encoder = nec_encoder->bytes_encoder;
switch (nec_encoder->state) {
case 0: // send leading code

encoded_symbols += copy_encoder->encode(copy_encoder, channel, &nec_
↪→encoder->nec_leading_symbol,

sizeof(rmt_symbol_word_t), &
↪→session_state);

if (session_state & RMT_ENCODING_COMPLETE) {
nec_encoder->state = 1; // we can only switch to the next state when␣

↪→the current encoder finished
}

(continues on next page)

Espressif Systems 1121
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
if (session_state & RMT_ENCODING_MEM_FULL) {

state |= RMT_ENCODING_MEM_FULL;
goto out; // yield if there is no free space to put other encoding␣

↪→artifacts
}

// fall-through
case 1: // send address

encoded_symbols += bytes_encoder->encode(bytes_encoder, channel, &scan_
↪→code->address, sizeof(uint16_t), &session_state);

if (session_state & RMT_ENCODING_COMPLETE) {
nec_encoder->state = 2; // we can only switch to the next state when␣

↪→the current encoder finished
}
if (session_state & RMT_ENCODING_MEM_FULL) {

state |= RMT_ENCODING_MEM_FULL;
goto out; // yield if there is no free space to put other encoding␣

↪→artifacts
}

// fall-through
case 2: // send command

encoded_symbols += bytes_encoder->encode(bytes_encoder, channel, &scan_
↪→code->command, sizeof(uint16_t), &session_state);

if (session_state & RMT_ENCODING_COMPLETE) {
nec_encoder->state = 3; // we can only switch to the next state when␣

↪→the current encoder finished
}
if (session_state & RMT_ENCODING_MEM_FULL) {

state |= RMT_ENCODING_MEM_FULL;
goto out; // yield if there is no free space to put other encoding␣

↪→artifacts
}

// fall-through
case 3: // send ending code

encoded_symbols += copy_encoder->encode(copy_encoder, channel, &nec_
↪→encoder->nec_ending_symbol,

sizeof(rmt_symbol_word_t), &
↪→session_state);

if (session_state & RMT_ENCODING_COMPLETE) {
nec_encoder->state = RMT_ENCODING_RESET; // back to the initial␣

↪→encoding session
state |= RMT_ENCODING_COMPLETE; // telling the caller the NEC encoding␣

↪→has finished
}
if (session_state & RMT_ENCODING_MEM_FULL) {

state |= RMT_ENCODING_MEM_FULL;
goto out; // yield if there is no free space to put other encoding␣

↪→artifacts
}

}
out:

*ret_state = state;
return encoded_symbols;

}

A full sample code can be found in peripherals/rmt/ir_nec_transceiver. In the above snippet, we use a
switch-case and several goto statements to implement a Finite-state machine . With this pattern, users can
construct much more complex IR protocols.

Power Management When power management is enabled, i.e., CONFIG_PM_ENABLE is on, the system adjusts
theAPB frequency before going into Light-sleep, thus potentially changing the resolution of the RMT internal counter.

Espressif Systems 1122
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/rmt/ir_nec_transceiver
https://en.wikipedia.org/wiki/Finite-state_machine
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

However, the driver can prevent the system from changing APB frequency by acquiring a power manage-
ment lock of type ESP_PM_APB_FREQ_MAX. Whenever the user creates an RMT channel that has selected
RMT_CLK_SRC_APB as the clock source, the driver guarantees that the power management lock is acquired af-
ter the channel enabled by rmt_enable(). Likewise, the driver releases the lock after rmt_disable() is
called for the same channel. This also reveals that the rmt_enable() and rmt_disable() should appear in
pairs.
If the channel clock source is selected to others like RMT_CLK_SRC_XTAL, then the driver does not install a power
management lock for it, which is more suitable for a low-power application as long as the source clock can still provide
sufficient resolution.

IRAMSafe By default, the RMT interrupt is deferred when the Cache is disabled for reasons like writing or erasing
the main Flash. Thus the transaction-done interrupt does not get handled in time, which is not acceptable in a real-
time application. What is worse, when the RMT transaction relies on ping-pong interrupt to successively encode or
copy RMT symbols, a delayed interrupt can lead to an unpredictable result.
There is a Kconfig option CONFIG_RMT_ISR_IRAM_SAFE that has the following features:

1. Enable the interrupt being serviced even when the cache is disabled
2. Place all functions used by the ISR into IRAM2

3. Place the driver object into DRAM in case it is mapped to PSRAM by accident
This Kconfig option allows the interrupt handler to run while the cache is disabled but comes at the cost of increased
IRAM consumption.
Another Kconfig option CONFIG_RMT_RECV_FUNC_IN_IRAM can place rmt_receive() into the IRAM as
well. So that the receive function can be used even when the flash cache is disabled.

Thread Safety The factory function rmt_new_tx_channel(), rmt_new_rx_channel() and
rmt_new_sync_manager() are guaranteed to be thread-safe by the driver, which means, user can
call them from different RTOS tasks without protection by extra locks. Other functions that take the
rmt_channel_handle_t and rmt_sync_manager_handle_t as the first positional parameter, are
not thread-safe. which means the user should avoid calling them from multiple tasks.
The following functions are allowed to use under ISR context as well.

• rmt_receive()

Kconfig Options
• CONFIG_RMT_ISR_IRAM_SAFE controls whether the default ISR handler can work when cache is disabled,
see also IRAM Safe for more information.

• CONFIG_RMT_ENABLE_DEBUG_LOG is used to enable the debug log at the cost of increased firmware
binary size.

• CONFIG_RMT_RECV_FUNC_IN_IRAM controls where to place the RMT receive function (IRAM or Flash),
see IRAM Safe for more information.

Application Examples

• RMT-based RGB LED strip customized encoder: peripherals/rmt/led_strip
• RMT IR NEC protocol encoding and decoding: peripherals/rmt/ir_nec_transceiver
• RMT transactions in queue: peripherals/rmt/musical_buzzer
• RMT-based stepper motor with S-curve algorithm: : peripherals/rmt/stepper_motor
• RMT infinite loop for driving DShot ESC: peripherals/rmt/dshot_esc
• RMT simulate 1-wire protocol (take DS18B20 as example): peripherals/rmt/onewire

2 The callback function, e.g., rmt_tx_event_callbacks_t::on_trans_done, and the functions invoked by itself should also reside
in IRAM, users need to take care of this by themselves.

Espressif Systems 1123
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/rmt/led_strip
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/rmt/ir_nec_transceiver
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/rmt/musical_buzzer
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/rmt/stepper_motor
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/rmt/dshot_esc
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/rmt/onewire
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

FAQ

• Why the RMT encoder results in more data than expected?
The RMT encoding takes place in the ISR context. If your RMT encoding session takes a long time (e.g., by logging
debug information) or the encoding session is deferred somehow because of interrupt latency, then it is possible the
transmitting becomes faster than the encoding. As a result, the encoder can not prepare the next data in time, leading
to the transmitter sending the previous data again. There is no way to ask the transmitter to stop and wait. You can
mitigate the issue by combining the following ways:

• Increase the rmt_tx_channel_config_t::mem_block_symbols, in steps of 48.
• Place the encoding function in the IRAM.
• Enables the rmt_tx_channel_config_t::with_dma if it is available for your chip.

API Reference

Header File
• components/driver/rmt/include/driver/rmt_tx.h

Functions
esp_err_t rmt_new_tx_channel(const rmt_tx_channel_config_t *config, rmt_channel_handle_t *ret_chan)

Create a RMT TX channel.
Parameters

• config -- [in] TX channel configurations
• ret_chan -- [out] Returned generic RMT channel handle

Returns
• ESP_OK: Create RMT TX channel successfully
• ESP_ERR_INVALID_ARG: Create RMT TX channel failed because of invalid argument
• ESP_ERR_NO_MEM: Create RMT TX channel failed because out of memory
• ESP_ERR_NOT_FOUND: Create RMTTX channel failed because all RMT channels are
used up and no more free one

• ESP_ERR_NOT_SUPPORTED: Create RMT TX channel failed because some feature
is not supported by hardware, e.g. DMA feature is not supported by hardware

• ESP_FAIL: Create RMT TX channel failed because of other error
esp_err_t rmt_transmit(rmt_channel_handle_t tx_channel, rmt_encoder_handle_t encoder, const void

*payload, size_t payload_bytes, const rmt_transmit_config_t *config)
Transmit data by RMT TX channel.

Note: This function constructs a transaction descriptor then pushes to a queue. The transac-
tion will not start immediately if there's another one under processing. Based on the setting of
rmt_transmit_config_t::queue_nonblocking, if there're too many transactions pending in the
queue, this function can block until it has free slot, otherwise just return quickly.

Note: The data to be transmitted will be encoded into RMT symbols by the specific encoder.

Parameters
• tx_channel -- [in] RMT TX channel that created by rmt_new_tx_channel()
• encoder -- [in] RMT encoder that created by various factory APIs like
rmt_new_bytes_encoder()

• payload -- [in] The raw data to be encoded into RMT symbols
• payload_bytes -- [in] Size of the payload in bytes
• config -- [in] Transmission specific configuration

Returns

Espressif Systems 1124
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/rmt/include/driver/rmt_tx.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK: Transmit data successfully
• ESP_ERR_INVALID_ARG: Transmit data failed because of invalid argument
• ESP_ERR_INVALID_STATE: Transmit data failed because channel is not enabled
• ESP_ERR_NOT_SUPPORTED: Transmit data failed because some feature is not sup-
ported by hardware, e.g. unsupported loop count

• ESP_FAIL: Transmit data failed because of other error

esp_err_t rmt_tx_wait_all_done(rmt_channel_handle_t tx_channel, int timeout_ms)
Wait for all pending TX transactions done.

Note: This function will block forever if the pending transaction can't be finished within a limited time (e.g.
an infinite loop transaction). See also rmt_disable() for how to terminate a working channel.

Parameters
• tx_channel -- [in] RMT TX channel that created by rmt_new_tx_channel()
• timeout_ms -- [in]Wait timeout, in ms. Specially, -1 means to wait forever.

Returns
• ESP_OK: Flush transactions successfully
• ESP_ERR_INVALID_ARG: Flush transactions failed because of invalid argument
• ESP_ERR_TIMEOUT: Flush transactions failed because of timeout
• ESP_FAIL: Flush transactions failed because of other error

esp_err_t rmt_tx_register_event_callbacks(rmt_channel_handle_t tx_channel, const
rmt_tx_event_callbacks_t *cbs, void *user_data)

Set event callbacks for RMT TX channel.

Note: User can deregister a previously registered callback by calling this function and setting the callback
member in the cbs structure to NULL.

Note: When CONFIG_RMT_ISR_IRAM_SAFE is enabled, the callback itself and functions called by it
should be placed in IRAM. The variables used in the function should be in the SRAMaswell. Theuser_data
should also reside in SRAM.

Parameters
• tx_channel -- [in] RMT generic channel that created by
rmt_new_tx_channel()

• cbs -- [in] Group of callback functions
• user_data -- [in] User data, which will be passed to callback functions directly

Returns
• ESP_OK: Set event callbacks successfully
• ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument
• ESP_FAIL: Set event callbacks failed because of other error

esp_err_t rmt_new_sync_manager(const rmt_sync_manager_config_t *config, rmt_sync_manager_handle_t
*ret_synchro)

Create a synchronization manager for multiple TX channels, so that the managed channel can start transmitting
at the same time.

Note: All the channels to be managed should be enabled by rmt_enable() before put them into sync
manager.

Espressif Systems 1125
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• config -- [in] Synchronization manager configuration
• ret_synchro -- [out] Returned synchronization manager handle

Returns
• ESP_OK: Create sync manager successfully
• ESP_ERR_INVALID_ARG: Create sync manager failed because of invalid argument
• ESP_ERR_NOT_SUPPORTED: Create sync manager failed because it is not supported
by hardware

• ESP_ERR_INVALID_STATE: Create sync manager failed because not all channels are
enabled

• ESP_ERR_NO_MEM: Create sync manager failed because out of memory
• ESP_ERR_NOT_FOUND: Create sync manager failed because all sync controllers are
used up and no more free one

• ESP_FAIL: Create sync manager failed because of other error

esp_err_t rmt_del_sync_manager(rmt_sync_manager_handle_t synchro)
Delete synchronization manager.

Parameters synchro -- [in] Synchronization manager handle returned from
rmt_new_sync_manager()

Returns
• ESP_OK: Delete the synchronization manager successfully
• ESP_ERR_INVALID_ARG: Delete the synchronization manager failed because of in-
valid argument

• ESP_FAIL: Delete the synchronization manager failed because of other error
esp_err_t rmt_sync_reset(rmt_sync_manager_handle_t synchro)

Reset synchronization manager.
Parameters synchro -- [in] Synchronization manager handle returned from

rmt_new_sync_manager()
Returns

• ESP_OK: Reset the synchronization manager successfully
• ESP_ERR_INVALID_ARG: Reset the synchronization manager failed because of invalid
argument

• ESP_FAIL: Reset the synchronization manager failed because of other error

Structures

struct rmt_tx_event_callbacks_t
Group of RMT TX callbacks.

Note: The callbacks are all running under ISR environment

Note: When CONFIG_RMT_ISR_IRAM_SAFE is enabled, the callback itself and functions called by it
should be placed in IRAM. The variables used in the function should be in the SRAM as well.

Public Members

rmt_tx_done_callback_t on_trans_done

Event callback, invoked when transmission is finished

struct rmt_tx_channel_config_t
RMT TX channel specific configuration.

Espressif Systems 1126
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

gpio_num_t gpio_num

GPIO number used by RMT TX channel. Set to -1 if unused

rmt_clock_source_t clk_src

Clock source of RMT TX channel, channels in the same group must use the same clock source

uint32_t resolution_hz
Channel clock resolution, in Hz

size_t mem_block_symbols
Size of memory block, in number of rmt_symbol_word_t, must be an even. In the DMAmode, this
field controls the DMA buffer size, it can be set to a large value; In the normal mode, this field controls
the number of RMT memory block that will be used by the channel.

size_t trans_queue_depth
Depth of internal transfer queue, increase this value can support more transfers pending in the background

int intr_priority
RMT interrupt priority, if set to 0, the driver will try to allocate an interrupt with a relative low priority
(1,2,3)

uint32_t invert_out
Whether to invert the RMT channel signal before output to GPIO pad

uint32_t with_dma
If set, the driver will allocate an RMT channel with DMA capability

uint32_t io_loop_back
The signal output from the GPIO will be fed to the input path as well

uint32_t io_od_mode
Configure the GPIO as open-drain mode

uint32_t init_level
Set the initial level of the RMT channel signal

struct rmt_tx_channel_config_t::[anonymous] flags
TX channel config flags

struct rmt_transmit_config_t
RMT transmit specific configuration.

Public Members

int loop_count
Specify the times of transmission in a loop, -1 means transmitting in an infinite loop

Espressif Systems 1127
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t eot_level
Set the output level for the "End Of Transmission"

uint32_t queue_nonblocking
If set, when the transaction queue is full, driver will not block the thread but return directly

struct rmt_transmit_config_t::[anonymous] flags
Transmit specific config flags

struct rmt_sync_manager_config_t
Synchronous manager configuration.

Public Members

const rmt_channel_handle_t *tx_channel_array
Array of TX channels that are about to be managed by a synchronous controller

size_t array_size
Size of the tx_channel_array

Header File
• components/driver/rmt/include/driver/rmt_rx.h

Functions
esp_err_t rmt_new_rx_channel(const rmt_rx_channel_config_t *config, rmt_channel_handle_t *ret_chan)

Create a RMT RX channel.
Parameters

• config -- [in] RX channel configurations
• ret_chan -- [out] Returned generic RMT channel handle

Returns
• ESP_OK: Create RMT RX channel successfully
• ESP_ERR_INVALID_ARG: Create RMTRX channel failed because of invalid argument
• ESP_ERR_NO_MEM: Create RMT RX channel failed because out of memory
• ESP_ERR_NOT_FOUND: Create RMT RX channel failed because all RMT channels
are used up and no more free one

• ESP_ERR_NOT_SUPPORTED: Create RMT RX channel failed because some feature
is not supported by hardware, e.g. DMA feature is not supported by hardware

• ESP_FAIL: Create RMT RX channel failed because of other error
esp_err_t rmt_receive(rmt_channel_handle_t rx_channel, void *buffer, size_t buffer_size, const

rmt_receive_config_t *config)
Initiate a receive job for RMT RX channel.

Note: This function is non-blocking, it initiates a new receive job and then returns.
User should check the received data from the on_recv_done callback that registered by
rmt_rx_register_event_callbacks().

Note: This function can also be called in ISR context.

Espressif Systems 1128
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/rmt/include/driver/rmt_rx.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: If you want this function to work even when the flash cache is disabled, please enable the CON-
FIG_RMT_RECV_FUNC_IN_IRAM option.

Parameters
• rx_channel -- [in] RMT RX channel that created by rmt_new_rx_channel()
• buffer -- [in] The buffer to store the received RMT symbols
• buffer_size -- [in] size of the buffer, in bytes
• config -- [in] Receive specific configurations

Returns
• ESP_OK: Initiate receive job successfully
• ESP_ERR_INVALID_ARG: Initiate receive job failed because of invalid argument
• ESP_ERR_INVALID_STATE: Initiate receive job failed because channel is not enabled
• ESP_FAIL: Initiate receive job failed because of other error

esp_err_t rmt_rx_register_event_callbacks(rmt_channel_handle_t rx_channel, const
rmt_rx_event_callbacks_t *cbs, void *user_data)

Set callbacks for RMT RX channel.

Note: User can deregister a previously registered callback by calling this function and setting the callback
member in the cbs structure to NULL.

Note: When CONFIG_RMT_ISR_IRAM_SAFE is enabled, the callback itself and functions called by it
should be placed in IRAM. The variables used in the function should be in the SRAMaswell. Theuser_data
should also reside in SRAM.

Parameters
• rx_channel -- [in] RMT generic channel that created by
rmt_new_rx_channel()

• cbs -- [in] Group of callback functions
• user_data -- [in] User data, which will be passed to callback functions directly

Returns
• ESP_OK: Set event callbacks successfully
• ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument
• ESP_FAIL: Set event callbacks failed because of other error

Structures

struct rmt_rx_event_callbacks_t
Group of RMT RX callbacks.

Note: The callbacks are all running under ISR environment

Note: When CONFIG_RMT_ISR_IRAM_SAFE is enabled, the callback itself and functions called by it
should be placed in IRAM. The variables used in the function should be in the SRAM as well.

Public Members

Espressif Systems 1129
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

rmt_rx_done_callback_t on_recv_done

Event callback, invoked when one RMT channel receiving transaction completes

struct rmt_rx_channel_config_t
RMT RX channel specific configuration.

Public Members

gpio_num_t gpio_num

GPIO number used by RMT RX channel. Set to -1 if unused

rmt_clock_source_t clk_src

Clock source of RMT RX channel, channels in the same group must use the same clock source

uint32_t resolution_hz
Channel clock resolution, in Hz

size_t mem_block_symbols
Size of memory block, in number of rmt_symbol_word_t, must be an even. In the DMA mode,
this field controls the DMA buffer size, it can be set to a large value (e.g. 1024); In the normal mode,
this field controls the number of RMT memory block that will be used by the channel.

uint32_t invert_in
Whether to invert the incoming RMT channel signal

uint32_t with_dma
If set, the driver will allocate an RMT channel with DMA capability

uint32_t io_loop_back
For debug/test, the signal output from the GPIO will be fed to the input path as well

struct rmt_rx_channel_config_t::[anonymous] flags
RX channel config flags

int intr_priority
RMT interrupt priority, if set to 0, the driver will try to allocate an interrupt with a relative low priority
(1,2,3)

struct rmt_receive_config_t
RMT receive specific configuration.

Public Members

uint32_t signal_range_min_ns
A pulse whose width is smaller than this threshold will be treated as glitch and ignored

uint32_t signal_range_max_ns
RMT will stop receiving if one symbol level has kept more than signal_range_max_ns

Espressif Systems 1130
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/driver/rmt/include/driver/rmt_common.h

Functions
esp_err_t rmt_del_channel(rmt_channel_handle_t channel)

Delete an RMT channel.
Parameters channel -- [in] RMT generic channel that created by

rmt_new_tx_channel() or rmt_new_rx_channel()
Returns

• ESP_OK: Delete RMT channel successfully
• ESP_ERR_INVALID_ARG: Delete RMT channel failed because of invalid argument
• ESP_ERR_INVALID_STATE: Delete RMT channel failed because it is still in working
• ESP_FAIL: Delete RMT channel failed because of other error

esp_err_t rmt_apply_carrier(rmt_channel_handle_t channel, const rmt_carrier_config_t *config)
Apply modulation feature for TX channel or demodulation feature for RX channel.

Parameters
• channel -- [in] RMT generic channel that created by rmt_new_tx_channel() or
rmt_new_rx_channel()

• config -- [in] Carrier configuration. Specially, a NULL config means to disable the
carrier modulation or demodulation feature

Returns
• ESP_OK: Apply carrier configuration successfully
• ESP_ERR_INVALID_ARG: Apply carrier configuration failed because of invalid argu-
ment

• ESP_FAIL: Apply carrier configuration failed because of other error
esp_err_t rmt_enable(rmt_channel_handle_t channel)

Enable the RMT channel.

Note: This function will acquire a PM lock that might be installed during channel allocation

Parameters channel -- [in] RMT generic channel that created by
rmt_new_tx_channel() or rmt_new_rx_channel()

Returns
• ESP_OK: Enable RMT channel successfully
• ESP_ERR_INVALID_ARG: Enable RMT channel failed because of invalid argument
• ESP_ERR_INVALID_STATE: Enable RMT channel failed because it's enabled already
• ESP_FAIL: Enable RMT channel failed because of other error

esp_err_t rmt_disable(rmt_channel_handle_t channel)
Disable the RMT channel.

Note: This function will release a PM lock that might be installed during channel allocation

Parameters channel -- [in] RMT generic channel that created by
rmt_new_tx_channel() or rmt_new_rx_channel()

Returns
• ESP_OK: Disable RMT channel successfully
• ESP_ERR_INVALID_ARG: Disable RMT channel failed because of invalid argument
• ESP_ERR_INVALID_STATE: Disable RMT channel failed because it's not enabled yet
• ESP_FAIL: Disable RMT channel failed because of other error

Espressif Systems 1131
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/rmt/include/driver/rmt_common.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Structures

struct rmt_carrier_config_t
RMT carrier wave configuration (for either modulation or demodulation)

Public Members

uint32_t frequency_hz
Carrier wave frequency, in Hz, 0 means disabling the carrier

float duty_cycle
Carrier wave duty cycle (0~100%)

uint32_t polarity_active_low
Specify the polarity of carrier, by default it's modulated to base signal's high level

uint32_t always_on
If set, the carrier can always exist even there's not transfer undergoing

struct rmt_carrier_config_t::[anonymous] flags
Carrier config flags

Header File
• components/driver/rmt/include/driver/rmt_encoder.h

Functions
esp_err_t rmt_new_bytes_encoder(const rmt_bytes_encoder_config_t *config, rmt_encoder_handle_t

*ret_encoder)
Create RMT bytes encoder, which can encode byte stream into RMT symbols.

Parameters
• config -- [in] Bytes encoder configuration
• ret_encoder -- [out] Returned encoder handle

Returns
• ESP_OK: Create RMT bytes encoder successfully
• ESP_ERR_INVALID_ARG: Create RMT bytes encoder failed because of invalid argu-
ment

• ESP_ERR_NO_MEM: Create RMT bytes encoder failed because out of memory
• ESP_FAIL: Create RMT bytes encoder failed because of other error

esp_err_t rmt_bytes_encoder_update_config(rmt_encoder_handle_t bytes_encoder, const
rmt_bytes_encoder_config_t *config)

Update the configuration of the bytes encoder.

Note: The configurations of the bytes encoder is also set up by rmt_new_bytes_encoder(). This
function is used to update the configuration of the bytes encoder at runtime.

Parameters
• bytes_encoder -- [in] Bytes encoder handle, created by e.g
rmt_new_bytes_encoder()

• config -- [in] Bytes encoder configuration
Returns

Espressif Systems 1132
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/rmt/include/driver/rmt_encoder.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK: Update RMT bytes encoder successfully
• ESP_ERR_INVALID_ARG: Update RMT bytes encoder failed because of invalid argu-
ment

• ESP_FAIL: Update RMT bytes encoder failed because of other error

esp_err_t rmt_new_copy_encoder(const rmt_copy_encoder_config_t *config, rmt_encoder_handle_t
*ret_encoder)

Create RMT copy encoder, which copies the given RMT symbols into RMT memory.
Parameters

• config -- [in] Copy encoder configuration
• ret_encoder -- [out] Returned encoder handle

Returns
• ESP_OK: Create RMT copy encoder successfully
• ESP_ERR_INVALID_ARG: Create RMT copy encoder failed because of invalid argu-
ment

• ESP_ERR_NO_MEM: Create RMT copy encoder failed because out of memory
• ESP_FAIL: Create RMT copy encoder failed because of other error

esp_err_t rmt_del_encoder(rmt_encoder_handle_t encoder)
Delete RMT encoder.

Parameters encoder -- [in] RMT encoder handle, created by e.g
rmt_new_bytes_encoder()

Returns
• ESP_OK: Delete RMT encoder successfully
• ESP_ERR_INVALID_ARG: Delete RMT encoder failed because of invalid argument
• ESP_FAIL: Delete RMT encoder failed because of other error

esp_err_t rmt_encoder_reset(rmt_encoder_handle_t encoder)
Reset RMT encoder.

Parameters encoder -- [in] RMT encoder handle, created by e.g
rmt_new_bytes_encoder()

Returns
• ESP_OK: Reset RMT encoder successfully
• ESP_ERR_INVALID_ARG: Reset RMT encoder failed because of invalid argument
• ESP_FAIL: Reset RMT encoder failed because of other error

void *rmt_alloc_encoder_mem(size_t size)
A helper function to allocate a proper memory for RMT encoder.

Parameters size -- Size of memory to be allocated
Returns Pointer to the allocated memory if the allocation is successful, NULL otherwise

Structures

struct rmt_encoder_t
Interface of RMT encoder.

Public Members

size_t (*encode)(rmt_encoder_t *encoder, rmt_channel_handle_t tx_channel, const void *primary_data,
size_t data_size, rmt_encode_state_t *ret_state)

Encode the user data into RMT symbols and write into RMT memory.

Espressif Systems 1133
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: The encoding function will also be called from an ISR context, thus the function must not call
any blocking API.

Note: It's recommended to put this function implementation in the IRAM, to achieve a high performance
and less interrupt latency.

Param encoder [in] Encoder handle
Param tx_channel [in] RMT TX channel handle, returned from

rmt_new_tx_channel()
Param primary_data [in] App data to be encoded into RMT symbols
Param data_size [in] Size of primary_data, in bytes
Param ret_state [out] Returned current encoder's state
Return Number of RMT symbols that the primary data has been encoded into

esp_err_t (*reset)(rmt_encoder_t *encoder)
Reset encoding state.

Param encoder [in] Encoder handle
Return

• ESP_OK: reset encoder successfully
• ESP_FAIL: reset encoder failed

esp_err_t (*del)(rmt_encoder_t *encoder)
Delete encoder object.

Param encoder [in] Encoder handle
Return

• ESP_OK: delete encoder successfully
• ESP_FAIL: delete encoder failed

struct rmt_bytes_encoder_config_t
Bytes encoder configuration.

Public Members

rmt_symbol_word_t bit0

How to represent BIT0 in RMT symbol

rmt_symbol_word_t bit1

How to represent BIT1 in RMT symbol

uint32_t msb_first
Whether to encode MSB bit first

struct rmt_bytes_encoder_config_t::[anonymous] flags
Encoder config flag

struct rmt_copy_encoder_config_t
Copy encoder configuration.

Espressif Systems 1134
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enumerations

enum rmt_encode_state_t

RMT encoding state.
Values:

enumerator RMT_ENCODING_RESET
The encoding session is in reset state

enumerator RMT_ENCODING_COMPLETE
The encoding session is finished, the caller can continue with subsequent encoding

enumerator RMT_ENCODING_MEM_FULL
The encoding artifact memory is full, the caller should return from current encoding session

Header File
• components/driver/rmt/include/driver/rmt_types.h

Structures

struct rmt_tx_done_event_data_t
Type of RMT TX done event data.

Public Members

size_t num_symbols
The number of transmitted RMT symbols, including one EOF symbol, which is appended by the driver
to mark the end of a transmission. For a loop transmission, this value only counts for one round.

struct rmt_rx_done_event_data_t
Type of RMT RX done event data.

Public Members

rmt_symbol_word_t *received_symbols
Point to the received RMT symbols

size_t num_symbols
The number of received RMT symbols

Type Definitions

typedef struct rmt_channel_t *rmt_channel_handle_t
Type of RMT channel handle.

typedef struct rmt_sync_manager_t *rmt_sync_manager_handle_t
Type of RMT synchronization manager handle.

Espressif Systems 1135
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/rmt/include/driver/rmt_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef struct rmt_encoder_t *rmt_encoder_handle_t
Type of RMT encoder handle.

typedef bool (*rmt_tx_done_callback_t)(rmt_channel_handle_t tx_chan, const rmt_tx_done_event_data_t
*edata, void *user_ctx)

Prototype of RMT event callback.
Param tx_chan [in] RMT channel handle, created from rmt_new_tx_channel()
Param edata [in] Point to RMT event data. The lifecycle of this pointer memory is inside this

function, user should copy it into static memory if used outside this function.
Param user_ctx [in] User registered context, passed from

rmt_tx_register_event_callbacks()
Return Whether a high priority task has been waken up by this callback function

typedef bool (*rmt_rx_done_callback_t)(rmt_channel_handle_t rx_chan, const
rmt_rx_done_event_data_t *edata, void *user_ctx)

Prototype of RMT event callback.
Param rx_chan [in] RMT channel handle, created from rmt_new_rx_channel()
Param edata [in] Point to RMT event data. The lifecycle of this pointer memory is inside this

function, user should copy it into static memory if used outside this function.
Param user_ctx [in] User registered context, passed from

rmt_rx_register_event_callbacks()
Return Whether a high priority task has been waken up by this function

Header File
• components/hal/include/hal/rmt_types.h

Unions

union rmt_symbol_word_t
#include <rmt_types.h> The layout of RMT symbol stored inmemory, which is decided by the hardware design.

Public Members

uint16_t duration0
Duration of level0

uint16_t level0
Level of the first part

uint16_t duration1
Duration of level1

uint16_t level1
Level of the second part

struct rmt_symbol_word_t::[anonymous] [anonymous]

uint32_t val
Equivalent unsigned value for the RMT symbol

Espressif Systems 1136
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/rmt_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef soc_periph_rmt_clk_src_t rmt_clock_source_t

RMT group clock source.

Note: User should select the clock source based on the power and resolution requirement

2.6.19 SD Pull-up Requirements

Espressif hardware products are designed for multiple use cases which may require different pull states on pins. For
this reason, the pull state of particular pins on certain products will need to be adjusted to provide the pull-ups required
in the SD bus.
SD pull-up requirements apply to cases where ESP32-C6 uses the SPI or SDMMC controller to communicate with
SD cards. When an SD card is operating in SPI mode or 1-bit SD mode, the CMD and DATA (DAT0 - DAT3) lines
of the SD bus must be pulled up by 10 kOhm resistors. SD cards and SDIO devices should also have pull-ups on all
above-mentioned lines (regardless of whether these lines are connected to the host) in order to prevent them from
entering a wrong state.
This document has the following structure:

• Overview of compatibility between the default pull states on pins of Espressif's products and the states required
by the SD bus

• Solutions - ideas on how to resolve compatibility issues
• Related information - other relevant information

Overview of Compatibility

This section provides an overview of compatibility issues that might occur when using SDIO (secure digital input
output). Since the SD bus needs to be connected to pull-ups, these issues should be resolved regardless of whether
they are related to master (host) or slave (device). Each issue has links to its respective solution. A solution for a host
and device may differ.

Systems on a Chip (SoCs)

Systems in Packages (SIP)

Modules

Development Boards

Non-Espressif Hosts Please make sure that your SDIO host provides necessary pull-ups for all SD bus signals.

Solutions

No Pull-ups If you use a development board without pull-ups, you can do the following:
• If your host and slave device are on separate boards, replace one of them with a board that has pull-ups. For
the list of Espressif's development boards with pull-ups, go to Development Boards.

• Attach external pull-ups by connecting each pin which requires a pull-up to VDD via a 10 kOhm resistor.

Espressif Systems 1137
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Related Information

2.6.20 SD SPI Host Driver

Overview

The SD SPI host driver allows communication with one or more SD cards using the SPI Master driver,
which utilizes the SPI host. Each card is accessed through an SD SPI device, represented by an SD SPI
handle sdspi_dev_handle_t, which returns when the device is attached to an SPI bus by calling sd-
spi_host_init_device(). It is important to note that the SPI bus should be initialized beforehand by
spi_bus_initialize().
With the help of SPI Master Driver the SD SPI host driver based on, the SPI bus can be shared among SD cards and
other SPI devices. The SPI Master driver will handle exclusive access from different tasks.
The SD SPI driver uses software-controlled CS signal.

How to Use

Firstly, use the macro SDSPI_DEVICE_CONFIG_DEFAULT to initialize the structure sd-
spi_device_config_t, which is used to initialize an SD SPI device. This macro will also fill in the
default pin mappings, which are the same as the pin mappings of the SDMMC host driver. Modify the host and pins
of the structure to desired value. Then call sdspi_host_init_device to initialize the SD SPI device and
attach to its bus.
Then use the SDSPI_HOST_DEFAULT macro to initialize the sdmmc_host_t structure, which is used to store
the state and configurations of the upper layer (SD/SDIO/MMC driver). Modify the slot parameter of the
structure to the SD SPI device SD SPI handle just returned from sdspi_host_init_device. Call sd-
mmc_card_init with the sdmmc_host_t to probe and initialize the SD card.
Now you can use SD/SDIO/MMC driver functions to access your card!

Other Details

Only the following driver's API functions are normally used by most applications:
• sdspi_host_init()
• sdspi_host_init_device()
• sdspi_host_remove_device()
• sdspi_host_deinit()

Other functions are mostly used by the protocol level SD/SDIO/MMC driver via function pointers in the sd-
mmc_host_t structure. For more details, see SD/SDIO/MMC Driver.

Note: SD over SPI does not support speeds above SDMMC_FREQ_DEFAULT due to the limitations of the SPI
driver.

Warning: If you want to share the SPI bus among SD card and other SPI devices, there are some restrictions,
see Sharing the SPI bus among SD card and other SPI devices.

Espressif Systems 1138
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Related Docs

Sharing the SPI bus among SD card and other SPI devices The SD card has a SPI mode, which allows it to be
communicated to as a SPI device. But there are some restrictions that we need to pay attention to.

Pin loading of other devices When adding more devices onto the same bus, the overall pin loading increases. The
loading consists of AC loading (pin capacitor) and DC loading (pull-ups).

AC loading SD cards, which are designed for high-speed communications, have small pin capacitors (AC loading)
to work until 50MHz. However, the other attached devices will increase the pin's AC loading.
Heavy AC loading of a pin may prevent the pin from being toggled quickly. By using an oscilloscope, you will see
the edges of the pin become smoother and not ideal any more (the gradient of the edge is smaller). The setup timing
requirements of an SD card may be violoated when the card is connected to such bus. Even worse, the clock from
the host may not be recognized by the SD card and other SPI devices on the same bus.
This issue may be more obvious if other attached devices are not designed to work at the same frequency as the SD
card, because they may have larger pin capacitors.
To see if your pin AC loading is too heavy, you can try the following tests:
(Terminology: launch edge: at which clock edge the data start to toggle; latch edge: at which clock edge the data is
supposed to be sampled by the receiver, for SD cad, it's the rising edge.)

1. Use an oscilloscope to see the clock and compare the data line to the clock. - If you see the clock is not fast
enough (for example, the rising/falling edge is longer than 1/4 of the clock cycle), it means the clock is skewed
too much. - If you see the data line unstable before the latch edge of the clock, it means the load of the data
line is too large.
You may also observed the corresponding phenomenon (data delayed largely from launching edge of clock)
with logic analyzers. But it's not as obvious as with an oscilloscope.

2. Try to use slower clock frequency.
If the lower frequency can work while the higher frequency can't, it's an indication of the AC loading on the
pins is too large.

If the AC loading of the pins is too large, you can either use other faster devices (with lower pin load) or slow down
the clock speed.

DC loading The pull-ups required by SD cards are usually around 10 kOhm to 50 kOhm, which may be too strong
for some other SPI devices.
Check the specification of your device about its DC output current , it should be larger than 700uA, otherwise the
device output may not be read correctly.

Initialization sequence
Note: If you see any problem in the following steps, please make sure the timing is correct first. You can try to
slow down the clock speed (SDMMC_FREQ_PROBING = 400 KHz for SD card) to avoid the influence of pin AC
loading (see above section).

When using ab SD card with other SPI devices on the same SPI bus, due to the restrictions of the SD card startup
flow, the following initialization sequence should be followed: (See also storage/sd_card)

1. Initialize the SPI bus properly by spi_bus_initialize.
2. Tie the CS lines of all other devices than the SD card to high. This is to avoid conflicts to the SD card in the

following step.
You can do this by either:
1. Attach devices to the SPI bus by calling spi_bus_add_device. This function will initialize the GPIO that

is used as CS to the idle level: high.
2. Initialize GPIO on the CS pin that needs to be tied up before actually adding a new device.

Espressif Systems 1139
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/sd_card
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

3. Rely on the internal/external pull-up (not recommended) to pull-up all the CS pins when the GPIOs of
ESP are not initialized yet. You need to check carefull the pull-up is strong enough and there are no other
pull-downs that will influence the pull-up (For example, internal pull-down should be enabled).

3. Mount the card to the filesystem by calling esp_vfs_fat_sdspi_mount.
This step will put the SD card into the SPImode, which SHOULD be done before all other SPI communications
on the same bus. Otherwise the card will stay in the SD mode, in which mode it may randomly respond to any
SPI communications on the bus, even when its CS line is not addressed.
If you want to test this behavior, please also note that, once the card is put into SPI mode, it will not return to
SD mode before next power cycle, i.e. powered down and powered up again.

4. Now you can talk to other SPI devices freely!

API Reference

Header File
• components/driver/spi/include/driver/sdspi_host.h

Functions
esp_err_t sdspi_host_init(void)

Initialize SD SPI driver.

Note: This function is not thread safe

Returns
• ESP_OK on success
• other error codes may be returned in future versions

esp_err_t sdspi_host_init_device(const sdspi_device_config_t *dev_config, sdspi_dev_handle_t
*out_handle)

Attach and initialize an SD SPI device on the specific SPI bus.

Note: This function is not thread safe

Note: Initialize the SPI bus by spi_bus_initialize() before calling this function.

Note: The SDIO over sdspi needs an extra interrupt line. Call gpio_install_isr_service() before
this function.

Parameters
• dev_config -- pointer to device configuration structure
• out_handle -- Output of the handle to the sdspi device.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if sdspi_host_init_device has invalid arguments
• ESP_ERR_NO_MEM if memory can not be allocated
• other errors from the underlying spi_master and gpio drivers

esp_err_t sdspi_host_remove_device(sdspi_dev_handle_t handle)
Remove an SD SPI device.

Parameters handle -- Handle of the SD SPI device

Espressif Systems 1140
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/spi/include/driver/sdspi_host.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns Always ESP_OK
esp_err_t sdspi_host_do_transaction(sdspi_dev_handle_t handle, sdmmc_command_t *cmdinfo)

Send command to the card and get response.
This function returns when command is sent and response is received, or data is transferred, or timeout occurs.

Note: This function is not thread safe w.r.t. init/deinit functions, and bus width/clock speed configuration
functions. Multiple tasks can call sdspi_host_do_transaction as long as other sdspi_host_* functions are not
called.

Parameters
• handle -- Handle of the sdspi device
• cmdinfo -- pointer to structure describing command and data to transfer

Returns
• ESP_OK on success
• ESP_ERR_TIMEOUT if response or data transfer has timed out
• ESP_ERR_INVALID_CRC if response or data transfer CRC check has failed
• ESP_ERR_INVALID_RESPONSE if the card has sent an invalid response

esp_err_t sdspi_host_set_card_clk(sdspi_dev_handle_t host, uint32_t freq_khz)
Set card clock frequency.
Currently only integer fractions of 40MHz clock can be used. For High Speed cards, 40MHz can be used. For
Default Speed cards, 20MHz can be used.

Note: This function is not thread safe

Parameters
• host -- Handle of the sdspi device
• freq_khz -- card clock frequency, in kHz

Returns
• ESP_OK on success
• other error codes may be returned in the future

esp_err_t sdspi_host_get_real_freq(sdspi_dev_handle_t handle, int *real_freq_khz)
Calculate working frequency for specific device.

Parameters
• handle -- SDSPI device handle
• real_freq_khz -- [out] output parameter to hold the calculated frequency (in kHz)

Returns
• ESP_ERR_INVALID_ARG : handle is NULL or invalid or real_freq_khz pa-
rameter is NULL

• ESP_OK : Success
esp_err_t sdspi_host_deinit(void)

Release resources allocated using sdspi_host_init.

Note: This function is not thread safe

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if sdspi_host_init function has not been called

Espressif Systems 1141
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t sdspi_host_io_int_enable(sdspi_dev_handle_t handle)
Enable SDIO interrupt.

Parameters handle -- Handle of the sdspi device
Returns

• ESP_OK on success
esp_err_t sdspi_host_io_int_wait(sdspi_dev_handle_t handle, TickType_t timeout_ticks)

Wait for SDIO interrupt until timeout.
Parameters

• handle -- Handle of the sdspi device
• timeout_ticks -- Ticks to wait before timeout.

Returns
• ESP_OK on success

Structures

struct sdspi_device_config_t
Extra configuration for SD SPI device.

Public Members

spi_host_device_t host_id

SPI host to use, SPIx_HOST (see spi_types.h).

gpio_num_t gpio_cs

GPIO number of CS signal.

gpio_num_t gpio_cd

GPIO number of card detect signal.

gpio_num_t gpio_wp

GPIO number of write protect signal.

gpio_num_t gpio_int

GPIO number of interrupt line (input) for SDIO card.

Macros

SDSPI_DEFAULT_HOST

SDSPI_DEFAULT_DMA

SDSPI_HOST_DEFAULT()

Default sdmmc_host_t structure initializer for SD over SPI driver.
Uses SPI mode and max frequency set to 20MHz
'slot' should be set to an sdspi device initialized by sdspi_host_init_device().

SDSPI_SLOT_NO_CS

indicates that card select line is not used

Espressif Systems 1142
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SDSPI_SLOT_NO_CD

indicates that card detect line is not used

SDSPI_SLOT_NO_WP

indicates that write protect line is not used

SDSPI_SLOT_NO_INT

indicates that interrupt line is not used
SDSPI_DEVICE_CONFIG_DEFAULT()

Macro defining default configuration of SD SPI device.

Type Definitions

typedef int sdspi_dev_handle_t
Handle representing an SD SPI device.

2.6.21 SDIO Card Slave Driver

Overview

The SDIO slave can run under three modes: SPI, 1-bit SD, and 4-bit SD modes. Based on the signals on the inter-
face, the device can determine the current mode and configure itself to adapt to that mode. Later, the slave driver
can communicate with the slave device to properly handle commands and data transfers. According to the SDIO
specification, the CMD and DAT0-3 signal lines should be pulled up whether in 1-bit SD, 4-bit SD or SPI mode.

Connections

Pin Name Corresponding Pins in SPI Mode GPIO Number
CLK SCLK 19
CMD MOSI 18
DAT0 MISO 20
DAT1 Interrupt 21
DAT2 N.C. (pullup) 22
DAT3 #CS 23

• 1-bit SD mode: Connect CLK, CMD, DAT0, DAT1 pins, and the ground.
• 4-bit SD mode: Connect all pins, and the ground.
• SPI mode: Connect SCLK, MOSI, MISO, Interrupt, #CS pins, and the ground.

Note: Please check if CMD and DATA lines DAT0-DAT3 of the card are properly pulled up by 10 KOhm - 90
KOhm resistors, which should be ensured even in 1-bit mode or SPI mode. Most official modules do not offer these
pullups internally. If you are using official development boards, check Overview of Compatibility to see whether your
development boards have such pullups.

Refer to SD Pull-up Requirements for more technical details of the pullups.
The host initializes the slave into SD mode by sending the CMD0 command with the DAT3 pin set to a high level.
Alternatively, the host initializes the SPI mode by sending CMD0 with CS pin low, which is the same pin as DAT3.
After the initialization, the host can enable the 4-bit SD mode by writing CCCR register 0x07 by CMD52. All the
bus detection processes are handled by the slave peripheral.

Espressif Systems 1143
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The host has to communicate with the slave by an ESP-slave-specific protocol.
The slave driver offers three services over Function 1 access by CMD52 and CMD53:
(1) sending and receiving FIFO
(2) 52 R/W registers (8-bit) shared by host and slave
(3) 16 interrupt sources (8 from host to slave, and 8 from slave to host)

Terminology The SDIO slave driver uses the following terms:
• A transfer is initiated by a command token from the host and may consist of a response and multiple data
blocks. The core mechanism of the ESP32-C6 SDIO slave driver involves data exchange and communication
through transfers.

• Sending: slave to host transfers.
• Receiving: host to slave transfers.

Note: The register names in ESP32-C6 Technical Reference Manual > SDIO Slave Controller [PDF] are
organized from the host's perspective. For instance, RX registers indicate sending, whileTX registers denote receiving.
In our driver implementation, we've chosen not to utilize the terms TX or RX to prevent any potential ambiguities.

• FIFO: A designated address within Function 1 that can be accessed using CMD53 commands for reading or
writing substantial volumes of data. The address corresponds to the length intended for reading from or writing
to the slave in a single transfer: requested length = 0x1F800 –address.

• Ownership: When the driver assumes ownership of a buffer, it means that the driver has the capability to
perform random read/write operations on the buffer (often via DMA). The application should not read/write
the buffer until the ownership is returned to the application. If the application reads from a buffer owned by a
receiving driver, the data read can be random; similarly, if the application writes to a buffer owned by a sending
driver, the data sent may be corrupted.

• Requested length: The length requested in one transfer determined by the FIFO address.
• Transfer length: The length requested in one transfer determined by the CMD53 byte/block count field.

Note: Requested length is different from the transfer length. In the context of ESP32-C6 SDIO slave DMA, the
operation is based on the requested length rather than the transfer length. This means the DMA controller will
process the data transfer according to the requested length, ensuring that only data within the requested length is
transferred. The transfer length should be no shorter than the requested length, and the rest part is filled with 0
during sending or discard during receiving.

• Receiving buffer size: The buffer size is pre-defined between the host and the slave before communication starts.
The slave application has to set the buffer size during initialization by the recv_buffer_size parameter
in the sdio_slave_config_t structure.

• Interrupts: The ESP32-C6 SDIO slave supports interrupts in two directions: from host to slave (referred to as
slave interrupts) and from slave to host (referred to as host interrupts). For more details, refer to Interrupts.

• Registers: Specific addresses in Function 1 accessed by CMD52 or CMD53.

Communication with ESP SDIO Slave The host should initialize the ESP32-C6 SDIO slave according to the
standard SDIO initialization process (Sector 3.1.2 of SDIO Simplified Specification), which is described briefly in
ESP SDIO Slave Initialization.
Furthermore, there is an ESP32-C6-specific upper-level communication protocol built upon the foundation of
CMD52/CMD53 to Function 1. Within this particular communication protocol, the master and slave engage in
data exchange and communication through the utilization of CMD52/CMD53 commands. For more detailed infor-
mation, please consult the ESP SDIO Slave Protocol section.
There is also a component ESP Serial Slave Link designed for ESP32-C6 master to communicate with ESP32-C6
SDIO slave. See example peripherals/sdio when programming your host.

Interrupts There are interrupts from host to slave, and from slave to host to help communicating conveniently.

Espressif Systems 1144
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#sdioslave
https://www.sdcard.org/downloads/pls/pdf/?p=PartE1_SDIO_Simplified_Specification_Ver3.00.jpg&f=PartE1_SDIO_Simplified_Specification_Ver3.00.pdf&e=EN_SSE1
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/sdio
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Slave Interrupts The host can trigger an interruption in the slave by writing a single bit to the 0x08D register. As
soon as any bit within the register is set, an interrupt is generated, prompting the SDIO slave driver to invoke the
callback function specified in the slave_intr_cb member of the sdio_slave_config_t structure.

Note: The callback function is called in the ISR. Do not use any delay, loop or blocking function in the callback,
e.g. mutex.

Similar to the previous information, there's an alternative set of functions available. You can call
sdio_slave_wait_int to wait for an interrupt within a certain time, or call sdio_slave_clear_int
to clear interrupts from host. The callback function can work with the wait functions perfectly.

Host Interrupts The slave can interrupt the host by an interrupt line at certain time, which is level-sensitive, i.e.,
the interrupt signal can be triggered by detecting the level change of the interrupt line. When the host see the interrupt
line pulled down, it may read the slave interrupt status register, to see the interrupt source. Host can clear interrupt
bits, or choose to disable a interrupt source. The interrupt line holds active until all the sources are cleared or disabled.
There are several dedicated interrupt sources as well as general-purpose sources. see sdio_slave_hostint_t
for more information.

Shared Registers There are 52 R/W shared registers (8-bit) to share information between host and slave. The
slave can write or read the registers at any time by sdio_slave_read_reg and sdio_slave_write_reg.
The host can access (R/W) the register by CMD52 or CMD53.

Receiving FIFO When the host is going to send the slave some packets, it has to check whether the slave is ready
to receive by reading the buffer number of slave.
To allow the host sending data to the slave, the application has to load buffers to the slave driver by the following
steps:

1. Register the buffer by calling sdio_slave_recv_register_buf, and get the handle of the registered
buffer. The driver allocates memory for the linked-list descriptor needed to link the buffer onto the hardware.
The size of these buffers should equal to the Receiving buffer size.

2. Load buffers onto the driver by passing the buffer handle to sdio_slave_recv_load_buf.
3. Get the received data by callingsdio_slave_recv orsdio_slave_recv_packet. If a non-blocking

call is needed, set wait=0.
The difference between two APIs is that, sdio_slave_recv_packet gives more information about
packet, which can consist of several buffers.
WhenESP_ERR_NOT_FINISHED is returned by this API, you should call this API iteratively until the return
value is ESP_OK. All the continuous buffers returned with ESP_ERR_NOT_FINISHED, together with the
last buffer returned with ESP_OK, belong to one packet from the host.
Call sdio_slave_recv_get_buf to get the address of the received data, and the actual length received
in each buffer. The packet length is the sum of received length of all the buffers in the packet.
If the host never send data longer than the Receiving buffer size, or you do not care about the packet boundary
(e.g., the data is only a byte stream), you can call the simpler version sdio_slave_recv instead.

4. Pass the handle of processed buffer back to the driver by sdio_recv_load_buf again.

Note: To minimize data copying overhead, the driver itself does not maintain any internal buffer; it is the responsi-
bility of the application to promptly provide new buffers. The DMA system automatically stores received data into
these buffers.

Sending FIFO Each time the slave has data to send, it raises an interrupt, and the host requests the packet length.
There are two sending modes:

• Stream Mode: When a buffer is loaded into the driver, the buffer length is included into the packet length
requested by host in the incoming communications. This is irrespective of whether previous packets have been

Espressif Systems 1145
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

sent or not. In other words, the length of the newly loaded buffer is included into the length of the packet
requested by the host, even if there are previously unsent packets. This enables the host to receive data from
several buffers in a single transfer.

• Packet Mode: The packet length is updated packet by packet, and only when previous packet is sent. This
means that the host can only get data of one buffer in one transfer.

Note: To avoid overhead from copying data, the driver itself does not have any buffer inside. Namely, the DMA
takes data directly from the buffer provided by the application. The application should not touch the buffer until the
sending is finished, so as to ensure that the data is transferred correctly.

The sending mode can be set in the sending_modemember of sdio_slave_config_t, and the buffer num-
bers can be set in the send_queue_size. All the buffers are restricted to be no larger than 4092 bytes. Though
in the stream mode, several buffers can be sent in one transfer, each buffer is still counted as one in the queue.
The application can call sdio_slave_transmit to send packets. In this case, the function returns when the
transfer is successfully done, so the queue is not fully used. When higher efficiency is required, the application can
use the following functions instead:

1. Pass buffer information (address, length, as well as an arg indicating the buffer) to
sdio_slave_send_queue.

• If non-blocking call is needed, set wait=0.
• If the wait is not portMAX_DELAY (wait until success), application has to check the result to know
whether the data is put in to the queue or discard.

2. Call sdio_slave_send_get_finished to get and deal with a finished transfer. A buffer should be kept
unmodified until returned from sdio_slave_send_get_finished. This means the buffer is actually
sent to the host, rather than just staying in the queue.

There are several ways to use the arg in the queue parameter:
1. Directly point arg to a dynamic-allocated buffer, and use the arg to free it when transfer finished.
2. Wrap transfer informations in a transfer structure, and point arg to the structure. You can use the structure

to do more things like:

typedef struct {
uint8_t* buffer;
size_t size;
int id;

}sdio_transfer_t;

//and send as:
sdio_transfer_t trans = {

.buffer = ADDRESS_TO_SEND,

.size = 8,

.id = 3, //the 3rd transfer so far
};
sdio_slave_send_queue(trans.buffer, trans.size, &trans, portMAX_DELAY);

//... maybe more transfers are sent here

//and deal with finished transfer as:
sdio_transfer_t* arg = NULL;
sdio_slave_send_get_finished((void**)&arg, portMAX_DELAY);
ESP_LOGI("tag", "(%d) successfully send %d bytes of %p", arg->id, arg->size,␣
↪→arg->buffer);
some_post_callback(arg); //do more things

3. Work with the receiving part of this driver, and point arg to the receive buffer handle of this buffer, so that
we can directly use the buffer to receive data when it is sent:

uint8_t buffer[256]={1,2,3,4,5,6,7,8};
sdio_slave_buf_handle_t handle = sdio_slave_recv_register_buf(buffer);

(continues on next page)

Espressif Systems 1146
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
sdio_slave_send_queue(buffer, 8, handle, portMAX_DELAY);

//... maybe more transfers are sent here

//and load finished buffer to receive as
sdio_slave_buf_handle_t handle = NULL;
sdio_slave_send_get_finished((void**)&handle, portMAX_DELAY);
sdio_slave_recv_load_buf(handle);

For more about this, see peripherals/sdio.

Application Example

Slave/master communication: peripherals/sdio.

API Reference

Header File
• components/hal/include/hal/sdio_slave_types.h

Enumerations

enum sdio_slave_hostint_t

Mask of interrupts sending to the host.
Values:

enumerator SDIO_SLAVE_HOSTINT_BIT0
General purpose interrupt bit 0.

enumerator SDIO_SLAVE_HOSTINT_BIT1

enumerator SDIO_SLAVE_HOSTINT_BIT2

enumerator SDIO_SLAVE_HOSTINT_BIT3

enumerator SDIO_SLAVE_HOSTINT_BIT4

enumerator SDIO_SLAVE_HOSTINT_BIT5

enumerator SDIO_SLAVE_HOSTINT_BIT6

enumerator SDIO_SLAVE_HOSTINT_BIT7

enumerator SDIO_SLAVE_HOSTINT_SEND_NEW_PACKET
New packet available.

enum sdio_slave_timing_t

Timing of SDIO slave.
Values:

Espressif Systems 1147
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/sdio
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/sdio
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/sdio_slave_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator SDIO_SLAVE_TIMING_PSEND_PSAMPLE
Send at posedge, and sample at posedge. Default value for HS mode. If
:c:macro:SDIO_SLAVE_FLAG_HIGH_SPEED is specified in :cpp:class:sdio_slave_config_t,
this should be selected. Normally there's no problem using this to work in DS mode.

enumerator SDIO_SLAVE_TIMING_NSEND_PSAMPLE
Send at negedge, and sample at posedge. Default value for DS mode and
below. If :c:macro:SDIO_SLAVE_FLAG_DEFAULT_SPEED is specified in
:cpp:class:sdio_slave_config_t, this should be selected.

enumerator SDIO_SLAVE_TIMING_PSEND_NSAMPLE
Send at posedge, and sample at negedge.

enumerator SDIO_SLAVE_TIMING_NSEND_NSAMPLE
Send at negedge, and sample at negedge.

enum sdio_slave_sending_mode_t

Configuration of SDIO slave mode.
Values:

enumerator SDIO_SLAVE_SEND_STREAM
Stream mode, all packets to send will be combined as one if possible.

enumerator SDIO_SLAVE_SEND_PACKET
Packet mode, one packets will be sent one after another (only increase packet_len if last packet sent).

Header File
• components/driver/sdio_slave/include/driver/sdio_slave.h

Functions
esp_err_t sdio_slave_initialize(sdio_slave_config_t *config)

Initialize the sdio slave driver
Parameters config -- Configuration of the sdio slave driver.
Returns

• ESP_ERR_NOT_FOUND if no free interrupt found.
• ESP_ERR_INVALID_STATE if already initialized.
• ESP_ERR_NO_MEM if fail due to memory allocation failed.
• ESP_OK if success

void sdio_slave_deinit(void)
De-initialize the sdio slave driver to release the resources.

esp_err_t sdio_slave_start(void)
Start hardware for sending and receiving, as well as set the IOREADY1 to 1.

Note: The driver will continue sending from previous data and PKT_LEN counting, keep data received as
well as start receiving from current TOKEN1 counting. See sdio_slave_reset.

Returns
• ESP_ERR_INVALID_STATE if already started.

Espressif Systems 1148
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/sdio_slave/include/driver/sdio_slave.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK otherwise.

void sdio_slave_stop(void)
Stop hardware from sending and receiving, also set IOREADY1 to 0.

Note: this will not clear the data already in the driver, and also not reset the PKT_LEN and TOKEN1
counting. Call sdio_slave_reset to do that.

esp_err_t sdio_slave_reset(void)
Clear the data still in the driver, as well as reset the PKT_LEN and TOKEN1 counting.

Returns always return ESP_OK.
sdio_slave_buf_handle_t sdio_slave_recv_register_buf(uint8_t *start)

Register buffer used for receiving. All buffers should be registered before used, and then can be used (again)
in the driver by the handle returned.

Note: The driver will use and only use the amount of space specified in the recv_buffer_sizemember
set in the sdio_slave_config_t. All buffers should be larger than that. The buffer is used by the DMA,
so it should be DMA capable and 32-bit aligned.

Parameters start -- The start address of the buffer.
Returns The buffer handle if success, otherwise NULL.

esp_err_t sdio_slave_recv_unregister_buf(sdio_slave_buf_handle_t handle)
Unregister buffer from driver, and free the space used by the descriptor pointing to the buffer.

Parameters handle -- Handle to the buffer to release.
Returns ESP_OK if success, ESP_ERR_INVALID_ARG if the handle is NULL or the buffer is

being used.
esp_err_t sdio_slave_recv_load_buf(sdio_slave_buf_handle_t handle)

Load buffer to the queue waiting to receive data. The driver takes ownership of the buffer until the buffer is
returned by sdio_slave_send_get_finished after the transaction is finished.

Parameters handle -- Handle to the buffer ready to receive data.
Returns

• ESP_ERR_INVALID_ARG if invalid handle or the buffer is already in the queue. Only
after the buffer is returened by sdio_slave_recv can you load it again.

• ESP_OK if success
esp_err_t sdio_slave_recv_packet(sdio_slave_buf_handle_t *handle_ret, TickType_t wait)

Get buffer of received data if exist with packet information. The driver returns the ownership of the buffer to
the app.
When you see return value is ESP_ERR_NOT_FINISHED, you should call this API iteratively until the return
value is ESP_OK. All the continuous buffers returned with ESP_ERR_NOT_FINISHED, together with the
last buffer returned with ESP_OK, belong to one packet from the host.
You can call simpler sdio_slave_recv instead, if the host never send data longer than the Receiving
buffer size, or you don't care about the packet boundary (e.g. the data is only a byte stream).

Note: Call sdio_slave_load_buf with the handle to re-load the buffer onto the link list, and re-
ceive with the same buffer again. The address and length of the buffer got here is the same as got from
sdio_slave_get_buffer.

Parameters

Espressif Systems 1149
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• handle_ret -- Handle of the buffer holding received data. Use this handle in
sdio_slave_recv_load_buf() to receive in the same buffer again.

• wait -- Time to wait before data received.
Returns

• ESP_ERR_INVALID_ARG if handle_ret is NULL
• ESP_ERR_TIMEOUT if timeout before receiving new data
• ESP_ERR_NOT_FINISHED if returned buffer is not the end of a packet from the host,
should call this API again until the end of a packet

• ESP_OK if success

esp_err_t sdio_slave_recv(sdio_slave_buf_handle_t *handle_ret, uint8_t **out_addr, size_t *out_len,
TickType_t wait)

Get received data if exist. The driver returns the ownership of the buffer to the app.

Note: Call sdio_slave_load_buf with the handle to re-load the buffer onto the link list, and re-
ceive with the same buffer again. The address and length of the buffer got here is the same as got from
sdio_slave_get_buffer.

Parameters
• handle_ret -- Handle to the buffer holding received data. Use this handle in
sdio_slave_recv_load_buf to receive in the same buffer again.

• out_addr -- [out] Output of the start address, set to NULL if not needed.
• out_len -- [out] Actual length of the data in the buffer, set to NULL if not needed.
• wait -- Time to wait before data received.

Returns
• ESP_ERR_INVALID_ARG if handle_ret is NULL
• ESP_ERR_TIMEOUT if timeout before receiving new data
• ESP_OK if success

uint8_t *sdio_slave_recv_get_buf(sdio_slave_buf_handle_t handle, size_t *len_o)
Retrieve the buffer corresponding to a handle.

Parameters
• handle -- Handle to get the buffer.
• len_o -- Output of buffer length

Returns buffer address if success, otherwise NULL.
esp_err_t sdio_slave_send_queue(uint8_t *addr, size_t len, void *arg, TickType_t wait)

Put a new sending transfer into the send queue. The driver takes ownership of the buffer until the buffer is
returned by sdio_slave_send_get_finished after the transaction is finished.

Parameters
• addr -- Address for data to be sent. The buffer should be DMA capable and 32-bit
aligned.

• len -- Length of the data, should not be longer than 4092 bytes (may support longer in
the future).

• arg -- Argument to returned in sdio_slave_send_get_finished. The argu-
ment can be used to indicate which transaction is done, or as a parameter for a callback.
Set to NULL if not needed.

• wait -- Time to wait if the buffer is full.
Returns

• ESP_ERR_INVALID_ARG if the length is not greater than 0.
• ESP_ERR_TIMEOUT if the queue is still full until timeout.
• ESP_OK if success.

esp_err_t sdio_slave_send_get_finished(void **out_arg, TickType_t wait)
Return the ownership of a finished transaction.

Espressif Systems 1150
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• out_arg -- Argument of the finished transaction. Set to NULL if unused.
• wait -- Time to wait if there's no finished sending transaction.

Returns ESP_ERR_TIMEOUT if no transaction finished, or ESP_OK if succeed.
esp_err_t sdio_slave_transmit(uint8_t *addr, size_t len)

Start a new sending transfer, and wait for it (blocked) to be finished.
Parameters

• addr -- Start address of the buffer to send
• len -- Length of buffer to send.

Returns
• ESP_ERR_INVALID_ARG if the length of descriptor is not greater than 0.
• ESP_ERR_TIMEOUT if the queue is full or host do not start a transfer before timeout.
• ESP_OK if success.

uint8_t sdio_slave_read_reg(int pos)
Read the spi slave register shared with host.

Note: register 28 to 31 are reserved for interrupt vector.

Parameters pos -- register address, 0-27 or 32-63.
Returns value of the register.

esp_err_t sdio_slave_write_reg(int pos, uint8_t reg)
Write the spi slave register shared with host.

Note: register 29 and 31 are used for interrupt vector.

Parameters
• pos -- register address, 0-11, 14-15, 18-19, 24-27 and 32-63, other address are reserved.
• reg -- the value to write.

Returns ESP_ERR_INVALID_ARG if address wrong, otherwise ESP_OK.

sdio_slave_hostint_t sdio_slave_get_host_intena(void)
Get the interrupt enable for host.

Returns the interrupt mask.
void sdio_slave_set_host_intena(sdio_slave_hostint_t mask)

Set the interrupt enable for host.
Parameters mask -- Enable mask for host interrupt.

esp_err_t sdio_slave_send_host_int(uint8_t pos)
Interrupt the host by general purpose interrupt.

Parameters pos -- Interrupt num, 0-7.
Returns

• ESP_ERR_INVALID_ARG if interrupt num error
• ESP_OK otherwise

void sdio_slave_clear_host_int(sdio_slave_hostint_t mask)
Clear general purpose interrupt to host.

Parameters mask -- Interrupt bits to clear, by bit mask.

Espressif Systems 1151
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t sdio_slave_wait_int(int pos, TickType_t wait)
Wait for general purpose interrupt from host.

Note: this clears the interrupt at the same time.

Parameters
• pos -- Interrupt source number to wait for. is set.
• wait -- Time to wait before interrupt triggered.

Returns ESP_OK if success, ESP_ERR_TIMEOUT if timeout.

Structures

struct sdio_slave_config_t
Configuration of SDIO slave.

Public Members

sdio_slave_timing_t timing

timing of sdio_slave. see sdio_slave_timing_t.

sdio_slave_sending_mode_t sending_mode

mode of sdio_slave. SDIO_SLAVE_MODE_STREAM if the data needs to be sent as much as possible;
SDIO_SLAVE_MODE_PACKET if the data should be sent in packets.

int send_queue_size
max buffers that can be queued before sending.

size_t recv_buffer_size
If buffer_size is too small, it costs more CPU time to handle larger number of buffers. If buffer_size is
too large, the space larger than the transaction length is left blank but still counts a buffer, and the buffers
are easily run out. Should be set according to length of data really transferred. All data that do not fully
fill a buffer is still counted as one buffer. E.g. 10 bytes data costs 2 buffers if the size is 8 bytes per
buffer. Buffer size of the slave pre-defined between host and slave before communication. All receive
buffer given to the driver should be larger than this.

sdio_event_cb_t event_cb

when the host interrupts slave, this callback will be called with interrupt number (0-7).

uint32_t flags
Features to be enabled for the slave, combinations of SDIO_SLAVE_FLAG_*.

Macros

SDIO_SLAVE_RECV_MAX_BUFFER

SDIO_SLAVE_FLAG_DAT2_DISABLED

It is required by the SD specification that all 4 data lines should be used and pulled up even in 1-bit mode or
SPI mode. However, as a feature, the user can specify this flag to make use of DAT2 pin in 1-bit mode. Note
that the host cannot read CCCR registers to know we don't support 4-bit mode anymore, please do this at your
own risk.

Espressif Systems 1152
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SDIO_SLAVE_FLAG_HOST_INTR_DISABLED

The DAT1 line is used as the interrupt line in SDIO protocol. However, as a feature, the user can specify this
flag to make use of DAT1 pin of the slave in 1-bit mode. Note that the host has to do polling to the interrupt
registers to know whether there are interrupts from the slave. And it cannot read CCCR registers to know we
don't support 4-bit mode anymore, please do this at your own risk.

SDIO_SLAVE_FLAG_INTERNAL_PULLUP

Enable internal pullups for enabled pins. It is required by the SD specification that all the 4 data lines should
be pulled up even in 1-bit mode or SPI mode. Note that the internal pull-ups are not sufficient for stable
communication, please do connect external pull-ups on the bus. This is only for example and debug use.

SDIO_SLAVE_FLAG_DEFAULT_SPEED

Disable the highspeed support of the hardware.

SDIO_SLAVE_FLAG_HIGH_SPEED

Enable the highspeed support of the hardware. This is the default option. The host will see highspeed capability,
but the mode actually used is determined by the host.

Type Definitions

typedef void (*sdio_event_cb_t)(uint8_t event)

typedef void *sdio_slave_buf_handle_t
Handle of a receive buffer, register a handle by calling sdio_slave_recv_register_buf. Use the
handle to load the buffer to the driver, or call sdio_slave_recv_unregister_buf if it is no longer
used.

2.6.22 Sigma-Delta Modulation (SDM)

Introduction

ESP32-C6 has a second-order sigma-delta modulator, which can generate independent PDM pulses to multiple chan-
nels. Please refer to the TRM to check how many hardware channels are available.1

Delta-sigma modulation converts an analog voltage signal into a pulse frequency, or pulse density, which can be
understood as pulse-density modulation (PDM) (refer to Delta-sigma modulation on Wikipedia).
The main differences comparing to the PDM in I2S peripheral and DAC are:

1. SDM has no clock signal, it just like the DAC mode of PDM;
2. SDM has no DMA, and it can't change its output density continuously. If you have to, you can update the

density in a timer's callback;
3. Base on the former two points, an external active or passive filter is required to restore the analog wave (See

Convert to analog signal (Optional));
Typically, a Sigma-Delta modulated channel can be used in scenarios like:

• LED dimming
• Simple DAC (8-bit), with the help of an active RC low-pass filter
• Class D amplifier, with the help of a half-bridge or full-bridge circuit plus an LC low-pass filter

1 Different ESP chip series might have different numbers of SDM channels. Please refer to Chapter GPIO and IOMUX in ESP32-C6 Technical
ReferenceManual for more details. The driver won't forbid you from applying for more channels, but it will return error when all available hardware
resources are used up. Please always check the return value when doing resource allocation (e.g. sdm_new_channel()).

Espressif Systems 1153
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://en.wikipedia.org/wiki/Delta-sigma_modulation
https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#iomuxgpio
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functional Overview

The following sections of this document cover the typical steps to install and operate a SDM channel:
• Resource Allocation - covers which parameters should be set up to get a channel handle and how to recycle the
resources when it finishes working.

• Enable and Disable Channel - covers how to enable and disable the channel.
• Set Equivalent Duty Cycle - describes how to set the equivalent duty cycle of the PDM pulses.
• Power Management - describes how different source clock selections can affect power consumption.
• IRAM Safe - lists which functions are supposed to work even when the cache is disabled.
• Thread Safety - lists which APIs are guaranteed to be thread safe by the driver.
• Kconfig Options - lists the supported Kconfig options that can be used to make a different effect on driver
behavior.

Resource Allocation A SDM channel is represented by sdm_channel_handle_t. Each channel is capable
to output the binary, hardware generated signal with the sigma-delta modulation. The driver manages all available
channels in a pool, so that users don't need to manually assign a fixed channel to a GPIO.
To install a SDM channel, you should call sdm_new_channel() to get a channel handle. Channel specific con-
figurations are passed in the sdm_config_t structure:

• sdm_config_t::gpio_num sets the GPIO that the PDM pulses will output from
• sdm_config_t::clk_src selects the source clock for the SDM module. Note that, all channels should
select the same clock source.

• sdm_config_t::sample_rate_hz sets the sample rate of the SDM module.
• sdm_config_t::invert_out sets whether to invert the output signal.
• sdm_config_t::io_loop_back is for debugging purposes only. It enables both the GPIO's input and
output ability through the GPIO matrix peripheral.

The function sdm_new_channel() can fail due to various errors such as insufficient memory, invalid arguments,
etc. Specifically, when there are no more free channels (i.e. all hardware SDM channels have been used up), then
ESP_ERR_NOT_FOUND will be returned.
If a previously created SDM channel is no longer required, you should recycle it by calling sdm_del_channel().
It allows the underlying HW channel to be used for other purposes. Before deleting a SDM channel han-
dle, you should disable it by sdm_channel_disable() in advance or make sure it has not enabled yet by
sdm_channel_enable().

Creating a SDM Channel with Sample Rate of 1MHz
sdm_channel_handle_t chan = NULL;
sdm_config_t config = {

.clk_src = SDM_CLK_SRC_DEFAULT,

.sample_rate_hz = 1 * 1000 * 1000,

.gpio_num = 0,
};

ESP_ERROR_CHECK(sdm_new_channel(&config, &chan));

Enable and Disable Channel Before doing further IO control to the SDM channel, you should enable it first, by
calling sdm_channel_enable(). Internally, this function will:

• switch the channel state from init to enable
• acquire a proper power management lock is a specific clock source (e.g. APB clock) is selected. See also

Power management for more information.
On the contrary, calling sdm_channel_disable() will do the opposite, that is, put the channel back to the init
state and release the power management lock.

Espressif Systems 1154
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Set Pulse Density For the output PDM signals, the pulse density decides the output analog voltage that re-
stored by a low-pass filter. The restored analog voltage from the channel is calculated by Vout = VDD_IO
/ 256 * duty + VDD_IO / 2. The range of the quantized density input parameter of
sdm_channel_set_pulse_density() is from -128 to 127 (eight-bit signed integer). For example, if a
zero value is set, then the output signal's duty will be around 50%.

Power Management When power management is enabled (i.e. CONFIG_PM_ENABLE is on), the system will
adjust the APB frequency before going into light sleep, thus potentially changing the sample rate of the sigma-delta
modulator.
However, the driver can prevent the system from changing APB frequency by acquiring a power management
lock of type ESP_PM_APB_FREQ_MAX. Whenever the driver creates a SDM channel instance that has se-
lected SDM_CLK_SRC_APB as its clock source, the driver will guarantee that the power management lock is
acquired when enable the channel by sdm_channel_enable(). Likewise, the driver releases the lock when
sdm_channel_disable() is called for that channel.

IRAM Safe There's a Kconfig option CONFIG_SDM_CTRL_FUNC_IN_IRAM that can put commonly used IO
control functions into IRAM as well. So that these functions can also be executable when the cache is disabled.
These IO control functions are listed as follows:

• sdm_channel_set_pulse_density()

Thread Safety The factory function sdm_new_channel() is guaranteed to be thread safe by the driver, which
means, user can call it from different RTOS tasks without protection by extra locks. The following functions are
allowed to run under ISR context, the driver uses a critical section to prevent them being called concurrently in both
task and ISR.

• sdm_channel_set_pulse_density()

Other functions that take the sdm_channel_handle_t as the first positional parameter, are not treated as thread
safe. Which means the user should avoid calling them from multiple tasks.

Kconfig Options
• CONFIG_SDM_CTRL_FUNC_IN_IRAM controls where to place the SDM channel control functions (IRAM
or Flash), see IRAM Safe for more information.

• CONFIG_SDM_ENABLE_DEBUG_LOG is used to enabled the debug log output. Enable this option will in-
crease the firmware binary size.

Convert to analog signal (Optional)

Typically, if the sigma-delta signal is connected to an LED, you don't have to add any filter between them (because
our eyes are a low pass filter naturally). However, if you want to check the real voltage or watch the analog waveform,
you need to design an analog low pass filter. Also, it is recommended to use an active filter instead of a passive filter
to gain better isolation and not lose too much voltage.
For example, you can take the following Sallen-Key topology Low Pass Filter as a reference.

Application Example

• 100 Hz sine wave that is modulated with Sigma-Delta: peripherals/sigma_delta/sdm_dac.
• LED driven by a GPIO that is modulated with Sigma-Delta: peripherals/sigma_delta/sdm_led.

Espressif Systems 1155
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://en.wikipedia.org/wiki/Sallen%E2%80%93Key_topology
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/sigma_delta/sdm_dac
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/sigma_delta/sdm_led
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 20: Sallen-Key Low Pass Filter

API Reference

Header File
• components/driver/sigma_delta/include/driver/sdm.h

Functions
esp_err_t sdm_new_channel(const sdm_config_t *config, sdm_channel_handle_t *ret_chan)

Create a new Sigma Delta channel.
Parameters

• config -- [in] SDM configuration
• ret_chan -- [out] Returned SDM channel handle

Returns
• ESP_OK: Create SDM channel successfully
• ESP_ERR_INVALID_ARG: Create SDM channel failed because of invalid argument
• ESP_ERR_NO_MEM: Create SDM channel failed because out of memory
• ESP_ERR_NOT_FOUND: Create SDM channel failed because all channels are used up
and no more free one

• ESP_FAIL: Create SDM channel failed because of other error
esp_err_t sdm_del_channel(sdm_channel_handle_t chan)

Delete the Sigma Delta channel.
Parameters chan -- [in] SDM channel created by sdm_new_channel
Returns

• ESP_OK: Delete the SDM channel successfully
• ESP_ERR_INVALID_ARG: Delete the SDM channel failed because of invalid argument
• ESP_ERR_INVALID_STATE: Delete the SDM channel failed because the channel is not
in init state

• ESP_FAIL: Delete the SDM channel failed because of other error
esp_err_t sdm_channel_enable(sdm_channel_handle_t chan)

Enable the Sigma Delta channel.

Espressif Systems 1156
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/sigma_delta/include/driver/sdm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: This function will transit the channel state from init to enable.

Note: This function will acquire a PM lock, if a specific source clock (e.g. APB) is selected in the
sdm_config_t, while CONFIG_PM_ENABLE is enabled.

Parameters chan -- [in] SDM channel created by sdm_new_channel
Returns

• ESP_OK: Enable SDM channel successfully
• ESP_ERR_INVALID_ARG: Enable SDM channel failed because of invalid argument
• ESP_ERR_INVALID_STATE: Enable SDMchannel failed because the channel is already
enabled

• ESP_FAIL: Enable SDM channel failed because of other error

esp_err_t sdm_channel_disable(sdm_channel_handle_t chan)
Disable the Sigma Delta channel.

Note: This function will do the opposite work to the sdm_channel_enable()

Parameters chan -- [in] SDM channel created by sdm_new_channel
Returns

• ESP_OK: Disable SDM channel successfully
• ESP_ERR_INVALID_ARG: Disable SDM channel failed because of invalid argument
• ESP_ERR_INVALID_STATE: Disable SDM channel failed because the channel is not
enabled yet

• ESP_FAIL: Disable SDM channel failed because of other error

esp_err_t sdm_channel_set_pulse_density(sdm_channel_handle_t chan, int8_t density)
Set the pulse density of the PDM output signal.

Note: The raw output signal requires a low-pass filter to restore it into analog voltage, the restored analog
output voltage could be Vout = VDD_IO / 256 * density + VDD_IO / 2

Note: This function is allowed to run within ISR context

Note: This function will be placed into IRAM if CONFIG_SDM_CTRL_FUNC_IN_IRAM is on, so that it's
allowed to be executed when Cache is disabled

Parameters
• chan -- [in] SDM channel created by sdm_new_channel
• density -- [in] Quantized pulse density of the PDM output signal, ranges from -128 to
127. But the range of [-90, 90] can provide a better randomness.

Returns
• ESP_OK: Set pulse density successfully
• ESP_ERR_INVALID_ARG: Set pulse density failed because of invalid argument
• ESP_FAIL: Set pulse density failed because of other error

Espressif Systems 1157
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t sdm_channel_set_duty(sdm_channel_handle_t chan, int8_t duty)
The alias function of sdm_channel_set_pulse_density, it decides the pulse density of the output
signal.

Note: sdm_channel_set_pulse_density has a more appropriate name compare this alias function,
suggest to turn to sdm_channel_set_pulse_density instead

Parameters
• chan -- [in] SDM channel created by sdm_new_channel
• duty -- [in] Actually it's the quantized pulse density of the PDM output signal

Returns
• ESP_OK: Set duty cycle successfully
• ESP_ERR_INVALID_ARG: Set duty cycle failed because of invalid argument
• ESP_FAIL: Set duty cycle failed because of other error

Structures

struct sdm_config_t
Sigma Delta channel configuration.

Public Members

int gpio_num
GPIO number

sdm_clock_source_t clk_src

Clock source

uint32_t sample_rate_hz
Over sample rate in Hz, it determines the frequency of the carrier pulses

uint32_t invert_out
Whether to invert the output signal

uint32_t io_loop_back
For debug/test, the signal output from the GPIO will be fed to the input path as well

struct sdm_config_t::[anonymous] flags
Extra flags

Type Definitions

typedef struct sdm_channel_t *sdm_channel_handle_t
Type of Sigma Delta channel handle.

Header File
• components/hal/include/hal/sdm_types.h

Espressif Systems 1158
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/sdm_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef soc_periph_sdm_clk_src_t sdm_clock_source_t

2.6.23 SPI Flash API

Overview

The spi_flash component contains API functions related to reading, writing, erasing, memory mapping for data in the
external flash.
For higher-level API functions which work with partitions defined in the partition table, see Partitions API

Note: esp_partition_* APIs are recommended to be used instead of the lower level esp_flash_* API
functions when accessing the main SPI Flash chip, since they do bounds checking and are guaranteed to calculate
correct offsets in flash based on the information in the partition table. esp_flash_* functions can still be used
directly when accessing an external (secondary) SPI flash chip.

Different from the API before ESP-IDF v4.0, the functionality of esp_flash_* APIs is not limited to the "main"
SPI flash chip (the same SPI flash chip from which program runs). With different chip pointers, you can access
external flash chips connected to not only SPI0/1 but also other SPI buses like SPI2.

Note: Instead of going through the cache connected to the SPI0 peripheral, most esp_flash_* APIs go through
other SPI peripherals like SPI1, SPI2, etc. This makes them able to access not only the main flash, but also external
(secondary) flash.
However, due to limitations of the cache, operations through the cache are limited to the main flash. The address
range limitation for these operations are also on the cache side. The cache is not able to access external flash chips
or address range above its capabilities. These cache operations include: mmap, encrypted read/write, executing code
or access to variables in the flash.

Note: Flash APIs after ESP-IDF v4.0 are no longer atomic. If a write operation occurs during another on-going
read operation, and the flash addresses of both operations overlap, the data returned from the read operation may
contain both old data and new data (that was updated written by the write operation).

Note: Encrypted flash operations are only supported with the main flash chip (and not with other flash chips, that is
on SPI1 with different CS, or on other SPI buses). Reading through cache is only supported on the main flash, which
is determined by the HW.

Support for Features of Flash Chips

Quad/Dual Mode Chips Features of different flashes are implemented in different ways and thus need special
support. The fast/slow read and Dual mode (DOUT/DIO) of almost all flashes with 24-bit address are supported,
because they don't need any vendor-specific commands.
Quad mode (QIO/QOUT) is supported on following chip types:

1. ISSI
2. GD
3. MXIC

Espressif Systems 1159
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

4. FM
5. Winbond
6. XMC
7. BOYA

Note: Only when one flash series listed above is supported by ESP32-C6, this flash series is supported by the chip
driver by default. You can use Component config > SPI Flash driver > Auto-detect flash
chips in menuconfig to enable/disable a flash series.

Optional Features

Optional features for flash Some features are not supported on all ESP chips and Flash chips. You can check the
list below for more information.

• Auto Suspend & Resume
• Flash unique ID
• High performance mode
• OPI flash support
• 32-bit Address Flash Chips

Note: When Flash optional features listed in this page are used, aside from the capability of ESP chips, and ESP-IDF
verison you are using, you will also need to make sure these features are supported by flash chips used.

• If you are using an official Espressif modules/SiP. Some of the modules/SiPs always support the feature, in
this case you can see these features listed in the datasheet. Otherwise please contact Espressif's business team
to know if we can supply such products for you.

• If you are making your own modules with your own bought flash chips, and you need features listed above.
Please contact your vendor if they support the those features, and make sure that the chips can be supplied
continuously.

Attention: This document only shows that IDF code has supported the features of those flash chips. It's not a
list of stable flash chips certified by Espressif. If you build your own hardware from flash chips with your own
brought flash chips (even with flash listed in this page), you need to validate the reliability of flash chips yourself.

Auto Suspend & Resume This feature is only supported on ESP32-C3 for now.
The support for ESP32-S3, ESP32-C2, ESP32-C6, ESP32-H2 may be added in the future.

Flash unique ID This feature is supported on all Espressif chips.
Unique ID is not flash id, which means flash has 64-Bit unique ID for each device. The instruction to read the unique
ID (4Bh) accesses a factory-set read-only 64-bit number that is unique to each flash device. This ID number helps
you to recognize each single device. Not all flash vendors support this feature. If you try to read the unique ID on a
chip which does not have this feature, the behavior is not determined. The support list is as follows.
List of Flash chips that support this feature:

1. ISSI
2. GD
3. TH
4. FM
5. Winbond
6. XMC
7. BOYA

Espressif Systems 1160
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/contact-us/sales-questions
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

High performance mode This featuer is only supported on ESP32-S3 for now.
The support for ESP32-S2, ESP32-C3, ESP32-C6, ESP32-H2 may be added in the future.

OPI flash support This feature is only supporetd on ESP32-S3 for now.
OPI flash means that the flash chip supports octal peripheral interface, which has octal I/O pins. Different octal flash
has different configurations and different commands. Hence, it is necessary to carefully check the support list.

32-bit Address Flash Chips This feature is supported on all Espressif chips (with various restrictions to applica-
tion).
Most NOR flash chips used by Espressif chips use 24-bits address, which can cover 16 MBytes memory. However,
for larger memory (usually equal to or larger than 16 MBytes), flash uses a 32-bits address to address larger memory.
Regretfully, 32-bits address chips have vendor-specific commands, so we need to support the chips one by one.
List of Flash chips that support this feature:

1. W25Q256
2. GD25Q256

Important: Over 16 MBytes space on flash mentioned above can be only used for data saving, like file system.
If your data/instructions over 16 MBytes spaces need to be mapped to MMU (so as to be accessed by the CPU),
please upgrade to ESP-IDF v5.2 and read the latest docs.

There are some features that are not supported by all flash chips, or not supported by all Espressif chips. These
features include:

• 32-bit address flash - usually means that the flash has higher capacity (equal to or larger than 16 MB) that needs
longer addresses.

• Flash unique ID - means that flash supports its unique 64-bit ID.
If you want to use these features, please ensure both ESP32-C6 and ALL flash chips in your product support these
features. For more details, refer to Optional features for flash.
You may also customise your own flash chip driver. See Overriding Default Chip Drivers for more details.

Warning: Customizing SPI Flash Chip Drivers is considered an "expert" feature. Users should only do so at
their own risk. (See the notes below)

OverridingDefault ChipDrivers During the SPI Flash driver's initialization (i.e., esp_flash_init()), there
is a chip detection step during which the driver will iterate through a Default Chip Driver List and determine which
chip driver can properly support the currently connected flash chip. The Default Chip Drivers are provided by the
IDF, thus are updated in together with each IDF version. However IDF also allows users to customize their own chip
drivers.
Users should note the following when customizing chip drivers:

1. You may need to rely on some non-public IDF functions, which have slight possibility to change between IDF
versions. On the one hand, these changes may be useful bug fixes for your driver, on the other hand, they may
also be breaking changes (i.e., breaks your code).

2. Some IDF bug fixes to other chip drivers will not be automatically applied to your own custom chip drivers.
3. If the protection of flash is not handled properly, there may be some random reliability issues.
4. If you update to a newer IDF version that has support for more chips, you will have to manually add those new

chip drivers into your custom chip driver list. Otherwise the driver will only search for the drivers in custom
list you provided.

Espressif Systems 1161
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Steps For Creating Custom Chip Drivers and Overriding the IDF Default Driver List
1. Enable the CONFIG_SPI_FLASH_OVERRIDE_CHIP_DRIVER_LIST config option. This will prevent compila-

tion and linking of the Default Chip Driver List (default_registered_chips) provided by IDF. Instead, the linker
will search for the structure of the same name (default_registered_chips) that must be provided by the user.

2. Add a new component in your project, e.g. custom_chip_driver.
3. Copy the necessary chip driver files from the spi_flash component in IDF. This may include:

• spi_flash_chip_drivers.c (to provide the default_registered_chips structure)
• Any of the spi_flash_chip_*.c files that matches your own flash model best
• CMakeLists.txt and linker.lf files

Modify the files above properly. Including:
• Change the default_registered_chips variable to non-static and remove the #ifdef logic
around it.

• Update linker.lf file to rename the fragment header and the library name to match the new component.
• If reusing other drivers, some header names need prefixing with spi_flash/ when included from
outside spi_flash component.

Note:
• When writing your own flash chip driver, you can set your flash chip capabilities through

spi_flash_chip_***(vendor)_get_caps and points the function pointer get_chip_caps for protection to
the spi_flash_chip_***_get_caps function. The steps are as follows.

1. Please check whether your flash chip have the capabilities listed in spi_flash_caps_t by check-
ing the flash datasheet.

2. Write a function named spi_flash_chip_***(vendor)_get_caps. Take the example below as a
reference. (if the flash support suspend and read unique id).

3. Points the pointer get_chip_caps (in spi_flash_chip_t) to the function mentioned above.

spi_flash_caps_t spi_flash_chip_***(vendor)_get_caps(esp_flash_t *chip)
{

spi_flash_caps_t caps_flags = 0;
// 32-bit-address flash is not supported
flash-suspend is supported
caps_flags |= SPI_FLAHS_CHIP_CAP_SUSPEND;
// flash read unique id.
caps_flags |= SPI_FLASH_CHIP_CAP_UNIQUE_ID;
return caps_flags;

}

const spi_flash_chip_t esp_flash_chip_eon = {
// Other function pointers
.get_chip_caps = spi_flash_chip_eon_get_caps,

};

• You also can see how to implement this in the example storage/custom_flash_driver.

4. Write a new CMakeLists.txt file for the custom_chip_driver component, including an additional line to add a
linker dependency from spi_flash to custom_chip_driver:

idf_component_register(SRCS "spi_flash_chip_drivers.c"
"spi_flash_chip_mychip.c" # modify as needed
REQUIRES hal
PRIV_REQUIRES spi_flash
LDFRAGMENTS linker.lf)

idf_component_add_link_dependency(FROM spi_flash)

• An example of this component CMakeLists.txt can be found in stor-
age/custom_flash_driver/components/custom_chip_driver/CMakeLists.txt

5. The linker.lf is used to put every chip driver that you are going to use whilst cache is disabled into internal
RAM. See Linker Script Generation for more details. Make sure this file covers all the source files that you add.

6. Build your project, and you will see the new flash driver is used.

Espressif Systems 1162
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/custom_flash_driver
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/storage/custom_flash_driver/components/custom_chip_driver/CMakeLists.txt
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/storage/custom_flash_driver/components/custom_chip_driver/CMakeLists.txt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Example See also storage/custom_flash_driver.

Initializing a Flash Device

To use the esp_flash_* APIs, you need to initialise a flash chip on a certain SPI bus, as shown below:
1. Call spi_bus_initialize() to properly initialize an SPI bus. This function initializes the resources

(I/O, DMA, interrupts) shared among devices attached to this bus.
2. Call spi_bus_add_flash_device() to attach the flash device to the bus. This function allocates mem-

ory and fills the members for the esp_flash_t structure. The CS I/O is also initialized here.
3. Call esp_flash_init() to actually communicate with the chip. This will also detect the chip type, and

influence the following operations.

Note: Multiple flash chips can be attached to the same bus now.

SPI Flash Access API

This is the set of API functions for working with data in flash:
• esp_flash_read() reads data from flash to RAM
• esp_flash_write() writes data from RAM to flash
• esp_flash_erase_region() erases specific region of flash
• esp_flash_erase_chip() erases the whole flash
• esp_flash_get_chip_size() returns flash chip size, in bytes, as configured in menuconfig

Generally, try to avoid using the raw SPI flash functions to the "main" SPI flash chip in favour of partition-specific
functions.

SPI Flash Size

The SPI flash size is configured by writing a field in the software bootloader image header, flashed at offset 0x1000.
By default, the SPI flash size is detected by esptool.py when this bootloader is written to flash, and the header
is updated with the correct size. Alternatively, it is possible to generate a fixed flash size by setting CON-
FIG_ESPTOOLPY_FLASHSIZE in the project configuration.
If it is necessary to override the configured flash size at runtime, it is possible to set the chip_size member of
the g_rom_flashchip structure. This size is used by esp_flash_* functions (in both software & ROM) to
check the bounds.

Concurrency Constraints for Flash on SPI1

Concurrency Constraints for Flash on SPI1 The SPI0/1 bus is shared between the instruction & data cache
(for firmware execution) and the SPI1 peripheral (controlled by the drivers including this SPI Flash driver). Hence,
operations to SPI1 will cause significant influence to the whole system. This kind of operations include calling SPI
Flash API or other drivers on SPI1 bus, any operations like read/write/erase or other user defined SPI operations,
regardless to the main flash or other SPI slave devices.
On ESP32-C6, these caches must be disabled while reading/writing/erasing.

When the Caches Are Disabled Under this condition, all CPUs should always execute code and access data from
internal RAM. The APIs documented in this file will disable the caches automatically and transparently.
The way that these APIs disable the caches will also disable non-IRAM-safe interrupts. These will be restored until
the Flash operation completes.
See also OS Functions and SPI Bus Lock.

Espressif Systems 1163
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/custom_flash_driver
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

There are no such constraints and impacts for flash chips on other SPI buses than SPI0/1.
For differences between internal RAM (e.g. IRAM, DRAM) and flash cache, please refer to the application memory
layout documentation.

IRAM-Safe Interrupt Handlers For interrupt handlers which need to execute when the cache is disabled (e.g.,
for low latency operations), set the ESP_INTR_FLAG_IRAM flag when the interrupt handler is registered.
You must ensure that all data and functions accessed by these interrupt handlers, including the ones that handlers call,
are located in IRAM or DRAM. See How to Place Code in IRAM.
If a function or symbol is not correctly put into IRAM/DRAM, and the interrupt handler reads from the flash cache
during a flash operation, it will cause a crash due to Illegal Instruction exception (for code which should be in IRAM)
or garbage data to be read (for constant data which should be in DRAM).

Note: Whenworking with strings in ISRs, it is not advised to useprintf and other output functions. For debugging
purposes, use ESP_DRAM_LOGE() and similar macros when logging from ISRs. Make sure that both TAG and
format string are placed into DRAM in that case.

Non-IRAM-Safe Interrupt Handlers If the ESP_INTR_FLAG_IRAM flag is not set when registering, the in-
terrupt handler will not get executed when the caches are disabled. Once the caches are restored, the non-IRAM-safe
interrupts will be re-enabled. After this moment, the interrupt handler will run normally again. This means that as
long as caches are disabled, users won't see the corresponding hardware event happening.

Attention: The SPI0/1 bus is shared between the instruction & data cache (for firmware execution) and the SPI1
peripheral (controlled by the drivers including this SPI flash driver). Hence, calling SPI Flash API on SPI1 bus
(including the main flash) will cause significant influence to the whole system. See Concurrency Constraints for
Flash on SPI1 for more details.

SPI Flash Encryption

It is possible to encrypt the contents of SPI flash and have it transparently decrypted by hardware.
Refer to the Flash Encryption documentation for more details.

Memory Mapping API

ESP32-C6 features memory hardware which allows regions of flash memory to be mapped into instruction and data
address spaces. This mapping works only for read operations. It is not possible to modify contents of flash memory
by writing to a mapped memory region.
Mapping happens in 64 KB pages. Memory mapping hardware can map flash into the data address space and the
instruction address space. See the technical reference manual for more details and limitations about memory mapping
hardware.
Note that some pages are used to map the application itself into memory, so the actual number of available pages
may be less than the capability of the hardware.
Reading data from flash using a memory mapped region is the only way to decrypt contents of flash when flash
encryption is enabled. Decryption is performed at the hardware level.
Memory mapping API are declared in spi_flash_mmap.h and esp_partition.h:

• spi_flash_mmap() maps a region of physical flash addresses into instruction space or data space of the
CPU.

• spi_flash_munmap() unmaps previously mapped region.
• esp_partition_mmap() maps part of a partition into the instruction space or data space of the CPU.

Espressif Systems 1164
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Differences between spi_flash_mmap() and esp_partition_mmap() are as follows:
• spi_flash_mmap() must be given a 64 KB aligned physical address.
• esp_partition_mmap()may be given any arbitrary offset within the partition. It will adjust the returned
pointer to mapped memory as necessary.

Note that since memory mapping happens in pages, it may be possible to read data outside of the partition provided
to esp_partition_mmap, regardless of the partition boundary.

Note: mmap is supported by cache, so it can only be used on main flash.

SPI Flash Implementation

The esp_flash_t structure holds chip data as well as three important parts of this API:
1. The host driver, which provides the hardware support to access the chip;
2. The chip driver, which provides compatibility service to different chips;
3. The OS functions, provide support of some OS functions (e.g. lock, delay) in different stages (1st/2nd boot, or

the app).

Host Driver The host driver relies on an interface (spi_flash_host_driver_t) defined in the
spi_flash_types.h (in the hal/include/hal folder). This interface provides some common functions to
communicate with the chip.
In other files of the SPI HAL, some of these functions are implemented with existing ESP32-C6 memory-spi func-
tionalities. However, due to the speed limitations of ESP32-C6, the HAL layer cannot provide high-speed imple-
mentations to some reading commands (so the support for it was dropped). The files (memspi_host_driver.h
and .c) implement the high-speed version of these commands with the common_command function provided in
the HAL, and wrap these functions as spi_flash_host_driver_t for upper layer to use.
You can also implement your own host driver, even with the GPIO. As long as all the functions in the
spi_flash_host_driver_t are implemented, the esp_flash API can access the flash regardless of the low-
level hardware.

Chip Driver The chip driver, defined in spi_flash_chip_driver.h, wraps basic functions provided by the
host driver for the API layer to use.
Some operations need some commands to be sent first, or read some status afterwards. Some chips need different
commands or values, or need special communication ways.
There is a type of chip called generic chip which stands for common chips. Other special chip drivers can be
developed on the base of the generic chip.
The chip driver relies on the host driver.

OS Functions Currently the OS function layer provides entries of a lock and delay.
The lock (see SPI Bus Lock) is used to resolve the conflicts among the access of devices on the same SPI bus, and the
SPI Flash chip access. E.g.

1. On SPI1 bus, the cache (used to fetch the data (code) in the Flash and PSRAM) should be disabled when the
flash chip on the SPI0/1 is being accessed.

2. On the other buses, the flash driver needs to disable the ISR registered by SPI Master driver, to avoid conflicts.
3. Some devices of SPI Master driver may require to use the bus monopolized during a period (especially when

the device doesn't have a CS wire, or the wire is controlled by software like SDSPI driver).
The delay is used by some long operations which requires the master to wait or polling periodically.
The top API wraps these the chip driver and OS functions into an entire component, and also provides some argument
checking.

Espressif Systems 1165
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

OS functions can also help to avoid a watchdog timeout when erasing large flash areas. During this time, the CPU is
occupied with the flash erasing task. This stops other tasks from being executed. Among these tasks is the idle task
to feed the watchdog timer (WDT). If the configuration option CONFIG_ESP_TASK_WDT_PANIC is selected and
the flash operation time is longer than the watchdog timeout period, the system will reboot.
It's pretty hard to totally eliminate this risk, because the erasing time varies with different flash chips, making it hard
to be compatible in flash drivers. Therefore, users need to pay attention to it. Please use the following guidelines:

1. It is recommended to enable the CONFIG_SPI_FLASH_YIELD_DURING_ERASE option to allow the scheduler
to re-schedule during erasing flash memory. Besides, following parameters can also be used.

• Increase CONFIG_SPI_FLASH_ERASE_YIELD_TICKS or decrease CON-
FIG_SPI_FLASH_ERASE_YIELD_DURATION_MS in menuconfig.

• You can also increase CONFIG_ESP_TASK_WDT_TIMEOUT_S in menuconfig for a larger watchdog timeout
period. However, with larger watchdog timeout period, previously detected timeoutsmay no longer be detected.

2. Please be aware of the consequences of enabling the CONFIG_ESP_TASK_WDT_PANIC option when doing
long-running SPI flash operations which will trigger the panic handler when it times out. However, this option
can also help dealing with unexpected exceptions in your application. Please decide whether this is needed to
be enabled according to actual condition.

3. During your development, please carefully review the actual flash operation according to the specific require-
ments and time limits on erasing flash memory of your projects. Always allow reasonable redundancy based
on your specific product requirements when configuring the flash erasing timeout threshold, thus improving the
reliability of your product.

Implementation Details

In order to perform some flash operations, it is necessary to make sure that both CPUs are not running any code from
flash for the duration of the flash operation: - In a single-core setup, the SDK needs to disable interrupts or scheduler
before performing the flash operation. - In a dual-core setup, the SDK needs to make sure that both CPUs are not
running any code from flash.
When SPI flash API is called on CPU A (can be PRO or APP), start the spi_flash_op_block_func function
on CPU B using the esp_ipc_call API. This API wakes up a high priority task on CPU B and tells it to execute
a given function, in this case, spi_flash_op_block_func. This function disables cache on CPU B and signals
that the cache is disabled by setting the s_flash_op_can_start flag. Then the task on CPU A disables cache
as well and proceeds to execute flash operation.
While a flash operation is running, interrupts can still run on CPUs A and B. It is assumed that all interrupt code is
placed into RAM. Once the interrupt allocation API is added, a flag should be added to request the interrupt to be
disabled for the duration of a flash operations.
Once the flash operation is complete, the function on CPU A sets another flag, s_flash_op_complete, to let
the task on CPU B know that it can re-enable cache and release the CPU. Then the function on CPU A re-enables
the cache on CPU A as well and returns control to the calling code.
Additionally, all API functions are protected with a mutex (s_flash_op_mutex).
In a single core environment (CONFIG_FREERTOS_UNICORE enabled), you need to disable both caches, so that no
inter-CPU communication can take place.

SPI Flash API ESP-IDF version vs Chip-ROM version There is a set of SPI Flash drivers in Chip-ROMwhich
you can use by enabling CONFIG_SPI_FLASH_ROM_IMPL. Most of the ESP-IDF SPI Flash driver code are in
internal RAM, therefore enabling this option will free some internal RAM usage. Note if you enable this option, this
means some SPI Flash driver features and bugfixes that are done in ESP-IDF might not be included in the Chip-ROM
version.

Feature Supported by ESP-IDF but not in Chip-ROM
• Octal Flash chip support. See OPI flash support for details.
• 32-bit-address support for GD25Q256. See 32-bit Address Flash Chips for details.

Espressif Systems 1166
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• TH Flash chip support.
• Kconfig option CONFIG_SPI_FLASH_CHECK_ERASE_TIMEOUT_DISABLED.
• CONFIG_SPI_FLASH_VERIFY_WRITE, enabling this option helps you detect bad writing.
• CONFIG_SPI_FLASH_LOG_FAILED_WRITE, enabling this option will print the bad writing.
• CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE, enabling this option will check if you're writing
zero to one.

• CONFIG_SPI_FLASH_DANGEROUS_WRITE, enabling this option will check for flash programming to certain
protected regions like bootloader, partition table or application itself.

• CONFIG_SPI_FLASH_ENABLE_COUNTERS, enabling this option to collect performance data for ESP-IDF
SPI Flash driver APIs.

Bugfixes Introduced in ESP-IDF but not in Chip-ROM
• Detected Flash physical size correctly, for larger than 256MBit Flash chips. (Commit ID:
b4964279d44f73cce7cfd5cf684567fbdfd6fd9e)

• Fixed issue that address range may escape from checking for erasing and writing function when their sum
overflows 32-bit boundary.

ESP-IDF vs Chip-ROM SPI Flash Driver

Refer to SPI Flash API ESP-IDF version vs Chip-ROM version.

API Reference - SPI Flash

Header File
• components/spi_flash/include/esp_flash_spi_init.h

Functions
esp_err_t spi_bus_add_flash_device(esp_flash_t **out_chip, const esp_flash_spi_device_config_t

*config)
Add a SPI Flash device onto the SPI bus.
The bus should be already initialized by spi_bus_initialization.

Parameters
• out_chip -- Pointer to hold the initialized chip.
• config -- Configuration of the chips to initialize.

Returns
• ESP_ERR_INVALID_ARG: out_chip is NULL, or some field in the config is invalid.
• ESP_ERR_NO_MEM: failed to allocate memory for the chip structures.
• ESP_OK: success.

esp_err_t spi_bus_remove_flash_device(esp_flash_t *chip)
Remove a SPI Flash device from the SPI bus.

Parameters chip -- The flash device to remove.
Returns

• ESP_ERR_INVALID_ARG: The chip is invalid.
• ESP_OK: success.

Structures

struct esp_flash_spi_device_config_t
Configurations for the SPI Flash to init.

Espressif Systems 1167
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/spi_flash/include/esp_flash_spi_init.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

spi_host_device_t host_id

Bus to use.

int cs_io_num
GPIO pin to output the CS signal.

esp_flash_io_mode_t io_mode

IO mode to read from the Flash.

enum esp_flash_speed_s speed

Speed of the Flash clock. Replaced by freq_mhz.

int input_delay_ns
Input delay of the data pins, in ns. Set to 0 if unknown.

int cs_id
CS line ID, ignored when not host_id is not SPI1_HOST, or CON-
FIG_SPI_FLASH_SHARE_SPI1_BUS is enabled. In this case, the CS line used is automatically
assigned by the SPI bus lock.

int freq_mhz
The frequency of flash chip(MHZ)

Header File
• components/spi_flash/include/esp_flash.h

Functions
esp_err_t esp_flash_init(esp_flash_t *chip)

Initialise SPI flash chip interface.
This function must be called before any other API functions are called for this chip.

Note: Only the host and read_mode fields of the chip structure must be initialised before this function is
called. Other fields may be auto-detected if left set to zero or NULL.

Note: If the chip->drv pointer is NULL, chip chip_drv will be auto-detected based on its manufacturer &
product IDs. See esp_flash_registered_flash_drivers pointer for details of this process.

Parameters chip -- Pointer to SPI flash chip to use. If NULL, esp_flash_default_chip is substi-
tuted.

Returns ESP_OK on success, or a flash error code if initialisation fails.
bool esp_flash_chip_driver_initialized(const esp_flash_t *chip)

Check if appropriate chip driver is set.
Parameters chip -- Pointer to SPI flash chip to use. If NULL, esp_flash_default_chip is substi-

tuted.
Returns true if set, otherwise false.

Espressif Systems 1168
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/spi_flash/include/esp_flash.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_flash_read_id(esp_flash_t *chip, uint32_t *out_id)
Read flash ID via the common "RDID" SPI flash command.

ID is a 24-bit value. Lower 16 bits of 'id' are the chip ID, upper 8 bits are the manufacturer ID.
Parameters

• chip -- Pointer to identify flash chip. Must have been successfully initialised via
esp_flash_init()

• out_id -- [out] Pointer to receive ID value.
Returns ESP_OK on success, or a flash error code if operation failed.

esp_err_t esp_flash_get_size(esp_flash_t *chip, uint32_t *out_size)
Detect flash size based on flash ID.

Note: 1. Most flash chips use a common format for flash ID, where the lower 4 bits specify the size as a power
of 2. If the manufacturer doesn't follow this convention, the size may be incorrectly detected.
a. The out_size returned only stands for The out_size stands for the size in the binary image header. If you

want to get the real size of the chip, please call esp_flash_get_physical_size instead.

Parameters
• chip -- Pointer to identify flash chip. Must have been successfully initialised via
esp_flash_init()

• out_size -- [out] Detected size in bytes, standing for the size in the binary image
header.

Returns ESP_OK on success, or a flash error code if operation failed.

esp_err_t esp_flash_get_physical_size(esp_flash_t *chip, uint32_t *flash_size)
Detect flash size based on flash ID.

Note: Most flash chips use a common format for flash ID, where the lower 4 bits specify the size as a power
of 2. If the manufacturer doesn't follow this convention, the size may be incorrectly detected.

Parameters
• chip -- Pointer to identify flash chip. Must have been successfully initialised via
esp_flash_init()

• flash_size -- [out] Detected size in bytes.
Returns ESP_OK on success, or a flash error code if operation failed.

esp_err_t esp_flash_read_unique_chip_id(esp_flash_t *chip, uint64_t *out_id)
Read flash unique ID via the common "RDUID" SPI flash command.

ID is a 64-bit value.

Note: This is an optional feature, which is not supported on all flash chips. READPROGRAMMINGGUIDE
FIRST!

Parameters
• chip -- Pointer to identify flash chip. Must have been successfully initialised via
esp_flash_init().

• out_id -- [out] Pointer to receive unique ID value.
Returns

Espressif Systems 1169
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK on success, or a flash error code if operation failed.
• ESP_ERR_NOT_SUPPORTED if the chip doesn't support read id.

esp_err_t esp_flash_erase_chip(esp_flash_t *chip)
Erase flash chip contents.

Parameters chip -- Pointer to identify flash chip. Must have been successfully initialised via
esp_flash_init()

Returns
• ESP_OK on success,
• ESP_ERR_NOT_SUPPORTED if the chip is not able to perform the operation. This is
indicated by WREN = 1 after the command is sent.

• Other flash error code if operation failed.
esp_err_t esp_flash_erase_region(esp_flash_t *chip, uint32_t start, uint32_t len)

Erase a region of the flash chip.

Sector size is specifyed in chip->drv->sector_size field (typically 4096 bytes.) ESP_ERR_INVALID_ARG
will be returned if the start & length are not a multiple of this size.
Erase is performed using block (multi-sector) erases where possible (block size is specified in chip->drv-
>block_erase_size field, typically 65536 bytes). Remaining sectors are erased using individual sector erase
commands.

Parameters
• chip -- Pointer to identify flash chip. If NULL, esp_flash_default_chip is substituted.
Must have been successfully initialised via esp_flash_init()

• start -- Address to start erasing flash. Must be sector aligned.
• len -- Length of region to erase. Must also be sector aligned.

Returns
• ESP_OK on success,
• ESP_ERR_NOT_SUPPORTED if the chip is not able to perform the operation. This is
indicated by WREN = 1 after the command is sent.

• Other flash error code if operation failed.
esp_err_t esp_flash_get_chip_write_protect(esp_flash_t *chip, bool *write_protected)

Read if the entire chip is write protected.

Note: A correct result for this flag depends on the SPI flash chip model and chip_drv in use (via the 'chip->drv'
field).

Parameters
• chip -- Pointer to identify flash chip. If NULL, esp_flash_default_chip is substituted.
Must have been successfully initialised via esp_flash_init()

• write_protected -- [out] Pointer to boolean, set to the value of the write protect
flag.

Returns ESP_OK on success, or a flash error code if operation failed.

esp_err_t esp_flash_set_chip_write_protect(esp_flash_t *chip, bool write_protect)
Set write protection for the SPI flash chip.

Some SPI flash chips may require a power cycle before write protect status can be cleared. Otherwise, write
protection can be removed via a follow-up call to this function.

Espressif Systems 1170
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: Correct behaviour of this function depends on the SPI flash chip model and chip_drv in use (via the
'chip->drv' field).

Parameters
• chip -- Pointer to identify flash chip. If NULL, esp_flash_default_chip is substituted.
Must have been successfully initialised via esp_flash_init()

• write_protect -- Boolean value for the write protect flag
Returns ESP_OK on success, or a flash error code if operation failed.

esp_err_t esp_flash_get_protectable_regions(const esp_flash_t *chip, const esp_flash_region_t
**out_regions, uint32_t *out_num_regions)

Read the list of individually protectable regions of this SPI flash chip.

Note: Correct behaviour of this function depends on the SPI flash chip model and chip_drv in use (via the
'chip->drv' field).

Parameters
• chip -- Pointer to identify flash chip. Must have been successfully initialised via
esp_flash_init()

• out_regions -- [out] Pointer to receive a pointer to the array of protectable regions
of the chip.

• out_num_regions -- [out] Pointer to an integer receiving the count of protectable
regions in the array returned in 'regions'.

Returns ESP_OK on success, or a flash error code if operation failed.

esp_err_t esp_flash_get_protected_region(esp_flash_t *chip, const esp_flash_region_t *region, bool
*out_protected)

Detect if a region of the SPI flash chip is protected.

Note: It is possible for this result to be false and write operations to still fail, if protection is enabled for the
entire chip.

Note: Correct behaviour of this function depends on the SPI flash chip model and chip_drv in use (via the
'chip->drv' field).

Parameters
• chip -- Pointer to identify flash chip. Must have been successfully initialised via
esp_flash_init()

• region -- Pointer to a struct describing a protected region. This must match one of the
regions returned from esp_flash_get_protectable_regions(...).

• out_protected -- [out] Pointer to a flag which is set based on the protected status for
this region.

Returns ESP_OK on success, or a flash error code if operation failed.

esp_err_t esp_flash_set_protected_region(esp_flash_t *chip, const esp_flash_region_t *region, bool
protect)

Update the protected status for a region of the SPI flash chip.

Note: It is possible for the region protection flag to be cleared and write operations to still fail, if protection

Espressif Systems 1171
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

is enabled for the entire chip.

Note: Correct behaviour of this function depends on the SPI flash chip model and chip_drv in use (via the
'chip->drv' field).

Parameters
• chip -- Pointer to identify flash chip. Must have been successfully initialised via
esp_flash_init()

• region -- Pointer to a struct describing a protected region. This must match one of the
regions returned from esp_flash_get_protectable_regions(...).

• protect -- Write protection flag to set.
Returns ESP_OK on success, or a flash error code if operation failed.

esp_err_t esp_flash_read(esp_flash_t *chip, void *buffer, uint32_t address, uint32_t length)
Read data from the SPI flash chip.

There are no alignment constraints on buffer, address or length.

Note: If on-chip flash encryption is used, this function returns raw (ie encrypted) data. Use the flash cache
to transparently decrypt data.

Parameters
• chip -- Pointer to identify flash chip. If NULL, esp_flash_default_chip is substituted.
Must have been successfully initialised via esp_flash_init()

• buffer -- Pointer to a buffer where the data will be read. To get better performance,
this should be in the DRAM and word aligned.

• address -- Address on flash to read from. Must be less than chip->size field.
• length -- Length (in bytes) of data to read.

Returns
• ESP_OK: success
• ESP_ERR_NO_MEM: Buffer is in external PSRAM which cannot be concurrently ac-
cessed, and a temporary internal buffer could not be allocated.

• or a flash error code if operation failed.

esp_err_t esp_flash_write(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length)
Write data to the SPI flash chip.

There are no alignment constraints on buffer, address or length.
Parameters

• chip -- Pointer to identify flash chip. If NULL, esp_flash_default_chip is substituted.
Must have been successfully initialised via esp_flash_init()

• address -- Address on flash to write to. Must be previously erased (SPI NOR flash can
only write bits 1->0).

• buffer -- Pointer to a buffer with the data to write. To get better performance, this
should be in the DRAM and word aligned.

• length -- Length (in bytes) of data to write.
Returns

• ESP_OK on success,
• ESP_FAIL, bad write, this will be detected only when CON-
FIG_SPI_FLASH_VERIFY_WRITE is enabled

Espressif Systems 1172
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_NOT_SUPPORTED if the chip is not able to perform the operation. This is
indicated by WREN = 1 after the command is sent.

• Other flash error code if operation failed.
esp_err_t esp_flash_write_encrypted(esp_flash_t *chip, uint32_t address, const void *buffer, uint32_t

length)
Encrypted and write data to the SPI flash chip using on-chip hardware flash encryption.

Note: Both address & length must be 16 byte aligned, as this is the encryption block size

Parameters
• chip -- Pointer to identify flash chip. Must be NULL (the main flash chip). For other
chips, encrypted write is not supported.

• address -- Address on flash to write to. 16 byte aligned. Must be previously erased
(SPI NOR flash can only write bits 1->0).

• buffer -- Pointer to a buffer with the data to write.
• length -- Length (in bytes) of data to write. 16 byte aligned.

Returns
• ESP_OK: on success
• ESP_FAIL: bad write, this will be detected only when CON-
FIG_SPI_FLASH_VERIFY_WRITE is enabled

• ESP_ERR_NOT_SUPPORTED: encrypted write not supported for this chip.
• ESP_ERR_INVALID_ARG: Either the address, buffer or length is invalid.

esp_err_t esp_flash_read_encrypted(esp_flash_t *chip, uint32_t address, void *out_buffer, uint32_t
length)

Read and decrypt data from the SPI flash chip using on-chip hardware flash encryption.
Parameters

• chip -- Pointer to identify flash chip. Must be NULL (the main flash chip). For other
chips, encrypted read is not supported.

• address -- Address on flash to read from.
• out_buffer -- Pointer to a buffer for the data to read to.
• length -- Length (in bytes) of data to read.

Returns
• ESP_OK: on success
• ESP_ERR_NOT_SUPPORTED: encrypted read not supported for this chip.

static inline bool esp_flash_is_quad_mode(const esp_flash_t *chip)
Returns true if chip is configured for Quad I/O or Quad Fast Read.

Parameters chip -- Pointer to SPI flash chip to use. If NULL, esp_flash_default_chip is substi-
tuted.

Returns true if flash works in quad mode, otherwise false

Structures

struct esp_flash_region_t
Structure for describing a region of flash.

Public Members

uint32_t offset
Start address of this region.

Espressif Systems 1173
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t size
Size of the region.

struct esp_flash_os_functions_t
OS-level integration hooks for accessing flash chips inside a running OS.
It's in the public header because some instances should be allocated statically in the startup code. May be
updated according to hardware version and new flash chip feature requirements, shouldn't be treated as public
API.
For advanced developers, you may replace some of them with your implementations at your own risk.

Public Members

esp_err_t (*start)(void *arg)
Called before commencing any flash operation. Does not need to be recursive (ie is called at most once
for each call to 'end').

esp_err_t (*end)(void *arg)
Called after completing any flash operation.

esp_err_t (*region_protected)(void *arg, size_t start_addr, size_t size)
Called before any erase/write operations to check whether the region is limited by the OS

esp_err_t (*delay_us)(void *arg, uint32_t us)
Delay for at least 'us' microseconds. Called in between 'start' and 'end'.

void *(*get_temp_buffer)(void *arg, size_t reqest_size, size_t *out_size)
Called for get temp buffer when buffer from application cannot be directly read into/write from.

void (*release_temp_buffer)(void *arg, void *temp_buf)
Called for release temp buffer.

esp_err_t (*check_yield)(void *arg, uint32_t chip_status, uint32_t *out_request)
Yield to other tasks. Called during erase operations.

Return ESP_OK means yield needs to be called (got an event to handle), while
ESP_ERR_TIMEOUT means skip yield.

esp_err_t (*yield)(void *arg, uint32_t *out_status)
Yield to other tasks. Called during erase operations.

int64_t (*get_system_time)(void *arg)
Called for get system time.

void (*set_flash_op_status)(uint32_t op_status)
Call to set flash operation status

struct esp_flash_t
Structure to describe a SPI flash chip connected to the system.

Espressif Systems 1174
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Structure must be initialized before use (passed to esp_flash_init()). It's in the public header because some
instances should be allocated statically in the startup code. May be updated according to hardware version and
new flash chip feature requirements, shouldn't be treated as public API.
For advanced developers, you may replace some of them with your implementations at your own risk.

Public Members

spi_flash_host_inst_t *host
Pointer to hardware-specific "host_driver" structure. Must be initialized before used.

const spi_flash_chip_t *chip_drv
Pointer to chip-model-specific "adapter" structure. If NULL, will be detected during initialisation.

const esp_flash_os_functions_t *os_func
Pointer to os-specific hook structure. Call esp_flash_init_os_functions() to setup this field,
after the host is properly initialized.

void *os_func_data
Pointer to argument for os-specific hooks. Left NULL and will be initialized with os_func.

esp_flash_io_mode_t read_mode

Configured SPI flash read mode. Set before esp_flash_init is called.

uint32_t size
Size of SPI flash in bytes. If 0, size will be detected during initialisation. Note: this stands
for the size in the binary image header. If you want to get the flash physical size, please call
esp_flash_get_physical_size.

uint32_t chip_id
Detected chip id.

uint32_t busy
This flag is used to verify chip's status.

uint32_t hpm_dummy_ena
This flag is used to verify whether flash works under HPM status.

uint32_t reserved_flags
reserved.

Macros

SPI_FLASH_YIELD_REQ_YIELD

SPI_FLASH_YIELD_REQ_SUSPEND

SPI_FLASH_YIELD_STA_RESUME

SPI_FLASH_OS_IS_ERASING_STATUS_FLAG

Espressif Systems 1175
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef struct spi_flash_chip_t spi_flash_chip_t

Header File
• components/spi_flash/include/spi_flash_mmap.h

Functions
esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory, const void

**out_ptr, spi_flash_mmap_handle_t *out_handle)
Map region of flash memory into data or instruction address space.
This function allocates sufficient number of 64kBMMUpages and configures them to map the requested region
of flash memory into the address space. It may reuse MMU pages which already provide the required mapping.
As with any allocator, if mmap/munmap are heavily used then the address space may become fragmented. To
troubleshoot issues with page allocation, use spi_flash_mmap_dump() function.

Parameters
• src_addr -- Physical address in flash where requested region starts. This address must
be aligned to 64kB boundary (SPI_FLASH_MMU_PAGE_SIZE)

• size -- Size of region to be mapped. This size will be rounded up to a 64kB boundary
• memory -- Address space where the region should be mapped (data or instruction)
• out_ptr -- [out] Output, pointer to the mapped memory region
• out_handle -- [out] Output, handle which should be used for spi_flash_munmap call

Returns ESP_OK on success, ESP_ERR_NO_MEM if pages can not be allocated
esp_err_t spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,

const void **out_ptr, spi_flash_mmap_handle_t *out_handle)
Map sequences of pages of flash memory into data or instruction address space.
This function allocates sufficient number of 64kBMMU pages and configures them to map the indicated pages
of flash memory contiguously into address space. In this respect, it works in a similar way as spi_flash_mmap()
but it allows mapping a (maybe non-contiguous) set of pages into a contiguous region of memory.

Parameters
• pages -- An array of numbers indicating the 64kB pages in flash to be mapped con-
tiguously into memory. These indicate the indexes of the 64kB pages, not the byte-size
addresses as used in other functions. Array must be located in internal memory.

• page_count -- Number of entries in the pages array
• memory -- Address space where the region should be mapped (instruction or data)
• out_ptr -- [out] Output, pointer to the mapped memory region
• out_handle -- [out] Output, handle which should be used for spi_flash_munmap call

Returns
• ESP_OK on success
• ESP_ERR_NO_MEM if pages can not be allocated
• ESP_ERR_INVALID_ARG if pagecount is zero or pages array is not in internal memory

void spi_flash_munmap(spi_flash_mmap_handle_t handle)
Release region previously obtained using spi_flash_mmap.

Note: Calling this function will not necessarily unmap memory region. Region will only be unmapped when
there are no other handles which reference this region. In case of partially overlapping regions it is possible
that memory will be unmapped partially.

Parameters handle -- Handle obtained from spi_flash_mmap

Espressif Systems 1176
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/spi_flash/include/spi_flash_mmap.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void spi_flash_mmap_dump(void)
Display information about mapped regions.
This function lists handles obtained using spi_flash_mmap, along with range of pages allocated to each handle.
It also lists all non-zero entries of MMU table and corresponding reference counts.

uint32_t spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
get free pages number which can be mmap
This function will return number of free pages available in mmu table. This could be useful before calling
actual spi_flash_mmap (maps flash range to DCache or ICache memory) to check if there is sufficient space
available for mapping.

Parameters memory -- memory type of MMU table free page
Returns number of free pages which can be mmaped

size_t spi_flash_cache2phys(const void *cached)
Given a memory address where flash is mapped, return the corresponding physical flash offset.
Cache address does not have have been assigned via spi_flash_mmap(), any address in memory mapped flash
space can be looked up.

Parameters cached -- Pointer to flashed cached memory.
Returns

• SPI_FLASH_CACHE2PHYS_FAIL If cache address is outside flash cache region, or the
address is not mapped.

• Otherwise, returns physical offset in flash
const void *spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory)

Given a physical offset in flash, return the address where it is mapped in the memory space.
Physical address does not have to have been assigned via spi_flash_mmap(), any address in flash can be looked
up.

Note: Only the first matching cache address is returned. If MMU flash cache table is configured so multiple
entries point to the same physical address, there may be more than one cache address corresponding to that
physical address. It is also possible for a single physical address to be mapped to both the IROM and DROM
regions.

Note: This function doesn't impose any alignment constraints, but if memory argument is
SPI_FLASH_MMAP_INST and phys_offs is not 4-byte aligned, then reading from the returned pointer will
result in a crash.

Parameters
• phys_offs -- Physical offset in flash memory to look up.
• memory -- Address space type to look up a flash cache address mapping for (instruction
or data)

Returns
• NULL if the physical address is invalid or not mapped to flash cache of the specified
memory type.

• Cached memory address (in IROM or DROM space) corresponding to phys_offs.

Macros

ESP_ERR_FLASH_OP_FAIL

This file contains spi_flash_mmap_xx APIs, mainly for doing memory mapping to an SPI0-connected
external Flash, as well as some helper functions to convert between virtual and physical address

Espressif Systems 1177
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_FLASH_OP_TIMEOUT

SPI_FLASH_SEC_SIZE

SPI Flash sector size

SPI_FLASH_MMU_PAGE_SIZE

Flash cache MMU mapping page size

SPI_FLASH_CACHE2PHYS_FAIL

Type Definitions

typedef uint32_t spi_flash_mmap_handle_t
Opaque handle for memory region obtained from spi_flash_mmap.

Enumerations

enum spi_flash_mmap_memory_t

Enumeration which specifies memory space requested in an mmap call.
Values:

enumerator SPI_FLASH_MMAP_DATA
map to data memory, allows byte-aligned access

enumerator SPI_FLASH_MMAP_INST
map to instruction memory, allows only 4-byte-aligned access

Header File
• components/hal/include/hal/spi_flash_types.h

Structures

struct spi_flash_trans_t
Definition of a common transaction. Also holds the return value.

Public Members

uint8_t reserved
Reserved, must be 0.

uint8_t mosi_len
Output data length, in bytes.

uint8_t miso_len
Input data length, in bytes.

Espressif Systems 1178
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/spi_flash_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t address_bitlen
Length of address in bits, set to 0 if command does not need an address.

uint32_t address
Address to perform operation on.

const uint8_t *mosi_data
Output data to salve.

uint8_t *miso_data
[out] Input data from slave, little endian

uint32_t flags
Flags for this transaction. Set to 0 for now.

uint16_t command
Command to send.

uint8_t dummy_bitlen
Basic dummy bits to use.

uint32_t io_mode
Flash working mode when SPI_FLASH_IGNORE_BASEIO is specified.

struct spi_flash_sus_cmd_conf
Configuration structure for the flash chip suspend feature.

Public Members

uint32_t sus_mask
SUS/SUS1/SUS2 bit in flash register.

uint32_t cmd_rdsr
Read flash status register(2) command.

uint32_t sus_cmd
Flash suspend command.

uint32_t res_cmd
Flash resume command.

uint32_t reserved
Reserved, set to 0.

struct spi_flash_encryption_t
Structure for flash encryption operations.

Espressif Systems 1179
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

void (*flash_encryption_enable)(void)
Enable the flash encryption.

void (*flash_encryption_disable)(void)
Disable the flash encryption.

void (*flash_encryption_data_prepare)(uint32_t address, const uint32_t *buffer, uint32_t size)
Prepare flash encryption before operation.

Note: address and buffer must be 8-word aligned.

Param address The destination address in flash for the write operation.
Param buffer Data for programming
Param size Size to program.

void (*flash_encryption_done)(void)
flash data encryption operation is done.

void (*flash_encryption_destroy)(void)
Destroy encrypted result

bool (*flash_encryption_check)(uint32_t address, uint32_t length)
Check if is qualified to encrypt the buffer

Param address the address of written flash partition.
Param length Buffer size.

struct spi_flash_host_inst_t
SPI Flash Host driver instance

Public Members

const struct spi_flash_host_driver_s *driver
Pointer to the implementation function table.

struct spi_flash_host_driver_s
Host driver configuration and context structure.

Public Members

esp_err_t (*dev_config)(spi_flash_host_inst_t *host)
Configure the device-related register before transactions. This saves some time to re-configure those
registers when we send continuously

esp_err_t (*common_command)(spi_flash_host_inst_t *host, spi_flash_trans_t *t)
Send an user-defined spi transaction to the device.

Espressif Systems 1180
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t (*read_id)(spi_flash_host_inst_t *host, uint32_t *id)
Read flash ID.

void (*erase_chip)(spi_flash_host_inst_t *host)
Erase whole flash chip.

void (*erase_sector)(spi_flash_host_inst_t *host, uint32_t start_address)
Erase a specific sector by its start address.

void (*erase_block)(spi_flash_host_inst_t *host, uint32_t start_address)
Erase a specific block by its start address.

esp_err_t (*read_status)(spi_flash_host_inst_t *host, uint8_t *out_sr)
Read the status of the flash chip.

esp_err_t (*set_write_protect)(spi_flash_host_inst_t *host, bool wp)
Disable write protection.

void (*program_page)(spi_flash_host_inst_t *host, const void *buffer, uint32_t address, uint32_t length)
Program a page of the flash. Check max_write_bytes for the maximum allowed writing length.

bool (*supports_direct_write)(spi_flash_host_inst_t *host, const void *p)
Check whether the SPI host supports direct write.
When cache is disabled, SPI1 doesn't support directly write when buffer isn't internal.

int (*write_data_slicer)(spi_flash_host_inst_t *host, uint32_t address, uint32_t len, uint32_t
*align_addr, uint32_t page_size)

Slicer for write data. The program_page should be called iteratively with the return value of this
function.

Param address Beginning flash address to write
Param len Length request to write
Param align_addr Output of the aligned address to write to
Param page_size Physical page size of the flash chip
Return Length that can be actually written in one program_page call

esp_err_t (*read)(spi_flash_host_inst_t *host, void *buffer, uint32_t address, uint32_t read_len)
Read data from the flash. Check max_read_bytes for the maximum allowed reading length.

bool (*supports_direct_read)(spi_flash_host_inst_t *host, const void *p)
Check whether the SPI host supports direct read.
When cache is disabled, SPI1 doesn't support directly read when the given buffer isn't internal.

int (*read_data_slicer)(spi_flash_host_inst_t *host, uint32_t address, uint32_t len, uint32_t
*align_addr, uint32_t page_size)

Slicer for read data. The read should be called iteratively with the return value of this function.
Param address Beginning flash address to read
Param len Length request to read
Param align_addr Output of the aligned address to read
Param page_size Physical page size of the flash chip
Return Length that can be actually read in one read call

Espressif Systems 1181
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t (*host_status)(spi_flash_host_inst_t *host)
Check the host status, 0:busy, 1:idle, 2:suspended.

esp_err_t (*configure_host_io_mode)(spi_flash_host_inst_t *host, uint32_t command, uint32_t
addr_bitlen, int dummy_bitlen_base, esp_flash_io_mode_t io_mode)

Configure the host to work at different read mode. Responsible to compensate the timing and set IO
mode.

void (*poll_cmd_done)(spi_flash_host_inst_t *host)
Internal use, poll the HW until the last operation is done.

esp_err_t (*flush_cache)(spi_flash_host_inst_t *host, uint32_t addr, uint32_t size)
For some host (SPI1), they are shared with a cache. When the data is modified, the cache needs to be
flushed. Left NULL if not supported.

void (*check_suspend)(spi_flash_host_inst_t *host)
Suspend check erase/program operation, reserved for ESP32-C3 and ESP32-S3 spi flash ROM IMPL.

void (*resume)(spi_flash_host_inst_t *host)
Resume flash from suspend manually

void (*suspend)(spi_flash_host_inst_t *host)
Set flash in suspend status manually

esp_err_t (*sus_setup)(spi_flash_host_inst_t *host, const spi_flash_sus_cmd_conf *sus_conf)
Suspend feature setup for setting cmd and status register mask.

Macros

SPI_FLASH_TRANS_FLAG_CMD16

Send command of 16 bits.

SPI_FLASH_TRANS_FLAG_IGNORE_BASEIO

Not applying the basic io mode configuration for this transaction.

SPI_FLASH_TRANS_FLAG_BYTE_SWAP

Used for DTR mode, to swap the bytes of a pair of rising/falling edge.

SPI_FLASH_CONFIG_CONF_BITS

OR the io_mode with this mask, to enable the dummy output feature or replace the first several dummy bits
into address to meet the requirements of conf bits. (Used in DIO/QIO/OIO mode)

SPI_FLASH_OPI_FLAG

A flag for flash work in opi mode, the io mode below are opi, above are SPI/QSPI mode. DO NOT use this
value in any API.

SPI_FLASH_READ_MODE_MIN

Slowest io mode supported by ESP32, currently SlowRd.

Espressif Systems 1182
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef enum esp_flash_speed_s esp_flash_speed_t

SPI flash clock speed values, always refer to them by the enum rather than the actual value (more speed may
be appended into the list).
A strategy to select the maximum allowed speed is to enumerate from the ESP_FLSH_SPEED_MAX-1 or
highest frequency supported by your flash, and decrease the speed until the probing success.

typedef struct spi_flash_host_driver_s spi_flash_host_driver_t

Enumerations

enum esp_flash_speed_s

SPI flash clock speed values, always refer to them by the enum rather than the actual value (more speed may
be appended into the list).
A strategy to select the maximum allowed speed is to enumerate from the ESP_FLSH_SPEED_MAX-1 or
highest frequency supported by your flash, and decrease the speed until the probing success.
Values:

enumerator ESP_FLASH_5MHZ
The flash runs under 5MHz.

enumerator ESP_FLASH_10MHZ
The flash runs under 10MHz.

enumerator ESP_FLASH_20MHZ
The flash runs under 20MHz.

enumerator ESP_FLASH_26MHZ
The flash runs under 26MHz.

enumerator ESP_FLASH_40MHZ
The flash runs under 40MHz.

enumerator ESP_FLASH_80MHZ
The flash runs under 80MHz.

enumerator ESP_FLASH_120MHZ
The flash runs under 120MHz, 120MHZ can only be used by main flash after timing tuning in system.
Do not use this directely in any API.

enumerator ESP_FLASH_SPEED_MAX
The maximum frequency supported by the host is ESP_FLASH_SPEED_MAX-1.

enum esp_flash_io_mode_t

Mode used for reading from SPI flash.
Values:

enumerator SPI_FLASH_SLOWRD
Data read using single I/O, some limits on speed.

Espressif Systems 1183
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator SPI_FLASH_FASTRD
Data read using single I/O, no limit on speed.

enumerator SPI_FLASH_DOUT
Data read using dual I/O.

enumerator SPI_FLASH_DIO
Both address & data transferred using dual I/O.

enumerator SPI_FLASH_QOUT
Data read using quad I/O.

enumerator SPI_FLASH_QIO
Both address & data transferred using quad I/O.

enumerator SPI_FLASH_OPI_STR
Only support on OPI flash, flash read and write under STR mode.

enumerator SPI_FLASH_OPI_DTR
Only support on OPI flash, flash read and write under DTR mode.

enumerator SPI_FLASH_READ_MODE_MAX
The fastest io mode supported by the host is ESP_FLASH_READ_MODE_MAX-1.

Header File
• components/hal/include/hal/esp_flash_err.h

Macros

ESP_ERR_FLASH_NOT_INITIALISED

esp_flash_chip_t structure not correctly initialised by esp_flash_init().

ESP_ERR_FLASH_UNSUPPORTED_HOST

Requested operation isn't supported via this host SPI bus (chip->spi field).

ESP_ERR_FLASH_UNSUPPORTED_CHIP

Requested operation isn't supported by this model of SPI flash chip.

ESP_ERR_FLASH_PROTECTED

Write operation failed due to chip's write protection being enabled.

Enumerations

enum [anonymous]

Values:

enumerator ESP_ERR_FLASH_SIZE_NOT_MATCH
The chip doesn't have enough space for the current partition table.

Espressif Systems 1184
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/esp_flash_err.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_ERR_FLASH_NO_RESPONSE
Chip did not respond to the command, or timed out.

API Reference - Flash Encrypt

Header File
• components/bootloader_support/include/esp_flash_encrypt.h

Functions
bool esp_flash_encryption_enabled(void)

Is flash encryption currently enabled in hardware?
Flash encryption is enabled if the FLASH_CRYPT_CNT efuse has an odd number of bits set.

Returns true if flash encryption is enabled.
esp_err_t esp_flash_encrypt_check_and_update(void)

bool esp_flash_encrypt_state(void)
Returns the Flash Encryption state and prints it.

Returns True - Flash Encryption is enabled False - Flash Encryption is not enabled
bool esp_flash_encrypt_initialized_once(void)

Checks if the first initialization was done.
If the first initialization was done then FLASH_CRYPT_CNT != 0

Returns true - the first initialization was done false - the first initialization was NOT done
esp_err_t esp_flash_encrypt_init(void)

The first initialization of Flash Encryption key and related eFuses.
Returns ESP_OK if all operations succeeded

esp_err_t esp_flash_encrypt_contents(void)
Encrypts flash content.

Returns ESP_OK if all operations succeeded
esp_err_t esp_flash_encrypt_enable(void)

Activates Flash encryption on the chip.
It burns FLASH_CRYPT_CNT eFuse based on theCONFIG_SECURE_FLASH_ENCRYPTION_MODE_RELEASE
option.

Returns ESP_OK if all operations succeeded
bool esp_flash_encrypt_is_write_protected(bool print_error)

Returns True if the write protection of FLASH_CRYPT_CNT is set.
Parameters print_error -- Print error if it is write protected
Returns true - if FLASH_CRYPT_CNT is write protected

esp_err_t esp_flash_encrypt_region(uint32_t src_addr, size_t data_length)
Encrypt-in-place a block of flash sectors.

Note: This function resets RTC_WDT between operations with sectors.

Parameters
• src_addr -- Source offset in flash. Should be multiple of 4096 bytes.

Espressif Systems 1185
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bootloader_support/include/esp_flash_encrypt.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• data_length -- Length of data to encrypt in bytes. Will be rounded up to next multiple
of 4096 bytes.

Returns ESP_OK if all operations succeeded, ESP_ERR_FLASH_OP_FAIL if SPI flash fails,
ESP_ERR_FLASH_OP_TIMEOUT if flash times out.

void esp_flash_write_protect_crypt_cnt(void)
Write protect FLASH_CRYPT_CNT.
Intended to be called as a part of boot process if flash encryption is enabled but secure boot is not used. This
should protect against serial re-flashing of an unauthorised code in absence of secure boot.

Note: On ESP32 V3 only, write protecting FLASH_CRYPT_CNT will also prevent disabling UART Down-
load Mode. If both are wanted, call esp_efuse_disable_rom_download_mode() before calling this function.

esp_flash_enc_mode_t esp_get_flash_encryption_mode(void)
Return the flash encryption mode.
The API is called during boot process but can also be called by application to check the current flash encryption
mode of ESP32

Returns
void esp_flash_encryption_init_checks(void)

Check the flash encryption mode during startup.

Verifies the flash encryption config during startup:

• Correct any insecure flash encryption settings if hardware Secure Boot is enabled.
• Log warnings if the efuse config doesn't match the project config in any way

Note: This function is called automatically during app startup, it doesn't need to be called from the app.

esp_err_t esp_flash_encryption_enable_secure_features(void)
Set all secure eFuse features related to flash encryption.

Returns
• ESP_OK - Successfully

bool esp_flash_encryption_cfg_verify_release_mode(void)
Returns the verification status for all physical security features of flash encryption in release mode.
If the device has flash encryption feature configured in the release mode, then it is highly recommended to call
this API in the application startup code. This API verifies the sanity of the eFuse configuration against the
release (production) mode of the flash encryption feature.

Returns
• True - all eFuses are configured correctly
• False - not all eFuses are configured correctly.

void esp_flash_encryption_set_release_mode(void)
Switches Flash Encryption from "Development" to "Release".
If already in "Release" mode, the function will do nothing. If flash encryption efuse is not enabled yet then
abort. It burns:

• "disable encrypt in dl mode"
• set FLASH_CRYPT_CNT efuse to max

Espressif Systems 1186
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

In case of the targets that support the XTS-AES peripheral's pseudo rounds function, this API would configure
the pseudo rounds level efuse bit to level low if the efuse bit is not set already.

Enumerations

enum esp_flash_enc_mode_t

Values:

enumerator ESP_FLASH_ENC_MODE_DISABLED

enumerator ESP_FLASH_ENC_MODE_DEVELOPMENT

enumerator ESP_FLASH_ENC_MODE_RELEASE

2.6.24 SPI Master Driver

SPI Master driver is a program that controls ESP32-C6's SPI peripherals while they function as masters.

Overview of ESP32-C6's SPI peripherals

ESP32-C6 integrates 2 SPI peripherals.
• SPI0 and SPI1 are used internally to access the ESP32-C6's attached flash memory. Both controllers share the
same SPI bus signals, and there is an arbiter to determine which can access the bus.
Currently, SPI Master driver does not support SPI1 bus.

• SPI2 is a general purpose SPI controller. It has an independent signal bus with the same name. The bus has 6
CS lines to drive up to 6 SPI slaves.

Terminology

The terms used in relation to the SPI master driver are given in the table below.

Espressif Systems 1187
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Term Definition
Host The SPI controller peripheral inside ESP32-C6 that initiates SPI transmissions over the bus, and acts as an

SPI Master.
De-
vice

SPI slave device. An SPI bus may be connected to one or more Devices. Each Device shares the MOSI,
MISO and SCLK signals but is only active on the bus when the Host asserts the Device's individual CS
line.

Bus A signal bus, common to all Devices connected to one Host. In general, a bus includes the following lines:
MISO, MOSI, SCLK, one or more CS lines, and, optionally, QUADWP and QUADHD. So Devices are
connected to the same lines, with the exception that each Device has its own CS line. Several Devices can
also share one CS line if connected in the daisy-chain manner.

MOSIMaster Out, Slave In, a.k.a. D. Data transmission from a Host to Device. Also data0 signal in Octal/OPI
mode.

MISOMaster In, Slave Out, a.k.a. Q. Data transmission from a Device to Host. Also data1 signal in Octal/OPI
mode.

SCLKSerial Clock. Oscillating signal generated by a Host that keeps the transmission of data bits in sync.
CS Chip Select. Allows a Host to select individual Device(s) connected to the bus in order to send or receive

data.
QUADWPWrite Protect signal. Used for 4-bit (qio/qout) transactions. Also for data2 signal in Octal/OPI mode.
QUADHDHold signal. Used for 4-bit (qio/qout) transactions. Also for data3 signal in Octal/OPI mode.
DATA4Data4 signal in Octal/OPI mode.
DATA5Data5 signal in Octal/OPI mode.
DATA6Data6 signal in Octal/OPI mode.
DATA7Data7 signal in Octal/OPI mode.
As-
ser-
tion

The action of activating a line.

De-
assertion

The action of returning the line back to inactive (back to idle) status.

Trans-
ac-
tion

One instance of a Host asserting a CS line, transferring data to and from a Device, and de-asserting the CS
line. Transactions are atomic, which means they can never be interrupted by another transaction.

Launch
edge

Edge of the clock at which the source register launches the signal onto the line.

Latch
edge

Edge of the clock at which the destination register latches in the signal.

Driver Features

The SPI master driver governs communications of Hosts with Devices. The driver supports the following features:
• Multi-threaded environments
• Transparent handling of DMA transfers while reading and writing data
• Automatic time-division multiplexing of data coming from different Devices on the same signal bus, see SPI

Bus Lock.

Warning: The SPI master driver has the concept of multiple Devices connected to a single bus (sharing a
single ESP32-C6 SPI peripheral). As long as each Device is accessed by only one task, the driver is thread safe.
However, if multiple tasks try to access the same SPI Device, the driver is not thread-safe. In this case, it is
recommended to either:

• Refactor your application so that each SPI peripheral is only accessed by a single task at a time. You can
use spi_bus_config_t::isr_cpu_id to register the SPI ISR to the same core as SPI peripheral
related tasks to ensure thread safety.

• Add a mutex lock around the shared Device using xSemaphoreCreateMutex.

Espressif Systems 1188
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SPI Features

SPI Master

SPI Bus Lock To realize the multiplexing of different devices from different drivers, including SPI Master, SPI
Flash, etc., an SPI bus lock is applied on each SPI bus. Drivers can attach their devices to the bus with the arbitration
of the lock.
Each bus lock is initialized with a BG (background) service registered. All devices that request transactions on the
bus should wait until the BG is successfully disabled.

• For the SPI1 bus, the BG is the cache. The bus lock will disable the cache before device operations start,
and enable it again after the device releases the lock. No devices on SPI1 are allowed to use ISR, since it is
meaningless for the task to yield to other tasks when the cache is disabled.
The SPI Master driver hasn't supported SPI1 bus. Only the SPI Flash driver can attach to the bus.

• For other buses, the driver can register the ISR as a BG. If a device task requests exclusive bus access, the bus
lock will block the task, disable the ISR, and then unblock the task. After the task releases the lock, the lock
will try to re-enable the ISR if there are still pending transactions in the ISR.

SPI Transactions

An SPI bus transaction consists of five phases which can be found in the table below. Any of these phases can be
skipped.

Phase Description
Com-
mand

In this phase, a command (0-16 bit) is written to the bus by the Host.

Ad-
dress

In this phase, an address (0-32 bit) is transmitted over the bus by the Host.

Dummy This phase is configurable and is used to meet the timing requirements.
Write Host sends data to a Device. This data follows the optional command and address phases and is indis-

tinguishable from them at the electrical level.
Read Device sends data to its Host.

The attributes of a transaction are determined by the bus configuration structure spi_bus_config_t, de-
vice configuration structure spi_device_interface_config_t, and transaction configuration structure
spi_transaction_t.
An SPI Host can send full-duplex transactions, during which the read and write phases occur simultaneously. The
total transaction length is determined by the sum of the following members:

• spi_device_interface_config_t::command_bits
• spi_device_interface_config_t::address_bits
• spi_transaction_t::length

While the member spi_transaction_t::rxlength only determines the length of data received into the
buffer.
In half-duplex transactions, the read and write phases are not simultaneous (one direction at a time).
The lengths of the write and read phases are determined by spi_transaction_t::length and
spi_transaction_t::rxlength respectively.
The command and address phases are optional, as not every SPI device requires a command and/or address. This is
reflected in the Device's configuration: if spi_device_interface_config_t::command_bits and/or
spi_device_interface_config_t::address_bits are set to zero, no command or address phase will
occur.
The read and write phases can also be optional, as not every transaction requires both writing and reading data. If
spi_transaction_t::rx_buffer is NULL and SPI_TRANS_USE_RXDATA is not set, the read phase is

Espressif Systems 1189
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

skipped. If spi_transaction_t::tx_buffer is NULL and SPI_TRANS_USE_TXDATA is not set, the
write phase is skipped.
The driver supports two types of transactions: the interrupt transactions and polling transactions. The programmer
can choose to use a different transaction type per Device. If your Device requires both transaction types, see Notes
on Sending Mixed Transactions to the Same Device.

Interrupt Transactions Interrupt transactions will block the transaction routine until the transaction completes,
thus allowing the CPU to run other tasks.
An application task can queue multiple transactions, and the driver will automatically handle them one-by-one in the
interrupt service routine (ISR). It allows the task to switch to other procedures until all the transactions complete.

Polling Transactions Polling transactions do not use interrupts. The routine keeps polling the SPI Host's status
bit until the transaction is finished.
All the tasks that use interrupt transactions can be blocked by the queue. At this point, they will need to wait for the
ISR to run twice before the transaction is finished. Polling transactions save time otherwise spent on queue handling
and context switching, which results in smaller transaction duration. The disadvantage is that the CPU is busy while
these transactions are in progress.
The spi_device_polling_end() routine needs an overhead of at least 1 us to unblock other tasks when
the transaction is finished. It is strongly recommended to wrap a series of polling transactions using the functions
spi_device_acquire_bus() and spi_device_release_bus() to avoid the overhead. For more in-
formation, see Bus Acquiring.

Transaction Line Mode Supported line modes for ESP32-C6 are listed as follows, to make use of these modes,
set the member flags in the struct spi_transaction_t as shown in the Transaction Flag column. If you want
to check if corresponding IO pins are set or not, set the member flags in the spi_bus_config_t as shown in the
Bus IO setting Flag column.

Mode
name

Command
Line Width

Address
LineWidth

Data
Line
Width

Transaction Flag Bus IO setting
Flag

Nor-
mal
SPI

1 1 1 0 0

Dual
Output

1 1 2 SPI_TRANS_MODE_DIO SPICOM-
MON_BUSFLAG_DUAL

Dual
I/O

1 2 2 SPI_TRANS_MODE_DIO |
SPI_TRANS_MULTILINE_ADDR

Quad
Output

1 1 4 SPI_TRANS_MODE_QIO SPICOM-
MON_BUSFLAG_QUAD

Quad
I/O

1 4 4 SPI_TRANS_MODE_QIO |
SPI_TRANS_MULTILINE_ADDR

Command and Address Phases During the command and address phases, the members
spi_transaction_t::cmd and spi_transaction_t::addr are sent to the bus, nothing is read at this
time. The default lengths of the command and address phases are set in spi_device_interface_config_t
by calling spi_bus_add_device(). If the flags SPI_TRANS_VARIABLE_CMD and
SPI_TRANS_VARIABLE_ADDR in the member spi_transaction_t::flags are not set, the driver
automatically sets the length of these phases to default values during Device initialization.
If the lengths of the command and address phases need to be variable, declare the
struct spi_transaction_ext_t, set the flags SPI_TRANS_VARIABLE_CMD and/or
SPI_TRANS_VARIABLE_ADDR in the member spi_transaction_ext_t::base and configure the rest

Espressif Systems 1190
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

of base as usual. Then the length of each phase will be equal to spi_transaction_ext_t::command_bits
and spi_transaction_ext_t::address_bits set in the struct spi_transaction_ext_t.
If the command and address phase need to be as the same number of lines as data phase, you need to
set SPI_TRANS_MULTILINE_CMD and/or SPI_TRANS_MULTILINE_ADDR to the flags member in the struct
spi_transaction_t. Also see Transaction Line Mode.

Write and Read Phases Normally, the data that needs to be transferred to or from a Device will be read
from or written to a chunk of memory indicated by the members spi_transaction_t::rx_buffer and
spi_transaction_t::tx_buffer. If DMA is enabled for transfers, the buffers are required to be:

1. Allocated in DMA-capable internal memory. If external PSRAM is enabled, this means using pvPortMal-
locCaps(size, MALLOC_CAP_DMA).

2. 32-bit aligned (staring from a 32-bit boundary and having a length of multiples of 4 bytes).
If these requirements are not satisfied, the transaction efficiency will be affected due to the allocation and copying of
temporary buffers.
If using more than one data lines to transmit, please set SPI_DEVICE_HALFDUPLEX flag for the member flags in the
struct spi_device_interface_config_t. And the member flags in the struct spi_transaction_t
should be set as described in Transaction Line Mode.

Note: Half-duplex transactions with both read and write phases are not supported. Please use full duplex mode.

Bus Acquiring Sometimes you might want to send SPI transactions exclusively and continuously so that it
takes as little time as possible. For this, you can use bus acquiring, which helps to suspend transactions (both
polling or interrupt) to other devices until the bus is released. To acquire and release a bus, use the functions
spi_device_acquire_bus() and spi_device_release_bus().

Driver Usage

• Initialize an SPI bus by calling the function spi_bus_initialize(). Make sure to set the correct I/O
pins in the struct spi_bus_config_t. Set the signals that are not needed to -1.

• Register a Device connected to the bus with the driver by calling the function spi_bus_add_device().
Make sure to configure any timing requirements the device might need with the parameter dev_config.
You should now have obtained the Device's handle which will be used when sending a transaction to it.

• To interact with the Device, fill one or more spi_transaction_t structs with any transaction parameters
required. Then send the structs either using a polling transaction or an interrupt transaction:

– Interrupt Either queue all transactions by calling the function spi_device_queue_trans() and,
at a later time, query the result using the function spi_device_get_trans_result(), or
handle all requests synchronously by feeding them into spi_device_transmit().

– Polling Call the function spi_device_polling_transmit() to send polling transactions.
Alternatively, if you want to insert something in between, send the transactions by using
spi_device_polling_start() and spi_device_polling_end().

• (Optional) To perform back-to-back transactions with a Device, call the function
spi_device_acquire_bus() before sending transactions and spi_device_release_bus()
after the transactions have been sent.

• (Optional) To unload the driver for a certain Device, call spi_bus_remove_device() with the Device
handle as an argument.

• (Optional) To remove the driver for a bus, make sure no more drivers are attached and call
spi_bus_free().

The example code for the SPI master driver can be found in the peripherals/spi_master directory of ESP-IDF exam-
ples.

Espressif Systems 1191
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/spi_master
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Transactions with Data Not Exceeding 32 Bits When the transaction data size is equal to or
less than 32 bits, it will be sub-optimal to allocate a buffer for the data. The data can be di-
rectly stored in the transaction struct instead. For transmitted data, it can be achieved by using the
spi_transaction_t::tx_datamember and setting the SPI_TRANS_USE_TXDATA flag on the transmis-
sion. For received data, use spi_transaction_t::rx_data and set SPI_TRANS_USE_RXDATA. In both
cases, do not touch the spi_transaction_t::tx_buffer or spi_transaction_t::rx_buffer
members, because they use the same memory locations as spi_transaction_t::tx_data and
spi_transaction_t::rx_data.

Transactions with Integers Other Than uint8_t An SPI Host reads and writes data into memory byte by byte.
By default, data is sent with the most significant bit (MSB) first, as LSB first used in rare cases. If a value less than 8
bits needs to be sent, the bits should be written into memory in the MSB first manner.
For example, if 0b00010 needs to be sent, it should be written into a uint8_t variable, and the length for reading
should be set to 5 bits. The Device will still receive 8 bits with 3 additional "random" bits, so the reading must be
performed correctly.
On top of that, ESP32-C6 is a little-endian chip, which means that the least significant byte of uint16_t and
uint32_t variables is stored at the smallest address. Hence, if uint16_t is stored in memory, bits [7:0] are sent
first, followed by bits [15:8].
For cases when the data to be transmitted has the size differing from uint8_t arrays, the following macros can be
used to transform data to the format that can be sent by the SPI driver directly:

• SPI_SWAP_DATA_TX for data to be transmitted
• SPI_SWAP_DATA_RX for data received

Notes on Sending Mixed Transactions to the Same Device To reduce coding complexity, send only one type of
transactions (interrupt or polling) to one Device. However, you still can send both interrupt and polling transactions
alternately. The notes below explain how to do this.
The polling transactions should be initiated only after all the polling and interrupt transactions are finished.
Since an unfinished polling transaction blocks other transactions, please do not forget to call the function
spi_device_polling_end() after spi_device_polling_start() to allow other transactions or to
allow other Devices to use the bus. Remember that if there is no need to switch to other tasks during your polling
transaction, you can initiate a transaction with spi_device_polling_transmit() so that it will be ended
automatically.
In-flight polling transactions are disturbed by the ISR operation to accommodate interrupt
transactions. Always make sure that all the interrupt transactions sent to the ISR are fin-
ished before you call spi_device_polling_start(). To do that, you can keep calling
spi_device_get_trans_result() until all the transactions are returned.
To have better control of the calling sequence of functions, send mixed transactions to the same Device only within
a single task.

GPIOMatrix and IO_MUX Most of chip's peripheral signals have direct connection to their dedicated IO_MUX
pins. However, the signals can also be routed to any other available pins using the less direct GPIO matrix. If at least
one signal is routed through the GPIO matrix, then all signals will be routed through it.
When an SPI Host is set to 80MHz or lower frequencies, routing SPI pins via GPIO matrix will behave the same
comparing to routing them via IOMUX.
The IO_MUX pins for SPI buses are given below.

Espressif Systems 1192
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Pin Name GPIO Number (SPI2)
CS01 16
SCLK 6
MISO 2
MOSI 7
QUADWP 5
QUADHD 4

Transfer Speed Considerations

There are three factors limiting the transfer speed:
• Transaction interval
• SPI clock frequency
• Cache miss of SPI functions, including callbacks

The main parameter that determines the transfer speed for large transactions is clock frequency. For multiple small
transactions, the transfer speed is mostly determined by the length of transaction intervals.

Transaction Duration Transaction duration includes setting up SPI peripheral registers, copying data to FIFOs or
setting up DMA links, and the time for SPI transaction.
Interrupt transactions allow appending extra overhead to accommodate the cost of FreeRTOS queues and the time
needed for switching between tasks and the ISR.
For interrupt transactions, the CPU can switch to other tasks when a transaction is in progress. This saves the CPU
time but increases the transaction duration. See Interrupt Transactions. For polling transactions, it does not block
the task but allows to do polling when the transaction is in progress. For more information, see Polling Transactions.
If DMA is enabled, setting up the linked list requires about 2 us per transaction. When a master is transferring data,
it automatically reads the data from the linked list. If DMA is not enabled, the CPU has to write and read each byte
from the FIFO by itself. Usually, this is faster than 2 us, but the transaction length is limited to 64 bytes for both
write and read.
Typical transaction duration for one byte of data are given below.

• Interrupt Transaction via DMA: 34 µs.
• Interrupt Transaction via CPU: 32 µs.
• Polling Transaction via DMA: 17 µs.
• Polling Transaction via CPU: 15 µs.

Note that these data are tested with CONFIG_SPI_MASTER_ISR_IN_IRAM enabled. SPI transaction related code
are placed in the internal memory. If this option is turned off (for example, for internal memory optimization), the
transaction duration may be affected.

SPI Clock Frequency Clock source of the GPSPI peripherals can be selected by setting
spi_device_handle_t::cfg::clock_source. You can refer to spi_clock_source_t to know
the supported clock sources. By default driver will set spi_device_handle_t::cfg::clock_source to
SPI_CLK_SRC_DEFAULT. This usually stands for the highest frequency among GPSPI clock sources. Its value will
be different among chips.
Actual clock frequency of a device may not be exactly equal to the number you set, it will be re-calculated by the
driver to the nearest hardware compatible number, and not larger than the clock frequency of the clock source. You
can call spi_device_get_actual_freq() to know the actual frequency computed by the driver.
Theoretical maximum transfer speed of Write or Read phase can be calculated according to the table below:

1 Only the first Device attached to the bus can use the CS0 pin.

Espressif Systems 1193
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Line Width of Write/Read phase Speed (Bps)
1-Line SPI Frequency / 8
2-Line SPI Frequency / 4
4-Line SPI Frequency / 2

The transfer speed calculation of other phases(command, address, dummy) are similar.

Cache Miss The default config puts only the ISR into the IRAM. Other SPI related functions, including the driver
itself and the callback, might suffer from cache misses and will need to wait until the code is read from flash. Select
CONFIG_SPI_MASTER_IN_IRAM to put the whole SPI driver into IRAM and put the entire callback(s) and its callee
functions into IRAM to prevent cache misses.

Note: SPI driver implementation is based on FreeRTOSAPIs, to useCONFIG_SPI_MASTER_IN_IRAM, you should
not enable CONFIG_FREERTOS_PLACE_FUNCTIONS_INTO_FLASH.

For an interrupt transaction, the overall cost is 20+8n/Fspi[MHz] [us] for n bytes transferred in one transaction.
Hence, the transferring speed is: n/(20+8n/Fspi). An example of transferring speed at 8 MHz clock speed is given
in the following table.

Frequency
(MHz)

Transaction Interval
(us)

Transaction Length
(bytes)

Total Time
(us)

Total Speed
(KBps)

8 25 1 26 38.5
8 25 8 33 242.4
8 25 16 41 490.2
8 25 64 89 719.1
8 25 128 153 836.6

When a transaction length is short, the cost of transaction interval is high. If possible, try to squash several short
transactions into one transaction to achieve a higher transfer speed.
Please note that the ISR is disabled during flash operation by default. To keep sending transactions during
flash operations, enable CONFIG_SPI_MASTER_ISR_IN_IRAM and set ESP_INTR_FLAG_IRAM in the member
spi_bus_config_t::intr_flags. In this case, all the transactions queued before starting flash operations
will be handled by the ISR in parallel. Also note that the callback of each Device and their callee functions should
be in IRAM, or your callback will crash due to cache miss. For more details, see IRAM-Safe Interrupt Handlers.

Application Example

The code example for using the SPI master half duplex mode to read/write a AT93C46D EEPROM (8-bit mode)
can be found in the peripherals/spi_master/hd_eeprom directory of ESP-IDF examples.

API Reference - SPI Common

Header File
• components/hal/include/hal/spi_types.h

Structures

struct spi_line_mode_t
Line mode of SPI transaction phases: CMD, ADDR, DOUT/DIN.

Espressif Systems 1194
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/spi_master/hd_eeprom
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/spi_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint8_t cmd_lines
The line width of command phase, e.g. 2-line-cmd-phase.

uint8_t addr_lines
The line width of address phase, e.g. 1-line-addr-phase.

uint8_t data_lines
The line width of data phase, e.g. 4-line-data-phase.

Type Definitions

typedef soc_periph_spi_clk_src_t spi_clock_source_t
Type of SPI clock source.

Enumerations

enum spi_host_device_t

Enum with the three SPI peripherals that are software-accessible in it.
Values:

enumerator SPI1_HOST
SPI1.

enumerator SPI2_HOST
SPI2.

enumerator SPI_HOST_MAX
invalid host value

enum spi_event_t

SPI Events.
Values:

enumerator SPI_EV_BUF_TX
The buffer has sent data to master.

enumerator SPI_EV_BUF_RX
The buffer has received data from master.

enumerator SPI_EV_SEND_DMA_READY
Slave has loaded its TX data buffer to the hardware (DMA).

enumerator SPI_EV_SEND
Master has received certain number of the data, the number is determined by Master.

enumerator SPI_EV_RECV_DMA_READY
Slave has loaded its RX data buffer to the hardware (DMA).

Espressif Systems 1195
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator SPI_EV_RECV
Slave has received certain number of data from master, the number is determined by Master.

enumerator SPI_EV_CMD9
Received CMD9 from master.

enumerator SPI_EV_CMDA
Received CMDA from master.

enumerator SPI_EV_TRANS
A transaction has done.

enum spi_command_t

SPI command.
Values:

enumerator SPI_CMD_HD_WRBUF

enumerator SPI_CMD_HD_RDBUF

enumerator SPI_CMD_HD_WRDMA

enumerator SPI_CMD_HD_RDDMA

enumerator SPI_CMD_HD_SEG_END

enumerator SPI_CMD_HD_EN_QPI

enumerator SPI_CMD_HD_WR_END

enumerator SPI_CMD_HD_INT0

enumerator SPI_CMD_HD_INT1

enumerator SPI_CMD_HD_INT2

enum spi_sampling_point_t

SPI master RX sample point mode configuration.
Values:

enumerator SPI_SAMPLING_POINT_PHASE_0
Data sampling point at 50% cycle delayed then standard timing, (default).

enumerator SPI_SAMPLING_POINT_PHASE_1
Data sampling point follows standard SPI timing in master mode.

Espressif Systems 1196
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/driver/spi/include/driver/spi_common.h

Functions
esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *bus_config,

spi_dma_chan_t dma_chan)
Initialize a SPI bus.

Warning: SPI0/1 is not supported

Warning: If a DMA channel is selected, any transmit and receive buffer used should be allocated in
DMA-capable memory.

Warning: The ISR of SPI is always executed on the core which calls this function. Never starve the ISR
on this core or the SPI transactions will not be handled.

Parameters
• host_id -- SPI peripheral that controls this bus
• bus_config -- Pointer to a spi_bus_config_t struct specifying how the host should be
initialized

• dma_chan -- - Selecting a DMA channel for an SPI bus allows transactions on the bus
with size only limited by the amount of internal memory.
– Selecting SPI_DMA_DISABLED limits the size of transactions.
– Set to SPI_DMA_DISABLED if only the SPI flash uses this bus.
– Set to SPI_DMA_CH_AUTO to let the driver to allocate the DMA channel.

Returns
• ESP_ERR_INVALID_ARG if configuration is invalid
• ESP_ERR_INVALID_STATE if host already is in use
• ESP_ERR_NOT_FOUND if there is no available DMA channel
• ESP_ERR_NO_MEM if out of memory
• ESP_OK on success

esp_err_t spi_bus_free(spi_host_device_t host_id)
Free a SPI bus.

Warning: In order for this to succeed, all devices have to be removed first.

Parameters host_id -- SPI peripheral to free
Returns

• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_INVALID_STATE if bus hasn't been initialized before, or not all devices on
the bus are freed

• ESP_OK on success

Structures

struct spi_bus_config_t
This is a configuration structure for a SPI bus.

Espressif Systems 1197
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/spi/include/driver/spi_common.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

You can use this structure to specify the GPIO pins of the bus. Normally, the driver will use the GPIO matrix
to route the signals. An exception is made when all signals either can be routed through the IO_MUX or are
-1. In that case, the IO_MUX is used, allowing for >40MHz speeds.

Note: Be advised that the slave driver does not use the quadwp/quadhd lines and fields in spi_bus_config_t
refering to these lines will be ignored and can thus safely be left uninitialized.

Public Members

int mosi_io_num
GPIO pin for Master Out Slave In (=spi_d) signal, or -1 if not used.

int data0_io_num
GPIO pin for spi data0 signal in quad/octal mode, or -1 if not used.

int miso_io_num
GPIO pin for Master In Slave Out (=spi_q) signal, or -1 if not used.

int data1_io_num
GPIO pin for spi data1 signal in quad/octal mode, or -1 if not used.

int sclk_io_num
GPIO pin for SPI Clock signal, or -1 if not used.

int quadwp_io_num
GPIO pin for WP (Write Protect) signal, or -1 if not used.

int data2_io_num
GPIO pin for spi data2 signal in quad/octal mode, or -1 if not used.

int quadhd_io_num
GPIO pin for HD (Hold) signal, or -1 if not used.

int data3_io_num
GPIO pin for spi data3 signal in quad/octal mode, or -1 if not used.

int data4_io_num
GPIO pin for spi data4 signal in octal mode, or -1 if not used.

int data5_io_num
GPIO pin for spi data5 signal in octal mode, or -1 if not used.

int data6_io_num
GPIO pin for spi data6 signal in octal mode, or -1 if not used.

int data7_io_num
GPIO pin for spi data7 signal in octal mode, or -1 if not used.

Espressif Systems 1198
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int max_transfer_sz
Maximum transfer size, in bytes. Defaults to 4092 if 0 when DMA enabled, or to
SOC_SPI_MAXIMUM_BUFFER_SIZE if DMA is disabled.

uint32_t flags
Abilities of bus to be checked by the driver. Or-ed value of SPICOMMON_BUSFLAG_* flags.

intr_cpu_id_t isr_cpu_id
Select cpu core to register SPI ISR.

int intr_flags
Interrupt flag for the bus to set the priority, and IRAM attribute, see esp_intr_alloc.h. Note that
the EDGE, INTRDISABLED attribute are ignored by the driver. Note that if ESP_INTR_FLAG_IRAM
is set, ALL the callbacks of the driver, and their callee functions, should be put in the IRAM.

Macros

SPI_MAX_DMA_LEN

SPI_SWAP_DATA_TX(DATA, LEN)
Transform unsigned integer of length <= 32 bits to the format which can be sent by the SPI driver directly.
E.g. to send 9 bits of data, you can:

uint16_t data = SPI_SWAP_DATA_TX(0x145, 9);

Then points tx_buffer to &data.
Parameters

• DATA -- Data to be sent, can be uint8_t, uint16_t or uint32_t.
• LEN -- Length of data to be sent, since the SPI peripheral sends from the MSB, this helps
to shift the data to the MSB.

SPI_SWAP_DATA_RX(DATA, LEN)
Transform received data of length <= 32 bits to the format of an unsigned integer.
E.g. to transform the data of 15 bits placed in a 4-byte array to integer:

uint16_t data = SPI_SWAP_DATA_RX(*(uint32_t*)t->rx_data, 15);

Parameters
• DATA -- Data to be rearranged, can be uint8_t, uint16_t or uint32_t.
• LEN -- Length of data received, since the SPI peripheral writes from the MSB, this helps
to shift the data to the LSB.

SPICOMMON_BUSFLAG_SLAVE

Initialize I/O in slave mode.

SPICOMMON_BUSFLAG_MASTER

Initialize I/O in master mode.

SPICOMMON_BUSFLAG_IOMUX_PINS

Check using iomux pins. Or indicates the pins are configured through the IO mux rather than GPIO matrix.

Espressif Systems 1199
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SPICOMMON_BUSFLAG_GPIO_PINS

Force the signals to be routed through GPIOmatrix. Or indicates the pins are routed through the GPIOmatrix.

SPICOMMON_BUSFLAG_SCLK

Check existing of SCLK pin. Or indicates CLK line initialized.

SPICOMMON_BUSFLAG_MISO

Check existing of MISO pin. Or indicates MISO line initialized.

SPICOMMON_BUSFLAG_MOSI

Check existing of MOSI pin. Or indicates MOSI line initialized.

SPICOMMON_BUSFLAG_DUAL

Check MOSI and MISO pins can output. Or indicates bus able to work under DIO mode.

SPICOMMON_BUSFLAG_WPHD

Check existing of WP and HD pins. Or indicates WP & HD pins initialized.

SPICOMMON_BUSFLAG_QUAD

Check existing of MOSI/MISO/WP/HD pins as output. Or indicates bus able to work under QIO mode.

SPICOMMON_BUSFLAG_IO4_IO7

Check existing of IO4~IO7 pins. Or indicates IO4~IO7 pins initialized.

SPICOMMON_BUSFLAG_OCTAL

Check existing of MOSI/MISO/WP/HD/SPIIO4/SPIIO5/SPIIO6/SPIIO7 pins as output. Or indicates bus
able to work under octal mode.

SPICOMMON_BUSFLAG_NATIVE_PINS

Type Definitions

typedef spi_common_dma_t spi_dma_chan_t

Enumerations

enum spi_common_dma_t

SPI DMA channels.
Values:

enumerator SPI_DMA_DISABLED
Do not enable DMA for SPI.

enumerator SPI_DMA_CH_AUTO
Enable DMA, channel is automatically selected by driver.

Espressif Systems 1200
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference - SPI Master

Header File
• components/driver/spi/include/driver/spi_master.h

Functions
esp_err_t spi_bus_add_device(spi_host_device_t host_id, const spi_device_interface_config_t *dev_config,

spi_device_handle_t *handle)
Allocate a device on a SPI bus.
This initializes the internal structures for a device, plus allocates a CS pin on the indicated SPI master peripheral
and routes it to the indicated GPIO. All SPI master devices have three CS pins and can thus control up to three
devices.

Note: While in general, speeds up to 80MHz on the dedicated SPI pins and 40MHz on GPIO-matrix-routed
pins are supported, full-duplex transfers routed over the GPIO matrix only support speeds up to 26MHz.

Parameters
• host_id -- SPI peripheral to allocate device on
• dev_config -- SPI interface protocol config for the device
• handle -- Pointer to variable to hold the device handle

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid or configuration combi-
nation is not supported (e.g. dev_config->post_cb isn't set while flag
SPI_DEVICE_NO_RETURN_RESULT is enabled)

• ESP_ERR_INVALID_STATE if selected clock source is unavailable or spi bus not ini-
tialized

• ESP_ERR_NOT_FOUND if host doesn't have any free CS slots
• ESP_ERR_NO_MEM if out of memory
• ESP_OK on success

esp_err_t spi_bus_remove_device(spi_device_handle_t handle)
Remove a device from the SPI bus.

Parameters handle -- Device handle to free
Returns

• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_INVALID_STATE if device already is freed
• ESP_OK on success

esp_err_t spi_device_queue_trans(spi_device_handle_t handle, spi_transaction_t *trans_desc,
TickType_t ticks_to_wait)

Queue a SPI transaction for interrupt transaction execution. Get the result by
spi_device_get_trans_result.

Note: Normally a device cannot start (queue) polling and interrupt transactions simultaneously.

Parameters
• handle -- Device handle obtained using spi_host_add_dev
• trans_desc -- Description of transaction to execute
• ticks_to_wait -- Ticks to wait until there's room in the queue; use port-
MAX_DELAY to never time out.

Returns

Espressif Systems 1201
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/spi/include/driver/spi_master.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_ARG if parameter is invalid. This can happen if
SPI_TRANS_CS_KEEP_ACTIVE flag is specified while the bus was not acquired
(spi_device_acquire_bus() should be called first)

• ESP_ERR_TIMEOUT if there was no room in the queue before ticks_to_wait expired
• ESP_ERR_NO_MEM if allocating DMA-capable temporary buffer failed
• ESP_ERR_INVALID_STATE if previous transactions are not finished
• ESP_OK on success

esp_err_t spi_device_get_trans_result(spi_device_handle_t handle, spi_transaction_t **trans_desc,
TickType_t ticks_to_wait)

Get the result of a SPI transaction queued earlier by spi_device_queue_trans.
This routine will wait until a transaction to the given device succesfully completed. It will then return the
description of the completed transaction so software can inspect the result and e.g. free the memory or re-use
the buffers.

Parameters
• handle -- Device handle obtained using spi_host_add_dev
• trans_desc -- Pointer to variable able to contain a pointer to the description of the
transaction that is executed. The descriptor should not be modified until the descriptor is
returned by spi_device_get_trans_result.

• ticks_to_wait -- Ticks to wait until there's a returned item; use portMAX_DELAY
to never time out.

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_NOT_SUPPORTED if flag SPI_DEVICE_NO_RETURN_RESULT is set
• ESP_ERR_TIMEOUT if there was no completed transaction before ticks_to_wait expired
• ESP_OK on success

esp_err_t spi_device_transmit(spi_device_handle_t handle, spi_transaction_t *trans_desc)
Send a SPI transaction, wait for it to complete, and return the result.
This function is the equivalent of calling spi_device_queue_trans() followed by spi_device_get_trans_result().
Do not use this when there is still a transaction separately queued (started) from spi_device_queue_trans() or
polling_start/transmit that hasn't been finalized.

Note: This function is not thread safe when multiple tasks access the same SPI device. Normally a device
cannot start (queue) polling and interrupt transactions simutanuously.

Parameters
• handle -- Device handle obtained using spi_host_add_dev
• trans_desc -- Description of transaction to execute

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_OK on success

esp_err_t spi_device_polling_start(spi_device_handle_t handle, spi_transaction_t *trans_desc,
TickType_t ticks_to_wait)

Immediately start a polling transaction.

Note: Normally a device cannot start (queue) polling and interrupt transactions simutanuously. Moreover, a
device cannot start a new polling transaction if another polling transaction is not finished.

Parameters
• handle -- Device handle obtained using spi_host_add_dev
• trans_desc -- Description of transaction to execute

Espressif Systems 1202
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ticks_to_wait -- Ticks to wait until there's room in the queue; currently only port-
MAX_DELAY is supported.

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid. This can happen if
SPI_TRANS_CS_KEEP_ACTIVE flag is specified while the bus was not acquired
(spi_device_acquire_bus() should be called first)

• ESP_ERR_TIMEOUT if the device cannot get control of the bus before
ticks_to_wait expired

• ESP_ERR_NO_MEM if allocating DMA-capable temporary buffer failed
• ESP_ERR_INVALID_STATE if previous transactions are not finished
• ESP_OK on success

esp_err_t spi_device_polling_end(spi_device_handle_t handle, TickType_t ticks_to_wait)
Poll until the polling transaction ends.
This routine will not return until the transaction to the given device has succesfully completed. The task is not
blocked, but actively busy-spins for the transaction to be completed.

Parameters
• handle -- Device handle obtained using spi_host_add_dev
• ticks_to_wait -- Ticks to wait until there's a returned item; use portMAX_DELAY
to never time out.

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_TIMEOUT if the transaction cannot finish before ticks_to_wait expired
• ESP_OK on success

esp_err_t spi_device_polling_transmit(spi_device_handle_t handle, spi_transaction_t *trans_desc)
Send a polling transaction, wait for it to complete, and return the result.
This function is the equivalent of calling spi_device_polling_start() followed by spi_device_polling_end(). Do
not use this when there is still a transaction that hasn't been finalized.

Note: This function is not thread safe when multiple tasks access the same SPI device. Normally a device
cannot start (queue) polling and interrupt transactions simutanuously.

Parameters
• handle -- Device handle obtained using spi_host_add_dev
• trans_desc -- Description of transaction to execute

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_TIMEOUT if the device cannot get control of the bus
• ESP_ERR_NO_MEM if allocating DMA-capable temporary buffer failed
• ESP_ERR_INVALID_STATE if previous transactions of same device are not finished
• ESP_OK on success

esp_err_t spi_device_acquire_bus(spi_device_handle_t device, TickType_t wait)
Occupy the SPI bus for a device to do continuous transactions.
Transactions to all other devices will be put off until spi_device_release_bus is called.

Note: The function will wait until all the existing transactions have been sent.

Parameters
• device -- The device to occupy the bus.
• wait -- Time to wait before the the bus is occupied by the device. Currently MUST set
to portMAX_DELAY.

Espressif Systems 1203
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_ERR_INVALID_ARG : wait is not set to portMAX_DELAY.
• ESP_OK : Success.

void spi_device_release_bus(spi_device_handle_t dev)
Release the SPI bus occupied by the device. All other devices can start sending transactions.

Parameters dev -- The device to release the bus.
esp_err_t spi_device_get_actual_freq(spi_device_handle_t handle, int *freq_khz)

Calculate working frequency for specific device.
Parameters

• handle -- SPI device handle
• freq_khz -- [out] output parameter to hold calculated frequency in kHz

Returns
• ESP_ERR_INVALID_ARG : handle or freq_khz parameter is NULL
• ESP_OK : Success

int spi_get_actual_clock(int fapb, int hz, int duty_cycle)
Calculate the working frequency that is most close to desired frequency.

Parameters
• fapb -- The frequency of apb clock, should be APB_CLK_FREQ.
• hz -- Desired working frequency
• duty_cycle -- Duty cycle of the spi clock

Returns Actual working frequency that most fit.
void spi_get_timing(bool gpio_is_used, int input_delay_ns, int eff_clk, int *dummy_o, int

*cycles_remain_o)
Calculate the timing settings of specified frequency and settings.

Note: If **dummy_o* is not zero, it means dummy bits should be applied in half duplex mode, and full
duplex mode may not work.

Parameters
• gpio_is_used -- True if using GPIO matrix, or False if iomux pins are used.
• input_delay_ns -- Input delay from SCLK launch edge to MISO data valid.
• eff_clk -- Effective clock frequency (in Hz) from spi_get_actual_clock().
• dummy_o -- Address of dummy bits used output. Set to NULL if not needed.
• cycles_remain_o -- Address of cycles remaining (after dummy bits are used) output.
– -1 If too many cycles remaining, suggest to compensate half a clock.
– 0 If no remaining cycles or dummy bits are not used.
– positive value: cycles suggest to compensate.

int spi_get_freq_limit(bool gpio_is_used, int input_delay_ns)
Get the frequency limit of current configurations. SPI master working at this limit is OK, while above the limit,
full duplex mode and DMA will not work, and dummy bits will be aplied in the half duplex mode.

Parameters
• gpio_is_used -- True if using GPIO matrix, or False if native pins are used.
• input_delay_ns -- Input delay from SCLK launch edge to MISO data valid.

Returns Frequency limit of current configurations.
esp_err_t spi_bus_get_max_transaction_len(spi_host_device_t host_id, size_t *max_bytes)

Get max length (in bytes) of one transaction.
Parameters

• host_id -- SPI peripheral
• max_bytes -- [out]Max length of one transaction, in bytes

Espressif Systems 1204
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK: On success
• ESP_ERR_INVALID_ARG: Invalid argument

Structures

struct spi_device_interface_config_t
This is a configuration for a SPI slave device that is connected to one of the SPI buses.

Public Members

uint8_t command_bits
Default amount of bits in command phase (0-16), used when SPI_TRANS_VARIABLE_CMD is not
used, otherwise ignored.

uint8_t address_bits
Default amount of bits in address phase (0-64), used when SPI_TRANS_VARIABLE_ADDR is not
used, otherwise ignored.

uint8_t dummy_bits
Amount of dummy bits to insert between address and data phase.

uint8_t mode
SPI mode, representing a pair of (CPOL, CPHA) configuration:
• 0: (0, 0)
• 1: (0, 1)
• 2: (1, 0)
• 3: (1, 1)

spi_clock_source_t clock_source

Select SPI clock source, SPI_CLK_SRC_DEFAULT by default.

uint16_t duty_cycle_pos
Duty cycle of positive clock, in 1/256th increments (128 = 50%/50% duty). Setting this to 0 (=not setting
it) is equivalent to setting this to 128.

uint16_t cs_ena_pretrans
Amount of SPI bit-cycles the cs should be activated before the transmission (0-16). This only works on
half-duplex transactions.

uint8_t cs_ena_posttrans
Amount of SPI bit-cycles the cs should stay active after the transmission (0-16)

int clock_speed_hz
Clock speed, divisors of the SPI clock_source, in Hz.

int input_delay_ns
Maximum data valid time of slave. The time required between SCLK and MISO valid, including the
possible clock delay from slave to master. The driver uses this value to give an extra delay before the
MISO is ready on the line. Leave at 0 unless you know you need a delay. For better timing performance
at high frequency (over 8MHz), it's suggest to have the right value.

Espressif Systems 1205
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

spi_sampling_point_t sample_point

Sample point tuning of spi master receiving bit.

int spics_io_num
CS GPIO pin for this device, or -1 if not used.

uint32_t flags
Bitwise OR of SPI_DEVICE_* flags.

int queue_size
Transaction queue size. This sets how many transactions can be 'in the air' (queued using
spi_device_queue_trans but not yet finished using spi_device_get_trans_result) at the same time.

transaction_cb_t pre_cb

Callback to be called before a transmission is started.
This callback is called within interrupt context should be in IRAM for best performance, see "Transferring
Speed" section in the SPI Master documentation for full details. If not, the callback may crash during
flash operation when the driver is initialized with ESP_INTR_FLAG_IRAM.

transaction_cb_t post_cb

Callback to be called after a transmission has completed.
This callback is called within interrupt context should be in IRAM for best performance, see "Transferring
Speed" section in the SPI Master documentation for full details. If not, the callback may crash during
flash operation when the driver is initialized with ESP_INTR_FLAG_IRAM.

struct spi_transaction_t
This structure describes one SPI transaction. The descriptor should not be modified until the transaction fin-
ishes.

Public Members

uint32_t flags
Bitwise OR of SPI_TRANS_* flags.

uint16_t cmd
Command data, of which the length is set in the command_bits of spi_device_interface_config_t.
NOTE: this field, used to be "command" in ESP-IDF 2.1 and before, is re-written to be used in
a new way in ESP-IDF 3.0.
Example: write 0x0123 and command_bits=12 to send command 0x12, 0x3_ (in previous version, you
may have to write 0x3_12).

uint64_t addr
Address data, of which the length is set in the address_bits of spi_device_interface_config_t.
NOTE: this field, used to be "address" in ESP-IDF 2.1 and before, is re-written to be used in a
new way in ESP-IDF3.0.
Example: write 0x123400 and address_bits=24 to send address of 0x12, 0x34, 0x00 (in previous version,
you may have to write 0x12340000).

Espressif Systems 1206
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

size_t length
Total data length, in bits.

size_t rxlength
Total data length received, should be not greater than length in full-duplex mode (0 defaults this to the
value of length).

void *user
User-defined variable. Can be used to store eg transaction ID.

const void *tx_buffer
Pointer to transmit buffer, or NULL for no MOSI phase.

uint8_t tx_data[4]
If SPI_TRANS_USE_TXDATA is set, data set here is sent directly from this variable.

void *rx_buffer
Pointer to receive buffer, or NULL for no MISO phase. Written by 4 bytes-unit if DMA is used.

uint8_t rx_data[4]
If SPI_TRANS_USE_RXDATA is set, data is received directly to this variable.

struct spi_transaction_ext_t
This struct is for SPI transactions which may change their address and command length. Please do set the flags
in base to SPI_TRANS_VARIABLE_CMD_ADR to use the bit length here.

Public Members

struct spi_transaction_t base
Transaction data, so that pointer to spi_transaction_t can be converted into spi_transaction_ext_t.

uint8_t command_bits
The command length in this transaction, in bits.

uint8_t address_bits
The address length in this transaction, in bits.

uint8_t dummy_bits
The dummy length in this transaction, in bits.

Macros

SPI_MASTER_FREQ_8M

SPI common used frequency (in Hz)

Note: SPI peripheral only has an integer divider, and the default clock source can be different on other targets,
so the actual frequency may be slightly different from the desired frequency. 8MHz

Espressif Systems 1207
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SPI_MASTER_FREQ_9M

8.89MHz

SPI_MASTER_FREQ_10M

10MHz

SPI_MASTER_FREQ_11M

11.43MHz

SPI_MASTER_FREQ_13M

13.33MHz

SPI_MASTER_FREQ_16M

16MHz

SPI_MASTER_FREQ_20M

20MHz

SPI_MASTER_FREQ_26M

26.67MHz

SPI_MASTER_FREQ_40M

40MHz

SPI_MASTER_FREQ_80M

80MHz

SPI_DEVICE_TXBIT_LSBFIRST

Transmit command/address/data LSB first instead of the default MSB first.

SPI_DEVICE_RXBIT_LSBFIRST

Receive data LSB first instead of the default MSB first.

SPI_DEVICE_BIT_LSBFIRST

Transmit and receive LSB first.

SPI_DEVICE_3WIRE

Use MOSI (=spid) for both sending and receiving data.

SPI_DEVICE_POSITIVE_CS

Make CS positive during a transaction instead of negative.

SPI_DEVICE_HALFDUPLEX

Transmit data before receiving it, instead of simultaneously.

SPI_DEVICE_CLK_AS_CS

Output clock on CS line if CS is active.

Espressif Systems 1208
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SPI_DEVICE_NO_DUMMY

There are timing issue when reading at high frequency (the frequency is related to whether iomux pins are used,
valid time after slave sees the clock).

• In half-duplex mode, the driver automatically inserts dummy bits before reading phase to fix the timing
issue. Set this flag to disable this feature.

• In full-duplex mode, however, the hardware cannot use dummy bits, so there is no way to prevent data
being read from getting corrupted. Set this flag to confirm that you're going to work with output only, or
read without dummy bits at your own risk.

SPI_DEVICE_DDRCLK

SPI_DEVICE_NO_RETURN_RESULT

Don't return the descriptor to the host on completion (use post_cb to notify instead)

SPI_TRANS_MODE_DIO

Transmit/receive data in 2-bit mode.

SPI_TRANS_MODE_QIO

Transmit/receive data in 4-bit mode.

SPI_TRANS_USE_RXDATA

Receive into rx_data member of spi_transaction_t instead into memory at rx_buffer.

SPI_TRANS_USE_TXDATA

Transmit tx_data member of spi_transaction_t instead of data at tx_buffer. Do not set tx_buffer when using
this.

SPI_TRANS_MODE_DIOQIO_ADDR

Also transmit address in mode selected by SPI_MODE_DIO/SPI_MODE_QIO.

SPI_TRANS_VARIABLE_CMD

Use the command_bits in spi_transaction_ext_t rather than default value in
spi_device_interface_config_t.

SPI_TRANS_VARIABLE_ADDR

Use the address_bits in spi_transaction_ext_t rather than default value in
spi_device_interface_config_t.

SPI_TRANS_VARIABLE_DUMMY

Use the dummy_bits in spi_transaction_ext_t rather than default value in
spi_device_interface_config_t.

SPI_TRANS_CS_KEEP_ACTIVE

Keep CS active after data transfer.

SPI_TRANS_MULTILINE_CMD

The data lines used at command phase is the same as data phase (otherwise, only one data line is used at
command phase)

Espressif Systems 1209
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SPI_TRANS_MODE_OCT

Transmit/receive data in 8-bit mode.

SPI_TRANS_MULTILINE_ADDR

The data lines used at address phase is the same as data phase (otherwise, only one data line is used at address
phase)

Type Definitions

typedef void (*transaction_cb_t)(spi_transaction_t *trans)

typedef struct spi_device_t *spi_device_handle_t
Handle for a device on a SPI bus.

2.6.25 SPI Slave Driver

SPI Slave driver is a program that controls ESP32-C6's SPI peripherals while they function as slaves.

Overview of ESP32-C6's SPI peripherals

On ESP32-C6, 1 SPI controllers are available for general purpose usage. A certain SPI controller has an independent
signal bus with the same name.

Terminology

The terms used in relation to the SPI slave driver are given in the table below.

Espressif Systems 1210
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Term Definition
Host The SPI controller peripheral external to ESP32-C6 that initiates SPI trans-

missions over the bus, and acts as an SPI Master.
Device SPI slave device (general purpose SPI controller). Each Device shares the

MOSI, MISO and SCLK signals but is only active on the bus when the Host
asserts the Device's individual CS line.

Bus A signal bus, common to all Devices connected to one Host. In general, a bus
includes the following lines: MISO, MOSI, SCLK, one or more CS lines, and,
optionally, QUADWP and QUADHD. So Devices are connected to the same
lines, with the exception that each Device has its own CS line. Several Devices
can also share one CS line if connected in the daisy-chain manner.

MISO Master In, Slave Out, a.k.a. Q. Data transmission from a Device to Host.
MOSI Master Out, Slave In, a.k.a. D. Data transmission from a Host to Device.
SCLK Serial Clock. Oscillating signal generated by a Host that keeps the transmission

of data bits in sync.
CS Chip Select. Allows a Host to select individual Device(s) connected to the bus

in order to send or receive data.
QUADWP Write Protect signal. Only used for 4-bit (qio/qout) transactions.
QUADHD Hold signal. Only used for 4-bit (qio/qout) transactions.
Assertion The action of activating a line. The opposite action of returning the line back

to inactive (back to idle) is called de-assertion.
Transaction One instance of a Host asserting a CS line, transferring data to and from a

Device, and de-asserting the CS line. Transactions are atomic, which means
they can never be interrupted by another transaction.

Launch Edge Edge of the clock at which the source register launches the signal onto the line.
Latch Edge Edge of the clock at which the destination register latches in the signal.

Driver Features

The SPI slave driver allows using the SPI peripherals as full-duplex Devices. The driver can send/receive transactions
up to 64 bytes in length, or utilize DMA to send/receive longer transactions. However, there are some known issues
related to DMA.
The SPI slave driver supports registering the SPI ISR to a certain CPU core. If multiple tasks try to access the same
SPI Device simultaneously, it is recommended that your application be refactored so that each SPI peripheral is only
accessed by a single task at a time. Please also use spi_bus_config_t::isr_cpu_id to register the SPI ISR
to the same core as SPI peripheral related tasks to ensure thread safety.

SPI Transactions

A full-duplex SPI transaction begins when the Host asserts the CS line and starts sending out clock pulses on the
SCLK line. Every clock pulse, a data bit is shifted from the Host to the Device on the MOSI line and back on the
MISO line at the same time. At the end of the transaction, the Host de-asserts the CS line.
The attributes of a transaction are determined by the configuration structure for an SPI peripheral
acting as a slave device spi_slave_interface_config_t, and transaction configuration structure
spi_slave_transaction_t.
As not every transaction requires both writing and reading data, you can choose to configure
the spi_transaction_t structure for TX only, RX only, or TX and RX transactions. If
spi_slave_transaction_t::rx_buffer is set to NULL, the read phase will be skipped. Similarly, if
spi_slave_transaction_t::tx_buffer is set to NULL, the write phase will be skipped.

Note: A Host should not start a transaction before its Device is ready for receiving data. It is recommended to use
another GPIO pin for a handshake signal to sync the Devices. For more details, see Transaction Interval.

Espressif Systems 1211
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Driver Usage

• Initialize an SPI peripheral as a Device by calling the function spi_slave_initialize(). Make sure
to set the correct I/O pins in the struct bus_config. Set the unused signals to -1.

• Before initiating transactions, fill one or more spi_slave_transaction_t structs with the transaction
parameters required. Either queue all transactions by calling the function spi_slave_queue_trans()
and, at a later time, query the result by using the function spi_slave_get_trans_result(), or handle
all requests individually by feeding them into spi_slave_transmit(). The latter two functions will be
blocked until the Host has initiated and finished a transaction, causing the queued data to be sent and received.

• (Optional) To unload the SPI slave driver, call spi_slave_free().

Transaction Data and Master/Slave Length Mismatches

Normally, the data that needs to be transferred to or from a Device is read or written to
a chunk of memory indicated by the spi_slave_transaction_t::rx_buffer and
spi_slave_transaction_t::tx_buffer. The SPI driver can be configured to use DMA for transfers,
in which case these buffers must be allocated in DMA-capable memory using pvPortMallocCaps(size,
MALLOC_CAP_DMA).
The amount of data that the driver can read or write to the buffers is limited by
spi_slave_transaction_t::length. However, this member does not define the actual length
of an SPI transaction. A transaction's length is determined by the clock and CS lines driven by the Host.
The actual length of the transmission can be read only after a transaction is finished from the member
spi_slave_transaction_t::trans_len.
If the length of the transmission is greater than the buffer length, only the initial number of bits speci-
fied in the spi_slave_transaction_t::length member will be sent and received. In this case,
spi_slave_transaction_t::trans_len is set to spi_slave_transaction_t::length
instead of the actual transaction length. To meet the actual transaction length require-
ments, set spi_slave_transaction_t::length to a value greater than the maximum
spi_slave_transaction_t::trans_len expected. If the transmission length is shorter than the
buffer length, only the data equal to the length of the buffer will be transmitted.

GPIOMatrix and IO_MUX Most of chip's peripheral signals have direct connection to their dedicated IO_MUX
pins. However, the signals can also be routed to any other available pins using the less direct GPIO matrix. If at least
one signal is routed through the GPIO matrix, then all signals will be routed through it.
When an SPI Host is set to 80 MHz or lower frequencies, routing SPI pins via GPIO matrix will behave the same
compared to routing them via IO_MUX.
The IO_MUX pins for SPI buses are given below.

Pin Name GPIO Number (SPI2)
CS0 16
SCLK 6
MISO 2
MOSI 7
QUADWP 5
QUADHD 4

Speed and Timing Considerations

Transaction Interval The ESP32-C6 SPI slave peripherals are designed as general purpose Devices controlled by
a CPU. As opposed to dedicated slaves, CPU-based SPI Devices have a limited number of pre-defined registers. All
transactions must be handled by the CPU, which means that the transfers and responses are not real-time, and there
might be noticeable latency.

Espressif Systems 1212
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

As a solution, a Device's response rate can be doubled by using the functions spi_slave_queue_trans() and
then spi_slave_get_trans_result() instead of using spi_slave_transmit().
You can also configure a GPIO pin through which the Device will signal to the Host when it is ready for a new
transaction. A code example of this can be found in peripherals/spi_slave.

SCLK Frequency Requirements The SPI slaves are designed to operate at up to 40 MHz. The data cannot be
recognized or received correctly if the clock is too fast or does not have a 50% duty cycle.

Restrictions and Known Issues

1. If DMA is enabled, the rx buffer should be word-aligned (starting from a 32-bit boundary and having a length
of multiples of 4 bytes). Otherwise, DMA may write incorrectly or not in a boundary aligned manner. The
driver reports an error if this condition is not satisfied.
Also, a Host should write lengths that are multiples of 4 bytes. The data with inappropriate lengths will be
discarded.

Application Example

The code example for Device/Host communication can be found in the peripherals/spi_slave directory of ESP-IDF
examples.

API Reference

Header File
• components/driver/spi/include/driver/spi_slave.h

Functions
esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *bus_config, const

spi_slave_interface_config_t *slave_config, spi_dma_chan_t dma_chan)
Initialize a SPI bus as a slave interface.

Warning: SPI0/1 is not supported

Warning: If a DMA channel is selected, any transmit and receive buffer used should be allocated in
DMA-capable memory.

Warning: The ISR of SPI is always executed on the core which calls this function. Never starve the ISR
on this core or the SPI transactions will not be handled.

Parameters
• host -- SPI peripheral to use as a SPI slave interface
• bus_config -- Pointer to a spi_bus_config_t struct specifying how the host should be
initialized

• slave_config -- Pointer to a spi_slave_interface_config_t struct specifying the details
for the slave interface

• dma_chan -- - Selecting a DMA channel for an SPI bus allows transactions on the bus
with size only limited by the amount of internal memory.
– Selecting SPI_DMA_DISABLED limits the size of transactions.

Espressif Systems 1213
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/spi_slave
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/spi_slave
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/spi/include/driver/spi_slave.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

– Set to SPI_DMA_DISABLED if only the SPI flash uses this bus.
– Set to SPI_DMA_CH_AUTO to let the driver to allocate the DMA channel.

Returns
• ESP_ERR_INVALID_ARG if configuration is invalid
• ESP_ERR_INVALID_STATE if host already is in use
• ESP_ERR_NOT_FOUND if there is no available DMA channel
• ESP_ERR_NO_MEM if out of memory
• ESP_OK on success

esp_err_t spi_slave_free(spi_host_device_t host)
Free a SPI bus claimed as a SPI slave interface.

Parameters host -- SPI peripheral to free
Returns

• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_INVALID_STATE if not all devices on the bus are freed
• ESP_OK on success

esp_err_t spi_slave_queue_trans(spi_host_device_t host, const spi_slave_transaction_t *trans_desc,
TickType_t ticks_to_wait)

Queue a SPI transaction for execution.
Queues a SPI transaction to be executed by this slave device. (The transaction queue size was specified when the
slave device was initialised via spi_slave_initialize.) This function may block if the queue is full (depending on
the ticks_to_wait parameter). No SPI operation is directly initiated by this function, the next queued transaction
will happen when the master initiates a SPI transaction by pulling down CS and sending out clock signals.
This function hands over ownership of the buffers in trans_desc to the SPI slave driver; the application
is not to access this memory until spi_slave_queue_trans is called to hand ownership back to the
application.

Parameters
• host -- SPI peripheral that is acting as a slave
• trans_desc -- Description of transaction to execute. Not const because we may want
to write status back into the transaction description.

• ticks_to_wait -- Ticks to wait until there's room in the queue; use port-
MAX_DELAY to never time out.

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_OK on success

esp_err_t spi_slave_get_trans_result(spi_host_device_t host, spi_slave_transaction_t **trans_desc,
TickType_t ticks_to_wait)

Get the result of a SPI transaction queued earlier.
This routine will wait until a transaction to the given device (queued earlier with spi_slave_queue_trans) has
succesfully completed. It will then return the description of the completed transaction so software can inspect
the result and e.g. free the memory or re-use the buffers.
It is mandatory to eventually use this function for any transaction queued by spi_slave_queue_trans.

Parameters
• host -- SPI peripheral to that is acting as a slave
• trans_desc -- [out] Pointer to variable able to contain a pointer to the description of
the transaction that is executed

• ticks_to_wait -- Ticks to wait until there's a returned item; use portMAX_DELAY
to never time out.

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_ERR_NOT_SUPPORTED if flag SPI_SLAVE_NO_RETURN_RESULT is set
• ESP_OK on success

Espressif Systems 1214
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t spi_slave_transmit(spi_host_device_t host, spi_slave_transaction_t *trans_desc, TickType_t
ticks_to_wait)

Do a SPI transaction.
Essentially does the same as spi_slave_queue_trans followed by spi_slave_get_trans_result. Do not use this
when there is still a transaction queued that hasn't been finalized using spi_slave_get_trans_result.

Parameters
• host -- SPI peripheral to that is acting as a slave
• trans_desc -- Pointer to variable able to contain a pointer to the description of the
transaction that is executed. Not const because we may want to write status back into the
transaction description.

• ticks_to_wait -- Ticks to wait until there's a returned item; use portMAX_DELAY
to never time out.

Returns
• ESP_ERR_INVALID_ARG if parameter is invalid
• ESP_OK on success

Structures

struct spi_slave_interface_config_t
This is a configuration for a SPI host acting as a slave device.

Public Members

int spics_io_num
CS GPIO pin for this device.

uint32_t flags
Bitwise OR of SPI_SLAVE_* flags.

int queue_size
Transaction queue size. This sets how many transactions can be 'in the air' (queued using
spi_slave_queue_trans but not yet finished using spi_slave_get_trans_result) at the same time.

uint8_t mode
SPI mode, representing a pair of (CPOL, CPHA) configuration:
• 0: (0, 0)
• 1: (0, 1)
• 2: (1, 0)
• 3: (1, 1)

slave_transaction_cb_t post_setup_cb

Callback called after the SPI registers are loaded with new data.
This callback is called within interrupt context should be in IRAM for best performance, see "Transferring
Speed" section in the SPI Master documentation for full details. If not, the callback may crash during
flash operation when the driver is initialized with ESP_INTR_FLAG_IRAM.

slave_transaction_cb_t post_trans_cb

Callback called after a transaction is done.
This callback is called within interrupt context should be in IRAM for best performance, see "Transferring
Speed" section in the SPI Master documentation for full details. If not, the callback may crash during
flash operation when the driver is initialized with ESP_INTR_FLAG_IRAM.

Espressif Systems 1215
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct spi_slave_transaction_t
This structure describes one SPI transaction

Public Members

size_t length
Total data length, in bits.

size_t trans_len
Transaction data length, in bits.

const void *tx_buffer
Pointer to transmit buffer, or NULL for no MOSI phase.

void *rx_buffer
Pointer to receive buffer, or NULL for no MISO phase. When the DMA is anabled, must start at WORD
boundary (rx_buffer%4==0), and has length of a multiple of 4 bytes.

void *user
User-defined variable. Can be used to store eg transaction ID.

Macros

SPI_SLAVE_TXBIT_LSBFIRST

Transmit command/address/data LSB first instead of the default MSB first.

SPI_SLAVE_RXBIT_LSBFIRST

Receive data LSB first instead of the default MSB first.

SPI_SLAVE_BIT_LSBFIRST

Transmit and receive LSB first.

SPI_SLAVE_NO_RETURN_RESULT

Don't return the descriptor to the host on completion (use post_trans_cb to notify instead)

Type Definitions

typedef void (*slave_transaction_cb_t)(spi_slave_transaction_t *trans)

2.6.26 SPI Slave Half Duplex

Introduction

The Half Duplex (HD)Mode is a special mode provided by ESP SPI Slave peripheral. Under this mode, the hardware
provides more services than the Full Duplex (FD)Mode (the mode for general-purpose SPI transactions, see SPI Slave
Driver). These services reduce the CPU load and the response time of SPI Slave. However, it is important to note

Espressif Systems 1216
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

that the communication format is determined by the hardware and is always in a half-duplex configuration, allowing
only one-way data transfer at any given time. Hence, the mode is named Half Duplex Mode due to this characteristic.
When conducting an SPI transaction, transactions can be classified into several types based on the command phase
of the transaction. Each transaction may consist of the following phases: command, address, dummy, and data. The
command phase ismandatory, while the other phasesmay be determined by the command field. During the command,
address, and dummy phases, the bus is always controlled by the master (usually the host), while the direction of the
data phase depends on the command. The data phase can be either an input phase, where the master writes data to
the slave (e.g., the host sends data to the slave), or an output phase, where the master reads data from the slave (e.g.,
the host receives data from the slave).

Protocol About the details of how master should communicate with the SPI Slave, see ESP SPI Slave HD (Half
Duplex) Mode Protocol.
Through these different transactions, the slave provides these services to the master:

• A DMA channel for the master to write a great amount of data to the slave.
• A DMA channel for the master to read a great amount of data from the slave.
• Several general purpose registers, shared between the master and the slave.
• Several general purpose interrupts, for the master to interrupt the SW of the slave.

Terminology

• Transaction
• Channel
• Sending
• Receiving
• Data Descriptor

Driver Feature

• Transaction read/write by master in segments
• Queues for data to send and received

Driver Usage

Slave Initialization Call spi_slave_hd_init() to initialize the SPI bus as well as the peripheral and the
driver. The SPI Slave exclusively uses the SPI peripheral, pins of the bus before it is deinitialized, which means
other devices are unable to use the above resources during initialization. Thus, to ensure SPI resources are correctly
occupied and the connections work properly, most configurations of the slave should be done as soon as the slave is
initialized.
The spi_bus_config_t specifies how the bus should be initialized, while
spi_slave_hd_slot_config_t specifies how the SPI Slave driver should work.

Deinitialization (Optional) Call spi_slave_hd_deinit() to uninstall the driver. The resources, including
the pins, SPI peripheral, internal memory used by the driver, and interrupt sources, are released by the deinit()
function.

Send/Receive Data by DMA Channels To send data to the master through the sending DMA chan-
nel, the application should properly wrap the data in an spi_slave_hd_data_t descriptor structure
before calling spi_slave_hd_queue_trans() with the data descriptor and the channel argument of
SPI_SLAVE_CHAN_TX. The pointers to descriptors are stored in the queue, and the data is sent to the master in the
same order they are enqueued using spi_slave_hd_queue_trans(), upon receiving the master's Rd_DMA
command.

Espressif Systems 1217
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The application should check the result of data sending by calling spi_slave_hd_get_trans_res() with
the channel set as SPI_SLAVE_CHAN_TX. This function blocks until the transaction with the command Rd_DMA
from the master successfully completes (or timeout). The out_trans argument of the function outputs the pointer
of the data descriptor which is just finished, providing information about the sending.
Receiving data from the master through the receiving DMA channel is quite similar. The applica-
tion calls spi_slave_hd_queue_trans() with proper data descriptor and the channel argument of
SPI_SLAVE_CHAN_RX. And the application calls the spi_slave_hd_get_trans_res() later to get the
descriptor to the receiving buffer before it handles the data in the receiving buffer.

Note: This driver itself does not have an internal buffer for the data to send or just received. The application should
provide data buffer for driver via data descriptors to send to the master, or to receive data from the master.
The application has to properly keep the data descriptor as well as the buffer it points, after the descriptor is
successfully sent into the driver internal queue by spi_slave_hd_queue_trans(), and before returned by
spi_slave_hd_get_trans_res(). During this period, the hardware as well as the driver may read or write
to the buffer and the descriptor when required at any time.

Please note that, when using this driver for data transfer, the buffer does not have to be fully sent or filled before it
is terminated. For example, in the segment transaction mode, the master has to send CMD7 to terminate a Wr_DMA
transaction or send CMD8 to terminate an Rd_DMA transaction (in segments), no matter whether the send (receive)
buffer is used up (full) or not.

Using Data Descriptor with Customized User Arguments Sometimes you may have initiator (sending data
descriptor) and closure (handling returned descriptors) functions in different places. When you get the returned data
descriptor in the closure, you may need some extra information when handling the finished data descriptor. For
example, you may want to know which round it is for the returned descriptor when you send the same piece of data
several times.
Set the arg member in the data descriptor to a variable indicating the transaction by force casting, or point it to a
structure that wraps all the information you may need when handling the sending/receiving data. Then you can get
what you need in your closure.

UsingCallbacks
Note: These callbacks are called in the ISR, so the required operations need to be processed quickly and returned
as soon as possible to ensure that the system is functioning properly. You may need to be very careful to write the
code in the ISR.
Since the interrupt handling is executed concurrently with the application, long delays or blocking may cause the
system to respond slower or lead to unpredictable behavior. Therefore, when writing callback functions, avoid using
operations that may cause delays or blocking, e.g., waiting, sleeping, resource locking, etc.

The spi_slave_hd_callback_config_t member in the spi_slave_hd_slot_config_t configu-
ration structure passed when initializing the SPI Slave HD driver, allows you to have callbacks for each event you
may concern.
The corresponding interrupt for each callback that is not NULL is enabled, so that the callbacks can be called
immediately when the events happen. You do not need to provide callbacks for the unconcerned events.
The argmember in the configuration structure can help you pass some context to the callback or indicate the specific
SPI Slave instance when using the same callbacks for multiple SPI Slave peripherals. You can set the arg member to
a variable that indicates the SPI Slave instance by performing a forced type casting or point it to a context structure.
All the callbacks are called with this arg argument you set when the callbacks are initialized.
There are two other arguments: the event and the awoken.

• The event passes the information of the current event to the callback. The spi_slave_hd_event_t
type contains the information of the event, for example, event type, the data descriptor just finished (The data
argument is very useful in this case!).

Espressif Systems 1218
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• The awoken argument serves as an output parameter. It informs the ISR that tasks have been awakened after
the callback function, and the ISR should call portYIELD_FROM_ISR() to schedule these tasks. Simply pass the
awoken argument to all FreeRTOS APIs that may unblock tasks, and the value of awoken will be returned
to the ISR.

Writing/Reading Shared Registers Call spi_slave_hd_write_buffer() to write the shared buffer, and
spi_slave_hd_read_buffer() to read the shared buffer.

Note: On ESP32-C6, the shared registers are read/written in words by the application but read/written in bytes by
the master. There is no guarantee four continuous bytes read from the master are from the same word written by the
slave's application. It is also possible that if the slave reads a word while the master is writing bytes of the word, the
slave may get one word with half of them just written by the master, and the other half has not been written into.
The master can confirm that the word is not in transition by reading the word twice and comparing the values.
For the slave, it is more difficult to ensure the word is not in transition because the process of master writing four
bytes can be very long (32 SPI clocks). You can put some CRC in the last (largest address) byte of a word so that
when the byte is written, the word is sure to be all written.
Due to the conflicts that may be among read/write from SW (worse if there are multi-cores) and master, it is suggested
that a word is only used in one direction (only written by the master or only written by the slave).

Receiving General Purpose Interrupts from the Master When the master sends CMD8, CMD9 or CMDA, the
slave corresponding is triggered. Currently the CMD8 is permanently used to indicate the termination of Rd_DMA
segments. To receive general-purpose interrupts, register callbacks for CMD9 and CMDA when the slave is initialized,
see Using Callbacks.

Application Example

The code example for Device/Host communication can be found in the peripherals/spi_slave_hd directory of ESP-
IDF examples.

API Reference

Header File
• components/driver/spi/include/driver/spi_slave_hd.h

Functions
esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *bus_config, const

spi_slave_hd_slot_config_t *config)
Initialize the SPI Slave HD driver.

Parameters
• host_id -- The host to use
• bus_config -- Bus configuration for the bus used
• config -- Configuration for the SPI Slave HD driver

Returns
• ESP_OK: on success
• ESP_ERR_INVALID_ARG: invalid argument given
• ESP_ERR_INVALID_STATE: function called in invalid state, may be some resources
are already in use

• ESP_ERR_NOT_FOUND if there is no available DMA channel
• ESP_ERR_NO_MEM: memory allocation failed
• or other return value from esp_intr_alloc

Espressif Systems 1219
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/spi_slave_hd
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/spi/include/driver/spi_slave_hd.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t spi_slave_hd_deinit(spi_host_device_t host_id)
Deinitialize the SPI Slave HD driver.

Parameters host_id -- The host to deinitialize the driver
Returns

• ESP_OK: on success
• ESP_ERR_INVALID_ARG: if the host_id is not correct

esp_err_t spi_slave_hd_queue_trans(spi_host_device_t host_id, spi_slave_chan_t chan,
spi_slave_hd_data_t *trans, TickType_t timeout)

Queue transactions (segment mode)
Parameters

• host_id -- Host to queue the transaction
• chan -- SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
• trans -- Transaction descriptors
• timeout -- Timeout before the data is queued

Returns
• ESP_OK: on success
• ESP_ERR_INVALID_ARG: The input argument is invalid. Can be the following reason:
– The buffer given is not DMA capable
– The length of data is invalid (not larger than 0, or exceed the max transfer length)
– The transaction direction is invalid

• ESP_ERR_TIMEOUT: Cannot queue the data before timeout. Master is still processing
previous transaction.

• ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called
under segment mode.

esp_err_t spi_slave_hd_get_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan,
spi_slave_hd_data_t **out_trans, TickType_t timeout)

Get the result of a data transaction (segment mode)

Note: This API should be called successfully the same times as the spi_slave_hd_queue_trans.

Parameters
• host_id -- Host to queue the transaction
• chan -- Channel to get the result, SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
• out_trans -- [out] Pointer to the transaction descriptor (spi_slave_hd_data_t)
passed to the driver before. Hardware has finished this transaction. Member trans_len
indicates the actual number of bytes of received data, it's meaningless for TX.

• timeout -- Timeout before the result is got
Returns

• ESP_OK: on success
• ESP_ERR_INVALID_ARG: Function is not valid
• ESP_ERR_TIMEOUT: There's no transaction done before timeout
• ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called
under segment mode.

void spi_slave_hd_read_buffer(spi_host_device_t host_id, int addr, uint8_t *out_data, size_t len)
Read the shared registers.

Parameters
• host_id -- Host to read the shared registers
• addr -- Address of register to read, 0 to SOC_SPI_MAXIMUM_BUFFER_SIZE-1
• out_data -- [out] Output buffer to store the read data
• len -- Length to read, not larger than SOC_SPI_MAXIMUM_BUFFER_SIZE-addr

Espressif Systems 1220
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void spi_slave_hd_write_buffer(spi_host_device_t host_id, int addr, uint8_t *data, size_t len)
Write the shared registers.

Parameters
• host_id -- Host to write the shared registers
• addr -- Address of register to write, 0 to SOC_SPI_MAXIMUM_BUFFER_SIZE-1
• data -- Buffer holding the data to write
• len -- Length to write, SOC_SPI_MAXIMUM_BUFFER_SIZE-addr

esp_err_t spi_slave_hd_append_trans(spi_host_device_t host_id, spi_slave_chan_t chan,
spi_slave_hd_data_t *trans, TickType_t timeout)

Load transactions (append mode)

Note: In this mode, user transaction descriptors will be appended to the DMA and the DMA will keep
processing the data without stopping

Parameters
• host_id -- Host to load transactions
• chan -- SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
• trans -- Transaction descriptor
• timeout -- Timeout before the transaction is loaded

Returns
• ESP_OK: on success
• ESP_ERR_INVALID_ARG: The input argument is invalid. Can be the following reason:
– The buffer given is not DMA capable
– The length of data is invalid (not larger than 0, or exceed the max transfer length)
– The transaction direction is invalid

• ESP_ERR_TIMEOUT: Master is still processing previous transaction. There is no avail-
able transaction for slave to load

• ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called
under append mode.

esp_err_t spi_slave_hd_get_append_trans_res(spi_host_device_t host_id, spi_slave_chan_t chan,
spi_slave_hd_data_t **out_trans, TickType_t
timeout)

Get the result of a data transaction (append mode)

Note: This API should be called the same times as the spi_slave_hd_append_trans

Parameters
• host_id -- Host to load the transaction
• chan -- SPI_SLAVE_CHAN_TX or SPI_SLAVE_CHAN_RX
• out_trans -- [out] Pointer to the transaction descriptor (spi_slave_hd_data_t)
passed to the driver before. Hardware has finished this transaction. Member trans_len
indicates the actual number of bytes of received data, it's meaningless for TX.

• timeout -- Timeout before the result is got
Returns

• ESP_OK: on success
• ESP_ERR_INVALID_ARG: Function is not valid
• ESP_ERR_TIMEOUT: There's no transaction done before timeout
• ESP_ERR_INVALID_STATE: Function called in invalid state. This API should be called
under append mode.

Structures

Espressif Systems 1221
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct spi_slave_hd_data_t
Descriptor of data to send/receive.

Public Members

uint8_t *data
Buffer to send, must be DMA capable.

size_t len
Len of data to send/receive. For receiving the buffer length should be multiples of 4 bytes, otherwise the
extra part will be truncated.

size_t trans_len
For RX direction, it indicates the data actually received. For TX direction, it is meaningless.

void *arg
Extra argument indiciating this data.

struct spi_slave_hd_event_t
Information of SPI Slave HD event.

Public Members

spi_event_t event

Event type.

spi_slave_hd_data_t *trans
Corresponding transaction for SPI_EV_SEND and SPI_EV_RECV events.

struct spi_slave_hd_callback_config_t
Callback configuration structure for SPI Slave HD.

Public Members

slave_cb_t cb_buffer_tx

Callback when master reads from shared buffer.

slave_cb_t cb_buffer_rx

Callback when master writes to shared buffer.

slave_cb_t cb_send_dma_ready

Callback when TX data buffer is loaded to the hardware (DMA)

slave_cb_t cb_sent

Callback when data are sent.

Espressif Systems 1222
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

slave_cb_t cb_recv_dma_ready

Callback when RX data buffer is loaded to the hardware (DMA)

slave_cb_t cb_recv

Callback when data are received.

slave_cb_t cb_cmd9

Callback when CMD9 received.

slave_cb_t cb_cmdA

Callback when CMDA received.

void *arg
Argument indicating this SPI Slave HD peripheral instance.

struct spi_slave_hd_slot_config_t
Configuration structure for the SPI Slave HD driver.

Public Members

uint8_t mode
SPI mode, representing a pair of (CPOL, CPHA) configuration:
• 0: (0, 0)
• 1: (0, 1)
• 2: (1, 0)
• 3: (1, 1)

uint32_t spics_io_num
CS GPIO pin for this device.

uint32_t flags
Bitwise OR of SPI_SLAVE_HD_* flags.

uint32_t command_bits
command field bits, multiples of 8 and at least 8.

uint32_t address_bits
address field bits, multiples of 8 and at least 8.

uint32_t dummy_bits
dummy field bits, multiples of 8 and at least 8.

uint32_t queue_size
Transaction queue size. This sets how many transactions can be 'in the air' (queued using
spi_slave_hd_queue_trans but not yet finished using spi_slave_hd_get_trans_result) at the same time.

spi_dma_chan_t dma_chan

DMA channel to used.

Espressif Systems 1223
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

spi_slave_hd_callback_config_t cb_config

Callback configuration.

Macros

SPI_SLAVE_HD_TXBIT_LSBFIRST

Transmit command/address/data LSB first instead of the default MSB first.

SPI_SLAVE_HD_RXBIT_LSBFIRST

Receive data LSB first instead of the default MSB first.

SPI_SLAVE_HD_BIT_LSBFIRST

Transmit and receive LSB first.

SPI_SLAVE_HD_APPEND_MODE

Adopt DMA append mode for transactions. In this mode, users can load(append) DMA descriptors without
stopping the DMA.

Type Definitions

typedef bool (*slave_cb_t)(void *arg, spi_slave_hd_event_t *event, BaseType_t *awoken)
Callback for SPI Slave HD.

Enumerations

enum spi_slave_chan_t

Channel of SPI Slave HD to do data transaction.
Values:

enumerator SPI_SLAVE_CHAN_TX
The output channel (RDDMA)

enumerator SPI_SLAVE_CHAN_RX
The input channel (WRDMA)

2.6.27 Temperature Sensor

Introduction

The ESP32-C6 has a built-in sensor used to measure the chip's internal temperature. The temperature sensor module
contains an 8-bit Sigma-Delta analog-to-digital converter (ADC) and a digital-to-analog converter (DAC) to com-
pensate for the temperature measurement.
Due to restrictions of hardware, the sensor has predefined measurement ranges with specific measurement errors. See
the table below for details.

Espressif Systems 1224
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Predefined Range (°C) Error (°C)
50 ~ 125 < 3
20 ~ 100 < 2
-10 ~ 80 < 1
-30 ~ 50 < 2
-40 ~ 20 < 3

Note: The temperature sensor is designed primarily to measure the temperature changes inside the chip. The
internal temperature of a chip is usually higher than the ambient temperature, and is affected by factors such as the
microcontroller's clock frequency or I/O load, and the external thermal environment.

Functional Overview

The description of the temperature sensor functionality is divided into the following sections:

• Resource Allocation - covers which parameters should be set up to get a temperature sensor handle and how to
recycle the resources when the temperature sensor finishes working.

• Enable and Disable Temperature Sensor - covers how to enable and disable the temperature sensor.
• Get Temperature Value - covers how to get the real-time temperature value.
• Install Temperature Threshold Callback - describes how to register a temperature threshold callback.
• Power Management - covers how the temperature sensor is affected when changing power mode (e.g., Light-
sleep mode).

• IRAM Safe - describes tips on how to make the temperature sensor interrupt work better along with a disabled
cache.

• Thread Safety - covers how to make the driver to be thread-safe.

Resource Allocation The ESP32-C6 has just one built-in temperature sensor hardware. The temperature sensor
instance is represented by temperature_sensor_handle_t, which is also the bond of the context. By using
temperature_sensor_handle_t, the temperature sensor properties can be accessed and modified in dif-
ferent function calls to control and manage the temperature sensor. The variable would always be the parameter of
the temperature APIs with the information of hardware and configurations, so you can just create a pointer of type
temperature_sensor_handle_t and passing to APIs as needed.
In order to install a built-in temperature sensor instance, the first thing is to evaluate the temperature range in your
detection environment. For example, if the testing environment is in a room, the range you evaluate might be 10 °C
~ 30 °C; if the testing in a lamp bulb, the range you evaluate might be 60 °C ~ 110 °C. Based on that, configuration
structure temperature_sensor_config_t should be defined in advance:

• range_min: The minimum value of the testing range you have evaluated.
• range_max: The maximum value of the testing range you have evaluated.

After the ranges are set, the structure could be passed to temperature_sensor_install(), which will
instantiate the temperature sensor instance and return a handle.
As mentioned above, different measure ranges have different measurement errors. You do not need to care about
the measurement error because we have an internal mechanism to choose the minimum error according to the given
range.
If the temperature sensor is no longer needed, you need to call temperature_sensor_uninstall() to free
the temperature sensor resource.

Creating a Temperature Sensor Handle
• Step 1: Evaluate the testing range. In this example, the range is 20 °C ~ 50 °C.
• Step 2: Configure the range and obtain a handle.

Espressif Systems 1225
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

temperature_sensor_handle_t temp_handle = NULL;
temperature_sensor_config_t temp_sensor = {

.range_min = 20,

.range_max = 50,
};
ESP_ERROR_CHECK(temperature_sensor_install(&temp_sensor, &temp_handle));

Enable and Disable Temperature Sensor
1. Enable the temperature sensor by calling temperature_sensor_enable(). The internal temperature

sensor circuit will start to work. The driver state will transit from init to enable.
2. To Disable the temperature sensor, please call temperature_sensor_disable().

Get Temperature Value After the temperature sensor is enabled by temperature_sensor_enable(),
you can get the current temperature by calling temperature_sensor_get_celsius().

// Enable temperature sensor
ESP_ERROR_CHECK(temperature_sensor_enable(temp_handle));
// Get converted sensor data
float tsens_out;
ESP_ERROR_CHECK(temperature_sensor_get_celsius(temp_handle, &tsens_out));
printf("Temperature in %f °C\n", tsens_out);
// Disable the temperature sensor if it is not needed and save the power
ESP_ERROR_CHECK(temperature_sensor_disable(temp_handle));

Install Temperature Threshold Callback ESP32-C6 supports automatically triggering to monitor the temper-
ature value continuously. When the temperature value reaches a given threshold, an interrupt will happen. Thus
you can install your own interrupt callback functions to do what they want, e.g., alarm, restart, etc. The following
information indicates how to prepare a threshold callback.

• temperature_sensor_event_callbacks_t::on_threshold: As this function is called within
the ISR context, you must ensure that the function does not attempt to block, e.g., by making sure that only
FreeRTOSAPIs with theISR suffix are called fromwithin the function, etc. The function prototype is declared
in temperature_thres_cb_t.

You can save your own context to temperature_sensor_register_callbacks() as well, via the pa-
rameter user_arg. The user data will be directly passed to the callback function.

IRAM_ATTR static bool temp_sensor_monitor_cbs(temperature_sensor_handle_t tsens,␣
↪→const temperature_sensor_threshold_event_data_t *edata, void *user_data)
{

ESP_DRAM_LOGI("tsens", "Temperature value is higher or lower than threshold,␣
↪→value is %d\n...\n\n", edata->celsius_value);

return false;
}

// Callback configurations
temperature_sensor_abs_threshold_config_t threshold_cfg = {

.high_threshold = 50,

.low_threshold = -10,
};
// Set absolute value monitor threshold.
temperature_sensor_set_absolute_threshold(temp_sensor, &threshold_cfg);
// Register interrupt callback
temperature_sensor_event_callbacks_t cbs = {

.on_threshold = temp_sensor_monitor_cbs,
};
// Install temperature callback.
temperature_sensor_register_callbacks(temp_sensor, &cbs, NULL);

Espressif Systems 1226
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Power Management As the temperature sensor does not use the APB clock, it will keep working no matter if the
power management is enabled with CONFIG_PM_ENABLE.

IRAM Safe By default, the temperature sensor interrupt will be deferred when the cache is disabled for reasons
like writing/erasing flash. Thus the event callback functions will not get executed in time, which is not expected in a
real-time application.
There is a Kconfig option CONFIG_TEMP_SENSOR_ISR_IRAM_SAFE that will:

1. Enable the interrupt that is being serviced even when the cache is disabled.
2. Place all functions that are used by the ISR into IRAM.

This allows the interrupt to run while the cache is disabled but comes at the cost of increased IRAM consumption.

Thread Safety In the temperature sensor driver, we do not add any protection to ensure the thread safety, because
typically this driver is only supposed to be used in one task. If you have to use this driver in different tasks, please
add extra locks to protect it.

Unexpected Behaviors

1. The value you get from the chip is usually different from the ambient temperature. It is because the temperature
sensor is built inside the chip. To some extent, it measures the temperature of the chip.

2. When installing the temperature sensor, the driver may print the boundary you gave cannot meet
the range of internal temperature sensor. It is because the built-in temperature sensor has
a testing limit. The error comes from the incorrect configuration of temperature_sensor_config_t
as follow:
(1) Totally out of range, like 200 °C ~ 300 °C.
(2) Cross the boundary of each predefined measurement. like 40 °C ~ 110 °C.

Application Example

• Temperature sensor reading example: peripherals/temperature_sensor/temp_sensor.
• Temperature sensor value monitor example: peripherals/temperature_sensor/temp_sensor_monitor.

API Reference

Header File
• components/driver/temperature_sensor/include/driver/temperature_sensor.h

Functions
esp_err_t temperature_sensor_install(const temperature_sensor_config_t *tsens_config,

temperature_sensor_handle_t *ret_tsens)
Install temperature sensor driver.

Parameters
• tsens_config -- Pointer to config structure.
• ret_tsens -- Return the pointer of temperature sensor handle.

Returns
• ESP_OK if succeed

esp_err_t temperature_sensor_uninstall(temperature_sensor_handle_t tsens)
Uninstall the temperature sensor driver.

Parameters tsens -- The handle created by temperature_sensor_install().
Returns

Espressif Systems 1227
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/temperature_sensor/temp_sensor
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/temperature_sensor/temp_sensor_monitor
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/temperature_sensor/include/driver/temperature_sensor.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK if succeed.
esp_err_t temperature_sensor_enable(temperature_sensor_handle_t tsens)

Enable the temperature sensor.
Parameters tsens -- The handle created by temperature_sensor_install().
Returns

• ESP_OK Success
• ESP_ERR_INVALID_STATE if temperature sensor is enabled already.

esp_err_t temperature_sensor_disable(temperature_sensor_handle_t tsens)
Disable temperature sensor.

Parameters tsens -- The handle created by temperature_sensor_install().
Returns

• ESP_OK Success
• ESP_ERR_INVALID_STATE if temperature sensor is not enabled yet.

esp_err_t temperature_sensor_get_celsius(temperature_sensor_handle_t tsens, float *out_celsius)
Read temperature sensor data that is converted to degrees Celsius.

Note: Should not be called from interrupt.

Parameters
• tsens -- The handle created by temperature_sensor_install().
• out_celsius -- The measure output value.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG invalid arguments
• ESP_ERR_INVALID_STATE Temperature sensor is not enabled yet.
• ESP_FAIL Parse the sensor data into ambient temperature failed (e.g. out of the range).

esp_err_t temperature_sensor_set_absolute_threshold(temperature_sensor_handle_t tsens, const
tempera-
ture_sensor_abs_threshold_config_t
*abs_cfg)

Set temperature sensor absolute mode automatic monitor.

Note: This function should not be called with temperature_sensor_set_delta_threshold.

Parameters
• tsens -- The handle created by temperature_sensor_install().
• abs_cfg -- Configuration of temperature sensor absolute mode interrupt, see temper-
ature_sensor_abs_threshold_config_t.

Returns
• ESP_OK: Set absolute threshold successfully.
• ESP_ERR_INVALID_STATE: Set absolute threshold failed because of wrong state.
• ESP_ERR_INVALID_ARG: Set absolute threshold failed because of invalid argument.

esp_err_t temperature_sensor_set_delta_threshold(temperature_sensor_handle_t tsens, const
temperature_sensor_delta_threshold_config_t
*delta_cfg)

Set temperature sensor differential mode automatic monitor.

Note: This function should not be called with temperature_sensor_set_absolute_threshold

Espressif Systems 1228
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• tsens -- The handle created by temperature_sensor_install().
• delta_cfg -- Configuration of temperature sensor delta mode interrupt, see temper-
ature_sensor_delta_threshold_config_t.

Returns
• ESP_OK: Set differential value threshold successfully.
• ESP_ERR_INVALID_STATE: Set absolute threshold failed because of wrong state.
• ESP_ERR_INVALID_ARG: Set differential value threshold failed because of invalid ar-
gument.

esp_err_t temperature_sensor_register_callbacks(temperature_sensor_handle_t tsens, const
temperature_sensor_event_callbacks_t *cbs,
void *user_arg)

Install temperature sensor interrupt callback. Temperature sensor interrupt will be enabled at same time.
Parameters

• tsens -- The handle created by temperature_sensor_install().
• cbs -- Pointer to the group of temperature sensor interrupt callbacks.
• user_arg -- Callback argument.

Returns
• ESP_OK: Set event callbacks successfully
• ESP_ERR_INVALID_ARG: Set event callbacks failed because of invalid argument
• ESP_FAIL: Set event callbacks failed because of other error

Structures

struct temperature_sensor_config_t
Configuration of measurement range for the temperature sensor.

Note: If you see the log the boundary you gave cannot meet the range of inter-
nal temperature sensor. You may need to refer to predefined range listed doc api-reference/
peripherals/Temperature sensor.

Public Members

int range_min
the minimum value of the temperature you want to test

int range_max
the maximum value of the temperature you want to test

temperature_sensor_clk_src_t clk_src
the clock source of the temperature sensor.

struct temperature_sensor_threshold_event_data_t
Temperature sensor event data.

Public Members

int celsius_value
Celsius value in interrupt callback.

Espressif Systems 1229
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct temperature_sensor_event_callbacks_t
Group of temperature sensor callback functions, all of them will be run in ISR.

Public Members

temperature_thres_cb_t on_threshold

Temperature value interrupt callback

struct temperature_sensor_abs_threshold_config_t
Config options for temperature value absolute interrupt.

Public Members

float high_threshold
High threshold value(Celsius). Interrupt will be triggered if temperature value is higher than this value

float low_threshold
Low threshold value(Celsius). Interrupt will be triggered if temperature value is lower than this value

struct temperature_sensor_delta_threshold_config_t
Config options for temperature value delta interrupt.

Public Members

float increase_delta
Interrupt will be triggered if the temperature increment of two consecutive samplings if larger than in-
crease_delta

float decrease_delta
Interrupt will be triggered if the temperature decrement of two consecutive samplings if smaller than
decrease_delta

Macros
TEMPERATURE_SENSOR_CONFIG_DEFAULT(min, max)

temperature_sensor_config_t default constructure

Type Definitions

typedef struct temperature_sensor_obj_t *temperature_sensor_handle_t
Type of temperature sensor driver handle.

typedef bool (*temperature_thres_cb_t)(temperature_sensor_handle_t tsens, const
temperature_sensor_threshold_event_data_t *edata, void *user_data)

Callback for temperature sensor threshold interrupt.
Param tsens [in] The handle created by temperature_sensor_install().
Param edata [in] temperature sensor event data, fed by driver.
Param user_data [in]User data, set intemperature_sensor_register_callbacks().
Return Whether a high priority task has been waken up by this function.

Espressif Systems 1230
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.6.28 Two-Wire Automotive Interface (TWAI)

Warning: ESP32-C6 has 2 TWAI controllers, but at the moment, the driver can only support TWAI0 due to
the limitation of the driver structure.

Overview

The Two-Wire Automotive Interface (TWAI) is a real-time serial communication protocol suited for automotive
and industrial applications. It is compatible with ISO11898-1 Classical frames, thus can support Standard Frame
Format (11-bit ID) and Extended Frame Format (29-bit ID). The ESP32-C6 contains 2 TWAI controller(s) that can
be configured to communicate on a TWAI bus via an external transceiver.

Warning: The TWAI controller is not compatible with ISO11898-1 FD Format frames, and will interpret such
frames as errors.

This programming guide is split into the following sections:

Sections

• Two-Wire Automotive Interface (TWAI)
– Overview
– TWAI Protocol Summary
– Signals Lines and Transceiver
– Driver Configuration
– Driver Operation
– Examples
– API Reference

TWAI Protocol Summary

The TWAI is a multi-master, multi-cast, asynchronous, serial communication protocol. TWAI also supports error
detection and signalling, and inbuilt message prioritization.
Multi-master: Any node on the bus can initiate the transfer of a message.
Multi-cast: When a node transmits a message, all nodes on the bus will receive the message (i.e., broadcast) thus
ensuring data consistency across all nodes. However, some nodes can selectively choose which messages to accept
via the use of acceptance filtering (multi-cast).
Asynchronous: The bus does not contain a clock signal. All nodes on the bus operate at the same bit rate and
synchronize using the edges of the bits transmitted on the bus.
Error Detection and Signalling: Every node will constantly monitor the bus. When any node detects an error, it
will signal the detection by transmitting an error frame. Other nodes will receive the error frame and transmit their
own error frames in response. This will result in an error detection being propagated to all nodes on the bus.
Message Priorities: Messages contain an ID field. If two or more nodes attempt to transmit simultaneously, the
node transmitting the message with the lower ID value will win arbitration of the bus. All other nodes will become
receivers ensuring that there is at most one transmitter at any time.

TWAIMessages TWAIMessages are split into Data Frames and Remote Frames. Data Frames are used to deliver
a data payload to other nodes, whereas a Remote Frame is used to request a Data Frame from other nodes (other nodes
can optionally respond with a Data Frame). Data and Remote Frames have two frame formats known as Extended
Frame and Standard Frame which contain a 29-bit ID and an 11-bit ID respectively. A TWAI message consists of
the following fields:

Espressif Systems 1231
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 29-bit or 11-bit ID: Determines the priority of the message (lower value has higher priority).
• Data Length Code (DLC) between 0 to 8: Indicates the size (in bytes) of the data payload for a Data Frame,
or the amount of data to request for a Remote Frame.

• Up to 8 bytes of data for a Data Frame (should match DLC).

Error States and Counters The TWAI protocol implements a feature known as "fault confinement" where a
persistently erroneous node will eventually eliminate itself form the bus. This is implemented by requiring every
node to maintain two internal error counters known as the Transmit Error Counter (TEC) and the Receive Error
Counter (REC). The two error counters are incremented and decremented according to a set of rules (where the
counters increase on an error, and decrease on a successful message transmission/reception). The values of the
counters are used to determine a node's error state, namely Error Active, Error Passive, and Bus-Off.
Error Active: A node is Error Active when both TEC and REC are less than 128 and indicates that the node is
operating normally. Error Active nodes are allowed to participate in bus communications, and will actively signal the
detection of any errors by automatically transmitting an Active Error Flag over the bus.
Error Passive: A node is Error Passive when either the TEC or REC becomes greater than or equal to 128.
Error Passive nodes are still able to take part in bus communications, but will instead transmit a Passive Error Flag
upon detection of an error.
Bus-Off: A node becomes Bus-Off when the TEC becomes greater than or equal to 256. A Bus-Off node is
unable influence the bus in any manner (essentially disconnected from the bus) thus eliminating itself from the bus.
A node will remain in the Bus-Off state until it undergoes bus-off recovery.

Signals Lines and Transceiver

The TWAI controller does not contain a integrated transceiver. Therefore, to connect the TWAI controller to a TWAI
bus, an external transceiver is required. The type of external transceiver used should depend on the application's
physical layer specification (e.g. using SN65HVD23x transceivers for ISO 11898-2 compatibility).
The TWAI controller's interface consists of 4 signal lines known as TX, RX, BUS-OFF, and CLKOUT. These four
signal lines can be routed through the GPIO Matrix to the ESP32-C6's GPIO pads.

Fig. 21: Signal lines of the TWAI controller

TX and RX: The TX and RX signal lines are required to interface with an external transceiver. Both signal lines
represent/interpret a dominant bit as a low logic level (0V), and a recessive bit as a high logic level (3.3V).

Espressif Systems 1232
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

BUS-OFF: The BUS-OFF signal line is optional and is set to a low logic level (0V) whenever the TWAI controller
reaches a bus-off state. The BUS-OFF signal line is set to a high logic level (3.3V) otherwise.
CLKOUT: The CLKOUT signal line is optional and outputs a prescaled version of the controller's source clock.

Note: An external transceivermust internally loopback the TX to RX such that a change in logic level to the TX
signal line can be observed on the RX line. Failing to do so will cause the TWAI controller to interpret differences
in logic levels between the two signal lines as a loss in arbitration or a bit error.

Driver Configuration

This section covers how to configure the TWAI driver.

Operating Modes The TWAI driver supports the following modes of operations:
Normal Mode: The normal operating mode allows the TWAI controller to take part in bus activities such as trans-
mitting and receiving messages/error frames. Acknowledgement from another node is required when transmitting a
message.
No Ack Mode: The No Acknowledgement mode is similar to normal mode, however acknowledgements are not
required for a message transmission to be considered successful. This mode is useful when self testing the TWAI
controller (loopback of transmissions).
ListenOnlyMode: This mode will prevent the TWAI controller from influencing the bus. Therefore, transmission of
messages/acknowledgement/error frames will be disabled. However the TWAI controller will still be able to receive
messages but will not acknowledge the message. This mode is suited for bus monitor applications.

Alerts The TWAI driver contains an alert feature that is used to notify the application layer of certain TWAI con-
troller or TWAI bus events. Alerts are selectively enabled when the TWAI driver is installed, but can be reconfigured
during runtime by calling twai_reconfigure_alerts(). The application can then wait for any enabled alerts
to occur by calling twai_read_alerts(). The TWAI driver supports the following alerts:

Table 5: TWAI Driver Alerts
Alert Flag Description
TWAI_ALERT_TX_IDLE No more messages queued for transmission
TWAI_ALERT_TX_SUCCESS The previous transmission was successful
TWAI_ALERT_RX_DATA A frame has been received and added to the RX queue
TWAI_ALERT_BELOW_ERR_WARN Both error counters have dropped below error warning limit
TWAI_ALERT_ERR_ACTIVE TWAI controller has become error active
TWAI_ALERT_RECOVERY_IN_PROGRESSTWAI controller is undergoing bus recovery
TWAI_ALERT_BUS_RECOVERED TWAI controller has successfully completed bus recovery
TWAI_ALERT_ARB_LOST The previous transmission lost arbitration
TWAI_ALERT_ABOVE_ERR_WARN One of the error counters have exceeded the error warning limit
TWAI_ALERT_BUS_ERROR A (Bit, Stuff, CRC, Form, ACK) error has occurred on the bus
TWAI_ALERT_TX_FAILED The previous transmission has failed
TWAI_ALERT_RX_QUEUE_FULL The RX queue is full causing a received frame to be lost
TWAI_ALERT_ERR_PASS TWAI controller has become error passive
TWAI_ALERT_BUS_OFF Bus-off condition occurred. TWAI controller can no longer influ-

ence bus

Note: The TWAI controller's error warning limit is used to preemptively warn the application of bus errors
before the error passive state is reached. By default, the TWAI driver sets the error warning limit to 96. The
TWAI_ALERT_ABOVE_ERR_WARN is raised when the TEC or REC becomes larger then or equal to the error

Espressif Systems 1233
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

warning limit. The TWAI_ALERT_BELOW_ERR_WARN is raised when both TEC and REC return back to values
below 96.

Note: When enabling alerts, the TWAI_ALERT_AND_LOG flag can be used to cause the TWAI driver to
log any raised alerts to UART. However, alert logging is disabled and TWAI_ALERT_AND_LOG if the CON-
FIG_TWAI_ISR_IN_IRAM option is enabled (see Placing ISR into IRAM).

Note: The TWAI_ALERT_ALL and TWAI_ALERT_NONE macros can also be used to enable/disable all alerts
during configuration/reconfiguration.

Bit Timing The operating bit rate of the TWAI driver is configured using the twai_timing_config_t struc-
ture. The period of each bit is made up of multiple time quanta, and the period of a time quantum is determined
by a prescaled version of the TWAI controller's source clock. A single bit contains the following segments in the
following order:

1. The Synchronization Segment consists of a single time quantum
2. Timing Segment 1 consists of 1 to 16 time quanta before sample point
3. Timing Segment 2 consists of 1 to 8 time quanta after sample point

The Baudrate Prescaler is used to determine the period of each time quantum by dividing the TWAI controller's
source clock. On the ESP32-C6, the brp can be any even number from 2 to 32768. Alternatively, you can decide
the resolution of each quantum, by setting twai_timing_config_t::quanta_resolution_hz to a non-
zero value. In this way, the driver can calculate the underlying brp value for you. It's useful when you set different
clock sources but want the bitrate to keep the same.
Supported clock source for a TWAI controller is listed in the twai_clock_source_t and can be specified in
twai_timing_config_t::clk_src.

Fig. 22: Bit timing configuration for 500kbit/s given BRP = 8, clock source frequency is 80MHz

The sample point of a bit is located on the intersection of Timing Segment 1 and 2. Enabling Triple Sampling will
cause 3 time quanta to be sampled per bit instead of 1 (extra samples are located at the tail end of Timing Segment
1).
The Synchronization JumpWidth is used to determine the maximum number of time quanta a single bit time can
be lengthened/shortened for synchronization purposes. sjw can range from 1 to 4.

Note: Multiple combinations of brp, tseg_1, tseg_2, and sjw can achieve the same bit rate. Users should
tune these values to the physical characteristics of their bus by taking into account factors such as propagation delay,
node information processing time, and phase errors.

Bit timing macro initializers are also available for commonly used bit rates. The following macro initializers are
provided by the TWAI driver.

• TWAI_TIMING_CONFIG_1MBITS
• TWAI_TIMING_CONFIG_800KBITS

Espressif Systems 1234
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• TWAI_TIMING_CONFIG_500KBITS
• TWAI_TIMING_CONFIG_250KBITS
• TWAI_TIMING_CONFIG_125KBITS
• TWAI_TIMING_CONFIG_100KBITS
• TWAI_TIMING_CONFIG_50KBITS
• TWAI_TIMING_CONFIG_25KBITS
• TWAI_TIMING_CONFIG_20KBITS
• TWAI_TIMING_CONFIG_16KBITS
• TWAI_TIMING_CONFIG_12_5KBITS
• TWAI_TIMING_CONFIG_10KBITS
• TWAI_TIMING_CONFIG_5KBITS
• TWAI_TIMING_CONFIG_1KBITS

Acceptance Filter The TWAI controller contains a hardware acceptance filter which can be used to filter messages
of a particular ID. A node that filters out a message will not receive the message, but will still acknowledge it.
Acceptance filters can make a node more efficient by filtering out messages sent over the bus that are irrelevant to the
node. The acceptance filter is configured using two 32-bit values within twai_filter_config_t known as the
acceptance code and the acceptance mask.
The acceptance code specifies the bit sequence which a message's ID, RTR, and data bytes must match in order for
the message to be received by the TWAI controller. The acceptance mask is a bit sequence specifying which bits of
the acceptance code can be ignored. This allows for a messages of different IDs to be accepted by a single acceptance
code.
The acceptance filter can be used under Single or Dual Filter Mode. Single Filter Mode will use the acceptance
code and mask to define a single filter. This allows for the first two data bytes of a standard frame to be filtered, or
the entirety of an extended frame's 29-bit ID. The following diagram illustrates how the 32-bit acceptance code and
mask will be interpreted under Single Filter Mode (Note: The yellow and blue fields represent standard and extended
frame formats respectively).

Fig. 23: Bit layout of single filter mode (Right side MSBit)

Dual Filter Mode will use the acceptance code and mask to define two separate filters allowing for increased flex-
ibility of ID's to accept, but does not allow for all 29-bits of an extended ID to be filtered. The following diagram
illustrates how the 32-bit acceptance code and mask will be interpreted under Dual Filter Mode (Note: The yellow
and blue fields represent standard and extended frame formats respectively).

Fig. 24: Bit layout of dual filter mode (Right side MSBit)

Disabling TXQueue The TX queue can be disabled during configuration by setting thetx_queue_lenmember
of twai_general_config_t to 0. This will allow applications that do not require message transmission to save
a small amount of memory when using the TWAI driver.

Espressif Systems 1235
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Placing ISR into IRAM The TWAI driver's ISR (Interrupt Service Routine) can be placed into IRAM so that the
ISR can still run whilst the cache is disabled. Placing the ISR into IRAM may be necessary to maintain the TWAI
driver's functionality during lengthy cache disabling operations (such as SPI Flash writes, OTA updates etc). Whilst
the cache is disabled, the ISR will continue to:

• Read received messages from the RX buffer and place them into the driver's RX queue.
• Load messages pending transmission from the driver's TX queue and write them into the TX buffer.

To place the TWAI driver's ISR, users must do the following:
• Enable the CONFIG_TWAI_ISR_IN_IRAM option using idf.py menuconfig.
• When calling twai_driver_install(), the intr_flags member of twai_general_config_t
should set the ESP_INTR_FLAG_IRAM set.

Note: When the CONFIG_TWAI_ISR_IN_IRAM option is enabled, the TWAI driver will no longer log any alerts
(i.e., the TWAI_ALERT_AND_LOG flag will not have any effect).

Driver Operation

The TWAI driver is designed with distinct states and strict rules regarding the functions or conditions that trigger a
state transition. The following diagram illustrates the various states and their transitions.

Fig. 25: State transition diagram of the TWAI driver (see table below)

Label Transition Action/Condition
A Uninstalled -> Stopped twai_driver_install()
B Stopped -> Uninstalled twai_driver_uninstall()
C Stopped -> Running twai_start()
D Running -> Stopped twai_stop()
E Running -> Bus-Off Transmit Error Counter >= 256
F Bus-Off -> Uninstalled twai_driver_uninstall()
G Bus-Off -> Recovering twai_initiate_recovery()
H Recovering -> Stopped 128 occurrences of 11 consecutive reces-

sive bits.

Driver States Uninstalled: In the uninstalled state, no memory is allocated for the driver and the TWAI controller
is powered OFF.
Stopped: In this state, the TWAI controller is powered ON and the TWAI driver has been installed. However the
TWAI controller will be unable to take part in any bus activities such as transmitting, receiving, or acknowledging
messages.
Running: In the running state, the TWAI controller is able to take part in bus activities. Therefore messages can
be transmitted/received/acknowledged. Furthermore the TWAI controller will be able to transmit error frames upon

Espressif Systems 1236
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

detection of errors on the bus.
Bus-Off: The bus-off state is automatically entered when the TWAI controller's Transmit Error Counter becomes
greater than or equal to 256. The bus-off state indicates the occurrence of severe errors on the bus or in the TWAI
controller. Whilst in the bus-off state, the TWAI controller will be unable to take part in any bus activities. To exit
the bus-off state, the TWAI controller must undergo the bus recovery process.
Recovering: The recovering state is entered when the TWAI controller undergoes bus recovery. The TWAI con-
troller/TWAI driver will remain in the recovering state until the 128 occurrences of 11 consecutive recessive bits is
observed on the bus.

Message Fields and Flags The TWAI driver distinguishes different types of messages by using the various bit field
members of the twai_message_t structure. These bit field members determine whether a message is in standard
or extended format, a remote frame, and the type of transmission to use when transmitting such a message.
These bit field members can also be toggled using the flags member of twai_message_t and the following
message flags:

Message Flag Description
TWAI_MSG_FLAG_EXTD Message is in Extended Frame Format (29bit ID)
TWAI_MSG_FLAG_RTR Message is a Remote Frame (Remote Transmission Request)
TWAI_MSG_FLAG_SS Transmit message using Single Shot Transmission (Message will not be re-

transmitted upon error or loss of arbitration). Unused for received message.
TWAI_MSG_FLAG_SELF Transmitmessage using Self ReceptionRequest (Transmittedmessagewill also

received by the same node). Unused for received message.
TWAI_MSG_FLAG_DLC_NON_COMPMessage's Data length code is larger than 8. This will break compliance with

TWAI
TWAI_MSG_FLAG_NONE Clears all bit fields. Equivalent to a Standard Frame Format (11bit ID) Data

Frame.

Examples

Configuration & Installation The following code snippet demonstrates how to configure, install,
and start the TWAI driver via the use of the various configuration structures, macro initializers, the
twai_driver_install() function, and the twai_start() function.

#include "driver/gpio.h"
#include "driver/twai.h"

void app_main()
{

//Initialize configuration structures using macro initializers
twai_general_config_t g_config = TWAI_GENERAL_CONFIG_DEFAULT(GPIO_NUM_21, GPIO_

↪→NUM_22, TWAI_MODE_NORMAL);
twai_timing_config_t t_config = TWAI_TIMING_CONFIG_500KBITS();
twai_filter_config_t f_config = TWAI_FILTER_CONFIG_ACCEPT_ALL();

//Install TWAI driver
if (twai_driver_install(&g_config, &t_config, &f_config) == ESP_OK) {

printf("Driver installed\n");
} else {

printf("Failed to install driver\n");
return;

}

//Start TWAI driver
if (twai_start() == ESP_OK) {

printf("Driver started\n");
} else {

(continues on next page)

Espressif Systems 1237
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
printf("Failed to start driver\n");
return;

}

...

}

The usage of macro initializers is not mandatory and each of the configuration structures can be manually.

Message Transmission The following code snippet demonstrates how to transmit a message via the usage of the
twai_message_t type and twai_transmit() function.

#include "driver/twai.h"

...

//Configure message to transmit
twai_message_t message;
message.identifier = 0xAAAA;
message.extd = 1;
message.data_length_code = 4;
for (int i = 0; i < 4; i++) {

message.data[i] = 0;
}

//Queue message for transmission
if (twai_transmit(&message, pdMS_TO_TICKS(1000)) == ESP_OK) {

printf("Message queued for transmission\n");
} else {

printf("Failed to queue message for transmission\n");
}

Message Reception The following code snippet demonstrates how to receive a message via the usage of the
twai_message_t type and twai_receive() function.

#include "driver/twai.h"

...

//Wait for message to be received
twai_message_t message;
if (twai_receive(&message, pdMS_TO_TICKS(10000)) == ESP_OK) {

printf("Message received\n");
} else {

printf("Failed to receive message\n");
return;

}

//Process received message
if (message.extd) {

printf("Message is in Extended Format\n");
} else {

printf("Message is in Standard Format\n");
}
printf("ID is %d\n", message.identifier);
if (!(message.rtr)) {

for (int i = 0; i < message.data_length_code; i++) {
printf("Data byte %d = %d\n", i, message.data[i]);

(continues on next page)

Espressif Systems 1238
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
}

}

Reconfiguring and Reading Alerts The following code snippet demonstrates how to reconfigure and read TWAI
driver alerts via the use of the twai_reconfigure_alerts() and twai_read_alerts() functions.

#include "driver/twai.h"

...

//Reconfigure alerts to detect Error Passive and Bus-Off error states
uint32_t alerts_to_enable = TWAI_ALERT_ERR_PASS | TWAI_ALERT_BUS_OFF;
if (twai_reconfigure_alerts(alerts_to_enable, NULL) == ESP_OK) {

printf("Alerts reconfigured\n");
} else {

printf("Failed to reconfigure alerts");
}

//Block indefinitely until an alert occurs
uint32_t alerts_triggered;
twai_read_alerts(&alerts_triggered, portMAX_DELAY);

Stop and Uninstall The following code demonstrates how to stop and uninstall the TWAI driver via the use of the
twai_stop() and twai_driver_uninstall() functions.

#include "driver/twai.h"

...

//Stop the TWAI driver
if (twai_stop() == ESP_OK) {

printf("Driver stopped\n");
} else {

printf("Failed to stop driver\n");
return;

}

//Uninstall the TWAI driver
if (twai_driver_uninstall() == ESP_OK) {

printf("Driver uninstalled\n");
} else {

printf("Failed to uninstall driver\n");
return;

}

Multiple ID Filter Configuration The acceptance mask in twai_filter_config_t can be configured such
that two or more IDs will be accepted for a single filter. For a particular filter to accept multiple IDs, the conflicting
bit positions amongst the IDs must be set in the acceptance mask. The acceptance code can be set to any one of the
IDs.
The following example shows how the calculate the acceptance mask given multiple IDs:

ID1 = 11'b101 1010 0000
ID2 = 11'b101 1010 0001
ID3 = 11'b101 1010 0100
ID4 = 11'b101 1010 1000
//Acceptance Mask
MASK = 11'b000 0000 1101

Espressif Systems 1239
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Application Examples Network Example: The TWAI Network example demonstrates communication between
two ESP32-C6s using the TWAI driver API. One TWAI node acts as a network master that initiates and ceases
the transfer of a data from another node acting as a network slave. The example can be found via peripher-
als/twai/twai_network.
Alert and Recovery Example: This example demonstrates how to use the TWAI driver's alert and bus-off recov-
ery API. The example purposely introduces errors on the bus to put the TWAI controller into the Bus-Off state.
An alert is used to detect the Bus-Off state and trigger the bus recovery process. The example can be found via
peripherals/twai/twai_alert_and_recovery.
Self Test Example: This example uses the No Acknowledge Mode and Self Reception Request to cause the TWAI
controller to send and simultaneously receive a series of messages. This example can be used to verify if the connec-
tions between the TWAI controller and the external transceiver are working correctly. The example can be found via
peripherals/twai/twai_self_test.

API Reference

Header File
• components/hal/include/hal/twai_types.h

Structures

struct twai_message_t
Structure to store a TWAI message.

Note: The flags member is deprecated

Public Members

uint32_t extd
Extended Frame Format (29bit ID)

uint32_t rtr
Message is a Remote Frame

uint32_t ss
Transmit as a Single Shot Transmission. Unused for received.

uint32_t self
Transmit as a Self Reception Request. Unused for received.

uint32_t dlc_non_comp
Message's Data length code is larger than 8. This will break compliance with ISO 11898-1

uint32_t reserved
Reserved bits

uint32_t flags
Deprecated: Alternate way to set bits using message flags

Espressif Systems 1240
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/twai/twai_network
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/twai/twai_network
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/twai/twai_alert_and_recovery
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/twai/twai_self_test
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/twai_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t identifier
11 or 29 bit identifier

uint8_t data_length_code
Data length code

uint8_t data[TWAI_FRAME_MAX_DLC]
Data bytes (not relevant in RTR frame)

struct twai_timing_config_t
Structure for bit timing configuration of the TWAI driver.

Note: Macro initializers are available for this structure

Public Members

twai_clock_source_t clk_src

Clock source, set to 0 or TWAI_CLK_SRC_DEFAULT if you want a default clock source

uint32_t quanta_resolution_hz
The resolution of one timing quanta, in Hz. Note: the value of brp will reflected by this field if it's
non-zero, otherwise, brp needs to be set manually

uint32_t brp
Baudrate prescale (i.e., clock divider). Any even number from 2 to 128 for ESP32, 2 to 32768 for
non-ESP32 chip. Note: For ESP32 ECO 2 or later, multiples of 4 from 132 to 256 are also supported

uint8_t tseg_1
Timing segment 1 (Number of time quanta, between 1 to 16)

uint8_t tseg_2
Timing segment 2 (Number of time quanta, 1 to 8)

uint8_t sjw
Synchronization Jump Width (Max time quanta jump for synchronize from 1 to 4)

bool triple_sampling
Enables triple sampling when the TWAI controller samples a bit

struct twai_filter_config_t
Structure for acceptance filter configuration of the TWAI driver (see documentation)

Note: Macro initializers are available for this structure

Public Members

Espressif Systems 1241
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t acceptance_code
32-bit acceptance code

uint32_t acceptance_mask
32-bit acceptance mask

bool single_filter
Use Single Filter Mode (see documentation)

Macros

TWAI_EXTD_ID_MASK

TWAI Constants.
Bit mask for 29 bit Extended Frame Format ID

TWAI_STD_ID_MASK

Bit mask for 11 bit Standard Frame Format ID

TWAI_FRAME_MAX_DLC

Max data bytes allowed in TWAI

TWAI_FRAME_EXTD_ID_LEN_BYTES

EFF ID requires 4 bytes (29bit)

TWAI_FRAME_STD_ID_LEN_BYTES

SFF ID requires 2 bytes (11bit)

TWAI_ERR_PASS_THRESH

Error counter threshold for error passive

Type Definitions

typedef soc_periph_twai_clk_src_t twai_clock_source_t

RMT group clock source.

Note: User should select the clock source based on the power and resolution requirement

Enumerations

enum twai_mode_t

TWAI Controller operating modes.
Values:

enumerator TWAI_MODE_NORMAL
Normal operating mode where TWAI controller can send/receive/acknowledge messages

enumerator TWAI_MODE_NO_ACK
Transmission does not require acknowledgment. Use this mode for self testing

Espressif Systems 1242
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator TWAI_MODE_LISTEN_ONLY
The TWAI controller will not influence the bus (No transmissions or acknowledgments) but can receive
messages

Header File
• components/driver/twai/include/driver/twai.h

Functions
esp_err_t twai_driver_install(const twai_general_config_t *g_config, const twai_timing_config_t

*t_config, const twai_filter_config_t *f_config)
Install TWAI driver.
This function installs the TWAI driver using three configuration structures. The required memory is allocated
and the TWAI driver is placed in the stopped state after running this function.

Note: Macro initializers are available for the configuration structures (see documentation)

Note: To reinstall the TWAI driver, call twai_driver_uninstall() first

Parameters
• g_config -- [in] General configuration structure
• t_config -- [in] Timing configuration structure
• f_config -- [in] Filter configuration structure

Returns
• ESP_OK: Successfully installed TWAI driver
• ESP_ERR_INVALID_ARG: Arguments are invalid, e.g. invalid clock source, invalid
quanta resolution

• ESP_ERR_NO_MEM: Insufficient memory
• ESP_ERR_INVALID_STATE: Driver is already installed

esp_err_t twai_driver_uninstall(void)
Uninstall the TWAI driver.
This function uninstalls the TWAI driver, freeing the memory utilized by the driver. This function can only be
called when the driver is in the stopped state or the bus-off state.

Warning: The application must ensure that no tasks are blocked on TX/RX queues or alerts when this
function is called.

Returns
• ESP_OK: Successfully uninstalled TWAI driver
• ESP_ERR_INVALID_STATE: Driver is not in stopped/bus-off state, or is not installed

esp_err_t twai_start(void)
Start the TWAI driver.
This function starts the TWAI driver, putting the TWAI driver into the running state. This allows the TWAI
driver to participate in TWAI bus activities such as transmitting/receiving messages. The TX and RX queue
are reset in this function, clearing any messages that are unread or pending transmission. This function can
only be called when the TWAI driver is in the stopped state.

Returns
• ESP_OK: TWAI driver is now running

Espressif Systems 1243
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/twai/include/driver/twai.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_STATE: Driver is not in stopped state, or is not installed
esp_err_t twai_stop(void)

Stop the TWAI driver.
This function stops the TWAI driver, preventing any further message from being transmitted or received until
twai_start() is called. Any messages in the TX queue are cleared. Any messages in the RX queue should be
read by the application after this function is called. This function can only be called when the TWAI driver is
in the running state.

Warning: A message currently being transmitted/received on the TWAI bus will be ceased immediately.
This may lead to other TWAI nodes interpreting the unfinished message as an error.

Returns
• ESP_OK: TWAI driver is now Stopped
• ESP_ERR_INVALID_STATE: Driver is not in running state, or is not installed

esp_err_t twai_transmit(const twai_message_t *message, TickType_t ticks_to_wait)
Transmit a TWAI message.
This function queues a TWAI message for transmission. Transmission will start immediately if no other mes-
sages are queued for transmission. If the TX queue is full, this function will block until more space becomes
available or until it times out. If the TX queue is disabled (TX queue length = 0 in configuration), this function
will return immediately if another message is undergoing transmission. This function can only be called when
the TWAI driver is in the running state and cannot be called under Listen Only Mode.

Note: This function does not guarantee that the transmission is successful. The TX_SUCCESS/TX_FAILED
alert can be enabled to alert the application upon the success/failure of a transmission.

Note: The TX_IDLE alert can be used to alert the application when no other messages are awaiting trans-
mission.

Parameters
• message -- [in]Message to transmit
• ticks_to_wait -- [in] Number of FreeRTOS ticks to block on the TX queue

Returns
• ESP_OK: Transmission successfully queued/initiated
• ESP_ERR_INVALID_ARG: Arguments are invalid
• ESP_ERR_TIMEOUT: Timed out waiting for space on TX queue
• ESP_FAIL: TX queue is disabled and another message is currently transmitting
• ESP_ERR_INVALID_STATE: TWAI driver is not in running state, or is not installed
• ESP_ERR_NOT_SUPPORTED: Listen Only Mode does not support transmissions

esp_err_t twai_receive(twai_message_t *message, TickType_t ticks_to_wait)
Receive a TWAI message.
This function receives a message from the RX queue. The flags field of the message structure will indicate the
type of message received. This function will block if there are no messages in the RX queue

Warning: The flags field of the received message should be checked to determine if the received message
contains any data bytes.

Parameters

Espressif Systems 1244
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• message -- [out] Received message
• ticks_to_wait -- [in] Number of FreeRTOS ticks to block on RX queue

Returns
• ESP_OK: Message successfully received from RX queue
• ESP_ERR_TIMEOUT: Timed out waiting for message
• ESP_ERR_INVALID_ARG: Arguments are invalid
• ESP_ERR_INVALID_STATE: TWAI driver is not installed

esp_err_t twai_read_alerts(uint32_t *alerts, TickType_t ticks_to_wait)
Read TWAI driver alerts.
This function will read the alerts raised by the TWAI driver. If no alert has been issued when this function is
called, this function will block until an alert occurs or until it timeouts.

Note: Multiple alerts can be raised simultaneously. The application should check for all alerts that have been
enabled.

Parameters
• alerts -- [out] Bit field of raised alerts (see documentation for alert flags)
• ticks_to_wait -- [in] Number of FreeRTOS ticks to block for alert

Returns
• ESP_OK: Alerts read
• ESP_ERR_TIMEOUT: Timed out waiting for alerts
• ESP_ERR_INVALID_ARG: Arguments are invalid
• ESP_ERR_INVALID_STATE: TWAI driver is not installed

esp_err_t twai_reconfigure_alerts(uint32_t alerts_enabled, uint32_t *current_alerts)
Reconfigure which alerts are enabled.
This function reconfigures which alerts are enabled. If there are alerts which have not been read whilst recon-
figuring, this function can read those alerts.

Parameters
• alerts_enabled -- [in] Bit field of alerts to enable (see documentation for alert flags)
• current_alerts -- [out] Bit field of currently raised alerts. Set to NULL if unused

Returns
• ESP_OK: Alerts reconfigured
• ESP_ERR_INVALID_STATE: TWAI driver is not installed

esp_err_t twai_initiate_recovery(void)
Start the bus recovery process.
This function initiates the bus recovery process when the TWAI driver is in the bus-off state. Once initiated,
the TWAI driver will enter the recovering state and wait for 128 occurrences of the bus-free signal on the
TWAI bus before returning to the stopped state. This function will reset the TX queue, clearing any messages
pending transmission.

Note: The BUS_RECOVERED alert can be enabled to alert the application when the bus recovery process
completes.

Returns
• ESP_OK: Bus recovery started
• ESP_ERR_INVALID_STATE: TWAI driver is not in the bus-off state, or is not installed

esp_err_t twai_get_status_info(twai_status_info_t *status_info)
Get current status information of the TWAI driver.

Espressif Systems 1245
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters status_info -- [out] Status information
Returns

• ESP_OK: Status information retrieved
• ESP_ERR_INVALID_ARG: Arguments are invalid
• ESP_ERR_INVALID_STATE: TWAI driver is not installed

esp_err_t twai_clear_transmit_queue(void)
Clear the transmit queue.
This function will clear the transmit queue of all messages.

Note: The transmit queue is automatically cleared when twai_stop() or twai_initiate_recovery() is called.

Returns
• ESP_OK: Transmit queue cleared
• ESP_ERR_INVALID_STATE: TWAI driver is not installed or TX queue is disabled

esp_err_t twai_clear_receive_queue(void)
Clear the receive queue.
This function will clear the receive queue of all messages.

Note: The receive queue is automatically cleared when twai_start() is called.

Returns
• ESP_OK: Transmit queue cleared
• ESP_ERR_INVALID_STATE: TWAI driver is not installed

Structures

struct twai_general_config_t
Structure for general configuration of the TWAI driver.

Note: Macro initializers are available for this structure

Public Members

twai_mode_t mode

Mode of TWAI controller

gpio_num_t tx_io

Transmit GPIO number

gpio_num_t rx_io

Receive GPIO number

gpio_num_t clkout_io

CLKOUT GPIO number (optional, set to -1 if unused)

Espressif Systems 1246
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

gpio_num_t bus_off_io

Bus off indicator GPIO number (optional, set to -1 if unused)

uint32_t tx_queue_len
Number of messages TX queue can hold (set to 0 to disable TX Queue)

uint32_t rx_queue_len
Number of messages RX queue can hold

uint32_t alerts_enabled
Bit field of alerts to enable (see documentation)

uint32_t clkout_divider
CLKOUT divider. Can be 1 or any even number from 2 to 14 (optional, set to 0 if unused)

int intr_flags
Interrupt flags to set the priority of the driver's ISR. Note that to use the ESP_INTR_FLAG_IRAM, the
CONFIG_TWAI_ISR_IN_IRAM option should be enabled first.

struct twai_status_info_t
Structure to store status information of TWAI driver.

Public Members

twai_state_t state

Current state of TWAI controller (Stopped/Running/Bus-Off/Recovery)

uint32_t msgs_to_tx
Number of messages queued for transmission or awaiting transmission completion

uint32_t msgs_to_rx
Number of messages in RX queue waiting to be read

uint32_t tx_error_counter
Current value of Transmit Error Counter

uint32_t rx_error_counter
Current value of Receive Error Counter

uint32_t tx_failed_count
Number of messages that failed transmissions

uint32_t rx_missed_count
Number of messages that were lost due to a full RX queue (or errata workaround if enabled)

uint32_t rx_overrun_count
Number of messages that were lost due to a RX FIFO overrun

Espressif Systems 1247
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t arb_lost_count
Number of instances arbitration was lost

uint32_t bus_error_count
Number of instances a bus error has occurred

Macros

TWAI_IO_UNUSED

Marks GPIO as unused in TWAI configuration

Enumerations

enum twai_state_t

TWAI driver states.
Values:

enumerator TWAI_STATE_STOPPED
Stopped state. The TWAI controller will not participate in any TWAI bus activities

enumerator TWAI_STATE_RUNNING
Running state. The TWAI controller can transmit and receive messages

enumerator TWAI_STATE_BUS_OFF
Bus-off state. The TWAI controller cannot participate in bus activities until it has recovered

enumerator TWAI_STATE_RECOVERING
Recovering state. The TWAI controller is undergoing bus recovery

2.6.29 Universal Asynchronous Receiver/Transmitter (UART)

Introduction

A Universal Asynchronous Receiver/Transmitter (UART) is a hardware feature that handles communication (i.e.,
timing requirements and data framing) using widely-adopted asynchronous serial communication interfaces, such
as RS232, RS422, and RS485. A UART provides a widely adopted and cheap method to realize full-duplex or
half-duplex data exchange among different devices.
The ESP32-C6 chip has 2 UART controllers (also referred to as port), each featuring an identical set of registers to
simplify programming and for more flexibility.
Each UART controller is independently configurable with parameters such as baud rate, data bit length, bit ordering,
number of stop bits, parity bit, etc. All the controllers are compatible with UART-enabled devices from various
manufacturers and can also support Infrared Data Association (IrDA) protocols.

Functional Overview

The overview describes how to establish communication between an ESP32-C6 and other UART devices using the
functions and data types of the UART driver. A typical programming workflow is broken down into the sections
provided below:

1. Set Communication Parameters - Setting baud rate, data bits, stop bits, etc.

Espressif Systems 1248
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2. Set Communication Pins - Assigning pins for connection to a device
3. Install Drivers - Allocating ESP32-C6's resources for the UART driver
4. Run UART Communication - Sending/receiving data
5. Use Interrupts - Triggering interrupts on specific communication events
6. Deleting a Driver - Freeing allocated resources if a UART communication is no longer required

Steps 1 to 3 comprise the configuration stage. Step 4 is where the UART starts operating. Steps 5 and 6 are optional.
The UART driver's functions identify each of the UART controllers using uart_port_t. This identification is
needed for all the following function calls.

Set Communication Parameters UART communication parameters can be configured all in a single step or in-
dividually in multiple steps.

Single Step Call the function uart_param_config() and pass to it a uart_config_t structure. The
uart_config_t structure should contain all the required parameters. See the example below.

const uart_port_t uart_num = UART_NUM_1;
uart_config_t uart_config = {

.baud_rate = 115200,

.data_bits = UART_DATA_8_BITS,

.parity = UART_PARITY_DISABLE,

.stop_bits = UART_STOP_BITS_1,

.flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,

.rx_flow_ctrl_thresh = 122,
};
// Configure UART parameters
ESP_ERROR_CHECK(uart_param_config(uart_num, &uart_config));

For more information on how to configure the hardware flow control options, please refer to peripher-
als/uart/uart_echo.

Multiple Steps Configure specific parameters individually by calling a dedicated function from the table given
below. These functions are also useful if re-configuring a single parameter.

Table 6: Functions for Configuring specific parameters individually
Parameter to Configure Function
Baud rate uart_set_baudrate()
Number of transmitted bits uart_set_word_length() selected out of uart_word_length_t
Parity control uart_set_parity() selected out of uart_parity_t
Number of stop bits uart_set_stop_bits() selected out of uart_stop_bits_t
Hardware flow control mode uart_set_hw_flow_ctrl() selected out of

uart_hw_flowcontrol_t
Communication mode uart_set_mode() selected out of uart_mode_t

Each of the above functions has a _get_ counterpart to check the currently set value. For example, to check the
current baud rate value, call uart_get_baudrate().

Set Communication Pins After setting communication parameters, configure the physical GPIO pins to which
the other UART device will be connected. For this, call the function uart_set_pin() and specify the GPIO pin
numbers to which the driver should route the Tx, Rx, RTS, and CTS signals. If you want to keep a currently allocated
pin number for a specific signal, pass the macro UART_PIN_NO_CHANGE.
The same macro UART_PIN_NO_CHANGE should be specified for pins that will not be used.

// Set UART pins(TX: IO4, RX: IO5, RTS: IO18, CTS: IO19)
ESP_ERROR_CHECK(uart_set_pin(UART_NUM_1, 4, 5, 18, 19));

Espressif Systems 1249
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_echo
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_echo
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Install Drivers Once the communication pins are set, install the driver by calling uart_driver_install()
and specify the following parameters:

• Size of Tx ring buffer
• Size of Rx ring buffer
• Event queue handle and size
• Flags to allocate an interrupt

The function will allocate the required internal resources for the UART driver.

// Setup UART buffered IO with event queue
const int uart_buffer_size = (1024 * 2);
QueueHandle_t uart_queue;
// Install UART driver using an event queue here
ESP_ERROR_CHECK(uart_driver_install(UART_NUM_1, uart_buffer_size, \

uart_buffer_size, 10, &uart_queue, 0));

Once this step is complete, you can connect the external UART device and check the communication.

Run UART Communication Serial communication is controlled by each UART controller's finite state machine
(FSM).
The process of sending data involves the following steps:

1. Write data into Tx FIFO buffer
2. FSM serializes the data
3. FSM sends the data out

The process of receiving data is similar, but the steps are reversed:
1. FSM processes an incoming serial stream and parallelizes it
2. FSM writes the data into Rx FIFO buffer
3. Read the data from Rx FIFO buffer

Therefore, an application will only write and read data from a specific buffer using uart_write_bytes() and
uart_read_bytes() respectively, and the FSM will do the rest.

Transmit Data After preparing the data for transmission, call the function uart_write_bytes() and pass
the data buffer's address and data length to it. The function will copy the data to the Tx ring buffer (either immediately
or after enough space is available), and then exit. When there is free space in the Tx FIFO buffer, an interrupt service
routine (ISR) moves the data from the Tx ring buffer to the Tx FIFO buffer in the background. The code below
demonstrates the use of this function.

// Write data to UART.
char* test_str = "This is a test string.\n";
uart_write_bytes(uart_num, (const char*)test_str, strlen(test_str));

The function uart_write_bytes_with_break() is similar to uart_write_bytes() but adds a serial
break signal at the end of the transmission. A 'serial break signal' means holding the Tx line low for a period longer
than one data frame.

// Write data to UART, end with a break signal.
uart_write_bytes_with_break(uart_num, "test break\n",strlen("test break\n"), 100);

Another function for writing data to the Tx FIFO buffer is uart_tx_chars(). Unlike
uart_write_bytes(), this function will not block until space is available. Instead, it will write all data
which can immediately fit into the hardware Tx FIFO, and then return the number of bytes that were written.
There is a 'companion' function uart_wait_tx_done() that monitors the status of the Tx FIFO buffer and
returns once it is empty.

Espressif Systems 1250
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

// Wait for packet to be sent
const uart_port_t uart_num = UART_NUM_1;
ESP_ERROR_CHECK(uart_wait_tx_done(uart_num, 100)); // wait timeout is 100 RTOS␣
↪→ticks (TickType_t)

Receive Data Once the data is received by the UART and saved in the Rx FIFO buffer, it needs to be retrieved
using the function uart_read_bytes(). Before reading data, you can check the number of bytes available in
the Rx FIFO buffer by calling uart_get_buffered_data_len(). An example of using these functions is
given below.

// Read data from UART.
const uart_port_t uart_num = UART_NUM_1;
uint8_t data[128];
int length = 0;
ESP_ERROR_CHECK(uart_get_buffered_data_len(uart_num, (size_t*)&length));
length = uart_read_bytes(uart_num, data, length, 100);

If the data in the Rx FIFO buffer is no longer needed, you can clear the buffer by calling uart_flush().

Software Flow Control If the hardware flow control is disabled, you can manually set the RTS and DTR signal
levels by using the functions uart_set_rts() and uart_set_dtr() respectively.

Communication Mode Selection The UART controller supports a number of communication modes. A mode
can be selected using the function uart_set_mode(). Once a specific mode is selected, the UART driver will
handle the behavior of a connected UART device accordingly. As an example, it can control the RS485 driver chip
using the RTS line to allow half-duplex RS485 communication.

// Setup UART in rs485 half duplex mode
ESP_ERROR_CHECK(uart_set_mode(uart_num, UART_MODE_RS485_HALF_DUPLEX));

Use Interrupts There are many interrupts that can be generated depending on specific UART states or detected
errors. The full list of available interrupts is provided in ESP32-C6 Technical Reference Manual > UART Controller
(UART) > UART Interrupts and UHCI Interrupts [PDF]. You can enable or disable specific interrupts by calling
uart_enable_intr_mask() or uart_disable_intr_mask() respectively.
The uart_driver_install() function installs the driver's internal interrupt handler to manage the Tx and Rx
ring buffers and provides high-level API functions like events (see below).
The API provides a convenient way to handle specific interrupts discussed in this document by wrapping them into
dedicated functions:

• Event detection: There are several events defined in uart_event_type_t that may be reported to a
user application using the FreeRTOS queue functionality. You can enable this functionality when calling
uart_driver_install() described in Install Drivers. An example of using Event detection can be
found in peripherals/uart/uart_events.

• FIFO space threshold or transmission timeout reached: The Tx and Rx FIFO buffers can trigger an inter-
rupt when they are filled with a specific number of characters, or on a timeout of sending or receiving data. To
use these interrupts, do the following:

– Configure respective threshold values of the buffer length and timeout by entering them in the structure
uart_intr_config_t and calling uart_intr_config()

– Enable the interrupts using the functions uart_enable_tx_intr() and
uart_enable_rx_intr()

– Disable these interrupts using the corresponding functions uart_disable_tx_intr() or
uart_disable_rx_intr()

• Pattern detection: An interrupt triggered on detecting a 'pattern' of the same character being received/sent
repeatedly. This functionality is demonstrated in the example peripherals/uart/uart_events. It can be used,

Espressif Systems 1251
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#uart
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_events
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_events
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

e.g., to detect a command string with a specific number of identical characters (the 'pattern') at the end. The
following functions are available:

– Configure and enable this interrupt using uart_enable_pattern_det_baud_intr()
– Disable the interrupt using uart_disable_pattern_det_intr()

Macros The API also defines several macros. For example, UART_FIFO_LEN defines the length of hardware
FIFO buffers; UART_BITRATE_MAX gives the maximum baud rate supported by the UART controllers, etc.

Deleting a Driver If the communication established with uart_driver_install() is no longer required,
the driver can be removed to free allocated resources by calling uart_driver_delete().

Overview of RS485 Specific Communication 0ptions

Note: The following section will use [UART_REGISTER_NAME].[UART_FIELD_BIT] to refer to UART
register fields/bits. For more information on a specific option bit, see ESP32-C6 Technical Reference Manual >UART
Controller (UART) > Register Summary [PDF]. Use the register name to navigate to the register description and then
find the field/bit.

• UART_RS485_CONF_REG.UART_RS485_EN: setting this bit enables RS485 communication mode sup-
port.

• UART_RS485_CONF_REG.UART_RS485TX_RX_EN: if this bit is set, the transmitter's output signal loops
back to the receiver's input signal.

• UART_RS485_CONF_REG.UART_RS485RXBY_TX_EN: if this bit is set, the transmitter will still be send-
ing data if the receiver is busy (remove collisions automatically by hardware).

The ESP32-C6's RS485 UART hardware can detect signal collisions during transmission of a datagram and generate
the interrupt UART_RS485_CLASH_INT if this interrupt is enabled. The term collision means that a transmitted
datagram is not equal to the one received on the other end. Data collisions are usually associated with the presence
of other active devices on the bus or might occur due to bus errors.
The collision detection feature allows handling collisions when their interrupts are activated and triggered. The in-
terrupts UART_RS485_FRM_ERR_INT and UART_RS485_PARITY_ERR_INT can be used with the collision
detection feature to control frame errors and parity bit errors accordingly in RS485 mode. This functionality is
supported in the UART driver and can be used by selecting the UART_MODE_RS485_APP_CTRL mode (see the
function uart_set_mode()).
The collision detection feature can work with circuit A and circuit C (see Section Interface Connection Options). In
the case of using circuit A or B, the RTS pin connected to the DE pin of the bus driver should be controlled by the
user application. Use the function uart_get_collision_flag() to check if the collision detection flag has
been raised.
The ESP32-C6 UART controllers themselves do not support half-duplex communication as they cannot provide
automatic control of the RTS pin connected to the RE/DE input of RS485 bus driver. However, half-duplex commu-
nication can be achieved via software control of the RTS pin by the UART driver. This can be enabled by selecting
the UART_MODE_RS485_HALF_DUPLEX mode when calling uart_set_mode().
Once the host starts writing data to the Tx FIFO buffer, the UART driver automatically asserts the RTS pin (logic 1);
once the last bit of the data has been transmitted, the driver de-asserts the RTS pin (logic 0). To use this mode, the
software would have to disable the hardware flow control function. This mode works with all the used circuits shown
below.

Interface Connection Options This section provides example schematics to demonstrate the basic aspects of
ESP32-C6's RS485 interface connection.

Note:

Espressif Systems 1252
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#uart-reg-summ
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• The schematics below do not necessarily contain all required elements.
• The analog devicesADM483&ADM2483 are examples of commonRS485 transceivers and can be replaced
with other similar transceivers.

Circuit A: Collision Detection Circuit
VCC ---------------+

|
+-------x-------+

RXD <------| R |
| B|----------<> B

TXD ------>| D ADM483 |
ESP | | RS485 bus side

RTS ------>| DE |
| A|----------<> A

+----| /RE |
| +-------x-------+
| |
GND GND

This circuit is preferable because it allows for collision detection and is quite simple at the same time. The receiver
in the line driver is constantly enabled, which allows the UART to monitor the RS485 bus. Echo suppression is per-
formed by the UART peripheral when the bit UART_RS485_CONF_REG.UART_RS485TX_RX_EN is enabled.

Circuit B: Manual Switching Transmitter/Receiver Without Collision Detection
VCC ---------------+

|
+-------x-------+

RXD <------| R |
| B|-----------<> B

TXD ------>| D ADM483 |
ESP | | RS485 bus side

RTS --+--->| DE |
| | A|-----------<> A
+----| /RE |

+-------x-------+
|

GND

This circuit does not allow for collision detection. It suppresses the null bytes that the hardware receives when
the bit UART_RS485_CONF_REG.UART_RS485TX_RX_EN is set. The bit UART_RS485_CONF_REG.
UART_RS485RXBY_TX_EN is not applicable in this case.

Circuit C: Auto Switching Transmitter/Receiver
VCC1 <-------------------+-----------+ +-------------------+----> VCC2

10K ____ | | | |
+---|____|--+ +---x-----------x---+ 10K ____ |
| | | +---|____|--+

RX <----------+-------------------| RXD | |
10K ____ | A|---+---------------<> A (+)

+-------|____|------| PV ADM2483 | | ____ 120
| ____ | | +---|____|---+ RS485␣

↪→bus side
VCC1 <--+--|____|--+------->| DE | |

10K | | B|---+------------+--<> B (-)
---+ +-->| /RE | | ____

10K | | | | +---|____|---+
____ | /-C +---| TXD | 10K |

(continues on next page)

Espressif Systems 1253
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
TX >---|____|--+_B_|/ NPN | | | |

|\ | +---x-----------x---+ |
| \-E | | | |

| | | | |
GND1 GND1 GND1 GND2 GND2

This galvanically isolated circuit does not require RTS pin control by a software application or driver because
it controls the transceiver direction automatically. However, it requires suppressing null bytes during transmis-
sion by setting UART_RS485_CONF_REG.UART_RS485RXBY_TX_EN to 1 and UART_RS485_CONF_REG.
UART_RS485TX_RX_EN to 0. This setup can work in any RS485 UART mode or even in UART_MODE_UART.

Application Examples

The table below describes the code examples available in the directory peripherals/uart/.

Code Example Description
peripherals/uart/uart_echo Configuring UART settings, installing the UART driver, and read-

ing/writing over the UART1 interface.
peripherals/uart/uart_events Reporting various communication events, using pattern detection inter-

rupts.
peripher-
als/uart/uart_async_rxtxtasks

Transmitting and receiving data in two separate FreeRTOS tasks over the
same UART.

peripherals/uart/uart_select Using synchronous I/O multiplexing for UART file descriptors.
peripherals/uart/uart_echo_rs485 Setting up UART driver to communicate over RS485 interface in half-

duplex mode. This example is similar to peripherals/uart/uart_echo but
allows communication through an RS485 interface chip connected to
ESP32-C6 pins.

peripherals/uart/nmea0183_parser Obtaining GPS information by parsing NMEA0183 statements received
from GPS via the UART peripheral.

API Reference

Header File
• components/driver/uart/include/driver/uart.h

Functions
esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int

queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
Install UART driver and set the UART to the default configuration.
UART ISR handler will be attached to the same CPU core that this function is running on.

Note: Rx_buffer_size should be greater than UART_FIFO_LEN. Tx_buffer_size should be either zero or
greater than UART_FIFO_LEN.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• rx_buffer_size -- UART RX ring buffer size.
• tx_buffer_size -- UART TX ring buffer size. If set to zero, driver will not use TX
buffer, TX function will block task until all data have been sent out.

• queue_size -- UART event queue size/depth.

Espressif Systems 1254
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_echo
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_events
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_async_rxtxtasks
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_async_rxtxtasks
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_select
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_echo_rs485
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_echo
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/nmea0183_parser
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/uart/include/driver/uart.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• uart_queue -- UART event queue handle (out param). On success, a new queue handle
is written here to provide access to UART events. If set to NULL, driver will not use an
event queue.

• intr_alloc_flags -- Flags used to allocate the interrupt. One or multiple
(ORred) ESP_INTR_FLAG_* values. See esp_intr_alloc.h for more info. Do not set
ESP_INTR_FLAG_IRAM here (the driver's ISR handler is not located in IRAM)

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_driver_delete(uart_port_t uart_num)
Uninstall UART driver.

Parameters uart_num -- UART port number, the max port number is (UART_NUM_MAX
-1).

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

bool uart_is_driver_installed(uart_port_t uart_num)
Checks whether the driver is installed or not.

Parameters uart_num -- UART port number, the max port number is (UART_NUM_MAX
-1).

Returns
• true driver is installed
• false driver is not installed

esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
Set UART data bits.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• data_bit -- UART data bits

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
Get the UART data bit configuration.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• data_bit -- Pointer to accept value of UART data bits.

Returns
• ESP_FAIL Parameter error
• ESP_OK Success, result will be put in (*data_bit)

esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bits)
Set UART stop bits.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• stop_bits -- UART stop bits

Returns
• ESP_OK Success
• ESP_FAIL Fail

esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bits)
Get the UART stop bit configuration.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).

Espressif Systems 1255
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• stop_bits -- Pointer to accept value of UART stop bits.
Returns

• ESP_FAIL Parameter error
• ESP_OK Success, result will be put in (*stop_bit)

esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
Set UART parity mode.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• parity_mode -- the enum of uart parity configuration

Returns
• ESP_FAIL Parameter error
• ESP_OK Success

esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
Get the UART parity mode configuration.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• parity_mode -- Pointer to accept value of UART parity mode.

Returns
• ESP_FAIL Parameter error
• ESP_OK Success, result will be put in (*parity_mode)

esp_err_t uart_get_sclk_freq(uart_sclk_t sclk, uint32_t *out_freq_hz)
Get the frequency of a clock source for the UART.

Parameters
• sclk -- Clock source
• out_freq_hz -- [out] Output of frequency, in Hz

Returns
• ESP_ERR_INVALID_ARG: if the clock source is not supported
• otherwise ESP_OK

esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baudrate)
Set desired UART baud rate.
Note that the actual baud rate set could have a slight deviation from the user-configured value due to rounding
error.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• baudrate -- UART baud rate.

Returns
• ESP_FAIL Parameter error, such as baud rate unachievable
• ESP_OK Success

esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
Get the actual UART baud rate.
It returns the real UART rate set in the hardware. It could have a slight deviation from the user-configured
baud rate.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• baudrate -- Pointer to accept value of UART baud rate

Returns
• ESP_FAIL Parameter error
• ESP_OK Success, result will be put in (*baudrate)

esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
Set UART line inverse mode.

Espressif Systems 1256
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• inverse_mask -- Choose the wires that need to be inverted. Using the ORred mask
of uart_signal_inv_t

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t
rx_thresh)

Set hardware flow control.
Parameters

• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• flow_ctrl -- Hardware flow control mode
• rx_thresh -- Threshold of Hardware RX flow control (0 ~ UART_FIFO_LEN). Only
when UART_HW_FLOWCTRL_RTS is set, will the rx_thresh value be set.

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t
rx_thresh_xoff)

Set software flow control.
Parameters

• uart_num -- UART_NUM_0, UART_NUM_1 or UART_NUM_2
• enable -- switch on or off
• rx_thresh_xon -- low water mark
• rx_thresh_xoff -- high water mark

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
Get the UART hardware flow control configuration.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• flow_ctrl -- Option for different flow control mode.

Returns
• ESP_FAIL Parameter error
• ESP_OK Success, result will be put in (*flow_ctrl)

esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
Clear UART interrupt status.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• clr_mask -- Bit mask of the interrupt status to be cleared.

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
Set UART interrupt enable.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• enable_mask -- Bit mask of the enable bits.

Returns
• ESP_OK Success

Espressif Systems 1257
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_FAIL Parameter error
esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)

Clear UART interrupt enable bits.
Parameters

• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• disable_mask -- Bit mask of the disable bits.

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
Enable UART RX interrupt (RX_FULL & RX_TIMEOUT INTERRUPT)

Parameters uart_num -- UART port number, the max port number is (UART_NUM_MAX
-1).

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
Disable UART RX interrupt (RX_FULL & RX_TIMEOUT INTERRUPT)

Parameters uart_num -- UART port number, the max port number is (UART_NUM_MAX
-1).

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
Disable UART TX interrupt (TX_FULL & TX_TIMEOUT INTERRUPT)

Parameters uart_num -- UART port number
Returns

• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
Enable UART TX interrupt (TX_FULL & TX_TIMEOUT INTERRUPT)

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• enable -- 1: enable; 0: disable
• thresh -- Threshold of TX interrupt, 0 ~ UART_FIFO_LEN

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int
cts_io_num)

Assign signals of a UART peripheral to GPIO pins.

Note: If the GPIO number configured for a UART signal matches one of the IOMUX signals for that GPIO,
the signal will be connected directly via the IOMUX. Otherwise the GPIO and signal will be connected via the
GPIOMatrix. For example, if on an ESP32 the call uart_set_pin(0, 1, 3, -1, -1) is performed,
as GPIO1 is UART0's default TX pin and GPIO3 is UART0's default RX pin, both will be connected to
respectively U0TXD and U0RXD through the IOMUX, totally bypassing the GPIO matrix. The check is
performed on a per-pin basis. Thus, it is possible to have RX pin binded to a GPIO through the GPIO matrix,
whereas TX is binded to its GPIO through the IOMUX.

Espressif Systems 1258
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: It is possible to configure TX and RX to share the same IO (single wire mode), but please be aware
of output conflict, which could damage the pad. Apply open-drain and pull-up to the pad ahead of time as a
protection, or the upper layer protocol must guarantee no output from two ends at the same time.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• tx_io_num -- UART TX pin GPIO number.
• rx_io_num -- UART RX pin GPIO number.
• rts_io_num -- UART RTS pin GPIO number.
• cts_io_num -- UART CTS pin GPIO number.

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_set_rts(uart_port_t uart_num, int level)
Manually set the UART RTS pin level.

Note: UART must be configured with hardware flow control disabled.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• level -- 1: RTS output low (active); 0: RTS output high (block)

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
Manually set the UART DTR pin level.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• level -- 1: DTR output low; 0: DTR output high

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
Set UART idle interval after tx FIFO is empty.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• idle_num -- idle interval after tx FIFO is empty(unit: the time it takes to send one bit
under current baudrate)

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
Set UART configuration parameters.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• uart_config -- UART parameter settings

Returns
• ESP_OK Success
• ESP_FAIL Parameter error, such as baud rate unachievable

Espressif Systems 1259
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
Configure UART interrupts.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• intr_conf -- UART interrupt settings

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
Wait until UART TX FIFO is empty.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• ticks_to_wait -- Timeout, count in RTOS ticks

Returns
• ESP_OK Success
• ESP_FAIL Parameter error
• ESP_ERR_TIMEOUT Timeout

int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
Send data to the UART port from a given buffer and length.
This function will not wait for enough space in TX FIFO. It will just fill the available TX FIFO and return
when the FIFO is full.

Note: This function should only be used when UART TX buffer is not enabled.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• buffer -- data buffer address
• len -- data length to send

Returns
• (-1) Parameter error
• OTHERS (>=0) The number of bytes pushed to the TX FIFO

int uart_write_bytes(uart_port_t uart_num, const void *src, size_t size)
Send data to the UART port from a given buffer and length,.
If the UART driver's parameter 'tx_buffer_size' is set to zero: This function will not return until all the data
have been sent out, or at least pushed into TX FIFO.
Otherwise, if the 'tx_buffer_size' > 0, this function will return after copying all the data to tx ring buffer, UART
ISR will then move data from the ring buffer to TX FIFO gradually.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• src -- data buffer address
• size -- data length to send

Returns
• (-1) Parameter error
• OTHERS (>=0) The number of bytes pushed to the TX FIFO

int uart_write_bytes_with_break(uart_port_t uart_num, const void *src, size_t size, int brk_len)
Send data to the UART port from a given buffer and length,.
If the UART driver's parameter 'tx_buffer_size' is set to zero: This function will not return until all the data
and the break signal have been sent out. After all data is sent out, send a break signal.

Espressif Systems 1260
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Otherwise, if the 'tx_buffer_size' > 0, this function will return after copying all the data to tx ring buffer, UART
ISR will then move data from the ring buffer to TX FIFO gradually. After all data sent out, send a break signal.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• src -- data buffer address
• size -- data length to send
• brk_len -- break signal duration(unit: the time it takes to send one bit at current bau-
drate)

Returns
• (-1) Parameter error
• OTHERS (>=0) The number of bytes pushed to the TX FIFO

int uart_read_bytes(uart_port_t uart_num, void *buf, uint32_t length, TickType_t ticks_to_wait)
UART read bytes from UART buffer.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• buf -- pointer to the buffer.
• length -- data length
• ticks_to_wait -- sTimeout, count in RTOS ticks

Returns
• (-1) Error
• OTHERS (>=0) The number of bytes read from UART buffer

esp_err_t uart_flush(uart_port_t uart_num)
Alias of uart_flush_input. UART ring buffer flush. This will discard all data in the UART RX buffer.

Note: Instead of waiting the data sent out, this function will clear UART rx buffer. In order to send all the
data in tx FIFO, we can use uart_wait_tx_done function.

Parameters uart_num -- UART port number, the max port number is (UART_NUM_MAX
-1).

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_flush_input(uart_port_t uart_num)
Clear input buffer, discard all the data is in the ring-buffer.

Note: In order to send all the data in tx FIFO, we can use uart_wait_tx_done function.

Parameters uart_num -- UART port number, the max port number is (UART_NUM_MAX
-1).

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
UART get RX ring buffer cached data length.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• size -- Pointer of size_t to accept cached data length

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

Espressif Systems 1261
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t uart_get_tx_buffer_free_size(uart_port_t uart_num, size_t *size)
UART get TX ring buffer free space size for the next data to be enqueued.
It returns the tight conservative bound for NOSPLIT ring buffer overall enqueueable payload across up to two
chunks.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• size -- Pointer of size_t to accept the free space size

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
UART disable pattern detect function. Designed for applications like 'AT commands'. When the hardware
detects a series of one same character, the interrupt will be triggered.

Parameters uart_num -- UART port number, the max port number is (UART_NUM_MAX
-1).

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t
chr_num, int chr_tout, int post_idle, int pre_idle)

UART enable pattern detect function. Designed for applications like 'AT commands'. When the hardware
detect a series of one same character, the interrupt will be triggered.

Parameters
• uart_num -- UART port number.
• pattern_chr -- character of the pattern.
• chr_num -- number of the character, 8bit value.
• chr_tout -- timeout of the interval between each pattern characters, 16bit value, unit
is the baud-rate cycle you configured. When the duration is more than this value, it will
not take this data as at_cmd char.

• post_idle -- idle time after the last pattern character, 16bit value, unit is the baud-rate
cycle you configured. When the duration is less than this value, it will not take the previous
data as the last at_cmd char

• pre_idle -- idle time before the first pattern character, 16bit value, unit is the baud-rate
cycle you configured. When the duration is less than this value, it will not take this data as
the first at_cmd char.

Returns
• ESP_OK Success
• ESP_FAIL Parameter error

int uart_pattern_pop_pos(uart_port_t uart_num)
Return the nearest detected pattern position in buffer. The positions of the detected pattern are saved in a
queue, this function will dequeue the first pattern position and move the pointer to next pattern position.

The following APIs will modify the pattern position info: uart_flush_input, uart_read_bytes,
uart_driver_delete, uart_pop_pattern_pos It is the application's responsibility to ensure atomic access
to the pattern queue and the rx data buffer when using pattern detect feature.

Note: If the RX buffer is full and flow control is not enabled, the detected pattern may not be found in the rx
buffer due to overflow.

Parameters uart_num -- UART port number, the max port number is (UART_NUM_MAX
-1).

Espressif Systems 1262
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• (-1) No pattern found for current index or parameter error
• others the pattern position in rx buffer.

int uart_pattern_get_pos(uart_port_t uart_num)
Return the nearest detected pattern position in buffer. The positions of the detected pattern are saved in a
queue, This function do nothing to the queue.

The following APIs will modify the pattern position info: uart_flush_input, uart_read_bytes,
uart_driver_delete, uart_pop_pattern_pos It is the application's responsibility to ensure atomic access
to the pattern queue and the rx data buffer when using pattern detect feature.

Note: If the RX buffer is full and flow control is not enabled, the detected pattern may not be found in the rx
buffer due to overflow.

Parameters uart_num -- UART port number, the max port number is (UART_NUM_MAX
-1).

Returns
• (-1) No pattern found for current index or parameter error
• others the pattern position in rx buffer.

esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
Allocate a new memory with the given length to save record the detected pattern position in rx buffer.

Parameters
• uart_num -- UART port number, the max port number is (UART_NUM_MAX -1).
• queue_length -- Max queue length for the detected pattern. If the queue length is not
large enough, some pattern positions might be lost. Set this value to the maximum number
of patterns that could be saved in data buffer at the same time.

Returns
• ESP_ERR_NO_MEM No enough memory
• ESP_ERR_INVALID_STATE Driver not installed
• ESP_FAIL Parameter error
• ESP_OK Success

esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
UART set communication mode.

Note: This function must be executed after uart_driver_install(), when the driver object is initialized.

Parameters
• uart_num -- Uart number to configure, the max port number is (UART_NUM_MAX
-1).

• mode -- UART UART mode to set
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
Set uart threshold value for RX fifo full.

Note: If application is using higher baudrate and it is observed that bytes in hardware RX fifo are overwritten
then this threshold can be reduced

Espressif Systems 1263
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• uart_num -- UART_NUM_0, UART_NUM_1 or UART_NUM_2
• threshold -- Threshold value above which RX fifo full interrupt is generated

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Driver is not installed

esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
Set uart threshold values for TX fifo empty.

Parameters
• uart_num -- UART_NUM_0, UART_NUM_1 or UART_NUM_2
• threshold -- Threshold value below which TX fifo empty interrupt is generated

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Driver is not installed

esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
UART set threshold timeout for TOUT feature.

Parameters
• uart_num -- Uart number to configure, the max port number is (UART_NUM_MAX
-1).

• tout_thresh -- This parameter defines timeout threshold in uart symbol periods. The
maximum value of threshold is 126. tout_thresh = 1, defines TOUT interrupt timeout
equal to transmission time of one symbol (~11 bit) on current baudrate. If the time is
expired the UART_RXFIFO_TOUT_INT interrupt is triggered. If tout_thresh == 0, the
TOUT feature is disabled.

Returns
• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_ERR_INVALID_STATE Driver is not installed

esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
Returns collision detection flag for RS485 mode Function returns the collision detection flag into variable
pointed by collision_flag. *collision_flag = true, if collision detected else it is equal to false. This function
should be executed when actual transmission is completed (after uart_write_bytes()).

Parameters
• uart_num -- Uart number to configure the max port number is (UART_NUM_MAX
-1).

• collision_flag -- Pointer to variable of type bool to return collision flag.
Returns

• ESP_OK Success
• ESP_ERR_INVALID_ARG Parameter error

esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
Set the number of RX pin signal edges for light sleep wakeup.
UART can be used to wake up the system from light sleep. This feature works by counting the number of
positive edges on RX pin and comparing the count to the threshold. When the count exceeds the threshold,
system is woken up from light sleep. This function allows setting the threshold value.
Stop bit and parity bits (if enabled) also contribute to the number of edges. For example, letter 'a' with ASCII
code 97 is encoded as 0100001101 on the wire (with 8n1 configuration), start and stop bits included. This
sequence has 3 positive edges (transitions from 0 to 1). Therefore, to wake up the system when 'a' is sent, set
wakeup_threshold=3.
The character that triggers wakeup is not received by UART (i.e. it can not be obtained from UART
FIFO). Depending on the baud rate, a few characters after that will also not be received. Note that when

Espressif Systems 1264
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

the chip enters and exits light sleep mode, APB frequency will be changing. To ensure that UART has
correct Baud rate all the time, it is necessary to select a source clock which has a fixed frequency and re-
mains active during sleep. For the supported clock sources of the chips, please refer to uart_sclk_t or
soc_periph_uart_clk_src_legacy_t

Note: in ESP32, the wakeup signal can only be input via IO_MUX (i.e. GPIO3 should be configured as
function_1 to wake up UART0, GPIO9 should be configured as function_5 to wake up UART1), UART2 does
not support light sleep wakeup feature.

Parameters
• uart_num -- UART number, the max port number is (UART_NUM_MAX -1).
• wakeup_threshold -- number of RX edges for light sleep wakeup, value is 3 .. 0x3ff.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if uart_num is incorrect or wakeup_threshold is outside of
[3, 0x3ff] range.

esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
Get the number of RX pin signal edges for light sleep wakeup.
See description of uart_set_wakeup_threshold for the explanation of UART wakeup feature.

Parameters
• uart_num -- UART number, the max port number is (UART_NUM_MAX -1).
• out_wakeup_threshold -- [out] output, set to the current value of wakeup threshold
for the given UART.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if out_wakeup_threshold is NULL

esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
Wait until UART tx memory empty and the last char send ok (polling mode).

•

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Driver not installed

Parameters uart_num -- UART number

esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
Configure TX signal loop back to RX module, just for the test usage.

•

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG Parameter error
• ESP_FAIL Driver not installed

Parameters
• uart_num -- UART number
• loop_back_en -- Set ture to enable the loop back function, else set it false.

Espressif Systems 1265
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout_en)
Configure behavior of UART RX timeout interrupt.
When always_rx_timeout is true, timeout interrupt is triggered even if FIFO is full. This function can cause
extra timeout interrupts triggered only to send the timeout event. Call this function only if you want to ensure
timeout interrupt will always happen after a byte stream.

Parameters
• uart_num -- UART number
• always_rx_timeout_en -- Set to false enable the default behavior of timeout inter-
rupt, set it to true to always trigger timeout interrupt.

Structures

struct uart_intr_config_t
UART interrupt configuration parameters for uart_intr_config function.

Public Members

uint32_t intr_enable_mask
UART interrupt enable mask, choose from UART_XXXX_INT_ENA_M under
UART_INT_ENA_REG(i), connect with bit-or operator

uint8_t rx_timeout_thresh
UART timeout interrupt threshold (unit: time of sending one byte)

uint8_t txfifo_empty_intr_thresh
UART TX empty interrupt threshold.

uint8_t rxfifo_full_thresh
UART RX full interrupt threshold.

struct uart_event_t
Event structure used in UART event queue.

Public Members

uart_event_type_t type

UART event type

size_t size
UART data size for UART_DATA event

bool timeout_flag
UART data read timeout flag for UART_DATA event (no new data received during configured RX
TOUT) If the event is caused by FIFO-full interrupt, then there will be no event with the timeout flag
before the next byte coming.

Espressif Systems 1266
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Macros

UART_NUM_0

UART port 0

UART_NUM_1

UART port 1

UART_NUM_MAX

UART port max

UART_PIN_NO_CHANGE

UART_FIFO_LEN

Length of the UART HW FIFO.

UART_BITRATE_MAX

Maximum configurable bitrate.

Type Definitions

typedef intr_handle_t uart_isr_handle_t

Enumerations

enum uart_event_type_t

UART event types used in the ring buffer.
Values:

enumerator UART_DATA
UART data event

enumerator UART_BREAK
UART break event

enumerator UART_BUFFER_FULL
UART RX buffer full event

enumerator UART_FIFO_OVF
UART FIFO overflow event

enumerator UART_FRAME_ERR
UART RX frame error event

enumerator UART_PARITY_ERR
UART RX parity event

enumerator UART_DATA_BREAK
UART TX data and break event

Espressif Systems 1267
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator UART_PATTERN_DET
UART pattern detected

enumerator UART_WAKEUP
UART wakeup event

enumerator UART_EVENT_MAX
UART event max index

Header File
• components/hal/include/hal/uart_types.h

Structures

struct uart_at_cmd_t
UART AT cmd char configuration parameters Note that this function may different on different chip. Please
refer to the TRM at confirguration.

Public Members

uint8_t cmd_char
UART AT cmd char

uint8_t char_num
AT cmd char repeat number

uint32_t gap_tout
gap time(in baud-rate) between AT cmd char

uint32_t pre_idle
the idle time(in baud-rate) between the non AT char and first AT char

uint32_t post_idle
the idle time(in baud-rate) between the last AT char and the none AT char

struct uart_sw_flowctrl_t
UART software flow control configuration parameters.

Public Members

uint8_t xon_char
Xon flow control char

uint8_t xoff_char
Xoff flow control char

Espressif Systems 1268
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/uart_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t xon_thrd
If the software flow control is enabled and the data amount in rxfifo is less than xon_thrd, an xon_char
will be sent

uint8_t xoff_thrd
If the software flow control is enabled and the data amount in rxfifo is more than xoff_thrd, an xoff_char
will be sent

struct uart_config_t
UART configuration parameters for uart_param_config function.

Public Members

int baud_rate
UART baud rate Note that the actual baud rate set could have a slight deviation from the user-configured
value due to rounding error

uart_word_length_t data_bits

UART byte size

uart_parity_t parity

UART parity mode

uart_stop_bits_t stop_bits

UART stop bits

uart_hw_flowcontrol_t flow_ctrl

UART HW flow control mode (cts/rts)

uint8_t rx_flow_ctrl_thresh
UART HW RTS threshold

uart_sclk_t source_clk

UART source clock selection

Type Definitions

typedef int uart_port_t
UART port number, can be UART_NUM_0 ~ (UART_NUM_MAX -1).

typedef soc_periph_uart_clk_src_legacy_t uart_sclk_t
UART source clock.

Enumerations

enum uart_mode_t

UART mode selection.
Values:

Espressif Systems 1269
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator UART_MODE_UART
mode: regular UART mode

enumerator UART_MODE_RS485_HALF_DUPLEX
mode: half duplex RS485 UART mode control by RTS pin

enumerator UART_MODE_IRDA
mode: IRDA UART mode

enumerator UART_MODE_RS485_COLLISION_DETECT
mode: RS485 collision detection UART mode (used for test purposes)

enumerator UART_MODE_RS485_APP_CTRL
mode: application control RS485 UART mode (used for test purposes)

enum uart_word_length_t

UART word length constants.
Values:

enumerator UART_DATA_5_BITS
word length: 5bits

enumerator UART_DATA_6_BITS
word length: 6bits

enumerator UART_DATA_7_BITS
word length: 7bits

enumerator UART_DATA_8_BITS
word length: 8bits

enumerator UART_DATA_BITS_MAX

enum uart_stop_bits_t

UART stop bits number.
Values:

enumerator UART_STOP_BITS_1
stop bit: 1bit

enumerator UART_STOP_BITS_1_5
stop bit: 1.5bits

enumerator UART_STOP_BITS_2
stop bit: 2bits

enumerator UART_STOP_BITS_MAX

Espressif Systems 1270
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum uart_parity_t

UART parity constants.
Values:

enumerator UART_PARITY_DISABLE
Disable UART parity

enumerator UART_PARITY_EVEN
Enable UART even parity

enumerator UART_PARITY_ODD
Enable UART odd parity

enum uart_hw_flowcontrol_t

UART hardware flow control modes.
Values:

enumerator UART_HW_FLOWCTRL_DISABLE
disable hardware flow control

enumerator UART_HW_FLOWCTRL_RTS
enable RX hardware flow control (rts)

enumerator UART_HW_FLOWCTRL_CTS
enable TX hardware flow control (cts)

enumerator UART_HW_FLOWCTRL_CTS_RTS
enable hardware flow control

enumerator UART_HW_FLOWCTRL_MAX

enum uart_signal_inv_t

UART signal bit map.
Values:

enumerator UART_SIGNAL_INV_DISABLE
Disable UART signal inverse

enumerator UART_SIGNAL_IRDA_TX_INV
inverse the UART irda_tx signal

enumerator UART_SIGNAL_IRDA_RX_INV
inverse the UART irda_rx signal

enumerator UART_SIGNAL_RXD_INV
inverse the UART rxd signal

Espressif Systems 1271
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator UART_SIGNAL_CTS_INV
inverse the UART cts signal

enumerator UART_SIGNAL_DSR_INV
inverse the UART dsr signal

enumerator UART_SIGNAL_TXD_INV
inverse the UART txd signal

enumerator UART_SIGNAL_RTS_INV
inverse the UART rts signal

enumerator UART_SIGNAL_DTR_INV
inverse the UART dtr signal

GPIOLookupMacros TheUART peripherals have dedicated IO_MUXpins to which they are connected directly.
However, signals can also be routed to other pins using the less direct GPIO matrix. To use direct routes, you need
to know which pin is a dedicated IO_MUX pin for a UART channel. GPIO Lookup Macros simplify the process of
finding and assigning IO_MUX pins. You choose a macro based on either the IO_MUX pin number, or a required
UART channel name, and the macro will return the matching counterpart for you. See some examples below.

Note: These macros are useful if you need very high UART baud rates (over 40 MHz), which means you will have
to use IO_MUX pins only. In other cases, these macros can be ignored, and you can use the GPIOMatrix as it allows
you to configure any GPIO pin for any UART function.

1. UART_NUM_2_TXD_DIRECT_GPIO_NUM returns the IO_MUX pin number of UART channel 2 TXD pin
(pin 17)

2. UART_GPIO19_DIRECT_CHANNEL returns the UART number of GPIO 19 when connected to the UART
peripheral via IO_MUX (this is UART_NUM_0)

3. UART_CTS_GPIO19_DIRECT_CHANNEL returns the UART number of GPIO 19 when used as the UART
CTS pin via IO_MUX (this is UART_NUM_0). It is similar to the above macro but specifies the pin function
which is also part of the IO_MUX assignment.

Header File
• components/soc/esp32c6/include/soc/uart_channel.h

Macros

UART_GPIO16_DIRECT_CHANNEL

UART_NUM_0_TXD_DIRECT_GPIO_NUM

UART_GPIO17_DIRECT_CHANNEL

UART_NUM_0_RXD_DIRECT_GPIO_NUM

UART_TXD_GPIO16_DIRECT_CHANNEL

UART_RXD_GPIO17_DIRECT_CHANNEL

Code examples for this API section are provided in the peripherals directory of ESP-IDF examples.

Espressif Systems 1272
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/soc/esp32c6/include/soc/uart_channel.h
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.7 Project Configuration

2.7.1 Introduction

The esp-idf-kconfig package that ESP-IDF uses is based on kconfiglib, which is a Python extension to the Kconfig
system. Kconfig provides a compile-time project configuration mechanism and offers configuration options of several
types (e.g., integers, strings, and boolens). Kconfig files specify dependencies between options, default values of
options, the way options are grouped together, etc.
For the full list of available features, please see Kconfig and kconfiglib extentions.

2.7.2 Project Configuration Menu

Application developers can open a terminal-based project configuration menu with the idf.py menuconfig
build target.
After being updated, this configuration is saved in the sdkconfig file under the project root directory. Based
on sdkconfig, application build targets will generate the sdkconfig.h file under the build directory, and will
make the sdkconfig options available to the project build system and source files.

2.7.3 Using sdkconfig.defaults

In some cases, for example, when the sdkconfig file is under revision control, it may be inconvenient for the build
system to change the sdkconfig file. The build system offers a solution to prevent it from happening, which is to
create the sdkconfig.defaults file. This file is never touched by the build system, and can be created manually
or automatically. It contains all the options which matter to the given application and are different from the default
ones. The format is the same as that of the sdkconfig file. sdkconfig.defaults can be created manually
when one remembers all the changed configuration, or it can be generated automatically by running the idf.py
save-defconfig command.
Once sdkconfig.defaults is created, sdkconfig can be deleted or added to the ignore list of the revision
control system (e.g., the .gitignore file for git). Project build targets will automatically create the sdkconfig
file, populate it with the settings from the sdkconfig.defaults file, and configure the rest of the settings to
their default values. Note that during the build process, settings from sdkconfig.defaults will not override
those already in sdkconfig. For more information, see Custom Sdkconfig Defaults.

2.7.4 Kconfig Format Rules

Format rules for Kconfig files are as follows:
• Option names in any menus should have consistent prefixes. The prefix currently should have at least 3 char-
acters.

• The unit of indentation should be 4 spaces. All sub-items belonging to a parent item are indented by one level
deeper. For example, menu is indented by 0 spaces, config menu by 4 spaces, help in config by 8
spaces, and the text under help by 12 spaces.

• No trailing spaces are allowed at the end of the lines.
• The maximum length of options is 40 characters.
• The maximum length of lines is 120 characters.

Note: The help section of each config in the menu is treated as reStructuredText to generate the reference docu-
mentation for each option.

Espressif Systems 1273
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://pypi.org/project/esp-idf-kconfig/
https://github.com/ulfalizer/Kconfiglib
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://pypi.org/project/kconfiglib/#kconfig-extensions
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Format Checker

tools/ci/check_kconfigs.py is provided for checking Kconfig files against the above format rules. The
checker checks all Kconfig and Kconfig.projbuild files in the ESP-IDF directory, and generates a new file
with suffix .new with some suggestions about how to fix issues (if there are any). Please note that the checker cannot
correct all format issues and the responsibility of the developer is to final check and make corrections in order to pass
the tests. For example, indentations will be corrected if there isn't any misleading formatting, but it cannot come up
with a common prefix for options inside a menu.

2.7.5 Backward Compatibility of Kconfig Options

The standard Kconfig tools ignore unknown options in sdkconfig. So if a developer has custom settings for
options which are renamed in newer ESP-IDF releases, then the given setting for the option would be silently ignored.
Therefore, several features have been adopted to avoid this:

1. kconfgen is used by the tool chain to pre-process sdkconfig files before anything else. For example,
menuconfig would read them, so the settings for old options will be kept and not ignored.

2. kconfgen recursively finds all sdkconfig.rename files in ESP-IDF directory which contain old and new
Kconfig option names. Old options are replaced by new ones in the sdkconfig file. Renames that should
only appear for a single target can be placed in a target-specific rename file sdkconfig.rename.TARGET,
where TARGET is the target name, e.g. sdkconfig.rename.esp32s2.

3. kconfgen post-processes sdkconfig files and generates all build outputs (sdkconfig.h, sdkcon-
fig.cmake, and auto.conf) by adding a list of compatibility statements, i.e., the values of old options
are set for new options after modification. If users still use old options in their code, this will prevent it from
breaking.

4. Deprecated options and their replacements are automatically generated by kconfgen.

2.7.6 Configuration Options Reference

Subsequent sections contain the list of available ESP-IDF options automatically generated from Kconfig files. Note
that due to dependencies between options, some options listed here may not be visible by default in menuconfig.
By convention, all option names are upper-case letters with underscores. When Kconfig generates sdkconfig
and sdkconfig.h files, option names are prefixed with CONFIG_. So if an option ENABLE_FOO is defined
in a Kconfig file and selected in menuconfig, then the sdkconfig and sdkconfig.h files will have CON-
FIG_ENABLE_FOO defined. In the following sections, option names are also prefixed with CONFIG_, same as in
the source code.

Build type

Contains:
• CONFIG_APP_BUILD_TYPE
• CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
• CONFIG_APP_REPRODUCIBLE_BUILD
• CONFIG_APP_NO_BLOBS

CONFIG_APP_BUILD_TYPE
Application build type
Found in: Build type

Select the way the application is built.
By default, the application is built as a binary file in a format compatible with the ESP-IDF bootloader.
In addition to this application, 2nd stage bootloader is also built. Application and bootloader binaries
can be written into flash and loaded/executed from there.

Espressif Systems 1274
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Another option, useful for only very small and limited applications, is to only link the .elf file of the
application, such that it can be loaded directly into RAM over JTAG or UART. Note that since IRAM
and DRAM sizes are very limited, it is not possible to build any complex application this way. However
for some kinds of testing and debugging, this option may provide faster iterations, since the application
does not need to be written into flash.
Note: when APP_BUILD_TYPE_RAM is selected and loaded with JTAG, ESP-IDF does not contain
all the startup code required to initialize the CPUs and ROM memory (data/bss). Therefore it is neces-
sary to execute a bit of ROM code prior to executing the application. A gdbinit file may look as follows
(for ESP32):

Connect to a running instance of OpenOCD target remote :3333 # Reset and halt the target
mon reset halt # Run to a specific point in ROM code, # where most of initialization is
complete. thb *0x40007d54 c # Load the application into RAM load # Run till app_main tb
app_main c

Execute this gdbinit file as follows:
xtensa-esp32-elf-gdb build/app-name.elf -x gdbinit

Example gdbinit files for other targets can be found in tools/test_apps/system/gdb_loadable_elf/
When loading the BIN with UART, the ROM will jump to ram and run the app after finishing the
ROM startup code, so there's no additional startup initialization required. You can use the load_ram in
esptool.py to load the generated .bin file into ram and execute.
Example: esptool.py --chip {chip} -p {port} -b {baud} --no-stub load_ram {app.bin}
Recommended sdkconfig.defaults for building loadable ELF files is as follows. CON-
FIG_APP_BUILD_TYPE_RAM is required, other options help reduce application memory footprint.

CONFIG_APP_BUILD_TYPE_RAM=y CONFIG_VFS_SUPPORT_TERMIOS= CON-
FIG_NEWLIB_NANO_FORMAT=yCONFIG_ESP_SYSTEM_PANIC_PRINT_HALT=y
CONFIG_ESP_DEBUG_STUBS_ENABLE=CONFIG_ESP_ERR_TO_NAME_LOOKUP=

Available options:

• Default (binary application + 2nd stage bootloader) (CON-
FIG_APP_BUILD_TYPE_APP_2NDBOOT)

• Build app runs entirely in RAM (EXPERIMENTAL) (CON-
FIG_APP_BUILD_TYPE_RAM)

CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
Build app without SPI_FLASH/PSRAM support (saves ram)
Found in: Build type

If this option is enabled, external memory and related peripherals, such as Cache, MMU, Flash and
PSRAM, won't be initialized. Corresponding drivers won't be introduced either. Components that de-
pend on the spi_flash component will also be unavailable, such as app_update, etc. When this option is
enabled, about 26KB of RAM space can be saved.

CONFIG_APP_REPRODUCIBLE_BUILD
Enable reproducible build
Found in: Build type

If enabled, all date, time, and path information would be eliminated. A .gdbinit file would be create
automatically. (or will be append if you have one already)
Default value:

• No (disabled)

Espressif Systems 1275
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_APP_NO_BLOBS
No Binary Blobs
Found in: Build type

If enabled, this disables the linking of binary libraries in the application build. Note that after enabling
this Wi-Fi/Bluetooth will not work.
Default value:

• No (disabled)

Bootloader config

Contains:
• CONFIG_BOOTLOADER_LOG_LEVEL
• CONFIG_BOOTLOADER_COMPILER_OPTIMIZATION
• CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
• CONFIG_BOOTLOADER_REGION_PROTECTION_ENABLE
• CONFIG_BOOTLOADER_APP_TEST
• CONFIG_BOOTLOADER_FACTORY_RESET
• CONFIG_BOOTLOADER_HOLD_TIME_GPIO
• CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC
• Serial Flash Configurations
• CONFIG_BOOTLOADER_SKIP_VALIDATE_ALWAYS
• CONFIG_BOOTLOADER_SKIP_VALIDATE_ON_POWER_ON
• CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP
• CONFIG_BOOTLOADER_WDT_ENABLE
• CONFIG_BOOTLOADER_VDDSDIO_BOOST

CONFIG_BOOTLOADER_COMPILER_OPTIMIZATION
Bootloader optimization Level
Found in: Bootloader config

This option sets compiler optimization level (gcc -O argument) for the bootloader.
• The default "Size" setting will add the -0s flag to CFLAGS.
• The "Debug" setting will add the -Og flag to CFLAGS.
• The "Performance" setting will add the -O2 flag to CFLAGS.
• The "None" setting will add the -O0 flag to CFLAGS.

Note that custom optimization levels may be unsupported.
Available options:

• Size (-Os) (CONFIG_BOOTLOADER_COMPILER_OPTIMIZATION_SIZE)
• Debug (-Og) (CONFIG_BOOTLOADER_COMPILER_OPTIMIZATION_DEBUG)
• Optimize for performance (-O2) (CONFIG_BOOTLOADER_COMPILER_OPTIMIZATION_PERF)
• Debugwithout optimization (-O0) (CONFIG_BOOTLOADER_COMPILER_OPTIMIZATION_NONE)

CONFIG_BOOTLOADER_LOG_LEVEL
Bootloader log verbosity
Found in: Bootloader config

Specify how much output to see in bootloader logs.
Available options:

Espressif Systems 1276
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• No output (CONFIG_BOOTLOADER_LOG_LEVEL_NONE)
• Error (CONFIG_BOOTLOADER_LOG_LEVEL_ERROR)
• Warning (CONFIG_BOOTLOADER_LOG_LEVEL_WARN)
• Info (CONFIG_BOOTLOADER_LOG_LEVEL_INFO)
• Debug (CONFIG_BOOTLOADER_LOG_LEVEL_DEBUG)
• Verbose (CONFIG_BOOTLOADER_LOG_LEVEL_VERBOSE)

Serial Flash Configurations Contains:
• CONFIG_BOOTLOADER_FLASH_DC_AWARE
• CONFIG_BOOTLOADER_FLASH_XMC_SUPPORT

CONFIG_BOOTLOADER_FLASH_DC_AWARE
Allow app adjust Dummy Cycle bits in SPI Flash for higher frequency (READ HELP FIRST)
Found in: Bootloader config > Serial Flash Configurations

This will force 2nd bootloader to be loaded by DOUT mode, and will restore Dummy Cycle setting by
resetting the Flash

CONFIG_BOOTLOADER_FLASH_XMC_SUPPORT
Enable the support for flash chips of XMC (READ DOCS FIRST)
Found in: Bootloader config > Serial Flash Configurations

Perform the startup flow recommended by XMC. Please consult XMC for the details of this flow. XMC
chips will be forbidden to be used, when this option is disabled.
DON'T DISABLE THIS UNLESS YOU KNOWWHAT YOU ARE DOING.
comment "Features below require specific hardware (READ DOCS FIRST!)"
Default value:

• Yes (enabled)

CONFIG_BOOTLOADER_VDDSDIO_BOOST
VDDSDIO LDO voltage
Found in: Bootloader config

If this option is enabled, and VDDSDIO LDO is set to 1.8V (using eFuse or MTDI bootstrapping pin),
bootloader will change LDO settings to output 1.9V instead. This helps prevent flash chip from browning
out during flash programming operations.
This option has no effect if VDDSDIO is set to 3.3V, or if the internal VDDSDIO regulator is disabled
via eFuse.
Available options:

• 1.8V (CONFIG_BOOTLOADER_VDDSDIO_BOOST_1_8V)
• 1.9V (CONFIG_BOOTLOADER_VDDSDIO_BOOST_1_9V)

Espressif Systems 1277
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BOOTLOADER_FACTORY_RESET
GPIO triggers factory reset
Found in: Bootloader config

Allows to reset the device to factory settings: - clear one or more data partitions; - boot from "factory"
partition. The factory reset will occur if there is a GPIO input held at the configured level while device
starts up. See settings below.
Default value:

• No (disabled)

CONFIG_BOOTLOADER_NUM_PIN_FACTORY_RESET
Number of the GPIO input for factory reset
Found in: Bootloader config > CONFIG_BOOTLOADER_FACTORY_RESET

The selected GPIO will be configured as an input with internal pull-up enabled (note that on some SoCs.
not all pins have an internal pull-up, consult the hardware datasheet for details.) To trigger a factory
reset, this GPIO must be held high or low (as configured) on startup.
Default value:

• 4 if CONFIG_BOOTLOADER_FACTORY_RESET

CONFIG_BOOTLOADER_FACTORY_RESET_PIN_LEVEL
Factory reset GPIO level
Found in: Bootloader config > CONFIG_BOOTLOADER_FACTORY_RESET

Pin level for factory reset, can be triggered on low or high.
Available options:

• Reset on GPIO low (CONFIG_BOOTLOADER_FACTORY_RESET_PIN_LOW)
• Reset on GPIO high (CONFIG_BOOTLOADER_FACTORY_RESET_PIN_HIGH)

CONFIG_BOOTLOADER_OTA_DATA_ERASE
Clear OTA data on factory reset (select factory partition)
Found in: Bootloader config > CONFIG_BOOTLOADER_FACTORY_RESET

The device will boot from "factory" partition (or OTA slot 0 if no factory partition is present) after a
factory reset.

CONFIG_BOOTLOADER_DATA_FACTORY_RESET
Comma-separated names of partitions to clear on factory reset
Found in: Bootloader config > CONFIG_BOOTLOADER_FACTORY_RESET

Allows customers to select which data partitions will be erased while factory reset.
Specify the names of partitions as a comma-delimited with optional spaces for readability. (Like this:
"nvs, phy_init, ...") Make sure that the name specified in the partition table and here are the same.
Partitions of type "app" cannot be specified here.
Default value:

• "nvs" if CONFIG_BOOTLOADER_FACTORY_RESET

Espressif Systems 1278
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BOOTLOADER_APP_TEST
GPIO triggers boot from test app partition
Found in: Bootloader config

Allows to run the test app from "TEST" partition. A boot from "test" partition will occur if there is a
GPIO input pulled low while device starts up. See settings below.

CONFIG_BOOTLOADER_NUM_PIN_APP_TEST
Number of the GPIO input to boot TEST partition
Found in: Bootloader config > CONFIG_BOOTLOADER_APP_TEST

The selected GPIO will be configured as an input with internal pull-up enabled. To trigger a test app,
this GPIO must be pulled low on reset. After the GPIO input is deactivated and the device reboots, the
old application will boot. (factory or OTA[x]). Note that GPIO34-39 do not have an internal pullup and
an external one must be provided.
Range:

• from 0 to 39 if CONFIG_BOOTLOADER_APP_TEST
Default value:

• 18 if CONFIG_BOOTLOADER_APP_TEST

CONFIG_BOOTLOADER_APP_TEST_PIN_LEVEL
App test GPIO level
Found in: Bootloader config > CONFIG_BOOTLOADER_APP_TEST

Pin level for app test, can be triggered on low or high.
Available options:

• Enter test app on GPIO low (CONFIG_BOOTLOADER_APP_TEST_PIN_LOW)
• Enter test app on GPIO high (CONFIG_BOOTLOADER_APP_TEST_PIN_HIGH)

CONFIG_BOOTLOADER_HOLD_TIME_GPIO
Hold time of GPIO for reset/test mode (seconds)
Found in: Bootloader config

The GPIO must be held low continuously for this period of time after reset before a factory reset or test
partition boot (as applicable) is performed.
Default value:

• 5 if CONFIG_BOOTLOADER_FACTORY_RESET || CONFIG_BOOTLOADER_APP_TEST

CONFIG_BOOTLOADER_REGION_PROTECTION_ENABLE
Enable protection for unmapped memory regions
Found in: Bootloader config

Protects the unmapped memory regions of the entire address space from unintended accesses. This will
ensure that an exception will be triggered whenever the CPU performs amemory operation on unmapped
regions of the address space.
Default value:

• Yes (enabled)

Espressif Systems 1279
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BOOTLOADER_WDT_ENABLE
Use RTC watchdog in start code
Found in: Bootloader config

Tracks the execution time of startup code. If the execution time is exceeded, the RTC_WDT will restart
system. It is also useful to prevent a lock up in start code caused by an unstable power source. NOTE:
Tracks the execution time starts from the bootloader code - re-set timeout, while selecting the source
for slow_clk - and ends calling app_main. Re-set timeout is needed due to WDT uses a SLOW_CLK
clock source. After changing a frequency slow_clk a time of WDT needs to re-set for new frequency.
slow_clk depends on RTC_CLK_SRC (INTERNAL_RC or EXTERNAL_CRYSTAL).
Default value:

• Yes (enabled)

CONFIG_BOOTLOADER_WDT_DISABLE_IN_USER_CODE
Allows RTC watchdog disable in user code
Found in: Bootloader config > CONFIG_BOOTLOADER_WDT_ENABLE

If this option is set, the ESP-IDF app must explicitly reset, feed, or disable the rtc_wdt in the app's own
code. If this option is not set (default), then rtc_wdt will be disabled by ESP-IDF before calling the
app_main() function.
Use function rtc_wdt_feed() for resetting counter of rtc_wdt. Use function rtc_wdt_disable() for dis-
abling rtc_wdt.
Default value:

• No (disabled)

CONFIG_BOOTLOADER_WDT_TIME_MS
Timeout for RTC watchdog (ms)
Found in: Bootloader config > CONFIG_BOOTLOADER_WDT_ENABLE

Verify that this parameter is correct and more then the execution time. Pay attention to options such as
reset to factory, trigger test partition and encryption on boot - these options can increase the execution
time. Note: RTC_WDT will reset while encryption operations will be performed.
Range:

• from 0 to 120000
Default value:

• 9000

CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
Enable app rollback support
Found in: Bootloader config

After updating the app, the bootloader runs a new app with the
"ESP_OTA_IMG_PENDING_VERIFY" state set. This state prevents the re-run of this app.
After the first boot of the new app in the user code, the function should be called to confirm the
operability of the app or vice versa about its non-operability. If the app is working, then it is marked
as valid. Otherwise, it is marked as not valid and rolls back to the previous working app. A reboot is
performed, and the app is booted before the software update. Note: If during the first boot a new app
the power goes out or the WDT works, then roll back will happen. Rollback is possible only between
the apps with the same security versions.
Default value:

• No (disabled)

Espressif Systems 1280
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
Enable app anti-rollback support
Found in: Bootloader config > CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE

This option prevents rollback to previous firmware/application image with lower security version.
Default value:

• No (disabled) if CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE

CONFIG_BOOTLOADER_APP_SECURE_VERSION
eFuse secure version of app
Found in: Bootloader config > CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE > CON-
FIG_BOOTLOADER_APP_ANTI_ROLLBACK

The secure version is the sequence number stored in the header of each firmware. The security ver-
sion is set in the bootloader, version is recorded in the eFuse field as the number of set ones. The
allocated number of bits in the efuse field for storing the security version is limited (see BOOT-
LOADER_APP_SEC_VER_SIZE_EFUSE_FIELD option).
Bootloader: When bootloader selects an app to boot, an app is selected that has a security version greater
or equal that recorded in eFuse field. The app is booted with a higher (or equal) secure version.
The security version is worth increasing if in previous versions there is a significant vulnerability and
their use is not acceptable.
Your partition table should has a scheme with ota_0 + ota_1 (without factory).
Default value:

• 0 if CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK

CONFIG_BOOTLOADER_APP_SEC_VER_SIZE_EFUSE_FIELD
Size of the efuse secure version field
Found in: Bootloader config > CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE > CON-
FIG_BOOTLOADER_APP_ANTI_ROLLBACK

The size of the efuse secure version field. Its length is limited to 32 bits for ESP32 and 16 bits for
ESP32-S2. This determines how many times the security version can be increased.
Range:

• from 1 to 16 if CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
Default value:

• 16 if CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK

CONFIG_BOOTLOADER_EFUSE_SECURE_VERSION_EMULATE
Emulate operations with efuse secure version(only test)
Found in: Bootloader config > CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE > CON-
FIG_BOOTLOADER_APP_ANTI_ROLLBACK

This option allows to emulate read/write operations with all eFuses and efuse secure version. It allows
to test anti-rollback implemention without permanent write eFuse bits. There should be an entry in
partition table with following details: emul_efuse, data, efuse, , 0x2000.
This option enables: EFUSE_VIRTUAL and EFUSE_VIRTUAL_KEEP_IN_FLASH.
Default value:

• No (disabled) if CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK

Espressif Systems 1281
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP
Skip image validation when exiting deep sleep
Found in: Bootloader config

This option disables the normal validation of an image coming out of deep sleep (checksums, SHA256,
and signature). This is a trade-off between wakeup performance from deep sleep, and image integrity
checks.
Only enable this if you know what you are doing. It should not be used in conjunction with using
deep_sleep() entry and changing the active OTA partition as this would skip the validation upon first
load of the new OTA partition.
It is possible to enable this option with Secure Boot if "allow insecure options" is enabled, however it's
strongly recommended to NOT enable it as it may allow a Secure Boot bypass.
Default value:

• No (disabled) if CONFIG_SECURE_BOOT && CONFIG_SECURE_BOOT_INSECURE

CONFIG_BOOTLOADER_SKIP_VALIDATE_ON_POWER_ON
Skip image validation from power on reset (READ HELP FIRST)
Found in: Bootloader config

Some applications need to boot very quickly from power on. By default, the entire app binary is read
from flash and verified which takes up a significant portion of the boot time.
Enabling this option will skip validation of the app when the SoC boots from power on. Note that in this
case it's not possible for the bootloader to detect if an app image is corrupted in the flash, therefore it's
not possible to safely fall back to a different app partition. Flash corruption of this kind is unlikely but
can happen if there is a serious firmware bug or physical damage.
Following other reset types, the bootloader will still validate the app image. This increases the chances
that flash corruption resulting in a crash can be detected following soft reset, and the bootloader will fall
back to a valid app image. To increase the chances of successfully recovering from a flash corruption
event, keep the option BOOTLOADER_WDT_ENABLE enabled and consider also enabling BOOT-
LOADER_WDT_DISABLE_IN_USER_CODE - then manually disable the RTC Watchdog once the
app is running. In addition, enable both the Task and Interrupt watchdog timers with reset options set.
Default value:

• No (disabled)

CONFIG_BOOTLOADER_SKIP_VALIDATE_ALWAYS
Skip image validation always (READ HELP FIRST)
Found in: Bootloader config

Selecting this option prevents the bootloader from ever validating the app image before booting it. Any
flash corruption of the selected app partition will make the entire SoC unbootable.
Although flash corruption is a very rare case, it is not recommended to select this option. Consider se-
lecting "Skip image validation from power on reset" instead. However, if boot time is the only important
factor then it can be enabled.
Default value:

• No (disabled)

CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC
Reserve RTC FAST memory for custom purposes
Found in: Bootloader config

Espressif Systems 1282
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This option allows the customer to place data in the RTC FAST memory, this area remains valid when
rebooted, except for power loss. This memory is located at a fixed address and is available for both
the bootloader and the application. (The application and bootoloader must be compiled with the same
option). The RTC FAST memory has access only through PRO_CPU.
Default value:

• No (disabled)

CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC_IN_CRC
Include custom memory in the CRC calculation
Found in: Bootloader config > CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC

This option allows the customer to use the legacy bootloader behavior when the RTC FAST memory
CRC calculation takes place. When this option is enabled, the allocated user custom data will be taken
into account in the CRC calculcation. This means that any change to the custom data would need a
CRC update to prevent the bootloader from marking this data as corrupted. If this option is disabled,
the custom data will not be taken into account when calculating the RTC FAST memory CRC. The user
custom data can be changed freely, without the need to update the CRC. THIS OPTION MUST BE
THE SAME FOR BOTH THE BOOTLOADER AND THE APPLICATION BUILDS.
Default value:

• No (disabled) if CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC

CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC_SIZE
Size in bytes for custom purposes
Found in: Bootloader config > CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC

This option reserves in RTC FAST memory the area for custom purposes. If you want to create your
own bootloader and save more information in this area of memory, you can increase it. It must be a
multiple of 4 bytes. This area (rtc_retain_mem_t) is reserved and has access from the bootloader and
an application.
Default value:

• 0 if CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC

Security features

Contains:
• CONFIG_SECURE_BOOT_INSECURE
• CONFIG_SECURE_SIGNED_APPS_SCHEME
• CONFIG_SECURE_SIGNED_ON_BOOT_NO_SECURE_BOOT
• CONFIG_SECURE_FLASH_CHECK_ENC_EN_IN_APP
• CONFIG_SECURE_BOOT_V2_ALLOW_EFUSE_RD_DIS
• CONFIG_SECURE_BOOT_ECDSA_KEY_LEN_SIZE
• CONFIG_SECURE_BOOT_ENABLE_AGGRESSIVE_KEY_REVOKE
• CONFIG_SECURE_FLASH_ENC_ENABLED
• CONFIG_SECURE_BOOT
• CONFIG_SECURE_FLASH_ENCRYPT_ONLY_IMAGE_LEN_IN_APP_PART
• CONFIG_SECURE_BOOTLOADER_KEY_ENCODING
• CONFIG_SECURE_FLASH_PSEUDO_ROUND_FUNC
• Potentially insecure options
• CONFIG_SECURE_SIGNED_APPS_NO_SECURE_BOOT
• CONFIG_SECURE_BOOT_VERIFICATION_KEY
• CONFIG_SECURE_BOOTLOADER_MODE
• CONFIG_SECURE_BOOT_BUILD_SIGNED_BINARIES
• CONFIG_SECURE_UART_ROM_DL_MODE

Espressif Systems 1283
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_SECURE_SIGNED_ON_UPDATE_NO_SECURE_BOOT

CONFIG_SECURE_SIGNED_APPS_NO_SECURE_BOOT
Require signed app images
Found in: Security features

Require apps to be signed to verify their integrity.
This option uses the same app signature scheme as hardware secure boot, but unlike hardware secure
boot it does not prevent the bootloader from being physically updated. This means that the device can
be secured against remote network access, but not physical access. Compared to using hardware Secure
Boot this option is much simpler to implement.

CONFIG_SECURE_SIGNED_APPS_SCHEME
App Signing Scheme
Found in: Security features

Select the Secure App signing scheme. Depends on the Chip Revision. There are two secure boot
versions:
1. Secure boot V1

• Legacy custom secure boot scheme. Supported in ESP32 SoC.
2. Secure boot V2

• RSA based secure boot scheme. Supported in ESP32-ECO3 (ESP32 Chip Revision 3
onwards), ESP32-S2, ESP32-C3, ESP32-S3 SoCs.

• ECDSA based secure boot scheme. Supported in ESP32-C2 SoC.
Available options:

• ECDSA (CONFIG_SECURE_SIGNED_APPS_ECDSA_SCHEME)
Embeds the ECDSA public key in the bootloader and signs the application with an
ECDSA key. Refer to the documentation before enabling.

• RSA (CONFIG_SECURE_SIGNED_APPS_RSA_SCHEME)
Appends the RSA-3072 based Signature block to the application. Refer to <Secure Boot
Version 2 documentation link> before enabling.

• ECDSA (V2) (CONFIG_SECURE_SIGNED_APPS_ECDSA_V2_SCHEME)
For Secure boot V2 (e.g., ESP32-C2 SoC), appends ECDSA based signature block to
the application. Refer to documentation before enabling.

CONFIG_SECURE_BOOT_ECDSA_KEY_LEN_SIZE
ECDSA key size
Found in: Security features

Select the ECDSA key size. Two key sizes are supported
• 192 bit key using NISTP192 curve
• 256 bit key using NISTP256 curve (Recommended)

The advantage of using 256 bit key is the extra randomness which makes it difficult to be bruteforced
compared to 192 bit key. At present, both key sizes are practically implausible to bruteforce.
Available options:

• Using ECC curveNISTP192 (CONFIG_SECURE_BOOT_ECDSA_KEY_LEN_192_BITS)

Espressif Systems 1284
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Using ECC curve NISTP256 (Recommended) (CON-
FIG_SECURE_BOOT_ECDSA_KEY_LEN_256_BITS)

CONFIG_SECURE_SIGNED_ON_BOOT_NO_SECURE_BOOT
Bootloader verifies app signatures
Found in: Security features

If this option is set, the bootloader will be compiled with code to verify that an app is signed before
booting it.
If hardware secure boot is enabled, this option is always enabled and cannot be disabled. If hardware
secure boot is not enabled, this option doesn't add significant security by itself so most users will want
to leave it disabled.
Default value:

• No (disabled) if CONFIG_SECURE_SIGNED_APPS_NO_SECURE_BOOT && CON-
FIG_SECURE_SIGNED_APPS_ECDSA_SCHEME

CONFIG_SECURE_SIGNED_ON_UPDATE_NO_SECURE_BOOT
Verify app signature on update
Found in: Security features

If this option is set, any OTA updated apps will have the signature verified before being considered valid.
When enabled, the signature is automatically checked whenever the esp_ota_ops.h APIs are used for
OTA updates, or esp_image_format.h APIs are used to verify apps.
If hardware secure boot is enabled, this option is always enabled and cannot be disabled. If hardware
secure boot is not enabled, this option still adds significant security against network-based attackers by
preventing spoofing of OTA updates.
Default value:

• Yes (enabled) if CONFIG_SECURE_SIGNED_APPS_NO_SECURE_BOOT

CONFIG_SECURE_BOOT
Enable hardware Secure Boot in bootloader (READ DOCS FIRST)
Found in: Security features

Build a bootloader which enables Secure Boot on first boot.
Once enabled, Secure Boot will not boot a modified bootloader. The bootloader will only load a partition
table or boot an app if the data has a verified digital signature. There are implications for reflashing
updated apps once secure boot is enabled.
When enabling secure boot, JTAG and ROM BASIC Interpreter are permanently disabled by default.
Default value:

• No (disabled)

CONFIG_SECURE_BOOT_VERSION
Select secure boot version
Found in: Security features > CONFIG_SECURE_BOOT

Select the Secure Boot Version. Depends on the Chip Revision. Secure Boot V2 is the new RSA /
ECDSA based secure boot scheme.

• RSA based scheme is supported in ESP32 (Revision 3 onwards), ESP32-S2, ESP32-C3 (ECO3),
ESP32-S3.

Espressif Systems 1285
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ECDSA based scheme is supported in ESP32-C2 SoC.
Please note that, RSA or ECDSA secure boot is property of specific SoC based on its HW design,
supported crypto accelerators, die-size, cost and similar parameters. Please note that RSA scheme has
requirement for bigger key sizes but at the same time it is comparatively faster than ECDSA verification.
Secure Boot V1 is the AES based (custom) secure boot scheme supported in ESP32 SoC.
Available options:

• Enable Secure Boot version 1 (CONFIG_SECURE_BOOT_V1_ENABLED)
Build a bootloader which enables secure boot version 1 on first boot. Refer to the Secure
Boot section of the ESP-IDF Programmer's Guide for this version before enabling.

• Enable Secure Boot version 2 (CONFIG_SECURE_BOOT_V2_ENABLED)
Build a bootloader which enables Secure Boot version 2 on first boot. Refer to Secure
Boot V2 section of the ESP-IDF Programmer's Guide for this version before enabling.

CONFIG_SECURE_BOOTLOADER_MODE
Secure bootloader mode
Found in: Security features

Available options:

• One-time flash (CONFIG_SECURE_BOOTLOADER_ONE_TIME_FLASH)
On first boot, the bootloader will generate a key which is not readable externally or by
software. A digest is generated from the bootloader image itself. This digest will be
verified on each subsequent boot.
Enabling this option means that the bootloader cannot be changed after the first time it
is booted.

• Reflashable (CONFIG_SECURE_BOOTLOADER_REFLASHABLE)
Generate a reusable secure bootloader key, derived (via SHA-256) from the secure boot
signing key.
This allows the secure bootloader to be re-flashed by anyone with access to the secure
boot signing key.
This option is less secure than one-time flash, because a leak of the digest key from one
device allows reflashing of any device that uses it.

CONFIG_SECURE_BOOT_BUILD_SIGNED_BINARIES
Sign binaries during build
Found in: Security features

Once secure boot or signed app requirement is enabled, app images are required to be signed.
If enabled (default), these binary files are signed as part of the build process. The file named in "Secure
boot private signing key" will be used to sign the image.
If disabled, unsigned app/partition data will be built. They must be signed manually using espsecure.py.
Version 1 to enable ECDSA Based Secure Boot and Version 2 to enable RSA based Secure Boot. (for
example, on a remote signing server.)

CONFIG_SECURE_BOOT_SIGNING_KEY
Secure boot private signing key
Found in: Security features > CONFIG_SECURE_BOOT_BUILD_SIGNED_BINARIES

Path to the key file used to sign app images.

Espressif Systems 1286
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Key file is an ECDSA private key (NIST256p curve) in PEM format for Secure Boot V1. Key file is an
RSA private key in PEM format for Secure Boot V2.
Path is evaluated relative to the project directory.
You can generate a new signing key by running the following command: espsecure.py gener-
ate_signing_key secure_boot_signing_key.pem
See the Secure Boot section of the ESP-IDF Programmer's Guide for this version for details.
Default value:

• "secure_boot_signing_key.pem" if CONFIG_SECURE_BOOT_BUILD_SIGNED_BINARIES

CONFIG_SECURE_BOOT_VERIFICATION_KEY
Secure boot public signature verification key
Found in: Security features

Path to a public key file used to verify signed images. Secure Boot V1: This ECDSA public key is
compiled into the bootloader and/or app, to verify app images.
Key file is in raw binary format, and can be extracted from a PEM formatted private key using the
espsecure.py extract_public_key command.
Refer to the Secure Boot section of the ESP-IDF Programmer's Guide for this version before enabling.

CONFIG_SECURE_BOOT_ENABLE_AGGRESSIVE_KEY_REVOKE
Enable Aggressive key revoke strategy
Found in: Security features

If this option is set, ROM bootloader will revoke the public key digest burned in efuse block if it fails to
verify the signature of software bootloader with it. Revocation of keys does not happen when enabling
secure boot. Once secure boot is enabled, key revocation checks will be done on subsequent boot-up,
while verifying the software bootloader
This feature provides a strong resistance against physical attacks on the device.
NOTE: Once a digest slot is revoked, it can never be used again to verify an image This can lead to
permanent bricking of the device, in case all keys are revoked because of signature verification failure.
Default value:

• No (disabled) if CONFIG_SECURE_BOOT

CONFIG_SECURE_BOOT_V2_ALLOW_EFUSE_RD_DIS
Do not disable the ability to further read protect eFuses
Found in: Security features

If not set (default, recommended), on first boot the bootloader will burn the WR_DIS_RD_DIS efuse
when Secure Boot is enabled. This prevents any more efuses from being read protected.
If this option is set, it will remain possible to write the EFUSE_RD_DIS efuse field after Secure Boot
is enabled. This may allow an attacker to read-protect the BLK2 efuse (for ESP32) and BLOCK4-
BLOCK10 (i.e. BLOCK_KEY0-BLOCK_KEY5)(for other chips) holding the secure boot public key
digest, causing an immediate denial of service and possibly allowing an additional fault injection attack
to bypass the signature protection.
The option must be set when you need to program any read-protected key type into the efuses, e.g.,
HMAC, ECDSA etc. after secure boot has already been enabled on the device. Please refer to secure
boot V2 documentation guide for more details.
NOTE: Once a BLOCK is read-protected, the application will read all zeros from that block

Espressif Systems 1287
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

NOTE: If "UART ROM download mode (Permanently disabled (recommended))" or "UART ROM
download mode (Permanently switch to Secure mode (recommended))" is set, then it is __NOT__ pos-
sible to read/write efuses using espefuse.py utility. However, efuse can be read/written from the appli-
cation
Please refer to the Secure Boot V2 documentation guide for more information.
Default value:

• No (disabled) if CONFIG_SECURE_BOOT_V2_ENABLED

CONFIG_SECURE_BOOTLOADER_KEY_ENCODING
Hardware Key Encoding
Found in: Security features

In reflashable secure bootloader mode, a hardware key is derived from the signing key (with SHA-256)
and can be written to eFuse with espefuse.py.
Normally this is a 256-bit key, but if 3/4 Coding Scheme is used on the device then the eFuse key is
truncated to 192 bits.
This configuration item doesn't change any firmware code, it only changes the size of key binary which
is generated at build time.
Available options:

• No encoding (256 bit key) (CONFIG_SECURE_BOOTLOADER_KEY_ENCODING_256BIT)
• 3/4 encoding (192 bit key) (CONFIG_SECURE_BOOTLOADER_KEY_ENCODING_192BIT)

CONFIG_SECURE_BOOT_INSECURE
Allow potentially insecure options
Found in: Security features

You can disable some of the default protections offered by secure boot, in order to enable testing or a
custom combination of security features.
Only enable these options if you are very sure.
Refer to the Secure Boot section of the ESP-IDF Programmer's Guide for this version before enabling.
Default value:

• No (disabled) if CONFIG_SECURE_BOOT

CONFIG_SECURE_FLASH_ENC_ENABLED
Enable flash encryption on boot (READ DOCS FIRST)
Found in: Security features

If this option is set, flash contents will be encrypted by the bootloader on first boot.
Note: After first boot, the system will be permanently encrypted. Re-flashing an encrypted system is
complicated and not always possible.
Read Flash Encryption before enabling.
Default value:

• No (disabled)

Espressif Systems 1288
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_SECURE_FLASH_ENCRYPTION_KEYSIZE
Size of generated AES-XTS key
Found in: Security features > CONFIG_SECURE_FLASH_ENC_ENABLED

Size of generated AES-XTS key.
• AES-128 uses a 256-bit key (32 bytes) derived from 128 bits (16 bytes) burned in half Efuse key
block. Internally, it calculates SHA256(128 bits)

• AES-128 uses a 256-bit key (32 bytes) which occupies one Efuse key block.
• AES-256 uses a 512-bit key (64 bytes) which occupies two Efuse key blocks.

This setting is ignored if either type of key is already burned to Efuse before the first boot. In this case,
the pre-burned key is used and no new key is generated.
Available options:

• AES-128 key derived from 128 bits (SHA256(128 bits)) (CON-
FIG_SECURE_FLASH_ENCRYPTION_AES128_DERIVED)

• AES-128 (256-bit key) (CONFIG_SECURE_FLASH_ENCRYPTION_AES128)
• AES-256 (512-bit key) (CONFIG_SECURE_FLASH_ENCRYPTION_AES256)

CONFIG_SECURE_FLASH_ENCRYPTION_MODE
Enable usage mode
Found in: Security features > CONFIG_SECURE_FLASH_ENC_ENABLED

By default Development mode is enabled which allows ROMdownloadmode to perform flash encryption
operations (plaintext is sent to the device, and it encrypts it internally and writes ciphertext to flash.) This
mode is not secure, it's possible for an attacker to write their own chosen plaintext to flash.
Release mode should always be selected for production or manufacturing. Once enabled it's no longer
possible for the device in ROM Download Mode to use the flash encryption hardware.
When EFUSE_VIRTUAL is enabled, SECURE_FLASH_ENCRYPTION_MODE_RELEASE is not
available. For CI tests we use IDF_CI_BUILD to bypass it ("export IDF_CI_BUILD=1"). We do not
recommend bypassing it for other purposes.
Refer to the Flash Encryption section of the ESP-IDF Programmer's Guide for details.
Available options:

• Development (NOTSECURE) (CONFIG_SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT)
• Release (CONFIG_SECURE_FLASH_ENCRYPTION_MODE_RELEASE)

Potentially insecure options Contains:
• CONFIG_SECURE_BOOT_ALLOW_SHORT_APP_PARTITION
• CONFIG_SECURE_BOOT_ALLOW_JTAG
• CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_ENC
• CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE
• CONFIG_SECURE_BOOT_ALLOW_UNUSED_DIGEST_SLOTS
• CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
• CONFIG_SECURE_FLASH_SKIP_WRITE_PROTECTION_CACHE

CONFIG_SECURE_BOOT_ALLOW_JTAG

Espressif Systems 1289
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Allow JTAG Debugging
Found in: Security features > Potentially insecure options

If not set (default), the bootloader will permanently disable JTAG (across entire chip) on first boot when
either secure boot or flash encryption is enabled.
Setting this option leaves JTAG on for debugging, which negates all protections of flash encryption and
some of the protections of secure boot.
Only set this option in testing environments.
Default value:

• No (disabled) if CONFIG_SECURE_BOOT_INSECURE || CON-
FIG_SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT

CONFIG_SECURE_BOOT_ALLOW_SHORT_APP_PARTITION
Allow app partition length not 64KB aligned
Found in: Security features > Potentially insecure options

If not set (default), app partition size must be a multiple of 64KB. App images are padded to 64KB
length, and the bootloader checks any trailing bytes after the signature (before the next 64KB boundary)
have not been written. This is because flash cache maps entire 64KB pages into the address space. This
prevents an attacker from appending unverified data after the app image in the flash, causing it to be
mapped into the address space.
Setting this option allows the app partition length to be unaligned, and disables padding of the app image
to this length. It is generally not recommended to set this option, unless you have a legacy partitioning
scheme which doesn't support 64KB aligned partition lengths.

CONFIG_SECURE_BOOT_ALLOW_UNUSED_DIGEST_SLOTS
Leave unused digest slots available (not revoke)
Found in: Security features > Potentially insecure options

If not set (default), during startup in the app all unused digest slots will be revoked. To revoke unused
slot will be called esp_efuse_set_digest_revoke(num_digest) for each digest. Revoking unused digest
slots makes ensures that no trusted keys can be added later by an attacker. If set, it means that you have
a plan to use unused digests slots later.
Default value:

• No (disabled) if CONFIG_SECURE_BOOT_INSECURE

CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_ENC
Leave UART bootloader encryption enabled
Found in: Security features > Potentially insecure options

If not set (default), the bootloader will permanently disable UART bootloader encryption access on first
boot. If set, the UART bootloader will still be able to access hardware encryption.
It is recommended to only set this option in testing environments.
Default value:

• No (disabled) if CONFIG_SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT

Espressif Systems 1290
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE
Leave UART bootloader flash cache enabled
Found in: Security features > Potentially insecure options

If not set (default), the bootloader will permanently disable UART bootloader flash cache access on first
boot. If set, the UART bootloader will still be able to access the flash cache.
Only set this option in testing environments.
Default value:

• No (disabled) if CONFIG_SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT

CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
Require flash encryption to be already enabled
Found in: Security features > Potentially insecure options

If not set (default), and flash encryption is not yet enabled in eFuses, the 2nd stage bootloader will enable
flash encryption: generate the flash encryption key and program eFuses. If this option is set, and flash
encryption is not yet enabled, the bootloader will error out and reboot. If flash encryption is enabled in
eFuses, this option does not change the bootloader behavior.
Only use this option in testing environments, to avoid accidentally enabling flash encryption on the wrong
device. The device needs to have flash encryption already enabled using espefuse.py.
Default value:

• No (disabled) if CONFIG_SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT

CONFIG_SECURE_FLASH_SKIP_WRITE_PROTECTION_CACHE
Skip write-protection of DIS_CACHE (DIS_ICACHE, DIS_DCACHE)
Found in: Security features > Potentially insecure options

If not set (default, recommended), on the first boot the bootloader will burn the write-protection of
DIS_CACHE(for ESP32) or DIS_ICACHE/DIS_DCACHE(for other chips) eFuse when Flash En-
cryption is enabled. Write protection for cache disable efuse prevents the chip from being blocked if
it is set by accident. App and bootloader use cache so disabling it makes the chip useless for IDF.
Due to other eFuses are linked with the same write protection bit (see the list below) then write-
protection will not be done if these SECURE_FLASH_UART_BOOTLOADER_ALLOW_ENC, SE-
CURE_BOOT_ALLOW_JTAG or SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE
options are selected to give a chance to turn on the chip into the release mode later.
List of eFuses with the same write protection bit: ESP32: MAC, MAC_CRC, DISABLE_APP_CPU,
DISABLE_BT, DIS_CACHE, VOL_LEVEL_HP_INV.
ESP32-C3: DIS_ICACHE, DIS_USB_JTAG, DIS_DOWNLOAD_ICACHE,
DIS_USB_SERIAL_JTAG, DIS_FORCE_DOWNLOAD, DIS_TWAI, JTAG_SEL_ENABLE,
DIS_PAD_JTAG, DIS_DOWNLOAD_MANUAL_ENCRYPT.
ESP32-C6: SWAP_UART_SDIO_EN, DIS_ICACHE, DIS_USB_JTAG,
DIS_DOWNLOAD_ICACHE, DIS_USB_SERIAL_JTAG, DIS_FORCE_DOWNLOAD,
DIS_TWAI, JTAG_SEL_ENABLE, DIS_PAD_JTAG, DIS_DOWNLOAD_MANUAL_ENCRYPT.
ESP32-H2: DIS_ICACHE, DIS_USB_JTAG, POWERGLITCH_EN, DIS_FORCE_DOWNLOAD,
SPI_DOWNLOAD_MSPI_DIS, DIS_TWAI, JTAG_SEL_ENABLE, DIS_PAD_JTAG,
DIS_DOWNLOAD_MANUAL_ENCRYPT.
ESP32-S2: DIS_ICACHE, DIS_DCACHE, DIS_DOWNLOAD_ICACHE,
DIS_DOWNLOAD_DCACHE, DIS_FORCE_DOWNLOAD, DIS_USB,
DIS_TWAI, DIS_BOOT_REMAP, SOFT_DIS_JTAG, HARD_DIS_JTAG,
DIS_DOWNLOAD_MANUAL_ENCRYPT.

Espressif Systems 1291
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP32-S3: DIS_ICACHE, DIS_DCACHE, DIS_DOWNLOAD_ICACHE,
DIS_DOWNLOAD_DCACHE, DIS_FORCE_DOWNLOAD, DIS_USB_OTG, DIS_TWAI,
DIS_APP_CPU, DIS_PAD_JTAG, DIS_DOWNLOAD_MANUAL_ENCRYPT, DIS_USB_JTAG,
DIS_USB_SERIAL_JTAG, STRAP_JTAG_SEL, USB_PHY_SEL.

CONFIG_SECURE_FLASH_ENCRYPT_ONLY_IMAGE_LEN_IN_APP_PART
Encrypt only the app image that is present in the partition of type app
Found in: Security features

If set, optimise encryption time for the partition of type APP, by only encrypting the app image that is
present in the partition, instead of the whole partition. The image length used for encryption is derived
from the imagemetadata, which includes the size of the app image, checksum, hash and also the signature
sector when secure boot is enabled.
If not set (default), the whole partition of type APP would be encrypted, which increases the encryption
time but might be useful if there is any custom data appended to the firmware image.

CONFIG_SECURE_FLASH_CHECK_ENC_EN_IN_APP
Check Flash Encryption enabled on app startup
Found in: Security features

If set (default), in an app during startup code, there is a check of the flash encryption eFuse bit is on (as
the bootloader should already have set it). The app requires this bit is on to continue work otherwise
abort.
If not set, the app does not care if the flash encryption eFuse bit is set or not.
Default value:

• Yes (enabled) if CONFIG_SECURE_FLASH_ENC_ENABLED

CONFIG_SECURE_FLASH_PSEUDO_ROUND_FUNC
Permanently enable XTS-AES's pseudo rounds function
Found in: Security features

If set (default), the bootloader will permanently enable the XTS-AES peripheral's pseudo rounds func-
tion. Note: Enabling this config would burn an efuse.
Default value:

• Yes (enabled) if CONFIG_SECURE_FLASH_ENCRYPTION_MODE_RELEASE && CON-
FIG_SECURE_FLASH_ENC_ENABLED&&SOC_FLASH_ENCRYPTION_XTS_AES_SUPPORT_PSEUDO_ROUND

• No (disabled) if CONFIG_SECURE_FLASH_ENC_ENABLED &&
SOC_FLASH_ENCRYPTION_XTS_AES_SUPPORT_PSEUDO_ROUND

CONFIG_SECURE_FLASH_PSEUDO_ROUND_FUNC_STRENGTH
Strength of the pseudo rounds function
Found in: Security features > CONFIG_SECURE_FLASH_PSEUDO_ROUND_FUNC

The strength of the pseudo rounds functions can be configured to low, medium and high, each denoting
the values that would be stored in the efuses field. By default the value to set to low. You can configure
the strength of the pseudo rounds functions according to your use cases, for example, increasing the
strength would provide higher security but would slow down the flash encryption/decryption operations.
For more info regarding the performance impact, please checkout the pseudo round function section of
the security guide documentation.
Available options:

Espressif Systems 1292
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Low (CONFIG_SECURE_FLASH_PSEUDO_ROUND_FUNC_STRENGTH_LOW)
• Medium (CONFIG_SECURE_FLASH_PSEUDO_ROUND_FUNC_STRENGTH_MEDIUM)
• High (CONFIG_SECURE_FLASH_PSEUDO_ROUND_FUNC_STRENGTH_HIGH)

CONFIG_SECURE_UART_ROM_DL_MODE
UART ROM download mode
Found in: Security features

Available options:

• UART ROM download mode (Permanently disabled (recommended)) (CON-
FIG_SECURE_DISABLE_ROM_DL_MODE)
If set, during startup the app will burn an eFuse bit to permanently disable the UART
ROM Download Mode. This prevents any future use of esptool.py, espefuse.py and
similar tools.
Once disabled, if the SoC is booted with strapping pins set for ROM Download Mode
then an error is printed instead.
It is recommended to enable this option in any production application where Flash En-
cryption and/or Secure Boot is enabled and access to Download Mode is not required.
It is also possible to permanently disable Download Mode by calling
esp_efuse_disable_rom_download_mode() at runtime.

• UART ROM download mode (Permanently switch to Secure mode (recommended))
(CONFIG_SECURE_ENABLE_SECURE_ROM_DL_MODE)
If set, during startup the app will burn an eFuse bit to permanently switch the UART
ROM Download Mode into a separate Secure Download mode. This option can only
work if Download Mode is not already disabled by eFuse.
SecureDownloadmode limits the use ofDownloadMode functions to update SPI config,
changing baud rate, basic flash write and a command to return a summary of currently
enabled security features (get_security_info).
Secure Download mode is not compatible with the esptool.py flasher stub feature, es-
pefuse.py, read/writing memory or registers, encrypted download, or any other features
that interact with unsupported Download Mode commands.
Secure Download mode should be enabled in any application where Flash Encryption
and/or Secure Boot is enabled. Disabling this option does not immediately cancel the
benefits of the security features, but it increases the potential "attack surface" for an
attacker to try and bypass them with a successful physical attack.
It is also possible to enable secure download mode at runtime by calling
esp_efuse_enable_rom_secure_download_mode()
Note: Secure Download mode is not available for ESP32.

• UART ROM download mode (Enabled (not recommended)) (CON-
FIG_SECURE_INSECURE_ALLOW_DL_MODE)
This is a potentially insecure option. Enabling this option will allow the full UART
download mode to stay enabled. This option SHOULD NOT BE ENABLED for pro-
duction use cases.

Application manager

Contains:
• CONFIG_APP_EXCLUDE_PROJECT_NAME_VAR
• CONFIG_APP_EXCLUDE_PROJECT_VER_VAR
• CONFIG_APP_PROJECT_VER_FROM_CONFIG
• CONFIG_APP_RETRIEVE_LEN_ELF_SHA
• CONFIG_APP_COMPILE_TIME_DATE

Espressif Systems 1293
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_APP_COMPILE_TIME_DATE
Use time/date stamp for app
Found in: Application manager

If set, then the app will be built with the current time/date stamp. It is stored in the app description
structure. If not set, time/date stamp will be excluded from app image. This can be useful for getting
the same binary image files made from the same source, but at different times.
Default value:

• Yes (enabled)

CONFIG_APP_EXCLUDE_PROJECT_VER_VAR
Exclude PROJECT_VER from firmware image
Found in: Application manager

The PROJECT_VER variable from the build system will not affect the firmware image. This value will
not be contained in the esp_app_desc structure.
Default value:

• No (disabled)

CONFIG_APP_EXCLUDE_PROJECT_NAME_VAR
Exclude PROJECT_NAME from firmware image
Found in: Application manager

The PROJECT_NAME variable from the build system will not affect the firmware image. This value
will not be contained in the esp_app_desc structure.
Default value:

• No (disabled)

CONFIG_APP_PROJECT_VER_FROM_CONFIG
Get the project version from Kconfig
Found in: Application manager

If this is enabled, then config itemAPP_PROJECT_VERwill be used for the variable PROJECT_VER.
Other ways to set PROJECT_VER will be ignored.
Default value:

• No (disabled)

CONFIG_APP_PROJECT_VER
Project version
Found in: Application manager > CONFIG_APP_PROJECT_VER_FROM_CONFIG

Project version
Default value:

• 1 if CONFIG_APP_PROJECT_VER_FROM_CONFIG

Espressif Systems 1294
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_APP_RETRIEVE_LEN_ELF_SHA
The length of APP ELF SHA is stored in RAM(chars)
Found in: Application manager

At startup, the app will read this many hex characters from the embedded APP ELF SHA-256 hash
value and store it in static RAM. This ensures the app ELF SHA-256 value is always available if it needs
to be printed by the panic handler code. Changing this value will change the size of a static buffer, in
bytes.
Range:

• from 8 to 64
Default value:

• 16

Boot ROM Behavior

Contains:
• CONFIG_BOOT_ROM_LOG_SCHEME

CONFIG_BOOT_ROM_LOG_SCHEME
Permanently change Boot ROM output
Found in: Boot ROM Behavior

Controls the Boot ROM log behavior. The rom log behavior can only be changed for once, specific
eFuse bit(s) will be burned at app boot stage.
Available options:

• Always Log (CONFIG_BOOT_ROM_LOG_ALWAYS_ON)
Always print ROM logs, this is the default behavior.

• Permanently disable logging (CONFIG_BOOT_ROM_LOG_ALWAYS_OFF)
Don't print ROM logs.

• Log on GPIO High (CONFIG_BOOT_ROM_LOG_ON_GPIO_HIGH)
Print ROM logs when GPIO level is high during start up. The GPIO number is chip
dependent, e.g. on ESP32-S2, the control GPIO is GPIO46.

• Log on GPIO Low (CONFIG_BOOT_ROM_LOG_ON_GPIO_LOW)
Print ROM logs when GPIO level is low during start up. The GPIO number is chip
dependent, e.g. on ESP32-S2, the control GPIO is GPIO46.

Serial flasher config

Contains:
• CONFIG_ESPTOOLPY_AFTER
• CONFIG_ESPTOOLPY_BEFORE
• CONFIG_ESPTOOLPY_HEADER_FLASHSIZE_UPDATE
• CONFIG_ESPTOOLPY_NO_STUB
• CONFIG_ESPTOOLPY_FLASH_SAMPLE_MODE
• CONFIG_ESPTOOLPY_FLASHSIZE
• CONFIG_ESPTOOLPY_FLASHMODE
• CONFIG_ESPTOOLPY_FLASHFREQ

Espressif Systems 1295
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESPTOOLPY_NO_STUB
Disable download stub
Found in: Serial flasher config

The flasher tool sends a precompiled download stub first by default. That stub allows things like com-
pressed downloads and more. Usually you should not need to disable that feature

CONFIG_ESPTOOLPY_FLASHMODE
Flash SPI mode
Found in: Serial flasher config

Mode the flash chip is flashed in, as well as the default mode for the binary to run in.
Available options:

• QIO (CONFIG_ESPTOOLPY_FLASHMODE_QIO)
• QOUT (CONFIG_ESPTOOLPY_FLASHMODE_QOUT)
• DIO (CONFIG_ESPTOOLPY_FLASHMODE_DIO)
• DOUT (CONFIG_ESPTOOLPY_FLASHMODE_DOUT)
• OPI (CONFIG_ESPTOOLPY_FLASHMODE_OPI)

CONFIG_ESPTOOLPY_FLASH_SAMPLE_MODE
Flash Sampling Mode
Found in: Serial flasher config

Available options:

• STR Mode (CONFIG_ESPTOOLPY_FLASH_SAMPLE_MODE_STR)
• DTR Mode (CONFIG_ESPTOOLPY_FLASH_SAMPLE_MODE_DTR)

CONFIG_ESPTOOLPY_FLASHFREQ
Flash SPI speed
Found in: Serial flasher config

Available options:

• 120 MHz (READ DOCS FIRST) (CONFIG_ESPTOOLPY_FLASHFREQ_120M)
– Optional feature for QSPI Flash. Read docs and enable CON-

FIG_SPI_FLASH_HPM_ENA first!
– Flash 120 MHz SDR mode is stable.
– Flash 120 MHz DDR mode is an experimental feature, it works when the temper-
ature is stable.

Risks: If your chip powers on at a certain temperature, then after the tempera-
ture increases or decreases by approximately 20 Celsius degrees (depending
on the chip), the program will crash randomly.

• 80 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_80M)
• 64 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_64M)
• 60 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_60M)
• 48 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_48M)
• 40 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_40M)
• 32 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_32M)

Espressif Systems 1296
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 30 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_30M)
• 26 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_26M)
• 24 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_24M)
• 20 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_20M)
• 16 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_16M)
• 15 MHz (CONFIG_ESPTOOLPY_FLASHFREQ_15M)

CONFIG_ESPTOOLPY_FLASHSIZE
Flash size
Found in: Serial flasher config

SPI flash size, in megabytes
Available options:

• 1 MB (CONFIG_ESPTOOLPY_FLASHSIZE_1MB)
• 2 MB (CONFIG_ESPTOOLPY_FLASHSIZE_2MB)
• 4 MB (CONFIG_ESPTOOLPY_FLASHSIZE_4MB)
• 8 MB (CONFIG_ESPTOOLPY_FLASHSIZE_8MB)
• 16 MB (CONFIG_ESPTOOLPY_FLASHSIZE_16MB)
• 32 MB (CONFIG_ESPTOOLPY_FLASHSIZE_32MB)
• 64 MB (CONFIG_ESPTOOLPY_FLASHSIZE_64MB)
• 128 MB (CONFIG_ESPTOOLPY_FLASHSIZE_128MB)

CONFIG_ESPTOOLPY_HEADER_FLASHSIZE_UPDATE
Detect flash size when flashing bootloader
Found in: Serial flasher config

If this option is set, flashing the project will automatically detect the flash size of the target chip and
update the bootloader image before it is flashed.
Enabling this option turns off the image protection against corruption by a SHA256 digest. Updating
the bootloader image before flashing would invalidate the digest.

CONFIG_ESPTOOLPY_BEFORE
Before flashing
Found in: Serial flasher config

Configure whether esptool.py should reset the ESP32 before flashing.
Automatic resetting depends on the RTS & DTR signals being wired from the serial port to the ESP32.
Most USB development boards do this internally.
Available options:

• Reset to bootloader (CONFIG_ESPTOOLPY_BEFORE_RESET)
• No reset (CONFIG_ESPTOOLPY_BEFORE_NORESET)

CONFIG_ESPTOOLPY_AFTER
After flashing
Found in: Serial flasher config

Configure whether esptool.py should reset the ESP32 after flashing.

Espressif Systems 1297
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Automatic resetting depends on the RTS & DTR signals being wired from the serial port to the ESP32.
Most USB development boards do this internally.
Available options:

• Reset after flashing (CONFIG_ESPTOOLPY_AFTER_RESET)
• Stay in bootloader (CONFIG_ESPTOOLPY_AFTER_NORESET)

Partition Table

Contains:
• CONFIG_PARTITION_TABLE_CUSTOM_FILENAME
• CONFIG_PARTITION_TABLE_MD5
• CONFIG_PARTITION_TABLE_OFFSET
• CONFIG_PARTITION_TABLE_TYPE

CONFIG_PARTITION_TABLE_TYPE
Partition Table
Found in: Partition Table

The partition table to flash to the ESP32. The partition table determines where apps, data and other
resources are expected to be found.
The predefined partition table CSV descriptions can be found in the components/partition_table direc-
tory. These are mostly intended for example and development use, it's expect that for production use
you will copy one of these CSV files and create a custom partition CSV for your application.
Available options:

• Single factory app, no OTA (CONFIG_PARTITION_TABLE_SINGLE_APP)
This is the default partition table, designed to fit into a 2MB or larger flash with a single
1MB app partition.
The corresponding CSV file in the IDF directory is compo-
nents/partition_table/partitions_singleapp.csv
This partition table is not suitable for an app that needs OTA (over the air update) ca-
pability.

• Single factory app (large), noOTA (CONFIG_PARTITION_TABLE_SINGLE_APP_LARGE)
This is a variation of the default partition table, that expands the 1MB app partition size
to 1.5MB to fit more code.
The corresponding CSV file in the IDF directory is compo-
nents/partition_table/partitions_singleapp_large.csv
This partition table is not suitable for an app that needs OTA (over the air update) ca-
pability.

• Factory app, two OTA definitions (CONFIG_PARTITION_TABLE_TWO_OTA)
This is a basic OTA-enabled partition table with a factory app partition plus two OTA
app partitions. All are 1MB, so this partition table requires 4MB or larger flash size.
The corresponding CSV file in the IDF directory is compo-
nents/partition_table/partitions_two_ota.csv

• Custom partition table CSV (CONFIG_PARTITION_TABLE_CUSTOM)
Specify the path to the partition table CSV to use for your project.
Consult the Partition Table section in the ESP-IDF Programmers Guide for more infor-
mation.

• Single factory app, no OTA, encrypted NVS (CON-
FIG_PARTITION_TABLE_SINGLE_APP_ENCRYPTED_NVS)

Espressif Systems 1298
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This is a variation of the default "Single factory app, no OTA" partition table that sup-
ports encrypted NVS when using flash encryption. See the Flash Encryption section in
the ESP-IDF Programmers Guide for more information.
The corresponding CSV file in the IDF directory is compo-
nents/partition_table/partitions_singleapp_encr_nvs.csv

• Single factory app (large), no OTA, encrypted NVS (CON-
FIG_PARTITION_TABLE_SINGLE_APP_LARGE_ENC_NVS)
This is a variation of the "Single factory app (large), noOTA" partition table that supports
encrypted NVS when using flash encryption. See the Flash Encryption section in the
ESP-IDF Programmers Guide for more information.
The corresponding CSV file in the IDF directory is compo-
nents/partition_table/partitions_singleapp_large_encr_nvs.csv

• Factory app, two OTA definitions, encrypted NVS (CON-
FIG_PARTITION_TABLE_TWO_OTA_ENCRYPTED_NVS)
This is a variation of the "Factory app, two OTA definitions" partition table that supports
encrypted NVS when using flash encryption. See the Flash Encryption section in the
ESP-IDF Programmers Guide for more information.
The corresponding CSV file in the IDF directory is compo-
nents/partition_table/partitions_two_ota_encr_nvs.csv

CONFIG_PARTITION_TABLE_CUSTOM_FILENAME
Custom partition CSV file
Found in: Partition Table

Name of the custom partition CSV filename. This path is evaluated relative to the project root directory.
Default value:

• "partitions.csv"

CONFIG_PARTITION_TABLE_OFFSET
Offset of partition table
Found in: Partition Table

The address of partition table (by default 0x8000). Allows you to move the partition table, it gives more
space for the bootloader. Note that the bootloader and app will both need to be compiled with the same
PARTITION_TABLE_OFFSET value.
This number should be a multiple of 0x1000.
Note that partition offsets in the partition table CSV file may need to be changed if this value is set to a
higher value. To have each partition offset adapt to the configured partition table offset, leave all partition
offsets blank in the CSV file.
Default value:

• "0x8000"

CONFIG_PARTITION_TABLE_MD5
Generate an MD5 checksum for the partition table
Found in: Partition Table

Generate an MD5 checksum for the partition table for protecting the integrity of the table. The gen-
eration should be turned off for legacy bootloaders which cannot recognize the MD5 checksum in the
partition table.
Default value:

• Yes (enabled)

Espressif Systems 1299
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Compiler options

Contains:
• CONFIG_COMPILER_OPTIMIZATION_ASSERTION_LEVEL
• CONFIG_COMPILER_FLOAT_LIB_FROM
• CONFIG_COMPILER_OPTIMIZATION_CHECKS_SILENT
• CONFIG_COMPILER_DISABLE_GCC12_WARNINGS
• CONFIG_COMPILER_DUMP_RTL_FILES
• CONFIG_COMPILER_SAVE_RESTORE_LIBCALLS
• CONFIG_COMPILER_WARN_WRITE_STRINGS
• CONFIG_COMPILER_CXX_EXCEPTIONS
• CONFIG_COMPILER_CXX_RTTI
• CONFIG_COMPILER_OPTIMIZATION
• CONFIG_COMPILER_HIDE_PATHS_MACROS
• CONFIG_COMPILER_STACK_CHECK_MODE

CONFIG_COMPILER_OPTIMIZATION
Optimization Level
Found in: Compiler options

This option sets compiler optimization level (gcc -O argument) for the app.
• The "Default" setting will add the -0g flag to CFLAGS.
• The "Size" setting will add the -0s flag to CFLAGS.
• The "Performance" setting will add the -O2 flag to CFLAGS.
• The "None" setting will add the -O0 flag to CFLAGS.

The "Size" setting cause the compiled code to be smaller and faster, but may lead to difficulties of
correlating code addresses to source file lines when debugging.
The "Performance" setting causes the compiled code to be larger and faster, but will be easier to corre-
lated code addresses to source file lines.
"None" with -O0 produces compiled code without optimization.
Note that custom optimization levels may be unsupported.
Compiler optimization for the IDF bootloader is set separately, see the BOOT-
LOADER_COMPILER_OPTIMIZATION setting.
Available options:

• Debug (-Og) (CONFIG_COMPILER_OPTIMIZATION_DEFAULT)
• Optimize for size (-Os) (CONFIG_COMPILER_OPTIMIZATION_SIZE)
• Optimize for performance (-O2) (CONFIG_COMPILER_OPTIMIZATION_PERF)
• Debugwithout optimization (-O0) (CONFIG_COMPILER_OPTIMIZATION_NONE)

CONFIG_COMPILER_OPTIMIZATION_ASSERTION_LEVEL
Assertion level
Found in: Compiler options

Assertions can be:
• Enabled. Failure will print verbose assertion details. This is the default.
• Set to "silent" to save code size (failed assertions will abort() but user needs to use the aborting
address to find the line number with the failed assertion.)

• Disabled entirely (not recommended for most configurations.) -DNDEBUG is added to
CPPFLAGS in this case.

Espressif Systems 1300
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Available options:

• Enabled (CONFIG_COMPILER_OPTIMIZATION_ASSERTIONS_ENABLE)
Enable assertions. Assertion content and line number will be printed on failure.

• Silent (saves code size) (CONFIG_COMPILER_OPTIMIZATION_ASSERTIONS_SILENT)
Enable silent assertions. Failed assertions will abort(), user needs to use the aborting
address to find the line number with the failed assertion.

• Disabled (sets -DNDEBUG) (CONFIG_COMPILER_OPTIMIZATION_ASSERTIONS_DISABLE)
If assertions are disabled, -DNDEBUG is added to CPPFLAGS.

CONFIG_COMPILER_FLOAT_LIB_FROM
Compiler float lib source
Found in: Compiler options

In the soft-fp part of libgcc, riscv version is written in C, and handles all edge cases in IEEE754, which
makes it larger and performance is slow.
RVfplib is an optimized RISC-V library for FP arithmetic on 32-bit integer processors, for single and
double-precision FP. RVfplib is "fast", but it has a few exceptions from IEEE 754 compliance.
Available options:

• libgcc (CONFIG_COMPILER_FLOAT_LIB_FROM_GCCLIB)
• librvfp (CONFIG_COMPILER_FLOAT_LIB_FROM_RVFPLIB)

CONFIG_COMPILER_OPTIMIZATION_CHECKS_SILENT
Disable messages in ESP_RETURN_ON_* and ESP_EXIT_ON_* macros
Found in: Compiler options

If enabled, the error messages will be discarded in following check macros: -
ESP_RETURN_ON_ERROR - ESP_EXIT_ON_ERROR - ESP_RETURN_ON_FALSE -
ESP_EXIT_ON_FALSE
Default value:

• No (disabled)

CONFIG_COMPILER_HIDE_PATHS_MACROS
Replace ESP-IDF and project paths in binaries
Found in: Compiler options

When expanding the __FILE__ and __BASE_FILE__ macros, replace paths inside ESP-IDF with paths
relative to the placeholder string "IDF", and convert paths inside the project directory to relative paths.
This allows building the project with assertions or other code that embeds file paths, without the binary
containing the exact path to the IDF or project directories.
This option passes -fmacro-prefix-map options to the GCC command line. To replace additional paths in
your binaries, modify the project CMakeLists.txt file to pass custom -fmacro-prefix-map or -ffile-prefix-
map arguments.
Default value:

• Yes (enabled)

Espressif Systems 1301
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_COMPILER_CXX_EXCEPTIONS
Enable C++ exceptions
Found in: Compiler options

Enabling this option compiles all IDF C++ files with exception support enabled.
Disabling this option disables C++ exception support in all compiled files, and any libstdc++ code which
throws an exception will abort instead.
Enabling this option currently adds an additional ~500 bytes of heap overhead when an exception is
thrown in user code for the first time.
Default value:

• No (disabled)
Contains:

• CONFIG_COMPILER_CXX_EXCEPTIONS_EMG_POOL_SIZE

CONFIG_COMPILER_CXX_EXCEPTIONS_EMG_POOL_SIZE
Emergency Pool Size
Found in: Compiler options > CONFIG_COMPILER_CXX_EXCEPTIONS

Size (in bytes) of the emergency memory pool for C++ exceptions. This pool will be used to allocate
memory for thrown exceptions when there is not enough memory on the heap.
Default value:

• 0 if CONFIG_COMPILER_CXX_EXCEPTIONS

CONFIG_COMPILER_CXX_RTTI
Enable C++ run-time type info (RTTI)
Found in: Compiler options

Enabling this option compiles all C++ files with RTTI support enabled. This increases binary size (typ-
ically by tens of kB) but allows using dynamic_cast conversion and typeid operator.
Default value:

• No (disabled)

CONFIG_COMPILER_STACK_CHECK_MODE
Stack smashing protection mode
Found in: Compiler options

Stack smashing protection mode. Emit extra code to check for buffer overflows, such as stack smashing
attacks. This is done by adding a guard variable to functions with vulnerable objects. The guards are
initialized when a function is entered and then checked when the function exits. If a guard check fails,
program is halted. Protection has the following modes:

• In NORMAL mode (GCC flag: -fstack-protector) only functions that call alloca, and functions
with buffers larger than 8 bytes are protected.

• STRONG mode (GCC flag: -fstack-protector-strong) is like NORMAL, but includes additional
functions to be protected -- those that have local array definitions, or have references to local frame
addresses.

• In OVERALL mode (GCC flag: -fstack-protector-all) all functions are protected.
Modes have the following impact on code performance and coverage:

• performance: NORMAL > STRONG > OVERALL
• coverage: NORMAL < STRONG < OVERALL

Espressif Systems 1302
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The performance impact includes increasing the amount of stack memory required for each task.
Available options:

• None (CONFIG_COMPILER_STACK_CHECK_MODE_NONE)
• Normal (CONFIG_COMPILER_STACK_CHECK_MODE_NORM)
• Strong (CONFIG_COMPILER_STACK_CHECK_MODE_STRONG)
• Overall (CONFIG_COMPILER_STACK_CHECK_MODE_ALL)

CONFIG_COMPILER_WARN_WRITE_STRINGS
Enable -Wwrite-strings warning flag
Found in: Compiler options

Adds -Wwrite-strings flag for the C/C++ compilers.
For C, this gives string constants the type const char[] so that copying the address of one into a
non-const char * pointer produces a warning. This warning helps to find at compile time code that
tries to write into a string constant.
For C++, this warns about the deprecated conversion from string literals to char *.
Default value:

• No (disabled)

CONFIG_COMPILER_SAVE_RESTORE_LIBCALLS
Enable -msave-restore flag to reduce code size
Found in: Compiler options

Adds -msave-restore to C/C++ compilation flags.
When this flag is enabled, compiler will call library functions to save/restore registers in function pro-
logues/epilogues. This results in lower overall code size, at the expense of slightly reduced performance.
This option can be enabled for RISC-V targets only.

CONFIG_COMPILER_DISABLE_GCC12_WARNINGS
Disable new warnings introduced in GCC 12
Found in: Compiler options

Enable this option if use GCC 12 or newer, and want to disable warnings which don't appear with GCC
11.
Default value:

• No (disabled)

CONFIG_COMPILER_DUMP_RTL_FILES
Dump RTL files during compilation
Found in: Compiler options

If enabled, RTL files will be produced during compilation. These files can be used by other tools, for
example to calculate call graphs.

Espressif Systems 1303
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Component config

Contains:
• ADC and ADC Calibration
• Application Level Tracing
• Bluetooth
• Common ESP-related
• Core dump
• Driver Configurations
• eFuse Bit Manager
• CONFIG_BLE_MESH
• ESP HID
• ESP HTTP client
• ESP HTTPS OTA
• ESP HTTPS server
• ESP NETIF Adapter
• ESP PSRAM
• ESP Ringbuf
• ESP System Settings
• ESP-MQTT Configurations
• ESP-TLS
• Ethernet
• Event Loop Library
• FAT Filesystem support
• FreeRTOS
• GDB Stub
• Hardware Abstraction Layer (HAL) and Low Level (LL)
• Hardware Settings
• Heap memory debugging
• High resolution timer (esp_timer)
• HTTP Server
• IEEE 802.15.4
• IPC (Inter-Processor Call)
• LCD and Touch Panel
• Log output
• LWIP
• Main Flash configuration
• mbedTLS
• Newlib
• NVS
• OpenThread
• Partition API Configuration
• PHY
• Power Management
• Protocomm
• PThreads
• SoC Settings
• SPI Flash driver
• SPIFFS Configuration
• TCP Transport
• Ultra Low Power (ULP) Co-processor
• Unity unit testing library
• USB-OTG
• Virtual file system
• Wear Levelling
• Wi-Fi
• Wi-Fi Provisioning Manager

Espressif Systems 1304
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Wireless Coexistence

Application Level Tracing Contains:
• CONFIG_APPTRACE_DESTINATION1
• CONFIG_APPTRACE_DESTINATION2
• FreeRTOS SystemView Tracing
• CONFIG_APPTRACE_GCOV_ENABLE
• CONFIG_APPTRACE_BUF_SIZE
• CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX
• CONFIG_APPTRACE_POSTMORTEM_FLUSH_THRESH
• CONFIG_APPTRACE_ONPANIC_HOST_FLUSH_TMO
• CONFIG_APPTRACE_UART_BAUDRATE
• CONFIG_APPTRACE_UART_RX_GPIO
• CONFIG_APPTRACE_UART_RX_BUFF_SIZE
• CONFIG_APPTRACE_UART_TASK_PRIO
• CONFIG_APPTRACE_UART_TX_MSG_SIZE
• CONFIG_APPTRACE_UART_TX_GPIO
• CONFIG_APPTRACE_UART_TX_BUFF_SIZE

CONFIG_APPTRACE_DESTINATION1
Data Destination 1
Found in: Component config > Application Level Tracing

Select destination for application trace: JTAG or none (to disable).
Available options:

• JTAG (CONFIG_APPTRACE_DEST_JTAG)
• None (CONFIG_APPTRACE_DEST_NONE)

CONFIG_APPTRACE_DESTINATION2
Data Destination 2
Found in: Component config > Application Level Tracing

Select destination for application trace: UART(XX) or none (to disable).
Available options:

• UART0 (CONFIG_APPTRACE_DEST_UART0)
• UART1 (CONFIG_APPTRACE_DEST_UART1)
• UART2 (CONFIG_APPTRACE_DEST_UART2)
• USB_CDC (CONFIG_APPTRACE_DEST_USB_CDC)
• None (CONFIG_APPTRACE_DEST_UART_NONE)

CONFIG_APPTRACE_UART_TX_GPIO
UART TX on GPIO#
Found in: Component config > Application Level Tracing

This GPIO is used for UART TX pin.

Espressif Systems 1305
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_APPTRACE_UART_RX_GPIO
UART RX on GPIO#
Found in: Component config > Application Level Tracing

This GPIO is used for UART RX pin.

CONFIG_APPTRACE_UART_BAUDRATE
UART baud rate
Found in: Component config > Application Level Tracing

This baud rate is used for UART.
The app's maximum baud rate depends on the UART clock source. If Power Management is disabled,
the UART clock source is the APB clock and all baud rates in the available range will be sufficiently
accurate. If Power Management is enabled, REF_TICK clock source is used so the baud rate is divided
from 1MHz. Baud rates above 1Mbps are not possible and values between 500Kbps and 1Mbps may
not be accurate.

CONFIG_APPTRACE_UART_RX_BUFF_SIZE
UART RX ring buffer size
Found in: Component config > Application Level Tracing

Size of the UART input ring buffer. This size related to the baudrate, system tick frequency and amount
of data to transfer. The data placed to this buffer before sent out to the interface.

CONFIG_APPTRACE_UART_TX_BUFF_SIZE
UART TX ring buffer size
Found in: Component config > Application Level Tracing

Size of the UART output ring buffer. This size related to the baudrate, system tick frequency and amount
of data to transfer.

CONFIG_APPTRACE_UART_TX_MSG_SIZE
UART TX message size
Found in: Component config > Application Level Tracing

Maximum size of the single message to transfer.

CONFIG_APPTRACE_UART_TASK_PRIO
UART Task Priority
Found in: Component config > Application Level Tracing

UART task priority. In case of high events rate, this parameter could be changed up to (config-
MAX_PRIORITIES-1).
Range:

• from 1 to 32
Default value:

• 1

Espressif Systems 1306
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_APPTRACE_ONPANIC_HOST_FLUSH_TMO
Timeout for flushing last trace data to host on panic
Found in: Component config > Application Level Tracing

Timeout for flushing last trace data to host in case of panic. In ms. Use -1 to disable timeout and wait
forever.

CONFIG_APPTRACE_POSTMORTEM_FLUSH_THRESH
Threshold for flushing last trace data to host on panic
Found in: Component config > Application Level Tracing

Threshold for flushing last trace data to host on panic in post-mortem mode. This is minimal amount of
data needed to perform flush. In bytes.

CONFIG_APPTRACE_BUF_SIZE
Size of the apptrace buffer
Found in: Component config > Application Level Tracing

Size of the memory buffer for trace data in bytes.

CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX
Size of the pending data buffer
Found in: Component config > Application Level Tracing

Size of the buffer for events in bytes. It is useful for buffering events from the time critical code (sched-
uler, ISRs etc). If this parameter is 0 then events will be discarded when main HW buffer is full.

FreeRTOS SystemView Tracing Contains:
• CONFIG_APPTRACE_SV_CPU
• CONFIG_APPTRACE_SV_EVT_ISR_ENTER_ENABLE
• CONFIG_APPTRACE_SV_EVT_ISR_EXIT_ENABLE
• CONFIG_APPTRACE_SV_EVT_ISR_TO_SCHED_ENABLE
• CONFIG_APPTRACE_SV_MAX_TASKS
• CONFIG_APPTRACE_SV_EVT_IDLE_ENABLE
• CONFIG_APPTRACE_SV_ENABLE
• CONFIG_APPTRACE_SV_EVT_TASK_CREATE_ENABLE
• CONFIG_APPTRACE_SV_EVT_TASK_START_EXEC_ENABLE
• CONFIG_APPTRACE_SV_EVT_TASK_START_READY_ENABLE
• CONFIG_APPTRACE_SV_EVT_TASK_STOP_EXEC_ENABLE
• CONFIG_APPTRACE_SV_EVT_TASK_STOP_READY_ENABLE
• CONFIG_APPTRACE_SV_EVT_TASK_TERMINATE_ENABLE
• CONFIG_APPTRACE_SV_EVT_TIMER_ENTER_ENABLE
• CONFIG_APPTRACE_SV_EVT_TIMER_EXIT_ENABLE
• CONFIG_APPTRACE_SV_TS_SOURCE
• CONFIG_APPTRACE_SV_EVT_OVERFLOW_ENABLE
• CONFIG_APPTRACE_SV_BUF_WAIT_TMO

CONFIG_APPTRACE_SV_ENABLE
SystemView Tracing Enable
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables supporrt for SEGGER SystemView tracing functionality.

Espressif Systems 1307
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_APPTRACE_SV_DEST
SystemView destination
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing > CON-
FIG_APPTRACE_SV_ENABLE

SystemView witt transfer data trough defined interface.
Available options:

• Data destination JTAG (CONFIG_APPTRACE_SV_DEST_JTAG)
Send SEGGER SystemView events through JTAG interface.

• Data destination UART (CONFIG_APPTRACE_SV_DEST_UART)
Send SEGGER SystemView events through UART interface.

CONFIG_APPTRACE_SV_CPU
CPU to trace
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Define the CPU to trace by SystemView.
Available options:

• CPU0 (CONFIG_APPTRACE_SV_DEST_CPU_0)
Send SEGGER SystemView events for Pro CPU.

• CPU1 (CONFIG_APPTRACE_SV_DEST_CPU_1)
Send SEGGER SystemView events for App CPU.

CONFIG_APPTRACE_SV_TS_SOURCE
Timer to use as timestamp source
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

SystemView needs to use a hardware timer as the source of timestamps when tracing. This option selects
the timer for it.
Available options:

• CPU cycle counter (CCOUNT) (CONFIG_APPTRACE_SV_TS_SOURCE_CCOUNT)
• General Purpose Timer (Timer Group) (CON-
FIG_APPTRACE_SV_TS_SOURCE_GPTIMER)

• esp_timer high resolution timer (CONFIG_APPTRACE_SV_TS_SOURCE_ESP_TIMER)

CONFIG_APPTRACE_SV_MAX_TASKS
Maximum supported tasks
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Configures maximum supported tasks in sysview debug

Espressif Systems 1308
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_APPTRACE_SV_BUF_WAIT_TMO
Trace buffer wait timeout
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Configures timeout (in us) to wait for free space in trace buffer. Set to -1 to wait forever and avoid lost
events.

CONFIG_APPTRACE_SV_EVT_OVERFLOW_ENABLE
Trace Buffer Overflow Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "Trace Buffer Overflow" event.

CONFIG_APPTRACE_SV_EVT_ISR_ENTER_ENABLE
ISR Enter Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "ISR Enter" event.

CONFIG_APPTRACE_SV_EVT_ISR_EXIT_ENABLE
ISR Exit Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "ISR Exit" event.

CONFIG_APPTRACE_SV_EVT_ISR_TO_SCHED_ENABLE
ISR Exit to Scheduler Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "ISR to Scheduler" event.

CONFIG_APPTRACE_SV_EVT_TASK_START_EXEC_ENABLE
Task Start Execution Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "Task Start Execution" event.

CONFIG_APPTRACE_SV_EVT_TASK_STOP_EXEC_ENABLE
Task Stop Execution Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "Task Stop Execution" event.

CONFIG_APPTRACE_SV_EVT_TASK_START_READY_ENABLE
Task Start Ready State Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "Task Start Ready State" event.

Espressif Systems 1309
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_APPTRACE_SV_EVT_TASK_STOP_READY_ENABLE
Task Stop Ready State Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "Task Stop Ready State" event.

CONFIG_APPTRACE_SV_EVT_TASK_CREATE_ENABLE
Task Create Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "Task Create" event.

CONFIG_APPTRACE_SV_EVT_TASK_TERMINATE_ENABLE
Task Terminate Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "Task Terminate" event.

CONFIG_APPTRACE_SV_EVT_IDLE_ENABLE
System Idle Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "System Idle" event.

CONFIG_APPTRACE_SV_EVT_TIMER_ENTER_ENABLE
Timer Enter Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "Timer Enter" event.

CONFIG_APPTRACE_SV_EVT_TIMER_EXIT_ENABLE
Timer Exit Event
Found in: Component config > Application Level Tracing > FreeRTOS SystemView Tracing

Enables "Timer Exit" event.

CONFIG_APPTRACE_GCOV_ENABLE
GCOV to Host Enable
Found in: Component config > Application Level Tracing

Enables support for GCOV data transfer to host.

CONFIG_APPTRACE_GCOV_DUMP_TASK_STACK_SIZE
Gcov dump task stack size
Found in: Component config > Application Level Tracing > CONFIG_APPTRACE_GCOV_ENABLE

Configures stack size of Gcov dump task
Default value:

• 2048 if CONFIG_APPTRACE_GCOV_ENABLE

Espressif Systems 1310
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Bluetooth Contains:
• Bluedroid Options
• CONFIG_BT_ENABLED
• Common Options
• Controller Options
• CONFIG_BT_HCI_LOG_DEBUG_EN
• NimBLE Options
• CONFIG_BT_RELEASE_IRAM

CONFIG_BT_ENABLED
Bluetooth
Found in: Component config > Bluetooth

Select this option to enable Bluetooth and show the submenu with Bluetooth configuration choices.

CONFIG_BT_HOST
Host
Found in: Component config > Bluetooth > CONFIG_BT_ENABLED

This helps to choose Bluetooth host stack
Available options:

• Bluedroid - Dual-mode (CONFIG_BT_BLUEDROID_ENABLED)
This option is recommended for classic Bluetooth or for dual-mode usecases

• NimBLE - BLE only (CONFIG_BT_NIMBLE_ENABLED)
This option is recommended for BLE only usecases to save on memory

• Disabled (CONFIG_BT_CONTROLLER_ONLY)
This option is recommended when you want to communicate directly with the controller
(without any host) or when you are using any other host stack not supported by Espressif
(not mentioned here).

CONFIG_BT_CONTROLLER
Controller
Found in: Component config > Bluetooth > CONFIG_BT_ENABLED

This helps to choose Bluetooth controller stack
Available options:

• Enabled (CONFIG_BT_CONTROLLER_ENABLED)
This option is recommended for Bluetooth controller usecases

• Disabled (CONFIG_BT_CONTROLLER_DISABLED)
This option is recommended for Bluetooth Host only usecases

Bluedroid Options Contains:
• CONFIG_BT_ABORT_WHEN_ALLOCATION_FAILS
• CONFIG_BT_BLE_HOST_QUEUE_CONG_CHECK
• Bluedroid debug option
• CONFIG_BT_BTU_TASK_STACK_SIZE
• CONFIG_BT_BTC_TASK_STACK_SIZE
• CONFIG_BT_BLE_ENABLED

Espressif Systems 1311
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• BT DEBUG LOG LEVEL
• CONFIG_BT_ACL_CONNECTIONS
• CONFIG_BT_SMP_MAX_BONDS
• CONFIG_BT_ALLOCATION_FROM_SPIRAM_FIRST
• CONFIG_BT_STACK_NO_LOG
• CONFIG_BT_BLE_42_FEATURES_SUPPORTED
• CONFIG_BT_BLE_50_FEATURES_SUPPORTED
• CONFIG_BT_BLE_HIGH_DUTY_ADV_INTERVAL
• CONFIG_BT_MULTI_CONNECTION_ENBALE
• CONFIG_BT_BLE_FEAT_PERIODIC_ADV_SYNC_TRANSFER
• CONFIG_BT_BLE_FEAT_CREATE_SYNC_ENH
• CONFIG_BT_BLE_FEAT_PERIODIC_ADV_ENH
• CONFIG_BT_MAX_DEVICE_NAME_LEN
• CONFIG_BT_BLE_ACT_SCAN_REP_ADV_SCAN
• CONFIG_BT_BLUEDROID_PINNED_TO_CORE_CHOICE
• CONFIG_BT_BLE_ESTAB_LINK_CONN_TOUT
• CONFIG_BT_BLE_RPA_TIMEOUT
• CONFIG_BT_BLE_RPA_SUPPORTED
• CONFIG_BT_BLE_DYNAMIC_ENV_MEMORY

CONFIG_BT_BTC_TASK_STACK_SIZE
Bluetooth event (callback to application) task stack size
Found in: Component config > Bluetooth > Bluedroid Options

This select btc task stack size
Default value:

• 3072 if CONFIG_BT_BLUEDROID_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLUEDROID_PINNED_TO_CORE_CHOICE
The cpu core which Bluedroid run
Found in: Component config > Bluetooth > Bluedroid Options

Which the cpu core to run Bluedroid. Can choose core0 and core1. Can not specify no-affinity.
Available options:

• Core 0 (PRO CPU) (CONFIG_BT_BLUEDROID_PINNED_TO_CORE_0)
• Core 1 (APP CPU) (CONFIG_BT_BLUEDROID_PINNED_TO_CORE_1)

CONFIG_BT_BTU_TASK_STACK_SIZE
Bluetooth Bluedroid Host Stack task stack size
Found in: Component config > Bluetooth > Bluedroid Options

This select btu task stack size
Default value:

• 4352 if CONFIG_BT_BLUEDROID_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_ENABLED
Bluetooth Low Energy
Found in: Component config > Bluetooth > Bluedroid Options

This enables Bluetooth Low Energy

Espressif Systems 1312
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• Yes (enabled) if CONFIG_BT_BLUEDROID_ENABLED && CON-

FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATTS_ENABLE
Include GATT server module(GATTS)
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED

This option can be disabled when the app work only on gatt client mode
Default value:

• Yes (enabled) if CONFIG_BT_BLE_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATTS_PPCP_CHAR_GAP
Enable Peripheral Preferred Connection Parameters characteristic in GAP service
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTS_ENABLE

This enables "Peripheral Preferred Connection Parameters" characteristic (UUID: 0x2A04) in GAP
service that has connection parameters like min/max connection interval, slave latency and supervision
timeout multiplier
Default value:

• No (disabled) if CONFIG_BT_GATTS_ENABLE && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_BLUFI_ENABLE
Include blufi function
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTS_ENABLE

This option can be close when the app does not require blufi function.
Default value:

• No (disabled) if CONFIG_BT_GATTS_ENABLE && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATT_MAX_SR_PROFILES
Max GATT Server Profiles
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTS_ENABLE

Maximum GATT Server Profiles Count
Range:

• from 1 to 32 if CONFIG_BT_GATTS_ENABLE && CONFIG_BT_BLUEDROID_ENABLED
&& CONFIG_BT_BLUEDROID_ENABLED

Default value:
• 8 if CONFIG_BT_GATTS_ENABLE && CONFIG_BT_BLUEDROID_ENABLED && CON-

FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATT_MAX_SR_ATTRIBUTES
Max GATT Service Attributes
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTS_ENABLE

Espressif Systems 1313
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Maximum GATT Service Attributes Count
Range:

• from 1 to 500 if CONFIG_BT_GATTS_ENABLE && CONFIG_BT_BLUEDROID_ENABLED
&& CONFIG_BT_BLUEDROID_ENABLED

Default value:
• 100 if CONFIG_BT_GATTS_ENABLE && CONFIG_BT_BLUEDROID_ENABLED &&

CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATTS_SEND_SERVICE_CHANGE_MODE
GATTS Service Change Mode
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTS_ENABLE

Service change indication mode for GATT Server.
Available options:

• GATTS manually send service change indication (CON-
FIG_BT_GATTS_SEND_SERVICE_CHANGE_MANUAL)
Manually send service change indication through API
esp_ble_gatts_send_service_change_indication()

• GATTS automatically send service change indication (CON-
FIG_BT_GATTS_SEND_SERVICE_CHANGE_AUTO)
Let Bluedroid handle the service change indication internally

CONFIG_BT_GATTS_ROBUST_CACHING_ENABLED
Enable Robust Caching on Server Side
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTS_ENABLE

This option enables the GATT robust caching feature on the server. if turned on, the Client Supported
Features characteristic, Database Hash characteristic, and Server Supported Features characteristic will
be included in the GAP SERVICE.
Default value:

• No (disabled) if CONFIG_BT_GATTS_ENABLE && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATTS_DEVICE_NAME_WRITABLE
Allow to write device name by GATT clients
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTS_ENABLE

Enabling this option allows remote GATT clients to write device name
Default value:

• No (disabled) if CONFIG_BT_GATTS_ENABLE && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATTS_APPEARANCE_WRITABLE
Allow to write appearance by GATT clients
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTS_ENABLE

Enabling this option allows remote GATT clients to write appearance

Espressif Systems 1314
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled) if CONFIG_BT_GATTS_ENABLE && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATTC_ENABLE
Include GATT client module(GATTC)
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED

This option can be close when the app work only on gatt server mode
Default value:

• Yes (enabled) if CONFIG_BT_BLE_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATTC_MAX_CACHE_CHAR
Max gattc cache characteristic for discover
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTC_ENABLE

Maximum GATTC cache characteristic count
Range:

• from 1 to 500 ifCONFIG_BT_GATTC_ENABLE &&CONFIG_BT_BLUEDROID_ENABLED
Default value:

• 40 if CONFIG_BT_GATTC_ENABLE && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATTC_NOTIF_REG_MAX
Max gattc notify(indication) register number
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTC_ENABLE

Maximum GATTC notify(indication) register number
Range:

• from 1 to 64 if CONFIG_BT_GATTC_ENABLE && CONFIG_BT_BLUEDROID_ENABLED
Default value:

• 5 if CONFIG_BT_GATTC_ENABLE && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATTC_CACHE_NVS_FLASH
Save gattc cache data to nvs flash
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTC_ENABLE

This select can save gattc cache data to nvs flash
Default value:

• No (disabled) if CONFIG_BT_GATTC_ENABLE && CON-
FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_GATTC_CONNECT_RETRY_COUNT
The number of attempts to reconnect if the connection establishment failed
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_GATTC_ENABLE

The number of attempts to reconnect if the connection establishment failed
Range:

Espressif Systems 1315
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• from 0 to 255 ifCONFIG_BT_GATTC_ENABLE &&CONFIG_BT_BLUEDROID_ENABLED
Default value:

• 3 if CONFIG_BT_GATTC_ENABLE && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_SMP_ENABLE
Include BLE security module(SMP)
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED

This option can be close when the app not used the ble security connect.
Default value:

• Yes (enabled) if CONFIG_BT_BLE_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_SMP_SLAVE_CON_PARAMS_UPD_ENABLE
Slave enable connection parameters update during pairing
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_BLE_SMP_ENABLE

In order to reduce the pairing time, slave actively initiates connection parameters update during pairing.
Default value:

• No (disabled) if CONFIG_BT_BLE_SMP_ENABLE && CON-
FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_SMP_ID_RESET_ENABLE
Reset device identity when all bonding records are deleted
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_BLE_SMP_ENABLE

There are tracking risks associated with using a fixed or static IRK. If enabled this option, Bluedroid
will assign a new randomly-generated IRK when all pairing and bonding records are deleted. This would
decrease the ability of a previously paired peer to be used to determine whether a device with which it
previously shared an IRK is within range.
Default value:

• No (disabled) if CONFIG_BT_BLE_SMP_ENABLE && CON-
FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_SMP_BOND_NVS_FLASH
Save SMP bonding keys to nvs flash
Found in: Component config > Bluetooth > Bluedroid Options > CONFIG_BT_BLE_ENABLED > CON-
FIG_BT_BLE_SMP_ENABLE

This select can save SMP bonding keys to nvs flash
Default value:

• Yes (enabled) if CONFIG_BT_BLE_SMP_ENABLE && CON-
FIG_BT_BLUEDROID_ENABLED

Bluedroid debug option Contains:
• CONFIG_BT_BLUEDROID_MEM_DEBUG
• CONFIG_BT_BLUEDROID_THREAD_DEBUG

Espressif Systems 1316
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_BLUEDROID_MEM_DEBUG
Bluedroid memory debug
Found in: Component config > Bluetooth > Bluedroid Options > Bluedroid debug option

Bluedroid memory debug
Default value:

• No (disabled) if CONFIG_BT_BLUEDROID_ENABLED && CON-
FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLUEDROID_THREAD_DEBUG
Bluedroid thread debug
Found in: Component config > Bluetooth > Bluedroid Options > Bluedroid debug option

Enable Bluedroid thread debug mode. Used to debug whether the thread is blocked and dump informa-
tion about the thread’s related work queue.
Default value:

• No (disabled) if CONFIG_BT_BLUEDROID_ENABLED && CON-
FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLUEDROID_THREAD_BLOCK_TIME
OSI thread block time (in ms)
Found in: Component config > Bluetooth > Bluedroid Options > Bluedroid debug option > CON-
FIG_BT_BLUEDROID_THREAD_DEBUG

Indicates how long it takes for the thread to execute an item before it is considered blocked.
Default value:

• 1000 if CONFIG_BT_BLUEDROID_THREAD_DEBUG && CON-
FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLUEDROID_THREAD_BLOCK_MSG
OSI thread block message count
Found in: Component config > Bluetooth > Bluedroid Options > Bluedroid debug option > CON-
FIG_BT_BLUEDROID_THREAD_DEBUG

Indicates how many messages are added to the queue while the threadis executing an item before it is
considered blocked.
Default value:

• 50 if CONFIG_BT_BLUEDROID_THREAD_DEBUG && CON-
FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_STACK_NO_LOG
Disable BT debug logs (minimize bin size)
Found in: Component config > Bluetooth > Bluedroid Options

This select can save the rodata code size
Default value:

• No (disabled) if CONFIG_BT_BLUEDROID_ENABLED && CON-
FIG_BT_BLUEDROID_ENABLED

Espressif Systems 1317
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

BT DEBUG LOG LEVEL Contains:
• CONFIG_BT_LOG_A2D_TRACE_LEVEL
• CONFIG_BT_LOG_APPL_TRACE_LEVEL
• CONFIG_BT_LOG_AVCT_TRACE_LEVEL
• CONFIG_BT_LOG_AVDT_TRACE_LEVEL
• CONFIG_BT_LOG_AVRC_TRACE_LEVEL
• CONFIG_BT_LOG_BLUFI_TRACE_LEVEL
• CONFIG_BT_LOG_BNEP_TRACE_LEVEL
• CONFIG_BT_LOG_BTC_TRACE_LEVEL
• CONFIG_BT_LOG_BTIF_TRACE_LEVEL
• CONFIG_BT_LOG_BTM_TRACE_LEVEL
• CONFIG_BT_LOG_GAP_TRACE_LEVEL
• CONFIG_BT_LOG_GATT_TRACE_LEVEL
• CONFIG_BT_LOG_HCI_TRACE_LEVEL
• CONFIG_BT_LOG_HID_TRACE_LEVEL
• CONFIG_BT_LOG_L2CAP_TRACE_LEVEL
• CONFIG_BT_LOG_MCA_TRACE_LEVEL
• CONFIG_BT_LOG_OSI_TRACE_LEVEL
• CONFIG_BT_LOG_PAN_TRACE_LEVEL
• CONFIG_BT_LOG_RFCOMM_TRACE_LEVEL
• CONFIG_BT_LOG_SDP_TRACE_LEVEL
• CONFIG_BT_LOG_SMP_TRACE_LEVEL

CONFIG_BT_LOG_HCI_TRACE_LEVEL
HCI layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for HCI layer
Available options:

• NONE (CONFIG_BT_LOG_HCI_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_HCI_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_HCI_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_HCI_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_HCI_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_HCI_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_HCI_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_BTM_TRACE_LEVEL
BTM layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for BTM layer
Available options:

• NONE (CONFIG_BT_LOG_BTM_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_BTM_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_BTM_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_BTM_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_BTM_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_BTM_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_BTM_TRACE_LEVEL_VERBOSE)

Espressif Systems 1318
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_LOG_L2CAP_TRACE_LEVEL
L2CAP layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for L2CAP layer
Available options:

• NONE (CONFIG_BT_LOG_L2CAP_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_L2CAP_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_L2CAP_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_L2CAP_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_L2CAP_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_L2CAP_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_L2CAP_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_RFCOMM_TRACE_LEVEL
RFCOMM layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for RFCOMM layer
Available options:

• NONE (CONFIG_BT_LOG_RFCOMM_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_RFCOMM_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_RFCOMM_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_RFCOMM_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_RFCOMM_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_RFCOMM_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_RFCOMM_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_SDP_TRACE_LEVEL
SDP layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for SDP layer
Available options:

• NONE (CONFIG_BT_LOG_SDP_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_SDP_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_SDP_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_SDP_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_SDP_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_SDP_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_SDP_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_GAP_TRACE_LEVEL
GAP layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Espressif Systems 1319
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Define BT trace level for GAP layer
Available options:

• NONE (CONFIG_BT_LOG_GAP_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_GAP_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_GAP_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_GAP_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_GAP_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_GAP_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_GAP_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_BNEP_TRACE_LEVEL
BNEP layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for BNEP layer
Available options:

• NONE (CONFIG_BT_LOG_BNEP_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_BNEP_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_BNEP_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_BNEP_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_BNEP_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_BNEP_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_BNEP_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_PAN_TRACE_LEVEL
PAN layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for PAN layer
Available options:

• NONE (CONFIG_BT_LOG_PAN_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_PAN_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_PAN_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_PAN_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_PAN_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_PAN_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_PAN_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_A2D_TRACE_LEVEL
A2D layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for A2D layer
Available options:

Espressif Systems 1320
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• NONE (CONFIG_BT_LOG_A2D_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_A2D_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_A2D_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_A2D_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_A2D_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_A2D_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_A2D_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_AVDT_TRACE_LEVEL
AVDT layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for AVDT layer
Available options:

• NONE (CONFIG_BT_LOG_AVDT_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_AVDT_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_AVDT_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_AVDT_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_AVDT_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_AVDT_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_AVDT_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_AVCT_TRACE_LEVEL
AVCT layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for AVCT layer
Available options:

• NONE (CONFIG_BT_LOG_AVCT_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_AVCT_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_AVCT_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_AVCT_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_AVCT_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_AVCT_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_AVCT_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_AVRC_TRACE_LEVEL
AVRC layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for AVRC layer
Available options:

• NONE (CONFIG_BT_LOG_AVRC_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_AVRC_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_AVRC_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_AVRC_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_AVRC_TRACE_LEVEL_EVENT)

Espressif Systems 1321
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• DEBUG (CONFIG_BT_LOG_AVRC_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_AVRC_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_MCA_TRACE_LEVEL
MCA layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for MCA layer
Available options:

• NONE (CONFIG_BT_LOG_MCA_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_MCA_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_MCA_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_MCA_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_MCA_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_MCA_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_MCA_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_HID_TRACE_LEVEL
HID layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for HID layer
Available options:

• NONE (CONFIG_BT_LOG_HID_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_HID_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_HID_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_HID_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_HID_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_HID_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_HID_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_APPL_TRACE_LEVEL
APPL layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for APPL layer
Available options:

• NONE (CONFIG_BT_LOG_APPL_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_APPL_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_APPL_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_APPL_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_APPL_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_APPL_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_APPL_TRACE_LEVEL_VERBOSE)

Espressif Systems 1322
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_LOG_GATT_TRACE_LEVEL
GATT layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for GATT layer
Available options:

• NONE (CONFIG_BT_LOG_GATT_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_GATT_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_GATT_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_GATT_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_GATT_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_GATT_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_GATT_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_SMP_TRACE_LEVEL
SMP layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for SMP layer
Available options:

• NONE (CONFIG_BT_LOG_SMP_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_SMP_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_SMP_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_SMP_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_SMP_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_SMP_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_SMP_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_BTIF_TRACE_LEVEL
BTIF layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for BTIF layer
Available options:

• NONE (CONFIG_BT_LOG_BTIF_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_BTIF_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_BTIF_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_BTIF_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_BTIF_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_BTIF_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_BTIF_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_BTC_TRACE_LEVEL
BTC layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Espressif Systems 1323
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Define BT trace level for BTC layer
Available options:

• NONE (CONFIG_BT_LOG_BTC_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_BTC_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_BTC_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_BTC_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_BTC_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_BTC_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_BTC_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_OSI_TRACE_LEVEL
OSI layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for OSI layer
Available options:

• NONE (CONFIG_BT_LOG_OSI_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_OSI_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_OSI_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_OSI_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_OSI_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_OSI_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_OSI_TRACE_LEVEL_VERBOSE)

CONFIG_BT_LOG_BLUFI_TRACE_LEVEL
BLUFI layer
Found in: Component config > Bluetooth > Bluedroid Options > BT DEBUG LOG LEVEL

Define BT trace level for BLUFI layer
Available options:

• NONE (CONFIG_BT_LOG_BLUFI_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BT_LOG_BLUFI_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BT_LOG_BLUFI_TRACE_LEVEL_WARNING)
• API (CONFIG_BT_LOG_BLUFI_TRACE_LEVEL_API)
• EVENT (CONFIG_BT_LOG_BLUFI_TRACE_LEVEL_EVENT)
• DEBUG (CONFIG_BT_LOG_BLUFI_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BT_LOG_BLUFI_TRACE_LEVEL_VERBOSE)

CONFIG_BT_ACL_CONNECTIONS
BT/BLE MAX ACL CONNECTIONS
Found in: Component config > Bluetooth > Bluedroid Options

Maximum BT/BLE connection count. The ESP32-C3/S3 chip supports a maximum of 10 instances,
including ADV, SCAN and connections. The ESP32-C3/S3 chip can connect up to 9 devices if ADV
or SCAN uses only one. If ADV and SCAN are both used, The ESP32-C3/S3 chip is connected to a
maximum of 8 devices. Because Bluetooth cannot reclaim used instances once ADV or SCAN is used.

Espressif Systems 1324
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Range:
• from 1 to 50 if CONFIG_BT_BLUEDROID_ENABLED && CON-

FIG_BT_BLUEDROID_ENABLED
Default value:

• 4 if CONFIG_BT_BLUEDROID_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_MULTI_CONNECTION_ENBALE
Enable BLE multi-connections
Found in: Component config > Bluetooth > Bluedroid Options

Enable this option if there are multiple connections
Default value:

• Yes (enabled) if CONFIG_BT_BLE_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_ALLOCATION_FROM_SPIRAM_FIRST
BT/BLE will first malloc the memory from the PSRAM
Found in: Component config > Bluetooth > Bluedroid Options

This select can save the internal RAM if there have the PSRAM
Default value:

• No (disabled) if CONFIG_BT_BLUEDROID_ENABLED && CON-
FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_DYNAMIC_ENV_MEMORY
Use dynamic memory allocation in BT/BLE stack
Found in: Component config > Bluetooth > Bluedroid Options

This select can make the allocation of memory will become more flexible
Default value:

• No (disabled) if CONFIG_BT_BLUEDROID_ENABLED && CON-
FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_HOST_QUEUE_CONG_CHECK
BLE queue congestion check
Found in: Component config > Bluetooth > Bluedroid Options

When scanning and scan duplicate is not enabled, if there are a lot of adv packets around or application
layer handling adv packets is slow, it will cause the controller memory to run out. if enabled, adv packets
will be lost when host queue is congested.
Default value:

• No (disabled) if CONFIG_BT_BLE_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_SMP_MAX_BONDS
BT/BLE maximum bond device count
Found in: Component config > Bluetooth > Bluedroid Options

The number of security records for peer devices.

Espressif Systems 1325
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_BLE_ACT_SCAN_REP_ADV_SCAN
Report adv data and scan response individually when BLE active scan
Found in: Component config > Bluetooth > Bluedroid Options

Originally, when doing BLE active scan, Bluedroid will not report adv to application layer until receive
scan response. This option is used to disable the behavior. When enable this option, Bluedroid will
report adv data or scan response to application layer immediately.
Memory reserved at start of DRAM for Bluetooth stack
Default value:

• No (disabled) if CONFIG_BT_BLUEDROID_ENABLED && CONFIG_BT_BLE_ENABLED
&& CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_ESTAB_LINK_CONN_TOUT
Timeout of BLE connection establishment
Found in: Component config > Bluetooth > Bluedroid Options

Bluetooth Connection establishment maximum time, if connection time exceeds this value, the connec-
tion establishment fails, ESP_GATTC_OPEN_EVT or ESP_GATTS_OPEN_EVT is triggered.
Range:

• from 1 to 60 if CONFIG_BT_BLE_ENABLED && CONFIG_BT_BLUEDROID_ENABLED
Default value:

• 30 if CONFIG_BT_BLE_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_MAX_DEVICE_NAME_LEN
length of bluetooth device name
Found in: Component config > Bluetooth > Bluedroid Options

Bluetooth Device name length shall be no larger than 248 octets, If the broadcast data cannot contain
the complete device name, then only the shortname will be displayed, the rest parts that can't fit in will
be truncated.
Range:

• from 32 to 248 if CONFIG_BT_BLUEDROID_ENABLED && CON-
FIG_BT_BLUEDROID_ENABLED

Default value:
• 32 if CONFIG_BT_BLUEDROID_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_RPA_SUPPORTED
Update RPA to Controller
Found in: Component config > Bluetooth > Bluedroid Options

This enables controller RPA list function. For ESP32, ESP32 only support network privacy mode. If
this option is enabled, ESP32 will only accept advertising packets from peer devices that contain private
address, HW will not receive the advertising packets contain identity address after IRK changed. If this
option is disabled, address resolution will be performed in the host, so the functions that require controller
to resolve address in the white list cannot be used. This option is disabled by default on ESP32, please
enable or disable this option according to your own needs.
For other BLE chips, devices support network privacy mode and device privacy mode, users can switch
the two modes according to their own needs. So this option is enabled by default.

Espressif Systems 1326
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_BLE_RPA_TIMEOUT
Timeout of resolvable private address
Found in: Component config > Bluetooth > Bluedroid Options

This set RPA timeout of Controller and Host. Default is 900 s (15 minutes). Range is 1 s to 1 hour
(3600 s).
Range:

• from 1 to 3600 if CONFIG_BT_BLE_ENABLED&& CONFIG_BT_BLUEDROID_ENABLED
Default value:

• 900 if CONFIG_BT_BLE_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_50_FEATURES_SUPPORTED
Enable BLE 5.0 features(please disable BLE 4.2 if enable BLE 5.0)
Found in: Component config > Bluetooth > Bluedroid Options

Enabling this option activates BLE 5.0 features. This option is universally supported in chips that support
BLE, except for ESP32. BLE 4.2 and BLE 5.0 cannot be used simultaneously.
Default value:

• Yes (enabled) if CONFIG_BT_BLE_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_42_FEATURES_SUPPORTED
Enable BLE 4.2 features(please disable BLE 5.0 if enable BLE 4.2)
Found in: Component config > Bluetooth > Bluedroid Options

This enables BLE 4.2 features. This option is universally supported by all ESP chips with BLE capabil-
ities. BLE 4.2 and BLE 5.0 cannot be used simultaneously.
Default value:

• No (disabled) if CONFIG_BT_BLE_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_FEAT_PERIODIC_ADV_SYNC_TRANSFER
Enable BLE periodic advertising sync transfer feature
Found in: Component config > Bluetooth > Bluedroid Options

This enables BLE periodic advertising sync transfer feature
Default value:

• No (disabled) if CONFIG_BT_BLE_50_FEATURES_SUPPORTED && CON-
FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_FEAT_PERIODIC_ADV_ENH
Enable periodic adv enhancements(adi support)
Found in: Component config > Bluetooth > Bluedroid Options

Enable the periodic advertising enhancements
Default value:

• No (disabled) if CONFIG_BT_BLE_50_FEATURES_SUPPORTED && CON-
FIG_BT_BLUEDROID_ENABLED

Espressif Systems 1327
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_BLE_FEAT_CREATE_SYNC_ENH
Enable create sync enhancements(reporting disable and duplicate filtering enable support)
Found in: Component config > Bluetooth > Bluedroid Options

Enable the create sync enhancements
Default value:

• No (disabled) if CONFIG_BT_BLE_50_FEATURES_SUPPORTED && CON-
FIG_BT_BLUEDROID_ENABLED

CONFIG_BT_BLE_HIGH_DUTY_ADV_INTERVAL
Enable BLE high duty advertising interval feature
Found in: Component config > Bluetooth > Bluedroid Options

This enable BLE high duty advertising interval feature
Default value:

• No (disabled) if CONFIG_BT_BLE_ENABLED && CONFIG_BT_BLUEDROID_ENABLED

CONFIG_BT_ABORT_WHEN_ALLOCATION_FAILS
Abort when memory allocation fails in BT/BLE stack
Found in: Component config > Bluetooth > Bluedroid Options

This enables abort when memory allocation fails
Default value:

• No (disabled) if CONFIG_BT_BLUEDROID_ENABLED && CON-
FIG_BT_BLUEDROID_ENABLED

NimBLE Options Contains:
• BLE 5.x Features
• BLE 6.x Features
• Debugging/Testing
• Extra Features
• GAP / GATT / Device Settings
• General
• Host-controller Transport
• L2CAP
• Memory Settings
• NimBLE Mesh
• Roles and Profiles
• Security (SMP)
• Services
• Vendor / Optimization

General Contains:
• CONFIG_BT_NIMBLE_MEM_ALLOC_MODE
• CONFIG_BT_NIMBLE_HOST_TASK_STACK_SIZE
• CONFIG_BT_NIMBLE_PINNED_TO_CORE_CHOICE

Espressif Systems 1328
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_MEM_ALLOC_MODE
Memory allocation strategy
Found in: Component config > Bluetooth > NimBLE Options > General

Allocation strategy for NimBLE host stack. Provides ability to allocate all required dynamic allocations
from:

• Internal DRAM memory only
• External SPIRAM memory only
• Either internal or external memory based on default malloc() behavior in ESP-IDF
• Internal IRAM memory wherever applicable else internal DRAM

Available options:

• Internal memory (CONFIG_BT_NIMBLE_MEM_ALLOC_MODE_INTERNAL)
• External SPIRAM (CONFIG_BT_NIMBLE_MEM_ALLOC_MODE_EXTERNAL)
• Default alloc mode (CONFIG_BT_NIMBLE_MEM_ALLOC_MODE_DEFAULT)
• Internal IRAM (CONFIG_BT_NIMBLE_MEM_ALLOC_MODE_IRAM_8BIT)
Allows use of IRAM memory region as 8-bit accessible region.
Every unaligned (8bit or 16bit) access will result in an exception and incur penalty of
certain clock cycles per unaligned read/write.

CONFIG_BT_NIMBLE_PINNED_TO_CORE_CHOICE
The CPU core on which NimBLE host will run
Found in: Component config > Bluetooth > NimBLE Options > General

The CPU core on which NimBLE host will run. You can choose Core 0 or Core 1. Cannot specify
no-affinity
Available options:

• Core 0 (PRO CPU) (CONFIG_BT_NIMBLE_PINNED_TO_CORE_0)
• Core 1 (APP CPU) (CONFIG_BT_NIMBLE_PINNED_TO_CORE_1)

CONFIG_BT_NIMBLE_HOST_TASK_STACK_SIZE
NimBLE Host task stack size
Found in: Component config > Bluetooth > NimBLE Options > General

This configures stack size of NimBLE host task
Default value:

• 5120 if CONFIG_BLE_MESH && CONFIG_BT_NIMBLE_ENABLED && CON-
FIG_BT_NIMBLE_ENABLED

• 4096 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

Roles and Profiles Contains:
• CONFIG_BT_NIMBLE_ROLE_BROADCASTER
• CONFIG_BT_NIMBLE_ROLE_CENTRAL
• CONFIG_BT_NIMBLE_GATT_CLIENT
• CONFIG_BT_NIMBLE_GATT_SERVER
• CONFIG_BT_NIMBLE_ROLE_OBSERVER
• CONFIG_BT_NIMBLE_ROLE_PERIPHERAL

Espressif Systems 1329
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_ROLE_CENTRAL
Enable BLE Central role
Found in: Component config > Bluetooth > NimBLE Options > Roles and Profiles

Enables central role
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_ROLE_PERIPHERAL
Enable BLE Peripheral role
Found in: Component config > Bluetooth > NimBLE Options > Roles and Profiles

Enable peripheral role
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_ROLE_BROADCASTER
Enable BLE Broadcaster role
Found in: Component config > Bluetooth > NimBLE Options > Roles and Profiles

Enables broadcaster role
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_ROLE_OBSERVER
Enable BLE Observer role
Found in: Component config > Bluetooth > NimBLE Options > Roles and Profiles

Enables observer role
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GATT_CLIENT
Enable BLE GATT Client support
Found in: Component config > Bluetooth > NimBLE Options > Roles and Profiles

Enables support for GATT Client
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ROLE_CENTRAL && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GATT_SERVER
Enable BLE GATT Server support
Found in: Component config > Bluetooth > NimBLE Options > Roles and Profiles

Enables support for GATT Server
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ROLE_PERIPHERAL && CON-
FIG_BT_NIMBLE_ENABLED

Espressif Systems 1330
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Security (SMP) Contains:
• CONFIG_BT_NIMBLE_SECURITY_ENABLE

CONFIG_BT_NIMBLE_SECURITY_ENABLE
Enable BLE SM feature
Found in: Component config > Bluetooth > NimBLE Options > Security (SMP)

Enable BLE sm feature
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

Contains:
• CONFIG_BT_NIMBLE_LL_CFG_FEAT_LE_ENCRYPTION
• CONFIG_BT_NIMBLE_SM_SC_ONLY
• CONFIG_BT_NIMBLE_SM_SC_LVL
• CONFIG_BT_NIMBLE_SM_LEGACY
• CONFIG_BT_NIMBLE_SM_SC

CONFIG_BT_NIMBLE_SM_LEGACY
Security manager legacy pairing
Found in: Component config > Bluetooth > NimBLE Options > Security (SMP) > CON-
FIG_BT_NIMBLE_SECURITY_ENABLE

Enable security manager legacy pairing
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_SECURITY_ENABLE && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SM_SC
Security manager secure connections (4.2)
Found in: Component config > Bluetooth > NimBLE Options > Security (SMP) > CON-
FIG_BT_NIMBLE_SECURITY_ENABLE

Enable security manager secure connections
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_SECURITY_ENABLE && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SM_SC_DEBUG_KEYS
Use predefined public-private key pair
Found in: Component config > Bluetooth > NimBLE Options > Security (SMP) > CON-
FIG_BT_NIMBLE_SECURITY_ENABLE > CONFIG_BT_NIMBLE_SM_SC

If this option is enabled, SM uses predefined DH key pair as described in Core Specification, Vol. 3,
Part H, 2.3.5.6.1. This allows to decrypt air traffic easily and thus should only be used for debugging.
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_SECURITY_ENABLE && CON-
FIG_BT_NIMBLE_SM_SC && CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1331
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_LL_CFG_FEAT_LE_ENCRYPTION
Enable LE encryption
Found in: Component config > Bluetooth > NimBLE Options > Security (SMP) > CON-
FIG_BT_NIMBLE_SECURITY_ENABLE

Enable encryption connection
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_SECURITY_ENABLE && CON-
FIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SM_SC_LVL
Security level
Found in: Component config > Bluetooth > NimBLE Options > Security (SMP) > CON-
FIG_BT_NIMBLE_SECURITY_ENABLE

LE SecurityMode 1 Levels: 1. No Security 2. Unauthenticated pairing with encryption 3. Authenticated
pairing with encryption 4. Authenticated LE Secure Connections pairing with encryption using a 128-bit
strength encryption key.
Default value:

• 0 if CONFIG_BT_NIMBLE_SECURITY_ENABLE && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SM_SC_ONLY
Enable Secure Connections Only Mode
Found in: Component config > Bluetooth > NimBLE Options > Security (SMP) > CON-
FIG_BT_NIMBLE_SECURITY_ENABLE

Enable Secure Connections Only Mode
Default value:

• 0 if CONFIG_BT_NIMBLE_SECURITY_ENABLE && CONFIG_BT_NIMBLE_ENABLED

GAP / GATT / Device Settings Contains:
• CONFIG_BT_NIMBLE_HOST_ALLOW_CONNECT_WITH_SCAN
• CONFIG_BT_NIMBLE_HS_STOP_TIMEOUT_MS
• CONFIG_BT_NIMBLE_HOST_QUEUE_CONG_CHECK
• CONFIG_BT_NIMBLE_WHITELIST_SIZE
• CONFIG_BT_NIMBLE_BLE_GATT_BLOB_TRANSFER
• CONFIG_BT_NIMBLE_ENABLE_CONN_REATTEMPT
• CONFIG_BT_NIMBLE_USE_ESP_TIMER
• CONFIG_BT_NIMBLE_HS_FLOW_CTRL
• CONFIG_BT_NIMBLE_HANDLE_REPEAT_PAIRING_DELETION
• CONFIG_BT_NIMBLE_ATT_MAX_PREP_ENTRIES
• CONFIG_BT_NIMBLE_MAX_BONDS
• CONFIG_BT_NIMBLE_MAX_CCCDS
• CONFIG_BT_NIMBLE_MAX_CONNECTIONS
• CONFIG_BT_NIMBLE_GATT_MAX_PROCS
• CONFIG_BT_NIMBLE_CRYPTO_STACK_MBEDTLS
• CONFIG_BT_NIMBLE_NVS_PERSIST
• CONFIG_BT_NIMBLE_ATT_PREFERRED_MTU
• CONFIG_BT_NIMBLE_SMP_ID_RESET
• CONFIG_BT_NIMBLE_RPA_TIMEOUT

Espressif Systems 1332
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_RPA_TIMEOUT
RPA timeout in seconds
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

Time interval between RPA address change.
Range:

• from 1 to 41400 if CONFIG_BT_NIMBLE_ENABLED && CON-
FIG_BT_NIMBLE_ENABLED

Default value:
• 900 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_WHITELIST_SIZE
BLE white list size
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

BLE list size
Range:

• from 1 to 31 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED
• from 1 to 15 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

Default value:
• 12 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_ENABLE_CONN_REATTEMPT
Enable connection reattempts on connection establishment error
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

Enable to make the NimBLE host to reattempt GAP connection on connection establishment failure.
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MAX_CONN_REATTEMPT
Maximum number connection reattempts
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings > CON-
FIG_BT_NIMBLE_ENABLE_CONN_REATTEMPT

Defines maximum number of connection reattempts.
Range:

• from 1 to 255 if CONFIG_BT_NIMBLE_ENABLED && CON-
FIG_BT_NIMBLE_ENABLE_CONN_REATTEMPT && CONFIG_BT_NIMBLE_ENABLED

Default value:
• 3 ifCONFIG_BT_NIMBLE_ENABLED&&CONFIG_BT_NIMBLE_ENABLE_CONN_REATTEMPT
&& CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_HANDLE_REPEAT_PAIRING_DELETION
Enable stack handling of repeat pairing
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

Use this option to let stack internally handle the request for repeat pairing. Enabling this option will
delete the pairing of the device and stack will NOT post any event to application. If this option is
disabled, application will get BLE_GAP_EVENT_REPEAT_PAIRING event.

Espressif Systems 1333
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_HOST_ALLOW_CONNECT_WITH_SCAN
Allow Connections with scanning in progress
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

This enables support for user to initiate a new connection with scan in progress

CONFIG_BT_NIMBLE_HOST_QUEUE_CONG_CHECK
BLE queue congestion check
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

When scanning and scan duplicate is not enabled, if there are a lot of adv packets around or application
layer handling adv packets is slow, it will cause the controller memory to run out. if enabled, adv packets
will be lost when host queue is congested.
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MAX_CONNECTIONS
Maximum number of concurrent connections
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

Defines maximum number of concurrent BLE connections. For ESP32, user is expected to configure
BTDM_CTRL_BLE_MAX_CONN from controller menu along with this option. Similarly for ESP32-
C3 or ESP32-S3, user is expected to configure BT_CTRL_BLE_MAX_ACT from controller menu.
For ESP32C2, ESP32C6 and ESP32H2, each connection will take about 1k DRAM.
Range:

• from 1 to 70 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED
• from 1 to 9 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

Default value:
• 3 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MAX_BONDS
Maximum number of bonds to save across reboots
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

Defines maximum number of bonds to save for peer security and our security
Default value:

• 3 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MAX_CCCDS
Maximum number of CCC descriptors to save across reboots
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

Defines maximum number of CCC descriptors to save
Default value:

• 8 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1334
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_NVS_PERSIST
Persist the BLE Bonding keys in NVS
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

Enable this flag to make bonding persistent across device reboots
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SMP_ID_RESET
Reset device identity when all bonding records are deleted
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

There are tracking risks associated with using a fixed or static IRK. If enabled this option, NimBLE will
assign a new randomly-generated IRK when all pairing and bonding records are deleted. This would
decrease the ability of a previously paired peer to be used to determine whether a device with which it
previously shared an IRK is within range.
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_ATT_PREFERRED_MTU
Preferred MTU size in octets
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

This is the default value of ATT MTU indicated by the device during an ATT MTU exchange. This
value can be changed using API ble_att_set_preferred_mtu()
Default value:

• 256 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_ATT_MAX_PREP_ENTRIES
Max Prepare write entries
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

This is the default value of ATT Maximum prepare entries
Default value:

• 64 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GATT_MAX_PROCS
Maximum number of GATT client procedures
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

Maximum number of GATT client procedures that can be executed.
Default value:

• 4 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_CRYPTO_STACK_MBEDTLS
Override TinyCrypt with mbedTLS for crypto computations
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

Enable this option to choose mbedTLS instead of TinyCrypt for crypto computations.

Espressif Systems 1335
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_HS_STOP_TIMEOUT_MS
BLE host stop timeout in msec
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

BLE Host stop procedure timeout in milliseconds.
Default value:

• 2000 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_USE_ESP_TIMER
Enable Esp Timer for Nimble
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

Set this option to use Esp Timer which has higher priority timer instead of FreeRTOS timer
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_BLE_GATT_BLOB_TRANSFER
Blob transfer
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

This option is used when data to be sent is more than 512 bytes. For peripheral role,
BT_NIMBLE_MSYS_1_BLOCK_COUNT needs to be increased according to the need.

CONFIG_BT_NIMBLE_HS_FLOW_CTRL
Enable Host Flow control
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings

Enable Host Flow control

CONFIG_BT_NIMBLE_HS_FLOW_CTRL_ITVL
Host Flow control interval
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings > CON-
FIG_BT_NIMBLE_HS_FLOW_CTRL

Host flow control interval in msecs
Default value:

• 1000 if CONFIG_BT_NIMBLE_HS_FLOW_CTRL && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_HS_FLOW_CTRL_THRESH
Host Flow control threshold
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings > CON-
FIG_BT_NIMBLE_HS_FLOW_CTRL

Host flow control threshold, if the number of free buffers are at or below this threshold, send an imme-
diate number-of-completed-packets event
Default value:

Espressif Systems 1336
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 2 if CONFIG_BT_NIMBLE_HS_FLOW_CTRL && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_HS_FLOW_CTRL_TX_ON_DISCONNECT
Host Flow control on disconnect
Found in: Component config > Bluetooth > NimBLE Options > GAP / GATT / Device Settings > CON-
FIG_BT_NIMBLE_HS_FLOW_CTRL

Enable this option to send number-of-completed-packets event to controller after disconnection
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_HS_FLOW_CTRL && CON-
FIG_BT_NIMBLE_ENABLED

L2CAP Contains:
• CONFIG_BT_NIMBLE_L2CAP_ENHANCED_COC
• CONFIG_BT_NIMBLE_L2CAP_COC_MAX_NUM

CONFIG_BT_NIMBLE_L2CAP_COC_MAX_NUM
Maximum number of connection oriented channels
Found in: Component config > Bluetooth > NimBLE Options > L2CAP

Defines maximum number of BLE Connection Oriented Channels. When set to (0), BLE COC is not
compiled in
Range:

• from 0 to 9 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED
Default value:

• 0 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_L2CAP_ENHANCED_COC
L2CAP Enhanced Connection Oriented Channel
Found in: Component config > Bluetooth > NimBLE Options > L2CAP

Enable Enhanced Credit Based Flow Control Mode
Default value:

• 0 ifCONFIG_BT_NIMBLE_ENABLED&&CONFIG_BT_NIMBLE_L2CAP_COC_MAX_NUM
>= 1 && CONFIG_BT_NIMBLE_ENABLED

Memory Settings Contains:
• CONFIG_BT_NIMBLE_TRANSPORT_ACL_FROM_LL_COUNT
• CONFIG_BT_NIMBLE_TRANSPORT_EVT_DISCARD_COUNT
• CONFIG_BT_NIMBLE_MSYS_BUF_FROM_HEAP
• CONFIG_BT_NIMBLE_MSYS_1_BLOCK_COUNT
• CONFIG_BT_NIMBLE_MSYS_1_BLOCK_SIZE
• CONFIG_BT_NIMBLE_MSYS_2_BLOCK_COUNT
• CONFIG_BT_NIMBLE_MSYS_2_BLOCK_SIZE
• CONFIG_BT_NIMBLE_TRANSPORT_ACL_SIZE
• CONFIG_BT_NIMBLE_TRANSPORT_EVT_COUNT
• CONFIG_BT_NIMBLE_TRANSPORT_EVT_SIZE

Espressif Systems 1337
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_MSYS_1_BLOCK_COUNT
MSYS_1 Block Count
Found in: Component config > Bluetooth > NimBLE Options > Memory Settings

MSYS is a system level mbuf registry. For prepare write & prepare responses MBUFs are allocated
out of msys_1 pool. For NIMBLE_MESH enabled cases, this block count is increased by 8 than user
defined count.
Default value:

• 24 if CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MSYS_1_BLOCK_SIZE
MSYS_1 Block Size
Found in: Component config > Bluetooth > NimBLE Options > Memory Settings

Dynamic memory size of block 1
Default value:

• 128 if CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MSYS_2_BLOCK_COUNT
MSYS_2 Block Count
Found in: Component config > Bluetooth > NimBLE Options > Memory Settings

Dynamic memory count
Default value:

• 24 if CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MSYS_2_BLOCK_SIZE
MSYS_2 Block Size
Found in: Component config > Bluetooth > NimBLE Options > Memory Settings

Dynamic memory size of block 2
Default value:

• 320 if CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MSYS_BUF_FROM_HEAP
Get Msys Mbuf from heap
Found in: Component config > Bluetooth > NimBLE Options > Memory Settings

This option sets the source of the shared msys mbuf memory between the Host and the Controller.
Allocate the memory from the heap if this option is sets, from the mempool otherwise.
Default value:

• Yes (enabled) if CONFIG_BT_LE_MSYS_INIT_IN_CONTROLLER && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_TRANSPORT_ACL_FROM_LL_COUNT
ACL Buffer count
Found in: Component config > Bluetooth > NimBLE Options > Memory Settings

The number of ACL data buffers allocated for host.

Espressif Systems 1338
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• 24 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_TRANSPORT_ACL_SIZE
Transport ACL Buffer size
Found in: Component config > Bluetooth > NimBLE Options > Memory Settings

This is the maximum size of the data portion of HCI ACL data packets. It does not include the HCI
data header (of 4 bytes)
Default value:

• 255 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_TRANSPORT_EVT_SIZE
Transport Event Buffer size
Found in: Component config > Bluetooth > NimBLE Options > Memory Settings

This is the size of each HCI event buffer in bytes. In case of extended advertising, packets can be
fragmented. 257 bytes is the maximum size of a packet.
Default value:

• 257 if CONFIG_BT_NIMBLE_EXT_ADV && CONFIG_BT_NIMBLE_ENABLED && CON-
FIG_BT_NIMBLE_ENABLED

• 70 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_TRANSPORT_EVT_COUNT
Transport Event Buffer count
Found in: Component config > Bluetooth > NimBLE Options > Memory Settings

This is the high priority HCI events' buffer size. High-priority event buffers are for everything except
advertising reports. If there are no free high-priority event buffers then host will try to allocate a low-
priority buffer instead
Default value:

• 30 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_TRANSPORT_EVT_DISCARD_COUNT
Discardable Transport Event Buffer count
Found in: Component config > Bluetooth > NimBLE Options > Memory Settings

This is the low priority HCI events' buffer size. Low-priority event buffers are only used for advertising
reports. If there are no free low-priority event buffers, then an incoming advertising report will get
dropped
Default value:

• 8 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

BLE 5.x Features Contains:
• CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT

Espressif Systems 1339
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT
Enable BLE 5 feature
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features

Enable BLE 5 feature
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

Contains:
• CONFIG_BT_NIMBLE_AOA_AOD
• CONFIG_BT_NIMBLE_LL_CFG_FEAT_LE_2M_PHY
• CONFIG_BT_NIMBLE_LL_CFG_FEAT_LE_CODED_PHY
• CONFIG_BT_NIMBLE_EXT_ADV
• CONFIG_BT_NIMBLE_EXT_SCAN
• CONFIG_BT_NIMBLE_BLE_POWER_CONTROL

CONFIG_BT_NIMBLE_LL_CFG_FEAT_LE_2M_PHY
Enable 2M Phy
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT

Enable 2M-PHY
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_LL_CFG_FEAT_LE_CODED_PHY
Enable coded Phy
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT

Enable coded-PHY
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_EXT_ADV
Enable extended advertising
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT

Enable this option to do extended advertising. Extended advertising will be supported from BLE 5.0
onwards.
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1340
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_MAX_EXT_ADV_INSTANCES
Maximum number of extended advertising instances.
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT > CONFIG_BT_NIMBLE_EXT_ADV

Change this option to set maximum number of extended advertising instances. Minimum there is al-
ways one instance of advertising. Enter how many more advertising instances you want. For ESP32C2,
ESP32C6 and ESP32H2, each extended advertising instance will take about 0.5k DRAM.
Range:

• from 0 to 4 ifCONFIG_BT_NIMBLE_EXT_ADV &&CONFIG_BT_NIMBLE_EXT_ADV &&
CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

Default value:
• 1 if CONFIG_BT_NIMBLE_EXT_ADV && CONFIG_BT_NIMBLE_EXT_ADV && CON-

FIG_BT_NIMBLE_EXT_ADV && CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT &&
CONFIG_BT_NIMBLE_ENABLED

• 0 if CONFIG_BT_NIMBLE_EXT_ADV && CONFIG_BT_NIMBLE_EXT_ADV && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_EXT_ADV_MAX_SIZE
Maximum length of the advertising data.
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT > CONFIG_BT_NIMBLE_EXT_ADV

Defines the length of the extended adv data. The value should not exceed 1650.
Range:

• from 0 to 1650 if CONFIG_BT_NIMBLE_EXT_ADV && CON-
FIG_BT_NIMBLE_EXT_ADV && CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT
&& CONFIG_BT_NIMBLE_ENABLED

Default value:
• 1650 if CONFIG_BT_NIMBLE_EXT_ADV && CONFIG_BT_NIMBLE_EXT_ADV &&

CONFIG_BT_NIMBLE_EXT_ADV && CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT
&& CONFIG_BT_NIMBLE_ENABLED

• 0 if CONFIG_BT_NIMBLE_EXT_ADV && CONFIG_BT_NIMBLE_EXT_ADV && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_ENABLE_PERIODIC_ADV
Enable periodic advertisement.
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT > CONFIG_BT_NIMBLE_EXT_ADV

Enable this option to start periodic advertisement.
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_EXT_ADV && CONFIG_BT_NIMBLE_EXT_ADV
&& CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_PERIODIC_ADV_ENH
Periodic adv enhancements(adi support)
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT > CONFIG_BT_NIMBLE_EXT_ADV > CON-
FIG_BT_NIMBLE_ENABLE_PERIODIC_ADV

Enable the periodic advertising enhancements

Espressif Systems 1341
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_PERIODIC_ADV_SYNC_TRANSFER
Enable Transfer Sync Events
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT > CONFIG_BT_NIMBLE_EXT_ADV > CON-
FIG_BT_NIMBLE_ENABLE_PERIODIC_ADV

This enables controller transfer periodic sync events to host
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLE_PERIODIC_ADV && CON-
FIG_BT_NIMBLE_EXT_ADV && CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT
&& CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_PERIODIC_ADV_WITH_RESPONSES
Enable Periodic Advertisement with Response (EXPERIMENTAL)
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT > CONFIG_BT_NIMBLE_EXT_ADV > CON-
FIG_BT_NIMBLE_ENABLE_PERIODIC_ADV

This enables controller PAwR (Periodic Advertisement with Response).
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLE_PERIODIC_ADV && CON-
FIG_BT_NIMBLE_EXT_ADV && CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT
&& CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_EXT_SCAN
Enable extended scanning
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT

Enable this option to do extended scanning.
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_ENABLE_PERIODIC_SYNC
Enable periodic sync
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT > CONFIG_BT_NIMBLE_EXT_SCAN

Enable this option to receive periodic advertisement.
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_EXT_SCAN && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MAX_PERIODIC_SYNCS
Maximum number of periodic advertising syncs
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT > CONFIG_BT_NIMBLE_EXT_SCAN > CON-
FIG_BT_NIMBLE_ENABLE_PERIODIC_SYNC

Espressif Systems 1342
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Set this option to set the upper limit for number of periodic sync connections. This should be less than
maximum connections allowed by controller.
Range:

• from 0 to 8 if CONFIG_BT_NIMBLE_ENABLE_PERIODIC_SYNC && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

Default value:
• 1 if CONFIG_BT_NIMBLE_ENABLE_PERIODIC_ADV &&

CONFIG_BT_NIMBLE_ENABLE_PERIODIC_SYNC && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

• 0 if CONFIG_BT_NIMBLE_ENABLE_PERIODIC_SYNC && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MAX_PERIODIC_ADVERTISER_LIST
Maximum number of periodic advertiser list
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT > CONFIG_BT_NIMBLE_EXT_SCAN > CON-
FIG_BT_NIMBLE_ENABLE_PERIODIC_SYNC

Set this option to set the upper limit for number of periodic advertiser list.
Range:

• from 1 to 5 if CONFIG_BT_NIMBLE_ENABLE_PERIODIC_SYNC && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

Default value:
• 5 if CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT &&

CONFIG_BT_NIMBLE_ENABLE_PERIODIC_SYNC && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_BLE_POWER_CONTROL
Enable support for BLE Power Control
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT

Set this option to enable the Power Control feature
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT && CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_AOA_AOD
Direction Finding
Found in: Component config > Bluetooth > NimBLE Options > BLE 5.x Features > CON-
FIG_BT_NIMBLE_50_FEATURE_SUPPORT

Enable support for Connectionless and Connection Oriented Direction Finding
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT &&
SOC_BLE_CTE_SUPPORTED && CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT
&& CONFIG_BT_NIMBLE_ENABLED

BLE 6.x Features Contains:
• CONFIG_BT_NIMBLE_60_FEATURE_SUPPORT

Espressif Systems 1343
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_60_FEATURE_SUPPORT
Enable BLE 6 feature
Found in: Component config > Bluetooth > NimBLE Options > BLE 6.x Features

Enable BLE 6 feature
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED && (SOC_BLE_60_SUPPORTED
|| CONFIG_BT_CONTROLLER_DISABLED) && (SOC_BLE_60_SUPPORTED || CON-
FIG_BT_CONTROLLER_DISABLED) && CONFIG_BT_NIMBLE_ENABLED

Contains:
• CONFIG_BT_NIMBLE_CHANNEL_SOUNDING
• CONFIG_BT_NIMBLE_MONITOR_ADV

CONFIG_BT_NIMBLE_CHANNEL_SOUNDING
ble channel souding feature
Found in: Component config > Bluetooth > NimBLE Options > BLE 6.x Features > CON-
FIG_BT_NIMBLE_60_FEATURE_SUPPORT

Used to enable/disable the channel sounding feature
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_60_FEATURE_SUPPORT &&
(SOC_BLE_60_SUPPORTED || CONFIG_BT_CONTROLLER_DISABLED) && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MONITOR_ADV
Enable Monitor Advertising
Found in: Component config > Bluetooth > NimBLE Options > BLE 6.x Features > CON-
FIG_BT_NIMBLE_60_FEATURE_SUPPORT

Enable support for Monitor Advertisers
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_60_FEATURE_SUPPORT &&
(SOC_BLE_60_SUPPORTED || CONFIG_BT_CONTROLLER_DISABLED) && CON-
FIG_BT_NIMBLE_ENABLED

Services Contains:
• CONFIG_BT_NIMBLE_ANS_SERVICE
• CONFIG_BT_NIMBLE_BAS_SERVICE
• CONFIG_BT_NIMBLE_CTS_SERVICE
• CONFIG_BT_NIMBLE_DIS_SERVICE
• CONFIG_BT_NIMBLE_GAP_SERVICE
• CONFIG_BT_NIMBLE_HTP_SERVICE
• CONFIG_BT_NIMBLE_HR_SERVICE
• CONFIG_BT_NIMBLE_HID_SERVICE
• CONFIG_BT_NIMBLE_IAS_SERVICE
• CONFIG_BT_NIMBLE_IPSS_SERVICE
• CONFIG_BT_NIMBLE_LLS_SERVICE
• CONFIG_BT_NIMBLE_PROX_SERVICE
• CONFIG_BT_NIMBLE_SPS_SERVICE
• CONFIG_BT_NIMBLE_TPS_SERVICE

Espressif Systems 1344
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_PROX_SERVICE
Proximity service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable Proximity Service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_ANS_SERVICE
Alert Notification service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable Alert Notification Service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_CTS_SERVICE
Current Time Service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable Current Time Service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_HTP_SERVICE
Health Thermometer service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable Health Thermometer Service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_IPSS_SERVICE
Internet Protocol Support service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable Internet Protocol Service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

Espressif Systems 1345
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_TPS_SERVICE
Tx Power service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable Tx Power Service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_IAS_SERVICE
Immediate Alert service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable Immediate Alert Service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_LLS_SERVICE
Link Loss service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable Link Loss Service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SPS_SERVICE
Serial Port service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable Serial Port Service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_HR_SERVICE
Heart Rate service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable HeartRate Service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

Espressif Systems 1346
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_HID_SERVICE
Human Interface Device service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable HID service support
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

Contains:
• CONFIG_BT_NIMBLE_SVC_HID_MAX_RPTS
• CONFIG_BT_NIMBLE_SVC_HID_MAX_INSTANCES

CONFIG_BT_NIMBLE_SVC_HID_MAX_INSTANCES
Maximum HID service instances
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_HID_SERVICE

Defines maximum number of HID service instances
Default value:

• 2 if CONFIG_BT_NIMBLE_HID_SERVICE && CONFIG_BT_NIMBLE_GATT_SERVER&&
CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_HID_MAX_RPTS
Maximum HID Report characteristics per service instance
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_HID_SERVICE

Defines maximum number of report characteristics per service instance
Default value:

• 3 if CONFIG_BT_NIMBLE_HID_SERVICE && CONFIG_BT_NIMBLE_GATT_SERVER&&
CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_BAS_SERVICE
Battery service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable Battery service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

Contains:
• CONFIG_BT_NIMBLE_SVC_BAS_BATTERY_LEVEL_NOTIFY

CONFIG_BT_NIMBLE_SVC_BAS_BATTERY_LEVEL_NOTIFY
BAS Battery Level NOTIFY permission
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_BAS_SERVICE

Enable/Disable notifications on BAS Battery Level Characteristic

Espressif Systems 1347
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_DIS_SERVICE
Device Information Service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable Device Information service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

Contains:
• CONFIG_BT_NIMBLE_SVC_DIS_INCLUDED
• CONFIG_BT_NIMBLE_SVC_DIS_FIRMWARE_REVISION
• CONFIG_BT_NIMBLE_SVC_DIS_HARDWARE_REVISION
• CONFIG_BT_NIMBLE_SVC_DIS_MANUFACTURER_NAME
• CONFIG_BT_NIMBLE_SVC_DIS_PNP_ID
• CONFIG_BT_NIMBLE_SVC_DIS_SERIAL_NUMBER
• CONFIG_BT_NIMBLE_SVC_DIS_SOFTWARE_REVISION
• CONFIG_BT_NIMBLE_SVC_DIS_SYSTEM_ID

CONFIG_BT_NIMBLE_SVC_DIS_MANUFACTURER_NAME
Manufacturer Name
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_DIS_SERVICE

Enable the DIS characteristic Manufacturer Name String characteristic
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_DIS_SERVICE && CON-
FIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_DIS_SERIAL_NUMBER
Serial Number
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_DIS_SERVICE

Enable the DIS Serial Number characteristic
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_DIS_SERVICE && CON-
FIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_DIS_HARDWARE_REVISION
Hardware Revision
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_DIS_SERVICE

Enable the DIS Hardware Revision characteristic
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_DIS_SERVICE && CON-
FIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1348
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_SVC_DIS_FIRMWARE_REVISION
Firmware Revision
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_DIS_SERVICE

Enable the DIS Firmware Revision characteristic
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_DIS_SERVICE && CON-
FIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_DIS_SOFTWARE_REVISION
Software Revision
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_DIS_SERVICE

Enable the DIS Software Revision characteristic
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_DIS_SERVICE && CON-
FIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_DIS_SYSTEM_ID
System ID
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_DIS_SERVICE

Enable the DIS System ID characteristic
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_DIS_SERVICE && CON-
FIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_DIS_PNP_ID
PnP ID
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_DIS_SERVICE

Enable the DIS PnP ID characteristic
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_DIS_SERVICE && CON-
FIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_DIS_INCLUDED
DIS as an Included Service
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_DIS_SERVICE

Use DIS as an included service
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_DIS_SERVICE && CON-
FIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1349
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_GAP_SERVICE
GAP Service
Found in: Component config > Bluetooth > NimBLE Options > Services

Enable GAP Service support
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_SERVER && CON-
FIG_BT_NIMBLE_ENABLED

Contains:
• CONFIG_BT_NIMBLE_SVC_GAP_DEVICE_NAME
• CONFIG_BT_NIMBLE_SVC_GAP_APPEARANCE
• GAP Appearance write permissions
• CONFIG_BT_NIMBLE_SVC_GAP_CENT_ADDR_RESOLUTION
• GAP device name write permissions
• CONFIG_BT_NIMBLE_SVC_GAP_GATT_SECURITY_LEVEL
• CONFIG_BT_NIMBLE_GAP_DEVICE_NAME_MAX_LEN
• Peripheral Preferred Connection Parameters (PPCP) settings
• CONFIG_BT_NIMBLE_SVC_GAP_RPA_ONLY

CONFIG_BT_NIMBLE_SVC_GAP_DEVICE_NAME
BLE GAP default device name
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE

The Device Name characteristic shall contain the name of the device as an UTF-8 string. This name
can be changed by using API ble_svc_gap_device_name_set()
Default value:

• "nimble" if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_GAP_SERVICE
&& CONFIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GAP_DEVICE_NAME_MAX_LEN
Maximum length of BLE device name in octets
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE

Device Name characteristic value shall be 0 to 248 octets in length
Default value:

• 31 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_GAP_SERVICE &&
CONFIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_GAP_APPEARANCE
External appearance of the device
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE

Standard BLE GAP Appearance value in HEX format e.g. 0x02C0
Default value:

• 0 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_GAP_SERVICE &&
CONFIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1350
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_SVC_GAP_GATT_SECURITY_LEVEL
LE GATT Security Level Characteristic
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE

Enable the LE GATT Security Level Characteristic
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_GAP_SERVICE && CON-
FIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_GAP_RPA_ONLY
Resolvable Private Address Only characteristic
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE

Enable the Resolvable Private Address Only characteristic
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_GAP_SERVICE && CON-
FIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_GAP_CENT_ADDR_RESOLUTION
GAP Characteristic - Central Address Resolution
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE

Weather or not Central Address Resolution characteristic is supported on the device, and if supported,
weather or not Central Address Resolution is supported.

• Central Address Resolution characteristic not supported
• Central Address Resolution not supported
• Central Address Resolution supported

Available options:

• Characteristic not supported (CONFIG_BT_NIMBLE_SVC_GAP_CAR_CHAR_NOT_SUPP)
• Central Address Resolution not supported (CON-
FIG_BT_NIMBLE_SVC_GAP_CAR_NOT_SUPP)

• Central Address Resolution supported (CONFIG_BT_NIMBLE_SVC_GAP_CAR_SUPP)

GAP Appearance write permissions Contains:
• CONFIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE

CONFIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE
Write
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > GAP Appearance write permissions

Enable write permission (BLE_GATT_CHR_F_WRITE)
Default value:

Espressif Systems 1351
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• No (disabled) if CONFIG_BT_NIMBLE_GAP_SERVICE && CON-
FIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GATT_SERVER &&
CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE_ENC
Write with encryption
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > GAP Appearance write permissions > CON-
FIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE

Enable write with encryption permission (BLE_GATT_CHR_F_WRITE_ENC)

CONFIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE_AUTHEN
Write with authentication
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > GAP Appearance write permissions > CON-
FIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE

Enable write with authentication permission (BLE_GATT_CHR_F_WRITE_AUTHEN)

CONFIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE_AUTHOR
Write with authorisation
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > GAP Appearance write permissions > CON-
FIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE

Enable write with authorisation permission (BLE_GATT_CHR_F_WRITE_AUTHOR)
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE && CON-
FIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GAP_SERVICE &&
CONFIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

GAP device name write permissions Contains:
• CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE

CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE
Write
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > GAP device name write permissions

Enable write permission (BLE_GATT_CHR_F_WRITE)
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_GAP_SERVICE && CON-
FIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GATT_SERVER &&
CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1352
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE_ENC
Write with encryption
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > GAP device name write permissions > CON-
FIG_BT_NIMBLE_SVC_GAP_NAME_WRITE

Enable write with encryption permission (BLE_GATT_CHR_F_WRITE_ENC)
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE && CON-
FIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GAP_SERVICE &&
CONFIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE_AUTHEN
Write with authentication
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > GAP device name write permissions > CON-
FIG_BT_NIMBLE_SVC_GAP_NAME_WRITE

Enable write with authentication permission (BLE_GATT_CHR_F_WRITE_AUTHEN)
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE && CON-
FIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GAP_SERVICE &&
CONFIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE_AUTHOR
Write with authorisation
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > GAP device name write permissions > CON-
FIG_BT_NIMBLE_SVC_GAP_NAME_WRITE

Enable write with authorisation permission (BLE_GATT_CHR_F_WRITE_AUTHOR)
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE && CON-
FIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GAP_SERVICE &&
CONFIG_BT_NIMBLE_GATT_SERVER && CONFIG_BT_NIMBLE_ENABLED

Peripheral Preferred Connection Parameters (PPCP) settings Contains:
• CONFIG_BT_NIMBLE_SVC_GAP_PPCP_MAX_CONN_INTERVAL
• CONFIG_BT_NIMBLE_SVC_GAP_PPCP_MIN_CONN_INTERVAL
• CONFIG_BT_NIMBLE_SVC_GAP_PPCP_SLAVE_LATENCY
• CONFIG_BT_NIMBLE_SVC_GAP_PPCP_SUPERVISION_TMO

CONFIG_BT_NIMBLE_SVC_GAP_PPCP_MAX_CONN_INTERVAL
PPCP Connection Interval Max (Unit: 1.25 ms)
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > Peripheral Preferred Connection Parameters (PPCP) settings

Peripheral Preferred Connection Parameter: Connection Interval maximum value Interval Max = value
* 1.25 ms
Default value:

Espressif Systems 1353
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 0 if CONFIG_BT_NIMBLE_ROLE_PERIPHERAL && CON-
FIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GAP_SERVICE &&
CONFIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GATT_SERVER &&
CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_GAP_PPCP_MIN_CONN_INTERVAL
PPCP Connection Interval Min (Unit: 1.25 ms)
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > Peripheral Preferred Connection Parameters (PPCP) settings

Peripheral Preferred Connection Parameter: Connection Interval minimum value Interval Min = value
* 1.25 ms
Default value:

• 0 if CONFIG_BT_NIMBLE_ROLE_PERIPHERAL && CON-
FIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GAP_SERVICE &&
CONFIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GATT_SERVER &&
CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_GAP_PPCP_SLAVE_LATENCY
PPCP Slave Latency
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > Peripheral Preferred Connection Parameters (PPCP) settings

Peripheral Preferred Connection Parameter: Slave Latency
Default value:

• 0 if CONFIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GAP_SERVICE &&
CONFIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GATT_SERVER &&
CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SVC_GAP_PPCP_SUPERVISION_TMO
PPCP Supervision Timeout (Uint: 10 ms)
Found in: Component config > Bluetooth > NimBLE Options > Services > CON-
FIG_BT_NIMBLE_GAP_SERVICE > Peripheral Preferred Connection Parameters (PPCP) settings

Peripheral Preferred Connection Parameter: Supervision Timeout Timeout = Value * 10 ms
Default value:

• 0 if CONFIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GAP_SERVICE &&
CONFIG_BT_NIMBLE_GAP_SERVICE && CONFIG_BT_NIMBLE_GATT_SERVER &&
CONFIG_BT_NIMBLE_ENABLED

Extra Features Contains:
• CONFIG_BT_NIMBLE_GATTC_AUTO_PAIR
• CONFIG_BT_NIMBLE_GATT_CACHING_DISABLE_AUTO
• CONFIG_BT_NIMBLE_GATT_CACHING_ASSOC_ENABLE
• CONFIG_BT_NIMBLE_BLUFI_ENABLE
• CONFIG_BT_NIMBLE_DYNAMIC_SERVICE
• CONFIG_BT_NIMBLE_GATT_CACHING
• CONFIG_BT_NIMBLE_INCL_SVC_DISCOVERY
• CONFIG_BT_NIMBLE_SUBRATE
• CONFIG_BT_NIMBLE_ENC_ADV_DATA
• CONFIG_BT_NIMBLE_GATTC_PROC_PREEMPTION_PROTECT
• CONFIG_BT_NIMBLE_GATT_CACHING_MAX_CONNS

Espressif Systems 1354
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_BT_NIMBLE_GATT_CACHING_MAX_CHRS
• CONFIG_BT_NIMBLE_GATT_CACHING_MAX_DSCS
• CONFIG_BT_NIMBLE_EATT_CHAN_NUM
• CONFIG_BT_NIMBLE_GATT_CACHING_MAX_INCL_SVCS
• CONFIG_BT_NIMBLE_GATT_CACHING_MAX_SVCS

CONFIG_BT_NIMBLE_DYNAMIC_SERVICE
Enable dynamic services
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

This enables user to add/remove Gatt services at runtime

CONFIG_BT_NIMBLE_GATT_CACHING
Enable GATT caching
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

Enable GATT caching
Contains:

• CONFIG_BT_NIMBLE_GATT_CACHING_INCLUDE_SERVICES

CONFIG_BT_NIMBLE_GATT_CACHING_INCLUDE_SERVICES
Include services in GATT caching
Found in: Component config > Bluetooth > NimBLE Options > Extra Features > CON-
FIG_BT_NIMBLE_GATT_CACHING

Enable this option to include *included services* (e.g., services referenced by other services) in the
GATT database cache. Disabling this will skip caching of included service entries.
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_GATT_CACHING && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_INCL_SVC_DISCOVERY
Enable Included service discovery
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

Enable this option to start discovery for included service.
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_GATT_CACHING && CON-
FIG_BT_NIMBLE_GATT_CACHING_INCLUDE_SERVICES && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GATT_CACHING_MAX_CONNS
Maximum connections to be cached
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

Set this option to set the upper limit on number of connections to be cached.
Default value:

• if CONFIG_BT_NIMBLE_GATT_CACHING && CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1355
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_GATT_CACHING_MAX_SVCS
Maximum number of services per connection
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

Set this option to set the upper limit on number of services per connection to be cached.
Default value:

• 64 if CONFIG_BT_NIMBLE_GATT_CACHING && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GATT_CACHING_MAX_INCL_SVCS
Maximum number of included services per connection
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

Set this option to set the upper limit on number of included services per connection to be cached.
Default value:

• 64 if CONFIG_BT_NIMBLE_GATT_CACHING && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GATT_CACHING_MAX_CHRS
Maximum number of characteristics per connection
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

Set this option to set the upper limit on number of characteristics per connection to be cached.
Default value:

• 64 if CONFIG_BT_NIMBLE_GATT_CACHING && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GATT_CACHING_MAX_DSCS
Maximum number of descriptors per connection
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

Set this option to set the upper limit on number of descriptors per connection to be cached.
Default value:

• 64 if CONFIG_BT_NIMBLE_GATT_CACHING && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GATT_CACHING_DISABLE_AUTO
Do not start discovery procedure automatically upon receiving Out of Sync
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

When client receives ATT out-of-sync error message, it will not automatically start the discovery pro-
cedure to correct the invalid cache.
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_GATT_CACHING && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GATT_CACHING_ASSOC_ENABLE
Enable association-based GATT caching
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

Enable this option to use associated address caching instead of performing service discovery.
Default value:

Espressif Systems 1356
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• No (disabled) if CONFIG_BT_NIMBLE_GATT_CACHING && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_BLUFI_ENABLE
Enable blufi functionality
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

Set this option to enable blufi functionality.
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_ENC_ADV_DATA
Encrypted Advertising Data
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

This option is used to enable encrypted advertising data.

CONFIG_BT_NIMBLE_MAX_EADS
Maximum number of EAD devices to save across reboots
Found in: Component config > Bluetooth > NimBLE Options > Extra Features > CON-
FIG_BT_NIMBLE_ENC_ADV_DATA

Defines maximum number of encrypted advertising data key material to save
Default value:

• 10 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENC_ADV_DATA &&
CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GATTC_PROC_PREEMPTION_PROTECT
Gatt-proc preemption protect check
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

When BLE and Wireless protocol/IEEE 802.15.4 operate in coexistence, BLE preemption can disrupt
the GATT context,causing the service discovery callback to not be invoked. A temporary list is main-
tained to preserve the GATT context and use it in case of preemption.
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_GATTC_AUTO_PAIR
Automatically pair upon receiving service request failure
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

If enabled, when a service request (e.g. read, write) to a server fails, and the ATT error suggests insuf-
ficient security, then the central will initiate pairing and retry the service request.
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1357
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_EATT_CHAN_NUM
Maximum number of EATT channels
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

Defines the number of channels EATT bearers can use
Default value:

• 0 if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_SUBRATE
Enable Subrate Change
Found in: Component config > Bluetooth > NimBLE Options > Extra Features

Enable connection subrate change feature
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

NimBLE Mesh Contains:
• CONFIG_BT_NIMBLE_MESH

CONFIG_BT_NIMBLE_MESH
Enable BLE mesh functionality
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh

Enable BLE Mesh example present in upstream mynewt-nimble and not maintained by Espressif.
IDF maintains ESP-BLE-MESH as the official Mesh solution. Please refer to ESP-BLE-MESH guide
at: :doc:../esp32/api-guides/esp-ble-mesh/ble-mesh-index``
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

Contains:
• CONFIG_BT_NIMBLE_MESH_PROVISIONER
• CONFIG_BT_NIMBLE_MESH_PROV
• CONFIG_BT_NIMBLE_MESH_GATT_PROXY
• CONFIG_BT_NIMBLE_MESH_FRIEND
• CONFIG_BT_NIMBLE_MESH_LOW_POWER
• CONFIG_BT_NIMBLE_MESH_PROXY
• CONFIG_BT_NIMBLE_MESH_RELAY
• CONFIG_BT_NIMBLE_MESH_DEVICE_NAME
• CONFIG_BT_NIMBLE_MESH_NODE_COUNT

CONFIG_BT_NIMBLE_MESH_PROXY
Enable mesh proxy functionality
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh > CON-
FIG_BT_NIMBLE_MESH

Enable proxy. This is automatically set whenever NIMBLE_MESH_PB_GATT or NIM-
BLE_MESH_GATT_PROXY is set
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_MESH && CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1358
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_MESH_PROV
Enable BLE mesh provisioning
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh > CON-
FIG_BT_NIMBLE_MESH

Enable mesh provisioning
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_MESH && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MESH_PB_ADV
Enable mesh provisioning over advertising bearer
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh > CON-
FIG_BT_NIMBLE_MESH > CONFIG_BT_NIMBLE_MESH_PROV

Enable this option to allow the device to be provisioned over the advertising bearer
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_MESH_PROV && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MESH_PB_GATT
Enable mesh provisioning over GATT bearer
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh > CON-
FIG_BT_NIMBLE_MESH > CONFIG_BT_NIMBLE_MESH_PROV

Enable this option to allow the device to be provisioned over the GATT bearer
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_MESH_PROV && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MESH_GATT_PROXY
Enable GATT Proxy functionality
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh > CON-
FIG_BT_NIMBLE_MESH

This option enables support for the Mesh GATT Proxy Service, i.e. the ability to act as a proxy between
a Mesh GATT Client and a Mesh network
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_MESH && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MESH_RELAY
Enable mesh relay functionality
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh > CON-
FIG_BT_NIMBLE_MESH

Support for acting as a Mesh Relay Node
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_MESH && CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1359
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_MESH_LOW_POWER
Enable mesh low power mode
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh > CON-
FIG_BT_NIMBLE_MESH

Enable this option to be able to act as a Low Power Node
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_MESH && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MESH_FRIEND
Enable mesh friend functionality
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh > CON-
FIG_BT_NIMBLE_MESH

Enable this option to be able to act as a Friend Node
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_MESH && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MESH_DEVICE_NAME
Set mesh device name
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh > CON-
FIG_BT_NIMBLE_MESH

This value defines Bluetooth Mesh device/node name
Default value:

• "nimble-mesh-node" if CONFIG_BT_NIMBLE_MESH && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MESH_NODE_COUNT
Set mesh node count
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh > CON-
FIG_BT_NIMBLE_MESH

Defines mesh node count.
Default value:

• 1 if CONFIG_BT_NIMBLE_MESH && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_MESH_PROVISIONER
Enable BLE mesh provisioner
Found in: Component config > Bluetooth > NimBLE Options > NimBLE Mesh > CON-
FIG_BT_NIMBLE_MESH

Enable mesh provisioner.
Default value:

• 0 if CONFIG_BT_NIMBLE_MESH && CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1360
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Host-controller Transport Contains:
• CONFIG_BT_NIMBLE_TRANSPORT_UART
• CONFIG_BT_NIMBLE_HCI_UART_CTS_PIN
• CONFIG_BT_NIMBLE_USE_HCI_UART_FLOW_CTRL
• CONFIG_BT_NIMBLE_HCI_UART_RTS_PIN

CONFIG_BT_NIMBLE_TRANSPORT_UART
Enable Uart Transport
Found in: Component config > Bluetooth > NimBLE Options > Host-controller Transport

Use UART transport
Default value:

• Yes (enabled) if CONFIG_BT_CONTROLLER_DISABLED && CON-
FIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_TRANSPORT_UART_PORT
Uart port
Found in: Component config > Bluetooth > NimBLE Options > Host-controller Transport > CON-
FIG_BT_NIMBLE_TRANSPORT_UART

Uart port
Default value:

• 1 if CONFIG_BT_CONTROLLER_DISABLED && CON-
FIG_BT_NIMBLE_TRANSPORT_UART && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_HCI_USE_UART_BAUDRATE
Uart Hci Baud Rate
Found in: Component config > Bluetooth > NimBLE Options > Host-controller Transport > CON-
FIG_BT_NIMBLE_TRANSPORT_UART

Uart Baud Rate
Available options:

• 115200 (CONFIG_UART_BAUDRATE_115200)
• 230400 (CONFIG_UART_BAUDRATE_230400)
• 460800 (CONFIG_UART_BAUDRATE_460800)
• 921600 (CONFIG_UART_BAUDRATE_921600)

CONFIG_BT_NIMBLE_USE_HCI_UART_PARITY
Uart PARITY
Found in: Component config > Bluetooth > NimBLE Options > Host-controller Transport > CON-
FIG_BT_NIMBLE_TRANSPORT_UART

Uart Parity
Available options:

• None (CONFIG_UART_PARITY_NONE)
• Odd (CONFIG_UART_PARITY_ODD)
• Even (CONFIG_UART_PARITY_EVEN)

Espressif Systems 1361
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_UART_RX_PIN
UART Rx pin
Found in: Component config > Bluetooth > NimBLE Options > Host-controller Transport > CON-
FIG_BT_NIMBLE_TRANSPORT_UART

Rx pin for Nimble Transport
Default value:

• 5 if CONFIG_BT_CONTROLLER_DISABLED && CON-
FIG_BT_NIMBLE_TRANSPORT_UART && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_UART_TX_PIN
UART Tx pin
Found in: Component config > Bluetooth > NimBLE Options > Host-controller Transport > CON-
FIG_BT_NIMBLE_TRANSPORT_UART

Tx pin for Nimble Transport
Default value:

• 4 if CONFIG_BT_CONTROLLER_DISABLED && CON-
FIG_BT_NIMBLE_TRANSPORT_UART && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_USE_HCI_UART_FLOW_CTRL
Uart Flow Control
Found in: Component config > Bluetooth > NimBLE Options > Host-controller Transport

Uart Flow Control
Available options:

• Disable (CONFIG_UART_HW_FLOWCTRL_DISABLE)
• Enable hardware flow control (CONFIG_UART_HW_FLOWCTRL_CTS_RTS)

CONFIG_BT_NIMBLE_HCI_UART_RTS_PIN
UART Rts Pin
Found in: Component config > Bluetooth > NimBLE Options > Host-controller Transport

UART HCI RTS pin
Default value:

• 19 if CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_HCI_UART_CTS_PIN
UART Cts Pin
Found in: Component config > Bluetooth > NimBLE Options > Host-controller Transport

UART HCI CTS pin
Default value:

• 23 if CONFIG_BT_NIMBLE_ENABLED

Espressif Systems 1362
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Debugging/Testing Contains:
• CONFIG_BT_NIMBLE_DEBUG
• CONFIG_BT_NIMBLE_PRINT_ERR_NAME
• CONFIG_BT_NIMBLE_LOG_LEVEL
• CONFIG_BT_NIMBLE_TEST_THROUGHPUT_TEST

CONFIG_BT_NIMBLE_LOG_LEVEL
NimBLE Host log verbosity
Found in: Component config > Bluetooth > NimBLE Options > Debugging/Testing

Select NimBLE log level. Note that the selected NimBLE log verbosity can not exceed the level set in
"Component config --> Log output --> Default log verbosity".
Available options:

• No logs (CONFIG_BT_NIMBLE_LOG_LEVEL_NONE)
• Error logs (CONFIG_BT_NIMBLE_LOG_LEVEL_ERROR)
• Warning logs (CONFIG_BT_NIMBLE_LOG_LEVEL_WARNING)
• Info logs (CONFIG_BT_NIMBLE_LOG_LEVEL_INFO)
• Debug logs (CONFIG_BT_NIMBLE_LOG_LEVEL_DEBUG)

CONFIG_BT_NIMBLE_PRINT_ERR_NAME
Enable feature to print Error description
Found in: Component config > Bluetooth > NimBLE Options > Debugging/Testing

Enable feature to give useful explanation for HCI errors
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_DEBUG
Enable extra runtime asserts and host debugging
Found in: Component config > Bluetooth > NimBLE Options > Debugging/Testing

This enables extra runtime asserts and host debugging
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED && CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_TEST_THROUGHPUT_TEST
Throughput Test Mode enable
Found in: Component config > Bluetooth > NimBLE Options > Debugging/Testing

Enable the throughput test mode
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED

Vendor / Optimization Contains:
• CONFIG_BT_NIMBLE_HIGH_DUTY_ADV_ITVL
• CONFIG_BT_NIMBLE_VS_SUPPORT
• CONFIG_BT_NIMBLE_OPTIMIZE_MULTI_CONN

Espressif Systems 1363
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_NIMBLE_VS_SUPPORT
Enable support for VSC and VSE
Found in: Component config > Bluetooth > NimBLE Options > Vendor / Optimization

This option is used to enable support for sending Vendor Specific HCI commands and handling Vendor
Specific HCI Events.

CONFIG_BT_NIMBLE_OPTIMIZE_MULTI_CONN
Enable the optimization of multi-connection
Found in: Component config > Bluetooth > NimBLE Options > Vendor / Optimization

This option enables the use of vendor-specific APIs for multi-connections, which can greatly enhance
the stability of coexistence between numerous central and peripheral devices. It will prohibit the usage
of standard APIs.
Default value:

• No (disabled) if CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_NIMBLE_HIGH_DUTY_ADV_ITVL
Enable BLE high duty advertising interval feature
Found in: Component config > Bluetooth > NimBLE Options > Vendor / Optimization

This enable BLE high duty advertising interval feature

Controller Options Contains:
• CONFIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_SUPP
• CONFIG_BT_LE_DFT_TX_POWER_LEVEL_DBM
• BLE disconnects when Instant Passed (0x28) occurs
• CONFIG_BT_LE_LL_DUP_SCAN_LIST_COUNT
• CONFIG_BT_LE_LL_RESOLV_LIST_SIZE
• CONFIG_BT_LE_LP_CLK_SRC
• CONFIG_BT_LE_SCAN_DUPL
• CONFIG_BT_LE_LL_SCA
• CONFIG_BT_LE_WHITELIST_SIZE
• CONFIG_BT_LE_COEX_PHY_CODED_TX_RX_TLIM
• Controller debug features
• CONFIG_BT_LE_CONTROLLER_TASK_STACK_SIZE
• CONFIG_BT_LE_CTRL_ADV_DATA_LENGTH_ZERO_AUX
• CONFIG_BT_LE_50_FEATURE_SUPPORT
• CONFIG_BT_LE_SLEEP_ENABLE
• CONFIG_BT_LE_SECURITY_ENABLE
• CONFIG_BT_LE_CTRL_CHAN_ASS_EN
• CONFIG_BT_LE_DTM_ENABLED
• CONFIG_BT_LE_CTRL_CHECK_CONNECT_IND_ACCESS_ADDRESS
• CONFIG_BT_LE_USE_ESP_TIMER
• CONFIG_BT_LE_CTRL_FAST_CONN_DATA_TX_EN
• CONFIG_BT_LE_CTRL_SLV_FAST_RX_CONN_DATA_EN
• CONFIG_BT_LE_RXBUF_OPT_ENABLED
• CONFIG_BT_LE_LL_PEER_SCA_SET_ENABLE
• CONFIG_BT_LE_TX_CCA_ENABLED
• HCI Config
• CONFIG_BT_LE_MAX_CONNECTIONS
• Memory Settings
• CONFIG_BT_LE_MSYS_INIT_IN_CONTROLLER

Espressif Systems 1364
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
• CONFIG_BT_CTRL_RUN_IN_FLASH_ONLY
• Reserved Memory Config
• Scheduling Priority Level Config
• CONFIG_BT_CTRL_SCAN_BACKOFF_UPPERLIMITMAX

HCI Config Contains:
• CONFIG_BT_LE_HCI_INTERFACE
• CONFIG_BT_LE_HCI_TRANS_TASK_STACK_SIZE
• CONFIG_BT_LE_HCI_UART_BAUD
• CONFIG_BT_LE_HCI_UART_CTS_PIN
• CONFIG_BT_LE_HCI_UART_FLOWCTRL
• CONFIG_BT_LE_HCI_UART_PORT
• CONFIG_BT_LE_HCI_UART_RTS_PIN
• CONFIG_BT_LE_HCI_UART_RX_PIN
• CONFIG_BT_LE_HCI_UART_TX_PIN
• CONFIG_BT_LE_HCI_UART_PARITY
• CONFIG_BT_LE_HCI_LLDESCS_POOL_NUM
• CONFIG_BT_LE_HCI_TRANS_RX_MEM_NUM
• CONFIG_BT_LE_HCI_UART_RX_BUFFER_SIZE
• CONFIG_BT_LE_HCI_UART_TX_BUFFER_SIZE
• CONFIG_BT_LE_UART_HCI_MODE_CHOICE

CONFIG_BT_LE_HCI_INTERFACE
HCI mode
Found in: Component config > Bluetooth > Controller Options > HCI Config

Available options:

• VHCI (CONFIG_BT_LE_HCI_INTERFACE_USE_RAM)
Use RAM as HCI interface

• UART(H4) (CONFIG_BT_LE_HCI_INTERFACE_USE_UART)
Use UART as HCI interface

CONFIG_BT_LE_UART_HCI_MODE_CHOICE
UART HCI mode
Found in: Component config > Bluetooth > Controller Options > HCI Config

Specify UART HCI mode: DMA or No DMA
Available options:

• UHCI(UART with DMA)(EXPERIMENTAL) (CON-
FIG_BT_LE_UART_HCI_DMA_MODE)
UART HCI Mode with DMA functionality.

• UART(NO DMA) (CONFIG_BT_LE_UART_HCI_NO_DMA_MODE)
UART HCI Mode without DMA functionality.

CONFIG_BT_LE_HCI_UART_PORT
HCI UART port
Found in: Component config > Bluetooth > Controller Options > HCI Config

Espressif Systems 1365
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Set the port number of HCI UART
Default value:

• 1 if CONFIG_BT_LE_HCI_INTERFACE_USE_UART && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_HCI_UART_FLOWCTRL
HCI uart Hardware Flow ctrl
Found in: Component config > Bluetooth > Controller Options > HCI Config

Default value:
• No (disabled) if CONFIG_BT_LE_HCI_INTERFACE_USE_UART && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_HCI_UART_TX_PIN
HCI uart Tx gpio
Found in: Component config > Bluetooth > Controller Options > HCI Config

Default value:
• 19 if CONFIG_BT_LE_HCI_INTERFACE_USE_UART && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_HCI_UART_RX_PIN
HCI uart Rx gpio
Found in: Component config > Bluetooth > Controller Options > HCI Config

Default value:
• 10 if CONFIG_BT_LE_HCI_INTERFACE_USE_UART && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_HCI_UART_RTS_PIN
HCI uart RTS gpio
Found in: Component config > Bluetooth > Controller Options > HCI Config

Default value:
• 4 if CONFIG_BT_LE_HCI_UART_FLOWCTRL && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_HCI_UART_CTS_PIN
HCI uart CTS gpio
Found in: Component config > Bluetooth > Controller Options > HCI Config

Default value:
• 5 if CONFIG_BT_LE_HCI_UART_FLOWCTRL && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_HCI_UART_BAUD
HCI uart baudrate
Found in: Component config > Bluetooth > Controller Options > HCI Config

HCI uart baud rate 115200 ~ 1000000

Espressif Systems 1366
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• 921600 if CONFIG_BT_LE_HCI_INTERFACE_USE_UART && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_HCI_UART_PARITY
select uart parity
Found in: Component config > Bluetooth > Controller Options > HCI Config

Available options:

• PARITY_DISABLE (CONFIG_BT_LE_HCI_UART_UART_PARITY_DISABLE)
UART_PARITY_DISABLE

• PARITY_EVEN (CONFIG_BT_LE_HCI_UART_UART_PARITY_EVEN)
UART_PARITY_EVEN

• PARITY_ODD (CONFIG_BT_LE_HCI_UART_UART_PARITY_ODD)
UART_PARITY_ODD

CONFIG_BT_LE_HCI_UART_RX_BUFFER_SIZE
The size of rx ring buffer memory
Found in: Component config > Bluetooth > Controller Options > HCI Config

The size of rx ring buffer memory
Default value:

• 512 if CONFIG_BT_LE_UART_HCI_NO_DMA_MODE && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_HCI_UART_TX_BUFFER_SIZE
The size of tx ring buffer memory
Found in: Component config > Bluetooth > Controller Options > HCI Config

The size of tx ring buffer memory
Default value:

• 256 if CONFIG_BT_LE_UART_HCI_NO_DMA_MODE && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_HCI_TRANS_TASK_STACK_SIZE
HCI transport task stack size
Found in: Component config > Bluetooth > Controller Options > HCI Config

This configures stack size of hci transport task

CONFIG_BT_LE_HCI_TRANS_RX_MEM_NUM
The amount of rx memory received at the same time
Found in: Component config > Bluetooth > Controller Options > HCI Config

The amount of rx memory received at the same time
Default value:

• 3 if CONFIG_BT_LE_UART_HCI_DMA_MODE && CON-
FIG_BT_CONTROLLER_ENABLED

Espressif Systems 1367
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_LE_HCI_LLDESCS_POOL_NUM
The amount of lldecs memory for driver dma mode
Found in: Component config > Bluetooth > Controller Options > HCI Config

The amount of lldecs memory for driver dma mode
Default value:

• 20 if CONFIG_BT_LE_UART_HCI_DMA_MODE && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_50_FEATURE_SUPPORT
Enable BLE 5 feature
Found in: Component config > Bluetooth > Controller Options

Enable BLE 5 feature
Contains:

• CONFIG_BT_LE_LL_CFG_FEAT_LE_2M_PHY
• CONFIG_BT_LE_PERIODIC_ADV_WITH_RESPONSE_ENABLED
• CONFIG_BT_LE_CTE_FEATURE_ENABLED
• CONFIG_BT_LE_LL_CFG_FEAT_LE_CODED_PHY
• CONFIG_BT_LE_POWER_CONTROL_ENABLED
• CONFIG_BT_LE_EXT_ADV
• CONFIG_BT_LE_MAX_PERIODIC_ADVERTISER_LIST
• CONFIG_BT_LE_MAX_PERIODIC_SYNCS

CONFIG_BT_LE_LL_CFG_FEAT_LE_2M_PHY
Enable 2M Phy
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT

Enable 2M-PHY
Default value:

• Yes (enabled) if CONFIG_BT_LE_50_FEATURE_SUPPORT && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_LL_CFG_FEAT_LE_CODED_PHY
Enable coded Phy
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT

Enable coded-PHY
Default value:

• Yes (enabled) if CONFIG_BT_LE_50_FEATURE_SUPPORT && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_EXT_ADV
Enable extended advertising
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT

Espressif Systems 1368
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enable this option to do extended advertising. Extended advertising will be supported from BLE 5.0
onwards.
Default value:

• Yes (enabled) if CONFIG_BT_LE_50_FEATURE_SUPPORT && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_MAX_EXT_ADV_INSTANCES
Maximum number of extended advertising instances.
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT > CONFIG_BT_LE_EXT_ADV

Change this option to set maximum number of extended advertising instances. Minimum there is al-
ways one instance of advertising. Enter how many more advertising instances you want. Each extended
advertising instance will take about 0.5k DRAM.
Range:

• from 0 to 4 if CONFIG_BT_LE_EXT_ADV && CONFIG_BT_LE_EXT_ADV && CON-
FIG_BT_CONTROLLER_ENABLED

Default value:
• 1 if CONFIG_BT_LE_EXT_ADV && CONFIG_BT_LE_EXT_ADV && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_EXT_ADV_MAX_SIZE
Maximum length of the advertising data.
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT > CONFIG_BT_LE_EXT_ADV

Defines the length of the extended adv data. The value should not exceed 1650.
Range:

• from 0 to 1650 if CONFIG_BT_LE_EXT_ADV && CONFIG_BT_LE_EXT_ADV && CON-
FIG_BT_CONTROLLER_ENABLED

Default value:
• 1650 if CONFIG_BT_LE_EXT_ADV && CONFIG_BT_LE_EXT_ADV && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_ENABLE_PERIODIC_ADV
Enable periodic advertisement.
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT > CONFIG_BT_LE_EXT_ADV

Enable this option to start periodic advertisement.
Default value:

• Yes (enabled) if CONFIG_BT_LE_EXT_ADV && CONFIG_BT_LE_EXT_ADV && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_PERIODIC_ADV_SYNC_TRANSFER
Enable Transfer Sync Events
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT > CONFIG_BT_LE_EXT_ADV > CON-
FIG_BT_LE_ENABLE_PERIODIC_ADV

This enables controller transfer periodic sync events to host

Espressif Systems 1369
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• Yes (enabled) if CONFIG_BT_LE_ENABLE_PERIODIC_ADV && CON-

FIG_BT_LE_EXT_ADV && CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_MAX_PERIODIC_SYNCS
Maximum number of periodic advertising syncs
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT

Set this option to set the upper limit for number of periodic sync connections. This should be less than
maximum connections allowed by controller.

CONFIG_BT_LE_MAX_PERIODIC_ADVERTISER_LIST
Maximum number of periodic advertiser list
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT

Set this option to set the upper limit for number of periodic advertiser list.

CONFIG_BT_LE_POWER_CONTROL_ENABLED
Enable controller support for BLE Power Control
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT

Set this option to enable the Power Control feature on controller

CONFIG_BT_LE_CTE_FEATURE_ENABLED
Enable Bluetooth LE Direction Finding (AoA/AoD)
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT

Enable this option to activate Bluetooth LE Direction Finding (AoA/AoD) feature. Note: This feature
allows devices to determine the direction of a Bluetooth CTE signal, enabling Angle of Arrival (AoA)
and Angle of Departure (AoD) functionality.
Default value:

• No (disabled) if CONFIG_BT_LE_50_FEATURE_SUPPORT &&
SOC_BLE_CTE_SUPPORTED && CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_PERIODIC_ADV_WITH_RESPONSE_ENABLED
Enable BLE periodic advertising with response
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_50_FEATURE_SUPPORT

This enables BLE periodic advertising with response feature
Default value:

• No (disabled) if CONFIG_BT_LE_50_FEATURE_SUPPORT && CON-
FIG_BT_CONTROLLER_ENABLED

Espressif Systems 1370
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Memory Settings Contains:
• CONFIG_BT_LE_ACL_BUF_COUNT
• CONFIG_BT_LE_ACL_BUF_SIZE
• CONFIG_BT_LE_MSYS_BUF_FROM_HEAP
• CONFIG_BT_LE_HCI_EVT_BUF_SIZE
• CONFIG_BT_LE_HCI_EVT_HI_BUF_COUNT
• CONFIG_BT_LE_HCI_EVT_LO_BUF_COUNT
• CONFIG_BT_LE_MSYS_1_BLOCK_COUNT
• CONFIG_BT_LE_MSYS_1_BLOCK_SIZE
• CONFIG_BT_LE_MSYS_2_BLOCK_COUNT
• CONFIG_BT_LE_MSYS_2_BLOCK_SIZE

CONFIG_BT_LE_MSYS_1_BLOCK_COUNT
MSYS_1 Block Count
Found in: Component config > Bluetooth > Controller Options > Memory Settings

MSYS is a system level mbuf registry. For prepare write & prepare responses MBUFs are allocated
out of msys_1 pool. For NIMBLE_MESH enabled cases, this block count is increased by 8 than user
defined count.

CONFIG_BT_LE_MSYS_1_BLOCK_SIZE
MSYS_1 Block Size
Found in: Component config > Bluetooth > Controller Options > Memory Settings

Dynamic memory size of block 1

CONFIG_BT_LE_MSYS_2_BLOCK_COUNT
MSYS_2 Block Count
Found in: Component config > Bluetooth > Controller Options > Memory Settings

Dynamic memory count

CONFIG_BT_LE_MSYS_2_BLOCK_SIZE
MSYS_2 Block Size
Found in: Component config > Bluetooth > Controller Options > Memory Settings

Dynamic memory size of block 2

CONFIG_BT_LE_MSYS_BUF_FROM_HEAP
Get Msys Mbuf from heap
Found in: Component config > Bluetooth > Controller Options > Memory Settings

This option sets the source of the shared msys mbuf memory between the Host and the Controller.
Allocate the memory from the heap if this option is sets, from the mempool otherwise.

CONFIG_BT_LE_ACL_BUF_COUNT
ACL Buffer count
Found in: Component config > Bluetooth > Controller Options > Memory Settings

The number of ACL data buffers.

Espressif Systems 1371
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_LE_ACL_BUF_SIZE
ACL Buffer size
Found in: Component config > Bluetooth > Controller Options > Memory Settings

This is the maximum size of the data portion of HCI ACL data packets. It does not include the HCI
data header (of 4 bytes)

CONFIG_BT_LE_HCI_EVT_BUF_SIZE
HCI Event Buffer size
Found in: Component config > Bluetooth > Controller Options > Memory Settings

This is the size of each HCI event buffer in bytes. In case of extended advertising, packets can be
fragmented. 257 bytes is the maximum size of a packet.

CONFIG_BT_LE_HCI_EVT_HI_BUF_COUNT
High Priority HCI Event Buffer count
Found in: Component config > Bluetooth > Controller Options > Memory Settings

This is the high priority HCI events' buffer size. High-priority event buffers are for everything except
advertising reports. If there are no free high-priority event buffers then host will try to allocate a low-
priority buffer instead

CONFIG_BT_LE_HCI_EVT_LO_BUF_COUNT
Low Priority HCI Event Buffer count
Found in: Component config > Bluetooth > Controller Options > Memory Settings

This is the low priority HCI events' buffer size. Low-priority event buffers are only used for advertising
reports. If there are no free low-priority event buffers, then an incoming advertising report will get
dropped

CONFIG_BT_LE_CONTROLLER_TASK_STACK_SIZE
Controller task stack size
Found in: Component config > Bluetooth > Controller Options

This configures stack size of NimBLE controller task
Default value:

• 5120 if CONFIG_BLE_MESH && CONFIG_BT_CONTROLLER_ENABLED
• 4096 if CONFIG_BT_CONTROLLER_ENABLED

Controller debug features Contains:
• CONFIG_BT_LE_CONTROLLER_LOG_DUMP_ONLY
• CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
• CONFIG_BT_LE_PTR_CHECK_ENABLED
• CONFIG_BT_LE_ERROR_SIM_ENABLED
• CONFIG_BT_LE_CONTROLLER_LOG_CTRL_ENABLED
• CONFIG_BT_LE_CONTROLLER_LOG_TASK_WDT_USER_HANDLER_ENABLE
• CONFIG_BT_LE_CONTROLLER_LOG_HCI_ENABLED
• CONFIG_BT_LE_MEM_CHECK_ENABLED
• CONFIG_BT_LE_CONTROLLER_LOG_WRAP_PANIC_HANDLER_ENABLE
• CONFIG_BT_LE_CONTROLLER_LOG_SPI_OUT_ENABLED
• CONFIG_BT_LE_CONTROLLER_LOG_UHCI_OUT_ENABLED

Espressif Systems 1372
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_BT_LE_DEBUG_REMAIN_SCENE_ENABLED
• CONFIG_BT_LE_LOG_HCI_BUF_SIZE
• CONFIG_BT_LE_LOG_CTRL_BUF1_SIZE
• CONFIG_BT_LE_LOG_CTRL_BUF2_SIZE
• CONFIG_BT_LE_CONTROLLER_LOG_STORAGE_ENABLE
• CONFIG_BT_LE_CONTROLLER_LOG_OUTPUT_LEVEL
• CONFIG_BT_LE_CONTROLLER_LOG_MOD_OUTPUT_SWITCH
• CONFIG_BT_LE_CONTROLLER_LOG_MODE_BLE_LOG_V2
• CONFIG_BT_LE_ASSERT_WHEN_ABNORMAL_DISCONN_ENABLED

CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
Controller log enable
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Enable controller log
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_CONTROLLER_LOG_MODE_BLE_LOG_V2
Utilize BLE Log v2 for controller log
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Utilize BLE Log v2 for controller log
Default value:

• Yes (enabled) if CONFIG_BLE_LOG_ENABLED && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_CONTROLLER_LOG_CTRL_ENABLED
enable controller log module
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Enable controller log module

CONFIG_BT_LE_CONTROLLER_LOG_HCI_ENABLED
enable HCI log module
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Enable hci log module

CONFIG_BT_LE_CONTROLLER_LOG_DUMP_ONLY
Controller log dump mode only
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Only operate in dump mode

CONFIG_BT_LE_CONTROLLER_LOG_SPI_OUT_ENABLED
Output ble controller logs to SPI bus (Experimental)
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Output ble controller logs to SPI bus

Espressif Systems 1373
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_LE_CONTROLLER_LOG_UHCI_OUT_ENABLED
Output ble controller logs via UART DMA (Experimental)
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Output ble controller logs via UART DMA

CONFIG_BT_LE_CONTROLLER_LOG_STORAGE_ENABLE
Store ble controller logs to flash(Experimental)
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Store ble controller logs to flash memory.

CONFIG_BT_LE_CONTROLLER_LOG_PARTITION_SIZE
size of ble controller log partition(Multiples of 4K)
Found in: Component config > Bluetooth > Controller Options > Controller debug features > CON-
FIG_BT_LE_CONTROLLER_LOG_STORAGE_ENABLE

The size of ble controller log partition shall be a multiples of 4K. The name of log partition shall be
"bt_ctrl_log". The partition type shall be ESP_PARTITION_TYPE_DATA. The partition sub_type
shall be ESP_PARTITION_SUBTYPE_ANY.

CONFIG_BT_LE_LOG_CTRL_BUF1_SIZE
size of the first BLE controller LOG buffer
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Configure the size of the first BLE controller LOG buffer.

CONFIG_BT_LE_LOG_CTRL_BUF2_SIZE
size of the second BLE controller LOG buffer
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Configure the size of the second BLE controller LOG buffer.

CONFIG_BT_LE_LOG_HCI_BUF_SIZE
size of the BLE HCI LOG buffer
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Configure the size of the BLE HCI LOG buffer.

CONFIG_BT_LE_CONTROLLER_LOG_WRAP_PANIC_HANDLER_ENABLE
Enable wrap panic handler
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Wrap esp_panic_handler to get controller logs when PC pointer exception crashes.
Default value:

• No (disabled) if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED && CON-
FIG_BT_CONTROLLER_ENABLED

Espressif Systems 1374
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_LE_CONTROLLER_LOG_TASK_WDT_USER_HANDLER_ENABLE
Enable esp_task_wdt_isr_user_handler implementation
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Implement esp_task_wdt_isr_user_handler to get controller logs when task wdt issue is triggered.
Default value:

• No (disabled) if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_CONTROLLER_LOG_OUTPUT_LEVEL
The output level of controller log
Found in: Component config > Bluetooth > Controller Options > Controller debug features

The output level of controller log.
Range:

• from 0 to 5 if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED && CON-
FIG_BT_CONTROLLER_ENABLED

Default value:
• 1 if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_CONTROLLER_LOG_MOD_OUTPUT_SWITCH
The switch of module log output
Found in: Component config > Bluetooth > Controller Options > Controller debug features

The switch of module log output, this is an unsigned 32-bit hexadecimal value.
Range:

• from 0 to 0xFFFFFFFF if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED && CON-
FIG_BT_CONTROLLER_ENABLED

Default value:
• "0xFFFFFFFF" if CONFIG_BT_LE_CONTROLLER_LOG_ENABLED && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_ERROR_SIM_ENABLED
Enable controller features for internal testing
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Default value:
• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_ASSERT_WHEN_ABNORMAL_DISCONN_ENABLED
When ACL disconnects abnormally, assertion processing is performed(Experimental)
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Default value:
• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

Espressif Systems 1375
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_LE_DEBUG_REMAIN_SCENE_ENABLED
Remain scene with GDB to capture relevant status info(Experimental)
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Retain scene with GDB to capture info, requires disabling WDT (CONFIG_ESP_INT_WDT, CON-
FIG_ESP_TASK_WDT_EN).
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_PTR_CHECK_ENABLED
Enable boundary check for internal memory
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Default value:
• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_MEM_CHECK_ENABLED
Enable memory allocation check
Found in: Component config > Bluetooth > Controller Options > Controller debug features

Used in internal tests only. Enable the memory allocation check.
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_LL_RESOLV_LIST_SIZE
BLE LL Resolving list size
Found in: Component config > Bluetooth > Controller Options

Configure the size of resolving list used in link layer.
Range:

• from 1 to 5 if CONFIG_BT_CONTROLLER_ENABLED
Default value:

• 4 if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_SECURITY_ENABLE
Enable BLE SM feature
Found in: Component config > Bluetooth > Controller Options

Enable BLE sm feature
Contains:

• CONFIG_BT_LE_LL_CFG_FEAT_LE_ENCRYPTION
• CONFIG_BT_LE_SM_LEGACY
• CONFIG_BT_LE_SM_SC

CONFIG_BT_LE_SM_LEGACY
Security manager legacy pairing
Found in: Component config > Bluetooth > Controller Options > CONFIG_BT_LE_SECURITY_ENABLE

Enable security manager legacy pairing

Espressif Systems 1376
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• Yes (enabled) if CONFIG_BT_LE_SECURITY_ENABLE && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_SM_SC
Security manager secure connections (4.2)
Found in: Component config > Bluetooth > Controller Options > CONFIG_BT_LE_SECURITY_ENABLE

Enable security manager secure connections
Default value:

• Yes (enabled) if CONFIG_BT_LE_SECURITY_ENABLE && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_SM_SC_DEBUG_KEYS
Use predefined public-private key pair
Found in: Component config > Bluetooth > Controller Options > CONFIG_BT_LE_SECURITY_ENABLE
> CONFIG_BT_LE_SM_SC

If this option is enabled, SM uses predefined DH key pair as described in Core Specification, Vol. 3,
Part H, 2.3.5.6.1. This allows to decrypt air traffic easily and thus should only be used for debugging.
Default value:

• No (disabled) if CONFIG_BT_LE_SECURITY_ENABLE && CONFIG_BT_LE_SM_SC &&
CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_LL_CFG_FEAT_LE_ENCRYPTION
Enable LE encryption
Found in: Component config > Bluetooth > Controller Options > CONFIG_BT_LE_SECURITY_ENABLE

Enable encryption connection
Default value:

• Yes (enabled) if CONFIG_BT_LE_SECURITY_ENABLE && CON-
FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
Override TinyCrypt with mbedTLS for crypto computations
Found in: Component config > Bluetooth > Controller Options

Enable this option to choose mbedTLS instead of TinyCrypt for crypto computations.

CONFIG_BT_LE_WHITELIST_SIZE
BLE white list size
Found in: Component config > Bluetooth > Controller Options

BLE list size

Espressif Systems 1377
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_LE_LL_DUP_SCAN_LIST_COUNT
BLE duplicate scan list count
Found in: Component config > Bluetooth > Controller Options

config the max count of duplicate scan list
Range:

• from 5 to 100 if CONFIG_BT_CONTROLLER_ENABLED
Default value:

• 20 if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_LL_SCA
BLE Sleep clock accuracy
Found in: Component config > Bluetooth > Controller Options

Sleep clock accuracy of our device (in ppm) The Bluetooth LE spec requires a Sleep Clock Accuracy
(SCA) of < ±500 ppm. This options allows for a larger value to enable the use of less accurate clock
sources.
Range:

• from 0 to 3000 if CONFIG_BT_CONTROLLER_ENABLED
Default value:

• 60 if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_LL_PEER_SCA_SET_ENABLE
Enable to set constant peer SCA
Found in: Component config > Bluetooth > Controller Options

Enable setting of constant peer SCA, use this if peer device has SCA larger than 500 PPM. Enable this
option, the controller will always use BT_LE_LL_PEER_SCA as the peer SCA value to calculate the
window widening instead of the value received from peer device.
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_LL_PEER_SCA
Constant peer sleep clock accuracy value
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_LE_LL_PEER_SCA_SET_ENABLE

Set the sleep clock accuracy of peer device
Range:

• from 0 to 10000 if CONFIG_BT_LE_LL_PEER_SCA_SET_ENABLE && CON-
FIG_BT_CONTROLLER_ENABLED

Default value:
• 0 if CONFIG_BT_LE_LL_PEER_SCA_SET_ENABLE && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_MAX_CONNECTIONS
Maximum number of concurrent connections
Found in: Component config > Bluetooth > Controller Options

Espressif Systems 1378
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Defines maximum number of concurrent BLE connections. For ESP32, user is expected to configure
BTDM_CTRL_BLE_MAX_CONN from controller menu along with this option. Similarly for ESP32-
C3 or ESP32-S3, user is expected to configure BT_CTRL_BLE_MAX_ACT from controller menu.
Each connection will take about 1k DRAM.

CONFIG_BT_LE_COEX_PHY_CODED_TX_RX_TLIM
Coexistence: limit on MAX Tx/Rx time for coded-PHY connection
Found in: Component config > Bluetooth > Controller Options

When using PHY-Coded in BLE connection, limitation on max tx/rx time can be applied to better avoid
dramatic performance deterioration of Wi-Fi.
Available options:

• Force Enable (CONFIG_BT_LE_COEX_PHY_CODED_TX_RX_TLIM_EN)
Always enable the limitation on max tx/rx time for Coded-PHY connection

• Force Disable (CONFIG_BT_LE_COEX_PHY_CODED_TX_RX_TLIM_DIS)
Disable the limitation on max tx/rx time for Coded-PHY connection

CONFIG_BT_LE_SLEEP_ENABLE
Enable BLE sleep
Found in: Component config > Bluetooth > Controller Options

Enable BLE sleep
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_LP_CLK_SRC
BLE low power clock source
Found in: Component config > Bluetooth > Controller Options

Available options:

• Use main XTAL as RTC clock source (CON-
FIG_BT_LE_LP_CLK_SRC_MAIN_XTAL)
User main XTAL as RTC clock source. This option is recommended if external 32.768k
XTAL is not available. Using the external 32.768 kHz XTAL will have lower current
consumption in light sleep compared to using the main XTAL.

• Use system RTC slow clock source (CONFIG_BT_LE_LP_CLK_SRC_DEFAULT)
Use the same slow clock source as system RTC Using any clock source other than exter-
nal 32.768 kHz XTAL supports only legacy ADV and SCAN due to low clock accuracy.

CONFIG_BT_LE_USE_ESP_TIMER
Enable Esp Timer for Callout
Found in: Component config > Bluetooth > Controller Options

Set this option to use Esp Timer which has higher priority timer instead of FreeRTOS timer

Espressif Systems 1379
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_SUPP
BLE adv report flow control supported
Found in: Component config > Bluetooth > Controller Options

The function is mainly used to enable flow control for advertising reports. When it is enabled, advertising
reports will be discarded by the controller if the number of unprocessed advertising reports exceeds the
size of BLE adv report flow control.
Default value:

• Yes (enabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_NUM
BLE adv report flow control number
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_SUPP

The number of unprocessed advertising report that bluetooth host can save.If you set
BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_NUM to a small value, this may cause adv pack-
ets lost. If you set BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_NUM to a large value, bluetooth
host may cache a lot of adv packets and this may cause system memory run out. For exam-
ple, if you set it to 50, the maximum memory consumed by host is 35 * 50 bytes. Please set
BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_NUM according to your system free memory and
handle adv packets as fast as possible, otherwise it will cause adv packets lost.
Range:

• from 50 to 1000 if CONFIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_SUPP &&
CONFIG_BT_CONTROLLER_ENABLED

Default value:
• 100 if CONFIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_SUPP && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_CTRL_BLE_ADV_REPORT_DISCARD_THRSHOLD
BLE adv lost event threshold value
Found in: Component config > Bluetooth > Controller Options > CON-
FIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_SUPP

When adv report flow control is enabled, The ADV lost event will be generated when the number of
ADV packets lost in the controller reaches this threshold. It is better to set a larger value. If you set
BT_CTRL_BLE_ADV_REPORT_DISCARD_THRSHOLD to a small value or printf every adv lost event,
it may cause adv packets lost more.
Range:

• from 1 to 1000 if CONFIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_SUPP && CON-
FIG_BT_CONTROLLER_ENABLED

Default value:
• 20 if CONFIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_SUPP && CON-

FIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_SCAN_DUPL
BLE Scan Duplicate Options
Found in: Component config > Bluetooth > Controller Options

This select enables parameters setting of BLE scan duplicate.
Default value:

• Yes (enabled) if CONFIG_BT_CONTROLLER_ENABLED

Espressif Systems 1380
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_LE_SCAN_DUPL_TYPE
Scan Duplicate Type
Found in: Component config > Bluetooth > Controller Options > CONFIG_BT_LE_SCAN_DUPL

Scan duplicate have three ways. one is "Scan Duplicate By Device Address", This way is to use advertiser
address filtering. The adv packet of the same address is only allowed to be reported once. Another way
is "Scan Duplicate By Device Address And Advertising Data". This way is to use advertising data and
device address filtering. All different adv packets with the same address are allowed to be reported. The
last way is "Scan Duplicate By Advertising Data". This way is to use advertising data filtering. All same
advertising data only allow to be reported once even though they are from different devices.
Available options:

• ScanDuplicate ByDeviceAddress (CONFIG_BT_LE_SCAN_DUPL_TYPE_DEVICE)
This way is to use advertiser address filtering. The adv packet of the same address is
only allowed to be reported once

• ScanDuplicate ByAdvertisingData (CONFIG_BT_LE_SCAN_DUPL_TYPE_DATA)
This way is to use advertising data filtering. All same advertising data only allow to be
reported once even though they are from different devices.

• Scan Duplicate By Device Address And Advertising Data (CON-
FIG_BT_LE_SCAN_DUPL_TYPE_DATA_DEVICE)
This way is to use advertising data and device address filtering. All different adv packets
with the same address are allowed to be reported.

CONFIG_BT_LE_SCAN_DUPL_CACHE_REFRESH_PERIOD
Duplicate scan list refresh period (seconds)
Found in: Component config > Bluetooth > Controller Options > CONFIG_BT_LE_SCAN_DUPL

If the period value is non-zero, the controller will periodically clear the device information stored in the
scan duuplicate filter. If it is 0, the scan duuplicate filter will not be cleared until the scanning is disabled.
Duplicate advertisements for this period should not be sent to the Host in advertising report events. There
are two scenarios where the ADV packet will be repeatedly reported: 1. The duplicate scan cache is
full, the controller will delete the oldest device information and add new device information. 2. When
the refresh period is up, the controller will clear all device information and start filtering again.
Range:

• from 0 to 1000 if CONFIG_BT_LE_SCAN_DUPL && CON-
FIG_BT_CONTROLLER_ENABLED

Default value:
• 0 if CONFIG_BT_LE_SCAN_DUPL && CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_MSYS_INIT_IN_CONTROLLER
Msys Mbuf Init in Controller
Found in: Component config > Bluetooth > Controller Options

Default value:
• Yes (enabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_TX_CCA_ENABLED
Enable TX CCA feature
Found in: Component config > Bluetooth > Controller Options

Enable CCA feature to cancel sending the packet if the signal power is stronger than CCA threshold.

Espressif Systems 1381
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_CCA_RSSI_THRESH
CCA RSSI threshold value
Found in: Component config > Bluetooth > Controller Options > CONFIG_BT_LE_TX_CCA_ENABLED

Power threshold of CCA in unit of -1 dBm.
Range:

• from 20 to 100 if CONFIG_BT_LE_TX_CCA_ENABLED && CON-
FIG_BT_CONTROLLER_ENABLED

Default value:
• 65 if CONFIG_BT_LE_TX_CCA_ENABLED && CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_DFT_TX_POWER_LEVEL_DBM
BLE default Tx power level(dBm)
Found in: Component config > Bluetooth > Controller Options

Specify default Tx power level(dBm).
Available options:

• -15dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_N15)
• -12dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_N12)
• -9dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_N9)
• -6dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_N6)
• -3dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_N3)
• 0dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_N0)
• +3dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_P3)
• +6dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_P6)
• +9dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_P9)
• +12dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_P12)
• +15dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_P15)
• +18dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_P18)
• +20dBm (CONFIG_BT_LE_DFT_TX_POWER_LEVEL_P20)

CONFIG_BT_LE_CTRL_CHECK_CONNECT_IND_ACCESS_ADDRESS
Enable enhanced Access Address check in CONNECT_IND
Found in: Component config > Bluetooth > Controller Options

Enabling this option will add stricter verification of the Access Address in the CONNECT_IND PDU.
This improves security by ensuring that only connection requests with valid Access Addresses are ac-
cepted. If disabled, only basic checks are applied, improving compatibility.
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_CTRL_RUN_IN_FLASH_ONLY
Reduce BLE IRAM usage (READ DOCS FIRST) (EXPERIMENTAL)
Found in: Component config > Bluetooth > Controller Options

Espressif Systems 1382
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Move most IRAM into flash. This will increase the usage of flash and reduce ble performance. Because
the code is moved to the flash, the execution speed of the code is reduced. To have a small impact on
performance, you need to enable flash suspend (SPI_FLASH_AUTO_SUSPEND).
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

BLE disconnects when Instant Passed (0x28) occurs Contains:
• CONFIG_BT_LE_CTRL_LLCP_CHAN_MAP_UPDATE
• CONFIG_BT_LE_CTRL_LLCP_CONN_UPDATE
• CONFIG_BT_LE_CTRL_LLCP_PHY_UPDATE

CONFIG_BT_LE_CTRL_LLCP_CONN_UPDATE
BLE ACL connection update procedure
Found in: Component config > Bluetooth > Controller Options > BLE disconnects when Instant Passed
(0x28) occurs

If this option is enabled, Controller will terminate the connection when Instant Passed (0x28) error
occurs during connection update procedure.
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_CTRL_LLCP_CHAN_MAP_UPDATE
BLE ACL channel map update procedure
Found in: Component config > Bluetooth > Controller Options > BLE disconnects when Instant Passed
(0x28) occurs

If this option is enabled, Controller will terminate the connection when Instant Passed (0x28) error
occurs in channel map update procedure.
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_CTRL_LLCP_PHY_UPDATE
BLE ACL PHY update procedure
Found in: Component config > Bluetooth > Controller Options > BLE disconnects when Instant Passed
(0x28) occurs

If this option is enabled, Controller will terminate the connection when Instant Passed (0x28) error
occurs in PHY update procedure.
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_CTRL_SCAN_BACKOFF_UPPERLIMITMAX
The value of upperlimitmax during scan backoff procedure
Found in: Component config > Bluetooth > Controller Options

The value of upperlimitmax needs to be a power of 2.
Range:

• from 1 to 256 if CONFIG_BT_CONTROLLER_ENABLED
Default value:

• 32 if CONFIG_BT_CONTROLLER_ENABLED

Espressif Systems 1383
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_LE_CTRL_CHAN_ASS_EN
Enable channel assessment(Experimental)
Found in: Component config > Bluetooth > Controller Options

If this option is enabled, The Controller will records the communication quality for each channel and
then start a timer to check and update the channel map every 4 seconds.
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_CTRL_ADV_DATA_LENGTH_ZERO_AUX
Enable aux packet when ext adv data length is zero(Experimental)
Found in: Component config > Bluetooth > Controller Options

When this option is enabled, auxiliary packets will be present in the events of 'Non-Connectable and
Non-Scannable' regardless of whether the advertising length is 0. If this option is not enabled, auxiliary
packets will only be present when the advertising length is not 0.
Default value:

• Yes (enabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_RXBUF_OPT_ENABLED
Enable rxbuf optimization feature
Found in: Component config > Bluetooth > Controller Options

Default value:
• Yes (enabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_CTRL_FAST_CONN_DATA_TX_EN
Enable fast sending of connection data
Found in: Component config > Bluetooth > Controller Options

If this option is enabled, The Controller will continue to Send an empty PDU after sending valid con-
nection data within an interval.
Default value:

• Yes (enabled) if CONFIG_BT_CONTROLLER_ENABLED

Reserved Memory Config Contains:
• CONFIG_BT_LE_CONN_RESERVED_MEMORY_COUNT
• CONFIG_BT_LE_EXT_ADV_RESERVED_MEMORY_COUNT

CONFIG_BT_LE_EXT_ADV_RESERVED_MEMORY_COUNT
The value of reserved EXT ADV memory count at initialization
Found in: Component config > Bluetooth > Controller Options > Reserved Memory Config

This value sets the number the Controller will allocate for extended advertisement instances at initializa-
tion process. If more extended advertisement instances are enabled, those memory will be dynamically
allocated. Using reduced amount of reserved memory will save heap size at the cost of extra time con-
sumption at advertising start process and possible advertising start failure due to memory shortage. The
actual reserved memory count will be the minimum value between the maximum extended advertise-
ment instances and the BT_LE_EXT_ADV_RESERVED_MEMORY_COUNT.
Range:

Espressif Systems 1384
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• from 0 to 4 if CONFIG_BT_CONTROLLER_ENABLED
Default value:

• 2 if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_CONN_RESERVED_MEMORY_COUNT
The value of reserved CONN memory count at initialization
Found in: Component config > Bluetooth > Controller Options > Reserved Memory Config

This value sets the number the Controller will allocate for connection instances at the initialization pro-
cess. If more connection instances are enabled, those memory will be dynamically allocated. Using
reduced amount of reserved memory will save heap size at the cost of extra time consumption at con-
nection establishment process and possible connection establishment failure due to memory shortage.
The actual reserved memory count will be the minimum value between the maximum connection in-
stances and the BT_LE_CONN_RESERVED_MEMORY_COUNT.
Range:

• from 0 to 70 if CONFIG_BT_CONTROLLER_ENABLED
Default value:

• 2 if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_LE_DTM_ENABLED
Enable Direct Test Mode (DTM) feature
Found in: Component config > Bluetooth > Controller Options

Default value:
• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

Scheduling Priority Level Config Contains:
• CONFIG_BT_LE_ADV_SCHED_PRIO_LEVEL
• CONFIG_BT_LE_PERIODIC_ADV_SCHED_PRIO_LEVEL
• CONFIG_BT_LE_SYNC_SCHED_PRIO_LEVEL

CONFIG_BT_LE_ADV_SCHED_PRIO_LEVEL
The Adv scheduling priority level
Found in: Component config > Bluetooth > Controller Options > Scheduling Priority Level Config

The Adv scheduling priority level is used for arbitration when internal scheduling conflicts.
Available options:

• low priority level (CONFIG_BT_LE_ADV_SCHED_PRIO_LOW_LEVEL)
• medium priority level (CONFIG_BT_LE_ADV_SCHED_PRIO_MID_LEVEL)
• high priority level (CONFIG_BT_LE_ADV_SCHED_PRIO_HIGH_LEVEL)

CONFIG_BT_LE_PERIODIC_ADV_SCHED_PRIO_LEVEL
The Periodic Adv scheduling priority level
Found in: Component config > Bluetooth > Controller Options > Scheduling Priority Level Config

The Periodic Adv scheduling priority level is used for arbitration when internal scheduling conflicts.
Available options:

Espressif Systems 1385
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• low priority level (CONFIG_BT_LE_PERIODIC_ADV_SCHED_PRIO_LOW_LEVEL)
• mediumpriority level (CONFIG_BT_LE_PERIODIC_ADV_SCHED_PRIO_MID_LEVEL)
• high priority level (CONFIG_BT_LE_PERIODIC_ADV_SCHED_PRIO_HIGH_LEVEL)

CONFIG_BT_LE_SYNC_SCHED_PRIO_LEVEL
The Sync scheduling priority level
Found in: Component config > Bluetooth > Controller Options > Scheduling Priority Level Config

The SYNC scheduling priority level is used for arbitration when internal scheduling conflicts.
Available options:

• low priority level (CONFIG_BT_LE_SYNC_SCHED_PRIO_LOW_LEVEL)
• medium priority level (CONFIG_BT_LE_SYNC_SCHED_PRIO_MID_LEVEL)
• high priority level (CONFIG_BT_LE_SYNC_SCHED_PRIO_HIGH_LEVEL)

CONFIG_BT_LE_CTRL_SLV_FAST_RX_CONN_DATA_EN
Enable Peripheral fast PDU reception during latency
Found in: Component config > Bluetooth > Controller Options

When this option is enabled, the Controller continues receiving PDUs In the next connection event
instead of entering latency After a data packet is received.
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED

CONFIG_BT_RELEASE_IRAM
Release Bluetooth text (READ DOCS FIRST)
Found in: Component config > Bluetooth

This option release Bluetooth text section and merge Bluetooth data, bss & text into a large free
heap region when esp_bt_mem_release is called, total saving ~21kB or more of IRAM. ESP32-
C2 only 3 configurable PMP entries available, rest of them are hard-coded. We cannot split the
memory into 3 different regions (IRAM, BLE-IRAM, DRAM). So this option will disable the PMP
(ESP_SYSTEM_PMP_IDRAM_SPLIT)
Default value:

• No (disabled) if CONFIG_BT_ENABLED && BT_LE_RELEASE_IRAM_SUPPORTED

Common Options Contains:
• BLE Log
• CONFIG_BT_LE_USED_MEM_STATISTICS_ENABLED
• CONFIG_BT_ALARM_MAX_NUM
• CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED
• CONFIG_BT_BLE_LOG_UHCI_OUT_ENABLED

CONFIG_BT_ALARM_MAX_NUM
Maximum number of Bluetooth alarms
Found in: Component config > Bluetooth > Common Options

This option decides the maximum number of alarms which could be used by Bluetooth host.
Default value:

Espressif Systems 1386
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 50 if CONFIG_BT_BLUEDROID_ENABLED || CONFIG_BT_NIMBLE_ENABLED

BLE Log Contains:
• CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_ENABLED
Enable BLE Log Module (Experimental)
Found in: Component config > Bluetooth > Common Options > BLE Log

Enable BLE Log Module
Default value:

• No (disabled)

CONFIG_BLE_LOG_TASK_STACK_SIZE
Stack size for BLE Log Task
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

Stack size for BLE Log Task
Default value:

• 1024 if CONFIG_BLE_LOG_ENABLED
• 1024 if CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_LBM_TRANS_SIZE
Buffer size for each peripheral transport
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

There're 2 log buffer managers (LBMs) with compare-and-swap (CAS) protection, 1 LBM with FreeR-
TOS mutex protection, 1 LBM without protection for critical section. Each LBM is managing 2 ping-
pong buffers, which means there will be 4 * 2 * BLE_LOG_LBM_TRANS_SIZE bytes buffer allocated
Default value:

• 512 if CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_LBM_ATOMIC_LOCK_TASK_CNT
Count of log buffer managers with atomic lock protection for task context
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

BLE Log module will search for an LBM with atomic lock protection first; if all LBMs with atomic lock
protection are unavailable, BLE Log module will try to use the LBM with spin lock protection. So the
more LBMs with atomic lock protection are created, the better the logging performance will be.
Default value:

• 2 if CONFIG_BLE_LOG_ENABLED

Espressif Systems 1387
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_LOG_LBM_ATOMIC_LOCK_ISR_CNT
Count of log buffer managers with atomic lock protection for ISR context
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

BLE Log module will search for an LBM with atomic lock protection first; if all LBMs with atomic lock
protection are unavailable, BLE Log module will try to use the LBM with spin lock protection. So the
more LBMs with atomic lock protection are created, the more ISRs can nest.
Default value:

• 1 if CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_IS_ESP_CONTROLLER
Current BLE Controller is ESP BLE Controller
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

Current BLE Controller is ESP BLE Controller
Default value:

• Yes (enabled) if CONFIG_BT_CONTROLLER_ENABLED && CON-
FIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_IS_ESP_LEGACY_CONTROLLER
Current BLE Controller is ESP BLE Legacy Controller
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

Current BLE Controller is ESP BLE Legacy Controller

CONFIG_BLE_LOG_LL_ENABLED
Enable BLE Log for Link Layer
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

Enable BLE Log for Link Layer
Default value:

• No (disabled) if CONFIG_BT_CONTROLLER_ENABLED && CON-
FIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_LBM_LL_TRANS_SIZE
Buffer size for each peripheral transport of Link Layer LBM
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED > CONFIG_BLE_LOG_LL_ENABLED

There're 2 Link Layer dedicated log buffer managers (LBMs) with compare-and-swap (CAS) protec-
tion. Each LBM is managing 2 ping- pong buffers, which means there will be additional 2 * 2 *
BLE_LOG_LBM_LL_TRANS_SIZE bytes buffer allocated
Default value:

• 1024 if CONFIG_BLE_LOG_LL_ENABLED && CONFIG_BLE_LOG_ENABLED

Espressif Systems 1388
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_LOG_PAYLOAD_CHECKSUM_ENABLED
Enable payload checksum for BLE Log data integrity check
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

Checksum is the default method for BLELog data integrity check, but for targets with slowCPU speed, it
may cause significant system performance decrease; a compromise could bemade to balance the realtime
performance and log data integrity, which is calculating the checksum of frame head and payload all
together by default, or only calculate the checksum of frame head to minimize performance decrease
Default value:

• Yes (enabled) if CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_ENH_STAT_ENABLED
Enable enhanced statistics for BLE Log
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

Enable enhanced statistics for written/lost frame/bytes count, whichmay cost additional ~100kBmemory
Default value:

• No (disabled) if CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_TS_ENABLED
Enable BLE Log Timestamp Synchronization (TS)
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

Enable BLE Log TS with external logging module
Default value:

• No (disabled) if CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_SYNC_IO_NUM
GPIO number for Timestamp Synchronization (TS) toggle output
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED > CONFIG_BLE_LOG_TS_ENABLED

GPIO number for TS toggle output
Default value:

• 0 if CONFIG_BLE_LOG_TS_ENABLED && CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_PRPH_CHOICE
BLE Log peripheral choice
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

Choose BLE Log peripheral
Available options:

• Dummy transport (CONFIG_BLE_LOG_PRPH_DUMMY)
Dummy transport (dump only)

Espressif Systems 1389
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Utilize SPI master DMA driver as transport (CON-
FIG_BLE_LOG_PRPH_SPI_MASTER_DMA)
Utilize SPI master DMA driver as transport

• Utilize UART DMA driver as transport (CONFIG_BLE_LOG_PRPH_UART_DMA)
Utilize UART DMA driver as transport

CONFIG_BLE_LOG_PRPH_SPI_MASTER_DMA_MOSI_IO_NUM
GPIO number of MOSI port for SPI master DMA transport
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

GPIO number of MOSI port for SPI master DMA transport
Default value:

• 0 if CONFIG_BLE_LOG_PRPH_SPI_MASTER_DMA && CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_PRPH_SPI_MASTER_DMA_SCLK_IO_NUM
GPIO number of SCLK port for SPI master DMA transport
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

GPIO number of SCLK port for SPI master DMA transport
Default value:

• 0 if CONFIG_BLE_LOG_PRPH_SPI_MASTER_DMA && CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_PRPH_SPI_MASTER_DMA_CS_IO_NUM
GPIO number of CS port for SPI master DMA transport
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

GPIO number of CS port for SPI master DMA transport
Default value:

• 0 if CONFIG_BLE_LOG_PRPH_SPI_MASTER_DMA && CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_PRPH_UART_DMA_PORT
UART port number for UART DMA transport
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

UART port number for UART DMA
Default value:

• 0 if CONFIG_BLE_LOG_PRPH_UART_DMA && CONFIG_BLE_LOG_ENABLED

CONFIG_BLE_LOG_PRPH_UART_DMA_BAUD_RATE
Baud rate of UART port for UART DMA transport
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

Determine the baud rate of UART port
Default value:

• 921600 if CONFIG_BLE_LOG_PRPH_UART_DMA && CONFIG_BLE_LOG_ENABLED

Espressif Systems 1390
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_LOG_PRPH_UART_DMA_TX_IO_NUM
GPIO number for UART TX
Found in: Component config > Bluetooth > Common Options > BLE Log > CON-
FIG_BLE_LOG_ENABLED

GPIO number for UART TX
Default value:

• 0 if CONFIG_BLE_LOG_PRPH_UART_DMA && CONFIG_BLE_LOG_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED
Output ble logs to SPI bus (Experimental)
Found in: Component config > Bluetooth > Common Options

Output ble logs to SPI bus
Default value:

• No (disabled)

CONFIG_BT_BLE_LOG_SPI_OUT_UL_TASK_BUF_SIZE
SPI transaction buffer size for upper layer task logs
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED

SPI transaction buffer size for upper layer task logs. There will be 2 SPI DMA buffers with the same
size.
Default value:

• 512 if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_HCI_ENABLED
Enable HCI log output to SPI
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED

Enable logging of HCI packets to the SPI bus when BLE SPI log output is enabled.
Default value:

• No (disabled) if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_HCI_BUF_SIZE
SPI transaction buffer size for HCI logs
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED > CONFIG_BT_BLE_LOG_SPI_OUT_HCI_ENABLED

SPI transaction buffer size for HCI logs. There will be 2 SPI DMA buffers with the same size.
Default value:

• 1024 if CONFIG_BT_BLE_LOG_SPI_OUT_HCI_ENABLED

Espressif Systems 1391
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_BLE_LOG_SPI_OUT_HCI_TASK_CNT
HCI task count
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED > CONFIG_BT_BLE_LOG_SPI_OUT_HCI_ENABLED

HCI task count
Default value:

• 1 if CONFIG_BT_BLE_LOG_SPI_OUT_HCI_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_HOST_ENABLED
Enable Host log output to SPI
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED

This configuration applies to the logs of both Bluedroid Host and NimBLE Host. When BLE SPI log
output is enabled, this option allows host logs to be transmitted via SPI.
Default value:

• No (disabled) if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_HOST_BUF_SIZE
SPI transaction buffer size for host logs
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED > CONFIG_BT_BLE_LOG_SPI_OUT_HOST_ENABLED

SPI transaction buffer size for host logs. There will be 2 SPI DMA buffers with the same size.
Default value:

• 1024 if CONFIG_BT_BLE_LOG_SPI_OUT_HOST_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_HOST_TASK_CNT
Host task count
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED > CONFIG_BT_BLE_LOG_SPI_OUT_HOST_ENABLED

Host task count.
Default value:

• 2 if CONFIG_BT_BLE_LOG_SPI_OUT_HOST_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_LL_ENABLED
Enable Controller log output to SPI
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED

Enable controller log output to SPI bus.
Default value:

• No (disabled) if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED && CON-
FIG_BT_LE_CONTROLLER_LOG_SPI_OUT_ENABLED

Espressif Systems 1392
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_BLE_LOG_SPI_OUT_LL_TASK_BUF_SIZE
SPI transaction buffer size for lower layer task logs
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED > CONFIG_BT_BLE_LOG_SPI_OUT_LL_ENABLED

SPI transaction buffer size for lower layer task logs. There will be 2 SPI DMA buffers with the same
size.
Default value:

• 1024 if CONFIG_BT_BLE_LOG_SPI_OUT_LL_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_LL_ISR_BUF_SIZE
SPI transaction buffer size for lower layer ISR logs
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED > CONFIG_BT_BLE_LOG_SPI_OUT_LL_ENABLED

SPI transaction buffer size for lower layer ISR logs. There will be 2 SPI DMA buffers with the same
size.
Default value:

• 512 if CONFIG_BT_BLE_LOG_SPI_OUT_LL_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_LL_HCI_BUF_SIZE
SPI transaction buffer size for lower layer HCI logs
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED > CONFIG_BT_BLE_LOG_SPI_OUT_LL_ENABLED

SPI transaction buffer size for upper layer HCI logs. There will be 2 SPI DMA buffers with the same
size
Default value:

• 512 if CONFIG_BT_BLE_LOG_SPI_OUT_LL_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_MOSI_IO_NUM
GPIO number of SPI MOSI
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED

GPIO number of SPI MOSI
Default value:

• 0 if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_SCLK_IO_NUM
GPIO number of SPI SCLK
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED

GPIO number of SPI SCLK
Default value:

• 1 if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED

Espressif Systems 1393
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_BLE_LOG_SPI_OUT_CS_IO_NUM
GPIO number of SPI CS
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED

GPIO number of SPI CS
Default value:

• 2 if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_TS_SYNC_ENABLED
Enable ble log & logic analyzer log time sync
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED

Enable ble log & logic analyzer log time sync
Default value:

• Yes (enabled) if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_SYNC_IO_NUM
GPIO number of SYNC IO
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED >CONFIG_BT_BLE_LOG_SPI_OUT_TS_SYNC_ENABLED

GPIO number of SYNC IO
Default value:

• 3 if CONFIG_BT_BLE_LOG_SPI_OUT_TS_SYNC_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_FLUSH_TIMER_ENABLED
Enable periodic buffer flush out
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED

Enable periodic buffer flush out Not recommended when SPI receiver is unavailable
Default value:

• No (disabled) if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_FLUSH_TIMEOUT
Buffer flush out period in unit of ms
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED >CONFIG_BT_BLE_LOG_SPI_OUT_FLUSH_TIMER_ENABLED

Buffer flush out period in unit of ms
Default value:

• 1000 if CONFIG_BT_BLE_LOG_SPI_OUT_FLUSH_TIMER_ENABLED

Espressif Systems 1394
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_ENABLED
Enable LE Audio log output to SPI
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED

Enable LE Audio log output to SPI
Default value:

• No (disabled) if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_BUF_SIZE
SPI transaction buffer size for LE Audio logs
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED >CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_ENABLED

SPI transaction buffer size for LE Audio logs. There will be 2 SPI DMA buffers with the same size.
Default value:

• 1024 if CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_TASK_CNT
LE audio task count
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED >CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_ENABLED

LE audio task count
Default value:

• 1 if CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_MESH_ENABLED
Enable BLE mesh log output to SPI
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED

Enable BLE mesh log output to SPI
Default value:

• No (disabled) if CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED

CONFIG_BT_BLE_LOG_SPI_OUT_MESH_BUF_SIZE
SPI transaction buffer size for BLE mesh logs
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED > CONFIG_BT_BLE_LOG_SPI_OUT_MESH_ENABLED

SPI transaction buffer size for BLE mesh logs. There will be 2 SPI DMA buffers with the same size.
Default value:

• 1024 if CONFIG_BT_BLE_LOG_SPI_OUT_MESH_ENABLED

Espressif Systems 1395
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_BLE_LOG_SPI_OUT_MESH_TASK_CNT
Mesh task count
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_SPI_OUT_ENABLED > CONFIG_BT_BLE_LOG_SPI_OUT_MESH_ENABLED

Mesh task count
Default value:

• 3 if CONFIG_BT_BLE_LOG_SPI_OUT_MESH_ENABLED

CONFIG_BT_BLE_LOG_UHCI_OUT_ENABLED
Output ble logs via UHCI (UART DMA) driver (Experimental)
Found in: Component config > Bluetooth > Common Options

Output ble logs via UHCI (UART DMA) driver On enable,
BT_BLE_LOG_UHCI_OUT_UART_PORT would be reinited with
BT_BLE_LOG_UHCI_OUT_UART_BAUD_RATE as new baud rate and
BT_BLE_LOG_UHCI_OUT_UART_IO_NUM_TX as new UART Tx IO
Default value:

• No (disabled)

CONFIG_BT_BLE_LOG_UHCI_OUT_UART_PORT
UART port connected to UHCI controller
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_UHCI_OUT_ENABLED

UART port connected to UHCI controller If UART port 0 is selected, UART VFS Driver, UART ROM
Driver and UART Driver output would be redirected to BLE Log UHCI Out to solve UART Tx FIFO
multi-task access issue
Default value:

• 0 if CONFIG_BT_BLE_LOG_UHCI_OUT_ENABLED

CONFIG_BT_BLE_LOG_UHCI_OUT_LL_TASK_BUF_SIZE
UHCI transaction buffer size for lower layer task logs
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_UHCI_OUT_ENABLED

UHCI transaction buffer size for lower layer task logs
Default value:

• 1024 if CONFIG_BT_BLE_LOG_UHCI_OUT_ENABLED

CONFIG_BT_BLE_LOG_UHCI_OUT_LL_ISR_BUF_SIZE
UHCI transaction buffer size for lower layer ISR logs
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_UHCI_OUT_ENABLED

UHCI transaction buffer size for lower layer ISR logs
Default value:

• 1024 if CONFIG_BT_BLE_LOG_UHCI_OUT_ENABLED

Espressif Systems 1396
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BT_BLE_LOG_UHCI_OUT_LL_HCI_BUF_SIZE
UHCI transaction buffer size for lower layer HCI logs
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_UHCI_OUT_ENABLED

UHCI transaction buffer size for lower layer HCI logs
Default value:

• 1024 if CONFIG_BT_BLE_LOG_UHCI_OUT_ENABLED

CONFIG_BT_BLE_LOG_UHCI_OUT_UART_NEED_INIT
Enable to init UART port
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_UHCI_OUT_ENABLED

Enable to init UART port
Default value:

• Yes (enabled) if CONFIG_BT_BLE_LOG_UHCI_OUT_ENABLED

CONFIG_BT_BLE_LOG_UHCI_OUT_UART_BAUD_RATE
Baud rate for BT_BLE_LOG_UHCI_OUT_UART_PORT
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_UHCI_OUT_ENABLED >CONFIG_BT_BLE_LOG_UHCI_OUT_UART_NEED_INIT

Baud rate for BT_BLE_LOG_UHCI_OUT_UART_PORT
Default value:

• 3000000 if CONFIG_BT_BLE_LOG_UHCI_OUT_UART_NEED_INIT

CONFIG_BT_BLE_LOG_UHCI_OUT_UART_IO_NUM_TX
IO number for UART TX port
Found in: Component config > Bluetooth > Common Options > CON-
FIG_BT_BLE_LOG_UHCI_OUT_ENABLED >CONFIG_BT_BLE_LOG_UHCI_OUT_UART_NEED_INIT

IO number for UART TX port
Default value:

• 0 if CONFIG_BT_BLE_LOG_UHCI_OUT_UART_NEED_INIT

CONFIG_BT_LE_USED_MEM_STATISTICS_ENABLED
Enable used memory statistics
Found in: Component config > Bluetooth > Common Options

Used in internal tests only. Enable used memory statistics.
Default value:

• No (disabled)

CONFIG_BT_HCI_LOG_DEBUG_EN
Enable Bluetooth HCI debug mode
Found in: Component config > Bluetooth

This option is used to enable bluetooth debug mode, which saves the hci layer data stream.

Espressif Systems 1397
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled) if CONFIG_BT_BLUEDROID_ENABLED || CONFIG_BT_NIMBLE_ENABLED

CONFIG_BT_HCI_LOG_DATA_BUFFER_SIZE
Size of the cache used for HCI data in Bluetooth HCI debug mode (N*1024 bytes)
Found in: Component config > Bluetooth > CONFIG_BT_HCI_LOG_DEBUG_EN

This option is to configure the buffer size of the hci data steam cache in hci debug mode. This is a ring
buffer, the new data will overwrite the oldest data if the buffer is full.
Range:

• from 1 to 100 if CONFIG_BT_HCI_LOG_DEBUG_EN
Default value:

• 5 if CONFIG_BT_HCI_LOG_DEBUG_EN

CONFIG_BT_HCI_LOG_ADV_BUFFER_SIZE
Size of the cache used for adv report in Bluetooth HCI debug mode (N*1024 bytes)
Found in: Component config > Bluetooth > CONFIG_BT_HCI_LOG_DEBUG_EN

This option is to configure the buffer size of the hci adv report cache in hci debug mode. This is a ring
buffer, the new data will overwrite the oldest data if the buffer is full.
Range:

• from 1 to 100 if CONFIG_BT_HCI_LOG_DEBUG_EN
Default value:

• 8 if CONFIG_BT_HCI_LOG_DEBUG_EN

CONFIG_BLE_MESH
ESP BLE Mesh Support
Found in: Component config

This option enables ESP BLEMesh support. The specific features that are available may depend on other
features that have been enabled in the stack, such as Bluetooth Support, Bluedroid Support & GATT
support.

Contains:
• BLE Mesh and BLE coexistence support
• CONFIG_BLE_MESH_GATT_PROXY_CLIENT
• CONFIG_BLE_MESH_GATT_PROXY_SERVER
• BLE Mesh NET BUF DEBUG LOG LEVEL
• CONFIG_BLE_MESH_PROV
• CONFIG_BLE_MESH_PROXY
• BLE Mesh specific test option
• BLE Mesh STACK DEBUG LOG LEVEL
• CONFIG_BLE_MESH_NO_LOG
• CONFIG_BLE_MESH_IVU_DIVIDER
• CONFIG_BLE_MESH_FAST_PROV
• CONFIG_BLE_MESH_FREERTOS_STATIC_ALLOC
• CONFIG_BLE_MESH_EXPERIMENTAL
• CONFIG_BLE_MESH_CRPL
• CONFIG_BLE_MESH_RX_SDU_MAX
• CONFIG_BLE_MESH_MODEL_KEY_COUNT
• CONFIG_BLE_MESH_APP_KEY_COUNT
• CONFIG_BLE_MESH_MODEL_GROUP_COUNT
• CONFIG_BLE_MESH_LABEL_COUNT

Espressif Systems 1398
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_BLE_MESH_SUBNET_COUNT
• CONFIG_BLE_MESH_TX_SEG_MAX
• CONFIG_BLE_MESH_RX_SEG_MSG_COUNT
• CONFIG_BLE_MESH_TX_SEG_MSG_COUNT
• CONFIG_BLE_MESH_MEM_ALLOC_MODE
• CONFIG_BLE_MESH_MSG_CACHE_SIZE
• CONFIG_BLE_MESH_NOT_RELAY_REPLAY_MSG
• CONFIG_BLE_MESH_ADV_BUF_COUNT
• CONFIG_BLE_MESH_PB_GATT
• CONFIG_BLE_MESH_PB_ADV
• CONFIG_BLE_MESH_IVU_RECOVERY_IVI
• CONFIG_BLE_MESH_RELAY
• CONFIG_BLE_MESH_SETTINGS
• CONFIG_BLE_MESH_DEINIT
• CONFIG_BLE_MESH_USE_DUPLICATE_SCAN
• Support for BLE Mesh Client/Server models
• Support for BLE Mesh Foundation models
• CONFIG_BLE_MESH_NODE
• CONFIG_BLE_MESH_PROVISIONER
• CONFIG_BLE_MESH_FRIEND
• CONFIG_BLE_MESH_LOW_POWER
• CONFIG_BLE_MESH_HCI_5_0
• CONFIG_BLE_MESH_RANDOM_ADV_INTERVAL
• CONFIG_BLE_MESH_IV_UPDATE_TEST
• CONFIG_BLE_MESH_CLIENT_MSG_TIMEOUT

CONFIG_BLE_MESH_HCI_5_0
Support sending 20ms non-connectable adv packets
Found in: Component config > CONFIG_BLE_MESH

It is a temporary solution and needs further modifications.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_RANDOM_ADV_INTERVAL
Support using random adv interval for mesh packets
Found in: Component config > CONFIG_BLE_MESH

Enable this option to allow using random advertising interval for mesh packets. And this could help
avoid collision of advertising packets.
Default value:

• No (disabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_USE_DUPLICATE_SCAN
Support Duplicate Scan in BLE Mesh
Found in: Component config > CONFIG_BLE_MESH

Enable this option to allow using specific duplicate scan filter in BLE Mesh, and Scan Duplicate Type
must be set by choosing the option in the Bluetooth Controller section in menuconfig, which is "Scan
Duplicate By Device Address and Advertising Data".
Default value:

• Yes (enabled) if CONFIG_BLE_MESH

Espressif Systems 1399
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_MEM_ALLOC_MODE
Memory allocation strategy
Found in: Component config > CONFIG_BLE_MESH

Allocation strategy for BLE Mesh stack, essentially provides ability to allocate all required dynamic
allocations from,

• Internal DRAM memory only
• External SPIRAM memory only
• Either internal or external memory based on default malloc() behavior in ESP-IDF
• Internal IRAM memory wherever applicable else internal DRAM

Recommended mode here is always internal (*), since that is most preferred from security perspective.
But if application requirement does not allow sufficient free internal memory then alternate mode can
be selected.
(*) In case of ESP32-S2/ESP32-S3, hardware allows encryption of external SPIRAM contents provided
hardware flash encryption feature is enabled. In that case, using external SPIRAM allocation strategy is
also safe choice from security perspective.
Available options:

• Internal DRAM (CONFIG_BLE_MESH_MEM_ALLOC_MODE_INTERNAL)
• External SPIRAM (CONFIG_BLE_MESH_MEM_ALLOC_MODE_EXTERNAL)
• Default alloc mode (CONFIG_BLE_MESH_MEM_ALLOC_MODE_DEFAULT)
Enable this option to use the default memory allocation strategy when external SPIRAM
is enabled. See the SPIRAM options for more details.

• Internal IRAM (CONFIG_BLE_MESH_MEM_ALLOC_MODE_IRAM_8BIT)
Allows to use IRAM memory region as 8bit accessible region. Every unaligned (8bit
or 16bit) access will result in an exception and incur penalty of certain clock cycles per
unaligned read/write.

CONFIG_BLE_MESH_FREERTOS_STATIC_ALLOC
Enable FreeRTOS static allocation
Found in: Component config > CONFIG_BLE_MESH

Enable this option to use FreeRTOS static allocation APIs for BLE Mesh, which provides the ability
to use different dynamic memory (i.e. SPIRAM or IRAM) for FreeRTOS objects. If this option is
disabled, the FreeRTOS static allocation APIs will not be used, and internal DRAM will be allocated
for FreeRTOS objects.
Default value:

• No (disabled) if ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY && CON-
FIG_BLE_MESH

CONFIG_BLE_MESH_FREERTOS_STATIC_ALLOC_MODE
Memory allocation for FreeRTOS objects
Found in: Component config > CONFIG_BLE_MESH > CON-
FIG_BLE_MESH_FREERTOS_STATIC_ALLOC

Choose the memory to be used for FreeRTOS objects.
Available options:

Espressif Systems 1400
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• External SPIRAM (CONFIG_BLE_MESH_FREERTOS_STATIC_ALLOC_EXTERNAL)
If enabled, BLEMesh allocates dynamicmemory from external SPIRAM for FreeRTOS
objects, i.e. mutex, queue, and task stack. External SPIRAM can only be used for task
stackwhen SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY is enabled. See the
SPIRAM options for more details.

• Internal IRAM (CONFIG_BLE_MESH_FREERTOS_STATIC_ALLOC_IRAM_8BIT)
If enabled, BLE Mesh allocates dynamic memory from internal IRAM for FreeRTOS
objects, i.e. mutex, queue. Note: IRAM region cannot be used as task stack.

CONFIG_BLE_MESH_DEINIT
Support de-initialize BLE Mesh stack
Found in: Component config > CONFIG_BLE_MESH

If enabled, users can use the function esp_ble_mesh_deinit() to de-initialize the whole BLE Mesh stack.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH

BLE Mesh and BLE coexistence support Contains:
• CONFIG_BLE_MESH_SUPPORT_BLE_SCAN
• CONFIG_BLE_MESH_SUPPORT_BLE_ADV

CONFIG_BLE_MESH_SUPPORT_BLE_ADV
Support sending normal BLE advertising packets
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh and BLE coexistence support

When selected, users can send normal BLE advertising packets with specific API.
Default value:

• No (disabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_BLE_ADV_BUF_COUNT
Number of advertising buffers for BLE advertising packets
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh and BLE coexistence support > CON-
FIG_BLE_MESH_SUPPORT_BLE_ADV

Number of advertising buffers for BLE packets available.
Range:

• from 1 to 255 if CONFIG_BLE_MESH_SUPPORT_BLE_ADV && CONFIG_BLE_MESH
Default value:

• 3 if CONFIG_BLE_MESH_SUPPORT_BLE_ADV && CONFIG_BLE_MESH

CONFIG_BLE_MESH_SUPPORT_BLE_SCAN
Support scanning normal BLE advertising packets
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh and BLE coexistence support

When selected, users can register a callback and receive normal BLE advertising packets in the appli-
cation layer.
Default value:

• No (disabled) if CONFIG_BLE_MESH

Espressif Systems 1401
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_FAST_PROV
Enable BLE Mesh Fast Provisioning
Found in: Component config > CONFIG_BLE_MESH

Enable this option to allow BLE Mesh fast provisioning solution to be used. When there are multiple
unprovisioned devices around, fast provisioning can greatly reduce the time consumption of the whole
provisioning process. When this option is enabled, and after an unprovisioned device is provisioned into
a node successfully, it can be changed to a temporary Provisioner.
Default value:

• No (disabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_NODE
Support for BLE Mesh Node
Found in: Component config > CONFIG_BLE_MESH

Enable the device to be provisioned into a node. This option should be enabled when an unprovisioned
device is going to be provisioned into a node and communicate with other nodes in the BLE Mesh
network.

CONFIG_BLE_MESH_PROVISIONER
Support for BLE Mesh Provisioner
Found in: Component config > CONFIG_BLE_MESH

Enable the device to be a Provisioner. The option should be enabled when a device is going to act as a
Provisioner and provision unprovisioned devices into the BLE Mesh network.

CONFIG_BLE_MESH_WAIT_FOR_PROV_MAX_DEV_NUM
Maximum number of unprovisioned devices that can be added to device queue
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_PROVISIONER

This option specifies how many unprovisioned devices can be added to device queue for provisioning.
Users can use this option to define the size of the queue in the bottom layer which is used to store
unprovisioned device information (e.g. Device UUID, address).
Range:

• from 1 to 100 if CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH
Default value:

• 10 if CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_MAX_PROV_NODES
Maximum number of devices that can be provisioned by Provisioner
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_PROVISIONER

This option specifies how many devices can be provisioned by a Provisioner. This value indicates the
maximum number of unprovisioned devices which can be provisioned by a Provisioner. For instance,
if the value is 6, it means the Provisioner can provision up to 6 unprovisioned devices. Theoretically a
Provisioner without the limitation of its memory can provision up to 32766 unprovisioned devices, here
we limit the maximum number to 100 just to limit the memory used by a Provisioner. The bigger the
value is, the more memory it will cost by a Provisioner to store the information of nodes.
Range:

• from 1 to 1000 if CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH
Default value:

Espressif Systems 1402
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 10 if CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_PBA_SAME_TIME
Maximum number of PB-ADV running at the same time by Provisioner
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_PROVISIONER

This option specifies how many devices can be provisioned at the same time using PB-ADV. For exam-
ples, if the value is 2, it means a Provisioner can provision two unprovisioned devices with PB-ADV at
the same time.
Range:

• from 1 to 10 if CONFIG_BLE_MESH_PB_ADV && CONFIG_BLE_MESH_PROVISIONER
&& CONFIG_BLE_MESH

Default value:
• 2 if CONFIG_BLE_MESH_PB_ADV && CONFIG_BLE_MESH_PROVISIONER && CON-

FIG_BLE_MESH

CONFIG_BLE_MESH_PBG_SAME_TIME
Maximum number of PB-GATT running at the same time by Provisioner
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_PROVISIONER

This option specifies how many devices can be provisioned at the same time using PB-GATT. For ex-
ample, if the value is 2, it means a Provisioner can provision two unprovisioned devices with PB-GATT
at the same time.
Range:

• from 1 to 5 if CONFIG_BLE_MESH_PB_GATT && CONFIG_BLE_MESH_PROVISIONER
&& CONFIG_BLE_MESH

Default value:
• 1 if CONFIG_BLE_MESH_PB_GATT && CONFIG_BLE_MESH_PROVISIONER && CON-

FIG_BLE_MESH

CONFIG_BLE_MESH_PROVISIONER_SUBNET_COUNT
Maximum number of mesh subnets that can be created by Provisioner
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_PROVISIONER

This option specifies how many subnets per network a Provisioner can create. Indeed, this value decides
the number of network keys which can be added by a Provisioner.
Range:

• from 1 to 4096 if CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH
Default value:

• 3 if CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_PROVISIONER_APP_KEY_COUNT
Maximum number of application keys that can be owned by Provisioner
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_PROVISIONER

This option specifies how many application keys the Provisioner can have. Indeed, this value decides the
number of the application keys which can be added by a Provisioner.
Range:

• from 1 to 4096 if CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH
Default value:

• 3 if CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH

Espressif Systems 1403
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_PROVISIONER_RECV_HB
Support receiving Heartbeat messages
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_PROVISIONER

When this option is enabled, Provisioner can call specific functions to enable or disable receiving Heart-
beat messages and notify them to the application layer.
Default value:

• No (disabled) if CONFIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_PROVISIONER_RECV_HB_FILTER_SIZE
Maximum number of filter entries for receiving Heartbeat messages
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_PROVISIONER > CON-
FIG_BLE_MESH_PROVISIONER_RECV_HB

This option specifies how many heartbeat filter entries Provisioner supports. The heartbeat filter (ac-
ceptlist or rejectlist) entries are used to store a list of SRC and DST which can be used to decide if a
heartbeat message will be processed and notified to the application layer by Provisioner. Note: The filter
is an empty rejectlist by default.
Range:

• from 1 to 1000 if CONFIG_BLE_MESH_PROVISIONER_RECV_HB && CON-
FIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH

Default value:
• 3 if CONFIG_BLE_MESH_PROVISIONER_RECV_HB && CON-

FIG_BLE_MESH_PROVISIONER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_PROV
BLE Mesh Provisioning support
Found in: Component config > CONFIG_BLE_MESH

Enable this option to support BLE Mesh Provisioning functionality. For BLE Mesh, this option should
be always enabled.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_PB_ADV
Provisioning support using the advertising bearer (PB-ADV)
Found in: Component config > CONFIG_BLE_MESH

Enable this option to allow the device to be provisioned over the advertising bearer. This option should
be enabled if PB-ADV is going to be used during provisioning procedure.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_UNPROVISIONED_BEACON_INTERVAL
Interval between two consecutive Unprovisioned Device Beacon
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_PB_ADV

This option specifies the interval of sending two consecutive unprovisioned device beacon, users can
use this option to change the frequency of sending unprovisioned device beacon. For example, if the
value is 5, it means the unprovisioned device beacon will send every 5 seconds. When the option of
BLE_MESH_FAST_PROV is selected, the value is better to be 3 seconds, or less.

Espressif Systems 1404
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Range:
• from 1 to 100 if CONFIG_BLE_MESH_NODE && CONFIG_BLE_MESH_PB_ADV &&

CONFIG_BLE_MESH
Default value:

• 5 if CONFIG_BLE_MESH_NODE && CONFIG_BLE_MESH_PB_ADV && CON-
FIG_BLE_MESH

• 3 if CONFIG_BLE_MESH_FAST_PROV && CONFIG_BLE_MESH_NODE && CON-
FIG_BLE_MESH_PB_ADV && CONFIG_BLE_MESH

CONFIG_BLE_MESH_PB_GATT
Provisioning support using GATT (PB-GATT)
Found in: Component config > CONFIG_BLE_MESH

Enable this option to allow the device to be provisioned over GATT. This option should be enabled if
PB-GATT is going to be used during provisioning procedure.
Virtual option enabled whenever any Proxy protocol is needed

CONFIG_BLE_MESH_PROXY
BLE Mesh Proxy protocol support
Found in: Component config > CONFIG_BLE_MESH

Enable this option to support BLE Mesh Proxy protocol used by PB-GATT and other proxy pdu trans-
mission.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_GATT_PROXY_SERVER
BLE Mesh GATT Proxy Server
Found in: Component config > CONFIG_BLE_MESH

This option enables support for Mesh GATT Proxy Service, i.e. the ability to act as a proxy between a
Mesh GATT Client and a Mesh network. This option should be enabled if a node is going to be a Proxy
Server.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH_NODE && CONFIG_BLE_MESH

CONFIG_BLE_MESH_NODE_ID_TIMEOUT
Node Identity advertising timeout
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_GATT_PROXY_SERVER

This option determines for how long the local node advertises using Node Identity. The given value is
in seconds. The specification limits this to 60 seconds and lists it as the recommended value as well. So
leaving the default value is the safest option. When an unprovisioned device is provisioned successfully
and becomes a node, it will start to advertise using Node Identity during the time set by this option. And
after that, Network ID will be advertised.
Range:

• from 1 to 60 if CONFIG_BLE_MESH_GATT_PROXY_SERVER && CONFIG_BLE_MESH
Default value:

• 60 if CONFIG_BLE_MESH_GATT_PROXY_SERVER && CONFIG_BLE_MESH

Espressif Systems 1405
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_PROXY_FILTER_SIZE
Maximum number of filter entries per Proxy Client
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_GATT_PROXY_SERVER

This option specifies how many Proxy Filter entries the local node supports. The entries of Proxy filter
(whitelist or blacklist) are used to store a list of addresses which can be used to decide which messages
will be forwarded to the Proxy Client by the Proxy Server.
Range:

• from 1 to 32767 if CONFIG_BLE_MESH_GATT_PROXY_SERVER && CON-
FIG_BLE_MESH

Default value:
• 4 if CONFIG_BLE_MESH_GATT_PROXY_SERVER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_GATT_PROXY_CLIENT
BLE Mesh GATT Proxy Client
Found in: Component config > CONFIG_BLE_MESH

This option enables support for Mesh GATT Proxy Client. The Proxy Client can use the GATT bearer
to send mesh messages to a node that supports the advertising bearer.
Default value:

• No (disabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_SETTINGS
Store BLE Mesh configuration persistently
Found in: Component config > CONFIG_BLE_MESH

When selected, the BLE Mesh stack will take care of storing/restoring the BLE Mesh configuration
persistently in flash. If the device is a BLE Mesh node, when this option is enabled, the configuration
of the device will be stored persistently, including unicast address, NetKey, AppKey, etc. And if the
device is a BLE Mesh Provisioner, the information of the device will be stored persistently, including
the information of provisioned nodes, NetKey, AppKey, etc.
Default value:

• No (disabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_STORE_TIMEOUT
Delay (in seconds) before storing anything persistently
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_SETTINGS

This value defines in seconds how soon any pending changes are actually written into persistent storage
(flash) after a change occurs. The option allows nodes to delay a certain period of time to save proper
information to flash. The default value is 0, which means information will be stored immediately once
there are updates.
Range:

• from 0 to 1000000 if CONFIG_BLE_MESH_SETTINGS && CONFIG_BLE_MESH
Default value:

• 0 if CONFIG_BLE_MESH_SETTINGS && CONFIG_BLE_MESH

CONFIG_BLE_MESH_SEQ_STORE_RATE

Espressif Systems 1406
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

How often the sequence number gets updated in storage
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_SETTINGS

This value defines how often the local sequence number gets updated in persistent storage (i.e. flash).
e.g. a value of 100 means that the sequence number will be stored to flash on every 100th increment.
If the node sends messages very frequently a higher value makes more sense, whereas if the node sends
infrequently a value as low as 0 (update storage for every increment) can make sense. When the stack
gets initialized it will add sequence number to the last stored one, so that it starts off with a value that's
guaranteed to be larger than the last one used before power off.
Range:

• from 0 to 1000000 if CONFIG_BLE_MESH_SETTINGS && CONFIG_BLE_MESH
Default value:

• 0 if CONFIG_BLE_MESH_SETTINGS && CONFIG_BLE_MESH

CONFIG_BLE_MESH_RPL_STORE_TIMEOUT
Minimum frequency that the RPL gets updated in storage
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_SETTINGS

This value defines in seconds how soon the RPL (Replay Protection List) gets written to persistent storage
after a change occurs. If the node receives messages frequently, then a large value is recommended. If
the node receives messages rarely, then the value can be as low as 0 (which means the RPL is written
into the storage immediately). Note that if the node operates in a security-sensitive case, and there is a
risk of sudden power-off, then a value of 0 is strongly recommended. Otherwise, a power loss before
RPL being written into the storage may introduce message replay attacks and system security will be in
a vulnerable state.
Range:

• from 0 to 1000000 if CONFIG_BLE_MESH_SETTINGS && CONFIG_BLE_MESH
Default value:

• 0 if CONFIG_BLE_MESH_SETTINGS && CONFIG_BLE_MESH

CONFIG_BLE_MESH_SETTINGS_BACKWARD_COMPATIBILITY
A specific option for settings backward compatibility
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_SETTINGS

This option is created to solve the issue of failure in recovering node information after mesh stack up-
dates. In the old version mesh stack, there is no key of "mesh/role" in nvs. In the new version mesh
stack, key of "mesh/role" is added in nvs, recovering node information needs to check "mesh/role" key
in nvs and implements selective recovery of mesh node information. Therefore, there may be failure in
recovering node information during node restarting after OTA.
The new version mesh stack adds the option of "mesh/role" because we have added the support of storing
Provisioner information, while the old version only supports storing node information.
If users are updating their nodes from old version to new version, we recommend enabling this option,
so that system could set the flag in advance before recovering node information and make sure the node
information recovering could work as expected.
Default value:

• No (disabled) if CONFIG_BLE_MESH_NODE && CONFIG_BLE_MESH_SETTINGS &&
CONFIG_BLE_MESH

CONFIG_BLE_MESH_SPECIFIC_PARTITION
Use a specific NVS partition for BLE Mesh
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_SETTINGS

Espressif Systems 1407
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

When selected, the mesh stack will use a specified NVS partition instead of default NVS partition. Note
that the specified partition must be registered with NVS using nvs_flash_init_partition() API, and the
partition must exists in the csv file. When Provisioner needs to store a large amount of nodes' information
in the flash (e.g. more than 20), this option is recommended to be enabled.
Default value:

• No (disabled) if CONFIG_BLE_MESH_SETTINGS && CONFIG_BLE_MESH

CONFIG_BLE_MESH_PARTITION_NAME
Name of the NVS partition for BLE Mesh
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_SETTINGS > CON-
FIG_BLE_MESH_SPECIFIC_PARTITION

This value defines the name of the specified NVS partition used by the mesh stack.
Default value:

• "ble_mesh" if CONFIG_BLE_MESH_SPECIFIC_PARTITION && CON-
FIG_BLE_MESH_SETTINGS && CONFIG_BLE_MESH

CONFIG_BLE_MESH_USE_MULTIPLE_NAMESPACE
Support using multiple NVS namespaces by Provisioner
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_SETTINGS

When selected, Provisioner can use different NVS namespaces to store different instances of mesh in-
formation. For example, if in the first room, Provisioner uses NetKey A, AppKey A and provisions
three devices, these information will be treated as mesh information instance A. When the Provisioner
moves to the second room, it uses NetKey B, AppKey B and provisions two devices, then the informa-
tion will be treated as mesh information instance B. Here instance A and instance B will be stored in
different namespaces. With this option enabled, Provisioner needs to use specific functions to open the
corresponding NVS namespace, restore the mesh information, release the mesh information or erase the
mesh information.
Default value:

• No (disabled) if CONFIG_BLE_MESH_PROVISIONER && CON-
FIG_BLE_MESH_SETTINGS && CONFIG_BLE_MESH

CONFIG_BLE_MESH_MAX_NVS_NAMESPACE
Maximum number of NVS namespaces
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_SETTINGS > CON-
FIG_BLE_MESH_USE_MULTIPLE_NAMESPACE

This option specifies the maximum NVS namespaces supported by Provisioner.
Range:

• from 1 to 255 if CONFIG_BLE_MESH_USE_MULTIPLE_NAMESPACE && CON-
FIG_BLE_MESH_SETTINGS && CONFIG_BLE_MESH

Default value:
• 2 if CONFIG_BLE_MESH_USE_MULTIPLE_NAMESPACE && CON-

FIG_BLE_MESH_SETTINGS && CONFIG_BLE_MESH

CONFIG_BLE_MESH_SUBNET_COUNT
Maximum number of mesh subnets per network
Found in: Component config > CONFIG_BLE_MESH

Espressif Systems 1408
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This option specifies how many subnets a Mesh network can have at the same time. Indeed, this value
decides the number of the network keys which can be owned by a node.
Range:

• from 1 to 4096 if CONFIG_BLE_MESH
Default value:

• 3 if CONFIG_BLE_MESH

CONFIG_BLE_MESH_APP_KEY_COUNT
Maximum number of application keys per network
Found in: Component config > CONFIG_BLE_MESH

This option specifies how many application keys the device can store per network. Indeed, this value
decides the number of the application keys which can be owned by a node.
Range:

• from 1 to 4096 if CONFIG_BLE_MESH
Default value:

• 3 if CONFIG_BLE_MESH

CONFIG_BLE_MESH_MODEL_KEY_COUNT
Maximum number of application keys per model
Found in: Component config > CONFIG_BLE_MESH

This option specifies the maximum number of application keys to which each model can be bound.
Range:

• from 1 to 4096 if CONFIG_BLE_MESH
Default value:

• 3 if CONFIG_BLE_MESH

CONFIG_BLE_MESH_MODEL_GROUP_COUNT
Maximum number of group address subscriptions per model
Found in: Component config > CONFIG_BLE_MESH

This option specifies the maximum number of addresses to which each model can be subscribed.
Range:

• from 1 to 4096 if CONFIG_BLE_MESH
Default value:

• 3 if CONFIG_BLE_MESH

CONFIG_BLE_MESH_LABEL_COUNT
Maximum number of Label UUIDs used for Virtual Addresses
Found in: Component config > CONFIG_BLE_MESH

This option specifies how many Label UUIDs can be stored. Indeed, this value decides the number of
the Virtual Addresses can be supported by a node.
Range:

• from 0 to 4096 if CONFIG_BLE_MESH
Default value:

• 3 if CONFIG_BLE_MESH

Espressif Systems 1409
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_CRPL
Maximum capacity of the replay protection list
Found in: Component config > CONFIG_BLE_MESH

This option specifies themaximum capacity of the replay protection list. It is similar to Networkmessage
cache size, but has a different purpose. The replay protection list is used to prevent a node from replay
attack, which will store the source address and sequence number of the received mesh messages. For
Provisioner, the replay protection list size should not be smaller than the maximum number of nodes
whose information can be stored. And the element number of each node should also be taken into
consideration. For example, if Provisioner can provision up to 20 nodes and each node contains two
elements, then the replay protection list size of Provisioner should be at least 40.
Range:

• from 2 to 65535 if CONFIG_BLE_MESH
Default value:

• 10 if CONFIG_BLE_MESH

CONFIG_BLE_MESH_NOT_RELAY_REPLAY_MSG
Not relay replayed messages in a mesh network
Found in: Component config > CONFIG_BLE_MESH

There may be many expired messages in a complex mesh network that would be considered replayed
messages. Enable this option will refuse to relay such messages, which could help to reduce invalid
packets in the mesh network. However, it should be noted that enabling this option may result in packet
loss in certain environments. Therefore, users need to decide whether to enable this option according to
the actual usage situation.
Default value:

• No (disabled) if CONFIG_BLE_MESH_EXPERIMENTAL && CONFIG_BLE_MESH

CONFIG_BLE_MESH_MSG_CACHE_SIZE
Network message cache size
Found in: Component config > CONFIG_BLE_MESH

Number of messages that are cached for the network. This helps prevent unnecessary decryption opera-
tions and unnecessary relays. This option is similar to Replay protection list, but has a different purpose.
A node is not required to cache the entire Network PDU and may cache only part of it for tracking, such
as values for SRC/SEQ or others.
Range:

• from 2 to 65535 if CONFIG_BLE_MESH
Default value:

• 10 if CONFIG_BLE_MESH

CONFIG_BLE_MESH_ADV_BUF_COUNT
Number of advertising buffers
Found in: Component config > CONFIG_BLE_MESH

Number of advertising buffers available. The transport layer reserves ADV_BUF_COUNT - 3 buffers
for outgoing segments. The maximum outgoing SDU size is 12 times this value (out of which 4 or 8
bytes are used for the Transport Layer MIC). For example, 5 segments means the maximum SDU size
is 60 bytes, which leaves 56 bytes for application layer data using a 4-byte MIC, or 52 bytes using an
8-byte MIC.
Range:

• from 6 to 256 if CONFIG_BLE_MESH

Espressif Systems 1410
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• 60 if CONFIG_BLE_MESH

CONFIG_BLE_MESH_IVU_DIVIDER
Divider for IV Update state refresh timer
Found in: Component config > CONFIG_BLE_MESH

When the IV Update state enters Normal operation or IV Update in Progress, we need to keep track of
how many hours has passed in the state, since the specification requires us to remain in the state at least
for 96 hours (Update in Progress has an additional upper limit of 144 hours).
In order to fulfill the above requirement, even if the node might be powered off once in a while, we need
to store persistently how many hours the node has been in the state. This doesn't necessarily need to
happen every hour (thanks to the flexible duration range). The exact cadence will depend a lot on the
ways that the node will be used and what kind of power source it has.
Since there is no single optimal answer, this configuration option allows specifying a divider, i.e. how
many intervals the 96 hour minimum gets split into. After each interval the duration that the node has
been in the current state gets stored to flash. E.g. the default value of 4 means that the state is saved
every 24 hours (96 / 4).
Range:

• from 2 to 96 if CONFIG_BLE_MESH
Default value:

• 4 if CONFIG_BLE_MESH

CONFIG_BLE_MESH_IVU_RECOVERY_IVI
Recovery the IV index when the latest whole IV update procedure is missed
Found in: Component config > CONFIG_BLE_MESH

According to Section 3.10.5 of Mesh Specification v1.0.1. If a node in Normal Operation receives a
Secure Network beacon with an IV index equal to the last known IV index+1 and the IV Update Flag
set to 0, the node may update its IV without going to the IV Update in Progress state, or it may initiate
an IV Index Recovery procedure (Section 3.10.6), or it may ignore the Secure Network beacon. The
node makes the choice depending on the time since last IV update and the likelihood that the node has
missed the Secure Network beacons with the IV update Flag. When the above situation is encountered,
this option can be used to decide whether to perform the IV index recovery procedure.
Default value:

• No (disabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_TX_SEG_MSG_COUNT
Maximum number of simultaneous outgoing segmented messages
Found in: Component config > CONFIG_BLE_MESH

Maximum number of simultaneous outgoing multi-segment and/or reliable messages. The default value
is 1, which means the device can only send one segmented message at a time. And if another segmented
message is going to be sent, it should wait for the completion of the previous one. If users are going to
send multiple segmented messages at the same time, this value should be configured properly.
Range:

• from 1 to if CONFIG_BLE_MESH
Default value:

• 1 if CONFIG_BLE_MESH

Espressif Systems 1411
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_RX_SEG_MSG_COUNT
Maximum number of simultaneous incoming segmented messages
Found in: Component config > CONFIG_BLE_MESH

Maximum number of simultaneous incoming multi-segment and/or reliable messages. The default value
is 1, which means the device can only receive one segmented message at a time. And if another seg-
mented message is going to be received, it should wait for the completion of the previous one. If users
are going to receive multiple segmented messages at the same time, this value should be configured
properly.
Range:

• from 1 to 255 if CONFIG_BLE_MESH
Default value:

• 1 if CONFIG_BLE_MESH

CONFIG_BLE_MESH_RX_SDU_MAX
Maximum incoming Upper Transport Access PDU length
Found in: Component config > CONFIG_BLE_MESH

Maximum incoming Upper Transport Access PDU length. Leave this to the default value, unless you
really need to optimize memory usage.
Range:

• from 36 to 384 if CONFIG_BLE_MESH
Default value:

• 384 if CONFIG_BLE_MESH

CONFIG_BLE_MESH_TX_SEG_MAX
Maximum number of segments in outgoing messages
Found in: Component config > CONFIG_BLE_MESH

Maximum number of segments supported for outgoing messages. This value should typically be fine-
tuned based on what models the local node supports, i.e. what's the largest message payload that the
node needs to be able to send. This value affects memory and call stack consumption, which is why the
default is lower than the maximum that the specification would allow (32 segments).
The maximum outgoing SDU size is 12 times this number (out of which 4 or 8 bytes is used for the
Transport Layer MIC). For example, 5 segments means the maximum SDU size is 60 bytes, which
leaves 56 bytes for application layer data using a 4-byte MIC and 52 bytes using an 8-byte MIC.
Be sure to specify a sufficient number of advertising buffers when setting this option to a higher value.
There must be at least three more advertising buffers (BLE_MESH_ADV_BUF_COUNT) as there are
outgoing segments.
Range:

• from 2 to 32 if CONFIG_BLE_MESH
Default value:

• 32 if CONFIG_BLE_MESH

CONFIG_BLE_MESH_RELAY
Relay support
Found in: Component config > CONFIG_BLE_MESH

Support for acting as aMesh Relay Node. Enabling this option will allow a node to support the Relay fea-
ture, and the Relay feature can still be enabled or disabled by proper configuration messages. Disabling
this option will let a node not support the Relay feature.

Espressif Systems 1412
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• Yes (enabled) if CONFIG_BLE_MESH_NODE && CONFIG_BLE_MESH

CONFIG_BLE_MESH_RELAY_ADV_BUF
Use separate advertising buffers for relay packets
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_RELAY

When selected, self-send packets will be put in a high-priority queue and relay packets will be put in a
low-priority queue.
Default value:

• No (disabled) if CONFIG_BLE_MESH_RELAY && CONFIG_BLE_MESH

CONFIG_BLE_MESH_RELAY_ADV_BUF_COUNT
Number of advertising buffers for relay packets
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_RELAY > CON-
FIG_BLE_MESH_RELAY_ADV_BUF

Number of advertising buffers for relay packets available.
Range:

• from 6 to 256 if CONFIG_BLE_MESH_RELAY_ADV_BUF && CON-
FIG_BLE_MESH_RELAY && CONFIG_BLE_MESH

Default value:
• 60 if CONFIG_BLE_MESH_RELAY_ADV_BUF && CONFIG_BLE_MESH_RELAY &&

CONFIG_BLE_MESH

CONFIG_BLE_MESH_LOW_POWER
Support for Low Power features
Found in: Component config > CONFIG_BLE_MESH

Enable this option to operate as a Low Power Node. If low power consumption is required by a node,
this option should be enabled. And once the node enters the mesh network, it will try to find a Friend
node and establish a friendship.

CONFIG_BLE_MESH_LPN_ESTABLISHMENT
Perform Friendship establishment using low power
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

Perform the Friendship establishment using low power with the help of a reduced scan duty cycle. The
downside of this is that the node may miss out on messages intended for it until it has successfully set up
Friendship with a Friend node. When this option is enabled, the node will stop scanning for a period of
time after a Friend Request or Friend Poll is sent, so as to reduce more power consumption.
Default value:

• No (disabled) if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_LPN_AUTO
Automatically start looking for Friend nodes once provisioned
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

Once provisioned, automatically enable LPN functionality and start looking for Friend nodes. If this
option is disabled LPN mode needs to be manually enabled by calling bt_mesh_lpn_set(true). When an

Espressif Systems 1413
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

unprovisioned device is provisioned successfully and becomes a node, enabling this option will trigger
the node starts to send Friend Request at a certain period until it finds a proper Friend node.
Default value:

• No (disabled) if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_LPN_AUTO_TIMEOUT
Time from last received message before going to LPN mode
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER > CON-
FIG_BLE_MESH_LPN_AUTO

Time in seconds from the last received message, that the node waits out before starting to look for Friend
nodes.
Range:

• from 0 to 3600 if CONFIG_BLE_MESH_LPN_AUTO && CON-
FIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

Default value:
• 15 if CONFIG_BLE_MESH_LPN_AUTO && CONFIG_BLE_MESH_LOW_POWER &&

CONFIG_BLE_MESH

CONFIG_BLE_MESH_LPN_RETRY_TIMEOUT
Retry timeout for Friend requests
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

Time in seconds between Friend Requests, if a previous Friend Request did not yield any acceptable
Friend Offers.
Range:

• from 1 to 3600 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH
Default value:

• 6 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_LPN_RSSI_FACTOR
RSSIFactor, used in Friend Offer Delay calculation
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

The contribution of the RSSI, measured by the Friend node, used in Friend Offer Delay calculations. 0
= 1, 1 = 1.5, 2 = 2, 3 = 2.5. RSSIFactor, one of the parameters carried by Friend Request sent by Low
Power node, which is used to calculate the Friend Offer Delay.
Range:

• from 0 to 3 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH
Default value:

• 0 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_LPN_RECV_WIN_FACTOR
ReceiveWindowFactor, used in Friend Offer Delay calculation
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

The contribution of the supported Receive Window used in Friend Offer Delay calculations. 0 = 1, 1
= 1.5, 2 = 2, 3 = 2.5. ReceiveWindowFactor, one of the parameters carried by Friend Request sent by
Low Power node, which is used to calculate the Friend Offer Delay.
Range:

• from 0 to 3 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

Espressif Systems 1414
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• 0 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_LPN_MIN_QUEUE_SIZE
Minimum size of the acceptable friend queue (MinQueueSizeLog)
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

The MinQueueSizeLog field is defined as log_2(N), where N is the minimum number of maximum size
Lower Transport PDUs that the Friend node can store in its Friend Queue. As an example, MinQueue-
SizeLog value 1 gives N = 2, and value 7 gives N = 128.
Range:

• from 1 to 7 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH
Default value:

• 1 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_LPN_RECV_DELAY
Receive delay requested by the local node
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

The ReceiveDelay is the time between the LowPower node sending a request and listening for a response.
This delay allows the Friend node time to prepare the response. The value is in units of milliseconds.
Range:

• from 10 to 255 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH
Default value:

• 100 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_LPN_POLL_TIMEOUT
The value of the PollTimeout timer
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

PollTimeout timer is used to measure time between two consecutive requests sent by a Low Power node.
If no requests are received the Friend node before the PollTimeout timer expires, then the friendship
is considered terminated. The value is in units of 100 milliseconds, so e.g. a value of 300 means 30
seconds. The smaller the value, the faster the Low Power node tries to get messages from corresponding
Friend node and vice versa.
Range:

• from 10 to 244735 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH
Default value:

• 300 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_LPN_INIT_POLL_TIMEOUT
The starting value of the PollTimeout timer
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

The initial value of the PollTimeout timer when Friendship is to be established for the first time. After
this, the timeout gradually grows toward the actual PollTimeout, doubling in value for each iteration.
The value is in units of 100 milliseconds, so e.g. a value of 300 means 30 seconds.
Range:

• from 10 to if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH
Default value:

• if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

Espressif Systems 1415
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_LPN_SCAN_LATENCY
Latency for enabling scanning
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

Latency (in milliseconds) is the time it takes to enable scanning. In practice, it means how much time in
advance of the Receive Window, the request to enable scanning is made.
Range:

• from 0 to 50 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH
Default value:

• 10 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_LPN_GROUPS
Number of groups the LPN can subscribe to
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

Maximum number of groups to which the LPN can subscribe.
Range:

• from 0 to 16384 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH
Default value:

• 8 if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_LPN_SUB_ALL_NODES_ADDR
Automatically subscribe all nodes address
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_LOW_POWER

Automatically subscribe all nodes address when friendship established.
Default value:

• No (disabled) if CONFIG_BLE_MESH_LOW_POWER && CONFIG_BLE_MESH

CONFIG_BLE_MESH_FRIEND
Support for Friend feature
Found in: Component config > CONFIG_BLE_MESH

Enable this option to be able to act as a Friend Node.

CONFIG_BLE_MESH_FRIEND_RECV_WIN
Friend Receive Window
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_FRIEND

Receive Window in milliseconds supported by the Friend node.
Range:

• from 1 to 255 if CONFIG_BLE_MESH_FRIEND && CONFIG_BLE_MESH
Default value:

• 255 if CONFIG_BLE_MESH_FRIEND && CONFIG_BLE_MESH

Espressif Systems 1416
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_FRIEND_QUEUE_SIZE
Minimum number of buffers supported per Friend Queue
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_FRIEND

Minimum number of buffers available to be stored for each local Friend Queue. This option decides the
size of each buffer which can be used by a Friend node to store messages for each Low Power node.
Range:

• from 2 to 65536 if CONFIG_BLE_MESH_FRIEND && CONFIG_BLE_MESH
Default value:

• 16 if CONFIG_BLE_MESH_FRIEND && CONFIG_BLE_MESH

CONFIG_BLE_MESH_FRIEND_SUB_LIST_SIZE
Friend Subscription List Size
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_FRIEND

Size of the Subscription List that can be supported by a Friend node for a Low Power node. And Low
Power node can send Friend Subscription List Add or Friend Subscription List Remove messages to the
Friend node to add or remove subscription addresses.
Range:

• from 0 to 1023 if CONFIG_BLE_MESH_FRIEND && CONFIG_BLE_MESH
Default value:

• 3 if CONFIG_BLE_MESH_FRIEND && CONFIG_BLE_MESH

CONFIG_BLE_MESH_FRIEND_LPN_COUNT
Number of supported LPN nodes
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_FRIEND

Number of Low Power Nodes with which a Friend can have Friendship simultaneously. A Friend node
can have friendship with multiple Low Power nodes at the same time, while a Low Power node can only
establish friendship with only one Friend node at the same time.
Range:

• from 1 to 1000 if CONFIG_BLE_MESH_FRIEND && CONFIG_BLE_MESH
Default value:

• 2 if CONFIG_BLE_MESH_FRIEND && CONFIG_BLE_MESH

CONFIG_BLE_MESH_FRIEND_SEG_RX
Number of incomplete segment lists per LPN
Found in: Component config > CONFIG_BLE_MESH > CONFIG_BLE_MESH_FRIEND

Number of incomplete segment lists tracked for each Friends' LPN. In other words, this determines from
how many elements can segmented messages destined for the Friend queue be received simultaneously.
Range:

• from 1 to 1000 if CONFIG_BLE_MESH_FRIEND && CONFIG_BLE_MESH
Default value:

• 1 if CONFIG_BLE_MESH_FRIEND && CONFIG_BLE_MESH

CONFIG_BLE_MESH_NO_LOG
Disable BLE Mesh debug logs (minimize bin size)
Found in: Component config > CONFIG_BLE_MESH

Espressif Systems 1417
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Select this to save the BLE Mesh related rodata code size. Enabling this option will disable the output
of BLE Mesh debug log.
Default value:

• No (disabled) if CONFIG_BLE_MESH && CONFIG_BLE_MESH

BLE Mesh STACK DEBUG LOG LEVEL Contains:
• CONFIG_BLE_MESH_STACK_TRACE_LEVEL

CONFIG_BLE_MESH_STACK_TRACE_LEVEL
BLE_MESH_STACK
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh STACK DEBUG LOG LEVEL

Define BLE Mesh trace level for BLE Mesh stack.
Available options:

• NONE (CONFIG_BLE_MESH_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BLE_MESH_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BLE_MESH_TRACE_LEVEL_WARNING)
• INFO (CONFIG_BLE_MESH_TRACE_LEVEL_INFO)
• DEBUG (CONFIG_BLE_MESH_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BLE_MESH_TRACE_LEVEL_VERBOSE)

BLE Mesh NET BUF DEBUG LOG LEVEL Contains:
• CONFIG_BLE_MESH_NET_BUF_TRACE_LEVEL

CONFIG_BLE_MESH_NET_BUF_TRACE_LEVEL
BLE_MESH_NET_BUF
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh NET BUF DEBUG LOG LEVEL

Define BLE Mesh trace level for BLE Mesh net buffer.
Available options:

• NONE (CONFIG_BLE_MESH_NET_BUF_TRACE_LEVEL_NONE)
• ERROR (CONFIG_BLE_MESH_NET_BUF_TRACE_LEVEL_ERROR)
• WARNING (CONFIG_BLE_MESH_NET_BUF_TRACE_LEVEL_WARNING)
• INFO (CONFIG_BLE_MESH_NET_BUF_TRACE_LEVEL_INFO)
• DEBUG (CONFIG_BLE_MESH_NET_BUF_TRACE_LEVEL_DEBUG)
• VERBOSE (CONFIG_BLE_MESH_NET_BUF_TRACE_LEVEL_VERBOSE)

CONFIG_BLE_MESH_CLIENT_MSG_TIMEOUT
Timeout(ms) for client message response
Found in: Component config > CONFIG_BLE_MESH

Timeout value used by the node to get response of the acknowledged message which is sent by the client
model. This value indicates the maximum time that a client model waits for the response of the sent
acknowledged messages. If a client model uses 0 as the timeout value when sending acknowledged
messages, then the default value will be used which is four seconds.
Range:

Espressif Systems 1418
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• from 100 to 1200000 if CONFIG_BLE_MESH
Default value:

• 4000 if CONFIG_BLE_MESH

Support for BLE Mesh Foundation models Contains:
• CONFIG_BLE_MESH_CFG_CLI
• CONFIG_BLE_MESH_HEALTH_CLI
• CONFIG_BLE_MESH_HEALTH_SRV

CONFIG_BLE_MESH_CFG_CLI
Configuration Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Foundation models

Enable support for Configuration Client model.

CONFIG_BLE_MESH_HEALTH_CLI
Health Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Foundation models

Enable support for Health Client model.

CONFIG_BLE_MESH_HEALTH_SRV
Health Server model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Foundation models

Enable support for Health Server model.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH

Support for BLE Mesh Client/Server models Contains:
• CONFIG_BLE_MESH_GENERIC_BATTERY_CLI
• CONFIG_BLE_MESH_GENERIC_DEF_TRANS_TIME_CLI
• CONFIG_BLE_MESH_GENERIC_LEVEL_CLI
• CONFIG_BLE_MESH_GENERIC_LOCATION_CLI
• CONFIG_BLE_MESH_GENERIC_ONOFF_CLI
• CONFIG_BLE_MESH_GENERIC_POWER_LEVEL_CLI
• CONFIG_BLE_MESH_GENERIC_POWER_ONOFF_CLI
• CONFIG_BLE_MESH_GENERIC_PROPERTY_CLI
• CONFIG_BLE_MESH_GENERIC_SERVER
• CONFIG_BLE_MESH_LIGHT_CTL_CLI
• CONFIG_BLE_MESH_LIGHT_HSL_CLI
• CONFIG_BLE_MESH_LIGHT_LC_CLI
• CONFIG_BLE_MESH_LIGHT_LIGHTNESS_CLI
• CONFIG_BLE_MESH_LIGHT_XYL_CLI
• CONFIG_BLE_MESH_LIGHTING_SERVER
• CONFIG_BLE_MESH_SCENE_CLI
• CONFIG_BLE_MESH_SCHEDULER_CLI
• CONFIG_BLE_MESH_SENSOR_CLI
• CONFIG_BLE_MESH_SENSOR_SERVER
• CONFIG_BLE_MESH_TIME_SCENE_SERVER
• CONFIG_BLE_MESH_TIME_CLI

Espressif Systems 1419
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_GENERIC_ONOFF_CLI
Generic OnOff Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Generic OnOff Client model.

CONFIG_BLE_MESH_GENERIC_LEVEL_CLI
Generic Level Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Generic Level Client model.

CONFIG_BLE_MESH_GENERIC_DEF_TRANS_TIME_CLI
Generic Default Transition Time Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Generic Default Transition Time Client model.

CONFIG_BLE_MESH_GENERIC_POWER_ONOFF_CLI
Generic Power OnOff Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Generic Power OnOff Client model.

CONFIG_BLE_MESH_GENERIC_POWER_LEVEL_CLI
Generic Power Level Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Generic Power Level Client model.

CONFIG_BLE_MESH_GENERIC_BATTERY_CLI
Generic Battery Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Generic Battery Client model.

CONFIG_BLE_MESH_GENERIC_LOCATION_CLI
Generic Location Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Generic Location Client model.

CONFIG_BLE_MESH_GENERIC_PROPERTY_CLI
Generic Property Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Generic Property Client model.

Espressif Systems 1420
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_SENSOR_CLI
Sensor Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Sensor Client model.

CONFIG_BLE_MESH_TIME_CLI
Time Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Time Client model.

CONFIG_BLE_MESH_SCENE_CLI
Scene Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Scene Client model.

CONFIG_BLE_MESH_SCHEDULER_CLI
Scheduler Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Scheduler Client model.

CONFIG_BLE_MESH_LIGHT_LIGHTNESS_CLI
Light Lightness Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Light Lightness Client model.

CONFIG_BLE_MESH_LIGHT_CTL_CLI
Light CTL Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Light CTL Client model.

CONFIG_BLE_MESH_LIGHT_HSL_CLI
Light HSL Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Light HSL Client model.

CONFIG_BLE_MESH_LIGHT_XYL_CLI
Light XYL Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Light XYL Client model.

Espressif Systems 1421
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_LIGHT_LC_CLI
Light LC Client model
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Light LC Client model.

CONFIG_BLE_MESH_GENERIC_SERVER
Generic server models
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Generic server models.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_SENSOR_SERVER
Sensor server models
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Sensor server models.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_TIME_SCENE_SERVER
Time and Scenes server models
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Time and Scenes server models.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_LIGHTING_SERVER
Lighting server models
Found in: Component config > CONFIG_BLE_MESH > Support for BLE Mesh Client/Server models

Enable support for Lighting server models.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_IV_UPDATE_TEST
Test the IV Update Procedure
Found in: Component config > CONFIG_BLE_MESH

This option removes the 96 hour limit of the IV Update Procedure and lets the state to be changed at
any time. If IV Update test mode is going to be used, this option should be enabled.
Default value:

• No (disabled) if CONFIG_BLE_MESH

Espressif Systems 1422
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

BLE Mesh specific test option Contains:
• CONFIG_BLE_MESH_DEBUG
• CONFIG_BLE_MESH_SHELL
• CONFIG_BLE_MESH_BQB_TEST
• CONFIG_BLE_MESH_SELF_TEST
• CONFIG_BLE_MESH_TEST_AUTO_ENTER_NETWORK
• CONFIG_BLE_MESH_TEST_USE_WHITE_LIST

CONFIG_BLE_MESH_SELF_TEST
Perform BLE Mesh self-tests
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option

This option adds extra self-tests which are run every time BLE Mesh networking is initialized.
Default value:

• No (disabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_BQB_TEST
Enable BLE Mesh specific internal test
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option

This option is used to enable some internal functions for auto-pts test.
Default value:

• No (disabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_TEST_AUTO_ENTER_NETWORK
Unprovisioned device enters mesh network automatically
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option

With this option enabled, an unprovisioned device can automatically enters mesh network using a specific
test function without the pro- visioning procedure. And on the Provisioner side, a test function needs to
be invoked to add the node information into the mesh stack.
Default value:

• Yes (enabled) if CONFIG_BLE_MESH_SELF_TEST && CONFIG_BLE_MESH

CONFIG_BLE_MESH_TEST_USE_WHITE_LIST
Use white list to filter mesh advertising packets
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option

With this option enabled, users can use white list to filter mesh advertising packets while scanning.
Default value:

• No (disabled) if CONFIG_BLE_MESH_SELF_TEST && CONFIG_BLE_MESH

CONFIG_BLE_MESH_SHELL
Enable BLE Mesh shell
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option

Activate shell module that provides BLE Mesh commands to the console.
Default value:

• No (disabled) if CONFIG_BLE_MESH

Espressif Systems 1423
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_DEBUG
Enable BLE Mesh debug logs
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option

Enable debug logs for the BLE Mesh functionality.
Default value:

• No (disabled) if CONFIG_BLE_MESH

CONFIG_BLE_MESH_DEBUG_NET
Network layer debug
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option > CON-
FIG_BLE_MESH_DEBUG

Enable Network layer debug logs for the BLE Mesh functionality.

CONFIG_BLE_MESH_DEBUG_TRANS
Transport layer debug
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option > CON-
FIG_BLE_MESH_DEBUG

Enable Transport layer debug logs for the BLE Mesh functionality.

CONFIG_BLE_MESH_DEBUG_BEACON
Beacon debug
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option > CON-
FIG_BLE_MESH_DEBUG

Enable Beacon-related debug logs for the BLE Mesh functionality.

CONFIG_BLE_MESH_DEBUG_CRYPTO
Crypto debug
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option > CON-
FIG_BLE_MESH_DEBUG

Enable cryptographic debug logs for the BLE Mesh functionality.

CONFIG_BLE_MESH_DEBUG_PROV
Provisioning debug
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option > CON-
FIG_BLE_MESH_DEBUG

Enable Provisioning debug logs for the BLE Mesh functionality.

CONFIG_BLE_MESH_DEBUG_ACCESS
Access layer debug
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option > CON-
FIG_BLE_MESH_DEBUG

Enable Access layer debug logs for the BLE Mesh functionality.

Espressif Systems 1424
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_BLE_MESH_DEBUG_MODEL
Foundation model debug
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option > CON-
FIG_BLE_MESH_DEBUG

Enable Foundation Models debug logs for the BLE Mesh functionality.

CONFIG_BLE_MESH_DEBUG_ADV
Advertising debug
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option > CON-
FIG_BLE_MESH_DEBUG

Enable advertising debug logs for the BLE Mesh functionality.

CONFIG_BLE_MESH_DEBUG_LOW_POWER
Low Power debug
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option > CON-
FIG_BLE_MESH_DEBUG

Enable Low Power debug logs for the BLE Mesh functionality.

CONFIG_BLE_MESH_DEBUG_FRIEND
Friend debug
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option > CON-
FIG_BLE_MESH_DEBUG

Enable Friend debug logs for the BLE Mesh functionality.

CONFIG_BLE_MESH_DEBUG_PROXY
Proxy debug
Found in: Component config > CONFIG_BLE_MESH > BLE Mesh specific test option > CON-
FIG_BLE_MESH_DEBUG

Enable Proxy protocol debug logs for the BLE Mesh functionality.

CONFIG_BLE_MESH_EXPERIMENTAL
Make BLE Mesh experimental features visible
Found in: Component config > CONFIG_BLE_MESH

Make BLE Mesh Experimental features visible. Experimental features list: - CON-
FIG_BLE_MESH_NOT_RELAY_REPLAY_MSG
Default value:

• No (disabled) if CONFIG_BLE_MESH

Driver Configurations Contains:
• Analog Comparator Configuration
• DAC Configuration
• GPIO Configuration
• GPTimer Configuration
• I2S Configuration

Espressif Systems 1425
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Legacy ADC Configuration
• MCPWM Configuration
• Parallel IO Configuration
• PCNT Configuration
• RMT Configuration
• Sigma Delta Modulator Configuration
• SPI Configuration
• Temperature sensor Configuration
• TWAI Configuration
• UART Configuration
• USB Serial/JTAG Configuration

Legacy ADC Configuration Contains:
• CONFIG_ADC_DISABLE_DAC
• Legacy ADC Calibration Configuration
• CONFIG_ADC_SUPPRESS_DEPRECATE_WARN

CONFIG_ADC_DISABLE_DAC
Disable DAC when ADC2 is used on GPIO 25 and 26
Found in: Component config > Driver Configurations > Legacy ADC Configuration

If this is set, the ADC2 driver will disable the output of the DAC corresponding to the specified channel.
This is the default value.
For testing, disable this option so that we can measure the output of DAC by internal ADC.
Default value:

• Yes (enabled) if SOC_DAC_SUPPORTED

CONFIG_ADC_SUPPRESS_DEPRECATE_WARN
Suppress legacy driver deprecated warning
Found in: Component config > Driver Configurations > Legacy ADC Configuration

Wether to suppress the deprecation warnings when using legacy adc driver (driver/adc.h). If you want
to continue using the legacy driver, and don't want to see related deprecation warnings, you can enable
this option.
Default value:

• No (disabled)

Legacy ADC Calibration Configuration Contains:
• CONFIG_ADC_CALI_SUPPRESS_DEPRECATE_WARN

CONFIG_ADC_CALI_SUPPRESS_DEPRECATE_WARN
Suppress legacy driver deprecated warning
Found in: Component config > Driver Configurations > Legacy ADC Configuration > Legacy ADC Cali-
bration Configuration

Wether to suppress the deprecation warnings when using legacy adc calibration driver (esp_adc_cal.h).
If you want to continue using the legacy driver, and don't want to see related deprecation warnings, you
can enable this option.
Default value:

• No (disabled)

Espressif Systems 1426
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SPI Configuration Contains:
• CONFIG_SPI_MASTER_ISR_IN_IRAM
• CONFIG_SPI_SLAVE_ISR_IN_IRAM
• CONFIG_SPI_MASTER_IN_IRAM
• CONFIG_SPI_SLAVE_IN_IRAM

CONFIG_SPI_MASTER_IN_IRAM
Place transmitting functions of SPI master into IRAM
Found in: Component config > Driver Configurations > SPI Configuration

Normally only the ISR of SPI master is placed in the IRAM, so that it can work without the flash
when interrupt is triggered. For other functions, there's some possibility that the flash cache miss when
running inside and out of SPI functions, which may increase the interval of SPI transactions. Enable
this to put queue_trans, get_trans_result and transmit functions into the IRAM to
avoid possible cache miss.
This configuration won't be available if CONFIG_FREERTOS_PLACE_FUNCTIONS_INTO_FLASH is
enabled.
During unit test, this is enabled to measure the ideal case of api.

CONFIG_SPI_MASTER_ISR_IN_IRAM
Place SPI master ISR function into IRAM
Found in: Component config > Driver Configurations > SPI Configuration

Place the SPI master ISR in to IRAM to avoid possible cache miss.
Enabling this configuration is possible only when HEAP_PLACE_FUNCTION_INTO_FLASH is dis-
abled since the spi master uses can allocate transactions buffers into DMA memory section using the
heap component API that ipso facto has to be placed in IRAM.
Also you can forbid the ISR being disabled during flash writing access, by add
ESP_INTR_FLAG_IRAM when initializing the driver.

CONFIG_SPI_SLAVE_IN_IRAM
Place transmitting functions of SPI slave into IRAM
Found in: Component config > Driver Configurations > SPI Configuration

Normally only the ISR of SPI slave is placed in the IRAM, so that it can work without the flash when
interrupt is triggered. For other functions, there's some possibility that the flash cache miss when running
inside and out of SPI functions, which may increase the interval of SPI transactions. Enable this to
put queue_trans, get_trans_result and transmit functions into the IRAM to avoid
possible cache miss.
Default value:

• No (disabled)

CONFIG_SPI_SLAVE_ISR_IN_IRAM
Place SPI slave ISR function into IRAM
Found in: Component config > Driver Configurations > SPI Configuration

Place the SPI slave ISR in to IRAM to avoid possible cache miss.
Also you can forbid the ISR being disabled during flash writing access, by add
ESP_INTR_FLAG_IRAM when initializing the driver.

Espressif Systems 1427
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• Yes (enabled)

TWAI Configuration Contains:
• CONFIG_TWAI_ISR_IN_IRAM

CONFIG_TWAI_ISR_IN_IRAM
Place TWAI ISR function into IRAM
Found in: Component config > Driver Configurations > TWAI Configuration

Place the TWAI ISR in to IRAM. This will allow the ISR to avoid cache misses, and also be able to run
whilst the cache is disabled (such as when writing to SPI Flash). Note that if this option is enabled: -
Users should also set the ESP_INTR_FLAG_IRAM in the driver configuration structure when installing
the driver (see docs for specifics). - Alert logging (i.e., setting of the TWAI_ALERT_AND_LOG flag)
will have no effect.
Default value:

• No (disabled)

Temperature sensor Configuration Contains:
• CONFIG_TEMP_SENSOR_ENABLE_DEBUG_LOG
• CONFIG_TEMP_SENSOR_SUPPRESS_DEPRECATE_WARN
• CONFIG_TEMP_SENSOR_ISR_IRAM_SAFE

CONFIG_TEMP_SENSOR_SUPPRESS_DEPRECATE_WARN
Suppress legacy driver deprecated warning
Found in: Component config > Driver Configurations > Temperature sensor Configuration

Wether to suppress the deprecation warnings when using legacy temperature sensor driver
(driver/temp_sensor.h). If you want to continue using the legacy driver, and don't want to see related
deprecation warnings, you can enable this option.
Default value:

• No (disabled)

CONFIG_TEMP_SENSOR_ENABLE_DEBUG_LOG
Enable debug log
Found in: Component config > Driver Configurations > Temperature sensor Configuration

Wether to enable the debug log message for temperature sensor driver. Note that, this option only
controls the temperature sensor driver log, won't affect other drivers.
Default value:

• No (disabled)

CONFIG_TEMP_SENSOR_ISR_IRAM_SAFE
Temperature sensor ISR IRAM-Safe
Found in: Component config > Driver Configurations > Temperature sensor Configuration

Ensure the Temperature Sensor interrupt is IRAM-Safe by allowing the interrupt handler to be executable
when the cache is disabled (e.g. SPI Flash write).
Default value:

Espressif Systems 1428
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• No (disabled)

UART Configuration Contains:
• CONFIG_UART_ISR_IN_IRAM

CONFIG_UART_ISR_IN_IRAM
Place UART ISR function into IRAM
Found in: Component config > Driver Configurations > UART Configuration

If this option is not selected, UART interrupt will be disabled for a long time and may cause data lost
when doing spi flash operation.

GPIO Configuration Contains:
• CONFIG_GPIO_CTRL_FUNC_IN_IRAM

CONFIG_GPIO_CTRL_FUNC_IN_IRAM
Place GPIO control functions into IRAM
Found in: Component config > Driver Configurations > GPIO Configuration

Place GPIO control functions (like intr_disable/set_level) into IRAM, so that these functions can be
IRAM-safe and able to be called in the other IRAM interrupt context.
Default value:

• No (disabled)

Sigma Delta Modulator Configuration Contains:
• CONFIG_SDM_ENABLE_DEBUG_LOG
• CONFIG_SDM_CTRL_FUNC_IN_IRAM
• CONFIG_SDM_SUPPRESS_DEPRECATE_WARN

CONFIG_SDM_CTRL_FUNC_IN_IRAM
Place SDM control functions into IRAM
Found in: Component config > Driver Configurations > Sigma Delta Modulator Configuration

Place SDM control functions (like set_duty) into IRAM, so that these functions can be IRAM-safe
and able to be called in the other IRAM interrupt context. Enabling this option can improve driver
performance as well.
Default value:

• No (disabled)

CONFIG_SDM_SUPPRESS_DEPRECATE_WARN
Suppress legacy driver deprecated warning
Found in: Component config > Driver Configurations > Sigma Delta Modulator Configuration

Wether to suppress the deprecation warnings when using legacy sigma delta driver. If you want to
continue using the legacy driver, and don't want to see related deprecation warnings, you can enable this
option.
Default value:

• No (disabled)

Espressif Systems 1429
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_SDM_ENABLE_DEBUG_LOG
Enable debug log
Found in: Component config > Driver Configurations > Sigma Delta Modulator Configuration

Wether to enable the debug log message for SDM driver. Note that, this option only controls the SDM
driver log, won't affect other drivers.
Default value:

• No (disabled)

Analog Comparator Configuration Contains:
• CONFIG_ANA_CMPR_ISR_IRAM_SAFE
• CONFIG_ANA_CMPR_ENABLE_DEBUG_LOG
• CONFIG_ANA_CMPR_CTRL_FUNC_IN_IRAM

CONFIG_ANA_CMPR_ISR_IRAM_SAFE
Analog comparator ISR IRAM-Safe
Found in: Component config > Driver Configurations > Analog Comparator Configuration

Ensure theAnalog Comparator interrupt is IRAM-Safe by allowing the interrupt handler to be executable
when the cache is disabled (e.g. SPI Flash write).
Default value:

• No (disabled) if SOC_ANA_CMPR_SUPPORTED

CONFIG_ANA_CMPR_CTRL_FUNC_IN_IRAM
Place Analog Comparator control functions into IRAM
Found in: Component config > Driver Configurations > Analog Comparator Configuration

Place Analog Comparator control functions (like ana_cmpr_set_internal_reference) into IRAM, so that
these functions can be IRAM-safe and able to be called in an IRAM interrupt context. Enabling this
option can improve driver performance as well.
Default value:

• No (disabled) if SOC_ANA_CMPR_SUPPORTED

CONFIG_ANA_CMPR_ENABLE_DEBUG_LOG
Enable debug log
Found in: Component config > Driver Configurations > Analog Comparator Configuration

Wether to enable the debug log message for Analog Comparator driver. Note that, this option only
controls the Analog Comparator driver log, won't affect other drivers.
Default value:

• No (disabled) if SOC_ANA_CMPR_SUPPORTED

GPTimer Configuration Contains:
• CONFIG_GPTIMER_ENABLE_DEBUG_LOG
• CONFIG_GPTIMER_ISR_IRAM_SAFE
• CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM
• CONFIG_GPTIMER_ISR_HANDLER_IN_IRAM
• CONFIG_GPTIMER_SUPPRESS_DEPRECATE_WARN

Espressif Systems 1430
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_GPTIMER_ISR_HANDLER_IN_IRAM
Place GPTimer ISR handler into IRAM
Found in: Component config > Driver Configurations > GPTimer Configuration

Place GPTimer ISR handler into IRAM for better performance and fewer cache misses.
Default value:

• Yes (enabled)

CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM
Place GPTimer control functions into IRAM
Found in: Component config > Driver Configurations > GPTimer Configuration

Place GPTimer control functions (like start/stop) into IRAM, so that these functions can be IRAM-safe
and able to be called in the other IRAM interrupt context. Enabling this option can improve driver
performance as well.
Default value:

• No (disabled)

CONFIG_GPTIMER_ISR_IRAM_SAFE
GPTimer ISR IRAM-Safe
Found in: Component config > Driver Configurations > GPTimer Configuration

Ensure the GPTimer interrupt is IRAM-Safe by allowing the interrupt handler to be executable when
the cache is disabled (e.g. SPI Flash write).
Default value:

• No (disabled)

CONFIG_GPTIMER_SUPPRESS_DEPRECATE_WARN
Suppress legacy driver deprecated warning
Found in: Component config > Driver Configurations > GPTimer Configuration

Wether to suppress the deprecation warnings when using legacy timer group driver (driver/timer.h). If
you want to continue using the legacy driver, and don't want to see related deprecation warnings, you
can enable this option.
Default value:

• No (disabled)

CONFIG_GPTIMER_ENABLE_DEBUG_LOG
Enable debug log
Found in: Component config > Driver Configurations > GPTimer Configuration

Wether to enable the debug log message for GPTimer driver. Note that, this option only controls the
GPTimer driver log, won't affect other drivers.
Default value:

• No (disabled)

Espressif Systems 1431
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

PCNT Configuration Contains:
• CONFIG_PCNT_ENABLE_DEBUG_LOG
• CONFIG_PCNT_ISR_IRAM_SAFE
• CONFIG_PCNT_CTRL_FUNC_IN_IRAM
• CONFIG_PCNT_SUPPRESS_DEPRECATE_WARN

CONFIG_PCNT_CTRL_FUNC_IN_IRAM
Place PCNT control functions into IRAM
Found in: Component config > Driver Configurations > PCNT Configuration

Place PCNT control functions (like start/stop) into IRAM, so that these functions can be IRAM-safe
and able to be called in the other IRAM interrupt context. Enabling this option can improve driver
performance as well.
Default value:

• No (disabled)

CONFIG_PCNT_ISR_IRAM_SAFE
PCNT ISR IRAM-Safe
Found in: Component config > Driver Configurations > PCNT Configuration

Ensure the PCNT interrupt is IRAM-Safe by allowing the interrupt handler to be executable when the
cache is disabled (e.g. SPI Flash write).
Default value:

• No (disabled)

CONFIG_PCNT_SUPPRESS_DEPRECATE_WARN
Suppress legacy driver deprecated warning
Found in: Component config > Driver Configurations > PCNT Configuration

Wether to suppress the deprecation warnings when using legacy PCNT driver (driver/pcnt.h). If you
want to continue using the legacy driver, and don't want to see related deprecation warnings, you can
enable this option.
Default value:

• No (disabled)

CONFIG_PCNT_ENABLE_DEBUG_LOG
Enable debug log
Found in: Component config > Driver Configurations > PCNT Configuration

Wether to enable the debug log message for PCNT driver. Note that, this option only controls the PCNT
driver log, won't affect other drivers.
Default value:

• No (disabled)

RMT Configuration Contains:
• CONFIG_RMT_ENABLE_DEBUG_LOG
• CONFIG_RMT_RECV_FUNC_IN_IRAM
• CONFIG_RMT_ISR_IRAM_SAFE
• CONFIG_RMT_SUPPRESS_DEPRECATE_WARN

Espressif Systems 1432
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_RMT_ISR_IRAM_SAFE
RMT ISR IRAM-Safe
Found in: Component config > Driver Configurations > RMT Configuration

Ensure the RMT interrupt is IRAM-Safe by allowing the interrupt handler to be executable when the
cache is disabled (e.g. SPI Flash write).
Default value:

• No (disabled)

CONFIG_RMT_RECV_FUNC_IN_IRAM
Place RMT receive function into IRAM
Found in: Component config > Driver Configurations > RMT Configuration

Place RMT receive function into IRAM, so that the receive function can be IRAM-safe and able to be
called when the flash cache is disabled. Enabling this option can improve driver performance as well.
Default value:

• No (disabled)

CONFIG_RMT_SUPPRESS_DEPRECATE_WARN
Suppress legacy driver deprecated warning
Found in: Component config > Driver Configurations > RMT Configuration

Wether to suppress the deprecation warnings when using legacy rmt driver (driver/rmt.h). If you want
to continue using the legacy driver, and don't want to see related deprecation warnings, you can enable
this option.
Default value:

• No (disabled)

CONFIG_RMT_ENABLE_DEBUG_LOG
Enable debug log
Found in: Component config > Driver Configurations > RMT Configuration

Wether to enable the debug log message for RMT driver. Note that, this option only controls the RMT
driver log, won't affect other drivers.
Default value:

• No (disabled)

MCPWM Configuration Contains:
• CONFIG_MCPWM_ENABLE_DEBUG_LOG
• CONFIG_MCPWM_CTRL_FUNC_IN_IRAM
• CONFIG_MCPWM_ISR_IRAM_SAFE
• CONFIG_MCPWM_SUPPRESS_DEPRECATE_WARN

CONFIG_MCPWM_ISR_IRAM_SAFE
Place MCPWM ISR function into IRAM
Found in: Component config > Driver Configurations > MCPWM Configuration

This will ensure the MCPWM interrupt handle is IRAM-Safe, allow to avoid flash cache misses, and
also be able to run whilst the cache is disabled. (e.g. SPI Flash write)

Espressif Systems 1433
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled)

CONFIG_MCPWM_CTRL_FUNC_IN_IRAM
Place MCPWM control functions into IRAM
Found in: Component config > Driver Configurations > MCPWM Configuration

Place MCPWM control functions (like set_compare_value) into IRAM, so that these functions can be
IRAM-safe and able to be called in the other IRAM interrupt context. Enabling this option can improve
driver performance as well.
Default value:

• No (disabled)

CONFIG_MCPWM_SUPPRESS_DEPRECATE_WARN
Suppress legacy driver deprecated warning
Found in: Component config > Driver Configurations > MCPWM Configuration

Wether to suppress the deprecation warnings when using legacy MCPWM driver (driver/mcpwm.h). If
you want to continue using the legacy driver, and don't want to see related deprecation warnings, you
can enable this option.
Default value:

• No (disabled)

CONFIG_MCPWM_ENABLE_DEBUG_LOG
Enable debug log
Found in: Component config > Driver Configurations > MCPWM Configuration

Wether to enable the debug log message for MCPWM driver. Note that, this option only controls the
MCPWM driver log, won't affect other drivers.
Default value:

• No (disabled)

I2S Configuration Contains:
• CONFIG_I2S_ENABLE_DEBUG_LOG
• CONFIG_I2S_ISR_IRAM_SAFE
• CONFIG_I2S_SUPPRESS_DEPRECATE_WARN

CONFIG_I2S_ISR_IRAM_SAFE
I2S ISR IRAM-Safe
Found in: Component config > Driver Configurations > I2S Configuration

Ensure the I2S interrupt is IRAM-Safe by allowing the interrupt handler to be executable when the cache
is disabled (e.g. SPI Flash write).
Default value:

• No (disabled)

Espressif Systems 1434
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_I2S_SUPPRESS_DEPRECATE_WARN
Suppress leagcy driver deprecated warning
Found in: Component config > Driver Configurations > I2S Configuration

Enable this option will suppress the deprecation warnings of using APIs in legacy I2S driver.
Default value:

• No (disabled)

CONFIG_I2S_ENABLE_DEBUG_LOG
Enable I2S debug log
Found in: Component config > Driver Configurations > I2S Configuration

Wether to enable the debug log message for I2S driver. Note that, this option only controls the I2S driver
log, will not affect other drivers.
Default value:

• No (disabled)

DAC Configuration Contains:
• CONFIG_DAC_DMA_AUTO_16BIT_ALIGN
• CONFIG_DAC_ISR_IRAM_SAFE
• CONFIG_DAC_ENABLE_DEBUG_LOG
• CONFIG_DAC_CTRL_FUNC_IN_IRAM
• CONFIG_DAC_SUPPRESS_DEPRECATE_WARN

CONFIG_DAC_CTRL_FUNC_IN_IRAM
Place DAC control functions into IRAM
Found in: Component config > Driver Configurations > DAC Configuration

Place DAC control functions (e.g. 'dac_oneshot_output_voltage') into IRAM, so that this function can
be IRAM-safe and able to be called in the other IRAM interrupt context. Enabling this option can
improve driver performance as well.
Default value:

• No (disabled) if SOC_DAC_SUPPORTED

CONFIG_DAC_ISR_IRAM_SAFE
DAC ISR IRAM-Safe
Found in: Component config > Driver Configurations > DAC Configuration

Ensure the DAC interrupt is IRAM-Safe by allowing the interrupt handler to be executable when the
cache is disabled (e.g. SPI Flash write).
Default value:

• No (disabled) if SOC_DAC_SUPPORTED

CONFIG_DAC_SUPPRESS_DEPRECATE_WARN
Suppress legacy driver deprecated warning
Found in: Component config > Driver Configurations > DAC Configuration

Wether to suppress the deprecation warnings when using legacy DAC driver (driver/dac.h). If you want
to continue using the legacy driver, and don't want to see related deprecation warnings, you can enable
this option.

Espressif Systems 1435
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled) if SOC_DAC_SUPPORTED

CONFIG_DAC_ENABLE_DEBUG_LOG
Enable debug log
Found in: Component config > Driver Configurations > DAC Configuration

Wether to enable the debug log message for DAC driver. Note that, this option only controls the DAC
driver log, won't affect other drivers.
Default value:

• No (disabled) if SOC_DAC_SUPPORTED

CONFIG_DAC_DMA_AUTO_16BIT_ALIGN
Align the continuous data to 16 bit automatically
Found in: Component config > Driver Configurations > DAC Configuration

Whether to left shift the continuous data to align every bytes to 16 bits in the driver. On ESP32, although
the DAC resolution is only 8 bits, the hardware requires 16 bits data in continuous mode. By enabling
this option, the driver will left shift 8 bits for the input data automatically. Only disable this option when
you decide to do this step by yourself. Note that the driver will allocate a new piece of memory to save
the converted data.
Default value:

• Yes (enabled) if SOC_DAC_DMA_16BIT_ALIGN && SOC_DAC_SUPPORTED

USB Serial/JTAG Configuration Contains:
• CONFIG_USJ_NO_AUTO_LS_ON_CONNECTION

CONFIG_USJ_NO_AUTO_LS_ON_CONNECTION
Don't enter the automatic light sleep when USB Serial/JTAG port is connected
Found in: Component config > Driver Configurations > USB Serial/JTAG Configuration

If enabled, the chip will constantly monitor the connection status of the USB Serial/JTAG port. As long
as the USB Serial/JTAG is connected, a ESP_PM_NO_LIGHT_SLEEP power management lock will
be acquired to prevent the system from entering light sleep. This option can be useful if serial monitoring
is needed via USB Serial/JTAG while power management is enabled, as the USB Serial/JTAG cannot
work under light sleep and after waking up from light sleep. Note. This option can only control the
automatic Light-Sleep behavior. If esp_light_sleep_start() is calledmanually from the program, enabling
this option will not prevent light sleep entry even if the USB Serial/JTAG is in use.

Parallel IO Configuration Contains:
• CONFIG_PARLIO_ENABLE_DEBUG_LOG
• CONFIG_PARLIO_ISR_IRAM_SAFE

CONFIG_PARLIO_ENABLE_DEBUG_LOG
Enable debug log
Found in: Component config > Driver Configurations > Parallel IO Configuration

Wether to enable the debug log message for parallel IO driver. Note that, this option only controls the
parallel IO driver log, won't affect other drivers.

Espressif Systems 1436
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled)

CONFIG_PARLIO_ISR_IRAM_SAFE
Parallel IO ISR IRAM-Safe
Found in: Component config > Driver Configurations > Parallel IO Configuration

Ensure the Parallel IO interrupt is IRAM-Safe by allowing the interrupt handler to be executable when
the cache is disabled (e.g. SPI Flash write).
Default value:

• No (disabled)

eFuse Bit Manager Contains:
• CONFIG_EFUSE_VIRTUAL
• CONFIG_EFUSE_CUSTOM_TABLE

CONFIG_EFUSE_CUSTOM_TABLE
Use custom eFuse table
Found in: Component config > eFuse Bit Manager

Allows to generate a structure for eFuse from the CSV file.
Default value:

• No (disabled)

CONFIG_EFUSE_CUSTOM_TABLE_FILENAME
Custom eFuse CSV file
Found in: Component config > eFuse Bit Manager > CONFIG_EFUSE_CUSTOM_TABLE

Name of the custom eFuse CSV filename. This path is evaluated relative to the project root directory.
Default value:

• "main/esp_efuse_custom_table.csv" if CONFIG_EFUSE_CUSTOM_TABLE

CONFIG_EFUSE_VIRTUAL
Simulate eFuse operations in RAM
Found in: Component config > eFuse Bit Manager

If "n" - No virtual mode. All eFuse operations are real and use eFuse registers. If "y" - The virtual mode
is enabled and all eFuse operations (read and write) are redirected to RAM instead of eFuse registers,
all permanent changes (via eFuse) are disabled. Log output will state changes that would be applied, but
they will not be.
If it is "y", then SECURE_FLASH_ENCRYPTION_MODE_RELEASE cannot be used. Because the
EFUSE VIRT mode is for testing only.
During startup, the eFuses are copied into RAM. This mode is useful for fast tests.
Default value:

• No (disabled)

Espressif Systems 1437
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
Keep eFuses in flash
Found in: Component config > eFuse Bit Manager > CONFIG_EFUSE_VIRTUAL

In addition to the "Simulate eFuse operations in RAM" option, this option just adds a feature to keep
eFuses after reboots in flashmemory. To use thismode the partition_table should have the efuse partition.
partition.csv: "efuse_em, data, efuse, , 0x2000,"
During startup, the eFuses are copied from flash or, in case if flash is empty, from real eFuse to RAM
and then update flash. This mode is useful when need to keep changes after reboot (testing secure_boot
and flash_encryption).

CONFIG_EFUSE_VIRTUAL_LOG_ALL_WRITES
Log all virtual writes
Found in: Component config > eFuse Bit Manager > CONFIG_EFUSE_VIRTUAL

If enabled, log efuse burns. This shows changes that would be made.

ESP-TLS Contains:
• CONFIG_ESP_TLS_INSECURE
• CONFIG_ESP_TLS_LIBRARY_CHOOSE
• CONFIG_ESP_TLS_CLIENT_SESSION_TICKETS
• CONFIG_ESP_DEBUG_WOLFSSL
• CONFIG_ESP_TLS_SERVER
• CONFIG_ESP_TLS_PSK_VERIFICATION
• CONFIG_ESP_WOLFSSL_SMALL_CERT_VERIFY
• CONFIG_ESP_TLS_USE_DS_PERIPHERAL

CONFIG_ESP_TLS_LIBRARY_CHOOSE
Choose SSL/TLS library for ESP-TLS (See help for more Info)
Found in: Component config > ESP-TLS

The ESP-TLS APIs support multiple backend TLS libraries. Currently mbedTLS and WolfSSL are
supported. Different TLS libraries may support different features and have different resource usage.
Consult the ESP-TLS documentation in ESP-IDF Programming guide for more details.
Available options:

• mbedTLS (CONFIG_ESP_TLS_USING_MBEDTLS)
• wolfSSL (License info in wolfSSL directory README) (CON-
FIG_ESP_TLS_USING_WOLFSSL)

CONFIG_ESP_TLS_USE_DS_PERIPHERAL
Use Digital Signature (DS) Peripheral with ESP-TLS
Found in: Component config > ESP-TLS

Enable use of the Digital Signature Peripheral for ESP-TLS.The DS peripheral can only be used when
it is appropriately configured for TLS. Consult the ESP-TLS documentation in ESP-IDF Programming
Guide for more details.
Default value:

• Yes (enabled)

Espressif Systems 1438
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_TLS_CLIENT_SESSION_TICKETS
Enable client session tickets
Found in: Component config > ESP-TLS

Enable session ticket support as specified in RFC5077.

CONFIG_ESP_TLS_SERVER
Enable ESP-TLS Server
Found in: Component config > ESP-TLS

Enable support for creating server side SSL/TLS session, available for mbedTLS as well as wolfSSL
TLS library.

CONFIG_ESP_TLS_SERVER_SESSION_TICKETS
Enable server session tickets
Found in: Component config > ESP-TLS > CONFIG_ESP_TLS_SERVER

Enable session ticket support as specified in RFC5077

CONFIG_ESP_TLS_SERVER_SESSION_TICKET_TIMEOUT
Server session ticket timeout in seconds
Found in: Component config > ESP-TLS > CONFIG_ESP_TLS_SERVER > CON-
FIG_ESP_TLS_SERVER_SESSION_TICKETS

Sets the session ticket timeout used in the tls server.
Default value:

• 86400 if CONFIG_ESP_TLS_SERVER_SESSION_TICKETS

CONFIG_ESP_TLS_SERVER_CERT_SELECT_HOOK
Certificate selection hook
Found in: Component config > ESP-TLS > CONFIG_ESP_TLS_SERVER

Ability to configure and use a certificate selection callback during server handshake, to select a certificate
to present to the client based on the TLS extensions supplied in the client hello (alpn, sni, etc).

CONFIG_ESP_TLS_SERVER_MIN_AUTH_MODE_OPTIONAL
ESP-TLS Server: Set minimum Certificate Verification mode to Optional
Found in: Component config > ESP-TLS > CONFIG_ESP_TLS_SERVER

When this option is enabled, the peer (here, the client) certificate is checked by the server, however the
handshake continues even if verification failed. By default, the peer certificate is not checked and ignored
by the server.
mbedtls_ssl_get_verify_result() can be called after the handshake is complete to retrieve status of veri-
fication.

Espressif Systems 1439
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_TLS_PSK_VERIFICATION
Enable PSK verification
Found in: Component config > ESP-TLS

Enable support for pre shared key ciphers, supported for both mbedTLS as well as wolfSSL TLS library.

CONFIG_ESP_TLS_INSECURE
Allow potentially insecure options
Found in: Component config > ESP-TLS

You can enable some potentially insecure options. These options should only be used for testing pusposes.
Only enable these options if you are very sure.

CONFIG_ESP_TLS_SKIP_SERVER_CERT_VERIFY
Skip server certificate verification by default (WARNING: ONLY FOR TESTING PURPOSE, READ
HELP)
Found in: Component config > ESP-TLS > CONFIG_ESP_TLS_INSECURE

After enabling this option the esp-tls client will skip the server certificate verification by default. Note that
this option will only modify the default behaviour of esp-tls client regarding server cert verification. The
default behaviour should only be applicable when no other option regarding the server cert verification
is opted in the esp-tls config (e.g. crt_bundle_attach, use_global_ca_store etc.). WARNING : Enabling
this option comes with a potential risk of establishing a TLS connection with a server which has a fake
identity, provided that the server certificate is not provided either through API or other mechanism like
ca_store etc.

CONFIG_ESP_WOLFSSL_SMALL_CERT_VERIFY
Enable SMALL_CERT_VERIFY
Found in: Component config > ESP-TLS

Enables server verification with Intermediate CA cert, does not authenticate full chain of trust upto the
root CA cert (After Enabling this option client only needs to have Intermediate CA certificate of the
server to authenticate server, root CA cert is not necessary).
Default value:

• Yes (enabled) if CONFIG_ESP_TLS_USING_WOLFSSL

CONFIG_ESP_DEBUG_WOLFSSL
Enable debug logs for wolfSSL
Found in: Component config > ESP-TLS

Enable detailed debug prints for wolfSSL SSL library.

ADC and ADC Calibration Contains:
• ADC Calibration Configurations
• CONFIG_ADC_CONTINUOUS_ISR_IRAM_SAFE
• CONFIG_ADC_DISABLE_DAC_OUTPUT
• CONFIG_ADC_ONESHOT_CTRL_FUNC_IN_IRAM

Espressif Systems 1440
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ADC_ONESHOT_CTRL_FUNC_IN_IRAM
Place ISR version ADC oneshot mode read function into IRAM
Found in: Component config > ADC and ADC Calibration

Place ISR version ADC oneshot mode read function into IRAM.
Default value:

• No (disabled)

CONFIG_ADC_CONTINUOUS_ISR_IRAM_SAFE
ADC continuous mode driver ISR IRAM-Safe
Found in: Component config > ADC and ADC Calibration

Ensure the ADC continuous mode ISR is IRAM-Safe. When enabled, the ISR handler will be available
when the cache is disabled.
Default value:

• No (disabled)

ADC Calibration Configurations

CONFIG_ADC_DISABLE_DAC_OUTPUT
Disable DAC when ADC2 is in use
Found in: Component config > ADC and ADC Calibration

By default, this is set. The ADC oneshot driver will disable the output of the corresponding DAC
channels: ESP32: IO25 and IO26 ESP32S2: IO17 and IO18
Disable this option so as to measure the output of DAC by internal ADC, for test usage.
Default value:

• Yes (enabled) if SOC_DAC_SUPPORTED

Wireless Coexistence Contains:
• CONFIG_ESP_COEX_EXTERNAL_COEXIST_ENABLE
• CONFIG_ESP_COEX_GPIO_DEBUG
• CONFIG_ESP_COEX_SW_COEXIST_ENABLE
• CONFIG_ESP_COEX_POWER_MANAGEMENT

CONFIG_ESP_COEX_SW_COEXIST_ENABLE
Software controls WiFi/Bluetooth coexistence
Found in: Component config >Wireless Coexistence

If enabled,WiFi&Bluetooth coexistence is controlled by software rather than hardware. Recommended
for heavy traffic scenarios. Both coexistence configuration options are automatically managed, no user
intervention is required. If only Bluetooth is used, it is recommended to disable this option to reduce
binary file size.
Default value:

• Yes (enabled)

Espressif Systems 1441
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_COEX_EXTERNAL_COEXIST_ENABLE
External Coexistence
Found in: Component config >Wireless Coexistence

If enabled, HW External coexistence arbitration is managed by GPIO pins. It can support three types of
wired combinations so far which are 1-wired/2-wired/3-wired. User can select GPIO pins in application
code with configure interfaces.
This function depends on BT-off because currently we do not support external coex and internal coex
simultaneously.

CONFIG_ESP_COEX_POWER_MANAGEMENT
Support power management under coexistence
Found in: Component config >Wireless Coexistence

If enabled, coexist power management will be enabled.
Default value:

• No (disabled)

CONFIG_ESP_COEX_GPIO_DEBUG
GPIO debugging for coexistence
Found in: Component config >Wireless Coexistence

Support coexistence GPIO debugging

CONFIG_ESP_COEX_GPIO_DEBUG_DIAG
Debugging Diagram
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Select type of debugging diagram
Available options:

• General (CONFIG_ESP_COEX_GPIO_DEBUG_DIAG_GENERAL)
• Wi-Fi (CONFIG_ESP_COEX_GPIO_DEBUG_DIAG_WIFI)

CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT
Max number of debugging GPIOs
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 12 if CONFIG_ESP_COEX_GPIO_DEBUG

Default value:
• 12 if CONFIG_ESP_COEX_GPIO_DEBUG

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX0
Actual IO num for Debug IO ID0
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:

Espressif Systems 1442
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 0 && CON-
FIG_ESP_COEX_GPIO_DEBUG

Default value:
• 4 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 0 && CON-

FIG_ESP_COEX_GPIO_DEBUG
• 2 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 0
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 4 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 0
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 1 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 0 && CON-
FIG_ESP_COEX_GPIO_DEBUG

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX1
Actual IO num for Debug IO ID1
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 1 && CON-

FIG_ESP_COEX_GPIO_DEBUG
Default value:

• 5 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 1 && CON-
FIG_ESP_COEX_GPIO_DEBUG

• 3 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 1
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 5 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 1
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 2 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 1 && CON-
FIG_ESP_COEX_GPIO_DEBUG

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX2
Actual IO num for Debug IO ID2
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 2 && CON-

FIG_ESP_COEX_GPIO_DEBUG
Default value:

• 6 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 2 && CON-
FIG_ESP_COEX_GPIO_DEBUG

• 4 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 2
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 6 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 2
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 3 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 2 && CON-
FIG_ESP_COEX_GPIO_DEBUG

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX3
Actual IO num for Debug IO ID3
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 3 && CON-

FIG_ESP_COEX_GPIO_DEBUG
Default value:

Espressif Systems 1443
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 7 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 3 && CON-
FIG_ESP_COEX_GPIO_DEBUG

• 5 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 3
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 7 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 3
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 4 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 3 && CON-
FIG_ESP_COEX_GPIO_DEBUG

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX4
Actual IO num for Debug IO ID4
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 4 && CON-

FIG_ESP_COEX_GPIO_DEBUG
Default value:

• 8 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 4 && CON-
FIG_ESP_COEX_GPIO_DEBUG

• 27 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 4
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 0 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 4
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 5 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 4 && CON-
FIG_ESP_COEX_GPIO_DEBUG

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX5
Actual IO num for Debug IO ID5
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 5 && CON-

FIG_ESP_COEX_GPIO_DEBUG
Default value:

• 10 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 5 && CON-
FIG_ESP_COEX_GPIO_DEBUG

• 6 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 5
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 1 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 5
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 6 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 5 && CON-
FIG_ESP_COEX_GPIO_DEBUG

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX6
Actual IO num for Debug IO ID6
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 6 && CON-

FIG_ESP_COEX_GPIO_DEBUG
Default value:

• 11 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 6 && CON-
FIG_ESP_COEX_GPIO_DEBUG

• 7 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 6
&& CONFIG_ESP_COEX_GPIO_DEBUG

Espressif Systems 1444
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 8 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 6
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 7 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 6 && CON-
FIG_ESP_COEX_GPIO_DEBUG

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX7
Actual IO num for Debug IO ID7
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 7 && CON-

FIG_ESP_COEX_GPIO_DEBUG
Default value:

• 2 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 7 && CON-
FIG_ESP_COEX_GPIO_DEBUG

• 26 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 7
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 2 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 7
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 8 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 7 && CON-
FIG_ESP_COEX_GPIO_DEBUG

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX8
Actual IO num for Debug IO ID8
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 8 && CON-

FIG_ESP_COEX_GPIO_DEBUG
Default value:

• 15 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 8 && CON-
FIG_ESP_COEX_GPIO_DEBUG

• 24 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 8
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 3 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 8
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 9 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 8 && CON-
FIG_ESP_COEX_GPIO_DEBUG

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX9
Actual IO num for Debug IO ID9
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 9 && CON-

FIG_ESP_COEX_GPIO_DEBUG
Default value:

• 23 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 9 && CON-
FIG_ESP_COEX_GPIO_DEBUG

• 23 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 9
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 9 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 9
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 10 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 9 && CON-
FIG_ESP_COEX_GPIO_DEBUG

Espressif Systems 1445
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX10
Actual IO num for Debug IO ID10
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 10 && CON-

FIG_ESP_COEX_GPIO_DEBUG
Default value:

• 22 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 10 && CON-
FIG_ESP_COEX_GPIO_DEBUG

• 10 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 10
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 13 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT >
10 && CONFIG_ESP_COEX_GPIO_DEBUG

• 11 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 10 && CON-
FIG_ESP_COEX_GPIO_DEBUG

CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX11
Actual IO num for Debug IO ID11
Found in: Component config >Wireless Coexistence > CONFIG_ESP_COEX_GPIO_DEBUG

Range:
• from 0 to 30 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 11 && CON-

FIG_ESP_COEX_GPIO_DEBUG
Default value:

• 21 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 11 && CON-
FIG_ESP_COEX_GPIO_DEBUG

• 9 if IDF_TARGET_ESP32C5 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 11
&& CONFIG_ESP_COEX_GPIO_DEBUG

• 12 if IDF_TARGET_ESP32C61 && CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT >
11 && CONFIG_ESP_COEX_GPIO_DEBUG

• 12 if CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT > 11 && CON-
FIG_ESP_COEX_GPIO_DEBUG

Common ESP-related Contains:
• CONFIG_ESP_ERR_TO_NAME_LOOKUP

CONFIG_ESP_ERR_TO_NAME_LOOKUP
Enable lookup of error code strings
Found in: Component config > Common ESP-related

Functions esp_err_to_name() and esp_err_to_name_r() return string representations of error codes from
a pre-generated lookup table. This option can be used to turn off the use of the look-up table in order
to save memory but this comes at the price of sacrificing distinguishable (meaningful) output string
representations.
Default value:

• Yes (enabled)

Ethernet Contains:
• CONFIG_ETH_TRANSMIT_MUTEX
• CONFIG_ETH_USE_OPENETH
• CONFIG_ETH_USE_SPI_ETHERNET

Espressif Systems 1446
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ETH_USE_SPI_ETHERNET
Support SPI to Ethernet Module
Found in: Component config > Ethernet

ESP-IDF can also support some SPI-Ethernet modules.
Default value:

• Yes (enabled)
Contains:

• CONFIG_ETH_SPI_ETHERNET_DM9051
• CONFIG_ETH_SPI_ETHERNET_KSZ8851SNL
• CONFIG_ETH_SPI_ETHERNET_W5500

CONFIG_ETH_SPI_ETHERNET_DM9051
Use DM9051
Found in: Component config > Ethernet > CONFIG_ETH_USE_SPI_ETHERNET

DM9051 is a fast Ethernet controller with an SPI interface. It's also integrated with a 10/100M PHY
and MAC. Select this to enable DM9051 driver.

CONFIG_ETH_SPI_ETHERNET_W5500
Use W5500 (MAC RAW)
Found in: Component config > Ethernet > CONFIG_ETH_USE_SPI_ETHERNET

W5500 is a HW TCP/IP embedded Ethernet controller. TCP/IP stack, 10/100 Ethernet MAC and
PHY are embedded in a single chip. However the driver in ESP-IDF only enables the RAW MAC
mode, making it compatible with the software TCP/IP stack. Say yes to enable W5500 driver.

CONFIG_ETH_SPI_ETHERNET_KSZ8851SNL
Use KSZ8851SNL
Found in: Component config > Ethernet > CONFIG_ETH_USE_SPI_ETHERNET

The KSZ8851SNL is a single-chip Fast Ethernet controller consisting of a 10/100 physical layer
transceiver (PHY), a MAC, and a Serial Peripheral Interface (SPI). Select this to enable KSZ8851SNL
driver.

CONFIG_ETH_USE_OPENETH
Support OpenCores Ethernet MAC (for use with QEMU)
Found in: Component config > Ethernet

OpenCores Ethernet MAC driver can be used when an ESP-IDF application is executed in QEMU. This
driver is not supported when running on a real chip.
Default value:

• No (disabled)
Contains:

• CONFIG_ETH_OPENETH_DMA_RX_BUFFER_NUM
• CONFIG_ETH_OPENETH_DMA_TX_BUFFER_NUM

Espressif Systems 1447
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ETH_OPENETH_DMA_RX_BUFFER_NUM
Number of Ethernet DMA Rx buffers
Found in: Component config > Ethernet > CONFIG_ETH_USE_OPENETH

Number of DMA receive buffers, each buffer is 1600 bytes.
Range:

• from 1 to 64 if CONFIG_ETH_USE_OPENETH
Default value:

• 4 if CONFIG_ETH_USE_OPENETH

CONFIG_ETH_OPENETH_DMA_TX_BUFFER_NUM
Number of Ethernet DMA Tx buffers
Found in: Component config > Ethernet > CONFIG_ETH_USE_OPENETH

Number of DMA transmit buffers, each buffer is 1600 bytes.
Range:

• from 1 to 64 if CONFIG_ETH_USE_OPENETH
Default value:

• 1 if CONFIG_ETH_USE_OPENETH

CONFIG_ETH_TRANSMIT_MUTEX
Enable Transmit Mutex
Found in: Component config > Ethernet

Prevents multiple accesses when Ethernet interface is used as shared resource andmultiple functionalities
might try to access it at a time.
Default value:

• No (disabled)

Event Loop Library Contains:
• CONFIG_ESP_EVENT_LOOP_PROFILING
• CONFIG_ESP_EVENT_POST_FROM_ISR

CONFIG_ESP_EVENT_LOOP_PROFILING
Enable event loop profiling
Found in: Component config > Event Loop Library

Enables collections of statistics in the event loop library such as the number of events posted to/recieved
by an event loop, number of callbacks involved, number of events dropped to to a full event loop queue,
run time of event handlers, and number of times/run time of each event handler.
Default value:

• No (disabled)

CONFIG_ESP_EVENT_POST_FROM_ISR
Support posting events from ISRs
Found in: Component config > Event Loop Library

Enable posting events from interrupt handlers.
Default value:

Espressif Systems 1448
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Yes (enabled)

CONFIG_ESP_EVENT_POST_FROM_IRAM_ISR
Support posting events from ISRs placed in IRAM
Found in: Component config > Event Loop Library > CONFIG_ESP_EVENT_POST_FROM_ISR

Enable posting events from interrupt handlers placed in IRAM. Enabling this option places API functions
esp_event_post and esp_event_post_to in IRAM.
Default value:

• Yes (enabled)

GDB Stub Contains:
• CONFIG_ESP_GDBSTUB_SUPPORT_TASKS

CONFIG_ESP_GDBSTUB_SUPPORT_TASKS
Enable listing FreeRTOS tasks through GDB Stub
Found in: Component config > GDB Stub

If enabled, GDBStub can supply the list of FreeRTOS tasks to GDB. Thread list can be queried from
GDB using 'info threads' command. Note that if GDB task lists were corrupted, this feature may not
work. If GDBStub fails, try disabling this feature.

CONFIG_ESP_GDBSTUB_MAX_TASKS
Maximum number of tasks supported by GDB Stub
Found in: Component config > GDB Stub > CONFIG_ESP_GDBSTUB_SUPPORT_TASKS

Set the number of tasks which GDB Stub will support.
Default value:

• 32 if CONFIG_ESP_GDBSTUB_SUPPORT_TASKS

ESP HID Contains:
• CONFIG_ESPHID_TASK_SIZE_BLE
• CONFIG_ESPHID_TASK_SIZE_BT

CONFIG_ESPHID_TASK_SIZE_BT
Task stack size for ESP HID BR/EDR
Found in: Component config > ESP HID

This is the stack size for the BT HID task. Default is 2048 bytes.
Range:

• from 2048 to 10240
Default value:

• 2048

Espressif Systems 1449
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESPHID_TASK_SIZE_BLE
Task stack size for ESP HID BLE
Found in: Component config > ESP HID

This is the stack size for the BLE HID task. Default is 4096 bytes.
Range:

• from 2048 to 10240
Default value:

• 4096

ESP HTTP client Contains:
• CONFIG_ESP_HTTP_CLIENT_ENABLE_BASIC_AUTH
• CONFIG_ESP_HTTP_CLIENT_ENABLE_DIGEST_AUTH
• CONFIG_ESP_HTTP_CLIENT_ENABLE_HTTPS

CONFIG_ESP_HTTP_CLIENT_ENABLE_HTTPS
Enable https
Found in: Component config > ESP HTTP client

This option will enable https protocol by linking esp-tls library and initializing SSL transport
Default value:

• Yes (enabled)

CONFIG_ESP_HTTP_CLIENT_ENABLE_BASIC_AUTH
Enable HTTP Basic Authentication
Found in: Component config > ESP HTTP client

This option will enable HTTP Basic Authentication. It is disabled by default as Basic auth uses unen-
crypted encoding, so it introduces a vulnerability when not using TLS
Default value:

• No (disabled)

CONFIG_ESP_HTTP_CLIENT_ENABLE_DIGEST_AUTH
Enable HTTP Digest Authentication
Found in: Component config > ESP HTTP client

This option will enable HTTPDigest Authentication. It is enabled by default, but use of this configuration
is not recommended as the password can be derived from the exchange, so it introduces a vulnerability
when not using TLS
Default value:

• No (disabled)

HTTP Server Contains:
• CONFIG_HTTPD_QUEUE_WORK_BLOCKING
• CONFIG_HTTPD_PURGE_BUF_LEN
• CONFIG_HTTPD_LOG_PURGE_DATA
• CONFIG_HTTPD_MAX_REQ_HDR_LEN
• CONFIG_HTTPD_MAX_URI_LEN
• CONFIG_HTTPD_ERR_RESP_NO_DELAY
• CONFIG_HTTPD_WS_SUPPORT

Espressif Systems 1450
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_HTTPD_MAX_REQ_HDR_LEN
Max HTTP Request Header Length
Found in: Component config > HTTP Server

This sets the maximum supported size of headers section in HTTP request packet to be processed by
the server
Default value:

• 512

CONFIG_HTTPD_MAX_URI_LEN
Max HTTP URI Length
Found in: Component config > HTTP Server

This sets the maximum supported size of HTTP request URI to be processed by the server
Default value:

• 512

CONFIG_HTTPD_ERR_RESP_NO_DELAY
Use TCP_NODELAY socket option when sending HTTP error responses
Found in: Component config > HTTP Server

Using TCP_NODEALY socket option ensures that HTTP error response reaches the client before the
underlying socket is closed. Please note that turning this off may cause multiple test failures
Default value:

• Yes (enabled)

CONFIG_HTTPD_PURGE_BUF_LEN
Length of temporary buffer for purging data
Found in: Component config > HTTP Server

This sets the size of the temporary buffer used to receive and discard any remaining data that is received
from the HTTP client in the request, but not processed as part of the server HTTP request handler.
If the remaining data is larger than the available buffer size, the buffer will be filled in multiple iterations.
The buffer should be small enough to fit on the stack, but large enough to avoid excessive iterations.
Default value:

• 32

CONFIG_HTTPD_LOG_PURGE_DATA
Log purged content data at Debug level
Found in: Component config > HTTP Server

Enabling this will log discarded binary HTTP request data at Debug level. For large content data this
may not be desirable as it will clutter the log.
Default value:

• No (disabled)

Espressif Systems 1451
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_HTTPD_WS_SUPPORT
WebSocket server support
Found in: Component config > HTTP Server

This sets the WebSocket server support.
Default value:

• No (disabled)

CONFIG_HTTPD_QUEUE_WORK_BLOCKING
httpd_queue_work as blocking API
Found in: Component config > HTTP Server

This makes httpd_queue_work() API to wait until a message space is available on UDP control socket.
It internally uses a counting semaphore with count set to LWIP_UDP_RECVMBOX_SIZE to achieve this.
This config will slightly change API behavior to block until message gets delivered on control socket.

ESP HTTPS OTA Contains:
• CONFIG_ESP_HTTPS_OTA_ALLOW_HTTP
• CONFIG_ESP_HTTPS_OTA_DECRYPT_CB

CONFIG_ESP_HTTPS_OTA_DECRYPT_CB
Provide decryption callback
Found in: Component config > ESP HTTPS OTA

Exposes an additional callback whereby firmware data could be decrypted before being processed by
OTA update component. This can help to integrate external encryption related format and removal of
such encapsulation layer from firmware image.
Default value:

• No (disabled)

CONFIG_ESP_HTTPS_OTA_ALLOW_HTTP
Allow HTTP for OTA (WARNING: ONLY FOR TESTING PURPOSE, READ HELP)
Found in: Component config > ESP HTTPS OTA

It is highly recommended to keep HTTPS (along with server certificate validation) enabled. Enabling this
option comes with potential risk of: - Non-encrypted communication channel with server - Accepting
firmware upgrade image from server with fake identity
Default value:

• No (disabled)

ESP HTTPS server Contains:
• CONFIG_ESP_HTTPS_SERVER_ENABLE

CONFIG_ESP_HTTPS_SERVER_ENABLE
Enable ESP_HTTPS_SERVER component
Found in: Component config > ESP HTTPS server

Enable ESP HTTPS server component

Espressif Systems 1452
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Hardware Settings Contains:
• Chip revision
• Crypto DPA Protection
• CONFIG_ESP_ECDSA_ENABLE_P192_CURVE
• ETM Configuration
• CONFIG_ESP_CRYPTO_FORCE_ECC_CONSTANT_TIME_POINT_MUL
• GDMA Configuration
• MAC Config
• Main XTAL Config
• Peripheral Control
• RTC Clock Config
• Sleep Config

Chip revision Contains:
• CONFIG_ESP_REV_NEW_CHIP_TEST
• CONFIG_ESP_EFUSE_BLOCK_REV_MIN_FULL
• CONFIG_ESP32C6_REV_MIN

CONFIG_ESP32C6_REV_MIN
Minimum Supported ESP32-C6 Revision
Found in: Component config > Hardware Settings > Chip revision

Required minimum chip revision. ESP-IDF will check for it and reject to boot if the chip revision fails
the check. This ensures the chip used will have some modifications (features, or bugfixes).
The complied binary will only support chips above this revision, this will also help to reduce binary size.
Available options:

• Rev v0.0 (CONFIG_ESP32C6_REV_MIN_0)
• Rev v0.1 (ECO1) (CONFIG_ESP32C6_REV_MIN_1)
• Rev v0.2 (CONFIG_ESP32C6_REV_MIN_2)

CONFIG_ESP_EFUSE_BLOCK_REV_MIN_FULL
Minimum Supported ESP32-C6 eFuse Block Revision
Found in: Component config > Hardware Settings > Chip revision

Required minimum eFuse Block revision. ESP-IDF will check it at the 2nd bootloader stage whether the
current image can work correctly for this eFuse Block revision. So that to avoid running an incompatible
image on a SoC that contains breaking change in the eFuse Block. If you want to update this value to
run the image that not compatible with the current eFuse Block revision, please contact to Espressif's
business team for details: https://www.espressif.com.cn/en/contact-us/sales-questions
Default value:

• 0

CONFIG_ESP_REV_NEW_CHIP_TEST
Internal test mode
Found in: Component config > Hardware Settings > Chip revision

For internal chip testing, a small number of new versions chips didn't update the version field in eFuse,
you can enable this option to force the software recognize the chip version based on the rev selected in
menuconfig.

Espressif Systems 1453
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com.cn/en/contact-us/sales-questions
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled)

MAC Config Contains:
• CONFIG_ESP_MAC_USE_CUSTOM_MAC_AS_BASE_MAC
• CONFIG_ESP32C6_UNIVERSAL_MAC_ADDRESSES

CONFIG_ESP32C6_UNIVERSAL_MAC_ADDRESSES
Number of universally administered (by IEEE) MAC address
Found in: Component config > Hardware Settings > MAC Config

Configure the number of universally administered (by IEEE) MAC addresses.
During initialization, MAC addresses for each network interface are generated or derived from a single
base MAC address.
If the number of universal MAC addresses is four, all four interfaces (WiFi station, WiFi softap, Blue-
tooth and Ethernet) receive a universally administered MAC address. These are generated sequentially
by adding 0, 1, 2 and 3 (respectively) to the final octet of the base MAC address.
If the number of universal MAC addresses is two, only two interfaces (WiFi station and Bluetooth)
receive a universally administered MAC address. These are generated sequentially by adding 0 and
1 (respectively) to the base MAC address. The remaining two interfaces (WiFi softap and Ethernet)
receive local MAC addresses. These are derived from the universal WiFi station and Bluetooth MAC
addresses, respectively.
When using the default (Espressif-assigned) baseMAC address, either setting can be used. When using a
custom universalMAC address range, the correct setting will depend on the allocation ofMAC addresses
in this range (either 2 or 4 per device.)
Note that ESP32-C6 has no integrated Ethernet MAC. Although it's possible to use the esp_read_mac()
API to return a MAC for Ethernet, this can only be used with an external MAC peripheral.
Available options:

• Two (CONFIG_ESP32C6_UNIVERSAL_MAC_ADDRESSES_TWO)
• Four (CONFIG_ESP32C6_UNIVERSAL_MAC_ADDRESSES_FOUR)

CONFIG_ESP_MAC_USE_CUSTOM_MAC_AS_BASE_MAC
Enable using custom mac as base mac
Found in: Component config > Hardware Settings > MAC Config

When this configuration is enabled, the user can invoke esp_read_mac to obtain the desired type ofMAC
using a custom MAC as the base MAC.
Default value:

• No (disabled)

Sleep Config Contains:
• CONFIG_ESP_SLEEP_GPIO_ENABLE_INTERNAL_RESISTORS
• CONFIG_ESP_SLEEP_CACHE_SAFE_ASSERTION
• CONFIG_ESP_SLEEP_EVENT_CALLBACKS
• CONFIG_ESP_SLEEP_DEBUG
• CONFIG_ESP_SLEEP_WAIT_FLASH_READY_EXTRA_DELAY
• CONFIG_ESP_SLEEP_GPIO_RESET_WORKAROUND
• CONFIG_ESP_SLEEP_POWER_DOWN_FLASH

Espressif Systems 1454
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_ESP_SLEEP_MSPI_NEED_ALL_IO_PU
• CONFIG_ESP_SLEEP_FLASH_LEAKAGE_WORKAROUND
• CONFIG_ESP_SLEEP_PSRAM_LEAKAGE_WORKAROUND

CONFIG_ESP_SLEEP_POWER_DOWN_FLASH
Power down flash in light sleep when there is no SPIRAM
Found in: Component config > Hardware Settings > Sleep Config

If enabled, chip will try to power down flash as part of esp_light_sleep_start(), which costs more time
when chip wakes up. Can only be enabled if there is no SPIRAM configured.
This option will power down flash under a strict but relatively safe condition. Also, it is
possible to power down flash under a relaxed condition by using esp_sleep_pd_config() to set
ESP_PD_DOMAIN_VDDSDIO to ESP_PD_OPTION_OFF. It should be noted that there is a risk
in powering down flash, you can refer ESP-IDF Programming Guide/API Reference/System API/Sleep
Modes/Power-down of Flash for more details.

CONFIG_ESP_SLEEP_FLASH_LEAKAGE_WORKAROUND
Pull-up Flash CS pin in light sleep
Found in: Component config > Hardware Settings > Sleep Config

All IOs will be set to isolate(floating) state by default during sleep. Since the power supply of SPI Flash
is not lost during lightsleep, if its CS pin is recognized as low level(selected state) in the floating state,
there will be a large current leakage, and the data in Flash may be corrupted by random signals on other
SPI pins. Select this option will set the CS pin of Flash to PULL-UP state during sleep, but this will
increase the sleep current about 10 uA. If you are developing with esp32xx modules, you must select
this option, but if you are developing with chips, you can also pull up the CS pin of SPI Flash in the
external circuit to save power consumption caused by internal pull-up during sleep. (!!! Don't deselect
this option if you don't have external SPI Flash CS pin pullups.)

CONFIG_ESP_SLEEP_PSRAM_LEAKAGE_WORKAROUND
Pull-up PSRAM CS pin in light sleep
Found in: Component config > Hardware Settings > Sleep Config

All IOs will be set to isolate(floating) state by default during sleep. Since the power supply of PSRAM
is not lost during lightsleep, if its CS pin is recognized as low level(selected state) in the floating state,
there will be a large current leakage, and the data in PSRAM may be corrupted by random signals on
other SPI pins. Select this option will set the CS pin of PSRAM to PULL-UP state during sleep, but
this will increase the sleep current about 10 uA. If you are developing with esp32xx modules, you must
select this option, but if you are developing with chips, you can also pull up the CS pin of PSRAM in the
external circuit to save power consumption caused by internal pull-up during sleep. (!!! Don't deselect
this option if you don't have external PSRAM CS pin pullups.)
Default value:

• Yes (enabled) if SPIRAM

CONFIG_ESP_SLEEP_MSPI_NEED_ALL_IO_PU
Pull-up all SPI pins in light sleep
Found in: Component config > Hardware Settings > Sleep Config

To reduce leakage current, some types of SPI Flash/RAM only need to pull up the CS pin during light
sleep. But there are also some kinds of SPI Flash/RAM that need to pull up all pins. It depends on the
SPI Flash/RAM chip used.

Espressif Systems 1455
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_SLEEP_GPIO_RESET_WORKAROUND
light sleep GPIO reset workaround
Found in: Component config > Hardware Settings > Sleep Config

All existing chips except esp32 and esp32s2 will reset on wake-up if a GPIO receives a small electrostatic
pulse during light sleep, with specific conditions.

• GPIO needs to be configured as input-mode only
• The pin receives a small electrostatic pulse, and reset occurs when the pulse voltage is higher than
6 V

For GPIO set to input mode only, it is not a good practice to leave it open/floating, The hardware design
needs to controlled it with determined supply or ground voltage is necessary.
This option provides a software workaround for this issue. Configure to isolate all GPIO pins in sleep
state.
Default value:

• Yes (enabled)

CONFIG_ESP_SLEEP_WAIT_FLASH_READY_EXTRA_DELAY
Extra delay (in us) after flash powerdown sleep wakeup to wait flash ready
Found in: Component config > Hardware Settings > Sleep Config

When the chip exits sleep, the CPU and the flash chip are powered on at the same time. CPU will run
rom code (deepsleep) or ram code (lightsleep) first, and then load or execute code from flash.
Some flash chips need sufficient time to pass between power on and first read operation. By default,
without any extra delay, this time is approximately 900us, although some flash chip types need more
than that.
(!!! Please adjust this value according to the Data Sheet of SPI Flash used in your project.) In Flash
Data Sheet, the parameters that define the Flash ready timing after power-up (minimum time from
Vcc(min) to CS activeare) usually named tVSL in ELECTRICAL CHARACTERISTICS chapter, and
the configuration value here should be: ESP_SLEEP_WAIT_FLASH_READY_EXTRA_DELAY =
tVSL - 900
For esp32 and esp32s3, the default extra delay is set to 2000us. When optimizing startup time for
applications which require it, this value may be reduced.
If you are seeing "flash read err, 1000" message printed to the console after deep sleep reset on esp32,
or triggered RTC_WDT/LP_WDT after lightsleep wakeup, try increasing this value. (For esp32, the
delay will be executed in both deep sleep and light sleep wake up flow. For chips after esp32, the delay
will be executed only in light sleep flow, the delay controlled by the EFUSE_FLASH_TPUW in ROM
will be executed in deepsleep wake up flow.)
Range:

• from 0 to 5000
Default value:

• 0

CONFIG_ESP_SLEEP_DEBUG
esp sleep debug
Found in: Component config > Hardware Settings > Sleep Config

Enable esp sleep debug.
Default value:

• No (disabled)

Espressif Systems 1456
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_SLEEP_GPIO_ENABLE_INTERNAL_RESISTORS
Allow to enable internal pull-up/downs for the Deep-Sleep wakeup IOs
Found in: Component config > Hardware Settings > Sleep Config

When using rtc gpio wakeup source during deepsleep without external pull-up/downs, you may want to
make use of the internal ones.
Default value:

• Yes (enabled)

CONFIG_ESP_SLEEP_EVENT_CALLBACKS
Enable registration of sleep event callbacks
Found in: Component config > Hardware Settings > Sleep Config

If enabled, it allows user to register sleep event callbacks. It is primarily designed for internal developers
and customers can use PM_LIGHT_SLEEP_CALLBACKS as an alternative.
NOTE: These callbacks are executed from the IDLE task context hence you cannot have any blocking
calls in your callbacks.
NOTE: Enabling these callbacks may change sleep duration calculations based on time spent in callback
and hence it is highly recommended to keep them as short as possible.
Default value:

• No (disabled) if CONFIG_FREERTOS_USE_TICKLESS_IDLE

CONFIG_ESP_SLEEP_CACHE_SAFE_ASSERTION
Check the cache safety of the sleep wakeup code in sleep process
Found in: Component config > Hardware Settings > Sleep Config

Enabling it will check the cache safety of the code before the flash power is ready after light sleep wakeup,
and check PM_SLP_IRAM_OPT related code cache safety. This option is only for code quality inspec-
tion. Enabling it will increase the time overhead of entering and exiting sleep. It is not recommended to
enable it in the release version.
Default value:

• No (disabled)

RTC Clock Config Contains:
• CONFIG_RTC_CLK_SRC_USE_DANGEROUS_RC32K_ALLOWED
• CONFIG_RTC_CLK_CAL_CYCLES
• CONFIG_RTC_CLK_SRC

CONFIG_RTC_CLK_SRC
RTC clock source
Found in: Component config > Hardware Settings > RTC Clock Config

Choose which clock is used as RTC clock source.
Available options:

• Internal 136kHz RC oscillator (CONFIG_RTC_CLK_SRC_INT_RC)
• External 32kHz crystal (CONFIG_RTC_CLK_SRC_EXT_CRYS)
• External 32kHz oscillator at 32K_XP pin (CONFIG_RTC_CLK_SRC_EXT_OSC)

Espressif Systems 1457
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Internal 32kHz RC oscillator (NOT RECOMMENDED TO USE, READ DOCS
FIRST) (CONFIG_RTC_CLK_SRC_INT_RC32K)
To be able to select this option, please select
RTC_CLK_SRC_USE_DANGEROUS_RC32K_ALLOWED first. This option will
be removed in IDF v6.0.

CONFIG_RTC_CLK_SRC_USE_DANGEROUS_RC32K_ALLOWED
Confirm to use the unrecommended 32 kHz RC oscillator (READ DOCS FIRST)
Found in: Component config > Hardware Settings > RTC Clock Config

Internal RC32K clock is unstable at extreme temperatures and is not recommended for use.

CONFIG_RTC_CLK_CAL_CYCLES
Number of cycles for RTC_SLOW_CLK calibration
Found in: Component config > Hardware Settings > RTC Clock Config

When the startup code initializes RTC_SLOW_CLK, it can perform calibration by comparing
the RTC_SLOW_CLK frequency with main XTAL frequency. This option sets the number of
RTC_SLOW_CLK cycles measured by the calibration routine. Higher numbers increase calibration
precision, which may be important for applications which spend a lot of time in deep sleep. Lower
numbers reduce startup time.
When this option is set to 0, clock calibration will not be performed at startup, and approximate clock
frequencies will be assumed:

• 136000 Hz if internal RC oscillator is used as clock source. For this use value 1024.
• 32768 Hz if the 32k crystal oscillator is used. For this use value 3000 or more. In case

more value will help improve the definition of the launch of the crystal. If the crystal could
not start, it will be switched to internal RC.

Range:
• from 0 to 8190 if CONFIG_RTC_CLK_SRC_EXT_CRYS || CON-

FIG_RTC_CLK_SRC_EXT_OSC || CONFIG_RTC_CLK_SRC_INT_RC32K
• from 0 to 32766

Default value:
• 3000 if CONFIG_RTC_CLK_SRC_EXT_CRYS || CONFIG_RTC_CLK_SRC_EXT_OSC ||

CONFIG_RTC_CLK_SRC_INT_RC32K
• 1024

Peripheral Control Contains:
• CONFIG_PERIPH_CTRL_FUNC_IN_IRAM

CONFIG_PERIPH_CTRL_FUNC_IN_IRAM
Place peripheral control functions into IRAM
Found in: Component config > Hardware Settings > Peripheral Control

Place peripheral control functions (e.g. periph_module_reset) into IRAM, so that these functions can
be IRAM-safe and able to be called in the other IRAM interrupt context.
Default value:

• No (disabled)

ETM Configuration Contains:
• CONFIG_ETM_ENABLE_DEBUG_LOG

Espressif Systems 1458
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ETM_ENABLE_DEBUG_LOG
Enable debug log
Found in: Component config > Hardware Settings > ETM Configuration

Wether to enable the debug log message for ETM core driver. Note that, this option only controls the
ETM related driver log, won't affect other drivers.
Default value:

• No (disabled)

GDMA Configuration Contains:
• CONFIG_GDMA_ISR_IRAM_SAFE
• CONFIG_GDMA_CTRL_FUNC_IN_IRAM

CONFIG_GDMA_CTRL_FUNC_IN_IRAM
Place GDMA control functions into IRAM
Found in: Component config > Hardware Settings > GDMA Configuration

Place GDMA control functions (like start/stop/append/reset) into IRAM, so that these functions can be
IRAM-safe and able to be called in the other IRAM interrupt context. Enabling this option can improve
driver performance as well.
Default value:

• No (disabled)

CONFIG_GDMA_ISR_IRAM_SAFE
GDMA ISR IRAM-Safe
Found in: Component config > Hardware Settings > GDMA Configuration

This will ensure the GDMA interrupt handler is IRAM-Safe, allow to avoid flash cache misses, and also
be able to run whilst the cache is disabled. (e.g. SPI Flash write).
Default value:

• No (disabled)

Main XTAL Config Contains:
• CONFIG_XTAL_FREQ_SEL

CONFIG_XTAL_FREQ_SEL
Main XTAL frequency
Found in: Component config > Hardware Settings > Main XTAL Config

This option selects the operating frequency of the XTAL (crystal) clock used to drive the ESP target.
The selected value MUST reflect the frequency of the given hardware.
Note: The XTAL_FREQ_AUTOoption allows the ESP target to automatically estimating XTAL clock's
operating frequency. However, this feature is only supported on the ESP32. The ESP32 uses the internal
8MHZ as a reference when estimating. Due to the internal oscillator's frequency being temperature
dependent, usage of the XTAL_FREQ_AUTO is not recommended in applications that operate in high
ambient temperatures or use high-temperature qualified chips and modules.
Available options:

Espressif Systems 1459
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 24 MHz (CONFIG_XTAL_FREQ_24)
• 26 MHz (CONFIG_XTAL_FREQ_26)
• 32 MHz (CONFIG_XTAL_FREQ_32)
• 40 MHz (CONFIG_XTAL_FREQ_40)
• Autodetect (CONFIG_XTAL_FREQ_AUTO)

Crypto DPA Protection Contains:
• CONFIG_ESP_CRYPTO_DPA_PROTECTION_AT_STARTUP

CONFIG_ESP_CRYPTO_DPA_PROTECTION_AT_STARTUP
Enable crypto DPA protection at startup
Found in: Component config > Hardware Settings > Crypto DPA Protection

This config controls the DPA (Differential Power Analysis) protection knob for the crypto peripherals.
DPA protection dynamically adjusts the clock frequency of the crypto peripheral. DPA protection helps
to make it difficult to perform SCA attacks on the crypto peripherals. However, there is also associated
performance impact based on the security level set. Please refer to the TRM for more details.
Default value:

• Yes (enabled)

CONFIG_ESP_CRYPTO_DPA_PROTECTION_LEVEL
DPA protection level
Found in: Component config > Hardware Settings > Crypto DPA Protection > CON-
FIG_ESP_CRYPTO_DPA_PROTECTION_AT_STARTUP

Configure the DPA protection security level
Available options:

• Security level low (CONFIG_ESP_CRYPTO_DPA_PROTECTION_LEVEL_LOW)
• Security levelmedium (CONFIG_ESP_CRYPTO_DPA_PROTECTION_LEVEL_MEDIUM)
• Security level high (CONFIG_ESP_CRYPTO_DPA_PROTECTION_LEVEL_HIGH)

CONFIG_ESP_CRYPTO_FORCE_ECC_CONSTANT_TIME_POINT_MUL
Forcefully enable ECC constant time point multiplication operations
Found in: Component config > Hardware Settings

If enabled, the app startup code will burn the ECC_FORCE_CONST_TIME efuse bit to force the
ECC peripheral to always perform constant time point multiplication operations, irrespective of the
ECC_MULT_SECURITY_MODE status bit that is present in the ECC_MULT_CONF_REG regis-
ter. By default, ESP-IDF configures the ECC peripheral to perform constant time point multiplication
operations, so enabling this config would provide security enhancement only in the cases when trusted
boot is not enabled and the attacker tries carrying out non-constant time point multiplication operations
by changing the default ESP-IDF configurations. Performing constant time operations protect the ECC
multiplication operations from timing attacks.
Default value:

• No (disabled) if SOC_ECC_CONSTANT_TIME_POINT_MUL

Espressif Systems 1460
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_ECDSA_ENABLE_P192_CURVE
Enable ECDSA 192-curve operations
Found in: Component config > Hardware Settings

By default, only the 256-bit curve operations are allowed. If this configuration is enabled, it will set the
eFuse to allow ECDSA operations using both the 192-bit and 256-bit curves
Default value:

• No (disabled) if SOC_ECDSA_P192_CURVE_DEFAULT_DISABLED

LCD and Touch Panel Contains:
• LCD Peripheral Configuration

LCD Peripheral Configuration Contains:
• CONFIG_LCD_ENABLE_DEBUG_LOG
• CONFIG_LCD_PANEL_IO_FORMAT_BUF_SIZE
• CONFIG_LCD_RGB_RESTART_IN_VSYNC
• CONFIG_LCD_RGB_ISR_IRAM_SAFE

CONFIG_LCD_PANEL_IO_FORMAT_BUF_SIZE
LCD panel io format buffer size
Found in: Component config > LCD and Touch Panel > LCD Peripheral Configuration

LCD driver allocates an internal buffer to transform the data into a proper format, because of the endian
order mismatch. This option is to set the size of the buffer, in bytes.
Default value:

• 32

CONFIG_LCD_ENABLE_DEBUG_LOG
Enable debug log
Found in: Component config > LCD and Touch Panel > LCD Peripheral Configuration

Wether to enable the debug log message for LCD driver. Note that, this option only controls the LCD
driver log, won't affect other drivers.
Default value:

• No (disabled)

CONFIG_LCD_RGB_ISR_IRAM_SAFE
RGB LCD ISR IRAM-Safe
Found in: Component config > LCD and Touch Panel > LCD Peripheral Configuration

Ensure the LCD interrupt is IRAM-Safe by allowing the interrupt handler to be executable when the
cache is disabled (e.g. SPI Flash write). If you want the LCD driver to keep flushing the screen even
when cache ops disabled, you can enable this option. Note, this will also increase the IRAM usage.
Default value:

• No (disabled) if SOC_LCD_RGB_SUPPORTED

Espressif Systems 1461
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LCD_RGB_RESTART_IN_VSYNC
Restart transmission in VSYNC
Found in: Component config > LCD and Touch Panel > LCD Peripheral Configuration

Reset the GDMA channel every VBlank to stop permanent desyncs from happening. Only need to enable
it when in your application, the DMA can't deliver data as fast as the LCD consumes it.
Default value:

• No (disabled) if SOC_LCD_RGB_SUPPORTED

ESP NETIF Adapter Contains:
• CONFIG_ESP_NETIF_BRIDGE_EN
• CONFIG_ESP_NETIF_L2_TAP
• CONFIG_ESP_NETIF_IP_LOST_TIMER_INTERVAL
• CONFIG_ESP_NETIF_USE_TCPIP_STACK_LIB
• CONFIG_ESP_NETIF_RECEIVE_REPORT_ERRORS

CONFIG_ESP_NETIF_IP_LOST_TIMER_INTERVAL
IP Address lost timer interval (seconds)
Found in: Component config > ESP NETIF Adapter

The value of 0 indicates the IP lost timer is disabled, otherwise the timer is enabled.
The IP address may be lost because of some reasons, e.g. when the station disconnects from soft-AP,
or when DHCP IP renew fails etc. If the IP lost timer is enabled, it will be started everytime the IP is
lost. Event SYSTEM_EVENT_STA_LOST_IP will be raised if the timer expires. The IP lost timer is
stopped if the station get the IP again before the timer expires.
Range:

• from 0 to 65535
Default value:

• 120

CONFIG_ESP_NETIF_USE_TCPIP_STACK_LIB
TCP/IP Stack Library
Found in: Component config > ESP NETIF Adapter

Choose the TCP/IP Stack to work, for example, LwIP, uIP, etc.
Available options:

• LwIP (CONFIG_ESP_NETIF_TCPIP_LWIP)
lwIP is a small independent implementation of the TCP/IP protocol suite.

• Loopback (CONFIG_ESP_NETIF_LOOPBACK)
Dummy implementation of esp-netif functionality which connects driver transmit to re-
ceive function. This option is for testing purpose only

CONFIG_ESP_NETIF_RECEIVE_REPORT_ERRORS
Use esp_err_t to report errors from esp_netif_receive
Found in: Component config > ESP NETIF Adapter

Enable if esp_netif_receive() should return error code. This is useful to inform upper layers that packet
input to TCP/IP stack failed, so the upper layers could implement flow control. This option is disabled
by default due to backward compatibility and will be enabled in v6.0 (IDF-7194)

Espressif Systems 1462
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled)

CONFIG_ESP_NETIF_L2_TAP
Enable netif L2 TAP support
Found in: Component config > ESP NETIF Adapter

A user program can read/write link layer (L2) frames from/to ESP TAP device. The ESP TAP device
can be currently associated only with Ethernet physical interfaces.

CONFIG_ESP_NETIF_L2_TAP_MAX_FDS
Maximum number of opened L2 TAP File descriptors
Found in: Component config > ESP NETIF Adapter > CONFIG_ESP_NETIF_L2_TAP

Maximum number of opened File descriptors (FD's) associated with ESP TAP device. ESP TAP FD's
take up a certain amount of memory, and allowing fewer FD's to be opened at the same time conserves
memory.
Range:

• from 1 to 10 if CONFIG_ESP_NETIF_L2_TAP
Default value:

• 5 if CONFIG_ESP_NETIF_L2_TAP

CONFIG_ESP_NETIF_L2_TAP_RX_QUEUE_SIZE
Size of L2 TAP Rx queue
Found in: Component config > ESP NETIF Adapter > CONFIG_ESP_NETIF_L2_TAP

Maximum number of frames queued in opened File descriptor. Once the queue is full, the newly arriv-
ing frames are dropped until the queue has enough room to accept incoming traffic (Tail Drop queue
management).
Range:

• from 1 to 100 if CONFIG_ESP_NETIF_L2_TAP
Default value:

• 20 if CONFIG_ESP_NETIF_L2_TAP

CONFIG_ESP_NETIF_BRIDGE_EN
Enable LwIP IEEE 802.1D bridge
Found in: Component config > ESP NETIF Adapter

Enable LwIP IEEE 802.1D bridge support in ESP-NETIF. Note that "Number of clients store data
in netif" (LWIP_NUM_NETIF_CLIENT_DATA) option needs to be properly configured to be LwIP
bridge avaiable!
Default value:

• No (disabled)

Partition API Configuration

Espressif Systems 1463
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

PHY Contains:
• CONFIG_ESP_PHY_CALIBRATION_MODE
• CONFIG_ESP_PHY_DEBUG
• CONFIG_ESP_PHY_PLL_TRACK_DEBUG
• CONFIG_ESP_PHY_ENABLE_CERT_TEST
• CONFIG_ESP_PHY_IMPROVE_RX_11B
• CONFIG_ESP_PHY_ENABLE_USB
• CONFIG_ESP_PHY_MAX_WIFI_TX_POWER
• CONFIG_ESP_PHY_MAC_BB_PD
• CONFIG_ESP_PHY_REDUCE_TX_POWER
• CONFIG_ESP_PHY_PLL_TRACK_PERIOD_MS
• CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE
• CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION

CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE
Store phy calibration data in NVS
Found in: Component config > PHY

If this option is enabled, NVS will be initialized and calibration data will be loaded from there. PHY
calibration will be skipped on deep sleep wakeup. If calibration data is not found, full calibration will
be performed and stored in NVS. Normally, only partial calibration will be performed. If this option is
disabled, full calibration will be performed.
If it's easy that your board calibrate bad data, choose 'n'. Two cases for example, you should choose
'n': 1.If your board is easy to be booted up with antenna disconnected. 2.Because of your board design,
each time when you do calibration, the result are too unstable. If unsure, choose 'y'.
Default value:

• Yes (enabled)

CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION
Use a partition to store PHY init data
Found in: Component config > PHY

If enabled, PHY init data will be loaded from a partition. When using a custom partition table, make
sure that PHY data partition is included (type: 'data', subtype: 'phy'). With default partition tables, this is
done automatically. If PHY init data is stored in a partition, it has to be flashed there, otherwise runtime
error will occur.
If this option is not enabled, PHY init data will be embedded into the application binary.
If unsure, choose 'n'.
Default value:

• No (disabled)
Contains:

• CONFIG_ESP_PHY_RECORD_USED_TIME
• CONFIG_ESP_PHY_DEFAULT_INIT_IF_INVALID
• CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN

CONFIG_ESP_PHY_DEFAULT_INIT_IF_INVALID
Reset default PHY init data if invalid
Found in: Component config > PHY > CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION

If enabled, PHY init data will be restored to default if it cannot be verified successfully to avoid endless
bootloops.

Espressif Systems 1464
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

If unsure, choose 'n'.
Default value:

• No (disabled) if CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION

CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN
Support multiple PHY init data bin
Found in: Component config > PHY > CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION

If enabled, the corresponding PHY init data type can be automatically switched according to the country
code. China's PHY init data bin is used by default. Can be modified by country information in API
esp_wifi_set_country(). The priority of switching the PHY init data type is: 1. Country configured by
API esp_wifi_set_country() and the parameter policy is WIFI_COUNTRY_POLICY_MANUAL. 2.
Country notified by the connected AP. 3. Country configured by API esp_wifi_set_country() and the
parameter policy is WIFI_COUNTRY_POLICY_AUTO.
Default value:

• No (disabled) if CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION && CON-
FIG_ESP_PHY_INIT_DATA_IN_PARTITION

CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN_EMBED
Support embedded multiple phy init data bin to app bin
Found in: Component config > PHY > CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION > CON-
FIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN

If enabled, multiple phy init data bin will embedded into app bin If not enabled, multiple phy init data
bin will still leave alone, and need to be flashed by users.
Default value:

• No (disabled) if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN && CON-
FIG_ESP_PHY_INIT_DATA_IN_PARTITION

CONFIG_ESP_PHY_INIT_DATA_ERROR
Terminate operation when PHY init data error
Found in: Component config > PHY > CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION > CON-
FIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN

If enabled, when an error occurs while the PHY init data is updated, the program will terminate and
restart. If not enabled, the PHY init data will not be updated when an error occurs.
Default value:

• No (disabled) if CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN && CON-
FIG_ESP_PHY_INIT_DATA_IN_PARTITION

CONFIG_ESP_PHY_RECORD_USED_TIME
Record PHY used time
Found in: Component config > PHY > CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION

Select to support record and query phy used time.
Default value:

• No (disabled) if CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION

Espressif Systems 1465
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_PHY_MAX_WIFI_TX_POWER
Max WiFi TX power (dBm)
Found in: Component config > PHY

Set maximum transmit power for WiFi radio. Actual transmit power for high data rates may be lower
than this setting.
Range:

• from 10 to 20
Default value:

• 20

CONFIG_ESP_PHY_MAC_BB_PD
Power down MAC and baseband of Wi-Fi and Bluetooth when PHY is disabled
Found in: Component config > PHY

If enabled, the MAC and baseband of Wi-Fi and Bluetooth will be powered down when PHY is dis-
abled. Enabling this setting reduces power consumption by a small amount but increases RAM use by
approximately 4 KB(Wi-Fi only), 2 KB(Bluetooth only) or 5.3 KB(Wi-Fi + Bluetooth).
Default value:

• No (disabled) if CONFIG_FREERTOS_USE_TICKLESS_IDLE

CONFIG_ESP_PHY_REDUCE_TX_POWER
Reduce PHY TX power when brownout reset
Found in: Component config > PHY

When brownout reset occurs, reduce PHY TX power to keep the code running.
Default value:

• No (disabled)

CONFIG_ESP_PHY_ENABLE_USB
Keep the USB PHY enabled when initializing WiFi
Found in: Component config > PHY

On some ESP targets, the USB PHY can interfere with WiFi thus lowering WiFi performance. As a
result, on those affected ESP targets, the ESP PHY library's initialization will automatically disable the
USB PHY to get best WiFi performance. This option controls whether or not the ESP PHY library will
keep the USB PHY enabled on initialization.
Note: This option can be disabled to increase WiFi performance. However, disabling this option will
also mean that the USB PHY cannot be used while WiFi is enabled.
Default value:

• Yes (enabled) if (CONFIG_ESP_CONSOLE_USB_SERIAL_JTAG ||
CONFIG_ESP_CONSOLE_SECONDARY_USB_SERIAL_JTAG) &&
SOC_WIFI_PHY_NEEDS_USB_WORKAROUND

• No (disabled) if SOC_WIFI_PHY_NEEDS_USB_WORKAROUND

CONFIG_ESP_PHY_ENABLE_CERT_TEST
Enable RF certification test functions
Found in: Component config > PHY

If enabled, you can use RF certification test APIs.

Espressif Systems 1466
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled)

CONFIG_ESP_PHY_CALIBRATION_MODE
Calibration mode
Found in: Component config > PHY

Select PHY calibration mode. During RF initialization, the partial calibration method is used by default
for RF calibration. Full calibration takes about 100ms more than partial calibration. If boot duration is
not critical, it is suggested to use the full calibration method. No calibration method is only used when
the device wakes up from deep sleep.
Available options:

• Calibration partial (CONFIG_ESP_PHY_RF_CAL_PARTIAL)
• Calibration none (CONFIG_ESP_PHY_RF_CAL_NONE)
• Calibration full (CONFIG_ESP_PHY_RF_CAL_FULL)

CONFIG_ESP_PHY_IMPROVE_RX_11B
Improve Wi-Fi receive 11b pkts
Found in: Component config > PHY

This is a workaround to improve Wi-Fi receive 11b pkts for some modules using AC-DC power sup-
ply with high interference, enable this option will sacrifice Wi-Fi OFDM receive performance. But to
guarantee 11b receive performance serves as a bottom line in this case.
Default value:

• No (disabled) if SOC_PHY_IMPROVE_RX_11B

CONFIG_ESP_PHY_PLL_TRACK_PERIOD_MS
Set the period of the pll track
Found in: Component config > PHY

Set the period of the pll track.
Default value:

• 1000

CONFIG_ESP_PHY_PLL_TRACK_DEBUG
Enable pll track logging
Found in: Component config > PHY

If enabled, there will be some logs while pll tracking
Default value:

• No (disabled)

CONFIG_ESP_PHY_DEBUG
Enable PHY Debug
Found in: Component config > PHY

Enabling this option allows different kinds of phy debugging features.
Default value:

Espressif Systems 1467
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• No (disabled)
Contains:

• CONFIG_ESP_PHY_DISABLE_PLL_TRACK

CONFIG_ESP_PHY_DISABLE_PLL_TRACK
Disable phy pll track(only for experimental)
Found in: Component config > PHY > CONFIG_ESP_PHY_DEBUG

Disable pll track. This configuration option is used for experimental. PLL track helps the PHY module
adapt to temperature changes, ensuring stable performance. When pll enabled, the ESP PHY module
will periodically track and adjust PLL parameters.
Default value:

• No (disabled) if CONFIG_ESP_PHY_DEBUG

Power Management Contains:
• CONFIG_PM_SLP_DISABLE_GPIO
• CONFIG_PM_LIGHT_SLEEP_CALLBACKS
• CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP
• CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP
• CONFIG_PM_SLP_IRAM_OPT
• CONFIG_PM_RTOS_IDLE_OPT
• CONFIG_PM_ENABLE

CONFIG_PM_ENABLE
Support for power management
Found in: Component config > Power Management

If enabled, application is compiled with support for power management. This option has run-time over-
head (increased interrupt latency, longer time to enter idle state), and it also reduces accuracy of RTOS
ticks and timers used for timekeeping. Enable this option if application uses power management APIs.

CONFIG_PM_DFS_INIT_AUTO
Enable dynamic frequency scaling (DFS) at startup
Found in: Component config > Power Management > CONFIG_PM_ENABLE

If enabled, startup code configures dynamic frequency scaling. Max CPU frequency is set to DE-
FAULT_CPU_FREQ_MHZ setting, min frequency is set to XTAL frequency. If disabled, DFS will
not be active until the application configures it using esp_pm_configure function.
Default value:

• No (disabled) if CONFIG_PM_ENABLE

CONFIG_PM_PROFILING
Enable profiling counters for PM locks
Found in: Component config > Power Management > CONFIG_PM_ENABLE

If enabled, esp_pm_* functions will keep track of the amount of time each of the power management
locks has been held, and esp_pm_dump_locks function will print this information. This feature can be
used to analyze which locks are preventing the chip from going into a lower power state, and see what
time the chip spends in each power saving mode. This feature does incur some run-time overhead, so
should typically be disabled in production builds.

Espressif Systems 1468
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled) if CONFIG_PM_ENABLE

CONFIG_PM_TRACE
Enable debug tracing of PM using GPIOs
Found in: Component config > Power Management > CONFIG_PM_ENABLE

If enabled, some GPIOs will be used to signal events such as RTOS ticks, frequency switching, entry/exit
from idle state. Refer to pm_trace.c file for the list of GPIOs. This feature is intended to be used when
analyzing/debugging behavior of power management implementation, and should be kept disabled in
applications.
Default value:

• No (disabled) if CONFIG_PM_ENABLE

CONFIG_PM_SLP_IRAM_OPT
Put lightsleep related codes in internal RAM
Found in: Component config > Power Management

If enabled, about 1.8KB of lightsleep related source code would be in IRAM and chip would sleep
longer for 760us at most each time. This feature is intended to be used when lower power consumption
is needed while there is enough place in IRAM to place source code.
Default value:

• No (disabled)

CONFIG_PM_RTOS_IDLE_OPT
Put RTOS IDLE related codes in internal RAM
Found in: Component config > Power Management

If enabled, about 260B of RTOS_IDLE related source code would be in IRAM and chip would sleep
longer for 40us at most each time. This feature is intended to be used when lower power consumption
is needed while there is enough place in IRAM to place source code.

CONFIG_PM_SLP_DISABLE_GPIO
Disable all GPIO when chip at sleep
Found in: Component config > Power Management

This feature is intended to disable all GPIO pins at automantic sleep to get a lower power mode.
If enabled, chips will disable all GPIO pins at automantic sleep to reduce about 200~300 uA cur-
rent. If you want to specifically use some pins normally as chip wakes when chip sleeps, you
can call 'gpio_sleep_sel_dis' to disable this feature on those pins. You can also keep this fea-
ture on and call 'gpio_sleep_set_direction' and 'gpio_sleep_set_pull_mode' to have a different GPIO
configuration at sleep. Waring: If you want to enable this option on ESP32, you should en-
able GPIO_ESP32_SUPPORT_SWITCH_SLP_PULL at first, otherwise you will not be able to switch
pullup/pulldown mode.

CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP
Power down CPU in light sleep
Found in: Component config > Power Management

Espressif Systems 1469
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

If enabled, the CPU will be powered down in light sleep, ESP chips supports saving and restoring CPU's
running context before and after light sleep, the feature provides applications with seamless CPU pow-
erdowned lightsleep without user awareness. But this will takes up some internal memory. On esp32c3
soc, enabling this option will consume 1.68 KB of internal RAM and will reduce sleep current consump-
tion by about 100 uA. On esp32s3 soc, enabling this option will consume 8.58 KB of internal RAM and
will reduce sleep current consumption by about 650 uA.
Default value:

• Yes (enabled)

CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP
Power down Digital Peripheral in light sleep (EXPERIMENTAL)
Found in: Component config > Power Management

If enabled, digital peripherals will try to powered down in light sleep, then all related peripherals will
not be available during sleep, including wake-up sources from the peripherals (For detailed availability
information, see the note of the corresponding wakeup source enable function). The chip will automat-
ically save/restore register context during sleep/wakeup to make the upper layer user unaware of the
peripheral powerdown during sleep. Enabling this option will increase static RAM and heap usage but
will also significantly reduce power. consumption during lightsleep, the actual memory cost depends on
the peripherals you have initialized, for specific power consumption data in this mode, please refer to
Electrical Characteristics section in the chip datasheet. (In order to save/restore the context of the nec-
essary hardware for FreeRTOS to run, it will need at least 4.55 KB free heap at sleep time. Otherwise
sleep will not power down the peripherals.)
Note1: Please use this option with caution, the current IDF does not support the retention of all peripher-
als. When the digital peripherals are powered off and a sleep and wake-up is completed, the peripherals
that have not saved the running context are equivalent to performing a reset. !!! Please confirm the
peripherals used in your application and their sleep retention support status before enabling this option,
peripherals sleep retention driver support status is tracked in power_management.rst
Note2: When this option is enabled simultaneously with FREERTOS_USE_TICKLESS_IDLE, since
the UART will be powered down, the uart FIFO will be flushed before sleep to avoid data loss, however,
this has the potential to block the sleep process and cause the wakeup time to be skipped, which will
cause the tick of freertos to not be compensated correctly when returning from sleep and cause the system
to crash. To avoid this, you can increase FREERTOS_IDLE_TIME_BEFORE_SLEEP threshold in
menuconfig.
Note3: Enabling this option does not necessarily mean that the peripheral power domain will be
turned down during sleep. The control priority of esp_sleep_pd_config is higher than this op-
tion, user code can still prevent the peripheral power domain from powering down during sleep by
esp_sleep_pd_config(ESP_PD_DOMAIN_TOP, ESP_PD_OPTION_ON). In addition, whether the periph-
eral power domain is powered down during sleep also depends on the sleep working strategy selected by
the driver. If any module belonging to the peripheral power domain chooses not to be powered down
during sleep, then the peripheral power domain will not be powered off either.
Default value:

• No (disabled)

CONFIG_PM_LIGHT_SLEEP_CALLBACKS
Enable registration of pm light sleep callbacks
Found in: Component config > Power Management

If enabled, it allows user to register entry and exit callbacks which are called before and after entering
auto light sleep.
NOTE: These callbacks are executed from the IDLE task context hence you cannot have any blocking
calls in your callbacks.

Espressif Systems 1470
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

NOTE: Enabling these callbacks may change sleep duration calculations based on time spent in callback
and hence it is highly recommended to keep them as short as possible
Default value:

• No (disabled) if CONFIG_FREERTOS_USE_TICKLESS_IDLE

ESP PSRAM

ESP Ringbuf Contains:
• CONFIG_RINGBUF_PLACE_FUNCTIONS_INTO_FLASH

CONFIG_RINGBUF_PLACE_FUNCTIONS_INTO_FLASH
Place non-ISR ringbuf functions into flash
Found in: Component config > ESP Ringbuf

Place non-ISR ringbuf functions (like xRingbufferCreate/xRingbufferSend) into flash. This frees up
IRAM, but the functions can no longer be called when the cache is disabled.
Default value:

• No (disabled)

CONFIG_RINGBUF_PLACE_ISR_FUNCTIONS_INTO_FLASH
Place ISR ringbuf functions into flash
Found in: Component config > ESP Ringbuf >CONFIG_RINGBUF_PLACE_FUNCTIONS_INTO_FLASH

Place ISR ringbuf functions (like xRingbufferSendFromISR/xRingbufferReceiveFromISR) into flash.
This frees up IRAM, but the functions can no longer be called when the cache is disabled or from an
IRAM interrupt context.
This option is not compatible with ESP-IDF drivers which are configured to run the ISR from an IRAM
context, e.g. CONFIG_UART_ISR_IN_IRAM.
Default value:

• No (disabled) if CONFIG_RINGBUF_PLACE_FUNCTIONS_INTO_FLASH

ESP System Settings Contains:
• CONFIG_ESP_SYSTEM_RTC_EXT_XTAL_BOOTSTRAP_CYCLES
• Brownout Detector
• CONFIG_ESP_CONSOLE_UART
• CONFIG_ESP_CONSOLE_SECONDARY
• CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ
• CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
• CONFIG_ESP_TASK_WDT_EN
• CONFIG_ESP_SYSTEM_EVENT_TASK_STACK_SIZE
• CONFIG_ESP_SYSTEM_USE_EH_FRAME
• CONFIG_ESP_XT_WDT
• CONFIG_ESP_SYSTEM_CHECK_INT_LEVEL
• CONFIG_ESP_INT_WDT
• CONFIG_ESP_MAIN_TASK_AFFINITY
• CONFIG_ESP_MAIN_TASK_STACK_SIZE
• CONFIG_ESP_DEBUG_OCDAWARE
• Memory protection
• CONFIG_ESP_MINIMAL_SHARED_STACK_SIZE
• CONFIG_ESP_DEBUG_STUBS_ENABLE
• CONFIG_ESP_SYSTEM_PANIC

Espressif Systems 1471
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_ESP_SYSTEM_PANIC_REBOOT_DELAY_SECONDS
• CONFIG_ESP_PANIC_HANDLER_IRAM
• CONFIG_ESP_SYSTEM_BBPLL_RECALIB
• CONFIG_ESP_SYSTEM_EVENT_QUEUE_SIZE
• CONFIG_ESP_CONSOLE_UART_BAUDRATE
• CONFIG_ESP_CONSOLE_UART_NUM
• CONFIG_ESP_CONSOLE_UART_RX_GPIO
• CONFIG_ESP_CONSOLE_UART_TX_GPIO

CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ
CPU frequency
Found in: Component config > ESP System Settings

CPU frequency to be set on application startup.
Available options:

• 40 MHz (CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ_40)
• 80 MHz (CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ_80)
• 120 MHz (CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ_120)
• 160 MHz (CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ_160)

CONFIG_ESP_SYSTEM_PANIC
Panic handler behaviour
Found in: Component config > ESP System Settings

If FreeRTOS detects unexpected behaviour or an unhandled exception, the panic handler is invoked.
Configure the panic handler's action here.
Available options:

• Print registers and halt (CONFIG_ESP_SYSTEM_PANIC_PRINT_HALT)
Outputs the relevant registers over the serial port and halt the processor. Needs a manual
reset to restart.

• Print registers and reboot (CONFIG_ESP_SYSTEM_PANIC_PRINT_REBOOT)
Outputs the relevant registers over the serial port and immediately reset the processor.

• Silent reboot (CONFIG_ESP_SYSTEM_PANIC_SILENT_REBOOT)
Just resets the processor without outputting anything

• GDBStub on panic (CONFIG_ESP_SYSTEM_PANIC_GDBSTUB)
Invoke gdbstub on the serial port, allowing for gdb to attach to it to do a postmortem of
the crash.

• GDBStub at runtime (CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME)
Invoke gdbstub on the serial port, allowing for gdb to attach to it and to do a debug on
runtime.

CONFIG_ESP_SYSTEM_PANIC_REBOOT_DELAY_SECONDS
Panic reboot delay (Seconds)
Found in: Component config > ESP System Settings

After the panic handler executes, you can specify a number of seconds to wait before the device reboots.
Range:

• from 0 to 99
Default value:

Espressif Systems 1472
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 0

CONFIG_ESP_SYSTEM_RTC_EXT_XTAL_BOOTSTRAP_CYCLES
Bootstrap cycles for external 32kHz crystal
Found in: Component config > ESP System Settings

To reduce the startup time of an external RTC crystal, we bootstrap it with a 32kHz square wave for a
fixed number of cycles. Setting 0 will disable bootstrapping (if disabled, the crystal may take longer to
start up or fail to oscillate under some conditions).
If this value is too high, a faulty crystal may initially start and then fail. If this value is too low, an
otherwise good crystal may not start.
To accurately determine if the crystal has started, set a larger "Number of cycles for RTC_SLOW_CLK
calibration" (about 3000).

CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
Enable RTC fast memory for dynamic allocations
Found in: Component config > ESP System Settings

This config option allows to add RTC fast memory region to system heap with capability similar to that
of DRAM region but without DMA. This memory will be consumed first per heap initialization order
by early startup services and scheduler related code. Speed wise RTC fast memory operates on APB
clock and hence does not have much performance impact.
Default value:

• Yes (enabled)

CONFIG_ESP_SYSTEM_USE_EH_FRAME
Generate and use eh_frame for backtracing
Found in: Component config > ESP System Settings

Generate DWARF information for each function of the project. These information will parsed and
used to perform backtracing when panics occur. Activating this option will activate asynchronous frame
unwinding and generation of both .eh_frame and .eh_frame_hdr sections, resulting in a bigger binary
size (20% to 100% larger). The main purpose of this option is to be able to have a backtrace parsed and
printed by the program itself, regardless of the serial monitor used. This option shall NOT be used for
production.
Default value:

• No (disabled)

Memory protection Contains:
• CONFIG_ESP_SYSTEM_PMP_IDRAM_SPLIT
• CONFIG_ESP_SYSTEM_MEMPROT_FEATURE

CONFIG_ESP_SYSTEM_PMP_IDRAM_SPLIT
Enable IRAM/DRAM split protection
Found in: Component config > ESP System Settings > Memory protection

If enabled, the CPU watches all the memory access and raises an exception in case of any memory
violation. This feature automatically splits the SRAM memory, using PMP, into data and instruction
segments and sets Read/Execute permissions for the instruction part (below given splitting address) and

Espressif Systems 1473
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Read/Write permissions for the data part (above the splitting address). The memory protection is effec-
tive on all access through the IRAM0 and DRAM0 buses.
Default value:

• Yes (enabled)

CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
Enable memory protection
Found in: Component config > ESP System Settings > Memory protection

If enabled, the permission control module watches all the memory access and fires the panic handler
if a permission violation is detected. This feature automatically splits the SRAM memory into data
and instruction segments and sets Read/Execute permissions for the instruction part (below given split-
ting address) and Read/Write permissions for the data part (above the splitting address). The memory
protection is effective on all access through the IRAM0 and DRAM0 buses.
Default value:

• Yes (enabled) if SOC_MEMPROT_SUPPORTED

CONFIG_ESP_SYSTEM_MEMPROT_FEATURE_LOCK
Lock memory protection settings
Found in: Component config > ESP System Settings > Memory protection > CON-
FIG_ESP_SYSTEM_MEMPROT_FEATURE

Once locked, memory protection settings cannot be changed anymore. The lock is reset only on the chip
startup.
Default value:

• Yes (enabled) if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE

CONFIG_ESP_SYSTEM_EVENT_QUEUE_SIZE
System event queue size
Found in: Component config > ESP System Settings

Config system event queue size in different application.
Default value:

• 32

CONFIG_ESP_SYSTEM_EVENT_TASK_STACK_SIZE
Event loop task stack size
Found in: Component config > ESP System Settings

Config system event task stack size in different application.
Default value:

• 2304

CONFIG_ESP_MAIN_TASK_STACK_SIZE
Main task stack size
Found in: Component config > ESP System Settings

Configure the "main task" stack size. This is the stack of the task which calls app_main(). If app_main()
returns then this task is deleted and its stack memory is freed.

Espressif Systems 1474
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• 3584

CONFIG_ESP_MAIN_TASK_AFFINITY
Main task core affinity
Found in: Component config > ESP System Settings

Configure the "main task" core affinity. This is the used core of the task which calls app_main(). If
app_main() returns then this task is deleted.
Available options:

• CPU0 (CONFIG_ESP_MAIN_TASK_AFFINITY_CPU0)
• CPU1 (CONFIG_ESP_MAIN_TASK_AFFINITY_CPU1)
• No affinity (CONFIG_ESP_MAIN_TASK_AFFINITY_NO_AFFINITY)

CONFIG_ESP_MINIMAL_SHARED_STACK_SIZE
Minimal allowed size for shared stack
Found in: Component config > ESP System Settings

Minimal value of size, in bytes, accepted to execute a expression with shared stack.
Default value:

• 2048

CONFIG_ESP_CONSOLE_UART
Channel for console output
Found in: Component config > ESP System Settings

Select where to send console output (through stdout and stderr).
• Default is to use UART0 on pre-defined GPIOs.
• If "Custom" is selected, UART0 or UART1 can be chosen, and any pins can be selected.
• If "None" is selected, there will be no console output on any UART, except for initial output from
ROM bootloader. This ROM output can be suppressed by GPIO strapping or EFUSE, refer to
chip datasheet for details.

• On chips with USB OTG peripheral, "USB CDC" option redirects output to the CDC port. This
option uses the CDC driver in the chip ROM. This option is incompatible with TinyUSB stack.

• On chips with an USB serial/JTAG debug controller, selecting the option for that redirects output
to the CDC/ACM (serial port emulation) component of that device.

Available options:

• Default: UART0 (CONFIG_ESP_CONSOLE_UART_DEFAULT)
• USB CDC (CONFIG_ESP_CONSOLE_USB_CDC)
• USB Serial/JTAG Controller (CONFIG_ESP_CONSOLE_USB_SERIAL_JTAG)
• Custom UART (CONFIG_ESP_CONSOLE_UART_CUSTOM)
• None (CONFIG_ESP_CONSOLE_NONE)

CONFIG_ESP_CONSOLE_SECONDARY
Channel for console secondary output
Found in: Component config > ESP System Settings

Espressif Systems 1475
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This secondary option supports output through other specific port like USB_SERIAL_JTAG when
UART0 port as a primary is selected but not connected. This secondary output currently only sup-
ports non-blocking mode without using REPL. If you want to output in blocking mode with REPL or
input through this secondary port, please change the primary config to this port in Channel for console
output menu.
Available options:

• No secondary console (CONFIG_ESP_CONSOLE_SECONDARY_NONE)
• USB_SERIAL_JTAGPORT (CONFIG_ESP_CONSOLE_SECONDARY_USB_SERIAL_JTAG)
This option supports output through USB_SERIAL_JTAG port when the UART0
port is not connected. The output currently only supports non-blocking mode
without using the console. If you want to output in blocking mode with REPL
or input through USB_SERIAL_JTAG port, please change the primary config to
ESP_CONSOLE_USB_SERIAL_JTAG above.

CONFIG_ESP_CONSOLE_UART_NUM
UART peripheral to use for console output (0-1)
Found in: Component config > ESP System Settings

This UART peripheral is used for console output from the ESP-IDF Bootloader and the app.
If the configuration is different in the Bootloader binary compared to the app binary, UART is recon-
figured after the bootloader exits and the app starts.
Due to an ESP32 ROM bug, UART2 is not supported for console output via esp_rom_printf.
Available options:

• UART0 (CONFIG_ESP_CONSOLE_UART_CUSTOM_NUM_0)
• UART1 (CONFIG_ESP_CONSOLE_UART_CUSTOM_NUM_1)

CONFIG_ESP_CONSOLE_UART_TX_GPIO
UART TX on GPIO#
Found in: Component config > ESP System Settings

This GPIO is used for console UART TX output in the ESP-IDF Bootloader and the app (including boot
log output and default standard output and standard error of the app).
If the configuration is different in the Bootloader binary compared to the app binary, UART is recon-
figured after the bootloader exits and the app starts.
Range:

• from 0 to 46 if CONFIG_ESP_CONSOLE_UART_CUSTOM
Default value:

• 16 if CONFIG_ESP_CONSOLE_UART_CUSTOM
• 43 if CONFIG_ESP_CONSOLE_UART_CUSTOM

CONFIG_ESP_CONSOLE_UART_RX_GPIO
UART RX on GPIO#
Found in: Component config > ESP System Settings

This GPIO is used for UARTRX input in the ESP-IDF Bootloader and the app (including default default
standard input of the app).
Note: The default ESP-IDF Bootloader configures this pin but doesn't read anything from the UART.

Espressif Systems 1476
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

If the configuration is different in the Bootloader binary compared to the app binary, UART is recon-
figured after the bootloader exits and the app starts.
Range:

• from 0 to 46 if CONFIG_ESP_CONSOLE_UART_CUSTOM
Default value:

• 17 if CONFIG_ESP_CONSOLE_UART_CUSTOM
• 44 if CONFIG_ESP_CONSOLE_UART_CUSTOM

CONFIG_ESP_CONSOLE_UART_BAUDRATE
UART console baud rate
Found in: Component config > ESP System Settings

This baud rate is used by both the ESP-IDF Bootloader and the app (including boot log output and
default standard input/output/error of the app).
The app's maximum baud rate depends on the UART clock source. If Power Management is disabled,
the UART clock source is the APB clock and all baud rates in the available range will be sufficiently
accurate. If Power Management is enabled, REF_TICK clock source is used so the baud rate is divided
from 1MHz. Baud rates above 1Mbps are not possible and values between 500Kbps and 1Mbps may
not be accurate.
If the configuration is different in the Bootloader binary compared to the app binary, UART is recon-
figured after the bootloader exits and the app starts.
Range:

• from 1200 to 1000000 if CONFIG_PM_ENABLE
Default value:

• 115200

CONFIG_ESP_INT_WDT
Interrupt watchdog
Found in: Component config > ESP System Settings

This watchdog timer can detect if the FreeRTOS tick interrupt has not been called for a certain time,
either because a task turned off interrupts and did not turn them on for a long time, or because an
interrupt handler did not return. It will try to invoke the panic handler first and failing that reset the SoC.
Default value:

• Yes (enabled)

CONFIG_ESP_INT_WDT_TIMEOUT_MS
Interrupt watchdog timeout (ms)
Found in: Component config > ESP System Settings > CONFIG_ESP_INT_WDT

The timeout of the watchdog, in miliseconds. Make this higher than the FreeRTOS tick rate.
Range:

• from 10 to 10000
Default value:

• 300

CONFIG_ESP_INT_WDT_CHECK_CPU1
Also watch CPU1 tick interrupt
Found in: Component config > ESP System Settings > CONFIG_ESP_INT_WDT

Espressif Systems 1477
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Also detect if interrupts on CPU 1 are disabled for too long.

CONFIG_ESP_TASK_WDT_EN
Enable Task Watchdog Timer
Found in: Component config > ESP System Settings

The Task Watchdog Timer can be used to make sure individual tasks are still running. Enabling this
option will enable the Task Watchdog Timer. It can be either initialized automatically at startup or
initialized after startup (see Task Watchdog Timer API Reference)
Default value:

• Yes (enabled)

CONFIG_ESP_TASK_WDT_INIT
Initialize Task Watchdog Timer on startup
Found in: Component config > ESP System Settings > CONFIG_ESP_TASK_WDT_EN

Enabling this option will cause the Task Watchdog Timer to be initialized automatically at startup.
Default value:

• Yes (enabled)

CONFIG_ESP_TASK_WDT_PANIC
Invoke panic handler on Task Watchdog timeout
Found in: Component config > ESP System Settings > CONFIG_ESP_TASK_WDT_EN > CON-
FIG_ESP_TASK_WDT_INIT

If this option is enabled, the Task Watchdog Timer will be configured to trigger the panic handler when
it times out. This can also be configured at run time (see Task Watchdog Timer API Reference)
Default value:

• No (disabled)

CONFIG_ESP_TASK_WDT_TIMEOUT_S
Task Watchdog timeout period (seconds)
Found in: Component config > ESP System Settings > CONFIG_ESP_TASK_WDT_EN > CON-
FIG_ESP_TASK_WDT_INIT

Timeout period configuration for the Task Watchdog Timer in seconds. This is also configurable at run
time (see Task Watchdog Timer API Reference)
Range:

• from 1 to 60
Default value:

• 5

CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU0
Watch CPU0 Idle Task
Found in: Component config > ESP System Settings > CONFIG_ESP_TASK_WDT_EN > CON-
FIG_ESP_TASK_WDT_INIT

If this option is enabled, the Task Watchdog Timer will watch the CPU0 Idle Task. Having the Task
Watchdog watch the Idle Task allows for detection of CPU starvation as the Idle Task not being called is

Espressif Systems 1478
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

usually a symptom of CPU starvation. Starvation of the Idle Task is detrimental as FreeRTOS household
tasks depend on the Idle Task getting some runtime every now and then.
Default value:

• Yes (enabled)

CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU1
Watch CPU1 Idle Task
Found in: Component config > ESP System Settings > CONFIG_ESP_TASK_WDT_EN > CON-
FIG_ESP_TASK_WDT_INIT

If this option is enabled, the Task Watchdog Timer will wach the CPU1 Idle Task.

CONFIG_ESP_XT_WDT
Initialize XTAL32K watchdog timer on startup
Found in: Component config > ESP System Settings

This watchdog timer can detect oscillation failure of the XTAL32K_CLK. When such a failure is de-
tected the hardware can be set up to automatically switch to BACKUP32K_CLK and generate an inter-
rupt.

CONFIG_ESP_XT_WDT_TIMEOUT
XTAL32K watchdog timeout period
Found in: Component config > ESP System Settings > CONFIG_ESP_XT_WDT

Timeout period configuration for the XTAL32K watchdog timer based on RTC_CLK.
Range:

• from 1 to 255 if CONFIG_ESP_XT_WDT
Default value:

• 200 if CONFIG_ESP_XT_WDT

CONFIG_ESP_XT_WDT_BACKUP_CLK_ENABLE
Automatically switch to BACKUP32K_CLK when timer expires
Found in: Component config > ESP System Settings > CONFIG_ESP_XT_WDT

Enable this to automatically switch to BACKUP32K_CLK as the source of RTC_SLOW_CLK when
the watchdog timer expires.
Default value:

• Yes (enabled) if CONFIG_ESP_XT_WDT

CONFIG_ESP_PANIC_HANDLER_IRAM
Place panic handler code in IRAM
Found in: Component config > ESP System Settings

If this option is disabled (default), the panic handler code is placed in flash not IRAM. This means that
if ESP-IDF crashes while flash cache is disabled, the panic handler will automatically re-enable flash
cache before running GDB Stub or Core Dump. This adds some minor risk, if the flash cache status is
also corrupted during the crash.
If this option is enabled, the panic handler code (including required UART functions) is placed in IRAM.
This may be necessary to debug some complex issues with crashes while flash cache is disabled (for
example, when writing to SPI flash) or when flash cache is corrupted when an exception is triggered.

Espressif Systems 1479
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled)

CONFIG_ESP_DEBUG_STUBS_ENABLE
OpenOCD debug stubs
Found in: Component config > ESP System Settings

Debug stubs are used by OpenOCD to execute pre-compiled onboard code which does some useful
debugging stuff, e.g. GCOV data dump.

CONFIG_ESP_DEBUG_OCDAWARE
Make exception and panic handlers JTAG/OCD aware
Found in: Component config > ESP System Settings

The FreeRTOS panic and unhandled exception handers can detect a JTAG OCD debugger and instead
of panicking, have the debugger stop on the offending instruction.
Default value:

• Yes (enabled)

CONFIG_ESP_SYSTEM_CHECK_INT_LEVEL
Interrupt level to use for Interrupt Watchdog and other system checks
Found in: Component config > ESP System Settings

Interrupt level to use for Interrupt Watchdog and other system checks.
Available options:

• Level 5 interrupt (CONFIG_ESP_SYSTEM_CHECK_INT_LEVEL_5)
Using level 5 interrupt for Interrupt Watchdog and other system checks.

• Level 4 interrupt (CONFIG_ESP_SYSTEM_CHECK_INT_LEVEL_4)
Using level 4 interrupt for Interrupt Watchdog and other system checks.

Brownout Detector Contains:
• CONFIG_ESP_BROWNOUT_DET

CONFIG_ESP_BROWNOUT_DET
Hardware brownout detect & reset
Found in: Component config > ESP System Settings > Brownout Detector

The ESP32-C6 has a built-in brownout detector which can detect if the voltage is lower than a specific
value. If this happens, it will reset the chip in order to prevent unintended behaviour.
Default value:

• Yes (enabled)

Espressif Systems 1480
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_BROWNOUT_DET_LVL_SEL
Brownout voltage level
Found in: Component config > ESP System Settings > Brownout Detector > CON-
FIG_ESP_BROWNOUT_DET

The brownout detector will reset the chip when the supply voltage is approximately below this level.
Note that there may be some variation of brownout voltage level between each chip.
#The voltage levels here are estimates, more work needs to be done to figure out the exact voltages #of
the brownout threshold levels.
Available options:

• 2.51V (CONFIG_ESP_BROWNOUT_DET_LVL_SEL_7)
• 2.64V (CONFIG_ESP_BROWNOUT_DET_LVL_SEL_6)
• 2.76V (CONFIG_ESP_BROWNOUT_DET_LVL_SEL_5)
• 2.92V (CONFIG_ESP_BROWNOUT_DET_LVL_SEL_4)
• 3.10V (CONFIG_ESP_BROWNOUT_DET_LVL_SEL_3)
• 3.27V (CONFIG_ESP_BROWNOUT_DET_LVL_SEL_2)

CONFIG_ESP_SYSTEM_BBPLL_RECALIB
Re-calibration BBPLL at startup
Found in: Component config > ESP System Settings

This configuration helps to address an BBPLL inaccurate issue when boot from certain bootloader ver-
sion, which may increase about the boot-up time by about 200 us. Disable this when your bootloader is
built with ESP-IDF version v5.2 and above.
Default value:

• Yes (enabled)

IPC (Inter-Processor Call) Contains:
• CONFIG_ESP_IPC_TASK_STACK_SIZE
• CONFIG_ESP_IPC_USES_CALLERS_PRIORITY

CONFIG_ESP_IPC_TASK_STACK_SIZE
Inter-Processor Call (IPC) task stack size
Found in: Component config > IPC (Inter-Processor Call)

Configure the IPC tasks stack size. An IPC task runs on each core (in dual core mode), and allows for
cross-core function calls. See IPC documentation for more details. The default IPC stack size should be
enough for most common simple use cases. However, users can increase/decrease the stack size to their
needs.
Range:

• from 512 to 65536
Default value:

• 1024

CONFIG_ESP_IPC_USES_CALLERS_PRIORITY
IPC runs at caller's priority
Found in: Component config > IPC (Inter-Processor Call)

Espressif Systems 1481
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

If this option is not enabled then the IPC task will keep behavior same as prior to that of ESP-IDF v4.0,
hence IPC task will run at (configMAX_PRIORITIES - 1) priority.

High resolution timer (esp_timer) Contains:
• CONFIG_ESP_TIMER_PROFILING
• CONFIG_ESP_TIMER_TASK_AFFINITY
• CONFIG_ESP_TIMER_TASK_STACK_SIZE
• CONFIG_ESP_TIMER_INTERRUPT_LEVEL
• CONFIG_ESP_TIMER_SHOW_EXPERIMENTAL
• CONFIG_ESP_TIMER_SUPPORTS_ISR_DISPATCH_METHOD
• CONFIG_ESP_TIMER_ISR_AFFINITY

CONFIG_ESP_TIMER_PROFILING
Enable esp_timer profiling features
Found in: Component config > High resolution timer (esp_timer)

If enabled, esp_timer_dump will dump information such as number of times the timer was started,
number of times the timer has triggered, and the total time it took for the callback to run. This option
has some effect on timer performance and the amount of memory used for timer storage, and should
only be used for debugging/testing purposes.
Default value:

• No (disabled)

CONFIG_ESP_TIMER_TASK_STACK_SIZE
High-resolution timer task stack size
Found in: Component config > High resolution timer (esp_timer)

Configure the stack size of "timer_task" task. This task is used to dispatch callbacks of timers created
using ets_timer and esp_timer APIs. If you are seing stack overflow errors in timer task, increase this
value.
Note that this is not the same as FreeRTOS timer task. To configure FreeRTOS timer task size, see
"FreeRTOS timer task stack size" option in "FreeRTOS".
Range:

• from 2048 to 65536
Default value:

• 3584

CONFIG_ESP_TIMER_INTERRUPT_LEVEL
Interrupt level
Found in: Component config > High resolution timer (esp_timer)

It sets the interrupt level for esp_timer ISR in range 1..3. A higher level (3) helps to decrease the ISR
esp_timer latency.
Range:

• from 1 to 1
Default value:

• 1

Espressif Systems 1482
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_TIMER_SHOW_EXPERIMENTAL
show esp_timer's experimental features
Found in: Component config > High resolution timer (esp_timer)

This shows some hidden features of esp_timer. Note that they may break other features, use them with
care.

CONFIG_ESP_TIMER_TASK_AFFINITY
esp_timer task core affinity
Found in: Component config > High resolution timer (esp_timer)

The default settings: timer TASK on CPU0 and timer ISR on CPU0. Other settings may help in certain
cases, but note that they may break other features, use them with care. - "CPU0": (default) esp_timer
task is processed by CPU0. - "CPU1": esp_timer task is processed by CPU1. - "No affinity": esp_timer
task can be processed by any CPU.
Available options:

• CPU0 (CONFIG_ESP_TIMER_TASK_AFFINITY_CPU0)
• CPU1 (CONFIG_ESP_TIMER_TASK_AFFINITY_CPU1)
• No affinity (CONFIG_ESP_TIMER_TASK_AFFINITY_NO_AFFINITY)

CONFIG_ESP_TIMER_ISR_AFFINITY
timer interrupt core affinity
Found in: Component config > High resolution timer (esp_timer)

The default settings: timer TASK on CPU0 and timer ISR on CPU0. Other settings may help in certain
cases, but note that they may break other features, use them with care. - "CPU0": (default) timer
interrupt is processed by CPU0. - "CPU1": timer interrupt is processed by CPU1. - "No affinity": timer
interrupt can be processed by any CPU. It helps to reduce latency but there is a disadvantage it leads to
the timer ISR running on every core. It increases the CPU time usage for timer ISRs by N on an N-core
system.
Available options:

• CPU0 (CONFIG_ESP_TIMER_ISR_AFFINITY_CPU0)
• CPU1 (CONFIG_ESP_TIMER_ISR_AFFINITY_CPU1)
• No affinity (CONFIG_ESP_TIMER_ISR_AFFINITY_NO_AFFINITY)

CONFIG_ESP_TIMER_SUPPORTS_ISR_DISPATCH_METHOD
Support ISR dispatch method
Found in: Component config > High resolution timer (esp_timer)

Allows using ESP_TIMER_ISR dispatch method (ESP_TIMER_TASK dispatch method is also aval-
ible). - ESP_TIMER_TASK - Timer callbacks are dispatched from a high-priority esp_timer task. -
ESP_TIMER_ISR - Timer callbacks are dispatched directly from the timer interrupt handler. The ISR
dispatch can be used, in some cases, when a callback is very simple or need a lower-latency.
Default value:

• No (disabled)

Espressif Systems 1483
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Wi-Fi Contains:
• CONFIG_ESP_WIFI_TESTING_OPTIONS
• CONFIG_ESP_WIFI_WPS_SOFTAP_REGISTRAR
• CONFIG_ESP_WIFI_11KV_SUPPORT
• CONFIG_ESP_WIFI_11R_SUPPORT
• CONFIG_ESP_WIFI_MODEM_RF_FLAG_UPDATE_DEBUG
• CONFIG_ESP_WIFI_DPP_SUPPORT
• CONFIG_ESP_WIFI_ENTERPRISE_SUPPORT
• CONFIG_ESP_WIFI_MBO_SUPPORT
• CONFIG_ESP_WIFI_SUITE_B_192
• CONFIG_ESP_WIFI_ENABLE_WPA3_OWE_STA
• CONFIG_ESP_WIFI_WAPI_PSK
• CONFIG_ESP_WIFI_ENABLE_WIFI_RX_STATS
• CONFIG_ESP_WIFI_ENABLE_WIFI_TX_STATS
• CONFIG_ESP_WIFI_ENABLE_WPA3_SAE
• CONFIG_ESP_WIFI_SCAN_CACHE
• CONFIG_ESP_WIFI_SOFTAP_BEACON_MAX_LEN
• CONFIG_ESP_WIFI_CACHE_TX_BUFFER_NUM
• CONFIG_ESP_WIFI_DYNAMIC_RX_BUFFER_NUM
• CONFIG_ESP_WIFI_DYNAMIC_TX_BUFFER_NUM
• CONFIG_ESP_WIFI_RX_MGMT_BUF_NUM_DEF
• CONFIG_ESP_WIFI_STATIC_RX_BUFFER_NUM
• CONFIG_ESP_WIFI_STATIC_TX_BUFFER_NUM
• CONFIG_ESP_WIFI_ESPNOW_MAX_ENCRYPT_NUM
• CONFIG_ESP_WIFI_SLP_DEFAULT_MAX_ACTIVE_TIME
• CONFIG_ESP_WIFI_SLP_DEFAULT_MIN_ACTIVE_TIME
• CONFIG_ESP_WIFI_SLP_DEFAULT_WAIT_BROADCAST_DATA_TIME
• CONFIG_ESP_WIFI_STA_DISCONNECTED_PM_ENABLE
• CONFIG_ESP_WIFI_DEBUG_PRINT
• CONFIG_ESP_WIFI_MGMT_RX_BUFFER
• CONFIG_ESP_WIFI_TX_BUFFER
• CONFIG_ESP_WIFI_MBEDTLS_CRYPTO
• CONFIG_ESP_WIFI_AMPDU_RX_ENABLED
• CONFIG_ESP_WIFI_AMPDU_TX_ENABLED
• CONFIG_ESP_WIFI_AMSDU_TX_ENABLED
• CONFIG_ESP_WIFI_NAN_ENABLE
• CONFIG_ESP_WIFI_CSI_ENABLED
• CONFIG_ESP_WIFI_EXTRA_IRAM_OPT
• CONFIG_ESP_WIFI_FTM_ENABLE
• CONFIG_ESP_WIFI_GCMP_SUPPORT
• CONFIG_ESP_WIFI_GMAC_SUPPORT
• CONFIG_ESP_WIFI_IRAM_OPT
• CONFIG_ESP_WIFI_MGMT_SBUF_NUM
• CONFIG_ESP_WIFI_ENHANCED_LIGHT_SLEEP
• CONFIG_ESP_WIFI_NVS_ENABLED
• CONFIG_ESP_WIFI_RX_IRAM_OPT
• CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT
• CONFIG_ESP_WIFI_SLP_IRAM_OPT
• CONFIG_ESP_WIFI_SOFTAP_SUPPORT
• CONFIG_ESP_WIFI_TASK_CORE_ID
• WPS Configuration Options

CONFIG_ESP_WIFI_STATIC_RX_BUFFER_NUM
Max number of WiFi static RX buffers
Found in: Component config >Wi-Fi

Espressif Systems 1484
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Set the number of WiFi static RX buffers. Each buffer takes approximately 1.6KB of RAM. The static
rx buffers are allocated when esp_wifi_init is called, they are not freed until esp_wifi_deinit is called.
WiFi hardware use these buffers to receive all 802.11 frames. A higher number may allow higher
throughput but increases memory use. If ESP_WIFI_AMPDU_RX_ENABLED is enabled, this value is
recommended to set equal or bigger than ESP_WIFI_RX_BA_WIN in order to achieve better through-
put and compatibility with both stations and APs.
Range:

• from 2 to 128
Default value:

• 10

CONFIG_ESP_WIFI_DYNAMIC_RX_BUFFER_NUM
Max number of WiFi dynamic RX buffers
Found in: Component config >Wi-Fi

Set the number of WiFi dynamic RX buffers, 0 means unlimited RX buffers will be allocated (provided
sufficient free RAM). The size of each dynamic RX buffer depends on the size of the received data
frame.
For each received data frame, the WiFi driver makes a copy to an RX buffer and then delivers it to the
high layer TCP/IP stack. The dynamic RX buffer is freed after the higher layer has successfully received
the data frame.
For some applications, WiFi data frames may be received faster than the application can process them.
In these cases we may run out of memory if RX buffer number is unlimited (0).
If a dynamic RX buffer limit is set, it should be at least the number of static RX buffers.
Range:

• from 0 to 1024 if CONFIG_LWIP_WND_SCALE
Default value:

• 32

CONFIG_ESP_WIFI_TX_BUFFER
Type of WiFi TX buffers
Found in: Component config >Wi-Fi

Select type of WiFi TX buffers:
If "Static" is selected, WiFi TX buffers are allocated when WiFi is initialized and released when WiFi
is de-initialized. The size of each static TX buffer is fixed to about 1.6KB.
If "Dynamic" is selected, each WiFi TX buffer is allocated as needed when a data frame is delivered
to the Wifi driver from the TCP/IP stack. The buffer is freed after the data frame has been sent by the
WiFi driver. The size of each dynamic TX buffer depends on the length of each data frame sent by the
TCP/IP layer.
If PSRAM is enabled, "Static" should be selected to guarantee enough WiFi TX buffers. If PSRAM is
disabled, "Dynamic" should be selected to improve the utilization of RAM.
Available options:

• Static (CONFIG_ESP_WIFI_STATIC_TX_BUFFER)
• Dynamic (CONFIG_ESP_WIFI_DYNAMIC_TX_BUFFER)

Espressif Systems 1485
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_WIFI_STATIC_TX_BUFFER_NUM
Max number of WiFi static TX buffers
Found in: Component config >Wi-Fi

Set the number of WiFi static TX buffers. Each buffer takes approximately 1.6KB of RAM. The static
RX buffers are allocated when esp_wifi_init() is called, they are not released until esp_wifi_deinit() is
called.
For each transmitted data frame from the higher layer TCP/IP stack, the WiFi driver makes a copy of
it in a TX buffer. For some applications especially UDP applications, the upper layer can deliver frames
faster than WiFi layer can transmit. In these cases, we may run out of TX buffers.
Range:

• from 1 to 64 if CONFIG_ESP_WIFI_STATIC_TX_BUFFER
Default value:

• 16 if CONFIG_ESP_WIFI_STATIC_TX_BUFFER

CONFIG_ESP_WIFI_CACHE_TX_BUFFER_NUM
Max number of WiFi cache TX buffers
Found in: Component config >Wi-Fi

Set the number of WiFi cache TX buffer number.
For each TX packet from uplayer, such as LWIP etc, WiFi driver needs to allocate a static TX buffer
and makes a copy of uplayer packet. If WiFi driver fails to allocate the static TX buffer, it caches the
uplayer packets to a dedicated buffer queue, this option is used to configure the size of the cached TX
queue.

CONFIG_ESP_WIFI_DYNAMIC_TX_BUFFER_NUM
Max number of WiFi dynamic TX buffers
Found in: Component config >Wi-Fi

Set the number ofWiFi dynamic TX buffers. The size of each dynamic TX buffer is not fixed, it depends
on the size of each transmitted data frame.
For each transmitted frame from the higher layer TCP/IP stack, the WiFi driver makes a copy of it in a
TX buffer. For some applications, especially UDP applications, the upper layer can deliver frames faster
than WiFi layer can transmit. In these cases, we may run out of TX buffers.
Range:

• from 1 to 128
Default value:

• 32

CONFIG_ESP_WIFI_MGMT_RX_BUFFER
Type of WiFi RX MGMT buffers
Found in: Component config >Wi-Fi

Select type of WiFi RX MGMT buffers:
If "Static" is selected, WiFi RXMGMT buffers are allocated whenWiFi is initialized and released when
WiFi is de-initialized. The size of each static RX MGMT buffer is fixed to about 500 Bytes.
If "Dynamic" is selected, eachWiFi RXMGMT buffer is allocated as needed when aMGMT data frame
is received. The MGMT buffer is freed after the MGMT data frame has been processed by the WiFi
driver.
Available options:

Espressif Systems 1486
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Static (CONFIG_ESP_WIFI_STATIC_RX_MGMT_BUFFER)
• Dynamic (CONFIG_ESP_WIFI_DYNAMIC_RX_MGMT_BUFFER)

CONFIG_ESP_WIFI_RX_MGMT_BUF_NUM_DEF
Max number of WiFi RX MGMT buffers
Found in: Component config >Wi-Fi

Set the number of WiFi RX_MGMT buffers.
For Management buffers, the number of dynamic and static management buffers is the same. In order
to prevent memory fragmentation, the management buffer type should be set to static first.
Range:

• from 1 to 10
Default value:

• 5

CONFIG_ESP_WIFI_CSI_ENABLED
WiFi CSI(Channel State Information)
Found in: Component config >Wi-Fi

Select this option to enable CSI(Channel State Information) feature. CSI takes about CON-
FIG_ESP_WIFI_STATIC_RX_BUFFER_NUM KB of RAM. If CSI is not used, it is better to disable
this feature in order to save memory.
Default value:

• No (disabled)

CONFIG_ESP_WIFI_AMPDU_TX_ENABLED
WiFi AMPDU TX
Found in: Component config >Wi-Fi

Select this option to enable AMPDU TX feature
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_TX_BA_WIN
WiFi AMPDU TX BA window size
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_AMPDU_TX_ENABLED

Set the size of WiFi Block Ack TX window. Generally a bigger value means higher throughput but
more memory. Most of time we should NOT change the default value unless special reason, e.g. test
the maximum UDP TX throughput with iperf etc. For iperf test in shieldbox, the recommended value
is 9~12.
Range:

• from 2 to 64
Default value:

• 6

Espressif Systems 1487
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_WIFI_AMPDU_RX_ENABLED
WiFi AMPDU RX
Found in: Component config >Wi-Fi

Select this option to enable AMPDU RX feature
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_RX_BA_WIN
WiFi AMPDU RX BA window size
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_AMPDU_RX_ENABLED

Set the size of WiFi Block Ack RX window. Generally a bigger value means higher throughput and
better compatibility but more memory. Most of time we should NOT change the default value unless
special reason, e.g. test the maximumUDPRX throughput with iperf etc. For iperf test in shieldbox, the
recommended value is 9~12. If PSRAM is used and WiFi memory is preferred to allocate in PSRAM
first, the default and minimum value should be 16 to achieve better throughput and compatibility with
both stations and APs.
Range:

• from 2 to 64
Default value:

• 6

CONFIG_ESP_WIFI_AMSDU_TX_ENABLED
WiFi AMSDU TX
Found in: Component config >Wi-Fi

Select this option to enable AMSDU TX feature
Default value:

• No (disabled) if CONFIG_ESP_WIFI_CACHE_TX_BUFFER_NUM >= 2

CONFIG_ESP_WIFI_NVS_ENABLED
WiFi NVS flash
Found in: Component config >Wi-Fi

Select this option to enable WiFi NVS flash
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_TASK_CORE_ID
WiFi Task Core ID
Found in: Component config >Wi-Fi

Pinned WiFi task to core 0 or core 1.
Available options:

• Core 0 (CONFIG_ESP_WIFI_TASK_PINNED_TO_CORE_0)
• Core 1 (CONFIG_ESP_WIFI_TASK_PINNED_TO_CORE_1)

Espressif Systems 1488
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_WIFI_SOFTAP_BEACON_MAX_LEN
Max length of WiFi SoftAP Beacon
Found in: Component config >Wi-Fi

ESP-MESH utilizes beacon frames to detect and resolve root node conflicts (see documentation). How-
ever the default length of a beacon frame can simultaneously hold only five root node identifier structures,
meaning that a root node conflict of up to five nodes can be detected at one time. In the occurence of
more root nodes conflict involving more than five root nodes, the conflict resolution process will detect
five of the root nodes, resolve the conflict, and re-detect more root nodes. This process will repeat until
all root node conflicts are resolved. However this process can generally take a very long time.
To counter this situation, the beacon frame length can be increased such that more root nodes can be
detected simultaneously. Each additional root node will require 36 bytes and should be added ontop
of the default beacon frame length of 752 bytes. For example, if you want to detect 10 root nodes
simultaneously, you need to set the beacon frame length as 932 (752+36*5).
Setting a longer beacon length also assists with debugging as the conflicting root nodes can be identified
more quickly.
Range:

• from 752 to 1256
Default value:

• 752

CONFIG_ESP_WIFI_MGMT_SBUF_NUM
WiFi mgmt short buffer number
Found in: Component config >Wi-Fi

Set the maximum number of Wi-Fi management short buffers. These buffers are dynamically allocated,
with their size determined by the length of the management packet to be sent. When a management
packet is less than 64 bytes, the Wi-Fi driver classifies it as a short management packet and assigns it to
one of these buffers.
Range:

• from 6 to 32
Default value:

• 32

CONFIG_ESP_WIFI_IRAM_OPT
WiFi IRAM speed optimization
Found in: Component config >Wi-Fi

Select this option to place frequently called Wi-Fi library functions in IRAM. When this option is dis-
abled, more than 10Kbytes of IRAM memory will be saved but Wi-Fi throughput will be reduced.
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_EXTRA_IRAM_OPT
WiFi EXTRA IRAM speed optimization
Found in: Component config >Wi-Fi

Select this option to place additional frequently called Wi-Fi library functions in IRAM. When this
option is disabled, more than 5Kbytes of IRAM memory will be saved but Wi-Fi throughput will be
reduced.
Default value:

Espressif Systems 1489
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Yes (enabled)
• No (disabled)

CONFIG_ESP_WIFI_RX_IRAM_OPT
WiFi RX IRAM speed optimization
Found in: Component config >Wi-Fi

Select this option to place frequently called Wi-Fi library RX functions in IRAM. When this option is
disabled, more than 17Kbytes of IRAM memory will be saved but Wi-Fi performance will be reduced.
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_ENABLE_WPA3_SAE
Enable WPA3-Personal
Found in: Component config >Wi-Fi

Select this option to allow the device to establish a WPA3-Personal connection with eligible AP's. PMF
(ProtectedManagement Frames) is a prerequisite feature for aWPA3 connection, it needs to be explicitly
configured before attempting connection. Please refer to the Wi-Fi Driver API Guide for details.
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_ENABLE_SAE_PK
Enable SAE-PK
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_ENABLE_WPA3_SAE

Select this option to enable SAE-PK
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_SOFTAP_SAE_SUPPORT
Enable WPA3 Personal(SAE) SoftAP
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_ENABLE_WPA3_SAE

Select this option to enable SAE support in softAP mode.
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_ENABLE_WPA3_OWE_STA
Enable OWE STA
Found in: Component config >Wi-Fi

Select this option to allow the device to establish OWE connection with eligible AP's. PMF (Protected
Management Frames) is a prerequisite feature for aWPA3 connection, it needs to be explicitly configured
before attempting connection. Please refer to the Wi-Fi Driver API Guide for details.
Default value:

• Yes (enabled)

Espressif Systems 1490
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_WIFI_SLP_IRAM_OPT
WiFi SLP IRAM speed optimization
Found in: Component config >Wi-Fi

Select this option to place called Wi-Fi library TBTT process and receive beacon func-
tions in IRAM. Some functions can be put in IRAM either by ESP_WIFI_IRAM_OPT and
ESP_WIFI_RX_IRAM_OPT, or this one. If already enabled ESP_WIFI_IRAM_OPT, the other 7.3KB
IRAM memory would be taken by this option. If already enabled ESP_WIFI_RX_IRAM_OPT, the
other 1.3KB IRAM memory would be taken by this option. If neither of them are enabled, the other
7.4KB IRAM memory would be taken by this option. Wi-Fi power-save mode average current would
be reduced if this option is enabled.

CONFIG_ESP_WIFI_SLP_DEFAULT_MIN_ACTIVE_TIME
Minimum active time
Found in: Component config >Wi-Fi

Only for station in WIFI_PS_MIN_MODEM or WIFI_PS_MAX_MODEM. When the station enters
the active state, it will work for at least ESP_WIFI_SLP_DEFAULT_MIN_ACTIVE_TIME. If a data
packet is received or sent during this period, the time will be refreshed. If the time is up, but the station
still has packets to receive or send, the time will also be refreshed. unit: milliseconds.
Range:

• from 8 to 60
Default value:

• 50

CONFIG_ESP_WIFI_SLP_DEFAULT_MAX_ACTIVE_TIME
Maximum keep alive time
Found in: Component config >Wi-Fi

Only for station inWIFI_PS_MIN_MODEM orWIFI_PS_MAX_MODEM. If no packet has been sent
within ESP_WIFI_SLP_DEFAULT_MAX_ACTIVE_TIME, a null data packet will be sent to maintain
the connection with the AP. unit: seconds.
Range:

• from 10 to 60
Default value:

• 10

CONFIG_ESP_WIFI_SLP_DEFAULT_WAIT_BROADCAST_DATA_TIME
Minimum wait broadcast data time
Found in: Component config >Wi-Fi

Only for station in WIFI_PS_MIN_MODEM or WIFI_PS_MAX_MODEM. When the
station knows through the beacon that AP will send broadcast packet, it will wait for
ESP_WIFI_SLP_DEFAULT_WAIT_BROADCAST_DATA_TIME before entering the sleep process.
If a broadcast packet is received with more data bits, the time will refreshed. unit: milliseconds.
Range:

• from 10 to 30
Default value:

• 15

Espressif Systems 1491
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_WIFI_FTM_ENABLE
WiFi FTM
Found in: Component config >Wi-Fi

Enable feature Fine Timing Measurement for calculating WiFi Round-Trip-Time (RTT).
Default value:

• No (disabled)

CONFIG_ESP_WIFI_FTM_INITIATOR_SUPPORT
FTM Initiator support
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_FTM_ENABLE

Default value:
• Yes (enabled) if CONFIG_ESP_WIFI_FTM_ENABLE

CONFIG_ESP_WIFI_FTM_RESPONDER_SUPPORT
FTM Responder support
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_FTM_ENABLE

Default value:
• Yes (enabled) if CONFIG_ESP_WIFI_FTM_ENABLE

CONFIG_ESP_WIFI_STA_DISCONNECTED_PM_ENABLE
Power Management for station at disconnected
Found in: Component config >Wi-Fi

Select this option to enable power_management for station when disconnected. Chip will do modem-
sleep when rf module is not in use any more.
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_GCMP_SUPPORT
WiFi GCMP Support(GCMP128 and GCMP256)
Found in: Component config >Wi-Fi

Select this option to enable GCMP support. GCMP support is compulsory for WiFi Suite-B support.
Default value:

• No (disabled)

CONFIG_ESP_WIFI_GMAC_SUPPORT
WiFi GMAC Support(GMAC128 and GMAC256)
Found in: Component config >Wi-Fi

Select this option to enable GMAC support. GMAC support is compulsory forWiFi 192 bit certification.
Default value:

• Yes (enabled)

Espressif Systems 1492
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_WIFI_SOFTAP_SUPPORT
WiFi SoftAP Support
Found in: Component config >Wi-Fi

WiFi module can be compiled without SoftAP to save code size.
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_ENHANCED_LIGHT_SLEEP
WiFi modem automatically receives the beacon
Found in: Component config >Wi-Fi

The wifi modem automatically receives the beacon frame during light sleep.
Default value:

• No (disabled) if CONFIG_ESP_PHY_MAC_BB_PD

CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT
Wifi sleep optimize when beacon lost
Found in: Component config >Wi-Fi

Enable wifi sleep optimization when beacon loss occurs and immediately enter sleep mode when the
WiFi module detects beacon loss.

CONFIG_ESP_WIFI_SLP_BEACON_LOST_TIMEOUT
Beacon loss timeout
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT

Timeout time for close rf phy when beacon loss occurs, Unit: 1024 microsecond.
Range:

• from 5 to 100 if CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT
Default value:

• 10 if CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT

CONFIG_ESP_WIFI_SLP_BEACON_LOST_THRESHOLD
Maximum number of consecutive lost beacons allowed
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT

Maximum number of consecutive lost beacons allowed, WiFi keeps Rx state when the number of con-
secutive beacons lost is greater than the given threshold.
Range:

• from 0 to 8 if CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT
Default value:

• 3 if CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT

CONFIG_ESP_WIFI_SLP_PHY_ON_DELTA_EARLY_TIME
Delta early time for RF PHY on
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT

Delta early time for rf phy on,When the beacon is lost, the next rf phy on will be earlier the time specified
by the configuration item, Unit: 32 microsecond.

Espressif Systems 1493
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Range:
• from 0 to 100 if CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT &&
SOC_WIFI_SUPPORT_VARIABLE_BEACON_WINDOW

Default value:
• 2 if CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT &&
SOC_WIFI_SUPPORT_VARIABLE_BEACON_WINDOW

CONFIG_ESP_WIFI_SLP_PHY_OFF_DELTA_TIMEOUT_TIME
Delta timeout time for RF PHY off
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT

Delta timeout time for rf phy off, When the beacon is lost, the next rf phy off will be delayed for the
time specified by the configuration item. Unit: 1024 microsecond.
Range:

• from 0 to 8 if CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT &&
SOC_WIFI_SUPPORT_VARIABLE_BEACON_WINDOW

Default value:
• 2 if CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT &&
SOC_WIFI_SUPPORT_VARIABLE_BEACON_WINDOW

CONFIG_ESP_WIFI_ESPNOW_MAX_ENCRYPT_NUM
Maximum espnow encrypt peers number
Found in: Component config >Wi-Fi

Maximum number of encrypted peers supported by espnow. The number of hardware keys for encryp-
tion is fixed. And the espnow and SoftAP share the same hardware keys. So this configuration will affect
the maximum connection number of SoftAP. Maximum espnow encrypted peers number + maximum
number of connections of SoftAP = Max hardware keys number. When using ESP mesh, this value
should be set to a maximum of 6.
Range:

• from 0 to 17
Default value:

• 7

CONFIG_ESP_WIFI_NAN_ENABLE
WiFi Aware
Found in: Component config >Wi-Fi

Enable WiFi Aware (NAN) feature.
Default value:

• No (disabled) if SOC_WIFI_NAN_SUPPORT

CONFIG_ESP_WIFI_ENABLE_WIFI_TX_STATS
Enable Wi-Fi transmission statistics
Found in: Component config >Wi-Fi

Enable Wi-Fi transmission statistics. Total support 4 access category. Each access category will use 346
bytes memory.
Default value:

• Yes (enabled)

Espressif Systems 1494
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_WIFI_MBEDTLS_CRYPTO
Use MbedTLS crypto APIs
Found in: Component config >Wi-Fi

Select this option to enable the use of MbedTLS crypto APIs. The internal crypto support within the
supplicant is limited and may not suffice for all new security features, including WPA3.
It is recommended to always keep this option enabled. Additionally, note that MbedTLS can leverage
hardware acceleration if available, resulting in significantly faster cryptographic operations.
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_MBEDTLS_TLS_CLIENT
Use MbedTLS TLS client for WiFi Enterprise connection
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_MBEDTLS_CRYPTO

Select this option to use MbedTLS TLS client for WPA2 enterprise connection. Please note that from
MbedTLS-3.0 onwards, MbedTLS does not support SSL-3.0 TLS-v1.0, TLS-v1.1 versions. Incase your
server is using one of these version, it is advisable to update your server. Please disable this option for
compatibilty with older TLS versions.
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_WAPI_PSK
Enable WAPI PSK support
Found in: Component config >Wi-Fi

Select this option to enable WAPI-PSK which is a Chinese National Standard Encryption for Wireless
LANs (GB 15629.11-2003).
Default value:

• No (disabled)

CONFIG_ESP_WIFI_SUITE_B_192
Enable NSA suite B support with 192 bit key
Found in: Component config >Wi-Fi

Select this option to enable 192 bit NSA suite-B. This is necessary to support WPA3 192 bit security.
Default value:

• No (disabled)

CONFIG_ESP_WIFI_11KV_SUPPORT
Enable 802.11k, 802.11v APIs Support
Found in: Component config >Wi-Fi

Select this option to enable 802.11k 802.11v APIs(RRM and BTM support). Only APIs which are
helpful for network assisted roaming are supported for now. Enable this option with BTM and RRM
enabled in sta config to make device ready for network assisted roaming. BTM: BSS transition man-
agement enables an AP to request a station to transition to a specific AP, or to indicate to a station a
set of preferred APs. RRM: Radio measurements enable STAs to understand the radio environment,
it enables STAs to observe and gather data on radio link performance and on the radio environment.
Current implementation adds beacon report, link measurement, neighbor report.

Espressif Systems 1495
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled)

CONFIG_ESP_WIFI_RRM_SUPPORT
Enable 802.11k APIs Support
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_11KV_SUPPORT

Select this option to enable 802.11k APIs(RRM support). Only APIs which are helpful for network
assisted roaming are supported for now. Enable this option with RRM enabled in sta config to make
device ready for network assisted roaming. RRM: Radio measurements enable STAs to understand the
radio environment, it enables STAs to observe and gather data on radio link performance and on the
radio environment. Current implementation adds beacon report, link measurement, neighbor report.
Default value:

• Yes (enabled) if CONFIG_ESP_WIFI_11KV_SUPPORT

CONFIG_ESP_WIFI_WNM_SUPPORT
Enable 802.11v APIs Support
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_11KV_SUPPORT

Select this option to enable 802.11v APIs(BTM support). Only APIs which are helpful for network
assisted roaming are supported for now. Enable this option with BTM enabled in sta config to make
device ready for network assisted roaming. BTM: BSS transition management enables an AP to request
a station to transition to a specific AP, or to indicate to a station a set of preferred APs.
Default value:

• Yes (enabled) if CONFIG_ESP_WIFI_11KV_SUPPORT

CONFIG_ESP_WIFI_SCAN_CACHE
Keep scan results in cache
Found in: Component config >Wi-Fi

Keep scan results in cache, if not enabled, those will be flushed immediately.
Default value:

• No (disabled) if CONFIG_ESP_WIFI_RRM_SUPPORT

CONFIG_ESP_WIFI_MBO_SUPPORT
Enable Multi Band Operation Certification Support
Found in: Component config >Wi-Fi

Select this option to enable WiFi Multiband operation certification support.
Default value:

• No (disabled)

CONFIG_ESP_WIFI_DPP_SUPPORT
Enable DPP support
Found in: Component config >Wi-Fi

Select this option to enable WiFi Easy Connect Support.
Default value:

• No (disabled)

Espressif Systems 1496
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_WIFI_11R_SUPPORT
Enable 802.11R (Fast Transition) Support
Found in: Component config >Wi-Fi

Select this option to enable WiFi Fast Transition Support.
Default value:

• No (disabled)

CONFIG_ESP_WIFI_WPS_SOFTAP_REGISTRAR
Add WPS Registrar support in SoftAP mode
Found in: Component config >Wi-Fi

Select this option to enable WPS registrar support in softAP mode.
Default value:

• No (disabled)

CONFIG_ESP_WIFI_ENABLE_WIFI_RX_STATS
Enable Wi-Fi reception statistics
Found in: Component config >Wi-Fi

Enable Wi-Fi reception statistics. Total support 2 access category. Each access category will use 190
bytes memory.
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_ENABLE_WIFI_RX_MU_STATS
Enable Wi-Fi DL MU-MIMO and DL OFDMA reception statistics
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_ENABLE_WIFI_RX_STATS

Enable Wi-Fi DL MU-MIMO and DL OFDMA reception statistics. Will use 10932 bytes memory.
Default value:

• Yes (enabled)

WPS Configuration Options Contains:
• CONFIG_ESP_WIFI_WPS_PASSPHRASE
• CONFIG_ESP_WIFI_WPS_STRICT

CONFIG_ESP_WIFI_WPS_STRICT
Strictly validate all WPS attributes
Found in: Component config >Wi-Fi >WPS Configuration Options

Select this option to enable validate each WPS attribute rigorously. Disabling this add the workaorunds
with various APs. Enabling this may cause inter operability issues with some APs.
Default value:

• No (disabled)

Espressif Systems 1497
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_WIFI_WPS_PASSPHRASE
Get WPA2 passphrase in WPS config
Found in: Component config >Wi-Fi >WPS Configuration Options

Select this option to get passphrase duringWPS configuration. This option fakes the virtual display capa-
bilites to get the configuration in passphrase mode. Not recommanded to be used since WPS credentials
should not be shared to other devices, making it in readable format increases that risk, also passphrase
requires pbkdf2 to convert in psk.
Default value:

• No (disabled)

CONFIG_ESP_WIFI_DEBUG_PRINT
Print debug messages from WPA Supplicant
Found in: Component config >Wi-Fi

Select this option to print logging information fromWPA supplicant, this includes handshake information
and key hex dumps depending on the project logging level.
Enabling this could increase the build size ~60kb depending on the project logging level.
Default value:

• No (disabled)

CONFIG_ESP_WIFI_TESTING_OPTIONS
Add DPP testing code
Found in: Component config >Wi-Fi

Select this to enable unity test for DPP.
Default value:

• No (disabled)

CONFIG_ESP_WIFI_ENTERPRISE_SUPPORT
Enable enterprise option
Found in: Component config >Wi-Fi

Select this to enable/disable enterprise connection support.
disabling this will reduce binary size. disabling this will disable the use of any esp_wifi_sta_wpa2_ent_*
(as APIs will be meaningless)
Default value:

• Yes (enabled)

CONFIG_ESP_WIFI_ENT_FREE_DYNAMIC_BUFFER
Free dynamic buffers during WiFi enterprise connection
Found in: Component config >Wi-Fi > CONFIG_ESP_WIFI_ENTERPRISE_SUPPORT

Select this configuration to free dynamic buffers during WiFi enterprise connection. This will enable
chip to reduce heap consumption during WiFi enterprise connection.
Default value:

• No (disabled)

Espressif Systems 1498
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_WIFI_MODEM_RF_FLAG_UPDATE_DEBUG
Enable debug assertions for modem RF flag update
Found in: Component config >Wi-Fi

Enable debug assertions to verify modem RF flag update operations. This option enables assert checks
to verify that modem RF power state is correctly cleared before pmu sleep.
Default value:

• No (disabled) if CONFIG_ESP_WIFI_ENHANCED_LIGHT_SLEEP

Core dump Contains:
• CONFIG_ESP_COREDUMP_CHECK_BOOT
• CONFIG_ESP_COREDUMP_DATA_FORMAT
• CONFIG_ESP_COREDUMP_CHECKSUM
• CONFIG_ESP_COREDUMP_TO_FLASH_OR_UART
• CONFIG_ESP_COREDUMP_UART_DELAY
• CONFIG_ESP_COREDUMP_LOGS
• CONFIG_ESP_COREDUMP_DECODE
• CONFIG_ESP_COREDUMP_MAX_TASKS_NUM
• CONFIG_ESP_COREDUMP_STACK_SIZE
• CONFIG_ESP_COREDUMP_SUMMARY_STACKDUMP_SIZE

CONFIG_ESP_COREDUMP_TO_FLASH_OR_UART
Data destination
Found in: Component config > Core dump

Select place to store core dump: flash, uart or none (to disable core dumps generation).
Core dumps to Flash are not available if PSRAM is used for task stacks.
If core dump is configured to be stored in flash and custom partition table is used add corresponding
entry to your CSV. For examples, please see predefined partition table CSV descriptions in the compo-
nents/partition_table directory.
Available options:

• Flash (CONFIG_ESP_COREDUMP_ENABLE_TO_FLASH)
• UART (CONFIG_ESP_COREDUMP_ENABLE_TO_UART)
• None (CONFIG_ESP_COREDUMP_ENABLE_TO_NONE)

CONFIG_ESP_COREDUMP_DATA_FORMAT
Core dump data format
Found in: Component config > Core dump

Select the data format for core dump.
Available options:

• Binary format (CONFIG_ESP_COREDUMP_DATA_FORMAT_BIN)
• ELF format (CONFIG_ESP_COREDUMP_DATA_FORMAT_ELF)

Espressif Systems 1499
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_COREDUMP_CHECKSUM
Core dump data integrity check
Found in: Component config > Core dump

Select the integrity check for the core dump.
Available options:

• UseCRC32 for integrity verification (CONFIG_ESP_COREDUMP_CHECKSUM_CRC32)
• Use SHA256 for integrity verification (CONFIG_ESP_COREDUMP_CHECKSUM_SHA256)

CONFIG_ESP_COREDUMP_CHECK_BOOT
Check core dump data integrity on boot
Found in: Component config > Core dump

When enabled, if any data are found on the flash core dump partition, they will be checked by calculating
their checksum.
Default value:

• Yes (enabled) if CONFIG_ESP_COREDUMP_ENABLE_TO_FLASH

CONFIG_ESP_COREDUMP_LOGS
Enable coredump logs for debugging
Found in: Component config > Core dump

Enable/disable coredump logs. Logs strings from espcoredump component are placed in DRAM. Dis-
abling these helps to save ~5KB of internal memory.

CONFIG_ESP_COREDUMP_MAX_TASKS_NUM
Maximum number of tasks
Found in: Component config > Core dump

Maximum number of tasks that will be included in the core dump. Crashed task registers and stacks are
always included. Other tasks are included in order of their priority. (Highest priority ready task first)

CONFIG_ESP_COREDUMP_UART_DELAY
Delay before print to UART
Found in: Component config > Core dump

Config delay (in ms) before printing core dump to UART. Delay can be interrupted by pressing Enter
key.
Default value:

• 0 if CONFIG_ESP_COREDUMP_ENABLE_TO_UART

CONFIG_ESP_COREDUMP_STACK_SIZE
Reserved stack size
Found in: Component config > Core dump

Size of the memory to be reserved for core dump stack. If 0 core dump process will run on the stack
of crashed task/ISR, otherwise special stack will be allocated. To ensure that core dump itself will not
overflow task/ISR stack set this to the value above 800. NOTE: It eats DRAM.

Espressif Systems 1500
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_COREDUMP_SUMMARY_STACKDUMP_SIZE
Size of the stack dump buffer
Found in: Component config > Core dump

Size of the buffer that would be reserved for extracting backtrace info summary. This buffer will contain
the stack dump of the crashed task. This dump is useful in generating backtrace
Range:

• from 512 to 4096 if CONFIG_ESP_COREDUMP_DATA_FORMAT_ELF && CON-
FIG_ESP_COREDUMP_ENABLE_TO_FLASH

Default value:
• 1024 if CONFIG_ESP_COREDUMP_DATA_FORMAT_ELF && CON-

FIG_ESP_COREDUMP_ENABLE_TO_FLASH

CONFIG_ESP_COREDUMP_DECODE
Handling of UART core dumps in IDF Monitor
Found in: Component config > Core dump

Available options:

• Decode and show summary (info_corefile) (CON-
FIG_ESP_COREDUMP_DECODE_INFO)

• Don't decode (CONFIG_ESP_COREDUMP_DECODE_DISABLE)

FAT Filesystem support Contains:
• CONFIG_FATFS_API_ENCODING
• CONFIG_FATFS_VFS_FSTAT_BLKSIZE
• CONFIG_FATFS_USE_FASTSEEK
• CONFIG_FATFS_LONG_FILENAMES
• CONFIG_FATFS_MAX_LFN
• CONFIG_FATFS_FS_LOCK
• CONFIG_FATFS_VOLUME_COUNT
• CONFIG_FATFS_CHOOSE_CODEPAGE
• CONFIG_FATFS_ALLOC_PREFER_EXTRAM
• CONFIG_FATFS_SECTOR_SIZE
• CONFIG_FATFS_TIMEOUT_MS
• CONFIG_FATFS_PER_FILE_CACHE

CONFIG_FATFS_VOLUME_COUNT
Number of volumes
Found in: Component config > FAT Filesystem support

Number of volumes (logical drives) to use.
Range:

• from 1 to 10
Default value:

• 2

CONFIG_FATFS_LONG_FILENAMES
Long filename support
Found in: Component config > FAT Filesystem support

Espressif Systems 1501
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Support long filenames in FAT. Long filename data increases memory usage. FATFS can be configured
to store the buffer for long filename data in stack or heap.
Available options:

• No long filenames (CONFIG_FATFS_LFN_NONE)
• Long filename buffer in heap (CONFIG_FATFS_LFN_HEAP)
• Long filename buffer on stack (CONFIG_FATFS_LFN_STACK)

CONFIG_FATFS_SECTOR_SIZE
Sector size
Found in: Component config > FAT Filesystem support

Specify the size of the sector in bytes for FATFS partition generator.
Available options:

• 512 (CONFIG_FATFS_SECTOR_512)
• 4096 (CONFIG_FATFS_SECTOR_4096)

CONFIG_FATFS_CHOOSE_CODEPAGE
OEM Code Page
Found in: Component config > FAT Filesystem support

OEM code page used for file name encodings.
If "Dynamic" is selected, code page can be chosen at runtime using f_setcp function. Note that choosing
this option will increase application size by ~480kB.
Available options:

• Dynamic (all code pages supported) (CONFIG_FATFS_CODEPAGE_DYNAMIC)
• US (CP437) (CONFIG_FATFS_CODEPAGE_437)
• Arabic (CP720) (CONFIG_FATFS_CODEPAGE_720)
• Greek (CP737) (CONFIG_FATFS_CODEPAGE_737)
• KBL (CP771) (CONFIG_FATFS_CODEPAGE_771)
• Baltic (CP775) (CONFIG_FATFS_CODEPAGE_775)
• Latin 1 (CP850) (CONFIG_FATFS_CODEPAGE_850)
• Latin 2 (CP852) (CONFIG_FATFS_CODEPAGE_852)
• Cyrillic (CP855) (CONFIG_FATFS_CODEPAGE_855)
• Turkish (CP857) (CONFIG_FATFS_CODEPAGE_857)
• Portugese (CP860) (CONFIG_FATFS_CODEPAGE_860)
• Icelandic (CP861) (CONFIG_FATFS_CODEPAGE_861)
• Hebrew (CP862) (CONFIG_FATFS_CODEPAGE_862)
• Canadian French (CP863) (CONFIG_FATFS_CODEPAGE_863)
• Arabic (CP864) (CONFIG_FATFS_CODEPAGE_864)
• Nordic (CP865) (CONFIG_FATFS_CODEPAGE_865)
• Russian (CP866) (CONFIG_FATFS_CODEPAGE_866)
• Greek 2 (CP869) (CONFIG_FATFS_CODEPAGE_869)
• Japanese (DBCS) (CP932) (CONFIG_FATFS_CODEPAGE_932)
• Simplified Chinese (DBCS) (CP936) (CONFIG_FATFS_CODEPAGE_936)
• Korean (DBCS) (CP949) (CONFIG_FATFS_CODEPAGE_949)
• Traditional Chinese (DBCS) (CP950) (CONFIG_FATFS_CODEPAGE_950)

Espressif Systems 1502
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_FATFS_MAX_LFN
Max long filename length
Found in: Component config > FAT Filesystem support

Maximum long filename length. Can be reduced to save RAM.

CONFIG_FATFS_API_ENCODING
API character encoding
Found in: Component config > FAT Filesystem support

Choose encoding for character and string arguments/returns when using FATFS APIs. The encoding of
arguments will usually depend on text editor settings.
Available options:

• API uses ANSI/OEM encoding (CONFIG_FATFS_API_ENCODING_ANSI_OEM)
• API uses UTF-8 encoding (CONFIG_FATFS_API_ENCODING_UTF_8)

CONFIG_FATFS_FS_LOCK
Number of simultaneously open files protected by lock function
Found in: Component config > FAT Filesystem support

This option sets the FATFS configuration value _FS_LOCK. The option _FS_LOCK switches file lock
function to control duplicated file open and illegal operation to open objects.
* 0: Disable file lock function. To avoid volume corruption, application should avoid illegal open, remove
and rename to the open objects.
* >0: Enable file lock function. The value defines how many files/sub-directories can be opened simul-
taneously under file lock control.
Note that the file lock control is independent of re-entrancy.
Range:

• from 0 to 65535
Default value:

• 0

CONFIG_FATFS_TIMEOUT_MS
Timeout for acquiring a file lock, ms
Found in: Component config > FAT Filesystem support

This option sets FATFS configuration value _FS_TIMEOUT, scaled to milliseconds. Sets the number
of milliseconds FATFS will wait to acquire a mutex when operating on an open file. For example, if one
task is performing a lenghty operation, another task will wait for the first task to release the lock, and
time out after amount of time set by this option.
Default value:

• 10000

CONFIG_FATFS_PER_FILE_CACHE
Use separate cache for each file
Found in: Component config > FAT Filesystem support

This option affects FATFS configuration value _FS_TINY.

Espressif Systems 1503
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

If this option is set, _FS_TINY is 0, and each open file has its own cache, size of the cache is equal to
the _MAX_SS variable (512 or 4096 bytes). This option uses more RAM if more than 1 file is open,
but needs less reads and writes to the storage for some operations.
If this option is not set, _FS_TINY is 1, and single cache is used for all open files, size is also equal to
_MAX_SS variable. This reduces the amount of heap used when multiple files are open, but increases
the number of read and write operations which FATFS needs to make.
Default value:

• Yes (enabled)

CONFIG_FATFS_ALLOC_PREFER_EXTRAM
Perfer external RAM when allocating FATFS buffers
Found in: Component config > FAT Filesystem support

When the option is enabled, internal buffers used by FATFS will be allocated from external RAM. If
the allocation from external RAM fails, the buffer will be allocated from the internal RAM. Disable this
option if optimizing for performance. Enable this option if optimizing for internal memory size.
Default value:

• Yes (enabled) if SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC

CONFIG_FATFS_USE_FASTSEEK
Enable fast seek algorithm when using lseek function through VFS FAT
Found in: Component config > FAT Filesystem support

The fast seek feature enables fast backward/long seek operations without FAT access by using an in-
memory CLMT (cluster link map table). Please note, fast-seek is only allowed for read-mode files, if a
file is opened in write-mode, the seek mechanism will automatically fallback to the default implemen-
tation.
Default value:

• No (disabled)

CONFIG_FATFS_FAST_SEEK_BUFFER_SIZE
Fast seek CLMT buffer size
Found in: Component config > FAT Filesystem support > CONFIG_FATFS_USE_FASTSEEK

If fast seek algorithm is enabled, this defines the size of CLMT buffer used by this algorithm in 32-bit
word units. This value should be chosen based on prior knowledge of maximum elements of each file
entry would store.
Default value:

• 64 if CONFIG_FATFS_USE_FASTSEEK

CONFIG_FATFS_VFS_FSTAT_BLKSIZE
Default block size
Found in: Component config > FAT Filesystem support

If set to 0, the 'newlib' library's default size (BLKSIZ) is used (128 B). If set to a non-zero value, the
value is used as the block size. Default file buffer size is set to this value and the buffer is allocated when
first attempt of reading/writing to a file is made. Increasing this value improves fread() speed, however
the heap usage is increased as well.

Espressif Systems 1504
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

NOTE: The block size value is shared by all the filesystem functions accessing target media for given file
descriptor! See 'Improving I/O performance' section of 'Maximizing Execution Speed' documentation
page for more details.
Default value:

• 0

FreeRTOS Contains:
• Kernel
• Port

Kernel Contains:
• CONFIG_FREERTOS_CHECK_STACKOVERFLOW
• CONFIG_FREERTOS_ENABLE_BACKWARD_COMPATIBILITY
• CONFIG_FREERTOS_GENERATE_RUN_TIME_STATS
• CONFIG_FREERTOS_MAX_TASK_NAME_LEN
• CONFIG_FREERTOS_IDLE_TASK_STACKSIZE
• CONFIG_FREERTOS_THREAD_LOCAL_STORAGE_POINTERS
• CONFIG_FREERTOS_QUEUE_REGISTRY_SIZE
• CONFIG_FREERTOS_TASK_NOTIFICATION_ARRAY_ENTRIES
• CONFIG_FREERTOS_HZ
• CONFIG_FREERTOS_TIMER_QUEUE_LENGTH
• CONFIG_FREERTOS_TIMER_TASK_PRIORITY
• CONFIG_FREERTOS_TIMER_TASK_STACK_DEPTH
• CONFIG_FREERTOS_USE_IDLE_HOOK
• CONFIG_FREERTOS_OPTIMIZED_SCHEDULER
• CONFIG_FREERTOS_USE_TICK_HOOK
• CONFIG_FREERTOS_USE_TICKLESS_IDLE
• CONFIG_FREERTOS_USE_TRACE_FACILITY
• CONFIG_FREERTOS_UNICORE
• CONFIG_FREERTOS_SMP
• CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK

CONFIG_FREERTOS_SMP
Run the Amazon SMP FreeRTOS kernel instead (FEATURE UNDER DEVELOPMENT)
Found in: Component config > FreeRTOS > Kernel

Amazon has released an SMP version of the FreeRTOS Kernel which can be found via the following
link: https://github.com/FreeRTOS/FreeRTOS-Kernel/tree/smp
IDF has added an experimental port of this SMP kernel located in components/freertos/FreeRTOS-
Kernel-SMP. Enabling this option will cause IDF to use the Amazon SMP kernel. Note that THIS
FEATURE IS UNDER ACTIVE DEVELOPMENT, users use this at their own risk.
Leaving this option disabled will mean the IDF FreeRTOS kernel is used instead, which is located
in: components/freertos/FreeRTOS-Kernel. Both kernel versions are SMP capable, but differ in their
implementation and features.
Default value:

• No (disabled)

CONFIG_FREERTOS_UNICORE
Run FreeRTOS only on first core
Found in: Component config > FreeRTOS > Kernel

Espressif Systems 1505
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/FreeRTOS/FreeRTOS-Kernel/tree/smp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This version of FreeRTOS normally takes control of all cores of the CPU. Select this if you only want
to start it on the first core. This is needed when e.g. another process needs complete control over the
second core.

CONFIG_FREERTOS_HZ
configTICK_RATE_HZ
Found in: Component config > FreeRTOS > Kernel

Sets the FreeRTOS tick interrupt frequency in Hz (see configTICK_RATE_HZ documentation for more
details).
Range:

• from 1 to 1000
Default value:

• 100

CONFIG_FREERTOS_OPTIMIZED_SCHEDULER
configUSE_PORT_OPTIMISED_TASK_SELECTION
Found in: Component config > FreeRTOS > Kernel

Enables port specific task selection method. This option can speed up the search of ready tasks when
scheduling (see configUSE_PORT_OPTIMISED_TASK_SELECTION documentation for more de-
tails).

CONFIG_FREERTOS_CHECK_STACKOVERFLOW
configCHECK_FOR_STACK_OVERFLOW
Found in: Component config > FreeRTOS > Kernel

Enables FreeRTOS to check for stack overflows (see configCHECK_FOR_STACK_OVERFLOWdoc-
umentation for more details).
Note: If users do not provide their own vApplicationStackOverflowHook() function, a de-
fault function will be provided by ESP-IDF.
Available options:

• No checking (CONFIG_FREERTOS_CHECK_STACKOVERFLOW_NONE)
Do not check for stack overflows (configCHECK_FOR_STACK_OVERFLOW = 0)

• Check by stack pointer value (Method 1) (CON-
FIG_FREERTOS_CHECK_STACKOVERFLOW_PTRVAL)
Check for stack overflows on each context switch by checking if the stack pointer is in
a valid range. Quick but does not detect stack overflows that happened between context
switches (configCHECK_FOR_STACK_OVERFLOW = 1)

• Check using canary bytes (Method 2) (CON-
FIG_FREERTOS_CHECK_STACKOVERFLOW_CANARY)
Places some magic bytes at the end of the stack area and on each context switch, check
if these bytes are still intact. More thorough than just checking the pointer, but also
slightly slower. (configCHECK_FOR_STACK_OVERFLOW = 2)

CONFIG_FREERTOS_THREAD_LOCAL_STORAGE_POINTERS
configNUM_THREAD_LOCAL_STORAGE_POINTERS
Found in: Component config > FreeRTOS > Kernel

Espressif Systems 1506
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Set the number of thread local storage pointers in each task (see con-
figNUM_THREAD_LOCAL_STORAGE_POINTERS documentation for more details).
Note: In ESP-IDF, this value must be at least 1. Index 0 is reserved for use by the pthreads API thread-
local-storage. Other indexes can be used for any desired purpose.
Range:

• from 1 to 256
Default value:

• 1

CONFIG_FREERTOS_IDLE_TASK_STACKSIZE
configMINIMAL_STACK_SIZE (Idle task stack size)
Found in: Component config > FreeRTOS > Kernel

Sets the idle task stack size in bytes (see configMINIMAL_STACK_SIZE documentation for more
details).
Note:

• ESP-IDF specifies stack sizes in bytes instead of words.
• The default size is enough for most use cases.
• The stack size may need to be increased above the default if the app installs idle or thread local
storage cleanup hooks that use a lot of stack memory.

• Conversely, the stack size can be reduced to the minimum if non of the idle features are used.
Range:

• from 768 to 32768
Default value:

• 1536

CONFIG_FREERTOS_USE_IDLE_HOOK
configUSE_IDLE_HOOK
Found in: Component config > FreeRTOS > Kernel

Enables the idle task application hook (see configUSE_IDLE_HOOK documentation for more details).
Note:

• The application must provide the hook function void vApplicationIdleHook(void
);

• vApplicationIdleHook() is called from FreeRTOS idle task(s)
• The FreeRTOS idle hook is NOT the same as the ESP-IDF Idle Hook, but both can be enabled
simultaneously.

Default value:
• No (disabled)

CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK
Use FreeRTOS minimal idle hook
Found in: Component config > FreeRTOS > Kernel

Enables the minimal idle task application hook (see configUSE_IDLE_HOOK documentation for more
details).
Note:

• The application must provide the hook function void vApplicationMinimalIdleHook(
void);

Espressif Systems 1507
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• vApplicationMinimalIdleHook() is called from FreeRTOS minimal idle task(s)
Default value:

• No (disabled) if CONFIG_FREERTOS_SMP

CONFIG_FREERTOS_USE_TICK_HOOK
configUSE_TICK_HOOK
Found in: Component config > FreeRTOS > Kernel

Enables the tick hook (see configUSE_TICK_HOOK documentation for more details).
Note:

• The application must provide the hook function void vApplicationTickHook(void
);

• vApplicationTickHook() is called from FreeRTOS's tick handling function xTaskIn-
crementTick()

• The FreeRTOS tick hook is NOT the same as the ESP-IDF Tick Interrupt Hook, but both can be
enabled simultaneously.

Default value:
• No (disabled)

CONFIG_FREERTOS_MAX_TASK_NAME_LEN
configMAX_TASK_NAME_LEN
Found in: Component config > FreeRTOS > Kernel

Sets the maximum number of characters for task names (see configMAX_TASK_NAME_LEN docu-
mentation for more details).
Note: For most uses, the default of 16 characters is sufficient.
Range:

• from 1 to 256
Default value:

• 16

CONFIG_FREERTOS_ENABLE_BACKWARD_COMPATIBILITY
configENABLE_BACKWARD_COMPATIBILITY
Found in: Component config > FreeRTOS > Kernel

Enable backward compatibility with APIs prior to FreeRTOS v8.0.0. (see configEN-
ABLE_BACKWARD_COMPATIBILITY documentation for more details).
Default value:

• No (disabled)

CONFIG_FREERTOS_TIMER_TASK_PRIORITY
configTIMER_TASK_PRIORITY
Found in: Component config > FreeRTOS > Kernel

Sets the timer task's priority (see configTIMER_TASK_PRIORITY documentation for more details).
Range:

• from 1 to 25
Default value:

• 1

Espressif Systems 1508
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_FREERTOS_TIMER_TASK_STACK_DEPTH
configTIMER_TASK_STACK_DEPTH
Found in: Component config > FreeRTOS > Kernel

Set the timer task's stack size (see configTIMER_TASK_STACK_DEPTH documentation for more
details).
Range:

• from 1536 to 32768
Default value:

• 2048

CONFIG_FREERTOS_TIMER_QUEUE_LENGTH
configTIMER_QUEUE_LENGTH
Found in: Component config > FreeRTOS > Kernel

Set the timer task's command queue length (see configTIMER_QUEUE_LENGTH documentation for
more details).
Range:

• from 5 to 20
Default value:

• 10

CONFIG_FREERTOS_QUEUE_REGISTRY_SIZE
configQUEUE_REGISTRY_SIZE
Found in: Component config > FreeRTOS > Kernel

Set the size of the queue registry (see configQUEUE_REGISTRY_SIZE documentation for more de-
tails).
Note: A value of 0 will disable queue registry functionality
Range:

• from 0 to 20
Default value:

• 0

CONFIG_FREERTOS_TASK_NOTIFICATION_ARRAY_ENTRIES
configTASK_NOTIFICATION_ARRAY_ENTRIES
Found in: Component config > FreeRTOS > Kernel

Set the size of the task notification array of each task. When increasing this value, keep in mind that this
means additional memory for each and every task on the system. However, task notifications in general
are more light weight compared to alternatives such as semaphores.
Range:

• from 1 to 32
Default value:

• 1

CONFIG_FREERTOS_USE_TRACE_FACILITY
configUSE_TRACE_FACILITY
Found in: Component config > FreeRTOS > Kernel

Espressif Systems 1509
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enables additional structure members and functions to assist with execution visualization and tracing
(see configUSE_TRACE_FACILITY documentation for more details).
Default value:

• No (disabled)

CONFIG_FREERTOS_USE_STATS_FORMATTING_FUNCTIONS
configUSE_STATS_FORMATTING_FUNCTIONS
Found in: Component config > FreeRTOS > Kernel > CONFIG_FREERTOS_USE_TRACE_FACILITY

Set configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS to 1 to
include the vTaskList() and vTaskGetRunTimeStats() functions in the build (see confi-
gUSE_STATS_FORMATTING_FUNCTIONS documentation for more details).
Default value:

• No (disabled) if CONFIG_FREERTOS_USE_TRACE_FACILITY

CONFIG_FREERTOS_VTASKLIST_INCLUDE_COREID
Enable display of xCoreID in vTaskList
Found in: Component config > FreeRTOS > Kernel > CONFIG_FREERTOS_USE_TRACE_FACILITY >
CONFIG_FREERTOS_USE_STATS_FORMATTING_FUNCTIONS

If enabled, this will include an extra column when vTaskList is called to display the CoreID the task is
pinned to (0,1) or -1 if not pinned.

CONFIG_FREERTOS_GENERATE_RUN_TIME_STATS
configGENERATE_RUN_TIME_STATS
Found in: Component config > FreeRTOS > Kernel

Enables collection of run time statistics for each task (see configGENERATE_RUN_TIME_STATS
documentation for more details).
Note: The clock used for run time statistics can be configured in FREER-
TOS_RUN_TIME_STATS_CLK.
Default value:

• No (disabled)

CONFIG_FREERTOS_USE_TICKLESS_IDLE
configUSE_TICKLESS_IDLE
Found in: Component config > FreeRTOS > Kernel

If power management support is enabled, FreeRTOS will be able to put the system into light sleep
mode when no tasks need to run for a number of ticks. This number can be set using FREER-
TOS_IDLE_TIME_BEFORE_SLEEP option. This feature is also known as "automatic light sleep".
Note that timers created using esp_timer APIs may prevent the system from entering sleep mode,
even when no tasks need to run. To skip unnecessary wake-up initialize a timer with the
"skip_unhandled_events" option as true.
If disabled, automatic light sleep support will be disabled.
Default value:

• No (disabled) if CONFIG_PM_ENABLE

Espressif Systems 1510
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP
configEXPECTED_IDLE_TIME_BEFORE_SLEEP
Found in: Component config > FreeRTOS > Kernel > CONFIG_FREERTOS_USE_TICKLESS_IDLE

FreeRTOS will enter light sleep mode if no tasks need to run for this number of ticks. You can enable
PM_PROFILING feature in esp_pm components and dump the sleep status with esp_pm_dump_locks,
if the proportion of rejected sleeps is too high, please increase this value to improve scheduling efficiency
Range:

• from 2 to 4294967295 if CONFIG_FREERTOS_USE_TICKLESS_IDLE
Default value:

• 3 if CONFIG_FREERTOS_USE_TICKLESS_IDLE

Port Contains:
• CONFIG_FREERTOS_CHECK_MUTEX_GIVEN_BY_OWNER
• CONFIG_FREERTOS_RUN_TIME_STATS_CLK
• CONFIG_FREERTOS_INTERRUPT_BACKTRACE
• CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK
• CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP
• CONFIG_FREERTOS_ENABLE_TASK_SNAPSHOT
• CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS
• CONFIG_FREERTOS_ISR_STACKSIZE
• CONFIG_FREERTOS_PLACE_FUNCTIONS_INTO_FLASH
• CONFIG_FREERTOS_PLACE_SNAPSHOT_FUNS_INTO_FLASH
• CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
• CONFIG_FREERTOS_CORETIMER
• CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER

CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
Wrap task functions
Found in: Component config > FreeRTOS > Port

If enabled, all FreeRTOS task functions will be enclosed in a wrapper function. If a task function
mistakenly returns (i.e. does not delete), the call flow will return to the wrapper function. The wrapper
function will then log an error and abort the application. This option is also required for GDB backtraces
and C++ exceptions to work correctly inside top-level task functions.
Default value:

• Yes (enabled)

CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK
Enable stack overflow debug watchpoint
Found in: Component config > FreeRTOS > Port

FreeRTOS can check if a stack has overflown its bounds by checking either the value of the stack pointer
or by checking the integrity of canary bytes. (See FREERTOS_CHECK_STACKOVERFLOW for
more information.) These checks only happen on a context switch, and the situation that caused the
stack overflow may already be long gone by then. This option will use the last debug memory watchpoint
to allow breaking into the debugger (or panic'ing) as soon as any of the last 32 bytes on the stack of a
task are overwritten. The side effect is that using gdb, you effectively have one hardware watchpoint less
because the last one is overwritten as soon as a task switch happens.
Another consequence is that due to alignment requirements of the watchpoint, the usable stack size
decreases by up to 60 bytes. This is because the watchpoint region has to be aligned to its size and the
size for the stack watchpoint in IDF is 32 bytes.

Espressif Systems 1511
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This check only triggers if the stack overflow writes within 32 bytes near the end of the stack, rather
than overshooting further, so it is worth combining this approach with one of the other stack overflow
check methods.
When this watchpoint is hit, gdb will stop with a SIGTRAP message. When no JTAG OCD is attached,
esp-idf will panic on an unhandled debug exception.
Default value:

• No (disabled)

CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS
Enable thread local storage pointers deletion callbacks
Found in: Component config > FreeRTOS > Port

ESP-IDF provides users with the ability to free TLSP memory by registering TLSP deletion callbacks.
These callbacks are automatically called by FreeRTOS when a task is deleted. When this option is
turned on, the memory reserved for TLSPs in the TCB is doubled to make space for storing the deletion
callbacks. If the user does not wish to use TLSP deletion callbacks then this option could be turned off
to save space in the TCB memory.
Default value:

• Yes (enabled)

CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP
Enable static task clean up hook
Found in: Component config > FreeRTOS > Port

Enable this option to make FreeRTOS call the static task clean up hook when a task is deleted.
Note: Users will need to provide a void vPortCleanUpTCB (void *pxTCB) callback
Default value:

• No (disabled)

CONFIG_FREERTOS_CHECK_MUTEX_GIVEN_BY_OWNER
Check that mutex semaphore is given by owner task
Found in: Component config > FreeRTOS > Port

If enabled, assert that when a mutex semaphore is given, the task giving the semaphore is the task which
is currently holding the mutex.

CONFIG_FREERTOS_ISR_STACKSIZE
ISR stack size
Found in: Component config > FreeRTOS > Port

The interrupt handlers have their own stack. The size of the stack can be defined here. Each processor
has its own stack, so the total size occupied will be twice this.
Range:

• from 2096 to 32768 if CONFIG_ESP_COREDUMP_DATA_FORMAT_ELF
• from 1536 to 32768

Default value:
• 2096 if CONFIG_ESP_COREDUMP_DATA_FORMAT_ELF
• 1536

Espressif Systems 1512
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_FREERTOS_INTERRUPT_BACKTRACE
Enable backtrace from interrupt to task context
Found in: Component config > FreeRTOS > Port

If this option is enabled, interrupt stack frame will be modified to point to the code of the interrupted
task as its return address. This helps the debugger (or the panic handler) show a backtrace from the
interrupt to the task which was interrupted. This also works for nested interrupts: higher level interrupt
stack can be traced back to the lower level interrupt. This option adds 4 instructions to the interrupt
dispatching code.
Default value:

• Yes (enabled)

CONFIG_FREERTOS_CORETIMER
Tick timer source (Xtensa Only)
Found in: Component config > FreeRTOS > Port

FreeRTOS needs a timer with an associated interrupt to use as the main tick source to increase counters,
run timers and do pre-emptive multitasking with. There are multiple timers available to do this, with
different interrupt priorities.
Available options:

• Timer 0 (int 6, level 1) (CONFIG_FREERTOS_CORETIMER_0)
Select this to use timer 0

• Timer 1 (int 15, level 3) (CONFIG_FREERTOS_CORETIMER_1)
Select this to use timer 1

• SYSTIMER 0 (level 1) (CONFIG_FREERTOS_CORETIMER_SYSTIMER_LVL1)
Select this to use systimer with the 1 interrupt priority.

• SYSTIMER 0 (level 3) (CONFIG_FREERTOS_CORETIMER_SYSTIMER_LVL3)
Select this to use systimer with the 3 interrupt priority.

CONFIG_FREERTOS_RUN_TIME_STATS_CLK
Choose the clock source for run time stats
Found in: Component config > FreeRTOS > Port

Choose the clock source for FreeRTOS run time stats. Options are CPU0's CPU Clock or the ESP
Timer. Both clock sources are 32 bits. The CPU Clock can run at a higher frequency hence provide a
finer resolution but will overflow much quicker. Note that run time stats are only valid until the clock
source overflows.
Available options:

• Use ESPTIMER for run time stats (CONFIG_FREERTOS_RUN_TIME_STATS_USING_ESP_TIMER)
ESPTimer will be used as the clock source for FreeRTOS run time stats. The ESPTimer
runs at a frequency of 1MHz regardless of Dynamic Frequency Scaling. Therefore the
ESP Timer will overflow in approximately 4290 seconds.

• UseCPUClock for run time stats (CONFIG_FREERTOS_RUN_TIME_STATS_USING_CPU_CLK)
CPU Clock will be used as the clock source for the generation of run time stats. The
CPU Clock has a frequency dependent on ESP_DEFAULT_CPU_FREQ_MHZ and
Dynamic Frequency Scaling (DFS). Therefore the CPU Clock frequency can fluctuate
between 80 to 240MHz. Run time stats generated using the CPU Clock represents the
number of CPU cycles each task is allocated and DOES NOT reflect the amount of

Espressif Systems 1513
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

time each task runs for (as CPU clock frequency can change). If the CPU clock consis-
tently runs at the maximum frequency of 240MHz, it will overflow in approximately 17
seconds.

CONFIG_FREERTOS_PLACE_FUNCTIONS_INTO_FLASH
Place FreeRTOS functions into Flash
Found in: Component config > FreeRTOS > Port

When enabled the selected Non-ISR FreeRTOS functions will be placed into Flash memory instead of
IRAM. This saves up to 8KB of IRAM depending on which functions are used.
Default value:

• No (disabled)

CONFIG_FREERTOS_PLACE_SNAPSHOT_FUNS_INTO_FLASH
Place task snapshot functions into flash
Found in: Component config > FreeRTOS > Port

When enabled, the functions related to snapshots, such as vTaskGetSnapshot or uxTaskGetSnapshotAll,
will be placed in flash. Note that if enabled, these functions cannot be called when cache is disabled.

CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
Tests compliance with Vanilla FreeRTOS port*_CRITICAL calls
Found in: Component config > FreeRTOS > Port

If enabled, context of port*_CRITICAL calls (ISR or Non-ISR) would be checked to be in compliance
with Vanilla FreeRTOS. e.g Calling port*_CRITICAL from ISR context would cause assert failure
Default value:

• No (disabled)

CONFIG_FREERTOS_ENABLE_TASK_SNAPSHOT
Enable task snapshot functions
Found in: Component config > FreeRTOS > Port

When enabled, the functions related to snapshots, such as vTaskGetSnapshot or uxTaskGetSnapshotAll,
are compiled and linked. Task snapshots are used by Task Watchdog (TWDT), GDB Stub and Core
dump.
Default value:

• Yes (enabled)

Hardware Abstraction Layer (HAL) and Low Level (LL) Contains:
• CONFIG_HAL_DEFAULT_ASSERTION_LEVEL
• CONFIG_HAL_LOG_LEVEL
• CONFIG_HAL_SYSTIMER_USE_ROM_IMPL
• CONFIG_HAL_WDT_USE_ROM_IMPL

Espressif Systems 1514
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_HAL_DEFAULT_ASSERTION_LEVEL
Default HAL assertion level
Found in: Component config > Hardware Abstraction Layer (HAL) and Low Level (LL)

Set the assert behavior / level for HAL component. HAL component assert level can be set separately,
but the level can't exceed the system assertion level. e.g. If the system assertion is disabled, then the
HAL assertion can't be enabled either. If the system assertion is enable, then the HAL assertion can still
be disabled by this Kconfig option.
Available options:

• Same as system assertion level (CONFIG_HAL_ASSERTION_EQUALS_SYSTEM)
• Disabled (CONFIG_HAL_ASSERTION_DISABLE)
• Silent (CONFIG_HAL_ASSERTION_SILENT)
• Enabled (CONFIG_HAL_ASSERTION_ENABLE)

CONFIG_HAL_LOG_LEVEL
HAL layer log verbosity
Found in: Component config > Hardware Abstraction Layer (HAL) and Low Level (LL)

Specify how much output to see in HAL logs.
Available options:

• No output (CONFIG_HAL_LOG_LEVEL_NONE)
• Error (CONFIG_HAL_LOG_LEVEL_ERROR)
• Warning (CONFIG_HAL_LOG_LEVEL_WARN)
• Info (CONFIG_HAL_LOG_LEVEL_INFO)
• Debug (CONFIG_HAL_LOG_LEVEL_DEBUG)
• Verbose (CONFIG_HAL_LOG_LEVEL_VERBOSE)

CONFIG_HAL_SYSTIMER_USE_ROM_IMPL
Use ROM implementation of SysTimer HAL driver
Found in: Component config > Hardware Abstraction Layer (HAL) and Low Level (LL)

Enable this flag to use HAL functions from ROM instead of ESP-IDF.
If keeping this as "n" in your project, you will have less free IRAM. If making this as "y" in your project,
you will increase free IRAM, but you will lose the possibility to debug this module, and some new
features will be added and bugs will be fixed in the IDF source but cannot be synced to ROM.
Default value:

• Yes (enabled)

CONFIG_HAL_WDT_USE_ROM_IMPL
Use ROM implementation of WDT HAL driver
Found in: Component config > Hardware Abstraction Layer (HAL) and Low Level (LL)

Enable this flag to use HAL functions from ROM instead of ESP-IDF.
If keeping this as "n" in your project, you will have less free IRAM. If making this as "y" in your project,
you will increase free IRAM, but you will lose the possibility to debug this module, and some new
features will be added and bugs will be fixed in the IDF source but cannot be synced to ROM.
Default value:

Espressif Systems 1515
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Yes (enabled)

Heap memory debugging Contains:
• CONFIG_HEAP_ABORT_WHEN_ALLOCATION_FAILS
• CONFIG_HEAP_TASK_TRACKING
• CONFIG_HEAP_PLACE_FUNCTION_INTO_FLASH
• CONFIG_HEAP_CORRUPTION_DETECTION
• CONFIG_HEAP_TRACING_DEST
• CONFIG_HEAP_TRACING_STACK_DEPTH
• CONFIG_HEAP_USE_HOOKS
• CONFIG_HEAP_TRACE_HASH_MAP
• CONFIG_HEAP_TLSF_USE_ROM_IMPL

CONFIG_HEAP_CORRUPTION_DETECTION
Heap corruption detection
Found in: Component config > Heap memory debugging

Enable heap poisoning features to detect heap corruption caused by out-of-bounds access to heap mem-
ory.
See the "Heap Memory Debugging" page of the IDF documentation for a description of each level of
heap corruption detection.
Available options:

• Basic (no poisoning) (CONFIG_HEAP_POISONING_DISABLED)
• Light impact (CONFIG_HEAP_POISONING_LIGHT)
• Comprehensive (CONFIG_HEAP_POISONING_COMPREHENSIVE)

CONFIG_HEAP_TRACING_DEST
Heap tracing
Found in: Component config > Heap memory debugging

Enables the heap tracing API defined in esp_heap_trace.h.
This function causes a moderate increase in IRAM code side and a minor increase in heap function
(malloc/free/realloc) CPU overhead, even when the tracing feature is not used. So it's best to keep it
disabled unless tracing is being used.
Available options:

• Disabled (CONFIG_HEAP_TRACING_OFF)
• Standalone (CONFIG_HEAP_TRACING_STANDALONE)
• Host-based (CONFIG_HEAP_TRACING_TOHOST)

CONFIG_HEAP_TRACING_STACK_DEPTH
Heap tracing stack depth
Found in: Component config > Heap memory debugging

Number of stack frames to save when tracing heap operation callers.
More stack frames uses more memory in the heap trace buffer (and slows down allocation), but can
provide useful information.

Espressif Systems 1516
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_HEAP_USE_HOOKS
Use allocation and free hooks
Found in: Component config > Heap memory debugging

Enable the user to implement function hooks triggered for each successful allocation and free.

CONFIG_HEAP_TASK_TRACKING
Enable heap task tracking
Found in: Component config > Heap memory debugging

Enables tracking the task responsible for each heap allocation.
This function depends on heap poisoning being enabled and adds four more bytes of overhead for each
block allocated.

CONFIG_HEAP_TRACE_HASH_MAP
Use hash map mechanism to access heap trace records
Found in: Component config > Heap memory debugging

Enable this flag to use a hash map to increase performance in handling heap trace records.
Keeping this as "n" in your project will save RAM and heap memory but will lower the performance of
the heap trace in adding, retrieving and removing trace records. Making this as "y" in your project, you
will decrease free RAM and heap memory but, the heap trace performances in adding retrieving and
removing trace records will be enhanced.
Default value:

• No (disabled) if CONFIG_HEAP_TRACING_STANDALONE

CONFIG_HEAP_TRACE_HASH_MAP_SIZE
The number of entries in the hash map
Found in: Component config > Heap memory debugging > CONFIG_HEAP_TRACE_HASH_MAP

Defines the number of entries in the heap trace hashmap. The bigger this number is, the bigger the hash
map will be in the memory. In case the tracing mode is set to HEAP_TRACE_ALL, the bigger the
hashmap is, the better the performances are.
Range:

• from 1 to 10000 if CONFIG_HEAP_TRACE_HASH_MAP
Default value:

• 10 if CONFIG_HEAP_TRACE_HASH_MAP

CONFIG_HEAP_ABORT_WHEN_ALLOCATION_FAILS
Abort if memory allocation fails
Found in: Component config > Heap memory debugging

When enabled, if a memory allocation operation fails it will cause a system abort.
Default value:

• No (disabled)

Espressif Systems 1517
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_HEAP_TLSF_USE_ROM_IMPL
Use ROM implementation of heap tlsf library
Found in: Component config > Heap memory debugging

Enable this flag to use heap functions from ROM instead of ESP-IDF.
If keeping this as "n" in your project, you will have less free IRAM. If making this as "y" in your project,
you will increase free IRAM, but you will lose the possibility to debug this module, and some new
features will be added and bugs will be fixed in the IDF source but cannot be synced to ROM.
Default value:

• Yes (enabled)

CONFIG_HEAP_PLACE_FUNCTION_INTO_FLASH
Force the entire heap component to be placed in flash memory
Found in: Component config > Heap memory debugging

Enable this flag to save up RAM space by placing the heap component in the flash memory
Note that it is only safe to enable this configuration if no functions from esp_heap_caps.h or
esp_heap_trace.h are called from ISR.

IEEE 802.15.4 Contains:
• CONFIG_IEEE802154_TXRX_STATISTIC
• CONFIG_IEEE802154_RECORD_TXRX_FRAME
• CONFIG_IEEE802154_ASSERT
• CONFIG_IEEE802154_ENABLED
• CONFIG_IEEE802154_RECORD
• CONFIG_IEEE802154_RX_BUFFER_STATISTIC

CONFIG_IEEE802154_ENABLED
IEEE802154 Enable
Found in: Component config > IEEE 802.15.4

Default value:
• Yes (enabled)

CONFIG_IEEE802154_RX_BUFFER_SIZE
The number of 802.15.4 receive buffers
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_ENABLED

The number of 802.15.4 receive buffers
Range:

• from 2 to 100
Default value:

• 20

CONFIG_IEEE802154_CCA_MODE
Clear Channel Assessment (CCA) mode
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_ENABLED

configure the CCA mode

Espressif Systems 1518
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Available options:

• Carrier sense only (CONFIG_IEEE802154_CCA_CARRIER)
configure the CCA mode to Carrier sense only

• Energy above threshold (CONFIG_IEEE802154_CCA_ED)
configure the CCA mode to Energy above threshold

• Carrier sense OR energy above threshold (CON-
FIG_IEEE802154_CCA_CARRIER_OR_ED)
configure the CCA mode to Carrier sense OR energy above threshold

• Carrier sense AND energy above threshold (CON-
FIG_IEEE802154_CCA_CARRIER_AND_ED)
configure the CCA mode to Carrier sense AND energy above threshold

CONFIG_IEEE802154_CCA_THRESHOLD
CCA detection threshold
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_ENABLED

set the CCA threshold, in dBm
Range:

• from -120 to 0
Default value:

• "-75"

CONFIG_IEEE802154_PENDING_TABLE_SIZE
Pending table size
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_ENABLED

set the pending table size
Range:

• from 1 to 100
Default value:

• 20

CONFIG_IEEE802154_MULTI_PAN_ENABLE
Enable multi-pan feature for frame filter
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_ENABLED

Enable IEEE802154 multi-pan
Default value:

• No (disabled)

CONFIG_IEEE802154_TIMING_OPTIMIZATION
Enable throughput optimization
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_ENABLED

Enabling this option increases throughput by ~5% at the expense of ~2.1k IRAM code size increase.
Default value:

• Yes (enabled)

Espressif Systems 1519
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_IEEE802154_SLEEP_ENABLE
Enable IEEE802154 light sleep
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_ENABLED

Enabling this option allows the IEEE802.15.4 module to be powered down during automatic light sleep,
which reduces current consumption.
Default value:

• No (disabled) if CONFIG_PM_ENABLE && CONFIG_IEEE802154_ENABLED

CONFIG_IEEE802154_DEBUG
Enable IEEE802154 Debug
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_ENABLED

Enabling this option allows different kinds of IEEE802154 debug output. All IEEE802154 debug fea-
tures increase the size of the final binary.
Default value:

• No (disabled)

CONFIG_IEEE802154_DEBUG_ASSERT_MONITOR
Enable IEEE802154 assert monitor
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_ENABLED

Enabling this option to monitor and detect certain abnormal or unexpected states during the operation of
the IEEE 802.15.4. When this option is enabled, it will perform additional runtime checks and assertions.
Default value:

• No (disabled)

CONFIG_IEEE802154_RX_BUFFER_STATISTIC
Rx buffer statistic
Found in: Component config > IEEE 802.15.4

Enabling this option to count IEEE802154 rx buffer when allocating or freeing.
Default value:

• No (disabled) if CONFIG_IEEE802154_DEBUG

CONFIG_IEEE802154_ASSERT
Enrich the assert information
Found in: Component config > IEEE 802.15.4

Enabling this option to print more information when assert.
Default value:

• No (disabled) if CONFIG_IEEE802154_DEBUG

CONFIG_IEEE802154_RECORD
Record the information with IEEE802154 state and event
Found in: Component config > IEEE 802.15.4

Enabling this option to add some probe codes in the driver, and record these information.
Default value:

Espressif Systems 1520
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• No (disabled) if CONFIG_IEEE802154_DEBUG

CONFIG_IEEE802154_RECORD_EVENT
Enable record event information for debugging
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_RECORD

Enabling this option to record event, when assert, the recorded event will be printed.
Default value:

• No (disabled) if CONFIG_IEEE802154_RECORD

CONFIG_IEEE802154_RECORD_EVENT_SIZE
Record event table size
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_RECORD > CON-
FIG_IEEE802154_RECORD_EVENT

set the record event table size
Range:

• from 1 to 50 if CONFIG_IEEE802154_RECORD_EVENT
Default value:

• 30 if CONFIG_IEEE802154_RECORD_EVENT

CONFIG_IEEE802154_RECORD_STATE
Enable record state information for debugging
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_RECORD

Enabling this option to record state, when assert, the recorded state will be printed.
Default value:

• No (disabled) if CONFIG_IEEE802154_RECORD

CONFIG_IEEE802154_RECORD_STATE_SIZE
Record state table size
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_RECORD > CON-
FIG_IEEE802154_RECORD_STATE

set the record state table size
Range:

• from 1 to 50 if CONFIG_IEEE802154_RECORD_STATE
Default value:

• 10 if CONFIG_IEEE802154_RECORD_STATE

CONFIG_IEEE802154_RECORD_CMD
Enable record command information for debugging
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_RECORD

Enabling this option to record the command, when assert, the recorded command will be printed.
Default value:

• No (disabled) if CONFIG_IEEE802154_RECORD

Espressif Systems 1521
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_IEEE802154_RECORD_CMD_SIZE
Record command table size
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_RECORD > CON-
FIG_IEEE802154_RECORD_CMD

set the record command table size
Range:

• from 1 to 50 if CONFIG_IEEE802154_RECORD_CMD
Default value:

• 10 if CONFIG_IEEE802154_RECORD_CMD

CONFIG_IEEE802154_RECORD_ABORT
Enable record abort information for debugging
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_RECORD

Enabling this option to record the abort, when assert, the recorded abort will be printed.
Default value:

• No (disabled) if CONFIG_IEEE802154_RECORD

CONFIG_IEEE802154_RECORD_ABORT_SIZE
Record abort table size
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_RECORD > CON-
FIG_IEEE802154_RECORD_ABORT

set the record abort table size
Range:

• from 1 to 50 if CONFIG_IEEE802154_RECORD_ABORT
Default value:

• 10 if CONFIG_IEEE802154_RECORD_ABORT

CONFIG_IEEE802154_RECORD_TXRX_FRAME
Enable record txrx packets for debugging
Found in: Component config > IEEE 802.15.4

Enabling this option to record the tx and rx packets
Default value:

• No (disabled) if CONFIG_IEEE802154_DEBUG

CONFIG_IEEE802154_RECORD_TXRX_FRAME_SIZE
Record frame table size
Found in: Component config > IEEE 802.15.4 > CONFIG_IEEE802154_RECORD_TXRX_FRAME

set the record frame table size
Range:

• from 1 to 50 if CONFIG_IEEE802154_RECORD_TXRX_FRAME
Default value:

• 15 if CONFIG_IEEE802154_RECORD_TXRX_FRAME

Espressif Systems 1522
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_IEEE802154_TXRX_STATISTIC
Enable record tx/rx packets information for debugging
Found in: Component config > IEEE 802.15.4

Enabling this option to record the tx and rx
Default value:

• No (disabled) if CONFIG_IEEE802154_DEBUG

Log output Contains:
• CONFIG_LOG_DEFAULT_LEVEL
• CONFIG_LOG_TIMESTAMP_SOURCE
• CONFIG_LOG_MAXIMUM_LEVEL
• CONFIG_LOG_COLORS

CONFIG_LOG_DEFAULT_LEVEL
Default log verbosity
Found in: Component config > Log output

Specify how much output to see in logs by default. You can set lower verbosity level at runtime using
esp_log_level_set function.
By default, this setting limits which log statements are compiled into the program. For example, selecting
"Warning" would mean that changing log level to "Debug" at runtime will not be possible. To allow
increasing log level above the default at runtime, see the next option.
Available options:

• No output (CONFIG_LOG_DEFAULT_LEVEL_NONE)
• Error (CONFIG_LOG_DEFAULT_LEVEL_ERROR)
• Warning (CONFIG_LOG_DEFAULT_LEVEL_WARN)
• Info (CONFIG_LOG_DEFAULT_LEVEL_INFO)
• Debug (CONFIG_LOG_DEFAULT_LEVEL_DEBUG)
• Verbose (CONFIG_LOG_DEFAULT_LEVEL_VERBOSE)

CONFIG_LOG_MAXIMUM_LEVEL
Maximum log verbosity
Found in: Component config > Log output

This config option sets the highest log verbosity that it's possible to select at runtime by calling
esp_log_level_set(). This level may be higher than the default verbosity level which is set when the
app starts up.
This can be used enable debugging output only at a critical point, for a particular tag, or to minimize
startup time but then enable more logs once the firmware has loaded.
Note that increasing the maximum available log level will increase the firmware binary size.
This option only applies to logging from the app, the bootloader log level is fixed at compile time to the
separate "Bootloader log verbosity" setting.
Available options:

• Same as default (CONFIG_LOG_MAXIMUM_EQUALS_DEFAULT)
• Error (CONFIG_LOG_MAXIMUM_LEVEL_ERROR)

Espressif Systems 1523
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Warning (CONFIG_LOG_MAXIMUM_LEVEL_WARN)
• Info (CONFIG_LOG_MAXIMUM_LEVEL_INFO)
• Debug (CONFIG_LOG_MAXIMUM_LEVEL_DEBUG)
• Verbose (CONFIG_LOG_MAXIMUM_LEVEL_VERBOSE)

CONFIG_LOG_COLORS
Use ANSI terminal colors in log output
Found in: Component config > Log output

Enable ANSI terminal color codes in bootloader output.
In order to view these, your terminal program must support ANSI color codes.
Default value:

• Yes (enabled)

CONFIG_LOG_TIMESTAMP_SOURCE
Log Timestamps
Found in: Component config > Log output

Choose what sort of timestamp is displayed in the log output:
• Milliseconds since boot is calulated from the RTOS tick count multiplied by the tick period. This
time will reset after a software reboot. e.g. (90000)

• System time is taken from POSIX time functions which use the chip's RTC and high resoultion
timers to maintain an accurate time. The system time is initialized to 0 on startup, it can be set
with an SNTP sync, or with POSIX time functions. This time will not reset after a software reboot.
e.g. (00:01:30.000)

• NOTE: Currently this will not get used in logging from binary blobs (i.e WiFi & Bluetooth li-
braries), these will always print milliseconds since boot.

Available options:

• Milliseconds Since Boot (CONFIG_LOG_TIMESTAMP_SOURCE_RTOS)
• System Time (CONFIG_LOG_TIMESTAMP_SOURCE_SYSTEM)

LWIP Contains:
• CONFIG_LWIP_CHECK_THREAD_SAFETY
• Checksums
• CONFIG_LWIP_DHCP_COARSE_TIMER_SECS
• DHCP server
• CONFIG_LWIP_DHCP_OPTIONS_LEN
• CONFIG_LWIP_DHCP_DISABLE_CLIENT_ID
• CONFIG_LWIP_DHCP_DISABLE_VENDOR_CLASS_ID
• CONFIG_LWIP_DHCP_DOES_ARP_CHECK
• CONFIG_LWIP_DHCP_RESTORE_LAST_IP
• DNS
• CONFIG_LWIP_PPP_CHAP_SUPPORT
• CONFIG_LWIP_L2_TO_L3_COPY
• CONFIG_LWIP_IPV6_DHCP6
• CONFIG_LWIP_IP4_FRAG
• CONFIG_LWIP_IP6_FRAG
• CONFIG_LWIP_IP_FORWARD
• CONFIG_LWIP_NETBUF_RECVINFO
• CONFIG_LWIP_IPV4

Espressif Systems 1524
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_LWIP_AUTOIP
• CONFIG_LWIP_IPV6
• CONFIG_LWIP_ENABLE_LCP_ECHO
• CONFIG_LWIP_ESP_LWIP_ASSERT
• CONFIG_LWIP_DEBUG
• CONFIG_LWIP_IRAM_OPTIMIZATION
• CONFIG_LWIP_EXTRA_IRAM_OPTIMIZATION
• CONFIG_LWIP_STATS
• CONFIG_LWIP_TIMERS_ONDEMAND
• CONFIG_LWIP_DNS_SUPPORT_MDNS_QUERIES
• CONFIG_LWIP_PPP_MPPE_SUPPORT
• CONFIG_LWIP_PPP_MSCHAP_SUPPORT
• CONFIG_LWIP_PPP_NOTIFY_PHASE_SUPPORT
• CONFIG_LWIP_PPP_PAP_SUPPORT
• CONFIG_LWIP_PPP_DEBUG_ON
• CONFIG_LWIP_PPP_SUPPORT
• CONFIG_LWIP_IP4_REASSEMBLY
• CONFIG_LWIP_IP6_REASSEMBLY
• CONFIG_LWIP_SLIP_SUPPORT
• CONFIG_LWIP_SO_LINGER
• CONFIG_LWIP_SO_RCVBUF
• CONFIG_LWIP_SO_REUSE
• CONFIG_LWIP_NETIF_STATUS_CALLBACK
• CONFIG_LWIP_TCPIP_CORE_LOCKING
• CONFIG_LWIP_NETIF_API
• Hooks
• ICMP
• CONFIG_LWIP_LOCAL_HOSTNAME
• CONFIG_LWIP_ND6
• LWIP RAW API
• CONFIG_LWIP_TCPIP_TASK_PRIO
• CONFIG_LWIP_IPV6_ND6_NUM_ROUTERS
• CONFIG_LWIP_IPV6_ND6_NUM_DESTINATIONS
• CONFIG_LWIP_IPV6_ND6_NUM_NEIGHBORS
• CONFIG_LWIP_IPV6_ND6_NUM_PREFIXES
• CONFIG_LWIP_IPV6_MEMP_NUM_ND6_QUEUE
• CONFIG_LWIP_MAX_SOCKETS
• CONFIG_LWIP_BRIDGEIF_MAX_PORTS
• CONFIG_LWIP_NUM_NETIF_CLIENT_DATA
• CONFIG_LWIP_ESP_GRATUITOUS_ARP
• CONFIG_LWIP_ESP_MLDV6_REPORT
• SNTP
• CONFIG_LWIP_USE_ONLY_LWIP_SELECT
• CONFIG_LWIP_NETIF_LOOPBACK
• TCP
• CONFIG_LWIP_TCPIP_TASK_AFFINITY
• CONFIG_LWIP_TCPIP_TASK_STACK_SIZE
• CONFIG_LWIP_TCPIP_RECVMBOX_SIZE
• CONFIG_LWIP_IP_REASS_MAX_PBUFS
• CONFIG_LWIP_IP_DEFAULT_TTL
• UDP
• CONFIG_LWIP_IPV6_RDNSS_MAX_DNS_SERVERS

CONFIG_LWIP_LOCAL_HOSTNAME
Local netif hostname
Found in: Component config > LWIP

Espressif Systems 1525
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The default name this device will report to other devices on the network. Could be updated at runtime
with esp_netif_set_hostname()
Default value:

• "espressif"

CONFIG_LWIP_NETIF_API
Enable usage of standard POSIX APIs in LWIP
Found in: Component config > LWIP

If this feature is enabled, standard POSIX APIs: if_indextoname(), if_nametoindex() could be
used to convert network interface index to name instead of IDF specific esp-netif APIs (such as
esp_netif_get_netif_impl_name())
Default value:

• No (disabled)

CONFIG_LWIP_TCPIP_TASK_PRIO
LWIP TCP/IP Task Priority
Found in: Component config > LWIP

LWIP tcpip task priority. In case of high throughput, this parameter could be changed up to (config-
MAX_PRIORITIES-1).
Range:

• from 1 to 24
Default value:

• 18

CONFIG_LWIP_TCPIP_CORE_LOCKING
Enable tcpip core locking
Found in: Component config > LWIP

If Enable tcpip core locking,Creates a global mutex that is held during TCPIP thread operations.Can be
locked by client code to perform lwIP operations without changing into TCPIP thread using callbacks.
See LOCK_TCPIP_CORE() and UNLOCK_TCPIP_CORE().
If disable tcpip core locking,TCP IP will perform tasks through context switching
Default value:

• No (disabled)

CONFIG_LWIP_TCPIP_CORE_LOCKING_INPUT
Enable tcpip core locking input
Found in: Component config > LWIP > CONFIG_LWIP_TCPIP_CORE_LOCKING

when LWIP_TCPIP_CORE_LOCKING is enabled, this lets tcpip_input() grab the mutex for input
packets as well, instead of allocating a message and passing it to tcpip_thread.
Default value:

• No (disabled) if CONFIG_LWIP_TCPIP_CORE_LOCKING

Espressif Systems 1526
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_CHECK_THREAD_SAFETY
Checks that lwip API runs in expected context
Found in: Component config > LWIP

Enable to check that the project does not violate lwip thread safety. If enabled, all lwip functions that
require thread awareness run an assertion to verify that the TCP/IP core functionality is either locked or
accessed from the correct thread.
Default value:

• No (disabled)

CONFIG_LWIP_DNS_SUPPORT_MDNS_QUERIES
Enable mDNS queries in resolving host name
Found in: Component config > LWIP

If this feature is enabled, standard API such as gethostbyname support .local addresses by sending one
shot multicast mDNS query
Default value:

• Yes (enabled)

CONFIG_LWIP_L2_TO_L3_COPY
Enable copy between Layer2 and Layer3 packets
Found in: Component config > LWIP

If this feature is enabled, all traffic from layer2(WIFI Driver) will be copied to a new buffer before send-
ing it to layer3(LWIP stack), freeing the layer2 buffer. Please be notified that the total layer2 receiving
buffer is fixed and ESP32 currently supports 25 layer2 receiving buffer, when layer2 buffer runs out of
memory, then the incoming packets will be dropped in hardware. The layer3 buffer is allocated from
the heap, so the total layer3 receiving buffer depends on the available heap size, when heap runs out of
memory, no copy will be sent to layer3 and packet will be dropped in layer2. Please make sure you fully
understand the impact of this feature before enabling it.
Default value:

• No (disabled)

CONFIG_LWIP_IRAM_OPTIMIZATION
Enable LWIP IRAM optimization
Found in: Component config > LWIP

If this feature is enabled, some functions relating to RX/TX in LWIP will be put into IRAM, it can
improve UDP/TCP throughput by >10% for single core mode, it doesn't help too much for dual core
mode. On the other hand, it needs about 10KB IRAM for these optimizations.
If this feature is disabled, all lwip functions will be put into FLASH.
Default value:

• No (disabled)

CONFIG_LWIP_EXTRA_IRAM_OPTIMIZATION
Enable LWIP IRAM optimization for TCP part
Found in: Component config > LWIP

If this feature is enabled, some tcp part functions relating to RX/TX in LWIP will be put into IRAM, it
can improve TCP throughput. On the other hand, it needs about 17KB IRAM for these optimizations.

Espressif Systems 1527
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled)

CONFIG_LWIP_TIMERS_ONDEMAND
Enable LWIP Timers on demand
Found in: Component config > LWIP

If this feature is enabled, IGMP andMLD6 timers will be activated only when joining groups or receiving
QUERY packets.
This feature will reduce the power consumption for applications which do not use IGMP and MLD6.
Default value:

• Yes (enabled)

CONFIG_LWIP_ND6
LWIP NDP6 Enable/Disable
Found in: Component config > LWIP

This option is used to disable the Network Discovery Protocol (NDP) if it is not required. Please use
this option with caution, as the NDP is essential for IPv6 functionality within a local network.
Default value:

• Yes (enabled)

CONFIG_LWIP_FORCE_ROUTER_FORWARDING
LWIP Force Router Forwarding Enable/Disable
Found in: Component config > LWIP > CONFIG_LWIP_ND6

This option is used to set the the router flag for the NA packets. When enabled, the router flag in NA
packet will always set to 1, otherwise, never set router flag for NA packets.
Default value:

• No (disabled)

CONFIG_LWIP_MAX_SOCKETS
Max number of open sockets
Found in: Component config > LWIP

Sockets take up a certain amount of memory, and allowing fewer sockets to be open at the same time
conserves memory. Specify the maximum amount of sockets here. The valid value is from 1 to 16.
Range:

• from 1 to 16
Default value:

• 10

CONFIG_LWIP_USE_ONLY_LWIP_SELECT
Support LWIP socket select() only (DEPRECATED)
Found in: Component config > LWIP

This option is deprecated. Do not use this option, use VFS_SUPPORT_SELECT instead.
Default value:

• No (disabled)

Espressif Systems 1528
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_SO_LINGER
Enable SO_LINGER processing
Found in: Component config > LWIP

Enabling this option allows SO_LINGER processing. l_onoff = 1,l_linger can set the timeout.
If l_linger=0, When a connection is closed, TCP will terminate the connection. This means that TCP
will discard any data packets stored in the socket send buffer and send an RST to the peer.
If l_linger!=0,Then closesocket() calls to block the process until the remaining data packets has been
sent or timed out.
Default value:

• No (disabled)

CONFIG_LWIP_SO_REUSE
Enable SO_REUSEADDR option
Found in: Component config > LWIP

Enabling this option allows binding to a port which remains in TIME_WAIT.
Default value:

• Yes (enabled)

CONFIG_LWIP_SO_REUSE_RXTOALL
SO_REUSEADDR copies broadcast/multicast to all matches
Found in: Component config > LWIP > CONFIG_LWIP_SO_REUSE

Enabling this option means that any incoming broadcast or multicast packet will be copied to all of the
local sockets that it matches (may be more than one if SO_REUSEADDR is set on the socket.)
This increases memory overhead as the packets need to be copied, however they are only copied per
matching socket. You can safely disable it if you don't plan to receive broadcast or multicast traffic on
more than one socket at a time.
Default value:

• Yes (enabled)

CONFIG_LWIP_SO_RCVBUF
Enable SO_RCVBUF option
Found in: Component config > LWIP

Enabling this option allows checking for available data on a netconn.
Default value:

• No (disabled)

CONFIG_LWIP_NETBUF_RECVINFO
Enable IP_PKTINFO option
Found in: Component config > LWIP

Enabling this option allows checking for the destination address of a received IPv4 Packet.
Default value:

• No (disabled)

Espressif Systems 1529
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_IP_DEFAULT_TTL
The value for Time-To-Live used by transport layers
Found in: Component config > LWIP

Set value for Time-To-Live used by transport layers.
Range:

• from 1 to 255
Default value:

• 64

CONFIG_LWIP_IP4_FRAG
Enable fragment outgoing IP4 packets
Found in: Component config > LWIP

Enabling this option allows fragmenting outgoing IP4 packets if their size exceeds MTU.
Default value:

• Yes (enabled)

CONFIG_LWIP_IP6_FRAG
Enable fragment outgoing IP6 packets
Found in: Component config > LWIP

Enabling this option allows fragmenting outgoing IP6 packets if their size exceeds MTU.
Default value:

• Yes (enabled)

CONFIG_LWIP_IP4_REASSEMBLY
Enable reassembly incoming fragmented IP4 packets
Found in: Component config > LWIP

Enabling this option allows reassemblying incoming fragmented IP4 packets.
Default value:

• No (disabled)

CONFIG_LWIP_IP6_REASSEMBLY
Enable reassembly incoming fragmented IP6 packets
Found in: Component config > LWIP

Enabling this option allows reassemblying incoming fragmented IP6 packets.
Default value:

• No (disabled)

CONFIG_LWIP_IP_REASS_MAX_PBUFS
The maximum amount of pbufs waiting to be reassembled
Found in: Component config > LWIP

Set the maximum amount of pbufs waiting to be reassembled.
Range:

• from 10 to 100

Espressif Systems 1530
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• 10

CONFIG_LWIP_IP_FORWARD
Enable IP forwarding
Found in: Component config > LWIP

Enabling this option allows packets forwarding across multiple interfaces.
Default value:

• No (disabled)

CONFIG_LWIP_IPV4_NAPT
Enable NAT (new/experimental)
Found in: Component config > LWIP > CONFIG_LWIP_IP_FORWARD

Enabling this option allows Network Address and Port Translation.
Default value:

• No (disabled) if CONFIG_LWIP_IP_FORWARD

CONFIG_LWIP_STATS
Enable LWIP statistics
Found in: Component config > LWIP

Enabling this option allows LWIP statistics
Default value:

• No (disabled)

CONFIG_LWIP_ESP_GRATUITOUS_ARP
Send gratuitous ARP periodically
Found in: Component config > LWIP

Enable this option allows to send gratuitous ARP periodically.
This option solve the compatibility issues.If the ARP table of the AP is old, and the AP doesn't send
ARP request to update it's ARP table, this will lead to the STA sending IP packet fail. Thus we send
gratuitous ARP periodically to let AP update it's ARP table.
Default value:

• Yes (enabled)

CONFIG_LWIP_GARP_TMR_INTERVAL
GARP timer interval(seconds)
Found in: Component config > LWIP > CONFIG_LWIP_ESP_GRATUITOUS_ARP

Set the timer interval for gratuitous ARP. The default value is 60s
Default value:

• 60

Espressif Systems 1531
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_ESP_MLDV6_REPORT
Send mldv6 report periodically
Found in: Component config > LWIP

Enable this option allows to send mldv6 report periodically.
This option solve the issue that failed to receive multicast data. Some routers fail to forward multicast
packets. To solve this problem, send multicast mdlv6 report to routers regularly.
Default value:

• Yes (enabled)

CONFIG_LWIP_MLDV6_TMR_INTERVAL
mldv6 report timer interval(seconds)
Found in: Component config > LWIP > CONFIG_LWIP_ESP_MLDV6_REPORT

Set the timer interval for mldv6 report. The default value is 30s
Default value:

• 40

CONFIG_LWIP_TCPIP_RECVMBOX_SIZE
TCPIP task receive mail box size
Found in: Component config > LWIP

Set TCPIP task receivemail box size. Generally bigger valuemeans higher throughput butmorememory.
The value should be bigger than UDP/TCP mail box size.
Range:

• from 6 to 1024 if CONFIG_LWIP_WND_SCALE
Default value:

• 32

CONFIG_LWIP_DHCP_DOES_ARP_CHECK
DHCP: Perform ARP check on any offered address
Found in: Component config > LWIP

Enabling this option performs a check (via ARP request) if the offered IP address is not already in use
by another host on the network.
Default value:

• Yes (enabled)

CONFIG_LWIP_DHCP_DISABLE_CLIENT_ID
DHCP: Disable Use of HW address as client identification
Found in: Component config > LWIP

This option could be used to disable DHCP client identification with its MAC address. (Client id is used
by DHCP servers to uniquely identify clients and are included in the DHCP packets as an option 61) Set
this option to "y" in order to exclude option 61 from DHCP packets.
Default value:

• No (disabled)

Espressif Systems 1532
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_DHCP_DISABLE_VENDOR_CLASS_ID
DHCP: Disable Use of vendor class identification
Found in: Component config > LWIP

This option could be used to disable DHCP client vendor class identification. Set this option to "y" in
order to exclude option 60 from DHCP packets.
Default value:

• Yes (enabled)

CONFIG_LWIP_DHCP_RESTORE_LAST_IP
DHCP: Restore last IP obtained from DHCP server
Found in: Component config > LWIP

When this option is enabled, DHCP client tries to re-obtain last valid IP address obtained from DHCP
server. Last valid DHCP configuration is stored in nvs and restored after reset/power-up. If IP is still
available, there is no need for sending discovery message to DHCP server and save some time.
Default value:

• No (disabled)

CONFIG_LWIP_DHCP_OPTIONS_LEN
DHCP total option length
Found in: Component config > LWIP

Set total length of outgoing DHCP option msg. Generally bigger value means it can carry more options
and values. If your code meets LWIP_ASSERT due to option value is too long. Please increase the
LWIP_DHCP_OPTIONS_LEN value.
Range:

• from 68 to 255
Default value:

• 68

CONFIG_LWIP_NUM_NETIF_CLIENT_DATA
Number of clients store data in netif
Found in: Component config > LWIP

Number of clients that may store data in client_data member array of struct netif.
Range:

• from 0 to 256
Default value:

• 0

CONFIG_LWIP_DHCP_COARSE_TIMER_SECS
DHCP coarse timer interval(s)
Found in: Component config > LWIP

Set DHCP coarse interval in seconds. A higher value will be less precise but cost less power consumption.
Range:

• from 1 to 10
Default value:

• 1

Espressif Systems 1533
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

DHCP server Contains:
• CONFIG_LWIP_DHCPS

CONFIG_LWIP_DHCPS
DHCPS: Enable IPv4 Dynamic Host Configuration Protocol Server (DHCPS)
Found in: Component config > LWIP > DHCP server

Enabling this option allows the device to run the DHCP server (to dynamically assign IPv4 addresses to
clients).
Default value:

• Yes (enabled)

CONFIG_LWIP_DHCPS_LEASE_UNIT
Multiplier for lease time, in seconds
Found in: Component config > LWIP > DHCP server > CONFIG_LWIP_DHCPS

The DHCP server is calculating lease time multiplying the sent and received times by this number of
seconds per unit. The default is 60, that equals one minute.
Range:

• from 1 to 3600
Default value:

• 60

CONFIG_LWIP_DHCPS_MAX_STATION_NUM
Maximum number of stations
Found in: Component config > LWIP > DHCP server > CONFIG_LWIP_DHCPS

The maximum number of DHCP clients that are connected to the server. After this number is exceeded,
DHCP server removes of the oldest device from it's address pool, without notification.
Range:

• from 1 to 64
Default value:

• 8

CONFIG_LWIP_DHCPS_ADD_DNS
Always add DNS option in DHCP responses
Found in: Component config > LWIP > DHCP server > CONFIG_LWIP_DHCPS

This allows the DNS option to be optional in the DHCP offers, depending on the server's runtime con-
figuration. When enabled, the DHCP server will always add the DNS option to DHCP responses. If a
DNS server is not explicitly configured, the server's IP address will be used as the fallback for the DNS
option. When disabled, the DHCP server will only include the DNS option in responses if a DNS server
has been explicitly configured. This option will be removed in IDF v6.x
Default value:

• Yes (enabled)

Espressif Systems 1534
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_AUTOIP
Enable IPV4 Link-Local Addressing (AUTOIP)
Found in: Component config > LWIP

Enabling this option allows the device to self-assign an address in the 169.256/16 range if none is assigned
statically or via DHCP.
See RFC 3927.
Default value:

• No (disabled)
Contains:

• CONFIG_LWIP_AUTOIP_TRIES
• CONFIG_LWIP_AUTOIP_MAX_CONFLICTS
• CONFIG_LWIP_AUTOIP_RATE_LIMIT_INTERVAL

CONFIG_LWIP_AUTOIP_TRIES
DHCP Probes before self-assigning IPv4 LL address
Found in: Component config > LWIP > CONFIG_LWIP_AUTOIP

DHCP client will send this many probes before self-assigning a link local address.
From LWIP help: "This can be set as low as 1 to get an AutoIP address very quickly, but you should be
prepared to handle a changing IP address when DHCP overrides AutoIP." (In the case of ESP-IDF, this
means multiple SYSTEM_EVENT_STA_GOT_IP events.)
Range:

• from 1 to 100 if CONFIG_LWIP_AUTOIP
Default value:

• 2 if CONFIG_LWIP_AUTOIP

CONFIG_LWIP_AUTOIP_MAX_CONFLICTS
Max IP conflicts before rate limiting
Found in: Component config > LWIP > CONFIG_LWIP_AUTOIP

If the AUTOIP functionality detects this many IP conflicts while self-assigning an address, it will go into
a rate limited mode.
Range:

• from 1 to 100 if CONFIG_LWIP_AUTOIP
Default value:

• 9 if CONFIG_LWIP_AUTOIP

CONFIG_LWIP_AUTOIP_RATE_LIMIT_INTERVAL
Rate limited interval (seconds)
Found in: Component config > LWIP > CONFIG_LWIP_AUTOIP

If rate limiting self-assignment requests, wait this long between each request.
Range:

• from 5 to 120 if CONFIG_LWIP_AUTOIP
Default value:

• 20 if CONFIG_LWIP_AUTOIP

Espressif Systems 1535
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_IPV4
Enable IPv4
Found in: Component config > LWIP

Enable IPv4 stack. If you want to use IPv6 only TCP/IP stack, disable this.
Default value:

• Yes (enabled)

CONFIG_LWIP_IPV6
Enable IPv6
Found in: Component config > LWIP

Enable IPv6 function. If not use IPv6 function, set this option to n. If disabling LWIP_IPV6 then some
other components (coap and asio) will no longer be available.
Default value:

• Yes (enabled)

CONFIG_LWIP_IPV6_AUTOCONFIG
Enable IPV6 stateless address autoconfiguration (SLAAC)
Found in: Component config > LWIP > CONFIG_LWIP_IPV6

Enabling this option allows the devices to IPV6 stateless address autoconfiguration (SLAAC).
See RFC 4862.
Default value:

• No (disabled)

CONFIG_LWIP_IPV6_NUM_ADDRESSES
Number of IPv6 addresses on each network interface
Found in: Component config > LWIP > CONFIG_LWIP_IPV6

The maximum number of IPv6 addresses on each interface. Any additional addresses will be discarded.
Default value:

• 3

CONFIG_LWIP_IPV6_FORWARD
Enable IPv6 forwarding between interfaces
Found in: Component config > LWIP > CONFIG_LWIP_IPV6

Forwarding IPv6 packets between interfaces is only required when acting as a router.
Default value:

• No (disabled)

CONFIG_LWIP_IPV6_RDNSS_MAX_DNS_SERVERS
Use IPv6 Router Advertisement Recursive DNS Server Option
Found in: Component config > LWIP

Use IPv6 Router Advertisement Recursive DNS Server Option (as per RFC 6106) to copy a defined
maximum number of DNS servers to the DNS module. Set this option to a number of desired DNS
servers advertised in the RA protocol. This feature is disabled when set to 0.

Espressif Systems 1536
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• 0 if CONFIG_LWIP_IPV6_AUTOCONFIG

CONFIG_LWIP_IPV6_DHCP6
Enable DHCPv6 stateless address autoconfiguration
Found in: Component config > LWIP

Enable DHCPv6 for IPv6 stateless address autoconfiguration. Note that the dhcpv6 client has to be
started using dhcp6_enable_stateless(netif); Note that the stateful address autoconfiguration is not sup-
ported.
Default value:

• No (disabled) if CONFIG_LWIP_IPV6_AUTOCONFIG

CONFIG_LWIP_NETIF_STATUS_CALLBACK
Enable status callback for network interfaces
Found in: Component config > LWIP

Enable callbacks when the network interface is up/down and addresses are changed.
Default value:

• No (disabled)

CONFIG_LWIP_NETIF_LOOPBACK
Support per-interface loopback
Found in: Component config > LWIP

Enabling this option means that if a packet is sent with a destination address equal to the interface's own
IP address, it will "loop back" and be received by this interface. Disabling this option disables support
of loopback interface in lwIP
Default value:

• Yes (enabled)
Contains:

• CONFIG_LWIP_LOOPBACK_MAX_PBUFS

CONFIG_LWIP_LOOPBACK_MAX_PBUFS
Max queued loopback packets per interface
Found in: Component config > LWIP > CONFIG_LWIP_NETIF_LOOPBACK

Configure the maximum number of packets which can be queued for loopback on a given interface.
Reducing this number may cause packets to be dropped, but will avoid filling memory with queued
packet data.
Range:

• from 0 to 16
Default value:

• 8

Espressif Systems 1537
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

TCP Contains:
• CONFIG_LWIP_TCP_WND_DEFAULT
• CONFIG_LWIP_TCP_SND_BUF_DEFAULT
• CONFIG_LWIP_TCP_RECVMBOX_SIZE
• CONFIG_LWIP_TCP_RTO_TIME
• CONFIG_LWIP_MAX_ACTIVE_TCP
• CONFIG_LWIP_TCP_FIN_WAIT_TIMEOUT
• CONFIG_LWIP_MAX_LISTENING_TCP
• CONFIG_LWIP_TCP_MAXRTX
• CONFIG_LWIP_TCP_SYNMAXRTX
• CONFIG_LWIP_TCP_MSL
• CONFIG_LWIP_TCP_MSS
• CONFIG_LWIP_TCP_OVERSIZE
• CONFIG_LWIP_TCP_QUEUE_OOSEQ
• CONFIG_LWIP_WND_SCALE
• CONFIG_LWIP_TCP_HIGH_SPEED_RETRANSMISSION
• CONFIG_LWIP_TCP_TMR_INTERVAL

CONFIG_LWIP_MAX_ACTIVE_TCP
Maximum active TCP Connections
Found in: Component config > LWIP > TCP

The maximum number of simultaneously active TCP connections. The practical maximum limit is
determined by available heap memory at runtime.
Changing this value by itself does not substantially change the memory usage of LWIP, except for pre-
venting new TCP connections after the limit is reached.
Range:

• from 1 to 1024
Default value:

• 16

CONFIG_LWIP_MAX_LISTENING_TCP
Maximum listening TCP Connections
Found in: Component config > LWIP > TCP

The maximum number of simultaneously listening TCP connections. The practical maximum limit is
determined by available heap memory at runtime.
Changing this value by itself does not substantially change the memory usage of LWIP, except for pre-
venting new listening TCP connections after the limit is reached.
Range:

• from 1 to 1024
Default value:

• 16

CONFIG_LWIP_TCP_HIGH_SPEED_RETRANSMISSION
TCP high speed retransmissions
Found in: Component config > LWIP > TCP

Speed up the TCP retransmission interval. If disabled, it is recommended to change the number of SYN
retransmissions to 6, and TCP initial rto time to 3000.
Default value:

Espressif Systems 1538
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Yes (enabled)

CONFIG_LWIP_TCP_MAXRTX
Maximum number of retransmissions of data segments
Found in: Component config > LWIP > TCP

Set maximum number of retransmissions of data segments.
Range:

• from 3 to 12
Default value:

• 12

CONFIG_LWIP_TCP_SYNMAXRTX
Maximum number of retransmissions of SYN segments
Found in: Component config > LWIP > TCP

Set maximum number of retransmissions of SYN segments.
Range:

• from 3 to 12
Default value:

• 12

CONFIG_LWIP_TCP_MSS
Maximum Segment Size (MSS)
Found in: Component config > LWIP > TCP

Set maximum segment size for TCP transmission.
Can be set lower to save RAM, the default value 1460(ipv4)/1440(ipv6) will give best throughput. IPv4
TCP_MSS Range: 576 <= TCP_MSS <= 1460 IPv6 TCP_MSS Range: 1220<= TCP_MSS <= 1440
Range:

• from 536 to 1460
Default value:

• 1440

CONFIG_LWIP_TCP_TMR_INTERVAL
TCP timer interval(ms)
Found in: Component config > LWIP > TCP

Set TCP timer interval in milliseconds.
Can be used to speed connections on bad networks. A lower value will redeliver unacked packets faster.
Default value:

• 250

CONFIG_LWIP_TCP_MSL
Maximum segment lifetime (MSL)
Found in: Component config > LWIP > TCP

Set maximum segment lifetime in milliseconds.
Default value:

Espressif Systems 1539
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 60000

CONFIG_LWIP_TCP_FIN_WAIT_TIMEOUT
Maximum FIN segment lifetime
Found in: Component config > LWIP > TCP

Set maximum segment lifetime in milliseconds.
Default value:

• 20000

CONFIG_LWIP_TCP_SND_BUF_DEFAULT
Default send buffer size
Found in: Component config > LWIP > TCP

Set default send buffer size for new TCP sockets.
Per-socket send buffer size can be changed at runtime with lwip_setsockopt(s, TCP_SNDBUF, ...).
This value must be at least 2x the MSS size, and the default is 4x the default MSS size.
Setting a smaller default SNDBUF size can save some RAM, but will decrease performance.
Range:

• from 2440 to 1024000 if CONFIG_LWIP_WND_SCALE
Default value:

• 5760

CONFIG_LWIP_TCP_WND_DEFAULT
Default receive window size
Found in: Component config > LWIP > TCP

Set default TCP receive window size for new TCP sockets.
Per-socket receive window size can be changed at runtime with lwip_setsockopt(s, TCP_WINDOW,
...).
Setting a smaller default receive window size can save some RAM, but will significantly decrease per-
formance.
Range:

• from 2440 to 1024000 if CONFIG_LWIP_WND_SCALE
Default value:

• 5760

CONFIG_LWIP_TCP_RECVMBOX_SIZE
Default TCP receive mail box size
Found in: Component config > LWIP > TCP

Set TCP receive mail box size. Generally bigger value means higher throughput but more
memory. The recommended value is: LWIP_TCP_WND_DEFAULT/TCP_MSS + 2, e.g. if
LWIP_TCP_WND_DEFAULT=14360, TCP_MSS=1436, then the recommended receive mail box
size is (14360/1436 + 2) = 12.
TCP receive mail box is a per socket mail box, when the application receives packets from TCP
socket, LWIP core firstly posts the packets to TCP receive mail box and the application then fetches
the packets from mail box. It means LWIP can caches maximum LWIP_TCP_RECCVMBOX_SIZE
packets for each TCP socket, so the maximum possible cached TCP packets for all TCP sockets is

Espressif Systems 1540
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

LWIP_TCP_RECCVMBOX_SIZE multiples the maximum TCP socket number. In other words, the
bigger LWIP_TCP_RECVMBOX_SIZE means more memory. On the other hand, if the receiv mail
box is too small, the mail box may be full. If the mail box is full, the LWIP drops the packets. So
generally we need to make sure the TCP receive mail box is big enough to avoid packet drop between
LWIP core and application.
Range:

• from 6 to 1024 if CONFIG_LWIP_WND_SCALE
Default value:

• 6

CONFIG_LWIP_TCP_QUEUE_OOSEQ
Queue incoming out-of-order segments
Found in: Component config > LWIP > TCP

Queue incoming out-of-order segments for later use.
Disable this option to save some RAM during TCP sessions, at the expense of increased retransmissions
if segments arrive out of order.
Default value:

• Yes (enabled)

CONFIG_LWIP_TCP_OOSEQ_TIMEOUT
Timeout for each pbuf queued in TCP OOSEQ, in RTOs.
Found in: Component config > LWIP > TCP > CONFIG_LWIP_TCP_QUEUE_OOSEQ

The timeout value is TCP_OOSEQ_TIMEOUT * RTO.
Range:

• from 1 to 30
Default value:

• 6

CONFIG_LWIP_TCP_OOSEQ_MAX_PBUFS
The maximum number of pbufs queued on OOSEQ per pcb
Found in: Component config > LWIP > TCP > CONFIG_LWIP_TCP_QUEUE_OOSEQ

If LWIP_TCP_OOSEQ_MAX_PBUFS = 0, TCP will not control the number of OOSEQ pbufs.
In a poor network environment, many out-of-order tcp pbufs will be received. These out-of-order pbufs
will be cached in the TCP out-of-order queue which will cause Wi-Fi/Ethernet fail to release RX buffer
in time. It is possible that all RX buffers for MAC layer are used by OOSEQ.
Control the number of out-of-order pbufs to ensure that the MAC layer has enough RX buffer to receive
packets.
In the Wi-Fi scenario, recommended OOSEQ PBUFS Range: 0 <= TCP_OOSEQ_MAX_PBUFS <=
CONFIG_ESP_WIFI_DYNAMIC_RX_BUFFER_NUM/(MAX_TCP_NUMBER + 1)
In the Ethernet scenario,recommended Ethernet OOSEQ PBUFS Range: 0 <=
TCP_OOSEQ_MAX_PBUFS<=CONFIG_ETH_DMA_RX_BUFFER_NUM/(MAX_TCP_NUMBER
+ 1)
Within the recommended value range, the larger the value, the better the performance.
MAX_TCP_NUMBER represent Maximum number of TCP connections in Wi-Fi(STA+SoftAP) and
Ethernet scenario.
Range:

Espressif Systems 1541
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• from 0 to 12
Default value:

• 4

CONFIG_LWIP_TCP_SACK_OUT
Support sending selective acknowledgements
Found in: Component config > LWIP > TCP > CONFIG_LWIP_TCP_QUEUE_OOSEQ

TCP will support sending selective acknowledgements (SACKs).
Default value:

• No (disabled)

CONFIG_LWIP_TCP_OVERSIZE
Pre-allocate transmit PBUF size
Found in: Component config > LWIP > TCP

Allows enabling "oversize" allocation of TCP transmission pbufs ahead of time, which can reduce the
length of pbuf chains used for transmission.
This will not make a difference to sockets where Nagle's algorithm is disabled.
Default value of MSS is fine for most applications, 25% MSS may save some RAM when only trans-
mitting small amounts of data. Disabled will have worst performance and fragmentation characteristics,
but uses least RAM overall.
Available options:

• MSS (CONFIG_LWIP_TCP_OVERSIZE_MSS)
• 25% MSS (CONFIG_LWIP_TCP_OVERSIZE_QUARTER_MSS)
• Disabled (CONFIG_LWIP_TCP_OVERSIZE_DISABLE)

CONFIG_LWIP_WND_SCALE
Support TCP window scale
Found in: Component config > LWIP > TCP

Enable this feature to support TCP window scaling.

CONFIG_LWIP_TCP_RCV_SCALE
Set TCP receiving window scaling factor
Found in: Component config > LWIP > TCP > CONFIG_LWIP_WND_SCALE

Enable this feature to support TCP window scaling.
Range:

• from 0 to 14 if CONFIG_LWIP_WND_SCALE
Default value:

• 0 if CONFIG_LWIP_WND_SCALE

Espressif Systems 1542
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_TCP_RTO_TIME
Default TCP rto time
Found in: Component config > LWIP > TCP

Set default TCP rto time for a reasonable initial rto. In bad network environment, recommend set value
of rto time to 1500.
Default value:

• 1500

UDP Contains:
• CONFIG_LWIP_UDP_RECVMBOX_SIZE
• CONFIG_LWIP_MAX_UDP_PCBS

CONFIG_LWIP_MAX_UDP_PCBS
Maximum active UDP control blocks
Found in: Component config > LWIP > UDP

The maximum number of active UDP "connections" (ie UDP sockets sending/receiving data). The
practical maximum limit is determined by available heap memory at runtime.
Range:

• from 1 to 1024
Default value:

• 16

CONFIG_LWIP_UDP_RECVMBOX_SIZE
Default UDP receive mail box size
Found in: Component config > LWIP > UDP

Set UDP receive mail box size. The recommended value is 6.
UDP receive mail box is a per socket mail box, when the application receives packets from UDP
socket, LWIP core firstly posts the packets to UDP receive mail box and the application then fetches
the packets from mail box. It means LWIP can caches maximum UDP_RECCVMBOX_SIZE pack-
ets for each UDP socket, so the maximum possible cached UDP packets for all UDP sockets is
UDP_RECCVMBOX_SIZE multiples the maximum UDP socket number. In other words, the big-
ger UDP_RECVMBOX_SIZE means more memory. On the other hand, if the receiv mail box is too
small, the mail box may be full. If the mail box is full, the LWIP drops the packets. So generally we
need to make sure the UDP receive mail box is big enough to avoid packet drop between LWIP core
and application.
Range:

• from 6 to 64
Default value:

• 6

Checksums Contains:
• CONFIG_LWIP_CHECKSUM_CHECK_ICMP
• CONFIG_LWIP_CHECKSUM_CHECK_IP
• CONFIG_LWIP_CHECKSUM_CHECK_UDP

Espressif Systems 1543
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_CHECKSUM_CHECK_IP
Enable LWIP IP checksums
Found in: Component config > LWIP > Checksums

Enable checksum checking for received IP messages
Default value:

• No (disabled)

CONFIG_LWIP_CHECKSUM_CHECK_UDP
Enable LWIP UDP checksums
Found in: Component config > LWIP > Checksums

Enable checksum checking for received UDP messages
Default value:

• No (disabled)

CONFIG_LWIP_CHECKSUM_CHECK_ICMP
Enable LWIP ICMP checksums
Found in: Component config > LWIP > Checksums

Enable checksum checking for received ICMP messages
Default value:

• Yes (enabled)

CONFIG_LWIP_TCPIP_TASK_STACK_SIZE
TCP/IP Task Stack Size
Found in: Component config > LWIP

Configure TCP/IP task stack size, used by LWIP to process multi-threaded TCP/IP operations. Setting
this stack too small will result in stack overflow crashes.
Range:

• from 2048 to 65536
Default value:

• 3072

CONFIG_LWIP_TCPIP_TASK_AFFINITY
TCP/IP task affinity
Found in: Component config > LWIP

Allows setting LwIP tasks affinity, i.e. whether the task is pinned to CPU0, pinned to CPU1, or allowed
to run on any CPU. Currently this applies to "TCP/IP" task and "Ping" task.
Available options:

• No affinity (CONFIG_LWIP_TCPIP_TASK_AFFINITY_NO_AFFINITY)
• CPU0 (CONFIG_LWIP_TCPIP_TASK_AFFINITY_CPU0)
• CPU1 (CONFIG_LWIP_TCPIP_TASK_AFFINITY_CPU1)

Espressif Systems 1544
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_IPV6_ND6_NUM_PREFIXES
Max number of entries in IPv6 on-link prefixes cache
Found in: Component config > LWIP

Maximum number of entries in IPv6 on-link prefixes cache
Default value:

• 5

CONFIG_LWIP_IPV6_ND6_NUM_ROUTERS
Max number of entries in IPv6 default routers cache
Found in: Component config > LWIP

Maximum number of entries in IPv6 default routers cache
Default value:

• 3

CONFIG_LWIP_IPV6_ND6_NUM_DESTINATIONS
Max number of entries in IPv6 destinations cache
Found in: Component config > LWIP

Maximum number of entries in IPv6 destinations cache
Default value:

• 10

CONFIG_LWIP_PPP_SUPPORT
Enable PPP support
Found in: Component config > LWIP

Enable PPP stack. Now only PPP over serial is possible.
Default value:

• No (disabled)
Contains:

• CONFIG_LWIP_PPP_ENABLE_IPV6

CONFIG_LWIP_PPP_ENABLE_IPV6
Enable IPV6 support for PPP connections (IPV6CP)
Found in: Component config > LWIP > CONFIG_LWIP_PPP_SUPPORT

Enable IPV6 support in PPP for the local link between the DTE (processor) and DCE (modem). There
are some modems which do not support the IPV6 addressing in the local link. If they are requested for
IPV6CP negotiation, they may time out. This would in turn fail the configuration for the whole link. If
your modem is not responding correctly to PPP Phase Network, try to disable IPV6 support.
Default value:

• Yes (enabled) if CONFIG_LWIP_PPP_SUPPORT && CONFIG_LWIP_IPV6

Espressif Systems 1545
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_IPV6_MEMP_NUM_ND6_QUEUE
Max number of IPv6 packets to queue during MAC resolution
Found in: Component config > LWIP

Config max number of IPv6 packets to queue during MAC resolution.
Range:

• from 3 to 20
Default value:

• 3

CONFIG_LWIP_IPV6_ND6_NUM_NEIGHBORS
Max number of entries in IPv6 neighbor cache
Found in: Component config > LWIP

Config max number of entries in IPv6 neighbor cache
Range:

• from 3 to 10
Default value:

• 5

CONFIG_LWIP_PPP_NOTIFY_PHASE_SUPPORT
Enable Notify Phase Callback
Found in: Component config > LWIP

Enable to set a callback which is called on change of the internal PPP state machine.
Default value:

• No (disabled) if CONFIG_LWIP_PPP_SUPPORT

CONFIG_LWIP_PPP_PAP_SUPPORT
Enable PAP support
Found in: Component config > LWIP

Enable Password Authentication Protocol (PAP) support
Default value:

• No (disabled) if CONFIG_LWIP_PPP_SUPPORT

CONFIG_LWIP_PPP_CHAP_SUPPORT
Enable CHAP support
Found in: Component config > LWIP

Enable Challenge Handshake Authentication Protocol (CHAP) support
Default value:

• No (disabled) if CONFIG_LWIP_PPP_SUPPORT

CONFIG_LWIP_PPP_MSCHAP_SUPPORT
Enable MSCHAP support
Found in: Component config > LWIP

Enable Microsoft version of the Challenge-Handshake Authentication Protocol (MSCHAP) support

Espressif Systems 1546
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled) if CONFIG_LWIP_PPP_SUPPORT

CONFIG_LWIP_PPP_MPPE_SUPPORT
Enable MPPE support
Found in: Component config > LWIP

Enable Microsoft Point-to-Point Encryption (MPPE) support
Default value:

• No (disabled) if CONFIG_LWIP_PPP_SUPPORT

CONFIG_LWIP_ENABLE_LCP_ECHO
Enable LCP ECHO
Found in: Component config > LWIP

Enable LCP echo keepalive requests
Default value:

• No (disabled) if CONFIG_LWIP_PPP_SUPPORT

CONFIG_LWIP_LCP_ECHOINTERVAL
Echo interval (s)
Found in: Component config > LWIP > CONFIG_LWIP_ENABLE_LCP_ECHO

Interval in seconds between keepalive LCP echo requests, 0 to disable.
Range:

• from 0 to 1000000 if CONFIG_LWIP_ENABLE_LCP_ECHO
Default value:

• 3 if CONFIG_LWIP_ENABLE_LCP_ECHO

CONFIG_LWIP_LCP_MAXECHOFAILS
Maximum echo failures
Found in: Component config > LWIP > CONFIG_LWIP_ENABLE_LCP_ECHO

Number of consecutive unanswered echo requests before failure is indicated.
Range:

• from 0 to 100000 if CONFIG_LWIP_ENABLE_LCP_ECHO
Default value:

• 3 if CONFIG_LWIP_ENABLE_LCP_ECHO

CONFIG_LWIP_PPP_DEBUG_ON
Enable PPP debug log output
Found in: Component config > LWIP

Enable PPP debug log output
Default value:

• No (disabled) if CONFIG_LWIP_PPP_SUPPORT

Espressif Systems 1547
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_SLIP_SUPPORT
Enable SLIP support (new/experimental)
Found in: Component config > LWIP

Enable SLIP stack. Now only SLIP over serial is possible.
SLIP over serial support is experimental and unsupported.
Default value:

• No (disabled)
Contains:

• CONFIG_LWIP_SLIP_DEBUG_ON

CONFIG_LWIP_SLIP_DEBUG_ON
Enable SLIP debug log output
Found in: Component config > LWIP > CONFIG_LWIP_SLIP_SUPPORT

Enable SLIP debug log output
Default value:

• No (disabled) if CONFIG_LWIP_SLIP_SUPPORT

ICMP Contains:
• CONFIG_LWIP_ICMP
• CONFIG_LWIP_BROADCAST_PING
• CONFIG_LWIP_MULTICAST_PING

CONFIG_LWIP_ICMP
ICMP: Enable ICMP
Found in: Component config > LWIP > ICMP

Enable ICMP module for check network stability
Default value:

• Yes (enabled)

CONFIG_LWIP_MULTICAST_PING
Respond to multicast pings
Found in: Component config > LWIP > ICMP

Default value:
• No (disabled)

CONFIG_LWIP_BROADCAST_PING
Respond to broadcast pings
Found in: Component config > LWIP > ICMP

Default value:
• No (disabled)

Espressif Systems 1548
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

LWIP RAW API Contains:
• CONFIG_LWIP_MAX_RAW_PCBS

CONFIG_LWIP_MAX_RAW_PCBS
Maximum LWIP RAW PCBs
Found in: Component config > LWIP > LWIP RAW API

The maximum number of simultaneously active LWIP RAW protocol control blocks. The practical
maximum limit is determined by available heap memory at runtime.
Range:

• from 1 to 1024
Default value:

• 16

SNTP Contains:
• CONFIG_LWIP_SNTP_MAX_SERVERS
• CONFIG_LWIP_SNTP_UPDATE_DELAY
• CONFIG_LWIP_DHCP_GET_NTP_SRV

CONFIG_LWIP_SNTP_MAX_SERVERS
Maximum number of NTP servers
Found in: Component config > LWIP > SNTP

Set maximum number of NTP servers used by LwIP SNTP module. First argument of
sntp_setserver/sntp_setservername functions is limited to this value.
Range:

• from 1 to 16
Default value:

• 1

CONFIG_LWIP_DHCP_GET_NTP_SRV
Request NTP servers from DHCP
Found in: Component config > LWIP > SNTP

If enabled, LWIP will add 'NTP' to Parameter-Request Option sent via DHCP-request. DHCP server
might reply with an NTP server address in option 42. SNTP callback for such replies should be set
accordingly (see sntp_servermode_dhcp() func.)
Default value:

• No (disabled)

CONFIG_LWIP_DHCP_MAX_NTP_SERVERS
Maximum number of NTP servers aquired via DHCP
Found in: Component config > LWIP > SNTP > CONFIG_LWIP_DHCP_GET_NTP_SRV

Set maximum number of NTP servers aquired via DHCP-offer. Should be less or equal to "Maximum
number of NTP servers", any extra servers would be just ignored.
Range:

• from 1 to 16 if CONFIG_LWIP_DHCP_GET_NTP_SRV
Default value:

• 1 if CONFIG_LWIP_DHCP_GET_NTP_SRV

Espressif Systems 1549
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_SNTP_UPDATE_DELAY
Request interval to update time (ms)
Found in: Component config > LWIP > SNTP

This option allows you to set the time update period via SNTP. Default is 1 hour. Must not be below 15
seconds by specification. (SNTPv4 RFC 4330 enforces a minimum update time of 15 seconds).
Range:

• from 15000 to 4294967295
Default value:

• 3600000

DNS Contains:
• CONFIG_LWIP_FALLBACK_DNS_SERVER_SUPPORT
• CONFIG_LWIP_DNS_MAX_SERVERS

CONFIG_LWIP_DNS_MAX_SERVERS
Maximum number of DNS servers
Found in: Component config > LWIP > DNS

Set maximum number of DNS servers. If fallback DNS servers are supported, the number of DNS
servers needs to be greater than or equal to 3.
Range:

• from 1 to 4
Default value:

• 3

CONFIG_LWIP_FALLBACK_DNS_SERVER_SUPPORT
Enable DNS fallback server support
Found in: Component config > LWIP > DNS

Enable this feature to support DNS fallback server.
Default value:

• No (disabled)

CONFIG_LWIP_FALLBACK_DNS_SERVER_ADDRESS
DNS fallback server address
Found in: Component config > LWIP > DNS > CONFIG_LWIP_FALLBACK_DNS_SERVER_SUPPORT

This option allows you to config dns fallback server address.
Default value:

• "114.114.114.114" if CONFIG_LWIP_FALLBACK_DNS_SERVER_SUPPORT

CONFIG_LWIP_BRIDGEIF_MAX_PORTS
Maximum number of bridge ports
Found in: Component config > LWIP

Set maximum number of ports a bridge can consists of.
Range:

• from 1 to 63

Espressif Systems 1550
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• 7

CONFIG_LWIP_ESP_LWIP_ASSERT
Enable LWIP ASSERT checks
Found in: Component config > LWIP

Enable this option keeps LWIP assertion checks enabled. It is recommended to keep this option enabled.
If asserts are disabled for the entire project, they are also disabled for LWIP and this option is ignored.

Hooks Contains:
• CONFIG_LWIP_HOOK_DNS_EXTERNAL_RESOLVE
• CONFIG_LWIP_HOOK_ND6_GET_GW
• CONFIG_LWIP_HOOK_IP6_INPUT
• CONFIG_LWIP_HOOK_IP6_ROUTE
• CONFIG_LWIP_HOOK_IP6_SELECT_SRC_ADDR
• CONFIG_LWIP_HOOK_NETCONN_EXTERNAL_RESOLVE
• CONFIG_LWIP_HOOK_TCP_ISN

CONFIG_LWIP_HOOK_TCP_ISN
TCP ISN Hook
Found in: Component config > LWIP > Hooks

Enables to define a TCP ISN hook to randomize initial sequence number in TCP connection. The default
TCP ISN algorithm used in IDF (standardized in RFC 6528) produces ISN by combining an MD5 of
the new TCP id and a stable secret with the current time. This is because the lwIP implementation
(tcp_next_iss) is not very strong, as it does not take into consideration any platform specific entropy
source.
Set to LWIP_HOOK_TCP_ISN_CUSTOM to provide custom implementation. Set to
LWIP_HOOK_TCP_ISN_NONE to use lwIP implementation.
Available options:

• No hook declared (CONFIG_LWIP_HOOK_TCP_ISN_NONE)
• Default implementation (CONFIG_LWIP_HOOK_TCP_ISN_DEFAULT)
• Custom implementation (CONFIG_LWIP_HOOK_TCP_ISN_CUSTOM)

CONFIG_LWIP_HOOK_IP6_ROUTE
IPv6 route Hook
Found in: Component config > LWIP > Hooks

Enables custom IPv6 route hook. Setting this to "default" provides weak implementation stub that could
be overwritten in application code. Setting this to "custom" provides hook's declaration only and expects
the application to implement it.
Available options:

• No hook declared (CONFIG_LWIP_HOOK_IP6_ROUTE_NONE)
• Default (weak) implementation (CONFIG_LWIP_HOOK_IP6_ROUTE_DEFAULT)
• Custom implementation (CONFIG_LWIP_HOOK_IP6_ROUTE_CUSTOM)

Espressif Systems 1551
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_HOOK_ND6_GET_GW
IPv6 get gateway Hook
Found in: Component config > LWIP > Hooks

Enables custom IPv6 route hook. Setting this to "default" provides weak implementation stub that could
be overwritten in application code. Setting this to "custom" provides hook's declaration only and expects
the application to implement it.
Available options:

• No hook declared (CONFIG_LWIP_HOOK_ND6_GET_GW_NONE)
• Default (weak) implementation (CONFIG_LWIP_HOOK_ND6_GET_GW_DEFAULT)
• Custom implementation (CONFIG_LWIP_HOOK_ND6_GET_GW_CUSTOM)

CONFIG_LWIP_HOOK_IP6_SELECT_SRC_ADDR
IPv6 source address selection Hook
Found in: Component config > LWIP > Hooks

Enables custom IPv6 source address selection. Setting this to "default" provides weak implementation
stub that could be overwritten in application code. Setting this to "custom" provides hook's declaration
only and expects the application to implement it.
Available options:

• No hook declared (CONFIG_LWIP_HOOK_IP6_SELECT_SRC_ADDR_NONE)
• Default (weak) implementation (CONFIG_LWIP_HOOK_IP6_SELECT_SRC_ADDR_DEFAULT)
• Custom implementation (CONFIG_LWIP_HOOK_IP6_SELECT_SRC_ADDR_CUSTOM)

CONFIG_LWIP_HOOK_NETCONN_EXTERNAL_RESOLVE
Netconn external resolve Hook
Found in: Component config > LWIP > Hooks

Enables custom DNS resolve hook (without callback). Setting this to "default" provides weak imple-
mentation stub that could be overwritten in application code. Setting this to "custom" provides hook's
declaration only and expects the application to implement it.
Available options:

• No hook declared (CONFIG_LWIP_HOOK_NETCONN_EXT_RESOLVE_NONE)
• Default (weak) implementation (CONFIG_LWIP_HOOK_NETCONN_EXT_RESOLVE_DEFAULT)
• Custom implementation (CONFIG_LWIP_HOOK_NETCONN_EXT_RESOLVE_CUSTOM)

CONFIG_LWIP_HOOK_DNS_EXTERNAL_RESOLVE
DNS external resolve Hook
Found in: Component config > LWIP > Hooks

Enables custom DNS resolve hook (with callback). Setting this to "custom" provides hook's declaration
only and expects the application to implement it.
Available options:

• No hook declared (CONFIG_LWIP_HOOK_DNS_EXT_RESOLVE_NONE)

Espressif Systems 1552
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Custom implementation (CONFIG_LWIP_HOOK_DNS_EXT_RESOLVE_CUSTOM)

CONFIG_LWIP_HOOK_IP6_INPUT
IPv6 packet input
Found in: Component config > LWIP > Hooks

Enables custom IPv6 packet input. Setting this to "default" provides weak IDF implementation, which
drops all incoming IPv6 traffic if the interface has no link local address. (this default implementation is
"weak" and could be still overwritten in the application if some additional IPv6 input packet filtering is
needed) Setting this to "none" removes this default filter and conforms to the lwIP implementation (which
accepts multicasts even if the interface has no link local address) Setting this to "custom" provides hook's
declaration only and expects the application to implement it.
Available options:

• No hook declared (CONFIG_LWIP_HOOK_IP6_INPUT_NONE)
• Default (weak) implementation (CONFIG_LWIP_HOOK_IP6_INPUT_DEFAULT)
• Custom implementation (CONFIG_LWIP_HOOK_IP6_INPUT_CUSTOM)

CONFIG_LWIP_DEBUG
Enable LWIP Debug
Found in: Component config > LWIP

Enabling this option allows different kinds of lwIP debug output.
All lwIP debug features increase the size of the final binary.
Default value:

• No (disabled)
Contains:

• CONFIG_LWIP_API_LIB_DEBUG
• CONFIG_LWIP_BRIDGEIF_FDB_DEBUG
• CONFIG_LWIP_BRIDGEIF_FW_DEBUG
• CONFIG_LWIP_BRIDGEIF_DEBUG
• CONFIG_LWIP_DHCP_DEBUG
• CONFIG_LWIP_DHCP_STATE_DEBUG
• CONFIG_LWIP_DNS_DEBUG
• CONFIG_LWIP_ETHARP_DEBUG
• CONFIG_LWIP_ICMP_DEBUG
• CONFIG_LWIP_ICMP6_DEBUG
• CONFIG_LWIP_IP_DEBUG
• CONFIG_LWIP_IP6_DEBUG
• CONFIG_LWIP_NAPT_DEBUG
• CONFIG_LWIP_NETIF_DEBUG
• CONFIG_LWIP_PBUF_DEBUG
• CONFIG_LWIP_SNTP_DEBUG
• CONFIG_LWIP_SOCKETS_DEBUG
• CONFIG_LWIP_TCP_DEBUG
• CONFIG_LWIP_UDP_DEBUG
• CONFIG_LWIP_DEBUG_ESP_LOG

CONFIG_LWIP_DEBUG_ESP_LOG

Espressif Systems 1553
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Route LWIP debugs through ESP_LOG interface
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Enabling this option routes all enabled LWIP debugs through ESP_LOGD.
Default value:

• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_NETIF_DEBUG
Enable netif debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_PBUF_DEBUG
Enable pbuf debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_ETHARP_DEBUG
Enable etharp debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_API_LIB_DEBUG
Enable api lib debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_SOCKETS_DEBUG
Enable socket debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_IP_DEBUG
Enable IP debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

Espressif Systems 1554
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_ICMP_DEBUG
Enable ICMP debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG && CONFIG_LWIP_ICMP

CONFIG_LWIP_DHCP_STATE_DEBUG
Enable DHCP state tracking
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_DHCP_DEBUG
Enable DHCP debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_IP6_DEBUG
Enable IP6 debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_ICMP6_DEBUG
Enable ICMP6 debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_TCP_DEBUG
Enable TCP debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_UDP_DEBUG
Enable UDP debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

Espressif Systems 1555
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_LWIP_SNTP_DEBUG
Enable SNTP debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_DNS_DEBUG
Enable DNS debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_NAPT_DEBUG
Enable NAPT debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG && CONFIG_LWIP_IPV4_NAPT

CONFIG_LWIP_BRIDGEIF_DEBUG
Enable bridge generic debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_BRIDGEIF_FDB_DEBUG
Enable bridge FDB debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

CONFIG_LWIP_BRIDGEIF_FW_DEBUG
Enable bridge forwarding debug messages
Found in: Component config > LWIP > CONFIG_LWIP_DEBUG

Default value:
• No (disabled) if CONFIG_LWIP_DEBUG

mbedTLS Contains:
• CONFIG_MBEDTLS_ALLOW_WEAK_CERTIFICATE_VERIFICATION
• CONFIG_MBEDTLS_ASYMMETRIC_CONTENT_LEN
• Certificate Bundle
• Certificates
• CONFIG_MBEDTLS_CHACHA20_C
• CONFIG_MBEDTLS_DHM_C
• CONFIG_MBEDTLS_ECP_C

Espressif Systems 1556
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_MBEDTLS_ECDH_C
• CONFIG_MBEDTLS_ECJPAKE_C
• CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
• CONFIG_MBEDTLS_ECP_DP_BP256R1_ENABLED
• CONFIG_MBEDTLS_ECP_DP_BP384R1_ENABLED
• CONFIG_MBEDTLS_ECP_DP_BP512R1_ENABLED
• CONFIG_MBEDTLS_CMAC_C
• CONFIG_MBEDTLS_ECP_DP_CURVE25519_ENABLED
• CONFIG_MBEDTLS_ECDSA_DETERMINISTIC
• CONFIG_MBEDTLS_HARDWARE_ECDSA_VERIFY
• CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN
• CONFIG_MBEDTLS_ERROR_STRINGS
• CONFIG_MBEDTLS_ECP_FIXED_POINT_OPTIM
• CONFIG_MBEDTLS_HARDWARE_AES
• CONFIG_MBEDTLS_HARDWARE_ECC
• CONFIG_MBEDTLS_ATCA_HW_ECDSA_SIGN
• CONFIG_MBEDTLS_ATCA_HW_ECDSA_VERIFY
• CONFIG_MBEDTLS_HARDWARE_MPI
• CONFIG_MBEDTLS_HARDWARE_SHA
• CONFIG_MBEDTLS_DEBUG
• CONFIG_MBEDTLS_ECP_RESTARTABLE
• CONFIG_MBEDTLS_HAVE_TIME
• CONFIG_MBEDTLS_HARDWARE_GCM
• CONFIG_MBEDTLS_RIPEMD160_C
• CONFIG_MBEDTLS_ECP_DP_SECP192K1_ENABLED
• CONFIG_MBEDTLS_ECP_DP_SECP192R1_ENABLED
• CONFIG_MBEDTLS_ECP_DP_SECP224K1_ENABLED
• CONFIG_MBEDTLS_ECP_DP_SECP224R1_ENABLED
• CONFIG_MBEDTLS_ECP_DP_SECP256K1_ENABLED
• CONFIG_MBEDTLS_ECP_DP_SECP256R1_ENABLED
• CONFIG_MBEDTLS_ECP_DP_SECP384R1_ENABLED
• CONFIG_MBEDTLS_ECP_DP_SECP521R1_ENABLED
• CONFIG_MBEDTLS_GCM_SUPPORT_NON_AES_CIPHER
• CONFIG_MBEDTLS_SHA512_C
• CONFIG_MBEDTLS_SHA3_C
• CONFIG_MBEDTLS_THREADING_C
• CONFIG_MBEDTLS_HKDF_C
• mbedTLS v3.x related
• CONFIG_MBEDTLS_MEM_ALLOC_MODE
• CONFIG_MBEDTLS_ECP_NIST_OPTIM
• CONFIG_MBEDTLS_POLY1305_C
• CONFIG_MBEDTLS_SSL_ALPN
• CONFIG_MBEDTLS_SSL_PROTO_DTLS
• CONFIG_MBEDTLS_SSL_PROTO_GMTSSL1_1
• CONFIG_MBEDTLS_SSL_PROTO_TLS1_2
• CONFIG_MBEDTLS_SSL_RENEGOTIATION
• Symmetric Ciphers
• TLS Key Exchange Methods
• CONFIG_MBEDTLS_SSL_MAX_CONTENT_LEN
• CONFIG_MBEDTLS_TLS_MODE
• CONFIG_MBEDTLS_CLIENT_SSL_SESSION_TICKETS
• CONFIG_MBEDTLS_SERVER_SSL_SESSION_TICKETS
• CONFIG_MBEDTLS_ROM_MD5
• CONFIG_MBEDTLS_USE_CRYPTO_ROM_IMPL
• CONFIG_MBEDTLS_DYNAMIC_BUFFER

CONFIG_MBEDTLS_MEM_ALLOC_MODE

Espressif Systems 1557
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Memory allocation strategy
Found in: Component config > mbedTLS

Allocation strategy for mbedTLS, essentially provides ability to allocate all required dynamic allocations
from,

• Internal DRAM memory only
• External SPIRAM memory only
• Either internal or external memory based on default malloc() behavior in ESP-IDF
• Custom allocation mode, by overwriting calloc()/free() using mbedtls_platform_set_calloc_free()
function

• Internal IRAM memory wherever applicable else internal DRAM
Recommended mode here is always internal (*), since that is most preferred from security perspective.
But if application requirement does not allow sufficient free internal memory then alternate mode can
be selected.
(*) In case of ESP32-S2/ESP32-S3, hardware allows encryption of external SPIRAM contents provided
hardware flash encryption feature is enabled. In that case, using external SPIRAM allocation strategy is
also safe choice from security perspective.
Available options:

• Internal memory (CONFIG_MBEDTLS_INTERNAL_MEM_ALLOC)
• External SPIRAM (CONFIG_MBEDTLS_EXTERNAL_MEM_ALLOC)
• Default alloc mode (CONFIG_MBEDTLS_DEFAULT_MEM_ALLOC)
• Custom alloc mode (CONFIG_MBEDTLS_CUSTOM_MEM_ALLOC)
• Internal IRAM (CONFIG_MBEDTLS_IRAM_8BIT_MEM_ALLOC)
Allows to use IRAM memory region as 8bit accessible region.
TLS input and output buffers will be allocated in IRAM section which is 32bit aligned
memory. Every unaligned (8bit or 16bit) access will result in an exception and incur
penalty of certain clock cycles per unaligned read/write.

CONFIG_MBEDTLS_SSL_MAX_CONTENT_LEN
TLS maximum message content length
Found in: Component config > mbedTLS

Maximum TLS message length (in bytes) supported by mbedTLS.
16384 is the default and this value is required to comply fully with TLS standards.
However you can set a lower value in order to save RAM. This is safe if the other end of the connection
supports Maximum Fragment Length Negotiation Extension (max_fragment_length, see RFC6066) or
you know for certain that it will never send a message longer than a certain number of bytes.
If the value is set too low, symptoms are a failed TLS handshake or a return value of
MBEDTLS_ERR_SSL_INVALID_RECORD (-0x7200).

CONFIG_MBEDTLS_ASYMMETRIC_CONTENT_LEN
Asymmetric in/out fragment length
Found in: Component config > mbedTLS

If enabled, this option allows customizing TLS in/out fragment length in asymmetric way. Please note
that enabling this with default values saves 12KB of dynamic memory per TLS connection.
Default value:

• Yes (enabled)

Espressif Systems 1558
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_SSL_IN_CONTENT_LEN
TLS maximum incoming fragment length
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_ASYMMETRIC_CONTENT_LEN

This defines maximum incoming fragment length, overriding default maximum content length
(MBEDTLS_SSL_MAX_CONTENT_LEN).
Range:

• from 512 to 16384
Default value:

• 16384

CONFIG_MBEDTLS_SSL_OUT_CONTENT_LEN
TLS maximum outgoing fragment length
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_ASYMMETRIC_CONTENT_LEN

This defines maximum outgoing fragment length, overriding default maximum content length
(MBEDTLS_SSL_MAX_CONTENT_LEN).
Range:

• from 512 to 16384
Default value:

• 4096

CONFIG_MBEDTLS_DYNAMIC_BUFFER
Using dynamic TX/RX buffer
Found in: Component config > mbedTLS

Using dynamic TX/RX buffer. After enabling this option, mbedTLS will allocate TX buffer when need
to send data and then free it if all data is sent, allocate RX buffer when need to receive data and then
free it when all data is used or read by upper layer.
By default, when SSL is initialized, mbedTLS also allocate TX and RX buffer with the default value of
"MBEDTLS_SSL_OUT_CONTENT_LEN" or "MBEDTLS_SSL_IN_CONTENT_LEN", so to save
more heap, users can set the options to be an appropriate value.

CONFIG_MBEDTLS_DYNAMIC_FREE_CONFIG_DATA
Free private key and DHM data after its usage
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_DYNAMIC_BUFFER

Free private key and DHM data after its usage in handshake process.
The option will decrease heap cost when handshake, but also lead to problem:
Because all certificate, private key and DHM data are freed so users should register certificate and private
key to ssl config object again.
Default value:

• No (disabled) if CONFIG_MBEDTLS_DYNAMIC_BUFFER

CONFIG_MBEDTLS_DYNAMIC_FREE_CA_CERT
Free SSL CA certificate after its usage
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_DYNAMIC_BUFFER > CON-
FIG_MBEDTLS_DYNAMIC_FREE_CONFIG_DATA

Espressif Systems 1559
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Free CA certificate after its usage in the handshake process. This option will decrease the heap footprint
for the TLS handshake, but may lead to a problem: If the respective ssl object needs to perform the TLS
handshake again, the CA certificate should once again be registered to the ssl object.
Default value:

• Yes (enabled) if CONFIG_MBEDTLS_DYNAMIC_FREE_CONFIG_DATA

CONFIG_MBEDTLS_DEBUG
Enable mbedTLS debugging
Found in: Component config > mbedTLS

Enable mbedTLS debugging functions at compile time.
If this option is enabled, you can include "mbedtls/esp_debug.h" and call
mbedtls_esp_enable_debug_log() at runtime in order to enable mbedTLS debug output via the
ESP log mechanism.
Default value:

• No (disabled)

CONFIG_MBEDTLS_DEBUG_LEVEL
Set mbedTLS debugging level
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_DEBUG

Set mbedTLS debugging level
Available options:

• Warning (CONFIG_MBEDTLS_DEBUG_LEVEL_WARN)
• Info (CONFIG_MBEDTLS_DEBUG_LEVEL_INFO)
• Debug (CONFIG_MBEDTLS_DEBUG_LEVEL_DEBUG)
• Verbose (CONFIG_MBEDTLS_DEBUG_LEVEL_VERBOSE)

mbedTLS v3.x related Contains:
• DTLS-based configurations
• CONFIG_MBEDTLS_SSL_KEYING_MATERIAL_EXPORT
• CONFIG_MBEDTLS_PKCS7_C
• CONFIG_MBEDTLS_SSL_CONTEXT_SERIALIZATION
• CONFIG_MBEDTLS_X509_TRUSTED_CERT_CALLBACK
• CONFIG_MBEDTLS_SSL_KEEP_PEER_CERTIFICATE
• CONFIG_MBEDTLS_SSL_CID_PADDING_GRANULARITY
• CONFIG_MBEDTLS_SSL_PROTO_TLS1_3
• CONFIG_MBEDTLS_ECDH_LEGACY_CONTEXT
• CONFIG_MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH

CONFIG_MBEDTLS_SSL_PROTO_TLS1_3
Support TLS 1.3 protocol
Found in: Component config > mbedTLS > mbedTLS v3.x related

Espressif Systems 1560
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

TLS 1.3 related configurations Contains:
• CONFIG_MBEDTLS_SSL_TLS1_3_KEXM_EPHEMERAL
• CONFIG_MBEDTLS_SSL_TLS1_3_COMPATIBILITY_MODE
• CONFIG_MBEDTLS_SSL_TLS1_3_KEXM_PSK_EPHEMERAL
• CONFIG_MBEDTLS_SSL_TLS1_3_KEXM_PSK

CONFIG_MBEDTLS_SSL_TLS1_3_COMPATIBILITY_MODE
TLS 1.3 middlebox compatibility mode
Found in: Component config > mbedTLS > mbedTLS v3.x related > CON-
FIG_MBEDTLS_SSL_PROTO_TLS1_3 > TLS 1.3 related configurations

Default value:
• Yes (enabled) if CONFIG_MBEDTLS_SSL_PROTO_TLS1_3

CONFIG_MBEDTLS_SSL_TLS1_3_KEXM_PSK
TLS 1.3 PSK key exchange mode
Found in: Component config > mbedTLS > mbedTLS v3.x related > CON-
FIG_MBEDTLS_SSL_PROTO_TLS1_3 > TLS 1.3 related configurations

Default value:
• Yes (enabled) if CONFIG_MBEDTLS_SSL_PROTO_TLS1_3

CONFIG_MBEDTLS_SSL_TLS1_3_KEXM_EPHEMERAL
TLS 1.3 ephemeral key exchange mode
Found in: Component config > mbedTLS > mbedTLS v3.x related > CON-
FIG_MBEDTLS_SSL_PROTO_TLS1_3 > TLS 1.3 related configurations

Default value:
• Yes (enabled) if CONFIG_MBEDTLS_SSL_PROTO_TLS1_3

CONFIG_MBEDTLS_SSL_TLS1_3_KEXM_PSK_EPHEMERAL
TLS 1.3 PSK ephemeral key exchange mode
Found in: Component config > mbedTLS > mbedTLS v3.x related > CON-
FIG_MBEDTLS_SSL_PROTO_TLS1_3 > TLS 1.3 related configurations

Default value:
• Yes (enabled) if CONFIG_MBEDTLS_SSL_PROTO_TLS1_3

CONFIG_MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH
Variable SSL buffer length
Found in: Component config > mbedTLS > mbedTLS v3.x related

This enables the SSL buffer to be resized automatically based on the negotiated maximum fragment
length in each direction.
Default value:

• No (disabled)

Espressif Systems 1561
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_ECDH_LEGACY_CONTEXT
Use a backward compatible ECDH context (Experimental)
Found in: Component config > mbedTLS > mbedTLS v3.x related

Use the legacy ECDH context format. Define this option only if you enable
MBEDTLS_ECP_RESTARTABLE or if you want to access ECDH context fields directly.
Default value:

• No (disabled) if CONFIG_MBEDTLS_ECDH_C && CON-
FIG_MBEDTLS_ECP_RESTARTABLE

CONFIG_MBEDTLS_X509_TRUSTED_CERT_CALLBACK
Enable trusted certificate callbacks
Found in: Component config > mbedTLS > mbedTLS v3.x related

Enables users to configure the set of trusted certificates through a callback instead of a linked list.
See mbedTLS documentation for required API and more details.
Default value:

• No (disabled)

CONFIG_MBEDTLS_SSL_CONTEXT_SERIALIZATION
Enable serialization of the TLS context structures
Found in: Component config > mbedTLS > mbedTLS v3.x related

Enable serialization of the TLS context structures This is a local optimization in handling a single, po-
tentially long-lived connection.
See mbedTLS documentation for required API and more details. Disabling this option will save some
code size.
Default value:

• No (disabled)

CONFIG_MBEDTLS_SSL_KEEP_PEER_CERTIFICATE
Keep peer certificate after handshake completion
Found in: Component config > mbedTLS > mbedTLS v3.x related

Keep the peer's certificate after completion of the handshake. Disabling this option will save about 4kB
of heap and some code size.
See mbedTLS documentation for required API and more details.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_SSL_KEYING_MATERIAL_EXPORT
Enable keying material export
Found in: Component config > mbedTLS > mbedTLS v3.x related

Enable shared symmetric keys export for TLS sessions usingmbedtls_ssl_export_keying_material() after
SSL handshake. The process for deriving the keys is specified in RFC 5705 for TLS 1.2 and in RFC
8446, Section 7.5, for TLS 1.3.
Default value:

• No (disabled)

Espressif Systems 1562
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_PKCS7_C
Enable PKCS #7
Found in: Component config > mbedTLS > mbedTLS v3.x related

Enable PKCS #7 core for using PKCS #7-formatted signatures.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_SSL_CID_PADDING_GRANULARITY
Record plaintext padding
Found in: Component config > mbedTLS > mbedTLS v3.x related

Controls the use of record plaintext padding in TLS 1.3 and when using the Connection ID extension in
DTLS 1.2.
The padding will always be chosen so that the length of the padded plaintext is a multiple of the value
of this option.
Notes: A value of 1 means that no padding will be used for outgoing records. On systems lacking

division instructions, a power of two should be preferred.
Range:

• from 0 to 32 if CONFIG_MBEDTLS_SSL_PROTO_TLS1_3 || CON-
FIG_MBEDTLS_SSL_DTLS_CONNECTION_ID

Default value:
• 16 if CONFIG_MBEDTLS_SSL_PROTO_TLS1_3 || CON-

FIG_MBEDTLS_SSL_DTLS_CONNECTION_ID

DTLS-based configurations Contains:
• CONFIG_MBEDTLS_SSL_DTLS_SRTP
• CONFIG_MBEDTLS_SSL_DTLS_CONNECTION_ID

CONFIG_MBEDTLS_SSL_DTLS_CONNECTION_ID
Support for the DTLS Connection ID extension
Found in: Component config > mbedTLS > mbedTLS v3.x related > DTLS-based configurations

Enable support for the DTLSConnection ID extension which allows to identify DTLS connections across
changes in the underlying transport.
Default value:

• No (disabled) if CONFIG_MBEDTLS_SSL_PROTO_DTLS

CONFIG_MBEDTLS_SSL_CID_IN_LEN_MAX
Maximum length of CIDs used for incoming DTLS messages
Found in: Component config > mbedTLS > mbedTLS v3.x related > DTLS-based configurations > CON-
FIG_MBEDTLS_SSL_DTLS_CONNECTION_ID

Maximum length of CIDs used for incoming DTLS messages
Range:

• from 0 to 32 if CONFIG_MBEDTLS_SSL_DTLS_CONNECTION_ID && CON-
FIG_MBEDTLS_SSL_PROTO_DTLS

Default value:
• 32 if CONFIG_MBEDTLS_SSL_DTLS_CONNECTION_ID && CON-

FIG_MBEDTLS_SSL_PROTO_DTLS

Espressif Systems 1563
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_SSL_CID_OUT_LEN_MAX
Maximum length of CIDs used for outgoing DTLS messages
Found in: Component config > mbedTLS > mbedTLS v3.x related > DTLS-based configurations > CON-
FIG_MBEDTLS_SSL_DTLS_CONNECTION_ID

Maximum length of CIDs used for outgoing DTLS messages
Range:

• from 0 to 32 if CONFIG_MBEDTLS_SSL_DTLS_CONNECTION_ID && CON-
FIG_MBEDTLS_SSL_PROTO_DTLS

Default value:
• 32 if CONFIG_MBEDTLS_SSL_DTLS_CONNECTION_ID && CON-

FIG_MBEDTLS_SSL_PROTO_DTLS

CONFIG_MBEDTLS_SSL_DTLS_SRTP
Enable support for negotiation of DTLS-SRTP (RFC 5764)
Found in: Component config > mbedTLS > mbedTLS v3.x related > DTLS-based configurations

Enable support for negotiation of DTLS-SRTP (RFC 5764) through the use_srtp extension.
See mbedTLS documentation for required API and more details. Disabling this option will save some
code size.
Default value:

• No (disabled) if CONFIG_MBEDTLS_SSL_PROTO_DTLS

Certificate Bundle Contains:
• CONFIG_MBEDTLS_CERTIFICATE_BUNDLE

CONFIG_MBEDTLS_CERTIFICATE_BUNDLE
Enable trusted root certificate bundle
Found in: Component config > mbedTLS > Certificate Bundle

Enable support for large number of default root certificates
When enabled this option allows user to store default as well as customer specific root certificates in
compressed format rather than storing full certificate. For the root certificates the public key and the
subject name will be stored.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_DEFAULT_CERTIFICATE_BUNDLE
Default certificate bundle options
Found in: Component config > mbedTLS > Certificate Bundle > CON-
FIG_MBEDTLS_CERTIFICATE_BUNDLE

Available options:

• Use the full default certificate bundle (CONFIG_MBEDTLS_CERTIFICATE_BUNDLE_DEFAULT_FULL)
• Use only the most common certificates from the default bundles (CON-
FIG_MBEDTLS_CERTIFICATE_BUNDLE_DEFAULT_CMN)
Use only the most common certificates from the default bundles, reducing the size with
50%, while still having around 99% coverage.

Espressif Systems 1564
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Do not use the default certificate bundle (CON-
FIG_MBEDTLS_CERTIFICATE_BUNDLE_DEFAULT_NONE)

CONFIG_MBEDTLS_CUSTOM_CERTIFICATE_BUNDLE
Add custom certificates to the default bundle
Found in: Component config > mbedTLS > Certificate Bundle > CON-
FIG_MBEDTLS_CERTIFICATE_BUNDLE

Default value:
• No (disabled)

CONFIG_MBEDTLS_CUSTOM_CERTIFICATE_BUNDLE_PATH
Custom certificate bundle path
Found in: Component config > mbedTLS > Certificate Bundle > CON-
FIG_MBEDTLS_CERTIFICATE_BUNDLE > CONFIG_MBEDTLS_CUSTOM_CERTIFICATE_BUNDLE

Name of the custom certificate directory or file. This path is evaluated relative to the project root direc-
tory.

CONFIG_MBEDTLS_CERTIFICATE_BUNDLE_MAX_CERTS
Maximum no of certificates allowed in certificate bundle
Found in: Component config > mbedTLS > Certificate Bundle > CON-
FIG_MBEDTLS_CERTIFICATE_BUNDLE

Default value:
• 200

CONFIG_MBEDTLS_ECP_RESTARTABLE
Enable mbedTLS ecp restartable
Found in: Component config > mbedTLS

Enable "non-blocking" ECC operations that can return early and be resumed.
Default value:

• No (disabled)

CONFIG_MBEDTLS_CMAC_C
Enable CMAC mode for block ciphers
Found in: Component config > mbedTLS

Enable the CMAC (Cipher-based Message Authentication Code) mode for block ciphers.
Default value:

• No (disabled)

CONFIG_MBEDTLS_HARDWARE_AES
Enable hardware AES acceleration
Found in: Component config > mbedTLS

Enable hardware accelerated AES encryption & decryption.
Note that if the ESP32 CPU is running at 240MHz, hardware AES does not offer any speed boost over
software AES.

Espressif Systems 1565
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_AES_USE_INTERRUPT
Use interrupt for long AES operations
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_HARDWARE_AES

Use an interrupt to coordinate long AES operations.
This allows other code to run on the CPU while an AES operation is pending. Otherwise the CPU
busy-waits.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
Enable AES hardware's pseudo round function
Found in: Component config > mbedTLS

Enables the pseudo round function of the AES peripheral. Enabling this would impact the performance
of the AES operations. For more info regarding the performance impact, please checkout the pseudo
round function section of the security guide.
Default value:

• No (disabled) if SOC_AES_SUPPORT_PSEUDO_ROUND_FUNCTION

CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH
Strength of the pseudo rounds function
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC

The strength of the pseudo rounds functions can be configured to low, medium and high. You can
configure the strength of the pseudo rounds functions according to your use cases, for example, increasing
the strength would provide higher security but would slow down the hardwareAES encryption/decryption
operations.
Available options:

• Low (CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_LOW)
• Medium (CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_MEDIUM)
• High (CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_HIGH)

CONFIG_MBEDTLS_HARDWARE_GCM
Enable partially hardware accelerated GCM
Found in: Component config > mbedTLS

Enable partially hardware accelerated GCM. GHASH calculation is still done in software.
If MBEDTLS_HARDWARE_GCM is disabled and MBEDTLS_HARDWARE_AES is enabled then
mbedTLS will still use the hardware accelerated AES block operation, but on a single block at a time.
Default value:

• Yes (enabled) if SOC_AES_SUPPORT_GCM&& CONFIG_MBEDTLS_HARDWARE_AES

CONFIG_MBEDTLS_GCM_SUPPORT_NON_AES_CIPHER
Enable support for non-AES ciphers in GCM operation
Found in: Component config > mbedTLS

Espressif Systems 1566
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enable this config to support fallback to software definitions for a non-AES cipher GCM operation as
we support hardware acceleration only for AES cipher. Some of the non-AES ciphers used in a GCM
operation are DES, ARIA, CAMELLIA, CHACHA20, BLOWFISH.
If this config is disabled, performing a non-AES cipher GCM operation with the config
MBEDTLS_HARDWARE_AES enabled will result in calculation of an AES-GCM operation instead
for the given input values and thus could lead to failure in certificate validation which would ultimately
lead to a SSL handshake failure.
This config being by-default enabled leads to an increase in binary size footprint of ~2.5KB. In case you
are sure that your use case (for example, client and server configurations in case of a TLS handshake)
would not involve any GCM operations using a non-AES cipher, you can safely disable this config,
leading to reduction in binary size footprint.
Default value:

• No (disabled)

CONFIG_MBEDTLS_HARDWARE_MPI
Enable hardware MPI (bignum) acceleration
Found in: Component config > mbedTLS

Enable hardware accelerated multiple precision integer operations.
Hardware accelerated multiplication, modulo multiplication, and modular exponentiation for up to
SOC_RSA_MAX_BIT_LEN bit results.
These operations are used by RSA.

CONFIG_MBEDTLS_LARGE_KEY_SOFTWARE_MPI
Fallback to software implementation for larger MPI values
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_HARDWARE_MPI

Fallback to software implementation for RSA key lengths larger than SOC_RSA_MAX_BIT_LEN. If
this is not active then the ESP will be unable to process keys greater than SOC_RSA_MAX_BIT_LEN.
Default value:

• Yes (enabled)
• No (disabled)

CONFIG_MBEDTLS_MPI_USE_INTERRUPT
Use interrupt for MPI exp-mod operations
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_HARDWARE_MPI

Use an interrupt to coordinate long MPI operations.
This allows other code to run on the CPU while an MPI operation is pending. Otherwise the CPU
busy-waits.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_HARDWARE_SHA
Enable hardware SHA acceleration
Found in: Component config > mbedTLS

Enable hardware accelerated SHA1, SHA256, SHA384 & SHA512 in mbedTLS.

Espressif Systems 1567
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Due to a hardware limitation, on the ESP32 hardware acceleration is only guaranteed if SHA digests
are calculated one at a time. If more than one SHA digest is calculated at the same time, one will be
calculated fully in hardware and the rest will be calculated (at least partially calculated) in software. This
happens automatically.
SHA hardware acceleration is faster than software in some situations but slower in others. You should
benchmark to find the best setting for you.

CONFIG_MBEDTLS_HARDWARE_ECC
Enable hardware ECC acceleration
Found in: Component config > mbedTLS

Enable hardware accelerated ECC point multiplication and point verification for points on curve
SECP192R1 and SECP256R1 in mbedTLS
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_ECC_OTHER_CURVES_SOFT_FALLBACK
Fallback to software implementation for curves not supported in hardware
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_HARDWARE_ECC

Fallback to software implementation of ECC point multiplication and point verification for curves not
supported in hardware.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_ROM_MD5
Use MD5 implementation in ROM
Found in: Component config > mbedTLS

Use ROM MD5 in mbedTLS.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN
Enable ECDSA signing using on-chip ECDSA peripheral
Found in: Component config > mbedTLS

Enable hardware accelerated ECDSA peripheral to sign data on curve SECP192R1 and SECP256R1 in
mbedTLS.
Note that for signing, the private key has to be burnt in an efuse key block with key purpose set to
ECDSA_KEY. If no key is burnt, it will report an error
The key should be burnt in little endian format. espefuse.py utility handles it internally but care needs
to be taken while burning using esp_efuse APIs
Default value:

• No (disabled) if SOC_ECDSA_SUPPORTED

Enable Software Countermeasure for ECDSA signing using on-chip ECDSA peripheral

Espressif Systems 1568
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_HARDWARE_ECDSA_VERIFY
Enable ECDSA signature verification using on-chip ECDSA peripheral
Found in: Component config > mbedTLS

Enable hardware accelerated ECDSA peripheral to verify signature on curve SECP192R1 and
SECP256R1 in mbedTLS.
Default value:

• Yes (enabled) if SOC_ECDSA_SUPPORTED

CONFIG_MBEDTLS_ATCA_HW_ECDSA_SIGN
Enable hardware ECDSA sign acceleration when using ATECC608A
Found in: Component config > mbedTLS

This option enables hardware acceleration for ECDSA sign function, only when using ATECC608A
cryptoauth chip (integrated with ESP32-WROOM-32SE)
Default value:

• No (disabled)

CONFIG_MBEDTLS_ATCA_HW_ECDSA_VERIFY
Enable hardware ECDSA verify acceleration when using ATECC608A
Found in: Component config > mbedTLS

This option enables hardware acceleration for ECDSA sign function, only when using ATECC608A
cryptoauth chip (integrated with ESP32-WROOM-32SE)
Default value:

• No (disabled)

CONFIG_MBEDTLS_HAVE_TIME
Enable mbedtls time support
Found in: Component config > mbedTLS

Enable use of time.h functions (time() and gmtime()) by mbedTLS.
This option doesn't require the system time to be correct, but enables functionality that requires relative
timekeeping - for example periodic expiry of TLS session tickets or session cache entries.
Disabling this option will save some firmware size, particularly if the rest of the firmware doesn't call
any standard timekeeeping functions.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_PLATFORM_TIME_ALT
Enable mbedtls time support: platform-specific
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_HAVE_TIME

Enabling this config will provide users with a function "mbedtls_platform_set_time()" that allows to set
an alternative time function pointer.
Default value:

• No (disabled)

Espressif Systems 1569
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_HAVE_TIME_DATE
Enable mbedtls certificate expiry check
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_HAVE_TIME

Enables X.509 certificate expiry checks in mbedTLS.
If this option is disabled (default) then X.509 certificate "valid from" and "valid to" timestamp fields are
ignored.
If this option is enabled, these fields are compared with the current system date and time. The time
is retrieved using the standard time() and gmtime() functions. If the certificate is not valid for the
current system time then verification will fail with code MBEDTLS_X509_BADCERT_FUTURE or
MBEDTLS_X509_BADCERT_EXPIRED.
Enabling this option requires adding functionality in the firmware to set the system clock to a valid
timestamp before using TLS. The recommended way to do this is via ESP-IDF's SNTP functionality,
but any method can be used.
In the case where only a small number of certificates are trusted by the device, please carefully consider
the tradeoffs of enabling this option. There may be undesired consequences, for example if all trusted
certificates expire while the device is offline and a TLS connection is required to update. Or if an issue
with the SNTP server means that the system time is invalid for an extended period after a reset.
Default value:

• No (disabled)

CONFIG_MBEDTLS_ECDSA_DETERMINISTIC
Enable deterministic ECDSA
Found in: Component config > mbedTLS

Standard ECDSA is "fragile" in the sense that lack of entropy when signing may result in a compromise
of the long-term signing key.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_SHA512_C
Enable the SHA-384 and SHA-512 cryptographic hash algorithms
Found in: Component config > mbedTLS

Enable MBEDTLS_SHA512_C adds support for SHA-384 and SHA-512.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_SHA3_C
Enable the SHA3 cryptographic hash algorithm
Found in: Component config > mbedTLS

Enabling MBEDTLS_SHA3_C adds support for SHA3. Enabling this configuration option increases
the flash footprint by almost 4KB.
Default value:

• No (disabled)

Espressif Systems 1570
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_TLS_MODE
TLS Protocol Role
Found in: Component config > mbedTLS

mbedTLS can be compiled with protocol support for the TLS server, TLS client, or both server and
client.
Reducing the number of TLS roles supported saves code size.
Available options:

• Server & Client (CONFIG_MBEDTLS_TLS_SERVER_AND_CLIENT)
• Server (CONFIG_MBEDTLS_TLS_SERVER_ONLY)
• Client (CONFIG_MBEDTLS_TLS_CLIENT_ONLY)
• None (CONFIG_MBEDTLS_TLS_DISABLED)

TLS Key Exchange Methods Contains:
• CONFIG_MBEDTLS_KEY_EXCHANGE_DHE_RSA
• CONFIG_MBEDTLS_KEY_EXCHANGE_ECJPAKE
• CONFIG_MBEDTLS_PSK_MODES
• CONFIG_MBEDTLS_KEY_EXCHANGE_RSA
• CONFIG_MBEDTLS_KEY_EXCHANGE_ELLIPTIC_CURVE

CONFIG_MBEDTLS_PSK_MODES
Enable pre-shared-key ciphersuites
Found in: Component config > mbedTLS > TLS Key Exchange Methods

Enable to show configuration for different types of pre-shared-key TLS authentatication methods.
Leaving this options disabled will save code size if they are not used.
Default value:

• No (disabled)

CONFIG_MBEDTLS_KEY_EXCHANGE_PSK
Enable PSK based ciphersuite modes
Found in: Component config > mbedTLS > TLS Key Exchange Methods > CON-
FIG_MBEDTLS_PSK_MODES

Enable to support symmetric key PSK (pre-shared-key) TLS key exchange modes.
Default value:

• No (disabled) if CONFIG_MBEDTLS_PSK_MODES

CONFIG_MBEDTLS_KEY_EXCHANGE_DHE_PSK
Enable DHE-PSK based ciphersuite modes
Found in: Component config > mbedTLS > TLS Key Exchange Methods > CON-
FIG_MBEDTLS_PSK_MODES

Enable to support Diffie-Hellman PSK (pre-shared-key) TLS authentication modes.
Default value:

• Yes (enabled) if CONFIG_MBEDTLS_PSK_MODES && CONFIG_MBEDTLS_DHM_C

Espressif Systems 1571
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_KEY_EXCHANGE_ECDHE_PSK
Enable ECDHE-PSK based ciphersuite modes
Found in: Component config > mbedTLS > TLS Key Exchange Methods > CON-
FIG_MBEDTLS_PSK_MODES

Enable to support Elliptic-Curve-Diffie-Hellman PSK (pre-shared-key) TLS authentication modes.
Default value:

• Yes (enabled) if CONFIG_MBEDTLS_PSK_MODES && CONFIG_MBEDTLS_ECDH_C

CONFIG_MBEDTLS_KEY_EXCHANGE_RSA_PSK
Enable RSA-PSK based ciphersuite modes
Found in: Component config > mbedTLS > TLS Key Exchange Methods > CON-
FIG_MBEDTLS_PSK_MODES

Enable to support RSA PSK (pre-shared-key) TLS authentication modes.
Default value:

• Yes (enabled) if CONFIG_MBEDTLS_PSK_MODES

CONFIG_MBEDTLS_KEY_EXCHANGE_RSA
Enable RSA-only based ciphersuite modes
Found in: Component config > mbedTLS > TLS Key Exchange Methods

Enable to support ciphersuites with prefix TLS-RSA-WITH-
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_KEY_EXCHANGE_DHE_RSA
Enable DHE-RSA based ciphersuite modes
Found in: Component config > mbedTLS > TLS Key Exchange Methods

Enable to support ciphersuites with prefix TLS-DHE-RSA-WITH-
Default value:

• Yes (enabled) if CONFIG_MBEDTLS_DHM_C

CONFIG_MBEDTLS_KEY_EXCHANGE_ELLIPTIC_CURVE
Support Elliptic Curve based ciphersuites
Found in: Component config > mbedTLS > TLS Key Exchange Methods

Enable to show Elliptic Curve based ciphersuite mode options.
Disabling all Elliptic Curve ciphersuites saves code size and can give slightly faster TLS handshakes,
provided the server supports RSA-only ciphersuite modes.
Default value:

• Yes (enabled)

Espressif Systems 1572
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_KEY_EXCHANGE_ECDHE_RSA
Enable ECDHE-RSA based ciphersuite modes
Found in: Component config > mbedTLS > TLS Key Exchange Methods > CON-
FIG_MBEDTLS_KEY_EXCHANGE_ELLIPTIC_CURVE

Enable to support ciphersuites with prefix TLS-ECDHE-RSA-WITH-
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_KEY_EXCHANGE_ECDHE_ECDSA
Enable ECDHE-ECDSA based ciphersuite modes
Found in: Component config > mbedTLS > TLS Key Exchange Methods > CON-
FIG_MBEDTLS_KEY_EXCHANGE_ELLIPTIC_CURVE

Enable to support ciphersuites with prefix TLS-ECDHE-RSA-WITH-
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_KEY_EXCHANGE_ECDH_ECDSA
Enable ECDH-ECDSA based ciphersuite modes
Found in: Component config > mbedTLS > TLS Key Exchange Methods > CON-
FIG_MBEDTLS_KEY_EXCHANGE_ELLIPTIC_CURVE

Enable to support ciphersuites with prefix TLS-ECDHE-RSA-WITH-
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_KEY_EXCHANGE_ECDH_RSA
Enable ECDH-RSA based ciphersuite modes
Found in: Component config > mbedTLS > TLS Key Exchange Methods > CON-
FIG_MBEDTLS_KEY_EXCHANGE_ELLIPTIC_CURVE

Enable to support ciphersuites with prefix TLS-ECDHE-RSA-WITH-
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_KEY_EXCHANGE_ECJPAKE
Enable ECJPAKE based ciphersuite modes
Found in: Component config > mbedTLS > TLS Key Exchange Methods

Enable to support ciphersuites with prefix TLS-ECJPAKE-WITH-
Default value:

• No (disabled) if CONFIG_MBEDTLS_ECJPAKE_C && CON-
FIG_MBEDTLS_ECP_DP_SECP256R1_ENABLED

Espressif Systems 1573
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_SSL_RENEGOTIATION
Support TLS renegotiation
Found in: Component config > mbedTLS

The two main uses of renegotiation are (1) refresh keys on long-lived connections and (2) client authen-
tication after the initial handshake. If you don't need renegotiation, disabling it will save code size and
reduce the possibility of abuse/vulnerability.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_SSL_PROTO_TLS1_2
Support TLS 1.2 protocol
Found in: Component config > mbedTLS

Default value:
• Yes (enabled)

CONFIG_MBEDTLS_SSL_PROTO_GMTSSL1_1
Support GM/T SSL 1.1 protocol
Found in: Component config > mbedTLS

Provisions for GM/T SSL 1.1 support
Default value:

• No (disabled)

CONFIG_MBEDTLS_SSL_PROTO_DTLS
Support DTLS protocol (all versions)
Found in: Component config > mbedTLS

Requires TLS 1.2 to be enabled for DTLS 1.2
Default value:

• No (disabled)

CONFIG_MBEDTLS_SSL_ALPN
Support ALPN (Application Layer Protocol Negotiation)
Found in: Component config > mbedTLS

Disabling this option will save some code size if it is not needed.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_CLIENT_SSL_SESSION_TICKETS
TLS: Client Support for RFC 5077 SSL session tickets
Found in: Component config > mbedTLS

Client support for RFC 5077 session tickets. See mbedTLS documentation for more details. Disabling
this option will save some code size.
Default value:

• Yes (enabled)

Espressif Systems 1574
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_SERVER_SSL_SESSION_TICKETS
TLS: Server Support for RFC 5077 SSL session tickets
Found in: Component config > mbedTLS

Server support for RFC 5077 session tickets. See mbedTLS documentation for more details. Disabling
this option will save some code size.
Default value:

• Yes (enabled)

Symmetric Ciphers Contains:
• CONFIG_MBEDTLS_AES_C
• CONFIG_MBEDTLS_BLOWFISH_C
• CONFIG_MBEDTLS_CAMELLIA_C
• CONFIG_MBEDTLS_CCM_C
• CONFIG_MBEDTLS_DES_C
• CONFIG_MBEDTLS_GCM_C
• CONFIG_MBEDTLS_NIST_KW_C
• CONFIG_MBEDTLS_XTEA_C

CONFIG_MBEDTLS_AES_C
AES block cipher
Found in: Component config > mbedTLS > Symmetric Ciphers

Default value:
• Yes (enabled)

CONFIG_MBEDTLS_CAMELLIA_C
Camellia block cipher
Found in: Component config > mbedTLS > Symmetric Ciphers

Default value:
• No (disabled)

CONFIG_MBEDTLS_DES_C
DES block cipher (legacy, insecure)
Found in: Component config > mbedTLS > Symmetric Ciphers

Enables the DES block cipher to support 3DES-based TLS ciphersuites.
3DES is vulnerable to the Sweet32 attack and should only be enabled if absolutely necessary.
Default value:

• No (disabled)

CONFIG_MBEDTLS_BLOWFISH_C
Blowfish block cipher (read help)
Found in: Component config > mbedTLS > Symmetric Ciphers

Enables the Blowfish block cipher (not used for TLS sessions.)
The Blowfish cipher is not used for mbedTLS TLS sessions but can be used for other purposes. Read
up on the limitations of Blowfish (including Sweet32) before enabling.

Espressif Systems 1575
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• No (disabled)

CONFIG_MBEDTLS_XTEA_C
XTEA block cipher
Found in: Component config > mbedTLS > Symmetric Ciphers

Enables the XTEA block cipher.
Default value:

• No (disabled)

CONFIG_MBEDTLS_CCM_C
CCM (Counter with CBC-MAC) block cipher modes
Found in: Component config > mbedTLS > Symmetric Ciphers

Enable Counter with CBC-MAC (CCM) modes for AES and/or Camellia ciphers.
Disabling this option saves some code size.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_GCM_C
GCM (Galois/Counter) block cipher modes
Found in: Component config > mbedTLS > Symmetric Ciphers

Enable Galois/Counter Mode for AES and/or Camellia ciphers.
This option is generally faster than CCM.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_NIST_KW_C
NIST key wrapping (KW) and KW padding (KWP)
Found in: Component config > mbedTLS > Symmetric Ciphers

Enable NIST key wrapping and key wrapping padding.
Default value:

• No (disabled)

CONFIG_MBEDTLS_RIPEMD160_C
Enable RIPEMD-160 hash algorithm
Found in: Component config > mbedTLS

Enable the RIPEMD-160 hash algorithm.
Default value:

• No (disabled)

Espressif Systems 1576
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Certificates Contains:
• CONFIG_MBEDTLS_PEM_PARSE_C
• CONFIG_MBEDTLS_PEM_WRITE_C
• CONFIG_MBEDTLS_X509_CRL_PARSE_C
• CONFIG_MBEDTLS_X509_CSR_PARSE_C

CONFIG_MBEDTLS_PEM_PARSE_C
Read & Parse PEM formatted certificates
Found in: Component config > mbedTLS > Certificates

Enable decoding/parsing of PEM formatted certificates.
If your certificates are all in the simpler DER format, disabling this option will save some code size.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_PEM_WRITE_C
Write PEM formatted certificates
Found in: Component config > mbedTLS > Certificates

Enable writing of PEM formatted certificates.
If writing certificate data only in DER format, disabling this option will save some code size.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_X509_CRL_PARSE_C
X.509 CRL parsing
Found in: Component config > mbedTLS > Certificates

Support for parsing X.509 Certificate Revocation Lists.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_X509_CSR_PARSE_C
X.509 CSR parsing
Found in: Component config > mbedTLS > Certificates

Support for parsing X.509 Certificate Signing Requests
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_ECP_C
Elliptic Curve Ciphers
Found in: Component config > mbedTLS

Default value:
• Yes (enabled)

Espressif Systems 1577
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_DHM_C
Diffie-Hellman-Merkle key exchange (DHM)
Found in: Component config > mbedTLS

Enable DHM. Needed to use DHE-xxx TLS ciphersuites.
Note that the security of Diffie-Hellman key exchanges depends on a suitable prime being used for the
exchange. Please see detailed warning text about this in file mbedtls/dhm.h file.
Default value:

• No (disabled)

CONFIG_MBEDTLS_ECDH_C
Elliptic Curve Diffie-Hellman (ECDH)
Found in: Component config > mbedTLS

Enable ECDH. Needed to use ECDHE-xxx TLS ciphersuites.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_ECDSA_C
Elliptic Curve DSA
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_ECDH_C

Enable ECDSA. Needed to use ECDSA-xxx TLS ciphersuites.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_ECJPAKE_C
Elliptic curve J-PAKE
Found in: Component config > mbedTLS

Enable ECJPAKE. Needed to use ECJPAKE-xxx TLS ciphersuites.
Default value:

• No (disabled)

CONFIG_MBEDTLS_ECP_DP_SECP192R1_ENABLED
Enable SECP192R1 curve
Found in: Component config > mbedTLS

Enable support for SECP192R1 Elliptic Curve.

CONFIG_MBEDTLS_ECP_DP_SECP224R1_ENABLED
Enable SECP224R1 curve
Found in: Component config > mbedTLS

Enable support for SECP224R1 Elliptic Curve.

Espressif Systems 1578
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_ECP_DP_SECP256R1_ENABLED
Enable SECP256R1 curve
Found in: Component config > mbedTLS

Enable support for SECP256R1 Elliptic Curve.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_ECP_DP_SECP384R1_ENABLED
Enable SECP384R1 curve
Found in: Component config > mbedTLS

Enable support for SECP384R1 Elliptic Curve.

CONFIG_MBEDTLS_ECP_DP_SECP521R1_ENABLED
Enable SECP521R1 curve
Found in: Component config > mbedTLS

Enable support for SECP521R1 Elliptic Curve.

CONFIG_MBEDTLS_ECP_DP_SECP192K1_ENABLED
Enable SECP192K1 curve
Found in: Component config > mbedTLS

Enable support for SECP192K1 Elliptic Curve.

CONFIG_MBEDTLS_ECP_DP_SECP224K1_ENABLED
Enable SECP224K1 curve
Found in: Component config > mbedTLS

Enable support for SECP224K1 Elliptic Curve.

CONFIG_MBEDTLS_ECP_DP_SECP256K1_ENABLED
Enable SECP256K1 curve
Found in: Component config > mbedTLS

Enable support for SECP256K1 Elliptic Curve.

CONFIG_MBEDTLS_ECP_DP_BP256R1_ENABLED
Enable BP256R1 curve
Found in: Component config > mbedTLS

support for DP Elliptic Curve.

CONFIG_MBEDTLS_ECP_DP_BP384R1_ENABLED
Enable BP384R1 curve
Found in: Component config > mbedTLS

support for DP Elliptic Curve.

Espressif Systems 1579
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_ECP_DP_BP512R1_ENABLED
Enable BP512R1 curve
Found in: Component config > mbedTLS

support for DP Elliptic Curve.

CONFIG_MBEDTLS_ECP_DP_CURVE25519_ENABLED
Enable CURVE25519 curve
Found in: Component config > mbedTLS

Enable support for CURVE25519 Elliptic Curve.

CONFIG_MBEDTLS_ECP_NIST_OPTIM
NIST 'modulo p' optimisations
Found in: Component config > mbedTLS

NIST 'modulo p' optimisations increase Elliptic Curve operation performance.
Disabling this option saves some code size.
Default value:

• Yes (enabled)

CONFIG_MBEDTLS_ECP_FIXED_POINT_OPTIM
Enable fixed-point multiplication optimisations
Found in: Component config > mbedTLS

This configuration option enables optimizations to speedup (about 3 ~ 4 times) the ECP fixed point mul-
tiplication using pre-computed tables in the flash memory. Enabling this configuration option increases
the flash footprint (about 29KB if all Elliptic Curve selected) in the application binary.
end of Elliptic Curve options
Default value:

• No (disabled)

CONFIG_MBEDTLS_POLY1305_C
Poly1305 MAC algorithm
Found in: Component config > mbedTLS

Enable support for Poly1305 MAC algorithm.
Default value:

• No (disabled)

CONFIG_MBEDTLS_CHACHA20_C
Chacha20 stream cipher
Found in: Component config > mbedTLS

Enable support for Chacha20 stream cipher.
Default value:

• No (disabled)

Espressif Systems 1580
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MBEDTLS_CHACHAPOLY_C
ChaCha20-Poly1305 AEAD algorithm
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_CHACHA20_C

Enable support for ChaCha20-Poly1305 AEAD algorithm.
Default value:

• No (disabled) if CONFIG_MBEDTLS_CHACHA20_C && CON-
FIG_MBEDTLS_POLY1305_C

CONFIG_MBEDTLS_HKDF_C
HKDF algorithm (RFC 5869)
Found in: Component config > mbedTLS

Enable support for the Hashed Message Authentication Code (HMAC)-based key derivation function
(HKDF).
Default value:

• No (disabled)

CONFIG_MBEDTLS_THREADING_C
Enable the threading abstraction layer
Found in: Component config > mbedTLS

If you do intend to use contexts between threads, you will need to enable this layer to prevent race
conditions.
Default value:

• No (disabled)

CONFIG_MBEDTLS_THREADING_ALT
Enable threading alternate implementation
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_THREADING_C

Enable threading alt to allow your own alternate threading implementation.
Default value:

• Yes (enabled) if CONFIG_MBEDTLS_THREADING_C

CONFIG_MBEDTLS_THREADING_PTHREAD
Enable threading pthread implementation
Found in: Component config > mbedTLS > CONFIG_MBEDTLS_THREADING_C

Enable the pthread wrapper layer for the threading layer.
Default value:

• No (disabled) if CONFIG_MBEDTLS_THREADING_C

CONFIG_MBEDTLS_ERROR_STRINGS
Enable error code to error string conversion
Found in: Component config > mbedTLS

Enables mbedtls_strerror() for converting error codes to error strings. Disabling this config can save
some code/rodata size as the error string conversion implementation is replaced with an empty stub.

Espressif Systems 1581
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• Yes (enabled)

CONFIG_MBEDTLS_USE_CRYPTO_ROM_IMPL
Use ROM implementation of the crypto algorithm
Found in: Component config > mbedTLS

Enable this flag to use mbedtls crypto algorithm from ROM instead of ESP-IDF.
This configuration option saves flash footprint in the application binary. Note that the version of mbedtls
crypto algorithm library in ROM(ECO1~ECO3) is v2.16.12, and the version of mbedtls crypto algo-
rithm library in ROM(ECO4) is v3.6.0. We have done the security analysis of the mbedtls revision in
ROM (ECO1~ECO4) and ensured that affected symbols have been patched (removed). If in the future
mbedtls revisions there are security issues that also affects the version in ROM (ECO1~ECO4) then we
shall patch the relevant symbols. This would increase the flash footprint and hence care must be taken
to keep some reserved space for the application binary in flash layout.
Default value:

• No (disabled) if ESP_ROM_HAS_MBEDTLS_CRYPTO_LIB

CONFIG_MBEDTLS_ALLOW_WEAK_CERTIFICATE_VERIFICATION
Allow weak certificate verification
Found in: Component config > mbedTLS

This options allows weak certificate verification by skipping the hostname verification. It is not recom-
mended to use this option.
Default value:

• No (disabled)

ESP-MQTT Configurations Contains:
• CONFIG_MQTT_CUSTOM_OUTBOX
• CONFIG_MQTT_TRANSPORT_SSL
• CONFIG_MQTT_TRANSPORT_WEBSOCKET
• CONFIG_MQTT_PROTOCOL_311
• CONFIG_MQTT_PROTOCOL_5
• CONFIG_MQTT_TASK_CORE_SELECTION_ENABLED
• CONFIG_MQTT_USE_CUSTOM_CONFIG
• CONFIG_MQTT_OUTBOX_EXPIRED_TIMEOUT_MS
• CONFIG_MQTT_REPORT_DELETED_MESSAGES
• CONFIG_MQTT_SKIP_PUBLISH_IF_DISCONNECTED
• CONFIG_MQTT_OUTBOX_DATA_ON_EXTERNAL_MEMORY
• CONFIG_MQTT_MSG_ID_INCREMENTAL

CONFIG_MQTT_PROTOCOL_311
Enable MQTT protocol 3.1.1
Found in: Component config > ESP-MQTT Configurations

If not, this library will use MQTT protocol 3.1
Default value:

• Yes (enabled)

Espressif Systems 1582
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MQTT_PROTOCOL_5
Enable MQTT protocol 5.0
Found in: Component config > ESP-MQTT Configurations

If not, this library will not support MQTT 5.0
Default value:

• No (disabled)

CONFIG_MQTT_TRANSPORT_SSL
Enable MQTT over SSL
Found in: Component config > ESP-MQTT Configurations

Enable MQTT transport over SSL with mbedtls
Default value:

• Yes (enabled)

CONFIG_MQTT_TRANSPORT_WEBSOCKET
Enable MQTT over Websocket
Found in: Component config > ESP-MQTT Configurations

Enable MQTT transport over Websocket.
Default value:

• Yes (enabled)

CONFIG_MQTT_TRANSPORT_WEBSOCKET_SECURE
Enable MQTT over Websocket Secure
Found in: Component config > ESP-MQTT Configurations > CON-
FIG_MQTT_TRANSPORT_WEBSOCKET

Enable MQTT transport over Websocket Secure.
Default value:

• Yes (enabled)

CONFIG_MQTT_MSG_ID_INCREMENTAL
Use Incremental Message Id
Found in: Component config > ESP-MQTT Configurations

Set this to true for the message id (2.3.1 Packet Identifier) to be generated as an incremental number
rather then a random value (used by default)
Default value:

• No (disabled)

CONFIG_MQTT_SKIP_PUBLISH_IF_DISCONNECTED
Skip publish if disconnected
Found in: Component config > ESP-MQTT Configurations

Set this to true to avoid publishing (enqueueing messages) if the client is disconnected. The
MQTT client tries to publish all messages by default, even in the disconnected state (where
the qos1 and qos2 packets are stored in the internal outbox to be published later) The

Espressif Systems 1583
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

MQTT_SKIP_PUBLISH_IF_DISCONNECTED option allows applications to override this behaviour
and not enqueue publish packets in the disconnected state.
Default value:

• No (disabled)

CONFIG_MQTT_REPORT_DELETED_MESSAGES
Report deleted messages
Found in: Component config > ESP-MQTT Configurations

Set this to true to post events for all messages which were deleted from the outbox before being correctly
sent and confirmed.
Default value:

• No (disabled)

CONFIG_MQTT_USE_CUSTOM_CONFIG
MQTT Using custom configurations
Found in: Component config > ESP-MQTT Configurations

Custom MQTT configurations.
Default value:

• No (disabled)

CONFIG_MQTT_TCP_DEFAULT_PORT
Default MQTT over TCP port
Found in: Component config > ESP-MQTT Configurations > CONFIG_MQTT_USE_CUSTOM_CONFIG

Default MQTT over TCP port
Default value:

• 1883 if CONFIG_MQTT_USE_CUSTOM_CONFIG

CONFIG_MQTT_SSL_DEFAULT_PORT
Default MQTT over SSL port
Found in: Component config > ESP-MQTT Configurations > CONFIG_MQTT_USE_CUSTOM_CONFIG

Default MQTT over SSL port
Default value:

• 8883 if CONFIG_MQTT_USE_CUSTOM_CONFIG && CONFIG_MQTT_TRANSPORT_SSL

CONFIG_MQTT_WS_DEFAULT_PORT
Default MQTT over Websocket port
Found in: Component config > ESP-MQTT Configurations > CONFIG_MQTT_USE_CUSTOM_CONFIG

Default MQTT over Websocket port
Default value:

• 80 if CONFIG_MQTT_USE_CUSTOM_CONFIG && CON-
FIG_MQTT_TRANSPORT_WEBSOCKET

Espressif Systems 1584
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MQTT_WSS_DEFAULT_PORT
Default MQTT over Websocket Secure port
Found in: Component config > ESP-MQTT Configurations > CONFIG_MQTT_USE_CUSTOM_CONFIG

Default MQTT over Websocket Secure port
Default value:

• 443 if CONFIG_MQTT_USE_CUSTOM_CONFIG && CON-
FIG_MQTT_TRANSPORT_WEBSOCKET &&CONFIG_MQTT_TRANSPORT_WEBSOCKET_SECURE

CONFIG_MQTT_BUFFER_SIZE
Default MQTT Buffer Size
Found in: Component config > ESP-MQTT Configurations > CONFIG_MQTT_USE_CUSTOM_CONFIG

This buffer size using for both transmit and receive
Default value:

• 1024 if CONFIG_MQTT_USE_CUSTOM_CONFIG

CONFIG_MQTT_TASK_STACK_SIZE
MQTT task stack size
Found in: Component config > ESP-MQTT Configurations > CONFIG_MQTT_USE_CUSTOM_CONFIG

MQTT task stack size
Default value:

• 6144 if CONFIG_MQTT_USE_CUSTOM_CONFIG

CONFIG_MQTT_DISABLE_API_LOCKS
Disable API locks
Found in: Component config > ESP-MQTT Configurations > CONFIG_MQTT_USE_CUSTOM_CONFIG

Default config employs API locks to protect internal structures. It is possible to disable these locks if
the user code doesn't access MQTT API from multiple concurrent tasks
Default value:

• No (disabled) if CONFIG_MQTT_USE_CUSTOM_CONFIG

CONFIG_MQTT_TASK_PRIORITY
MQTT task priority
Found in: Component config > ESP-MQTT Configurations > CONFIG_MQTT_USE_CUSTOM_CONFIG

MQTT task priority. Higher number denotes higher priority.
Default value:

• 5 if CONFIG_MQTT_USE_CUSTOM_CONFIG

CONFIG_MQTT_POLL_READ_TIMEOUT_MS
MQTT transport poll read timeut
Found in: Component config > ESP-MQTT Configurations > CONFIG_MQTT_USE_CUSTOM_CONFIG

Timeout when polling underlying transport for read.
Default value:

• 1000 if CONFIG_MQTT_USE_CUSTOM_CONFIG

Espressif Systems 1585
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_MQTT_EVENT_QUEUE_SIZE
Number of queued events.
Found in: Component config > ESP-MQTT Configurations > CONFIG_MQTT_USE_CUSTOM_CONFIG

A value higher than 1 enables multiple queued events.
Default value:

• 1 if CONFIG_MQTT_USE_CUSTOM_CONFIG

CONFIG_MQTT_TASK_CORE_SELECTION_ENABLED
Enable MQTT task core selection
Found in: Component config > ESP-MQTT Configurations

This will enable core selection

CONFIG_MQTT_TASK_CORE_SELECTION
Core to use ?
Found in: Component config > ESP-MQTT Configurations > CON-
FIG_MQTT_TASK_CORE_SELECTION_ENABLED

Available options:

• Core 0 (CONFIG_MQTT_USE_CORE_0)
• Core 1 (CONFIG_MQTT_USE_CORE_1)

CONFIG_MQTT_OUTBOX_DATA_ON_EXTERNAL_MEMORY
Use external memory for outbox data
Found in: Component config > ESP-MQTT Configurations

Set to true to use external memory for outbox data.
Default value:

• No (disabled) if CONFIG_MQTT_USE_CUSTOM_CONFIG

CONFIG_MQTT_CUSTOM_OUTBOX
Enable custom outbox implementation
Found in: Component config > ESP-MQTT Configurations

Set to true if a specific implementation of message outbox is needed (e.g. persistent outbox in NVM
or similar). Note: Implementation of the custom outbox must be added to the mqtt component.
These CMake commands could be used to append the custom implementation to lib-mqtt sources:
idf_component_get_property(mqtt mqtt COMPONENT_LIB) set_property(TARGET ${mqtt} PROP-
ERTY SOURCES ${PROJECT_DIR}/custom_outbox.c APPEND)
Default value:

• No (disabled)

CONFIG_MQTT_OUTBOX_EXPIRED_TIMEOUT_MS
Outbox message expired timeout[ms]
Found in: Component config > ESP-MQTT Configurations

Messages which stays in the outbox longer than this value before being published will be discarded.

Espressif Systems 1586
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Default value:
• 30000 if CONFIG_MQTT_USE_CUSTOM_CONFIG

Newlib Contains:
• CONFIG_NEWLIB_NANO_FORMAT
• CONFIG_NEWLIB_STDIN_LINE_ENDING
• CONFIG_NEWLIB_STDOUT_LINE_ENDING
• CONFIG_NEWLIB_TIME_SYSCALL

CONFIG_NEWLIB_STDOUT_LINE_ENDING
Line ending for UART output
Found in: Component config > Newlib

This option allows configuring the desired line endings sent to UART when a newline ('n', LF) appears
on stdout. Three options are possible:
CRLF: whenever LF is encountered, prepend it with CR
LF: no modification is applied, stdout is sent as is
CR: each occurence of LF is replaced with CR
This option doesn't affect behavior of the UART driver (drivers/uart.h).
Available options:

• CRLF (CONFIG_NEWLIB_STDOUT_LINE_ENDING_CRLF)
• LF (CONFIG_NEWLIB_STDOUT_LINE_ENDING_LF)
• CR (CONFIG_NEWLIB_STDOUT_LINE_ENDING_CR)

CONFIG_NEWLIB_STDIN_LINE_ENDING
Line ending for UART input
Found in: Component config > Newlib

This option allows configuring which input sequence on UART produces a newline ('n', LF) on stdin.
Three options are possible:
CRLF: CRLF is converted to LF
LF: no modification is applied, input is sent to stdin as is
CR: each occurence of CR is replaced with LF
This option doesn't affect behavior of the UART driver (drivers/uart.h).
Available options:

• CRLF (CONFIG_NEWLIB_STDIN_LINE_ENDING_CRLF)
• LF (CONFIG_NEWLIB_STDIN_LINE_ENDING_LF)
• CR (CONFIG_NEWLIB_STDIN_LINE_ENDING_CR)

CONFIG_NEWLIB_NANO_FORMAT
Enable 'nano' formatting options for printf/scanf family
Found in: Component config > Newlib

Espressif Systems 1587
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

In most chips the ROM contains parts of newlib C library, including printf/scanf family of functions.
These functions have been compiled with so-called "nano" formatting option. This option doesn't support
64-bit integer formats and C99 features, such as positional arguments.
For more details about "nano" formatting option, please see newlib readme file, search for '--enable-
newlib-nano-formatted-io': https://sourceware.org/newlib/README
If this option is enabled and the ROM contains functions from newlib-nano, the build system will use
functions available in ROM, reducing the application binary size. Functions available in ROM run faster
than functions which run from flash. Functions available in ROM can also run when flash instruction
cache is disabled.
Some chips (e.g. ESP32-C6) has the full formatting versions of printf/scanf in
ROM instead of the nano versions and in this building with newlib nano might
actually increase the size of the binary. Which functions are present in ROM
can be seen from ROM caps: ESP_ROM_HAS_NEWLIB_NANO_FORMAT and
ESP_ROM_HAS_NEWLIB_NORMAL_FORMAT.
If you need 64-bit integer formatting support or C99 features, keep this option disabled.

CONFIG_NEWLIB_TIME_SYSCALL
Timers used for gettimeofday function
Found in: Component config > Newlib

This setting defines which hardware timers are used to implement 'gettimeofday' and 'time' functions in
C library.

• If both high-resolution (systimer for all targets except ESP32) and RTC timers are used,
timekeeping will continue in deep sleep. Time will be reported at 1 microsecond resolution.
This is the default, and the recommended option.

• If only high-resolution timer (systimer) is used, gettimeofday will provide time at microsec-
ond resolution. Time will not be preserved when going into deep sleep mode.

• If only RTC timer is used, timekeeping will continue in deep sleep, but timewill bemeasured
at 6.(6) microsecond resolution. Also the gettimeofday function itself may take longer to run.

• If no timers are used, gettimeofday and time functions return -1 and set errno to ENOSYS.
• When RTC is used for timekeeping, two RTC_STORE registers are used to keep time in

deep sleep mode.
Available options:

• RTC and high-resolution timer (CONFIG_NEWLIB_TIME_SYSCALL_USE_RTC_HRT)
• RTC (CONFIG_NEWLIB_TIME_SYSCALL_USE_RTC)
• High-resolution timer (CONFIG_NEWLIB_TIME_SYSCALL_USE_HRT)
• None (CONFIG_NEWLIB_TIME_SYSCALL_USE_NONE)

NVS Contains:
• CONFIG_NVS_LEGACY_DUP_KEYS_COMPATIBILITY
• CONFIG_NVS_ENCRYPTION
• CONFIG_NVS_COMPATIBLE_PRE_V4_3_ENCRYPTION_FLAG
• CONFIG_NVS_ASSERT_ERROR_CHECK

CONFIG_NVS_ENCRYPTION
Enable NVS encryption
Found in: Component config > NVS

Espressif Systems 1588
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://sourceware.org/newlib/README
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This option enables encryption for NVS. When enabled, AES-XTS is used to encrypt the complete NVS
data, except the page headers. It requires XTS encryption keys to be stored in an encrypted partition.
This means enabling flash encryption is a pre-requisite for this feature.
Default value:

• Yes (enabled) if CONFIG_SECURE_FLASH_ENC_ENABLED

CONFIG_NVS_COMPATIBLE_PRE_V4_3_ENCRYPTION_FLAG
NVS partition encrypted flag compatible with ESP-IDF before v4.3
Found in: Component config > NVS

Enabling this will ignore "encrypted" flag for NVS partitions. NVS encryption scheme is different than
hardware flash encryption and hence it is not recommended to have "encrypted" flag for NVS partitions.
This was not being checked in pre v4.3 IDF. Hence, if you have any devices where this flag is kept
enabled in partition table then enabling this config will allow to have same behavior as pre v4.3 IDF.

CONFIG_NVS_ASSERT_ERROR_CHECK
Use assertions for error checking
Found in: Component config > NVS

This option switches error checking type between assertions (y) or return codes (n).
Default value:

• No (disabled)

CONFIG_NVS_LEGACY_DUP_KEYS_COMPATIBILITY
Enable legacy nvs_set function behavior when same key is reused with different data types
Found in: Component config > NVS

Enabling this will switch the nvs_set family of functions to the legacy mode. When called with same
key and different data type, existing value stored in NVS remains active and as a side effect, the new
value is also stored into NVS, although not accessible using respective nvs_get function. Use only if
your application relies on this NVS API behaviour.
Default value:

• No (disabled)

OpenThread Contains:
• CONFIG_OPENTHREAD_DEBUG
• CONFIG_OPENTHREAD_ENABLED
• OpenThread Spinel

CONFIG_OPENTHREAD_ENABLED
OpenThread
Found in: Component config > OpenThread

Select this option to enable OpenThread and show the submenu with OpenThread configuration choices.
Default value:

• No (disabled)

Espressif Systems 1589
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Thread Task Parameters Contains:
• CONFIG_OPENTHREAD_TASK_NAME
• CONFIG_OPENTHREAD_TASK_PRIORITY
• CONFIG_OPENTHREAD_TASK_SIZE

CONFIG_OPENTHREAD_TASK_NAME
OpenThread task name
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Task Pa-
rameters

The OpenThread task name.
Default value:

• "ot_main" if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_TASK_SIZE
Size of OpenThread task
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Task Pa-
rameters

The size in bytes of OpenThread task.
Default value:

• 8192 if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_TASK_PRIORITY
Priority of OpenThread task
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Task Pa-
rameters

The priority of OpenThread task.
Default value:

• 5 if CONFIG_OPENTHREAD_ENABLED

Thread Version Message Contains:
• CONFIG_OPENTHREAD_PACKAGE_NAME
• CONFIG_OPENTHREAD_PLATFORM_INFO

CONFIG_OPENTHREAD_PACKAGE_NAME
OpenThread package name
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Version
Message

The OpenThread package name.
Default value:

• "openthread-esp32" if CONFIG_OPENTHREAD_ENABLED

Espressif Systems 1590
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_PLATFORM_INFO
platform information
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Version
Message

The OpenThread platform information.
Default value:

• "esp32c6" if CONFIG_OPENTHREAD_ENABLED

Thread Console Contains:
• CONFIG_OPENTHREAD_CLI
• CONFIG_OPENTHREAD_CONSOLE_ENABLE
• CONFIG_OPENTHREAD_CONSOLE_COMMAND_PREFIX

CONFIG_OPENTHREAD_CONSOLE_ENABLE
Enable OpenThread console
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Console

Enable the OpenThread-specific console provided by the SDK. This only controls whether the SDK sets
up a dedicated console for OpenThread. Even if disabled, the default ESP-IDF console (if initialized
elsewhere) can still be used independently.
Default value:

• Yes (enabled) if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_CONSOLE_TYPE
OpenThread console type
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Console
> CONFIG_OPENTHREAD_CONSOLE_ENABLE

Select OpenThread console type
Available options:

• OpenThread console typeUART (CONFIG_OPENTHREAD_CONSOLE_TYPE_UART)
• OpenThread console type USB Serial/JTAG Controller (CON-
FIG_OPENTHREAD_CONSOLE_TYPE_USB_SERIAL_JTAG)

CONFIG_OPENTHREAD_CLI
Enable Openthread Command-Line Interface
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Console

Select this option to enable Command-Line Interface in OpenThread.
Default value:

• Yes (enabled) if CONFIG_OPENTHREAD_ENABLED

Espressif Systems 1591
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_CONSOLE_COMMAND_PREFIX
The prefix of the openthread CLI command registered on the esp console
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Console

A prefix string used before a Thread CLI command, allowing the ESP console to identify it and delegate
the remaining command to the OpenThread callback for processing.
Default value:

• "ot" if CONFIG_OPENTHREAD_ENABLED

Thread Core Features Contains:
• CSL Configurations
• CONFIG_OPENTHREAD_BORDER_AGENT_ENABLE
• CONFIG_OPENTHREAD_BORDER_ROUTER
• CONFIG_OPENTHREAD_COMMISSIONER
• CONFIG_OPENTHREAD_CSL_ENABLE
• CONFIG_OPENTHREAD_DIAG
• CONFIG_OPENTHREAD_DNS_CLIENT
• CONFIG_OPENTHREAD_DNS64_CLIENT
• CONFIG_OPENTHREAD_JOINER
• CONFIG_OPENTHREAD_LINK_METRICS
• CONFIG_OPENTHREAD_MACFILTER_ENABLE
• CONFIG_OPENTHREAD_RX_ON_WHEN_IDLE
• CONFIG_OPENTHREAD_PARENT_SEARCH_MTD
• CONFIG_OPENTHREAD_RADIO_STATS_ENABLE
• CONFIG_OPENTHREAD_SRP_CLIENT
• CONFIG_OPENTHREAD_TIME_SYNC
• CONFIG_OPENTHREAD_TIMING_OPTIMIZATION
• OpenThread Stack Parameters
• Parent Search Configurations
• Thread 15.4 Radio Link
• CONFIG_OPENTHREAD_DEVICE_TYPE
• Thread Memory Allocation
• Thread Operational Dataset
• Thread Radio Co-Processor Feature
• Thread Trel Radio Link

Thread Operational Dataset Contains:
• CONFIG_OPENTHREAD_NETWORK_EXTPANID
• CONFIG_OPENTHREAD_MESH_LOCAL_PREFIX
• CONFIG_OPENTHREAD_NETWORK_CHANNEL
• CONFIG_OPENTHREAD_NETWORK_MASTERKEY
• CONFIG_OPENTHREAD_NETWORK_NAME
• CONFIG_OPENTHREAD_NETWORK_PANID
• CONFIG_OPENTHREAD_NETWORK_PSKC

CONFIG_OPENTHREAD_NETWORK_NAME
OpenThread network name
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Operational Dataset

Default value:
• "OpenThread-ESP" if CONFIG_OPENTHREAD_ENABLED

Espressif Systems 1592
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_MESH_LOCAL_PREFIX
OpenThread mesh local prefix, format <address>/<plen>
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Operational Dataset

A string in the format "<address>/<plen>", where <address> is an IPv6 address and <plen> is a prefix
length. For example "fd00:db8:a0:0::/64"
Default value:

• "fd00:db8:a0:0::/64" if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_NETWORK_CHANNEL
OpenThread network channel
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Operational Dataset

Range:
• from 11 to 26 if CONFIG_OPENTHREAD_ENABLED

Default value:
• 15 if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_NETWORK_PANID
OpenThread network pan id
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Operational Dataset

Range:
• from 0 to 0xFFFE if CONFIG_OPENTHREAD_ENABLED

Default value:
• "0x1234" if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_NETWORK_EXTPANID
OpenThread extended pan id
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Operational Dataset

The OpenThread network extended pan id in hex string format
Default value:

• dead00beef00cafe if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_NETWORK_MASTERKEY
OpenThread network key
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Operational Dataset

The OpenThread network network key in hex string format
Default value:

• 00112233445566778899aabbccddeeff if CONFIG_OPENTHREAD_ENABLED

Espressif Systems 1593
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_NETWORK_PSKC
OpenThread pre-shared commissioner key
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Operational Dataset

The OpenThread pre-shared commissioner key in hex string format
Default value:

• 104810e2315100afd6bc9215a6bfac53 if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_DEVICE_TYPE
Thread device type
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

OpenThread can be configured to different device types (FTD, MTD, Radio)
Available options:

• Full Thread Device (CONFIG_OPENTHREAD_FTD)
Select this to enable Full Thread Device which can act as router and leader in a Thread
network.

• Minimal Thread Device (CONFIG_OPENTHREAD_MTD)
Select this to enableMinimal ThreadDevice which can only act as end device in a Thread
network. This will reduce the code size of the OpenThread stack.

• Radio Only Device (CONFIG_OPENTHREAD_RADIO)
Select this to enable Radio Only Device which can only forward 15.4 packets to the
host. The OpenThread stack will be run on the host and OpenThread will have minimal
footprint on the radio only device.

Thread Trel Radio Link Contains:
• CONFIG_OPENTHREAD_RADIO_TREL

CONFIG_OPENTHREAD_RADIO_TREL
Enable Thread Radio Encapsulation Link (TREL)
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Trel Radio Link

Select this option to enable Thread Radio Encapsulation Link.
Default value:

• No (disabled) if (EXAMPLE_CONNECT_WIFI || EXAMPLE_CONNECT_ETHERNET)
&& CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_TREL_PORT
The port of openthread trel service
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Trel Radio Link > CONFIG_OPENTHREAD_RADIO_TREL

Configure the port number of TREL service.
Default value:

• 12390 if CONFIG_OPENTHREAD_RADIO_TREL && (EXAMPLE_CONNECT_WIFI ||
EXAMPLE_CONNECT_ETHERNET) && CONFIG_OPENTHREAD_ENABLED

Espressif Systems 1594
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_TREL_BUFFER_SIZE
The receive buffer size of openthread trel
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Trel Radio Link > CONFIG_OPENTHREAD_RADIO_TREL

Configure the receive buffer size of TREL service.
Range:

• from 10 to 255 if CONFIG_OPENTHREAD_RADIO_TREL && (EXAM-
PLE_CONNECT_WIFI || EXAMPLE_CONNECT_ETHERNET) && CON-
FIG_OPENTHREAD_ENABLED

Default value:
• 50 if CONFIG_OPENTHREAD_RADIO_TREL && (EXAMPLE_CONNECT_WIFI || EX-
AMPLE_CONNECT_ETHERNET) && CONFIG_OPENTHREAD_ENABLED

Thread 15.4 Radio Link Contains:
• CONFIG_OPENTHREAD_RADIO_TYPE

CONFIG_OPENTHREAD_RADIO_TYPE
Config the Thread radio type with 15.4 link
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread 15.4 Radio Link

Configure how OpenThread connects to the 15.4 radio
Available options:

• Native 15.4 radio (CONFIG_OPENTHREAD_RADIO_NATIVE)
Select this to use the native 15.4 radio.

• Connect via UART (CONFIG_OPENTHREAD_RADIO_SPINEL_UART)
Select this to connect to a Radio Co-Processor via UART.

• Connect via SPI (CONFIG_OPENTHREAD_RADIO_SPINEL_SPI)
Select this to connect to a Radio Co-Processor via SPI.

• Disable the Thread radio based on 15.4 link (CON-
FIG_OPENTHREAD_RADIO_154_NONE)
Select this to disable the Thread radio based on 15.4 link.

Thread Radio Co-Processor Feature Contains:
• CONFIG_OPENTHREAD_NCP_VENDOR_HOOK
• CONFIG_OPENTHREAD_RCP_TRANSPORT

CONFIG_OPENTHREAD_RCP_TRANSPORT
The RCP transport type
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Radio Co-Processor Feature

Available options:

• UART RCP (CONFIG_OPENTHREAD_RCP_UART)
Select this to enable UART connection to host.

• SPI RCP (CONFIG_OPENTHREAD_RCP_SPI)
Select this to enable SPI connection to host.

Espressif Systems 1595
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_NCP_VENDOR_HOOK
Enable vendor command for RCP
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Radio Co-Processor Feature

Select this to enable OpenThread NCP vendor commands.
Default value:

• Yes (enabled) ifCONFIG_OPENTHREAD_RADIO&&CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_BORDER_ROUTER
Enable Border Router
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable border router features in OpenThread.
Default value:

• No (disabled) if CONFIG_OPENTHREAD_FTD && CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_COMMISSIONER
Enable Commissioner
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable commissioner in OpenThread. This will enable the device to act as a com-
missioner in the Thread network. A commissioner checks the pre-shared key from a joining device
with the Thread commissioning protocol and shares the network parameter with the joining device upon
success.
Default value:

• No (disabled) if CONFIG_OPENTHREAD_ENABLED

Commissioner Configurations Contains:
• CONFIG_OPENTHREAD_COMM_MAX_JOINER_ENTRIES

CONFIG_OPENTHREAD_COMM_MAX_JOINER_ENTRIES
The size of max commissioning joiner entries
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > CONFIG_OPENTHREAD_COMMISSIONER > Commissioner Configurations

Default value:
• 2 if CONFIG_OPENTHREAD_COMMISSIONER && CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_JOINER
Enable Joiner
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable Joiner in OpenThread. This allows a device to join the Thread network with
a pre-shared key using the Thread commissioning protocol.
Default value:

• No (disabled) if CONFIG_OPENTHREAD_ENABLED

Espressif Systems 1596
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_SRP_CLIENT
Enable SRP Client
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable SRP Client in OpenThread. This allows a device to register SRP services to
SRP Server.
Default value:

• Yes (enabled) if CONFIG_OPENTHREAD_ENABLED

SRP Client Configurations Contains:
• CONFIG_OPENTHREAD_SRP_CLIENT_MAX_SERVICES

CONFIG_OPENTHREAD_SRP_CLIENT_MAX_SERVICES
Specifies number of service entries in the SRP client service pool
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > CONFIG_OPENTHREAD_SRP_CLIENT > SRP Client Configurations

Set the max buffer size of service entries in the SRP client service pool.
Default value:

• 5 if CONFIG_OPENTHREAD_SRP_CLIENT && CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_DNS_CLIENT
Enable DNS Client
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable DNS Client in OpenThread.
Default value:

• Yes (enabled) if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_DNS64_CLIENT
Enable DNS64 Client
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to acquire NAT64 address from dns servers.
Default value:

• No (disabled) if CONFIG_LWIP_IPV4 && CONFIG_OPENTHREAD_ENABLED

DNS64 Client Configurations Contains:
• CONFIG_OPENTHREAD_DNS_SERVER_ADDR

Espressif Systems 1597
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_DNS_SERVER_ADDR
DNS server address (IPv4)
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > CONFIG_OPENTHREAD_DNS64_CLIENT > DNS64 Client Configurations

Set the DNS server IPv4 address.
Default value:

• "8.8.8.8" if CONFIG_OPENTHREAD_DNS64_CLIENT && CON-
FIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_TIMING_OPTIMIZATION
Enable timing optimization
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable timing optimization for link metrics / CSL features.
Default value:

• No (disabled) if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_LINK_METRICS
Enable link metrics feature
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable link metrics feature
Default value:

• No (disabled) if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_BORDER_AGENT_ENABLE
Enable border agent feature
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable border agent feature
Default value:

• Yes (enabled) if CONFIG_OPENTHREAD_BORDER_ROUTER && CON-
FIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_MACFILTER_ENABLE
Enable mac filter feature
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable mac filter feature
Default value:

• No (disabled) if CONFIG_OPENTHREAD_ENABLED

Espressif Systems 1598
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_CSL_ENABLE
Enable CSL feature
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable CSL feature
Default value:

• No (disabled) if CONFIG_OPENTHREAD_ENABLED

CSL Configurations Contains:
• CONFIG_OPENTHREAD_CSL_DEBUG_ENABLE
• CONFIG_OPENTHREAD_CSL_UNCERTAIN
• CONFIG_OPENTHREAD_CSL_ACCURACY

CONFIG_OPENTHREAD_CSL_ACCURACY
The current CSL rx/tx scheduling drift, in units of ± ppm
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > CSL Configurations

The current accuracy of the clock used for scheduling CSL operations
Default value:

• 50 if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_CSL_UNCERTAIN
The CSL Uncertainty in units of 10 us.
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > CSL Configurations

The fixed uncertainty of the Device for scheduling CSL Transmissions in units of 10 microseconds.
Default value:

• 0 if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_CSL_DEBUG_ENABLE
Enable CSL debug
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > CSL Configurations

Select this option to set rx on when sleep in CSL feature, only for debug
Default value:

• No (disabled) if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_TIME_SYNC
Enable the time synchronization service feature
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable time synchronization feature, the devices in the same Thread network could
sync to the same network time.
Default value:

Espressif Systems 1599
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• No (disabled) if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_RADIO_STATS_ENABLE
Enable Radio Statistics feature
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable the radio statistics feature, you can use radio command to print some radio
Statistics information.
Default value:

• No (disabled) if (CONFIG_OPENTHREAD_FTD || CONFIG_OPENTHREAD_MTD) &&
CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_RX_ON_WHEN_IDLE
Enable OpenThread radio capability rx on when idle
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable OpenThread radio capability rx on when idle. Do not support this feature
when SW coexistence is enabled.
Default value:

• No (disabled) if (CONFIG_ESP_COEX_SW_COEXIST_ENABLE ||
CONFIG_ESP_COEX_EXTERNAL_COEXIST_ENABLE) && CON-
FIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_DIAG
Enable diag
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable Diag in OpenThread. This will enable diag mode and a series of diag com-
mands in the OpenThread command line. These commands allow users to manipulate low-level features
of the storage and 15.4 radio.
Default value:

• Yes (enabled) if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_PARENT_SEARCH_MTD
Enable Parent Search
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures

Select this option to enable "Periodic Parent Search" function for MTD. This checks the average RSS
to its current parent every periodically and starts a parent search process if the average RSS is below
OPENTHREAD_PARENT_SEARCH_RSS_THRESHOLD. This feature is always enabled for FTDs.
Default value:

• Yes (enabled) if CONFIG_OPENTHREAD_MTD && CONFIG_OPENTHREAD_ENABLED

Espressif Systems 1600
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parent Search Configurations Contains:
• CONFIG_OPENTHREAD_PARENT_SEARCH_BACKOFF_INTERVAL_MINS
• CONFIG_OPENTHREAD_PARENT_SEARCH_CHECK_INTERVAL_MINS
• CONFIG_OPENTHREAD_PARENT_SEARCH_RESELECT_TIMEOUT_MINS
• CONFIG_OPENTHREAD_PARENT_SEARCH_RSS_MARGIN
• CONFIG_OPENTHREAD_PARENT_SEARCH_RSS_THRESHOLD

CONFIG_OPENTHREAD_PARENT_SEARCH_CHECK_INTERVAL_MINS
The interval in minutes for a child to check the trigger condition to perform a parent search
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Parent Search Configurations

Default value:
• 9 if (CONFIG_OPENTHREAD_PARENT_SEARCH_MTD || CONFIG_OPENTHREAD_FTD)
&& CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_PARENT_SEARCH_BACKOFF_INTERVAL_MINS
The backoff interval in minutes for a child to not perform a parent search after triggering one
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Parent Search Configurations

Default value:
• 600 if (CONFIG_OPENTHREAD_PARENT_SEARCH_MTD || CON-

FIG_OPENTHREAD_FTD) && CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_PARENT_SEARCH_RSS_THRESHOLD
The RSS threshold used to trigger a parent search
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Parent Search Configurations

Default value:
• "-65" if (CONFIG_OPENTHREAD_PARENT_SEARCH_MTD || CON-

FIG_OPENTHREAD_FTD) && CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_PARENT_SEARCH_RESELECT_TIMEOUT_MINS
The parent reselect timeout duration in minutes used on FTD child devices
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Parent Search Configurations

Default value:
• 90 if (CONFIG_OPENTHREAD_PARENT_SEARCH_MTD || CON-

FIG_OPENTHREAD_FTD) && CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_PARENT_SEARCH_RSS_MARGIN
The RSS margin over the current parent RSS used on FTD child devices
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Parent Search Configurations

Default value:
• 7 if (CONFIG_OPENTHREAD_PARENT_SEARCH_MTD || CONFIG_OPENTHREAD_FTD)
&& CONFIG_OPENTHREAD_ENABLED

Espressif Systems 1601
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Thread Memory Allocation Contains:
• CONFIG_OPENTHREAD_PLATFORM_MALLOC_CAP_SPIRAM
• CONFIG_OPENTHREAD_PLATFORM_MSGPOOL_MANAGEMENT

CONFIG_OPENTHREAD_PLATFORM_MALLOC_CAP_SPIRAM
Allocate memory from PSRAM
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Memory Allocation

Select this option to allocate buffer from PSRAM for Thread
Default value:

• Yes (enabled) if (SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC) && CON-
FIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_PLATFORM_MSGPOOL_MANAGEMENT
Allocate message pool buffer from PSRAM
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > Thread Memory Allocation

If enabled, the message pool is managed by platform defined logic.
Default value:

• Yes (enabled) if (SPIRAM_USE_CAPS_ALLOC || SPIRAM_USE_MALLOC) && CON-
FIG_OPENTHREAD_ENABLED

OpenThread Stack Parameters Contains:
• CONFIG_OPENTHREAD_MAC_MAX_CSMA_BACKOFFS_DIRECT
• CONFIG_OPENTHREAD_PREFERRED_CHANNEL_MASK
• CONFIG_OPENTHREAD_SUPPORTED_CHANNEL_MASK
• CONFIG_OPENTHREAD_XTAL_ACCURACY
• CONFIG_OPENTHREAD_BUS_LATENCY
• CONFIG_OPENTHREAD_NUM_MESSAGE_BUFFERS
• CONFIG_OPENTHREAD_MLE_MAX_CHILDREN
• CONFIG_OPENTHREAD_TMF_ADDR_CACHE_ENTRIES
• CONFIG_OPENTHREAD_UART_BUFFER_SIZE
• Thread Address Query Config

Thread Address Query Config Contains:
• CONFIG_OPENTHREAD_ADDRESS_QUERY_RETRY_DELAY
• CONFIG_OPENTHREAD_ADDRESS_QUERY_MAX_RETRY_DELAY
• CONFIG_OPENTHREAD_ADDRESS_QUERY_TIMEOUT

CONFIG_OPENTHREAD_ADDRESS_QUERY_TIMEOUT
Timeout (in seconds) for a address notification response after sending an address query.
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters > Thread Address Query Config

Default value:
• 3 if (CONFIG_OPENTHREAD_FTD || CONFIG_OPENTHREAD_MTD) && CON-

FIG_OPENTHREAD_ENABLED

Espressif Systems 1602
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_ADDRESS_QUERY_RETRY_DELAY
Initial retry delay for address query (in seconds).
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters > Thread Address Query Config

Default value:
• 15 if (CONFIG_OPENTHREAD_FTD || CONFIG_OPENTHREAD_MTD) && CON-

FIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_ADDRESS_QUERY_MAX_RETRY_DELAY
Maximum retry delay for address query (in seconds).
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters > Thread Address Query Config

Default value:
• 120 if (CONFIG_OPENTHREAD_FTD || CONFIG_OPENTHREAD_MTD) && CON-

FIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_PREFERRED_CHANNEL_MASK
Preferred channel mask
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters

Default value:
• "0x7fff800" if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_SUPPORTED_CHANNEL_MASK
Supported channel mask
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters

Default value:
• "0x7fff800" if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_NUM_MESSAGE_BUFFERS
The number of openthread message buffers
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters

Default value:
• 1024 if CONFIG_OPENTHREAD_PLATFORM_MSGPOOL_MANAGEMENT && CON-

FIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_XTAL_ACCURACY
The accuracy of the XTAL
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters

The device's XTAL accuracy, in ppm.
Default value:

• 10 if CONFIG_OPENTHREAD_ENABLED

Espressif Systems 1603
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_BUS_LATENCY
The bus latency between host and radio chip
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters

The device's bus latency, in us.
Default value:

• 4000 if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_MLE_MAX_CHILDREN
The size of max MLE children entries
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters

Default value:
• 10 if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_TMF_ADDR_CACHE_ENTRIES
The size of max TMF address cache entries
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters

Default value:
• 20 if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_UART_BUFFER_SIZE
The uart received buffer size of openthread
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters

Set the OpenThread UART buffer size.
Default value:

• 2048 if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_MAC_MAX_CSMA_BACKOFFS_DIRECT
Maximum backoffs times before declaring a channel access failure.
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Core Fea-
tures > OpenThread Stack Parameters

The maximum number of backoffs the CSMA-CA algorithm will attempt before declaring a channel
access failure.
Default value:

• 4 if CONFIG_OPENTHREAD_ENABLED

Thread Log Contains:
• CONFIG_OPENTHREAD_LOG_LEVEL_DYNAMIC
• CONFIG_OPENTHREAD_LOG_LEVEL

Espressif Systems 1604
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_LOG_LEVEL_DYNAMIC
Enable dynamic log level control
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Log

Select this option to enable dynamic log level control for OpenThread
Default value:

• Yes (enabled) if CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_LOG_LEVEL
OpenThread log verbosity
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Log

Select OpenThread log level.
Available options:

• No logs (CONFIG_OPENTHREAD_LOG_LEVEL_NONE)
• Error logs (CONFIG_OPENTHREAD_LOG_LEVEL_CRIT)
• Warning logs (CONFIG_OPENTHREAD_LOG_LEVEL_WARN)
• Notice logs (CONFIG_OPENTHREAD_LOG_LEVEL_NOTE)
• Info logs (CONFIG_OPENTHREAD_LOG_LEVEL_INFO)
• Debug logs (CONFIG_OPENTHREAD_LOG_LEVEL_DEBG)

Thread Extensioned Features Contains:
• CONFIG_OPENTHREAD_HEADER_CUSTOM

CONFIG_OPENTHREAD_HEADER_CUSTOM
Use a header file defined by customer
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Exten-
sioned Features

This option allows users to tailor the values of openthread macros according to their requirements. The
openthread submodule contains numerous macros, each with a default value set. In the Kconfig of ESP
openthread, users can set specific openthread parameters, which will be applied for certain openthread
macros in the openthread-core-esp32x-xxx-config.h file. During compilation, the values specified in
openthread-core-esp32x-xxx-config.h will replace the default settings in the openthread submodule.
However, Kconfig does not cover all openthread macros, particularly those typically using default values.
For suchmacros, users can enable the OPENTHREAD_HEADER_CUSTOMoption in the Kconfig and
provide a custom header file. Macros defined in the custom header file will have the highest priority.
Default value:

• No (disabled) if CONFIG_OPENTHREAD_ENABLED

OpenThread Custom Header Config Contains:
• CONFIG_OPENTHREAD_CUSTOM_HEADER_FILE_NAME
• CONFIG_OPENTHREAD_CUSTOM_HEADER_PATH

Espressif Systems 1605
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_OPENTHREAD_CUSTOM_HEADER_PATH
Path of custom header file
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Exten-
sioned Features > CONFIG_OPENTHREAD_HEADER_CUSTOM > OpenThread Custom Header Config

Please use relative paths with respect to the project folder.
Default value:

• if CONFIG_OPENTHREAD_HEADER_CUSTOM && CON-
FIG_OPENTHREAD_HEADER_CUSTOM && CONFIG_OPENTHREAD_ENABLED

CONFIG_OPENTHREAD_CUSTOM_HEADER_FILE_NAME
Name of custom header file
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_ENABLED > Thread Exten-
sioned Features > CONFIG_OPENTHREAD_HEADER_CUSTOM > OpenThread Custom Header Config

Name of custom header file.
Default value:

• "esp_ot_custom_config.h" if CONFIG_OPENTHREAD_HEADER_CUSTOM && CON-
FIG_OPENTHREAD_HEADER_CUSTOM && CONFIG_OPENTHREAD_ENABLED

OpenThread Spinel Contains:
• CONFIG_OPENTHREAD_SPINEL_ONLY
• CONFIG_OPENTHREAD_SPINEL_MAC_MAX_CSMA_BACKOFFS_DIRECT
• CONFIG_OPENTHREAD_SPINEL_RX_FRAME_BUFFER_SIZE

CONFIG_OPENTHREAD_SPINEL_ONLY
Enable OpenThread External Radio Spinel feature
Found in: Component config > OpenThread > OpenThread Spinel

Select this option to enable the OpenThread Radio Spinel for external protocol stack, such as Zigbee.
Default value:

• No (disabled)

CONFIG_OPENTHREAD_SPINEL_RX_FRAME_BUFFER_SIZE
The size of openthread spinel rx frame buffer
Found in: Component config > OpenThread > OpenThread Spinel

Default value:
• 1024 if (CONFIG_OPENTHREAD_MTD || CONFIG_OPENTHREAD_RADIO) && (CON-

FIG_OPENTHREAD_ENABLED || CONFIG_OPENTHREAD_SPINEL_ONLY)
• 2048 if (CONFIG_OPENTHREAD_FTD || CONFIG_OPENTHREAD_SPINEL_ONLY) &&
(CONFIG_OPENTHREAD_ENABLED || CONFIG_OPENTHREAD_SPINEL_ONLY)

CONFIG_OPENTHREAD_SPINEL_MAC_MAX_CSMA_BACKOFFS_DIRECT
Maximum backoffs times before declaring a channel access failure.
Found in: Component config > OpenThread > OpenThread Spinel

The maximum number of backoffs the CSMA-CA algorithm will attempt before declaring a channel
access failure.
Default value:

Espressif Systems 1606
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• 4 if CONFIG_OPENTHREAD_SPINEL_ONLY

CONFIG_OPENTHREAD_DEBUG
Enable ESP OpenThread Debug
Found in: Component config > OpenThread

Enable additional debugging support for ESP OpenThread integration. This includes various diagnostic
tools and logs to help track down issues in OpenThread networking or system integration
Default value:

• No (disabled)
Contains:

• CONFIG_OPENTHREAD_DUMP_MAC_ON_ASSERT

CONFIG_OPENTHREAD_DUMP_MAC_ON_ASSERT
Dump 802.15.4 MAC debug info on OpenThread assert
Found in: Component config > OpenThread > CONFIG_OPENTHREAD_DEBUG

When enabled, this option triggers the printing of 802.15.4 MAC layer debug information whenever an
OpenThread assert occurs. This can help developers analyze unexpected failures by providing additional
MAC layer context.
Default value:

• No (disabled) if CONFIG_OPENTHREAD_DEBUG && CON-
FIG_OPENTHREAD_RADIO_NATIVE && CONFIG_IEEE802154_DEBUG

Protocomm Contains:
• CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_0
• CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_1
• CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_2

CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_0
Support protocomm security version 0 (no security)
Found in: Component config > Protocomm

Enable support of security version 0. Disabling this option saves some code size. Consult the Enabling
protocomm security version section of the Protocomm documentation in ESP-IDF Programming guide
for more details.
Default value:

• Yes (enabled)

CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_1
Support protocomm security version 1 (Curve25519 key exchange + AES-CTR encryption/decryption)
Found in: Component config > Protocomm

Enable support of security version 1. Disabling this option saves some code size. Consult the Enabling
protocomm security version section of the Protocomm documentation in ESP-IDF Programming guide
for more details.
Default value:

• Yes (enabled)

Espressif Systems 1607
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_2
Support protocomm security version 2 (SRP6a-based key exchange + AES-GCM encryp-
tion/decryption)
Found in: Component config > Protocomm

Enable support of security version 2. Disabling this option saves some code size. Consult the Enabling
protocomm security version section of the Protocomm documentation in ESP-IDF Programming guide
for more details.
Default value:

• Yes (enabled)

PThreads Contains:
• CONFIG_PTHREAD_TASK_NAME_DEFAULT
• CONFIG_PTHREAD_TASK_CORE_DEFAULT
• CONFIG_PTHREAD_TASK_PRIO_DEFAULT
• CONFIG_PTHREAD_TASK_STACK_SIZE_DEFAULT
• CONFIG_PTHREAD_STACK_MIN

CONFIG_PTHREAD_TASK_PRIO_DEFAULT
Default task priority
Found in: Component config > PThreads

Priority used to create new tasks with default pthread parameters.
Range:

• from 0 to 255
Default value:

• 5

CONFIG_PTHREAD_TASK_STACK_SIZE_DEFAULT
Default task stack size
Found in: Component config > PThreads

Stack size used to create new tasks with default pthread parameters.
Default value:

• 3072

CONFIG_PTHREAD_STACK_MIN
Minimum allowed pthread stack size
Found in: Component config > PThreads

Minimum allowed pthread stack size set in attributes passed to pthread_create
Default value:

• 768

CONFIG_PTHREAD_TASK_CORE_DEFAULT
Default pthread core affinity
Found in: Component config > PThreads

The default core to which pthreads are pinned.

Espressif Systems 1608
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Available options:

• No affinity (CONFIG_PTHREAD_DEFAULT_CORE_NO_AFFINITY)
• Core 0 (CONFIG_PTHREAD_DEFAULT_CORE_0)
• Core 1 (CONFIG_PTHREAD_DEFAULT_CORE_1)

CONFIG_PTHREAD_TASK_NAME_DEFAULT
Default name of pthreads
Found in: Component config > PThreads

The default name of pthreads.
Default value:

• "pthread"

SoC Settings Contains:
• MMU Config

MMU Config

Main Flash configuration Contains:
• Optional and Experimental Features (READ DOCS FIRST)
• SPI Flash behavior when brownout

SPI Flash behavior when brownout Contains:
• CONFIG_SPI_FLASH_BROWNOUT_RESET_XMC

CONFIG_SPI_FLASH_BROWNOUT_RESET_XMC
Enable sending reset when brownout for XMC flash chips
Found in: Component config > Main Flash configuration > SPI Flash behavior when brownout

When this option is selected, the patch will be enabled for XMC. Follow the recommended flow by XMC
for better stability.
DO NOT DISABLE UNLESS YOU KNOWWHAT YOU ARE DOING.

Optional and Experimental Features (READ DOCS FIRST) Contains:
• CONFIG_SPI_FLASH_FORCE_ENABLE_XMC_C_SUSPEND
• CONFIG_SPI_FLASH_HPM_DC

CONFIG_SPI_FLASH_HPM_DC
Support HPM using DC (READ DOCS FIRST)
Found in: Component config > Main Flash configuration > Optional and Experimental Features (READ
DOCS FIRST)

This feature needs your bootloader to be compiled DC-aware (BOOT-
LOADER_FLASH_DC_AWARE=y). Otherwise the chip will not be able to boot after a reset.
Available options:

Espressif Systems 1609
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Auto (Enable when bootloader support enabled (BOOT-
LOADER_FLASH_DC_AWARE)) (CONFIG_SPI_FLASH_HPM_DC_AUTO)

• Disable (READ DOCS FIRST) (CONFIG_SPI_FLASH_HPM_DC_DISABLE)

CONFIG_SPI_FLASH_FORCE_ENABLE_XMC_C_SUSPEND
Enable XMC-C series flash chip suspend feature anyway
Found in: Component config > Main Flash configuration > Optional and Experimental Features (READ
DOCS FIRST)

XMC-C series is regarded as not qualified for the Suspend feature, since its specification has a tRS >=
1ms restriction. We strongly do not suggest using it for the Suspend feature. However, if your product
in field has enabled this feature, you may still enable this config option to keep the legacy behavior.
For new users, DO NOT enable this config.

SPI Flash driver Contains:
• Auto-detect flash chips
• CONFIG_SPI_FLASH_BYPASS_BLOCK_ERASE
• CONFIG_SPI_FLASH_ENABLE_ENCRYPTED_READ_WRITE
• CONFIG_SPI_FLASH_ENABLE_COUNTERS
• CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
• CONFIG_SPI_FLASH_YIELD_DURING_ERASE
• CONFIG_SPI_FLASH_CHECK_ERASE_TIMEOUT_DISABLED
• CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE
• CONFIG_SPI_FLASH_OVERRIDE_CHIP_DRIVER_LIST
• CONFIG_SPI_FLASH_SIZE_OVERRIDE
• CONFIG_SPI_FLASH_ROM_IMPL
• CONFIG_SPI_FLASH_VERIFY_WRITE
• CONFIG_SPI_FLASH_DANGEROUS_WRITE

CONFIG_SPI_FLASH_VERIFY_WRITE
Verify SPI flash writes
Found in: Component config > SPI Flash driver

If this option is enabled, any time SPI flash is written then the data will be read back and verified. This
can catch hardware problems with SPI flash, or flash which was not erased before verification.

CONFIG_SPI_FLASH_LOG_FAILED_WRITE
Log errors if verification fails
Found in: Component config > SPI Flash driver > CONFIG_SPI_FLASH_VERIFY_WRITE

If this option is enabled, if SPI flash write verification fails then a log error line will be written with the
address, expected & actual values. This can be useful when debugging hardware SPI flash problems.

CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
Log warning if writing zero bits to ones
Found in: Component config > SPI Flash driver > CONFIG_SPI_FLASH_VERIFY_WRITE

If this option is enabled, any SPI flash write which tries to set zero bits in the flash to ones will log a
warning. Such writes will not result in the requested data appearing identically in flash once written, as

Espressif Systems 1610
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SPI NOR flash can only set bits to one when an entire sector is erased. After erasing, individual bits can
only be written from one to zero.
Note that some software (such as SPIFFS) which is aware of SPI NOR flash may write one bits as an
optimisation, relying on the data in flash becoming a bitwise AND of the new data and any existing data.
Such software will log spurious warnings if this option is enabled.

CONFIG_SPI_FLASH_ENABLE_COUNTERS
Enable operation counters
Found in: Component config > SPI Flash driver

This option enables the following APIs:
• esp_flash_reset_counters
• esp_flash_dump_counters
• esp_flash_get_counters

These APIs may be used to collect performance data for spi_flash APIs and to help understand behaviour
of libraries which use SPI flash.

CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
Enable SPI flash ROM driver patched functions
Found in: Component config > SPI Flash driver

Enable this flag to use patched versions of SPI flash ROM driver functions. This option should be
enabled, if any one of the following is true: (1) need to write to flash on ESP32-D2WD; (2) main SPI
flash is connected to non-default pins; (3) main SPI flash chip is manufactured by ISSI.

CONFIG_SPI_FLASH_ROM_IMPL
Use esp_flash implementation in ROM
Found in: Component config > SPI Flash driver

Enable this flag to use new SPI flash driver functions from ROM instead of ESP-IDF.
If keeping this as "n" in your project, you will have less free IRAM. But you can use all of our flash
features.
If making this as "y" in your project, you will increase free IRAM. But you may miss out on some flash
features and support for new flash chips.
Currently the ROM cannot support the following features:

• SPI_FLASH_AUTO_SUSPEND (C3, S3)

CONFIG_SPI_FLASH_DANGEROUS_WRITE
Writing to dangerous flash regions
Found in: Component config > SPI Flash driver

SPI flash APIs can optionally abort or return a failure code if erasing or writing addresses that fall at
the beginning of flash (covering the bootloader and partition table) or that overlap the app partition that
contains the running app.
It is not recommended to ever write to these regions from an IDF app, and this check prevents logic
errors or corrupted firmware memory from damaging these regions.
Note that this feature *does not* check calls to the esp_rom_xxx SPI flash ROM functions. These
functions should not be called directly from IDF applications.

Espressif Systems 1611
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Available options:

• Aborts (CONFIG_SPI_FLASH_DANGEROUS_WRITE_ABORTS)
• Fails (CONFIG_SPI_FLASH_DANGEROUS_WRITE_FAILS)
• Allowed (CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED)

CONFIG_SPI_FLASH_BYPASS_BLOCK_ERASE
Bypass a block erase and always do sector erase
Found in: Component config > SPI Flash driver

Some flash chips can have very high "max" erase times, especially for block erase (32KB or 64KB). This
option allows to bypass "block erase" and always do sector erase commands. This will be much slower
overall in most cases, but improves latency for other code to run.

CONFIG_SPI_FLASH_YIELD_DURING_ERASE
Enables yield operation during flash erase
Found in: Component config > SPI Flash driver

This allows to yield the CPUs between erase commands. Prevents starvation of other tasks. Please use
this configuration together with SPI_FLASH_ERASE_YIELD_DURATION_MS and SPI\
_FLASH_ERASE_YIELD_TICKS after carefully checking flash datasheet to avoid a watchdog
timeout. For more information, please check SPI Flash API reference documentation under section OS
Function.

CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS
Duration of erasing to yield CPUs (ms)
Found in: Component config > SPI Flash driver > CONFIG_SPI_FLASH_YIELD_DURING_ERASE

If a duration of one erase command is large then it will yield CPUs after finishing a current command.

CONFIG_SPI_FLASH_ERASE_YIELD_TICKS
CPU release time (tick) for an erase operation
Found in: Component config > SPI Flash driver > CONFIG_SPI_FLASH_YIELD_DURING_ERASE

Defines how many ticks will be before returning to continue a erasing.

CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE
Flash write chunk size
Found in: Component config > SPI Flash driver

Flash write is broken down in terms of multiple (smaller) write operations. This configuration options
helps to set individual write chunk size, smaller value here ensures that cache (and non-IRAM resident
interrupts) remains disabled for shorter duration.

CONFIG_SPI_FLASH_SIZE_OVERRIDE
Override flash size in bootloader header by ESPTOOLPY_FLASHSIZE
Found in: Component config > SPI Flash driver

Espressif Systems 1612
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SPI Flash driver uses the flash size configured in bootloader header by default. Enable this option to
override flash size with latest ESPTOOLPY_FLASHSIZE value from the app header if the size in the
bootloader header is incorrect.

CONFIG_SPI_FLASH_CHECK_ERASE_TIMEOUT_DISABLED
Flash timeout checkout disabled
Found in: Component config > SPI Flash driver

This option is helpful if you are using a flash chip whose timeout is quite large or unpredictable.

CONFIG_SPI_FLASH_OVERRIDE_CHIP_DRIVER_LIST
Override default chip driver list
Found in: Component config > SPI Flash driver

This option allows the chip driver list to be customized, instead of using the default list provided by
ESP-IDF.
When this option is enabled, the default list is no longer compiled or linked. Instead, the de-
fault_registered_chips structure must be provided by the user.
See example: custom_chip_driver under examples/storage for more details.

Auto-detect flash chips Contains:
• CONFIG_SPI_FLASH_SUPPORT_BOYA_CHIP
• CONFIG_SPI_FLASH_SUPPORT_GD_CHIP
• CONFIG_SPI_FLASH_SUPPORT_ISSI_CHIP
• CONFIG_SPI_FLASH_SUPPORT_MXIC_CHIP
• CONFIG_SPI_FLASH_SUPPORT_TH_CHIP
• CONFIG_SPI_FLASH_SUPPORT_WINBOND_CHIP

CONFIG_SPI_FLASH_SUPPORT_ISSI_CHIP
ISSI
Found in: Component config > SPI Flash driver > Auto-detect flash chips

Enable this to support auto detection of ISSI chips if chip vendor not directly given by chip_drv
member of the chip struct. This adds support for variant chips, however will extend detecting time.

CONFIG_SPI_FLASH_SUPPORT_MXIC_CHIP
MXIC
Found in: Component config > SPI Flash driver > Auto-detect flash chips

Enable this to support auto detection of MXIC chips if chip vendor not directly given by chip_drv
member of the chip struct. This adds support for variant chips, however will extend detecting time.

CONFIG_SPI_FLASH_SUPPORT_GD_CHIP
GigaDevice
Found in: Component config > SPI Flash driver > Auto-detect flash chips

Enable this to support auto detection of GD (GigaDevice) chips if chip vendor not directly given by
chip_drv member of the chip struct. If you are using Wrover modules, please don't disable this,
otherwise your flash may not work in 4-bit mode.

Espressif Systems 1613
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This adds support for variant chips, however will extend detecting time and image size. Note that the
default chip driver supports the GD chips with product ID 60H.

CONFIG_SPI_FLASH_SUPPORT_WINBOND_CHIP
Winbond
Found in: Component config > SPI Flash driver > Auto-detect flash chips

Enable this to support auto detection ofWinbond chips if chip vendor not directly given by chip_drv
member of the chip struct. This adds support for variant chips, however will extend detecting time.

CONFIG_SPI_FLASH_SUPPORT_BOYA_CHIP
BOYA
Found in: Component config > SPI Flash driver > Auto-detect flash chips

Enable this to support auto detection of BOYA chips if chip vendor not directly given by chip_drv
member of the chip struct. This adds support for variant chips, however will extend detecting time.

CONFIG_SPI_FLASH_SUPPORT_TH_CHIP
TH
Found in: Component config > SPI Flash driver > Auto-detect flash chips

Enable this to support auto detection of TH chips if chip vendor not directly given by chip_drv
member of the chip struct. This adds support for variant chips, however will extend detecting time.

CONFIG_SPI_FLASH_ENABLE_ENCRYPTED_READ_WRITE
Enable encrypted partition read/write operations
Found in: Component config > SPI Flash driver

This option enables flash read/write operations to encrypted partition/s. This option is kept enabled
irrespective of state of flash encryption feature. However, in case application is not using flash encryption
feature and is in need of some additional memory from IRAM region (~1KB) then this config can be
disabled.

SPIFFS Configuration Contains:
• Debug Configuration
• CONFIG_SPIFFS_USE_MAGIC
• CONFIG_SPIFFS_GC_STATS
• CONFIG_SPIFFS_PAGE_CHECK
• CONFIG_SPIFFS_FOLLOW_SYMLINKS
• CONFIG_SPIFFS_MAX_PARTITIONS
• CONFIG_SPIFFS_USE_MTIME
• CONFIG_SPIFFS_GC_MAX_RUNS
• CONFIG_SPIFFS_OBJ_NAME_LEN
• CONFIG_SPIFFS_META_LENGTH
• SPIFFS Cache Configuration
• CONFIG_SPIFFS_PAGE_SIZE
• CONFIG_SPIFFS_MTIME_WIDE_64_BITS

Espressif Systems 1614
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_SPIFFS_MAX_PARTITIONS
Maximum Number of Partitions
Found in: Component config > SPIFFS Configuration

Define maximum number of partitions that can be mounted.
Range:

• from 1 to 10
Default value:

• 3

SPIFFS Cache Configuration Contains:
• CONFIG_SPIFFS_CACHE

CONFIG_SPIFFS_CACHE
Enable SPIFFS Cache
Found in: Component config > SPIFFS Configuration > SPIFFS Cache Configuration

Enables/disable memory read caching of nucleus file system operations.
Default value:

• Yes (enabled)

CONFIG_SPIFFS_CACHE_WR
Enable SPIFFS Write Caching
Found in: Component config > SPIFFS Configuration > SPIFFS Cache Configuration > CON-
FIG_SPIFFS_CACHE

Enables memory write caching for file descriptors in hydrogen.
Default value:

• Yes (enabled)

CONFIG_SPIFFS_CACHE_STATS
Enable SPIFFS Cache Statistics
Found in: Component config > SPIFFS Configuration > SPIFFS Cache Configuration > CON-
FIG_SPIFFS_CACHE

Enable/disable statistics on caching. Debug/test purpose only.
Default value:

• No (disabled)

CONFIG_SPIFFS_PAGE_CHECK
Enable SPIFFS Page Check
Found in: Component config > SPIFFS Configuration

Always check header of each accessed page to ensure consistent state. If enabled it will increase number
of reads from flash, especially if cache is disabled.
Default value:

• Yes (enabled)

Espressif Systems 1615
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_SPIFFS_GC_MAX_RUNS
Set Maximum GC Runs
Found in: Component config > SPIFFS Configuration

Define maximum number of GC runs to perform to reach desired free pages.
Range:

• from 1 to 10000
Default value:

• 10

CONFIG_SPIFFS_GC_STATS
Enable SPIFFS GC Statistics
Found in: Component config > SPIFFS Configuration

Enable/disable statistics on gc. Debug/test purpose only.
Default value:

• No (disabled)

CONFIG_SPIFFS_PAGE_SIZE
SPIFFS logical page size
Found in: Component config > SPIFFS Configuration

Logical page size of SPIFFS partition, in bytes. Must be multiple of flash page size (which is usually 256
bytes). Larger page sizes reduce overhead when storing large files, and improve filesystem performance
when reading large files. Smaller page sizes reduce overhead when storing small (< page size) files.
Range:

• from 256 to 1024
Default value:

• 256

CONFIG_SPIFFS_OBJ_NAME_LEN
Set SPIFFS Maximum Name Length
Found in: Component config > SPIFFS Configuration

Object name maximum length. Note that this length include the zero-termination character, meaning
maximum string of characters can at most be SPIFFS_OBJ_NAME_LEN - 1.
SPIFFS_OBJ_NAME_LEN + SPIFFS_META_LENGTH should not exceed SPIFFS_PAGE_SIZE -
64.
Range:

• from 1 to 256
Default value:

• 32

CONFIG_SPIFFS_FOLLOW_SYMLINKS
Enable symbolic links for image creation
Found in: Component config > SPIFFS Configuration

If this option is enabled, symbolic links are taken into account during partition image creation.
Default value:

• No (disabled)

Espressif Systems 1616
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_SPIFFS_USE_MAGIC
Enable SPIFFS Filesystem Magic
Found in: Component config > SPIFFS Configuration

Enable this to have an identifiable spiffs filesystem. This will look for a magic in all sectors to determine
if this is a valid spiffs system or not at mount time.
Default value:

• Yes (enabled)

CONFIG_SPIFFS_USE_MAGIC_LENGTH
Enable SPIFFS Filesystem Length Magic
Found in: Component config > SPIFFS Configuration > CONFIG_SPIFFS_USE_MAGIC

If this option is enabled, the magic will also be dependent on the length of the filesystem. For exam-
ple, a filesystem configured and formatted for 4 megabytes will not be accepted for mounting with a
configuration defining the filesystem as 2 megabytes.
Default value:

• Yes (enabled)

CONFIG_SPIFFS_META_LENGTH
Size of per-file metadata field
Found in: Component config > SPIFFS Configuration

This option sets the number of extra bytes stored in the file header. These bytes can be used in an
application-specific manner. Set this to at least 4 bytes to enable support for saving file modification
time.
SPIFFS_OBJ_NAME_LEN + SPIFFS_META_LENGTH should not exceed SPIFFS_PAGE_SIZE -
64.
Default value:

• 4

CONFIG_SPIFFS_USE_MTIME
Save file modification time
Found in: Component config > SPIFFS Configuration

If enabled, then the first 4 bytes of per-file metadata will be used to store file modification time (mtime),
accessible through stat/fstat functions. Modification time is updated when the file is opened.
Default value:

• Yes (enabled)

CONFIG_SPIFFS_MTIME_WIDE_64_BITS
The time field occupies 64 bits in the image instead of 32 bits
Found in: Component config > SPIFFS Configuration

If this option is not set, the time field is 32 bits (up to 2106 year), otherwise it is 64 bits and make sure
it matches SPIFFS_META_LENGTH. If the chip already has the spiffs image with the time field = 32
bits then this option cannot be applied in this case. Erase it first before using this option. To resolve the
Y2K38 problem for the spiffs, use a toolchain with 64-bit time_t support.
Default value:

• No (disabled) if CONFIG_SPIFFS_META_LENGTH >= 8

Espressif Systems 1617
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Debug Configuration Contains:
• CONFIG_SPIFFS_DBG
• CONFIG_SPIFFS_API_DBG
• CONFIG_SPIFFS_CACHE_DBG
• CONFIG_SPIFFS_CHECK_DBG
• CONFIG_SPIFFS_TEST_VISUALISATION
• CONFIG_SPIFFS_GC_DBG

CONFIG_SPIFFS_DBG
Enable general SPIFFS debug
Found in: Component config > SPIFFS Configuration > Debug Configuration

Enabling this option will print general debug mesages to the console.
Default value:

• No (disabled)

CONFIG_SPIFFS_API_DBG
Enable SPIFFS API debug
Found in: Component config > SPIFFS Configuration > Debug Configuration

Enabling this option will print API debug mesages to the console.
Default value:

• No (disabled)

CONFIG_SPIFFS_GC_DBG
Enable SPIFFS Garbage Cleaner debug
Found in: Component config > SPIFFS Configuration > Debug Configuration

Enabling this option will print GC debug mesages to the console.
Default value:

• No (disabled)

CONFIG_SPIFFS_CACHE_DBG
Enable SPIFFS Cache debug
Found in: Component config > SPIFFS Configuration > Debug Configuration

Enabling this option will print cache debug mesages to the console.
Default value:

• No (disabled)

CONFIG_SPIFFS_CHECK_DBG
Enable SPIFFS Filesystem Check debug
Found in: Component config > SPIFFS Configuration > Debug Configuration

Enabling this option will print Filesystem Check debug mesages to the console.
Default value:

• No (disabled)

Espressif Systems 1618
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_SPIFFS_TEST_VISUALISATION
Enable SPIFFS Filesystem Visualization
Found in: Component config > SPIFFS Configuration > Debug Configuration

Enable this option to enable SPIFFS_vis function in the API.
Default value:

• No (disabled)

TCP Transport Contains:
• Websocket

Websocket Contains:
• CONFIG_WS_TRANSPORT

CONFIG_WS_TRANSPORT
Enable Websocket Transport
Found in: Component config > TCP Transport >Websocket

Enable support for creating websocket transport.
Default value:

• Yes (enabled)

CONFIG_WS_BUFFER_SIZE
Websocket transport buffer size
Found in: Component config > TCP Transport >Websocket > CONFIG_WS_TRANSPORT

Size of the buffer used for constructing the HTTP Upgrade request during connect
Default value:

• 1024

CONFIG_WS_DYNAMIC_BUFFER
Using dynamic websocket transport buffer
Found in: Component config > TCP Transport >Websocket > CONFIG_WS_TRANSPORT

If enable this option, websocket transport buffer will be freed after connection succeed to save more
heap.
Default value:

• No (disabled)

Ultra Low Power (ULP) Co-processor Contains:
• CONFIG_ULP_COPROC_ENABLED
• ULP RISC-V Settings

Espressif Systems 1619
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ULP_COPROC_ENABLED
Enable Ultra Low Power (ULP) Co-processor
Found in: Component config > Ultra Low Power (ULP) Co-processor

Enable this feature if you plan to use the ULP Co-processor. Once this option is enabled, further ULP
co-processor configuration will appear in the menu.
Default value:

• No (disabled)

CONFIG_ULP_COPROC_TYPE
ULP Co-processor type
Found in: Component config > Ultra Low Power (ULP) Co-processor > CON-
FIG_ULP_COPROC_ENABLED

Choose the ULP Coprocessor type: ULP FSM (Finite State Machine) or ULP RISC-V.
Available options:

• ULP FSM (Finite State Machine) (CONFIG_ULP_COPROC_TYPE_FSM)
• ULP RISC-V (CONFIG_ULP_COPROC_TYPE_RISCV)
• LP core RISC-V (CONFIG_ULP_COPROC_TYPE_LP_CORE)

CONFIG_ULP_COPROC_RESERVE_MEM
RTC slow memory reserved for coprocessor
Found in: Component config > Ultra Low Power (ULP) Co-processor > CON-
FIG_ULP_COPROC_ENABLED

Bytes of memory to reserve for ULP Co-processor firmware & data. Data is reserved at the beginning
of RTC slow memory.
Range:

• from 32 to 16352 if CONFIG_ULP_COPROC_ENABLED
Default value:

• 4096 if CONFIG_ULP_COPROC_ENABLED

ULP RISC-V Settings Contains:
• CONFIG_ULP_RISCV_UART_BAUDRATE
• CONFIG_ULP_RISCV_I2C_RW_TIMEOUT

CONFIG_ULP_RISCV_UART_BAUDRATE
Baudrate used by the bitbanged ULP RISC-V UART driver
Found in: Component config > Ultra Low Power (ULP) Co-processor > ULP RISC-V Settings

The accuracy of the bitbanged UART driver is limited, it is not recommend to increase the value above
19200.
Default value:

• 9600 if CONFIG_ULP_COPROC_TYPE_RISCV

Espressif Systems 1620
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_ULP_RISCV_I2C_RW_TIMEOUT
Set timeout for ULP RISC-V I2C transaction timeout in ticks.
Found in: Component config > Ultra Low Power (ULP) Co-processor > ULP RISC-V Settings

Set the ULP RISC-V I2C read/write timeout. Set this value to -1 if the ULP RISC-V I2C read and write
APIs should wait forever. Please note that the tick rate of the ULP co-processor would be different than
the OS tick rate of the main core and therefore can have different timeout value depending on which
core the API is invoked on.
Range:

• from -1 to 4294967295 if CONFIG_ULP_COPROC_TYPE_RISCV
Default value:

• 500 if CONFIG_ULP_COPROC_TYPE_RISCV

Unity unit testing library Contains:
• CONFIG_UNITY_ENABLE_COLOR
• CONFIG_UNITY_ENABLE_IDF_TEST_RUNNER
• CONFIG_UNITY_ENABLE_FIXTURE
• CONFIG_UNITY_ENABLE_BACKTRACE_ON_FAIL
• CONFIG_UNITY_ENABLE_64BIT
• CONFIG_UNITY_ENABLE_DOUBLE
• CONFIG_UNITY_ENABLE_FLOAT

CONFIG_UNITY_ENABLE_FLOAT
Support for float type
Found in: Component config > Unity unit testing library

If not set, assertions on float arguments will not be available.
Default value:

• Yes (enabled)

CONFIG_UNITY_ENABLE_DOUBLE
Support for double type
Found in: Component config > Unity unit testing library

If not set, assertions on double arguments will not be available.
Default value:

• Yes (enabled)

CONFIG_UNITY_ENABLE_64BIT
Support for 64-bit integer types
Found in: Component config > Unity unit testing library

If not set, assertions on 64-bit integer types will always fail. If this feature is enabled, take care not
to pass pointers (which are 32 bit) to UNITY_ASSERT_EQUAL, as that will cause pointer-to-int-cast
warnings.
Default value:

• No (disabled)

Espressif Systems 1621
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_UNITY_ENABLE_COLOR
Colorize test output
Found in: Component config > Unity unit testing library

If set, Unity will colorize test results using console escape sequences.
Default value:

• No (disabled)

CONFIG_UNITY_ENABLE_IDF_TEST_RUNNER
Include ESP-IDF test registration/running helpers
Found in: Component config > Unity unit testing library

If set, then the following features will be available:
• TEST_CASE macro which performs automatic registration of test functions
• Functions to run registered test functions: unity_run_all_tests, unity_run_tests_with_filter,
unity_run_single_test_by_name.

• Interactive menu which lists test cases and allows choosing the tests to be run, available via
unity_run_menu function.

Disable if a different test registration mechanism is used.
Default value:

• Yes (enabled)

CONFIG_UNITY_ENABLE_FIXTURE
Include Unity test fixture
Found in: Component config > Unity unit testing library

If set, unity_fixture.h header file and associated source files are part of the build. These provide an
optional set of macros and functions to implement test groups.
Default value:

• No (disabled)

CONFIG_UNITY_ENABLE_BACKTRACE_ON_FAIL
Print a backtrace when a unit test fails
Found in: Component config > Unity unit testing library

If set, the unity framework will print the backtrace information before jumping back to the test menu.
The jumping is usually occurs in assert functions such as TEST_ASSERT, TEST_FAIL etc.
Default value:

• No (disabled)

USB-OTG Contains:
• CONFIG_USB_HOST_ENABLE_ENUM_FILTER_CALLBACK
• CONFIG_USB_HOST_HW_BUFFER_BIAS
• CONFIG_USB_HOST_CONTROL_TRANSFER_MAX_SIZE
• Root Hub configuration
• CONFIG_USB_HOST_EXT_HUB_SUPPORT

Espressif Systems 1622
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_USB_HOST_CONTROL_TRANSFER_MAX_SIZE
Largest size (in bytes) of transfers to/from default endpoints
Found in: Component config > USB-OTG

Each USB device attached is allocated a dedicated buffer for its OUT/IN transfers to/from the device's
control endpoint. The maximum size of that buffer is determined by this option. The limited size of the
transfer buffer have the following implications: - The maximum length of control transfers is limited -
Device's with configuration descriptors larger than this limit cannot be supported
Default value:

• 256 if SOC_USB_OTG_SUPPORTED

CONFIG_USB_HOST_HW_BUFFER_BIAS
Hardware FIFO size biasing
Found in: Component config > USB-OTG

The underlying hardware has size adjustable FIFOs to cache USB packets on reception (IN) or for
transmission (OUT). The size of these FIFOs will affect the largest MPS (maximum packet size) and
the maximum number of packets that can be cached at any one time. The hardware contains the fol-
lowing FIFOS: RX (for all IN packets), Non-periodic TX (for Bulk and Control OUT packets), and
Periodic TX (for Interrupt and Isochronous OUT packets). This configuration option allows biasing the
FIFO sizes towards a particular use case, which may be necessary for devices that have endpoints with
large MPS. The MPS limits for each biasing are listed below:
Balanced: - IN (all transfer types), 408 bytes - OUT non-periodic (Bulk/Control), 192 bytes (i.e., 3 x
64 byte packets) - OUT periodic (Interrupt/Isochronous), 192 bytes
Bias IN: - IN (all transfer types), 600 bytes - OUT non-periodic (Bulk/Control), 64 bytes (i.e., 1 x 64
byte packets) - OUT periodic (Interrupt/Isochronous), 128 bytes
Bias Periodic OUT: - IN (all transfer types), 128 bytes - OUT non-periodic (Bulk/Control), 64 bytes
(i.e., 1 x 64 byte packets) - OUT periodic (Interrupt/Isochronous), 600 bytes
Available options:

• Balanced (CONFIG_USB_HOST_HW_BUFFER_BIAS_BALANCED)
• Bias IN (CONFIG_USB_HOST_HW_BUFFER_BIAS_IN)
• Periodic OUT (CONFIG_USB_HOST_HW_BUFFER_BIAS_PERIODIC_OUT)

Root Hub configuration Contains:
• CONFIG_USB_HOST_DEBOUNCE_DELAY_MS
• CONFIG_USB_HOST_RESET_HOLD_MS
• CONFIG_USB_HOST_RESET_RECOVERY_MS
• CONFIG_USB_HOST_SET_ADDR_RECOVERY_MS

CONFIG_USB_HOST_DEBOUNCE_DELAY_MS
Debounce delay in ms
Found in: Component config > USB-OTG > Root Hub configuration

On connection of a USB device, the USB 2.0 specification requires a "debounce interval with a minimum
duration of 100ms" to allow the connection to stabilize (see USB 2.0 chapter 7.1.7.3 for more details).
During the debounce interval, no new connection/disconnection events are registered.
The default value is set to 250 ms to be safe.
Default value:

• 250 if SOC_USB_OTG_SUPPORTED

Espressif Systems 1623
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_USB_HOST_RESET_HOLD_MS
Reset hold in ms
Found in: Component config > USB-OTG > Root Hub configuration

The reset signaling can be generated on any Hub or Host Controller port by request from the USB System
Software. The USB 2.0 specification requires that "the reset signaling must be driven for a minimum of
10ms" (see USB 2.0 chapter 7.1.7.5 for more details). After the reset, the hub port will transition to the
Enabled state (refer to Section 11.5).
The default value is set to 30 ms to be safe.
Default value:

• 30 if SOC_USB_OTG_SUPPORTED

CONFIG_USB_HOST_RESET_RECOVERY_MS
Reset recovery delay in ms
Found in: Component config > USB-OTG > Root Hub configuration

After a port stops driving the reset signal, the USB 2.0 specification requires that the "USB System
Software guarantees a minimum of 10 ms for reset recovery" before the attached device is expected to
respond to data transfers (see USB 2.0 chapter 7.1.7.3 for more details). The device may ignore any data
transfers during the recovery interval.
The default value is set to 30 ms to be safe.
Default value:

• 30 if SOC_USB_OTG_SUPPORTED

CONFIG_USB_HOST_SET_ADDR_RECOVERY_MS
SetAddress() recovery time in ms
Found in: Component config > USB-OTG > Root Hub configuration

"After successful completion of the Status stage, the device is allowed a SetAddress() recovery interval
of 2 ms. At the end of this interval, the device must be able to accept Setup packets addressed to the
new address. Also, at the end of the recovery interval, the device must not respond to tokens sent to the
old address (unless, of course, the old and new address is the same)." See USB 2.0 chapter 9.2.6.3 for
more details.
The default value is set to 10 ms to be safe.
Default value:

• 10 if SOC_USB_OTG_SUPPORTED

CONFIG_USB_HOST_ENABLE_ENUM_FILTER_CALLBACK
Enable enumeration filter callback
Found in: Component config > USB-OTG

The enumeration filter callback is called before enumeration of each newly attached device. This callback
allows users to control whether a device should be enumerated, and what configuration number to use
when enumerating a device.
If enabled, the enumeration filter callback can be set via 'usb_host_config_t' when calling
'usb_host_install()'.
Default value:

• No (disabled) if SOC_USB_OTG_SUPPORTED

Espressif Systems 1624
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_USB_HOST_EXT_HUB_SUPPORT
Support USB HUB (Experimental)
Found in: Component config > USB-OTG

Feature is under development.
Default value:

• No (disabled) if CONFIG_IDF_EXPERIMENTAL_FEATURES &&
SOC_USB_OTG_SUPPORTED

Virtual file system Contains:
• CONFIG_VFS_SUPPORT_IO

CONFIG_VFS_SUPPORT_IO
Provide basic I/O functions
Found in: Component config > Virtual file system

If enabled, the following functions are provided by the VFS component.
open, close, read, write, pread, pwrite, lseek, fstat, fsync, ioctl, fcntl
Filesystem drivers can then be registered to handle these functions for specific paths.
Disabling this option can save memory when the support for these functions is not required.
Note that the following functions can still be used with socket file descriptors when this option is disabled:
close, read, write, ioctl, fcntl.
Default value:

• Yes (enabled)

CONFIG_VFS_SUPPORT_DIR
Provide directory related functions
Found in: Component config > Virtual file system > CONFIG_VFS_SUPPORT_IO

If enabled, the following functions are provided by the VFS component.
stat, link, unlink, rename, utime, access, truncate, rmdir, mkdir, opendir, closedir, readdir, readdir_r,
seekdir, telldir, rewinddir
Filesystem drivers can then be registered to handle these functions for specific paths.
Disabling this option can save memory when the support for these functions is not required.
Default value:

• Yes (enabled)

CONFIG_VFS_SUPPORT_SELECT
Provide select function
Found in: Component config > Virtual file system > CONFIG_VFS_SUPPORT_IO

If enabled, select function is provided by the VFS component, and can be used on peripheral file de-
scriptors (such as UART) and sockets at the same time.
If disabled, the default select implementation will be provided by LWIP for sockets only.
Disabling this option can reduce code size if support for "select" onUART file descriptors is not required.

Espressif Systems 1625
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_VFS_SUPPRESS_SELECT_DEBUG_OUTPUT
Suppress select() related debug outputs
Found in: Component config > Virtual file system > CONFIG_VFS_SUPPORT_IO > CON-
FIG_VFS_SUPPORT_SELECT

Select() related functions might produce an unconveniently lot of debug outputs when one sets the default
log level to DEBUG or higher. It is possible to suppress these debug outputs by enabling this option.
Default value:

• Yes (enabled)

CONFIG_VFS_SELECT_IN_RAM
Make VFS driver select() callbacks IRAM-safe
Found in: Component config > Virtual file system > CONFIG_VFS_SUPPORT_IO > CON-
FIG_VFS_SUPPORT_SELECT

If enabled, VFS driver select() callback function will be placed in IRAM.
Default value:

• No (disabled)

CONFIG_VFS_SUPPORT_TERMIOS
Provide termios.h functions
Found in: Component config > Virtual file system > CONFIG_VFS_SUPPORT_IO

Disabling this option can save memory when the support for termios.h is not required.
Default value:

• Yes (enabled)

CONFIG_VFS_MAX_COUNT
Maximum Number of Virtual Filesystems
Found in: Component config > Virtual file system > CONFIG_VFS_SUPPORT_IO

Define maximum number of virtual filesystems that can be registered.
Range:

• from 1 to 20
Default value:

• 8

Host File System I/O (Semihosting) Contains:
• CONFIG_VFS_SEMIHOSTFS_MAX_MOUNT_POINTS

CONFIG_VFS_SEMIHOSTFS_MAX_MOUNT_POINTS
Host FS: Maximum number of the host filesystem mount points
Found in: Component config > Virtual file system > CONFIG_VFS_SUPPORT_IO > Host File System I/O
(Semihosting)

Define maximum number of host filesystem mount points.
Default value:

• 1

Espressif Systems 1626
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Wear Levelling Contains:
• CONFIG_WL_SECTOR_MODE
• CONFIG_WL_SECTOR_SIZE

CONFIG_WL_SECTOR_SIZE
Wear Levelling library sector size
Found in: Component config >Wear Levelling

Sector size used by wear levelling library. You can set default sector size or size that will fit to the flash
device sector size.
With sector size set to 4096 bytes, wear levelling library is more efficient. However if FAT filesystem is
used on top of wear levelling library, it will need more temporary storage: 4096 bytes for each mounted
filesystem and 4096 bytes for each opened file.
With sector size set to 512 bytes, wear levelling library will perform more operations with flash memory,
but less RAMwill be used by FAT filesystem library (512 bytes for the filesystem and 512 bytes for each
file opened).
Available options:

• 512 (CONFIG_WL_SECTOR_SIZE_512)
• 4096 (CONFIG_WL_SECTOR_SIZE_4096)

CONFIG_WL_SECTOR_MODE
Sector store mode
Found in: Component config >Wear Levelling

Specify the mode to store data into flash:
• In Performancemode a data will be stored to the RAM and then stored back to the flash. Compared
to the Safety mode, this operation is faster, but if power will be lost when erase sector operation is
in progress, then the data from complete flash device sector will be lost.

• In Safety mode data from complete flash device sector will be read from flash, modified, and then
stored back to flash. Compared to the Performance mode, this operation is slower, but if power is
lost during erase sector operation, then the data from full flash device sector will not be lost.

Available options:

• Perfomance (CONFIG_WL_SECTOR_MODE_PERF)
• Safety (CONFIG_WL_SECTOR_MODE_SAFE)

Wi-Fi Provisioning Manager Contains:
• CONFIG_WIFI_PROV_BLE_BONDING
• CONFIG_WIFI_PROV_BLE_SEC_CONN
• CONFIG_WIFI_PROV_BLE_FORCE_ENCRYPTION
• CONFIG_WIFI_PROV_KEEP_BLE_ON_AFTER_PROV
• CONFIG_WIFI_PROV_SCAN_MAX_ENTRIES
• CONFIG_WIFI_PROV_AUTOSTOP_TIMEOUT
• CONFIG_WIFI_PROV_STA_SCAN_METHOD

Espressif Systems 1627
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_WIFI_PROV_SCAN_MAX_ENTRIES
Max Wi-Fi Scan Result Entries
Found in: Component config >Wi-Fi Provisioning Manager

This sets the maximum number of entries of Wi-Fi scan results that will be kept by the provisioning
manager
Range:

• from 1 to 255
Default value:

• 16

CONFIG_WIFI_PROV_AUTOSTOP_TIMEOUT
Provisioning auto-stop timeout
Found in: Component config >Wi-Fi Provisioning Manager

Time (in seconds) after which theWi-Fi provisioning manager will auto-stop after connecting to aWi-Fi
network successfully.
Range:

• from 5 to 600
Default value:

• 30

CONFIG_WIFI_PROV_BLE_BONDING
Enable BLE bonding
Found in: Component config >Wi-Fi Provisioning Manager

This option is applicable only when provisioning transport is BLE.

CONFIG_WIFI_PROV_BLE_SEC_CONN
Enable BLE Secure connection flag
Found in: Component config >Wi-Fi Provisioning Manager

Used to enable Secure connection support when provisioning transport is BLE.
Default value:

• Yes (enabled) if CONFIG_BT_NIMBLE_ENABLED

CONFIG_WIFI_PROV_BLE_FORCE_ENCRYPTION
Force Link Encryption during characteristic Read / Write
Found in: Component config >Wi-Fi Provisioning Manager

Used to enforce link encryption when attempting to read / write characteristic

CONFIG_WIFI_PROV_KEEP_BLE_ON_AFTER_PROV
Keep BT on after provisioning is done
Found in: Component config >Wi-Fi Provisioning Manager

Espressif Systems 1628
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

CONFIG_WIFI_PROV_DISCONNECT_AFTER_PROV
Terminate connection after provisioning is done
Found in: Component config > Wi-Fi Provisioning Manager > CON-
FIG_WIFI_PROV_KEEP_BLE_ON_AFTER_PROV

Default value:
• Yes (enabled) if CONFIG_WIFI_PROV_KEEP_BLE_ON_AFTER_PROV

CONFIG_WIFI_PROV_STA_SCAN_METHOD
Wifi Provisioning Scan Method
Found in: Component config >Wi-Fi Provisioning Manager

Available options:

• All Channel Scan (CONFIG_WIFI_PROV_STA_ALL_CHANNEL_SCAN)
Scan will end after scanning the entire channel. This option is useful in Mesh WiFi
Systems.

• Fast Scan (CONFIG_WIFI_PROV_STA_FAST_SCAN)
Scan will end after an AP matching with the SSID has been detected.

CONFIG_IDF_EXPERIMENTAL_FEATURES

Make experimental features visible
Found in:

By enabling this option, ESP-IDF experimental feature options will be visible.
Note you should still enable a certain experimental feature option to use it, and you should read the
corresponding risk warning and known issue list carefully.
Default value:

• No (disabled)

Deprecated options and their replacements

• CONFIG_A2D_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_A2D_TRACE_LEVEL)
– CONFIG_A2D_TRACE_LEVEL_NONE
– CONFIG_A2D_TRACE_LEVEL_ERROR
– CONFIG_A2D_TRACE_LEVEL_WARNING
– CONFIG_A2D_TRACE_LEVEL_API
– CONFIG_A2D_TRACE_LEVEL_EVENT
– CONFIG_A2D_TRACE_LEVEL_DEBUG
– CONFIG_A2D_TRACE_LEVEL_VERBOSE

• CONFIG_ADC2_DISABLE_DAC (CONFIG_ADC_DISABLE_DAC)
• CONFIG_APPL_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_APPL_TRACE_LEVEL)

– CONFIG_APPL_TRACE_LEVEL_NONE
– CONFIG_APPL_TRACE_LEVEL_ERROR
– CONFIG_APPL_TRACE_LEVEL_WARNING
– CONFIG_APPL_TRACE_LEVEL_API
– CONFIG_APPL_TRACE_LEVEL_EVENT
– CONFIG_APPL_TRACE_LEVEL_DEBUG
– CONFIG_APPL_TRACE_LEVEL_VERBOSE

• CONFIG_APP_ANTI_ROLLBACK (CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK)
• CONFIG_APP_ROLLBACK_ENABLE (CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE)
• CONFIG_APP_SECURE_VERSION (CONFIG_BOOTLOADER_APP_SECURE_VERSION)

Espressif Systems 1629
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_APP_SECURE_VERSION_SIZE_EFUSE_FIELD (CONFIG_BOOTLOADER_APP_SEC_VER_SIZE_EFUSE_FIELD)
• CONFIG_AVCT_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_AVCT_TRACE_LEVEL)

– CONFIG_AVCT_TRACE_LEVEL_NONE
– CONFIG_AVCT_TRACE_LEVEL_ERROR
– CONFIG_AVCT_TRACE_LEVEL_WARNING
– CONFIG_AVCT_TRACE_LEVEL_API
– CONFIG_AVCT_TRACE_LEVEL_EVENT
– CONFIG_AVCT_TRACE_LEVEL_DEBUG
– CONFIG_AVCT_TRACE_LEVEL_VERBOSE

• CONFIG_AVDT_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_AVDT_TRACE_LEVEL)
– CONFIG_AVDT_TRACE_LEVEL_NONE
– CONFIG_AVDT_TRACE_LEVEL_ERROR
– CONFIG_AVDT_TRACE_LEVEL_WARNING
– CONFIG_AVDT_TRACE_LEVEL_API
– CONFIG_AVDT_TRACE_LEVEL_EVENT
– CONFIG_AVDT_TRACE_LEVEL_DEBUG
– CONFIG_AVDT_TRACE_LEVEL_VERBOSE

• CONFIG_AVRC_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_AVRC_TRACE_LEVEL)
– CONFIG_AVRC_TRACE_LEVEL_NONE
– CONFIG_AVRC_TRACE_LEVEL_ERROR
– CONFIG_AVRC_TRACE_LEVEL_WARNING
– CONFIG_AVRC_TRACE_LEVEL_API
– CONFIG_AVRC_TRACE_LEVEL_EVENT
– CONFIG_AVRC_TRACE_LEVEL_DEBUG
– CONFIG_AVRC_TRACE_LEVEL_VERBOSE

• CONFIG_BLE_ACTIVE_SCAN_REPORT_ADV_SCAN_RSP_INDIVIDUALLY (CON-
FIG_BT_BLE_ACT_SCAN_REP_ADV_SCAN)

• CONFIG_BLE_ESTABLISH_LINK_CONNECTION_TIMEOUT (CON-
FIG_BT_BLE_ESTAB_LINK_CONN_TOUT)

• CONFIG_BLE_HOST_QUEUE_CONGESTION_CHECK (CONFIG_BT_BLE_HOST_QUEUE_CONG_CHECK)
• CONFIG_BLE_MESH_GATT_PROXY (CONFIG_BLE_MESH_GATT_PROXY_SERVER)
• CONFIG_BLE_SMP_ENABLE (CONFIG_BT_BLE_SMP_ENABLE)
• CONFIG_BLUEDROID_MEM_DEBUG (CONFIG_BT_BLUEDROID_MEM_DEBUG)
• CONFIG_BLUEDROID_PINNED_TO_CORE_CHOICE (CONFIG_BT_BLUEDROID_PINNED_TO_CORE_CHOICE)

– CONFIG_BLUEDROID_PINNED_TO_CORE_0
– CONFIG_BLUEDROID_PINNED_TO_CORE_1

• CONFIG_BLUFI_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_BLUFI_TRACE_LEVEL)
– CONFIG_BLUFI_TRACE_LEVEL_NONE
– CONFIG_BLUFI_TRACE_LEVEL_ERROR
– CONFIG_BLUFI_TRACE_LEVEL_WARNING
– CONFIG_BLUFI_TRACE_LEVEL_API
– CONFIG_BLUFI_TRACE_LEVEL_EVENT
– CONFIG_BLUFI_TRACE_LEVEL_DEBUG
– CONFIG_BLUFI_TRACE_LEVEL_VERBOSE

• CONFIG_BNEP_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_BNEP_TRACE_LEVEL)
• CONFIG_BROWNOUT_DET (CONFIG_ESP_BROWNOUT_DET)
• CONFIG_BROWNOUT_DET_LVL_SEL (CONFIG_ESP_BROWNOUT_DET_LVL_SEL)

– CONFIG_BROWNOUT_DET_LVL_SEL_7
– CONFIG_BROWNOUT_DET_LVL_SEL_6
– CONFIG_BROWNOUT_DET_LVL_SEL_5
– CONFIG_BROWNOUT_DET_LVL_SEL_4
– CONFIG_BROWNOUT_DET_LVL_SEL_3
– CONFIG_BROWNOUT_DET_LVL_SEL_2

• CONFIG_BTC_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_BTC_TRACE_LEVEL)
– CONFIG_BTC_TRACE_LEVEL_NONE
– CONFIG_BTC_TRACE_LEVEL_ERROR
– CONFIG_BTC_TRACE_LEVEL_WARNING

Espressif Systems 1630
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

– CONFIG_BTC_TRACE_LEVEL_API
– CONFIG_BTC_TRACE_LEVEL_EVENT
– CONFIG_BTC_TRACE_LEVEL_DEBUG
– CONFIG_BTC_TRACE_LEVEL_VERBOSE

• CONFIG_BTC_TASK_STACK_SIZE (CONFIG_BT_BTC_TASK_STACK_SIZE)
• CONFIG_BTH_LOG_SDP_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_SDP_TRACE_LEVEL)

– CONFIG_SDP_TRACE_LEVEL_NONE
– CONFIG_SDP_TRACE_LEVEL_ERROR
– CONFIG_SDP_TRACE_LEVEL_WARNING
– CONFIG_SDP_TRACE_LEVEL_API
– CONFIG_SDP_TRACE_LEVEL_EVENT
– CONFIG_SDP_TRACE_LEVEL_DEBUG
– CONFIG_SDP_TRACE_LEVEL_VERBOSE

• CONFIG_BTIF_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_BTIF_TRACE_LEVEL)
– CONFIG_BTIF_TRACE_LEVEL_NONE
– CONFIG_BTIF_TRACE_LEVEL_ERROR
– CONFIG_BTIF_TRACE_LEVEL_WARNING
– CONFIG_BTIF_TRACE_LEVEL_API
– CONFIG_BTIF_TRACE_LEVEL_EVENT
– CONFIG_BTIF_TRACE_LEVEL_DEBUG
– CONFIG_BTIF_TRACE_LEVEL_VERBOSE

• CONFIG_BTM_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_BTM_TRACE_LEVEL)
– CONFIG_BTM_TRACE_LEVEL_NONE
– CONFIG_BTM_TRACE_LEVEL_ERROR
– CONFIG_BTM_TRACE_LEVEL_WARNING
– CONFIG_BTM_TRACE_LEVEL_API
– CONFIG_BTM_TRACE_LEVEL_EVENT
– CONFIG_BTM_TRACE_LEVEL_DEBUG
– CONFIG_BTM_TRACE_LEVEL_VERBOSE

• CONFIG_BTU_TASK_STACK_SIZE (CONFIG_BT_BTU_TASK_STACK_SIZE)
• CONFIG_BT_NIMBLE_ACL_BUF_COUNT (CONFIG_BT_NIMBLE_TRANSPORT_ACL_FROM_LL_COUNT)
• CONFIG_BT_NIMBLE_ACL_BUF_SIZE (CONFIG_BT_NIMBLE_TRANSPORT_ACL_SIZE)
• CONFIG_BT_NIMBLE_HCI_EVT_BUF_SIZE (CONFIG_BT_NIMBLE_TRANSPORT_EVT_SIZE)
• CONFIG_BT_NIMBLE_HCI_EVT_HI_BUF_COUNT (CONFIG_BT_NIMBLE_TRANSPORT_EVT_COUNT)
• CONFIG_BT_NIMBLE_HCI_EVT_LO_BUF_COUNT (CONFIG_BT_NIMBLE_TRANSPORT_EVT_DISCARD_COUNT)
• CONFIG_BT_NIMBLE_MSYS1_BLOCK_COUNT (CONFIG_BT_NIMBLE_MSYS_1_BLOCK_COUNT)
• CONFIG_BT_NIMBLE_TASK_STACK_SIZE (CONFIG_BT_NIMBLE_HOST_TASK_STACK_SIZE)
• CONFIG_CONSOLE_UART (CONFIG_ESP_CONSOLE_UART)

– CONFIG_CONSOLE_UART_DEFAULT
– CONFIG_CONSOLE_UART_CUSTOM
– CONFIG_CONSOLE_UART_NONE, CONFIG_ESP_CONSOLE_UART_NONE

• CONFIG_CONSOLE_UART_BAUDRATE (CONFIG_ESP_CONSOLE_UART_BAUDRATE)
• CONFIG_CONSOLE_UART_NUM (CONFIG_ESP_CONSOLE_UART_NUM)

– CONFIG_CONSOLE_UART_CUSTOM_NUM_0
– CONFIG_CONSOLE_UART_CUSTOM_NUM_1

• CONFIG_CONSOLE_UART_RX_GPIO (CONFIG_ESP_CONSOLE_UART_RX_GPIO)
• CONFIG_CONSOLE_UART_TX_GPIO (CONFIG_ESP_CONSOLE_UART_TX_GPIO)
• CONFIG_CXX_EXCEPTIONS (CONFIG_COMPILER_CXX_EXCEPTIONS)
• CONFIG_CXX_EXCEPTIONS_EMG_POOL_SIZE (CONFIG_COMPILER_CXX_EXCEPTIONS_EMG_POOL_SIZE)
• CONFIG_EFUSE_SECURE_VERSION_EMULATE (CONFIG_BOOTLOADER_EFUSE_SECURE_VERSION_EMULATE)
• CONFIG_ENABLE_STATIC_TASK_CLEAN_UP_HOOK (CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP)
• CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO (CON-

FIG_APPTRACE_ONPANIC_HOST_FLUSH_TMO)
• CONFIG_ESP32_APPTRACE_PENDING_DATA_SIZE_MAX (CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX)
• CONFIG_ESP32_APPTRACE_POSTMORTEM_FLUSH_TRAX_THRESH (CON-

FIG_APPTRACE_POSTMORTEM_FLUSH_THRESH)
• CONFIG_ESP32_CORE_DUMP_DECODE (CONFIG_ESP_COREDUMP_DECODE)

– CONFIG_ESP32_CORE_DUMP_DECODE_INFO

Espressif Systems 1631
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

– CONFIG_ESP32_CORE_DUMP_DECODE_DISABLE
• CONFIG_ESP32_CORE_DUMP_MAX_TASKS_NUM(CONFIG_ESP_COREDUMP_MAX_TASKS_NUM)
• CONFIG_ESP32_CORE_DUMP_STACK_SIZE (CONFIG_ESP_COREDUMP_STACK_SIZE)
• CONFIG_ESP32_CORE_DUMP_UART_DELAY (CONFIG_ESP_COREDUMP_UART_DELAY)
• CONFIG_ESP32_DEBUG_STUBS_ENABLE (CONFIG_ESP_DEBUG_STUBS_ENABLE)
• CONFIG_ESP32_GCOV_ENABLE (CONFIG_APPTRACE_GCOV_ENABLE)
• CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE (CON-

FIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE)
• CONFIG_ESP32_PHY_DEFAULT_INIT_IF_INVALID (CONFIG_ESP_PHY_DEFAULT_INIT_IF_INVALID)
• CONFIG_ESP32_PHY_INIT_DATA_ERROR (CONFIG_ESP_PHY_INIT_DATA_ERROR)
• CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION (CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION)
• CONFIG_ESP32_PHY_MAC_BB_PD (CONFIG_ESP_PHY_MAC_BB_PD)
• CONFIG_ESP32_PHY_MAX_WIFI_TX_POWER (CONFIG_ESP_PHY_MAX_WIFI_TX_POWER)
• CONFIG_ESP32_PTHREAD_STACK_MIN (CONFIG_PTHREAD_STACK_MIN)
• CONFIG_ESP32_PTHREAD_TASK_CORE_DEFAULT (CONFIG_PTHREAD_TASK_CORE_DEFAULT)

– CONFIG_ESP32_DEFAULT_PTHREAD_CORE_NO_AFFINITY
– CONFIG_ESP32_DEFAULT_PTHREAD_CORE_0
– CONFIG_ESP32_DEFAULT_PTHREAD_CORE_1

• CONFIG_ESP32_PTHREAD_TASK_NAME_DEFAULT (CONFIG_PTHREAD_TASK_NAME_DEFAULT)
• CONFIG_ESP32_PTHREAD_TASK_PRIO_DEFAULT (CONFIG_PTHREAD_TASK_PRIO_DEFAULT)
• CONFIG_ESP32_PTHREAD_TASK_STACK_SIZE_DEFAULT (CONFIG_PTHREAD_TASK_STACK_SIZE_DEFAULT)
• CONFIG_ESP32_REDUCE_PHY_TX_POWER (CONFIG_ESP_PHY_REDUCE_TX_POWER)
• CONFIG_ESP32_RTC_XTAL_BOOTSTRAP_CYCLES (CONFIG_ESP_SYSTEM_RTC_EXT_XTAL_BOOTSTRAP_CYCLES)
• CONFIG_ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN (CON-

FIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN)
• CONFIG_ESP32_WIFI_AMPDU_RX_ENABLED (CONFIG_ESP_WIFI_AMPDU_RX_ENABLED)
• CONFIG_ESP32_WIFI_AMPDU_TX_ENABLED (CONFIG_ESP_WIFI_AMPDU_TX_ENABLED)
• CONFIG_ESP32_WIFI_AMSDU_TX_ENABLED (CONFIG_ESP_WIFI_AMSDU_TX_ENABLED)
• CONFIG_ESP32_WIFI_CACHE_TX_BUFFER_NUM(CONFIG_ESP_WIFI_CACHE_TX_BUFFER_NUM)
• CONFIG_ESP32_WIFI_CSI_ENABLED (CONFIG_ESP_WIFI_CSI_ENABLED)
• CONFIG_ESP32_WIFI_DYNAMIC_RX_BUFFER_NUM(CONFIG_ESP_WIFI_DYNAMIC_RX_BUFFER_NUM)
• CONFIG_ESP32_WIFI_DYNAMIC_TX_BUFFER_NUM(CONFIG_ESP_WIFI_DYNAMIC_TX_BUFFER_NUM)
• CONFIG_ESP32_WIFI_ENABLE_WPA3_OWE_STA (CONFIG_ESP_WIFI_ENABLE_WPA3_OWE_STA)
• CONFIG_ESP32_WIFI_ENABLE_WPA3_SAE (CONFIG_ESP_WIFI_ENABLE_WPA3_SAE)
• CONFIG_ESP32_WIFI_IRAM_OPT (CONFIG_ESP_WIFI_IRAM_OPT)
• CONFIG_ESP32_WIFI_MGMT_SBUF_NUM (CONFIG_ESP_WIFI_MGMT_SBUF_NUM)
• CONFIG_ESP32_WIFI_NVS_ENABLED (CONFIG_ESP_WIFI_NVS_ENABLED)
• CONFIG_ESP32_WIFI_RX_BA_WIN (CONFIG_ESP_WIFI_RX_BA_WIN)
• CONFIG_ESP32_WIFI_RX_IRAM_OPT (CONFIG_ESP_WIFI_RX_IRAM_OPT)
• CONFIG_ESP32_WIFI_SOFTAP_BEACON_MAX_LEN (CONFIG_ESP_WIFI_SOFTAP_BEACON_MAX_LEN)
• CONFIG_ESP32_WIFI_STATIC_RX_BUFFER_NUM(CONFIG_ESP_WIFI_STATIC_RX_BUFFER_NUM)
• CONFIG_ESP32_WIFI_STATIC_TX_BUFFER_NUM(CONFIG_ESP_WIFI_STATIC_TX_BUFFER_NUM)
• CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE (CONFIG_ESP_COEX_SW_COEXIST_ENABLE)
• CONFIG_ESP32_WIFI_TASK_CORE_ID (CONFIG_ESP_WIFI_TASK_CORE_ID)

– CONFIG_ESP32_WIFI_TASK_PINNED_TO_CORE_0
– CONFIG_ESP32_WIFI_TASK_PINNED_TO_CORE_1

• CONFIG_ESP32_WIFI_TX_BA_WIN (CONFIG_ESP_WIFI_TX_BA_WIN)
• CONFIG_ESP32_WIFI_TX_BUFFER (CONFIG_ESP_WIFI_TX_BUFFER)

– CONFIG_ESP32_WIFI_STATIC_TX_BUFFER
– CONFIG_ESP32_WIFI_DYNAMIC_TX_BUFFER

• CONFIG_ESP_GRATUITOUS_ARP (CONFIG_LWIP_ESP_GRATUITOUS_ARP)
• CONFIG_ESP_SYSTEM_PD_FLASH (CONFIG_ESP_SLEEP_POWER_DOWN_FLASH)
• CONFIG_ESP_SYSTEM_PM_POWER_DOWN_CPU (CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP)
• CONFIG_ESP_TASK_WDT (CONFIG_ESP_TASK_WDT_INIT)
• CONFIG_ESP_WIFI_EXTERNAL_COEXIST_ENABLE (CONFIG_ESP_COEX_EXTERNAL_COEXIST_ENABLE)
• CONFIG_ESP_WIFI_SW_COEXIST_ENABLE (CONFIG_ESP_COEX_SW_COEXIST_ENABLE)
• CONFIG_EVENT_LOOP_PROFILING (CONFIG_ESP_EVENT_LOOP_PROFILING)

Espressif Systems 1632
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_EXTERNAL_COEX_ENABLE (CONFIG_ESP_COEX_EXTERNAL_COEXIST_ENABLE)
• CONFIG_FLASH_ENCRYPTION_ENABLED (CONFIG_SECURE_FLASH_ENC_ENABLED)
• CONFIG_FLASH_ENCRYPTION_UART_BOOTLOADER_ALLOW_CACHE (CON-

FIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE)
• CONFIG_FLASH_ENCRYPTION_UART_BOOTLOADER_ALLOW_ENCRYPT (CON-

FIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_ENC)
• CONFIG_GAP_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_GAP_TRACE_LEVEL)

– CONFIG_GAP_TRACE_LEVEL_NONE
– CONFIG_GAP_TRACE_LEVEL_ERROR
– CONFIG_GAP_TRACE_LEVEL_WARNING
– CONFIG_GAP_TRACE_LEVEL_API
– CONFIG_GAP_TRACE_LEVEL_EVENT
– CONFIG_GAP_TRACE_LEVEL_DEBUG
– CONFIG_GAP_TRACE_LEVEL_VERBOSE

• CONFIG_GARP_TMR_INTERVAL (CONFIG_LWIP_GARP_TMR_INTERVAL)
• CONFIG_GATTC_CACHE_NVS_FLASH (CONFIG_BT_GATTC_CACHE_NVS_FLASH)
• CONFIG_GATTC_ENABLE (CONFIG_BT_GATTC_ENABLE)
• CONFIG_GATTS_ENABLE (CONFIG_BT_GATTS_ENABLE)
• CONFIG_GATTS_SEND_SERVICE_CHANGE_MODE (CONFIG_BT_GATTS_SEND_SERVICE_CHANGE_MODE)

– CONFIG_GATTS_SEND_SERVICE_CHANGE_MANUAL
– CONFIG_GATTS_SEND_SERVICE_CHANGE_AUTO

• CONFIG_GATT_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_GATT_TRACE_LEVEL)
– CONFIG_GATT_TRACE_LEVEL_NONE
– CONFIG_GATT_TRACE_LEVEL_ERROR
– CONFIG_GATT_TRACE_LEVEL_WARNING
– CONFIG_GATT_TRACE_LEVEL_API
– CONFIG_GATT_TRACE_LEVEL_EVENT
– CONFIG_GATT_TRACE_LEVEL_DEBUG
– CONFIG_GATT_TRACE_LEVEL_VERBOSE

• CONFIG_GDBSTUB_MAX_TASKS (CONFIG_ESP_GDBSTUB_MAX_TASKS)
• CONFIG_GDBSTUB_SUPPORT_TASKS (CONFIG_ESP_GDBSTUB_SUPPORT_TASKS)
• CONFIG_HCI_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_HCI_TRACE_LEVEL)

– CONFIG_HCI_TRACE_LEVEL_NONE
– CONFIG_HCI_TRACE_LEVEL_ERROR
– CONFIG_HCI_TRACE_LEVEL_WARNING
– CONFIG_HCI_TRACE_LEVEL_API
– CONFIG_HCI_TRACE_LEVEL_EVENT
– CONFIG_HCI_TRACE_LEVEL_DEBUG
– CONFIG_HCI_TRACE_LEVEL_VERBOSE

• CONFIG_HID_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_HID_TRACE_LEVEL)
– CONFIG_HID_TRACE_LEVEL_NONE
– CONFIG_HID_TRACE_LEVEL_ERROR
– CONFIG_HID_TRACE_LEVEL_WARNING
– CONFIG_HID_TRACE_LEVEL_API
– CONFIG_HID_TRACE_LEVEL_EVENT
– CONFIG_HID_TRACE_LEVEL_DEBUG
– CONFIG_HID_TRACE_LEVEL_VERBOSE

• CONFIG_INT_WDT (CONFIG_ESP_INT_WDT)
• CONFIG_INT_WDT_CHECK_CPU1 (CONFIG_ESP_INT_WDT_CHECK_CPU1)
• CONFIG_INT_WDT_TIMEOUT_MS (CONFIG_ESP_INT_WDT_TIMEOUT_MS)
• CONFIG_IPC_TASK_STACK_SIZE (CONFIG_ESP_IPC_TASK_STACK_SIZE)
• CONFIG_L2CAP_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_L2CAP_TRACE_LEVEL)

– CONFIG_L2CAP_TRACE_LEVEL_NONE
– CONFIG_L2CAP_TRACE_LEVEL_ERROR
– CONFIG_L2CAP_TRACE_LEVEL_WARNING
– CONFIG_L2CAP_TRACE_LEVEL_API
– CONFIG_L2CAP_TRACE_LEVEL_EVENT

Espressif Systems 1633
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

– CONFIG_L2CAP_TRACE_LEVEL_DEBUG
– CONFIG_L2CAP_TRACE_LEVEL_VERBOSE

• CONFIG_L2_TO_L3_COPY (CONFIG_LWIP_L2_TO_L3_COPY)
• CONFIG_LOG_BOOTLOADER_LEVEL (CONFIG_BOOTLOADER_LOG_LEVEL)

– CONFIG_LOG_BOOTLOADER_LEVEL_NONE
– CONFIG_LOG_BOOTLOADER_LEVEL_ERROR
– CONFIG_LOG_BOOTLOADER_LEVEL_WARN
– CONFIG_LOG_BOOTLOADER_LEVEL_INFO
– CONFIG_LOG_BOOTLOADER_LEVEL_DEBUG
– CONFIG_LOG_BOOTLOADER_LEVEL_VERBOSE

• CONFIG_MAC_BB_PD (CONFIG_ESP_PHY_MAC_BB_PD)
• CONFIG_MAIN_TASK_STACK_SIZE (CONFIG_ESP_MAIN_TASK_STACK_SIZE)
• CONFIG_MCA_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_MCA_TRACE_LEVEL)

– CONFIG_MCA_TRACE_LEVEL_NONE
– CONFIG_MCA_TRACE_LEVEL_ERROR
– CONFIG_MCA_TRACE_LEVEL_WARNING
– CONFIG_MCA_TRACE_LEVEL_API
– CONFIG_MCA_TRACE_LEVEL_EVENT
– CONFIG_MCA_TRACE_LEVEL_DEBUG
– CONFIG_MCA_TRACE_LEVEL_VERBOSE

• CONFIG_MCPWM_ISR_IN_IRAM (CONFIG_MCPWM_ISR_IRAM_SAFE)
• CONFIG_NIMBLE_ATT_PREFERRED_MTU (CONFIG_BT_NIMBLE_ATT_PREFERRED_MTU)
• CONFIG_NIMBLE_CRYPTO_STACK_MBEDTLS (CONFIG_BT_NIMBLE_CRYPTO_STACK_MBEDTLS)
• CONFIG_NIMBLE_DEBUG (CONFIG_BT_NIMBLE_DEBUG)
• CONFIG_NIMBLE_GAP_DEVICE_NAME_MAX_LEN (CONFIG_BT_NIMBLE_GAP_DEVICE_NAME_MAX_LEN)
• CONFIG_NIMBLE_HS_FLOW_CTRL (CONFIG_BT_NIMBLE_HS_FLOW_CTRL)
• CONFIG_NIMBLE_HS_FLOW_CTRL_ITVL (CONFIG_BT_NIMBLE_HS_FLOW_CTRL_ITVL)
• CONFIG_NIMBLE_HS_FLOW_CTRL_THRESH (CONFIG_BT_NIMBLE_HS_FLOW_CTRL_THRESH)
• CONFIG_NIMBLE_HS_FLOW_CTRL_TX_ON_DISCONNECT (CON-

FIG_BT_NIMBLE_HS_FLOW_CTRL_TX_ON_DISCONNECT)
• CONFIG_NIMBLE_L2CAP_COC_MAX_NUM (CONFIG_BT_NIMBLE_L2CAP_COC_MAX_NUM)
• CONFIG_NIMBLE_MAX_BONDS (CONFIG_BT_NIMBLE_MAX_BONDS)
• CONFIG_NIMBLE_MAX_CCCDS (CONFIG_BT_NIMBLE_MAX_CCCDS)
• CONFIG_NIMBLE_MAX_CONNECTIONS (CONFIG_BT_NIMBLE_MAX_CONNECTIONS)
• CONFIG_NIMBLE_MEM_ALLOC_MODE (CONFIG_BT_NIMBLE_MEM_ALLOC_MODE)

– CONFIG_NIMBLE_MEM_ALLOC_MODE_INTERNAL
– CONFIG_NIMBLE_MEM_ALLOC_MODE_EXTERNAL
– CONFIG_NIMBLE_MEM_ALLOC_MODE_DEFAULT

• CONFIG_NIMBLE_MESH (CONFIG_BT_NIMBLE_MESH)
• CONFIG_NIMBLE_MESH_DEVICE_NAME (CONFIG_BT_NIMBLE_MESH_DEVICE_NAME)
• CONFIG_NIMBLE_MESH_FRIEND (CONFIG_BT_NIMBLE_MESH_FRIEND)
• CONFIG_NIMBLE_MESH_GATT_PROXY (CONFIG_BT_NIMBLE_MESH_GATT_PROXY)
• CONFIG_NIMBLE_MESH_LOW_POWER (CONFIG_BT_NIMBLE_MESH_LOW_POWER)
• CONFIG_NIMBLE_MESH_PB_ADV (CONFIG_BT_NIMBLE_MESH_PB_ADV)
• CONFIG_NIMBLE_MESH_PB_GATT (CONFIG_BT_NIMBLE_MESH_PB_GATT)
• CONFIG_NIMBLE_MESH_PROV (CONFIG_BT_NIMBLE_MESH_PROV)
• CONFIG_NIMBLE_MESH_PROXY (CONFIG_BT_NIMBLE_MESH_PROXY)
• CONFIG_NIMBLE_MESH_RELAY (CONFIG_BT_NIMBLE_MESH_RELAY)
• CONFIG_NIMBLE_NVS_PERSIST (CONFIG_BT_NIMBLE_NVS_PERSIST)
• CONFIG_NIMBLE_PINNED_TO_CORE_CHOICE (CONFIG_BT_NIMBLE_PINNED_TO_CORE_CHOICE)

– CONFIG_NIMBLE_PINNED_TO_CORE_0
– CONFIG_NIMBLE_PINNED_TO_CORE_1

• CONFIG_NIMBLE_ROLE_BROADCASTER (CONFIG_BT_NIMBLE_ROLE_BROADCASTER)
• CONFIG_NIMBLE_ROLE_CENTRAL (CONFIG_BT_NIMBLE_ROLE_CENTRAL)
• CONFIG_NIMBLE_ROLE_OBSERVER (CONFIG_BT_NIMBLE_ROLE_OBSERVER)
• CONFIG_NIMBLE_ROLE_PERIPHERAL (CONFIG_BT_NIMBLE_ROLE_PERIPHERAL)
• CONFIG_NIMBLE_RPA_TIMEOUT (CONFIG_BT_NIMBLE_RPA_TIMEOUT)

Espressif Systems 1634
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_NIMBLE_SM_LEGACY (CONFIG_BT_NIMBLE_SM_LEGACY)
• CONFIG_NIMBLE_SM_SC (CONFIG_BT_NIMBLE_SM_SC)
• CONFIG_NIMBLE_SM_SC_DEBUG_KEYS (CONFIG_BT_NIMBLE_SM_SC_DEBUG_KEYS)
• CONFIG_NIMBLE_SVC_GAP_APPEARANCE (CONFIG_BT_NIMBLE_SVC_GAP_APPEARANCE)
• CONFIG_NIMBLE_SVC_GAP_DEVICE_NAME (CONFIG_BT_NIMBLE_SVC_GAP_DEVICE_NAME)
• CONFIG_NIMBLE_TASK_STACK_SIZE (CONFIG_BT_NIMBLE_HOST_TASK_STACK_SIZE)
• CONFIG_NO_BLOBS (CONFIG_APP_NO_BLOBS)
• CONFIG_OPTIMIZATION_ASSERTION_LEVEL (CONFIG_COMPILER_OPTIMIZATION_ASSERTION_LEVEL)

– CONFIG_OPTIMIZATION_ASSERTIONS_ENABLED
– CONFIG_OPTIMIZATION_ASSERTIONS_SILENT
– CONFIG_OPTIMIZATION_ASSERTIONS_DISABLED

• CONFIG_OPTIMIZATION_COMPILER (CONFIG_COMPILER_OPTIMIZATION)
– CONFIG_OPTIMIZATION_LEVEL_DEBUG,CONFIG_COMPILER_OPTIMIZATION_LEVEL_DEBUG
– CONFIG_OPTIMIZATION_LEVEL_RELEASE, CONFIG_COMPILER_OPTIMIZATION_LEVEL_RELEASE

• CONFIG_OSI_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_OSI_TRACE_LEVEL)
– CONFIG_OSI_TRACE_LEVEL_NONE
– CONFIG_OSI_TRACE_LEVEL_ERROR
– CONFIG_OSI_TRACE_LEVEL_WARNING
– CONFIG_OSI_TRACE_LEVEL_API
– CONFIG_OSI_TRACE_LEVEL_EVENT
– CONFIG_OSI_TRACE_LEVEL_DEBUG
– CONFIG_OSI_TRACE_LEVEL_VERBOSE

• CONFIG_OTA_ALLOW_HTTP (CONFIG_ESP_HTTPS_OTA_ALLOW_HTTP)
• CONFIG_PAN_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_PAN_TRACE_LEVEL)

– CONFIG_PAN_TRACE_LEVEL_NONE
– CONFIG_PAN_TRACE_LEVEL_ERROR
– CONFIG_PAN_TRACE_LEVEL_WARNING
– CONFIG_PAN_TRACE_LEVEL_API
– CONFIG_PAN_TRACE_LEVEL_EVENT
– CONFIG_PAN_TRACE_LEVEL_DEBUG
– CONFIG_PAN_TRACE_LEVEL_VERBOSE

• CONFIG_POST_EVENTS_FROM_IRAM_ISR (CONFIG_ESP_EVENT_POST_FROM_IRAM_ISR)
• CONFIG_POST_EVENTS_FROM_ISR (CONFIG_ESP_EVENT_POST_FROM_ISR)
• CONFIG_PPP_CHAP_SUPPORT (CONFIG_LWIP_PPP_CHAP_SUPPORT)
• CONFIG_PPP_DEBUG_ON (CONFIG_LWIP_PPP_DEBUG_ON)
• CONFIG_PPP_MPPE_SUPPORT (CONFIG_LWIP_PPP_MPPE_SUPPORT)
• CONFIG_PPP_MSCHAP_SUPPORT (CONFIG_LWIP_PPP_MSCHAP_SUPPORT)
• CONFIG_PPP_NOTIFY_PHASE_SUPPORT (CONFIG_LWIP_PPP_NOTIFY_PHASE_SUPPORT)
• CONFIG_PPP_PAP_SUPPORT (CONFIG_LWIP_PPP_PAP_SUPPORT)
• CONFIG_PPP_SUPPORT (CONFIG_LWIP_PPP_SUPPORT)
• CONFIG_REDUCE_PHY_TX_POWER (CONFIG_ESP_PHY_REDUCE_TX_POWER)
• CONFIG_RFCOMM_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_RFCOMM_TRACE_LEVEL)

– CONFIG_RFCOMM_TRACE_LEVEL_NONE
– CONFIG_RFCOMM_TRACE_LEVEL_ERROR
– CONFIG_RFCOMM_TRACE_LEVEL_WARNING
– CONFIG_RFCOMM_TRACE_LEVEL_API
– CONFIG_RFCOMM_TRACE_LEVEL_EVENT
– CONFIG_RFCOMM_TRACE_LEVEL_DEBUG
– CONFIG_RFCOMM_TRACE_LEVEL_VERBOSE

• CONFIG_SEMIHOSTFS_MAX_MOUNT_POINTS (CONFIG_VFS_SEMIHOSTFS_MAX_MOUNT_POINTS)
• CONFIG_SMP_INITIAL_TRACE_LEVEL (CONFIG_BT_LOG_SMP_TRACE_LEVEL)

– CONFIG_SMP_TRACE_LEVEL_NONE
– CONFIG_SMP_TRACE_LEVEL_ERROR
– CONFIG_SMP_TRACE_LEVEL_WARNING
– CONFIG_SMP_TRACE_LEVEL_API
– CONFIG_SMP_TRACE_LEVEL_EVENT
– CONFIG_SMP_TRACE_LEVEL_DEBUG

Espressif Systems 1635
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

– CONFIG_SMP_TRACE_LEVEL_VERBOSE
• CONFIG_SMP_SLAVE_CON_PARAMS_UPD_ENABLE (CONFIG_BT_SMP_SLAVE_CON_PARAMS_UPD_ENABLE)
• CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS (CONFIG_SPI_FLASH_DANGEROUS_WRITE)

– CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ABORTS
– CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_FAILS
– CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED

• CONFIG_STACK_CHECK_MODE (CONFIG_COMPILER_STACK_CHECK_MODE)
– CONFIG_STACK_CHECK_NONE
– CONFIG_STACK_CHECK_NORM
– CONFIG_STACK_CHECK_STRONG
– CONFIG_STACK_CHECK_ALL

• CONFIG_SUPPORT_TERMIOS (CONFIG_VFS_SUPPORT_TERMIOS)
• CONFIG_SUPPRESS_SELECT_DEBUG_OUTPUT (CONFIG_VFS_SUPPRESS_SELECT_DEBUG_OUTPUT)
• CONFIG_SW_COEXIST_ENABLE (CONFIG_ESP_COEX_SW_COEXIST_ENABLE)
• CONFIG_SYSTEM_EVENT_QUEUE_SIZE (CONFIG_ESP_SYSTEM_EVENT_QUEUE_SIZE)
• CONFIG_SYSTEM_EVENT_TASK_STACK_SIZE (CONFIG_ESP_SYSTEM_EVENT_TASK_STACK_SIZE)
• CONFIG_SYSVIEW_BUF_WAIT_TMO (CONFIG_APPTRACE_SV_BUF_WAIT_TMO)
• CONFIG_SYSVIEW_ENABLE (CONFIG_APPTRACE_SV_ENABLE)
• CONFIG_SYSVIEW_EVT_IDLE_ENABLE (CONFIG_APPTRACE_SV_EVT_IDLE_ENABLE)
• CONFIG_SYSVIEW_EVT_ISR_ENTER_ENABLE (CONFIG_APPTRACE_SV_EVT_ISR_ENTER_ENABLE)
• CONFIG_SYSVIEW_EVT_ISR_EXIT_ENABLE (CONFIG_APPTRACE_SV_EVT_ISR_EXIT_ENABLE)
• CONFIG_SYSVIEW_EVT_ISR_TO_SCHEDULER_ENABLE (CONFIG_APPTRACE_SV_EVT_ISR_TO_SCHED_ENABLE)
• CONFIG_SYSVIEW_EVT_OVERFLOW_ENABLE (CONFIG_APPTRACE_SV_EVT_OVERFLOW_ENABLE)
• CONFIG_SYSVIEW_EVT_TASK_CREATE_ENABLE (CONFIG_APPTRACE_SV_EVT_TASK_CREATE_ENABLE)
• CONFIG_SYSVIEW_EVT_TASK_START_EXEC_ENABLE (CONFIG_APPTRACE_SV_EVT_TASK_START_EXEC_ENABLE)
• CONFIG_SYSVIEW_EVT_TASK_START_READY_ENABLE (CONFIG_APPTRACE_SV_EVT_TASK_START_READY_ENABLE)
• CONFIG_SYSVIEW_EVT_TASK_STOP_EXEC_ENABLE (CONFIG_APPTRACE_SV_EVT_TASK_STOP_EXEC_ENABLE)
• CONFIG_SYSVIEW_EVT_TASK_STOP_READY_ENABLE (CONFIG_APPTRACE_SV_EVT_TASK_STOP_READY_ENABLE)
• CONFIG_SYSVIEW_EVT_TASK_TERMINATE_ENABLE (CONFIG_APPTRACE_SV_EVT_TASK_TERMINATE_ENABLE)
• CONFIG_SYSVIEW_EVT_TIMER_ENTER_ENABLE (CONFIG_APPTRACE_SV_EVT_TIMER_ENTER_ENABLE)
• CONFIG_SYSVIEW_EVT_TIMER_EXIT_ENABLE (CONFIG_APPTRACE_SV_EVT_TIMER_EXIT_ENABLE)
• CONFIG_SYSVIEW_MAX_TASKS (CONFIG_APPTRACE_SV_MAX_TASKS)
• CONFIG_SYSVIEW_TS_SOURCE (CONFIG_APPTRACE_SV_TS_SOURCE)

– CONFIG_SYSVIEW_TS_SOURCE_CCOUNT
– CONFIG_SYSVIEW_TS_SOURCE_ESP_TIMER

• CONFIG_TASK_WDT (CONFIG_ESP_TASK_WDT_INIT)
• CONFIG_TASK_WDT_CHECK_IDLE_TASK_CPU0 (CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU0)
• CONFIG_TASK_WDT_CHECK_IDLE_TASK_CPU1 (CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU1)
• CONFIG_TASK_WDT_PANIC (CONFIG_ESP_TASK_WDT_PANIC)
• CONFIG_TASK_WDT_TIMEOUT_S (CONFIG_ESP_TASK_WDT_TIMEOUT_S)
• CONFIG_TCPIP_RECVMBOX_SIZE (CONFIG_LWIP_TCPIP_RECVMBOX_SIZE)
• CONFIG_TCPIP_TASK_AFFINITY (CONFIG_LWIP_TCPIP_TASK_AFFINITY)

– CONFIG_TCPIP_TASK_AFFINITY_NO_AFFINITY
– CONFIG_TCPIP_TASK_AFFINITY_CPU0
– CONFIG_TCPIP_TASK_AFFINITY_CPU1

• CONFIG_TCPIP_TASK_STACK_SIZE (CONFIG_LWIP_TCPIP_TASK_STACK_SIZE)
• CONFIG_TCP_MAXRTX (CONFIG_LWIP_TCP_MAXRTX)
• CONFIG_TCP_MSL (CONFIG_LWIP_TCP_MSL)
• CONFIG_TCP_MSS (CONFIG_LWIP_TCP_MSS)
• CONFIG_TCP_OVERSIZE (CONFIG_LWIP_TCP_OVERSIZE)

– CONFIG_TCP_OVERSIZE_MSS
– CONFIG_TCP_OVERSIZE_QUARTER_MSS
– CONFIG_TCP_OVERSIZE_DISABLE

• CONFIG_TCP_QUEUE_OOSEQ (CONFIG_LWIP_TCP_QUEUE_OOSEQ)
• CONFIG_TCP_RECVMBOX_SIZE (CONFIG_LWIP_TCP_RECVMBOX_SIZE)
• CONFIG_TCP_SND_BUF_DEFAULT (CONFIG_LWIP_TCP_SND_BUF_DEFAULT)
• CONFIG_TCP_SYNMAXRTX (CONFIG_LWIP_TCP_SYNMAXRTX)

Espressif Systems 1636
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• CONFIG_TCP_WND_DEFAULT (CONFIG_LWIP_TCP_WND_DEFAULT)
• CONFIG_TIMER_QUEUE_LENGTH (CONFIG_FREERTOS_TIMER_QUEUE_LENGTH)
• CONFIG_TIMER_TASK_PRIORITY (CONFIG_FREERTOS_TIMER_TASK_PRIORITY)
• CONFIG_TIMER_TASK_STACK_DEPTH (CONFIG_FREERTOS_TIMER_TASK_STACK_DEPTH)
• CONFIG_TIMER_TASK_STACK_SIZE (CONFIG_ESP_TIMER_TASK_STACK_SIZE)
• CONFIG_UDP_RECVMBOX_SIZE (CONFIG_LWIP_UDP_RECVMBOX_SIZE)
• CONFIG_WARN_WRITE_STRINGS (CONFIG_COMPILER_WARN_WRITE_STRINGS)
• CONFIG_WPA_11KV_SUPPORT (CONFIG_ESP_WIFI_11KV_SUPPORT)
• CONFIG_WPA_11R_SUPPORT (CONFIG_ESP_WIFI_11R_SUPPORT)
• CONFIG_WPA_DEBUG_PRINT (CONFIG_ESP_WIFI_DEBUG_PRINT)
• CONFIG_WPA_DPP_SUPPORT (CONFIG_ESP_WIFI_DPP_SUPPORT)
• CONFIG_WPA_MBEDTLS_CRYPTO (CONFIG_ESP_WIFI_MBEDTLS_CRYPTO)
• CONFIG_WPA_MBEDTLS_TLS_CLIENT (CONFIG_ESP_WIFI_MBEDTLS_TLS_CLIENT)
• CONFIG_WPA_MBO_SUPPORT (CONFIG_ESP_WIFI_MBO_SUPPORT)
• CONFIG_WPA_SCAN_CACHE (CONFIG_ESP_WIFI_SCAN_CACHE)
• CONFIG_WPA_SUITE_B_192 (CONFIG_ESP_WIFI_SUITE_B_192)
• CONFIG_WPA_TESTING_OPTIONS (CONFIG_ESP_WIFI_TESTING_OPTIONS)
• CONFIG_WPA_WAPI_PSK (CONFIG_ESP_WIFI_WAPI_PSK)
• CONFIG_WPA_WPS_SOFTAP_REGISTRAR (CONFIG_ESP_WIFI_WPS_SOFTAP_REGISTRAR)
• CONFIG_WPA_WPS_STRICT (CONFIG_ESP_WIFI_WPS_STRICT)

2.8 Provisioning API

2.8.1 Protocol Communication

Overview

The Protocol Communication (protocomm) component manages secure sessions and provides the framework for
multiple transports. The application can also use the protocomm layer directly to have application-specific extensions
for the provisioning or non-provisioning use cases.
Following features are available for provisioning:

• Communication security at the application level
– protocomm_security0 (no security)
– protocomm_security1 (Curve25519 key exchange + AES-CTR encryption/decryption)
– protocomm_security2 (SRP6a-based key exchange + AES-GCM encryption/decryption)

• Proof-of-possession (support with protocomm_security1 only)
• Salt and Verifier (support with protocomm_security2 only)

Protocomm internally uses protobuf (protocol buffers) for secure session establishment. Users can choose to imple-
ment their own security (even without using protobuf). Protocomm can also be used without any security layer.
Protocomm provides the framework for various transports:

• Bluetooth LE
• Wi-Fi (SoftAP + HTTPD)
• Console, in which case the handler invocation is automatically taken care of on the device side. See Transport
Examples below for code snippets.

Note that for protocomm_security1 and protocomm_security2, the client still needs to establish sessions by perform-
ing the two-way handshake. See Unified Provisioning for more details about the secure handshake logic.

Espressif Systems 1637
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enabling Protocomm Security Version

The protocomm component provides a project configuration menu to enable/disable support of respective security
versions. The respective configuration options are as follows:

• Supportprotocomm_security0, with no security: CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_0,
this option is enabled by default.

• Support protocomm_security1 with Curve25519 key exchange + AES-CTR encryption/decryption:
CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_1, this option is enabled by default.

• Support protocomm_security2 with SRP6a-based key exchange + AES-GCM encryption/decryption:
CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_2.

Note: Enabling multiple security versions at once offers the ability to control them dynamically but also increases
the firmware size.

SoftAP + HTTP Transport Example with Security 2

For sample usage, see wifi_provisioning/src/scheme_softap.c.

/* The endpoint handler to be registered with protocomm. This simply echoes back␣
↪→the received data. */
esp_err_t echo_req_handler (uint32_t session_id,

const uint8_t *inbuf, ssize_t inlen,
uint8_t **outbuf, ssize_t *outlen,
void *priv_data)

{
/* Session ID may be used for persistence. */
printf("Session ID : %d", session_id);

/* Echo back the received data. */
outlen = inlen; / Output the data length updated. */
outbuf = malloc(inlen); / This is to be deallocated outside. */
memcpy(*outbuf, inbuf, inlen);

/* Private data that was passed at the time of endpoint creation. */
uint32_t *priv = (uint32_t *) priv_data;
if (priv) {

printf("Private data : %d", *priv);
}

return ESP_OK;
}

static const char sec2_salt[] = {0xf7, 0x5f, 0xe2, 0xbe, 0xba, 0x7c, 0x81, 0xcd};
static const char sec2_verifier[] = {0xbf, 0x86, 0xce, 0x63, 0x8a, 0xbb, 0x7e,␣
↪→0x2f, 0x38, 0xa8, 0x19, 0x1b, 0x35,

0xc9, 0xe3, 0xbe, 0xc3, 0x2b, 0x45, 0xee, 0x10, 0x74, 0x22, 0x1a, 0x95, 0xbe,␣
↪→0x62, 0xf7, 0x0c, 0x65, 0x83, 0x50,

0x08, 0xef, 0xaf, 0xa5, 0x94, 0x4b, 0xcb, 0xe1, 0xce, 0x59, 0x2a, 0xe8, 0x7b,␣
↪→0x27, 0xc8, 0x72, 0x26, 0x71, 0xde,

0xb2, 0xf2, 0x80, 0x02, 0xdd, 0x11, 0xf0, 0x38, 0x0e, 0x95, 0x25, 0x00, 0xcf,␣
↪→0xb3, 0x3f, 0xf0, 0x73, 0x2a, 0x25,

0x03, 0xe8, 0x51, 0x72, 0xef, 0x6d, 0x3e, 0x14, 0xb9, 0x2e, 0x9f, 0x2a, 0x90,␣
↪→0x9e, 0x26, 0xb6, 0x3e, 0xc7, 0xe4,

0x9f, 0xe3, 0x20, 0xce, 0x28, 0x7c, 0xbf, 0x89, 0x50, 0xc9, 0xb6, 0xec, 0xdd,␣
↪→0x81, 0x18, 0xf1, 0x1a, 0xd9, 0x7a,

0x21, 0x99, 0xf1, 0xee, 0x71, 0x2f, 0xcc, 0x93, 0x16, 0x34, 0x0c, 0x79, 0x46,␣
↪→0x23, 0xe4, 0x32, 0xec, 0x2d, 0x9e,

0x18, 0xa6, 0xb9, 0xbb, 0x0a, 0xcf, 0xc4, 0xa8, 0x32, 0xc0, 0x1c, 0x32, 0xa3,␣
↪→0x97, 0x66, 0xf8, 0x30, 0xb2, 0xda, (continues on next page)

Espressif Systems 1638
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wifi_provisioning/src/scheme_softap.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
0xf9, 0x8d, 0xc3, 0x72, 0x72, 0x5f, 0xe5, 0xee, 0xc3, 0x5c, 0x24, 0xc8, 0xdd,␣

↪→0x54, 0x49, 0xfc, 0x12, 0x91, 0x81,
0x9c, 0xc3, 0xac, 0x64, 0x5e, 0xd6, 0x41, 0x88, 0x2f, 0x23, 0x66, 0xc8, 0xac,␣

↪→0xb0, 0x35, 0x0b, 0xf6, 0x9c, 0x88,
0x6f, 0xac, 0xe1, 0xf4, 0xca, 0xc9, 0x07, 0x04, 0x11, 0xda, 0x90, 0x42, 0xa9,␣

↪→0xf1, 0x97, 0x3d, 0x94, 0x65, 0xe4,
0xfb, 0x52, 0x22, 0x3b, 0x7a, 0x7b, 0x9e, 0xe9, 0xee, 0x1c, 0x44, 0xd0, 0x73,␣

↪→0x72, 0x2a, 0xca, 0x85, 0x19, 0x4a,
0x60, 0xce, 0x0a, 0xc8, 0x7d, 0x57, 0xa4, 0xf8, 0x77, 0x22, 0xc1, 0xa5, 0xfa,␣

↪→0xfb, 0x7b, 0x91, 0x3b, 0xfe, 0x87,
0x5f, 0xfe, 0x05, 0xd2, 0xd6, 0xd3, 0x74, 0xe5, 0x2e, 0x68, 0x79, 0x34, 0x70,␣

↪→0x40, 0x12, 0xa8, 0xe1, 0xb4, 0x6c,
0xaa, 0x46, 0x73, 0xcd, 0x8d, 0x17, 0x72, 0x67, 0x32, 0x42, 0xdc, 0x10, 0xd3,␣

↪→0x71, 0x7e, 0x8b, 0x00, 0x46, 0x9b,
0x0a, 0xe9, 0xb4, 0x0f, 0xeb, 0x70, 0x52, 0xdd, 0x0a, 0x1c, 0x7e, 0x2e, 0xb0,␣

↪→0x61, 0xa6, 0xe1, 0xa3, 0x34, 0x4b,
0x2a, 0x3c, 0xc4, 0x5d, 0x42, 0x05, 0x58, 0x25, 0xd3, 0xca, 0x96, 0x5c, 0xb9,␣

↪→0x52, 0xf9, 0xe9, 0x80, 0x75, 0x3d,
0xc8, 0x9f, 0xc7, 0xb2, 0xaa, 0x95, 0x2e, 0x76, 0xb3, 0xe1, 0x48, 0xc1, 0x0a,␣

↪→0xa1, 0x0a, 0xe8, 0xaf, 0x41, 0x28,
0xd2, 0x16, 0xe1, 0xa6, 0xd0, 0x73, 0x51, 0x73, 0x79, 0x98, 0xd9, 0xb9, 0x00,␣

↪→0x50, 0xa2, 0x4d, 0x99, 0x18, 0x90,
0x70, 0x27, 0xe7, 0x8d, 0x56, 0x45, 0x34, 0x1f, 0xb9, 0x30, 0xda, 0xec, 0x4a,␣

↪→0x08, 0x27, 0x9f, 0xfa, 0x59, 0x2e,
0x36, 0x77, 0x00, 0xe2, 0xb6, 0xeb, 0xd1, 0x56, 0x50, 0x8e};

/* The example function for launching a protocomm instance over HTTP. */
protocomm_t *start_pc()
{

protocomm_t *pc = protocomm_new();

/* Config for protocomm_httpd_start(). */
protocomm_httpd_config_t pc_config = {

.data = {

.config = PROTOCOMM_HTTPD_DEFAULT_CONFIG()
}

};

/* Start the protocomm server on top of HTTP. */
protocomm_httpd_start(pc, &pc_config);

/* Create Security2 params object from salt and verifier. It must be valid␣
↪→throughout the scope of protocomm endpoint. This does not need to be static, i.e.
↪→, could be dynamically allocated and freed at the time of endpoint removal. */

const static protocomm_security2_params_t sec2_params = {
.salt = (const uint8_t *) salt,
.salt_len = sizeof(salt),
.verifier = (const uint8_t *) verifier,
.verifier_len = sizeof(verifier),

};

/* Set security for communication at the application level. Just like for␣
↪→request handlers, setting security creates an endpoint and registers the handler␣
↪→provided by protocomm_security1. One can similarly use protocomm_security0. Only␣
↪→one type of security can be set for a protocomm instance at a time. */

protocomm_set_security(pc, "security_endpoint", &protocomm_security2, &sec2_
↪→params);

/* Private data passed to the endpoint must be valid throughout the scope of␣
↪→protocomm endpoint. This need not be static, i.e., could be dynamically␣
↪→allocated and freed at the time of endpoint removal. */ (continues on next page)

Espressif Systems 1639
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
static uint32_t priv_data = 1234;

/* Add a new endpoint for the protocomm instance, identified by a unique name,␣
↪→and register a handler function along with the private data to be passed at the␣
↪→time of handler execution. Multiple endpoints can be added as long as they are␣
↪→identified by unique names. */

protocomm_add_endpoint(pc, "echo_req_endpoint",
echo_req_handler, (void *) &priv_data);

return pc;
}

/* The example function for stopping a protocomm instance. */
void stop_pc(protocomm_t *pc)
{

/* Remove the endpoint identified by its unique name. */
protocomm_remove_endpoint(pc, "echo_req_endpoint");

/* Remove the security endpoint identified by its name. */
protocomm_unset_security(pc, "security_endpoint");

/* Stop the HTTP server. */
protocomm_httpd_stop(pc);

/* Delete, namely deallocate the protocomm instance. */
protocomm_delete(pc);

}

SoftAP + HTTP Transport Example with Security 1

For sample usage, see wifi_provisioning/src/scheme_softap.c.

/* The endpoint handler to be registered with protocomm. This simply echoes back␣
↪→the received data. */
esp_err_t echo_req_handler (uint32_t session_id,

const uint8_t *inbuf, ssize_t inlen,
uint8_t **outbuf, ssize_t *outlen,
void *priv_data)

{
/* Session ID may be used for persistence. */
printf("Session ID : %d", session_id);

/* Echo back the received data. */
outlen = inlen; / Output the data length updated. */
outbuf = malloc(inlen); / This is to be deallocated outside. */
memcpy(*outbuf, inbuf, inlen);

/* Private data that was passed at the time of endpoint creation. */
uint32_t *priv = (uint32_t *) priv_data;
if (priv) {

printf("Private data : %d", *priv);
}

return ESP_OK;
}

/* The example function for launching a protocomm instance over HTTP. */
protocomm_t *start_pc(const char *pop_string)
{

protocomm_t *pc = protocomm_new();

(continues on next page)

Espressif Systems 1640
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wifi_provisioning/src/scheme_softap.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

/* Config for protocomm_httpd_start(). */
protocomm_httpd_config_t pc_config = {

.data = {

.config = PROTOCOMM_HTTPD_DEFAULT_CONFIG()
}

};

/* Start the protocomm server on top of HTTP. */
protocomm_httpd_start(pc, &pc_config);

/* Create security1 params object from pop_string. It must be valid throughout␣
↪→the scope of protocomm endpoint. This need not be static, i.e., could be␣
↪→dynamically allocated and freed at the time of endpoint removal. */

const static protocomm_security1_params_t sec1_params = {
.data = (const uint8_t *) strdup(pop_string),
.len = strlen(pop_string)

};

/* Set security for communication at the application level. Just like for␣
↪→request handlers, setting security creates an endpoint and registers the handler␣
↪→provided by protocomm_security1. One can similarly use protocomm_security0. Only␣
↪→one type of security can be set for a protocomm instance at a time. */

protocomm_set_security(pc, "security_endpoint", &protocomm_security1, &sec1_
↪→params);

/* Private data passed to the endpoint must be valid throughout the scope of␣
↪→protocomm endpoint. This need not be static, i.e., could be dynamically␣
↪→allocated and freed at the time of endpoint removal. */

static uint32_t priv_data = 1234;

/* Add a new endpoint for the protocomm instance identified by a unique name,␣
↪→and register a handler function along with the private data to be passed at the␣
↪→time of handler execution. Multiple endpoints can be added as long as they are␣
↪→identified by unique names. */

protocomm_add_endpoint(pc, "echo_req_endpoint",
echo_req_handler, (void *) &priv_data);

return pc;
}

/* The example function for stopping a protocomm instance. */
void stop_pc(protocomm_t *pc)
{

/* Remove the endpoint identified by its unique name. */
protocomm_remove_endpoint(pc, "echo_req_endpoint");

/* Remove the security endpoint identified by its name. */
protocomm_unset_security(pc, "security_endpoint");

/* Stop the HTTP server. */
protocomm_httpd_stop(pc);

/* Delete, namely deallocate the protocomm instance. */
protocomm_delete(pc);

}

Bluetooth LE Transport Example with Security 0

For sample usage, see wifi_provisioning/src/scheme_ble.c.

Espressif Systems 1641
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wifi_provisioning/src/scheme_ble.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

/* The example function for launching a secure protocomm instance over Bluetooth␣
↪→LE. */
protocomm_t *start_pc()
{

protocomm_t *pc = protocomm_new();

/* Endpoint UUIDs */
protocomm_ble_name_uuid_t nu_lookup_table[] = {

{"security_endpoint", 0xFF51},
{"echo_req_endpoint", 0xFF52}

};

/* Config for protocomm_ble_start(). */
protocomm_ble_config_t config = {

.service_uuid = {
/* LSB <---------------------------------------
* ---------------------------------------> MSB */
0xfb, 0x34, 0x9b, 0x5f, 0x80, 0x00, 0x00, 0x80,
0x00, 0x10, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00,

},
.nu_lookup_count = sizeof(nu_lookup_table)/sizeof(nu_lookup_table[0]),
.nu_lookup = nu_lookup_table

};

/* Start protocomm layer on top of Bluetooth LE. */
protocomm_ble_start(pc, &config);

/* For protocomm_security0, Proof of Possession is not used, and can be kept␣
↪→NULL. */

protocomm_set_security(pc, "security_endpoint", &protocomm_security0, NULL);
protocomm_add_endpoint(pc, "echo_req_endpoint", echo_req_handler, NULL);
return pc;

}

/* The example function for stopping a protocomm instance. */
void stop_pc(protocomm_t *pc)
{

protocomm_remove_endpoint(pc, "echo_req_endpoint");
protocomm_unset_security(pc, "security_endpoint");

/* Stop the Bluetooth LE protocomm service. */
protocomm_ble_stop(pc);

protocomm_delete(pc);
}

API Reference

Header File
• components/protocomm/include/common/protocomm.h

Functions
protocomm_t *protocomm_new(void)

Create a new protocomm instance.
This API will return a new dynamically allocated protocomm instance with all elements of the protocomm_t
structure initialized to NULL.

Returns
• protocomm_t* : On success

Espressif Systems 1642
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/protocomm/include/common/protocomm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• NULL : No memory for allocating new instance
void protocomm_delete(protocomm_t *pc)

Delete a protocomm instance.
This API will deallocate a protocomm instance that was created using protocomm_new().

Parameters pc -- [in] Pointer to the protocomm instance to be deleted
esp_err_t protocomm_add_endpoint(protocomm_t *pc, const char *ep_name, protocomm_req_handler_t h,

void *priv_data)
Add endpoint request handler for a protocomm instance.
This API will bind an endpoint handler function to the specified endpoint name, along with any private data
that needs to be pass to the handler at the time of call.

Note:
• An endpoint must be bound to a valid protocomm instance, created using protocomm_new().
• This function internally calls the registered add_endpoint() function of the selected transport which
is a member of the protocomm_t instance structure.

Parameters
• pc -- [in] Pointer to the protocomm instance
• ep_name -- [in] Endpoint identifier(name) string
• h -- [in] Endpoint handler function
• priv_data -- [in] Pointer to private data to be passed as a parameter to the handler
function on call. Pass NULL if not needed.

Returns
• ESP_OK : Success
• ESP_FAIL : Error adding endpoint / Endpoint with this name already exists
• ESP_ERR_NO_MEM : Error allocating endpoint resource
• ESP_ERR_INVALID_ARG : Null instance/name/handler arguments

esp_err_t protocomm_remove_endpoint(protocomm_t *pc, const char *ep_name)
Remove endpoint request handler for a protocomm instance.
This API will remove a registered endpoint handler identified by an endpoint name.

Note:
• This function internally calls the registered remove_endpoint() function which is a member of the
protocomm_t instance structure.

Parameters
• pc -- [in] Pointer to the protocomm instance
• ep_name -- [in] Endpoint identifier(name) string

Returns
• ESP_OK : Success
• ESP_ERR_NOT_FOUND : Endpoint with specified name doesn't exist
• ESP_ERR_INVALID_ARG : Null instance/name arguments

esp_err_t protocomm_open_session(protocomm_t *pc, uint32_t session_id)
Allocates internal resources for new transport session.

Note:
• An endpoint must be bound to a valid protocomm instance, created using protocomm_new().

Espressif Systems 1643
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• pc -- [in] Pointer to the protocomm instance
• session_id -- [in] Unique ID for a communication session

Returns
• ESP_OK : Request handled successfully
• ESP_ERR_NO_MEM : Error allocating internal resource
• ESP_ERR_INVALID_ARG : Null instance/name arguments

esp_err_t protocomm_close_session(protocomm_t *pc, uint32_t session_id)
Frees internal resources used by a transport session.

Note:
• An endpoint must be bound to a valid protocomm instance, created using protocomm_new().

Parameters
• pc -- [in] Pointer to the protocomm instance
• session_id -- [in] Unique ID for a communication session

Returns
• ESP_OK : Request handled successfully
• ESP_ERR_INVALID_ARG : Null instance/name arguments

esp_err_t protocomm_req_handle(protocomm_t *pc, const char *ep_name, uint32_t session_id, const
uint8_t *inbuf, ssize_t inlen, uint8_t **outbuf, ssize_t *outlen)

Calls the registered handler of an endpoint session for processing incoming data and generating the response.

Note:
• An endpoint must be bound to a valid protocomm instance, created using protocomm_new().
• Resulting output buffer must be deallocated by the caller.

Parameters
• pc -- [in] Pointer to the protocomm instance
• ep_name -- [in] Endpoint identifier(name) string
• session_id -- [in] Unique ID for a communication session
• inbuf -- [in] Input buffer contains input request data which is to be processed by the
registered handler

• inlen -- [in] Length of the input buffer
• outbuf -- [out] Pointer to internally allocated output buffer, where the resulting response
data output from the registered handler is to be stored

• outlen -- [out] Buffer length of the allocated output buffer
Returns

• ESP_OK : Request handled successfully
• ESP_FAIL : Internal error in execution of registered handler
• ESP_ERR_NO_MEM : Error allocating internal resource
• ESP_ERR_NOT_FOUND : Endpoint with specified name doesn't exist
• ESP_ERR_INVALID_ARG : Null instance/name arguments

esp_err_t protocomm_set_security(protocomm_t *pc, const char *ep_name, const protocomm_security_t
*sec, const void *sec_params)

Add endpoint security for a protocomm instance.
This API will bind a security session establisher to the specified endpoint name, along with any proof of
possession that may be required for authenticating a session client.

Espressif Systems 1644
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note:
• An endpoint must be bound to a valid protocomm instance, created using protocomm_new().
• The choice of security can be any protocomm_security_t instance. Choices proto-
comm_security0 and protocomm_security1 and protocomm_security2 are readily
available.

Parameters
• pc -- [in] Pointer to the protocomm instance
• ep_name -- [in] Endpoint identifier(name) string
• sec -- [in] Pointer to endpoint security instance
• sec_params -- [in] Pointer to security params (NULL if not needed) The pointer
should contain the security params struct of appropriate security version. For proto-
comm security version 1 and 2 sec_params should contain pointer to struct of type pro-
tocomm_security1_params_t and protocmm_security2_params_t respectively. The con-
tents of this pointer must be valid till the security session has been running and is not
closed.

Returns
• ESP_OK : Success
• ESP_FAIL : Error adding endpoint / Endpoint with this name already exists
• ESP_ERR_INVALID_STATE : Security endpoint already set
• ESP_ERR_NO_MEM : Error allocating endpoint resource
• ESP_ERR_INVALID_ARG : Null instance/name/handler arguments

esp_err_t protocomm_unset_security(protocomm_t *pc, const char *ep_name)
Remove endpoint security for a protocomm instance.
This API will remove a registered security endpoint identified by an endpoint name.

Parameters
• pc -- [in] Pointer to the protocomm instance
• ep_name -- [in] Endpoint identifier(name) string

Returns
• ESP_OK : Success
• ESP_ERR_NOT_FOUND : Endpoint with specified name doesn't exist
• ESP_ERR_INVALID_ARG : Null instance/name arguments

esp_err_t protocomm_set_version(protocomm_t *pc, const char *ep_name, const char *version)
Set endpoint for version verification.
This API can be used for setting an application specific protocol version which can be verified by clients through
the endpoint.

Note:
• An endpoint must be bound to a valid protocomm instance, created using protocomm_new().

Parameters
• pc -- [in] Pointer to the protocomm instance
• ep_name -- [in] Endpoint identifier(name) string
• version -- [in] Version identifier(name) string

Returns
• ESP_OK : Success
• ESP_FAIL : Error adding endpoint / Endpoint with this name already exists
• ESP_ERR_INVALID_STATE : Version endpoint already set
• ESP_ERR_NO_MEM : Error allocating endpoint resource
• ESP_ERR_INVALID_ARG : Null instance/name/handler arguments

Espressif Systems 1645
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t protocomm_unset_version(protocomm_t *pc, const char *ep_name)
Remove version verification endpoint from a protocomm instance.
This API will remove a registered version endpoint identified by an endpoint name.

Parameters
• pc -- [in] Pointer to the protocomm instance
• ep_name -- [in] Endpoint identifier(name) string

Returns
• ESP_OK : Success
• ESP_ERR_NOT_FOUND : Endpoint with specified name doesn't exist
• ESP_ERR_INVALID_ARG : Null instance/name arguments

esp_err_t protocomm_get_sec_version(protocomm_t *pc, int *sec_ver, uint8_t *sec_patch_ver)
Get the security version of the protocomm instance.
This API will return the security version of the protocomm instance.

Parameters
• pc -- [in] Pointer to the protocomm instance
• sec_ver -- [out] Pointer to the security version
• sec_patch_ver -- [out] Pointer to the security patch version

Returns
• ESP_OK : Success
• ESP_ERR_INVALID_ARG : Null instance/name arguments

Type Definitions

typedef esp_err_t (*protocomm_req_handler_t)(uint32_t session_id, const uint8_t *inbuf, ssize_t inlen,
uint8_t **outbuf, ssize_t *outlen, void *priv_data)

Function prototype for protocomm endpoint handler.

typedef struct protocomm protocomm_t

This structure corresponds to a unique instance of protocomm returned when the API protocomm_new()
is called. The remaining Protocomm APIs require this object as the first parameter.

Note: Structure of the protocomm object is kept private

Header File
• components/protocomm/include/security/protocomm_security.h

Structures

struct protocomm_security1_params
Protocomm Security 1 parameters: Proof Of Possession.

Public Members

const uint8_t *data
Pointer to buffer containing the proof of possession data

uint16_t len
Length (in bytes) of the proof of possession data

Espressif Systems 1646
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/protocomm/include/security/protocomm_security.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct protocomm_security2_params
Protocomm Security 2 parameters: Salt and Verifier.

Public Members

const char *salt
Pointer to the buffer containing the salt

uint16_t salt_len
Length (in bytes) of the salt

const char *verifier
Pointer to the buffer containing the verifier

uint16_t verifier_len
Length (in bytes) of the verifier

struct protocomm_security
Protocomm security object structure.
The member functions are used for implementing secure protocomm sessions.

Note: This structure should not have any dynamic members to allow re-entrancy

Public Members

int ver
Unique version number of security implementation

uint8_t patch_ver
Patch version number of security implementation

esp_err_t (*init)(protocomm_security_handle_t *handle)
Function for initializing/allocating security infrastructure

esp_err_t (*cleanup)(protocomm_security_handle_t handle)
Function for deallocating security infrastructure

esp_err_t (*new_transport_session)(protocomm_security_handle_t handle, uint32_t session_id)
Starts new secure transport session with specified ID

esp_err_t (*close_transport_session)(protocomm_security_handle_t handle, uint32_t session_id)
Closes a secure transport session with specified ID

esp_err_t (*security_req_handler)(protocomm_security_handle_t handle, const void *sec_params,
uint32_t session_id, const uint8_t *inbuf, ssize_t inlen, uint8_t **outbuf, ssize_t *outlen, void *priv_data)

Handler function for authenticating connection request and establishing secure session

Espressif Systems 1647
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t (*encrypt)(protocomm_security_handle_t handle, uint32_t session_id, const uint8_t *inbuf,
ssize_t inlen, uint8_t **outbuf, ssize_t *outlen)

Function which implements the encryption algorithm

esp_err_t (*decrypt)(protocomm_security_handle_t handle, uint32_t session_id, const uint8_t *inbuf,
ssize_t inlen, uint8_t **outbuf, ssize_t *outlen)

Function which implements the decryption algorithm

Type Definitions

typedef struct protocomm_security1_params protocomm_security1_params_t

Protocomm Security 1 parameters: Proof Of Possession.

typedef protocomm_security1_params_t protocomm_security_pop_t

typedef struct protocomm_security2_params protocomm_security2_params_t

Protocomm Security 2 parameters: Salt and Verifier.

typedef void *protocomm_security_handle_t

typedef struct protocomm_security protocomm_security_t

Protocomm security object structure.
The member functions are used for implementing secure protocomm sessions.

Note: This structure should not have any dynamic members to allow re-entrancy

Enumerations

enum protocomm_security_session_event_t

Events generated by the protocomm security layer.
These events are generated while establishing secured session.
Values:

enumerator PROTOCOMM_SECURITY_SESSION_SETUP_OK
Secured session established successfully

enumerator PROTOCOMM_SECURITY_SESSION_INVALID_SECURITY_PARAMS
Received invalid (NULL) security parameters (username / client public-key)

enumerator PROTOCOMM_SECURITY_SESSION_CREDENTIALS_MISMATCH
Received incorrect credentials (username / PoP)

Header File
• components/protocomm/include/security/protocomm_security0.h

Header File
• components/protocomm/include/security/protocomm_security1.h

Espressif Systems 1648
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/protocomm/include/security/protocomm_security0.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/protocomm/include/security/protocomm_security1.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/protocomm/include/security/protocomm_security2.h

Header File
• components/protocomm/include/crypto/srp6a/esp_srp.h

Functions
esp_srp_handle_t *esp_srp_init(esp_ng_type_t ng)

Initialize srp context for given NG type.

Note: the handle gets freed with esp_srp_free

Parameters ng -- NG type given by esp_ng_type_t
Returns esp_srp_handle_t* srp handle

void esp_srp_free(esp_srp_handle_t *hd)
free esp_srp_context

Parameters hd -- handle to be free
esp_err_t esp_srp_srv_pubkey(esp_srp_handle_t *hd, const char *username, int username_len, const char

*pass, int pass_len, int salt_len, char **bytes_B, int *len_B, char
**bytes_salt)

Returns B (pub key) and salt. [Step2.b].

Note: *bytes_B MUST NOT BE FREED BY THE CALLER

Note: *bytes_salt MUST NOT BE FREE BY THE CALLER

Parameters
• hd -- esp_srp handle
• username -- Username not expected NULL terminated
• username_len -- Username length
• pass -- Password not expected to be NULL terminated
• pass_len -- Pasword length
• salt_len -- Salt length
• bytes_B -- Public Key returned
• len_B -- Length of the public key
• bytes_salt -- Salt bytes generated

Returns esp_err_t ESP_OK on success, appropriate error otherwise

esp_err_t esp_srp_gen_salt_verifier(const char *username, int username_len, const char *pass, int
pass_len, char **bytes_salt, int salt_len, char **verifier, int
*verifier_len)

Generate salt-verifier pair, given username, password and salt length.

Note: if API has returned ESP_OK, salt and verifier generated need to be freed by caller

Note: Usually, username and password are not saved on the device. Rather salt and verifier are generated
outside the device and are embedded. this covenience API can be used to generate salt and verifier on the fly

Espressif Systems 1649
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/protocomm/include/security/protocomm_security2.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/protocomm/include/crypto/srp6a/esp_srp.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

for development use case. OR for devices which intentionally want to generate different password each time
and can send it to the client securely. e.g., a device has a display and it shows the pin

Parameters
• username -- [in] username
• username_len -- [in] length of the username
• pass -- [in] password
• pass_len -- [in] length of the password
• bytes_salt -- [out] generated salt on successful generation, or NULL
• salt_len -- [in] salt length
• verifier -- [out] generated verifier on successful generation, or NULL
• verifier_len -- [out] length of the generated verifier

Returns esp_err_t ESP_OK on success, appropriate error otherwise

esp_err_t esp_srp_set_salt_verifier(esp_srp_handle_t *hd, const char *salt, int salt_len, const char
*verifier, int verifier_len)

Set the Salt and Verifier pre-generated for a given password. This should be used only if the actual password
is not available. The public key can then be generated using esp_srp_srv_pubkey_from_salt_verifier() and not
esp_srp_srv_pubkey()

Parameters
• hd -- esp_srp_handle
• salt -- pre-generated salt bytes
• salt_len -- length of the salt bytes
• verifier -- pre-generated verifier
• verifier_len -- length of the verifier bytes

Returns esp_err_t ESP_OK on success, appropriate error otherwise
esp_err_t esp_srp_srv_pubkey_from_salt_verifier(esp_srp_handle_t *hd, char **bytes_B, int

*len_B)
Returns B (pub key)[Step2.b] when the salt and verifier are set using esp_srp_set_salt_verifier()

Note: *bytes_B MUST NOT BE FREED BY THE CALLER

Parameters
• hd -- esp_srp handle
• bytes_B -- Key returned to the called
• len_B -- Length of the key returned

Returns esp_err_t ESP_OK on success, appropriate error otherwise

esp_err_t esp_srp_get_session_key(esp_srp_handle_t *hd, char *bytes_A, int len_A, char **bytes_key,
uint16_t *len_key)

Get session key in *bytes_key given by len in *len_key. [Step2.c].
This calculated session key is used for further communication given the proofs are exchanged/authenticated
with esp_srp_exchange_proofs

Note: *bytes_key MUST NOT BE FREED BY THE CALLER

Parameters
• hd -- esp_srp handle
• bytes_A -- Private Key
• len_A -- Private Key length
• bytes_key -- Key returned to the caller
• len_key -- length of the key in *bytes_key

Espressif Systems 1650
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns esp_err_t ESP_OK on success, appropriate error otherwise

esp_err_t esp_srp_exchange_proofs(esp_srp_handle_t *hd, char *username, uint16_t username_len, char
*bytes_user_proof, char *bytes_host_proof)

Complete the authentication. If this step fails, the session_key exchanged should not be used.
This is the final authentication step in SRP algorithm [Step4.1, Step4.b, Step4.c]

Parameters
• hd -- esp_srp handle
• username -- Username not expected NULL terminated
• username_len -- Username length
• bytes_user_proof -- param in
• bytes_host_proof -- parameter out (should be SHA512_DIGEST_LENGTH) bytes
in size

Returns esp_err_t ESP_OK if user's proof is ok and subsequently bytes_host_proof is populated
with our own proof.

Type Definitions

typedef struct esp_srp_handle esp_srp_handle_t
esp_srp handle as the result of esp_srp_init
The handle is returned by esp_srp_init on successful init. It is then passed for subsequent API calls as an
argument. esp_srp_free can be used to clean up the handle. After esp_srp_free the handle becomes
invalid.

Enumerations

enum esp_ng_type_t

Large prime+generator to be used for the algorithm.
Values:

enumerator ESP_NG_3072

Header File
• components/protocomm/include/transports/protocomm_httpd.h

Functions
esp_err_t protocomm_httpd_start(protocomm_t *pc, const protocomm_httpd_config_t *config)

Start HTTPD protocomm transport.
This API internally creates a framework to allow endpoint registration and security configuration for the pro-
tocomm.

Note: This is a singleton. ie. Protocomm can have multiple instances, but only one instance can be bound to
an HTTP transport layer.

Parameters
• pc -- [in] Protocomm instance pointer obtained from protocomm_new()
• config -- [in] Pointer to config structure for initializing HTTP server

Returns
• ESP_OK : Success
• ESP_ERR_INVALID_ARG : Null arguments

Espressif Systems 1651
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/protocomm/include/transports/protocomm_httpd.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_NOT_SUPPORTED : Transport layer bound to another protocomm instance
• ESP_ERR_INVALID_STATE : Transport layer already bound to this protocomm in-
stance

• ESP_ERR_NO_MEM : Memory allocation for server resource failed
• ESP_ERR_HTTPD_* : HTTP server error on start

esp_err_t protocomm_httpd_stop(protocomm_t *pc)
Stop HTTPD protocomm transport.
This API cleans up the HTTPD transport protocomm and frees all the handlers registered with the protocomm.

Parameters pc -- [in] Same protocomm instance that was passed to protocomm_httpd_start()
Returns

• ESP_OK : Success
• ESP_ERR_INVALID_ARG : Null / incorrect protocomm instance pointer

Unions

union protocomm_httpd_config_data_t
#include <protocomm_httpd.h> Protocomm HTTPD Configuration Data

Public Members

void *handle
HTTP Server Handle, if ext_handle_provided is set to true

protocomm_http_server_config_t config

HTTP Server Configuration, if a server is not already active

Structures

struct protocomm_http_server_config_t
Config parameters for protocomm HTTP server.

Public Members

uint16_t port
Port on which the HTTP server will listen

size_t stack_size
Stack size of server task, adjusted depending upon stack usage of endpoint handler

unsigned task_priority
Priority of server task

struct protocomm_httpd_config_t
Config parameters for protocomm HTTP server.

Public Members

Espressif Systems 1652
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool ext_handle_provided
Flag to indicate of an external HTTP Server Handle has been provided. In such as case, protocomm will
use the same HTTP Server and not start a new one internally.

protocomm_httpd_config_data_t data

Protocomm HTTPD Configuration Data

Macros
PROTOCOMM_HTTPD_DEFAULT_CONFIG()

Header File
• components/protocomm/include/transports/protocomm_ble.h

Functions
esp_err_t protocomm_ble_start(protocomm_t *pc, const protocomm_ble_config_t *config)

Start Bluetooth Low Energy based transport layer for provisioning.
Initialize and start required BLE service for provisioning. This includes the initialization for characteris-
tics/service for BLE.

Parameters
• pc -- [in] Protocomm instance pointer obtained from protocomm_new()
• config -- [in] Pointer to config structure for initializing BLE

Returns
• ESP_OK : Success
• ESP_FAIL : Simple BLE start error
• ESP_ERR_NO_MEM : Error allocating memory for internal resources
• ESP_ERR_INVALID_STATE : Error in ble config
• ESP_ERR_INVALID_ARG : Null arguments

esp_err_t protocomm_ble_stop(protocomm_t *pc)
Stop Bluetooth Low Energy based transport layer for provisioning.
Stops service/task responsible for BLE based interactions for provisioning

Note: You might want to optionally reclaim memory from Bluetooth. Refer to the documentation of
esp_bt_mem_release in that case.

Parameters pc -- [in] Same protocomm instance that was passed to protocomm_ble_start()
Returns

• ESP_OK : Success
• ESP_FAIL : Simple BLE stop error
• ESP_ERR_INVALID_ARG : Null / incorrect protocomm instance

Structures

struct name_uuid
This structure maps handler required by protocomm layer to UUIDs which are used to uniquely identify BLE
characteristics from a smartphone or a similar client device.

Espressif Systems 1653
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/protocomm/include/transports/protocomm_ble.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

const char *name
Name of the handler, which is passed to protocomm layer

uint16_t uuid
UUID to be assigned to the BLE characteristic which is mapped to the handler

struct protocomm_ble_event_t
Structure for BLE events in Protocomm.

Public Members

uint16_t evt_type
This field indicates the type of BLE event that occurred.

uint16_t conn_handle
The handle of the relevant connection.

uint16_t conn_status
The status of the connection attempt; o 0: the connection was successfully established. o BLE host error
code: the connection attempt failed for the specified reason.

uint16_t disconnect_reason
Return code indicating the reason for the disconnect.

struct protocomm_ble_config
Config parameters for protocomm BLE service.

Public Members

char device_name[MAX_BLE_DEVNAME_LEN + 1]
BLE device name being broadcast at the time of provisioning

uint8_t service_uuid[BLE_UUID128_VAL_LENGTH]
128 bit UUID of the provisioning service

uint8_t *manufacturer_data
BLE device manufacturer data pointer in advertisement

ssize_t manufacturer_data_len
BLE device manufacturer data length in advertisement

ssize_t nu_lookup_count
Number of entries in the Name-UUID lookup table

protocomm_ble_name_uuid_t *nu_lookup
Pointer to the Name-UUID lookup table

Espressif Systems 1654
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

unsigned ble_bonding
BLE bonding

unsigned ble_sm_sc
BLE security flag

unsigned ble_link_encryption
BLE security flag

uint8_t *ble_addr
BLE address

unsigned keep_ble_on
Flag to keep BLE on

Macros

MAX_BLE_DEVNAME_LEN

BLE device name cannot be larger than this value 31 bytes (max scan response size) - 1 byte (length) - 1 byte
(type) = 29 bytes

BLE_UUID128_VAL_LENGTH

MAX_BLE_MANUFACTURER_DATA_LEN

Theoretically, the limit for max manufacturer length remains same as BLE device name i.e. 31 bytes (max
scan response size) - 1 byte (length) - 1 byte (type) = 29 bytes However, manufacturer data goes along with
BLE device name in scan response. So, it is important to understand the actual length should be smaller than
(29 - (BLE device name length) - 2).

BLE_ADDR_LEN

Type Definitions

typedef struct name_uuid protocomm_ble_name_uuid_t

This structure maps handler required by protocomm layer to UUIDs which are used to uniquely identify BLE
characteristics from a smartphone or a similar client device.

typedef struct protocomm_ble_config protocomm_ble_config_t

Config parameters for protocomm BLE service.

Enumerations

enum protocomm_transport_ble_event_t

Events generated by BLE transport.
These events are generated when the BLE transport is paired and disconnected.
Values:

enumerator PROTOCOMM_TRANSPORT_BLE_CONNECTED

enumerator PROTOCOMM_TRANSPORT_BLE_DISCONNECTED

Espressif Systems 1655
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.8.2 Unified Provisioning

Overview

The unified provisioning support in the ESP-IDF provides an extensible mechanism to the developers to configure the
device with the Wi-Fi credentials and/or other custom configuration using various transports and different security
schemes. Depending on the use case, it provides a complete and ready solution for Wi-Fi network provisioning along
with example iOS and Android applications. The developers can choose to extend the device-side and phone-app
side implementations to accommodate their requirements for sending additional configuration data. The followings
are the important features of this implementation:

1. Extensible Protocol
The protocol is completely flexible and it offers the ability for the developers to send custom configuration in the
provisioning process. The data representation is also left to the application to decide.

2. Transport Flexibility
The protocol can work on Wi-Fi (SoftAP + HTTP server) or on Bluetooth LE as a transport protocol. The frame-
work provides an ability to add support for any other transport easily as long as command-response behavior can be
supported on the transport.

3. Security Scheme Flexibility
It is understood that each use case may require different security scheme to secure the data that is exchanged in the
provisioning process. Some applications may work with SoftAP that is WPA2 protected or Bluetooth LE with the
"just-works" security. Or the applications may consider the transport to be insecure and may want application-level
security. The unified provisioning framework allows the application to choose the security as deemed suitable.

4. Compact Data Representation
The protocol uses Google Protobufs as a data representation for session setup and Wi-Fi provisioning. They provide
a compact data representation and ability to parse the data in multiple programming languages in native format.
Please note that this data representation is not forced on application-specific data and the developers may choose the
representation of their choice.

Typical Provisioning Process

Deciding on Transport

The unified provisioning subsystem supports Wi-Fi (SoftAP+HTTP server) and Bluetooth LE (GATT based) trans-
port schemes. The following points need to be considered while selecting the best possible transport for provisioning:

1. The Bluetooth LE-based transport has the advantage of maintaining an intact communication channel between
the device and the client during the provisioning, which ensures reliable provisioning feedback.

2. The Bluetooth LE-based provisioning implementation makes the user experience better from the phone apps
as on Android and iOS both, the phone app can discover and connect to the device without requiring the user
to go out of the phone app.

3. However, the Bluetooth LE transport consumes about 110 KB memory at runtime. If the product does not use
the Bluetooth LE or Bluetooth functionality after provisioning is done, almost all the memory can be reclaimed
and added into the heap.

4. The SoftAP-based transport is highly interoperable. However, there are a few considerations:
• The device uses the same radio to host the SoftAP and also to connect to the configured AP. Since
these could potentially be on different channels, it may cause connection status updates not to be reliably
received by the phone

• The phone (client) has to disconnect from its current AP in order to connect to the SoftAP. The original
network will get restored only when the provisioning process is complete, and the softAP is taken down.

5. The SoftAP transport does not require much additional memory for the Wi-Fi use cases.

Espressif Systems 1656
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://developers.google.com/protocol-buffers/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 26: Typical Provisioning Process
Espressif Systems 1657

Submit Document Feedback
Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

6. The SoftAP-based provisioning requires the phone-app user to go to System Settings to connect to the
Wi-Fi network hosted by the device in the iOS system. The discovery (scanning) as well as connection APIs
are not available for the iOS applications.

Deciding on Security

Depending on the transport and other constraints, the security scheme needs to be selected by the application devel-
opers. The following considerations need to be given from the provisioning-security perspective:

1. The configuration data sent from the client to the device and the response have to be secured.
2. The client should authenticate the device that it is connected to.
3. The device manufacturer may choose proof-of-possession (PoP), a unique per-device secret to be entered on

the provisioning client as a security measure to make sure that only the user can provision the device in their
possession.

There are two levels of security schemes, of which the developer may select one or a combination, depending on
requirements.

1. Transport Security
For SoftAP provisioning, developers may choose WPA2-protected security with unique per-device passphrase.
Unique per-device passphrase can also act as a proof-of-possession. For Bluetooth LE, the "just-works" security
can be used as a transport-level security after assessing its provided level of security.

2. Application Security
The unified provisioning subsystem provides the application-level security (Security 1 Scheme) that provides data pro-
tection and authentication through PoP, if the application does not use the transport-level security, or if the transport-
level security is not sufficient for the use case.

Device Discovery

The advertisement and device discovery is left to the application and depending on the protocol chosen, the phone
apps and device-firmware application can choose appropriate method for advertisement and discovery.
For the SoftAP+HTTP transport, typically the SSID (network name) of the AP hosted by the device can be used for
discovery.
For the Bluetooth LE transport, device name or primary service included in the advertisement or a combination of
both can be used for discovery.

Architecture

The below diagram shows the architecture of unified provisioning:
It relies on the base layer called Protocol Communication (protocomm) which provides a framework for security
schemes and transport mechanisms. TheWi-Fi Provisioning layer uses protocomm to provide simple callbacks to the
application for setting the configuration and getting theWi-Fi status. The application has control over implementation
of these callbacks. In addition, the application can directly use protocomm to register custom handlers.
The application creates a protocomm instance which is mapped to a specific transport and specific security scheme.
Each transport in the protocomm has a concept of an "end-point" which corresponds to the logical channel for com-
munication for specific type of information. For example, security handshake happens on a different endpoint from
the Wi-Fi configuration endpoint. Each end-point is identified using a string and depending on the transport inter-
nal representation of the end-point changes. In case of the SoftAP+HTTP transport, the end-point corresponds to
URI, whereas in case of Bluetooth LE, the end-point corresponds to the GATT characteristic with specific UUID.
Developers can create custom end-points and implement handler for the data that is received or sent over the same
end-point.

Espressif Systems 1658
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 27: Unified Provisioning Architecture

Security Schemes

At present, the unified provisioning supports the following security schemes:
1. Security 0

No security (No encryption).
2. Security 1

Curve25519-based key exchange, shared key derivation and AES256-CTR mode encryption of the data. It supports
two modes :

a. Authorized - Proof of Possession (PoP) string used to authorize session and derive shared key.
b. No Auth (Null PoP) - Shared key derived through key exchange only.
3. Security 2

SRP6a-based shared key derivation and AES256-GCM mode encryption of the data.

Note: The respective security schemes need to be enabled through the project configuration menu. Please refer to
Enabling Protocomm Security Version for more details.

Security 1 Scheme

The Security 1 scheme details are shown in the below sequence diagram:

Security 2 Scheme

The Security 2 scheme is based on the Secure Remote Password (SRP6a) protocol, see RFC 5054.

Espressif Systems 1659
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://datatracker.ietf.org/doc/html/rfc5054
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 28: Security 1

Espressif Systems 1660
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The protocol requires the Salt and Verifier to be generated beforehand with the help of the identifying username I
and the plaintext password p. The Salt and Verifier are then stored on ESP32-C6.

• The password p and the username I are to be provided to the Phone App (Provisioning entity) by suitable
means, e.g., QR code sticker.

Details about the Security 2 scheme are shown in the below sequence diagram:

Security 2 AES-GCM IVHandling The Security 2 scheme uses AES-GCM for encryption and decryption of the
data. The initialization vector (IV) consists of an 8-byte session ID and a 4-byte counter, for a total of 12 bytes. The
counter starts at 1 and is incremented after each encryption/decryption operation on both the device and the client.

Sample Code

Please refer to Protocol Communication andWi-Fi Provisioning for API guides and code snippets on example usage.
Application implementation can be found as an example under provisioning.

Provisioning Tools

Provisioning applications are available for various platforms, along with source code:
• Android:

– Bluetooth LE Provisioning app on Play Store.
– SoftAP Provisioning app on Play Store.
– Source code on GitHub: esp-idf-provisioning-android.

• iOS:
– Bluetooth LE Provisioning app on App Store.
– SoftAP Provisioning app on App Store.
– Source code on GitHub: esp-idf-provisioning-ios.

• Linux/macOS/Windows: tools/esp_prov, a Python-based command line tool for provisioning.
The phone applications offer simple UI and are thus more user centric, while the command-line application is useful
as a debugging tool for developers.

2.8.3 Wi-Fi Provisioning

Overview

This component provides APIs that control the Wi-Fi provisioning service for receiving and configuring Wi-
Fi credentials over SoftAP or Bluetooth LE transport via secure Protocol Communication sessions. The set of
wifi_prov_mgr_ APIs help quickly implement a provisioning service that has necessary features with minimal
amount of code and sufficient flexibility.

Initialization wifi_prov_mgr_init() is called to configure and initialize the provisioning manager, and
thus must be called prior to invoking any other wifi_prov_mgr_ APIs. Note that the manager relies on other
components of ESP-IDF, namely NVS, TCP/IP, Event Loop and Wi-Fi, and optionally mDNS, hence these com-
ponents must be initialized beforehand. The manager can be de-initialized at any moment by making a call to
wifi_prov_mgr_deinit().

Espressif Systems 1661
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/provisioning
https://play.google.com/store/apps/details?id=com.espressif.provble
https://play.google.com/store/apps/details?id=com.espressif.provsoftap
https://github.com/espressif/esp-idf-provisioning-android
https://apps.apple.com/in/app/esp-ble-provisioning/id1473590141
https://apps.apple.com/in/app/esp-softap-provisioning/id1474040630
https://github.com/espressif/esp-idf-provisioning-ios
https://github.com/espressif/esp-idf/tree/b0f5707906b/tools/esp_prov
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 29: Security 2
Espressif Systems 1662

Submit Document Feedback
Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 30: Security 2 AES-GCM IV Handling

Espressif Systems 1663
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

wifi_prov_mgr_config_t config = {
.scheme = wifi_prov_scheme_ble,
.scheme_event_handler = WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BTDM

};

ESP_ERROR_CHECK(wifi_prov_mgr_init(config));

The configuration structure wifi_prov_mgr_config_t has a few fields to specify the desired behavior of the
manager:

• wifi_prov_mgr_config_t::scheme - This is used to specify the provisioning scheme.
Each scheme corresponds to one of the modes of transport supported by protocomm. Hence,
support the following options:
– wifi_prov_scheme_ble - Bluetooth LE transport and GATT Server for handling the
provisioning commands.

– wifi_prov_scheme_softap - Wi-Fi SoftAP transport and HTTP Server for handling
the provisioning commands.

– wifi_prov_scheme_console - Serial transport and console for handling the provision-
ing commands.

• wifi_prov_mgr_config_t::scheme_event_handler: An event handler defined
along with the scheme. Choosing the appropriate scheme-specific event handler allows the man-
ager to take care of certain matters automatically. Presently, this option is not used for either the
SoftAP or Console-based provisioning, but is very convenient for Bluetooth LE. To understand
how, we must recall that Bluetooth requires a substantial amount of memory to function, and once
the provisioning is finished, the main application may want to reclaim back this memory (or part of
it) if it needs to use either Bluetooth LE or classic Bluetooth. Also, upon every future reboot of a
provisioned device, this reclamation of memory needs to be performed again. To reduce this com-
plication in using wifi_prov_scheme_ble, the scheme-specific handlers have been defined,
and depending upon the chosen handler, the Bluetooth LE/classic Bluetooth/BTDM memory is
freed automatically when the provisioning manager is de-initialized. The available options are:
– WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BTDM - Free both classic Blue-
tooth and Bluetooth LE/BTDM memory. Used when the main application does not require
Bluetooth at all.

– WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BLE - Free only Bluetooth LE
memory. Used when main application requires classic Bluetooth.

– WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BT - Free only classic Blue-
tooth. Used when main application requires Bluetooth LE. In this case freeing happens right
when the manager is initialized.

– WIFI_PROV_EVENT_HANDLER_NONE - Do not use any scheme specific handler. Used
when the provisioning scheme is not Bluetooth LE, i.e., using SoftAP or Console, or when
main application wants to handle the memory reclaiming on its own, or needs both Bluetooth
LE and classic Bluetooth to function.

• wifi_prov_mgr_config_t::app_event_handler (Deprecated) - It is now recom-
mended to catch WIFI_PROV_EVENT that is emitted to the default event loop handler. See
definition of wifi_prov_cb_event_t for the list of events that are generated by the provi-
sioning service. Here is an excerpt showing some of the provisioning events:

static void event_handler(void* arg, esp_event_base_t event_base,
int event_id, void* event_data)

{
if (event_base == WIFI_PROV_EVENT) {

switch (event_id) {
case WIFI_PROV_START:

ESP_LOGI(TAG, "Provisioning started");
break;

case WIFI_PROV_CRED_RECV: {
wifi_sta_config_t *wifi_sta_cfg = (wifi_sta_config_t␣

↪→*)event_data;
ESP_LOGI(TAG, "Received Wi-Fi credentials"

(continues on next page)

Espressif Systems 1664
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
"\n\tSSID : %s\n\tPassword : %s",
(const char *) wifi_sta_cfg->ssid,
(const char *) wifi_sta_cfg->password);

break;
}
case WIFI_PROV_CRED_FAIL: {

wifi_prov_sta_fail_reason_t *reason = (wifi_prov_sta_fail_
↪→reason_t *)event_data;

ESP_LOGE(TAG, "Provisioning failed!\n\tReason : %s"
"\n\tPlease reset to factory and retry␣

↪→provisioning",
(*reason == WIFI_PROV_STA_AUTH_ERROR) ?
"Wi-Fi station authentication failed" : "Wi-Fi␣

↪→access-point not found");
break;

}
case WIFI_PROV_CRED_SUCCESS:

ESP_LOGI(TAG, "Provisioning successful");
break;

case WIFI_PROV_END:
/* De-initialize manager once provisioning is finished */
wifi_prov_mgr_deinit();
break;

default:
break;

}
}

}

The manager can be de-initialized at any moment by making a call to wifi_prov_mgr_deinit().

Check the Provisioning State Whether the device is provisioned or not can be checked at runtime by calling
wifi_prov_mgr_is_provisioned(). This internally checks if the Wi-Fi credentials are stored in NVS.
Note that presently the manager does not have its own NVS namespace for storage of Wi-Fi credentials, instead it
relies on the esp_wifi_ APIs to set and get the credentials stored in NVS from the default location.
If the provisioning state needs to be reset, any of the following approaches may be taken:

• The associated part of NVS partition has to be erased manually
• The main application must implement some logic to call esp_wifi_ APIs for erasing the cre-
dentials at runtime

• The main application must implement some logic to force start the provisioning irrespective of the
provisioning state

bool provisioned = false;
ESP_ERROR_CHECK(wifi_prov_mgr_is_provisioned(&provisioned));

Start the Provisioning Service At the time of starting provisioning we need to specify a service name and the
corresponding key, that is to say:

• AWi-Fi SoftAP SSID and a passphrase, respectively, when the scheme is wifi_prov_scheme_softap.
• Bluetooth LE device name with the service key ignored when the scheme is wifi_prov_scheme_ble.

Also, since internally the manager uses protocomm, we have the option of choosing one of the security features
provided by it:

• Security 1 is secure communication which consists of a prior handshake involving X25519 key exchange along
with authentication using a proof of possession pop, followed by AES-CTR for encryption or decryption of
subsequent messages.

• Security 0 is simply plain text communication. In this case the pop is simply ignored.

Espressif Systems 1665
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

See Unified Provisioning for details about the security features.

const char *service_name = "my_device";
const char *service_key = "password";

wifi_prov_security_t security = WIFI_PROV_SECURITY_1;
const char *pop = "abcd1234";

ESP_ERROR_CHECK(wifi_prov_mgr_start_provisioning(security, pop, service_
↪→name, service_key));

The provisioning service automatically finishes only if it receives valid Wi-Fi AP credentials followed by successful
connection of device to the AP with IP obtained. Regardless of that, the provisioning service can be stopped at any
moment by making a call to wifi_prov_mgr_stop_provisioning().

Note: If the device fails to connect with the provided credentials, it does not accept new credentials anymore, but the
provisioning service keeps on running, only to convey failure to the client, until the device is restarted. Upon restart,
the provisioning state turns out to be true this time, as credentials are found in NVS, but the device does fail again
to connect with those same credentials, unless an AP with the matching credentials somehow does become available.
This situation can be fixed by resetting the credentials in NVS or force starting the provisioning service. This has
been explained above in Check the Provisioning State.

Waiting for Completion Typically, the main application waits for the provisioning to finish, then de-initializes the
manager to free up resources, and finally starts executing its own logic.
There are two ways for making this possible. The simpler way is to use a blocking call to
wifi_prov_mgr_wait().

// Start provisioning service
ESP_ERROR_CHECK(wifi_prov_mgr_start_provisioning(security, pop, service_
↪→name, service_key));

// Wait for service to complete
wifi_prov_mgr_wait();

// Finally de-initialize the manager
wifi_prov_mgr_deinit();

The other way is to use the default event loop handler to catch WIFI_PROV_EVENT and call
wifi_prov_mgr_deinit() when event ID is WIFI_PROV_END:

static void event_handler(void* arg, esp_event_base_t event_base,
int event_id, void* event_data)

{
if (event_base == WIFI_PROV_EVENT && event_id == WIFI_PROV_END) {

/* De-initialize the manager once the provisioning is finished */
wifi_prov_mgr_deinit();

}
}

User Side Implementation When the service is started, the device to be provisioned is identified by the advertised
service name, which, depending upon the selected transport, is either the Bluetooth LE device name or the SoftAP
SSID.
When using SoftAP transport, for allowing service discovery, mDNS must be initialized before starting provi-
sioning. In this case, the host name set by the main application is used, and the service type is internally set to
_esp_wifi_prov.

Espressif Systems 1666
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

When using Bluetooth LE transport, a custom 128-bit UUID should be set using
wifi_prov_scheme_ble_set_service_uuid(). This UUID is to be included in the Bluetooth
LE advertisement and corresponds to the primary GATT service that provides provisioning endpoints as GATT
characteristics. Each GATT characteristic is formed using the primary service UUID as the base, with different
auto-assigned 12th and 13th bytes, presumably counting from the 0th byte. Since an endpoint characteristic
UUID is auto-assigned, it should not be used to identify the endpoint. Instead, client-side applications should
identify the endpoints by reading the User Characteristic Description (0x2901) descriptor for each charac-
teristic, which contains the endpoint name of the characteristic. For example, if the service UUID is set to
55cc035e-fb27-4f80-be02-3c60828b7451, each endpoint characteristic is assigned a UUID like
55cc____-fb27-4f80-be02-3c60828b7451, with unique values at the 12th and 13th bytes.
Once connected to the device, the provisioning-related protocomm endpoints can be identified as follows:

Table 7: Endpoints Provided by the Provisioning Service
Endpoint Name i.e., Bluetooth LE
+ GATT Server

URI, i.e., SoftAP + HTTP Server +
mDNS

Description

prov-session http://<mdns-hostname>.local/prov-
session

Security endpoint used for ses-
sion establishment

prov-scan http://wifi-prov.local/prov-scan the endpoint used for starting
Wi-Fi scan and receiving scan
results

prov-ctrl http://wifi-prov.local/prov-ctrl the endpoint used for control-
ling Wi-Fi provisioning state

prov-config http://<mdns-hostname>.local/prov-
config

the endpoint used for configur-
ing Wi-Fi credentials on device

proto-ver http://<mdns-hostname>.local/proto-
ver

the endpoint for retrieving ver-
sion info

Immediately after connecting, the client application may fetch the version/capabilities information from the
proto-ver endpoint. All communications to this endpoint are unencrypted, hence necessary information, which
may be relevant for deciding compatibility, can be retrieved before establishing a secure session. The response is in
JSON format and looks like : prov: { ver: v1.1, sec_ver: 1, sec_patch_ver: 0, cap:
[no_pop] }, my_app: { ver: 1.345, cap: [cloud, local_ctrl] },.....
Here label prov provides:

• provisioning service version ver
• security version sec_ver
• security patch version sec_patch_ver (default is 0)
• capabilities cap

For now, only the no_pop capability is supported, which indicates that the service does not require proof of pos-
session for authentication. Any application-related version or capabilities are given by other labels, e.g., my_app in
this example. These additional fields are set using wifi_prov_mgr_set_app_info().

Important: Client must take into account both the sec_ver and sec_patch_ver fields, as these are used to
determine the security scheme to be used for the session establishment.

User side applications need to implement the signature handshaking required for establishing and authenticating
secure protocomm sessions as per the security scheme configured for use, which is not needed when the manager is
configured to use protocomm security 0.
See Unified Provisioning for more details about the secure handshake and encryption used. Applications must
use the .proto files found under protocomm/proto, which define the Protobuf message structures supported by
prov-session endpoint.
Once a session is established, Wi-Fi credentials are configured using the following set of wifi_config
commands, serialized as Protobuf messages with the corresponding .proto files that can be found under
wifi_provisioning/proto:

Espressif Systems 1667
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

http:/
http://wifi-prov.local/prov-scan
http://wifi-prov.local/prov-ctrl
http:/
http:/
https://github.com/espressif/esp-idf/tree/b0f5707906b/components/protocomm/proto
https://github.com/espressif/esp-idf/tree/b0f5707906b/components/wifi_provisioning/proto
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• get_status - For querying the Wi-Fi connection status. The device responds with a status which is one
of connecting, connected or disconnected. If the status is disconnected, a disconnection reason is also to be
included in the status response.

• set_config - For setting the Wi-Fi connection credentials.
• apply_config - For applying the credentials saved during set_config and starting the Wi-Fi station.

After session establishment, the client can also request Wi-Fi scan results from the device. The results returned is a
list of AP SSIDs, sorted in descending order of signal strength. This allows client applications to display APs nearby
to the device at the time of provisioning, and users can select one of the SSIDs and provide the password which is
then sent using the wifi_config commands described above. The wifi_scan endpoint supports the following
protobuf commands :

• scan_start - For starting Wi-Fi scan with various options:
– blocking (input) - If true, the command returns only when the scanning is finished.
– passive (input) - If true, the scan is started in passive mode, which may be slower, instead of active
mode.

– group_channels (input) - This specifies whether to scan all channels in one go when zero, or perform
scanning of channels in groups, with 120 ms delay between scanning of consecutive groups, and the
value of this parameter sets the number of channels in each group. This is useful when transport mode
is SoftAP, where scanning all channels in one go may not give the Wi-Fi driver enough time to send out
beacons, and hence may cause disconnection with any connected stations. When scanning in groups, the
manager waits for at least 120 ms after completing the scan on a group of channels, and thus allows the
driver to send out the beacons. For example, given that the total number of Wi-Fi channels is 14, then
setting group_channels to 3 creates 5 groups, with each group having 3 channels, except the last
one which has 14 % 3 = 2 channels. So, when the scan is started, the first 3 channels will be scanned,
followed by a 120 ms delay, and then the next 3 channels, and so on, until all the 14 channels have been
scanned.One may need to adjust this parameter as having only a few channels in a group may increase
the overall scan time, while having too many may again cause disconnection. Usually, a value of 4 should
work for most cases. Note that for any other mode of transport, e.g. Bluetooth LE, this can be safely set
to 0, and hence achieve the shortest overall scanning time.

– period_ms (input) - The scan parameter specifying how long to wait on each channel.
• scan_status - It gives the status of scanning process:

– scan_finished (output) - When the scan has finished, this returns true.
– result_count (output) - This gives the total number of results obtained till now. If the scan is yet
happening, this number keeps on updating.

• scan_result - For fetching the scan results. This can be called even if the scan is still on going.
– start_index (input) - Where the index starts from to fetch the entries from the results list.
– count (input) - The number of entries to fetch from the starting index.
– entries (output) - The list of entries returned. Each entry consists of ssid, channel and rssi
information.

The client can also control the provisioning state of the device using wifi_ctrl endpoint. The wifi_ctrl
endpoint supports the following protobuf commands:

• ctrl_reset - Resets internal state machine of the device and clears provisioned credentials only in case of
provisioning failures.

• ctrl_reprov - Resets internal state machine of the device and clears provisioned credentials only in case
the device is to be provisioned again for new credentials after a previous successful provisioning.

Additional Endpoints In case users want to have some additional protocomm endpoints customized to their re-
quirements, this is done in two steps. First is creation of an endpoint with a specific name, and the second step is the
registration of a handler for this endpoint. See Protocol Communication for the function signature of an endpoint han-
dler. A custom endpoint must be created after initialization and before starting the provisioning service. Whereas,
the protocomm handler is registered for this endpoint only after starting the provisioning service.

wifi_prov_mgr_init(config);
wifi_prov_mgr_endpoint_create("custom-endpoint");
wifi_prov_mgr_start_provisioning(security, pop, service_name, service_
↪→key);

(continues on next page)

Espressif Systems 1668
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
wifi_prov_mgr_endpoint_register("custom-endpoint", custom_ep_handler,␣
↪→custom_ep_data);

When the provisioning service stops, the endpoint is unregistered automatically.
One can also choose to call wifi_prov_mgr_endpoint_unregister() to manually deactivate an endpoint
at runtime. This can also be used to deactivate the internal endpoints used by the provisioning service.

When/How to Stop the Provisioning Service? The default behavior is that once the device successfully connects
using the Wi-Fi credentials set by the apply_config command, the provisioning service stops, and Bluetooth
LE or SoftAP turns off, automatically after responding to the next get_status command. If get_status
command is not received by the device, the service stops after a 30s timeout.
On the other hand, if device is not able to connect using the provided Wi-Fi credentials, due to incorrect SSID or
passphrase, the service keeps running, and get_status keeps responding with disconnected status and reason for
disconnection. Any further attempts to provide another set of Wi-Fi credentials, are to be rejected. These credentials
are preserved, unless the provisioning service is force started, or NVS erased.
If this default behavior is not desired, it can be disabled by calling wifi_prov_mgr_disable_auto_stop().
Now the provisioning service stops only after an explicit call to wifi_prov_mgr_stop_provisioning(),
which returns immediately after scheduling a task for stopping the service. The service stops after a
certain delay and WIFI_PROV_END event gets emitted. This delay is specified by the argument to
wifi_prov_mgr_disable_auto_stop().
The customized behavior is useful for applications which want the provisioning service to be stopped some
time after the Wi-Fi connection is successfully established. For example, if the application requires the de-
vice to connect to some cloud service and obtain another set of credentials, and exchange these credentials
over a custom protocomm endpoint, then after successfully doing so, stop the provisioning service by calling
wifi_prov_mgr_stop_provisioning() inside the protocomm handler itself. The right amount of de-
lay ensures that the transport resources are freed only after the response from the protocomm handler reaches the
client side application.

Application Examples

For complete example implementation see provisioning/wifi_prov_mgr.

Provisioning Tools

Provisioning applications are available for various platforms, along with source code:
• Android:

– Bluetooth LE Provisioning app on Play Store.
– SoftAP Provisioning app on Play Store.
– Source code on GitHub: esp-idf-provisioning-android.

• iOS:
– Bluetooth LE Provisioning app on App Store.
– SoftAP Provisioning app on App Store.
– Source code on GitHub: esp-idf-provisioning-ios.

• Linux/MacOS/Windows: tools/esp_prov, a Python-based command-line tool for provisioning.
The phone applications offer simple UI and are thus more user centric, while the command-line application is useful
as a debugging tool for developers.

API Reference

Header File
• components/wifi_provisioning/include/wifi_provisioning/manager.h

Espressif Systems 1669
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/provisioning/wifi_prov_mgr
https://play.google.com/store/apps/details?id=com.espressif.provble
https://play.google.com/store/apps/details?id=com.espressif.provsoftap
https://github.com/espressif/esp-idf-provisioning-android
https://apps.apple.com/in/app/esp-ble-provisioning/id1473590141
https://apps.apple.com/in/app/esp-softap-provisioning/id1474040630
https://github.com/espressif/esp-idf-provisioning-ios
https://github.com/espressif/esp-idf/tree/b0f5707906b/tools/esp_prov
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wifi_provisioning/include/wifi_provisioning/manager.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_err_t wifi_prov_mgr_init(wifi_prov_mgr_config_t config)

Initialize provisioning manager instance.
Configures the manager and allocates internal resources
Configuration specifies the provisioning scheme (transport) and event handlers
Event WIFI_PROV_INIT is emitted right after initialization is complete

Parameters config -- [in] Configuration structure
Returns

• ESP_OK : Success
• ESP_FAIL : Fail

void wifi_prov_mgr_deinit(void)
Stop provisioning (if running) and release resource used by the manager.
Event WIFI_PROV_DEINIT is emitted right after de-initialization is finished
If provisioning service is still active when this API is called, it first stops the service, hence emitting
WIFI_PROV_END, and then performs the de-initialization

esp_err_t wifi_prov_mgr_is_provisioned(bool *provisioned)
Checks if device is provisioned.
This checks if Wi-Fi credentials are present on the NVS
The Wi-Fi credentials are assumed to be kept in the same NVS namespace as used by esp_wifi component
If one were to call esp_wifi_set_config() directly instead of going through the provisioning process, this function
will still yield true (i.e. device will be found to be provisioned)

Note: Calling wifi_prov_mgr_start_provisioning() automatically resets the provision state, irrespective of
what the state was prior to making the call.

Parameters provisioned -- [out] True if provisioned, else false
Returns

• ESP_OK : Retrieved provision state successfully
• ESP_FAIL : Wi-Fi not initialized
• ESP_ERR_INVALID_ARG : Null argument supplied

esp_err_t wifi_prov_mgr_start_provisioning(wifi_prov_security_t security, const void
*wifi_prov_sec_params, const char *service_name,
const char *service_key)

Start provisioning service.
This starts the provisioning service according to the scheme configured at the time of initialization. For scheme
:

• wifi_prov_scheme_ble : This starts protocomm_ble, which internally initializes BLE transport and starts
GATT server for handling provisioning requests

• wifi_prov_scheme_softap : This activates SoftAP mode of Wi-Fi and starts protocomm_httpd, which
internally starts an HTTP server for handling provisioning requests (If mDNS is active it also starts ad-
vertising service with type _esp_wifi_prov._tcp)

Event WIFI_PROV_START is emitted right after provisioning starts without failure

Note: This API will start provisioning service even if device is found to be already provisioned, i.e.
wifi_prov_mgr_is_provisioned() yields true

Parameters

Espressif Systems 1670
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• security -- [in] Specify which protocomm security scheme to use :
– WIFI_PROV_SECURITY_0 : For no security
– WIFI_PROV_SECURITY_1 : x25519 secure handshake for session establishment fol-
lowed by AES-CTR encryption of provisioning messages

– WIFI_PROV_SECURITY_2: SRP6a based authentication and key exchange followed
by AES-GCM encryption/decryption of provisioning messages

• wifi_prov_sec_params -- [in] Pointer to security params (NULL if not
needed). This is not needed for protocomm security 0 This pointer should hold
the struct of type wifi_prov_security1_params_t for protocomm security 1 and
wifi_prov_security2_params_t for protocomm security 2 respectively. This pointer and its
contents should be valid till the provisioning service is running and has not been stopped
or de-inited.

• service_name -- [in] Unique name of the service. This translates to:
– Wi-Fi SSID when provisioning mode is softAP
– Device name when provisioning mode is BLE

• service_key -- [in]Key required by client to access the service (NULL if not needed).
This translates to:
– Wi-Fi password when provisioning mode is softAP
– ignored when provisioning mode is BLE

Returns
• ESP_OK : Provisioning started successfully
• ESP_FAIL : Failed to start provisioning service
• ESP_ERR_INVALID_STATE : Provisioning manager not initialized or already started

void wifi_prov_mgr_stop_provisioning(void)
Stop provisioning service.
If provisioning service is active, this API will initiate a process to stop the service and return. Once the service
actually stops, the event WIFI_PROV_END will be emitted.
If wifi_prov_mgr_deinit() is called without calling this API first, it will automatically stop the provisioning
service and emit the WIFI_PROV_END, followed by WIFI_PROV_DEINIT, before returning.
This API will generally be used along with wifi_prov_mgr_disable_auto_stop() in the scenario when the main
application has registered its own endpoints, and wishes that the provisioning service is stopped only when
some protocomm command from the client side application is received.
Calling this API inside an endpoint handler, with sufficient cleanup_delay, will allow the response / acknowl-
edgment to be sent successfully before the underlying protocomm service is stopped.
Cleaup_delay is set when calling wifi_prov_mgr_disable_auto_stop(). If not specified, it defaults to 1000ms.
For straightforward cases, using this API is usually not necessary as provisioning is stopped automatically once
WIFI_PROV_CRED_SUCCESS is emitted. Stopping is delayed (maximum 30 seconds) thus allowing the
client side application to query for Wi-Fi state, i.e. after receiving the first query and sending Wi-Fi state
connected response the service is stopped immediately.

void wifi_prov_mgr_wait(void)
Wait for provisioning service to finish.
Calling this API will block until provisioning service is stopped i.e. till event WIFI_PROV_END is emitted.
This will not block if provisioning is not started or not initialized.

esp_err_t wifi_prov_mgr_disable_auto_stop(uint32_t cleanup_delay)
Disable auto stopping of provisioning service upon completion.
By default, once provisioning is complete, the provisioning service is automatically stopped, and all endpoints
(along with those registered by main application) are deactivated.
This API is useful in the case when main application wishes to close provisioning service only after it receives
some protocomm command from the client side app. For example, after connecting to Wi-Fi, the device may
want to connect to the cloud, and only once that is successfully, the device is said to be fully configured. But,

Espressif Systems 1671
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

then it is upto the main application to explicitly call wifi_prov_mgr_stop_provisioning() later when the device
is fully configured and the provisioning service is no longer required.

Note: This must be called before executing wifi_prov_mgr_start_provisioning()

Parameters cleanup_delay -- [in] Sets the delay after which the actual cleanup of transport
related resources is done after a call to wifi_prov_mgr_stop_provisioning() returns. Minimum
allowed value is 100ms. If not specified, this will default to 1000ms.

Returns
• ESP_OK : Success
• ESP_ERR_INVALID_STATE : Manager not initialized or provisioning service already
started

esp_err_t wifi_prov_mgr_set_app_info(const char *label, const char *version, const char **capabilities,
size_t total_capabilities)

Set application version and capabilities in the JSON data returned by proto-ver endpoint.
This function can be called multiple times, to specify information about the various application specific services
running on the device, identified by unique labels.
The provisioning service itself registers an entry in the JSON data, by the label "prov", containing only provi-
sioning service version and capabilities. Application services should use a label other than "prov" so as not to
overwrite this.

Note: This must be called before executing wifi_prov_mgr_start_provisioning()

Parameters
• label -- [in] String indicating the application name.
• version -- [in] String indicating the application version. There is no constraint on for-
mat.

• capabilities -- [in] Array of strings with capabilities. These could be used by the
client side app to know the application registered endpoint capabilities

• total_capabilities -- [in] Size of capabilities array
Returns

• ESP_OK : Success
• ESP_ERR_INVALID_STATE : Manager not initialized or provisioning service already
started

• ESP_ERR_NO_MEM : Failed to allocate memory for version string
• ESP_ERR_INVALID_ARG : Null argument

esp_err_t wifi_prov_mgr_endpoint_create(const char *ep_name)
Create an additional endpoint and allocate internal resources for it.
This API is to be called by the application if it wants to create an additional endpoint. All additional endpoints
will be assigned UUIDs starting from 0xFF54 and so on in the order of execution.
protocomm handler for the created endpoint is to be registered later using wifi_prov_mgr_endpoint_register()
after provisioning has started.

Note: This API can only be called BEFORE provisioning is started

Note: Additional endpoints can be used for configuring client provided parameters other than Wi-Fi creden-
tials, that are necessary for the main application and hence must be set prior to starting the application

Espressif Systems 1672
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: After session establishment, the additional endpoints must be targeted first by the client side applica-
tion before sending Wi-Fi configuration, because once Wi-Fi configuration finishes the provisioning service is
stopped and hence all endpoints are unregistered

Parameters ep_name -- [in] unique name of the endpoint
Returns

• ESP_OK : Success
• ESP_FAIL : Failure

esp_err_t wifi_prov_mgr_endpoint_register(const char *ep_name, protocomm_req_handler_t
handler, void *user_ctx)

Register a handler for the previously created endpoint.
This API can be called by the application to register a protocomm handler to any endpoint that was created
using wifi_prov_mgr_endpoint_create().

Note: This API can only be called AFTER provisioning has started

Note: Additional endpoints can be used for configuring client provided parameters other than Wi-Fi creden-
tials, that are necessary for the main application and hence must be set prior to starting the application

Note: After session establishment, the additional endpoints must be targeted first by the client side applica-
tion before sending Wi-Fi configuration, because once Wi-Fi configuration finishes the provisioning service is
stopped and hence all endpoints are unregistered

Parameters
• ep_name -- [in] Name of the endpoint
• handler -- [in] Endpoint handler function
• user_ctx -- [in] User data

Returns
• ESP_OK : Success
• ESP_FAIL : Failure

void wifi_prov_mgr_endpoint_unregister(const char *ep_name)
Unregister the handler for an endpoint.
This API can be called if the application wants to selectively unregister the handler of an endpoint while the
provisioning is still in progress.
All the endpoint handlers are unregistered automatically when the provisioning stops.

Parameters ep_name -- [in] Name of the endpoint
esp_err_t wifi_prov_mgr_get_wifi_state(wifi_prov_sta_state_t *state)

Get state of Wi-Fi Station during provisioning.
Parameters state -- [out] Pointer to wifi_prov_sta_state_t variable to be filled
Returns

• ESP_OK : Successfully retrieved Wi-Fi state
• ESP_FAIL : Provisioning app not running

esp_err_t wifi_prov_mgr_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t *reason)
Get reason code in case of Wi-Fi station disconnection during provisioning.

Parameters reason -- [out] Pointer to wifi_prov_sta_fail_reason_t variable to be filled

Espressif Systems 1673
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK : Successfully retrieved Wi-Fi disconnect reason
• ESP_FAIL : Provisioning app not running

esp_err_t wifi_prov_mgr_configure_sta(wifi_config_t *wifi_cfg)
Runs Wi-Fi as Station with the supplied configuration.
Configures the Wi-Fi station mode to connect to the AP with SSID and password specified in config structure
and sets Wi-Fi to run as station.
This is automatically called by provisioning service upon receiving new credentials.
If credentials are to be supplied to the manager via a different mode other than through protocomm, then this
API needs to be called.
Event WIFI_PROV_CRED_RECV is emitted after credentials have been applied and Wi-Fi station started

Parameters wifi_cfg -- [in] Pointer to Wi-Fi configuration structure
Returns

• ESP_OK : Wi-Fi configured and started successfully
• ESP_FAIL : Failed to set configuration

esp_err_t wifi_prov_mgr_reset_provisioning(void)
Reset Wi-Fi provisioning config.
Calling this API will restore WiFi stack persistent settings to default values.

Returns
• ESP_OK : Reset provisioning config successfully
• ESP_FAIL : Failed to reset provisioning config

esp_err_t wifi_prov_mgr_reset_sm_state_on_failure(void)
Reset internal state machine and clear provisioned credentials.
This API should be used to restart provisioning ONLY in the case of provisioning failures without rebooting
the device.

Returns
• ESP_OK : Reset provisioning state machine successfully
• ESP_FAIL : Failed to reset provisioning state machine
• ESP_ERR_INVALID_STATE : Manager not initialized

esp_err_t wifi_prov_mgr_reset_sm_state_for_reprovision(void)
Reset internal state machine and clear provisioned credentials.
This API can be used to restart provisioning ONLY in case the device is to be provisioned again for new
credentials after a previous successful provisioning without rebooting the device.

Note: This API can be used only if provisioning auto-stop has been disabled using
wifi_prov_mgr_disable_auto_stop()

Returns
• ESP_OK : Reset provisioning state machine successfully
• ESP_FAIL : Failed to reset provisioning state machine
• ESP_ERR_INVALID_STATE : Manager not initialized

Structures

struct wifi_prov_event_handler_t
Event handler that is used by the manager while provisioning service is active.

Espressif Systems 1674
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

wifi_prov_cb_func_t event_cb

Callback function to be executed on provisioning events

void *user_data
User context data to pass as parameter to callback function

struct wifi_prov_scheme
Structure for specifying the provisioning scheme to be followed by the manager.

Note: Ready to use schemes are available:
• wifi_prov_scheme_ble : for provisioning over BLE transport + GATT server
• wifi_prov_scheme_softap : for provisioning over SoftAP transport + HTTP server
• wifi_prov_scheme_console : for provisioning over Serial UART transport + Console (for debugging)

Public Members

esp_err_t (*prov_start)(protocomm_t *pc, void *config)
Function which is to be called by the manager when it is to start the provisioning service associated with
a protocomm instance and a scheme specific configuration

esp_err_t (*prov_stop)(protocomm_t *pc)
Function which is to be called by the manager to stop the provisioning service previously associated with
a protocomm instance

void *(*new_config)(void)
Function which is to be called by the manager to generate a new configuration for the provisioning service,
that is to be passed to prov_start()

void (*delete_config)(void *config)
Function which is to be called by the manager to delete a configuration generated using new_config()

esp_err_t (*set_config_service)(void *config, const char *service_name, const char *service_key)
Function which is to be called by the manager to set the service name and key values in the configuration
structure

esp_err_t (*set_config_endpoint)(void *config, const char *endpoint_name, uint16_t uuid)
Function which is to be called by the manager to set a protocomm endpoint with an identifying name and
UUID in the configuration structure

wifi_mode_t wifi_mode

Sets mode of operation of Wi-Fi during provisioning This is set to :
• WIFI_MODE_APSTA for SoftAP transport
• WIFI_MODE_STA for BLE transport

struct wifi_prov_mgr_config_t
Structure for specifying the manager configuration.

Espressif Systems 1675
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

wifi_prov_scheme_t scheme

Provisioning scheme to use. Following schemes are already available:
• wifi_prov_scheme_ble : for provisioning over BLE transport + GATT server
• wifi_prov_scheme_softap : for provisioning over SoftAP transport + HTTP server + mDNS (op-
tional)

• wifi_prov_scheme_console : for provisioning over Serial UART transport + Console (for debugging)

wifi_prov_event_handler_t scheme_event_handler

Event handler required by the scheme for incorporating scheme specific behavior while provi-
sioning manager is running. Various options may be provided by the scheme for setting this
field. Use WIFI_PROV_EVENT_HANDLER_NONE when not used. When using scheme
wifi_prov_scheme_ble, the following options are available:
• WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BTDM
• WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BLE
• WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BT

wifi_prov_event_handler_t app_event_handler

Event handler that can be set for the purpose of incorporating application specific behavior. Use
WIFI_PROV_EVENT_HANDLER_NONE when not used.

Macros

WIFI_PROV_EVENT_HANDLER_NONE

Event handler can be set to none if not used.

Type Definitions

typedef void (*wifi_prov_cb_func_t)(void *user_data, wifi_prov_cb_event_t event, void *event_data)

typedef struct wifi_prov_scheme wifi_prov_scheme_t

Structure for specifying the provisioning scheme to be followed by the manager.

Note: Ready to use schemes are available:
• wifi_prov_scheme_ble : for provisioning over BLE transport + GATT server
• wifi_prov_scheme_softap : for provisioning over SoftAP transport + HTTP server
• wifi_prov_scheme_console : for provisioning over Serial UART transport + Console (for debugging)

typedef enum wifi_prov_security wifi_prov_security_t

Security modes supported by the Provisioning Manager.
These are same as the security modes provided by protocomm

typedef protocomm_security2_params_t wifi_prov_security2_params_t

Security 2 params structure This needs to be passed when using WIFI_PROV_SECURITY_2.

Enumerations

Espressif Systems 1676
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum wifi_prov_cb_event_t

Events generated by manager.
These events are generated in order of declaration and, for the stretch of time between initialization and de-
initialization of the manager, each event is signaled only once
Values:

enumerator WIFI_PROV_INIT
Emitted when the manager is initialized

enumerator WIFI_PROV_START
Indicates that provisioning has started

enumerator WIFI_PROV_CRED_RECV
Emitted whenWi-Fi AP credentials are received via protocomm endpoint wifi_config. The event
data in this case is a pointer to the corresponding wifi_sta_config_t structure

enumerator WIFI_PROV_CRED_FAIL
Emitted when device fails to connect to the AP of which the credentials were received earlier on event
WIFI_PROV_CRED_RECV. The event data in this case is a pointer to the disconnection reason code
with type wifi_prov_sta_fail_reason_t

enumerator WIFI_PROV_CRED_SUCCESS
Emitted when device successfully connects to the AP of which the credentials were received earlier on
event WIFI_PROV_CRED_RECV

enumerator WIFI_PROV_END
Signals that provisioning service has stopped

enumerator WIFI_PROV_DEINIT
Signals that manager has been de-initialized

enum wifi_prov_security

Security modes supported by the Provisioning Manager.
These are same as the security modes provided by protocomm
Values:

enumerator WIFI_PROV_SECURITY_0
No security (plain-text communication)

enumerator WIFI_PROV_SECURITY_1
This secure communication mode consists of X25519 key exchange
• proof of possession (pop) based authentication
• AES-CTR encryption

enumerator WIFI_PROV_SECURITY_2
This secure communication mode consists of SRP6a based authentication and key exchange
• AES-GCM encryption/decryption

Espressif Systems 1677
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/wifi_provisioning/include/wifi_provisioning/scheme_ble.h

Functions
void wifi_prov_scheme_ble_event_cb_free_btdm(void *user_data, wifi_prov_cb_event_t event,

void *event_data)
void wifi_prov_scheme_ble_event_cb_free_ble(void *user_data, wifi_prov_cb_event_t event, void

*event_data)

void wifi_prov_scheme_ble_event_cb_free_bt(void *user_data, wifi_prov_cb_event_t event, void
*event_data)

esp_err_t wifi_prov_scheme_ble_set_service_uuid(uint8_t *uuid128)
Set the 128 bit GATT service UUID used for provisioning.
This API is used to override the default 128 bit provisioning service UUID, which is 0000ffff-0000-1000-
8000-00805f9b34fb.
This must be called before starting provisioning, i.e. before making a call to
wifi_prov_mgr_start_provisioning(), otherwise the default UUID will be used.

Note: The data being pointed to by the argument must be valid at least till provisioning is started. Upon start,
the manager will store an internal copy of this UUID, and this data can be freed or invalidated afterwards.

Parameters uuid128 -- [in] A custom 128 bit UUID
Returns

• ESP_OK : Success
• ESP_ERR_INVALID_ARG : Null argument

esp_err_t wifi_prov_scheme_ble_set_mfg_data(uint8_t *mfg_data, ssize_t mfg_data_len)
Set manufacturer specific data in scan response.
This must be called before starting provisioning, i.e. before making a call to
wifi_prov_mgr_start_provisioning().

Note: It is important to understand that length of custom manufacturer data should be within limits. The
manufacturer data goes into scan response along with BLE device name. By default, BLE device name length
is of 11 Bytes, however it can vary as per application use case. So, one has to honour the scan response data
size limits i.e. (mfg_data_len + 2) < 31 - (device_name_length + 2). If the mfg_data length exceeds this limit,
the length will be truncated.

Parameters
• mfg_data -- [in] Custom manufacturer data
• mfg_data_len -- [in]Manufacturer data length

Returns
• ESP_OK : Success
• ESP_ERR_INVALID_ARG : Null argument

esp_err_t wifi_prov_scheme_ble_set_random_addr(const uint8_t *rand_addr)
Set Bluetooth Random address.
This must be called before starting provisioning, i.e. before making a call to
wifi_prov_mgr_start_provisioning().
This API can be used in cases where a new identity address is to be used during provisioning. This will result
in this device being treated as a new device by remote devices.

Espressif Systems 1678
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wifi_provisioning/include/wifi_provisioning/scheme_ble.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This API is only to be called to set random address. Re-invoking this API after provisioning is started will
have no effect.

Note: This API will change the existing BD address for the device. The address once set will remain un-
changed until BLE stack tear down happens when wifi_prov_mgr_deinit is invoked.

Parameters rand_addr -- [in] The static random address to be set of length 6 bytes.
Returns

• ESP_OK : Success
• ESP_ERR_INVALID_ARG : Null argument

Macros

WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BTDM

WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BLE

WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BT

Header File
• components/wifi_provisioning/include/wifi_provisioning/scheme_softap.h

Functions
void wifi_prov_scheme_softap_set_httpd_handle(void *handle)

Provide HTTPD Server handle externally.
Useful in cases wherein applications need the webserver for some different operations, and do not want the wifi
provisioning component to start/stop a new instance.

Note: This API should be called before wifi_prov_mgr_start_provisioning()

Parameters handle -- [in] Handle to HTTPD server instance

Header File
• components/wifi_provisioning/include/wifi_provisioning/scheme_console.h

Header File
• components/wifi_provisioning/include/wifi_provisioning/wifi_config.h

Functions
esp_err_t wifi_prov_config_data_handler(uint32_t session_id, const uint8_t *inbuf, ssize_t inlen,

uint8_t **outbuf, ssize_t *outlen, void *priv_data)
Handler for receiving and responding to requests from master.
This is to be registered as the wifi_config endpoint handler (protocomm proto-
comm_req_handler_t) using protocomm_add_endpoint()

Espressif Systems 1679
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wifi_provisioning/include/wifi_provisioning/scheme_softap.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wifi_provisioning/include/wifi_provisioning/scheme_console.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wifi_provisioning/include/wifi_provisioning/wifi_config.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Structures

struct wifi_prov_sta_conn_info_t
WiFi STA connected status information.

Public Members

char ip_addr[IP4ADDR_STRLEN_MAX]
IP Address received by station

char bssid[6]
BSSID of the AP to which connection was estalished

char ssid[33]
SSID of the to which connection was estalished

uint8_t channel
Channel of the AP

uint8_t auth_mode
Authorization mode of the AP

struct wifi_prov_config_get_data_t
WiFi status data to be sent in response to get_status request from master.

Public Members

wifi_prov_sta_state_t wifi_state

WiFi state of the station

wifi_prov_sta_fail_reason_t fail_reason

Reason for disconnection (valid only when wifi_state is WIFI_STATION_DISCONNECTED)

wifi_prov_sta_conn_info_t conn_info

Connection information (valid only when wifi_state is WIFI_STATION_CONNECTED)

struct wifi_prov_config_set_data_t
WiFi config data received by slave during set_config request from master.

Public Members

char ssid[33]
SSID of the AP to which the slave is to be connected

char password[64]
Password of the AP

Espressif Systems 1680
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

char bssid[6]
BSSID of the AP

uint8_t channel
Channel of the AP

struct wifi_prov_config_handlers
Internal handlers for receiving and responding to protocomm requests from master.
This is to be passed as priv_data for protocomm request handler (refer to
wifi_prov_config_data_handler()) when calling protocomm_add_endpoint().

Public Members

esp_err_t (*get_status_handler)(wifi_prov_config_get_data_t *resp_data, wifi_prov_ctx_t **ctx)
Handler function called when connection status of the slave (in WiFi station mode) is requested

esp_err_t (*set_config_handler)(const wifi_prov_config_set_data_t *req_data, wifi_prov_ctx_t **ctx)
Handler function called when WiFi connection configuration (eg. AP SSID, password, etc.) of the slave
(in WiFi station mode) is to be set to user provided values

esp_err_t (*apply_config_handler)(wifi_prov_ctx_t **ctx)
Handler function for applying the configuration that was set in set_config_handler. After apply-
ing the station may get connected to the AP or may fail to connect. The slave must be ready to convey the
updated connection status information when get_status_handler is invoked again by the master.

wifi_prov_ctx_t *ctx
Context pointer to be passed to above handler functions upon invocation

Type Definitions

typedef struct wifi_prov_ctx wifi_prov_ctx_t
Type of context data passed to each get/set/apply handler function set in wifi_prov_config_handlers
structure.
This is passed as an opaque pointer, thereby allowing it be defined later in application code as per requirements.

typedef struct wifi_prov_config_handlers wifi_prov_config_handlers_t

Internal handlers for receiving and responding to protocomm requests from master.
This is to be passed as priv_data for protocomm request handler (refer to
wifi_prov_config_data_handler()) when calling protocomm_add_endpoint().

Enumerations

enum wifi_prov_sta_state_t

WiFi STA status for conveying back to the provisioning master.
Values:

enumerator WIFI_PROV_STA_CONNECTING

Espressif Systems 1681
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator WIFI_PROV_STA_CONNECTED

enumerator WIFI_PROV_STA_DISCONNECTED

enum wifi_prov_sta_fail_reason_t

WiFi STA connection fail reason.
Values:

enumerator WIFI_PROV_STA_AUTH_ERROR

enumerator WIFI_PROV_STA_AP_NOT_FOUND

Code examples for above API are provided in the provisioning directory of ESP-IDF examples.
Code example for above API is provided in wifi/smart_config.
Code example for above API is provided in wifi/wifi_easy_connect/dpp-enrollee.

2.9 Storage API

This section contains reference of the high-level storage APIs. They are based on low-level drivers such as SPI Flash,
SD/MMC.

• Partitions API allow block based access to SPI Flash according to the Partition Table.
• Non-Volatile Storage library (NVS) implements a fault-tolerant wear-levelled key-value storage in SPI NOR
Flash.

• Virtual File System (VFS) library provides an interface for registration of file system drivers. SPIFFS, FAT and
various other file system libraries are based on the VFS.

• SPIFFS is a wear-levelled file system optimized for SPI NOR Flash, well suited for small partition sizes and
low throughput

• FAT is a standard file system which can be used in SPI Flash or on SD/MMC cards
• Wear Levelling library implements a flash translation layer (FTL) suitable for SPI NOR Flash. It is used as a
container for FAT partitions in Flash.

Note: It's suggested to use high-level APIs (esp_partition or file system) instead of low-level driver APIs to
access the SPI NOR Flash.
Due to the restriction of NOR Flash and ESP hardware, accessing the main flash will affect the performance of the
whole system. See SPI Flash Documents to learn more about the limitations.

2.9.1 FAT Filesystem Support

ESP-IDF uses the FatFs library to work with FAT filesystems. FatFs resides in the fatfs component. Although the
library can be used directly, many of its features can be accessed via VFS using the C standard library and POSIX
API functions.
Additionally, FatFs has been modified to support the runtime pluggable disk I/O layer. This allows mapping of FatFs
drives to physical disks at runtime.

Espressif Systems 1682
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/provisioning
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/smart_config
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/wifi_easy_connect/dpp-enrollee
http://elm-chan.org/fsw/ff/00index_e.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Using FatFs with VFS

The header file fatfs/vfs/esp_vfs_fat.h defines the functions for connecting FatFs and VFS.
The function esp_vfs_fat_register() allocates a FATFS structure and registers a given path prefix in VFS.
Subsequent operations on files starting with this prefix are forwarded to FatFs APIs.
The function esp_vfs_fat_unregister_path() deletes the registration with VFS, and frees the FATFS
structure.
Most applications use the following workflow when working with esp_vfs_fat_ functions:

1. Call esp_vfs_fat_register() to specify:
• Path prefix where to mount the filesystem (e.g., "/sdcard", "/spiflash")
• FatFs drive number
• A variable which will receive the pointer to the FATFS structure

2. Call ff_diskio_register() to register the disk I/O driver for the drive number used in Step 1.
3. Call the FatFs function f_mount, and optionally f_fdisk, f_mkfs, to mount the filesystem using the

same drive number which was passed to esp_vfs_fat_register(). For more information, see FatFs
documentation.

4. Call the C standard library and POSIX API functions to perform such actions on files as open, read, write,
erase, copy, etc. Use paths starting with the path prefix passed to esp_vfs_register() (for example,
"/sdcard/hello.txt"). The filesystem uses 8.3 filenames format (SFN) by default. If you need to use
long filenames (LFN), enable the CONFIG_FATFS_LONG_FILENAMES option. More details on the FatFs
filenames are available here.

5. Optionally, by enabling the option CONFIG_FATFS_USE_FASTSEEK, you can use the POSIX lseek function
to perform it faster. The fast seek will not work for files in write mode, so to take advantage of fast seek, you
should open (or close and then reopen) the file in read-only mode.

6. Optionally, call the FatFs library functions directly. In this case, use paths without a VFS prefix (for example,
"/hello.txt").

7. Close all open files.
8. Call the FatFs function f_mount for the same drive number with NULL FATFS* argument to unmount the

filesystem.
9. Call the FatFs function ff_diskio_register() with NULL ff_diskio_impl_t* argument and

the same drive number to unregister the disk I/O driver.
10. Call esp_vfs_fat_unregister_path() with the path where the file system is mounted to remove

FatFs from VFS, and free the FATFS structure allocated in Step 1.
The convenience functions esp_vfs_fat_sdmmc_mount(), esp_vfs_fat_sdspi_mount(), and
esp_vfs_fat_sdcard_unmount() wrap the steps described above and also handle SD card initialization.
These functions are described in the next section.

Using FatFs with VFS and SD Cards

The header file fatfs/vfs/esp_vfs_fat.h defines convenience functions esp_vfs_fat_sdmmc_mount(),
esp_vfs_fat_sdspi_mount(), and esp_vfs_fat_sdcard_unmount(). These functions perform
Steps 1–3 and 7–9 respectively and handle SD card initialization, but provide only limited error handling. Developers
are encouraged to check its source code and incorporate more advanced features into production applications.
The convenience function esp_vfs_fat_sdmmc_unmount() unmounts the filesystem and releases the re-
sources acquired by esp_vfs_fat_sdmmc_mount().

Using FatFs with VFS in Read-Only Mode

The header file fatfs/vfs/esp_vfs_fat.h also defines the convenience functions
esp_vfs_fat_spiflash_mount_ro() and esp_vfs_fat_spiflash_unmount_ro(). These
functions perform Steps 1-3 and 7-9 respectively for read-only FAT partitions. These are particularly helpful for
data partitions written only once during factory provisioning which will not be changed by production application
throughout the lifetime of the hardware.

Espressif Systems 1683
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/fatfs/vfs/esp_vfs_fat.h
http://elm-chan.org/fsw/ff/doc/mount.html
http://elm-chan.org/fsw/ff/doc/mount.html
https://en.wikipedia.org/wiki/8.3_filename
http://elm-chan.org/fsw/ff/doc/filename.html
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/fatfs/vfs/esp_vfs_fat.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/fatfs/vfs/esp_vfs_fat.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

FatFS Disk IO Layer

FatFs has been extended with API functions that register the disk I/O driver at runtime.
These APIs provide implementation of disk I/O functions for SD/MMC cards and can be registered for the given
FatFs drive number using the function ff_diskio_register_sdmmc().
void ff_diskio_register(BYTE pdrv, const ff_diskio_impl_t *discio_impl)

Register or unregister diskio driver for given drive number.
When FATFS library calls one of disk_xxx functions for driver number pdrv, corresponding function in dis-
cio_impl for given pdrv will be called.

Parameters
• pdrv -- drive number
• discio_impl -- pointer to ff_diskio_impl_t structure with diskio functions or NULL
to unregister and free previously registered drive

struct ff_diskio_impl_t
Structure of pointers to disk IO driver functions.
See FatFs documentation for details about these functions

Public Members

DSTATUS (*init)(unsigned char pdrv)
disk initialization function

DSTATUS (*status)(unsigned char pdrv)
disk status check function

DRESULT (*read)(unsigned char pdrv, unsigned char *buff, uint32_t sector, unsigned count)
sector read function

DRESULT (*write)(unsigned char pdrv, const unsigned char *buff, uint32_t sector, unsigned count)
sector write function

DRESULT (*ioctl)(unsigned char pdrv, unsigned char cmd, void *buff)
function to get info about disk and do some misc operations

void ff_diskio_register_sdmmc(unsigned char pdrv, sdmmc_card_t *card)
Register SD/MMC diskio driver

Parameters
• pdrv -- drive number
• card -- pointer to sdmmc_card_t structure describing a card; card should be initialized
before calling f_mount.

esp_err_t ff_diskio_register_wl_partition(unsigned char pdrv, wl_handle_t flash_handle)
Register spi flash partition

Parameters
• pdrv -- drive number
• flash_handle -- handle of the wear levelling partition.

Espressif Systems 1684
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t ff_diskio_register_raw_partition(unsigned char pdrv, const esp_partition_t
*part_handle)

Register spi flash partition
Parameters

• pdrv -- drive number
• part_handle -- pointer to raw flash partition.

FatFs Partition Generator

We provide a partition generator for FatFs (wl_fatfsgen.py) which is integrated into the build system and could be
easily used in the user project.
The tool is used to create filesystem images on a host and populate it with content of the specified host folder.
The script is based on the partition generator (fatfsgen.py). Apart from generating partition, it can also initialize wear
levelling.
The latest version supports both short and long file names, FAT12 and FAT16. The long file names are limited to
255 characters and can contain multiple periods (.) characters within the filename and additional characters +, ,, ;,
=, [and].

Build System Integration with FatFs Partition Generator It is possible to invoke FatFs generator directly from
the CMake build system by calling fatfs_create_spiflash_image:

fatfs_create_spiflash_image(<partition> <base_dir> [FLASH_IN_PROJECT])

If you prefer generating partition without wear levelling support, you can use
fatfs_create_rawflash_image:

fatfs_create_rawflash_image(<partition> <base_dir> [FLASH_IN_PROJECT])

fatfs_create_spiflash_image respectively fatfs_create_rawflash_imagemust be called from
project's CMakeLists.txt.
If you decide for any reason to use fatfs_create_rawflash_image (without wear levelling support), beware
that it supports mounting only in read-only mode in the device.
The arguments of the function are as follows:

1. partition - the name of the partition as defined in the partition table (e.g. stor-
age/fatfsgen/partitions_example.csv).

2. base_dir - the directory that will be encoded to FatFs partition and optionally flashed into the device. Beware
that you have to specify the suitable size of the partition in the partition table.

3. flag FLASH_IN_PROJECT - optionally, users can have the image automatically flashed together with the app
binaries, partition tables, etc. on idf.py flash -p <PORT> by specifying FLASH_IN_PROJECT.

4. flag PRESERVE_TIME - optionally, users can force preserving the timestamps from the source folder to the
target image. Without preserving the time, every timestamp will be set to the FATFS default initial time (1st
January 1980).

For example:

fatfs_create_spiflash_image(my_fatfs_partition my_folder FLASH_IN_PROJECT)

If FLASH_IN_PROJECT is not specified, the image will still be generated, but you will have to flash it manually
using esptool.py or a custom build system target.
For an example, see storage/fatfsgen.

Espressif Systems 1685
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/fatfs/wl_fatfsgen.py
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/fatfs/fatfsgen.py
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/storage/fatfsgen/partitions_example.csv
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/storage/fatfsgen/partitions_example.csv
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/fatfsgen
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

FatFs Partition Analyzer

(fatfsparse.py) is a partition analyzing tool for FatFs.
It is a reverse tool of (fatfsgen.py), i.e. it can generate the folder structure on the host based on the FatFs image.
Usage:

./fatfsparse.py [-h] [--wl-layer {detect,enabled,disabled}] fatfs_image.img

High-level API Reference

Header File
• components/fatfs/vfs/esp_vfs_fat.h

Functions
esp_err_t esp_vfs_fat_register(const char *base_path, const char *fat_drive, size_t max_files, FATFS

**out_fs)
Register FATFS with VFS component.
This function registers given FAT drive in VFS, at the specified base path. If only one drive is used, fat_drive
argument can be an empty string. Refer to FATFS library documentation on how to specify FAT drive. This
function also allocates FATFS structure which should be used for f_mount call.

Note: This function doesn't mount the drive into FATFS, it just connects POSIX and C standard library IO
function with FATFS. You need to mount desired drive into FATFS separately.

Parameters
• base_path -- path prefix where FATFS should be registered
• fat_drive -- FATFS drive specification; if only one drive is used, can be an empty
string

• max_files -- maximum number of files which can be open at the same time
• out_fs -- [out] pointer to FATFS structure which can be used for FATFS f_mount call
is returned via this argument.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if esp_vfs_fat_register was already called
• ESP_ERR_NO_MEM if not enough memory or too many VFSes already registered

esp_err_t esp_vfs_fat_unregister_path(const char *base_path)
Un-register FATFS from VFS.

Note: FATFS structure returned by esp_vfs_fat_register is destroyed after this call. Make sure to call f_mount
function to unmount it before calling esp_vfs_fat_unregister_ctx. Difference between this function and the one
above is that this one will release the correct drive, while the one above will release the last registered one

Parameters base_path -- path prefix where FATFS is registered. This is the same used when
esp_vfs_fat_register was called

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if FATFS is not registered in VFS

Espressif Systems 1686
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/fatfs/fatfsparse.py
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/fatfs/fatfsgen.py
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/fatfs/vfs/esp_vfs_fat.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_vfs_fat_sdmmc_mount(const char *base_path, const sdmmc_host_t *host_config, const void
*slot_config, const esp_vfs_fat_mount_config_t *mount_config,
sdmmc_card_t **out_card)

Convenience function to get FAT filesystem on SD card registered in VFS.
This is an all-in-one function which does the following:

• initializes SDMMC driver or SPI driver with configuration in host_config
• initializes SD card with configuration in slot_config
• mounts FAT partition on SD card using FATFS library, with configuration in mount_config
• registers FATFS library with VFS, with prefix given by base_prefix variable

This function is intended to make example code more compact. For real world applications, developers should
implement the logic of probing SD card, locating and mounting partition, and registering FATFS in VFS, with
proper error checking and handling of exceptional conditions.

Note: Use this API to mount a card through SDSPI is deprecated. Please call
esp_vfs_fat_sdspi_mount() instead for that case.

Parameters
• base_path -- path where partition should be registered (e.g. "/sdcard")
• host_config -- Pointer to structure describing SDMMC host. When using SD-
MMC peripheral, this structure can be initialized using SDMMC_HOST_DEFAULT()
macro. When using SPI peripheral, this structure can be initialized using SD-
SPI_HOST_DEFAULT() macro.

• slot_config -- Pointer to structure with slot configuration. For SDMMC
peripheral, pass a pointer to sdmmc_slot_config_t structure initialized using SD-
MMC_SLOT_CONFIG_DEFAULT.

• mount_config -- pointer to structure with extra parameters for mounting FATFS
• out_card -- [out] if not NULL, pointer to the card information structure will be re-
turned via this argument

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount was already called
• ESP_ERR_NO_MEM if memory can not be allocated
• ESP_FAIL if partition can not be mounted
• other error codes from SDMMC or SPI drivers, SDMMC protocol, or FATFS drivers

esp_err_t esp_vfs_fat_sdspi_mount(const char *base_path, const sdmmc_host_t *host_config_input,
const sdspi_device_config_t *slot_config, const
esp_vfs_fat_mount_config_t *mount_config, sdmmc_card_t
**out_card)

Convenience function to get FAT filesystem on SD card registered in VFS.
This is an all-in-one function which does the following:

• initializes an SPI Master device based on the SPI Master driver with configuration in slot_config, and
attach it to an initialized SPI bus.

• initializes SD card with configuration in host_config_input
• mounts FAT partition on SD card using FATFS library, with configuration in mount_config
• registers FATFS library with VFS, with prefix given by base_prefix variable

This function is intended to make example code more compact. For real world applications, developers should
implement the logic of probing SD card, locating and mounting partition, and registering FATFS in VFS, with
proper error checking and handling of exceptional conditions.

Note: This function try to attach the new SD SPI device to the bus specified in host_config. Make sure the
SPI bus specified in host_config->slot have been initialized by spi_bus_initialize() before.

Espressif Systems 1687
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• base_path -- path where partition should be registered (e.g. "/sdcard")
• host_config_input -- Pointer to structure describing SDMMC host. This structure
can be initialized using SDSPI_HOST_DEFAULT() macro.

• slot_config -- Pointer to structure with slot configuration. For SPI pe-
ripheral, pass a pointer to sdspi_device_config_t structure initialized using SD-
SPI_DEVICE_CONFIG_DEFAULT().

• mount_config -- pointer to structure with extra parameters for mounting FATFS
• out_card -- [out] If not NULL, pointer to the card information structure will be re-
turned via this argument. It is suggested to hold this handle and use it to unmount the card
later if needed. Otherwise it's not suggested to use more than one card at the same time
and unmount one of them in your application.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount was already called
• ESP_ERR_NO_MEM if memory can not be allocated
• ESP_FAIL if partition can not be mounted
• other error codes from SDMMC or SPI drivers, SDMMC protocol, or FATFS drivers

esp_err_t esp_vfs_fat_sdmmc_unmount(void)
Unmount FAT filesystem and release resources acquired using esp_vfs_fat_sdmmc_mount.

Deprecated:
Use esp_vfs_fat_sdcard_unmount() instead.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount hasn't been called

esp_err_t esp_vfs_fat_sdcard_unmount(const char *base_path, sdmmc_card_t *card)
Unmount an SD card from the FAT filesystem and release resources acquired using
esp_vfs_fat_sdmmc_mount() or esp_vfs_fat_sdspi_mount()

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if the card argument is unregistered
• ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount hasn't been called

esp_err_t esp_vfs_fat_sdcard_format(const char *base_path, sdmmc_card_t *card)
Format FAT filesystem.

Note: This API should be only called when the FAT is already mounted.

Parameters
• base_path -- Path where partition should be registered (e.g. "/sdcard")
• card -- Pointer to the card handle, which should be initialised by calling
esp_vfs_fat_sdspi_mount first

Returns
• ESP_OK
• ESP_ERR_INVALID_STATE: FAT partition isn't mounted, call
esp_vfs_fat_sdmmc_mount or esp_vfs_fat_sdspi_mount first

• ESP_ERR_NO_MEM: if memory can not be allocated
• ESP_FAIL: fail to format it, or fail to mount back

Espressif Systems 1688
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_vfs_fat_spiflash_mount_rw_wl(const char *base_path, const char *partition_label,
const esp_vfs_fat_mount_config_t *mount_config,
wl_handle_t *wl_handle)

Convenience function to initialize FAT filesystem in SPI flash and register it in VFS.
This is an all-in-one function which does the following:

• finds the partition with defined partition_label. Partition label should be configured in the partition table.
• initializes flash wear levelling library on top of the given partition
• mounts FAT partition using FATFS library on top of flash wear levelling library
• registers FATFS library with VFS, with prefix given by base_prefix variable

This function is intended to make example code more compact.
Parameters

• base_path -- path where FATFS partition should be mounted (e.g. "/spiflash")
• partition_label -- label of the partition which should be used
• mount_config -- pointer to structure with extra parameters for mounting FATFS
• wl_handle -- [out] wear levelling driver handle

Returns
• ESP_OK on success
• ESP_ERR_NOT_FOUND if the partition table does not contain FATFS partition with
given label

• ESP_ERR_INVALID_STATE if esp_vfs_fat_spiflash_mount_rw_wl was already called
• ESP_ERR_NO_MEM if memory can not be allocated
• ESP_FAIL if partition can not be mounted
• other error codes from wear levelling library, SPI flash driver, or FATFS drivers

esp_err_t esp_vfs_fat_spiflash_unmount_rw_wl(const char *base_path, wl_handle_t wl_handle)
Unmount FAT filesystem and release resources acquired using esp_vfs_fat_spiflash_mount_rw_wl.

Parameters
• base_path -- path where partition should be registered (e.g. "/spiflash")
• wl_handle -- wear levelling driver handle returned by
esp_vfs_fat_spiflash_mount_rw_wl

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if esp_vfs_fat_spiflash_mount_rw_wl hasn't been called

esp_err_t esp_vfs_fat_spiflash_format_rw_wl(const char *base_path, const char *partition_label)
Format FAT filesystem.

Note: This API can be called when the FAT is mounted / not mounted. If this API is called when the FAT
isn't mounted (by calling esp_vfs_fat_spiflash_mount_rw_wl), this API will first mount the FAT then format
it, then restore back to the original state.

Parameters
• base_path -- Path where partition should be registered (e.g. "/spiflash")
• partition_label -- Label of the partition which should be used

Returns
• ESP_OK
• ESP_ERR_NO_MEM: if memory can not be allocated
• Other errors from esp_vfs_fat_spiflash_mount_rw_wl

esp_err_t esp_vfs_fat_spiflash_mount_ro(const char *base_path, const char *partition_label, const
esp_vfs_fat_mount_config_t *mount_config)

Convenience function to initialize read-only FAT filesystem and register it in VFS.

Espressif Systems 1689
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This is an all-in-one function which does the following:

• finds the partition with defined partition_label. Partition label should be configured in the partition table.
• mounts FAT partition using FATFS library
• registers FATFS library with VFS, with prefix given by base_prefix variable

Note: Wear levelling is not used when FAT is mounted in read-only mode using this function.

Parameters
• base_path -- path where FATFS partition should be mounted (e.g. "/spiflash")
• partition_label -- label of the partition which should be used
• mount_config -- pointer to structure with extra parameters for mounting FATFS

Returns
• ESP_OK on success
• ESP_ERR_NOT_FOUND if the partition table does not contain FATFS partition with
given label

• ESP_ERR_INVALID_STATE if esp_vfs_fat_spiflash_mount_ro was already called for
the same partition

• ESP_ERR_NO_MEM if memory can not be allocated
• ESP_FAIL if partition can not be mounted
• other error codes from SPI flash driver, or FATFS drivers

esp_err_t esp_vfs_fat_spiflash_unmount_ro(const char *base_path, const char *partition_label)
Unmount FAT filesystem and release resources acquired using esp_vfs_fat_spiflash_mount_ro.

Parameters
• base_path -- path where partition should be registered (e.g. "/spiflash")
• partition_label -- label of partition to be unmounted

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if esp_vfs_fat_spiflash_mount_ro hasn't been called

esp_err_t esp_vfs_fat_info(const char *base_path, uint64_t *out_total_bytes, uint64_t *out_free_bytes)
Get information for FATFS partition.

Parameters
• base_path -- Base path of the partition examined (e.g. "/spiflash")
• out_total_bytes -- [out] Size of the file system
• out_free_bytes -- [out] Free bytes available in the file system

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if partition not found
• ESP_FAIL if another FRESULT error (saved in errno)

Structures

struct esp_vfs_fat_mount_config_t
Configuration arguments for esp_vfs_fat_sdmmc_mount and esp_vfs_fat_spiflash_mount_rw_wl functions.

Public Members

bool format_if_mount_failed
If FAT partition can not be mounted, and this parameter is true, create partition table and format the
filesystem.

Espressif Systems 1690
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int max_files
Max number of open files.

size_t allocation_unit_size
If format_if_mount_failed is set, and mount fails, format the card with given allocation unit size. Must
be a power of 2, between sector size and 128 * sector size. For SD cards, sector size is always 512 bytes.
For wear_levelling, sector size is determined by CONFIG_WL_SECTOR_SIZE option.
Using larger allocation unit size will result in higher read/write performance and higher overhead when
storing small files.
Setting this field to 0 will result in allocation unit set to the sector size.

bool disk_status_check_enable
Enables real ff_disk_status function implementation for SD cards (ff_sdmmc_status). Possibly slows
down IO performance.
Try to enable if you need to handle situations when SD cards are not unmounted properly before physical
removal or you are experiencing issues with SD cards.
Doesn't do anything for other memory storage media.

Type Definitions

typedef esp_vfs_fat_mount_config_t esp_vfs_fat_sdmmc_mount_config_t

2.9.2 Manufacturing Utility

Introduction

This utility is designed to create instances of factory NVS partition images on a per-device basis for mass manufac-
turing purposes. The NVS partition images are created from CSV files containing user-provided configurations and
values.
Please note that this utility only creates manufacturing binary images which then need to be flashed onto your devices
using:

• esptool.py
• Flash Download tool (available on Windows only).Just download it, unzip, and follow the instructions inside
the doc folder.

• Direct flash programming using custom production tools.

Prerequisites

This utility is dependent on esp-idf's NVS partition utility.
• Operating System requirements:

– Linux / MacOS / Windows (standard distributions)
• The following packages are needed to use this utility:

– Python

Note:
Before using this utility, please make sure that:

Espressif Systems 1691
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esptool/#readme
https://www.espressif.com/en/support/download/other-tools?keys=flash+download+tools
https://www.python.org/downloads/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• The path to Python is added to the PATH environment variable.
• You have installed the packages from requirement.txt, the file in the root of the esp-idf directory.

Workflow

CSV Configuration File

This file contains the configuration of the device to be flashed.
The data in the configuration file has the following format (the REPEAT tag is optional):

name1,namespace, <-- First entry should be of type "namespace"
key1,type1,encoding1
key2,type2,encoding2,REPEAT
name2,namespace,
key3,type3,encoding3
key4,type4,encoding4

Note: The first line in this file should always be the namespace entry.

Each line should have three parameters: key,type,encoding, separated by a comma. If the REPEAT tag is
present, the value corresponding to this key in the master value CSV file will be the same for all devices.
Please refer to README of the NVS Partition Generator utility for detailed description of each parameter.

Below is a sample example of such a configuration file:

app,namespace,
firmware_key,data,hex2bin
serial_no,data,string,REPEAT
device_no,data,i32

Note:
Make sure there are no spaces:

• before and after ','
• at the end of each line in a CSV file

Master Value CSV File

This file contains details of the devices to be flashed. Each line in this file corresponds to a device instance.
The data in the master value CSV file has the following format:

key1,key2,key3,.....
value1,value2,value3,....

Espressif Systems 1692
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: The first line in the file should always contain the key names. All the keys from the configuration file should
be present here in the same order. This file can have additional columns (keys). The additional keys will be treated
as metadata and would not be part of the final binary files.

Each line should contain the value of the corresponding keys, separated by a comma. If the key has the REPEAT
tag, its corresponding value must be entered in the second line only. Keep the entry empty for this value in the
following lines.
The description of this parameter is as follows:
value Data value
Data value is the value of data corresponding to the key.
Below is a sample example of a master value CSV file:

id,firmware_key,serial_no,device_no
1,1a2b3c4d5e6faabb,A1,101
2,1a2b3c4d5e6fccdd,,102
3,1a2b3c4d5e6feeff,,103

Note: If the 'REPEAT' tag is present, a new master value CSV file will be created in the same folder as the input Master
CSV File with the values inserted at each line for the key with the 'REPEAT' tag.

This utility creates intermediate CSV files which are used as input for the NVS partition utility to generate the binary
files.
The format of this intermediate CSV file is as follows:

key,type,encoding,value
key,namespace, ,
key1,type1,encoding1,value1
key2,type2,encoding2,value2

An instance of an intermediate CSV file will be created for each device on an individual basis.

Running the utility

Usage:

python mfg_gen.py [-h] {generate,generate-key} ...

Optional Arguments:

No. Parameter Description
1 -h, --help show this help message and exit

Commands:
Run mfg_gen.py {command} -h for additional help

No. Parameter Description
1 generate Generate NVS partition
2 generate-key Generate keys for encryption

To generate factory images for each device (Default):
Usage:

Espressif Systems 1693
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

python mfg_gen.py generate [-h] [--fileid FILEID] [--version {1,2}] [--keygen]
[--keyfile KEYFILE] [--inputkey INPUTKEY]
[--outdir OUTDIR]
conf values prefix size

Positional Arguments:

Parameter Description
conf Path to configuration csv file to parse
values Path to values csv file to parse
prefix | Unique name for each output filename prefix
size | Size of NVS partition in bytes

(must be multiple of 4096)

Optional Arguments:

Parameter Description
-h, --help show this help message and exit
--fileid
FILEID

Unique file identifier(any key in values file) for each filename suffix (Default: nu-
meric value(1,2,3...)

--version
{1,2}

Set multipage blob version. Version 1 - Multipage blob support disabled. Version
2 - Multipage blob support enabled. Default: Version 2

--keygen Generates key for encrypting NVS partition
--inputkey
INPUTKEY

File having key for encrypting NVS partition

--outdir OUT-
DIR

Output directory to store files created (Default: current directory)

You can run the utility to generate factory images for each device using the command below. A sample CSV file is
provided with the utility:

python mfg_gen.py generate samples/sample_config.csv samples/sample_values_
↪→singlepage_blob.csv Sample 0x3000

The master value CSV file should have the path in the file type relative to the directory from which you are running
the utility.
To generate encrypted factory images for each device:
You can run the utility to encrypt factory images for each device using the command below. A sample CSV file is
provided with the utility:

• Encrypt by allowing the utility to generate encryption keys:

python mfg_gen.py generate samples/sample_config.csv samples/sample_values_
↪→singlepage_blob.csv Sample 0x3000 --keygen

Note: Encryption key of the following format <outdir>/keys/keys-<prefix>-<fileid>.bin is cre-
ated. This newly created file having encryption keys in keys/ directory is compatible with NVS key-partition
structure. Refer to NVS Key Partition for more details.

• Encrypt by providing the encryption keys as input binary file:

python mfg_gen.py generate samples/sample_config.csv samples/sample_values_
↪→singlepage_blob.csv Sample 0x3000 --inputkey keys/sample_keys.bin

Espressif Systems 1694
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

To generate only encryption keys:
Usage:: python mfg_gen.py generate-key [-h] [--keyfile KEYFILE] [--outdir OUTDIR]
Optional Arguments:

Parameter Description
-h, --help show this help message and exit
--keyfile KEYFILE Path to output encryption keys file
--outdir OUTDIR Output directory to store files created. (Default: current directory)

You can run the utility to generate only encryption keys using the command below:

python mfg_gen.py generate-key

Note: Encryption key of the following format <outdir>/keys/keys-<timestamp>.bin is created.
Timestamp format is: %m-%d_%H-%M. To provide custom target filename use the --keyfile argument.

Generated encryption key binary file can further be used to encrypt factory images created on the per device basis.
The default numeric value: 1,2,3... of the fileid argument corresponds to each line bearing device instance values
in the master value CSV file.
While running the manufacturing utility, the following folders will be created in the specified outdir directory:

• bin/ for storing the generated binary files
• csv/ for storing the generated intermediate CSV files
• keys/ for storing encryption keys (when generating encrypted factory images)

2.9.3 Non-volatile Storage Library

Introduction

Non-volatile storage (NVS) library is designed to store key-value pairs in flash. This section introduces some concepts
used by NVS.

Underlying Storage Currently, NVS uses a portion of main flash memory through the esp_partition API. The
library uses all the partitions with data type and nvs subtype. The application can choose to use the partition
with the label nvs through the nvs_open() API function or any other partition by specifying its name using the
nvs_open_from_partition() API function.
Future versions of this library may have other storage backends to keep data in another flash chip (SPI or I2C), RTC,
FRAM, etc.

Note: if an NVS partition is truncated (for example, when the partition table layout is changed), its contents should
be erased. ESP-IDF build system provides a idf.py erase-flash target to erase all contents of the flash chip.

Note: NVS works best for storing many small values, rather than a few large values of the type 'string' and 'blob'.
If you need to store large blobs or strings, consider using the facilities provided by the FAT filesystem on top of the
wear levelling library.

Espressif Systems 1695
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Keys and Values NVS operates on key-value pairs. Keys are ASCII strings; the maximum key length is currently
15 characters. Values can have one of the following types:

• integer types: uint8_t, int8_t, uint16_t, int16_t, uint32_t, int32_t, uint64_t,
int64_t

• zero-terminated string
• variable length binary data (blob)

Note: String values are currently limited to 4000 bytes. This includes the null terminator. Blob values are limited
to 508,000 bytes or 97.6% of the partition size - 4000 bytes, whichever is lower.

Additional types, such as float and double might be added later.
Keys are required to be unique. Assigning a new value to an existing key replaces the old value and data type with
the value and data type specified by a write operation.
A data type check is performed when reading a value. An error is returned if the data type expected by read operation
does not match the data type of entry found for the key provided.

Namespaces To mitigate potential conflicts in key names between different components, NVS assigns each key-
value pair to one of namespaces. Namespace names follow the same rules as key names, i.e., themaximum length is 15
characters. Furthermore, there can be nomore than 254 different namespaces in oneNVS partition. Namespace name
is specified in the nvs_open() or nvs_open_from_partition call. This call returns an opaque handle,
which is used in subsequent calls to the nvs_get_*, nvs_set_*, and nvs_commit() functions. This way, a
handle is associated with a namespace, and key names will not collide with same names in other namespaces. Please
note that the namespaces with the same name in different NVS partitions are considered as separate namespaces.

NVS Iterators Iterators allow to list key-value pairs stored in NVS, based on specified partition name, namespace,
and data type.
There are the following functions available:

• nvs_entry_find() creates an opaque handle, which is used in subsequent calls to the
nvs_entry_next() and nvs_entry_info() functions.

• nvs_entry_next() advances an iterator to the next key-value pair.
• nvs_entry_info() returns information about each key-value pair

In general, all iterators obtained via nvs_entry_find() have to be released using
nvs_release_iterator(), which also tolerates NULL iterators. nvs_entry_find() and
nvs_entry_next() will set the given iterator to NULL or a valid iterator in all cases except a parameter
error occured (i.e., return ESP_ERR_NVS_NOT_FOUND). In case of a parameter error, the given iterator will not
be modified. Hence, it is best practice to initialize the iterator to NULL before calling nvs_entry_find() to
avoid complicated error checking before releasing the iterator.

Security, Tampering, and Robustness NVS is not directly compatible with the ESP32-C6 flash encryption sys-
tem. However, data can still be stored in encrypted form if NVS encryption is used together with ESP32-C6 flash
encryption. Please refer to NVS Encryption for more details.
If NVS encryption is not used, it is possible for anyone with physical access to the flash chip to alter, erase, or add
key-value pairs. With NVS encryption enabled, it is not possible to alter or add a key-value pair and get recognized
as a valid pair without knowing corresponding NVS encryption keys. However, there is no tamper-resistance against
the erase operation.
The library does try to recover from conditions when flash memory is in an inconsistent state. In particular, one
should be able to power off the device at any point and time and then power it back on. This should not result in loss
of data, except for the new key-value pair if it was being written at the moment of powering off. The library should
also be able to initialize properly with any random data present in flash memory.

Espressif Systems 1696
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

NVS Encryption

Data stored in NVS partitions can be encrypted using AES-XTS in the manner similar to the one mentioned in disk
encryption standard IEEE P1619. For the purpose of encryption, each entry is treated as one sector and relative
address of the entry (w.r.t. partition-start) is fed to the encryption algorithm as sector-number. The NVS Encryption
can be enabled by enabling CONFIG_NVS_ENCRYPTION. The keys required for NVS encryption are stored in yet
another partition, which is protected using Flash Encryption. Therefore, enabling Flash Encryption is a prerequisite
for NVS encryption.
The NVS Encryption is enabled by default when Flash Encryption is enabled. This is done because Wi-Fi driver
stores credentials (like SSID and passphrase) in the default NVS partition. It is important to encrypt them as default
choice if platform level encryption is already enabled.
For using NVS encryption, the partition table must contain the NVS Key Partition. Two partition tables containing the
NVS Key Partition are provided for NVS encryption under the partition table option (menuconfig > Partition
Table). They can be selected with the project configuration menu (idf.py menuconfig). Please refer to the
example security/flash_encryption for how to configure and use NVS encryption feature.

NVSKey Partition An application requiring NVS encryption support needs to be compiled with a key-partition of
the type data and subtype nvs_keys. This partition should be marked as encrypted and its size should be the minimum
partition size (4KB). Refer to Partition Tables for more details. Two additional partition tables which contain the NVS
Key Partition are provided under the partition table option (menuconfig > Partition Table). They can be
directly used for NVS Encryption. The structure of these partitions is depicted below.

+-----------+--------------+-------------+----+
| XTS encryption key (32) |
+---+
| XTS tweak key (32) |
+---+
| CRC32 (4) |
+---+

The XTS encryption keys in the NVS Key Partition can be generated in one of the following two ways.
1. Generate the keys on the ESP chip:

When NVS encryption is enabled the nvs_flash_init() API function can be used to ini-
tialize the encrypted default NVS partition. The API function internally generates the XTS en-
cryption keys on the ESP chip. The API function finds the first NVS Key Partition. Then the
API function automatically generates and stores the NVS keys in that partition by making use of
the nvs_flash_generate_keys() API function provided by nvs_flash/include/nvs_flash.h.
New keys are generated and stored only when the respective key partition is empty. The same key
partition can then be used to read the security configurations for initializing a custom encrypted
NVS partition with help of nvs_flash_secure_init_partition().
TheAPI functionsnvs_flash_secure_init() andnvs_flash_secure_init_partition()
do not generate the keys internally. When these API functions are used for initial-
izing encrypted NVS partitions, the keys can be generated after startup using the
nvs_flash_generate_keys() API function provided by nvs_flash.h. The API
function will then write those keys onto the key-partition in encrypted form.

Note: Please note that nvs_keys partition must be completely erased before you
start the application in this approach. Otherwise the application may generate
ESP_ERR_NVS_CORRUPT_KEY_PART error code assuming that nvs_keys partition is
not empty and contains malformatted data. You can use the following command for this:

parttool.py --port PORT --partition-table-file=PARTITION_TABLE_FILE --
↪→partition-table-offset PARTITION_TABLE_OFFSET erase_partition --
↪→partition-type=data --partition-subtype=nvs_keys

2. Use pre-generated key partition:

Espressif Systems 1697
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/security/flash_encryption
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/nvs_flash/include/nvs_flash.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This option will be required by the user when keys in the NVS Key Partition are not generated by
the application. The NVS Key Partition containing the XTS encryption keys can be generated with
the help of NVS Partition Generator Utility. Then the user can store the pre generated key partition
on the flash with help of the following two commands:
i) Build and flash the partition table

idf.py partition-table partition-table-flash

ii) Store the keys in the NVS Key Partition (on the flash) with the help of parttool.py (see Partition
Tool section in partition-tables for more details)

parttool.py --port PORT --partition-table-offset PARTITION_TABLE_
↪→OFFSET write_partition --partition-name="name of nvs_key partition" -
↪→-input NVS_KEY_PARTITION_FILE

Note: If the device is encrypted in flash encryption development mode and you want to renew the
NVS key partition, you need to tell parttool.py to encrypt the NVS key partition and you also need
to give it a pointer to the unencrypted partition table in your build directory (build/partition_table)
since the partition table on the device is encrypted, too. You can use the following command:

parttool.py --esptool-write-args encrypt --port PORT --partition-table-
↪→file=PARTITION_TABLE_FILE --partition-table-offset PARTITION_TABLE_
↪→OFFSET write_partition --partition-name="name of nvs_key partition" -
↪→-input NVS_KEY_PARTITION_FILE

Since the key partition is marked as encrypted and Flash Encryption is enabled, the bootloader will encrypt this
partition using flash encryption key on the first boot.
It is possible for an application to use different keys for different NVS partitions and thereby have multiple key-
partitions. However, it is a responsibility of the application to provide correct key-partition/keys for the purpose of
encryption/decryption.

Encrypted Read/Write The same NVS API functions nvs_get_* or nvs_set_* can be used for reading of,
and writing to an encrypted nvs partition as well.
Encrypt the default NVS partition: To enable encryption for the default NVS partition no additional steps are
necessary. When CONFIG_NVS_ENCRYPTION is enabled, the nvs_flash_init() API function internally per-
forms some additional steps using the first NVS Key Partition found to enable encryption for the default NVS partition
(refer to the API documentation for more details). Alternatively, nvs_flash_secure_init() API function
can also be used to enable encryption for the default NVS partition.
Encrypt a custom NVS partition: To enable encryption for a custom NVS par-
tition, nvs_flash_secure_init_partition() API function is used instead of
nvs_flash_init_partition().
When nvs_flash_secure_init() and nvs_flash_secure_init_partition() API functions are
used, the applications are expected to follow the steps below in order to perform NVS read/write operations with
encryption enabled.

1. Find key partition and NVS data partition using esp_partition_find* API functions.
2. Populate the nvs_sec_cfg_t struct using the nvs_flash_read_security_cfg() or

nvs_flash_generate_keys() API functions.
3. Initialise NVS flash partition using the nvs_flash_secure_init() or

nvs_flash_secure_init_partition() API functions.
4. Open a namespace using the nvs_open() or nvs_open_from_partition() API functions.
5. Perform NVS read/write operations using nvs_get_* or nvs_set_*.
6. Deinitialise an NVS partition using nvs_flash_deinit().

Espressif Systems 1698
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/partition_table/parttool.py
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/partition_table/parttool.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

NVS Partition Generator Utility

This utility helps generate NVS partition binary files which can be flashed separately on a dedicated partition via a
flashing utility. Key-value pairs to be flashed onto the partition can be provided via a CSV file. For more details,
please refer to NVS Partition Generator Utility.

Application Example

You can find code examples in the storage directory of ESP-IDF examples:
storage/nvs_rw_value

Demonstrates how to read a single integer value from, and write it to NVS.
The value checked in this example holds the number of the ESP32-C6 module restarts. The value's
function as a counter is only possible due to its storing in NVS.
The example also shows how to check if a read / write operation was successful, or if a certain value
has not been initialized in NVS. The diagnostic procedure is provided in plain text to help you track the
program flow and capture any issues on the way.

storage/nvs_rw_blob
Demonstrates how to read a single integer value and a blob (binary large object), and write them to NVS
to preserve this value between ESP32-C6 module restarts.

• value - tracks the number of the ESP32-C6 module soft and hard restarts.
• blob - contains a table with module run times. The table is read from NVS to dynamically allocated
RAM. A new run time is added to the table on each manually triggered soft restart, and then the
added run time is written to NVS. Triggering is done by pulling down GPIO0.

The example also shows how to implement the diagnostic procedure to check if the read / write operation
was successful.

storage/nvs_rw_value_cxx
This example does exactly the same as storage/nvs_rw_value, except that it uses the C++ NVS handle
class.

Internals

Log of Key-Value Pairs NVS stores key-value pairs sequentially, with new key-value pairs being added at the end.
When a value of any given key has to be updated, a new key-value pair is added at the end of the log and the old
key-value pair is marked as erased.

Pages and Entries NVS library uses two main entities in its operation: pages and entries. Page is a logical structure
which stores a portion of the overall log. Logical page corresponds to one physical sector of flash memory. Pages
which are in use have a sequence number associated with them. Sequence numbers impose an ordering on pages.
Higher sequence numbers correspond to pages which were created later. Each page can be in one of the following
states:
Empty/uninitialized Flash storage for the page is empty (all bytes are 0xff). Page is not used to store any data at

this point and does not have a sequence number.
Active Flash storage is initialized, page header has been written to flash, page has a valid sequence number. Page

has some empty entries and data can be written there. No more than one page can be in this state at any given
moment.

Full Flash storage is in a consistent state and is filled with key-value pairs. Writing new key-value pairs into this
page is not possible. It is still possible to mark some key-value pairs as erased.

Erasing Non-erased key-value pairs are being moved into another page so that the current page can be erased. This
is a transient state, i.e., page should never stay in this state at the time when any API call returns. In case of a
sudden power off, the move-and-erase process will be completed upon the next power-on.

Espressif Systems 1699
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/nvs_rw_value
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/nvs_rw_blob
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/nvs_rw_value_cxx
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/nvs_rw_value
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Corrupted Page header contains invalid data, and further parsing of page data was canceled. Any items previously
written into this page will not be accessible. The corresponding flash sector will not be erased immediately and
will be kept along with sectors in uninitialized state for later use. This may be useful for debugging.

Mapping from flash sectors to logical pages does not have any particular order. The library will inspect sequence
numbers of pages found in each flash sector and organize pages in a list based on these numbers.

+--------+ +--------+ +--------+ +--------+
| Page 1 | | Page 2 | | Page 3 | | Page 4 |
| Full +---> | Full +---> | Active | | Empty | <- states
| #11 | | #12 | | #14 | | | <- sequence numbers
+---+----+ +----+---+ +----+---+ +---+----+

+---v------+ +-----v----+ +------v---+ +------v---+
| Sector 3 | | Sector 0 | | Sector 2 | | Sector 1 | <- physical sectors
+----------+ +----------+ +----------+ +----------+

Structure of a Page For now, we assume that flash sector size is 4096 bytes and that ESP32-C6 flash encryption
hardware operates on 32-byte blocks. It is possible to introduce some settings configurable at compile-time (e.g., via
menuconfig) to accommodate flash chips with different sector sizes (although it is not clear if other components in
the system, e.g., SPI flash driver and SPI flash cache can support these other sizes).
Page consists of three parts: header, entry state bitmap, and entries themselves. To be compatible with ESP32-C6
flash encryption, the entry size is 32 bytes. For integer types, an entry holds one key-value pair. For strings and blobs,
an entry holds part of key-value pair (more on that in the entry structure description).
The following diagram illustrates the page structure. Numbers in parentheses indicate the size of each part in bytes.

+-----------+--------------+-------------+-------------------------+
| State (4) | Seq. no. (4) | version (1) | Unused (19) | CRC32 (4) | Header (32)
+-----------+--------------+-------------+-------------------------+
| Entry state bitmap (32) |
+--+
| Entry 0 (32) |
+--+
| Entry 1 (32) |
+--+
/ /
/ /
+--+
| Entry 125 (32) |
+--+

Page header and entry state bitmap are always written to flash unencrypted. Entries are encrypted if flash encryption
feature of ESP32-C6 is used.
Page state values are defined in such a way that changing state is possible by writing 0 into some of the bits. Therefore
it is not necessary to erase the page to change its state unless that is a change to the erased state.
The version field in the header reflects the NVS format version used. For backward compatibility reasons, it is
decremented for every version upgrade starting at 0xff (i.e., 0xff for version-1, 0xfe for version-2 and so on).
CRC32 value in the header is calculated over the part which does not include a state value (bytes 4 to 28). The unused
part is currently filled with 0xff bytes.
The following sections describe the structure of entry state bitmap and entry itself.

Entry and Entry State Bitmap Each entry can be in one of the following three states represented with two bits in
the entry state bitmap. The final four bits in the bitmap (256 - 2 * 126) are not used.
Empty (2'b11) Nothing is written into the specific entry yet. It is in an uninitialized state (all bytes are 0xff).

Espressif Systems 1700
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Written (2'b10) A key-value pair (or part of key-value pair which spans multiple entries) has been written into the
entry.

Erased (2'b00) A key-value pair in this entry has been discarded. Contents of this entry will not be parsed anymore.

Structure of Entry For values of primitive types (currently integers from 1 to 8 bytes long), entry holds one key-
value pair. For string and blob types, entry holds part of the whole key-value pair. For strings, in case when a
key-value pair spans multiple entries, all entries are stored in the same page. Blobs are allowed to span over multiple
pages by dividing them into smaller chunks. For tracking these chunks, an additional fixed length metadata entry is
stored called "blob index". Earlier formats of blobs are still supported (can be read and modified). However, once
the blobs are modified, they are stored using the new format.

+--------+----------+----------+----------------+-----------+---------------+------
↪→----+
| NS (1) | Type (1) | Span (1) | ChunkIndex (1) | CRC32 (4) | Key (16) | Data␣
↪→(8) |
+--------+----------+----------+----------------+-----------+---------------+------
↪→----+

Primitive +------------------------------
↪→--+

+--------> | Data (8) ␣
↪→ |

| Types +------------------------------
↪→--+

+-> Fixed length --
| | +---------+--------------+-----

↪→----------+-------+
| +--------> | Size(4) | ChunkCount(1)|␣

↪→ChunkStart(1) | Rsv(2)|
Data format ---+ Blob Index +---------+--------------+-----

↪→----------+-------+
|
| +----------+---------+-----------+
+-> Variable length --> | Size (2) | Rsv (2) | CRC32 (4) |

(Strings, Blob Data) +----------+---------+-----------+

Individual fields in entry structure have the following meanings:
NS Namespace index for this entry. For more information on this value, see the section on namespaces implemen-

tation.
Type One byte indicating the value data type. See the ItemType enumeration in nvs_flash/include/nvs_handle.hpp

for possible values.
Span Number of entries used by this key-value pair. For integer types, this is equal to 1. For strings and blobs, this

depends on value length.
ChunkIndex Used to store the index of a blob-data chunk for blob types. For other types, this should be 0xff.
CRC32 Checksum calculated over all the bytes in this entry, except for the CRC32 field itself.
Key Zero-terminated ASCII string containing a key name. Maximum string length is 15 bytes, excluding a zero

terminator.
Data For integer types, this field contains the value itself. If the value itself is shorter than 8 bytes, it is padded to

the right, with unused bytes filled with 0xff.
For "blob index" entry, these 8 bytes hold the following information about data-chunks:

• Size (Only for blob index.) Size, in bytes, of complete blob data.
• ChunkCount (Only for blob index.) Total number of blob-data chunks into which the blob was divided

during storage.
• ChunkStart (Only for blob index.) ChunkIndex of the first blob-data chunk of this blob. Subsequent

chunks have chunkIndex incrementally allocated (step of 1).
For string and blob data chunks, these 8 bytes hold additional data about the value, which are described below:

• Size (Only for strings and blobs.) Size, in bytes, of actual data. For strings, this includes zero terminators.
• CRC32 (Only for strings and blobs.) Checksum calculated over all bytes of data.

Espressif Systems 1701
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/nvs_flash/include/nvs_handle.hpp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Variable length values (strings and blobs) are written into subsequent entries, 32 bytes per entry. The Span field of
the first entry indicates how many entries are used.

Namespaces As mentioned above, each key-value pair belongs to one of the namespaces. Namespace identifiers
(strings) are stored as keys of key-value pairs in namespace with index 0. Values corresponding to these keys are
indexes of these namespaces.

+---+
| NS=0 Type=uint8_t Key="wifi" Value=1 | Entry describing namespace "wifi"
+---+
| NS=1 Type=uint32_t Key="channel" Value=6 | Key "channel" in namespace "wifi"
+---+
| NS=0 Type=uint8_t Key="pwm" Value=2 | Entry describing namespace "pwm"
+---+
| NS=2 Type=uint16_t Key="channel" Value=20 | Key "channel" in namespace "pwm"
+---+

Item Hash List To reduce the number of reads from flash memory, each member of the Page class maintains a list
of pairs: item index; item hash. This list makes searches much quicker. Instead of iterating over all entries, reading
them from flash one at a time, Page::findItem first performs a search for the item hash in the hash list. This gives the
item index within the page if such an item exists. Due to a hash collision, it is possible that a different item will be
found. This is handled by falling back to iteration over items in flash.
Each node in the hash list contains a 24-bit hash and 8-bit item index. Hash is calculated based on item namespace,
key name, and ChunkIndex. CRC32 is used for calculation; the result is truncated to 24 bits. To reduce the overhead
for storing 32-bit entries in a linked list, the list is implemented as a double-linked list of arrays. Each array holds
29 entries, for the total size of 128 bytes, together with linked list pointers and a 32-bit count field. The minimum
amount of extra RAM usage per page is therefore 128 bytes; maximum is 640 bytes.

API Reference

Header File
• components/nvs_flash/include/nvs_flash.h

Functions
esp_err_t nvs_flash_init(void)

Initialize the default NVS partition.
This API initialises the default NVS partition. The default NVS partition is the one that is labeled "nvs" in the
partition table.
When "NVS_ENCRYPTION" is enabled in the menuconfig, this API enables the NVS encryption for the
default NVS partition as follows
a. Read security configurations from the first NVS key partition listed in the partition table. (NVS key

partition is any "data" type partition which has the subtype value set to "nvs_keys")
b. If the NVS key partiton obtained in the previous step is empty, generate and store new keys in that NVS

key partiton.
c. Internally call "nvs_flash_secure_init()" with the security configurations obtained/generated in the previ-

ous steps.
Post initialization NVS read/write APIs remain the same irrespective of NVS encryption.

Returns
• ESP_OK if storage was successfully initialized.
• ESP_ERR_NVS_NO_FREE_PAGES if the NVS storage contains no empty pages (which
may happen if NVS partition was truncated)

• ESP_ERR_NOT_FOUND if no partition with label "nvs" is found in the partition table

Espressif Systems 1702
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/nvs_flash/include/nvs_flash.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_NO_MEM in case memory could not be allocated for the internal structures
• one of the error codes from the underlying flash storage driver
• error codes from nvs_flash_read_security_cfg API (when "NVS_ENCRYPTION" is en-
abled).

• error codes from nvs_flash_generate_keys API (when "NVS_ENCRYPTION" is en-
abled).

• error codes from nvs_flash_secure_init_partition API (when "NVS_ENCRYPTION" is
enabled) .

esp_err_t nvs_flash_init_partition(const char *partition_label)
Initialize NVS flash storage for the specified partition.

Parameters partition_label -- [in] Label of the partition. Must be no longer than 16 char-
acters.

Returns
• ESP_OK if storage was successfully initialized.
• ESP_ERR_NVS_NO_FREE_PAGES if the NVS storage contains no empty pages (which
may happen if NVS partition was truncated)

• ESP_ERR_NOT_FOUND if specified partition is not found in the partition table
• ESP_ERR_NO_MEM in case memory could not be allocated for the internal structures
• one of the error codes from the underlying flash storage driver

esp_err_t nvs_flash_init_partition_ptr(const esp_partition_t *partition)
Initialize NVS flash storage for the partition specified by partition pointer.

Parameters partition -- [in] pointer to a partition obtained by the ESP partition API.
Returns

• ESP_OK if storage was successfully initialized
• ESP_ERR_NVS_NO_FREE_PAGES if the NVS storage contains no empty pages (which
may happen if NVS partition was truncated)

• ESP_ERR_INVALID_ARG in case partition is NULL
• ESP_ERR_NO_MEM in case memory could not be allocated for the internal structures
• one of the error codes from the underlying flash storage driver

esp_err_t nvs_flash_deinit(void)
Deinitialize NVS storage for the default NVS partition.
Default NVS partition is the partition with "nvs" label in the partition table.

Returns
• ESP_OK on success (storage was deinitialized)
• ESP_ERR_NVS_NOT_INITIALIZED if the storage was not initialized prior to this call

esp_err_t nvs_flash_deinit_partition(const char *partition_label)
Deinitialize NVS storage for the given NVS partition.

Parameters partition_label -- [in] Label of the partition
Returns

• ESP_OK on success
• ESP_ERR_NVS_NOT_INITIALIZED if the storage for given partition was not initial-
ized prior to this call

esp_err_t nvs_flash_erase(void)
Erase the default NVS partition.
Erases all contents of the default NVS partition (one with label "nvs").

Note: If the partition is initialized, this function first de-initializes it. Afterwards, the partition has to be
initialized again to be used.

Returns

Espressif Systems 1703
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK on success
• ESP_ERR_NOT_FOUND if there is no NVS partition labeled "nvs" in the partition table
• different error in case de-initialization fails (shouldn't happen)

esp_err_t nvs_flash_erase_partition(const char *part_name)
Erase specified NVS partition.
Erase all content of a specified NVS partition

Note: If the partition is initialized, this function first de-initializes it. Afterwards, the partition has to be
initialized again to be used.

Parameters part_name -- [in] Name (label) of the partition which should be erased
Returns

• ESP_OK on success
• ESP_ERR_NOT_FOUND if there is no NVS partition with the specified name in the
partition table

• different error in case de-initialization fails (shouldn't happen)

esp_err_t nvs_flash_erase_partition_ptr(const esp_partition_t *partition)
Erase custom partition.
Erase all content of specified custom partition.

Note: If the partition is initialized, this function first de-initializes it. Afterwards, the partition has to be
initialized again to be used.

Parameters partition -- [in] pointer to a partition obtained by the ESP partition API.
Returns

• ESP_OK on success
• ESP_ERR_NOT_FOUND if there is no partition with the specified parameters in the
partition table

• ESP_ERR_INVALID_ARG in case partition is NULL
• one of the error codes from the underlying flash storage driver

esp_err_t nvs_flash_secure_init(nvs_sec_cfg_t *cfg)
Initialize the default NVS partition.
This API initialises the default NVS partition. The default NVS partition is the one that is labeled "nvs" in the
partition table.

Parameters cfg -- [in] Security configuration (keys) to be used for NVS encryption/decryption.
If cfg is NULL, no encryption is used.

Returns
• ESP_OK if storage has been initialized successfully.
• ESP_ERR_NVS_NO_FREE_PAGES if the NVS storage contains no empty pages (which
may happen if NVS partition was truncated)

• ESP_ERR_NOT_FOUND if no partition with label "nvs" is found in the partition table
• ESP_ERR_NO_MEM in case memory could not be allocated for the internal structures
• one of the error codes from the underlying flash storage driver

esp_err_t nvs_flash_secure_init_partition(const char *partition_label, nvs_sec_cfg_t *cfg)
Initialize NVS flash storage for the specified partition.

Parameters
• partition_label -- [in] Label of the partition. Note that internally, a reference to
passed value is kept and it should be accessible for future operations

Espressif Systems 1704
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• cfg -- [in] Security configuration (keys) to be used for NVS encryption/decryption. If
cfg is null, no encryption/decryption is used.

Returns
• ESP_OK if storage has been initialized successfully.
• ESP_ERR_NVS_NO_FREE_PAGES if the NVS storage contains no empty pages (which
may happen if NVS partition was truncated)

• ESP_ERR_NOT_FOUND if specified partition is not found in the partition table
• ESP_ERR_NO_MEM in case memory could not be allocated for the internal structures
• one of the error codes from the underlying flash storage driver

esp_err_t nvs_flash_generate_keys(const esp_partition_t *partition, nvs_sec_cfg_t *cfg)
Generate and store NVS keys in the provided esp partition.

Parameters
• partition -- [in] Pointer to partition structure obtained using esp_partition_find_first
or esp_partition_get. Must be non-NULL.

• cfg -- [out] Pointer to nvs security configuration structure. Pointer must be non-NULL.
Generated keys will be populated in this structure.

Returns -ESP_OK, if cfg was read successfully; -ESP_INVALID_ARG, if partition or cfg; -or
error codes from esp_partition_write/erase APIs.

esp_err_t nvs_flash_read_security_cfg(const esp_partition_t *partition, nvs_sec_cfg_t *cfg)
Read NVS security configuration from a partition.

Note: Provided partition is assumed to be marked 'encrypted'.

Parameters
• partition -- [in] Pointer to partition structure obtained using esp_partition_find_first
or esp_partition_get. Must be non-NULL.

• cfg -- [out] Pointer to nvs security configuration structure. Pointer must be non-NULL.
Returns -ESP_OK, if cfg was read successfully; -ESP_INVALID_ARG, if partition or cfg; -

ESP_ERR_NVS_KEYS_NOT_INITIALIZED, if the partition is not yet written with keys.
-ESP_ERR_NVS_CORRUPT_KEY_PART, if the partition containing keys is found to be
corrupt -or error codes from esp_partition_read API.

Structures

struct nvs_sec_cfg_t
Key for encryption and decryption.

Public Members

uint8_t eky[NVS_KEY_SIZE]
XTS encryption and decryption key

uint8_t tky[NVS_KEY_SIZE]
XTS tweak key

Macros

NVS_KEY_SIZE

Espressif Systems 1705
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/nvs_flash/include/nvs.h

Functions
esp_err_t nvs_set_i8(nvs_handle_t handle, const char *key, int8_t value)

set int8_t value for given key
Set value for the key, given its name. Note that the actual storage will not be updated until nvs_commit is
called.

Parameters
• handle -- [in] Handle obtained from nvs_open function. Handles that were opened read
only cannot be used.

• key -- [in] Key name. Maximum length is (NVS_KEY_NAME_MAX_SIZE-1) charac-
ters. Shouldn't be empty.

• value -- [in] The value to set.
Returns

• ESP_OK if value was set successfully
• ESP_FAIL if there is an internal error; most likely due to corrupted NVS partition (only
if NVS assertion checks are disabled)

• ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
• ESP_ERR_NVS_READ_ONLY if storage handle was opened as read only
• ESP_ERR_NVS_INVALID_NAME if key name doesn't satisfy constraints
• ESP_ERR_NVS_NOT_ENOUGH_SPACE if there is not enough space in the underlying
storage to save the value

• ESP_ERR_NVS_REMOVE_FAILED if the value wasn't updated because flash write op-
eration has failed. The value was written however, and update will be finished after re-
initialization of nvs, provided that flash operation doesn't fail again.

esp_err_t nvs_set_u8(nvs_handle_t handle, const char *key, uint8_t value)
set uint8_t value for given key
This function is the same as nvs_set_i8 except for the data type.

esp_err_t nvs_set_i16(nvs_handle_t handle, const char *key, int16_t value)
set int16_t value for given key
This function is the same as nvs_set_i8 except for the data type.

esp_err_t nvs_set_u16(nvs_handle_t handle, const char *key, uint16_t value)
set uint16_t value for given key
This function is the same as nvs_set_i8 except for the data type.

esp_err_t nvs_set_i32(nvs_handle_t handle, const char *key, int32_t value)
set int32_t value for given key
This function is the same as nvs_set_i8 except for the data type.

esp_err_t nvs_set_u32(nvs_handle_t handle, const char *key, uint32_t value)
set uint32_t value for given key
This function is the same as nvs_set_i8 except for the data type.

esp_err_t nvs_set_i64(nvs_handle_t handle, const char *key, int64_t value)
set int64_t value for given key
This function is the same as nvs_set_i8 except for the data type.

esp_err_t nvs_set_u64(nvs_handle_t handle, const char *key, uint64_t value)
set uint64_t value for given key
This function is the same as nvs_set_i8 except for the data type.

Espressif Systems 1706
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/nvs_flash/include/nvs.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t nvs_set_str(nvs_handle_t handle, const char *key, const char *value)
set string for given key
Set value for the key, given its name. Note that the actual storage will not be updated until nvs_commit is
called.

Parameters
• handle -- [in] Handle obtained from nvs_open function. Handles that were opened read
only cannot be used.

• key -- [in] Key name. Maximum length is (NVS_KEY_NAME_MAX_SIZE-1) charac-
ters. Shouldn't be empty.

• value -- [in] The value to set. For strings, the maximum length (including null character)
is 4000 bytes, if there is one complete page free for writing. This decreases, however, if
the free space is fragmented.

Returns
• ESP_OK if value was set successfully
• ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
• ESP_ERR_NVS_READ_ONLY if storage handle was opened as read only
• ESP_ERR_NVS_INVALID_NAME if key name doesn't satisfy constraints
• ESP_ERR_NVS_NOT_ENOUGH_SPACE if there is not enough space in the underlying
storage to save the value

• ESP_ERR_NVS_REMOVE_FAILED if the value wasn't updated because flash write op-
eration has failed. The value was written however, and update will be finished after re-
initialization of nvs, provided that flash operation doesn't fail again.

• ESP_ERR_NVS_VALUE_TOO_LONG if the string value is too long
esp_err_t nvs_get_i8(nvs_handle_t handle, const char *key, int8_t *out_value)

get int8_t value for given key
These functions retrieve value for the key, given its name. If key does not exist, or the requested variable type
doesn't match the type which was used when setting a value, an error is returned.
In case of any error, out_value is not modified.
out_value has to be a pointer to an already allocated variable of the given type.

// Example of using nvs_get_i32:
int32_t max_buffer_size = 4096; // default value
esp_err_t err = nvs_get_i32(my_handle, "max_buffer_size", &max_buffer_size);
assert(err == ESP_OK || err == ESP_ERR_NVS_NOT_FOUND);
// if ESP_ERR_NVS_NOT_FOUND was returned, max_buffer_size will still
// have its default value.

Parameters
• handle -- [in] Handle obtained from nvs_open function.
• key -- [in] Key name. Maximum length is (NVS_KEY_NAME_MAX_SIZE-1) charac-
ters. Shouldn't be empty.

• out_value -- Pointer to the output value. May be NULL for nvs_get_str and
nvs_get_blob, in this case required length will be returned in length argument.

Returns
• ESP_OK if the value was retrieved successfully
• ESP_FAIL if there is an internal error; most likely due to corrupted NVS partition (only
if NVS assertion checks are disabled)

• ESP_ERR_NVS_NOT_FOUND if the requested key doesn't exist
• ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
• ESP_ERR_NVS_INVALID_NAME if key name doesn't satisfy constraints
• ESP_ERR_NVS_INVALID_LENGTH if length is not sufficient to store data

Espressif Systems 1707
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t nvs_get_u8(nvs_handle_t handle, const char *key, uint8_t *out_value)
get uint8_t value for given key
This function is the same as nvs_get_i8 except for the data type.

esp_err_t nvs_get_i16(nvs_handle_t handle, const char *key, int16_t *out_value)
get int16_t value for given key
This function is the same as nvs_get_i8 except for the data type.

esp_err_t nvs_get_u16(nvs_handle_t handle, const char *key, uint16_t *out_value)
get uint16_t value for given key
This function is the same as nvs_get_i8 except for the data type.

esp_err_t nvs_get_i32(nvs_handle_t handle, const char *key, int32_t *out_value)
get int32_t value for given key
This function is the same as nvs_get_i8 except for the data type.

esp_err_t nvs_get_u32(nvs_handle_t handle, const char *key, uint32_t *out_value)
get uint32_t value for given key
This function is the same as nvs_get_i8 except for the data type.

esp_err_t nvs_get_i64(nvs_handle_t handle, const char *key, int64_t *out_value)
get int64_t value for given key
This function is the same as nvs_get_i8 except for the data type.

esp_err_t nvs_get_u64(nvs_handle_t handle, const char *key, uint64_t *out_value)
get uint64_t value for given key
This function is the same as nvs_get_i8 except for the data type.

esp_err_t nvs_get_str(nvs_handle_t handle, const char *key, char *out_value, size_t *length)
get string value for given key
These functions retrieve the data of an entry, given its key. If key does not exist, or the requested variable type
doesn't match the type which was used when setting a value, an error is returned.
In case of any error, out_value is not modified.
All functions expect out_value to be a pointer to an already allocated variable of the given type.
nvs_get_str and nvs_get_blob functions support WinAPI-style length queries. To get the size necessary to
store the value, call nvs_get_str or nvs_get_blob with zero out_value and non-zero pointer to length. Variable
pointed to by length argument will be set to the required length. For nvs_get_str, this length includes the zero
terminator. When calling nvs_get_str and nvs_get_blob with non-zero out_value, length has to be non-zero and
has to point to the length available in out_value. It is suggested that nvs_get/set_str is used for zero-terminated
C strings, and nvs_get/set_blob used for arbitrary data structures.

// Example (without error checking) of using nvs_get_str to get a string into␣
↪→dynamic array:
size_t required_size;
nvs_get_str(my_handle, "server_name", NULL, &required_size);
char* server_name = malloc(required_size);
nvs_get_str(my_handle, "server_name", server_name, &required_size);

// Example (without error checking) of using nvs_get_blob to get a binary data
into a static array:
uint8_t mac_addr[6];
size_t size = sizeof(mac_addr);
nvs_get_blob(my_handle, "dst_mac_addr", mac_addr, &size);

Espressif Systems 1708
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• handle -- [in] Handle obtained from nvs_open function.
• key -- [in] Key name. Maximum length is (NVS_KEY_NAME_MAX_SIZE-1) charac-
ters. Shouldn't be empty.

• out_value -- [out] Pointer to the output value. May be NULL for nvs_get_str and
nvs_get_blob, in this case required length will be returned in length argument.

• length -- [inout] A non-zero pointer to the variable holding the length of out_value. In
case out_value a zero, will be set to the length required to hold the value. In case out_value
is not zero, will be set to the actual length of the value written. For nvs_get_str this includes
zero terminator.

Returns
• ESP_OK if the value was retrieved successfully
• ESP_FAIL if there is an internal error; most likely due to corrupted NVS partition (only
if NVS assertion checks are disabled)

• ESP_ERR_NVS_NOT_FOUND if the requested key doesn't exist
• ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
• ESP_ERR_NVS_INVALID_NAME if key name doesn't satisfy constraints
• ESP_ERR_NVS_INVALID_LENGTH if length is not sufficient to store data

esp_err_t nvs_get_blob(nvs_handle_t handle, const char *key, void *out_value, size_t *length)
get blob value for given key
This function behaves the same as nvs_get_str, except for the data type.

esp_err_t nvs_open(const char *namespace_name, nvs_open_mode_t open_mode, nvs_handle_t *out_handle)
Open non-volatile storage with a given namespace from the default NVS partition.
Multiple internal ESP-IDF and third party application modules can store their key-value pairs in the NVS
module. In order to reduce possible conflicts on key names, each module can use its own namespace. The
default NVS partition is the one that is labelled "nvs" in the partition table.

Parameters
• namespace_name -- [in] Namespace name. Maximum length is
(NVS_KEY_NAME_MAX_SIZE-1) characters. Shouldn't be empty.

• open_mode -- [in]NVS_READWRITE orNVS_READONLY. If NVS_READONLY,
will open a handle for reading only. All write requests will be rejected for this handle.

• out_handle -- [out] If successful (return code is zero), handle will be returned in this
argument.

Returns
• ESP_OK if storage handle was opened successfully
• ESP_FAIL if there is an internal error; most likely due to corrupted NVS partition (only
if NVS assertion checks are disabled)

• ESP_ERR_NVS_NOT_INITIALIZED if the storage driver is not initialized
• ESP_ERR_NVS_PART_NOT_FOUND if the partition with label "nvs" is not found
• ESP_ERR_NVS_NOT_FOUND id namespace doesn't exist yet and mode is
NVS_READONLY

• ESP_ERR_NVS_INVALID_NAME if namespace name doesn't satisfy constraints
• ESP_ERR_NO_MEM in case memory could not be allocated for the internal structures
• ESP_ERR_NVS_NOT_ENOUGH_SPACE if there is no space for a new entry or there
are too many different namespaces (maximum allowed different namespaces: 254)

• other error codes from the underlying storage driver
esp_err_t nvs_open_from_partition(const char *part_name, const char *namespace_name,

nvs_open_mode_t open_mode, nvs_handle_t *out_handle)
Open non-volatile storage with a given namespace from specified partition.
The behaviour is same as nvs_open() API. However this API can operate on a specified NVS partition
instead of default NVS partition. Note that the specified partition must be registered with NVS using
nvs_flash_init_partition() API.

Parameters

Espressif Systems 1709
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• part_name -- [in] Label (name) of the partition of interest for object read/write/erase
• namespace_name -- [in] Namespace name. Maximum length is
(NVS_KEY_NAME_MAX_SIZE-1) characters. Shouldn't be empty.

• open_mode -- [in]NVS_READWRITE orNVS_READONLY. If NVS_READONLY,
will open a handle for reading only. All write requests will be rejected for this handle.

• out_handle -- [out] If successful (return code is zero), handle will be returned in this
argument.

Returns
• ESP_OK if storage handle was opened successfully
• ESP_FAIL if there is an internal error; most likely due to corrupted NVS partition (only
if NVS assertion checks are disabled)

• ESP_ERR_NVS_NOT_INITIALIZED if the storage driver is not initialized
• ESP_ERR_NVS_PART_NOT_FOUND if the partition with specified name is not found
• ESP_ERR_NVS_NOT_FOUND id namespace doesn't exist yet and mode is
NVS_READONLY

• ESP_ERR_NVS_INVALID_NAME if namespace name doesn't satisfy constraints
• ESP_ERR_NO_MEM in case memory could not be allocated for the internal structures
• ESP_ERR_NVS_NOT_ENOUGH_SPACE if there is no space for a new entry or there
are too many different namespaces (maximum allowed different namespaces: 254)

• other error codes from the underlying storage driver
esp_err_t nvs_set_blob(nvs_handle_t handle, const char *key, const void *value, size_t length)

set variable length binary value for given key
This family of functions set value for the key, given its name. Note that actual storage will not be updated until
nvs_commit function is called.

Parameters
• handle -- [in] Handle obtained from nvs_open function. Handles that were opened read
only cannot be used.

• key -- [in] Key name. Maximum length is (NVS_KEY_NAME_MAX_SIZE-1) charac-
ters. Shouldn't be empty.

• value -- [in] The value to set.
• length -- [in] length of binary value to set, in bytes; Maximum length is 508000 bytes
or (97.6% of the partition size - 4000) bytes whichever is lower.

Returns
• ESP_OK if value was set successfully
• ESP_FAIL if there is an internal error; most likely due to corrupted NVS partition (only
if NVS assertion checks are disabled)

• ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
• ESP_ERR_NVS_READ_ONLY if storage handle was opened as read only
• ESP_ERR_NVS_INVALID_NAME if key name doesn't satisfy constraints
• ESP_ERR_NVS_NOT_ENOUGH_SPACE if there is not enough space in the underlying
storage to save the value

• ESP_ERR_NVS_REMOVE_FAILED if the value wasn't updated because flash write op-
eration has failed. The value was written however, and update will be finished after re-
initialization of nvs, provided that flash operation doesn't fail again.

• ESP_ERR_NVS_VALUE_TOO_LONG if the value is too long
esp_err_t nvs_find_key(nvs_handle_t handle, const char *key, nvs_type_t *out_type)

Lookup key-value pair with given key name.
Note that function may indicate both existence of the key as well as the data type of NVS entry if it is found.

Parameters
• handle -- [in] Storage handle obtained with nvs_open.
• key -- [in] Key name. Maximum length is (NVS_KEY_NAME_MAX_SIZE-1) charac-
ters. Shouldn't be empty.

• out_type -- [out] Pointer to the output variable populated with data type of NVS entry
in case key was found. May be NULL, respective data type is then not provided.

Returns

Espressif Systems 1710
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK if NVS entry for key provided was found
• ESP_ERR_NVS_NOT_FOUND if the requested key doesn't exist
• ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
• ESP_FAIL if there is an internal error; most likely due to corrupted NVS partition (only
if NVS assertion checks are disabled)

• other error codes from the underlying storage driver
esp_err_t nvs_erase_key(nvs_handle_t handle, const char *key)

Erase key-value pair with given key name.
Note that actual storage may not be updated until nvs_commit function is called.

Parameters
• handle -- [in] Storage handle obtained with nvs_open. Handles that were opened read
only cannot be used.

• key -- [in] Key name. Maximum length is (NVS_KEY_NAME_MAX_SIZE-1) charac-
ters. Shouldn't be empty.

Returns
• ESP_OK if erase operation was successful
• ESP_FAIL if there is an internal error; most likely due to corrupted NVS partition (only
if NVS assertion checks are disabled)

• ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
• ESP_ERR_NVS_READ_ONLY if handle was opened as read only
• ESP_ERR_NVS_NOT_FOUND if the requested key doesn't exist
• other error codes from the underlying storage driver

esp_err_t nvs_erase_all(nvs_handle_t handle)
Erase all key-value pairs in a namespace.
Note that actual storage may not be updated until nvs_commit function is called.

Parameters handle -- [in] Storage handle obtained with nvs_open. Handles that were opened
read only cannot be used.

Returns
• ESP_OK if erase operation was successful
• ESP_FAIL if there is an internal error; most likely due to corrupted NVS partition (only
if NVS assertion checks are disabled)

• ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
• ESP_ERR_NVS_READ_ONLY if handle was opened as read only
• other error codes from the underlying storage driver

esp_err_t nvs_commit(nvs_handle_t handle)
Write any pending changes to non-volatile storage.
After setting any values, nvs_commit() must be called to ensure changes are written to non-volatile storage.
Individual implementations may write to storage at other times, but this is not guaranteed.

Parameters handle -- [in] Storage handle obtained with nvs_open. Handles that were opened
read only cannot be used.

Returns
• ESP_OK if the changes have been written successfully
• ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
• other error codes from the underlying storage driver

void nvs_close(nvs_handle_t handle)
Close the storage handle and free any allocated resources.
This function should be called for each handle opened with nvs_open once the handle is not in use any more.
Closing the handle may not automatically write the changes to nonvolatile storage. This has to be done explicitly
using nvs_commit function. Once this function is called on a handle, the handle should no longer be used.

Parameters handle -- [in] Storage handle to close

Espressif Systems 1711
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t nvs_get_stats(const char *part_name, nvs_stats_t *nvs_stats)
Fill structure nvs_stats_t. It provides info about used memory the partition.
This function calculates to runtime the number of used entries, free entries, total entries, and amount namespace
in partition.

// Example of nvs_get_stats() to get the number of used entries and free␣
↪→entries:
nvs_stats_t nvs_stats;
nvs_get_stats(NULL, &nvs_stats);
printf("Count: UsedEntries = (%d), FreeEntries = (%d), AllEntries = (%d)\n",

nvs_stats.used_entries, nvs_stats.free_entries, nvs_stats.total_
↪→entries);

Parameters
• part_name -- [in] Partition name NVS in the partition table. If pass a NULL than will
use NVS_DEFAULT_PART_NAME ("nvs").

• nvs_stats -- [out] Returns filled structure nvs_states_t. It provides info about used
memory the partition.

Returns
• ESP_OK if the changes have been written successfully. Return param nvs_stats will be
filled.

• ESP_ERR_NVS_PART_NOT_FOUND if the partition with label "name" is not found.
Return param nvs_stats will be filled 0.

• ESP_ERR_NVS_NOT_INITIALIZED if the storage driver is not initialized. Return
param nvs_stats will be filled 0.

• ESP_ERR_INVALID_ARG if nvs_stats equal to NULL.
• ESP_ERR_INVALID_STATE if there is page with the status of INVALID. Return param
nvs_stats will be filled not with correct values because not all pages will be counted. Count-
ing will be interrupted at the first INVALID page.

esp_err_t nvs_get_used_entry_count(nvs_handle_t handle, size_t *used_entries)
Calculate all entries in a namespace.
An entry represents the smallest storage unit in NVS. Strings and blobs may occupy more than one entry.
Note that to find out the total number of entries occupied by the namespace, add one to the returned value
used_entries (if err is equal to ESP_OK). Because the name space entry takes one entry.

// Example of nvs_get_used_entry_count() to get amount of all key-value pairs␣
↪→in one namespace:
nvs_handle_t handle;
nvs_open("namespace1", NVS_READWRITE, &handle);
...
size_t used_entries;
size_t total_entries_namespace;
if(nvs_get_used_entry_count(handle, &used_entries) == ESP_OK){

// the total number of entries occupied by the namespace
total_entries_namespace = used_entries + 1;

}

Parameters
• handle -- [in] Handle obtained from nvs_open function.
• used_entries -- [out] Returns amount of used entries from a namespace.

Returns
• ESP_OK if the changes have been written successfully. Return param used_entries will
be filled valid value.

Espressif Systems 1712
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_NVS_NOT_INITIALIZED if the storage driver is not initialized. Return
param used_entries will be filled 0.

• ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL. Return
param used_entries will be filled 0.

• ESP_ERR_INVALID_ARG if used_entries equal to NULL.
• Other error codes from the underlying storage driver. Return param used_entries will be
filled 0.

esp_err_t nvs_entry_find(const char *part_name, const char *namespace_name, nvs_type_t type,
nvs_iterator_t *output_iterator)

Create an iterator to enumerate NVS entries based on one or more parameters.

// Example of listing all the key-value pairs of any type under specified␣
↪→partition and namespace
nvs_iterator_t it = NULL;
esp_err_t res = nvs_entry_find(<nvs_partition_name>, <namespace>, NVS_TYPE_
↪→ANY, &it);
while(res == ESP_OK) {

nvs_entry_info_t info;
nvs_entry_info(it, &info); // Can omit error check if parameters are␣

↪→guaranteed to be non-NULL
printf("key '%s', type '%d' \n", info.key, info.type);
res = nvs_entry_next(&it);

}
nvs_release_iterator(it);

Parameters
• part_name -- [in] Partition name
• namespace_name -- [in] Set this value if looking for entries with a specific namespace.
Pass NULL otherwise.

• type -- [in] One of nvs_type_t values.
• output_iterator -- [out] Set to a valid iterator to enumerate all the en-
tries found. Set to NULL if no entry for specified criteria was found. If
any other error except ESP_ERR_INVALID_ARG occurs, output_iterator
is NULL, too. If ESP_ERR_INVALID_ARG occurs, output_iterator is
not changed. If a valid iterator is obtained through this function, it has to
be released using nvs_release_iterator when not used any more, unless
ESP_ERR_INVALID_ARG is returned.

Returns
• ESP_OK if no internal error or programming error occurred.
• ESP_ERR_NVS_NOT_FOUND if no element of specified criteria has been found.
• ESP_ERR_NO_MEM if memory has been exhausted during allocation of internal struc-
tures.

• ESP_ERR_INVALID_ARG if any of the parameters is NULL. Note: don't release out-
put_iterator in case ESP_ERR_INVALID_ARG has been returned

esp_err_t nvs_entry_next(nvs_iterator_t *iterator)
Advances the iterator to next item matching the iterator criteria.
Note that any copies of the iterator will be invalid after this call.

Parameters iterator -- [inout] Iterator obtained from nvs_entry_find function. Must be non-
NULL. If any error except ESP_ERR_INVALID_ARG occurs, iterator is set to NULL.
If ESP_ERR_INVALID_ARG occurs, iterator is not changed.

Returns
• ESP_OK if no internal error or programming error occurred.
• ESP_ERR_NVS_NOT_FOUND if no next element matching the iterator criteria.
• ESP_ERR_INVALID_ARG if iterator is NULL.

Espressif Systems 1713
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Possibly other errors in the future for internal programming or flash errors.
esp_err_t nvs_entry_info(const nvs_iterator_t iterator, nvs_entry_info_t *out_info)

Fills nvs_entry_info_t structure with information about entry pointed to by the iterator.
Parameters

• iterator -- [in] Iterator obtained from nvs_entry_find function. Must be non-NULL.
• out_info -- [out] Structure to which entry information is copied.

Returns
• ESP_OK if all parameters are valid; current iterator data has been written to out_info
• ESP_ERR_INVALID_ARG if one of the parameters is NULL.

void nvs_release_iterator(nvs_iterator_t iterator)
Release iterator.

Parameters iterator -- [in] Release iterator obtained from nvs_entry_find function. NULL
argument is allowed.

Structures

struct nvs_entry_info_t
information about entry obtained from nvs_entry_info function

Public Members

char namespace_name[NVS_NS_NAME_MAX_SIZE]
Namespace to which key-value belong

char key[NVS_KEY_NAME_MAX_SIZE]
Key of stored key-value pair

nvs_type_t type

Type of stored key-value pair

struct nvs_stats_t

Note: Info about storage space NVS.

Public Members

size_t used_entries
Amount of used entries.

size_t free_entries
Amount of free entries.

size_t total_entries
Amount all available entries.

size_t namespace_count
Amount name space.

Espressif Systems 1714
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Macros

ESP_ERR_NVS_BASE

Starting number of error codes

ESP_ERR_NVS_NOT_INITIALIZED

The storage driver is not initialized

ESP_ERR_NVS_NOT_FOUND

A requested entry couldn't be found or namespace doesn’t exist yet and mode is NVS_READONLY

ESP_ERR_NVS_TYPE_MISMATCH

The type of set or get operation doesn't match the type of value stored in NVS

ESP_ERR_NVS_READ_ONLY

Storage handle was opened as read only

ESP_ERR_NVS_NOT_ENOUGH_SPACE

There is not enough space in the underlying storage to save the value

ESP_ERR_NVS_INVALID_NAME

Namespace name doesn’t satisfy constraints

ESP_ERR_NVS_INVALID_HANDLE

Handle has been closed or is NULL

ESP_ERR_NVS_REMOVE_FAILED

The value wasn’t updated because flash write operation has failed. The value was written however, and update
will be finished after re-initialization of nvs, provided that flash operation doesn’t fail again.

ESP_ERR_NVS_KEY_TOO_LONG

Key name is too long

ESP_ERR_NVS_PAGE_FULL

Internal error; never returned by nvs API functions

ESP_ERR_NVS_INVALID_STATE

NVS is in an inconsistent state due to a previous error. Call nvs_flash_init and nvs_open again, then retry.

ESP_ERR_NVS_INVALID_LENGTH

String or blob length is not sufficient to store data

ESP_ERR_NVS_NO_FREE_PAGES

NVS partition doesn't contain any empty pages. This may happen if NVS partition was truncated. Erase the
whole partition and call nvs_flash_init again.

ESP_ERR_NVS_VALUE_TOO_LONG

Value doesn't fit into the entry or string or blob length is longer than supported by the implementation

ESP_ERR_NVS_PART_NOT_FOUND

Partition with specified name is not found in the partition table

Espressif Systems 1715
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_NVS_NEW_VERSION_FOUND

NVS partition contains data in new format and cannot be recognized by this version of code

ESP_ERR_NVS_XTS_ENCR_FAILED

XTS encryption failed while writing NVS entry

ESP_ERR_NVS_XTS_DECR_FAILED

XTS decryption failed while reading NVS entry

ESP_ERR_NVS_XTS_CFG_FAILED

XTS configuration setting failed

ESP_ERR_NVS_XTS_CFG_NOT_FOUND

XTS configuration not found

ESP_ERR_NVS_ENCR_NOT_SUPPORTED

NVS encryption is not supported in this version

ESP_ERR_NVS_KEYS_NOT_INITIALIZED

NVS key partition is uninitialized

ESP_ERR_NVS_CORRUPT_KEY_PART

NVS key partition is corrupt

ESP_ERR_NVS_WRONG_ENCRYPTION

NVS partition is marked as encrypted with generic flash encryption. This is forbidden since the NVS encryption
works differently.

ESP_ERR_NVS_CONTENT_DIFFERS

Internal error; never returned by nvs API functions. NVS key is different in comparison

NVS_DEFAULT_PART_NAME

Default partition name of the NVS partition in the partition table

NVS_PART_NAME_MAX_SIZE

maximum length of partition name (excluding null terminator)

NVS_KEY_NAME_MAX_SIZE

Maximum length of NVS key name (including null terminator)

NVS_NS_NAME_MAX_SIZE

Maximum length of NVS namespace name (including null terminator)

Type Definitions

typedef uint32_t nvs_handle_t
Opaque pointer type representing non-volatile storage handle

typedef nvs_handle_t nvs_handle

Espressif Systems 1716
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef nvs_open_mode_t nvs_open_mode

typedef struct nvs_opaque_iterator_t *nvs_iterator_t
Opaque pointer type representing iterator to nvs entries

Enumerations

enum nvs_open_mode_t

Mode of opening the non-volatile storage.
Values:

enumerator NVS_READONLY
Read only

enumerator NVS_READWRITE
Read and write

enum nvs_type_t

Types of variables.
Values:

enumerator NVS_TYPE_U8
Type uint8_t

enumerator NVS_TYPE_I8
Type int8_t

enumerator NVS_TYPE_U16
Type uint16_t

enumerator NVS_TYPE_I16
Type int16_t

enumerator NVS_TYPE_U32
Type uint32_t

enumerator NVS_TYPE_I32
Type int32_t

enumerator NVS_TYPE_U64
Type uint64_t

enumerator NVS_TYPE_I64
Type int64_t

enumerator NVS_TYPE_STR
Type string

Espressif Systems 1717
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator NVS_TYPE_BLOB
Type blob

enumerator NVS_TYPE_ANY
Must be last

2.9.4 NVS Partition Generator Utility

Introduction

The utility nvs_flash/nvs_partition_generator/nvs_partition_gen.py creates a binary file based on key-value pairs pro-
vided in a CSV file. The binary file is compatible with NVS architecture defined in Non-Volatile Storage. This utility
is ideally suited for generating a binary blob, containing data specific to ODM/OEM, which can be flashed externally
at the time of device manufacturing. This allows manufacturers to generate many instances of the same application
firmware with customized parameters for each device, such as a serial number.

Prerequisites

To use this utility in encryption mode, install the following packages:
• cryptography package

All the required packages are included in requirements.txt in the root of the esp-idf directory.

CSV File Format

Each line of a CSV file should contain 4 parameters, separated by a comma. The table below provides the description
for each of these parameters.

No. Parameter Description Notes
1 Key Key of the data. The data can be ac-

cessed later from an application using
this key.

2 Type Supported values are file, data,
and namespace.

3 Encoding Supported values are: u8, i8,
u16, i16, u32, i32, u64, i64,
string, hex2bin, base64, and
binary. This specifies how actual
data values are encoded in the re-
sulting binary file. The difference
between the string and binary
encoding is that string data is
terminated with a NULL character,
whereas binary data is not.

As of now, for the file type, only
hex2bin, base64, string, and
binary encoding is supported.

4 Value Data value Encoding and Value cells for the
namespace field type should be
empty. Encoding and Value of
namespace are fixed and are not
configurable. Any values in these
cells are ignored.

Espressif Systems 1718
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/nvs_flash/nvs_partition_generator/nvs_partition_gen.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: The first line of the CSV file should always be the column header and it is not configurable.

Below is an example dump of such a CSV file:

key,type,encoding,value <-- column header
namespace_name,namespace,, <-- First entry should be of type "namespace"
key1,data,u8,1
key2,file,string,/path/to/file

Note:
Make sure there are no spaces:

• before and after ','
• at the end of each line in a CSV file

NVS Entry and Namespace Association

When a namespace entry is encountered in a CSV file, each following entry will be treated as part of that namespace
until the next namespace entry is found. At this point, all the following entries will be treated as part of the new
namespace.

Note: First entry in a CSV file should always be a namespace entry.

Multipage Blob Support

By default, binary blobs are allowed to span over multiple pages and are written in the format mentioned in Section
Structure of Entry. If you intend to use an older format, the utility provides an option to disable this feature.

Encryption Support

The NVS Partition Generator utility also allows you to create an encrypted binary file. The utility uses the AES-XTS
encryption. Please refer to NVS Encryption for more details.

Decryption Support

This utility allows you to decrypt an encrypted NVS binary file. The utility uses an NVS binary file encrypted using
AES-XTS encryption. Please refer to NVS Encryption for more details.

Running the Utility

Usage:

python nvs_partition_gen.py [-h] {generate,generate-key,encrypt,decrypt} ...

Optional Arguments:

No. Parameter Description
1 -h, --help Show this help message and exit

Commands:

Espressif Systems 1719
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Run nvs_partition_gen.py {command} -h for additional help

No. Parameter Description
1 generate Generate NVS partition
2 generate-key Generate keys for encryption
3 encrypt Generate NVS encrypted partition
4 decrypt Decrypt NVS encrypted partition

To Generate NVS Partition (Default): Usage:

python nvs_partition_gen.py generate [-h] [--version {1,2}] [--outdir OUTDIR]
input output size

Positional Arguments:

Parameter Description
input Path to CSV file to parse
output Path to output NVS binary file
size Size of NVS partition in bytes (must be multiple of 4096)

Optional Arguments:

Parameter Description
-h, --help Show this help message and exit
--version
{1,2}

Set multipage blob version Version 1 - Multipage blob support disabled Version 2 - Multipage
blob support enabled Default: Version 2

--outdir
OUTDIR

Output directory to store files created (Default: current directory)

You can run the utility to generate NVS partition using the command below. A sample CSV file is provided with the
utility:

python nvs_partition_gen.py generate sample_singlepage_blob.csv sample.bin 0x3000

To Generate Only Encryption Key Partition: Usage:

python nvs_partition_gen.py generate-key [-h] [--keyfile KEYFILE]
[--outdir OUTDIR]

Optional Arguments:

Parameter Description
-h, --help Show this help message and exit
--keyfile KEYFILE Path to output encryption key partition file
--outdir OUTDIR Output directory to store file created (Default: current directory)

You can run the utility to generate only the encryption key partition using the command below:

python nvs_partition_gen.py generate-key

To Generate Encrypted NVS Partition: Usage:

Espressif Systems 1720
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

python nvs_partition_gen.py encrypt [-h] [--version {1,2}] [--keygen]
[--keyfile KEYFILE] [--inputkey INPUTKEY]
[--outdir OUTDIR]
input output size

Positional Arguments:

Parameter Description
input Path to CSV file to parse
output Path to output NVS binary file
size Size of NVS partition in bytes (must be multiple of 4096)

Optional Arguments:

Parameter Description
-h, --help Show this help message and exit
--version {1,2} Set multipage blob version Version 1 - Multipage blob support disabled Version 2 - Multipage

blob support enabled Default: Version 2
--keygen Generates key for encrypting NVS partition
--keyfile KEY-
FILE

Path to output encryption keys file

--inputkey
INPUTKEY

File having key for encrypting NVS partition

--outdir OUT-
DIR

Output directory to store files created (Default: current directory)

You can run the utility to encrypt NVS partition using the command below. A sample CSV file is provided with the
utility:

• Encrypt by allowing the utility to generate encryption keys:

python nvs_partition_gen.py encrypt sample_singlepage_blob.csv sample_encr.bin␣
↪→0x3000 --keygen

Note: Encryption key of the following format <outdir>/keys/keys-<timestamp>.bin is created.

• Encrypt by allowing the utility to generate encryption keys and store it in provided custom filename:

python nvs_partition_gen.py encrypt sample_singlepage_blob.csv sample_encr.bin␣
↪→0x3000 --keygen --keyfile sample_keys.bin

Note: Encryption key of the following format <outdir>/keys/sample_keys.bin is created.

Note: This newly created file having encryption keys in keys/ directory is compatible with NVS key-partition
structure. Refer to NVS Key Partition for more details.

• Encrypt by providing the encryption keys as input binary file:

python nvs_partition_gen.py encrypt sample_singlepage_blob.csv sample_encr.bin␣
↪→0x3000 --inputkey sample_keys.bin

To Decrypt Encrypted NVS Partition: Usage:

Espressif Systems 1721
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

python nvs_partition_gen.py decrypt [-h] [--outdir OUTDIR] input key output

Positional Arguments:

Parameter Description
input Path to encrypted NVS partition file to parse
key Path to file having keys for decryption
output Path to output decrypted binary file

Optional Arguments:

Parameter Description
-h, --help Show this help message and exit
--outdir OUTDIR Output directory to store files created (Default: current directory)

You can run the utility to decrypt encrypted NVS partition using the command below:

python nvs_partition_gen.py decrypt sample_encr.bin sample_keys.bin sample_decr.bin

You can also provide the format version number:
• Multipage Blob Support Disabled (Version 1)
• Multipage Blob Support Enabled (Version 2)

Multipage Blob Support Disabled (Version 1): You can run the utility in this format by setting the version
parameter to 1, as shown below. A sample CSV file is provided with the utility:

python nvs_partition_gen.py generate sample_singlepage_blob.csv sample.bin 0x3000 -
↪→-version 1

Multipage Blob Support Enabled (Version 2): You can run the utility in this format by setting the version pa-
rameter to 2, as shown below. A sample CSV file is provided with the utility:

python nvs_partition_gen.py generate sample_multipage_blob.csv sample.bin 0x4000 --
↪→version 2

Note: Minimum NVS Partition Size needed is 0x3000 bytes.

Note: When flashing the binary onto the device, make sure it is consistent with the application's sdkconfig.

Caveats

• Utility does not check for duplicate keys and will write data pertaining to both keys. You need to make sure
that the keys are distinct.

• Once a new page is created, no data will be written in the space left on the previous page. Fields in the CSV
file need to be ordered in such a way as to optimize memory.

• 64-bit datatype is not yet supported.

2.9.5 NVS Partition Parser Utility

Espressif Systems 1722
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Introduction

The utility nvs_flash/nvs_partition_tool/nvs_tool.py loads and parses an NVS storage partition for easier debugging
and data extraction. The utility also features integrity check which scans the partition for potential errors. Data blobs
are encoded in base64 format.

Encrypted Partitions

This utility does not support decryption. To decrypt the NVS partition, please use the NVS Partition Generator Utility
which does support NVS partition encryption and decryption.

Usage

There are two output format styles available with the -f or --format option:
• json - All of the output is printed as a JSON.
• text - The output is printed as a human-readable text with different selectable output styles mentioned
below.

For the text output format, the utility provides six different output styles with the -d or --dump option:
• all (default) - Prints all entries with metadata.
• written - Prints only written entries with metadata.
• minimal - Prints written namespace:key = value pairs.
• namespaces - Prints all written namespaces
• blobs - Prints all blobs and strings (reconstructs them if they are chunked).
• storage_info - Prints entry states count for every page.

Note: There is also a none option which will not print anything. This can be used with the integrity check option if
the NVS partition contents are irrelevant.

The utility also provides an integrity check feature via the -i or --integrity-check option (available only with the text
format as it would invalidate the json output). This feature scans through the entire partition and prints potential
errors. It can be used with the -d none option which will print only the potential errors.

2.9.6 SD/SDIO/MMC Driver

Overview

The SD/SDIO/MMC driver currently supports SD memory, SDIO cards, and eMMC chips. This is a protocol level
driver built on top of SDMMC and SD SPI host drivers.
SDMMC and SD SPI host drivers (driver/sdmmc/include/driver/sdmmc_host.h and
driver/spi/include/driver/sdspi_host.h) provide API functions for:

• Sending commands to slave devices
• Sending and receiving data
• Handling error conditions within the bus

For functions used to initialize and configure:

• SD SPI host, see SD SPI Host API

Espressif Systems 1723
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/nvs_flash/nvs_partition_tool/nvs_tool.py
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/sdmmc/include/driver/sdmmc_host.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/spi/include/driver/sdspi_host.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Application Example

An example which combines the SDMMC driver with the FATFS library is provided in the storage/sd_card directory
of ESP-IDF examples. This example initializes the card, then writes and reads data from it using POSIX and C library
APIs. See README.md file in the example directory for more information.

Combo (memory + IO) cards The driver does not support SD combo cards. Combo cards are treated as IO cards.

Thread safety Most applications need to use the protocol layer only in one task. For this reason, the protocol layer
does not implement any kind of locking on the sdmmc_card_t structure, or when accessing SDMMC or SD SPI
host drivers. Such locking is usually implemented on a higher layer, e.g., in the filesystem driver.

API Reference

Header File
• components/sdmmc/include/sdmmc_cmd.h

Functions
esp_err_t sdmmc_card_init(const sdmmc_host_t *host, sdmmc_card_t *out_card)

Probe and initialize SD/MMC card using given host

Note: Only SD cards (SDSC and SDHC/SDXC) are supported now. Support for MMC/eMMC cards will be
added later.

Parameters
• host -- pointer to structure defining host controller
• out_card -- pointer to structure which will receive information about the card when the
function completes

Returns
• ESP_OK on success
• One of the error codes from SDMMC host controller

void sdmmc_card_print_info(FILE *stream, const sdmmc_card_t *card)
Print information about the card to a stream.

Parameters
• stream -- stream obtained using fopen or fdopen
• card -- card information structure initialized using sdmmc_card_init

esp_err_t sdmmc_get_status(sdmmc_card_t *card)
Get status of SD/MMC card

Parameters card -- pointer to card information structure previously initialized using sd-
mmc_card_init

Returns
• ESP_OK on success
• One of the error codes from SDMMC host controller

esp_err_t sdmmc_write_sectors(sdmmc_card_t *card, const void *src, size_t start_sector, size_t
sector_count)

Write given number of sectors to SD/MMC card
Parameters

• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

Espressif Systems 1724
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/sd_card
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/sdmmc/include/sdmmc_cmd.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• src -- pointer to data buffer to read data from; data size must be equal to sector_count *
card->csd.sector_size

• start_sector -- sector where to start writing
• sector_count -- number of sectors to write

Returns
• ESP_OK on success or sector_count equal to 0
• One of the error codes from SDMMC host controller

esp_err_t sdmmc_read_sectors(sdmmc_card_t *card, void *dst, size_t start_sector, size_t sector_count)
Read given number of sectors from the SD/MMC card

Parameters
• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

• dst -- pointer to data buffer to write into; buffer size must be at least sector_count *
card->csd.sector_size

• start_sector -- sector where to start reading
• sector_count -- number of sectors to read

Returns
• ESP_OK on success or sector_count equal to 0
• One of the error codes from SDMMC host controller

esp_err_t sdmmc_erase_sectors(sdmmc_card_t *card, size_t start_sector, size_t sector_count,
sdmmc_erase_arg_t arg)

Erase given number of sectors from the SD/MMC card

Note: When sdmmc_erase_sectors used with cards in SDSPI mode, it was observed that card requires re-init
after erase operation.

Parameters
• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

• start_sector -- sector where to start erase
• sector_count -- number of sectors to erase
• arg -- erase command (CMD38) argument

Returns
• ESP_OK on success or sector_count equal to 0
• One of the error codes from SDMMC host controller

esp_err_t sdmmc_can_discard(sdmmc_card_t *card)
Check if SD/MMC card supports discard

Parameters card -- pointer to card information structure previously initialized using sd-
mmc_card_init

Returns
• ESP_OK if supported by the card/device
• ESP_FAIL if not supported by the card/device

esp_err_t sdmmc_can_trim(sdmmc_card_t *card)
Check if SD/MMC card supports trim

Parameters card -- pointer to card information structure previously initialized using sd-
mmc_card_init

Returns
• ESP_OK if supported by the card/device
• ESP_FAIL if not supported by the card/device

esp_err_t sdmmc_mmc_can_sanitize(sdmmc_card_t *card)
Check if SD/MMC card supports sanitize

Espressif Systems 1725
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters card -- pointer to card information structure previously initialized using sd-
mmc_card_init

Returns
• ESP_OK if supported by the card/device
• ESP_FAIL if not supported by the card/device

esp_err_t sdmmc_mmc_sanitize(sdmmc_card_t *card, uint32_t timeout_ms)
Sanitize the data that was unmapped by a Discard command

Note: Discard command has to precede sanitize operation. To discard, use MMC_DICARD_ARG with
sdmmc_erase_sectors argument

Parameters
• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

• timeout_ms -- timeout value in milliseconds required to sanitize the selected range of
sectors.

Returns
• ESP_OK on success
• One of the error codes from SDMMC host controller

esp_err_t sdmmc_full_erase(sdmmc_card_t *card)
Erase complete SD/MMC card

Parameters card -- pointer to card information structure previously initialized using sd-
mmc_card_init

Returns
• ESP_OK on success
• One of the error codes from SDMMC host controller

esp_err_t sdmmc_io_read_byte(sdmmc_card_t *card, uint32_t function, uint32_t reg, uint8_t *out_byte)
Read one byte from an SDIO card using IO_RW_DIRECT (CMD52)

Parameters
• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

• function -- IO function number
• reg -- byte address within IO function
• out_byte -- [out] output, receives the value read from the card

Returns
• ESP_OK on success
• One of the error codes from SDMMC host controller

esp_err_t sdmmc_io_write_byte(sdmmc_card_t *card, uint32_t function, uint32_t reg, uint8_t in_byte,
uint8_t *out_byte)

Write one byte to an SDIO card using IO_RW_DIRECT (CMD52)
Parameters

• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

• function -- IO function number
• reg -- byte address within IO function
• in_byte -- value to be written
• out_byte -- [out] if not NULL, receives new byte value read from the card (read-after-
write).

Returns
• ESP_OK on success
• One of the error codes from SDMMC host controller

Espressif Systems 1726
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t sdmmc_io_read_bytes(sdmmc_card_t *card, uint32_t function, uint32_t addr, void *dst, size_t
size)

Read multiple bytes from an SDIO card using IO_RW_EXTENDED (CMD53)
This function performs read operation using CMD53 in byte mode. For block mode, see sd-
mmc_io_read_blocks.

Parameters
• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

• function -- IO function number
• addr -- byte address within IO function where reading starts
• dst -- buffer which receives the data read from card
• size -- number of bytes to read

Returns
• ESP_OK on success
• ESP_ERR_INVALID_SIZE if size exceeds 512 bytes
• One of the error codes from SDMMC host controller

esp_err_t sdmmc_io_write_bytes(sdmmc_card_t *card, uint32_t function, uint32_t addr, const void *src,
size_t size)

Write multiple bytes to an SDIO card using IO_RW_EXTENDED (CMD53)
This function performs write operation using CMD53 in byte mode. For block mode, see sd-
mmc_io_write_blocks.

Parameters
• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

• function -- IO function number
• addr -- byte address within IO function where writing starts
• src -- data to be written
• size -- number of bytes to write

Returns
• ESP_OK on success
• ESP_ERR_INVALID_SIZE if size exceeds 512 bytes
• One of the error codes from SDMMC host controller

esp_err_t sdmmc_io_read_blocks(sdmmc_card_t *card, uint32_t function, uint32_t addr, void *dst, size_t
size)

Read blocks of data from an SDIO card using IO_RW_EXTENDED (CMD53)
This function performs read operation using CMD53 in block mode. For byte mode, see sd-
mmc_io_read_bytes.

Parameters
• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

• function -- IO function number
• addr -- byte address within IO function where writing starts
• dst -- buffer which receives the data read from card
• size -- number of bytes to read, must be divisible by the card block size.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_SIZE if size is not divisible by 512 bytes
• One of the error codes from SDMMC host controller

esp_err_t sdmmc_io_write_blocks(sdmmc_card_t *card, uint32_t function, uint32_t addr, const void *src,
size_t size)

Write blocks of data to an SDIO card using IO_RW_EXTENDED (CMD53)

Espressif Systems 1727
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This function performs write operation using CMD53 in block mode. For byte mode, see sd-
mmc_io_write_bytes.

Parameters
• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

• function -- IO function number
• addr -- byte address within IO function where writing starts
• src -- data to be written
• size -- number of bytes to read, must be divisible by the card block size.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_SIZE if size is not divisible by 512 bytes
• One of the error codes from SDMMC host controller

esp_err_t sdmmc_io_enable_int(sdmmc_card_t *card)
Enable SDIO interrupt in the SDMMC host

Parameters card -- pointer to card information structure previously initialized using sd-
mmc_card_init

Returns
• ESP_OK on success
• ESP_ERR_NOT_SUPPORTED if the host controller does not support IO interrupts

esp_err_t sdmmc_io_wait_int(sdmmc_card_t *card, TickType_t timeout_ticks)
Block until an SDIO interrupt is received
Slave uses D1 line to signal interrupt condition to the host. This function can be used to wait for the interrupt.

Parameters
• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

• timeout_ticks -- time to wait for the interrupt, in RTOS ticks
Returns

• ESP_OK if the interrupt is received
• ESP_ERR_NOT_SUPPORTED if the host controller does not support IO interrupts
• ESP_ERR_TIMEOUT if the interrupt does not happen in timeout_ticks

esp_err_t sdmmc_io_get_cis_data(sdmmc_card_t *card, uint8_t *out_buffer, size_t buffer_size, size_t
*inout_cis_size)

Get the data of CIS region of an SDIO card.
You may provide a buffer not sufficient to store all the CIS data. In this case, this function stores as much data
into your buffer as possible. Also, this function will try to get and return the size required for you.

Parameters
• card -- pointer to card information structure previously initialized using sd-
mmc_card_init

• out_buffer -- Output buffer of the CIS data
• buffer_size -- Size of the buffer.
• inout_cis_size -- Mandatory, pointer to a size, input and output.
– input: Limitation of maximum searching range, should be 0 or larger than buffer_size.
The function searches for CIS_CODE_END until this range. Set to 0 to search in-
finitely.

– output: The size required to store all the CIS data, if CIS_CODE_END is found.
Returns

• ESP_OK: on success
• ESP_ERR_INVALID_RESPONSE: if the card does not (correctly) support CIS.
• ESP_ERR_INVALID_SIZE: CIS_CODE_END found, but buffer_size is less than re-
quired size, which is stored in the inout_cis_size then.

Espressif Systems 1728
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_NOT_FOUND: if the CIS_CODE_END not found. Increase input value of
inout_cis_size or set it to 0, if you still want to search for the end; output value of in-
out_cis_size is invalid in this case.

• and other error code return from sdmmc_io_read_bytes
esp_err_t sdmmc_io_print_cis_info(uint8_t *buffer, size_t buffer_size, FILE *fp)

Parse and print the CIS information of an SDIO card.

Note: Not all the CIS codes and all kinds of tuples are supported. If you see some unresolved code, you can
add the parsing of these code in sdmmc_io.c and contribute to the IDF through the Github repository.

using sdmmc_card_init

Parameters
• buffer -- Buffer to parse
• buffer_size -- Size of the buffer.
• fp -- File pointer to print to, set to NULL to print to stdout.

Returns
• ESP_OK: on success
• ESP_ERR_NOT_SUPPORTED: if the value from the card is not supported to be parsed.
• ESP_ERR_INVALID_SIZE: if the CIS size fields are not correct.

Header File
• components/driver/sdmmc/include/driver/sdmmc_types.h

Structures

struct sdmmc_csd_t
Decoded values from SD card Card Specific Data register

Public Members

int csd_ver
CSD structure format

int mmc_ver
MMC version (for CID format)

int capacity
total number of sectors

int sector_size
sector size in bytes

int read_block_len
block length for reads

int card_command_class
Card Command Class for SD

Espressif Systems 1729
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/sdmmc/include/driver/sdmmc_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int tr_speed
Max transfer speed

struct sdmmc_cid_t
Decoded values from SD card Card IDentification register

Public Members

int mfg_id
manufacturer identification number

int oem_id
OEM/product identification number

char name[8]
product name (MMC v1 has the longest)

int revision
product revision

int serial
product serial number

int date
manufacturing date

struct sdmmc_scr_t
Decoded values from SD Configuration Register Note: When new member is added, update reserved bits
accordingly

Public Members

uint32_t sd_spec
SD Physical layer specification version, reported by card

uint32_t erase_mem_state
data state on card after erase whether 0 or 1 (card vendor dependent)

uint32_t bus_width
bus widths supported by card: BIT(0)—1-bit bus, BIT(2)—4-bit bus

uint32_t reserved
reserved for future expansion

uint32_t rsvd_mnf
reserved for manufacturer usage

struct sdmmc_ssr_t
Decoded values from SD Status Register Note: When new member is added, update reserved bits accordingly

Espressif Systems 1730
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint32_t alloc_unit_kb
Allocation unit of the card, in multiples of kB (1024 bytes)

uint32_t erase_size_au
Erase size for the purpose of timeout calculation, in multiples of allocation unit

uint32_t cur_bus_width
SD current bus width

uint32_t discard_support
SD discard feature support

uint32_t fule_support
SD FULE (Full User Area Logical Erase) feature support

uint32_t erase_timeout
Timeout (in seconds) for erase of a single allocation unit

uint32_t erase_offset
Constant timeout offset (in seconds) for any erase operation

uint32_t reserved
reserved for future expansion

struct sdmmc_ext_csd_t
Decoded values of Extended Card Specific Data

Public Members

uint8_t rev
Extended CSD Revision

uint8_t power_class
Power class used by the card

uint8_t erase_mem_state
data state on card after erase whether 0 or 1 (card vendor dependent)

uint8_t sec_feature
secure data management features supported by the card

struct sdmmc_switch_func_rsp_t
SD SWITCH_FUNC response buffer

Espressif Systems 1731
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

uint32_t data[512 / 8 / sizeof(uint32_t)]
response data

struct sdmmc_command_t
SD/MMC command information

Public Members

uint32_t opcode
SD or MMC command index

uint32_t arg
SD/MMC command argument

sdmmc_response_t response

response buffer

void *data
buffer to send or read into

size_t datalen
length of data buffer

size_t blklen
block length

int flags
see below

esp_err_t error

error returned from transfer

uint32_t timeout_ms
response timeout, in milliseconds

struct sdmmc_host_t
SD/MMC Host description
This structure defines properties of SD/MMC host and functions of SD/MMC host which can be used by upper
layers.

Public Members

uint32_t flags
flags defining host properties

Espressif Systems 1732
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int slot
slot number, to be passed to host functions

int max_freq_khz
max frequency supported by the host

float io_voltage
I/O voltage used by the controller (voltage switching is not supported)

esp_err_t (*init)(void)
Host function to initialize the driver

esp_err_t (*set_bus_width)(int slot, size_t width)
host function to set bus width

size_t (*get_bus_width)(int slot)
host function to get bus width

esp_err_t (*set_bus_ddr_mode)(int slot, bool ddr_enable)
host function to set DDR mode

esp_err_t (*set_card_clk)(int slot, uint32_t freq_khz)
host function to set card clock frequency

esp_err_t (*set_cclk_always_on)(int slot, bool cclk_always_on)
host function to set whether the clock is always enabled

esp_err_t (*do_transaction)(int slot, sdmmc_command_t *cmdinfo)
host function to do a transaction

esp_err_t (*deinit)(void)
host function to deinitialize the driver

esp_err_t (*deinit_p)(int slot)
host function to deinitialize the driver, called with the slot

esp_err_t (*io_int_enable)(int slot)
Host function to enable SDIO interrupt line

esp_err_t (*io_int_wait)(int slot, TickType_t timeout_ticks)
Host function to wait for SDIO interrupt line to be active

int command_timeout_ms
timeout, in milliseconds, of a single command. Set to 0 to use the default value.

esp_err_t (*get_real_freq)(int slot, int *real_freq)
Host function to provide real working freq, based on SDMMC controller setup

struct sdmmc_card_t
SD/MMC card information structure

Espressif Systems 1733
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

sdmmc_host_t host

Host with which the card is associated

uint32_t ocr
OCR (Operation Conditions Register) value

sdmmc_cid_t cid

decoded CID (Card IDentification) register value

sdmmc_response_t raw_cid

raw CID of MMC card to be decoded after the CSD is fetched in the data transfer mode

sdmmc_csd_t csd

decoded CSD (Card-Specific Data) register value

sdmmc_scr_t scr

decoded SCR (SD card Configuration Register) value

sdmmc_ssr_t ssr

decoded SSR (SD Status Register) value

sdmmc_ext_csd_t ext_csd

decoded EXT_CSD (Extended Card Specific Data) register value

uint16_t rca
RCA (Relative Card Address)

uint16_t max_freq_khz
Maximum frequency, in kHz, supported by the card

int real_freq_khz
Real working frequency, in kHz, configured on the host controller

uint32_t is_mem
Bit indicates if the card is a memory card

uint32_t is_sdio
Bit indicates if the card is an IO card

uint32_t is_mmc
Bit indicates if the card is MMC

uint32_t num_io_functions
If is_sdio is 1, contains the number of IO functions on the card

uint32_t log_bus_width
log2(bus width supported by card)

Espressif Systems 1734
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t is_ddr
Card supports DDR mode

uint32_t reserved
Reserved for future expansion

Macros

SDMMC_HOST_FLAG_1BIT

host supports 1-line SD and MMC protocol

SDMMC_HOST_FLAG_4BIT

host supports 4-line SD and MMC protocol

SDMMC_HOST_FLAG_8BIT

host supports 8-line MMC protocol

SDMMC_HOST_FLAG_SPI

host supports SPI protocol

SDMMC_HOST_FLAG_DDR

host supports DDR mode for SD/MMC

SDMMC_HOST_FLAG_DEINIT_ARG

host deinit function called with the slot argument

SDMMC_FREQ_DEFAULT

SD/MMC Default speed (limited by clock divider)

SDMMC_FREQ_HIGHSPEED

SD High speed (limited by clock divider)

SDMMC_FREQ_PROBING

SD/MMC probing speed

SDMMC_FREQ_52M

MMC 52MHz speed

SDMMC_FREQ_26M

MMC 26MHz speed

Type Definitions

typedef uint32_t sdmmc_response_t[4]
SD/MMC command response buffer

Enumerations

Espressif Systems 1735
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum sdmmc_erase_arg_t

SD/MMC erase command(38) arguments SD: ERASE: Erase the write blocks, physical/hard erase.
DISCARD: Card may deallocate the discarded blocks partially or completely. After discard operation the
previously written data may be partially or fully read by the host depending on card implementation.
MMC: ERASE: Does TRIM, applies erase operation to write blocks instead of Erase Group.
DISCARD: The Discard function allows the host to identify data that is no longer required so that the device
can erase the data if necessary during background erase events. Applies to write blocks instead of Erase Group
After discard operation, the original data may be remained partially or fully accessible to the host dependent
on device.
Values:

enumerator SDMMC_ERASE_ARG
Erase operation on SD, Trim operation on MMC

enumerator SDMMC_DISCARD_ARG
Discard operation for SD/MMC

2.9.7 Partitions API

Overview

The esp_partition component has higher-level API functions which work with partitions defined in the partition
table. These APIs are based on lower level API provided by SPI Flash driver.

Partition Table API

ESP-IDF projects use a partition table tomaintain information about various regions of SPI flashmemory (bootloader,
various application binaries, data, filesystems). More information can be found in Partition Tables.
This component provides API functions to enumerate partitions found in the partition table and perform operations
on them. These functions are declared in esp_partition.h:

• esp_partition_find() checks a partition table for entries with specific type, returns an opaque iterator.
• esp_partition_get() returns a structure describing the partition for a given iterator.
• esp_partition_next() shifts the iterator to the next found partition.
• esp_partition_iterator_release() releases iterator returned by esp_partition_find().
• esp_partition_find_first() is a convenience function which returns the structure describing the
first partition found by esp_partition_find().

• esp_partition_read(), esp_partition_write(), esp_partition_erase_range()
are equivalent to esp_flash_read(), esp_flash_write(), esp_flash_erase_region(),
but operate within partition boundaries.

See Also

• Partition Table documentation
• Over The Air Update (OTA) API provides high-level API for updating applications stored in flash.
• Non-Volatile Storage (NVS) API provides a structured API for storing small pieces of data in SPI flash.

Espressif Systems 1736
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference - Partition Table

Header File
• components/esp_partition/include/esp_partition.h

Functions
esp_partition_iterator_t esp_partition_find(esp_partition_type_t type, esp_partition_subtype_t subtype,

const char *label)
Find partition based on one or more parameters.

Parameters
• type -- Partition type, one of esp_partition_type_t values or an 8-bit unsigned integer.
To find all partitions, no matter the type, use ESP_PARTITION_TYPE_ANY, and set
subtype argument to ESP_PARTITION_SUBTYPE_ANY.

• subtype -- Partition subtype, one of esp_partition_subtype_t values or an 8-bit unsigned
integer. To find all partitions of given type, use ESP_PARTITION_SUBTYPE_ANY.

• label -- (optional) Partition label. Set this value if looking for partition with a specific
name. Pass NULL otherwise.

Returns iterator which can be used to enumerate all the partitions found, or NULL if no
partitions were found. Iterator obtained through this function has to be released using
esp_partition_iterator_release when not used any more.

const esp_partition_t *esp_partition_find_first(esp_partition_type_t type, esp_partition_subtype_t
subtype, const char *label)

Find first partition based on one or more parameters.
Parameters

• type -- Partition type, one of esp_partition_type_t values or an 8-bit unsigned integer.
To find all partitions, no matter the type, use ESP_PARTITION_TYPE_ANY, and set
subtype argument to ESP_PARTITION_SUBTYPE_ANY.

• subtype -- Partition subtype, one of esp_partition_subtype_t values or an 8-bit unsigned
integer To find all partitions of given type, use ESP_PARTITION_SUBTYPE_ANY.

• label -- (optional) Partition label. Set this value if looking for partition with a specific
name. Pass NULL otherwise.

Returns pointer to esp_partition_t structure, or NULL if no partition is found. This pointer is
valid for the lifetime of the application.

const esp_partition_t *esp_partition_get(esp_partition_iterator_t iterator)
Get esp_partition_t structure for given partition.

Parameters iterator -- Iterator obtained using esp_partition_find. Must be non-NULL.
Returns pointer to esp_partition_t structure. This pointer is valid for the lifetime of the application.

esp_partition_iterator_t esp_partition_next(esp_partition_iterator_t iterator)
Move partition iterator to the next partition found.
Any copies of the iterator will be invalid after this call.

Parameters iterator -- Iterator obtained using esp_partition_find. Must be non-NULL.
Returns NULL if no partition was found, valid esp_partition_iterator_t otherwise.

void esp_partition_iterator_release(esp_partition_iterator_t iterator)
Release partition iterator.

Parameters iterator -- Iterator obtained using esp_partition_find. The iterator is allowed to
be NULL, so it is not necessary to check its value before calling this function.

const esp_partition_t *esp_partition_verify(const esp_partition_t *partition)
Verify partition data.
Given a pointer to partition data, verify this partition exists in the partition table (all fields match.)

Espressif Systems 1737
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_partition/include/esp_partition.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This function is also useful to take partition data which may be in a RAM buffer and convert it to a pointer to
the permanent partition data stored in flash.
Pointers returned from this function can be compared directly to the address of any pointer returned from
esp_partition_get(), as a test for equality.

Parameters partition -- Pointer to partition data to verify. Must be non-NULL. All fields of
this structure must match the partition table entry in flash for this function to return a successful
match.

Returns
• If partition not found, returns NULL.
• If found, returns a pointer to the esp_partition_t structure in flash. This pointer is always
valid for the lifetime of the application.

esp_err_t esp_partition_read(const esp_partition_t *partition, size_t src_offset, void *dst, size_t size)
Read data from the partition.
Partitions marked with an encryption flag will automatically be be read and decrypted via a cache mapping.

Parameters
• partition -- Pointer to partition structure obtained using esp_partition_find_first or
esp_partition_get. Must be non-NULL.

• dst -- Pointer to the buffer where data should be stored. Pointer must be non-NULL and
buffer must be at least 'size' bytes long.

• src_offset -- Address of the data to be read, relative to the beginning of the partition.
• size -- Size of data to be read, in bytes.

Returns ESP_OK, if data was read successfully; ESP_ERR_INVALID_ARG, if src_offset ex-
ceeds partition size; ESP_ERR_INVALID_SIZE, if read would go out of bounds of the par-
tition; or one of error codes from lower-level flash driver.

esp_err_t esp_partition_write(const esp_partition_t *partition, size_t dst_offset, const void *src, size_t
size)

Write data to the partition.
Before writing data to flash, corresponding region of flash needs to be erased. This can be done using
esp_partition_erase_range function.
Partitions marked with an encryption flag will automatically be written via the esp_flash_write_encrypted()
function. If writing to an encrypted partition, all write offsets and lengths must be multiples of 16 bytes. See
the esp_flash_write_encrypted() function for more details. Unencrypted partitions do not have this restriction.

Note: Prior to writing to flash memory, make sure it has been erased with esp_partition_erase_range call.

Parameters
• partition -- Pointer to partition structure obtained using esp_partition_find_first or
esp_partition_get. Must be non-NULL.

• dst_offset -- Address where the data should be written, relative to the beginning of
the partition.

• src -- Pointer to the source buffer. Pointer must be non-NULL and buffer must be at
least 'size' bytes long.

• size -- Size of data to be written, in bytes.
Returns ESP_OK, if data was written successfully; ESP_ERR_INVALID_ARG, if dst_offset ex-

ceeds partition size; ESP_ERR_INVALID_SIZE, if write would go out of bounds of the par-
tition; or one of error codes from lower-level flash driver.

esp_err_t esp_partition_read_raw(const esp_partition_t *partition, size_t src_offset, void *dst, size_t
size)

Read data from the partition without any transformation/decryption.

Espressif Systems 1738
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: This function is essentially the same as esp_partition_read() above. It just never decrypts
data but returns it as is.

Parameters
• partition -- Pointer to partition structure obtained using esp_partition_find_first or
esp_partition_get. Must be non-NULL.

• dst -- Pointer to the buffer where data should be stored. Pointer must be non-NULL and
buffer must be at least 'size' bytes long.

• src_offset -- Address of the data to be read, relative to the beginning of the partition.
• size -- Size of data to be read, in bytes.

Returns ESP_OK, if data was read successfully; ESP_ERR_INVALID_ARG, if src_offset ex-
ceeds partition size; ESP_ERR_INVALID_SIZE, if read would go out of bounds of the par-
tition; or one of error codes from lower-level flash driver.

esp_err_t esp_partition_write_raw(const esp_partition_t *partition, size_t dst_offset, const void *src,
size_t size)

Write data to the partition without any transformation/encryption.

Before writing data to flash, corresponding region of flash needs to be erased. This can be done using
esp_partition_erase_range function.

Note: This function is essentially the same as esp_partition_write() above. It just never encrypts
data but writes it as is.

Note: Prior to writing to flash memory, make sure it has been erased with esp_partition_erase_range call.

Parameters
• partition -- Pointer to partition structure obtained using esp_partition_find_first or
esp_partition_get. Must be non-NULL.

• dst_offset -- Address where the data should be written, relative to the beginning of
the partition.

• src -- Pointer to the source buffer. Pointer must be non-NULL and buffer must be at
least 'size' bytes long.

• size -- Size of data to be written, in bytes.
Returns ESP_OK, if data was written successfully; ESP_ERR_INVALID_ARG, if dst_offset ex-

ceeds partition size; ESP_ERR_INVALID_SIZE, if write would go out of bounds of the par-
tition; or one of the error codes from lower-level flash driver.

esp_err_t esp_partition_erase_range(const esp_partition_t *partition, size_t offset, size_t size)
Erase part of the partition.

Parameters
• partition -- Pointer to partition structure obtained using esp_partition_find_first or
esp_partition_get. Must be non-NULL.

• offset -- Offset from the beginning of partition where erase operation should start. Must
be aligned to partition->erase_size.

• size -- Size of the range which should be erased, in bytes. Must be divisible by partition-
>erase_size.

Returns ESP_OK, if the range was erased successfully; ESP_ERR_INVALID_ARG, if iterator or
dst are NULL; ESP_ERR_INVALID_SIZE, if erase would go out of bounds of the partition;
or one of error codes from lower-level flash driver.

Espressif Systems 1739
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_partition_mmap(const esp_partition_t *partition, size_t offset, size_t size,
esp_partition_mmap_memory_t memory, const void **out_ptr,
esp_partition_mmap_handle_t *out_handle)

Configure MMU to map partition into data memory.
Unlike spi_flash_mmap function, which requires a 64kB aligned base address, this function doesn't impose
such a requirement. If offset results in a flash address which is not aligned to 64kB boundary, address will be
rounded to the lower 64kB boundary, so that mapped region includes requested range. Pointer returned via
out_ptr argument will be adjusted to point to the requested offset (not necessarily to the beginning of mmap-ed
region).
To release mapped memory, pass handle returned via out_handle argument to esp_partition_munmap function.

Parameters
• partition -- Pointer to partition structure obtained using esp_partition_find_first or
esp_partition_get. Must be non-NULL.

• offset -- Offset from the beginning of partition where mapping should start.
• size -- Size of the area to be mapped.
• memory -- Memory space where the region should be mapped
• out_ptr -- Output, pointer to the mapped memory region
• out_handle -- Output, handle which should be used for esp_partition_munmap call

Returns ESP_OK, if successful
void esp_partition_munmap(esp_partition_mmap_handle_t handle)

Release region previously obtained using esp_partition_mmap.

Note: Calling this function will not necessarily unmap memory region. Region will only be unmapped when
there are no other handles which reference this region. In case of partially overlapping regions it is possible
that memory will be unmapped partially.

Parameters handle -- Handle obtained from spi_flash_mmap

esp_err_t esp_partition_get_sha256(const esp_partition_t *partition, uint8_t *sha_256)
Get SHA-256 digest for required partition.
For apps with SHA-256 appended to the app image, the result is the appended SHA-256 value for the app
image content. The hash is verified before returning, if app content is invalid then the function returns
ESP_ERR_IMAGE_INVALID. For apps without SHA-256 appended to the image, the result is the SHA-
256 of all bytes in the app image. For other partition types, the result is the SHA-256 of the entire partition.

Parameters
• partition -- [in] Pointer to info for partition containing app or data. (fields: address,
size and type, are required to be filled).

• sha_256 -- [out] Returned SHA-256 digest for a given partition.
Returns

• ESP_OK: In case of successful operation.
• ESP_ERR_INVALID_ARG: The size was 0 or the sha_256 was NULL.
• ESP_ERR_NO_MEM: Cannot allocate memory for sha256 operation.
• ESP_ERR_IMAGE_INVALID: App partition doesn't contain a valid app image.
• ESP_FAIL: An allocation error occurred.

bool esp_partition_check_identity(const esp_partition_t *partition_1, const esp_partition_t
*partition_2)

Check for the identity of two partitions by SHA-256 digest.
Parameters

• partition_1 -- [in] Pointer to info for partition 1 containing app or data. (fields:
address, size and type, are required to be filled).

• partition_2 -- [in] Pointer to info for partition 2 containing app or data. (fields:
address, size and type, are required to be filled).

Espressif Systems 1740
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• True: In case of the two firmware is equal.
• False: Otherwise

esp_err_t esp_partition_register_external(esp_flash_t *flash_chip, size_t offset, size_t size, const
char *label, esp_partition_type_t type,
esp_partition_subtype_t subtype, const esp_partition_t
**out_partition)

Register a partition on an external flash chip.
This API allows designating certain areas of external flash chips (identified by the esp_flash_t structure) as
partitions. This allows using them with components which access SPI flash through the esp_partition API.

Parameters
• flash_chip -- Pointer to the structure identifying the flash chip
• offset -- Address in bytes, where the partition starts
• size -- Size of the partition in bytes
• label -- Partition name
• type -- One of the partition types (ESP_PARTITION_TYPE_*), or an inte-
ger. Note that applications can not be booted from external flash chips, so using
ESP_PARTITION_TYPE_APP is not supported.

• subtype -- One of the partition subtypes (ESP_PARTITION_SUBTYPE_*), or an in-
teger.

• out_partition -- [out] Output, if non-NULL, receives the pointer to the resulting
esp_partition_t structure

Returns
• ESP_OK on success
• ESP_ERR_NO_MEM if memory allocation has failed
• ESP_ERR_INVALID_ARG if the new partition overlaps another partition on the same
flash chip

• ESP_ERR_INVALID_SIZE if the partition doesn't fit into the flash chip size
esp_err_t esp_partition_deregister_external(const esp_partition_t *partition)

Deregister the partition previously registered using esp_partition_register_external.
Parameters partition -- pointer to the partition structure obtained from

esp_partition_register_external,
Returns

• ESP_OK on success
• ESP_ERR_NOT_FOUND if the partition pointer is not found
• ESP_ERR_INVALID_ARG if the partition comes from the partition table
• ESP_ERR_INVALID_ARG if the partition was not registered using
esp_partition_register_external function.

void esp_partition_unload_all(void)
Unload partitions and free space allocated by them.

Structures

struct esp_partition_t
partition information structure
This is not the format in flash, that format is esp_partition_info_t.
However, this is the format used by this API.

Public Members

Espressif Systems 1741
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_flash_t *flash_chip
SPI flash chip on which the partition resides

esp_partition_type_t type

partition type (app/data)

esp_partition_subtype_t subtype

partition subtype

uint32_t address
starting address of the partition in flash

uint32_t size
size of the partition, in bytes

uint32_t erase_size
size the erase operation should be aligned to

char label[17]
partition label, zero-terminated ASCII string

bool encrypted
flag is set to true if partition is encrypted

Macros
ESP_PARTITION_SUBTYPE_OTA(i)

Convenience macro to get esp_partition_subtype_t value for the i-th OTA partition.

Type Definitions

typedef uint32_t esp_partition_mmap_handle_t
Opaque handle for memory region obtained from esp_partition_mmap.

typedef struct esp_partition_iterator_opaque_ *esp_partition_iterator_t
Opaque partition iterator type.

Enumerations

enum esp_partition_mmap_memory_t

Enumeration which specifies memory space requested in an mmap call.
Values:

enumerator ESP_PARTITION_MMAP_DATA
map to data memory (Vaddr0), allows byte-aligned access, 4 MB total

enumerator ESP_PARTITION_MMAP_INST
map to instruction memory (Vaddr1-3), allows only 4-byte-aligned access, 11 MB total

Espressif Systems 1742
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enum esp_partition_type_t

Partition type.

Note: Partition types with integer value 0x00-0x3F are reserved for partition types defined by ESP-IDF. Any
other integer value 0x40-0xFE can be used by individual applications, without restriction.

Values:

enumerator ESP_PARTITION_TYPE_APP
Application partition type.

enumerator ESP_PARTITION_TYPE_DATA
Data partition type.

enumerator ESP_PARTITION_TYPE_ANY
Used to search for partitions with any type.

enum esp_partition_subtype_t

Partition subtype.

Application-defined partition types (0x40-0xFE) can set any numeric subtype value.

Note: These ESP-IDF-defined partition subtypes apply to partitions of type ESP_PARTITION_TYPE_APP
and ESP_PARTITION_TYPE_DATA.

Values:

enumerator ESP_PARTITION_SUBTYPE_APP_FACTORY
Factory application partition.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_MIN
Base for OTA partition subtypes.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_0
OTA partition 0.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_1
OTA partition 1.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_2
OTA partition 2.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_3
OTA partition 3.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_4
OTA partition 4.

Espressif Systems 1743
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_5
OTA partition 5.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_6
OTA partition 6.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_7
OTA partition 7.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_8
OTA partition 8.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_9
OTA partition 9.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_10
OTA partition 10.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_11
OTA partition 11.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_12
OTA partition 12.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_13
OTA partition 13.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_14
OTA partition 14.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_15
OTA partition 15.

enumerator ESP_PARTITION_SUBTYPE_APP_OTA_MAX
Max subtype of OTA partition.

enumerator ESP_PARTITION_SUBTYPE_APP_TEST
Test application partition.

enumerator ESP_PARTITION_SUBTYPE_DATA_OTA
OTA selection partition.

enumerator ESP_PARTITION_SUBTYPE_DATA_PHY
PHY init data partition.

enumerator ESP_PARTITION_SUBTYPE_DATA_NVS
NVS partition.

Espressif Systems 1744
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_PARTITION_SUBTYPE_DATA_COREDUMP
COREDUMP partition.

enumerator ESP_PARTITION_SUBTYPE_DATA_NVS_KEYS
Partition for NVS keys.

enumerator ESP_PARTITION_SUBTYPE_DATA_EFUSE_EM
Partition for emulate eFuse bits.

enumerator ESP_PARTITION_SUBTYPE_DATA_UNDEFINED
Undefined (or unspecified) data partition.

enumerator ESP_PARTITION_SUBTYPE_DATA_ESPHTTPD
ESPHTTPD partition.

enumerator ESP_PARTITION_SUBTYPE_DATA_FAT
FAT partition.

enumerator ESP_PARTITION_SUBTYPE_DATA_SPIFFS
SPIFFS partition.

enumerator ESP_PARTITION_SUBTYPE_DATA_LITTLEFS
LITTLEFS partition.

enumerator ESP_PARTITION_SUBTYPE_ANY
Used to search for partitions with any subtype.

2.9.8 SPIFFS Filesystem

Overview

SPIFFS is a file system intended for SPI NOR flash devices on embedded targets. It supports wear levelling, file
system consistency checks, and more.

Notes

• Currently, SPIFFS does not support directories, it produces a flat structure. If SPIFFS is mounted under
/spiffs, then creating a file with the path /spiffs/tmp/myfile.txt will create a file called /tmp/
myfile.txt in SPIFFS, instead of myfile.txt in the directory /spiffs/tmp.

• It is not a real-time stack. One write operation might take much longer than another.
• For now, it does not detect or handle bad blocks.
• SPIFFS is able to reliably utilize only around 75% of assigned partition space.
• When the filesystem is running out of space, the garbage collector is trying to find free space by scanning the
filesystem multiple times, which can take up to several seconds per write function call, depending on required
space. This is caused by the SPIFFS design and the issue has been reported multiple times (e.g. here) and in
the official SPIFFS github repository. The issue can be partially mitigated by the SPIFFS configuration.

• Deleting a file does not always remove the whole file, which leaves unusable sections throughout the filesystem.

Espressif Systems 1745
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/issues/1737
https://github.com/pellepl/spiffs/issues/
https://github.com/pellepl/spiffs/wiki/Configure-spiffs
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• When the chip experiences a power loss during a file system operation it could result in SPIFFS corruption.
However the file system still might be recovered via esp_spiffs_check function. More details in the
official SPIFFS FAQ.

Tools

spiffsgen.py spiffsgen.py is a write-only Python SPIFFS implementation used to create filesystem images from the
contents of a host folder. To use spiffsgen.py, open Terminal and run:

python spiffsgen.py <image_size> <base_dir> <output_file>

The required arguments are as follows:
• image_size: size of the partition onto which the created SPIFFS image will be flashed.
• base_dir: directory for which the SPIFFS image needs to be created.
• output_file: SPIFFS image output file.

There are also other arguments that control image generation. Documentation on these arguments can be found in
the tool's help:

python spiffsgen.py --help

These optional arguments correspond to a possible SPIFFS build configuration. To generate the right image, please
make sure that you use the same arguments/configuration as were used to build SPIFFS. As a guide, the help output
indicates the SPIFFS build configuration to which the argument corresponds. In cases when these arguments are not
specified, the default values shown in the help output will be used.
When the image is created, it can be flashed using esptool.py or parttool.py.
Aside from invoking the spiffsgen.py standalone by manually running it from the command line
or a script, it is also possible to invoke spiffsgen.py directly from the build system by calling
spiffs_create_partition_image:

spiffs_create_partition_image(<partition> <base_dir> [FLASH_IN_PROJECT] [DEPENDS␣
↪→dep dep dep...])

This is more convenient as the build configuration is automatically passed to the tool, ensuring that the generated image
is valid for that build. An example of this is while the image_size is required for the standalone invocation, only the
partition name is required when using spiffs_create_partition_image -- the image size is automatically
obtained from the project's partition table.
spiffs_create_partition_image must be called from one of the component CMakeLists.txt files.
Optionally, users can opt to have the image automatically flashed together with the app binaries, partition tables, etc.
on idf.py flash by specifying FLASH_IN_PROJECT. For example:

spiffs_create_partition_image(my_spiffs_partition my_folder FLASH_IN_PROJECT)

If FLASH_IN_PROJECT/SPIFFS_IMAGE_FLASH_IN_PROJECT is not specified, the image will still be gener-
ated, but you will have to flash it manually using esptool.py, parttool.py, or a custom build system target.
There are cases where the contents of the base directory itself is generated at build time. Users can use DE-
PENDS/SPIFFS_IMAGE_DEPENDS to specify targets that should be executed before generating the image:

add_custom_target(dep COMMAND ...)

spiffs_create_partition_image(my_spiffs_partition my_folder DEPENDS dep)

For an example, see storage/spiffsgen.

Espressif Systems 1746
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/pellepl/spiffs/wiki/FAQ
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/spiffs/spiffsgen.py
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/spiffsgen
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

mkspiffs Another tool for creating SPIFFS partition images is mkspiffs. Similar to spiffsgen.py, it can be
used to create an image from a given folder and then flash that image using esptool.py
For that, you need to obtain the following parameters:

• Block Size: 4096 (standard for SPI Flash)
• Page Size: 256 (standard for SPI Flash)
• Image Size: Size of the partition in bytes (can be obtained from a partition table)
• Partition Offset: Starting address of the partition (can be obtained from a partition table)

To pack a folder into a 1-Megabyte image, run:

mkspiffs -c [src_folder] -b 4096 -p 256 -s 0x100000 spiffs.bin

To flash the image onto ESP32-C6 at offset 0x110000, run:

python esptool.py --chip esp32c6 --port [port] --baud [baud] write_flash -z␣
↪→0x110000 spiffs.bin

Note: You can configure the write_flash command of esptool.py to write the spiffs data to an external
SPI flash chip using the --spi-connection <CLK>,<Q>,<D>,<HD>,<CS> option. Just specify the GPIO
pins assigned to the external flash, e.g. python esptool.py write_flash --spi-connection 6,
7,8,9,11 -z 0x110000 spiffs.bin.

Notes on which SPIFFS tool to use The two tools presented above offer very similar functionality. However,
there are reasons to prefer one over the other, depending on the use case.
Use spiffsgen.py in the following cases:

1. If you want to simply generate a SPIFFS image during the build. spiffsgen.py makes it very convenient
by providing functions/commands from the build system itself.

2. If the host has no C/C++ compiler available, because spiffsgen.py does not require compilation.
Use mkspiffs in the following cases:

1. If you need to unpack SPIFFS images in addition to image generation. For now, it is not possible with spiff-
sgen.py.

2. If you have an environment where a Python interpreter is not available, but a host compiler is available. Oth-
erwise, a pre-compiled mkspiffs binary can do the job. However, there is no build system integration for
mkspiffs and the user has to do the corresponding work: compiling mkspiffs during build (if a pre-
compiled binary is not used), creating build rules/targets for the output files, passing proper parameters to the
tool, etc.

See also

• Partition Table documentation

Application Example

An example of using SPIFFS is provided in the storage/spiffs directory. This example initializes and mounts a
SPIFFS partition, then writes and reads data from it using POSIX and C library APIs. See the README.md file in
the example directory for more information.

High-level API Reference

Header File
• components/spiffs/include/esp_spiffs.h

Espressif Systems 1747
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/igrr/mkspiffs
https://docs.espressif.com/projects/esptool/en/latest/esptool/advanced-options.html#custom-spi-pin-configuration
https://docs.espressif.com/projects/esptool/en/latest/esptool/advanced-options.html#custom-spi-pin-configuration
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/spiffs
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/spiffs/include/esp_spiffs.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_err_t esp_vfs_spiffs_register(const esp_vfs_spiffs_conf_t *conf)

Register and mount SPIFFS to VFS with given path prefix.
Parameters conf -- Pointer to esp_vfs_spiffs_conf_t configuration structure
Returns

• ESP_OK if success
• ESP_ERR_NO_MEM if objects could not be allocated
• ESP_ERR_INVALID_STATE if already mounted or partition is encrypted
• ESP_ERR_NOT_FOUND if partition for SPIFFS was not found
• ESP_FAIL if mount or format fails

esp_err_t esp_vfs_spiffs_unregister(const char *partition_label)
Unregister and unmount SPIFFS from VFS

Parameters partition_label -- Same label as passed to esp_vfs_spiffs_register.
Returns

• ESP_OK if successful
• ESP_ERR_INVALID_STATE already unregistered

bool esp_spiffs_mounted(const char *partition_label)
Check if SPIFFS is mounted

Parameters partition_label -- Optional, label of the partition to check. If not specified,
first partition with subtype=spiffs is used.

Returns
• true if mounted
• false if not mounted

esp_err_t esp_spiffs_format(const char *partition_label)
Format the SPIFFS partition

Parameters partition_label -- Same label as passed to esp_vfs_spiffs_register.
Returns

• ESP_OK if successful
• ESP_FAIL on error

esp_err_t esp_spiffs_info(const char *partition_label, size_t *total_bytes, size_t *used_bytes)
Get information for SPIFFS

Parameters
• partition_label -- Same label as passed to esp_vfs_spiffs_register
• total_bytes -- [out] Size of the file system
• used_bytes -- [out] Current used bytes in the file system

Returns
• ESP_OK if success
• ESP_ERR_INVALID_STATE if not mounted

esp_err_t esp_spiffs_check(const char *partition_label)
Check integrity of SPIFFS

Parameters partition_label -- Same label as passed to esp_vfs_spiffs_register
Returns

• ESP_OK if successful
• ESP_ERR_INVALID_STATE if not mounted
• ESP_FAIL on error

esp_err_t esp_spiffs_gc(const char *partition_label, size_t size_to_gc)
Perform garbage collection in SPIFFS partition.
Call this function to run GC and ensure that at least the given amount of space is available in the partition. This
function will fail with ESP_ERR_NOT_FINISHED if it is not possible to reclaim the requested space (that is,
not enough free or deleted pages in the filesystem). This function will also fail if it fails to reclaim the requested

Espressif Systems 1748
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

space after CONFIG_SPIFFS_GC_MAX_RUNS number of GC iterations. On one GC iteration, SPIFFS will
erase one logical block (4kB). Therefore the value of CONFIG_SPIFFS_GC_MAX_RUNS should be set at
least to the maximum expected size_to_gc, divided by 4096. For example, if the application expects to make
room for a 1MB file and calls esp_spiffs_gc(label, 1024 * 1024), CONFIG_SPIFFS_GC_MAX_RUNS should
be set to at least 256. On the other hand, increasing CONFIG_SPIFFS_GC_MAX_RUNS value increases the
maximum amount of time for which any SPIFFS GC or write operation may potentially block.

Parameters
• partition_label -- Label of the partition to be garbage-collected. The partition
must be already mounted.

• size_to_gc -- The number of bytes that the GC process should attempt to make avail-
able.

Returns
• ESP_OK on success
• ESP_ERR_NOT_FINISHED if GC fails to reclaim the size given by size_to_gc
• ESP_ERR_INVALID_STATE if the partition is not mounted
• ESP_FAIL on all other errors

Structures

struct esp_vfs_spiffs_conf_t
Configuration structure for esp_vfs_spiffs_register.

Public Members

const char *base_path
File path prefix associated with the filesystem.

const char *partition_label
Optional, label of SPIFFS partition to use. If set to NULL, first partition with subtype=spiffs will be
used.

size_t max_files
Maximum files that could be open at the same time.

bool format_if_mount_failed
If true, it will format the file system if it fails to mount.

2.9.9 Virtual filesystem component

Overview

Virtual filesystem (VFS) component provides a unified interface for drivers which can perform operations on file-like
objects. These can be real filesystems (FAT, SPIFFS, etc.) or device drivers which provide a file-like interface.
This component allows C library functions, such as fopen and fprintf, to work with FS drivers. At a high level, each FS
driver is associated with some path prefix. When one of C library functions needs to open a file, the VFS component
searches for the FS driver associated with the file path and forwards the call to that driver. VFS also forwards read,
write, and other calls for the given file to the same FS driver.
For example, one can register a FAT filesystem driver with the/fat prefix and callfopen("/fat/file.txt",
"w"). The VFS component will then call the function open of the FAT driver and pass the argument /file.txt

Espressif Systems 1749
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

to it together with appropriate mode flags. All subsequent calls to C library functions for the returned FILE* stream
will also be forwarded to the FAT driver.

FS registration

To register an FS driver, an application needs to define an instance of the esp_vfs_t structure and populate it with
function pointers to FS APIs:

esp_vfs_t myfs = {
.flags = ESP_VFS_FLAG_DEFAULT,
.write = &myfs_write,
.open = &myfs_open,
.fstat = &myfs_fstat,
.close = &myfs_close,
.read = &myfs_read,

};

ESP_ERROR_CHECK(esp_vfs_register("/data", &myfs, NULL));

Depending on the way how the FS driver declares its API functions, either read, write, etc., or read_p,
write_p, etc., should be used.
Case 1: API functions are declared without an extra context pointer (the FS driver is a singleton):

ssize_t myfs_write(int fd, const void * data, size_t size);

// In definition of esp_vfs_t:
.flags = ESP_VFS_FLAG_DEFAULT,
.write = &myfs_write,

// ... other members initialized

// When registering FS, context pointer (third argument) is NULL:
ESP_ERROR_CHECK(esp_vfs_register("/data", &myfs, NULL));

Case 2: API functions are declared with an extra context pointer (the FS driver supports multiple instances):

ssize_t myfs_write(myfs_t* fs, int fd, const void * data, size_t size);

// In definition of esp_vfs_t:
.flags = ESP_VFS_FLAG_CONTEXT_PTR,
.write_p = &myfs_write,

// ... other members initialized

// When registering FS, pass the FS context pointer into the third argument
// (hypothetical myfs_mount function is used for illustrative purposes)
myfs_t* myfs_inst1 = myfs_mount(partition1->offset, partition1->size);
ESP_ERROR_CHECK(esp_vfs_register("/data1", &myfs, myfs_inst1));

// Can register another instance:
myfs_t* myfs_inst2 = myfs_mount(partition2->offset, partition2->size);
ESP_ERROR_CHECK(esp_vfs_register("/data2", &myfs, myfs_inst2));

Synchronous input/output multiplexing Synchronous input/output multiplexing by select() is supported in
the VFS component. The implementation works in the following way.

1. select() is called with file descriptors which could belong to various VFS drivers.
2. The file descriptors are divided into groups each belonging to one VFS driver.
3. The file descriptors belonging to non-socket VFS drivers are handed over to the given VFS drivers by

start_select(), described later on this page. This function represents the driver-specific implemen-
tation of select() for the given driver. This should be a non-blocking call which means the function should
immediately return after setting up the environment for checking events related to the given file descriptors.

Espressif Systems 1750
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

4. The file descriptors belonging to the socket VFS driver are handed over to the socket driver by
socket_select() described later on this page. This is a blocking call which means that it will return
only if there is an event related to socket file descriptors or a non-socket driver signals socket_select()
to exit.

5. Results are collected from each VFS driver and all drivers are stopped by de-initialization of the environment
for checking events.

6. The select() call ends and returns the appropriate results.

Non-socket VFS drivers If you want to use select() with a file descriptor belonging to a non-socket VFS
driver, then you need to register the driver with functions start_select() and end_select() similarly to
the following example:

// In definition of esp_vfs_t:
.start_select = &uart_start_select,
.end_select = &uart_end_select,

// ... other members initialized

start_select() is called for setting up the environment for detection of read/write/error conditions on file
descriptors belonging to the given VFS driver.
end_select() is called to stop/deinitialize/free the environment which was setup by start_select().

Note: end_select() might be called without a previous start_select() call in some rare circumstances.
end_select() should fail gracefully if this is the case (i.e., should not crash but return an error instead).

Please refer to the reference implementation for the UART peripheral in vfs/vfs_uart.c and most particularly to the
functions esp_vfs_dev_uart_register(), uart_start_select(), and uart_end_select()
for more information.
Please check the following examples that demonstrate the use of select() with VFS file descriptors:

• peripherals/uart/uart_select
• system/select

Socket VFS drivers A socket VFS driver is using its own internal implementation of select() and non-socket
VFS drivers notify it upon read/write/error conditions.
A socket VFS driver needs to be registered with the following functions defined:

// In definition of esp_vfs_t:
.socket_select = &lwip_select,
.get_socket_select_semaphore = &lwip_get_socket_select_semaphore,
.stop_socket_select = &lwip_stop_socket_select,
.stop_socket_select_isr = &lwip_stop_socket_select_isr,

// ... other members initialized

socket_select() is the internal implementation of select() for the socket driver. It works only with file
descriptors belonging to the socket VFS.
get_socket_select_semaphore() returns the signalization object (semaphore) which will be used in non-
socket drivers to stop the waiting in socket_select().
stop_socket_select() call is used to stop the waiting in socket_select() by passing the object returned
by get_socket_select_semaphore().
stop_socket_select_isr() has the same functionality as stop_socket_select() but it can be used
from ISR.
Please see lwip/port/esp32xx/vfs_lwip.c for a reference socket driver implementation using LWIP.

Espressif Systems 1751
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/vfs/vfs_uart.c
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/uart_select
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/select
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/lwip/port/esp32xx/vfs_lwip.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: If you use select() for socket file descriptors only then you can disable the CON-
FIG_VFS_SUPPORT_SELECT option to reduce the code size and improve performance. You should not change
the socket driver during an active select() call or you might experience some undefined behavior.

Paths

Each registered FS has a path prefix associated with it. This prefix can be considered as a "mount point" of this
partition.
In case when mount points are nested, the mount point with the longest matching path prefix is used when opening
the file. For instance, suppose that the following filesystems are registered in VFS:

• FS 1 on /data
• FS 2 on /data/static

Then:
• FS 1 will be used when opening a file called /data/log.txt
• FS 2 will be used when opening a file called /data/static/index.html
• Even if /index.html" does not exist in FS 2, FS 1 will not be searched for /static/index.html.

As a general rule, mount point names must start with the path separator (/) and must contain at least one character
after path separator. However, an empty mount point name is also supported and might be used in cases when an
application needs to provide a "fallback" filesystem or to override VFS functionality altogether. Such filesystem will
be used if no prefix matches the path given.
VFS does not handle dots (.) in path names in any special way. VFS does not treat .. as a reference to the parent
directory. In the above example, using a path /data/static/../log.txt will not result in a call to FS 1 to
open /log.txt. Specific FS drivers (such as FATFS) might handle dots in file names differently.
When opening files, the FS driver receives only relative paths to files. For example:

1. The myfs driver is registered with /data as a path prefix.
2. The application calls fopen("/data/config.json", ...).
3. The VFS component calls myfs_open("/config.json", ...).
4. The myfs driver opens the /config.json file.

VFS does not impose any limit on total file path length, but it does limit the FS path prefix to ESP_VFS_PATH_MAX
characters. Individual FS drivers may have their own filename length limitations.

File descriptors

File descriptors are small positive integers from0 to FD_SETSIZE - 1, whereFD_SETSIZE is defined in newlib's
sys/types.h. The largest file descriptors (configured by CONFIG_LWIP_MAX_SOCKETS) are reserved for
sockets. The VFS component contains a lookup-table called s_fd_table for mapping global file descriptors to
VFS driver indexes registered in the s_vfs array.

Standard IO streams (stdin, stdout, stderr)

If the menuconfig option UART for console output is not set to None, then stdin, stdout, and stderr
are configured to read from, and write to, a UART. It is possible to use UART0 or UART1 for standard IO. By default,
UART0 is used with 115200 baud rate; TX pin is GPIO1; RX pin is GPIO3. These parameters can be changed in
menuconfig.
Writing to stdout or stderrwill send characters to the UART transmit FIFO. Reading from stdinwill retrieve
characters from the UART receive FIFO.

Espressif Systems 1752
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

By default, VFS uses simple functions for reading from and writing to UART. Writes busy-wait until all data is put
into UART FIFO, and reads are non-blocking, returning only the data present in the FIFO. Due to this non-blocking
read behavior, higher level C library calls, such as fscanf("%d\n", &var);, might not have desired results.
Applications which use the UART driver can instruct VFS to use the driver's interrupt driven, blocking read and write
functions instead. This can be done using a call to the esp_vfs_dev_uart_use_driver function. It is also
possible to revert to the basic non-blocking functions using a call to esp_vfs_dev_uart_use_nonblocking.
VFS also provides an optional newline conversion feature for input and output. Internally, most applications
send and receive lines terminated by the LF (''n'') character. Different terminal programs may require differ-
ent line termination, such as CR or CRLF. Applications can configure this separately for input and output ei-
ther via menuconfig, or by calls to the functions esp_vfs_dev_uart_port_set_rx_line_endings and
esp_vfs_dev_uart_port_set_tx_line_endings.

Standard streams and FreeRTOS tasks FILE objects for stdin, stdout, and stderr are shared between
all FreeRTOS tasks, but the pointers to these objects are stored in per-task struct _reent.
The following code is transferred to fprintf(__getreent()->_stderr, "42\n"); by the preprocessor:

fprintf(stderr, "42\n");

The __getreent() function returns a per-task pointer to struct _reent in newlib libc. This structure is
allocated on the TCB of each task. When a task is initialized, _stdin, _stdout, and _stderr members of
struct _reent are set to the values of _stdin, _stdout, and _stderr of _GLOBAL_REENT (i.e., the
structure which is used before FreeRTOS is started).
Such a design has the following consequences:

• It is possible to set stdin, stdout, and stderr for any given task without affecting other tasks, e.g., by
doing stdin = fopen("/dev/uart/1", "r").

• Closing default stdin, stdout, or stderr using fclose will close the FILE stream object, which will
affect all other tasks.

• To change the default stdin, stdout, stderr streams for new tasks, modify
_GLOBAL_REENT->_stdin (_stdout, _stderr) before creating the task.

Event fds

eventfd() call is a powerful tool to notify a select() based loop of custom events. The eventfd() imple-
mentation in ESP-IDF is generally the same as described in man(2) eventfd except for:

• esp_vfs_eventfd_register() has to be called before calling eventfd()
• Options EFD_CLOEXEC, EFD_NONBLOCK and EFD_SEMAPHORE are not supported in flags.
• Option EFD_SUPPORT_ISR has been added in flags. This flag is required to read and write the eventfd in
an interrupt handler.

Note that creating an eventfd with EFD_SUPPORT_ISR will cause interrupts to be temporarily disabled when
reading, writing the file and during the beginning and the ending of the select() when this file is set.

API Reference

Header File
• components/vfs/include/esp_vfs.h

Functions
ssize_t esp_vfs_write(struct _reent *r, int fd, const void *data, size_t size)

These functions are to be used in newlib syscall table. They will be called by newlib when it needs to use any
of the syscalls.

Espressif Systems 1753
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://man7.org/linux/man-pages/man2/eventfd.2.html
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/vfs/include/esp_vfs.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

off_t esp_vfs_lseek(struct _reent *r, int fd, off_t size, int mode)

ssize_t esp_vfs_read(struct _reent *r, int fd, void *dst, size_t size)

int esp_vfs_open(struct _reent *r, const char *path, int flags, int mode)

int esp_vfs_close(struct _reent *r, int fd)

int esp_vfs_fstat(struct _reent *r, int fd, struct stat *st)

int esp_vfs_stat(struct _reent *r, const char *path, struct stat *st)

int esp_vfs_link(struct _reent *r, const char *n1, const char *n2)

int esp_vfs_unlink(struct _reent *r, const char *path)

int esp_vfs_rename(struct _reent *r, const char *src, const char *dst)

int esp_vfs_utime(const char *path, const struct utimbuf *times)

esp_err_t esp_vfs_register(const char *base_path, const esp_vfs_t *vfs, void *ctx)
Register a virtual filesystem for given path prefix.

Parameters
• base_path -- file path prefix associated with the filesystem. Must be a zero-terminated
C string, may be empty. If not empty, must be up to ESP_VFS_PATH_MAX characters
long, and at least 2 characters long. Name must start with a "/" and must not end with
"/". For example, "/data" or "/dev/spi" are valid. These VFSes would then be called to
handle file paths such as "/data/myfile.txt" or "/dev/spi/0". In the special case of an empty
base_path, a "fallback" VFS is registered. Such VFS will handle paths which are not
matched by any other registered VFS.

• vfs -- Pointer to esp_vfs_t, a structure which maps syscalls to the filesystem driver func-
tions. VFS component doesn't assume ownership of this pointer.

• ctx -- If vfs->flags has ESP_VFS_FLAG_CONTEXT_PTR set, a pointer which should
be passed to VFS functions. Otherwise, NULL.

Returns ESP_OK if successful, ESP_ERR_NO_MEM if too many VFSes are registered.
esp_err_t esp_vfs_register_fd_range(const esp_vfs_t *vfs, void *ctx, int min_fd, int max_fd)

Special case function for registering a VFS that uses a method other than open() to open new file descriptors
from the interval <min_fd; max_fd).
This is a special-purpose function intended for registering LWIP sockets to VFS.

Parameters
• vfs -- Pointer to esp_vfs_t. Meaning is the same as for esp_vfs_register().
• ctx -- Pointer to context structure. Meaning is the same as for esp_vfs_register().
• min_fd -- The smallest file descriptor this VFS will use.
• max_fd -- Upper boundary for file descriptors this VFS will use (the biggest file descrip-
tor plus one).

Returns ESP_OK if successful, ESP_ERR_NO_MEM if too many VFSes are registered,
ESP_ERR_INVALID_ARG if the file descriptor boundaries are incorrect.

esp_err_t esp_vfs_register_with_id(const esp_vfs_t *vfs, void *ctx, esp_vfs_id_t *vfs_id)
Special case function for registering a VFS that uses a method other than open() to open new file descriptors. In
comparison with esp_vfs_register_fd_range, this function doesn't pre-registers an interval of file descriptors.
File descriptors can be registered later, by using esp_vfs_register_fd.

Parameters
• vfs -- Pointer to esp_vfs_t. Meaning is the same as for esp_vfs_register().
• ctx -- Pointer to context structure. Meaning is the same as for esp_vfs_register().
• vfs_id -- Here will be written the VFS ID which can be passed to esp_vfs_register_fd
for registering file descriptors.

Espressif Systems 1754
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns ESP_OK if successful, ESP_ERR_NO_MEM if too many VFSes are registered,
ESP_ERR_INVALID_ARG if the file descriptor boundaries are incorrect.

esp_err_t esp_vfs_unregister(const char *base_path)
Unregister a virtual filesystem for given path prefix

Parameters base_path -- file prefix previously used in esp_vfs_register call
Returns ESP_OK if successful, ESP_ERR_INVALID_STATE if VFS for given prefix hasn't been

registered
esp_err_t esp_vfs_unregister_with_id(esp_vfs_id_t vfs_id)

Unregister a virtual filesystem with the given index
Parameters vfs_id -- The VFS ID returned by esp_vfs_register_with_id
Returns ESP_OK if successful, ESP_ERR_INVALID_STATE if VFS for the given index hasn't

been registered
esp_err_t esp_vfs_register_fd(esp_vfs_id_t vfs_id, int *fd)

Special function for registering another file descriptor for a VFS registered by esp_vfs_register_with_id. This
function should only be used to register permanent file descriptors (socket fd) that are not removed after being
closed.

Parameters
• vfs_id -- VFS identificator returned by esp_vfs_register_with_id.
• fd -- The registered file descriptor will be written to this address.

Returns ESP_OK if the registration is successful, ESP_ERR_NO_MEM if too many file descrip-
tors are registered, ESP_ERR_INVALID_ARG if the arguments are incorrect.

esp_err_t esp_vfs_register_fd_with_local_fd(esp_vfs_id_t vfs_id, int local_fd, bool permanent, int
*fd)

Special function for registering another file descriptor with given local_fd for a VFS registered by
esp_vfs_register_with_id.

Parameters
• vfs_id -- VFS identificator returned by esp_vfs_register_with_id.
• local_fd -- The fd in the local vfs. Passing -1 will set the local fd as the (*fd) value.
• permanent --Whether the fd should be treated as permannet (not removed after close())
• fd -- The registered file descriptor will be written to this address.

Returns ESP_OK if the registration is successful, ESP_ERR_NO_MEM if too many file descrip-
tors are registered, ESP_ERR_INVALID_ARG if the arguments are incorrect.

esp_err_t esp_vfs_unregister_fd(esp_vfs_id_t vfs_id, int fd)
Special function for unregistering a file descriptor belonging to a VFS registered by esp_vfs_register_with_id.

Parameters
• vfs_id -- VFS identificator returned by esp_vfs_register_with_id.
• fd -- File descriptor which should be unregistered.

Returns ESP_OK if the registration is successful, ESP_ERR_INVALID_ARG if the arguments
are incorrect.

int esp_vfs_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *errorfds, struct timeval *timeout)
Synchronous I/O multiplexing which implements the functionality of POSIX select() for VFS.

Parameters
• nfds -- Specifies the range of descriptors which should be checked. The first nfds de-
scriptors will be checked in each set.

• readfds -- If not NULL, then points to a descriptor set that on input specifies which
descriptors should be checked for being ready to read, and on output indicates which de-
scriptors are ready to read.

• writefds -- If not NULL, then points to a descriptor set that on input specifies which
descriptors should be checked for being ready to write, and on output indicates which
descriptors are ready to write.

Espressif Systems 1755
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• errorfds -- If not NULL, then points to a descriptor set that on input specifies which
descriptors should be checked for error conditions, and on output indicates which descrip-
tors have error conditions.

• timeout -- If not NULL, then points to timeval structure which specifies the time period
after which the functions should time-out and return. If it is NULL, then the function
will not time-out. Note that the timeout period is rounded up to the system tick and
incremented by one.

Returns The number of descriptors set in the descriptor sets, or -1 when an error (specified by
errno) have occurred.

void esp_vfs_select_triggered(esp_vfs_select_sem_t sem)
Notification from a VFS driver about a read/write/error condition.
This function is called when the VFS driver detects a read/write/error condition as it was requested by the
previous call to start_select.

Parameters sem -- semaphore structure which was passed to the driver by the start_select call
void esp_vfs_select_triggered_isr(esp_vfs_select_sem_t sem, BaseType_t *woken)

Notification from a VFS driver about a read/write/error condition (ISR version)
This function is called when the VFS driver detects a read/write/error condition as it was requested by the
previous call to start_select.

Parameters
• sem -- semaphore structure which was passed to the driver by the start_select call
• woken -- is set to pdTRUE if the function wakes up a task with higher priority

ssize_t esp_vfs_pread(int fd, void *dst, size_t size, off_t offset)
Implements the VFS layer of POSIX pread()

Parameters
• fd -- File descriptor used for read
• dst -- Pointer to the buffer where the output will be written
• size -- Number of bytes to be read
• offset -- Starting offset of the read

Returns A positive return value indicates the number of bytes read. -1 is return on failure and
errno is set accordingly.

ssize_t esp_vfs_pwrite(int fd, const void *src, size_t size, off_t offset)
Implements the VFS layer of POSIX pwrite()

Parameters
• fd -- File descriptor used for write
• src -- Pointer to the buffer from where the output will be read
• size -- Number of bytes to write
• offset -- Starting offset of the write

Returns A positive return value indicates the number of bytes written. -1 is return on failure and
errno is set accordingly.

Structures

struct esp_vfs_select_sem_t
VFS semaphore type for select()

Public Members

bool is_sem_local
type of "sem" is SemaphoreHandle_t when true, defined by socket driver otherwise

Espressif Systems 1756
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void *sem
semaphore instance

struct esp_vfs_t
VFS definition structure.
This structure should be filled with pointers to corresponding FS driver functions.
VFS component will translate all FDs so that the filesystem implementation sees them starting at zero. The
caller sees a global FD which is prefixed with an pre-filesystem-implementation.
Some FS implementations expect some state (e.g. pointer to some structure) to be passed in as a first argument.
For these implementations, populate the members of this structure which have _p suffix, set flags member
to ESP_VFS_FLAG_CONTEXT_PTR and provide the context pointer to esp_vfs_register function. If the
implementation doesn't use this extra argument, populate the members without _p suffix and set flags member
to ESP_VFS_FLAG_DEFAULT.
If the FS driver doesn't provide some of the functions, set corresponding members to NULL.

Public Members

int flags
ESP_VFS_FLAG_CONTEXT_PTR or ESP_VFS_FLAG_DEFAULT

ssize_t (*write_p)(void *p, int fd, const void *data, size_t size)
Write with context pointer

ssize_t (*write)(int fd, const void *data, size_t size)
Write without context pointer

off_t (*lseek_p)(void *p, int fd, off_t size, int mode)
Seek with context pointer

off_t (*lseek)(int fd, off_t size, int mode)
Seek without context pointer

ssize_t (*read_p)(void *ctx, int fd, void *dst, size_t size)
Read with context pointer

ssize_t (*read)(int fd, void *dst, size_t size)
Read without context pointer

ssize_t (*pread_p)(void *ctx, int fd, void *dst, size_t size, off_t offset)
pread with context pointer

ssize_t (*pread)(int fd, void *dst, size_t size, off_t offset)
pread without context pointer

ssize_t (*pwrite_p)(void *ctx, int fd, const void *src, size_t size, off_t offset)
pwrite with context pointer

Espressif Systems 1757
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ssize_t (*pwrite)(int fd, const void *src, size_t size, off_t offset)
pwrite without context pointer

int (*open_p)(void *ctx, const char *path, int flags, int mode)
open with context pointer

int (*open)(const char *path, int flags, int mode)
open without context pointer

int (*close_p)(void *ctx, int fd)
close with context pointer

int (*close)(int fd)
close without context pointer

int (*fstat_p)(void *ctx, int fd, struct stat *st)
fstat with context pointer

int (*fstat)(int fd, struct stat *st)
fstat without context pointer

int (*stat_p)(void *ctx, const char *path, struct stat *st)
stat with context pointer

int (*stat)(const char *path, struct stat *st)
stat without context pointer

int (*link_p)(void *ctx, const char *n1, const char *n2)
link with context pointer

int (*link)(const char *n1, const char *n2)
link without context pointer

int (*unlink_p)(void *ctx, const char *path)
unlink with context pointer

int (*unlink)(const char *path)
unlink without context pointer

int (*rename_p)(void *ctx, const char *src, const char *dst)
rename with context pointer

int (*rename)(const char *src, const char *dst)
rename without context pointer

DIR *(*opendir_p)(void *ctx, const char *name)
opendir with context pointer

Espressif Systems 1758
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

DIR *(*opendir)(const char *name)
opendir without context pointer

struct dirent *(*readdir_p)(void *ctx, DIR *pdir)
readdir with context pointer

struct dirent *(*readdir)(DIR *pdir)
readdir without context pointer

int (*readdir_r_p)(void *ctx, DIR *pdir, struct dirent *entry, struct dirent **out_dirent)
readdir_r with context pointer

int (*readdir_r)(DIR *pdir, struct dirent *entry, struct dirent **out_dirent)
readdir_r without context pointer

long (*telldir_p)(void *ctx, DIR *pdir)
telldir with context pointer

long (*telldir)(DIR *pdir)
telldir without context pointer

void (*seekdir_p)(void *ctx, DIR *pdir, long offset)
seekdir with context pointer

void (*seekdir)(DIR *pdir, long offset)
seekdir without context pointer

int (*closedir_p)(void *ctx, DIR *pdir)
closedir with context pointer

int (*closedir)(DIR *pdir)
closedir without context pointer

int (*mkdir_p)(void *ctx, const char *name, mode_t mode)
mkdir with context pointer

int (*mkdir)(const char *name, mode_t mode)
mkdir without context pointer

int (*rmdir_p)(void *ctx, const char *name)
rmdir with context pointer

int (*rmdir)(const char *name)
rmdir without context pointer

int (*fcntl_p)(void *ctx, int fd, int cmd, int arg)
fcntl with context pointer

Espressif Systems 1759
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int (*fcntl)(int fd, int cmd, int arg)
fcntl without context pointer

int (*ioctl_p)(void *ctx, int fd, int cmd, va_list args)
ioctl with context pointer

int (*ioctl)(int fd, int cmd, va_list args)
ioctl without context pointer

int (*fsync_p)(void *ctx, int fd)
fsync with context pointer

int (*fsync)(int fd)
fsync without context pointer

int (*access_p)(void *ctx, const char *path, int amode)
access with context pointer

int (*access)(const char *path, int amode)
access without context pointer

int (*truncate_p)(void *ctx, const char *path, off_t length)
truncate with context pointer

int (*truncate)(const char *path, off_t length)
truncate without context pointer

int (*ftruncate_p)(void *ctx, int fd, off_t length)
ftruncate with context pointer

int (*ftruncate)(int fd, off_t length)
ftruncate without context pointer

int (*utime_p)(void *ctx, const char *path, const struct utimbuf *times)
utime with context pointer

int (*utime)(const char *path, const struct utimbuf *times)
utime without context pointer

int (*tcsetattr_p)(void *ctx, int fd, int optional_actions, const struct termios *p)
tcsetattr with context pointer

int (*tcsetattr)(int fd, int optional_actions, const struct termios *p)
tcsetattr without context pointer

int (*tcgetattr_p)(void *ctx, int fd, struct termios *p)
tcgetattr with context pointer

Espressif Systems 1760
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

int (*tcgetattr)(int fd, struct termios *p)
tcgetattr without context pointer

int (*tcdrain_p)(void *ctx, int fd)
tcdrain with context pointer

int (*tcdrain)(int fd)
tcdrain without context pointer

int (*tcflush_p)(void *ctx, int fd, int select)
tcflush with context pointer

int (*tcflush)(int fd, int select)
tcflush without context pointer

int (*tcflow_p)(void *ctx, int fd, int action)
tcflow with context pointer

int (*tcflow)(int fd, int action)
tcflow without context pointer

pid_t (*tcgetsid_p)(void *ctx, int fd)
tcgetsid with context pointer

pid_t (*tcgetsid)(int fd)
tcgetsid without context pointer

int (*tcsendbreak_p)(void *ctx, int fd, int duration)
tcsendbreak with context pointer

int (*tcsendbreak)(int fd, int duration)
tcsendbreak without context pointer

esp_err_t (*start_select)(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
esp_vfs_select_sem_t sem, void **end_select_args)

start_select is called for setting up synchronous I/O multiplexing of the desired file descriptors in the
given VFS

int (*socket_select)(int nfds, fd_set *readfds, fd_set *writefds, fd_set *errorfds, struct timeval
*timeout)

socket select function for socket FDs with the functionality of POSIX select(); this should be set only for
the socket VFS

void (*stop_socket_select)(void *sem)
called by VFS to interrupt the socket_select call when select is activated from a non-socket VFS driver;
set only for the socket driver

void (*stop_socket_select_isr)(void *sem, BaseType_t *woken)
stop_socket_select which can be called from ISR; set only for the socket driver

Espressif Systems 1761
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void *(*get_socket_select_semaphore)(void)
end_select is called to stop the I/O multiplexing and deinitialize the environment created by start_select
for the given VFS

esp_err_t (*end_select)(void *end_select_args)
get_socket_select_semaphore returns semaphore allocated in the socket driver; set only for the socket
driver

Macros

MAX_FDS

Maximum number of (global) file descriptors.

ESP_VFS_PATH_MAX

Maximum length of path prefix (not including zero terminator)

ESP_VFS_FLAG_DEFAULT

Default value of flags member in esp_vfs_t structure.

ESP_VFS_FLAG_CONTEXT_PTR

Flag which indicates that FS needs extra context pointer in syscalls.

Type Definitions

typedef int esp_vfs_id_t

Header File
• components/vfs/include/esp_vfs_dev.h

Functions
void esp_vfs_dev_uart_register(void)

add /dev/uart virtual filesystem driver
This function is called from startup code to enable serial output

void esp_vfs_dev_uart_set_rx_line_endings(esp_line_endings_t mode)
Set the line endings expected to be received on UART.

This specifies the conversion between line endings received on UART and newlines ('
', LF) passed into stdin:

• ESP_LINE_ENDINGS_CRLF: convert CRLF to LF
• ESP_LINE_ENDINGS_CR: convert CR to LF
• ESP_LINE_ENDINGS_LF: no modification

Note: this function is not thread safe w.r.t. reading from UART

Parameters mode -- line endings expected on UART

Espressif Systems 1762
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/vfs/include/esp_vfs_dev.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void esp_vfs_dev_uart_set_tx_line_endings(esp_line_endings_t mode)
Set the line endings to sent to UART.

This specifies the conversion between newlines ('
', LF) on stdout and line endings sent over UART:

• ESP_LINE_ENDINGS_CRLF: convert LF to CRLF
• ESP_LINE_ENDINGS_CR: convert LF to CR
• ESP_LINE_ENDINGS_LF: no modification

Note: this function is not thread safe w.r.t. writing to UART

Parameters mode -- line endings to send to UART

int esp_vfs_dev_uart_port_set_rx_line_endings(int uart_num, esp_line_endings_t mode)
Set the line endings expected to be received on specified UART.

This specifies the conversion between line endings received on UART and newlines ('
', LF) passed into stdin:

• ESP_LINE_ENDINGS_CRLF: convert CRLF to LF
• ESP_LINE_ENDINGS_CR: convert CR to LF
• ESP_LINE_ENDINGS_LF: no modification

Note: this function is not thread safe w.r.t. reading from UART

Parameters
• uart_num -- the UART number
• mode -- line endings to send to UART

Returns 0 if successed, or -1 when an error (specified by errno) have occurred.

int esp_vfs_dev_uart_port_set_tx_line_endings(int uart_num, esp_line_endings_t mode)
Set the line endings to sent to specified UART.

This specifies the conversion between newlines ('
', LF) on stdout and line endings sent over UART:

• ESP_LINE_ENDINGS_CRLF: convert LF to CRLF
• ESP_LINE_ENDINGS_CR: convert LF to CR
• ESP_LINE_ENDINGS_LF: no modification

Note: this function is not thread safe w.r.t. writing to UART

Parameters
• uart_num -- the UART number

Espressif Systems 1763
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• mode -- line endings to send to UART
Returns 0 if successed, or -1 when an error (specified by errno) have occurred.

void esp_vfs_dev_uart_use_nonblocking(int uart_num)
set VFS to use simple functions for reading and writing UART Read is non-blocking, write is busy waiting
until TX FIFO has enough space. These functions are used by default.

Parameters uart_num -- UART peripheral number
void esp_vfs_dev_uart_use_driver(int uart_num)

set VFS to use UART driver for reading and writing

Note: application must configure UART driver before calling these functions With these functions, read and
write are blocking and interrupt-driven.

Parameters uart_num -- UART peripheral number

void esp_vfs_usb_serial_jtag_use_driver(void)
set VFS to use USB-SERIAL-JTAG driver for reading and writing

Note: application must configure USB-SERIAL-JTAG driver before calling these functions With these func-
tions, read and write are blocking and interrupt-driven.

void esp_vfs_usb_serial_jtag_use_nonblocking(void)
set VFS to use simple functions for reading and writing UART Read is non-blocking, write is busy waiting
until TX FIFO has enough space. These functions are used by default.

Header File
• components/vfs/include/esp_vfs_eventfd.h

Functions
esp_err_t esp_vfs_eventfd_register(const esp_vfs_eventfd_config_t *config)

Registers the event vfs.
Returns ESP_OK if successful, ESP_ERR_NO_MEM if too many VFSes are registered.

esp_err_t esp_vfs_eventfd_unregister(void)
Unregisters the event vfs.

Returns ESP_OK if successful, ESP_ERR_INVALID_STATE if VFS for given prefix hasn't been
registered

int eventfd(unsigned int initval, int flags)

Structures

struct esp_vfs_eventfd_config_t
Eventfd vfs initialization settings.

Public Members

size_t max_fds
The maxinum number of eventfds supported

Espressif Systems 1764
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/vfs/include/esp_vfs_eventfd.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Macros

EFD_SUPPORT_ISR

ESP_VFS_EVENTD_CONFIG_DEFAULT()

2.9.10 Wear Levelling API

Overview

Most of flash memory and especially SPI flash that is used in ESP32-C6 has a sector-based organization and also has
a limited number of erase/modification cycles per memory sector. The wear levelling component helps to distribute
wear and tear among sectors more evenly without requiring any attention from the user.
The wear levelling component provides API functions related to reading, writing, erasing, and memory mapping of
data in external SPI flash through the partition component. The component also has higher-level API functions which
work with the FAT filesystem defined in FAT filesystem.
The wear levelling component, together with the FAT FS component, uses FAT FS sectors of 4096 bytes, which is
a standard size for flash memory. With this size, the component shows the best performance but needs additional
memory in RAM.
To save internal memory, the component has two additional modes which both use sectors of 512 bytes:

• Performancemode. Erase sector operation data is stored in RAM, the sector is erased, and then data is copied
back to flash memory. However, if a device is powered off for any reason, all 4096 bytes of data is lost.

• Safety mode. The data is first saved to flash memory, and after the sector is erased, the data is saved back. If
a device is powered off, the data can be recovered as soon as the device boots up.

The default settings are as follows:
• Sector size is 512 bytes
• Performance mode

You can change the settings through the configuration menu.
The wear levelling component does not cache data in RAM. The write and erase functions modify flash directly, and
flash contents are consistent when the function returns.

Wear Levelling access API functions

This is the set of API functions for working with data in flash:
• wl_mount - initializes the wear levelling module and mounts the specified partition
• wl_unmount - unmounts the partition and deinitializes the wear levelling module
• wl_erase_range - erases a range of addresses in flash
• wl_write - writes data to a partition
• wl_read - reads data from a partition
• wl_size - returns the size of available memory in bytes
• wl_sector_size - returns the size of one sector

As a rule, try to avoid using raw wear levelling functions and use filesystem-specific functions instead.

Memory Size

The memory size is calculated in the wear levelling module based on partition parameters. The module uses some
sectors of flash for internal data.

Espressif Systems 1765
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

See also

• FAT Filesystem Support
• Partition Tables

Application Example

An example that combines the wear levelling driver with the FATFS library is provided in the storage/wear_levelling
directory. This example initializes the wear levelling driver, mounts FatFs partition, as well as writes and reads data
from it using POSIX and C library APIs. See storage/wear_levelling/README.md for more information.

High-level API Reference

Header Files
• fatfs/vfs/esp_vfs_fat.h

High-level wear levelling functions esp_vfs_fat_spiflash_mount_rw_wl(),
esp_vfs_fat_spiflash_unmount_rw_wl() and struct esp_vfs_fat_mount_config_t are
described in FAT Filesystem Support.

Mid-level API Reference

Header File
• components/wear_levelling/include/wear_levelling.h

Functions
esp_err_t wl_mount(const esp_partition_t *partition, wl_handle_t *out_handle)

Mount WL for defined partition.
Parameters

• partition -- that will be used for access
• out_handle -- handle of the WL instance

Returns
• ESP_OK, if the allocation was successfully;
• ESP_ERR_INVALID_ARG, if WL allocation was unsuccessful;
• ESP_ERR_NO_MEM, if there was no memory to allocate WL components;

esp_err_t wl_unmount(wl_handle_t handle)
Unmount WL for defined partition.

Parameters handle -- WL partition handle
Returns

• ESP_OK, if the operation completed successfully;
• or one of error codes from lower-level flash driver.

esp_err_t wl_erase_range(wl_handle_t handle, size_t start_addr, size_t size)
Erase part of the WL storage.

Parameters
• handle -- WL handle that are related to the partition
• start_addr -- Address where erase operation should start. Must be aligned to the result
of function wl_sector_size(...).

• size -- Size of the range which should be erased, in bytes. Must be divisible by result of
function wl_sector_size(...)..

Returns
• ESP_OK, if the range was erased successfully;
• ESP_ERR_INVALID_ARG, if iterator or dst are NULL;

Espressif Systems 1766
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/wear_levelling
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/storage/wear_levelling/README.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/fatfs/vfs/esp_vfs_fat.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wear_levelling/include/wear_levelling.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_SIZE, if erase would go out of bounds of the partition;
• or one of error codes from lower-level flash driver.

esp_err_t wl_write(wl_handle_t handle, size_t dest_addr, const void *src, size_t size)
Write data to the WL storage.
Before writing data to flash, corresponding region of flash needs to be erased. This can be done using
wl_erase_range function.

Note: Prior to writing to WL storage, make sure it has been erased with wl_erase_range call.

Parameters
• handle -- WL handle that are related to the partition
• dest_addr -- Address where the data should be written, relative to the beginning of the
partition.

• src -- Pointer to the source buffer. Pointer must be non-NULL and buffer must be at
least 'size' bytes long.

• size -- Size of data to be written, in bytes.
Returns

• ESP_OK, if data was written successfully;
• ESP_ERR_INVALID_ARG, if dst_offset exceeds partition size;
• ESP_ERR_INVALID_SIZE, if write would go out of bounds of the partition;
• or one of error codes from lower-level flash driver.

esp_err_t wl_read(wl_handle_t handle, size_t src_addr, void *dest, size_t size)
Read data from the WL storage.

Parameters
• handle -- WL module instance that was initialized before
• dest -- Pointer to the buffer where data should be stored. Pointer must be non-NULL
and buffer must be at least 'size' bytes long.

• src_addr -- Address of the data to be read, relative to the beginning of the partition.
• size -- Size of data to be read, in bytes.

Returns
• ESP_OK, if data was read successfully;
• ESP_ERR_INVALID_ARG, if src_offset exceeds partition size;
• ESP_ERR_INVALID_SIZE, if read would go out of bounds of the partition;
• or one of error codes from lower-level flash driver.

size_t wl_size(wl_handle_t handle)
Get size of the WL storage.

Parameters handle -- WL module handle that was initialized before
Returns usable size, in bytes

size_t wl_sector_size(wl_handle_t handle)
Get sector size of the WL instance.

Parameters handle -- WL module handle that was initialized before
Returns sector size, in bytes

Macros

WL_INVALID_HANDLE

Type Definitions

Espressif Systems 1767
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef int32_t wl_handle_t
wear levelling handle

Code examples for this API section are provided in the storage directory of ESP-IDF examples.

2.10 System API

2.10.1 App Image Format

An application image consists of the following structures:
1. The esp_image_header_t structure describes the mode of SPI flash and the count of memory segments.
2. The esp_image_segment_header_t structure describes each segment, its length, and its location in

ESP32-C6's memory, followed by the data with a length of data_len. The data offset for each segment in
the image is calculated in the following way:

• offset for 0 Segment = sizeof(esp_image_header_t) + sizeof(esp_image_segment_header_t).
• offset for 1 Segment = offset for 0 Segment + length of 0 Segment +
sizeof(esp_image_segment_header_t).

• offset for 2 Segment = offset for 1 Segment + length of 1 Segment +
sizeof(esp_image_segment_header_t).

• ...
The count of each segment is defined in the segment_count field that is stored in esp_image_header_t.
The count cannot be more than ESP_IMAGE_MAX_SEGMENTS.
To get the list of your image segments, please run the following command:

esptool.py --chip esp32c6 image_info build/app.bin

esptool.py v2.3.1
Image version: 1
Entry point: 40080ea4
13 segments

Segment 1: len 0x13ce0 load 0x3f400020 file_offs 0x00000018 SOC_DROM
Segment 2: len 0x00000 load 0x3ff80000 file_offs 0x00013d00 SOC_RTC_DRAM
Segment 3: len 0x00000 load 0x3ff80000 file_offs 0x00013d08 SOC_RTC_DRAM
Segment 4: len 0x028e0 load 0x3ffb0000 file_offs 0x00013d10 DRAM
Segment 5: len 0x00000 load 0x3ffb28e0 file_offs 0x000165f8 DRAM
Segment 6: len 0x00400 load 0x40080000 file_offs 0x00016600 SOC_IRAM
Segment 7: len 0x09600 load 0x40080400 file_offs 0x00016a08 SOC_IRAM
Segment 8: len 0x62e4c load 0x400d0018 file_offs 0x00020010 SOC_IROM
Segment 9: len 0x06cec load 0x40089a00 file_offs 0x00082e64 SOC_IROM
Segment 10: len 0x00000 load 0x400c0000 file_offs 0x00089b58 SOC_RTC_IRAM
Segment 11: len 0x00004 load 0x50000000 file_offs 0x00089b60 SOC_RTC_DATA
Segment 12: len 0x00000 load 0x50000004 file_offs 0x00089b6c SOC_RTC_DATA
Segment 13: len 0x00000 load 0x50000004 file_offs 0x00089b74 SOC_RTC_DATA
Checksum: e8 (valid)
Validation Hash: 407089ca0eae2bbf83b4120979d3354b1c938a49cb7a0c997f240474ef2ec76b␣
↪→(valid)

You can also see the information on segments in the ESP-IDF logs while your application is booting:

I (443) esp_image: segment 0: paddr=0x00020020 vaddr=0x3f400020 size=0x13ce0 (␣
↪→81120) map
I (489) esp_image: segment 1: paddr=0x00033d08 vaddr=0x3ff80000 size=0x00000 (0)␣
↪→load (continues on next page)

Espressif Systems 1768
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
I (530) esp_image: segment 2: paddr=0x00033d10 vaddr=0x3ff80000 size=0x00000 (0)␣
↪→load
I (571) esp_image: segment 3: paddr=0x00033d18 vaddr=0x3ffb0000 size=0x028e0 (␣
↪→10464) load
I (612) esp_image: segment 4: paddr=0x00036600 vaddr=0x3ffb28e0 size=0x00000 (0)␣
↪→load
I (654) esp_image: segment 5: paddr=0x00036608 vaddr=0x40080000 size=0x00400 (␣
↪→1024) load
I (695) esp_image: segment 6: paddr=0x00036a10 vaddr=0x40080400 size=0x09600 (␣
↪→38400) load
I (737) esp_image: segment 7: paddr=0x00040018 vaddr=0x400d0018 size=0x62e4c␣
↪→(405068) map
I (847) esp_image: segment 8: paddr=0x000a2e6c vaddr=0x40089a00 size=0x06cec (␣
↪→27884) load
I (888) esp_image: segment 9: paddr=0x000a9b60 vaddr=0x400c0000 size=0x00000 (0)␣
↪→load
I (929) esp_image: segment 10: paddr=0x000a9b68 vaddr=0x50000000 size=0x00004 (4)␣
↪→load
I (971) esp_image: segment 11: paddr=0x000a9b74 vaddr=0x50000004 size=0x00000 (0)␣
↪→load
I (1012) esp_image: segment 12: paddr=0x000a9b7c vaddr=0x50000004 size=0x00000 (␣
↪→0) load

Formore details on the type ofmemory segments and their address ranges, see ESP32-C6 Technical ReferenceManual
> System and Memory > Internal Memory [PDF].

3. The image has a single checksum byte after the last segment. This byte is written on a sixteen byte padded
boundary, so the application image might need padding.

4. If the hash_appended field from esp_image_header_t is set then a SHA256 checksum will be ap-
pended. The value of the SHA256 hash is calculated on the range from the first byte and up to this field. The
length of this field is 32 bytes.

5. If the option CONFIG_SECURE_SIGNED_APPS_SCHEME is set to ECDSA then the application image will
have an additional 68 bytes for an ECDSA signature, which includes:

• version word (4 bytes),
• signature data (64 bytes).
6. If the option CONFIG_SECURE_SIGNED_APPS_SCHEME is set to RSA or ECDSA (V2) then the application

image will have an additional signature sector of 4K size. For more details on the format of this signature
sector, please refer to Signature Block Format.

Application Description

The DROM segment of the application binary starts with the esp_app_desc_t structure which carries specific
fields describing the application:

• magic_word - the magic word for the esp_app_desc structure.
• secure_version - see Anti-rollback.
• version - see App version. *
• project_name is filled from PROJECT_NAME. *
• time and date - compile time and date.
• idf_ver - version of ESP-IDF. *
• app_elf_sha256 - contains sha256 hash for the application ELF file.

* - The maximum length is 32 characters, including null-termination character. For example, if the length of
PROJECT_NAME exceeds 31 characters, the excess characters will be disregarded.
This structure is useful for identification of images uploaded via Over-the-Air (OTA) updates because it has a fixed
offset = sizeof(esp_image_header_t) + sizeof(esp_image_segment_header_t). As soon as a device
receives the first fragment containing this structure, it has all the information to determine whether the update should
be continued with or not.

Espressif Systems 1769
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#sysmem
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

To obtain the esp_app_desc_t structure for the currently running application, use
esp_app_get_description().
To obtain the esp_app_desc_t structure for another OTA partition, use
esp_ota_get_partition_description().

Adding a Custom Structure to an Application

Users also have the opportunity to have similar structure with a fixed offset relative to the beginning of the image.
The following pattern can be used to add a custom structure to your image:

const __attribute__((section(".rodata_custom_desc"))) esp_custom_app_desc_t custom_
↪→app_desc = { ... }

Offset for custom structure is sizeof(esp_image_header_t) + sizeof(esp_image_segment_header_t)
+ sizeof(esp_app_desc_t).
To guarantee that the custom structure is located in the image even if it is not used, you need to add tar-
get_link_libraries(${COMPONENT_TARGET} "-u custom_app_desc") into CMakeLists.
txt.

API Reference

Header File
• components/bootloader_support/include/esp_app_format.h

Structures

struct esp_image_header_t
Main header of binary image.

Public Members

uint8_t magic
Magic word ESP_IMAGE_HEADER_MAGIC

uint8_t segment_count
Count of memory segments

uint8_t spi_mode
flash read mode (esp_image_spi_mode_t as uint8_t)

uint8_t spi_speed
flash frequency (esp_image_spi_freq_t as uint8_t)

uint8_t spi_size
flash chip size (esp_image_flash_size_t as uint8_t)

uint32_t entry_addr
Entry address

Espressif Systems 1770
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bootloader_support/include/esp_app_format.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint8_t wp_pin
WP pin when SPI pins set via efuse (read by ROM bootloader, the IDF bootloader uses software to
configure the WP pin and sets this field to 0xEE=disabled)

uint8_t spi_pin_drv[3]
Drive settings for the SPI flash pins (read by ROM bootloader)

esp_chip_id_t chip_id

Chip identification number

uint8_t min_chip_rev
Minimal chip revision supported by image After the Major and Minor revision eFuses were introduced
into the chips, this field is no longer used. But for compatibility reasons, we keep this field and the data in
it. Use min_chip_rev_full instead. The software interprets this as a Major version for most of the chips
and as a Minor version for the ESP32-C3.

uint16_t min_chip_rev_full
Minimal chip revision supported by image, in format: major * 100 + minor

uint16_t max_chip_rev_full
Maximal chip revision supported by image, in format: major * 100 + minor

uint8_t reserved[4]
Reserved bytes in additional header space, currently unused

uint8_t hash_appended
If 1, a SHA256 digest "simple hash" (of the entire image) is appended after the checksum. Included in
image length. This digest is separate to secure boot and only used for detecting corruption. For secure
boot signed images, the signature is appended after this (and the simple hash is included in the signed
data).

struct esp_image_segment_header_t
Header of binary image segment.

Public Members

uint32_t load_addr
Address of segment

uint32_t data_len
Length of data

Macros

ESP_IMAGE_HEADER_MAGIC

The magic word for the esp_image_header_t structure.

ESP_IMAGE_MAX_SEGMENTS

Max count of segments in the image.

Espressif Systems 1771
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Enumerations

enum esp_chip_id_t

ESP chip ID.
Values:

enumerator ESP_CHIP_ID_ESP32
chip ID: ESP32

enumerator ESP_CHIP_ID_ESP32S2
chip ID: ESP32-S2

enumerator ESP_CHIP_ID_ESP32C3
chip ID: ESP32-C3

enumerator ESP_CHIP_ID_ESP32S3
chip ID: ESP32-S3

enumerator ESP_CHIP_ID_ESP32C2
chip ID: ESP32-C2

enumerator ESP_CHIP_ID_ESP32C6
chip ID: ESP32-C6

enumerator ESP_CHIP_ID_ESP32H2
chip ID: ESP32-H2

enumerator ESP_CHIP_ID_INVALID
Invalid chip ID (we defined it to make sure the esp_chip_id_t is 2 bytes size)

enum esp_image_spi_mode_t

SPI flash mode, used in esp_image_header_t.
Values:

enumerator ESP_IMAGE_SPI_MODE_QIO
SPI mode QIO

enumerator ESP_IMAGE_SPI_MODE_QOUT
SPI mode QOUT

enumerator ESP_IMAGE_SPI_MODE_DIO
SPI mode DIO

enumerator ESP_IMAGE_SPI_MODE_DOUT
SPI mode DOUT

enumerator ESP_IMAGE_SPI_MODE_FAST_READ
SPI mode FAST_READ

Espressif Systems 1772
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_IMAGE_SPI_MODE_SLOW_READ
SPI mode SLOW_READ

enum esp_image_spi_freq_t

SPI flash clock division factor.
Values:

enumerator ESP_IMAGE_SPI_SPEED_DIV_2
The SPI flash clock frequency is divided by 2 of the clock source

enumerator ESP_IMAGE_SPI_SPEED_DIV_3
The SPI flash clock frequency is divided by 3 of the clock source

enumerator ESP_IMAGE_SPI_SPEED_DIV_4
The SPI flash clock frequency is divided by 4 of the clock source

enumerator ESP_IMAGE_SPI_SPEED_DIV_1
The SPI flash clock frequency equals to the clock source

enum esp_image_flash_size_t

Supported SPI flash sizes.
Values:

enumerator ESP_IMAGE_FLASH_SIZE_1MB
SPI flash size 1 MB

enumerator ESP_IMAGE_FLASH_SIZE_2MB
SPI flash size 2 MB

enumerator ESP_IMAGE_FLASH_SIZE_4MB
SPI flash size 4 MB

enumerator ESP_IMAGE_FLASH_SIZE_8MB
SPI flash size 8 MB

enumerator ESP_IMAGE_FLASH_SIZE_16MB
SPI flash size 16 MB

enumerator ESP_IMAGE_FLASH_SIZE_32MB
SPI flash size 32 MB

enumerator ESP_IMAGE_FLASH_SIZE_64MB
SPI flash size 64 MB

enumerator ESP_IMAGE_FLASH_SIZE_128MB
SPI flash size 128 MB

enumerator ESP_IMAGE_FLASH_SIZE_MAX
SPI flash size MAX

Espressif Systems 1773
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.10.2 Application Level Tracing

Overview

IDF provides a useful feature for program behavior analysis called Application Level Tracing. The feature can
be enabled in menuconfig and allows transfer of arbitrary data between the host and ESP32-C6 via JTAG interface
with minimal overhead on program execution. Developers can use this library to send application specific state of
execution to the host and receive commands or other type of information in the opposite direction at runtime. The
main use cases of this library are:

1. Collecting application specific data, see Application Specific Tracing
2. Lightweight logging to the host, see Logging to Host
3. System behaviour analysis, see System Behavior Analysis with SEGGER SystemView

API Reference

Header File
• components/app_trace/include/esp_app_trace.h

Functions
esp_err_t esp_apptrace_init(void)

Initializes application tracing module.

Note: Should be called before any esp_apptrace_xxx call.

Returns ESP_OK on success, otherwise see esp_err_t
void esp_apptrace_down_buffer_config(uint8_t *buf, uint32_t size)

Configures down buffer.

Note: Needs to be called before attempting to receive any data using esp_apptrace_down_buffer_get and
esp_apptrace_read. This function does not protect internal data by lock.

Parameters
• buf -- Address of buffer to use for down channel (host to target) data.
• size -- Size of the buffer.

uint8_t *esp_apptrace_buffer_get(esp_apptrace_dest_t dest, uint32_t size, uint32_t tmo)
Allocates buffer for trace data. Once the data in the buffer is ready to be sent, esp_apptrace_buffer_put must
be called to indicate it.

Parameters
• dest -- Indicates HW interface to send data.
• size -- Size of data to write to trace buffer.
• tmo -- Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait
indefinitely.

Returns non-NULL on success, otherwise NULL.
esp_err_t esp_apptrace_buffer_put(esp_apptrace_dest_t dest, uint8_t *ptr, uint32_t tmo)

Indicates that the data in the buffer is ready to be sent. This function is a counterpart of and must be preceded
by esp_apptrace_buffer_get.

Parameters
• dest -- Indicates HW interface to send data. Should be identical to the same parameter
in call to esp_apptrace_buffer_get.

Espressif Systems 1774
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/app_trace/include/esp_app_trace.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ptr -- Address of trace buffer to release. Should be the value returned by call to
esp_apptrace_buffer_get.

• tmo -- Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait
indefinitely.

Returns ESP_OK on success, otherwise see esp_err_t
esp_err_t esp_apptrace_write(esp_apptrace_dest_t dest, const void *data, uint32_t size, uint32_t tmo)

Writes data to trace buffer.
Parameters

• dest -- Indicates HW interface to send data.
• data -- Address of data to write to trace buffer.
• size -- Size of data to write to trace buffer.
• tmo -- Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait
indefinitely.

Returns ESP_OK on success, otherwise see esp_err_t
int esp_apptrace_vprintf_to(esp_apptrace_dest_t dest, uint32_t tmo, const char *fmt, va_list ap)

vprintf-like function to send log messages to host via specified HW interface.
Parameters

• dest -- Indicates HW interface to send data.
• tmo -- Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait
indefinitely.

• fmt -- Address of format string.
• ap -- List of arguments.

Returns Number of bytes written.
int esp_apptrace_vprintf(const char *fmt, va_list ap)

vprintf-like function to send log messages to host.
Parameters

• fmt -- Address of format string.
• ap -- List of arguments.

Returns Number of bytes written.
esp_err_t esp_apptrace_flush(esp_apptrace_dest_t dest, uint32_t tmo)

Flushes remaining data in trace buffer to host.
Parameters

• dest -- Indicates HW interface to flush data on.
• tmo -- Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait
indefinitely.

Returns ESP_OK on success, otherwise see esp_err_t
esp_err_t esp_apptrace_flush_nolock(esp_apptrace_dest_t dest, uint32_t min_sz, uint32_t tmo)

Flushes remaining data in trace buffer to host without locking internal data. This is a special version of
esp_apptrace_flush which should be called from panic handler.

Parameters
• dest -- Indicates HW interface to flush data on.
• min_sz -- Threshold for flushing data. If current filling level is above this value, data will
be flushed. TRAX destinations only.

• tmo -- Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait
indefinitely.

Returns ESP_OK on success, otherwise see esp_err_t
esp_err_t esp_apptrace_read(esp_apptrace_dest_t dest, void *data, uint32_t *size, uint32_t tmo)

Reads host data from trace buffer.
Parameters

• dest -- Indicates HW interface to read the data on.
• data -- Address of buffer to put data from trace buffer.

Espressif Systems 1775
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• size -- Pointer to store size of read data. Before call to this function pointed memory
must hold requested size of data

• tmo -- Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait
indefinitely.

Returns ESP_OK on success, otherwise see esp_err_t
uint8_t *esp_apptrace_down_buffer_get(esp_apptrace_dest_t dest, uint32_t *size, uint32_t tmo)

Retrieves incoming data buffer if any. Once data in the buffer is processed, esp_apptrace_down_buffer_put
must be called to indicate it.

Parameters
• dest -- Indicates HW interface to receive data.
• size -- Address to store size of available data in down buffer. Must be initialized with
requested value.

• tmo -- Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait
indefinitely.

Returns non-NULL on success, otherwise NULL.
esp_err_t esp_apptrace_down_buffer_put(esp_apptrace_dest_t dest, uint8_t *ptr, uint32_t tmo)

Indicates that the data in the down buffer is processed. This function is a counterpart of and must be preceded
by esp_apptrace_down_buffer_get.

Parameters
• dest -- Indicates HW interface to receive data. Should be identical to the same parameter
in call to esp_apptrace_down_buffer_get.

• ptr -- Address of trace buffer to release. Should be the value returned by call to
esp_apptrace_down_buffer_get.

• tmo -- Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to wait
indefinitely.

Returns ESP_OK on success, otherwise see esp_err_t
bool esp_apptrace_host_is_connected(esp_apptrace_dest_t dest)

Checks whether host is connected.
Parameters dest -- Indicates HW interface to use.
Returns true if host is connected, otherwise false

void *esp_apptrace_fopen(esp_apptrace_dest_t dest, const char *path, const char *mode)
Opens file on host. This function has the same semantic as 'fopen' except for the first argument.

Parameters
• dest -- Indicates HW interface to use.
• path -- Path to file.
• mode -- Mode string. See fopen for details.

Returns non zero file handle on success, otherwise 0
int esp_apptrace_fclose(esp_apptrace_dest_t dest, void *stream)

Closes file on host. This function has the same semantic as 'fclose' except for the first argument.
Parameters

• dest -- Indicates HW interface to use.
• stream -- File handle returned by esp_apptrace_fopen.

Returns Zero on success, otherwise non-zero. See fclose for details.
size_t esp_apptrace_fwrite(esp_apptrace_dest_t dest, const void *ptr, size_t size, size_t nmemb, void

*stream)
Writes to file on host. This function has the same semantic as 'fwrite' except for the first argument.

Parameters
• dest -- Indicates HW interface to use.
• ptr -- Address of data to write.
• size -- Size of an item.
• nmemb -- Number of items to write.

Espressif Systems 1776
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• stream -- File handle returned by esp_apptrace_fopen.
Returns Number of written items. See fwrite for details.

size_t esp_apptrace_fread(esp_apptrace_dest_t dest, void *ptr, size_t size, size_t nmemb, void *stream)
Read file on host. This function has the same semantic as 'fread' except for the first argument.

Parameters
• dest -- Indicates HW interface to use.
• ptr -- Address to store read data.
• size -- Size of an item.
• nmemb -- Number of items to read.
• stream -- File handle returned by esp_apptrace_fopen.

Returns Number of read items. See fread for details.
int esp_apptrace_fseek(esp_apptrace_dest_t dest, void *stream, long offset, int whence)

Set position indicator in file on host. This function has the same semantic as 'fseek' except for the first argument.
Parameters

• dest -- Indicates HW interface to use.
• stream -- File handle returned by esp_apptrace_fopen.
• offset -- Offset. See fseek for details.
• whence -- Position in file. See fseek for details.

Returns Zero on success, otherwise non-zero. See fseek for details.
int esp_apptrace_ftell(esp_apptrace_dest_t dest, void *stream)

Get current position indicator for file on host. This function has the same semantic as 'ftell' except for the first
argument.

Parameters
• dest -- Indicates HW interface to use.
• stream -- File handle returned by esp_apptrace_fopen.

Returns Current position in file. See ftell for details.
int esp_apptrace_fstop(esp_apptrace_dest_t dest)

Indicates to the host that all file operations are complete. This function should be called after all file operations
are finished and indicate to the host that it can perform cleanup operations (close open files etc.).

Parameters dest -- Indicates HW interface to use.
Returns ESP_OK on success, otherwise see esp_err_t

void esp_gcov_dump(void)
Triggers gcov info dump. This function waits for the host to connect to target before dumping data.

Enumerations

enum esp_apptrace_dest_t

Application trace data destinations bits.
Values:

enumerator ESP_APPTRACE_DEST_JTAG
JTAG destination.

enumerator ESP_APPTRACE_DEST_TRAX
xxx_TRAX name is obsolete, use more common xxx_JTAG

enumerator ESP_APPTRACE_DEST_UART
UART destination.

Espressif Systems 1777
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_APPTRACE_DEST_MAX

enumerator ESP_APPTRACE_DEST_NUM

Header File
• components/app_trace/include/esp_sysview_trace.h

Functions
static inline esp_err_t esp_sysview_flush(uint32_t tmo)

Flushes remaining data in SystemView trace buffer to host.
Parameters tmo -- Timeout for operation (in us). Use ESP_APPTRACE_TMO_INFINITE to

wait indefinetly.
Returns ESP_OK.

int esp_sysview_vprintf(const char *format, va_list args)
vprintf-like function to sent log messages to the host.

Parameters
• format -- Address of format string.
• args -- List of arguments.

Returns Number of bytes written.
esp_err_t esp_sysview_heap_trace_start(uint32_t tmo)

Starts SystemView heap tracing.
Parameters tmo -- Timeout (in us) to wait for the host to be connected. Use -1 to wait forever.
Returns ESP_OK on success, ESP_ERR_TIMEOUT if operation has been timed out.

esp_err_t esp_sysview_heap_trace_stop(void)
Stops SystemView heap tracing.

Returns ESP_OK.
void esp_sysview_heap_trace_alloc(void *addr, uint32_t size, const void *callers)

Sends heap allocation event to the host.
Parameters

• addr -- Address of allocated block.
• size -- Size of allocated block.
• callers -- Pointer to array with callstack addresses. Array size must be CON-
FIG_HEAP_TRACING_STACK_DEPTH.

void esp_sysview_heap_trace_free(void *addr, const void *callers)
Sends heap de-allocation event to the host.

Parameters
• addr -- Address of de-allocated block.
• callers -- Pointer to array with callstack addresses. Array size must be CON-
FIG_HEAP_TRACING_STACK_DEPTH.

2.10.3 Call function with external stack

Overview

A given function can be executed with a user allocated stack space which is independent of current task stack, this
mechanism can be used to save stack space wasted by tasks which call a common function with intensive stack usage
such as printf. The given function can be called inside the shared stack space which is a callback function deferred
by calling esp_execute_shared_stack_function(), passing that function as parameter.

Espressif Systems 1778
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/app_trace/include/esp_sysview_trace.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Usage

esp_execute_shared_stack_function() takes four arguments:
• a mutex object allocated by the caller, which is used to protect if the same function shares its allocated stack
• a pointer to the top of stack used for that function
• the size of stack in bytes
• a pointer to the shared stack function

The user defined function will be deferred as a callback and can be called using the user allocated space without
taking space from current task stack.
The usage may look like the code below:

void external_stack_function(void)
{

printf("Executing this printf from external stack! \n");
}

//Let's suppose we want to call printf using a separated stack space
//allowing the app to reduce its stack size.
void app_main()
{

//Allocate a stack buffer, from heap or as a static form:
portSTACK_TYPE *shared_stack = malloc(8192 * sizeof(portSTACK_TYPE));
assert(shared_stack != NULL);

//Allocate a mutex to protect its usage:
SemaphoreHandle_t printf_lock = xSemaphoreCreateMutex();
assert(printf_lock != NULL);

//Call the desired function using the macro helper:
esp_execute_shared_stack_function(printf_lock,

shared_stack,
8192,
external_stack_function);

vSemaphoreDelete(printf_lock);
free(shared_stack);

}

API Reference

Header File
• components/esp_system/include/esp_expression_with_stack.h

Functions
void esp_execute_shared_stack_function(SemaphoreHandle_t lock, void *stack, size_t stack_size,

shared_stack_function function)
Calls user defined shared stack space function.

Note: if either lock, stack or stack size is invalid, the expression will be called using the current stack.

Parameters
• lock -- Mutex object to protect in case of shared stack
• stack -- Pointer to user alocated stack
• stack_size -- Size of current stack in bytes
• function -- pointer to the shared stack function to be executed

Espressif Systems 1779
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/include/esp_expression_with_stack.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Macros
ESP_EXECUTE_EXPRESSION_WITH_STACK(lock, stack, stack_size, expression)

Type Definitions

typedef void (*shared_stack_function)(void)

2.10.4 Chip Revision

Overview

A new chip versioning logic was introduced in new chips. Chips have several eFuse version fields:
• Major wafer version (WAFER_VERSION_MAJOR eFuse)
• Minor wafer version (WAFER_VERSION_MINOR eFuse)
• Ignore maximal revision (DISABLE_WAFER_VERSION_MAJOR eFuse)
• Major efuse block version (BLK_VERSION_MAJOR eFuse)
• Minor efuse block version (BLK_VERSION_MINOR eFuse)
• Ignore maximum efuse block revision (DISABLE_BLK_VERSION_MAJOR eFuse).

The new versioning logic is being introduced to distinguish changes in chips as breaking changes and non-breaking
changes. Chips with non-breaking changes can run the same software as the previous chip. The previous chip means
that the major version is the same.
If the newly released chip does not have breaking changes, that means it can run the same software as the previous
chip, then in that chip we keep the same major version and increment the minor version by 1. Otherwise, if there is
a breaking change in the newly released chip, meaning it can not run the same software as the previous chip, then in
that chip we increase the major version and set the minor version to 0.
The software supports a number of revisions, from the minimum to the maximum (the min/max configs are defined
in Kconfig). If the software is unaware of a new chip (when the chip version is out of range), it will refuse to run on
it unless the Ignore maximum revision restrictions bit is set. This bit removes the upper revision limit.
Minimum versions limits the software to only run on a chip revision that is high enough to support some features.
Maximum version is the maximum version that is well-supported by current software. When chip version is above
the maximum version, software will reject to boot, because it may not work on, or work with risk on the chip.
Adding the major and minor wafer revision make the versioning logic is branchable.

Note: The previous versioning logic was based on a single eFuse version field (WAFER_VERSION). This approach
makes it impossible to mark chips as breaking or non-breaking changes, and the versioning logic becomes linear.

Using the branched versioning scheme allows us to support more chips in the software without updating the software
when a new released compatible chip is used. Thus, the software will be compatible with as many new chip revisions
as possible. If the software is no longer compatible with a new chip with breaking changes, the software will abort.

Revisions

ECO Revision (Major.Minor)
ECO0 v0.0
ECO1 v0.1

Chip Revision vX.Y, where:
• X means Major wafer version. If it is changed, it means that the current software version is not compatible
with this released chip and the software must be updated to use this chip.

Espressif Systems 1780
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Y means Minor wafer version. If it is changed that means the current software version is compatible with the
released chip, and there is no need to update the software.

The vX.Y chip version format will be used further instead of the ECO number.

Representing Revision Requirement Of A Binary Image

For the chip revision, the 2nd stage bootloader and the application binary images contain the
esp_image_header_t header, which stores information specifying the chip revisions that the image is
permitted to run on. This header has 3 fields related to the chip revisions:

• min_chip_rev - Minimum chip MAJOR revision required by image (but for ESP32-C3 it is MINOR
revision). Its value is determined by CONFIG_ESP32C6_REV_MIN.

• min_chip_rev_full - Minimum chip MINOR revision required by image in format: major * 100
+ minor. Its value is determined by CONFIG_ESP32C6_REV_MIN.

• max_chip_rev_full - Maximum chip revision required by image in format: major * 100 + minor.
Its value is determined by CONFIG_ESP32C6_REV_MAX_FULL. It can not be changed by user. Only
Espressif can change it when a new version will be supported in ESP-IDF.

For the eFuse revision, the requirements are stored in esp_app_desc_t, which is contained in the application
binary image. We only check the application image because the eFuse block revision mostly affects the ADC cali-
bration, which does not really matter in the bootloader. There are 2 fields related to eFuse block revisions:

• min_efuse_blk_rev_full - Minimum eFuse blockMINOR revision required by image in format: ma-
jor * 100 + minor. Its value is determined by CONFIG_ESP_EFUSE_BLOCK_REV_MIN_FULL.

• max_efuse_blk_rev_full - Maximum eFuse block MINOR revision required by image in format:
major * 100 + minor. Its value is determined by CONFIG_ESP_EFUSE_BLOCK_REV_MAX_FULL.
It reflects whether the current IDF version supports this efuse block format or not, and should not be changed
by the user.

Chip Revision APIs

These APIs helps to get chip revision from eFuses:
• efuse_hal_chip_revision(). It returns revision in the major * 100 + minor format.
• efuse_hal_get_major_chip_version(). It returns Major revision of wafer.
• efuse_hal_get_minor_chip_version(). It returns Minor revision of wafer.

The following Kconfig definitions (in major * 100 + minor format) that can help add the chip revision
dependency to the code:

• CONFIG_ESP32C6_REV_MIN_FULL
• CONFIG_ESP_REV_MIN_FULL
• CONFIG_ESP32C6_REV_MAX_FULL
• CONFIG_ESP_REV_MAX_FULL

EFuse Block Revision APIs

These APIs helps to get eFuse block revision from eFuses:
• efuse_hal_blk_version(). It returns revision in the major * 100 + minor format.
• efuse_ll_get_blk_version_major(). It returns Major revision of eFuse block.
• efuse_ll_get_blk_version_minor(). It returns Minor revision of eFuse block.

The following Kconfig definitions (in major * 100 + minor format) that can help add the eFuse block revision
dependency to the code:

• CONFIG_ESP_EFUSE_BLOCK_REV_MIN_FULL
• CONFIG_ESP_EFUSE_BLOCK_REV_MAX_FULL

Espressif Systems 1781
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Maximal And Minimal Revision Restrictions

The order for checking the minimum and maximum revisions during application boot up is as follows:
1. The 1st stage bootloader (ROM bootloader) does not check minimum and maximum revision fields from

esp_image_header_t before running the 2nd stage bootloader.
2. The initialization phase of the 2nd stage bootloader checks that the 2nd stage bootloader itself can be launched

on the chip of this revision. It extracts the minimum revision from the header of the bootloader image and
checks against the chip revision from eFuses. If the chip revision is less than the minimum revision, the
bootloader refuses to boot up and aborts. The maximum revision is not checked at this phase.

3. Then the 2nd stage bootloader checks the revision requirements of the application. It extracts the minimum
and maximum revisions of the chip from the application image header, and the eFuse block from the segment
header. Then the bootloader checks these versions against the chip and eFuse block revision from eFuses. If
the these revisions are less than their minimum revision or higher than the maximum revision, the bootloader
refuses to boot up and aborts. However, if the ignore maximum revision bit is set, the maximum revision
constraint can be ignored. The ignore bits are set by the customer themselves when there is confirmation that
the software is able to work with this chip revision or eFuse block revision.

4. Furthermore, at the OTA update stage, the running application checks if the new software matches the chip
revision and eFuse block revision. It extracts the minimum and maximum chip revisions from the header of
the new application image and the eFuse block constraints from the application description to check against the
these revisions from eFuses. It checks for revisions matching in the same way that the bootloader does, so that
the chip and eFuse block revisions are between their min and max revisions (logic of ignoring max revision
also applies).

Compatibility Checks of ESP-IDF

When building an application that needs to support multiple revisions of a particular chip, theminimum andmaximum
chip revision numbers supported by the build are specified via Kconfig.
The minimum chip revision can be configured via the CONFIG_ESP32C6_REV_MIN option. Specifying the mini-
mum chip revision will limit the software to only run on a chip revisions that are high enough to support some features
or bugfixes.
The maximum chip revision cannot be configured and is automatically determined by the current ESP-IDF version
being used. ESP-IDF will refuse to boot any chip revision exceeding the maximum chip revision. Given that it is
impossible for a particular ESP-IDF version to foresee all future chip revisions, the maximum chip revision is usually
set to maximum supported MAJOR version + 99. The "Ignore Maximum Revision" eFuse can be set to
bypass the maximum revision limitation. However, the software is not guaranteed to work if the maximum revision
is ignored.
The eFuse block revision is similar to the chip revision, but it mainly affects the coefficients that are specified in the
eFuse (e.g. ADC calibration coefficients).
Below is the information about troubleshooting when the chip revision fails the compatibility check. Then there are
technical details of the checking and software behavior on earlier version of ESP-IDF.

1. If the 2nd stage bootloader is run on the chip revision < minimum revision shown in the image, a reboot occurs.
The following message will be printed:

Image requires chip rev >= v3.0, but chip is v1.0

To resolve this issue:
• make sure the chip you are using is suitable for the software, or use a chip with the required minimum revision
or higher.

• update the software with CONFIG_ESP32C6_REV_MIN to get it <= the revision of chip being used
2. If application does not match minimal and maximal chip revisions, a reboot occurs. The following message

will be printed:

Image requires chip rev <= v2.99, but chip is v3.0

Espressif Systems 1782
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

To resolve this issue, update the IDF to a newer version that supports the used chip (CON-
FIG_ESP32C6_REV_MAX_FULL). Another way to fix this is to set the Ignore maximal revision bit in
eFuse or use a chip that is suitable for the software.

Backward Compatible With Bootloaders Built By Older ESP-IDF Versions

Please check the chip version using esptool chip_id command.

API Reference

Header File
• components/hal/include/hal/efuse_hal.h

Functions
void efuse_hal_get_mac(uint8_t *mac)

get factory mac address
uint32_t efuse_hal_chip_revision(void)

Returns chip version.
Returns Chip version in format: Major * 100 + Minor

uint32_t efuse_hal_blk_version(void)
Return block version.

Returns Block version in format: Major * 100 + Minor
bool efuse_hal_flash_encryption_enabled(void)

Is flash encryption currently enabled in hardware?
Flash encryption is enabled if the FLASH_CRYPT_CNT efuse has an odd number of bits set.

Returns true if flash encryption is enabled.
bool efuse_hal_get_disable_wafer_version_major(void)

Returns the status of whether the bootloader (and OTA) will check the maximum chip version or not.
Returns true - Skip the maximum chip version check.

bool efuse_hal_get_disable_blk_version_major(void)
Returns the status of whether the app start-up (and OTA) will check the efuse block version or not.

Returns true - Skip the efuse block version check.
uint32_t efuse_hal_get_major_chip_version(void)

Returns major chip version.
uint32_t efuse_hal_get_minor_chip_version(void)

Returns minor chip version.

2.10.5 Console

ESP-IDF provides console component, which includes building blocks needed to develop an interactive console
over serial port. This component includes the following features:

• Line editing, provided by linenoise library. This includes handling of backspace and arrow keys, scrolling
through command history, command auto-completion, and argument hints.

• Splitting of command line into arguments.

Espressif Systems 1783
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/hal/include/hal/efuse_hal.h
https://github.com/antirez/linenoise
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Argument parsing, provided by argtable3 library. This library includes APIs used for parsing GNU style
command line arguments.

• Functions for registration and dispatching of commands.
• Functions to establish a basic REPL (Read-Evaluate-Print-Loop) environment.

Note: These features can be used together or independently. For example, it is possible to use line editing and
command registration features, but usegetopt or custom code for argument parsing, instead of argtable3. Likewise,
it is possible to use simpler means of command input (such as fgets) together with the rest of the means for
command splitting and argument parsing.

Line editing

Line editing feature lets users compose commands by typing them, erasing symbols using the 'backspace' key, nav-
igating within the command using the left/right keys, navigating to previously typed commands using the up/down
keys, and performing autocompletion using the 'tab' key.

Note: This feature relies on ANSI escape sequence support in the terminal application. As such, serial monitors
which display raw UART data can not be used together with the line editing library. If you see [6n or similar escape
sequence when running system/console example instead of a command prompt (e.g. esp>), it means that the serial
monitor does not support escape sequences. Programs which are known to work are GNU screen, minicom, and
esp-idf-monitor (which can be invoked using idf.py monitor from project directory).

Here is an overview of functions provided by linenoise library.

Configuration Linenoise library does not need explicit initialization. However, some configuration defaults may
need to be changed before invoking the main line editing function.
linenoiseClearScreen()

Clear terminal screen using an escape sequence and position the cursor at the top left corner.
linenoiseSetMultiLine()

Switch between single line and multi line editing modes. In single line mode, if the length of the com-
mand exceeds the width of the terminal, the command text is scrolled within the line to show the end of
the text. In this case the beginning of the text is hidden. Single line mode needs less data to be sent to
refresh screen on each key press, so exhibits less glitching compared to the multi line mode. On the flip
side, editing commands and copying command text from terminal in single line mode is harder. Default
is single line mode.

linenoiseAllowEmpty()

Set whether linenoise library will return a zero-length string (if true) or NULL (if false) for empty
lines. By default, zero-length strings are returned.

linenoiseSetMaxLineLen()

Set maximum length of the line for linenoise library. Default length is 4096 bytes. The default value
can be updated to optimize RAM memory usage.

Main loop linenoise()

In most cases, console applications have some form of read/eval loop. linenoise() is the single
function which handles user's key presses and returns the completed line once the 'enter' key is pressed.
As such, it handles the 'read' part of the loop.

linenoiseFree()

This functionmust be called to release the command line buffer obtained fromlinenoise() function.

Espressif Systems 1784
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.argtable.org/
https://www.argtable.org/
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/console
https://github.com/antirez/linenoise
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Hints and completions linenoiseSetCompletionCallback()

When the user presses the 'tab' key, linenoise library invokes the completion callback. The callback
should inspect the contents of the command typed so far and provide a list of possible completions
using calls to linenoiseAddCompletion() function. linenoiseSetCompletionCall-
back() function should be called to register this completion callback, if completion feature is desired.
console component provides a ready made function to provide completions for registered commands,
esp_console_get_completion() (see below).

linenoiseAddCompletion()

Function to be called by completion callback to inform the library about possible completions of the
currently typed command.

linenoiseSetHintsCallback()

Whenever user input changes, linenoise invokes the hints callback. This callback can inspect the com-
mand line typed so far, and provide a string with hints (which can include list of command arguments,
for example). The library then displays the hint text on the same line where editing happens, possibly
with a different color.

linenoiseSetFreeHintsCallback()

If the hint string returned by hints callback is dynamically allocated or needs to be otherwise recycled, the
function which performs such cleanup should be registered via linenoiseSetFreeHintsCall-
back().

History linenoiseHistorySetMaxLen()

This function sets the number of most recently typed commands to be kept in memory. Users can
navigate the history using the up/down arrows keys.

linenoiseHistoryAdd()

Linenoise does not automatically add commands to history. Instead, applications need to call this func-
tion to add command strings to the history.

linenoiseHistorySave()

Function saves command history from RAM to a text file, for example on an SD card or on a filesystem
in flash memory.

linenoiseHistoryLoad()

Counterpart to linenoiseHistorySave(), loads history from a file.
linenoiseHistoryFree()

Releases memory used to store command history. Call this function when done working with linenoise
library.

Splitting of command line into arguments

console component provides esp_console_split_argv() function to split command line string into ar-
guments. The function returns the number of arguments found (argc) and fills an array of pointers which can be
passed as argv argument to any function which accepts arguments in argc, argv format.
The command line is split into arguments according to the following rules:

• Arguments are separated by spaces
• If spaces within arguments are required, they can be escaped using \ (backslash) character.
• Other escape sequences which are recognized are \\ (which produces literal backslash) and \", which pro-
duces a double quote.

Espressif Systems 1785
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Arguments can be quoted using double quotes. Quotes may appear only in the beginning and at the end of the
argument. Quotes within the argument must be escaped as mentioned above. Quotes surrounding the argument
are stripped by esp_console_split_argv function.

Examples:
• abc def 1 20 .3⟶ [abc, def, 1, 20, .3]
• abc "123 456" def⟶ [abc, 123 456, def]
• `a\ b\\c\"⟶ [a b\c"]

Argument parsing

For argument parsing, console component includes argtable3 library. Please see tutorial for an introduction to
argtable3. Github repository also includes examples.

Command registration and dispatching

console component includes utility functions which handle registration of commands, matching commands typed
by the user to registered ones, and calling these commands with the arguments given on the command line.
Application first initializes command registration module using a call to esp_console_init(), and calls
esp_console_cmd_register() function to register command handlers.
For each command, application provides the following information (in the form of esp_console_cmd_t struc-
ture):

• Command name (string without spaces)
• Help text explaining what the command does
• Optional hint text listing the arguments of the command. If application uses Argtable3 for argument pars-
ing, hint text can be generated automatically by providing a pointer to argtable argument definitions structure
instead.

• The command handler function.
A few other functions are provided by the command registration module:
esp_console_run()

This function takes the command line string, splits it into argc/argv argument list using
esp_console_split_argv(), looks up the command in the list of registered components, and
if it is found, executes its handler.

esp_console_register_help_command()

Adds help command to the list of registered commands. This command prints the list of all the regis-
tered commands, along with their arguments and help texts.

esp_console_get_completion()

Callback function to be used with linenoiseSetCompletionCallback() from linenoise li-
brary. Provides completions to linenoise based on the list of registered commands.

esp_console_get_hint()

Callback function to be used with linenoiseSetHintsCallback() from linenoise library. Pro-
vides argument hints for registered commands to linenoise.

Initialize console REPL environment

To establish a basic REPL environment, console component provides several useful APIs, combining those func-
tions described above.

Espressif Systems 1786
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.argtable.org/
https://www.argtable.org/tutorial/
https://www.argtable.org/
https://github.com/argtable/argtable3/tree/master/examples
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

In a typical application, you only need to call esp_console_new_repl_uart() to initialize the REPL envi-
ronment based on UART device, including driver install, basic console configuration, spawning a thread to do REPL
task and register several useful commands (e.g. help).
After that, you can register your own commands with esp_console_cmd_register(). The REPL environ-
ment keeps in init state until you call esp_console_start_repl().
Likewise, if your REPL environment is based on USB_SERIAL_JTAG device, you only need to call
esp_console_new_repl_usb_serial_jtag() at first step. Then call other functions as usual.

Application Example

Example application illustrating usage of the console component is available in system/console directory. This
example shows how to initialize UART and VFS functions, set up linenoise library, read and handle commands from
UART, and store command history in Flash. See README.md in the example directory for more details.
Besides that, ESP-IDF contains several useful examples which are based on the console component and can be treated
as "tools" when developing applications. For example, peripherals/i2c/i2c_tools, wifi/iperf.

API Reference

Header File
• components/console/esp_console.h

Functions
esp_err_t esp_console_init(const esp_console_config_t *config)

initialize console module

Note: Call this once before using other console module features

Parameters config -- console configuration
Returns

• ESP_OK on success
• ESP_ERR_NO_MEM if out of memory
• ESP_ERR_INVALID_STATE if already initialized
• ESP_ERR_INVALID_ARG if the configuration is invalid

esp_err_t esp_console_deinit(void)
de-initialize console module

Note: Call this once when done using console module functions

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if not initialized yet

esp_err_t esp_console_cmd_register(const esp_console_cmd_t *cmd)
Register console command.

Parameters cmd -- pointer to the command description; can point to a temporary value
Returns

• ESP_OK on success
• ESP_ERR_NO_MEM if out of memory
• ESP_ERR_INVALID_ARG if command description includes invalid arguments

Espressif Systems 1787
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/console
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/i2c/i2c_tools
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/iperf
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/console/esp_console.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_console_run(const char *cmdline, int *cmd_ret)
Run command line.

Parameters
• cmdline -- command line (command name followed by a number of arguments)
• cmd_ret -- [out] return code from the command (set if command was run)

Returns
• ESP_OK, if command was run
• ESP_ERR_INVALID_ARG, if the command line is empty, or only contained whitespace
• ESP_ERR_NOT_FOUND, if command with given name wasn't registered
• ESP_ERR_INVALID_STATE, if esp_console_init wasn't called

size_t esp_console_split_argv(char *line, char **argv, size_t argv_size)
Split command line into arguments in place.

* - This function finds whitespace-separated arguments in the given input line.
*
* 'abc def 1 20 .3' -> ['abc', 'def', '1', '20', '.3']
*
* - Argument which include spaces may be surrounded with quotes. In this case
* spaces are preserved and quotes are stripped.
*
* 'abc "123 456" def' -> ['abc', '123 456', 'def']
*
* - Escape sequences may be used to produce backslash, double quote, and space:
*
* 'a\ b\\c\"' -> ['a b\c"']
*

Note: Pointers to at most argv_size - 1 arguments are returned in argv array. The pointer after the last one
(i.e. argv[argc]) is set to NULL.

Parameters
• line -- pointer to buffer to parse; it is modified in place
• argv -- array where the pointers to arguments are written
• argv_size -- number of elements in argv_array (max. number of arguments)

Returns number of arguments found (argc)

void esp_console_get_completion(const char *buf, linenoiseCompletions *lc)
Callback which provides command completion for linenoise library.
When using linenoise for line editing, command completion support can be enabled like this:
linenoiseSetCompletionCallback(&esp_console_get_completion);

Parameters
• buf -- the string typed by the user
• lc -- linenoiseCompletions to be filled in

const char *esp_console_get_hint(const char *buf, int *color, int *bold)
Callback which provides command hints for linenoise library.
When using linenoise for line editing, hints support can be enabled as follows:
linenoiseSetHintsCallback((linenoiseHintsCallback*) &esp_console_get_hint);
The extra cast is needed because linenoiseHintsCallback is defined as returning a char* instead of const char*.

Parameters
• buf -- line typed by the user

Espressif Systems 1788
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• color -- [out] ANSI color code to be used when displaying the hint
• bold -- [out] set to 1 if hint has to be displayed in bold

Returns string containing the hint text. This string is persistent and should not be freed (i.e.
linenoiseSetFreeHintsCallback should not be used).

esp_err_t esp_console_register_help_command(void)
Register a 'help' command.
Default 'help' command prints the list of registered commands along with hints and help strings.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE, if esp_console_init wasn't called

esp_err_t esp_console_new_repl_uart(const esp_console_dev_uart_config_t *dev_config, const
esp_console_repl_config_t *repl_config, esp_console_repl_t
**ret_repl)

Establish a console REPL environment over UART driver.

Attention This function is meant to be used in the examples to make the code more compact. Applications
which use console functionality should be based on the underlying linenoise and esp_console functions.

Note: This is an all-in-one function to establish the environment needed for REPL, includes:
• Install the UART driver on the console UART (8n1, 115200, REF_TICK clock source)
• Configures the stdin/stdout to go through the UART driver
• Initializes linenoise
• Spawn new thread to run REPL in the background

Parameters
• dev_config -- [in] UART device configuration
• repl_config -- [in] REPL configuration
• ret_repl -- [out] return REPL handle after initialization succeed, return NULL oth-
erwise

Returns
• ESP_OK on success
• ESP_FAIL Parameter error

esp_err_t esp_console_new_repl_usb_serial_jtag(const esp_console_dev_usb_serial_jtag_config_t
*dev_config, const esp_console_repl_config_t
*repl_config, esp_console_repl_t **ret_repl)

Establish a console REPL (Read-eval-print loop) environment over USB-SERIAL-JTAG.

Attention This function is meant to be used in the examples to make the code more compact. Applications
which use console functionality should be based on the underlying linenoise and esp_console functions.

Note: This is an all-in-one function to establish the environment needed for REPL, includes:
• Initializes linenoise
• Spawn new thread to run REPL in the background

Parameters
• dev_config -- [in] USB-SERIAL-JTAG configuration
• repl_config -- [in] REPL configuration

Espressif Systems 1789
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ret_repl -- [out] return REPL handle after initialization succeed, return NULL oth-
erwise

Returns
• ESP_OK on success
• ESP_FAIL Parameter error

esp_err_t esp_console_start_repl(esp_console_repl_t *repl)
Start REPL environment.

Note: Once the REPL gets started, it won't be stopped until the user calls repl->del(repl) to destroy the REPL
environment.

Parameters repl -- [in] REPL handle returned from esp_console_new_repl_xxx
Returns

• ESP_OK on success
• ESP_ERR_INVALID_STATE, if repl has started already

Structures

struct esp_console_config_t
Parameters for console initialization.

Public Members

size_t max_cmdline_length
length of command line buffer, in bytes

size_t max_cmdline_args
maximum number of command line arguments to parse

int hint_color
ASCII color code of hint text.

int hint_bold
Set to 1 to print hint text in bold.

struct esp_console_repl_config_t
Parameters for console REPL (Read Eval Print Loop)

Public Members

uint32_t max_history_len
maximum length for the history

const char *history_save_path
file path used to save history commands, set to NULL won't save to file system

uint32_t task_stack_size
repl task stack size

Espressif Systems 1790
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t task_priority
repl task priority

const char *prompt
prompt (NULL represents default: "esp> ")

size_t max_cmdline_length
maximum length of a command line. If 0, default value will be used

struct esp_console_dev_uart_config_t
Parameters for console device: UART.

Public Members

int channel
UART channel number (count from zero)

int baud_rate
Comunication baud rate.

int tx_gpio_num
GPIO number for TX path, -1 means using default one.

int rx_gpio_num
GPIO number for RX path, -1 means using default one.

struct esp_console_dev_usb_serial_jtag_config_t
Parameters for console device: USB-SERIAL-JTAG.

Note: It's an empty structure for now, reserved for future

struct esp_console_cmd_t
Console command description.

Public Members

const char *command
Command name. Must not be NULL, must not contain spaces. The pointer must be valid until the call
to esp_console_deinit.

const char *help
Help text for the command, shown by help command. If set, the pointer must be valid until the call to
esp_console_deinit. If not set, the command will not be listed in 'help' output.

const char *hint
Hint text, usually lists possible arguments. If set to NULL, and 'argtable' field is non-NULL, hint will be
generated automatically

Espressif Systems 1791
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_console_cmd_func_t func

Pointer to a function which implements the command.

void *argtable
Array or structure of pointers to arg_xxx structures, may be NULL. Used to generate hint text if 'hint'
is set to NULL. Array/structure which this field points to must end with an arg_end. Only used for the
duration of esp_console_cmd_register call.

struct esp_console_repl_s
Console REPL base structure.

Public Members

esp_err_t (*del)(esp_console_repl_t *repl)
Delete console REPL environment.

Param repl [in] REPL handle returned from esp_console_new_repl_xxx
Return

• ESP_OK on success
• ESP_FAIL on errors

Macros
ESP_CONSOLE_CONFIG_DEFAULT()

Default console configuration value.
ESP_CONSOLE_REPL_CONFIG_DEFAULT()

Default console repl configuration value.
ESP_CONSOLE_DEV_UART_CONFIG_DEFAULT()

ESP_CONSOLE_DEV_USB_SERIAL_JTAG_CONFIG_DEFAULT()

Type Definitions

typedef struct linenoiseCompletions linenoiseCompletions

typedef int (*esp_console_cmd_func_t)(int argc, char **argv)
Console command main function.

Param argc number of arguments
Param argv array with argc entries, each pointing to a zero-terminated string argument
Return console command return code, 0 indicates "success"

typedef struct esp_console_repl_s esp_console_repl_t
Type defined for console REPL.

2.10.6 eFuse Manager

Introduction

The eFuse Manager library is designed to structure access to eFuse bits and make using these easy. This library
operates eFuse bits by a structure name which is assigned in eFuse table. This sections introduces some concepts
used by eFuse Manager.

Espressif Systems 1792
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Hardware description

The ESP32-C6 has a number of eFuses which can store system and user parameters. Each eFuse is a one-bit field
which can be programmed to 1 after which it cannot be reverted back to 0. Some of system parameters are using
these eFuse bits directly by hardware modules and have special place (for example EFUSE_BLK0).
For more details, see ESP32-C6 Technical Reference Manual > eFuse Controller (eFuse) [PDF]. Some eFuse bits are
available for user applications.

ESP32-C6 has 11 eFuse blocks each of the size of 256 bits (not all bits are available):
• EFUSE_BLK0 is used entirely for system purposes;
• EFUSE_BLK1 is used entirely for system purposes;
• EFUSE_BLK2 is used entirely for system purposes;
• EFUSE_BLK3 (also named EFUSE_BLK_USER_DATA) can be used for user purposes;
• EFUSE_BLK4 (also named EFUSE_BLK_KEY0) can be used as key (for secure_boot or flash_encryption)
or for user purposes;

• EFUSE_BLK5 (also named EFUSE_BLK_KEY1) can be used as key (for secure_boot or flash_encryption)
or for user purposes;

• EFUSE_BLK6 (also named EFUSE_BLK_KEY2) can be used as key (for secure_boot or flash_encryption)
or for user purposes;

• EFUSE_BLK7 (also named EFUSE_BLK_KEY3) can be used as key (for secure_boot or flash_encryption)
or for user purposes;

• EFUSE_BLK8 (also named EFUSE_BLK_KEY4) can be used as key (for secure_boot or flash_encryption)
or for user purposes;

• EFUSE_BLK9 (also named EFUSE_BLK_KEY5) can be used for any purpose except for flash encryption
(due to a HW bug);

• EFUSE_BLK10 (also named EFUSE_BLK_SYS_DATA_PART2) is reseved for system purposes.
Each block is divided into 8 32-bits registers.

eFuse Manager component

The component has API functions for reading and writing fields. Access to the fields is carried out through the
structures that describe the location of the eFuse bits in the blocks. The component provides the ability to form fields
of any length and from any number of individual bits. The description of the fields is made in a CSV file in a table
form. To generate from a tabular form (CSV file) in the C-source uses the tool efuse_table_gen.py. The tool checks
the CSV file for uniqueness of field names and bit intersection, in case of using a custom file from the user's project
directory, the utility will check with the common CSV file.
CSV files:

• common (esp_efuse_table.csv) - contains eFuse fields which are used inside the IDF. C-source generation should
be done manually when changing this file (run command idf.py efuse-common-table). Note that
changes in this file can lead to incorrect operation.

• custom - (optional and can be enabled by CONFIG_EFUSE_CUSTOM_TABLE) contains eFuse fields that are
used by the user in their application. C-source generation should be done manually when changing this file and
running idf.py efuse-custom-table.

Description CSV file

The CSV file contains a description of the eFuse fields. In the simple case, one field has one line of description. Table
header:

field_name, efuse_block(EFUSE_BLK0..EFUSE_BLK10), bit_start(0..255), bit_
↪→count(1..256), comment

Individual params in CSV file the following meanings:

Espressif Systems 1793
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#efuse
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

field_name Name of field. The prefix ESP_EFUSE_ will be added to the name, and this field name will be available
in the code. This name will be used to access the fields. The name must be unique for all fields. If the line has
an empty name, then this line is combined with the previous field. This allows you to set an arbitrary order of
bits in the field, and expand the field as well (see MAC_FACTORY field in the common table). The field_name
supports structured format using . to show that the field belongs to another field (see WR_DIS and RD_DIS
in the common table).

efuse_block Block number. It determines where the eFuse bits will be placed for this field. Available
EFUSE_BLK0..EFUSE_BLK10.

bit_start Start bit number (0..255). The bit_start field can be omitted. In this case, it will be set to bit_start +
bit_count from the previous record, if it has the same efuse_block. Otherwise (if efuse_block is different, or
this is the first entry), an error will be generated.

bit_count The number of bits to use in this field (1..-). This parameter can not be omitted. This field also may be
MAX_BLK_LEN in this case, the field length will have the maximum block length.

comment This param is using for comment field, it also move to C-header file. The comment field can be omitted.
If a non-sequential bit order is required to describe a field, then the field description in the following lines should
be continued without specifying a name, this will indicate that it belongs to one field. For example two fields
MAC_FACTORY and MAC_FACTORY_CRC:

Factory MAC address
#######################
MAC_FACTORY, EFUSE_BLK0, 72, 8, Factory MAC addr [0]
, EFUSE_BLK0, 64, 8, Factory MAC addr [1]
, EFUSE_BLK0, 56, 8, Factory MAC addr [2]
, EFUSE_BLK0, 48, 8, Factory MAC addr [3]
, EFUSE_BLK0, 40, 8, Factory MAC addr [4]
, EFUSE_BLK0, 32, 8, Factory MAC addr [5]
MAC_FACTORY_CRC, EFUSE_BLK0, 80, 8, CRC8 for factory MAC address

This field will available in code as ESP_EFUSE_MAC_FACTORY and ESP_EFUSE_MAC_FACTORY_CRC.

Structured efuse fields

WR_DIS, EFUSE_BLK0, 0, 32, Write protection
WR_DIS.RD_DIS, EFUSE_BLK0, 0, 1, Write protection for␣
↪→RD_DIS
WR_DIS.FIELD_1, EFUSE_BLK0, 1, 1, Write protection for␣
↪→FIELD_1
WR_DIS.FIELD_2, EFUSE_BLK0, 2, 4, Write protection for␣
↪→FIELD_2 (includes B1 and B2)
WR_DIS.FIELD_2.B1, EFUSE_BLK0, 2, 2, Write protection for␣
↪→FIELD_2.B1
WR_DIS.FIELD_2.B2, EFUSE_BLK0, 4, 2, Write protection for␣
↪→FIELD_2.B2
WR_DIS.FIELD_3, EFUSE_BLK0, 5, 1, Write protection for␣
↪→FIELD_3
WR_DIS.FIELD_3.ALIAS, EFUSE_BLK0, 5, 1, Write protection for␣
↪→FIELD_3 (just a alias for WR_DIS.FIELD_3)
WR_DIS.FIELD_4, EFUSE_BLK0, 7, 1, Write protection for␣
↪→FIELD_4

The structured eFuse field looks like WR_DIS.RD_DIS where the dot points that this field belongs to the parent
field - WR_DIS and can not be out of the parent's range.
It is possible to use some levels of structured fields as WR_DIS.FIELD_2.B1 and B2. These fields should not be
crossed each other and should be in the range of two fields: WR_DIS and WR_DIS.FIELD_2.
It is possible to create aliases for fields with the same range, see WR_DIS.FIELD_3 and WR_DIS.FIELD_3.
ALIAS.

Espressif Systems 1794
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The IDF names for structured efuse fields should be unique. The efuse_table_gen tool will generate the
final names where the dot will be replaced by _. The names for using in IDF are ESP_EFUSE_WR_DIS,
ESP_EFUSE_WR_DIS_RD_DIS, ESP_EFUSE_WR_DIS_FIELD_2_B1, etc.
The efuse_table_gen tool checks that the fields do not overlap each other and must be within the range of a
field if there is a violation, then throws the following error:

Field at USER_DATA, EFUSE_BLK3, 0, 256 intersected with SERIAL_NUMBER, EFUSE_
↪→BLK3, 0, 32

Solution: Describe SERIAL_NUMBER to be included in USER_DATA. (USER_DATA.SERIAL_NUMBER).

Field at FEILD, EFUSE_BLK3, 0, 50 out of range FEILD.MAJOR_NUMBER, EFUSE_BLK3,␣
↪→60, 32

Solution: Change bit_start for FIELD.MAJOR_NUMBER from 60 to 0, so MAJOR_NUMBER is in the FEILD
range.

efuse_table_gen.py tool

The tool is designed to generate C-source files from CSV file and validate fields. First of all, the check is carried out
on the uniqueness of the names and overlaps of the field bits. If an additional custom file is used, it will be checked
with the existing common file (esp_efuse_table.csv). In case of errors, a message will be displayed and the string that
caused the error. C-source files contain structures of type esp_efuse_desc_t.
To generate a common files, use the following command idf.py efuse-common-table or:

cd $IDF_PATH/components/efuse/
./efuse_table_gen.py --idf_target esp32c6 esp32c6/esp_efuse_table.csv

After generation in the folder $IDF_PATH/components/efuse/esp32c6 create:
• esp_efuse_table.c file.
• In include folder esp_efuse_table.c file.

To generate a custom files, use the following command idf.py efuse-custom-table or:

cd $IDF_PATH/components/efuse/
./efuse_table_gen.py --idf_target esp32c6 esp32c6/esp_efuse_table.csv PROJECT_PATH/
↪→main/esp_efuse_custom_table.csv

After generation in the folder PROJECT_PATH/main create:
• esp_efuse_custom_table.c file.
• In include folder esp_efuse_custom_table.c file.

To use the generated fields, you need to include two files:

#include "esp_efuse.h"
#include "esp_efuse_table.h" // or "esp_efuse_custom_table.h"

Supported coding scheme

Coding schemes are used to protect against data corruption. ESP32-C6 supports two coding schemes:
• None. EFUSE_BLK0 is stored with four backups, meaning each bit is stored four times. This backup scheme
is automatically applied by the hardware and is not visible to software. EFUSE_BLK0 can be written many
times.

• RS. EFUSE_BLK1 - EFUSE_BLK10 use Reed-Solomon coding scheme that supports up to 5 bytes of au-
tomatic error correction. Software will encode the 32-byte EFUSE_BLKx using RS (44, 32) to generate a
12-byte check code, and then burn the EFUSE_BLKx and the check code into eFuse at the same time. The

Espressif Systems 1795
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

eFuse Controller automatically decodes the RS encoding and applies error correction when reading back the
eFuse block. Because the RS check codes are generated across the entire 256-bit eFuse block, each block can
only be written to one time.

To write some fields into one block, or different blocks in one time, you need to use the batch writ-
ing mode. Firstly set this mode through esp_efuse_batch_write_begin() function then write
some fields as usual using the esp_efuse_write_... functions. At the end to burn them, call the
esp_efuse_batch_write_commit() function. It burns prepared data to the eFuse blocks and disables the
batch recording mode.

Note: If there is already pre-written data in the eFuse block using the Reed-Solomon encoding scheme, then it is
not possible to write anything extra (even if the required bits are empty) without breaking the previous encoding data.
This encoding data will be overwritten with new encoding data and completely destroyed (however, the payload eFuses
are not damaged). It can be related to: CUSTOM_MAC, SPI_PAD_CONFIG_HD, SPI_PAD_CONFIG_CS, etc.
Please contact Espressif to order the required pre-burnt eFuses.
FOR TESTING ONLY (NOT RECOMMENDED): You can ignore or suppress errors that violate encoding scheme
data in order to burn the necessary bits in the eFuse block.

eFuse API

Access to the fields is via a pointer to the description structure. API functions have some basic operation:
• esp_efuse_read_field_blob() - returns an array of read eFuse bits.
• esp_efuse_read_field_cnt() - returns the number of bits programmed as "1".
• esp_efuse_write_field_blob() - writes an array.
• esp_efuse_write_field_cnt() - writes a required count of bits as "1".
• esp_efuse_get_field_size() - returns the number of bits by the field name.
• esp_efuse_read_reg() - returns value of eFuse register.
• esp_efuse_write_reg() - writes value to eFuse register.
• esp_efuse_get_coding_scheme() - returns eFuse coding scheme for blocks.
• esp_efuse_read_block() - reads key to eFuse block starting at the offset and the required size.
• esp_efuse_write_block() - writes key to eFuse block starting at the offset and the required size.
• esp_efuse_batch_write_begin() - set the batch mode of writing fields.
• esp_efuse_batch_write_commit() - writes all prepared data for batch writing mode and reset the
batch writing mode.

• esp_efuse_batch_write_cancel() - reset the batch writing mode and prepared data.
• esp_efuse_get_key_dis_read() - Returns a read protection for the key block.
• esp_efuse_set_key_dis_read() - Sets a read protection for the key block.
• esp_efuse_get_key_dis_write() - Returns a write protection for the key block.
• esp_efuse_set_key_dis_write() - Sets a write protection for the key block.
• esp_efuse_get_key_purpose() - Returns the current purpose set for an eFuse key block.
• esp_efuse_write_key() - Programs a block of key data to an eFuse block
• esp_efuse_write_keys() - Programs keys to unused eFuse blocks
• esp_efuse_find_purpose() - Finds a key block with the particular purpose set.
• esp_efuse_get_keypurpose_dis_write() - Returns a write protection of the key purpose field
for an eFuse key block (for esp32 always true).

• esp_efuse_key_block_unused() - Returns true if the key block is unused, false otherwise.
For frequently used fields, special functions are made, like this esp_efuse_get_pkg_ver().

eFuse API for keys

EFUSE_BLK_KEY0 - EFUSE_BLK_KEY5 are intended to keep up to 6 keys with a length of 256-bits. Each
key has an ESP_EFUSE_KEY_PURPOSE_x field which defines the purpose of these keys. The purpose field is
described in esp_efuse_purpose_t.
The purposes like ESP_EFUSE_KEY_PURPOSE_XTS_AES_... are used for flash encryption.

Espressif Systems 1796
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The purposes like ESP_EFUSE_KEY_PURPOSE_SECURE_BOOT_DIGEST... are used for secure boot.
There are some eFuse APIs useful to work with states of keys.

• esp_efuse_get_purpose_field() - Returns a pointer to a key purpose for an eFuse key block.
• esp_efuse_get_key() - Returns a pointer to a key block.
• esp_efuse_set_key_purpose() - Sets a key purpose for an eFuse key block.
• esp_efuse_set_keypurpose_dis_write() - Sets a write protection of the key purpose field for an
eFuse key block.

• esp_efuse_find_unused_key_block() - Search for an unused key block and return the first one
found.

• esp_efuse_count_unused_key_blocks() - Returns the number of unused eFuse key blocks in the
range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX

• esp_efuse_get_digest_revoke() - Returns the status of the Secure Boot public key digest revoca-
tion bit.

• esp_efuse_set_digest_revoke() - Sets the Secure Boot public key digest revocation bit.
• esp_efuse_get_write_protect_of_digest_revoke() - Returns a write protection of the Se-
cure Boot public key digest revocation bit.

• esp_efuse_set_write_protect_of_digest_revoke() - Sets a write protection of the Secure
Boot public key digest revocation bit.

How to add a new field

1. Find a free bits for field. Show esp_efuse_table.csv file or run idf.py show-efuse-table or the next
command:

$./efuse_table_gen.py -t IDF_TARGET_PATH_NAME esp32c6/esp_efuse_table.csv --info

Max number of bits in BLK 256
Parsing efuse CSV input file esp32c6/esp_efuse_table.csv ...
Verifying efuse table...
Sorted efuse table:
field_name efuse_block bit_start ␣
↪→bit_count
1 WR_DIS EFUSE_BLK0 0 ␣
↪→32
2 WR_DIS.RD_DIS EFUSE_BLK0 0 ␣
↪→1
3 WR_DIS.CRYPT_DPA_ENABLE EFUSE_BLK0 1 ␣
↪→1
4 WR_DIS.SWAP_UART_SDIO_EN EFUSE_BLK0 2 ␣
↪→1
5 WR_DIS.DIS_ICACHE EFUSE_BLK0 2 ␣
↪→1
6 WR_DIS.DIS_USB_JTAG EFUSE_BLK0 2 ␣
↪→1
7 WR_DIS.DIS_DOWNLOAD_ICACHE EFUSE_BLK0 2 ␣
↪→1
8 WR_DIS.DIS_USB_SERIAL_JTAG EFUSE_BLK0 2 ␣
↪→1
9 WR_DIS.DIS_FORCE_DOWNLOAD EFUSE_BLK0 2 ␣
↪→1
10 WR_DIS.DIS_TWAI EFUSE_BLK0 2 ␣
↪→1
11 WR_DIS.JTAG_SEL_ENABLE EFUSE_BLK0 2 ␣
↪→1
12 WR_DIS.DIS_PAD_JTAG EFUSE_BLK0 2 ␣
↪→1
13 WR_DIS.DIS_DOWNLOAD_MANUAL_ENCRYPT EFUSE_BLK0 2 ␣
↪→1

(continues on next page)

Espressif Systems 1797
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
14 WR_DIS.WDT_DELAY_SEL EFUSE_BLK0 3 ␣
↪→1
15 WR_DIS.SPI_BOOT_CRYPT_CNT EFUSE_BLK0 4 ␣
↪→1
16 WR_DIS.SECURE_BOOT_KEY_REVOKE0 EFUSE_BLK0 5 ␣
↪→1
17 WR_DIS.SECURE_BOOT_KEY_REVOKE1 EFUSE_BLK0 6 ␣
↪→1
18 WR_DIS.SECURE_BOOT_KEY_REVOKE2 EFUSE_BLK0 7 ␣
↪→1
19 WR_DIS.KEY_PURPOSE_0 EFUSE_BLK0 8 ␣
↪→1
20 WR_DIS.KEY_PURPOSE_1 EFUSE_BLK0 9 ␣
↪→1
21 WR_DIS.KEY_PURPOSE_2 EFUSE_BLK0 10 ␣
↪→1
22 WR_DIS.KEY_PURPOSE_3 EFUSE_BLK0 11 ␣
↪→1
23 WR_DIS.KEY_PURPOSE_4 EFUSE_BLK0 12 ␣
↪→1
24 WR_DIS.KEY_PURPOSE_5 EFUSE_BLK0 13 ␣
↪→1
25 WR_DIS.SEC_DPA_LEVEL EFUSE_BLK0 14 ␣
↪→1
26 WR_DIS.SECURE_BOOT_EN EFUSE_BLK0 15 ␣
↪→1
27 WR_DIS.SECURE_BOOT_AGGRESSIVE_REVOKE EFUSE_BLK0 16 ␣
↪→1
28 WR_DIS.SPI_DOWNLOAD_MSPI_DIS EFUSE_BLK0 17 ␣
↪→1
29 WR_DIS.FLASH_TPUW EFUSE_BLK0 18 ␣
↪→1
30 WR_DIS.DIS_DOWNLOAD_MODE EFUSE_BLK0 18 ␣
↪→1
31 WR_DIS.DIS_DIRECT_BOOT EFUSE_BLK0 18 ␣
↪→1
32 WR_DIS.DIS_USB_SERIAL_JTAG_ROM_PRINT EFUSE_BLK0 18 ␣
↪→1
33 WR_DIS.DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE EFUSE_BLK0 18 ␣
↪→1
34 WR_DIS.ENABLE_SECURITY_DOWNLOAD EFUSE_BLK0 18 ␣
↪→1
35 WR_DIS.UART_PRINT_CONTROL EFUSE_BLK0 18 ␣
↪→1
36 WR_DIS.FORCE_SEND_RESUME EFUSE_BLK0 18 ␣
↪→1
37 WR_DIS.SECURE_VERSION EFUSE_BLK0 18 ␣
↪→1
38 WR_DIS.SECURE_BOOT_DISABLE_FAST_WAKE EFUSE_BLK0 19 ␣
↪→1
39 WR_DIS.DISABLE_WAFER_VERSION_MAJOR EFUSE_BLK0 19 ␣
↪→1
40 WR_DIS.DISABLE_BLK_VERSION_MAJOR EFUSE_BLK0 19 ␣
↪→1
41 WR_DIS.BLK1 EFUSE_BLK0 20 ␣
↪→1
42 WR_DIS.MAC EFUSE_BLK0 20 ␣
↪→1
43 WR_DIS.MAC_EXT EFUSE_BLK0 20 ␣
↪→1
44 WR_DIS.WAFER_VERSION_MINOR EFUSE_BLK0 20 ␣
↪→1 (continues on next page)

Espressif Systems 1798
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
45 WR_DIS.WAFER_VERSION_MAJOR EFUSE_BLK0 20 ␣
↪→1
46 WR_DIS.PKG_VERSION EFUSE_BLK0 20 ␣
↪→1
47 WR_DIS.BLK_VERSION_MINOR EFUSE_BLK0 20 ␣
↪→1
48 WR_DIS.BLK_VERSION_MAJOR EFUSE_BLK0 20 ␣
↪→1
49 WR_DIS.FLASH_CAP EFUSE_BLK0 20 ␣
↪→1
50 WR_DIS.FLASH_TEMP EFUSE_BLK0 20 ␣
↪→1
51 WR_DIS.FLASH_VENDOR EFUSE_BLK0 20 ␣
↪→1
52 WR_DIS.SYS_DATA_PART1 EFUSE_BLK0 21 ␣
↪→1
53 WR_DIS.OPTIONAL_UNIQUE_ID EFUSE_BLK0 21 ␣
↪→1
54 WR_DIS.BLOCK_USR_DATA EFUSE_BLK0 22 ␣
↪→1
55 WR_DIS.CUSTOM_MAC EFUSE_BLK0 22 ␣
↪→1
56 WR_DIS.BLOCK_KEY0 EFUSE_BLK0 23 ␣
↪→1
57 WR_DIS.BLOCK_KEY1 EFUSE_BLK0 24 ␣
↪→1
58 WR_DIS.BLOCK_KEY2 EFUSE_BLK0 25 ␣
↪→1
59 WR_DIS.BLOCK_KEY3 EFUSE_BLK0 26 ␣
↪→1
60 WR_DIS.BLOCK_KEY4 EFUSE_BLK0 27 ␣
↪→1
61 WR_DIS.BLOCK_KEY5 EFUSE_BLK0 28 ␣
↪→1
62 WR_DIS.BLOCK_SYS_DATA2 EFUSE_BLK0 29 ␣
↪→1
63 WR_DIS.USB_EXCHG_PINS EFUSE_BLK0 30 ␣
↪→1
64 WR_DIS.VDD_SPI_AS_GPIO EFUSE_BLK0 30 ␣
↪→1
65 WR_DIS.SOFT_DIS_JTAG EFUSE_BLK0 31 ␣
↪→1
66 RD_DIS EFUSE_BLK0 32 ␣
↪→7
67 RD_DIS.BLOCK_KEY0 EFUSE_BLK0 32 ␣
↪→1
68 RD_DIS.BLOCK_KEY1 EFUSE_BLK0 33 ␣
↪→1
69 RD_DIS.BLOCK_KEY2 EFUSE_BLK0 34 ␣
↪→1
70 RD_DIS.BLOCK_KEY3 EFUSE_BLK0 35 ␣
↪→1
71 RD_DIS.BLOCK_KEY4 EFUSE_BLK0 36 ␣
↪→1
72 RD_DIS.BLOCK_KEY5 EFUSE_BLK0 37 ␣
↪→1
73 RD_DIS.BLOCK_SYS_DATA2 EFUSE_BLK0 38 ␣
↪→1
74 SWAP_UART_SDIO_EN EFUSE_BLK0 39 ␣
↪→1
75 DIS_ICACHE EFUSE_BLK0 40 ␣
↪→1 (continues on next page)

Espressif Systems 1799
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
76 DIS_USB_JTAG EFUSE_BLK0 41 ␣
↪→1
77 DIS_DOWNLOAD_ICACHE EFUSE_BLK0 42 ␣
↪→1
78 DIS_USB_SERIAL_JTAG EFUSE_BLK0 43 ␣
↪→1
79 DIS_FORCE_DOWNLOAD EFUSE_BLK0 44 ␣
↪→1
80 SPI_DOWNLOAD_MSPI_DIS EFUSE_BLK0 45 ␣
↪→1
81 DIS_TWAI EFUSE_BLK0 46 ␣
↪→1
82 JTAG_SEL_ENABLE EFUSE_BLK0 47 ␣
↪→1
83 SOFT_DIS_JTAG EFUSE_BLK0 48 ␣
↪→3
84 DIS_PAD_JTAG EFUSE_BLK0 51 ␣
↪→1
85 DIS_DOWNLOAD_MANUAL_ENCRYPT EFUSE_BLK0 52 ␣
↪→1
86 USB_EXCHG_PINS EFUSE_BLK0 57 ␣
↪→1
87 VDD_SPI_AS_GPIO EFUSE_BLK0 58 ␣
↪→1
88 WDT_DELAY_SEL EFUSE_BLK0 80 ␣
↪→2
89 SPI_BOOT_CRYPT_CNT EFUSE_BLK0 82 ␣
↪→3
90 SECURE_BOOT_KEY_REVOKE0 EFUSE_BLK0 85 ␣
↪→1
91 SECURE_BOOT_KEY_REVOKE1 EFUSE_BLK0 86 ␣
↪→1
92 SECURE_BOOT_KEY_REVOKE2 EFUSE_BLK0 87 ␣
↪→1
93 KEY_PURPOSE_0 EFUSE_BLK0 88 ␣
↪→4
94 KEY_PURPOSE_1 EFUSE_BLK0 92 ␣
↪→4
95 KEY_PURPOSE_2 EFUSE_BLK0 96 ␣
↪→4
96 KEY_PURPOSE_3 EFUSE_BLK0 100 ␣
↪→4
97 KEY_PURPOSE_4 EFUSE_BLK0 104 ␣
↪→4
98 KEY_PURPOSE_5 EFUSE_BLK0 108 ␣
↪→4
99 SEC_DPA_LEVEL EFUSE_BLK0 112 ␣
↪→2
100 CRYPT_DPA_ENABLE EFUSE_BLK0 114 ␣
↪→1
101 SECURE_BOOT_EN EFUSE_BLK0 116 ␣
↪→1
102 SECURE_BOOT_AGGRESSIVE_REVOKE EFUSE_BLK0 117 ␣
↪→1
103 FLASH_TPUW EFUSE_BLK0 124 ␣
↪→4
104 DIS_DOWNLOAD_MODE EFUSE_BLK0 128 ␣
↪→1
105 DIS_DIRECT_BOOT EFUSE_BLK0 129 ␣
↪→1
106 DIS_USB_SERIAL_JTAG_ROM_PRINT EFUSE_BLK0 130 ␣
↪→1 (continues on next page)

Espressif Systems 1800
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
107 DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE EFUSE_BLK0 132 ␣
↪→1
108 ENABLE_SECURITY_DOWNLOAD EFUSE_BLK0 133 ␣
↪→1
109 UART_PRINT_CONTROL EFUSE_BLK0 134 ␣
↪→2
110 FORCE_SEND_RESUME EFUSE_BLK0 141 ␣
↪→1
111 SECURE_VERSION EFUSE_BLK0 142 ␣
↪→16
112 SECURE_BOOT_DISABLE_FAST_WAKE EFUSE_BLK0 158 ␣
↪→1
113 DISABLE_WAFER_VERSION_MAJOR EFUSE_BLK0 160 ␣
↪→1
114 DISABLE_BLK_VERSION_MAJOR EFUSE_BLK0 161 ␣
↪→1
115 MAC EFUSE_BLK1 0 ␣
↪→8
116 MAC EFUSE_BLK1 8 ␣
↪→8
117 MAC EFUSE_BLK1 16 ␣
↪→8
118 MAC EFUSE_BLK1 24 ␣
↪→8
119 MAC EFUSE_BLK1 32 ␣
↪→8
120 MAC EFUSE_BLK1 40 ␣
↪→8
121 MAC_EXT EFUSE_BLK1 48 ␣
↪→16
122 WAFER_VERSION_MINOR EFUSE_BLK1 114 ␣
↪→4
123 WAFER_VERSION_MAJOR EFUSE_BLK1 118 ␣
↪→2
124 PKG_VERSION EFUSE_BLK1 120 ␣
↪→3
125 BLK_VERSION_MINOR EFUSE_BLK1 123 ␣
↪→3
126 BLK_VERSION_MAJOR EFUSE_BLK1 126 ␣
↪→2
127 FLASH_CAP EFUSE_BLK1 128 ␣
↪→3
128 FLASH_TEMP EFUSE_BLK1 131 ␣
↪→2
129 FLASH_VENDOR EFUSE_BLK1 133 ␣
↪→3
130 SYS_DATA_PART2 EFUSE_BLK10 0 ␣
↪→256
131 OPTIONAL_UNIQUE_ID EFUSE_BLK2 0 ␣
↪→128
132 USER_DATA EFUSE_BLK3 0 ␣
↪→256
133 USER_DATA.MAC_CUSTOM EFUSE_BLK3 200 ␣
↪→48
134 KEY0 EFUSE_BLK4 0 ␣
↪→256
135 KEY1 EFUSE_BLK5 0 ␣
↪→256
136 KEY2 EFUSE_BLK6 0 ␣
↪→256
137 KEY3 EFUSE_BLK7 0 ␣
↪→256 (continues on next page)

Espressif Systems 1801
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
138 KEY4 EFUSE_BLK8 0 ␣
↪→256
139 KEY5 EFUSE_BLK9 0 ␣
↪→256

Used bits in efuse table:
EFUSE_BLK0
[0 31] [0 2] [2 2] ... [30 38] [32 52] [57 58] [80 114] [116 117] [124 130] [132␣
↪→135] [141 158] [160 161]
EFUSE_BLK1
[0 63] [114 135]
EFUSE_BLK10
[0 255]
EFUSE_BLK2
[0 127]
EFUSE_BLK3
[0 255] [200 247]
EFUSE_BLK4
[0 255]
EFUSE_BLK5
[0 255]
EFUSE_BLK6
[0 255]
EFUSE_BLK7
[0 255]
EFUSE_BLK8
[0 255]
EFUSE_BLK9
[0 255]
Note: Not printed ranges are free for using. (bits in EFUSE_BLK0 are reserved for␣
↪→Espressif)

The number of bits not included in square brackets is free (some bits are reserved for Espressif). All fields are checked
for overlapping.
To add fields to an existing field, use the Structured efuse fields technique. For example, adding the fields: SE-
RIAL_NUMBER, MODEL_NUMBER and HARDWARE REV to an existing USER_DATA field. Use . (dot) to
show an attachment in a field.

USER_DATA.SERIAL_NUMBER, EFUSE_BLK3, 0, 32,
USER_DATA.MODEL_NUMBER, EFUSE_BLK3, 32, 10,
USER_DATA.HARDWARE_REV, EFUSE_BLK3, 42, 10,

2. Fill a line for field: field_name, efuse_block, bit_start, bit_count, comment.
3. Run a show_efuse_table command to check eFuse table. To generate source files run

efuse_common_table or efuse_custom_table command.
You may get errors such as intersects with or out of range. Please see how to solve them in the
Structured efuse fields article.

Bit Order

The eFuses bit order is little endian (see the example below), it means that eFuse bits are read and written from LSB
to MSB:

$ espefuse.py dump

USER_DATA (BLOCK3) [3] read_regs: 03020100 07060504 0B0A0908␣
↪→0F0E0D0C 13121111 17161514 1B1A1918 1F1E1D1C
BLOCK4 (BLOCK4) [4] read_regs: 03020100 07060504 0B0A0908␣
↪→0F0E0D0C 13121111 17161514 1B1A1918 1F1E1D1C (continues on next page)

Espressif Systems 1802
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

where is the register representation:

EFUSE_RD_USR_DATA0_REG = 0x03020100
EFUSE_RD_USR_DATA1_REG = 0x07060504
EFUSE_RD_USR_DATA2_REG = 0x0B0A0908
EFUSE_RD_USR_DATA3_REG = 0x0F0E0D0C
EFUSE_RD_USR_DATA4_REG = 0x13121111
EFUSE_RD_USR_DATA5_REG = 0x17161514
EFUSE_RD_USR_DATA6_REG = 0x1B1A1918
EFUSE_RD_USR_DATA7_REG = 0x1F1E1D1C

where is the byte representation:

byte[0] = 0x00, byte[1] = 0x01, ... byte[3] = 0x03, byte[4] = 0x04, ..., byte[31]␣
↪→= 0x1F

For example, csv file describes the USER_DATA field, which occupies all 256 bits (a whole block).

USER_DATA, EFUSE_BLK3, 0, 256, User data
USER_DATA.FIELD1, EFUSE_BLK3, 16, 16, Field1

ID, EFUSE_BLK4, 8, 3, ID bit[0..2]
, EFUSE_BLK4, 16, 2, ID bit[3..4]
, EFUSE_BLK4, 32, 3, ID bit[5..7]

Thus, reading the eFuse USER_DATA block written as above gives the following results:

uint8_t buf[32] = { 0 };
esp_efuse_read_field_blob(ESP_EFUSE_USER_DATA, &buf, sizeof(buf) * 8);
// buf[0] = 0x00, buf[1] = 0x01, ... buf[31] = 0x1F

uint32_t field1 = 0;
size_t field1_size = ESP_EFUSE_USER_DATA[0]->bit_count; // can be used for this␣
↪→case because it only consists of one entry
esp_efuse_read_field_blob(ESP_EFUSE_USER_DATA, &field1, field1_size);
// field1 = 0x0302

uint32_t field1_1 = 0;
esp_efuse_read_field_blob(ESP_EFUSE_USER_DATA, &field1_1, 2); // reads only first␣
↪→2 bits
// field1 = 0x0002

uint8_t id = 0;
size_t id_size = esp_efuse_get_field_size(ESP_EFUSE_ID); // returns 6
// size_t id_size = ESP_EFUSE_USER_DATA[0]->bit_count; // can NOT be used because␣
↪→it consists of 3 entries. It returns 3 not 6.
esp_efuse_read_field_blob(ESP_EFUSE_ID, &id, id_size);
// id = 0x91
// b'100 10 001
// [3] [2] [3]

uint8_t id_1 = 0;
esp_efuse_read_field_blob(ESP_EFUSE_ID, &id_1, 3);
// id = 0x01
// b'001

Get eFuses During Build

There is a way to get the state of eFuses at the build stage of the project. There are two cmake functions for this:

Espressif Systems 1803
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• espefuse_get_json_summary() - It calls the espefuse.py summary --format json com-
mand and returns a json string (it is not stored in a file).

• espefuse_get_efuse() - It finds a given eFuse name in the json string and returns its property.
The json string has the following properties:

{
"MAC": {

"bit_len": 48,
"block": 0,
"category": "identity",
"description": "Factory MAC Address",
"efuse_type": "bytes:6",
"name": "MAC",
"pos": 0,
"readable": true,
"value": "94:b9:7e:5a:6e:58 (CRC 0xe2 OK)",
"word": 1,
"writeable": true

},
}

These functions can be used from a top-level project CMakeLists.txt (get-started/hello_world/CMakeLists.txt):

...
project(hello_world)

espefuse_get_json_summary(efuse_json)
espefuse_get_efuse(ret_data ${efuse_json} "MAC" "value")
message("MAC:" ${ret_data})

The format of the value property is the same as shown in espefuse.py summary.

MAC:94:b9:7e:5a:6e:58 (CRC 0xe2 OK)

There is an example test system/efuse/CMakeLists.txt which adds a custom target efuse-summary. This allows
you to run the idf.py efuse-summary command to read the required eFuses (specified in the efuse_names
list) at any time, not just at project build time.

Debug eFuse & Unit tests

Virtual eFuses The Kconfig option CONFIG_EFUSE_VIRTUALwill virtualize eFuse values inside the eFuse Man-
ager, so writes are emulated and no eFuse values are permanently changed. This can be useful for debugging app and
unit tests. During startup, the eFuses are copied to RAM. All eFuse operations (read and write) are performed with
RAM instead of the real eFuse registers.
In addition to the CONFIG_EFUSE_VIRTUAL option there is CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH option
that adds a feature to keep eFuses in flash memory. To use this mode the partition_table should have the efuse
partition. partition.csv: "efuse_em, data, efuse, , 0x2000,". During startup, the eFuses are copied
from flash or, in case if flash is empty, from real eFuse to RAM and then update flash. This option allows keeping
eFuses after reboots (possible to test secure_boot and flash_encryption features with this option).

Flash Encryption Testing Flash Encryption (FE) is a hardware feature that requires the physical burn-
ing of eFuses: key and FLASH_CRYPT_CNT. If FE is not actually enabled then enabling the CON-
FIG_EFUSE_VIRTUAL_KEEP_IN_FLASH option just gives testing possibilities and does not encrypt anything in
the flash, even though the logs say encryption happens. The bootloader_flash_write() is adapted for this
purpose. But if FE is already enabled on the chip and you run an application or bootloader created with the CON-
FIG_EFUSE_VIRTUAL_KEEP_IN_FLASH option then the flash encryption/decryption operations will work properly
(data are encrypted as it is written into an encrypted flash partition and decrypted when they are read from an en-
crypted partition).

Espressif Systems 1804
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/get-started/hello_world/CMakeLists.txt
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/system/efuse/CMakeLists.txt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

espefuse.py esptool includes a useful tool for reading/writing ESP32-C6 eFuse bits - espefuse.py.

espefuse.py -p PORT summary

espefuse.py v4.6-dev
Connecting....
Detecting chip type... ESP32-C6

=== Run "summary" command ===
EFUSE_NAME (Block) Description = [Meaningful Value] [Readable/Writeable] (Hex␣
↪→Value)

↪→-----
Config fuses:
WR_DIS (BLOCK0) Disable programming of␣
↪→individual eFuses = 0 R/W (0x00000000)
RD_DIS (BLOCK0) Disable reading from BlOCK4-10 ␣
↪→ = 0 R/W (0b0000000)
SWAP_UART_SDIO_EN (BLOCK0) Represents whether pad of uart␣
↪→and sdio is swapped = False R/W (0b0)

or not. 1: swapped. 0: not␣
↪→swapped
DIS_ICACHE (BLOCK0) Represents whether icache is␣
↪→disabled or enabled. = False R/W (0b0)

1: disabled. 0: enabled
DIS_TWAI (BLOCK0) Represents whether TWAI␣
↪→function is disabled or en = False R/W (0b0)

abled. 1: disabled. 0: enabled
DIS_DIRECT_BOOT (BLOCK0) Represents whether direct boot␣
↪→mode is disabled or = False R/W (0b0)

enabled. 1: disabled. 0:␣
↪→enabled
UART_PRINT_CONTROL (BLOCK0) Set the default UARTboot␣
↪→message output mode = Enable R/W (0b00)
BLOCK_USR_DATA (BLOCK3) User data

= 00␣
↪→00 00 00 00 00 00 R/W
BLOCK_SYS_DATA2 (BLOCK10) System data part 2 (reserved)

= 00␣
↪→00 00 00 00 00 00 R/W

Flash fuses:
FLASH_TPUW (BLOCK0) Represents the flash waiting␣
↪→time after power-up; = 0 R/W (0x0)

in unit of ms. When the value␣
↪→less than 15; the wa

iting time is the programmed␣
↪→value. Otherwise; the

waiting time is 2 times the␣
↪→programmed value
FORCE_SEND_RESUME (BLOCK0) Represents whether ROM code is␣
↪→forced to send a re = False R/W (0b0)

sume command during SPI boot.␣
↪→1: forced. 0:not for

ced
FLASH_CAP (BLOCK1) ␣
↪→ = 0 R/W (0b000)
FLASH_TEMP (BLOCK1) ␣
↪→ = 0 R/W (0b00)
FLASH_VENDOR (BLOCK1) ␣
↪→ = 0 R/W (0b000)

Identity fuses:
(continues on next page)

Espressif Systems 1805
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://docs.espressif.com/projects/esptool/en/latest/esp32c6/espefuse/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
DISABLE_WAFER_VERSION_MAJOR (BLOCK0) Disables check of wafer version␣
↪→major = False R/W (0b0)
DISABLE_BLK_VERSION_MAJOR (BLOCK0) Disables check of blk version␣
↪→major = False R/W (0b0)
WAFER_VERSION_MINOR (BLOCK1) ␣
↪→ = 1 R/W (0x1)
WAFER_VERSION_MAJOR (BLOCK1) ␣
↪→ = 0 R/W (0b00)
PKG_VERSION (BLOCK1) Package version ␣
↪→ = 1 R/W (0b001)
BLK_VERSION_MINOR (BLOCK1) BLK_VERSION_MINOR of BLOCK2 ␣
↪→ = 0 R/W (0b000)
BLK_VERSION_MAJOR (BLOCK1) BLK_VERSION_MAJOR of BLOCK2 ␣
↪→ = 0 R/W (0b00)
OPTIONAL_UNIQUE_ID (BLOCK2) Optional unique 128-bit ID

= 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W

Jtag fuses:
JTAG_SEL_ENABLE (BLOCK0) Represents whether the␣
↪→selection between usb_to_jt = False R/W (0b0)

ag and pad_to_jtag through␣
↪→strapping gpio15 when b

oth EFUSE_DIS_PAD_JTAG and␣
↪→EFUSE_DIS_USB_JTAG are

equal to 0 is enabled or␣
↪→disabled. 1: enabled. 0:

disabled
SOFT_DIS_JTAG (BLOCK0) Represents whether JTAG is␣
↪→disabled in soft way. O = 0 R/W (0b000)

dd number: disabled. Even␣
↪→number: enabled
DIS_PAD_JTAG (BLOCK0) Represents whether JTAG is␣
↪→disabled in the hard wa = False R/W (0b0)

y(permanently). 1: disabled. 0:␣
↪→enabled

Mac fuses:
MAC (BLOCK1) MAC address

= 60:55:f9:f7:52:9c (OK) R/W
MAC_EXT (BLOCK1) Stores the extended bits of MAC␣
↪→address = 00:00 (OK) R/W
CUSTOM_MAC (BLOCK3) Custom MAC

= 00:00:00:00:00:00 (OK) R/W

Security fuses:
DIS_DOWNLOAD_ICACHE (BLOCK0) Represents whether icache is␣
↪→disabled or enabled i = False R/W (0b0)

n Download mode. 1: disabled.␣
↪→0: enabled
DIS_FORCE_DOWNLOAD (BLOCK0) Represents whether the function␣
↪→that forces chip i = False R/W (0b0)

nto download mode is disabled␣
↪→or enabled. 1: disab

led. 0: enabled
SPI_DOWNLOAD_MSPI_DIS (BLOCK0) Represents whether SPI0␣
↪→controller during boot_mod = False R/W (0b0)

e_download is disabled or␣
↪→enabled. 1: disabled. 0:

enabled
DIS_DOWNLOAD_MANUAL_ENCRYPT (BLOCK0) Represents whether flash␣
↪→encrypt function is disab = False R/W (0b0)

(continues on next page)

Espressif Systems 1806
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
led or enabled(except in SPI␣

↪→boot mode). 1: disabl
ed. 0: enabled

SPI_BOOT_CRYPT_CNT (BLOCK0) Enables flash encryption when 1␣
↪→or 3 bits are set = Disable R/W (0b000)

and disables otherwise
SECURE_BOOT_KEY_REVOKE0 (BLOCK0) Revoke 1st secure boot key ␣
↪→ = False R/W (0b0)
SECURE_BOOT_KEY_REVOKE1 (BLOCK0) Revoke 2nd secure boot key ␣
↪→ = False R/W (0b0)
SECURE_BOOT_KEY_REVOKE2 (BLOCK0) Revoke 3rd secure boot key ␣
↪→ = False R/W (0b0)
KEY_PURPOSE_0 (BLOCK0) Represents the purpose of Key0 ␣
↪→ = USER R/W (0x0)
KEY_PURPOSE_1 (BLOCK0) Represents the purpose of Key1 ␣
↪→ = USER R/W (0x0)
KEY_PURPOSE_2 (BLOCK0) Represents the purpose of Key2 ␣
↪→ = USER R/W (0x0)
KEY_PURPOSE_3 (BLOCK0) Represents the purpose of Key3 ␣
↪→ = USER R/W (0x0)
KEY_PURPOSE_4 (BLOCK0) Represents the purpose of Key4 ␣
↪→ = USER R/W (0x0)
KEY_PURPOSE_5 (BLOCK0) Represents the purpose of Key5 ␣
↪→ = USER R/W (0x0)
SEC_DPA_LEVEL (BLOCK0) Represents the spa secure level␣
↪→by configuring the = 0 R/W (0b00)

clock random divide mode
CRYPT_DPA_ENABLE (BLOCK0) Represents whether anti-dpa␣
↪→attack is enabled. 1:e = False R/W (0b0)

nabled. 0: disabled
SECURE_BOOT_EN (BLOCK0) Represents whether secure boot␣
↪→is enabled or disab = False R/W (0b0)

led. 1: enabled. 0: disabled
SECURE_BOOT_AGGRESSIVE_REVOKE (BLOCK0) Represents whether revoking␣
↪→aggressive secure boot = False R/W (0b0)

is enabled or disabled. 1:␣
↪→enabled. 0: disabled
DIS_DOWNLOAD_MODE (BLOCK0) Represents whether Download␣
↪→mode is disabled or en = False R/W (0b0)

abled. 1: disabled. 0: enabled
ENABLE_SECURITY_DOWNLOAD (BLOCK0) Represents whether security␣
↪→download is enabled or = False R/W (0b0)

disabled. 1: enabled. 0:␣
↪→disabled
SECURE_VERSION (BLOCK0) Represents the version used by␣
↪→ESP-IDF anti-rollba = 0 R/W (0x0000)

ck feature
SECURE_BOOT_DISABLE_FAST_WAKE (BLOCK0) Represents whether FAST VERIFY␣
↪→ON WAKE is disabled = False R/W (0b0)

or enabled when Secure Boot is␣
↪→enabled. 1: disabl

ed. 0: enabled
BLOCK_KEY0 (BLOCK4)

Purpose: USER
Key0 or user data

= 00␣
↪→00 00 00 00 00 00 R/W
BLOCK_KEY1 (BLOCK5)

Purpose: USER
Key1 or user data

= 00␣
↪→00 00 00 00 00 00 R/W (continues on next page)

Espressif Systems 1807
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
BLOCK_KEY2 (BLOCK6)

Purpose: USER
Key2 or user data

= 00␣
↪→00 00 00 00 00 00 R/W
BLOCK_KEY3 (BLOCK7)

Purpose: USER
Key3 or user data

= 00␣
↪→00 00 00 00 00 00 R/W
BLOCK_KEY4 (BLOCK8)

Purpose: USER
Key4 or user data

= 00␣
↪→00 00 00 00 00 00 R/W
BLOCK_KEY5 (BLOCK9)

Purpose: USER
Key5 or user data

= 00␣
↪→00 00 00 00 00 00 R/W

Usb fuses:
DIS_USB_JTAG (BLOCK0) Represents whether the function␣
↪→of usb switch to j = False R/W (0b0)

tag is disabled or enabled. 1:␣
↪→disabled. 0: enable

d
DIS_USB_SERIAL_JTAG (BLOCK0) Represents whether USB-Serial-
↪→JTAG is disabled or = False R/W (0b0)

enabled. 1: disabled. 0: enabled
USB_EXCHG_PINS (BLOCK0) Represents whether the D+ and D-
↪→ pins is exchanged = False R/W (0b0)

. 1: exchanged. 0: not exchanged
DIS_USB_SERIAL_JTAG_ROM_PRINT (BLOCK0) Represents whether print from␣
↪→USB-Serial-JTAG is d = False R/W (0b0)

isabled or enabled. 1: disabled.
↪→ 0: enabled
DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE (BLOCK0) Represents whether the USB-
↪→Serial-JTAG download fu = False R/W (0b0)

nction is disabled or enabled.␣
↪→1: disabled. 0: ena

bled

Vdd fuses:
VDD_SPI_AS_GPIO (BLOCK0) Represents whether vdd spi pin␣
↪→is functioned as gp = False R/W (0b0)

io. 1: functioned. 0: not␣
↪→functioned

Wdt fuses:
WDT_DELAY_SEL (BLOCK0) Represents whether RTC watchdog␣
↪→timeout threshold = 0 R/W (0b00)

is selected at startup. 1:␣
↪→selected. 0: not select

ed

To get a dump for all eFuse registers.

espefuse.py -p PORT dump

espefuse.py v4.6-dev

(continues on next page)

Espressif Systems 1808
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
Connecting....
Detecting chip type... ESP32-C6
BLOCK0 () [0] read_regs: 00000000 00000000 00000000␣
↪→00000000 00000000 00000000
MAC_SPI_8M_0 (BLOCK1) [1] read_regs: f9f7529c 00006055 00000000␣
↪→01040000 00000000 00000000
BLOCK_SYS_DATA (BLOCK2) [2] read_regs: 00000000 00000000 00000000␣
↪→00000000 00000000 00000000 00000000 00000000
BLOCK_USR_DATA (BLOCK3) [3] read_regs: 00000000 00000000 00000000␣
↪→00000000 00000000 00000000 00000000 00000000
BLOCK_KEY0 (BLOCK4) [4] read_regs: 00000000 00000000 00000000␣
↪→00000000 00000000 00000000 00000000 00000000
BLOCK_KEY1 (BLOCK5) [5] read_regs: 00000000 00000000 00000000␣
↪→00000000 00000000 00000000 00000000 00000000
BLOCK_KEY2 (BLOCK6) [6] read_regs: 00000000 00000000 00000000␣
↪→00000000 00000000 00000000 00000000 00000000
BLOCK_KEY3 (BLOCK7) [7] read_regs: 00000000 00000000 00000000␣
↪→00000000 00000000 00000000 00000000 00000000
BLOCK_KEY4 (BLOCK8) [8] read_regs: 00000000 00000000 00000000␣
↪→00000000 00000000 00000000 00000000 00000000
BLOCK_KEY5 (BLOCK9) [9] read_regs: 00000000 00000000 00000000␣
↪→00000000 00000000 00000000 00000000 00000000
BLOCK_SYS_DATA2 (BLOCK10) [10] read_regs: 00000000 00000000 00000000␣
↪→00000000 00000000 00000000 00000000 00000000

BLOCK0 () [0] err__regs: 00000000 00000000 00000000␣
↪→00000000 00000000 00000000
EFUSE_RD_RS_ERR0_REG 0x00000000
EFUSE_RD_RS_ERR1_REG 0x00000000

=== Run "dump" command ===

Header File
• components/efuse/esp32c6/include/esp_efuse_chip.h

Enumerations

enum esp_efuse_block_t

Type of eFuse blocks ESP32C6.
Values:

enumerator EFUSE_BLK0
Number of eFuse BLOCK0. REPEAT_DATA

enumerator EFUSE_BLK1
Number of eFuse BLOCK1. MAC_SPI_8M_SYS

enumerator EFUSE_BLK2
Number of eFuse BLOCK2. SYS_DATA_PART1

enumerator EFUSE_BLK_SYS_DATA_PART1
Number of eFuse BLOCK2. SYS_DATA_PART1

Espressif Systems 1809
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/efuse/esp32c6/include/esp_efuse_chip.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator EFUSE_BLK3
Number of eFuse BLOCK3. USER_DATA

enumerator EFUSE_BLK_USER_DATA
Number of eFuse BLOCK3. USER_DATA

enumerator EFUSE_BLK4
Number of eFuse BLOCK4. KEY0

enumerator EFUSE_BLK_KEY0
Number of eFuse BLOCK4. KEY0

enumerator EFUSE_BLK5
Number of eFuse BLOCK5. KEY1

enumerator EFUSE_BLK_KEY1
Number of eFuse BLOCK5. KEY1

enumerator EFUSE_BLK6
Number of eFuse BLOCK6. KEY2

enumerator EFUSE_BLK_KEY2
Number of eFuse BLOCK6. KEY2

enumerator EFUSE_BLK7
Number of eFuse BLOCK7. KEY3

enumerator EFUSE_BLK_KEY3
Number of eFuse BLOCK7. KEY3

enumerator EFUSE_BLK8
Number of eFuse BLOCK8. KEY4

enumerator EFUSE_BLK_KEY4
Number of eFuse BLOCK8. KEY4

enumerator EFUSE_BLK9
Number of eFuse BLOCK9. KEY5

enumerator EFUSE_BLK_KEY5
Number of eFuse BLOCK9. KEY5

enumerator EFUSE_BLK_KEY_MAX

enumerator EFUSE_BLK10
Number of eFuse BLOCK10. SYS_DATA_PART2

enumerator EFUSE_BLK_SYS_DATA_PART2
Number of eFuse BLOCK10. SYS_DATA_PART2

Espressif Systems 1810
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator EFUSE_BLK_MAX

enum esp_efuse_coding_scheme_t

Type of coding scheme.
Values:

enumerator EFUSE_CODING_SCHEME_NONE
None

enumerator EFUSE_CODING_SCHEME_RS
Reed-Solomon coding

enum esp_efuse_purpose_t

Type of key purpose.
Values:

enumerator ESP_EFUSE_KEY_PURPOSE_USER
User purposes (software-only use)

enumerator ESP_EFUSE_KEY_PURPOSE_RESERVED
Reserved

enumerator ESP_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY
XTS_AES_128_KEY (flash/PSRAM encryption)

enumerator ESP_EFUSE_KEY_PURPOSE_HMAC_DOWN_ALL
HMAC Downstream mode

enumerator ESP_EFUSE_KEY_PURPOSE_HMAC_DOWN_JTAG
JTAG soft enable key (uses HMAC Downstream mode)

enumerator ESP_EFUSE_KEY_PURPOSE_HMAC_DOWN_DIGITAL_SIGNATURE
Digital Signature peripheral key (uses HMAC Downstream mode)

enumerator ESP_EFUSE_KEY_PURPOSE_HMAC_UP
HMAC Upstream mode

enumerator ESP_EFUSE_KEY_PURPOSE_SECURE_BOOT_DIGEST0
SECURE_BOOT_DIGEST0 (Secure Boot key digest)

enumerator ESP_EFUSE_KEY_PURPOSE_SECURE_BOOT_DIGEST1
SECURE_BOOT_DIGEST1 (Secure Boot key digest)

enumerator ESP_EFUSE_KEY_PURPOSE_SECURE_BOOT_DIGEST2
SECURE_BOOT_DIGEST2 (Secure Boot key digest)

enumerator ESP_EFUSE_KEY_PURPOSE_MAX
MAX PURPOSE

Espressif Systems 1811
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Header File
• components/efuse/include/esp_efuse.h

Functions
esp_err_t esp_efuse_read_field_blob(const esp_efuse_desc_t *field[], void *dst, size_t dst_size_bits)

Reads bits from EFUSE field and writes it into an array.
The number of read bits will be limited to theminimum value from the description of the bits in "field" structure
or "dst_size_bits" required size. Use "esp_efuse_get_field_size()" function to determine the length of the field.

Note: Please note that reading in the batch mode does not show uncommitted changes.

Parameters
• field -- [in] A pointer to the structure describing the fields of efuse.
• dst -- [out] A pointer to array that will contain the result of reading.
• dst_size_bits -- [in] The number of bits required to read. If the requested number
of bits is greater than the field, the number will be limited to the field size.

Returns
• ESP_OK: The operation was successfully completed.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.

bool esp_efuse_read_field_bit(const esp_efuse_desc_t *field[])
Read a single bit eFuse field as a boolean value.

Note: The value must exist and must be a single bit wide. If there is any possibility of an error in the provided
arguments, call esp_efuse_read_field_blob() and check the returned value instead.

Note: If assertions are enabled and the parameter is invalid, execution will abort

Note: Please note that reading in the batch mode does not show uncommitted changes.

Parameters field -- [in] A pointer to the structure describing the fields of efuse.
Returns

• true: The field parameter is valid and the bit is set.
• false: The bit is not set, or the parameter is invalid and assertions are disabled.

esp_err_t esp_efuse_read_field_cnt(const esp_efuse_desc_t *field[], size_t *out_cnt)
Reads bits from EFUSE field and returns number of bits programmed as "1".
If the bits are set not sequentially, they will still be counted.

Note: Please note that reading in the batch mode does not show uncommitted changes.

Parameters
• field -- [in] A pointer to the structure describing the fields of efuse.
• out_cnt -- [out] A pointer that will contain the number of programmed as "1" bits.

Returns
• ESP_OK: The operation was successfully completed.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.

Espressif Systems 1812
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/efuse/include/esp_efuse.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_efuse_write_field_blob(const esp_efuse_desc_t *field[], const void *src, size_t
src_size_bits)

Writes array to EFUSE field.
The number of write bits will be limited to the minimum value from the description of the bits in "field"
structure or "src_size_bits" required size. Use "esp_efuse_get_field_size()" function to determine the length
of the field. After the function is completed, the writing registers are cleared.

Parameters
• field -- [in] A pointer to the structure describing the fields of efuse.
• src -- [in] A pointer to array that contains the data for writing.
• src_size_bits -- [in] The number of bits required to write.

Returns
• ESP_OK: The operation was successfully completed.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_EFUSE_REPEATED_PROG: Error repeated programming of programmed
bits is strictly forbidden.

• ESP_ERR_CODING: Error range of data does not match the coding scheme.
esp_err_t esp_efuse_write_field_cnt(const esp_efuse_desc_t *field[], size_t cnt)

Writes a required count of bits as "1" to EFUSE field.
If there are no free bits in the field to set the required number of bits to "1",
ESP_ERR_EFUSE_CNT_IS_FULL error is returned, the field will not be partially recorded. After
the function is completed, the writing registers are cleared.

Parameters
• field -- [in] A pointer to the structure describing the fields of efuse.
• cnt -- [in] Required number of programmed as "1" bits.

Returns
• ESP_OK: The operation was successfully completed.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_EFUSE_CNT_IS_FULL: Not all requested cnt bits is set.

esp_err_t esp_efuse_write_field_bit(const esp_efuse_desc_t *field[])
Write a single bit eFuse field to 1.
For use with eFuse fields that are a single bit. This function will write the bit to value 1 if it is not already set,
or does nothing if the bit is already set.
This is equivalent to calling esp_efuse_write_field_cnt() with the cnt parameter equal to 1, except that it will
return ESP_OK if the field is already set to 1.

Parameters field -- [in] Pointer to the structure describing the efuse field.
Returns

• ESP_OK: The operation was successfully completed, or the bit was already set to value 1.
• ESP_ERR_INVALID_ARG: Error in the passed arguments, including if the efuse field is
not 1 bit wide.

esp_err_t esp_efuse_set_write_protect(esp_efuse_block_t blk)
Sets a write protection for the whole block.
After that, it is impossible to write to this block. The write protection does not apply to block 0.

Parameters blk -- [in] Block number of eFuse. (EFUSE_BLK1, EFUSE_BLK2 and
EFUSE_BLK3)

Returns
• ESP_OK: The operation was successfully completed.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_EFUSE_CNT_IS_FULL: Not all requested cnt bits is set.
• ESP_ERR_NOT_SUPPORTED: The block does not support this command.

Espressif Systems 1813
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_efuse_set_read_protect(esp_efuse_block_t blk)
Sets a read protection for the whole block.
After that, it is impossible to read from this block. The read protection does not apply to block 0.

Parameters blk -- [in] Block number of eFuse. (EFUSE_BLK1, EFUSE_BLK2 and
EFUSE_BLK3)

Returns
• ESP_OK: The operation was successfully completed.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_EFUSE_CNT_IS_FULL: Not all requested cnt bits is set.
• ESP_ERR_NOT_SUPPORTED: The block does not support this command.

int esp_efuse_get_field_size(const esp_efuse_desc_t *field[])
Returns the number of bits used by field.

Parameters field -- [in] A pointer to the structure describing the fields of efuse.
Returns Returns the number of bits used by field.

uint32_t esp_efuse_read_reg(esp_efuse_block_t blk, unsigned int num_reg)
Returns value of efuse register.
This is a thread-safe implementation. Example: EFUSE_BLK2_RDATA3_REG where (blk=2, num_reg=3)

Note: Please note that reading in the batch mode does not show uncommitted changes.

Parameters
• blk -- [in] Block number of eFuse.
• num_reg -- [in] The register number in the block.

Returns Value of register

esp_err_t esp_efuse_write_reg(esp_efuse_block_t blk, unsigned int num_reg, uint32_t val)
Write value to efuse register.
Apply a coding scheme if necessary. This is a thread-safe implementation. Example:
EFUSE_BLK3_WDATA0_REG where (blk=3, num_reg=0)

Parameters
• blk -- [in] Block number of eFuse.
• num_reg -- [in] The register number in the block.
• val -- [in] Value to write.

Returns
• ESP_OK: The operation was successfully completed.
• ESP_ERR_EFUSE_REPEATED_PROG: Error repeated programming of programmed
bits is strictly forbidden.

esp_efuse_coding_scheme_t esp_efuse_get_coding_scheme(esp_efuse_block_t blk)
Return efuse coding scheme for blocks.

Note: The coding scheme is applicable only to 1, 2 and 3 blocks. For 0 block, the coding scheme is always
NONE.

Parameters blk -- [in] Block number of eFuse.
Returns Return efuse coding scheme for blocks

esp_err_t esp_efuse_read_block(esp_efuse_block_t blk, void *dst_key, size_t offset_in_bits, size_t
size_bits)

Espressif Systems 1814
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Read key to efuse block starting at the offset and the required size.

Note: Please note that reading in the batch mode does not show uncommitted changes.

Parameters
• blk -- [in] Block number of eFuse.
• dst_key -- [in] A pointer to array that will contain the result of reading.
• offset_in_bits -- [in] Start bit in block.
• size_bits -- [in] The number of bits required to read.

Returns
• ESP_OK: The operation was successfully completed.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_CODING: Error range of data does not match the coding scheme.

esp_err_t esp_efuse_write_block(esp_efuse_block_t blk, const void *src_key, size_t offset_in_bits, size_t
size_bits)

Write key to efuse block starting at the offset and the required size.
Parameters

• blk -- [in] Block number of eFuse.
• src_key -- [in] A pointer to array that contains the key for writing.
• offset_in_bits -- [in] Start bit in block.
• size_bits -- [in] The number of bits required to write.

Returns
• ESP_OK: The operation was successfully completed.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_CODING: Error range of data does not match the coding scheme.
• ESP_ERR_EFUSE_REPEATED_PROG: Error repeated programming of programmed
bits

uint32_t esp_efuse_get_pkg_ver(void)
Returns chip package from efuse.

Returns chip package
void esp_efuse_reset(void)

Reset efuse write registers.
Efuse write registers are written to zero, to negate any changes that have been staged here.

Note: This function is not threadsafe, if calling code updates efuse values from multiple tasks then this is
caller's responsibility to serialise.

esp_err_t esp_efuse_disable_rom_download_mode(void)
Disable ROM Download Mode via eFuse.
Permanently disables the ROM Download Mode feature. Once disabled, if the SoC is booted with strapping
pins set for ROM Download Mode then an error is printed instead.

Note: Not all SoCs support this option. An error will be returned if called on an ESP32 with a silicon revision
lower than 3, as these revisions do not support this option.

Note: If ROM Download Mode is already disabled, this function does nothing and returns success.

Espressif Systems 1815
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK If the eFuse was successfully burned, or had already been burned.
• ESP_ERR_NOT_SUPPORTED (ESP32 only) This SoC is not capable of disabling
UART download mode

• ESP_ERR_INVALID_STATE (ESP32 only) This eFuse is write protected and cannot be
written

esp_err_t esp_efuse_set_rom_log_scheme(esp_efuse_rom_log_scheme_t log_scheme)
Set boot ROM log scheme via eFuse.

Note: By default, the boot ROM will always print to console. This API can be called to set the log scheme
only once per chip, once the value is changed from the default it can't be changed again.

Parameters log_scheme -- Supported ROM log scheme
Returns

• ESP_OK If the eFuse was successfully burned, or had already been burned.
• ESP_ERR_NOT_SUPPORTED (ESP32 only) This SoC is not capable of setting ROM
log scheme

• ESP_ERR_INVALID_STATE This eFuse is write protected or has been burned already

esp_err_t esp_efuse_enable_rom_secure_download_mode(void)
Switch ROM Download Mode to Secure Download mode via eFuse.
Permanently enables Secure Download mode. This mode limits the use of ROM Download Mode functions
to simple flash read, write and erase operations, plus a command to return a summary of currently enabled
security features.

Note: If Secure Download mode is already enabled, this function does nothing and returns success.

Note: Disabling the ROM Download Mode also disables Secure Download Mode.

Returns
• ESP_OK If the eFuse was successfully burned, or had already been burned.
• ESP_ERR_INVALID_STATE ROM Download Mode has been disabled via eFuse, so
Secure Download mode is unavailable.

uint32_t esp_efuse_read_secure_version(void)
Return secure_version from efuse field.

Returns Secure version from efuse field
bool esp_efuse_check_secure_version(uint32_t secure_version)

Check secure_version from app and secure_version and from efuse field.
Parameters secure_version -- Secure version from app.
Returns

• True: If version of app is equal or more then secure_version from efuse.
esp_err_t esp_efuse_update_secure_version(uint32_t secure_version)

Write efuse field by secure_version value.
Update the secure_version value is available if the coding scheme is None. Note: Do not use this function in
your applications. This function is called as part of the other API.

Parameters secure_version -- [in] Secure version from app.
Returns

Espressif Systems 1816
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK: Successful.
• ESP_FAIL: secure version of app cannot be set to efuse field.
• ESP_ERR_NOT_SUPPORTED: Anti rollback is not supported with the 3/4 and Repeat
coding scheme.

esp_err_t esp_efuse_batch_write_begin(void)
Set the batch mode of writing fields.
This mode allows you to write the fields in the batch mode when need to burn several efuses at one time. To
enable batch mode call begin() then perform as usually the necessary operations read and write and at the end
call commit() to actually burn all written efuses. The batch mode can be used nested. The commit will be done
by the last commit() function. The number of begin() functions should be equal to the number of commit()
functions.

Note: If batch mode is enabled by the first task, at this time the second task cannot write/read efuses. The
second task will wait for the first task to complete the batch operation.

// Example of using the batch writing mode.

// set the batch writing mode
esp_efuse_batch_write_begin();

// use any writing functions as usual
esp_efuse_write_field_blob(ESP_EFUSE_...);
esp_efuse_write_field_cnt(ESP_EFUSE_...);
esp_efuse_set_write_protect(EFUSE_BLKx);
esp_efuse_write_reg(EFUSE_BLKx, ...);
esp_efuse_write_block(EFUSE_BLKx, ...);
esp_efuse_write(ESP_EFUSE_1, 3); // ESP_EFUSE_1 == 1, here we write a new␣
↪→value = 3. The changes will be burn by the commit() function.
esp_efuse_read_...(ESP_EFUSE_1); // this function returns ESP_EFUSE_1 == 1␣
↪→because uncommitted changes are not readable, it will be available only␣
↪→after commit.
...

// esp_efuse_batch_write APIs can be called recursively.
esp_efuse_batch_write_begin();
esp_efuse_set_write_protect(EFUSE_BLKx);
esp_efuse_batch_write_commit(); // the burn will be skipped here, it will be␣
↪→done in the last commit().

...

// Write all of these fields to the efuse registers
esp_efuse_batch_write_commit();
esp_efuse_read_...(ESP_EFUSE_1); // this function returns ESP_EFUSE_1 == 3.

Note: Please note that reading in the batch mode does not show uncommitted changes.

Returns
• ESP_OK: Successful.

esp_err_t esp_efuse_batch_write_cancel(void)
Reset the batch mode of writing fields.
It will reset the batch writing mode and any written changes.

Returns

Espressif Systems 1817
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK: Successful.
• ESP_ERR_INVALID_STATE: The batch mode was not set.

esp_err_t esp_efuse_batch_write_commit(void)
Writes all prepared data for the batch mode.
Must be called to ensure changes are written to the efuse registers. After this the batch writing mode will be
reset.

Returns
• ESP_OK: Successful.
• ESP_ERR_INVALID_STATE: The deferred writing mode was not set.

bool esp_efuse_block_is_empty(esp_efuse_block_t block)
Checks that the given block is empty.

Returns
• True: The block is empty.
• False: The block is not empty or was an error.

bool esp_efuse_get_key_dis_read(esp_efuse_block_t block)
Returns a read protection for the key block.

Parameters block -- [in]Akey block in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX
Returns True: The key block is read protected False: The key block is readable.

esp_err_t esp_efuse_set_key_dis_read(esp_efuse_block_t block)
Sets a read protection for the key block.

Parameters block -- [in]Akey block in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX
Returns

• ESP_OK: Successful.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_EFUSE_REPEATED_PROG: Error repeated programming of programmed
bits is strictly forbidden.

• ESP_ERR_CODING: Error range of data does not match the coding scheme.
bool esp_efuse_get_key_dis_write(esp_efuse_block_t block)

Returns a write protection for the key block.
Parameters block -- [in]Akey block in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX
Returns True: The key block is write protected False: The key block is writeable.

esp_err_t esp_efuse_set_key_dis_write(esp_efuse_block_t block)
Sets a write protection for the key block.

Parameters block -- [in]Akey block in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX
Returns

• ESP_OK: Successful.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_EFUSE_REPEATED_PROG: Error repeated programming of programmed
bits is strictly forbidden.

• ESP_ERR_CODING: Error range of data does not match the coding scheme.
bool esp_efuse_key_block_unused(esp_efuse_block_t block)

Returns true if the key block is unused, false otherwise.
An unused key block is all zero content, not read or write protected, and has purpose 0
(ESP_EFUSE_KEY_PURPOSE_USER)

Parameters block -- key block to check.
Returns

• True if key block is unused,
• False if key block is used or the specified block index is not a key block.

Espressif Systems 1818
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool esp_efuse_find_purpose(esp_efuse_purpose_t purpose, esp_efuse_block_t *block)
Find a key block with the particular purpose set.

Parameters
• purpose -- [in] Purpose to search for.
• block -- [out] Pointer in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX
which will be set to the key block if found. Can be NULL, if only need to test the key
block exists.

Returns
• True: If found,
• False: If not found (value at block pointer is unchanged).

bool esp_efuse_get_keypurpose_dis_write(esp_efuse_block_t block)
Returns a write protection of the key purpose field for an efuse key block.

Note: For ESP32: no keypurpose, it returns always True.

Parameters block -- [in]Akey block in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX
Returns True: The key purpose is write protected. False: The key purpose is writeable.

esp_efuse_purpose_t esp_efuse_get_key_purpose(esp_efuse_block_t block)
Returns the current purpose set for an efuse key block.

Parameters block -- [in]Akey block in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX
Returns

• Value: If Successful, it returns the value of the purpose related to the given key block.
• ESP_EFUSE_KEY_PURPOSE_MAX: Otherwise.

const esp_efuse_desc_t **esp_efuse_get_purpose_field(esp_efuse_block_t block)
Returns a pointer to a key purpose for an efuse key block.

To get the value of this field use esp_efuse_read_field_blob() or esp_efuse_get_key_purpose().
Parameters block -- [in]Akey block in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX
Returns Pointer: If Successful returns a pointer to the corresponding efuse field otherwise NULL.

const esp_efuse_desc_t **esp_efuse_get_key(esp_efuse_block_t block)
Returns a pointer to a key block.

Parameters block -- [in]Akey block in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX
Returns Pointer: If Successful returns a pointer to the corresponding efuse field otherwise NULL.

esp_err_t esp_efuse_set_key_purpose(esp_efuse_block_t block, esp_efuse_purpose_t purpose)
Sets a key purpose for an efuse key block.

Parameters
• block -- [in]Akey block in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX
• purpose -- [in] Key purpose.

Returns
• ESP_OK: Successful.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_EFUSE_REPEATED_PROG: Error repeated programming of programmed
bits is strictly forbidden.

• ESP_ERR_CODING: Error range of data does not match the coding scheme.
esp_err_t esp_efuse_set_keypurpose_dis_write(esp_efuse_block_t block)

Sets a write protection of the key purpose field for an efuse key block.
Parameters block -- [in]Akey block in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX

Espressif Systems 1819
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK: Successful.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_EFUSE_REPEATED_PROG: Error repeated programming of programmed
bits is strictly forbidden.

• ESP_ERR_CODING: Error range of data does not match the coding scheme.
esp_efuse_block_t esp_efuse_find_unused_key_block(void)

Search for an unused key block and return the first one found.
See esp_efuse_key_block_unused for a description of an unused key block.

Returns First unused key block, or EFUSE_BLK_KEY_MAX if no unused key block is found.
unsigned esp_efuse_count_unused_key_blocks(void)

Return the number of unused efuse key blocks in the range EFUSE_BLK_KEY0..EFUSE_BLK_KEY_MAX.
bool esp_efuse_get_digest_revoke(unsigned num_digest)

Returns the status of the Secure Boot public key digest revocation bit.
Parameters num_digest -- [in] The number of digest in range 0..2
Returns

• True: If key digest is revoked,
• False; If key digest is not revoked.

esp_err_t esp_efuse_set_digest_revoke(unsigned num_digest)
Sets the Secure Boot public key digest revocation bit.

Parameters num_digest -- [in] The number of digest in range 0..2
Returns

• ESP_OK: Successful.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_EFUSE_REPEATED_PROG: Error repeated programming of programmed
bits is strictly forbidden.

• ESP_ERR_CODING: Error range of data does not match the coding scheme.
bool esp_efuse_get_write_protect_of_digest_revoke(unsigned num_digest)

Returns a write protection of the Secure Boot public key digest revocation bit.
Parameters num_digest -- [in] The number of digest in range 0..2
Returns True: The revocation bit is write protected. False: The revocation bit is writeable.

esp_err_t esp_efuse_set_write_protect_of_digest_revoke(unsigned num_digest)
Sets a write protection of the Secure Boot public key digest revocation bit.

Parameters num_digest -- [in] The number of digest in range 0..2
Returns

• ESP_OK: Successful.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_EFUSE_REPEATED_PROG: Error repeated programming of programmed
bits is strictly forbidden.

• ESP_ERR_CODING: Error range of data does not match the coding scheme.
esp_err_t esp_efuse_write_key(esp_efuse_block_t block, esp_efuse_purpose_t purpose, const void *key,

size_t key_size_bytes)
Program a block of key data to an efuse block.
The burn of a key, protection bits, and a purpose happens in batch mode.

Note: This API also enables the read protection efuse bit for certain key blocks like XTS-AES, HMAC,
ECDSA etc. This ensures that the key is only accessible to hardware peripheral.

Espressif Systems 1820
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: For SoC's with capability SOC_EFUSE_ECDSA_USE_HARDWARE_K (e.g., ESP32-H2), this API
writes an additional efuse bit for ECDSA key purpose to enforce hardware TRNG generated k mode in the
peripheral.

Parameters
• block -- [in] Block to read purpose for. Must be in range EFUSE_BLK_KEY0 to
EFUSE_BLK_KEY_MAX. Key block must be unused (esp_efuse_key_block_unused).

• purpose -- [in] Purpose to set for this key. Purpose must be already unset.
• key -- [in] Pointer to data to write.
• key_size_bytes -- [in] Bytes length of data to write.

Returns
• ESP_OK: Successful.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_INVALID_STATE: Error in efuses state, unused block not found.
• ESP_ERR_EFUSE_REPEATED_PROG: Error repeated programming of programmed
bits is strictly forbidden.

• ESP_ERR_CODING: Error range of data does not match the coding scheme.

esp_err_t esp_efuse_write_keys(const esp_efuse_purpose_t purposes[], uint8_t keys[][32], unsigned
number_of_keys)

Program keys to unused efuse blocks.
The burn of keys, protection bits, and purposes happens in batch mode.

Note: This API also enables the read protection efuse bit for certain key blocks like XTS-AES, HMAC,
ECDSA etc. This ensures that the key is only accessible to hardware peripheral.

Note: For SoC's with capability SOC_EFUSE_ECDSA_USE_HARDWARE_K (e.g., ESP32-H2), this API
writes an additional efuse bit for ECDSA key purpose to enforce hardware TRNG generated k mode in the
peripheral.

Parameters
• purposes -- [in] Array of purposes (purpose[number_of_keys]).
• keys -- [in] Array of keys (uint8_t keys[number_of_keys][32]). Each key is 32 bytes
long.

• number_of_keys -- [in] The number of keys to write (up to 6 keys).
Returns

• ESP_OK: Successful.
• ESP_ERR_INVALID_ARG: Error in the passed arguments.
• ESP_ERR_INVALID_STATE: Error in efuses state, unused block not found.
• ESP_ERR_NOT_ENOUGH_UNUSED_KEY_BLOCKS: Error not enough unused key
blocks available

• ESP_ERR_EFUSE_REPEATED_PROG: Error repeated programming of programmed
bits is strictly forbidden.

• ESP_ERR_CODING: Error range of data does not match the coding scheme.

esp_err_t esp_secure_boot_read_key_digests(esp_secure_boot_key_digests_t *trusted_key_digests)
Read key digests from efuse. Any revoked/missing digests will be marked as NULL.

Parameters trusted_key_digests -- [out] Trusted keys digests, stored in this parameter
after successfully completing this function. The number of digests depends on the SOC's ca-
pabilities.

Returns
• ESP_OK: Successful.

Espressif Systems 1821
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_FAIL: If trusted_keys is NULL or there is no valid digest.
esp_err_t esp_efuse_check_errors(void)

Checks eFuse errors in BLOCK0.

It does a BLOCK0 check if eFuse EFUSE_ERR_RST_ENABLE is set. If BLOCK0 has an error, it prints the
error and returns ESP_FAIL, which should be treated as esp_restart.

Note: Refers to ESP32-C3 only.

Returns
• ESP_OK: No errors in BLOCK0.
• ESP_FAIL: Error in BLOCK0 requiring reboot.

Structures

struct esp_efuse_desc_t
Type definition for an eFuse field.

Public Members

esp_efuse_block_t efuse_block

Block of eFuse

uint8_t bit_start
Start bit [0..255]

uint16_t bit_count
Length of bit field [1..-]

struct esp_secure_boot_key_digests_t
Pointers to the trusted key digests.
The number of digests depends on the SOC's capabilities.

Public Members

const void *key_digests[3]
Pointers to the key digests

Macros

ESP_ERR_EFUSE

Base error code for efuse api.

ESP_OK_EFUSE_CNT

OK the required number of bits is set.

ESP_ERR_EFUSE_CNT_IS_FULL

Error field is full.

Espressif Systems 1822
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_EFUSE_REPEATED_PROG

Error repeated programming of programmed bits is strictly forbidden.

ESP_ERR_CODING

Error while a encoding operation.

ESP_ERR_NOT_ENOUGH_UNUSED_KEY_BLOCKS

Error not enough unused key blocks available

ESP_ERR_DAMAGED_READING

Error. Burn or reset was done during a reading operation leads to damage read data. This error is internal to
the efuse component and not returned by any public API.

Enumerations

enum esp_efuse_rom_log_scheme_t

Type definition for ROM log scheme.
Values:

enumerator ESP_EFUSE_ROM_LOG_ALWAYS_ON
Always enable ROM logging

enumerator ESP_EFUSE_ROM_LOG_ON_GPIO_LOW
ROM logging is enabled when specific GPIO level is low during start up

enumerator ESP_EFUSE_ROM_LOG_ON_GPIO_HIGH
ROM logging is enabled when specific GPIO level is high during start up

enumerator ESP_EFUSE_ROM_LOG_ALWAYS_OFF
Disable ROM logging permanently

2.10.7 Error Codes and Helper Functions

This section lists definitions of common ESP-IDF error codes and several helper functions related to error handling.
For general information about error codes in ESP-IDF, see Error Handling.
For the full list of error codes defined in ESP-IDF, see Error Code Reference.

API Reference

Header File
• components/esp_common/include/esp_check.h

Macros
ESP_RETURN_ON_ERROR(x, log_tag, format, ...)

Macro which can be used to check the error code. If the code is not ESP_OK, it prints the message and
returns. In the future, we want to switch to C++20. We also want to become compatible with clang. Hence,
we provide two versions of the following macros. The first one is using the GNU extension ##__VA_ARGS__.
The second one is using the C++20 feature VA_OPT(,). This allows users to compile their code with standard

Espressif Systems 1823
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_common/include/esp_check.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

C++20 enabled instead of the GNU extension. Below C++20, we haven't found any good alternative to using
##__VA_ARGS__. Macro which can be used to check the error code. If the code is not ESP_OK, it prints
the message and returns.

ESP_RETURN_ON_ERROR_ISR(x, log_tag, format, ...)
A version of ESP_RETURN_ON_ERROR() macro that can be called from ISR.

ESP_GOTO_ON_ERROR(x, goto_tag, log_tag, format, ...)
Macro which can be used to check the error code. If the code is not ESP_OK, it prints the message, sets the
local variable 'ret' to the code, and then exits by jumping to 'goto_tag'.

ESP_GOTO_ON_ERROR_ISR(x, goto_tag, log_tag, format, ...)
A version of ESP_GOTO_ON_ERROR() macro that can be called from ISR.

ESP_RETURN_ON_FALSE(a, err_code, log_tag, format, ...)
Macro which can be used to check the condition. If the condition is not 'true', it prints the message and returns
with the supplied 'err_code'.

ESP_RETURN_ON_FALSE_ISR(a, err_code, log_tag, format, ...)
A version of ESP_RETURN_ON_FALSE() macro that can be called from ISR.

ESP_GOTO_ON_FALSE(a, err_code, goto_tag, log_tag, format, ...)
Macro which can be used to check the condition. If the condition is not 'true', it prints the message, sets the
local variable 'ret' to the supplied 'err_code', and then exits by jumping to 'goto_tag'.

ESP_GOTO_ON_FALSE_ISR(a, err_code, goto_tag, log_tag, format, ...)
A version of ESP_GOTO_ON_FALSE() macro that can be called from ISR.

Header File
• components/esp_common/include/esp_err.h

Functions
const char *esp_err_to_name(esp_err_t code)

Returns string for esp_err_t error codes.
This function finds the error code in a pre-generated lookup-table and returns its string representation.
The function is generated by the Python script tools/gen_esp_err_to_name.py which should be run each time
an esp_err_t error is modified, created or removed from the IDF project.

Parameters code -- esp_err_t error code
Returns string error message

const char *esp_err_to_name_r(esp_err_t code, char *buf, size_t buflen)
Returns string for esp_err_t and system error codes.
This function finds the error code in a pre-generated lookup-table of esp_err_t errors and returns its string
representation. If the error code is not found then it is attempted to be found among system errors.
The function is generated by the Python script tools/gen_esp_err_to_name.py which should be run each time
an esp_err_t error is modified, created or removed from the IDF project.

Parameters
• code -- esp_err_t error code
• buf -- [out] buffer where the error message should be written
• buflen -- Size of buffer buf. At most buflen bytes are written into the buf buffer (in-
cluding the terminating null byte).

Returns buf containing the string error message

Espressif Systems 1824
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_common/include/esp_err.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Macros

ESP_OK

esp_err_t value indicating success (no error)

ESP_FAIL

Generic esp_err_t code indicating failure

ESP_ERR_NO_MEM

Out of memory

ESP_ERR_INVALID_ARG

Invalid argument

ESP_ERR_INVALID_STATE

Invalid state

ESP_ERR_INVALID_SIZE

Invalid size

ESP_ERR_NOT_FOUND

Requested resource not found

ESP_ERR_NOT_SUPPORTED

Operation or feature not supported

ESP_ERR_TIMEOUT

Operation timed out

ESP_ERR_INVALID_RESPONSE

Received response was invalid

ESP_ERR_INVALID_CRC

CRC or checksum was invalid

ESP_ERR_INVALID_VERSION

Version was invalid

ESP_ERR_INVALID_MAC

MAC address was invalid

ESP_ERR_NOT_FINISHED

There are items remained to retrieve

ESP_ERR_NOT_ALLOWED

Operation is not allowed

ESP_ERR_ROC_IN_PROGRESS

ROC Operation is in progress

Espressif Systems 1825
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_ERR_WIFI_BASE

Starting number of WiFi error codes

ESP_ERR_MESH_BASE

Starting number of MESH error codes

ESP_ERR_FLASH_BASE

Starting number of flash error codes

ESP_ERR_HW_CRYPTO_BASE

Starting number of HW cryptography module error codes

ESP_ERR_MEMPROT_BASE

Starting number of Memory Protection API error codes
ESP_ERROR_CHECK(x)

Macro which can be used to check the error code, and terminate the program in case the code is not ESP_OK.
Prints the error code, error location, and the failed statement to serial output.
Disabled if assertions are disabled.

ESP_ERROR_CHECK_WITHOUT_ABORT(x)
Macro which can be used to check the error code. Prints the error code, error location, and the failed statement
to serial output. In comparison with ESP_ERROR_CHECK(), this prints the same error message but isn't
terminating the program.

Type Definitions

typedef int esp_err_t

2.10.8 ESP HTTPS OTA

Overview

esp_https_ota provides simplified APIs to perform firmware upgrades over HTTPS. It's an abstraction layer
over existing OTA APIs.

Application Example

esp_err_t do_firmware_upgrade()
{

esp_http_client_config_t config = {
.url = CONFIG_FIRMWARE_UPGRADE_URL,
.cert_pem = (char *)server_cert_pem_start,

};
esp_https_ota_config_t ota_config = {

.http_config = &config,
};
esp_err_t ret = esp_https_ota(&ota_config);
if (ret == ESP_OK) {

esp_restart();
} else {

return ESP_FAIL;
}

(continues on next page)

Espressif Systems 1826
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
return ESP_OK;

}

Server Verification

Please refer to ESP-TLS: TLS Server Verification for more information on server verification. The root certificate (in
PEM format) needs to be provided to the esp_http_client_config_t::cert_pem member.

Note: The server-endpoint root certificate should be used for verification instead of any intermedi-
ate ones from the certificate chain. The reason being that the root certificate has the maximum validity
and usually remains the same for a long period of time. Users can also use the ESP x509 Cer-
tificate Bundle feature for verification, which covers most of the trusted root certificates (using the
esp_http_client_config_t::crt_bundle_attach member).

Partial Image Download over HTTPS

To use partial image download feature, enable partial_http_download configuration in
esp_https_ota_config_t. When this configuration is enabled, firmware image will be downloaded in
multiple HTTP requests of specified size. Maximum content length of each request can be specified by setting
max_http_request_size to required value.
This option is useful while fetching image from a service like AWS S3, where mbedTLS Rx buffer size (CON-
FIG_MBEDTLS_SSL_IN_CONTENT_LEN) can be set to lower value which is not possible without enabling this
configuration.
Default value of mbedTLS Rx buffer size is set to 16K. By using partial_http_download with max_http_request_size
of 4K, size of mbedTLS Rx buffer can be reduced to 4K. With this configuration, memory saving of around 12K is
expected.

Signature Verification

For additional security, signature of OTAfirmware images can be verified. For that, refer Secure OTAUpdatesWithout
Secure boot

Advanced APIs

esp_https_ota also provides advanced APIs which can be used if more information and control is needed during
the OTA process.
Example that uses advanced ESP_HTTPS_OTA APIs: system/ota/advanced_https_ota.

OTA Upgrades with Pre-Encrypted Firmware

To performOTA upgrades with Pre-Encrypted Firmware, please enable CONFIG_ESP_HTTPS_OTA_DECRYPT_CB
in component menuconfig.
Example that performs OTA upgrade with Pre-Encrypted Firmware: system/ota/pre_encrypted_ota.

Espressif Systems 1827
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/ota/advanced_https_ota
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/ota/pre_encrypted_ota
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

OTA System Events

ESP HTTPS OTA has various events for which a handler can be triggered by the Event Loop library when the par-
ticular event occurs. The handler has to be registered using esp_event_handler_register(). This helps
in event handling for ESP HTTPS OTA. esp_https_ota_event_t has all the events which can happen when
performing OTA upgrade using ESP HTTPS OTA.

Event Handler Example

/* Event handler for catching system events */
static void event_handler(void* arg, esp_event_base_t event_base,

int32_t event_id, void* event_data)
{

if (event_base == ESP_HTTPS_OTA_EVENT) {
switch (event_id) {

case ESP_HTTPS_OTA_START:
ESP_LOGI(TAG, "OTA started");
break;

case ESP_HTTPS_OTA_CONNECTED:
ESP_LOGI(TAG, "Connected to server");
break;

case ESP_HTTPS_OTA_GET_IMG_DESC:
ESP_LOGI(TAG, "Reading Image Description");
break;

case ESP_HTTPS_OTA_VERIFY_CHIP_ID:
ESP_LOGI(TAG, "Verifying chip id of new image: %d", *(esp_

↪→chip_id_t *)event_data);
break;

case ESP_HTTPS_OTA_DECRYPT_CB:
ESP_LOGI(TAG, "Callback to decrypt function");
break;

case ESP_HTTPS_OTA_WRITE_FLASH:
ESP_LOGD(TAG, "Writing to flash: %d written", *(int␣

↪→*)event_data);
break;

case ESP_HTTPS_OTA_UPDATE_BOOT_PARTITION:
ESP_LOGI(TAG, "Boot partition updated. Next Partition: %d

↪→", *(esp_partition_subtype_t *)event_data);
break;

case ESP_HTTPS_OTA_FINISH:
ESP_LOGI(TAG, "OTA finish");
break;

case ESP_HTTPS_OTA_ABORT:
ESP_LOGI(TAG, "OTA abort");
break;

}
}

}

Expected data type for different ESP HTTPS OTA events in the system event loop:
• ESP_HTTPS_OTA_START : NULL
• ESP_HTTPS_OTA_CONNECTED : NULL
• ESP_HTTPS_OTA_GET_IMG_DESC : NULL
• ESP_HTTPS_OTA_VERIFY_CHIP_ID : esp_chip_id_t
• ESP_HTTPS_OTA_DECRYPT_CB : NULL
• ESP_HTTPS_OTA_WRITE_FLASH : int
• ESP_HTTPS_OTA_UPDATE_BOOT_PARTITION : esp_partition_subtype_t
• ESP_HTTPS_OTA_FINISH : NULL
• ESP_HTTPS_OTA_ABORT : NULL

Espressif Systems 1828
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/esp_https_ota/include/esp_https_ota.h

Functions
esp_err_t esp_https_ota(const esp_https_ota_config_t *ota_config)

HTTPS OTA Firmware upgrade.
This function allocates HTTPS OTA Firmware upgrade context, establishes HTTPS connection, reads image
data from HTTP stream and writes it to OTA partition and finishes HTTPS OTA Firmware upgrade operation.
This API supports URL redirection, but if CA cert of URLs differ then it should be appended to cert_pem
member of ota_config->http_config.

Note: This API handles the entire OTA operation, so if this API is being used then no other APIs from
esp_https_ota component should be called. If more information and control is needed during the HTTPS
OTA process, then one can use esp_https_ota_begin and subsequent APIs. If this API returns suc-
cessfully, esp_restart() must be called to boot from the new firmware image.

Parameters ota_config -- [in] pointer to esp_https_ota_config_t structure.
Returns

• ESP_OK: OTA data updated, next reboot will use specified partition.
• ESP_FAIL: For generic failure.
• ESP_ERR_INVALID_ARG: Invalid argument
• ESP_ERR_OTA_VALIDATE_FAILED: Invalid app image
• ESP_ERR_NO_MEM: Cannot allocate memory for OTA operation.
• ESP_ERR_FLASH_OP_TIMEOUT or ESP_ERR_FLASH_OP_FAIL: Flash write
failed.

• For other return codes, refer OTA documentation in esp-idf's app_update component.
esp_err_t esp_https_ota_begin(const esp_https_ota_config_t *ota_config, esp_https_ota_handle_t *handle)

Start HTTPS OTA Firmware upgrade.
This function initializes ESP HTTPS OTA context and establishes HTTPS connection. This function must
be invoked first. If this function returns successfully, then esp_https_ota_perform should be called
to continue with the OTA process and there should be a call to esp_https_ota_finish on completion
of OTA operation or on failure in subsequent operations. This API supports URL redirection, but if CA cert
of URLs differ then it should be appended to cert_pem member of http_config, which is a part of
ota_config. In case of error, this API explicitly sets handle to NULL.

Note: This API is blocking, so setting is_async member of http_config structure will result in an
error.

Parameters
• ota_config -- [in] pointer to esp_https_ota_config_t structure
• handle -- [out] pointer to an allocated data of type esp_https_ota_handle_t
which will be initialised in this function

Returns
• ESP_OK: HTTPS OTA Firmware upgrade context initialised and HTTPS connection es-
tablished

• ESP_FAIL: For generic failure.
• ESP_ERR_INVALID_ARG: Invalid argument (missing/incorrect config, certificate, etc.)
• For other return codes, refer documentation in app_update component and esp_http_client
component in esp-idf.

Espressif Systems 1829
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_https_ota/include/esp_https_ota.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_https_ota_perform(esp_https_ota_handle_t https_ota_handle)
Read image data from HTTP stream and write it to OTA partition.
This function reads image data from HTTP stream and writes it to OTA partition. This function must be called
only if esp_https_ota_begin() returns successfully. This function must be called in a loop since it returns after
every HTTP read operation thus giving you the flexibility to stop OTA operation midway.

Parameters https_ota_handle -- [in] pointer to esp_https_ota_handle_t structure
Returns

• ESP_ERR_HTTPS_OTA_IN_PROGRESS: OTA update is in progress, call this API
again to continue.

• ESP_OK: OTA update was successful
• ESP_FAIL: OTA update failed
• ESP_ERR_INVALID_ARG: Invalid argument
• ESP_ERR_INVALID_VERSION: Invalid chip revision in image header
• ESP_ERR_OTA_VALIDATE_FAILED: Invalid app image
• ESP_ERR_NO_MEM: Cannot allocate memory for OTA operation.
• ESP_ERR_FLASH_OP_TIMEOUT or ESP_ERR_FLASH_OP_FAIL: Flash write
failed.

• For other return codes, refer OTA documentation in esp-idf's app_update component.
bool esp_https_ota_is_complete_data_received(esp_https_ota_handle_t https_ota_handle)

Checks if complete data was received or not.

Note: This API can be called just before esp_https_ota_finish() to validate if the complete image was indeed
received.

Parameters https_ota_handle -- [in] pointer to esp_https_ota_handle_t structure
Returns

• false
• true

esp_err_t esp_https_ota_finish(esp_https_ota_handle_t https_ota_handle)
Clean-up HTTPS OTA Firmware upgrade and close HTTPS connection.
This function closes the HTTP connection and frees the ESP HTTPS OTA context. This function switches the
boot partition to the OTA partition containing the new firmware image.

Note: If this API returns successfully, esp_restart() must be called to boot from the new firmware image
esp_https_ota_finish should not be called after calling esp_https_ota_abort

Parameters https_ota_handle -- [in] pointer to esp_https_ota_handle_t structure
Returns

• ESP_OK: Clean-up successful
• ESP_ERR_INVALID_STATE
• ESP_ERR_INVALID_ARG: Invalid argument
• ESP_ERR_OTA_VALIDATE_FAILED: Invalid app image

esp_err_t esp_https_ota_abort(esp_https_ota_handle_t https_ota_handle)
Clean-up HTTPS OTA Firmware upgrade and close HTTPS connection.
This function closes the HTTP connection and frees the ESP HTTPS OTA context.

Note: esp_https_ota_abort should not be called after calling esp_https_ota_finish

Espressif Systems 1830
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters https_ota_handle -- [in] pointer to esp_https_ota_handle_t structure
Returns

• ESP_OK: Clean-up successful
• ESP_ERR_INVALID_STATE: Invalid ESP HTTPS OTA state
• ESP_FAIL: OTA not started
• ESP_ERR_NOT_FOUND: OTA handle not found
• ESP_ERR_INVALID_ARG: Invalid argument

esp_err_t esp_https_ota_get_img_desc(esp_https_ota_handle_t https_ota_handle, esp_app_desc_t
*new_app_info)

Reads app description from image header. The app description provides information like the "Firmware ver-
sion" of the image.

Note: This API can be called only after esp_https_ota_begin() and before esp_https_ota_perform(). Calling
this API is not mandatory.

Parameters
• https_ota_handle -- [in] pointer to esp_https_ota_handle_t structure
• new_app_info -- [out] pointer to an allocated esp_app_desc_t structure

Returns
• ESP_ERR_INVALID_ARG: Invalid arguments
• ESP_ERR_INVALID_STATE: Invalid state to call this API. esp_https_ota_begin() not
called yet.

• ESP_FAIL: Failed to read image descriptor
• ESP_OK: Successfully read image descriptor

int esp_https_ota_get_image_len_read(esp_https_ota_handle_t https_ota_handle)
This function returns OTA image data read so far.

Note: This API should be called only if esp_https_ota_perform() has been called atleast once or if
esp_https_ota_get_img_desc has been called before.

Parameters https_ota_handle -- [in] pointer to esp_https_ota_handle_t structure
Returns

• -1 On failure
• total bytes read so far

int esp_https_ota_get_status_code(esp_https_ota_handle_t https_ota_handle)
This function returns the HTTP status code of the last HTTP response.

Note: This API should be called only after esp_https_ota_begin() has been called. This can be used to check
the HTTP status code of the OTA download process.

Parameters https_ota_handle -- [in] pointer to esp_https_ota_handle_t structure
Returns

• -1 On failure
• HTTP status code

int esp_https_ota_get_image_size(esp_https_ota_handle_t https_ota_handle)
This function returns OTA image total size.

Espressif Systems 1831
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: This API should be called after esp_https_ota_begin() has been already called. This can be used to
create some sort of progress indication (in combination with esp_https_ota_get_image_len_read())

Parameters https_ota_handle -- [in] pointer to esp_https_ota_handle_t structure
Returns

• -1 On failure or chunked encoding
• total bytes of image

Structures

struct esp_https_ota_config_t
ESP HTTPS OTA configuration.

Public Members

const esp_http_client_config_t *http_config
ESP HTTP client configuration

http_client_init_cb_t http_client_init_cb

Callback after ESP HTTP client is initialised

bool bulk_flash_erase
Erase entire flash partition during initialization. By default flash partition is erased during write operation
and in chunk of 4K sector size

bool partial_http_download
Enable Firmware image to be downloaded over multiple HTTP requests

int max_http_request_size
Maximum request size for partial HTTP download

Macros

ESP_ERR_HTTPS_OTA_BASE

ESP_ERR_HTTPS_OTA_IN_PROGRESS

Type Definitions

typedef void *esp_https_ota_handle_t

typedef esp_err_t (*http_client_init_cb_t)(esp_http_client_handle_t)

Enumerations

enum esp_https_ota_event_t

Events generated by OTA process.
Values:

Espressif Systems 1832
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_HTTPS_OTA_START
OTA started

enumerator ESP_HTTPS_OTA_CONNECTED
Connected to server

enumerator ESP_HTTPS_OTA_GET_IMG_DESC
Read app description from image header

enumerator ESP_HTTPS_OTA_VERIFY_CHIP_ID
Verify chip id of new image

enumerator ESP_HTTPS_OTA_DECRYPT_CB
Callback to decrypt function

enumerator ESP_HTTPS_OTA_WRITE_FLASH
Flash write operation

enumerator ESP_HTTPS_OTA_UPDATE_BOOT_PARTITION
Boot partition update after successful ota update

enumerator ESP_HTTPS_OTA_FINISH
OTA finished

enumerator ESP_HTTPS_OTA_ABORT
OTA aborted

2.10.9 Event Loop Library

Overview

The event loop library allows components to declare events to which other components can register handlers -- code
which will execute when those events occur. This allows loosely coupled components to attach desired behavior to
state changes of other components without application involvement. This also simplifies event processing by serial-
izing and deferring code execution to another context.
One common use case is if a high level library is using the WiFi library: it may subscribe to events produced by the
Wi-Fi subsystem directly and act on those events.

Note: Various modules of the Bluetooth stack deliver events to applications via dedicated callback functions instead
of via the Event Loop Library.

Using esp_event APIs

There are two objects of concern for users of this library: events and event loops.
Events are occurrences of note. For example, for Wi-Fi, a successful connection to the access point may be an event.
Events are referenced using a two part identifier which are discussed more here. Event loops are the vehicle by which
events get posted by event sources and handled by event handler functions. These two appear prominently in the event
loop library APIs.
Using this library roughly entails the following flow:

Espressif Systems 1833
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

1. A user defines a function that should run when an event is posted to a loop. This function is referred to as the
event handler. It should have the same signature as esp_event_handler_t.

2. An event loop is created using esp_event_loop_create(), which outputs a handle to the loop of type
esp_event_loop_handle_t. Event loops created using this API are referred to as user event loops.
There is, however, a special type of event loop called the default event loop which are discussed here.

3. Components register event handlers to the loop usingesp_event_handler_register_with(). Han-
dlers can be registered with multiple loops, more on that here.

4. Event sources post an event to the loop using esp_event_post_to().
5. Components wanting to remove their handlers from being called can do so by unregistering from the loop using

esp_event_handler_unregister_with().
6. Event loops which are no longer needed can be deleted using esp_event_loop_delete().

In code, the flow above may look like as follows:

// 1. Define the event handler
void run_on_event(void* handler_arg, esp_event_base_t base, int32_t id, void*␣
↪→event_data)
{

// Event handler logic
}

void app_main()
{

// 2. A configuration structure of type esp_event_loop_args_t is needed to␣
↪→specify the properties of the loop to be

// created. A handle of type esp_event_loop_handle_t is obtained, which is␣
↪→needed by the other APIs to reference the loop

// to perform their operations on.
esp_event_loop_args_t loop_args = {

.queue_size = ...,

.task_name = ...

.task_priority = ...,

.task_stack_size = ...,

.task_core_id = ...
};

esp_event_loop_handle_t loop_handle;

esp_event_loop_create(&loop_args, &loop_handle);

// 3. Register event handler defined in (1). MY_EVENT_BASE and MY_EVENT_ID␣
↪→specifies a hypothetical

// event that handler run_on_event should execute on when it gets posted to␣
↪→the loop.

esp_event_handler_register_with(loop_handle, MY_EVENT_BASE, MY_EVENT_ID, run_
↪→on_event, ...);

...

// 4. Post events to the loop. This queues the event on the event loop. At␣
↪→some point in time

// the event loop executes the event handler registered to the posted event,␣
↪→in this case run_on_event.

// For simplicity sake this example calls esp_event_post_to from app_main, but␣
↪→posting can be done from

// any other tasks (which is the more interesting use case).
esp_event_post_to(loop_handle, MY_EVENT_BASE, MY_EVENT_ID, ...);

...

// 5. Unregistering an unneeded handler
esp_event_handler_unregister_with(loop_handle, MY_EVENT_BASE, MY_EVENT_ID, run_

↪→on_event); (continues on next page)

Espressif Systems 1834
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

...

// 6. Deleting an unneeded event loop
esp_event_loop_delete(loop_handle);

}

Declaring and defining events

As mentioned previously, events consists of two-part identifiers: the event base and the event ID. The event base
identifies an independent group of events; the event ID identifies the event within that group. Think of the event base
and event ID as a person's last name and first name, respectively. A last name identifies a family, and the first name
identifies a person within that family.
The event loop library provides macros to declare and define the event base easily.
Event base declaration:

ESP_EVENT_DECLARE_BASE(EVENT_BASE);

Event base definition:

ESP_EVENT_DEFINE_BASE(EVENT_BASE);

Note: In IDF, the base identifiers for system events are uppercase and are postfixed with _EVENT. For example,
the base for Wi-Fi events is declared and defined as WIFI_EVENT, the Ethernet event base ETHERNET_EVENT,
and so on. The purpose is to have event bases look like constants (although they are global variables considering the
definitions of macros ESP_EVENT_DECLARE_BASE and ESP_EVENT_DEFINE_BASE).

For event ID's, declaring them as enumerations is recommended. Once again, for visibility, these are typically placed
in public header files.
Event ID:

enum {
EVENT_ID_1,
EVENT_ID_2,
EVENT_ID_3,
...

}

Default Event Loop

The default event loop is a special type of loop used for system events (Wi-Fi events, for example). The handle for
this loop is hidden from the user. The creation, deletion, handler registration/unregistration and posting of events is
done through a variant of the APIs for user event loops. The table below enumerates those variants, and the user
event loops equivalent.

User Event Loops Default Event Loops
esp_event_loop_create() esp_event_loop_create_default()
esp_event_loop_delete() esp_event_loop_delete_default()
esp_event_handler_register_with() esp_event_handler_register()
esp_event_handler_unregister_with() esp_event_handler_unregister()
esp_event_post_to() esp_event_post()

Espressif Systems 1835
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

If you compare the signatures for both, they are mostly similar except the for the lack of loop handle specification for
the default event loop APIs.
Other than the API difference and the special designation to which system events are posted to, there is no difference
to how default event loops and user event loops behave. It is even possible for users to post their own events to the
default event loop, should the user opt to not create their own loops to save memory.

Notes on Handler Registration

It is possible to register a single handler to multiple events individually, i.e. using multiple calls to
esp_event_handler_register_with(). For those multiple calls, the specific event base and event ID
can be specified with which the handler should execute.
However, in some cases it is desirable for a handler to execute on (1) all events that get posted to a loop or (2) all events
of a particular base identifier. This is possible using the special event base identifier ESP_EVENT_ANY_BASE and
special event ID ESP_EVENT_ANY_ID. These special identifiers may be passed as the event base and event ID
arguments for esp_event_handler_register_with().
Therefore, the valid arguments to esp_event_handler_register_with() are:

1. <event base>, <event ID> - handler executes when the event with base <event base> and event ID <event ID>
gets posted to the loop

2. <event base>, ESP_EVENT_ANY_ID - handler executes when any event with base <event base> gets posted
to the loop

3. ESP_EVENT_ANY_BASE, ESP_EVENT_ANY_ID - handler executes when any event gets posted to the
loop

As an example, suppose the following handler registrations were performed:

esp_event_handler_register_with(loop_handle, MY_EVENT_BASE, MY_EVENT_ID, run_on_
↪→event_1, ...);
esp_event_handler_register_with(loop_handle, MY_EVENT_BASE, ESP_EVENT_ANY_ID, run_
↪→on_event_2, ...);
esp_event_handler_register_with(loop_handle, ESP_EVENT_ANY_BASE, ESP_EVENT_ANY_ID,␣
↪→run_on_event_3, ...);

If the hypothetical event MY_EVENT_BASE, MY_EVENT_ID is posted, all three handlers run_on_event_1,
run_on_event_2, and run_on_event_3 would execute.
If the hypothetical event MY_EVENT_BASE, MY_OTHER_EVENT_ID is posted, only run_on_event_2 and
run_on_event_3 would execute.
If the hypothetical event MY_OTHER_EVENT_BASE, MY_OTHER_EVENT_ID is posted, only
run_on_event_3 would execute.

Handler Un-registering Itself In general, an event handler run by an event loop is not allowed to do any
(un)registering activity on that event loop. There is one exception, though: un-registering itself is allowed for the
handler. E.g., it is possible to do the following:

void run_on_event(void* handler_arg, esp_event_base_t base, int32_t id, void*␣
↪→event_data)
{

esp_event_loop_handle_t *loop_handle = (esp_event_loop_handle_t*) handler_arg;
esp_event_handler_unregister_with(*loop_handle, MY_EVENT_BASE, MY_EVENT_ID,␣

↪→run_on_event);
}

void app_main(void)
{

esp_event_loop_handle_t loop_handle;
esp_event_loop_create(&loop_args, &loop_handle);

(continues on next page)

Espressif Systems 1836
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
esp_event_handler_register_with(loop_handle, MY_EVENT_BASE, MY_EVENT_ID, run_

↪→on_event, &loop_handle);
// ... post event MY_EVENT_BASE, MY_EVENT_ID and run loop at some point

}

Handler Registration and Handler Dispatch Order The general rule is that for handlers that match a certain
posted event during dispatch, those which are registered first also gets executed first. The user can then control which
handlers get executed first by registering them before other handlers, provided that all registrations are performed
using a single task. If the user plans to take advantage of this behavior, caution must be exercised if there are multiple
tasks registering handlers. While the 'first registered, first executed' behavior still holds true, the task which gets
executed first will also get their handlers registered first. Handlers registered one after the other by a single task
will still be dispatched in the order relative to each other, but if that task gets pre-empted in between registration by
another task which also registers handlers; then during dispatch those handlers will also get executed in between.

Event loop profiling

A configuration option CONFIG_ESP_EVENT_LOOP_PROFILING can be enabled in order to activate statistics col-
lection for all event loops created. The function esp_event_dump() can be used to output the collected statistics
to a file stream. More details on the information included in the dump can be found in the esp_event_dump()
API Reference.

Application Example

Examples on using the esp_event library can be found in system/esp_event. The examples cover event declaration,
loop creation, handler registration and unregistration and event posting.
Other examples which also adopt esp_event library:

• NMEA Parser , which will decode the statements received from GPS.

API Reference

Header File
• components/esp_event/include/esp_event.h

Functions
esp_err_t esp_event_loop_create(const esp_event_loop_args_t *event_loop_args,

esp_event_loop_handle_t *event_loop)
Create a new event loop.

Parameters
• event_loop_args -- [in] configuration structure for the event loop to create
• event_loop -- [out] handle to the created event loop

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_ARG: event_loop_args or event_loop was NULL
• ESP_ERR_NO_MEM: Cannot allocate memory for event loops list
• ESP_FAIL: Failed to create task loop
• Others: Fail

esp_err_t esp_event_loop_delete(esp_event_loop_handle_t event_loop)
Delete an existing event loop.

Parameters event_loop -- [in] event loop to delete, must not be NULL
Returns

Espressif Systems 1837
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/esp_event
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/peripherals/uart/nmea0183_parser
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_event/include/esp_event.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_OK: Success
• Others: Fail

esp_err_t esp_event_loop_create_default(void)
Create default event loop.

Returns
• ESP_OK: Success
• ESP_ERR_NO_MEM: Cannot allocate memory for event loops list
• ESP_ERR_INVALID_STATE: Default event loop has already been created
• ESP_FAIL: Failed to create task loop
• Others: Fail

esp_err_t esp_event_loop_delete_default(void)
Delete the default event loop.

Returns
• ESP_OK: Success
• Others: Fail

esp_err_t esp_event_loop_run(esp_event_loop_handle_t event_loop, TickType_t ticks_to_run)
Dispatch events posted to an event loop.
This function is used to dispatch events posted to a loop with no dedicated task, i.e. task name was set to
NULL in event_loop_args argument during loop creation. This function includes an argument to limit the
amount of time it runs, returning control to the caller when that time expires (or some time afterwards). There
is no guarantee that a call to this function will exit at exactly the time of expiry. There is also no guarantee that
events have been dispatched during the call, as the function might have spent all the allotted time waiting on
the event queue. Once an event has been dequeued, however, it is guaranteed to be dispatched. This guarantee
contributes to not being able to exit exactly at time of expiry as (1) blocking on internal mutexes is necessary
for dispatching the dequeued event, and (2) during dispatch of the dequeued event there is no way to control the
time occupied by handler code execution. The guaranteed time of exit is therefore the allotted time + amount
of time required to dispatch the last dequeued event.
In cases where waiting on the queue times out, ESP_OK is returned and not ESP_ERR_TIMEOUT, since it
is normal behavior.

Note: encountering an unknown event that has been posted to the loop will only generate a warning, not an
error.

Parameters
• event_loop -- [in] event loop to dispatch posted events from, must not be NULL
• ticks_to_run -- [in] number of ticks to run the loop

Returns
• ESP_OK: Success
• Others: Fail

esp_err_t esp_event_handler_register(esp_event_base_t event_base, int32_t event_id,
esp_event_handler_t event_handler, void *event_handler_arg)

Register an event handler to the system event loop (legacy).
This function can be used to register a handler for either: (1) specific events, (2) all events of a certain event
base, or (3) all events known by the system event loop.

• specific events: specify exact event_base and event_id
• all events of a certain base: specify exact event_base and use ESP_EVENT_ANY_ID as the event_id
• all events known by the loop: use ESP_EVENT_ANY_BASE for event_base and
ESP_EVENT_ANY_ID as the event_id

Espressif Systems 1838
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Registering multiple handlers to events is possible. Registering a single handler to multiple events is also
possible. However, registering the same handler to the same event multiple times would cause the previous
registrations to be overwritten.

Note: the event loop library does not maintain a copy of event_handler_arg, therefore the user should ensure
that event_handler_arg still points to a valid location by the time the handler gets called

Parameters
• event_base -- [in] the base ID of the event to register the handler for
• event_id -- [in] the ID of the event to register the handler for
• event_handler -- [in] the handler function which gets called when the event is dis-
patched

• event_handler_arg -- [in] data, aside from event data, that is passed to the handler
when it is called

Returns
• ESP_OK: Success
• ESP_ERR_NO_MEM: Cannot allocate memory for the handler
• ESP_ERR_INVALID_ARG: Invalid combination of event base and event ID
• Others: Fail

esp_err_t esp_event_handler_register_with(esp_event_loop_handle_t event_loop, esp_event_base_t
event_base, int32_t event_id, esp_event_handler_t
event_handler, void *event_handler_arg)

Register an event handler to a specific loop (legacy).
This function behaves in the same manner as esp_event_handler_register, except the additional specification
of the event loop to register the handler to.

Note: the event loop library does not maintain a copy of event_handler_arg, therefore the user should ensure
that event_handler_arg still points to a valid location by the time the handler gets called

Parameters
• event_loop -- [in] the event loop to register this handler function to, must not beNULL
• event_base -- [in] the base ID of the event to register the handler for
• event_id -- [in] the ID of the event to register the handler for
• event_handler -- [in] the handler function which gets called when the event is dis-
patched

• event_handler_arg -- [in] data, aside from event data, that is passed to the handler
when it is called

Returns
• ESP_OK: Success
• ESP_ERR_NO_MEM: Cannot allocate memory for the handler
• ESP_ERR_INVALID_ARG: Invalid combination of event base and event ID
• Others: Fail

esp_err_t esp_event_handler_instance_register_with(esp_event_loop_handle_t event_loop,
esp_event_base_t event_base, int32_t
event_id, esp_event_handler_t
event_handler, void *event_handler_arg,
esp_event_handler_instance_t *instance)

Register an instance of event handler to a specific loop.
This function can be used to register a handler for either: (1) specific events, (2) all events of a certain event
base, or (3) all events known by the system event loop.

Espressif Systems 1839
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• specific events: specify exact event_base and event_id
• all events of a certain base: specify exact event_base and use ESP_EVENT_ANY_ID as the event_id
• all events known by the loop: use ESP_EVENT_ANY_BASE for event_base and
ESP_EVENT_ANY_ID as the event_id

Besides the error, the function returns an instance object as output parameter to identify each registration. This
is necessary to remove (unregister) the registration before the event loop is deleted.
Registering multiple handlers to events, registering a single handler to multiple events as well as registering the
same handler to the same event multiple times is possible. Each registration yields a distinct instance object
which identifies it over the registration lifetime.

Note: the event loop library does not maintain a copy of event_handler_arg, therefore the user should ensure
that event_handler_arg still points to a valid location by the time the handler gets called

Parameters
• event_loop -- [in] the event loop to register this handler function to, must not beNULL
• event_base -- [in] the base ID of the event to register the handler for
• event_id -- [in] the ID of the event to register the handler for
• event_handler -- [in] the handler function which gets called when the event is dis-
patched

• event_handler_arg -- [in] data, aside from event data, that is passed to the handler
when it is called

• instance -- [out] An event handler instance object related to the registered event han-
dler and data, can be NULL. This needs to be kept if the specific callback instance should
be unregistered before deleting the whole event loop. Registering the same event handler
multiple times is possible and yields distinct instance objects. The data can be the same
for all registrations. If no unregistration is needed, but the handler should be deleted when
the event loop is deleted, instance can be NULL.

Returns
• ESP_OK: Success
• ESP_ERR_NO_MEM: Cannot allocate memory for the handler
• ESP_ERR_INVALID_ARG: Invalid combination of event base and event ID or instance
is NULL

• Others: Fail

esp_err_t esp_event_handler_instance_register(esp_event_base_t event_base, int32_t event_id,
esp_event_handler_t event_handler, void
*event_handler_arg,
esp_event_handler_instance_t *instance)

Register an instance of event handler to the default loop.
This function does the same as esp_event_handler_instance_register_with, except that it registers the handler
to the default event loop.

Note: the event loop library does not maintain a copy of event_handler_arg, therefore the user should ensure
that event_handler_arg still points to a valid location by the time the handler gets called

Parameters
• event_base -- [in] the base ID of the event to register the handler for
• event_id -- [in] the ID of the event to register the handler for
• event_handler -- [in] the handler function which gets called when the event is dis-
patched

• event_handler_arg -- [in] data, aside from event data, that is passed to the handler
when it is called

Espressif Systems 1840
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• instance -- [out] An event handler instance object related to the registered event han-
dler and data, can be NULL. This needs to be kept if the specific callback instance should
be unregistered before deleting the whole event loop. Registering the same event handler
multiple times is possible and yields distinct instance objects. The data can be the same
for all registrations. If no unregistration is needed, but the handler should be deleted when
the event loop is deleted, instance can be NULL.

Returns
• ESP_OK: Success
• ESP_ERR_NO_MEM: Cannot allocate memory for the handler
• ESP_ERR_INVALID_ARG: Invalid combination of event base and event ID or instance
is NULL

• Others: Fail

esp_err_t esp_event_handler_unregister(esp_event_base_t event_base, int32_t event_id,
esp_event_handler_t event_handler)

Unregister a handler with the system event loop (legacy).
Unregisters a handler, so it will no longer be called during dispatch. Handlers can be unregistered for any com-
bination of event_base and event_id which were previously registered. To unregister a handler, the event_base
and event_id arguments must match exactly the arguments passed to esp_event_handler_register() when that
handler was registered. Passing ESP_EVENT_ANY_BASE and/or ESP_EVENT_ANY_ID will only unreg-
ister handlers that were registered with the same wildcard arguments.

Note: When using ESP_EVENT_ANY_ID, handlers registered to specific event IDs using the same base
will not be unregistered. When using ESP_EVENT_ANY_BASE, events registered to specific bases will also
not be unregistered. This avoids accidental unregistration of handlers registered by other users or components.

Parameters
• event_base -- [in] the base of the event with which to unregister the handler
• event_id -- [in] the ID of the event with which to unregister the handler
• event_handler -- [in] the handler to unregister

Returns ESP_OK success
Returns ESP_ERR_INVALID_ARG invalid combination of event base and event ID
Returns others fail

esp_err_t esp_event_handler_unregister_with(esp_event_loop_handle_t event_loop,
esp_event_base_t event_base, int32_t event_id,
esp_event_handler_t event_handler)

Unregister a handler from a specific event loop (legacy).
This function behaves in the same manner as esp_event_handler_unregister, except the additional specification
of the event loop to unregister the handler with.

Parameters
• event_loop -- [in] the event loop with which to unregister this handler function, must
not be NULL

• event_base -- [in] the base of the event with which to unregister the handler
• event_id -- [in] the ID of the event with which to unregister the handler
• event_handler -- [in] the handler to unregister

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_ARG: Invalid combination of event base and event ID
• Others: Fail

esp_err_t esp_event_handler_instance_unregister_with(esp_event_loop_handle_t event_loop,
esp_event_base_t event_base, int32_t
event_id, esp_event_handler_instance_t
instance)

Espressif Systems 1841
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Unregister a handler instance from a specific event loop.
Unregisters a handler instance, so it will no longer be called during dispatch. Handler instances can
be unregistered for any combination of event_base and event_id which were previously registered. To
unregister a handler instance, the event_base and event_id arguments must match exactly the argu-
ments passed to esp_event_handler_instance_register() when that handler instance was registered. Passing
ESP_EVENT_ANY_BASE and/or ESP_EVENT_ANY_ID will only unregister handler instances that were
registered with the same wildcard arguments.

Note: When using ESP_EVENT_ANY_ID, handlers registered to specific event IDs using the same base
will not be unregistered. When using ESP_EVENT_ANY_BASE, events registered to specific bases will also
not be unregistered. This avoids accidental unregistration of handlers registered by other users or components.

Parameters
• event_loop -- [in] the event loop with which to unregister this handler function, must
not be NULL

• event_base -- [in] the base of the event with which to unregister the handler
• event_id -- [in] the ID of the event with which to unregister the handler
• instance -- [in] the instance object of the registration to be unregistered

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_ARG: Invalid combination of event base and event ID
• Others: Fail

esp_err_t esp_event_handler_instance_unregister(esp_event_base_t event_base, int32_t event_id,
esp_event_handler_instance_t instance)

Unregister a handler from the system event loop.
This function does the same as esp_event_handler_instance_unregister_with, except that it unregisters the
handler instance from the default event loop.

Parameters
• event_base -- [in] the base of the event with which to unregister the handler
• event_id -- [in] the ID of the event with which to unregister the handler
• instance -- [in] the instance object of the registration to be unregistered

Returns
• ESP_OK: Success
• ESP_ERR_INVALID_ARG: Invalid combination of event base and event ID
• Others: Fail

esp_err_t esp_event_post(esp_event_base_t event_base, int32_t event_id, const void *event_data, size_t
event_data_size, TickType_t ticks_to_wait)

Posts an event to the system default event loop. The event loop library keeps a copy of event_data and manages
the copy's lifetime automatically (allocation + deletion); this ensures that the data the handler receives is always
valid.

Parameters
• event_base -- [in] the event base that identifies the event
• event_id -- [in] the event ID that identifies the event
• event_data -- [in] the data, specific to the event occurrence, that gets passed to the
handler

• event_data_size -- [in] the size of the event data
• ticks_to_wait -- [in] number of ticks to block on a full event queue

Returns
• ESP_OK: Success
• ESP_ERR_TIMEOUT: Time to wait for event queue to unblock expired, queue full when
posting from ISR

Espressif Systems 1842
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_ARG: Invalid combination of event base and event ID
• Others: Fail

esp_err_t esp_event_post_to(esp_event_loop_handle_t event_loop, esp_event_base_t event_base, int32_t
event_id, const void *event_data, size_t event_data_size, TickType_t
ticks_to_wait)

Posts an event to the specified event loop. The event loop library keeps a copy of event_data and manages the
copy's lifetime automatically (allocation + deletion); this ensures that the data the handler receives is always
valid.
This function behaves in the same manner as esp_event_post, except the additional specification of the event
loop to post the event to.

Parameters
• event_loop -- [in] the event loop to post to, must not be NULL
• event_base -- [in] the event base that identifies the event
• event_id -- [in] the event ID that identifies the event
• event_data -- [in] the data, specific to the event occurrence, that gets passed to the
handler

• event_data_size -- [in] the size of the event data
• ticks_to_wait -- [in] number of ticks to block on a full event queue

Returns
• ESP_OK: Success
• ESP_ERR_TIMEOUT: Time to wait for event queue to unblock expired, queue full when
posting from ISR

• ESP_ERR_INVALID_ARG: Invalid combination of event base and event ID
• Others: Fail

esp_err_t esp_event_isr_post(esp_event_base_t event_base, int32_t event_id, const void *event_data,
size_t event_data_size, BaseType_t *task_unblocked)

Special variant of esp_event_post for posting events from interrupt handlers.

Note: this function is only available when CONFIG_ESP_EVENT_POST_FROM_ISR is enabled

Note: when this function is called from an interrupt handler placed in IRAM, this function should be placed
in IRAM as well by enabling CONFIG_ESP_EVENT_POST_FROM_IRAM_ISR

Parameters
• event_base -- [in] the event base that identifies the event
• event_id -- [in] the event ID that identifies the event
• event_data -- [in] the data, specific to the event occurrence, that gets passed to the
handler

• event_data_size -- [in] the size of the event data; max is 4 bytes
• task_unblocked -- [out] an optional parameter (can be NULL) which indicates that
an event task with higher priority than currently running task has been unblocked by the
posted event; a context switch should be requested before the interrupt is existed.

Returns
• ESP_OK: Success
• ESP_FAIL: Event queue for the default event loop full
• ESP_ERR_INVALID_ARG: Invalid combination of event base and event ID, data size of
more than 4 bytes

• Others: Fail

esp_err_t esp_event_isr_post_to(esp_event_loop_handle_t event_loop, esp_event_base_t event_base,
int32_t event_id, const void *event_data, size_t event_data_size,
BaseType_t *task_unblocked)

Espressif Systems 1843
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Special variant of esp_event_post_to for posting events from interrupt handlers.

Note: this function is only available when CONFIG_ESP_EVENT_POST_FROM_ISR is enabled

Note: when this function is called from an interrupt handler placed in IRAM, this function should be placed
in IRAM as well by enabling CONFIG_ESP_EVENT_POST_FROM_IRAM_ISR

Parameters
• event_loop -- [in] the event loop to post to, must not be NULL
• event_base -- [in] the event base that identifies the event
• event_id -- [in] the event ID that identifies the event
• event_data -- [in] the data, specific to the event occurrence, that gets passed to the
handler

• event_data_size -- [in] the size of the event data
• task_unblocked -- [out] an optional parameter (can be NULL) which indicates that
an event task with higher priority than currently running task has been unblocked by the
posted event; a context switch should be requested before the interrupt is existed.

Returns
• ESP_OK: Success
• ESP_FAIL: Event queue for the loop full
• ESP_ERR_INVALID_ARG: Invalid combination of event base and event ID, data size of
more than 4 bytes

• Others: Fail

esp_err_t esp_event_dump(FILE *file)
Dumps statistics of all event loops.
Dumps event loop info in the format:

event loop
handler
handler
...

event loop
handler
handler
...

where:

event loop
format: address,name rx:total_received dr:total_dropped
where:

address - memory address of the event loop
name - name of the event loop, 'none' if no dedicated task
total_received - number of successfully posted events
total_dropped - number of events unsuccessfully posted due to queue␣

↪→being full

handler
format: address ev:base,id inv:total_invoked run:total_runtime
where:

address - address of the handler function
base,id - the event specified by event base and ID this handler␣

↪→executes
(continues on next page)

Espressif Systems 1844
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
total_invoked - number of times this handler has been invoked
total_runtime - total amount of time used for invoking this handler

Note: this function is a noop when CONFIG_ESP_EVENT_LOOP_PROFILING is disabled

Parameters file -- [in] the file stream to output to
Returns

• ESP_OK: Success
• ESP_ERR_NO_MEM: Cannot allocate memory for event loops list
• Others: Fail

Structures

struct esp_event_loop_args_t
Configuration for creating event loops.

Public Members

int32_t queue_size
size of the event loop queue

const char *task_name
name of the event loop task; if NULL, a dedicated task is not created for event loop

UBaseType_t task_priority
priority of the event loop task, ignored if task name is NULL

uint32_t task_stack_size
stack size of the event loop task, ignored if task name is NULL

BaseType_t task_core_id
core to which the event loop task is pinned to, ignored if task name is NULL

Header File
• components/esp_event/include/esp_event_base.h

Macros
ESP_EVENT_DECLARE_BASE(id)
ESP_EVENT_DEFINE_BASE(id)

ESP_EVENT_ANY_BASE

register handler for any event base

ESP_EVENT_ANY_ID

register handler for any event id

Espressif Systems 1845
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_event/include/esp_event_base.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef void *esp_event_loop_handle_t
a number that identifies an event with respect to a base

typedef void (*esp_event_handler_t)(void *event_handler_arg, esp_event_base_t event_base, int32_t
event_id, void *event_data)

function called when an event is posted to the queue

typedef void *esp_event_handler_instance_t
context identifying an instance of a registered event handler

Related Documents

2.10.10 FreeRTOS (Overview)

Overview

FreeRTOS is an open source real-time operating system kernel that acts as the operating system for ESP-IDF ap-
plications and is integrated into ESP-IDF as a component. The FreeRTOS component in ESP-IDF contains ports
of the FreeRTOS kernel for all the CPU architectures used by ESP targets (i.e., Xtensa and RISC-V). Furthermore,
ESP-IDF provides different implementations of FreeRTOS in order to support SMP (Symmetric Multiprocessing)
on multi-core ESP targets. This document provides an overview of the FreeRTOS component, the FreeRTOS im-
plementations offered by ESP-IDF, and the common aspects across all implementations.

Implementations

The official FreeRTOS (henceforth referred to as Vanilla FreeRTOS) is a single-core RTOS. In order to support the
various multi-core ESP targets, ESP-IDF supports different FreeRTOS implementations, namely ESP-IDF FreeR-
TOS and Amazon SMP FreeRTOS.

ESP-IDF FreeRTOS ESP-IDF FreeRTOS is a FreeRTOS implementation based on Vanilla FreeRTOS v10.4.3,
but contains significant modifications to support SMP. ESP-IDF FreeRTOS only supports two cores at most (i.e.,
dual core SMP), but is more optimized for this scenario by design. For more details regarding ESP-IDF FreeRTOS
and its modifications, please refer to the FreeRTOS (ESP-IDF) document.

Note: ESP-IDF FreeRTOS is currently the default FreeRTOS implementation for ESP-IDF.

Amazon SMP FreeRTOS Amazon SMP FreeRTOS is an SMP implementation of FreeRTOS that is officially
supported by Amazon. Amazon SMP FreeRTOS is able to support N-cores (i.e., more than two cores). Amazon
SMP FreeRTOS can be enabled via the CONFIG_FREERTOS_SMP option. For more details regarding Amazon SMP
FreeRTOS, please refer to the official Amazon SMP FreeRTOS documentation.

Warning: The Amazon SMP FreeRTOS implementation (and its port in ESP-IDF) are currently in experimen-
tal/beta state. Therefore, significant behavioral changes and breaking API changes can occur.

Configuration

Kernel Configuration Vanilla FreeRTOS requires that ports and applications configure the kernel by adding var-
ious #define config... macros to FreeRTOSConfig.h. Vanilla FreeRTOS supports a list of kernel
configuration options which allow various kernel behaviors and features to be enabled or disabled.

Espressif Systems 1846
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.freertos.org/index.html
https://freertos.org/symmetric-multiprocessing-introduction.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

However, for all FreeRTOS ports in ESP-IDF, the ``FreeRTOSConfig.h`` file is considered private and must
not bemodified by users. A large number of kernel configuration options in FreeRTOSConfig.h are hard coded
as they are either required or not supported in ESP-IDF. All kernel configuration options that are configurable by the
user will be exposed via menuconfig under Component Config/FreeRTOS/Kernel.
For the full list of user configurable kernel options, see Project Configuration. The list below highlights some com-
monly used kernel configuration options:

• CONFIG_FREERTOS_UNICORE will run FreeRTOS only on CPU0. Note that this is not equivalent to run-
ning Vanilla FreeRTOS. Furthermore, this option may affect behavior of components other than freertos.
For more details regarding the effects of running FreeRTOS on a single core, refer to ESP-IDF FreeRTOS Sin-
gle Core (if using ESP-IDF FreeRTOS) or the official Amazon SMP FreeRTOS documentation. Alternatively,
users can also search for occurrences of CONFIG_FREERTOS_UNICORE in the ESP-IDF components.

Note: As ESP32-C6 is a single core SoC, the CONFIG_FREERTOS_UNICORE configuration is always set.

• CONFIG_FREERTOS_ENABLE_BACKWARD_COMPATIBILITY enables backward compatibility with some
FreeRTOS macros/types/functions that were deprecated from v8.0 onwards.

Port Configuration All other FreeRTOS related configuration options that are not part of the kernel configuration
are exposed via menuconfig under Component Config/FreeRTOS/Port. These options configure aspects
such as:

• The FreeRTOS ports themselves (e.g., tick timer selection, ISR stack size)
• Additional features added to the FreeRTOS implementation or ports

Using FreeRTOS

Application Entry Point Unlike Vanilla FreeRTOS, users of FreeRTOS in ESP-IDF must never call
vTaskStartScheduler() and vTaskEndScheduler(). Instead, ESP-IDF will start FreeRTOS automat-
ically. Users must define a void app_main(void) function which acts as the entry point for user's application
and is automatically called on ESP-IDF startup.

• Typically, users would spawn the rest of their application's task from app_main.
• The app_main function is allowed to return at any point (i.e., before the application terminates).
• The app_main function is called from the main task.

Background Tasks During startup, ESP-IDF and FreeRTOS will automatically create multiple tasks that run in
the background (listed in the the table below).

Espressif Systems 1847
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/components/freertos
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Table 8: List of Tasks Created During Startup
Task
Name

Description Stack
Size

Affin-
ity

Pri-
or-
ity

Idle
Tasks
(IDLEx)

An idle task (IDLEx) is created for (and pinned to) each CPU core, where x is the
CPU core's number. The x is dropped when single-core configuration is enabled.

CON-
FIG_FREERTOS_IDLE_TASK_STACKSIZE

CPUx0

FreeR-
TOS
Timer
Task
(Tmr
Svc)

FreeRTOS will create the Timer Service/Daemon Task if any FreeRTOS Timer
APIs are called by the application.

CON-
FIG_FREERTOS_TIMER_TASK_STACK_DEPTH

CPU0CON-
FIG_FREERTOS_TIMER_TASK_PRIORITY

Main
Task
(main)

Task that simply calls app_main. This task will self delete when app_main re-
turns

CON-
FIG_ESP_MAIN_TASK_STACK_SIZE

CON-
FIG_ESP_MAIN_TASK_AFFINITY

1

IPC
Tasks
(ipcx)

When CONFIG_FREERTOS_UNICORE is false, an IPC task (ipcx) is created for
(and pinned to) each CPU. IPC tasks are used to implement the Inter-processor Call
(IPC) feature.

CON-
FIG_ESP_IPC_TASK_STACK_SIZE

CPUx24

ESP
Timer
Task
(esp_timer)

ESP-IDF will create the ESP Timer Task used to process ESP Timer callbacks. CON-
FIG_ESP_TIMER_TASK_STACK_SIZE

CPU022

Note: Note that if an application uses other ESP-IDF features (e.g., WiFi or Bluetooth), those features may create
their own background tasks in addition to the tasks listed in the table above.

FreeRTOS Additions

ESP-IDF provides some supplemental features to FreeRTOS such as Ring Buffers, ESP-IDF style Tick and Idle
Hooks, and TLSP deletion callbacks. See FreeRTOS (Supplemental Features) for more details.

FreeRTOS Heap

Vanilla FreeRTOS provides its own selection of heap implementations. However, ESP-IDF already implements
its own heap (see Heap Memory Allocation), thus ESP-IDF does not make use of the heap implementations
provided by Vanilla FreeRTOS. All FreeRTOS ports in ESP-IDF map FreeRTOS memory allocation/free calls
(e.g., pvPortMalloc() and pvPortFree()) to ESP-IDF heap API (i.e., heap_caps_malloc() and
heap_caps_free()). However, the FreeRTOS ports ensure that all dynamic memory allocated by FreeRTOS
is placed in internal memory.

Note: If users wish to place FreeRTOS tasks/objects in external memory, users can use the following methods:
• Allocate the task/object using one of the ...CreateWithCaps() API such as xTaskCreateWith-
Caps() and xQueueCreateWithCaps() (see IDF Additional API for more details).

• Manually allocate external memory for those objects using heap_caps_malloc(), then create the objects
from the allocated memory using on of the ...CreateStatic() FreeRTOS functions.

2.10.11 FreeRTOS (ESP-IDF)

Espressif Systems 1848
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.freertos.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Overview

The original FreeRTOS (hereinafter referred to as Vanilla FreeRTOS) is a small and efficient Real Time Operating
System supported onmany single-coreMCUs and SoCs. However, to support numerous dual core ESP targets (such as
the ESP32 and ESP32-S3), ESP-IDF provides a dual core SMP (SymmetricMultiprocessing) capable implementation
of FreeRTOS, (hereinafter referred to as ESP-IDF FreeRTOS).
ESP-IDF FreeRTOS is based on Vanilla FreeRTOS v10.4.3, but contains significant modifications to both API and
kernel behavior in order to support dual core SMP. This document describes the API and behavioral differences
between Vanilla FreeRTOS and ESP-IDF FreeRTOS.

Note: This document assumes that the reader has a requisite understanding of Vanilla FreeRTOS (its features,
behavior, and API usage). Refer to the Vanilla FreeRTOS documentation for more details.

Note: ESP-IDF FreeRTOS can be built for single core by enabling the CONFIG_FREERTOS_UNICORE configu-
ration option. ESP targets that are single core will always have the CONFIG_FREERTOS_UNICORE option enabled.
However, note that building with CONFIG_FREERTOS_UNICORE enabled does not equate to building with Vanilla
FreeRTOS (i.e., some of the behavioral and API changes of ESP-IDF will still be present). For more details, see
ESP-IDF FreeRTOS Single Core for more details.

This document is split into the following parts.

Contents

• FreeRTOS (ESP-IDF)
– Overview
– Symmetric Multiprocessing
– Tasks
– SMP Scheduler
– Critical Sections
– Misc
– API Reference

Symmetric Multiprocessing

Basic Concepts SMP (Symmetric Multiprocessing) is a computing architecture where two or more identical CPUs
(cores) are connected to a single shared main memory and controlled by a single operating system. In general, an
SMP system...

• has multiple cores running independently. Each core has its own register file, interrupts, and interrupt handling.
• presents an identical view of memory to each core. Thus a piece of code that accesses a particular memory
address will have the same effect regardless of which core it runs on.

The main advantages of an SMP system compared to single core or Asymmetric Multiprocessing systems are that...
• the presence of multiple CPUs allows for multiple hardware threads, thus increases overall processing through-
put.

• having symmetric memory means that threads can switch cores during execution. This in general can lead to
better CPU utilization.

Although an SMP system allows threads to switch cores, there are scenarios where a thread must/should only run on
a particular core. Therefore, threads in an SMP systems will also have a core affinity that specifies which particular
core the thread is allowed to run on.

• A thread that is pinned to a particular core will only be able to run on that core

Espressif Systems 1849
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.freertos.org/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• A thread that is unpinned will be allowed to switch between cores during execution instead of being pinned to
a particular core.

SMP on an ESP Target ESP targets (such as the ESP32, ESP32-S3) are dual core SMP SoCs. These targets have
the following hardware features that make them SMP capable:

• Two identical cores known as CPU0 (i.e., Protocol CPU or PRO_CPU) and CPU1 (i.e., Application CPU or
APP_CPU). This means that the execution of a piece of code is identical regardless of which core it runs on.

• Symmetric memory (with some small exceptions).
– If multiple cores access the same memory address, their access will be serialized at the memory bus level.
– True atomic access to the same memory address is achieved via an atomic compare-and-swap instruction
provided by the ISA.

• Cross-core interrupts that allow one CPU to trigger and interrupt on another CPU. This allows cores to signal
each other.

Note: The "PRO_CPU" and "APP_CPU" aliases for CPU0 and CPU1 exist in ESP-IDF as they reflect how typical
IDF applications will utilize the two CPUs. Typically, the tasks responsible for handling wireless networking (e.g.,
WiFi or Bluetooth) will be pinned to CPU0 (thus the name PRO_CPU), whereas the tasks handling the remainder
of the application will be pinned to CPU1 (thus the name APP_CPU).

Tasks

Creation Vanilla FreeRTOS provides the following functions to create a task:
• xTaskCreate() creates a task. The task's memory is dynamically allocated
• xTaskCreateStatic() creates a task. The task's memory is statically allocated (i.e., provided by the
user)

However, in an SMP system, tasks need to be assigned a particular affinity. Therefore, ESP-IDF provides a Pinned-
ToCore version of Vanilla FreeRTOS's task creation functions:

• xTaskCreatePinnedToCore() creates a task with a particular core affinity. The task's memory is dy-
namically allocated.

• xTaskCreateStaticPinnedToCore() creates a task with a particular core affinity. The task's mem-
ory is statically allocated (i.e., provided by the user)

The PinnedToCore versions of the task creation functions API differ from their vanilla counter parts by having
an extra xCoreID parameter that is used to specify the created task's core affinity. The valid values for core affinity
are:

• 0 which pins the created task to CPU0
• 1 which pins the created task to CPU1
• tskNO_AFFINITY which allows the task to be run on both CPUs

Note that ESP-IDF FreeRTOS still supports the vanilla versions of the task creation functions. However, they have
been modified to simply call their PinnedToCore counterparts with tskNO_AFFINITY.

Note: ESP-IDF FreeRTOS also changes the units of ulStackDepth in the task creation functions. Task stack
sizes in Vanilla FreeRTOS are specified in number of words, whereas in ESP-IDF FreeRTOS, the task stack sizes
are specified in bytes.

Execution The anatomy of a task in ESP-IDF FreeRTOS is the same as Vanilla FreeRTOS. More specifically,
ESP-IDF FreeRTOS tasks:

• Can only be in one of following states: Running, Ready, Blocked, or Suspended.
• Task functions are typically implemented as an infinite loop
• Task functions should never return

Espressif Systems 1850
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Deletion Task deletion in Vanilla FreeRTOS is called via vTaskDelete(). The function allows deletion of
another task or the currently running task (if the provided task handle is NULL). The actual freeing of the task's
memory is sometimes delegated to the idle task (if the task being deleted is the currently running task).
ESP-IDF FreeRTOS provides the same vTaskDelete() function. However, due to the dual core nature, there
are some behavioral differences when calling vTaskDelete() in ESP-IDF FreeRTOS:

• When deleting a task that is pinned to the other core, that task's memory is always freed by the idle task of the
other core (due to the need to clear FPU registers).

• When deleting a task that is currently running on the other core, a yield is triggered on the other core and the
task's memory is freed by one of the idle tasks (depending on the task's core affinity)

• A deleted task's memory is freed immediately if...
– The tasks is currently running on this core and is also pinned to this core
– The task is not currently running and is not pinned to any core

Users should avoid calling vTaskDelete() on a task that is currently running on the other core. This is due to
the fact that it is difficult to know what the task currently running on the other core is executing, thus can lead to
unpredictable behavior such as...

• Deleting a task that is holding a mutex
• Deleting a task that has yet to free memory it previously allocated

Where possible, users should design their application such that vTaskDelete() is only ever called on tasks in a
known state. For example:

• Tasks self deleting (via vTaskDelete(NULL)) when their execution is complete and have also cleaned up
all resources used within the task.

• Tasks placing themselves in the suspend state (via vTaskSuspend()) before being deleted by another task.

SMP Scheduler

The Vanilla FreeRTOS scheduler is best described as a Fixed Priority Preemptive scheduler with Time Slicing
meaning that:

• Each tasks is given a constant priority upon creation. The scheduler executes highest priority ready state task
• The scheduler can switch execution to another task without the cooperation of the currently running task
• The scheduler will periodically switch execution between ready state tasks of the same priority (in a round
robin fashion). Time slicing is governed by a tick interrupt.

The ESP-IDF FreeRTOS scheduler supports the same scheduling features (i.e., Fixed Priority, Preemption, and Time
Slicing) albeit with some small behavioral differences.

Fixed Priority In Vanilla FreeRTOS, when scheduler selects a new task to run, it will always select the current
highest priority ready state task. In ESP-IDF FreeRTOS, each core will independently schedule tasks to run. When
a particular core selects a task, the core will select the highest priority ready state task that can be run by the core. A
task can be run by the core if:

• The task has a compatible affinity (i.e., is either pinned to that core or is unpinned)
• The task is not currently being run by another core

However, users should not assume that the two highest priority ready state tasks are always run by the scheduler as a
task's core affinity must also be accounted for. For example, given the following tasks:

• Task A of priority 10 pinned to CPU0
• Task B of priority 9 pinned to CPU0
• Task C of priority 8 pinned to CPU1

The resulting schedule will have Task A running on CPU0 and Task C running on CPU1. Task B is not run even
though it is the second highest priority task.

Espressif Systems 1851
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Preemption In Vanilla FreeRTOS, the scheduler can preempt the currently running task if a higher priority task be-
comes ready to execute. Likewise in ESP-IDF FreeRTOS, each core can be individually preempted by the scheduler
if the scheduler determines that a higher priority task can run on that core.
However, there are some instances where a higher priority task that becomes ready can be run on multiple cores. In
this case, the scheduler will only preempt one core. The scheduler always gives preference to the current core when
multiple cores can be preempted. In other words, if the higher priority ready task is unpinned and has a higher priority
than the current priority of both cores, the scheduler will always choose to preempt the current core. For example,
given the following tasks:

• Task A of priority 8 currently running on CPU0
• Task B of priority 9 currently running on CPU1
• Task C of priority 10 that is unpinned and was unblocked by Task B

The resulting schedule will have Task A running on CPU0 and Task C preempting Task B given that the scheduler
always gives preference to the current core.

Time Slicing The Vanilla FreeRTOS scheduler implements time slicing meaning that if current highest ready
priority contains multiple ready tasks, the scheduler will switch between those tasks periodically in a round robin
fashion.
However, in ESP-IDF FreeRTOS, it is not possible to implement perfect Round Robin time slicing due to the fact
that a particular task may not be able to run on a particular core due to the following reasons:

• The task is pinned to the another core.
• For unpinned tasks, the task is already being run by another core.

Therefore, when a core searches the ready state task list for a task to run, the core may need to skip over a few tasks
in the same priority list or drop to a lower priority in order to find a ready state task that the core can run.
The ESP-IDF FreeRTOS scheduler implements a Best Effort Round Robin time slicing for ready state tasks of the
same priority by ensuring that tasks that have been selected to run will be placed at the back of the list, thus giving
unselected tasks a higher priority on the next scheduling iteration (i.e., the next tick interrupt or yield)
The following example demonstrates the Best Effort Round Robin time slicing in action. Assume that:

• There are four ready state tasks of the same priority AX, B0, C1, D1 where: - The priority is the current
highest priority with ready state tasks - The first character represents the task's names (i.e., A, B, C, D) -
And the second character represents the tasks core pinning (and X means unpinned)

• The task list is always searched from the head

--

1. Starting state. None of the ready state tasks have been selected to run

Head [AX , B0 , C1 , D0] Tail

--

2. Core 0 has tick interrupt and searches for a task to run.
Task A is selected and is moved to the back of the list

Core0--|
Head [AX , B0 , C1 , D0] Tail

0
Head [B0 , C1 , D0 , AX] Tail

--

3. Core 1 has a tick interrupt and searches for a task to run.
Task B cannot be run due to incompatible affinity, so core 1 skips to Task C.
Task C is selected and is moved to the back of the list

(continues on next page)

Espressif Systems 1852
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

Core1-------| 0
Head [B0 , C1 , D0 , AX] Tail

0 1
Head [B0 , D0 , AX , C1] Tail

--

4. Core 0 has another tick interrupt and searches for a task to run.
Task B is selected and moved to the back of the list

Core0--| 1
Head [B0 , D0 , AX , C1] Tail

1 0
Head [D0 , AX , C1 , B0] Tail

--

5. Core 1 has another tick and searches for a task to run.
Task D cannot be run due to incompatible affinity, so core 1 skips to Task A
Task A is selected and moved to the back of the list

Core1-------| 0
Head [D0 , AX , C1 , B0] Tail

0 1
Head [D0 , C1 , B0 , AX] Tail

The implications to users regarding the Best Effort Round Robin time slicing:
• Users cannot expect multiple ready state tasks of the same priority to run sequentially (as is the case in Vanilla
FreeRTOS). As demonstrated in the example above, a core may need to skip over tasks.

• However, given enough ticks, a task will eventually be given some processing time.
• If a core cannot find a task runnable task at the highest ready state priority, it will drop to a lower priority to
search for tasks.

• To achieve ideal round robin time slicing, users should ensure that all tasks of a particular priority are pinned
to the same core.

Tick Interrupts Vanilla FreeRTOS requires that a periodic tick interrupt occurs. The tick interrupt is responsible
for:

• Incrementing the scheduler's tick count
• Unblocking any blocked tasks that have timed out
• Checking if time slicing is required (i.e., triggering a context switch)
• Executing the application tick hook

In ESP-IDF FreeRTOS, each core will receive a periodic interrupt and independently run the tick interrupt. The tick
interrupts on each core are of the same period but can be out of phase. However, the tick responsibilities listed above
are not run by all cores:

• CPU0 will execute all of the tick interrupt responsibilities listed above
• CPU1 will only check for time slicing and execute the application tick hook

Note: CPU0 is solely responsible for keeping time in ESP-IDF FreeRTOS. Therefore anything that prevents CPU0
from incrementing the tick count (such as suspending the scheduler on CPU0) will cause the entire schedulers time
keeping to lag behind.

Espressif Systems 1853
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Idle Tasks Vanilla FreeRTOS will implicitly create an idle task of priority 0 when the scheduler is started. The
idle task runs when no other task is ready to run, and it has the following responsibilities:

• Freeing the memory of deleted tasks
• Executing the application idle hook

In ESP-IDF FreeRTOS, a separate pinned idle task is created for each core. The idle tasks on each core have the
same responsibilities as their vanilla counterparts.

Scheduler Suspension Vanilla FreeRTOS allows the scheduler to be suspended/resumed by calling vTaskSus-
pendAll() and xTaskResumeAll() respectively. While the scheduler is suspended:

• Task switching is disabled but interrupts are left enabled.
• Calling any blocking/yielding function is forbidden, and time slicing is disabled.
• The tick count is frozen (but the tick interrupt will still occur to execute the application tick hook)

On scheduler resumption, xTaskResumeAll() will catch up all of the lost ticks and unblock any timed out tasks.
In ESP-IDF FreeRTOS, suspending the scheduler across multiple cores is not possible. Therefore when vTaskSus-
pendAll() is called on a particular core (e.g., core A):

• Task switching is disabled only on core A but interrupts for core A are left enabled
• Calling any blocking/yielding function on core A is forbidden. Time slicing is disabled on core A.
• If an interrupt on core A unblocks any tasks, tasks with affinity to core A will go into core A's own pending
ready task list. Unpinned tasks or tasks with affinity to other cores can be scheduled on cores with the scheduler
running.

• In case the scheduler is suspended on all cores, tasks unblocked by an interrupt will go to the pending ready
task lists of their pinned cores or to the pending ready list of the core on which the interrupt is called if the
tasks are unpinned.

• If core A is CPU0, the tick count is frozen and a pended tick count is incremented instead. However, the tick
interrupt will still occur in order to execute the application tick hook.

When xTaskResumeAll() is called on a particular core (e.g., core A):
• Any tasks added to core A's pending ready task list will be resumed
• If core A is CPU0, the pended tick count is unwound to catch up the lost ticks.

Warning: Given that scheduler suspension on ESP-IDF FreeRTOS will only suspend scheduling on a particular
core, scheduler suspension isNOT a valid method ensuring mutual exclusion between tasks when accessing shared
data. Users should use proper locking primitives such as mutexes or spinlocks if they require mutual exclusion.

Disabling Interrupts Vanilla FreeRTOS allows interrupts to be disabled and enabled by calling taskDIS-
ABLE_INTERRUPTS and taskENABLE_INTERRUPTS respectively.
ESP-IDF FreeRTOS provides the same API, however interrupts will only disabled or enabled on the current core.

Warning: Disabling interrupts is a valid method of achieve mutual exclusion in Vanilla FreeRTOS (and single
core systems in general). However, in an SMP system, disabling interrupts is NOT a valid method ensuring
mutual exclusion. Refer to Critical Sections for more details.

Critical Sections

API Changes Vanilla FreeRTOS implements critical sections by disabling interrupts, This prevents preemptive
context switches and the servicing of ISRs during a critical section. Thus a task/ISR that enters a critical section is
guaranteed to be the sole entity to access a shared resource. Critical sections in Vanilla FreeRTOS have the following
API:

• taskENTER_CRITICAL() enters a critical section by disabling interrupts

Espressif Systems 1854
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• taskEXIT_CRITICAL() exits a critical section by reenabling interrupts
• taskENTER_CRITICAL_FROM_ISR() enters a critical section from an ISR by disabling interrupt nesting
• taskEXIT_CRITICAL_FROM_ISR() exits a critical section from an ISR by reenabling interrupt nesting

However, in an SMP system, merely disabling interrupts does not constitute a critical section as the presence of
other cores means that a shared resource can still be concurrently accessed. Therefore, critical sections in ESP-IDF
FreeRTOS are implemented using spinlocks. To accommodate the spinlocks, the ESP-IDF FreeRTOS critical section
APIs contain an additional spinlock parameter as shown below:

• Spinlocks are of portMUX_TYPE (not to be confused to FreeRTOS mutexes)
• taskENTER_CRITICAL(&spinlock) enters a critical from a task context
• taskEXIT_CRITICAL(&spinlock) exits a critical section from a task context
• taskENTER_CRITICAL_ISR(&spinlock) enters a critical section from an interrupt context
• taskEXIT_CRITICAL_ISR(&spinlock) exits a critical section from an interrupt context

Note: The critical section API can be called recursively (i.e., nested critical sections). Entering a critical section
multiple times recursively is valid so long as the critical section is exited the same number of times it was entered.
However, given that critical sections can target different spinlocks, users should take care to avoid dead locking when
entering critical sections recursively.

Spinlocks can be allocated statically or dynamically. As such, macros are provided for both static and dynamic
initialization of spinlocks, as demonstrated by the following code snippets.

• Allocating a static spinlock and initializing it using portMUX_INITIALIZER_UNLOCKED

// Statically allocate and initialize the spinlock
static portMUX_TYPE my_spinlock = portMUX_INITIALIZER_UNLOCKED;

void some_function(void)
{

taskENTER_CRITICAL(&my_spinlock);
// We are now in a critical section
taskEXIT_CRITICAL(&my_spinlock);

}

• Allocating a dynamic spinlock and initializing it using portMUX_INITIALIZE()

// Allocate the spinlock dynamically
portMUX_TYPE *my_spinlock = malloc(sizeof(portMUX_TYPE));
// Initialize the spinlock dynamically
portMUX_INITIALIZE(my_spinlock);

...

taskENTER_CRITICAL(my_spinlock);
// Access the resource
taskEXIT_CRITICAL(my_spinlock);

Implementation In ESP-IDF FreeRTOS, the process of a particular core entering and exiting a critical section is
as follows:

• For taskENTER_CRITICAL(&spinlock) (or taskENTER_CRITICAL_ISR(&spinlock))
1. The core disables its interrupts (or interrupt nesting) up to config-

MAX_SYSCALL_INTERRUPT_PRIORITY
2. The core then spins on the spinlock using an atomic compare-and-set instruction until it acquires the lock.

A lock is acquired when the core is able to set the lock's owner value to the core's ID.
3. Once the spinlock is acquired, the function returns. The remainder of the critical section runs with

interrupts (or interrupt nesting) disabled.
• For taskEXIT_CRITICAL(&spinlock) (or taskEXIT_CRITICAL_ISR(&spinlock))

1. The core releases the spinlock by clearing the spinlock's owner value

Espressif Systems 1855
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2. The core re-enables interrupts (or interrupt nesting)

Restrictions and Considerations Given that interrupts (or interrupt nesting) are disabled during a critical section,
there are multiple restrictions regarding what can be done within a critical sections. During a critical section, users
should keep the following restrictions and considerations in mind:

• Critical sections should be as kept as short as possible
– The longer the critical section lasts, the longer a pending interrupt can be delayed.
– A typical critical section should only access a few data structures and/or hardware registers
– If possible, defer as much processing and/or event handling to the outside of critical sections.

• FreeRTOS API should not be called from within a critical section
• Users should never call any blocking or yielding functions within a critical section

Misc

Floating Point Usage Usually, when a context switch occurs:
• the current state of a CPU's registers are saved to the stack of task being switch out
• the previously saved state of the CPU's registers are loaded from the stack of the task being switched in

However, ESP-IDF FreeRTOS implements Lazy Context Switching for the FPU (Floating Point Unit) registers of
a CPU. In other words, when a context switch occurs on a particular core (e.g., CPU0), the state of the core's FPU
registers are not immediately saved to the stack of the task getting switched out (e.g., Task A). The FPU's registers
are left untouched until:

• A different task (e.g., Task B) runs on the same core and uses the FPU. This will trigger an exception that will
save the FPU registers to Task A's stack.

• Task A get's scheduled to the same core and continues execution. Saving and restoring the FPU's registers is
not necessary in this case.

However, given that tasks can be unpinned thus can be scheduled on different cores (e.g., Task A switches to CPU1),
it is unfeasible to copy and restore the FPU's registers across cores. Therefore, when a task utilizes the FPU (by using
a float type in its call flow), ESP-IDF FreeRTOS will automatically pin the task to the current core it is running
on. This ensures that all tasks that uses the FPU are always pinned to a particular core.
Furthermore, ESP-IDF FreeRTOS by default does not support the usage of the FPU within an interrupt context given
that the FPU's register state is tied to a particular task.

Note: ESP targets that contain an FPU do not support hardware acceleration for double precision floating point
arithmetic (double). Instead double is implemented via software hence the behavioral restrictions regarding the
float type do not apply to double. Note that due to the lack of hardware acceleration, double operations may
consume significantly more CPU time in comparison to float.

ESP-IDF FreeRTOS Single Core Although ESP-IDF FreeRTOS is an SMP scheduler, some ESP targets are
single core (such as the ESP32-S2 and ESP32-C3). When building ESP-IDF applications for these targets, ESP-IDF
FreeRTOS is still used but the number of cores will be set to 1 (i.e., the CONFIG_FREERTOS_UNICORE will always
be enabled for single core targets).
For multicore targets (such as the ESP32 and ESP32-S3), CONFIG_FREERTOS_UNICORE can also be set. This will
result in ESP-IDF FreeRTOS only running on CPU0, and all other cores will be inactive.

Note: Users should bear in mind that enabling CONFIG_FREERTOS_UNICORE is NOT equivalent to running
Vanilla FreeRTOS. The additional API of ESP-IDF FreeRTOS can still be called, and the behavior changes of
ESP-IDF FreeRTOS will incur a small amount of overhead even when compiled for only a single core.

Espressif Systems 1856
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

This section contains documentation of FreeRTOS types, functions, and macros. It is automatically generated from
FreeRTOS header files.

Task API

Header File
• components/freertos/FreeRTOS-Kernel/include/freertos/task.h

Functions
BaseType_t xTaskCreatePinnedToCore(TaskFunction_t pxTaskCode, const char *const pcName, const

configSTACK_DEPTH_TYPE usStackDepth, void *const
pvParameters, UBaseType_t uxPriority, TaskHandle_t *const
pvCreatedTask, const BaseType_t xCoreID)

Create a new task with a specified affinity and add it to the list of tasks that are ready to run.
This function is similar to xTaskCreate, but allows setting task affinity in SMP system.

Example usage:

// Task to be created.
void vTaskCode(void * pvParameters)
{
for(;;)
{

// Task code goes here.
}

}

// Function that creates a task.
void vOtherFunction(void)
{
static uint8_t ucParameterToPass;
TaskHandle_t xHandle = NULL;

// Create the task pinned to core 0, storing the handle. Note that the␣
↪→passed parameter ucParameterToPass
// must exist for the lifetime of the task, so in this case is declared␣

↪→static. If it was just an
// an automatic stack variable it might no longer exist, or at least have␣

↪→been corrupted, by the time
// the new task attempts to access it.
xTaskCreatePinnedToCore(vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass,␣

↪→tskIDLE_PRIORITY, &xHandle, 0);
configASSERT(xHandle);

// Use the handle to delete the task.
if(xHandle != NULL)
{

vTaskDelete(xHandle);
}

}

Note: If program uses thread local variables (ones specified with "__thread" keyword) then storage for them
will be allocated on the task's stack.

Espressif Systems 1857
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/FreeRTOS-Kernel/include/freertos/task.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• pxTaskCode -- Pointer to the task entry function. Tasks must be implemented to never
return (i.e. continuous loop), or should be terminated using vTaskDelete function.

• pcName -- A descriptive name for the task. This is mainly used to facilitate debugging.
Max length defined by configMAX_TASK_NAME_LEN - default is 16.

• usStackDepth -- The size of the task stack specified as the number of bytes. Note that
this differs from vanilla FreeRTOS.

• pvParameters -- Pointer that will be used as the parameter for the task being created.
• uxPriority -- The priority at which the task should run. Systems that include MPU
support can optionally create tasks in a privileged (system) mode by setting bit portPRIV-
ILEGE_BIT of the priority parameter. For example, to create a privileged task at priority
2 the uxPriority parameter should be set to (2 | portPRIVILEGE_BIT).

• pvCreatedTask -- [out] Used to pass back a handle by which the created task can be
referenced.

• xCoreID -- If the value is tskNO_AFFINITY, the created task is not pinned to any
CPU, and the scheduler can run it on any core available. Values 0 or 1 indicate the index
number of the CPU which the task should be pinned to. Specifying values larger than
(configNUM_CORES - 1) will cause the function to fail.

Returns pdPASS if the task was successfully created and added to a ready list, otherwise an error
code defined in the file projdefs.h

TaskHandle_t xTaskCreateStaticPinnedToCore(TaskFunction_t pxTaskCode, const char *const
pcName, const uint32_t ulStackDepth, void *const
pvParameters, UBaseType_t uxPriority, StackType_t
*const pxStackBuffer, StaticTask_t *const
pxTaskBuffer, const BaseType_t xCoreID)

Create a new task with a specified affinity and add it to the list of tasks that are ready to run.
This function is similar to xTaskCreateStatic, but allows specifying task affinity in an SMP system.

Example usage:

// Dimensions the buffer that the task being created will use as its stack.
// NOTE: This is the number of words the stack will hold, not the number of
// bytes. For example, if each stack item is 32-bits, and this is set to 100,
// then 400 bytes (100 * 32-bits) will be allocated.
#define STACK_SIZE 200

// Structure that will hold the TCB of the task being created.
StaticTask_t xTaskBuffer;

// Buffer that the task being created will use as its stack. Note this is
// an array of StackType_t variables. The size of StackType_t is dependent on
// the RTOS port.
StackType_t xStack[STACK_SIZE];

// Function that implements the task being created.
void vTaskCode(void * pvParameters)
{

// The parameter value is expected to be 1 as 1 is passed in the
// pvParameters value in the call to xTaskCreateStaticPinnedToCore().
configASSERT((uint32_t) pvParameters == 1UL);

for(;;)
{

// Task code goes here.
}

}

// Function that creates a task.
(continues on next page)

Espressif Systems 1858
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
void vOtherFunction(void)
{

TaskHandle_t xHandle = NULL;

// Create the task pinned to core 0 without using any dynamic memory␣
↪→allocation.

xHandle = xTaskCreateStaticPinnedToCore(
vTaskCode, // Function that implements the task.
"NAME", // Text name for the task.
STACK_SIZE, // Stack size in bytes, not words.
(void *) 1, // Parameter passed into the task.
tskIDLE_PRIORITY,// Priority at which the task is created.
xStack, // Array to use as the task's stack.
&xTaskBuffer, // Variable to hold the task's data␣

↪→structure.
0); // Specify the task's core affinity

// puxStackBuffer and pxTaskBuffer were not NULL, so the task will have
// been created, and xHandle will be the task's handle. Use the handle
// to suspend the task.
vTaskSuspend(xHandle);

}

Parameters
• pxTaskCode -- Pointer to the task entry function. Tasks must be implemented to never
return (i.e. continuous loop), or should be terminated using vTaskDelete function.

• pcName -- A descriptive name for the task. This is mainly used to facilitate debug-
ging. The maximum length of the string is defined by configMAX_TASK_NAME_LEN
in FreeRTOSConfig.h.

• ulStackDepth -- The size of the task stack specified as the number of bytes. Note that
this differs from vanilla FreeRTOS.

• pvParameters -- Pointer that will be used as the parameter for the task being created.
• uxPriority -- The priority at which the task will run.
• pxStackBuffer -- Must point to a StackType_t array that has at least ulStackDepth
indexes - the array will then be used as the task's stack, removing the need for the stack to
be allocated dynamically.

• pxTaskBuffer -- Must point to a variable of type StaticTask_t, which will then be
used to hold the task's data structures, removing the need for the memory to be allocated
dynamically.

• xCoreID -- If the value is tskNO_AFFINITY, the created task is not pinned to any
CPU, and the scheduler can run it on any core available. Values 0 or 1 indicate the index
number of the CPU which the task should be pinned to. Specifying values larger than
(configNUM_CORES - 1) will cause the function to fail.

Returns If neither pxStackBuffer or pxTaskBuffer are NULL, then the task will be created and
pdPASS is returned. If either pxStackBuffer or pxTaskBuffer are NULL then the task will not
be created and errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY is returned.

static inline BaseType_t xTaskCreate(TaskFunction_t pxTaskCode, const char *const pcName, const
configSTACK_DEPTH_TYPE usStackDepth, void *const
pvParameters, UBaseType_t uxPriority, TaskHandle_t *const
pxCreatedTask)

Create a new task and add it to the list of tasks that are ready to run.
Internally, within the FreeRTOS implementation, tasks use two blocks of memory. The first block is used to
hold the task's data structures. The second block is used by the task as its stack. If a task is created using
xTaskCreate() then both blocks of memory are automatically dynamically allocated inside the xTaskCreate()
function. (see https://www.FreeRTOS.org/a00111.html). If a task is created using xTaskCreateStatic() then
the application writer must provide the required memory. xTaskCreateStatic() therefore allows a task to be

Espressif Systems 1859
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

created without using any dynamic memory allocation.
See xTaskCreateStatic() for a version that does not use any dynamic memory allocation.
xTaskCreate() can only be used to create a task that has unrestricted access to the entire microcontroller
memory map. Systems that include MPU support can alternatively create an MPU constrained task using
xTaskCreateRestricted().

Example usage:

// Task to be created.
void vTaskCode(void * pvParameters)
{
for(;;)
{

// Task code goes here.
}

}

// Function that creates a task.
void vOtherFunction(void)
{
static uint8_t ucParameterToPass;
TaskHandle_t xHandle = NULL;

// Create the task, storing the handle. Note that the passed parameter␣
↪→ucParameterToPass
// must exist for the lifetime of the task, so in this case is declared␣

↪→static. If it was just an
// an automatic stack variable it might no longer exist, or at least have␣

↪→been corrupted, by the time
// the new task attempts to access it.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass, tskIDLE_

↪→PRIORITY, &xHandle);
configASSERT(xHandle);

// Use the handle to delete the task.
if(xHandle != NULL)
{

vTaskDelete(xHandle);
}

}

Note: If program uses thread local variables (ones specified with "__thread" keyword) then storage for them
will be allocated on the task's stack.

Parameters
• pxTaskCode -- Pointer to the task entry function. Tasks must be implemented to never
return (i.e. continuous loop), or should be terminated using vTaskDelete function.

• pcName -- A descriptive name for the task. This is mainly used to facilitate debugging.
Max length defined by configMAX_TASK_NAME_LEN - default is 16.

• usStackDepth -- The size of the task stack specified as the number of bytes. Note that
this differs from vanilla FreeRTOS.

• pvParameters -- Pointer that will be used as the parameter for the task being created.
• uxPriority -- The priority at which the task should run. Systems that include MPU
support can optionally create tasks in a privileged (system) mode by setting bit portPRIV-
ILEGE_BIT of the priority parameter. For example, to create a privileged task at priority
2 the uxPriority parameter should be set to (2 | portPRIVILEGE_BIT).

Espressif Systems 1860
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• pxCreatedTask -- Used to pass back a handle by which the created task can be refer-
enced.

Returns pdPASS if the task was successfully created and added to a ready list, otherwise an error
code defined in the file projdefs.h

static inline TaskHandle_t xTaskCreateStatic(TaskFunction_t pxTaskCode, const char *const pcName,
const uint32_t ulStackDepth, void *const pvParameters,
UBaseType_t uxPriority, StackType_t *const
puxStackBuffer, StaticTask_t *const pxTaskBuffer)

Create a new task and add it to the list of tasks that are ready to run.
Internally, within the FreeRTOS implementation, tasks use two blocks of memory. The first block is used to
hold the task's data structures. The second block is used by the task as its stack. If a task is created using
xTaskCreate() then both blocks of memory are automatically dynamically allocated inside the xTaskCreate()
function. (see https://www.FreeRTOS.org/a00111.html). If a task is created using xTaskCreateStatic() then
the application writer must provide the required memory. xTaskCreateStatic() therefore allows a task to be
created without using any dynamic memory allocation.

Example usage:

// Dimensions the buffer that the task being created will use as its stack.
// NOTE: This is the number of bytes the stack will hold, not the number of
// words as found in vanilla FreeRTOS.
#define STACK_SIZE 200

// Structure that will hold the TCB of the task being created.
StaticTask_t xTaskBuffer;

// Buffer that the task being created will use as its stack. Note this is
// an array of StackType_t variables. The size of StackType_t is dependent on
// the RTOS port.
StackType_t xStack[STACK_SIZE];

// Function that implements the task being created.
void vTaskCode(void * pvParameters)
{

// The parameter value is expected to be 1 as 1 is passed in the
// pvParameters value in the call to xTaskCreateStatic().
configASSERT((uint32_t) pvParameters == 1UL);

for(;;)
{

// Task code goes here.
}

}

// Function that creates a task.
void vOtherFunction(void)
{

TaskHandle_t xHandle = NULL;

// Create the task without using any dynamic memory allocation.
xHandle = xTaskCreateStatic(

vTaskCode, // Function that implements the task.
"NAME", // Text name for the task.
STACK_SIZE, // Stack size in bytes, not words.
(void *) 1, // Parameter passed into the task.
tskIDLE_PRIORITY,// Priority at which the task is created.
xStack, // Array to use as the task's stack.
&xTaskBuffer); // Variable to hold the task's data␣

↪→structure. (continues on next page)

Espressif Systems 1861
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

// puxStackBuffer and pxTaskBuffer were not NULL, so the task will have
// been created, and xHandle will be the task's handle. Use the handle
// to suspend the task.
vTaskSuspend(xHandle);

}

Note: If program uses thread local variables (ones specified with "__thread" keyword) then storage for them
will be allocated on the task's stack.

Parameters
• pxTaskCode -- Pointer to the task entry function. Tasks must be implemented to never
return (i.e. continuous loop), or should be terminated using vTaskDelete function.

• pcName -- A descriptive name for the task. This is mainly used to facilitate debug-
ging. The maximum length of the string is defined by configMAX_TASK_NAME_LEN
in FreeRTOSConfig.h.

• ulStackDepth -- The size of the task stack specified as the number of bytes. Note that
this differs from vanilla FreeRTOS.

• pvParameters -- Pointer that will be used as the parameter for the task being created.
• uxPriority -- The priority at which the task will run.
• puxStackBuffer -- Must point to a StackType_t array that has at least ulStackDepth
indexes - the array will then be used as the task's stack, removing the need for the stack to
be allocated dynamically.

• pxTaskBuffer -- Must point to a variable of type StaticTask_t, which will then be
used to hold the task's data structures, removing the need for the memory to be allocated
dynamically.

Returns If neither pxStackBuffer or pxTaskBuffer are NULL, then the task will be created and
pdPASS is returned. If either pxStackBuffer or pxTaskBuffer are NULL then the task will not
be created and errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY is returned.

void vTaskAllocateMPURegions(TaskHandle_t xTask, const MemoryRegion_t *const pxRegions)
Only available when configSUPPORT_DYNAMIC_ALLOCATION is set to 1.
xTaskCreateRestricted() should only be used in systems that include an MPU implementation.
Create a new task and add it to the list of tasks that are ready to run. The function parameters define the
memory regions and associated access permissions allocated to the task.
See xTaskCreateRestrictedStatic() for a version that does not use any dynamic memory allocation.

Example usage:

// Create an TaskParameters_t structure that defines the task to be created.
static const TaskParameters_t xCheckTaskParameters =
{
vATask, // pvTaskCode - the function that implements the task.
"ATask", // pcName - just a text name for the task to assist debugging.
100, // usStackDepth - the stack size DEFINED IN WORDS.
NULL, // pvParameters - passed into the task function as the function␣
↪→parameters.
(1UL | portPRIVILEGE_BIT),// uxPriority - task priority, set the␣
↪→portPRIVILEGE_BIT if the task should run in a privileged state.
cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack.

// xRegions - Allocate up to three separate memory regions for access by
// the task, with appropriate access permissions. Different processors have

(continues on next page)

Espressif Systems 1862
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// different memory alignment requirements - refer to the FreeRTOS␣
↪→documentation
// for full information.
{

// Base address Length Parameters
{ cReadWriteArray, 32, portMPU_REGION_READ_WRITE },
{ cReadOnlyArray, 32, portMPU_REGION_READ_ONLY },
{ cPrivilegedOnlyAccessArray, 128, portMPU_REGION_PRIVILEGED_READ_

↪→WRITE }
}
};

int main(void)
{
TaskHandle_t xHandle;

// Create a task from the const structure defined above. The task handle
// is requested (the second parameter is not NULL) but in this case just for
// demonstration purposes as its not actually used.
xTaskCreateRestricted(&xRegTest1Parameters, &xHandle);

// Start the scheduler.
vTaskStartScheduler();

// Will only get here if there was insufficient memory to create the idle
// and/or timer task.
for(;;);
}

Only available when configSUPPORT_STATIC_ALLOCATION is set to 1.
xTaskCreateRestrictedStatic() should only be used in systems that include an MPU implementation.
Internally, within the FreeRTOS implementation, tasks use two blocks of memory. The first block is used to
hold the task's data structures. The second block is used by the task as its stack. If a task is created using
xTaskCreateRestricted() then the stack is provided by the application writer, and the memory used to hold the
task's data structure is automatically dynamically allocated inside the xTaskCreateRestricted() function. If a
task is created using xTaskCreateRestrictedStatic() then the application writer must provide the memory used
to hold the task's data structures too. xTaskCreateRestrictedStatic() therefore allows a memory protected task
to be created without using any dynamic memory allocation.

Example usage:

// Create an TaskParameters_t structure that defines the task to be created.
// The StaticTask_t variable is only included in the structure when
// configSUPPORT_STATIC_ALLOCATION is set to 1. The PRIVILEGED_DATA macro can
// be used to force the variable into the RTOS kernel's privileged data area.
static PRIVILEGED_DATA StaticTask_t xTaskBuffer;
static const TaskParameters_t xCheckTaskParameters =
{
vATask, // pvTaskCode - the function that implements the task.
"ATask", // pcName - just a text name for the task to assist debugging.
100, // usStackDepth - the stack size DEFINED IN BYTES.
NULL, // pvParameters - passed into the task function as the function␣
↪→parameters.
(1UL | portPRIVILEGE_BIT),// uxPriority - task priority, set the␣
↪→portPRIVILEGE_BIT if the task should run in a privileged state.
cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack.

// xRegions - Allocate up to three separate memory regions for access by

(continues on next page)

Espressif Systems 1863
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// the task, with appropriate access permissions. Different processors have
// different memory alignment requirements - refer to the FreeRTOS␣
↪→documentation
// for full information.
{

// Base address Length Parameters
{ cReadWriteArray, 32, portMPU_REGION_READ_WRITE },
{ cReadOnlyArray, 32, portMPU_REGION_READ_ONLY },
{ cPrivilegedOnlyAccessArray, 128, portMPU_REGION_PRIVILEGED_READ_

↪→WRITE }
}

&xTaskBuffer; // Holds the task's data structure.
};

int main(void)
{
TaskHandle_t xHandle;

// Create a task from the const structure defined above. The task handle
// is requested (the second parameter is not NULL) but in this case just for
// demonstration purposes as its not actually used.
xTaskCreateRestricted(&xRegTest1Parameters, &xHandle);

// Start the scheduler.
vTaskStartScheduler();

// Will only get here if there was insufficient memory to create the idle
// and/or timer task.
for(;;);
}

Memory regions are assigned to a restricted task when the task is created by a call to xTaskCreateRestricted().
These regions can be redefined using vTaskAllocateMPURegions().

Example usage:

// Define an array of MemoryRegion_t structures that configures an MPU region
// allowing read/write access for 1024 bytes starting at the beginning of the
// ucOneKByte array. The other two of the maximum 3 definable regions are
// unused so set to zero.
static const MemoryRegion_t xAltRegions[portNUM_CONFIGURABLE_REGIONS] =
{
// Base address Length Parameters
{ ucOneKByte, 1024, portMPU_REGION_READ_WRITE },
{ 0, 0, 0 },
{ 0, 0, 0 }
};

void vATask(void *pvParameters)
{
// This task was created such that it has access to certain regions of
// memory as defined by the MPU configuration. At some point it is
// desired that these MPU regions are replaced with that defined in the
// xAltRegions const struct above. Use a call to vTaskAllocateMPURegions()
// for this purpose. NULL is used as the task handle to indicate that this
// function should modify the MPU regions of the calling task.
vTaskAllocateMPURegions(NULL, xAltRegions);

// Now the task can continue its function, but from this point on can only

(continues on next page)

Espressif Systems 1864
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// access its stack and the ucOneKByte array (unless any other statically
// defined or shared regions have been declared elsewhere).
}

Parameters
• pxTaskDefinition -- Pointer to a structure that contains a member for each of the
normal xTaskCreate() parameters (see the xTaskCreate() API documentation) plus an op-
tional stack buffer and the memory region definitions.

• pxCreatedTask -- Used to pass back a handle by which the created task can be refer-
enced.

• pxTaskDefinition -- Pointer to a structure that contains a member for each
of the normal xTaskCreate() parameters (see the xTaskCreate() API documentation)
plus an optional stack buffer and the memory region definitions. If configSUP-
PORT_STATIC_ALLOCATION is set to 1 the structure contains an additional member,
which is used to point to a variable of type StaticTask_t - which is then used to hold the
task's data structure.

• pxCreatedTask -- Used to pass back a handle by which the created task can be refer-
enced.

• xTask -- The handle of the task being updated.
• pxRegions -- A pointer to anMemoryRegion_t structure that contains the newmemory
region definitions.

Returns pdPASS if the task was successfully created and added to a ready list, otherwise an error
code defined in the file projdefs.h

Returns pdPASS if the task was successfully created and added to a ready list, otherwise an error
code defined in the file projdefs.h

void vTaskDelete(TaskHandle_t xTaskToDelete)
INCLUDE_vTaskDelete must be defined as 1 for this function to be available. See the configuration section
for more information.
Remove a task from the RTOS real time kernel's management. The task being deleted will be removed from
all ready, blocked, suspended and event lists.
NOTE: The idle task is responsible for freeing the kernel allocated memory from tasks that have been deleted.
It is therefore important that the idle task is not starved of microcontroller processing time if your application
makes any calls to vTaskDelete (). Memory allocated by the task code is not automatically freed, and should
be freed before the task is deleted.
See the demo application file death.c for sample code that utilises vTaskDelete ().

Example usage:

void vOtherFunction(void)
{
TaskHandle_t xHandle;

// Create the task, storing the handle.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle␣

↪→);

// Use the handle to delete the task.
vTaskDelete(xHandle);

}

Parameters xTaskToDelete -- The handle of the task to be deleted. Passing NULL will cause
the calling task to be deleted.

Espressif Systems 1865
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void vTaskDelay(const TickType_t xTicksToDelay)
Delay a task for a given number of ticks. The actual time that the task remains blocked depends on the tick
rate. The constant portTICK_PERIOD_MS can be used to calculate real time from the tick rate - with the
resolution of one tick period.
INCLUDE_vTaskDelay must be defined as 1 for this function to be available. See the configuration section
for more information.
vTaskDelay() specifies a time at which the task wishes to unblock relative to the time at which vTaskDelay()
is called. For example, specifying a block period of 100 ticks will cause the task to unblock 100 ticks after
vTaskDelay() is called. vTaskDelay() does not therefore provide a good method of controlling the frequency
of a periodic task as the path taken through the code, as well as other task and interrupt activity, will effect
the frequency at which vTaskDelay() gets called and therefore the time at which the task next executes. See
xTaskDelayUntil() for an alternative API function designed to facilitate fixed frequency execution. It does this
by specifying an absolute time (rather than a relative time) at which the calling task should unblock.

Example usage:

void vTaskFunction(void * pvParameters)
{
// Block for 500ms.
const TickType_t xDelay = 500 / portTICK_PERIOD_MS;

for(;;)
{

// Simply toggle the LED every 500ms, blocking between each toggle.
vToggleLED();
vTaskDelay(xDelay);

}
}

Parameters xTicksToDelay -- The amount of time, in tick periods, that the calling task should
block.

BaseType_t xTaskDelayUntil(TickType_t *const pxPreviousWakeTime, const TickType_t
xTimeIncrement)

INCLUDE_xTaskDelayUntil must be defined as 1 for this function to be available. See the configuration
section for more information.
Delay a task until a specified time. This function can be used by periodic tasks to ensure a constant execution
frequency.
This function differs from vTaskDelay () in one important aspect: vTaskDelay () will cause a task to block for
the specified number of ticks from the time vTaskDelay () is called. It is therefore difficult to use vTaskDelay
() by itself to generate a fixed execution frequency as the time between a task starting to execute and that task
calling vTaskDelay () may not be fixed [the task may take a different path though the code between calls, or
may get interrupted or preempted a different number of times each time it executes].
Whereas vTaskDelay () specifies a wake time relative to the time at which the function is called, xTaskDe-
layUntil () specifies the absolute (exact) time at which it wishes to unblock.
The macro pdMS_TO_TICKS() can be used to calculate the number of ticks from a time specified in millisec-
onds with a resolution of one tick period.

Example usage:

// Perform an action every 10 ticks.
void vTaskFunction(void * pvParameters)
{

(continues on next page)

Espressif Systems 1866
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
TickType_t xLastWakeTime;
const TickType_t xFrequency = 10;
BaseType_t xWasDelayed;

// Initialise the xLastWakeTime variable with the current time.
xLastWakeTime = xTaskGetTickCount ();
for(;;)
{

// Wait for the next cycle.
xWasDelayed = xTaskDelayUntil(&xLastWakeTime, xFrequency);

// Perform action here. xWasDelayed value can be used to determine
// whether a deadline was missed if the code here took too long.

}
}

Parameters
• pxPreviousWakeTime -- Pointer to a variable that holds the time at which the task
was last unblocked. The variable must be initialised with the current time prior to its first
use (see the example below). Following this the variable is automatically updated within
xTaskDelayUntil ().

• xTimeIncrement -- The cycle time period. The task will be unblocked at time *pxPre-
viousWakeTime + xTimeIncrement. Calling xTaskDelayUntil with the same xTimeIncre-
ment parameter value will cause the task to execute with a fixed interface period.

Returns Value which can be used to checkwhether the task was actually delayed. Will be pdTRUE
if the task way delayed and pdFALSE otherwise. A task will not be delayed if the next expected
wake time is in the past.

BaseType_t xTaskAbortDelay(TaskHandle_t xTask)
INCLUDE_xTaskAbortDelay must be defined as 1 in FreeRTOSConfig.h for this function to be available.
A task will enter the Blocked state when it is waiting for an event. The event it is waiting for can be a tem-
poral event (waiting for a time), such as when vTaskDelay() is called, or an event on an object, such as when
xQueueReceive() or ulTaskNotifyTake() is called. If the handle of a task that is in the Blocked state is used
in a call to xTaskAbortDelay() then the task will leave the Blocked state, and return from whichever function
call placed the task into the Blocked state.
There is no 'FromISR' version of this function as an interrupt would need to know which object a task was
blocked on in order to know which actions to take. For example, if the task was blocked on a queue the
interrupt handler would then need to know if the queue was locked.

Parameters xTask -- The handle of the task to remove from the Blocked state.
Returns If the task referenced by xTask was not in the Blocked state then pdFAIL is returned.

Otherwise pdPASS is returned.
UBaseType_t uxTaskPriorityGet(const TaskHandle_t xTask)

INCLUDE_uxTaskPriorityGet must be defined as 1 for this function to be available. See the configuration
section for more information.
Obtain the priority of any task.

Example usage:

void vAFunction(void)
{
TaskHandle_t xHandle;

// Create a task, storing the handle.

(continues on next page)

Espressif Systems 1867
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle␣

↪→);

// ...

// Use the handle to obtain the priority of the created task.
// It was created with tskIDLE_PRIORITY, but may have changed
// it itself.
if(uxTaskPriorityGet(xHandle) != tskIDLE_PRIORITY)
{

// The task has changed it's priority.
}

// ...

// Is our priority higher than the created task?
if(uxTaskPriorityGet(xHandle) < uxTaskPriorityGet(NULL))
{

// Our priority (obtained using NULL handle) is higher.
}

}

Parameters xTask -- Handle of the task to be queried. Passing a NULL handle results in the
priority of the calling task being returned.

Returns The priority of xTask.

UBaseType_t uxTaskPriorityGetFromISR(const TaskHandle_t xTask)
A version of uxTaskPriorityGet() that can be used from an ISR.

eTaskState eTaskGetState(TaskHandle_t xTask)
INCLUDE_eTaskGetState must be defined as 1 for this function to be available. See the configuration section
for more information.
Obtain the state of any task. States are encoded by the eTaskState enumerated type.

Parameters xTask -- Handle of the task to be queried.
Returns The state of xTask at the time the function was called. Note the state of the task might

change between the function being called, and the functions return value being tested by the
calling task.

void vTaskGetInfo(TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace,
eTaskState eState)

configUSE_TRACE_FACILITY must be defined as 1 for this function to be available. See the configuration
section for more information.
Populates a TaskStatus_t structure with information about a task.

Example usage:

void vAFunction(void)
{
TaskHandle_t xHandle;
TaskStatus_t xTaskDetails;

// Obtain the handle of a task from its name.
xHandle = xTaskGetHandle("Task_Name");

// Check the handle is not NULL.
configASSERT(xHandle);

(continues on next page)

Espressif Systems 1868
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

// Use the handle to obtain further information about the task.
vTaskGetInfo(xHandle,

&xTaskDetails,
pdTRUE, // Include the high water mark in xTaskDetails.
eInvalid); // Include the task state in xTaskDetails.

}

Parameters
• xTask -- Handle of the task being queried. If xTask is NULL then information will be
returned about the calling task.

• pxTaskStatus -- A pointer to the TaskStatus_t structure that will be filled with infor-
mation about the task referenced by the handle passed using the xTask parameter.

• xGetFreeStackSpace -- The TaskStatus_t structure contains a member to report the
stack high water mark of the task being queried. Calculating the stack high water mark
takes a relatively long time, and can make the system temporarily unresponsive - so the
xGetFreeStackSpace parameter is provided to allow the high water mark checking to be
skipped. The high watermark value will only be written to the TaskStatus_t structure if
xGetFreeStackSpace is not set to pdFALSE;

• eState -- The TaskStatus_t structure contains a member to report the state of the task
being queried. Obtaining the task state is not as fast as a simple assignment - so the eState
parameter is provided to allow the state information to be omitted from the TaskStatus_t
structure. To obtain state information then set eState to eInvalid - otherwise the value
passed in eState will be reported as the task state in the TaskStatus_t structure.

void vTaskPrioritySet(TaskHandle_t xTask, UBaseType_t uxNewPriority)
INCLUDE_vTaskPrioritySet must be defined as 1 for this function to be available. See the configuration
section for more information.
Set the priority of any task.
A context switch will occur before the function returns if the priority being set is higher than the currently
executing task.

Example usage:

void vAFunction(void)
{
TaskHandle_t xHandle;

// Create a task, storing the handle.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle␣

↪→);

// ...

// Use the handle to raise the priority of the created task.
vTaskPrioritySet(xHandle, tskIDLE_PRIORITY + 1);

// ...

// Use a NULL handle to raise our priority to the same value.
vTaskPrioritySet(NULL, tskIDLE_PRIORITY + 1);

}

Parameters
• xTask -- Handle to the task for which the priority is being set. Passing a NULL handle
results in the priority of the calling task being set.

Espressif Systems 1869
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• uxNewPriority -- The priority to which the task will be set.

void vTaskSuspend(TaskHandle_t xTaskToSuspend)
INCLUDE_vTaskSuspend must be defined as 1 for this function to be available. See the configuration section
for more information.
Suspend any task. When suspended a task will never get any microcontroller processing time, no matter what
its priority.
Calls to vTaskSuspend are not accumulative - i.e. calling vTaskSuspend () twice on the same task still only
requires one call to vTaskResume () to ready the suspended task.

Example usage:

void vAFunction(void)
{
TaskHandle_t xHandle;

// Create a task, storing the handle.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle␣

↪→);

// ...

// Use the handle to suspend the created task.
vTaskSuspend(xHandle);

// ...

// The created task will not run during this period, unless
// another task calls vTaskResume(xHandle).

//...

// Suspend ourselves.
vTaskSuspend(NULL);

// We cannot get here unless another task calls vTaskResume
// with our handle as the parameter.

}

Parameters xTaskToSuspend -- Handle to the task being suspended. Passing a NULL handle
will cause the calling task to be suspended.

void vTaskResume(TaskHandle_t xTaskToResume)
INCLUDE_vTaskSuspend must be defined as 1 for this function to be available. See the configuration section
for more information.
Resumes a suspended task.
A task that has been suspended by one or more calls to vTaskSuspend () will be made available for running
again by a single call to vTaskResume ().

Example usage:

void vAFunction(void)
{
TaskHandle_t xHandle;

(continues on next page)

Espressif Systems 1870
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

// Create a task, storing the handle.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle␣

↪→);

// ...

// Use the handle to suspend the created task.
vTaskSuspend(xHandle);

// ...

// The created task will not run during this period, unless
// another task calls vTaskResume(xHandle).

//...

// Resume the suspended task ourselves.
vTaskResume(xHandle);

// The created task will once again get microcontroller processing
// time in accordance with its priority within the system.

}

Parameters xTaskToResume -- Handle to the task being readied.

BaseType_t xTaskResumeFromISR(TaskHandle_t xTaskToResume)
INCLUDE_xTaskResumeFromISRmust be defined as 1 for this function to be available. See the configuration
section for more information.
An implementation of vTaskResume() that can be called from within an ISR.
A task that has been suspended by one or more calls to vTaskSuspend () will be made available for running
again by a single call to xTaskResumeFromISR ().
xTaskResumeFromISR() should not be used to synchronise a task with an interrupt if there is a chance that
the interrupt could arrive prior to the task being suspended - as this can lead to interrupts being missed. Use
of a semaphore as a synchronisation mechanism would avoid this eventuality.

Parameters xTaskToResume -- Handle to the task being readied.
Returns pdTRUE if resuming the task should result in a context switch, otherwise pdFALSE. This

is used by the ISR to determine if a context switch may be required following the ISR.
void vTaskStartScheduler(void)

Starts the real time kernel tick processing. After calling the kernel has control over which tasks are executed
and when.

See the demo application file main.c for an example of creating tasks and starting the kernel.
Example usage:

void vAFunction(void)
{
// Create at least one task before starting the kernel.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL);

// Start the real time kernel with preemption.
vTaskStartScheduler ();

(continues on next page)

Espressif Systems 1871
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// Will not get here unless a task calls vTaskEndScheduler ()

}

Note: : In ESP-IDF the scheduler is started automatically during application startup, vTaskStartScheduler()
should not be called from ESP-IDF applications.

void vTaskEndScheduler(void)
NOTE: At the time of writing only the x86 real mode port, which runs on a PC in place of DOS, implements
this function.
Stops the real time kernel tick. All created tasks will be automatically deleted and multitasking (either pre-
emptive or cooperative) will stop. Execution then resumes from the point where vTaskStartScheduler () was
called, as if vTaskStartScheduler () had just returned.
See the demo application file main. c in the demo/PC directory for an example that uses vTaskEndScheduler
().
vTaskEndScheduler () requires an exit function to be defined within the portable layer (see vPortEndScheduler
() in port. c for the PC port). This performs hardware specific operations such as stopping the kernel tick.
vTaskEndScheduler () will cause all of the resources allocated by the kernel to be freed - but will not free
resources allocated by application tasks.
Example usage:

void vTaskCode(void * pvParameters)
{
for(;;)
{

// Task code goes here.

// At some point we want to end the real time kernel processing
// so call ...
vTaskEndScheduler ();

}
}

void vAFunction(void)
{
// Create at least one task before starting the kernel.
xTaskCreate(vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL);

// Start the real time kernel with preemption.
vTaskStartScheduler ();

// Will only get here when the vTaskCode () task has called
// vTaskEndScheduler (). When we get here we are back to single task
// execution.

}

void vTaskSuspendAll(void)
Suspends the scheduler without disabling interrupts. Context switches will not occur while the scheduler is
suspended.
After calling vTaskSuspendAll () the calling task will continue to execute without risk of being swapped out
until a call to xTaskResumeAll () has been made.
API functions that have the potential to cause a context switch (for example, vTaskDelayUntil(), xQueueSend(),
etc.) must not be called while the scheduler is suspended.
Example usage:

Espressif Systems 1872
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void vTask1(void * pvParameters)
{
for(;;)
{

// Task code goes here.

// ...

// At some point the task wants to perform a long operation during
// which it does not want to get swapped out. It cannot use
// taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
// operation may cause interrupts to be missed - including the
// ticks.

// Prevent the real time kernel swapping out the task.
vTaskSuspendAll ();

// Perform the operation here. There is no need to use critical
// sections as we have all the microcontroller processing time.
// During this time interrupts will still operate and the kernel
// tick count will be maintained.

// ...

// The operation is complete. Restart the kernel.
xTaskResumeAll ();

}
}

BaseType_t xTaskResumeAll(void)
Resumes scheduler activity after it was suspended by a call to vTaskSuspendAll().
xTaskResumeAll() only resumes the scheduler. It does not unsuspend tasks that were previously suspended by
a call to vTaskSuspend().

Example usage:

void vTask1(void * pvParameters)
{
for(;;)
{

// Task code goes here.

// ...

// At some point the task wants to perform a long operation during
// which it does not want to get swapped out. It cannot use
// taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
// operation may cause interrupts to be missed - including the
// ticks.

// Prevent the real time kernel swapping out the task.
vTaskSuspendAll ();

// Perform the operation here. There is no need to use critical
// sections as we have all the microcontroller processing time.
// During this time interrupts will still operate and the real
// time kernel tick count will be maintained.

// ...

(continues on next page)

Espressif Systems 1873
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// The operation is complete. Restart the kernel. We want to force
// a context switch - but there is no point if resuming the scheduler
// caused a context switch already.
if(!xTaskResumeAll ())
{

taskYIELD ();
}

}
}

Returns If resuming the scheduler caused a context switch then pdTRUE is returned, otherwise
pdFALSE is returned.

TickType_t xTaskGetTickCount(void)

Returns The count of ticks since vTaskStartScheduler was called.
TickType_t xTaskGetTickCountFromISR(void)

This is a version of xTaskGetTickCount() that is safe to be called from an ISR - provided that TickType_t is
the natural word size of the microcontroller being used or interrupt nesting is either not supported or not being
used.

Returns The count of ticks since vTaskStartScheduler was called.
UBaseType_t uxTaskGetNumberOfTasks(void)

Returns The number of tasks that the real time kernel is currently managing. This includes all
ready, blocked and suspended tasks. A task that has been deleted but not yet freed by the idle
task will also be included in the count.

char *pcTaskGetName(TaskHandle_t xTaskToQuery)

Returns The text (human readable) name of the task referenced by the handle xTaskToQuery. A
task can query its own name by either passing in its own handle, or by setting xTaskToQuery
to NULL.

TaskHandle_t xTaskGetHandle(const char *pcNameToQuery)
NOTE: This function takes a relatively long time to complete and should be used sparingly.

Returns The handle of the task that has the human readable name pcNameToQuery. NULL
is returned if no matching name is found. INCLUDE_xTaskGetHandle must be set to 1 in
FreeRTOSConfig.h for pcTaskGetHandle() to be available.

BaseType_t xTaskGetStaticBuffers(TaskHandle_t xTask, StackType_t **ppuxStackBuffer, StaticTask_t
**ppxTaskBuffer)

UBaseType_t uxTaskGetStackHighWaterMark(TaskHandle_t xTask)
Returns the high water mark of the stack associated with xTask.
INCLUDE_uxTaskGetStackHighWaterMark must be set to 1 in FreeRTOSConfig.h for this function to be
available.
Returns the high water mark of the stack associated with xTask. That is, the minimum free stack space there
has been (in bytes not words, unlike vanilla FreeRTOS) since the task started. The smaller the returned number
the closer the task has come to overflowing its stack.
uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the same except for their re-
turn type. Using configSTACK_DEPTH_TYPE allows the user to determine the return type. It gets around
the problem of the value overflowing on 8-bit types without breaking backward compatibility for applications
that expect an 8-bit return type.

Parameters xTask -- Handle of the task associated with the stack to be checked. Set xTask to
NULL to check the stack of the calling task.

Espressif Systems 1874
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns The smallest amount of free stack space there has been (in bytes not words, unlike vanilla
FreeRTOS) since the task referenced by xTask was created.

configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2(TaskHandle_t xTask)
Returns the start of the stack associated with xTask.
INCLUDE_uxTaskGetStackHighWaterMark2 must be set to 1 in FreeRTOSConfig.h for this function to be
available.
Returns the high water mark of the stack associated with xTask. That is, the minimum free stack space there
has been (in bytes not words, unlike vanilla FreeRTOS) since the task started. The smaller the returned number
the closer the task has come to overflowing its stack.
uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the same except for their re-
turn type. Using configSTACK_DEPTH_TYPE allows the user to determine the return type. It gets around
the problem of the value overflowing on 8-bit types without breaking backward compatibility for applications
that expect an 8-bit return type.

Parameters xTask -- Handle of the task associated with the stack to be checked. Set xTask to
NULL to check the stack of the calling task.

Returns The smallest amount of free stack space there has been (in bytes not words, unlike vanilla
FreeRTOS) since the task referenced by xTask was created.

uint8_t *pxTaskGetStackStart(TaskHandle_t xTask)
Returns the start of the stack associated with xTask.
INCLUDE_pxTaskGetStackStart must be set to 1 in FreeRTOSConfig.h for this function to be available.
Returns the lowest stack memory address, regardless of whether the stack grows up or down.

Parameters xTask -- Handle of the task associated with the stack returned. Set xTask to NULL
to return the stack of the calling task.

Returns A pointer to the start of the stack.
void vTaskSetApplicationTaskTag(TaskHandle_t xTask, TaskHookFunction_t pxHookFunction)

Sets pxHookFunction to be the task hook function used by the task xTask.
Parameters

• xTask -- Handle of the task to set the hook function for Passing xTask as NULL has the
effect of setting the calling tasks hook function.

• pxHookFunction -- Pointer to the hook function.
TaskHookFunction_t xTaskGetApplicationTaskTag(TaskHandle_t xTask)

Returns the pxHookFunction value assigned to the task xTask. Do not call from an interrupt service routine -
call xTaskGetApplicationTaskTagFromISR() instead.

TaskHookFunction_t xTaskGetApplicationTaskTagFromISR(TaskHandle_t xTask)
Returns the pxHookFunction value assigned to the task xTask. Can be called from an interrupt service routine.

void vTaskSetThreadLocalStoragePointer(TaskHandle_t xTaskToSet, BaseType_t xIndex, void
*pvValue)

Set local storage pointer specific to the given task.
Each task contains an array of pointers that is dimensioned by the con-
figNUM_THREAD_LOCAL_STORAGE_POINTERS setting in FreeRTOSConfig.h. The kernel does
not use the pointers itself, so the application writer can use the pointers for any purpose they wish.

Parameters
• xTaskToSet -- Task to set thread local storage pointer for
• xIndex -- The index of the pointer to set, from 0 to con-
figNUM_THREAD_LOCAL_STORAGE_POINTERS - 1.

• pvValue -- Pointer value to set.

Espressif Systems 1875
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void *pvTaskGetThreadLocalStoragePointer(TaskHandle_t xTaskToQuery, BaseType_t xIndex)
Get local storage pointer specific to the given task.
Each task contains an array of pointers that is dimensioned by the con-
figNUM_THREAD_LOCAL_STORAGE_POINTERS setting in FreeRTOSConfig.h. The kernel does
not use the pointers itself, so the application writer can use the pointers for any purpose they wish.

Parameters
• xTaskToQuery -- Task to get thread local storage pointer for
• xIndex -- The index of the pointer to get, from 0 to con-
figNUM_THREAD_LOCAL_STORAGE_POINTERS - 1.

Returns Pointer value
void vTaskSetThreadLocalStoragePointerAndDelCallback(TaskHandle_t xTaskToSet,

BaseType_t xIndex, void *pvValue,
TlsDeleteCallbackFunction_t
pvDelCallback)

Set local storage pointer and deletion callback.
Each task contains an array of pointers that is dimensioned by the con-
figNUM_THREAD_LOCAL_STORAGE_POINTERS setting in FreeRTOSConfig.h. The kernel does
not use the pointers itself, so the application writer can use the pointers for any purpose they wish.
Local storage pointers set for a task can reference dynamically allocated resources. This function is similar to
vTaskSetThreadLocalStoragePointer, but provides a way to release these resources when the task gets deleted.
For each pointer, a callback function can be set. This function will be called when task is deleted, with the
local storage pointer index and value as arguments.

Parameters
• xTaskToSet -- Task to set thread local storage pointer for
• xIndex -- The index of the pointer to set, from 0 to con-
figNUM_THREAD_LOCAL_STORAGE_POINTERS - 1.

• pvValue -- Pointer value to set.
• pvDelCallback -- Function to call to dispose of the local storage pointer when the
task is deleted.

void vApplicationGetIdleTaskMemory(StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t
**ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize)

This function is used to provide a statically allocated block of memory to FreeRTOS to hold the Idle Task TCB.
This function is required when configSUPPORT_STATIC_ALLOCATION is set. For more information see
this URI: https://www.FreeRTOS.org/a00110.html#configSUPPORT_STATIC_ALLOCATION

Parameters
• ppxIdleTaskTCBBuffer -- A handle to a statically allocated TCB buffer
• ppxIdleTaskStackBuffer -- A handle to a statically allocated Stack buffer for thie
idle task

• pulIdleTaskStackSize -- A pointer to the number of elements that will fit in the
allocated stack buffer

BaseType_t xTaskCallApplicationTaskHook(TaskHandle_t xTask, void *pvParameter)
Calls the hook function associated with xTask. Passing xTask as NULL has the effect of calling the Running
tasks (the calling task) hook function.

Parameters
• xTask -- Handle of the task to call the hook for.
• pvParameter -- Parameter passed to the hook function for the task to interpret as it
wants. The return value is the value returned by the task hook function registered by the
user.

TaskHandle_t xTaskGetIdleTaskHandle(void)
xTaskGetIdleTaskHandle() is only available if INCLUDE_xTaskGetIdleTaskHandle is set to 1 in FreeR-
TOSConfig.h.

Espressif Systems 1876
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00110.html#configSUPPORT_STATIC_ALLOCATION
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Simply returns the handle of the idle task. It is not valid to call xTaskGetIdleTaskHandle() before the scheduler
has been started.

UBaseType_t uxTaskGetSystemState(TaskStatus_t *const pxTaskStatusArray, const UBaseType_t
uxArraySize, uint32_t *const pulTotalRunTime)

configUSE_TRACE_FACILITY must be defined as 1 in FreeRTOSConfig.h for uxTaskGetSystemState() to
be available.
uxTaskGetSystemState() populates an TaskStatus_t structure for each task in the system. TaskStatus_t struc-
tures contain, among other things, members for the task handle, task name, task priority, task state, and total
amount of run time consumed by the task. See the TaskStatus_t structure definition in this file for the full
member list.

Example usage:

// This example demonstrates how a human readable table of run time stats
// information is generated from raw data provided by uxTaskGetSystemState().
// The human readable table is written to pcWriteBuffer
void vTaskGetRunTimeStats(char *pcWriteBuffer)
{
TaskStatus_t *pxTaskStatusArray;
volatile UBaseType_t uxArraySize, x;
uint32_t ulTotalRunTime, ulStatsAsPercentage;

// Make sure the write buffer does not contain a string.
*pcWriteBuffer = 0x00;

// Take a snapshot of the number of tasks in case it changes while this
// function is executing.
uxArraySize = uxTaskGetNumberOfTasks();

// Allocate a TaskStatus_t structure for each task. An array could be
// allocated statically at compile time.
pxTaskStatusArray = pvPortMalloc(uxArraySize * sizeof(TaskStatus_t));

if(pxTaskStatusArray != NULL)
{

// Generate raw status information about each task.
uxArraySize = uxTaskGetSystemState(pxTaskStatusArray, uxArraySize, &

↪→ulTotalRunTime);

// For percentage calculations.
ulTotalRunTime /= 100UL;

// Avoid divide by zero errors.
if(ulTotalRunTime > 0)
{

// For each populated position in the pxTaskStatusArray array,
// format the raw data as human readable ASCII data
for(x = 0; x < uxArraySize; x++)
{

// What percentage of the total run time has the task used?
// This will always be rounded down to the nearest integer.
// ulTotalRunTimeDiv100 has already been divided by 100.
ulStatsAsPercentage = pxTaskStatusArray[x].ulRunTimeCounter␣

↪→/ ulTotalRunTime;

if(ulStatsAsPercentage > 0UL)
{

sprintf(pcWriteBuffer, "%s\t\t%lu\t\t%lu%%\r\n",␣
↪→pxTaskStatusArray[x].pcTaskName, pxTaskStatusArray[x].ulRunTimeCounter,␣
↪→ulStatsAsPercentage); (continues on next page)

Espressif Systems 1877
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
}
else
{

// If the percentage is zero here then the task has
// consumed less than 1% of the total run time.
sprintf(pcWriteBuffer, "%s\t\t%lu\t\t<1%%\r\n",␣

↪→pxTaskStatusArray[x].pcTaskName, pxTaskStatusArray[x].ulRunTimeCounter);
}

pcWriteBuffer += strlen((char *) pcWriteBuffer);
}

}

// The array is no longer needed, free the memory it consumes.
vPortFree(pxTaskStatusArray);

}
}

Note: This function is intended for debugging use only as its use results in the scheduler remaining suspended
for an extended period.

Parameters
• pxTaskStatusArray -- A pointer to an array of TaskStatus_t structures. The array
must contain at least one TaskStatus_t structure for each task that is under the control of
the RTOS. The number of tasks under the control of the RTOS can be determined using
the uxTaskGetNumberOfTasks() API function.

• uxArraySize -- The size of the array pointed to by the pxTaskStatusArray parameter.
The size is specified as the number of indexes in the array, or the number of TaskStatus_t
structures contained in the array, not by the number of bytes in the array.

• pulTotalRunTime -- If configGENERATE_RUN_TIME_STATS is set to 1 in
FreeRTOSConfig.h then *pulTotalRunTime is set by uxTaskGetSystemState() to the to-
tal run time (as defined by the run time stats clock, see https://www.FreeRTOS.org/
rtos-run-time-stats.html) since the target booted. pulTotalRunTime can be set to NULL
to omit the total run time information.

Returns The number of TaskStatus_t structures that were populated by uxTaskGetSystemState().
This should equal the number returned by the uxTaskGetNumberOfTasks() API function, but
will be zero if the value passed in the uxArraySize parameter was too small.

void vTaskList(char *pcWriteBuffer)
List all the current tasks.
configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS must both be de-
fined as 1 for this function to be available. See the configuration section of the FreeRTOS.org website for more
information.
NOTE 1: This function will disable interrupts for its duration. It is not intended for normal application runtime
use but as a debug aid.
Lists all the current tasks, along with their current state and stack usage high water mark.
Tasks are reported as blocked ('B'), ready ('R'), deleted ('D') or suspended ('S').
PLEASE NOTE:
This function is provided for convenience only, and is used by many of the demo applications. Do not consider
it to be part of the scheduler.
vTaskList() calls uxTaskGetSystemState(), then formats part of the uxTaskGetSystemState() output into a
human readable table that displays task names, states and stack usage.

Espressif Systems 1878
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/rtos-run-time-stats.html
https://www.FreeRTOS.org/rtos-run-time-stats.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

vTaskList() has a dependency on the sprintf() C library function that might bloat the code size, use a lot of stack,
and provide different results on different platforms. An alternative, tiny, third party, and limited functionality
implementation of sprintf() is provided in many of the FreeRTOS/Demo sub-directories in a file called printf-
stdarg.c (note printf-stdarg.c does not provide a full snprintf() implementation!).
It is recommended that production systems call uxTaskGetSystemState() directly to get access to raw stats data,
rather than indirectly through a call to vTaskList().

Parameters pcWriteBuffer -- A buffer into which the abovementioned details will be written,
in ASCII form. This buffer is assumed to be large enough to contain the generated report.
Approximately 40 bytes per task should be sufficient.

void vTaskGetRunTimeStats(char *pcWriteBuffer)
Get the state of running tasks as a string
configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS must
both be defined as 1 for this function to be available. The application must also then provide definitions for port-
CONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE()
to configure a peripheral timer/counter and return the timers current count value respectively. The counter
should be at least 10 times the frequency of the tick count.
NOTE 1: This function will disable interrupts for its duration. It is not intended for normal application runtime
use but as a debug aid.
Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total accumulated execution time being
stored for each task. The resolution of the accumulated time value depends on the frequency of the timer
configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro. Calling vTaskGetRun-
TimeStats() writes the total execution time of each task into a buffer, both as an absolute count value and as a
percentage of the total system execution time.
NOTE 2:
This function is provided for convenience only, and is used by many of the demo applications. Do not consider
it to be part of the scheduler.
vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part of the uxTaskGetSystemState()
output into a human readable table that displays the amount of time each task has spent in the Running state
in both absolute and percentage terms.
vTaskGetRunTimeStats() has a dependency on the sprintf() C library function that might bloat the code size,
use a lot of stack, and provide different results on different platforms. An alternative, tiny, third party, and
limited functionality implementation of sprintf() is provided in many of the FreeRTOS/Demo sub-directories
in a file called printf-stdarg.c (note printf-stdarg.c does not provide a full snprintf() implementation!).
It is recommended that production systems call uxTaskGetSystemState() directly to get access to raw stats data,
rather than indirectly through a call to vTaskGetRunTimeStats().

Parameters pcWriteBuffer -- A buffer into which the execution times will be written, in
ASCII form. This buffer is assumed to be large enough to contain the generated report. Ap-
proximately 40 bytes per task should be sufficient.

uint32_t ulTaskGetIdleRunTimeCounter(void)
configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS must
both be defined as 1 for this function to be available. The application must also then provide definitions for port-
CONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE()
to configure a peripheral timer/counter and return the timers current count value respectively. The counter
should be at least 10 times the frequency of the tick count.
Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total accumulated execution time being
stored for each task. The resolution of the accumulated time value depends on the frequency of the timer con-
figured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro. While uxTaskGetSystem-
State() and vTaskGetRunTimeStats() writes the total execution time of each task into a buffer, ulTaskGetI-
dleRunTimeCounter() returns the total execution time of just the idle task.

Espressif Systems 1879
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns The total run time of the idle task. This is the amount of time the idle
task has actually been executing. The unit of time is dependent on the frequency
configured using the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and port-
GET_RUN_TIME_COUNTER_VALUE() macros.

BaseType_t xTaskGenericNotify(TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t
ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue)

See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these functions to be available.
Sends a direct to task notification to a task, with an optional value and action.
Each task has a private array of "notification values" (or 'notifications'), each of which is a 32-bit unsigned inte-
ger (uint32_t). The constant configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes
in the array, and (for backward compatibility) defaults to 1 if left undefined. Prior to FreeRTOS V10.4.0 there
was only one notification value per task.
Events can be sent to a task using an intermediary object. Examples of such objects are queues, semaphores,
mutexes and event groups. Task notifications are a method of sending an event directly to a task without the
need for such an intermediary object.
A notification sent to a task can optionally perform an action, such as update, overwrite or increment one of
the task's notification values. In that way task notifications can be used to send data to a task, or be used as
light weight and fast binary or counting semaphores.
A task can use xTaskNotifyWaitIndexed() to [optionally] block to wait for a notification to be pending, or
ulTaskNotifyTakeIndexed() to [optionally] block to wait for a notification value to have a non-zero value. The
task does not consume any CPU time while it is in the Blocked state.
A notification sent to a task will remain pending until it is cleared by the task calling xTaskNotifyWaitIndexed()
or ulTaskNotifyTakeIndexed() (or their un-indexed equivalents). If the task was already in the Blocked state
to wait for a notification when the notification arrives then the task will automatically be removed from the
Blocked state (unblocked) and the notification cleared.
NOTE Each notification within the array operates independently - a task can only block on one notification
within the array at a time and will not be unblocked by a notification sent to any other array index.
Backward compatibility information: Prior to FreeRTOS V10.4.0 each task had a single "notification value",
and all task notification API functions operated on that value. Replacing the single notification value with an
array of notification values necessitated a new set of API functions that could address specific notifications
within the array. xTaskNotify() is the original API function, and remains backward compatible by always
operating on the notification value at index 0 in the array. Calling xTaskNotify() is equivalent to calling xTas-
kNotifyIndexed() with the uxIndexToNotify parameter set to 0.

eSetBits - The target notification value is bitwise ORed with ulValue. xTaskNotifyIndexed() always returns
pdPASS in this case.
eIncrement - The target notification value is incremented. ulValue is not used and xTaskNotifyIndexed() always
returns pdPASS in this case.
eSetValueWithOverwrite - The target notification value is set to the value of ulValue, even if the task being no-
tified had not yet processed the previous notification at the same array index (the task already had a notification
pending at that index). xTaskNotifyIndexed() always returns pdPASS in this case.
eSetValueWithoutOverwrite - If the task being notified did not already have a notification pending at the same
array index then the target notification value is set to ulValue and xTaskNotifyIndexed() will return pdPASS.
If the task being notified already had a notification pending at the same array index then no action is performed
and pdFAIL is returned.
eNoAction - The task receives a notification at the specified array index without the notification value at that
index being updated. ulValue is not used and xTaskNotifyIndexed() always returns pdPASS in this case.

Parameters

Espressif Systems 1880
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• xTaskToNotify -- The handle of the task being notified. The handle to a task can be
returned from the xTaskCreate() API function used to create the task, and the handle of
the currently running task can be obtained by calling xTaskGetCurrentTaskHandle().

• uxIndexToNotify -- The index within the target task's array of notification val-
ues to which the notification is to be sent. uxIndexToNotify must be less than config-
TASK_NOTIFICATION_ARRAY_ENTRIES. xTaskNotify() does not have this param-
eter and always sends notifications to index 0.

• ulValue -- Data that can be sent with the notification. How the data is used depends on
the value of the eAction parameter.

• eAction -- Specifies how the notification updates the task's notification value, if at all.
Valid values for eAction are as follows:

• pulPreviousNotificationValue -- - Can be used to pass out the subject task's
notification value before any bits are modified by the notify function.

Returns Dependent on the value of eAction. See the description of the eAction parameter.
BaseType_t xTaskGenericNotifyFromISR(TaskHandle_t xTaskToNotify, UBaseType_t

uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction,
uint32_t *pulPreviousNotificationValue, BaseType_t
*pxHigherPriorityTaskWoken)

See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these functions to be available.
A version of xTaskNotifyIndexed() that can be used from an interrupt service routine (ISR).
Each task has a private array of "notification values" (or 'notifications'), each of which is a 32-bit unsigned inte-
ger (uint32_t). The constant configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes
in the array, and (for backward compatibility) defaults to 1 if left undefined. Prior to FreeRTOS V10.4.0 there
was only one notification value per task.
Events can be sent to a task using an intermediary object. Examples of such objects are queues, semaphores,
mutexes and event groups. Task notifications are a method of sending an event directly to a task without the
need for such an intermediary object.
A notification sent to a task can optionally perform an action, such as update, overwrite or increment one of
the task's notification values. In that way task notifications can be used to send data to a task, or be used as
light weight and fast binary or counting semaphores.
A task can use xTaskNotifyWaitIndexed() to [optionally] block to wait for a notification to be pending, or
ulTaskNotifyTakeIndexed() to [optionally] block to wait for a notification value to have a non-zero value. The
task does not consume any CPU time while it is in the Blocked state.
A notification sent to a task will remain pending until it is cleared by the task calling xTaskNotifyWaitIndexed()
or ulTaskNotifyTakeIndexed() (or their un-indexed equivalents). If the task was already in the Blocked state
to wait for a notification when the notification arrives then the task will automatically be removed from the
Blocked state (unblocked) and the notification cleared.
NOTE Each notification within the array operates independently - a task can only block on one notification
within the array at a time and will not be unblocked by a notification sent to any other array index.
Backward compatibility information: Prior to FreeRTOS V10.4.0 each task had a single "notification value",
and all task notification API functions operated on that value. Replacing the single notification value with an ar-
ray of notification values necessitated a new set of API functions that could address specific notifications within
the array. xTaskNotifyFromISR() is the original API function, and remains backward compatible by always
operating on the notification value at index 0 within the array. Calling xTaskNotifyFromISR() is equivalent to
calling xTaskNotifyIndexedFromISR() with the uxIndexToNotify parameter set to 0.

eSetBits - The task's notification value is bitwise ORed with ulValue. xTaskNotify() always returns pdPASS in
this case.
eIncrement - The task's notification value is incremented. ulValue is not used and xTaskNotify() always returns
pdPASS in this case.

Espressif Systems 1881
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

eSetValueWithOverwrite - The task's notification value is set to the value of ulValue, even if the task being
notified had not yet processed the previous notification (the task already had a notification pending). xTaskNo-
tify() always returns pdPASS in this case.
eSetValueWithoutOverwrite - If the task being notified did not already have a notification pending then the
task's notification value is set to ulValue and xTaskNotify() will return pdPASS. If the task being notified
already had a notification pending then no action is performed and pdFAIL is returned.
eNoAction - The task receives a notification without its notification value being updated. ulValue is not used
and xTaskNotify() always returns pdPASS in this case.

Parameters
• uxIndexToNotify -- The index within the target task's array of notification val-
ues to which the notification is to be sent. uxIndexToNotify must be less than con-
figTASK_NOTIFICATION_ARRAY_ENTRIES. xTaskNotifyFromISR() does not have
this parameter and always sends notifications to index 0.

• xTaskToNotify -- The handle of the task being notified. The handle to a task can be
returned from the xTaskCreate() API function used to create the task, and the handle of
the currently running task can be obtained by calling xTaskGetCurrentTaskHandle().

• ulValue -- Data that can be sent with the notification. How the data is used depends on
the value of the eAction parameter.

• eAction -- Specifies how the notification updates the task's notification value, if at all.
Valid values for eAction are as follows:

• pulPreviousNotificationValue -- - Can be used to pass out the subject task's
notification value before any bits are modified by the notify function.

• pxHigherPriorityTaskWoken -- xTaskNotifyFromISR() will set *pxHigherPri-
orityTaskWoken to pdTRUE if sending the notification caused the task to which the no-
tification was sent to leave the Blocked state, and the unblocked task has a priority higher
than the currently running task. If xTaskNotifyFromISR() sets this value to pdTRUE then
a context switch should be requested before the interrupt is exited. How a context switch
is requested from an ISR is dependent on the port - see the documentation page for the
port in use.

Returns Dependent on the value of eAction. See the description of the eAction parameter.
BaseType_t xTaskGenericNotifyWait(UBaseType_t uxIndexToWaitOn, uint32_t ulBitsToClearOnEntry,

uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue,
TickType_t xTicksToWait)

Waits for a direct to task notification to be pending at a given index within an array of direct to task notifications.
See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this function to be available.
Each task has a private array of "notification values" (or 'notifications'), each of which is a 32-bit unsigned inte-
ger (uint32_t). The constant configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes
in the array, and (for backward compatibility) defaults to 1 if left undefined. Prior to FreeRTOS V10.4.0 there
was only one notification value per task.
Events can be sent to a task using an intermediary object. Examples of such objects are queues, semaphores,
mutexes and event groups. Task notifications are a method of sending an event directly to a task without the
need for such an intermediary object.
A notification sent to a task can optionally perform an action, such as update, overwrite or increment one of
the task's notification values. In that way task notifications can be used to send data to a task, or be used as
light weight and fast binary or counting semaphores.
A notification sent to a task will remain pending until it is cleared by the task calling xTaskNotifyWaitIndexed()
or ulTaskNotifyTakeIndexed() (or their un-indexed equivalents). If the task was already in the Blocked state
to wait for a notification when the notification arrives then the task will automatically be removed from the
Blocked state (unblocked) and the notification cleared.
A task can use xTaskNotifyWaitIndexed() to [optionally] block to wait for a notification to be pending, or
ulTaskNotifyTakeIndexed() to [optionally] block to wait for a notification value to have a non-zero value. The

Espressif Systems 1882
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

task does not consume any CPU time while it is in the Blocked state.
NOTE Each notification within the array operates independently - a task can only block on one notification
within the array at a time and will not be unblocked by a notification sent to any other array index.
Backward compatibility information: Prior to FreeRTOS V10.4.0 each task had a single "notification value",
and all task notification API functions operated on that value. Replacing the single notification value with an
array of notification values necessitated a new set of API functions that could address specific notifications
within the array. xTaskNotifyWait() is the original API function, and remains backward compatible by always
operating on the notification value at index 0 in the array. Calling xTaskNotifyWait() is equivalent to calling
xTaskNotifyWaitIndexed() with the uxIndexToWaitOn parameter set to 0.

Parameters
• uxIndexToWaitOn -- The index within the calling task's array of notification values on
which the calling task will wait for a notification to be received. uxIndexToWaitOnmust be
less than configTASK_NOTIFICATION_ARRAY_ENTRIES. xTaskNotifyWait() does
not have this parameter and always waits for notifications on index 0.

• ulBitsToClearOnEntry -- Bits that are set in ulBitsToClearOnEntry value will be
cleared in the calling task's notification value before the task is marked as waiting for a
new notification (provided a notification is not already pending). Optionally blocks if no
notifications are pending. Setting ulBitsToClearOnEntry to ULONG_MAX (if limits.h
is included) or 0xffffffffUL (if limits.h is not included) will have the effect of resetting
the task's notification value to 0. Setting ulBitsToClearOnEntry to 0 will leave the task's
notification value unchanged.

• ulBitsToClearOnExit -- If a notification is pending or received before the calling
task exits the xTaskNotifyWait() function then the task's notification value (see the xTas-
kNotify() API function) is passed out using the pulNotificationValue parameter. Then any
bits that are set in ulBitsToClearOnExit will be cleared in the task's notification value (note
*pulNotificationValue is set before any bits are cleared). Setting ulBitsToClearOnExit to
ULONG_MAX (if limits.h is included) or 0xffffffffUL (if limits.h is not included) will
have the effect of resetting the task's notification value to 0 before the function exits. Set-
ting ulBitsToClearOnExit to 0 will leave the task's notification value unchanged when the
function exits (in which case the value passed out in pulNotificationValue will match the
task's notification value).

• pulNotificationValue -- Used to pass the task's notification value out of the func-
tion. Note the value passed out will not be effected by the clearing of any bits caused by
ulBitsToClearOnExit being non-zero.

• xTicksToWait -- The maximum amount of time that the task should wait in the
Blocked state for a notification to be received, should a notification not already be pending
when xTaskNotifyWait() was called. The task will not consume any processing time while
it is in the Blocked state. This is specified in kernel ticks, the macro pdMS_TO_TICKS(
value_in_ms) can be used to convert a time specified in milliseconds to a time specified
in ticks.

Returns If a notification was received (including notifications that were already pending when
xTaskNotifyWait was called) then pdPASS is returned. Otherwise pdFAIL is returned.

void vTaskGenericNotifyGiveFromISR(TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify,
BaseType_t *pxHigherPriorityTaskWoken)

A version of xTaskNotifyGiveIndexed() that can be called from an interrupt service routine (ISR).
See https://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this macro to be available.
Each task has a private array of "notification values" (or 'notifications'), each of which is a 32-bit unsigned inte-
ger (uint32_t). The constant configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes
in the array, and (for backward compatibility) defaults to 1 if left undefined. Prior to FreeRTOS V10.4.0 there
was only one notification value per task.
Events can be sent to a task using an intermediary object. Examples of such objects are queues, semaphores,
mutexes and event groups. Task notifications are a method of sending an event directly to a task without the
need for such an intermediary object.

Espressif Systems 1883
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

A notification sent to a task can optionally perform an action, such as update, overwrite or increment one of
the task's notification values. In that way task notifications can be used to send data to a task, or be used as
light weight and fast binary or counting semaphores.
vTaskNotifyGiveIndexedFromISR() is intended for use when task notifications are used as light weight and
faster binary or counting semaphore equivalents. Actual FreeRTOS semaphores are given from an ISR using
the xSemaphoreGiveFromISR() API function, the equivalent action that instead uses a task notification is
vTaskNotifyGiveIndexedFromISR().
When task notifications are being used as a binary or counting semaphore equivalent then the task being no-
tified should wait for the notification using the ulTaskNotificationTakeIndexed() API function rather than the
xTaskNotifyWaitIndexed() API function.
NOTE Each notification within the array operates independently - a task can only block on one notification
within the array at a time and will not be unblocked by a notification sent to any other array index.
Backward compatibility information: Prior to FreeRTOS V10.4.0 each task had a single "notification value",
and all task notification API functions operated on that value. Replacing the single notification value with an
array of notification values necessitated a new set of API functions that could address specific notifications
within the array. xTaskNotifyFromISR() is the original API function, and remains backward compatible by
always operating on the notification value at index 0 within the array. Calling xTaskNotifyGiveFromISR() is
equivalent to calling xTaskNotifyGiveIndexedFromISR() with the uxIndexToNotify parameter set to 0.

Parameters
• xTaskToNotify -- The handle of the task being notified. The handle to a task can be
returned from the xTaskCreate() API function used to create the task, and the handle of
the currently running task can be obtained by calling xTaskGetCurrentTaskHandle().

• uxIndexToNotify -- The index within the target task's array of notification val-
ues to which the notification is to be sent. uxIndexToNotify must be less than con-
figTASK_NOTIFICATION_ARRAY_ENTRIES. xTaskNotifyGiveFromISR() does not
have this parameter and always sends notifications to index 0.

• pxHigherPriorityTaskWoken -- vTaskNotifyGiveFromISR() will set *pxHigher-
PriorityTaskWoken to pdTRUE if sending the notification caused the task to which the
notification was sent to leave the Blocked state, and the unblocked task has a priority higher
than the currently running task. If vTaskNotifyGiveFromISR() sets this value to pdTRUE
then a context switch should be requested before the interrupt is exited. How a context
switch is requested from an ISR is dependent on the port - see the documentation page for
the port in use.

uint32_t ulTaskGenericNotifyTake(UBaseType_t uxIndexToWaitOn, BaseType_t xClearCountOnExit,
TickType_t xTicksToWait)

Waits for a direct to task notification on a particular index in the calling task's notification array in a manner
similar to taking a counting semaphore.
See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this function to be available.
Each task has a private array of "notification values" (or 'notifications'), each of which is a 32-bit unsigned inte-
ger (uint32_t). The constant configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes
in the array, and (for backward compatibility) defaults to 1 if left undefined. Prior to FreeRTOS V10.4.0 there
was only one notification value per task.
Events can be sent to a task using an intermediary object. Examples of such objects are queues, semaphores,
mutexes and event groups. Task notifications are a method of sending an event directly to a task without the
need for such an intermediary object.
A notification sent to a task can optionally perform an action, such as update, overwrite or increment one of
the task's notification values. In that way task notifications can be used to send data to a task, or be used as
light weight and fast binary or counting semaphores.
ulTaskNotifyTakeIndexed() is intended for use when a task notification is used as a faster and lighter weight bi-
nary or counting semaphore alternative. Actual FreeRTOS semaphores are taken using the xSemaphoreTake()
API function, the equivalent action that instead uses a task notification is ulTaskNotifyTakeIndexed().

Espressif Systems 1884
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

When a task is using its notification value as a binary or counting semaphore other tasks should send notifications
to it using the xTaskNotifyGiveIndexed() macro, or xTaskNotifyIndex() function with the eAction parameter
set to eIncrement.
ulTaskNotifyTakeIndexed() can either clear the task's notification value at the array index specified by the
uxIndexToWaitOn parameter to zero on exit, in which case the notification value acts like a binary semaphore,
or decrement the notification value on exit, in which case the notification value acts like a counting semaphore.
A task can use ulTaskNotifyTakeIndexed() to [optionally] block to wait for the task's notification value to be
non-zero. The task does not consume any CPU time while it is in the Blocked state.
Where as xTaskNotifyWaitIndexed() will return when a notification is pending, ulTaskNotifyTakeIndexed()
will return when the task's notification value is not zero.
NOTE Each notification within the array operates independently - a task can only block on one notification
within the array at a time and will not be unblocked by a notification sent to any other array index.
Backward compatibility information: Prior to FreeRTOS V10.4.0 each task had a single "notification value",
and all task notification API functions operated on that value. Replacing the single notification value with
an array of notification values necessitated a new set of API functions that could address specific notifications
within the array. ulTaskNotifyTake() is the original API function, and remains backward compatible by always
operating on the notification value at index 0 in the array. Calling ulTaskNotifyTake() is equivalent to calling
ulTaskNotifyTakeIndexed() with the uxIndexToWaitOn parameter set to 0.

Parameters
• uxIndexToWaitOn -- The index within the calling task's array of notification val-
ues on which the calling task will wait for a notification to be non-zero. uxIndex-
ToWaitOn must be less than configTASK_NOTIFICATION_ARRAY_ENTRIES. xTas-
kNotifyTake() does not have this parameter and always waits for notifications on index
0.

• xClearCountOnExit -- if xClearCountOnExit is pdFALSE then the task's notifica-
tion value is decremented when the function exits. In this way the notification value acts
like a counting semaphore. If xClearCountOnExit is not pdFALSE then the task's notifi-
cation value is cleared to zero when the function exits. In this way the notification value
acts like a binary semaphore.

• xTicksToWait -- The maximum amount of time that the task should wait in the
Blocked state for the task's notification value to be greater than zero, should the count
not already be greater than zero when ulTaskNotifyTake() was called. The task will not
consume any processing time while it is in the Blocked state. This is specified in kernel
ticks, the macro pdMS_TO_TICKS(value_in_ms) can be used to convert a time specified
in milliseconds to a time specified in ticks.

Returns The task's notification count before it is either cleared to zero or decremented (see the
xClearCountOnExit parameter).

BaseType_t xTaskGenericNotifyStateClear(TaskHandle_t xTask, UBaseType_t uxIndexToClear)
See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these functions to be available.
Each task has a private array of "notification values" (or 'notifications'), each of which is a 32-bit unsigned inte-
ger (uint32_t). The constant configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes
in the array, and (for backward compatibility) defaults to 1 if left undefined. Prior to FreeRTOS V10.4.0 there
was only one notification value per task.
If a notification is sent to an index within the array of notifications then the notification at that index is said to
be 'pending' until it is read or explicitly cleared by the receiving task. xTaskNotifyStateClearIndexed() is the
function that clears a pending notification without reading the notification value. The notification value at the
same array index is not altered. Set xTask to NULL to clear the notification state of the calling task.
Backward compatibility information: Prior to FreeRTOS V10.4.0 each task had a single "notification value",
and all task notification API functions operated on that value. Replacing the single notification value with an
array of notification values necessitated a new set of API functions that could address specific notifications
within the array. xTaskNotifyStateClear() is the original API function, and remains backward compatible

Espressif Systems 1885
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

by always operating on the notification value at index 0 within the array. Calling xTaskNotifyStateClear() is
equivalent to calling xTaskNotifyStateClearIndexed() with the uxIndexToNotify parameter set to 0.

Parameters
• xTask -- The handle of the RTOS task that will have a notification state cleared. Set
xTask to NULL to clear a notification state in the calling task. To obtain a task's handle
create the task using xTaskCreate() and make use of the pxCreatedTask parameter, or
create the task using xTaskCreateStatic() and store the returned value, or use the task's
name in a call to xTaskGetHandle().

• uxIndexToClear -- The index within the target task's array of notification values
to act upon. For example, setting uxIndexToClear to 1 will clear the state of the
notification at index 1 within the array. uxIndexToClear must be less than config-
TASK_NOTIFICATION_ARRAY_ENTRIES. ulTaskNotifyStateClear() does not have
this parameter and always acts on the notification at index 0.

Returns pdTRUE if the task's notification state was set to eNotWaitingNotification, otherwise
pdFALSE.

uint32_t ulTaskGenericNotifyValueClear(TaskHandle_t xTask, UBaseType_t uxIndexToClear,
uint32_t ulBitsToClear)

See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these functions to be available.
Each task has a private array of "notification values" (or 'notifications'), each of which is a 32-bit unsigned inte-
ger (uint32_t). The constant configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes
in the array, and (for backward compatibility) defaults to 1 if left undefined. Prior to FreeRTOS V10.4.0 there
was only one notification value per task.
ulTaskNotifyValueClearIndexed() clears the bits specified by the ulBitsToClear bit mask in the notification
value at array index uxIndexToClear of the task referenced by xTask.
Backward compatibility information: Prior to FreeRTOS V10.4.0 each task had a single "notification value",
and all task notification API functions operated on that value. Replacing the single notification value with an
array of notification values necessitated a new set of API functions that could address specific notifications
within the array. ulTaskNotifyValueClear() is the original API function, and remains backward compatible
by always operating on the notification value at index 0 within the array. Calling ulTaskNotifyValueClear() is
equivalent to calling ulTaskNotifyValueClearIndexed() with the uxIndexToClear parameter set to 0.

Parameters
• xTask -- The handle of the RTOS task that will have bits in one of its notification values
cleared. Set xTask to NULL to clear bits in a notification value of the calling task. To
obtain a task's handle create the task using xTaskCreate() and make use of the pxCreated-
Task parameter, or create the task using xTaskCreateStatic() and store the returned value,
or use the task's name in a call to xTaskGetHandle().

• uxIndexToClear -- The index within the target task's array of notification
values in which to clear the bits. uxIndexToClear must be less than config-
TASK_NOTIFICATION_ARRAY_ENTRIES. ulTaskNotifyValueClear() does not have
this parameter and always clears bits in the notification value at index 0.

• ulBitsToClear -- Bit mask of the bits to clear in the notification value of xTask. Set
a bit to 1 to clear the corresponding bits in the task's notification value. Set ulBitsToClear
to 0xffffffff (UINT_MAX on 32-bit architectures) to clear the notification value to 0. Set
ulBitsToClear to 0 to query the task's notification value without clearing any bits.

Returns The value of the target task's notification value before the bits specified by ulBitsToClear
were cleared.

void vTaskSetTimeOutState(TimeOut_t *const pxTimeOut)

BaseType_t xTaskCheckForTimeOut(TimeOut_t *const pxTimeOut, TickType_t *const pxTicksToWait)
Determines if pxTicksToWait ticks has passed since a time was captured using a call to vTaskSetTimeOut-
State(). The captured time includes the tick count and the number of times the tick count has overflowed.

Espressif Systems 1886
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Example Usage:

// Driver library function used to receive uxWantedBytes from an Rx buffer
// that is filled by a UART interrupt. If there are not enough bytes in the
// Rx buffer then the task enters the Blocked state until it is notified that
// more data has been placed into the buffer. If there is still not enough
// data then the task re-enters the Blocked state, and xTaskCheckForTimeOut()
// is used to re-calculate the Block time to ensure the total amount of time
// spent in the Blocked state does not exceed MAX_TIME_TO_WAIT. This
// continues until either the buffer contains at least uxWantedBytes bytes,
// or the total amount of time spent in the Blocked state reaches
// MAX_TIME_TO_WAIT – at which point the task reads however many bytes are
// available up to a maximum of uxWantedBytes.

size_t xUART_Receive(uint8_t *pucBuffer, size_t uxWantedBytes)
{
size_t uxReceived = 0;
TickType_t xTicksToWait = MAX_TIME_TO_WAIT;
TimeOut_t xTimeOut;

// Initialize xTimeOut. This records the time at which this function
// was entered.
vTaskSetTimeOutState(&xTimeOut);

// Loop until the buffer contains the wanted number of bytes, or a
// timeout occurs.
while(UART_bytes_in_rx_buffer(pxUARTInstance) < uxWantedBytes)
{

// The buffer didn't contain enough data so this task is going to
// enter the Blocked state. Adjusting xTicksToWait to account for
// any time that has been spent in the Blocked state within this
// function so far to ensure the total amount of time spent in the
// Blocked state does not exceed MAX_TIME_TO_WAIT.
if(xTaskCheckForTimeOut(&xTimeOut, &xTicksToWait) != pdFALSE)
{

//Timed out before the wanted number of bytes were available,
// exit the loop.
break;

}

// Wait for a maximum of xTicksToWait ticks to be notified that the
// receive interrupt has placed more data into the buffer.
ulTaskNotifyTake(pdTRUE, xTicksToWait);

}

// Attempt to read uxWantedBytes from the receive buffer into pucBuffer.
// The actual number of bytes read (which might be less than
// uxWantedBytes) is returned.
uxReceived = UART_read_from_receive_buffer(pxUARTInstance,

pucBuffer,
uxWantedBytes);

return uxReceived;
}

See also:
https://www.FreeRTOS.org/xTaskCheckForTimeOut.html

Parameters
• pxTimeOut -- The time status as captured previously using vTaskSetTimeOutState. If
the timeout has not yet occurred, it is updated to reflect the current time status.

• pxTicksToWait -- The number of ticks to check for timeout i.e. if pxTicksToWait

Espressif Systems 1887
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/xTaskCheckForTimeOut.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ticks have passed since pxTimeOut was last updated (either by vTaskSetTimeOutState()
or xTaskCheckForTimeOut()), the timeout has occurred. If the timeout has not occurred,
pxTicksToWait is updated to reflect the number of remaining ticks.

Returns If timeout has occurred, pdTRUE is returned. Otherwise pdFALSE is returned and
pxTicksToWait is updated to reflect the number of remaining ticks.

BaseType_t xTaskCatchUpTicks(TickType_t xTicksToCatchUp)

Macros

tskKERNEL_VERSION_NUMBER

tskKERNEL_VERSION_MAJOR

tskKERNEL_VERSION_MINOR

tskKERNEL_VERSION_BUILD

tskMPU_REGION_READ_ONLY

tskMPU_REGION_READ_WRITE

tskMPU_REGION_EXECUTE_NEVER

tskMPU_REGION_NORMAL_MEMORY

tskMPU_REGION_DEVICE_MEMORY

tskDEFAULT_INDEX_TO_NOTIFY

tskNO_AFFINITY

tskIDLE_PRIORITY

Defines the priority used by the idle task. This must not be modified.
taskYIELD()

Macro for forcing a context switch.
taskENTER_CRITICAL(x)

Macro to mark the start of a critical code region. Preemptive context switches cannot occur when in a critical
region.

Note: This may alter the stack (depending on the portable implementation) so must be used with care!

taskENTER_CRITICAL_FROM_ISR()

taskENTER_CRITICAL_ISR(x)

Espressif Systems 1888
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

taskEXIT_CRITICAL(x)
Macro to mark the end of a critical code region. Preemptive context switches cannot occur when in a critical
region.

Note: This may alter the stack (depending on the portable implementation) so must be used with care!

taskEXIT_CRITICAL_FROM_ISR(x)

taskEXIT_CRITICAL_ISR(x)

taskDISABLE_INTERRUPTS()

Macro to disable all maskable interrupts.
taskENABLE_INTERRUPTS()

Macro to enable microcontroller interrupts.

taskSCHEDULER_SUSPENDED

taskSCHEDULER_NOT_STARTED

taskSCHEDULER_RUNNING

vTaskDelayUntil(pxPreviousWakeTime, xTimeIncrement)

xTaskNotify(xTaskToNotify, ulValue, eAction)

xTaskNotifyIndexed(xTaskToNotify, uxIndexToNotify, ulValue, eAction)

xTaskNotifyAndQuery(xTaskToNotify, ulValue, eAction, pulPreviousNotifyValue)
See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
xTaskNotifyAndQueryIndexed() performs the same operation as xTaskNotifyIndexed() with the addition that
it also returns the subject task's prior notification value (the notification value at the time the function is called
rather than when the function returns) in the additional pulPreviousNotifyValue parameter.
xTaskNotifyAndQuery() performs the same operation as xTaskNotify() with the addition that it also returns
the subject task's prior notification value (the notification value as it was at the time the function is called, rather
than when the function returns) in the additional pulPreviousNotifyValue parameter.

xTaskNotifyAndQueryIndexed(xTaskToNotify, uxIndexToNotify, ulValue, eAction,
pulPreviousNotifyValue)

xTaskNotifyFromISR(xTaskToNotify, ulValue, eAction, pxHigherPriorityTaskWoken)

xTaskNotifyIndexedFromISR(xTaskToNotify, uxIndexToNotify, ulValue, eAction,
pxHigherPriorityTaskWoken)

xTaskNotifyAndQueryIndexedFromISR(xTaskToNotify, uxIndexToNotify, ulValue, eAction,
pulPreviousNotificationValue, pxHigherPriorityTaskWoken)

See https://www.FreeRTOS.org/RTOS-task-notifications.html for details.
xTaskNotifyAndQueryIndexedFromISR() performs the same operation as xTaskNotifyIndexedFromISR()
with the addition that it also returns the subject task's prior notification value (the notification value at the
time the function is called rather than at the time the function returns) in the additional pulPreviousNotify-
Value parameter.
xTaskNotifyAndQueryFromISR() performs the same operation as xTaskNotifyFromISR() with the addition
that it also returns the subject task's prior notification value (the notification value at the time the function is
called rather than at the time the function returns) in the additional pulPreviousNotifyValue parameter.

Espressif Systems 1889
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

xTaskNotifyAndQueryFromISR(xTaskToNotify, ulValue, eAction, pulPreviousNotificationValue,
pxHigherPriorityTaskWoken)

xTaskNotifyWait(ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait)

xTaskNotifyWaitIndexed(uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit,
pulNotificationValue, xTicksToWait)

xTaskNotifyGiveIndexed(xTaskToNotify, uxIndexToNotify)
Sends a direct to task notification to a particular index in the target task's notification array in a manner similar
to giving a counting semaphore.
See https://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for these macros to be available.
Each task has a private array of "notification values" (or 'notifications'), each of which is a 32-bit unsigned inte-
ger (uint32_t). The constant configTASK_NOTIFICATION_ARRAY_ENTRIES sets the number of indexes
in the array, and (for backward compatibility) defaults to 1 if left undefined. Prior to FreeRTOS V10.4.0 there
was only one notification value per task.
Events can be sent to a task using an intermediary object. Examples of such objects are queues, semaphores,
mutexes and event groups. Task notifications are a method of sending an event directly to a task without the
need for such an intermediary object.
A notification sent to a task can optionally perform an action, such as update, overwrite or increment one of
the task's notification values. In that way task notifications can be used to send data to a task, or be used as
light weight and fast binary or counting semaphores.
xTaskNotifyGiveIndexed() is a helper macro intended for use when task notifications are used as light weight
and faster binary or counting semaphore equivalents. Actual FreeRTOS semaphores are given using the
xSemaphoreGive() API function, the equivalent action that instead uses a task notification is xTaskNotify-
GiveIndexed().
When task notifications are being used as a binary or counting semaphore equivalent then the task being no-
tified should wait for the notification using the ulTaskNotificationTakeIndexed() API function rather than the
xTaskNotifyWaitIndexed() API function.
NOTE Each notification within the array operates independently - a task can only block on one notification
within the array at a time and will not be unblocked by a notification sent to any other array index.
Backward compatibility information: Prior to FreeRTOS V10.4.0 each task had a single "notification value",
and all task notification API functions operated on that value. Replacing the single notification value with an
array of notification values necessitated a new set of API functions that could address specific notifications
within the array. xTaskNotifyGive() is the original API function, and remains backward compatible by always
operating on the notification value at index 0 in the array. Calling xTaskNotifyGive() is equivalent to calling
xTaskNotifyGiveIndexed() with the uxIndexToNotify parameter set to 0.

Parameters
• xTaskToNotify -- The handle of the task being notified. The handle to a task can be
returned from the xTaskCreate() API function used to create the task, and the handle of
the currently running task can be obtained by calling xTaskGetCurrentTaskHandle().

• uxIndexToNotify -- The index within the target task's array of notification val-
ues to which the notification is to be sent. uxIndexToNotify must be less than config-
TASK_NOTIFICATION_ARRAY_ENTRIES. xTaskNotifyGive() does not have this pa-
rameter and always sends notifications to index 0.

Returns xTaskNotifyGive() is a macro that calls xTaskNotify() with the eAction parameter set to
eIncrement - so pdPASS is always returned.

xTaskNotifyGive(xTaskToNotify)

vTaskNotifyGiveFromISR(xTaskToNotify, pxHigherPriorityTaskWoken)

vTaskNotifyGiveIndexedFromISR(xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken)

Espressif Systems 1890
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ulTaskNotifyTake(xClearCountOnExit, xTicksToWait)

ulTaskNotifyTakeIndexed(uxIndexToWaitOn, xClearCountOnExit, xTicksToWait)

xTaskNotifyStateClear(xTask)

xTaskNotifyStateClearIndexed(xTask, uxIndexToClear)

ulTaskNotifyValueClear(xTask, ulBitsToClear)

ulTaskNotifyValueClearIndexed(xTask, uxIndexToClear, ulBitsToClear)

Type Definitions

typedef struct tskTaskControlBlock *TaskHandle_t

typedef BaseType_t (*TaskHookFunction_t)(void*)

typedef void (*TlsDeleteCallbackFunction_t)(int, void*)
Prototype of local storage pointer deletion callback.

Enumerations

enum eTaskState

Task states returned by eTaskGetState.
Values:

enumerator eRunning

enumerator eReady

enumerator eBlocked

enumerator eSuspended

enumerator eDeleted

enumerator eInvalid

enum eNotifyAction

Values:

enumerator eNoAction

enumerator eSetBits

enumerator eIncrement

enumerator eSetValueWithOverwrite

Espressif Systems 1891
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator eSetValueWithoutOverwrite

enum eSleepModeStatus

Possible return values for eTaskConfirmSleepModeStatus().
Values:

enumerator eAbortSleep

enumerator eStandardSleep

enumerator eNoTasksWaitingTimeout

Queue API

Header File
• components/freertos/FreeRTOS-Kernel/include/freertos/queue.h

Functions
BaseType_t xQueueGenericSend(QueueHandle_t xQueue, const void *const pvItemToQueue, TickType_t

xTicksToWait, const BaseType_t xCopyPosition)
It is preferred that the macros xQueueSend(), xQueueSendToFront() and xQueueSendToBack() are used in
place of calling this function directly.
Post an item on a queue. The item is queued by copy, not by reference. This function must not be called from
an interrupt service routine. See xQueueSendFromISR () for an alternative which may be used in an ISR.

Example usage:

struct AMessage
{
char ucMessageID;
char ucData[20];
} xMessage;

uint32_t ulVar = 10UL;

void vATask(void *pvParameters)
{
QueueHandle_t xQueue1, xQueue2;
struct AMessage *pxMessage;

// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate(10, sizeof(uint32_t));

// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue2 = xQueueCreate(10, sizeof(struct AMessage *));

// ...

if(xQueue1 != 0)
{

(continues on next page)

Espressif Systems 1892
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/FreeRTOS-Kernel/include/freertos/queue.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// Send an uint32_t. Wait for 10 ticks for space to become
// available if necessary.
if(xQueueGenericSend(xQueue1, (void *) &ulVar, (TickType_t) 10,␣

↪→queueSEND_TO_BACK) != pdPASS)
{

// Failed to post the message, even after 10 ticks.
}

}

if(xQueue2 != 0)
{

// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueGenericSend(xQueue2, (void *) &pxMessage, (TickType_t) 0,␣

↪→queueSEND_TO_BACK);
}

// ... Rest of task code.
}

Parameters
• xQueue -- The handle to the queue on which the item is to be posted.
• pvItemToQueue -- A pointer to the item that is to be placed on the queue. The size of
the items the queue will hold was defined when the queue was created, so this many bytes
will be copied from pvItemToQueue into the queue storage area.

• xTicksToWait -- The maximum amount of time the task should block waiting for
space to become available on the queue, should it already be full. The call will return
immediately if this is set to 0 and the queue is full. The time is defined in tick periods
so the constant portTICK_PERIOD_MS should be used to convert to real time if this is
required.

• xCopyPosition -- Can take the value queueSEND_TO_BACK to place the item at
the back of the queue, or queueSEND_TO_FRONT to place the item at the front of the
queue (for high priority messages).

Returns pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
BaseType_t xQueuePeek(QueueHandle_t xQueue, void *const pvBuffer, TickType_t xTicksToWait)

Receive an item from a queue without removing the item from the queue. The item is received by copy so a
buffer of adequate size must be provided. The number of bytes copied into the buffer was defined when the
queue was created.
Successfully received items remain on the queue so will be returned again by the next call, or a call to
xQueueReceive().
This macro must not be used in an interrupt service routine. See xQueuePeekFromISR() for an alternative that
can be called from an interrupt service routine.

Example usage:

struct AMessage
{
char ucMessageID;
char ucData[20];
} xMessage;

QueueHandle_t xQueue;

// Task to create a queue and post a value.

(continues on next page)

Espressif Systems 1893
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
void vATask(void *pvParameters)
{
struct AMessage *pxMessage;

// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue = xQueueCreate(10, sizeof(struct AMessage *));
if(xQueue == 0)
{

// Failed to create the queue.
}

// ...

// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSend(xQueue, (void *) &pxMessage, (TickType_t) 0);

// ... Rest of task code.
}

// Task to peek the data from the queue.
void vADifferentTask(void *pvParameters)
{
struct AMessage *pxRxedMessage;

if(xQueue != 0)
{

// Peek a message on the created queue. Block for 10 ticks if a
// message is not immediately available.
if(xQueuePeek(xQueue, &(pxRxedMessage), (TickType_t) 10))
{

// pcRxedMessage now points to the struct AMessage variable posted
// by vATask, but the item still remains on the queue.

}
}

// ... Rest of task code.
}

Parameters
• xQueue -- The handle to the queue from which the item is to be received.
• pvBuffer -- Pointer to the buffer into which the received item will be copied.
• xTicksToWait -- The maximum amount of time the task should block waiting for an
item to receive should the queue be empty at the time of the call. The time is defined
in tick periods so the constant portTICK_PERIOD_MS should be used to convert to real
time if this is required. xQueuePeek() will return immediately if xTicksToWait is 0 and
the queue is empty.

Returns pdTRUE if an item was successfully received from the queue, otherwise pdFALSE.

BaseType_t xQueuePeekFromISR(QueueHandle_t xQueue, void *const pvBuffer)
A version of xQueuePeek() that can be called from an interrupt service routine (ISR).
Receive an item from a queue without removing the item from the queue. The item is received by copy so a
buffer of adequate size must be provided. The number of bytes copied into the buffer was defined when the
queue was created.
Successfully received items remain on the queue so will be returned again by the next call, or a call to
xQueueReceive().

Espressif Systems 1894
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• xQueue -- The handle to the queue from which the item is to be received.
• pvBuffer -- Pointer to the buffer into which the received item will be copied.

Returns pdTRUE if an item was successfully received from the queue, otherwise pdFALSE.
BaseType_t xQueueReceive(QueueHandle_t xQueue, void *const pvBuffer, TickType_t xTicksToWait)

Receive an item from a queue. The item is received by copy so a buffer of adequate size must be provided.
The number of bytes copied into the buffer was defined when the queue was created.
Successfully received items are removed from the queue.
This function must not be used in an interrupt service routine. See xQueueReceiveFromISR for an alternative
that can.

Example usage:

struct AMessage
{
char ucMessageID;
char ucData[20];
} xMessage;

QueueHandle_t xQueue;

// Task to create a queue and post a value.
void vATask(void *pvParameters)
{
struct AMessage *pxMessage;

// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue = xQueueCreate(10, sizeof(struct AMessage *));
if(xQueue == 0)
{

// Failed to create the queue.
}

// ...

// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSend(xQueue, (void *) &pxMessage, (TickType_t) 0);

// ... Rest of task code.
}

// Task to receive from the queue.
void vADifferentTask(void *pvParameters)
{
struct AMessage *pxRxedMessage;

if(xQueue != 0)
{

// Receive a message on the created queue. Block for 10 ticks if a
// message is not immediately available.
if(xQueueReceive(xQueue, &(pxRxedMessage), (TickType_t) 10))
{

// pcRxedMessage now points to the struct AMessage variable posted
// by vATask.

}
}

(continues on next page)

Espressif Systems 1895
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

// ... Rest of task code.
}

Parameters
• xQueue -- The handle to the queue from which the item is to be received.
• pvBuffer -- Pointer to the buffer into which the received item will be copied.
• xTicksToWait -- The maximum amount of time the task should block waiting for an
item to receive should the queue be empty at the time of the call. xQueueReceive() will
return immediately if xTicksToWait is zero and the queue is empty. The time is defined
in tick periods so the constant portTICK_PERIOD_MS should be used to convert to real
time if this is required.

Returns pdTRUE if an item was successfully received from the queue, otherwise pdFALSE.

UBaseType_t uxQueueMessagesWaiting(const QueueHandle_t xQueue)
Return the number of messages stored in a queue.

Parameters xQueue -- A handle to the queue being queried.
Returns The number of messages available in the queue.

UBaseType_t uxQueueSpacesAvailable(const QueueHandle_t xQueue)
Return the number of free spaces available in a queue. This is equal to the number of items that can be sent to
the queue before the queue becomes full if no items are removed.

Parameters xQueue -- A handle to the queue being queried.
Returns The number of spaces available in the queue.

void vQueueDelete(QueueHandle_t xQueue)
Delete a queue - freeing all the memory allocated for storing of items placed on the queue.

Parameters xQueue -- A handle to the queue to be deleted.
BaseType_t xQueueGenericSendFromISR(QueueHandle_t xQueue, const void *const pvItemToQueue,

BaseType_t *const pxHigherPriorityTaskWoken, const
BaseType_t xCopyPosition)

It is preferred that the macros xQueueSendFromISR(), xQueueSendToFrontFromISR() and xQueueSendTo-
BackFromISR() be used in place of calling this function directly. xQueueGiveFromISR() is an equivalent for
use by semaphores that don't actually copy any data.
Post an item on a queue. It is safe to use this function from within an interrupt service routine.
Items are queued by copy not reference so it is preferable to only queue small items, especially when called
from an ISR. In most cases it would be preferable to store a pointer to the item being queued.

Example usage for buffered IO (where the ISR can obtain more than one value per call):

void vBufferISR(void)
{
char cIn;
BaseType_t xHigherPriorityTaskWokenByPost;

// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWokenByPost = pdFALSE;

// Loop until the buffer is empty.
do
{

// Obtain a byte from the buffer.
cIn = portINPUT_BYTE(RX_REGISTER_ADDRESS);

(continues on next page)

Espressif Systems 1896
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

// Post each byte.
xQueueGenericSendFromISR(xRxQueue, &cIn, &xHigherPriorityTaskWokenByPost,

↪→ queueSEND_TO_BACK);

} while(portINPUT_BYTE(BUFFER_COUNT));

// Now the buffer is empty we can switch context if necessary. Note that the
// name of the yield function required is port specific.
if(xHigherPriorityTaskWokenByPost)
{

taskYIELD_YIELD_FROM_ISR();
}
}

Parameters
• xQueue -- The handle to the queue on which the item is to be posted.
• pvItemToQueue -- A pointer to the item that is to be placed on the queue. The size of
the items the queue will hold was defined when the queue was created, so this many bytes
will be copied from pvItemToQueue into the queue storage area.

• pxHigherPriorityTaskWoken -- [out] xQueueGenericSendFromISR() will set
*pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task to un-
block, and the unblocked task has a priority higher than the currently running task. If
xQueueGenericSendFromISR() sets this value to pdTRUE then a context switch should
be requested before the interrupt is exited.

• xCopyPosition -- Can take the value queueSEND_TO_BACK to place the item at
the back of the queue, or queueSEND_TO_FRONT to place the item at the front of the
queue (for high priority messages).

Returns pdTRUE if the data was successfully sent to the queue, otherwise errQUEUE_FULL.

BaseType_t xQueueGiveFromISR(QueueHandle_t xQueue, BaseType_t *const pxHigherPriorityTaskWoken)

BaseType_t xQueueReceiveFromISR(QueueHandle_t xQueue, void *const pvBuffer, BaseType_t *const
pxHigherPriorityTaskWoken)

Receive an item from a queue. It is safe to use this function from within an interrupt service routine.

Example usage:

QueueHandle_t xQueue;

// Function to create a queue and post some values.
void vAFunction(void *pvParameters)
{
char cValueToPost;
const TickType_t xTicksToWait = (TickType_t)0xff;

// Create a queue capable of containing 10 characters.
xQueue = xQueueCreate(10, sizeof(char));
if(xQueue == 0)
{

// Failed to create the queue.
}

// ...

// Post some characters that will be used within an ISR. If the queue
// is full then this task will block for xTicksToWait ticks.
cValueToPost = 'a';

(continues on next page)

Espressif Systems 1897
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
xQueueSend(xQueue, (void *) &cValueToPost, xTicksToWait);
cValueToPost = 'b';
xQueueSend(xQueue, (void *) &cValueToPost, xTicksToWait);

// ... keep posting characters ... this task may block when the queue
// becomes full.

cValueToPost = 'c';
xQueueSend(xQueue, (void *) &cValueToPost, xTicksToWait);
}

// ISR that outputs all the characters received on the queue.
void vISR_Routine(void)
{
BaseType_t xTaskWokenByReceive = pdFALSE;
char cRxedChar;

while(xQueueReceiveFromISR(xQueue, (void *) &cRxedChar, &
↪→xTaskWokenByReceive))
{

// A character was received. Output the character now.
vOutputCharacter(cRxedChar);

// If removing the character from the queue woke the task that was
// posting onto the queue cTaskWokenByReceive will have been set to
// pdTRUE. No matter how many times this loop iterates only one
// task will be woken.

}

if(cTaskWokenByPost != (char) pdFALSE;
{

taskYIELD ();
}
}

Parameters
• xQueue -- The handle to the queue from which the item is to be received.
• pvBuffer -- Pointer to the buffer into which the received item will be copied.
• pxHigherPriorityTaskWoken -- [out]A task may be blocked waiting for space to
become available on the queue. If xQueueReceiveFromISR causes such a task to unblock
*pxTaskWokenwill get set to pdTRUE, otherwise *pxTaskWokenwill remain unchanged.

Returns pdTRUE if an item was successfully received from the queue, otherwise pdFALSE.

BaseType_t xQueueIsQueueEmptyFromISR(const QueueHandle_t xQueue)

BaseType_t xQueueIsQueueFullFromISR(const QueueHandle_t xQueue)

UBaseType_t uxQueueMessagesWaitingFromISR(const QueueHandle_t xQueue)

void vQueueAddToRegistry(QueueHandle_t xQueue, const char *pcQueueName)
The registry is provided as a means for kernel aware debuggers to locate queues, semaphores and mutexes. Call
vQueueAddToRegistry() add a queue, semaphore or mutex handle to the registry if you want the handle to be
available to a kernel aware debugger. If you are not using a kernel aware debugger then this function can be
ignored.
configQUEUE_REGISTRY_SIZE defines the maximum number of handles the registry can hold. con-
figQUEUE_REGISTRY_SIZE must be greater than 0 within FreeRTOSConfig.h for the registry to be avail-
able. Its value does not effect the number of queues, semaphores and mutexes that can be created - just the
number that the registry can hold.

Parameters

Espressif Systems 1898
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• xQueue -- The handle of the queue being added to the registry. This is the handle returned
by a call to xQueueCreate(). Semaphore and mutex handles can also be passed in here.

• pcQueueName -- The name to be associated with the handle. This is the name that the
kernel aware debugger will display. The queue registry only stores a pointer to the string
- so the string must be persistent (global or preferably in ROM/Flash), not on the stack.

void vQueueUnregisterQueue(QueueHandle_t xQueue)
The registry is provided as a means for kernel aware debuggers to locate queues, semaphores and mutexes.
Call vQueueAddToRegistry() add a queue, semaphore or mutex handle to the registry if you want the handle
to be available to a kernel aware debugger, and vQueueUnregisterQueue() to remove the queue, semaphore or
mutex from the register. If you are not using a kernel aware debugger then this function can be ignored.

Parameters xQueue -- The handle of the queue being removed from the registry.
const char *pcQueueGetName(QueueHandle_t xQueue)

The queue registry is provided as ameans for kernel aware debuggers to locate queues, semaphores andmutexes.
Call pcQueueGetName() to look up and return the name of a queue in the queue registry from the queue's
handle.

Parameters xQueue -- The handle of the queue the name of which will be returned.
Returns If the queue is in the registry then a pointer to the name of the queue is returned. If the

queue is not in the registry then NULL is returned.
QueueHandle_t xQueueGenericCreate(const UBaseType_t uxQueueLength, const UBaseType_t

uxItemSize, const uint8_t ucQueueType)
Generic version of the function used to create a queue using dynamic memory allocation. This is called by
other functions and macros that create other RTOS objects that use the queue structure as their base.

QueueHandle_t xQueueGenericCreateStatic(const UBaseType_t uxQueueLength, const UBaseType_t
uxItemSize, uint8_t *pucQueueStorage, StaticQueue_t
*pxStaticQueue, const uint8_t ucQueueType)

Generic version of the function used to create a queue using dynamic memory allocation. This is called by
other functions and macros that create other RTOS objects that use the queue structure as their base.

BaseType_t xQueueGenericGetStaticBuffers(QueueHandle_t xQueue, uint8_t **ppucQueueStorage,
StaticQueue_t **ppxStaticQueue)

QueueSetHandle_t xQueueCreateSet(const UBaseType_t uxEventQueueLength)
Queue sets provide a mechanism to allow a task to block (pend) on a read operation from multiple queues or
semaphores simultaneously.
See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this function.
A queue set must be explicitly created using a call to xQueueCreateSet() before it can be used. Once cre-
ated, standard FreeRTOS queues and semaphores can be added to the set using calls to xQueueAddToSet().
xQueueSelectFromSet() is then used to determine which, if any, of the queues or semaphores contained in the
set is in a state where a queue read or semaphore take operation would be successful.
Note 1: See the documentation on https://www.FreeRTOS.org/RTOS-queue-sets.html for reasons why queue
sets are very rarely needed in practice as there are simpler methods of blocking on multiple objects.
Note 2: Blocking on a queue set that contains a mutex will not cause the mutex holder to inherit the priority
of the blocked task.
Note 3: An additional 4 bytes of RAM is required for each space in a every queue added to a queue set.
Therefore counting semaphores that have a high maximum count value should not be added to a queue set.
Note 4: A receive (in the case of a queue) or take (in the case of a semaphore) operation must not be performed
on a member of a queue set unless a call to xQueueSelectFromSet() has first returned a handle to that set
member.

Parameters uxEventQueueLength -- Queue sets store events that occur on the queues and
semaphores contained in the set. uxEventQueueLength specifies the maximum number of

Espressif Systems 1899
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-queue-sets.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

events that can be queued at once. To be absolutely certain that events are not lost uxEven-
tQueueLength should be set to the total sum of the length of the queues added to the set, where
binary semaphores and mutexes have a length of 1, and counting semaphores have a length set
by their maximum count value. Examples:
• If a queue set is to hold a queue of length 5, another queue of length 12, and a binary
semaphore, then uxEventQueueLength should be set to (5 + 12 + 1), or 18.

• If a queue set is to hold three binary semaphores then uxEventQueueLength should be set
to (1 + 1 + 1), or 3.

• If a queue set is to hold a counting semaphore that has a maximum count of 5, and a
counting semaphore that has a maximum count of 3, then uxEventQueueLength should
be set to (5 + 3), or 8.

Returns If the queue set is created successfully then a handle to the created queue set is returned.
Otherwise NULL is returned.

BaseType_t xQueueAddToSet(QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t
xQueueSet)

Adds a queue or semaphore to a queue set that was previously created by a call to xQueueCreateSet().
See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this function.
Note 1: A receive (in the case of a queue) or take (in the case of a semaphore) operation must not be performed
on a member of a queue set unless a call to xQueueSelectFromSet() has first returned a handle to that set
member.

Parameters
• xQueueOrSemaphore -- The handle of the queue or semaphore being added to the
queue set (cast to an QueueSetMemberHandle_t type).

• xQueueSet -- The handle of the queue set to which the queue or semaphore is being
added.

Returns If the queue or semaphore was successfully added to the queue set then pdPASS is re-
turned. If the queue could not be successfully added to the queue set because it is already a
member of a different queue set then pdFAIL is returned.

BaseType_t xQueueRemoveFromSet(QueueSetMemberHandle_t xQueueOrSemaphore, QueueSetHandle_t
xQueueSet)

Removes a queue or semaphore from a queue set. A queue or semaphore can only be removed from a set if
the queue or semaphore is empty.
See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this function.

Parameters
• xQueueOrSemaphore -- The handle of the queue or semaphore being removed from
the queue set (cast to an QueueSetMemberHandle_t type).

• xQueueSet -- The handle of the queue set in which the queue or semaphore is included.
Returns If the queue or semaphore was successfully removed from the queue set then pdPASS is

returned. If the queue was not in the queue set, or the queue (or semaphore) was not empty,
then pdFAIL is returned.

QueueSetMemberHandle_t xQueueSelectFromSet(QueueSetHandle_t xQueueSet, const TickType_t
xTicksToWait)

xQueueSelectFromSet() selects from the members of a queue set a queue or semaphore that either contains
data (in the case of a queue) or is available to take (in the case of a semaphore). xQueueSelectFromSet()
effectively allows a task to block (pend) on a read operation on all the queues and semaphores in a queue set
simultaneously.
See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this function.
Note 1: See the documentation on https://www.FreeRTOS.org/RTOS-queue-sets.html for reasons why queue
sets are very rarely needed in practice as there are simpler methods of blocking on multiple objects.
Note 2: Blocking on a queue set that contains a mutex will not cause the mutex holder to inherit the priority
of the blocked task.

Espressif Systems 1900
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-queue-sets.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note 3: A receive (in the case of a queue) or take (in the case of a semaphore) operation must not be performed
on a member of a queue set unless a call to xQueueSelectFromSet() has first returned a handle to that set
member.

Parameters
• xQueueSet -- The queue set on which the task will (potentially) block.
• xTicksToWait -- The maximum time, in ticks, that the calling task will remain in the
Blocked state (with other tasks executing) to wait for a member of the queue set to be
ready for a successful queue read or semaphore take operation.

Returns xQueueSelectFromSet() will return the handle of a queue (cast to a QueueSetMember-
Handle_t type) contained in the queue set that contains data, or the handle of a semaphore (cast
to a QueueSetMemberHandle_t type) contained in the queue set that is available, or NULL if
no such queue or semaphore exists before before the specified block time expires.

QueueSetMemberHandle_t xQueueSelectFromSetFromISR(QueueSetHandle_t xQueueSet)
A version of xQueueSelectFromSet() that can be used from an ISR.

Macros
xQueueCreate(uxQueueLength, uxItemSize)

Creates a new queue instance, and returns a handle by which the new queue can be referenced.
Internally, within the FreeRTOS implementation, queues use two blocks of memory. The first block is used
to hold the queue's data structures. The second block is used to hold items placed into the queue. If a queue
is created using xQueueCreate() then both blocks of memory are automatically dynamically allocated inside
the xQueueCreate() function. (see https://www.FreeRTOS.org/a00111.html). If a queue is created using
xQueueCreateStatic() then the application writer must provide the memory that will get used by the queue.
xQueueCreateStatic() therefore allows a queue to be created without using any dynamic memory allocation.
https://www.FreeRTOS.org/Embedded-RTOS-Queues.html

Example usage:

struct AMessage
{
char ucMessageID;
char ucData[20];
};

void vATask(void *pvParameters)
{
QueueHandle_t xQueue1, xQueue2;

// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate(10, sizeof(uint32_t));
if(xQueue1 == 0)
{

// Queue was not created and must not be used.
}

// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue2 = xQueueCreate(10, sizeof(struct AMessage *));
if(xQueue2 == 0)
{

// Queue was not created and must not be used.
}

// ... Rest of task code.
}

Espressif Systems 1901
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00111.html
https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• uxQueueLength -- The maximum number of items that the queue can contain.
• uxItemSize -- The number of bytes each item in the queue will require. Items are
queued by copy, not by reference, so this is the number of bytes that will be copied for
each posted item. Each item on the queue must be the same size.

Returns If the queue is successfully create then a handle to the newly created queue is returned.
If the queue cannot be created then 0 is returned.

xQueueCreateStatic(uxQueueLength, uxItemSize, pucQueueStorage, pxQueueBuffer)
Creates a new queue instance, and returns a handle by which the new queue can be referenced.
Internally, within the FreeRTOS implementation, queues use two blocks of memory. The first block is used
to hold the queue's data structures. The second block is used to hold items placed into the queue. If a queue
is created using xQueueCreate() then both blocks of memory are automatically dynamically allocated inside
the xQueueCreate() function. (see https://www.FreeRTOS.org/a00111.html). If a queue is created using
xQueueCreateStatic() then the application writer must provide the memory that will get used by the queue.
xQueueCreateStatic() therefore allows a queue to be created without using any dynamic memory allocation.
https://www.FreeRTOS.org/Embedded-RTOS-Queues.html

Example usage:

struct AMessage
{
char ucMessageID;
char ucData[20];
};

#define QUEUE_LENGTH 10
#define ITEM_SIZE sizeof(uint32_t)

// xQueueBuffer will hold the queue structure.
StaticQueue_t xQueueBuffer;

// ucQueueStorage will hold the items posted to the queue. Must be at least
// [(queue length) * (queue item size)] bytes long.
uint8_t ucQueueStorage[QUEUE_LENGTH * ITEM_SIZE];

void vATask(void *pvParameters)
{
QueueHandle_t xQueue1;

// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate(QUEUE_LENGTH, // The number of items the queue can␣
↪→hold.

ITEM_SIZE // The size of each item in the queue
&(ucQueueStorage[0]), // The buffer that will␣

↪→hold the items in the queue.
&xQueueBuffer); // The buffer that will hold the␣

↪→queue structure.

// The queue is guaranteed to be created successfully as no dynamic memory
// allocation is used. Therefore xQueue1 is now a handle to a valid queue.

// ... Rest of task code.
}

Parameters
• uxQueueLength -- The maximum number of items that the queue can contain.
• uxItemSize -- The number of bytes each item in the queue will require. Items are
queued by copy, not by reference, so this is the number of bytes that will be copied for

Espressif Systems 1902
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00111.html
https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

each posted item. Each item on the queue must be the same size.
• pucQueueStorage -- If uxItemSize is not zero then pucQueueStorageBuffer must
point to a uint8_t array that is at least large enough to hold the maximum number of
items that can be in the queue at any one time - which is (uxQueueLength * uxItemsSize
) bytes. If uxItemSize is zero then pucQueueStorageBuffer can be NULL.

• pxQueueBuffer -- Must point to a variable of type StaticQueue_t, which will be used
to hold the queue's data structure.

Returns If the queue is created then a handle to the created queue is returned. If pxQueueBuffer
is NULL then NULL is returned.

xQueueGetStaticBuffers(xQueue, ppucQueueStorage, ppxStaticQueue)

xQueueSendToFront(xQueue, pvItemToQueue, xTicksToWait)
Post an item to the front of a queue. The item is queued by copy, not by reference. This function must not be
called from an interrupt service routine. See xQueueSendFromISR () for an alternative which may be used in
an ISR.

Example usage:

struct AMessage
{
char ucMessageID;
char ucData[20];
} xMessage;

uint32_t ulVar = 10UL;

void vATask(void *pvParameters)
{
QueueHandle_t xQueue1, xQueue2;
struct AMessage *pxMessage;

// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate(10, sizeof(uint32_t));

// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue2 = xQueueCreate(10, sizeof(struct AMessage *));

// ...

if(xQueue1 != 0)
{

// Send an uint32_t. Wait for 10 ticks for space to become
// available if necessary.
if(xQueueSendToFront(xQueue1, (void *) &ulVar, (TickType_t) 10) !=␣

↪→pdPASS)
{

// Failed to post the message, even after 10 ticks.
}

}

if(xQueue2 != 0)
{

// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSendToFront(xQueue2, (void *) &pxMessage, (TickType_t) 0);

}

(continues on next page)

Espressif Systems 1903
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// ... Rest of task code.
}

Parameters
• xQueue -- The handle to the queue on which the item is to be posted.
• pvItemToQueue -- A pointer to the item that is to be placed on the queue. The size of
the items the queue will hold was defined when the queue was created, so this many bytes
will be copied from pvItemToQueue into the queue storage area.

• xTicksToWait -- The maximum amount of time the task should block waiting for
space to become available on the queue, should it already be full. The call will return
immediately if this is set to 0 and the queue is full. The time is defined in tick periods
so the constant portTICK_PERIOD_MS should be used to convert to real time if this is
required.

Returns pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.

xQueueSendToBack(xQueue, pvItemToQueue, xTicksToWait)
This is a macro that calls xQueueGenericSend().
Post an item to the back of a queue. The item is queued by copy, not by reference. This function must not be
called from an interrupt service routine. See xQueueSendFromISR () for an alternative which may be used in
an ISR.

Example usage:

struct AMessage
{
char ucMessageID;
char ucData[20];
} xMessage;

uint32_t ulVar = 10UL;

void vATask(void *pvParameters)
{
QueueHandle_t xQueue1, xQueue2;
struct AMessage *pxMessage;

// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate(10, sizeof(uint32_t));

// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue2 = xQueueCreate(10, sizeof(struct AMessage *));

// ...

if(xQueue1 != 0)
{

// Send an uint32_t. Wait for 10 ticks for space to become
// available if necessary.
if(xQueueSendToBack(xQueue1, (void *) &ulVar, (TickType_t) 10) !=␣

↪→pdPASS)
{

// Failed to post the message, even after 10 ticks.
}

}

if(xQueue2 != 0)

(continues on next page)

Espressif Systems 1904
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
{

// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSendToBack(xQueue2, (void *) &pxMessage, (TickType_t) 0);

}

// ... Rest of task code.
}

Parameters
• xQueue -- The handle to the queue on which the item is to be posted.
• pvItemToQueue -- A pointer to the item that is to be placed on the queue. The size of
the items the queue will hold was defined when the queue was created, so this many bytes
will be copied from pvItemToQueue into the queue storage area.

• xTicksToWait -- The maximum amount of time the task should block waiting for
space to become available on the queue, should it already be full. The call will return
immediately if this is set to 0 and the queue is full. The time is defined in tick periods
so the constant portTICK_PERIOD_MS should be used to convert to real time if this is
required.

Returns pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.

xQueueSend(xQueue, pvItemToQueue, xTicksToWait)
This is a macro that calls xQueueGenericSend(). It is included for backward compatibility with versions of
FreeRTOS.org that did not include the xQueueSendToFront() and xQueueSendToBack() macros. It is equiv-
alent to xQueueSendToBack().
Post an item on a queue. The item is queued by copy, not by reference. This function must not be called from
an interrupt service routine. See xQueueSendFromISR () for an alternative which may be used in an ISR.

Example usage:

struct AMessage
{
char ucMessageID;
char ucData[20];
} xMessage;

uint32_t ulVar = 10UL;

void vATask(void *pvParameters)
{
QueueHandle_t xQueue1, xQueue2;
struct AMessage *pxMessage;

// Create a queue capable of containing 10 uint32_t values.
xQueue1 = xQueueCreate(10, sizeof(uint32_t));

// Create a queue capable of containing 10 pointers to AMessage structures.
// These should be passed by pointer as they contain a lot of data.
xQueue2 = xQueueCreate(10, sizeof(struct AMessage *));

// ...

if(xQueue1 != 0)
{

// Send an uint32_t. Wait for 10 ticks for space to become
// available if necessary.

(continues on next page)

Espressif Systems 1905
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
if(xQueueSend(xQueue1, (void *) &ulVar, (TickType_t) 10) != pdPASS␣

↪→)
{

// Failed to post the message, even after 10 ticks.
}

}

if(xQueue2 != 0)
{

// Send a pointer to a struct AMessage object. Don't block if the
// queue is already full.
pxMessage = & xMessage;
xQueueSend(xQueue2, (void *) &pxMessage, (TickType_t) 0);

}

// ... Rest of task code.
}

Parameters
• xQueue -- The handle to the queue on which the item is to be posted.
• pvItemToQueue -- A pointer to the item that is to be placed on the queue. The size of
the items the queue will hold was defined when the queue was created, so this many bytes
will be copied from pvItemToQueue into the queue storage area.

• xTicksToWait -- The maximum amount of time the task should block waiting for
space to become available on the queue, should it already be full. The call will return
immediately if this is set to 0 and the queue is full. The time is defined in tick periods
so the constant portTICK_PERIOD_MS should be used to convert to real time if this is
required.

Returns pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.

xQueueOverwrite(xQueue, pvItemToQueue)
Only for use with queues that have a length of one - so the queue is either empty or full.
Post an item on a queue. If the queue is already full then overwrite the value held in the queue. The item is
queued by copy, not by reference.
This function must not be called from an interrupt service routine. See xQueueOverwriteFromISR () for an
alternative which may be used in an ISR.

Example usage:

void vFunction(void *pvParameters)
{
QueueHandle_t xQueue;
uint32_t ulVarToSend, ulValReceived;

// Create a queue to hold one uint32_t value. It is strongly
// recommended *not* to use xQueueOverwrite() on queues that can
// contain more than one value, and doing so will trigger an assertion
// if configASSERT() is defined.
xQueue = xQueueCreate(1, sizeof(uint32_t));

// Write the value 10 to the queue using xQueueOverwrite().
ulVarToSend = 10;
xQueueOverwrite(xQueue, &ulVarToSend);

// Peeking the queue should now return 10, but leave the value 10 in
// the queue. A block time of zero is used as it is known that the

(continues on next page)

Espressif Systems 1906
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// queue holds a value.
ulValReceived = 0;
xQueuePeek(xQueue, &ulValReceived, 0);

if(ulValReceived != 10)
{

// Error unless the item was removed by a different task.
}

// The queue is still full. Use xQueueOverwrite() to overwrite the
// value held in the queue with 100.
ulVarToSend = 100;
xQueueOverwrite(xQueue, &ulVarToSend);

// This time read from the queue, leaving the queue empty once more.
// A block time of 0 is used again.
xQueueReceive(xQueue, &ulValReceived, 0);

// The value read should be the last value written, even though the
// queue was already full when the value was written.
if(ulValReceived != 100)
{

// Error!
}

// ...
}

Parameters
• xQueue -- The handle of the queue to which the data is being sent.
• pvItemToQueue -- A pointer to the item that is to be placed on the queue. The size of
the items the queue will hold was defined when the queue was created, so this many bytes
will be copied from pvItemToQueue into the queue storage area.

Returns xQueueOverwrite() is a macro that calls xQueueGenericSend(), and therefore has the
same return values as xQueueSendToFront(). However, pdPASS is the only value that can be
returned because xQueueOverwrite() will write to the queue even when the queue is already
full.

xQueueSendToFrontFromISR(xQueue, pvItemToQueue, pxHigherPriorityTaskWoken)
This is a macro that calls xQueueGenericSendFromISR().
Post an item to the front of a queue. It is safe to use this macro from within an interrupt service routine.
Items are queued by copy not reference so it is preferable to only queue small items, especially when called
from an ISR. In most cases it would be preferable to store a pointer to the item being queued.

Example usage for buffered IO (where the ISR can obtain more than one value per call):

void vBufferISR(void)
{
char cIn;
BaseType_t xHigherPrioritTaskWoken;

// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWoken = pdFALSE;

// Loop until the buffer is empty.
do
{

(continues on next page)

Espressif Systems 1907
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// Obtain a byte from the buffer.
cIn = portINPUT_BYTE(RX_REGISTER_ADDRESS);

// Post the byte.
xQueueSendToFrontFromISR(xRxQueue, &cIn, &xHigherPriorityTaskWoken);

} while(portINPUT_BYTE(BUFFER_COUNT));

// Now the buffer is empty we can switch context if necessary.
if(xHigherPriorityTaskWoken)
{

portYIELD_FROM_ISR ();
}
}

Parameters
• xQueue -- The handle to the queue on which the item is to be posted.
• pvItemToQueue -- A pointer to the item that is to be placed on the queue. The size of
the items the queue will hold was defined when the queue was created, so this many bytes
will be copied from pvItemToQueue into the queue storage area.

• pxHigherPriorityTaskWoken -- [out] xQueueSendToFrontFromISR() will set
*pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task to un-
block, and the unblocked task has a priority higher than the currently running task. If
xQueueSendToFromFromISR() sets this value to pdTRUE then a context switch should
be requested before the interrupt is exited.

Returns pdTRUE if the data was successfully sent to the queue, otherwise errQUEUE_FULL.

xQueueSendToBackFromISR(xQueue, pvItemToQueue, pxHigherPriorityTaskWoken)
This is a macro that calls xQueueGenericSendFromISR().
Post an item to the back of a queue. It is safe to use this macro from within an interrupt service routine.
Items are queued by copy not reference so it is preferable to only queue small items, especially when called
from an ISR. In most cases it would be preferable to store a pointer to the item being queued.

Example usage for buffered IO (where the ISR can obtain more than one value per call):

void vBufferISR(void)
{
char cIn;
BaseType_t xHigherPriorityTaskWoken;

// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWoken = pdFALSE;

// Loop until the buffer is empty.
do
{

// Obtain a byte from the buffer.
cIn = portINPUT_BYTE(RX_REGISTER_ADDRESS);

// Post the byte.
xQueueSendToBackFromISR(xRxQueue, &cIn, &xHigherPriorityTaskWoken);

} while(portINPUT_BYTE(BUFFER_COUNT));

// Now the buffer is empty we can switch context if necessary.
if(xHigherPriorityTaskWoken)

(continues on next page)

Espressif Systems 1908
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
{

portYIELD_FROM_ISR ();
}
}

Parameters
• xQueue -- The handle to the queue on which the item is to be posted.
• pvItemToQueue -- A pointer to the item that is to be placed on the queue. The size of
the items the queue will hold was defined when the queue was created, so this many bytes
will be copied from pvItemToQueue into the queue storage area.

• pxHigherPriorityTaskWoken -- [out] xQueueSendToBackFromISR() will set
*pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task to un-
block, and the unblocked task has a priority higher than the currently running task. If
xQueueSendToBackFromISR() sets this value to pdTRUE then a context switch should
be requested before the interrupt is exited.

Returns pdTRUE if the data was successfully sent to the queue, otherwise errQUEUE_FULL.

xQueueOverwriteFromISR(xQueue, pvItemToQueue, pxHigherPriorityTaskWoken)
A version of xQueueOverwrite() that can be used in an interrupt service routine (ISR).
Only for use with queues that can hold a single item - so the queue is either empty or full.
Post an item on a queue. If the queue is already full then overwrite the value held in the queue. The item is
queued by copy, not by reference.

Example usage:

QueueHandle_t xQueue;

void vFunction(void *pvParameters)
{
// Create a queue to hold one uint32_t value. It is strongly
// recommended *not* to use xQueueOverwriteFromISR() on queues that can
// contain more than one value, and doing so will trigger an assertion
// if configASSERT() is defined.
xQueue = xQueueCreate(1, sizeof(uint32_t));
}

void vAnInterruptHandler(void)
{
// xHigherPriorityTaskWoken must be set to pdFALSE before it is used.
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
uint32_t ulVarToSend, ulValReceived;

// Write the value 10 to the queue using xQueueOverwriteFromISR().
ulVarToSend = 10;
xQueueOverwriteFromISR(xQueue, &ulVarToSend, &xHigherPriorityTaskWoken);

// The queue is full, but calling xQueueOverwriteFromISR() again will still
// pass because the value held in the queue will be overwritten with the
// new value.
ulVarToSend = 100;
xQueueOverwriteFromISR(xQueue, &ulVarToSend, &xHigherPriorityTaskWoken);

// Reading from the queue will now return 100.

// ...

(continues on next page)

Espressif Systems 1909
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
if(xHigherPrioritytaskWoken == pdTRUE)
{

// Writing to the queue caused a task to unblock and the unblocked task
// has a priority higher than or equal to the priority of the currently
// executing task (the task this interrupt interrupted). Perform a␣

↪→context
// switch so this interrupt returns directly to the unblocked task.
portYIELD_FROM_ISR(); // or portEND_SWITCHING_ISR() depending on the port.

}
}

Parameters
• xQueue -- The handle to the queue on which the item is to be posted.
• pvItemToQueue -- A pointer to the item that is to be placed on the queue. The size of
the items the queue will hold was defined when the queue was created, so this many bytes
will be copied from pvItemToQueue into the queue storage area.

• pxHigherPriorityTaskWoken -- [out] xQueueOverwriteFromISR() will set *px-
HigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task to un-
block, and the unblocked task has a priority higher than the currently running task. If
xQueueOverwriteFromISR() sets this value to pdTRUE then a context switch should be
requested before the interrupt is exited.

Returns xQueueOverwriteFromISR() is a macro that calls xQueueGenericSendFromISR(), and
therefore has the same return values as xQueueSendToFrontFromISR(). However, pdPASS
is the only value that can be returned because xQueueOverwriteFromISR() will write to the
queue even when the queue is already full.

xQueueSendFromISR(xQueue, pvItemToQueue, pxHigherPriorityTaskWoken)
This is a macro that calls xQueueGenericSendFromISR(). It is included for backward compatibility with
versions of FreeRTOS.org that did not include the xQueueSendToBackFromISR() and xQueueSendToFront-
FromISR() macros.
Post an item to the back of a queue. It is safe to use this function from within an interrupt service routine.
Items are queued by copy not reference so it is preferable to only queue small items, especially when called
from an ISR. In most cases it would be preferable to store a pointer to the item being queued.

Example usage for buffered IO (where the ISR can obtain more than one value per call):

void vBufferISR(void)
{
char cIn;
BaseType_t xHigherPriorityTaskWoken;

// We have not woken a task at the start of the ISR.
xHigherPriorityTaskWoken = pdFALSE;

// Loop until the buffer is empty.
do
{

// Obtain a byte from the buffer.
cIn = portINPUT_BYTE(RX_REGISTER_ADDRESS);

// Post the byte.
xQueueSendFromISR(xRxQueue, &cIn, &xHigherPriorityTaskWoken);

} while(portINPUT_BYTE(BUFFER_COUNT));

// Now the buffer is empty we can switch context if necessary.

(continues on next page)

Espressif Systems 1910
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
if(xHigherPriorityTaskWoken)
{

// Actual macro used here is port specific.
portYIELD_FROM_ISR ();

}
}

Parameters
• xQueue -- The handle to the queue on which the item is to be posted.
• pvItemToQueue -- A pointer to the item that is to be placed on the queue. The size of
the items the queue will hold was defined when the queue was created, so this many bytes
will be copied from pvItemToQueue into the queue storage area.

• pxHigherPriorityTaskWoken -- [out] xQueueSendFromISR() will set *pxHigh-
erPriorityTaskWoken to pdTRUE if sending to the queue caused a task to unblock, and
the unblocked task has a priority higher than the currently running task. If xQueueSend-
FromISR() sets this value to pdTRUE then a context switch should be requested before
the interrupt is exited.

Returns pdTRUE if the data was successfully sent to the queue, otherwise errQUEUE_FULL.

xQueueReset(xQueue)
Reset a queue back to its original empty state. The return value is now obsolete and is always set to pdPASS.

Type Definitions

typedef struct QueueDefinition *QueueHandle_t

typedef struct QueueDefinition *QueueSetHandle_t
Type by which queue sets are referenced. For example, a call to xQueueCreateSet() returns an xQueueSet
variable that can then be used as a parameter to xQueueSelectFromSet(), xQueueAddToSet(), etc.

typedef struct QueueDefinition *QueueSetMemberHandle_t
Queue sets can contain both queues and semaphores, so the QueueSetMemberHandle_t is defined as a type to
be used where a parameter or return value can be either an QueueHandle_t or an SemaphoreHandle_t.

Semaphore API

Header File
• components/freertos/FreeRTOS-Kernel/include/freertos/semphr.h

Macros

semBINARY_SEMAPHORE_QUEUE_LENGTH

semSEMAPHORE_QUEUE_ITEM_LENGTH

semGIVE_BLOCK_TIME

vSemaphoreCreateBinary(xSemaphore)
In many usage scenarios it is faster and more memory efficient to use a direct to task notification in place of a
binary semaphore! https://www.FreeRTOS.org/RTOS-task-notifications.html
This old vSemaphoreCreateBinary() macro is now deprecated in favour of the xSemaphoreCreateBinary()
function. Note that binary semaphores created using the vSemaphoreCreateBinary() macro are created in

Espressif Systems 1911
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/FreeRTOS-Kernel/include/freertos/semphr.h
https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

a state such that the first call to 'take' the semaphore would pass, whereas binary semaphores created using
xSemaphoreCreateBinary() are created in a state such that the the semaphore must first be 'given' before it can
be 'taken'.
Macro that implements a semaphore by using the existing queue mechanism. The queue length is 1 as this is a
binary semaphore. The data size is 0 as we don't want to actually store any data - we just want to know if the
queue is empty or full.
This type of semaphore can be used for pure synchronisation between tasks or between an interrupt and a
task. The semaphore need not be given back once obtained, so one task/interrupt can continuously 'give' the
semaphore while another continuously 'takes' the semaphore. For this reason this type of semaphore does not
use a priority inheritance mechanism. For an alternative that does use priority inheritance see xSemaphoreCre-
ateMutex().

Example usage:

SemaphoreHandle_t xSemaphore = NULL;

void vATask(void * pvParameters)
{
// Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
// This is a macro so pass the variable in directly.
vSemaphoreCreateBinary(xSemaphore);

if(xSemaphore != NULL)
{

// The semaphore was created successfully.
// The semaphore can now be used.

}
}

Parameters
• xSemaphore -- Handle to the created semaphore. Should be of type SemaphoreHan-
dle_t.

xSemaphoreCreateBinary()

Creates a new binary semaphore instance, and returns a handle by which the new semaphore can be referenced.
In many usage scenarios it is faster and more memory efficient to use a direct to task notification in place of a
binary semaphore! https://www.FreeRTOS.org/RTOS-task-notifications.html
Internally, within the FreeRTOS implementation, binary semaphores use a block of memory, in which the
semaphore structure is stored. If a binary semaphore is created using xSemaphoreCreateBinary() then the
required memory is automatically dynamically allocated inside the xSemaphoreCreateBinary() function. (see
https://www.FreeRTOS.org/a00111.html). If a binary semaphore is created using xSemaphoreCreateBina-
ryStatic() then the application writer must provide the memory. xSemaphoreCreateBinaryStatic() therefore
allows a binary semaphore to be created without using any dynamic memory allocation.
The old vSemaphoreCreateBinary() macro is now deprecated in favour of this xSemaphoreCreateBinary()
function. Note that binary semaphores created using the vSemaphoreCreateBinary() macro are created in
a state such that the first call to 'take' the semaphore would pass, whereas binary semaphores created using
xSemaphoreCreateBinary() are created in a state such that the the semaphore must first be 'given' before it can
be 'taken'.
This type of semaphore can be used for pure synchronisation between tasks or between an interrupt and a
task. The semaphore need not be given back once obtained, so one task/interrupt can continuously 'give' the
semaphore while another continuously 'takes' the semaphore. For this reason this type of semaphore does not
use a priority inheritance mechanism. For an alternative that does use priority inheritance see xSemaphoreCre-
ateMutex().

Espressif Systems 1912
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Example usage:

SemaphoreHandle_t xSemaphore = NULL;

void vATask(void * pvParameters)
{
// Semaphore cannot be used before a call to xSemaphoreCreateBinary().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateBinary();

if(xSemaphore != NULL)
{

// The semaphore was created successfully.
// The semaphore can now be used.

}
}

Returns Handle to the created semaphore, or NULL if the memory required to hold the
semaphore's data structures could not be allocated.

xSemaphoreCreateBinaryStatic(pxStaticSemaphore)
Creates a new binary semaphore instance, and returns a handle by which the new semaphore can be referenced.
NOTE: In many usage scenarios it is faster and more memory efficient to use a direct to task notification in
place of a binary semaphore! https://www.FreeRTOS.org/RTOS-task-notifications.html
Internally, within the FreeRTOS implementation, binary semaphores use a block of memory, in which the
semaphore structure is stored. If a binary semaphore is created using xSemaphoreCreateBinary() then the
required memory is automatically dynamically allocated inside the xSemaphoreCreateBinary() function. (see
https://www.FreeRTOS.org/a00111.html). If a binary semaphore is created using xSemaphoreCreateBina-
ryStatic() then the application writer must provide the memory. xSemaphoreCreateBinaryStatic() therefore
allows a binary semaphore to be created without using any dynamic memory allocation.
This type of semaphore can be used for pure synchronisation between tasks or between an interrupt and a
task. The semaphore need not be given back once obtained, so one task/interrupt can continuously 'give' the
semaphore while another continuously 'takes' the semaphore. For this reason this type of semaphore does not
use a priority inheritance mechanism. For an alternative that does use priority inheritance see xSemaphoreCre-
ateMutex().

Example usage:

SemaphoreHandle_t xSemaphore = NULL;
StaticSemaphore_t xSemaphoreBuffer;

void vATask(void * pvParameters)
{
// Semaphore cannot be used before a call to xSemaphoreCreateBinaryStatic().
// The semaphore's data structures will be placed in the xSemaphoreBuffer
// variable, the address of which is passed into the function. The
// function's parameter is not NULL, so the function will not attempt any
// dynamic memory allocation, and therefore the function will not return
// return NULL.
xSemaphore = xSemaphoreCreateBinaryStatic(&xSemaphoreBuffer);

// Rest of task code goes here.
}

Parameters

Espressif Systems 1913
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• pxStaticSemaphore -- Must point to a variable of type StaticSemaphore_t, which
will then be used to hold the semaphore's data structure, removing the need for thememory
to be allocated dynamically.

Returns If the semaphore is created then a handle to the created semaphore is returned. If
pxSemaphoreBuffer is NULL then NULL is returned.

xSemaphoreTake(xSemaphore, xBlockTime)
Macro to obtain a semaphore. The semaphoremust have previously been created with a call to xSemaphoreCre-
ateBinary(), xSemaphoreCreateMutex() or xSemaphoreCreateCounting().

Example usage:

SemaphoreHandle_t xSemaphore = NULL;

// A task that creates a semaphore.
void vATask(void * pvParameters)
{
// Create the semaphore to guard a shared resource.
xSemaphore = xSemaphoreCreateBinary();
}

// A task that uses the semaphore.
void vAnotherTask(void * pvParameters)
{
// ... Do other things.

if(xSemaphore != NULL)
{

// See if we can obtain the semaphore. If the semaphore is not available
// wait 10 ticks to see if it becomes free.
if(xSemaphoreTake(xSemaphore, (TickType_t) 10) == pdTRUE)
{

// We were able to obtain the semaphore and can now access the
// shared resource.

// ...

// We have finished accessing the shared resource. Release the
// semaphore.
xSemaphoreGive(xSemaphore);

}
else
{

// We could not obtain the semaphore and can therefore not access
// the shared resource safely.

}
}
}

Parameters
• xSemaphore -- A handle to the semaphore being taken - obtained when the semaphore
was created.

• xBlockTime -- The time in ticks to wait for the semaphore to become available. The
macro portTICK_PERIOD_MS can be used to convert this to a real time. A block time of
zero can be used to poll the semaphore. A block time of portMAX_DELAY can be used to
block indefinitely (provided INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h).

Returns pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime expired without the
semaphore becoming available.

Espressif Systems 1914
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

xSemaphoreTakeRecursive(xMutex, xBlockTime)
Macro to recursively obtain, or 'take', a mutex type semaphore. The mutex must have previously been created
using a call to xSemaphoreCreateRecursiveMutex();
configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this macro to be available.
This macro must not be used on mutexes created using xSemaphoreCreateMutex().
A mutex used recursively can be 'taken' repeatedly by the owner. The mutex doesn't become available again
until the owner has called xSemaphoreGiveRecursive() for each successful 'take' request. For example, if a
task successfully 'takes' the same mutex 5 times then the mutex will not be available to any other task until it
has also 'given' the mutex back exactly five times.

Example usage:

SemaphoreHandle_t xMutex = NULL;

// A task that creates a mutex.
void vATask(void * pvParameters)
{
// Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex();
}

// A task that uses the mutex.
void vAnotherTask(void * pvParameters)
{
// ... Do other things.

if(xMutex != NULL)
{

// See if we can obtain the mutex. If the mutex is not available
// wait 10 ticks to see if it becomes free.
if(xSemaphoreTakeRecursive(xSemaphore, (TickType_t) 10) == pdTRUE)
{

// We were able to obtain the mutex and can now access the
// shared resource.

// ...
// For some reason due to the nature of the code further calls to
// xSemaphoreTakeRecursive() are made on the same mutex. In real
// code these would not be just sequential calls as this would make
// no sense. Instead the calls are likely to be buried inside
// a more complex call structure.
xSemaphoreTakeRecursive(xMutex, (TickType_t) 10);
xSemaphoreTakeRecursive(xMutex, (TickType_t) 10);

// The mutex has now been 'taken' three times, so will not be
// available to another task until it has also been given back
// three times. Again it is unlikely that real code would have
// these calls sequentially, but instead buried in a more complex
// call structure. This is just for illustrative purposes.
xSemaphoreGiveRecursive(xMutex);
xSemaphoreGiveRecursive(xMutex);
xSemaphoreGiveRecursive(xMutex);

// Now the mutex can be taken by other tasks.
}
else
{

// We could not obtain the mutex and can therefore not access
// the shared resource safely.

(continues on next page)

Espressif Systems 1915
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
}

}
}

Parameters
• xMutex -- A handle to the mutex being obtained. This is the handle returned by
xSemaphoreCreateRecursiveMutex();

• xBlockTime -- The time in ticks to wait for the semaphore to become available. The
macro portTICK_PERIOD_MS can be used to convert this to a real time. A block time
of zero can be used to poll the semaphore. If the task already owns the semaphore then
xSemaphoreTakeRecursive() will return immediately no matter what the value of xBlock-
Time.

Returns pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime expired without the
semaphore becoming available.

xSemaphoreGive(xSemaphore)
Macro to release a semaphore. The semaphore must have previously been created with a call to
xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or xSemaphoreCreateCounting(). and obtained us-
ing sSemaphoreTake().
This macro must not be used from an ISR. See xSemaphoreGiveFromISR () for an alternative which can be
used from an ISR.
This macro must also not be used on semaphores created using xSemaphoreCreateRecursiveMutex().

Example usage:

SemaphoreHandle_t xSemaphore = NULL;

void vATask(void * pvParameters)
{
// Create the semaphore to guard a shared resource.
xSemaphore = vSemaphoreCreateBinary();

if(xSemaphore != NULL)
{

if(xSemaphoreGive(xSemaphore) != pdTRUE)
{

// We would expect this call to fail because we cannot give
// a semaphore without first "taking" it!

}

// Obtain the semaphore - don't block if the semaphore is not
// immediately available.
if(xSemaphoreTake(xSemaphore, (TickType_t) 0))
{

// We now have the semaphore and can access the shared resource.

// ...

// We have finished accessing the shared resource so can free the
// semaphore.
if(xSemaphoreGive(xSemaphore) != pdTRUE)
{

// We would not expect this call to fail because we must have
// obtained the semaphore to get here.

}
}

(continues on next page)

Espressif Systems 1916
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
}
}

Parameters
• xSemaphore -- A handle to the semaphore being released. This is the handle returned
when the semaphore was created.

Returns pdTRUE if the semaphore was released. pdFALSE if an error occurred. Semaphores
are implemented using queues. An error can occur if there is no space on the queue to post a
message - indicating that the semaphore was not first obtained correctly.

xSemaphoreGiveRecursive(xMutex)
Macro to recursively release, or 'give', a mutex type semaphore. The mutex must have previously been created
using a call to xSemaphoreCreateRecursiveMutex();
configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this macro to be available.
This macro must not be used on mutexes created using xSemaphoreCreateMutex().
A mutex used recursively can be 'taken' repeatedly by the owner. The mutex doesn't become available again
until the owner has called xSemaphoreGiveRecursive() for each successful 'take' request. For example, if a
task successfully 'takes' the same mutex 5 times then the mutex will not be available to any other task until it
has also 'given' the mutex back exactly five times.

Example usage:

SemaphoreHandle_t xMutex = NULL;

// A task that creates a mutex.
void vATask(void * pvParameters)
{
// Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex();
}

// A task that uses the mutex.
void vAnotherTask(void * pvParameters)
{
// ... Do other things.

if(xMutex != NULL)
{

// See if we can obtain the mutex. If the mutex is not available
// wait 10 ticks to see if it becomes free.
if(xSemaphoreTakeRecursive(xMutex, (TickType_t) 10) == pdTRUE)
{

// We were able to obtain the mutex and can now access the
// shared resource.

// ...
// For some reason due to the nature of the code further calls to
// xSemaphoreTakeRecursive() are made on the same mutex. In real
// code these would not be just sequential calls as this would make
// no sense. Instead the calls are likely to be buried inside
// a more complex call structure.
xSemaphoreTakeRecursive(xMutex, (TickType_t) 10);
xSemaphoreTakeRecursive(xMutex, (TickType_t) 10);

// The mutex has now been 'taken' three times, so will not be
// available to another task until it has also been given back

(continues on next page)

Espressif Systems 1917
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// three times. Again it is unlikely that real code would have
// these calls sequentially, it would be more likely that the calls
// to xSemaphoreGiveRecursive() would be called as a call stack
// unwound. This is just for demonstrative purposes.
xSemaphoreGiveRecursive(xMutex);
xSemaphoreGiveRecursive(xMutex);
xSemaphoreGiveRecursive(xMutex);

// Now the mutex can be taken by other tasks.
}
else
{

// We could not obtain the mutex and can therefore not access
// the shared resource safely.

}
}
}

Parameters
• xMutex -- A handle to the mutex being released, or 'given'. This is the handle returned
by xSemaphoreCreateMutex();

Returns pdTRUE if the semaphore was given.

xSemaphoreGiveFromISR(xSemaphore, pxHigherPriorityTaskWoken)
Macro to release a semaphore. The semaphore must have previously been created with a call to
xSemaphoreCreateBinary() or xSemaphoreCreateCounting().
Mutex type semaphores (those created using a call to xSemaphoreCreateMutex()) must not be used with this
macro.
This macro can be used from an ISR.

Example usage:

#define LONG_TIME 0xffff
#define TICKS_TO_WAIT 10
SemaphoreHandle_t xSemaphore = NULL;

// Repetitive task.
void vATask(void * pvParameters)
{
for(;;)
{

// We want this task to run every 10 ticks of a timer. The semaphore
// was created before this task was started.

// Block waiting for the semaphore to become available.
if(xSemaphoreTake(xSemaphore, LONG_TIME) == pdTRUE)
{

// It is time to execute.

// ...

// We have finished our task. Return to the top of the loop where
// we will block on the semaphore until it is time to execute
// again. Note when using the semaphore for synchronisation with an
// ISR in this manner there is no need to 'give' the semaphore back.

}
}

(continues on next page)

Espressif Systems 1918
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
}

// Timer ISR
void vTimerISR(void * pvParameters)
{
static uint8_t ucLocalTickCount = 0;
static BaseType_t xHigherPriorityTaskWoken;

// A timer tick has occurred.

// ... Do other time functions.

// Is it time for vATask () to run?
xHigherPriorityTaskWoken = pdFALSE;
ucLocalTickCount++;
if(ucLocalTickCount >= TICKS_TO_WAIT)
{

// Unblock the task by releasing the semaphore.
xSemaphoreGiveFromISR(xSemaphore, &xHigherPriorityTaskWoken);

// Reset the count so we release the semaphore again in 10 ticks time.
ucLocalTickCount = 0;

}

if(xHigherPriorityTaskWoken != pdFALSE)
{

// We can force a context switch here. Context switching from an
// ISR uses port specific syntax. Check the demo task for your port
// to find the syntax required.

}
}

Parameters
• xSemaphore -- A handle to the semaphore being released. This is the handle returned
when the semaphore was created.

• pxHigherPriorityTaskWoken -- xSemaphoreGiveFromISR() will set *pxHigher-
PriorityTaskWoken to pdTRUE if giving the semaphore caused a task to unblock, and the
unblocked task has a priority higher than the currently running task. If xSemaphoreGive-
FromISR() sets this value to pdTRUE then a context switch should be requested before
the interrupt is exited.

Returns pdTRUE if the semaphore was successfully given, otherwise errQUEUE_FULL.

xSemaphoreTakeFromISR(xSemaphore, pxHigherPriorityTaskWoken)
Macro to take a semaphore from an ISR. The semaphore must have previously been created with a call to
xSemaphoreCreateBinary() or xSemaphoreCreateCounting().
Mutex type semaphores (those created using a call to xSemaphoreCreateMutex()) must not be used with this
macro.
This macro can be used from an ISR, however taking a semaphore from an ISR is not a common operation. It
is likely to only be useful when taking a counting semaphore when an interrupt is obtaining an object from a
resource pool (when the semaphore count indicates the number of resources available).

Parameters
• xSemaphore -- A handle to the semaphore being taken. This is the handle returned
when the semaphore was created.

• pxHigherPriorityTaskWoken -- [out] xSemaphoreTakeFromISR() will set *px-
HigherPriorityTaskWoken to pdTRUE if taking the semaphore caused a task to un-
block, and the unblocked task has a priority higher than the currently running task. If
xSemaphoreTakeFromISR() sets this value to pdTRUE then a context switch should be

Espressif Systems 1919
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

requested before the interrupt is exited.
Returns pdTRUE if the semaphore was successfully taken, otherwise pdFALSE

xSemaphoreCreateMutex()

Creates a newmutex type semaphore instance, and returns a handle by which the newmutex can be referenced.
Internally, within the FreeRTOS implementation, mutex semaphores use a block of memory, in which
the mutex structure is stored. If a mutex is created using xSemaphoreCreateMutex() then the required
memory is automatically dynamically allocated inside the xSemaphoreCreateMutex() function. (see https:
//www.FreeRTOS.org/a00111.html). If a mutex is created using xSemaphoreCreateMutexStatic() then the
application writer must provided the memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to
be created without using any dynamic memory allocation.
Mutexes created using this function can be accessed using the xSemaphoreTake() and xSemaphoreGive()
macros. The xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros must not be used.
This type of semaphore uses a priority inheritance mechanism so a task 'taking' a semaphore MUST ALWAYS
'give' the semaphore back once the semaphore it is no longer required.
Mutex type semaphores cannot be used from within interrupt service routines.
See xSemaphoreCreateBinary() for an alternative implementation that can be used for pure synchronisation
(where one task or interrupt always 'gives' the semaphore and another always 'takes' the semaphore) and from
within interrupt service routines.

Example usage:

SemaphoreHandle_t xSemaphore;

void vATask(void * pvParameters)
{
// Semaphore cannot be used before a call to xSemaphoreCreateMutex().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateMutex();

if(xSemaphore != NULL)
{

// The semaphore was created successfully.
// The semaphore can now be used.

}
}

Returns If the mutex was successfully created then a handle to the created semaphore is returned.
If there was not enough heap to allocate the mutex data structures then NULL is returned.

xSemaphoreCreateMutexStatic(pxMutexBuffer)
Creates a newmutex type semaphore instance, and returns a handle by which the newmutex can be referenced.
Internally, within the FreeRTOS implementation, mutex semaphores use a block of memory, in which
the mutex structure is stored. If a mutex is created using xSemaphoreCreateMutex() then the required
memory is automatically dynamically allocated inside the xSemaphoreCreateMutex() function. (see https:
//www.FreeRTOS.org/a00111.html). If a mutex is created using xSemaphoreCreateMutexStatic() then the
application writer must provided the memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to
be created without using any dynamic memory allocation.
Mutexes created using this function can be accessed using the xSemaphoreTake() and xSemaphoreGive()
macros. The xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros must not be used.
This type of semaphore uses a priority inheritance mechanism so a task 'taking' a semaphore MUST ALWAYS
'give' the semaphore back once the semaphore it is no longer required.
Mutex type semaphores cannot be used from within interrupt service routines.

Espressif Systems 1920
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00111.html
https://www.FreeRTOS.org/a00111.html
https://www.FreeRTOS.org/a00111.html
https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

See xSemaphoreCreateBinary() for an alternative implementation that can be used for pure synchronisation
(where one task or interrupt always 'gives' the semaphore and another always 'takes' the semaphore) and from
within interrupt service routines.

Example usage:

SemaphoreHandle_t xSemaphore;
StaticSemaphore_t xMutexBuffer;

void vATask(void * pvParameters)
{
// A mutex cannot be used before it has been created. xMutexBuffer is
// into xSemaphoreCreateMutexStatic() so no dynamic memory allocation is
// attempted.
xSemaphore = xSemaphoreCreateMutexStatic(&xMutexBuffer);

// As no dynamic memory allocation was performed, xSemaphore cannot be NULL,
// so there is no need to check it.
}

Parameters
• pxMutexBuffer -- Must point to a variable of type StaticSemaphore_t, which will be
used to hold the mutex's data structure, removing the need for the memory to be allocated
dynamically.

Returns If the mutex was successfully created then a handle to the created mutex is returned. If
pxMutexBuffer was NULL then NULL is returned.

xSemaphoreCreateCounting(uxMaxCount, uxInitialCount)
Creates a new recursive mutex type semaphore instance, and returns a handle by which the new recursive mutex
can be referenced.
Internally, within the FreeRTOS implementation, recursive mutexs use a block of memory, in which the mu-
tex structure is stored. If a recursive mutex is created using xSemaphoreCreateRecursiveMutex() then the
required memory is automatically dynamically allocated inside the xSemaphoreCreateRecursiveMutex() func-
tion. (see https://www.FreeRTOS.org/a00111.html). If a recursive mutex is created using xSemaphoreCre-
ateRecursiveMutexStatic() then the application writer must provide thememory that will get used by themutex.
xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to be created without using any
dynamic memory allocation.
Mutexes created using this macro can be accessed using the xSemaphoreTakeRecursive() and xSemaphore-
GiveRecursive() macros. The xSemaphoreTake() and xSemaphoreGive() macros must not be used.
A mutex used recursively can be 'taken' repeatedly by the owner. The mutex doesn't become available again
until the owner has called xSemaphoreGiveRecursive() for each successful 'take' request. For example, if a
task successfully 'takes' the same mutex 5 times then the mutex will not be available to any other task until it
has also 'given' the mutex back exactly five times.
This type of semaphore uses a priority inheritance mechanism so a task 'taking' a semaphore MUST ALWAYS
'give' the semaphore back once the semaphore it is no longer required.
Mutex type semaphores cannot be used from within interrupt service routines.
See xSemaphoreCreateBinary() for an alternative implementation that can be used for pure synchronisation
(where one task or interrupt always 'gives' the semaphore and another always 'takes' the semaphore) and from
within interrupt service routines.

Example usage:

Espressif Systems 1921
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SemaphoreHandle_t xSemaphore;

void vATask(void * pvParameters)
{
// Semaphore cannot be used before a call to xSemaphoreCreateMutex().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateRecursiveMutex();

if(xSemaphore != NULL)
{

// The semaphore was created successfully.
// The semaphore can now be used.

}
}

Creates a new recursive mutex type semaphore instance, and returns a handle by which the new recursive mutex
can be referenced.
Internally, within the FreeRTOS implementation, recursive mutexs use a block of memory, in which the mu-
tex structure is stored. If a recursive mutex is created using xSemaphoreCreateRecursiveMutex() then the
required memory is automatically dynamically allocated inside the xSemaphoreCreateRecursiveMutex() func-
tion. (see https://www.FreeRTOS.org/a00111.html). If a recursive mutex is created using xSemaphoreCre-
ateRecursiveMutexStatic() then the application writer must provide thememory that will get used by themutex.
xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to be created without using any
dynamic memory allocation.
Mutexes created using this macro can be accessed using the xSemaphoreTakeRecursive() and xSemaphore-
GiveRecursive() macros. The xSemaphoreTake() and xSemaphoreGive() macros must not be used.
A mutex used recursively can be 'taken' repeatedly by the owner. The mutex doesn't become available again
until the owner has called xSemaphoreGiveRecursive() for each successful 'take' request. For example, if a
task successfully 'takes' the same mutex 5 times then the mutex will not be available to any other task until it
has also 'given' the mutex back exactly five times.
This type of semaphore uses a priority inheritance mechanism so a task 'taking' a semaphore MUST ALWAYS
'give' the semaphore back once the semaphore it is no longer required.
Mutex type semaphores cannot be used from within interrupt service routines.
See xSemaphoreCreateBinary() for an alternative implementation that can be used for pure synchronisation
(where one task or interrupt always 'gives' the semaphore and another always 'takes' the semaphore) and from
within interrupt service routines.

Example usage:

SemaphoreHandle_t xSemaphore;
StaticSemaphore_t xMutexBuffer;

void vATask(void * pvParameters)
{
// A recursive semaphore cannot be used before it is created. Here a
// recursive mutex is created using xSemaphoreCreateRecursiveMutexStatic().
// The address of xMutexBuffer is passed into the function, and will hold
// the mutexes data structures - so no dynamic memory allocation will be
// attempted.
xSemaphore = xSemaphoreCreateRecursiveMutexStatic(&xMutexBuffer);

// As no dynamic memory allocation was performed, xSemaphore cannot be NULL,
// so there is no need to check it.
}

Espressif Systems 1922
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Creates a new counting semaphore instance, and returns a handle by which the new counting semaphore can
be referenced.
In many usage scenarios it is faster and more memory efficient to use a direct to task notification in place of a
counting semaphore! https://www.FreeRTOS.org/RTOS-task-notifications.html
Internally, within the FreeRTOS implementation, counting semaphores use a block of memory, in which
the counting semaphore structure is stored. If a counting semaphore is created using xSemaphoreCreate-
Counting() then the required memory is automatically dynamically allocated inside the xSemaphoreCreate-
Counting() function. (see https://www.FreeRTOS.org/a00111.html). If a counting semaphore is created us-
ing xSemaphoreCreateCountingStatic() then the application writer can instead optionally provide the memory
that will get used by the counting semaphore. xSemaphoreCreateCountingStatic() therefore allows a counting
semaphore to be created without using any dynamic memory allocation.
Counting semaphores are typically used for two things:
1) Counting events.
In this usage scenario an event handler will 'give' a semaphore each time an event occurs (incrementing the
semaphore count value), and a handler task will 'take' a semaphore each time it processes an event (decrement-
ing the semaphore count value). The count value is therefore the difference between the number of events that
have occurred and the number that have been processed. In this case it is desirable for the initial count value
to be zero.
2) Resource management.
In this usage scenario the count value indicates the number of resources available. To obtain control of a
resource a task must first obtain a semaphore - decrementing the semaphore count value. When the count
value reaches zero there are no free resources. When a task finishes with the resource it 'gives' the semaphore
back - incrementing the semaphore count value. In this case it is desirable for the initial count value to be equal
to the maximum count value, indicating that all resources are free.

Example usage:

SemaphoreHandle_t xSemaphore;

void vATask(void * pvParameters)
{
SemaphoreHandle_t xSemaphore = NULL;

// Semaphore cannot be used before a call to xSemaphoreCreateCounting().
// The max value to which the semaphore can count should be 10, and the
// initial value assigned to the count should be 0.
xSemaphore = xSemaphoreCreateCounting(10, 0);

if(xSemaphore != NULL)
{

// The semaphore was created successfully.
// The semaphore can now be used.

}
}

Returns xSemaphore Handle to the created mutex semaphore. Should be of type SemaphoreHan-
dle_t.

Parameters
• pxStaticSemaphore -- Must point to a variable of type StaticSemaphore_t, which
will then be used to hold the recursive mutex's data structure, removing the need for the
memory to be allocated dynamically.

• uxMaxCount -- The maximum count value that can be reached. When the semaphore
reaches this value it can no longer be 'given'.

• uxInitialCount -- The count value assigned to the semaphore when it is created.

Espressif Systems 1923
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns If the recursive mutex was successfully created then a handle to the created recursive
mutex is returned. If pxMutexBuffer was NULL then NULL is returned.

Returns Handle to the created semaphore. Null if the semaphore could not be created.

xSemaphoreCreateCountingStatic(uxMaxCount, uxInitialCount, pxSemaphoreBuffer)
Creates a new counting semaphore instance, and returns a handle by which the new counting semaphore can
be referenced.
In many usage scenarios it is faster and more memory efficient to use a direct to task notification in place of a
counting semaphore! https://www.FreeRTOS.org/RTOS-task-notifications.html
Internally, within the FreeRTOS implementation, counting semaphores use a block of memory, in which the
counting semaphore structure is stored. If a counting semaphore is created using xSemaphoreCreateCount-
ing() then the required memory is automatically dynamically allocated inside the xSemaphoreCreateCount-
ing() function. (see https://www.FreeRTOS.org/a00111.html). If a counting semaphore is created using
xSemaphoreCreateCountingStatic() then the application writer must provide the memory. xSemaphoreCre-
ateCountingStatic() therefore allows a counting semaphore to be created without using any dynamic memory
allocation.
Counting semaphores are typically used for two things:
1) Counting events.
In this usage scenario an event handler will 'give' a semaphore each time an event occurs (incrementing the
semaphore count value), and a handler task will 'take' a semaphore each time it processes an event (decrement-
ing the semaphore count value). The count value is therefore the difference between the number of events that
have occurred and the number that have been processed. In this case it is desirable for the initial count value
to be zero.
2) Resource management.
In this usage scenario the count value indicates the number of resources available. To obtain control of a
resource a task must first obtain a semaphore - decrementing the semaphore count value. When the count
value reaches zero there are no free resources. When a task finishes with the resource it 'gives' the semaphore
back - incrementing the semaphore count value. In this case it is desirable for the initial count value to be equal
to the maximum count value, indicating that all resources are free.

Example usage:

SemaphoreHandle_t xSemaphore;
StaticSemaphore_t xSemaphoreBuffer;

void vATask(void * pvParameters)
{
SemaphoreHandle_t xSemaphore = NULL;

// Counting semaphore cannot be used before they have been created. Create
// a counting semaphore using xSemaphoreCreateCountingStatic(). The max
// value to which the semaphore can count is 10, and the initial value
// assigned to the count will be 0. The address of xSemaphoreBuffer is
// passed in and will be used to hold the semaphore structure, so no dynamic
// memory allocation will be used.
xSemaphore = xSemaphoreCreateCounting(10, 0, &xSemaphoreBuffer);

// No memory allocation was attempted so xSemaphore cannot be NULL, so there
// is no need to check its value.
}

Parameters
• uxMaxCount -- The maximum count value that can be reached. When the semaphore
reaches this value it can no longer be 'given'.

• uxInitialCount -- The count value assigned to the semaphore when it is created.

Espressif Systems 1924
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/RTOS-task-notifications.html
https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• pxSemaphoreBuffer -- Must point to a variable of type StaticSemaphore_t, which
will then be used to hold the semaphore's data structure, removing the need for thememory
to be allocated dynamically.

Returns If the counting semaphore was successfully created then a handle to the created counting
semaphore is returned. If pxSemaphoreBuffer was NULL then NULL is returned.

vSemaphoreDelete(xSemaphore)
Delete a semaphore. This function must be used with care. For example, do not delete a mutex type semaphore
if the mutex is held by a task.

Parameters
• xSemaphore -- A handle to the semaphore to be deleted.

xSemaphoreGetMutexHolder(xSemaphore)
If xMutex is indeed a mutex type semaphore, return the current mutex holder. If xMutex is not a mutex type
semaphore, or the mutex is available (not held by a task), return NULL.
Note: This is a good way of determining if the calling task is the mutex holder, but not a good way of deter-
mining the identity of the mutex holder as the holder may change between the function exiting and the returned
value being tested.

xSemaphoreGetMutexHolderFromISR(xSemaphore)
If xMutex is indeed a mutex type semaphore, return the current mutex holder. If xMutex is not a mutex type
semaphore, or the mutex is available (not held by a task), return NULL.

uxSemaphoreGetCount(xSemaphore)
If the semaphore is a counting semaphore then uxSemaphoreGetCount() returns its current count value. If the
semaphore is a binary semaphore then uxSemaphoreGetCount() returns 1 if the semaphore is available, and 0
if the semaphore is not available.

xSemaphoreGetStaticBuffer(xSemaphore, ppxSemaphoreBuffer)
Retrieve pointer to a statically created binary semaphore, counting semaphore, or mutex semaphore's data
structure buffer. This is the same buffer that is supplied at the time of creation.

Parameters
• xSemaphore -- The semaphore for which to retrieve the buffer.
• ppxSemaphoreBuffer -- Used to return a pointer to the semaphore's data structure
buffer.

Returns pdTRUE if buffer was retrieved, pdFALSE otherwise.

Type Definitions

typedef QueueHandle_t SemaphoreHandle_t

Timer API

Header File
• components/freertos/FreeRTOS-Kernel/include/freertos/timers.h

Functions
TimerHandle_t xTimerCreate(const char *const pcTimerName, const TickType_t xTimerPeriodInTicks, const

UBaseType_t uxAutoReload, void *const pvTimerID,
TimerCallbackFunction_t pxCallbackFunction)

TimerHandle_t xTimerCreate(const char * const pcTimerName, TickType_t xTimerPeriodInTicks, UBase-
Type_t uxAutoReload, void * pvTimerID, TimerCallbackFunction_t pxCallbackFunction);

Espressif Systems 1925
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/FreeRTOS-Kernel/include/freertos/timers.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Creates a new software timer instance, and returns a handle by which the created software timer can be refer-
enced.
Internally, within the FreeRTOS implementation, software timers use a block of memory, in which the timer
data structure is stored. If a software timer is created using xTimerCreate() then the required memory is auto-
matically dynamically allocated inside the xTimerCreate() function. (see https://www.FreeRTOS.org/a00111.
html). If a software timer is created using xTimerCreateStatic() then the application writer must provide the
memory that will get used by the software timer. xTimerCreateStatic() therefore allows a software timer to be
created without using any dynamic memory allocation.
Timers are created in the dormant state. The xTimerStart(), xTimerReset(), xTimerStartFromISR(), xTimer-
ResetFromISR(), xTimerChangePeriod() and xTimerChangePeriodFromISR() API functions can all be used
to transition a timer into the active state.

Example usage:

* #define NUM_TIMERS 5
*
* // An array to hold handles to the created timers.
* TimerHandle_t xTimers[NUM_TIMERS];
*
* // An array to hold a count of the number of times each timer expires.
* int32_t lExpireCounters[NUM_TIMERS] = { 0 };
*
* // Define a callback function that will be used by multiple timer instances.
* // The callback function does nothing but count the number of times the
* // associated timer expires, and stop the timer once the timer has expired
* // 10 times.
* void vTimerCallback(TimerHandle_t pxTimer)
* {
* int32_t lArrayIndex;
* const int32_t xMaxExpiryCountBeforeStopping = 10;
*
* // Optionally do something if the pxTimer parameter is NULL.
* configASSERT(pxTimer);
*
* // Which timer expired?
* lArrayIndex = (int32_t) pvTimerGetTimerID(pxTimer);
*
* // Increment the number of times that pxTimer has expired.
* lExpireCounters[lArrayIndex] += 1;
*
* // If the timer has expired 10 times then stop it from running.
* if(lExpireCounters[lArrayIndex] == xMaxExpiryCountBeforeStopping)
* {
* // Do not use a block time if calling a timer API function from a
* // timer callback function, as doing so could cause a deadlock!
* xTimerStop(pxTimer, 0);
* }
* }
*
* void main(void)
* {
* int32_t x;
*
* // Create then start some timers. Starting the timers before the␣
↪→scheduler
* // has been started means the timers will start running immediately that
* // the scheduler starts.
* for(x = 0; x < NUM_TIMERS; x++)
* {

(continues on next page)

Espressif Systems 1926
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00111.html
https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
* xTimers[x] = xTimerCreate("Timer", // Just a text name,␣
↪→not used by the kernel.
* (100 * x), // The timer period␣
↪→in ticks.
* pdTRUE, // The timers will␣
↪→auto-reload themselves when they expire.
* (void *) x, // Assign each timer␣
↪→a unique id equal to its array index.
* vTimerCallback // Each timer calls␣
↪→the same callback when it expires.
*);
*
* if(xTimers[x] == NULL)
* {
* // The timer was not created.
* }
* else
* {
* // Start the timer. No block time is specified, and even if one␣
↪→was
* // it would be ignored because the scheduler has not yet been
* // started.
* if(xTimerStart(xTimers[x], 0) != pdPASS)
* {
* // The timer could not be set into the Active state.
* }
* }
* }
*
* // ...
* // Create tasks here.
* // ...
*
* // Starting the scheduler will start the timers running as they have␣
↪→already
* // been set into the active state.
* vTaskStartScheduler();
*
* // Should not reach here.
* for(;;);
* }
*

Parameters
• pcTimerName -- A text name that is assigned to the timer. This is done purely to assist
debugging. The kernel itself only ever references a timer by its handle, and never by its
name.

• xTimerPeriodInTicks -- The timer period. The time is defined in tick periods so
the constant portTICK_PERIOD_MS can be used to convert a time that has been specified
in milliseconds. For example, if the timer must expire after 100 ticks, then xTimerPeri-
odInTicks should be set to 100. Alternatively, if the timer must expire after 500ms, then
xPeriod can be set to (500 / portTICK_PERIOD_MS) provided configTICK_RATE_HZ
is less than or equal to 1000. Time timer period must be greater than 0.

• uxAutoReload -- If uxAutoReload is set to pdTRUE then the timer will expire repeat-
edly with a frequency set by the xTimerPeriodInTicks parameter. If uxAutoReload is set
to pdFALSE then the timer will be a one-shot timer and enter the dormant state after it
expires.

• pvTimerID -- An identifier that is assigned to the timer being created. Typically this
would be used in the timer callback function to identify which timer expired when the
same callback function is assigned to more than one timer.

Espressif Systems 1927
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• pxCallbackFunction -- The function to call when the timer expires. Callback func-
tions must have the prototype defined by TimerCallbackFunction_t, which is "void vCall-
backFunction(TimerHandle_t xTimer);".

Returns If the timer is successfully created then a handle to the newly created timer is returned. If
the timer cannot be created because there is insufficient FreeRTOS heap remaining to allocate
the timer structures then NULL is returned.

TimerHandle_t xTimerCreateStatic(const char *const pcTimerName, const TickType_t
xTimerPeriodInTicks, const UBaseType_t uxAutoReload, void *const
pvTimerID, TimerCallbackFunction_t pxCallbackFunction,
StaticTimer_t *pxTimerBuffer)

TimerHandle_t xTimerCreateStatic(const char * const pcTimerName, TickType_t xTimerPeriodInTicks,
UBaseType_t uxAutoReload, void * pvTimerID, TimerCallbackFunction_t pxCallbackFunction, Static-
Timer_t *pxTimerBuffer);
Creates a new software timer instance, and returns a handle by which the created software timer can be refer-
enced.
Internally, within the FreeRTOS implementation, software timers use a block of memory, in which the timer
data structure is stored. If a software timer is created using xTimerCreate() then the required memory is auto-
matically dynamically allocated inside the xTimerCreate() function. (see https://www.FreeRTOS.org/a00111.
html). If a software timer is created using xTimerCreateStatic() then the application writer must provide the
memory that will get used by the software timer. xTimerCreateStatic() therefore allows a software timer to be
created without using any dynamic memory allocation.
Timers are created in the dormant state. The xTimerStart(), xTimerReset(), xTimerStartFromISR(), xTimer-
ResetFromISR(), xTimerChangePeriod() and xTimerChangePeriodFromISR() API functions can all be used
to transition a timer into the active state.

Example usage:

*
* // The buffer used to hold the software timer's data structure.
* static StaticTimer_t xTimerBuffer;
*
* // A variable that will be incremented by the software timer's callback
* // function.
* UBaseType_t uxVariableToIncrement = 0;
*
* // A software timer callback function that increments a variable passed to
* // it when the software timer was created. After the 5th increment the
* // callback function stops the software timer.
* static void prvTimerCallback(TimerHandle_t xExpiredTimer)
* {
* UBaseType_t *puxVariableToIncrement;
* BaseType_t xReturned;
*
* // Obtain the address of the variable to increment from the timer ID.
* puxVariableToIncrement = (UBaseType_t *) pvTimerGetTimerID(␣
↪→xExpiredTimer);
*
* // Increment the variable to show the timer callback has executed.
* (*puxVariableToIncrement)++;
*
* // If this callback has executed the required number of times, stop the
* // timer.
* if(*puxVariableToIncrement == 5)
* {
* // This is called from a timer callback so must not block.
* xTimerStop(xExpiredTimer, staticDONT_BLOCK);
* }

(continues on next page)

Espressif Systems 1928
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00111.html
https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
* }
*
*
* void main(void)
* {
* // Create the software time. xTimerCreateStatic() has an extra parameter
* // than the normal xTimerCreate() API function. The parameter is a␣
↪→pointer
* // to the StaticTimer_t structure that will hold the software timer
* // structure. If the parameter is passed as NULL then the structure␣
↪→will be
* // allocated dynamically, just as if xTimerCreate() had been called.
* xTimer = xTimerCreateStatic("T1", // Text name for the task.
↪→ Helps debugging only. Not used by FreeRTOS.
* xTimerPeriod, // The period of the␣
↪→timer in ticks.
* pdTRUE, // This is an auto-reload␣
↪→timer.
* (void *) &uxVariableToIncrement, // A␣
↪→variable incremented by the software timer's callback function
* prvTimerCallback, // The function to␣
↪→execute when the timer expires.
* &xTimerBuffer); // The buffer that will␣
↪→hold the software timer structure.
*
* // The scheduler has not started yet so a block time is not used.
* xReturned = xTimerStart(xTimer, 0);
*
* // ...
* // Create tasks here.
* // ...
*
* // Starting the scheduler will start the timers running as they have␣
↪→already
* // been set into the active state.
* vTaskStartScheduler();
*
* // Should not reach here.
* for(;;);
* }
*

Parameters
• pcTimerName -- A text name that is assigned to the timer. This is done purely to assist
debugging. The kernel itself only ever references a timer by its handle, and never by its
name.

• xTimerPeriodInTicks -- The timer period. The time is defined in tick periods so
the constant portTICK_PERIOD_MS can be used to convert a time that has been specified
in milliseconds. For example, if the timer must expire after 100 ticks, then xTimerPeri-
odInTicks should be set to 100. Alternatively, if the timer must expire after 500ms, then
xPeriod can be set to (500 / portTICK_PERIOD_MS) provided configTICK_RATE_HZ
is less than or equal to 1000. The timer period must be greater than 0.

• uxAutoReload -- If uxAutoReload is set to pdTRUE then the timer will expire repeat-
edly with a frequency set by the xTimerPeriodInTicks parameter. If uxAutoReload is set
to pdFALSE then the timer will be a one-shot timer and enter the dormant state after it
expires.

• pvTimerID -- An identifier that is assigned to the timer being created. Typically this
would be used in the timer callback function to identify which timer expired when the
same callback function is assigned to more than one timer.

• pxCallbackFunction -- The function to call when the timer expires. Callback func-

Espressif Systems 1929
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

tions must have the prototype defined by TimerCallbackFunction_t, which is "void vCall-
backFunction(TimerHandle_t xTimer);".

• pxTimerBuffer -- Must point to a variable of type StaticTimer_t, which will be then
be used to hold the software timer's data structures, removing the need for the memory to
be allocated dynamically.

Returns If the timer is created then a handle to the created timer is returned. If pxTimerBuffer
was NULL then NULL is returned.

void *pvTimerGetTimerID(const TimerHandle_t xTimer)
void *pvTimerGetTimerID(TimerHandle_t xTimer);
Returns the ID assigned to the timer.
IDs are assigned to timers using the pvTimerID parameter of the call to xTimerCreated() that was used to
create the timer, and by calling the vTimerSetTimerID() API function.
If the same callback function is assigned to multiple timers then the timer ID can be used as time specific (timer
local) storage.

Example usage:
See the xTimerCreate() API function example usage scenario.

Parameters xTimer -- The timer being queried.
Returns The ID assigned to the timer being queried.

void vTimerSetTimerID(TimerHandle_t xTimer, void *pvNewID)
void vTimerSetTimerID(TimerHandle_t xTimer, void *pvNewID);
Sets the ID assigned to the timer.
IDs are assigned to timers using the pvTimerID parameter of the call to xTimerCreated() that was used to
create the timer.
If the same callback function is assigned to multiple timers then the timer ID can be used as time specific (timer
local) storage.

Example usage:
See the xTimerCreate() API function example usage scenario.

Parameters
• xTimer -- The timer being updated.
• pvNewID -- The ID to assign to the timer.

BaseType_t xTimerIsTimerActive(TimerHandle_t xTimer)
BaseType_t xTimerIsTimerActive(TimerHandle_t xTimer);
Queries a timer to see if it is active or dormant.
A timer will be dormant if: 1) It has been created but not started, or 2) It is an expired one-shot timer that has
not been restarted.
Timers are created in the dormant state. The xTimerStart(), xTimerReset(), xTimerStartFromISR(), xTimer-
ResetFromISR(), xTimerChangePeriod() and xTimerChangePeriodFromISR() API functions can all be used
to transition a timer into the active state.

Example usage:

Espressif Systems 1930
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

* // This function assumes xTimer has already been created.
* void vAFunction(TimerHandle_t xTimer)
* {
* if(xTimerIsTimerActive(xTimer) != pdFALSE) // or more simply and␣
↪→equivalently "if(xTimerIsTimerActive(xTimer))"
* {
* // xTimer is active, do something.
* }
* else
* {
* // xTimer is not active, do something else.
* }
* }
*

Parameters xTimer -- The timer being queried.
Returns pdFALSE will be returned if the timer is dormant. A value other than pdFALSE will be

returned if the timer is active.

TaskHandle_t xTimerGetTimerDaemonTaskHandle(void)
TaskHandle_t xTimerGetTimerDaemonTaskHandle(void);
Simply returns the handle of the timer service/daemon task. It it not valid to call xTimerGetTimerDaemon-
TaskHandle() before the scheduler has been started.

BaseType_t xTimerPendFunctionCallFromISR(PendedFunction_t xFunctionToPend, void
*pvParameter1, uint32_t ulParameter2, BaseType_t
*pxHigherPriorityTaskWoken)

BaseType_t xTimerPendFunctionCallFromISR(PendedFunction_t xFunctionToPend, void *pvParameter1,
uint32_t ulParameter2, BaseType_t *pxHigherPriorityTaskWoken);
Used from application interrupt service routines to defer the execution of a function to the RTOS daemon task
(the timer service task, hence this function is implemented in timers.c and is prefixed with 'Timer').
Ideally an interrupt service routine (ISR) is kept as short as possible, but sometimes an ISR either has a lot of
processing to do, or needs to perform processing that is not deterministic. In these cases xTimerPendFunc-
tionCallFromISR() can be used to defer processing of a function to the RTOS daemon task.
Amechanism is provided that allows the interrupt to return directly to the task that will subsequently execute the
pended callback function. This allows the callback function to execute contiguously in time with the interrupt
- just as if the callback had executed in the interrupt itself.

Example usage:

*
* // The callback function that will execute in the context of the daemon␣
↪→task.
* // Note callback functions must all use this same prototype.
* void vProcessInterface(void *pvParameter1, uint32_t ulParameter2)
* {
* BaseType_t xInterfaceToService;
*
* // The interface that requires servicing is passed in the second
* // parameter. The first parameter is not used in this case.
* xInterfaceToService = (BaseType_t) ulParameter2;
*
* // ...Perform the processing here...
* }
*
* // An ISR that receives data packets from multiple interfaces

(continues on next page)

Espressif Systems 1931
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
* void vAnISR(void)
* {
* BaseType_t xInterfaceToService, xHigherPriorityTaskWoken;
*
* // Query the hardware to determine which interface needs processing.
* xInterfaceToService = prvCheckInterfaces();
*
* // The actual processing is to be deferred to a task. Request the
* // vProcessInterface() callback function is executed, passing in the
* // number of the interface that needs processing. The interface to
* // service is passed in the second parameter. The first parameter is
* // not used in this case.
* xHigherPriorityTaskWoken = pdFALSE;
* xTimerPendFunctionCallFromISR(vProcessInterface, NULL, (uint32_t)␣
↪→xInterfaceToService, &xHigherPriorityTaskWoken);
*
* // If xHigherPriorityTaskWoken is now set to pdTRUE then a context
* // switch should be requested. The macro used is port specific and will
* // be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() - refer to
* // the documentation page for the port being used.
* portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
*
* }
*

Parameters
• xFunctionToPend -- The function to execute from the timer service/ daemon task.
The function must conform to the PendedFunction_t prototype.

• pvParameter1 -- The value of the callback function's first parameter. The parameter
has a void * type to allow it to be used to pass any type. For example, unsigned longs can
be cast to a void *, or the void * can be used to point to a structure.

• ulParameter2 -- The value of the callback function's second parameter.
• pxHigherPriorityTaskWoken -- As mentioned above, calling this function will
result in a message being sent to the timer daemon task. If the priority of the timer dae-
mon task (which is set using configTIMER_TASK_PRIORITY in FreeRTOSConfig.h) is
higher than the priority of the currently running task (the task the interrupt interrupted)
then *pxHigherPriorityTaskWoken will be set to pdTRUE within xTimerPendFunction-
CallFromISR(), indicating that a context switch should be requested before the interrupt
exits. For that reason *pxHigherPriorityTaskWoken must be initialised to pdFALSE. See
the example code below.

Returns pdPASS is returned if the message was successfully sent to the timer daemon task, oth-
erwise pdFALSE is returned.

BaseType_t xTimerPendFunctionCall(PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t
ulParameter2, TickType_t xTicksToWait)

BaseType_t xTimerPendFunctionCall(PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t
ulParameter2, TickType_t xTicksToWait);
Used to defer the execution of a function to the RTOS daemon task (the timer service task, hence this function
is implemented in timers.c and is prefixed with 'Timer').

Parameters
• xFunctionToPend -- The function to execute from the timer service/ daemon task.
The function must conform to the PendedFunction_t prototype.

• pvParameter1 -- The value of the callback function's first parameter. The parameter
has a void * type to allow it to be used to pass any type. For example, unsigned longs can
be cast to a void *, or the void * can be used to point to a structure.

• ulParameter2 -- The value of the callback function's second parameter.
• xTicksToWait -- Calling this function will result in a message being sent to the timer

Espressif Systems 1932
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

daemon task on a queue. xTicksToWait is the amount of time the calling task should re-
main in the Blocked state (so not using any processing time) for space to become available
on the timer queue if the queue is found to be full.

Returns pdPASS is returned if the message was successfully sent to the timer daemon task, oth-
erwise pdFALSE is returned.

const char *pcTimerGetName(TimerHandle_t xTimer)
const char * const pcTimerGetName(TimerHandle_t xTimer);
Returns the name that was assigned to a timer when the timer was created.

Parameters xTimer -- The handle of the timer being queried.
Returns The name assigned to the timer specified by the xTimer parameter.

void vTimerSetReloadMode(TimerHandle_t xTimer, const UBaseType_t uxAutoReload)
void vTimerSetReloadMode(TimerHandle_t xTimer, const UBaseType_t uxAutoReload);
Updates a timer to be either an auto-reload timer, in which case the timer automatically resets itself each time
it expires, or a one-shot timer, in which case the timer will only expire once unless it is manually restarted.

Parameters
• xTimer -- The handle of the timer being updated.
• uxAutoReload -- If uxAutoReload is set to pdTRUE then the timer will expire repeat-
edly with a frequency set by the timer's period (see the xTimerPeriodInTicks parameter
of the xTimerCreate() API function). If uxAutoReload is set to pdFALSE then the timer
will be a one-shot timer and enter the dormant state after it expires.

UBaseType_t uxTimerGetReloadMode(TimerHandle_t xTimer)
UBaseType_t uxTimerGetReloadMode(TimerHandle_t xTimer);
Queries a timer to determine if it is an auto-reload timer, in which case the timer automatically resets itself
each time it expires, or a one-shot timer, in which case the timer will only expire once unless it is manually
restarted.

Parameters xTimer -- The handle of the timer being queried.
Returns If the timer is an auto-reload timer then pdTRUE is returned, otherwise pdFALSE is

returned.
TickType_t xTimerGetPeriod(TimerHandle_t xTimer)

TickType_t xTimerGetPeriod(TimerHandle_t xTimer);
Returns the period of a timer.

Parameters xTimer -- The handle of the timer being queried.
Returns The period of the timer in ticks.

TickType_t xTimerGetExpiryTime(TimerHandle_t xTimer)
TickType_t xTimerGetExpiryTime(TimerHandle_t xTimer);
Returns the time in ticks at which the timer will expire. If this is less than the current tick count then the expiry
time has overflowed from the current time.

Parameters xTimer -- The handle of the timer being queried.
Returns If the timer is running then the time in ticks at which the timer will next expire is returned.

If the timer is not running then the return value is undefined.
BaseType_t xTimerGetStaticBuffer(TimerHandle_t xTimer, StaticTimer_t **ppxTimerBuffer)

BaseType_t xTimerGetStaticBuffer(TimerHandle_t xTimer, StaticTimer_t ** ppxTimerBuffer);
Retrieve pointer to a statically created timer's data structure buffer. This is the same buffer that is supplied at
the time of creation.

Parameters
• xTimer -- The timer for which to retrieve the buffer.
• ppxTimerBuffer -- Used to return a pointer to the timers's data structure buffer.

Returns pdTRUE if the buffer was retrieved, pdFALSE otherwise.

Espressif Systems 1933
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void vApplicationGetTimerTaskMemory(StaticTask_t **ppxTimerTaskTCBBuffer, StackType_t
**ppxTimerTaskStackBuffer, uint32_t
*pulTimerTaskStackSize)

This function is used to provide a statically allocated block of memory to FreeRTOS to hold the Timer Task
TCB. This function is required when configSUPPORT_STATIC_ALLOCATION is set. For more information
see this URI: https://www.FreeRTOS.org/a00110.html#configSUPPORT_STATIC_ALLOCATION

Parameters
• ppxTimerTaskTCBBuffer -- A handle to a statically allocated TCB buffer
• ppxTimerTaskStackBuffer -- A handle to a statically allocated Stack buffer for
thie idle task

• pulTimerTaskStackSize -- A pointer to the number of elements that will fit in the
allocated stack buffer

Macros

tmrCOMMAND_EXECUTE_CALLBACK_FROM_ISR

tmrCOMMAND_EXECUTE_CALLBACK

tmrCOMMAND_START_DONT_TRACE

tmrCOMMAND_START

tmrCOMMAND_RESET

tmrCOMMAND_STOP

tmrCOMMAND_CHANGE_PERIOD

tmrCOMMAND_DELETE

tmrFIRST_FROM_ISR_COMMAND

tmrCOMMAND_START_FROM_ISR

tmrCOMMAND_RESET_FROM_ISR

tmrCOMMAND_STOP_FROM_ISR

tmrCOMMAND_CHANGE_PERIOD_FROM_ISR

xTimerStart(xTimer, xTicksToWait)
BaseType_t xTimerStart(TimerHandle_t xTimer, TickType_t xTicksToWait);
Timer functionality is provided by a timer service/daemon task. Many of the public FreeRTOS timer API
functions send commands to the timer service task through a queue called the timer command queue. The
timer command queue is private to the kernel itself and is not directly accessible to application code. The
length of the timer command queue is set by the configTIMER_QUEUE_LENGTH configuration constant.
xTimerStart() starts a timer that was previously created using the xTimerCreate() API function. If the timer
had already been started and was already in the active state, then xTimerStart() has equivalent functionality to
the xTimerReset() API function.

Espressif Systems 1934
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00110.html#configSUPPORT_STATIC_ALLOCATION
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Starting a timer ensures the timer is in the active state. If the timer is not stopped, deleted, or reset in the mean
time, the callback function associated with the timer will get called 'n' ticks after xTimerStart() was called,
where 'n' is the timers defined period.
It is valid to call xTimerStart() before the scheduler has been started, but when this is done the timer will not
actually start until the scheduler is started, and the timers expiry time will be relative to when the scheduler is
started, not relative to when xTimerStart() was called.
The configUSE_TIMERS configuration constant must be set to 1 for xTimerStart() to be available.

Example usage:
See the xTimerCreate() API function example usage scenario.

Parameters
• xTimer -- The handle of the timer being started/restarted.
• xTicksToWait -- Specifies the time, in ticks, that the calling task should be held in the
Blocked state to wait for the start command to be successfully sent to the timer command
queue, should the queue already be full when xTimerStart() was called. xTicksToWait is
ignored if xTimerStart() is called before the scheduler is started.

Returns pdFAIL will be returned if the start command could not be sent to the timer command
queue even after xTicksToWait ticks had passed. pdPASS will be returned if the command
was successfully sent to the timer command queue. When the command is actually processed
will depend on the priority of the timer service/daemon task relative to other tasks in the sys-
tem, although the timers expiry time is relative to when xTimerStart() is actually called. The
timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY configura-
tion constant.

xTimerStop(xTimer, xTicksToWait)
BaseType_t xTimerStop(TimerHandle_t xTimer, TickType_t xTicksToWait);
Timer functionality is provided by a timer service/daemon task. Many of the public FreeRTOS timer API
functions send commands to the timer service task through a queue called the timer command queue. The
timer command queue is private to the kernel itself and is not directly accessible to application code. The
length of the timer command queue is set by the configTIMER_QUEUE_LENGTH configuration constant.
xTimerStop() stops a timer that was previously started using either of the The xTimerStart(), xTimerReset(),
xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() or xTimerChangePeriodFromISR()
API functions.
Stopping a timer ensures the timer is not in the active state.
The configUSE_TIMERS configuration constant must be set to 1 for xTimerStop() to be available.

Example usage:
See the xTimerCreate() API function example usage scenario.

Parameters
• xTimer -- The handle of the timer being stopped.
• xTicksToWait -- Specifies the time, in ticks, that the calling task should be held in the
Blocked state to wait for the stop command to be successfully sent to the timer command
queue, should the queue already be full when xTimerStop() was called. xTicksToWait is
ignored if xTimerStop() is called before the scheduler is started.

Returns pdFAIL will be returned if the stop command could not be sent to the timer command
queue even after xTicksToWait ticks had passed. pdPASS will be returned if the command
was successfully sent to the timer command queue. When the command is actually processed
will depend on the priority of the timer service/daemon task relative to other tasks in the sys-
tem. The timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
configuration constant.

Espressif Systems 1935
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

xTimerChangePeriod(xTimer, xNewPeriod, xTicksToWait)
BaseType_t xTimerChangePeriod(TimerHandle_t xTimer, TickType_t xNewPeriod, TickType_t xTick-
sToWait);
Timer functionality is provided by a timer service/daemon task. Many of the public FreeRTOS timer API
functions send commands to the timer service task through a queue called the timer command queue. The
timer command queue is private to the kernel itself and is not directly accessible to application code. The
length of the timer command queue is set by the configTIMER_QUEUE_LENGTH configuration constant.
xTimerChangePeriod() changes the period of a timer that was previously created using the xTimerCreate()
API function.
xTimerChangePeriod() can be called to change the period of an active or dormant state timer.
The configUSE_TIMERS configuration constant must be set to 1 for xTimerChangePeriod() to be available.

Example usage:

* // This function assumes xTimer has already been created. If the timer
* // referenced by xTimer is already active when it is called, then the timer
* // is deleted. If the timer referenced by xTimer is not active when it is
* // called, then the period of the timer is set to 500ms and the timer is
* // started.
* void vAFunction(TimerHandle_t xTimer)
* {
* if(xTimerIsTimerActive(xTimer) != pdFALSE) // or more simply and␣
↪→equivalently "if(xTimerIsTimerActive(xTimer))"
* {
* // xTimer is already active - delete it.
* xTimerDelete(xTimer);
* }
* else
* {
* // xTimer is not active, change its period to 500ms. This will also
* // cause the timer to start. Block for a maximum of 100 ticks if the
* // change period command cannot immediately be sent to the timer
* // command queue.
* if(xTimerChangePeriod(xTimer, 500 / portTICK_PERIOD_MS, 100) ==␣
↪→pdPASS)
* {
* // The command was successfully sent.
* }
* else
* {
* // The command could not be sent, even after waiting for 100␣
↪→ticks
* // to pass. Take appropriate action here.
* }
* }
* }
*

Parameters
• xTimer -- The handle of the timer that is having its period changed.
• xNewPeriod -- The new period for xTimer. Timer periods are specified in tick periods,
so the constant portTICK_PERIOD_MS can be used to convert a time that has been spec-
ified in milliseconds. For example, if the timer must expire after 100 ticks, then xNewPe-
riod should be set to 100. Alternatively, if the timer must expire after 500ms, then xNew-
Period can be set to (500 / portTICK_PERIOD_MS) provided configTICK_RATE_HZ
is less than or equal to 1000.

Espressif Systems 1936
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• xTicksToWait -- Specifies the time, in ticks, that the calling task should be held in
the Blocked state to wait for the change period command to be successfully sent to the
timer command queue, should the queue already be full when xTimerChangePeriod() was
called. xTicksToWait is ignored if xTimerChangePeriod() is called before the scheduler
is started.

Returns pdFAIL will be returned if the change period command could not be sent to the timer
command queue even after xTicksToWait ticks had passed. pdPASS will be returned if
the command was successfully sent to the timer command queue. When the command
is actually processed will depend on the priority of the timer service/daemon task relative
to other tasks in the system. The timer service/daemon task priority is set by the config-
TIMER_TASK_PRIORITY configuration constant.

xTimerDelete(xTimer, xTicksToWait)
BaseType_t xTimerDelete(TimerHandle_t xTimer, TickType_t xTicksToWait);
Timer functionality is provided by a timer service/daemon task. Many of the public FreeRTOS timer API
functions send commands to the timer service task through a queue called the timer command queue. The
timer command queue is private to the kernel itself and is not directly accessible to application code. The
length of the timer command queue is set by the configTIMER_QUEUE_LENGTH configuration constant.
xTimerDelete() deletes a timer that was previously created using the xTimerCreate() API function.
The configUSE_TIMERS configuration constant must be set to 1 for xTimerDelete() to be available.

Example usage:
See the xTimerChangePeriod() API function example usage scenario.

Parameters
• xTimer -- The handle of the timer being deleted.
• xTicksToWait -- Specifies the time, in ticks, that the calling task should be held in the
Blocked state to wait for the delete command to be successfully sent to the timer command
queue, should the queue already be full when xTimerDelete() was called. xTicksToWait
is ignored if xTimerDelete() is called before the scheduler is started.

Returns pdFAIL will be returned if the delete command could not be sent to the timer command
queue even after xTicksToWait ticks had passed. pdPASS will be returned if the command
was successfully sent to the timer command queue. When the command is actually processed
will depend on the priority of the timer service/daemon task relative to other tasks in the sys-
tem. The timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
configuration constant.

xTimerReset(xTimer, xTicksToWait)
BaseType_t xTimerReset(TimerHandle_t xTimer, TickType_t xTicksToWait);
Timer functionality is provided by a timer service/daemon task. Many of the public FreeRTOS timer API
functions send commands to the timer service task through a queue called the timer command queue. The
timer command queue is private to the kernel itself and is not directly accessible to application code. The
length of the timer command queue is set by the configTIMER_QUEUE_LENGTH configuration constant.
xTimerReset() re-starts a timer that was previously created using the xTimerCreate() API function. If the
timer had already been started and was already in the active state, then xTimerReset() will cause the timer
to re-evaluate its expiry time so that it is relative to when xTimerReset() was called. If the timer was in the
dormant state then xTimerReset() has equivalent functionality to the xTimerStart() API function.
Resetting a timer ensures the timer is in the active state. If the timer is not stopped, deleted, or reset in the
mean time, the callback function associated with the timer will get called 'n' ticks after xTimerReset() was
called, where 'n' is the timers defined period.
It is valid to call xTimerReset() before the scheduler has been started, but when this is done the timer will not
actually start until the scheduler is started, and the timers expiry time will be relative to when the scheduler is
started, not relative to when xTimerReset() was called.

Espressif Systems 1937
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The configUSE_TIMERS configuration constant must be set to 1 for xTimerReset() to be available.

Example usage:

* // When a key is pressed, an LCD back-light is switched on. If 5 seconds␣
↪→pass
* // without a key being pressed, then the LCD back-light is switched off. In
* // this case, the timer is a one-shot timer.
*
* TimerHandle_t xBacklightTimer = NULL;
*
* // The callback function assigned to the one-shot timer. In this case the
* // parameter is not used.
* void vBacklightTimerCallback(TimerHandle_t pxTimer)
* {
* // The timer expired, therefore 5 seconds must have passed since a key
* // was pressed. Switch off the LCD back-light.
* vSetBacklightState(BACKLIGHT_OFF);
* }
*
* // The key press event handler.
* void vKeyPressEventHandler(char cKey)
* {
* // Ensure the LCD back-light is on, then reset the timer that is
* // responsible for turning the back-light off after 5 seconds of
* // key inactivity. Wait 10 ticks for the command to be successfully sent
* // if it cannot be sent immediately.
* vSetBacklightState(BACKLIGHT_ON);
* if(xTimerReset(xBacklightTimer, 100) != pdPASS)
* {
* // The reset command was not executed successfully. Take appropriate
* // action here.
* }
*
* // Perform the rest of the key processing here.
* }
*
* void main(void)
* {
* int32_t x;
*
* // Create then start the one-shot timer that is responsible for turning
* // the back-light off if no keys are pressed within a 5 second period.
* xBacklightTimer = xTimerCreate("BacklightTimer", // Just a␣
↪→text name, not used by the kernel.
* (5000 / portTICK_PERIOD_MS), // The␣
↪→timer period in ticks.
* pdFALSE, // The timer␣
↪→is a one-shot timer.
* 0, // The id is␣
↪→not used by the callback so can take any value.
* vBacklightTimerCallback // The␣
↪→callback function that switches the LCD back-light off.
*);
*
* if(xBacklightTimer == NULL)
* {
* // The timer was not created.
* }
* else
* {

(continues on next page)

Espressif Systems 1938
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
* // Start the timer. No block time is specified, and even if one was
* // it would be ignored because the scheduler has not yet been
* // started.
* if(xTimerStart(xBacklightTimer, 0) != pdPASS)
* {
* // The timer could not be set into the Active state.
* }
* }
*
* // ...
* // Create tasks here.
* // ...
*
* // Starting the scheduler will start the timer running as it has already
* // been set into the active state.
* vTaskStartScheduler();
*
* // Should not reach here.
* for(;;);
* }
*

Parameters
• xTimer -- The handle of the timer being reset/started/restarted.
• xTicksToWait -- Specifies the time, in ticks, that the calling task should be held in the
Blocked state to wait for the reset command to be successfully sent to the timer command
queue, should the queue already be full when xTimerReset() was called. xTicksToWait is
ignored if xTimerReset() is called before the scheduler is started.

Returns pdFAIL will be returned if the reset command could not be sent to the timer command
queue even after xTicksToWait ticks had passed. pdPASS will be returned if the command
was successfully sent to the timer command queue. When the command is actually processed
will depend on the priority of the timer service/daemon task relative to other tasks in the sys-
tem, although the timers expiry time is relative to when xTimerStart() is actually called. The
timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY configura-
tion constant.

xTimerStartFromISR(xTimer, pxHigherPriorityTaskWoken)
BaseType_t xTimerStartFromISR(TimerHandle_t xTimer, BaseType_t *pxHigherPriorityTaskWoken);
A version of xTimerStart() that can be called from an interrupt service routine.

Example usage:

* // This scenario assumes xBacklightTimer has already been created. When a
* // key is pressed, an LCD back-light is switched on. If 5 seconds pass
* // without a key being pressed, then the LCD back-light is switched off. In
* // this case, the timer is a one-shot timer, and unlike the example given for
* // the xTimerReset() function, the key press event handler is an interrupt
* // service routine.
*
* // The callback function assigned to the one-shot timer. In this case the
* // parameter is not used.
* void vBacklightTimerCallback(TimerHandle_t pxTimer)
* {
* // The timer expired, therefore 5 seconds must have passed since a key
* // was pressed. Switch off the LCD back-light.
* vSetBacklightState(BACKLIGHT_OFF);
* }

(continues on next page)

Espressif Systems 1939
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
*
* // The key press interrupt service routine.
* void vKeyPressEventInterruptHandler(void)
* {
* BaseType_t xHigherPriorityTaskWoken = pdFALSE;
*
* // Ensure the LCD back-light is on, then restart the timer that is
* // responsible for turning the back-light off after 5 seconds of
* // key inactivity. This is an interrupt service routine so can only
* // call FreeRTOS API functions that end in "FromISR".
* vSetBacklightState(BACKLIGHT_ON);
*
* // xTimerStartFromISR() or xTimerResetFromISR() could be called here
* // as both cause the timer to re-calculate its expiry time.
* // xHigherPriorityTaskWoken was initialised to pdFALSE when it was
* // declared (in this function).
* if(xTimerStartFromISR(xBacklightTimer, &xHigherPriorityTaskWoken) !=␣
↪→pdPASS)
* {
* // The start command was not executed successfully. Take appropriate
* // action here.
* }
*
* // Perform the rest of the key processing here.
*
* // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
* // should be performed. The syntax required to perform a context switch
* // from inside an ISR varies from port to port, and from compiler to
* // compiler. Inspect the demos for the port you are using to find the
* // actual syntax required.
* if(xHigherPriorityTaskWoken != pdFALSE)
* {
* // Call the interrupt safe yield function here (actual function
* // depends on the FreeRTOS port being used).
* }
* }
*

Parameters
• xTimer -- The handle of the timer being started/restarted.
• pxHigherPriorityTaskWoken -- The timer service/daemon task spends most of
its time in the Blocked state, waiting for messages to arrive on the timer command queue.
Calling xTimerStartFromISR() writes a message to the timer command queue, so has the
potential to transition the timer service/daemon task out of the Blocked state. If calling
xTimerStartFromISR() causes the timer service/daemon task to leave the Blocked state,
and the timer service/ daemon task has a priority equal to or greater than the currently
executing task (the task that was interrupted), then *pxHigherPriorityTaskWoken will get
set to pdTRUE internally within the xTimerStartFromISR() function. If xTimerStart-
FromISR() sets this value to pdTRUE then a context switch should be performed before
the interrupt exits.

Returns pdFAIL will be returned if the start command could not be sent to the timer command
queue. pdPASS will be returned if the command was successfully sent to the timer command
queue. When the command is actually processed will depend on the priority of the timer ser-
vice/daemon task relative to other tasks in the system, although the timers expiry time is relative
to when xTimerStartFromISR() is actually called. The timer service/daemon task priority is
set by the configTIMER_TASK_PRIORITY configuration constant.

xTimerStopFromISR(xTimer, pxHigherPriorityTaskWoken)
BaseType_t xTimerStopFromISR(TimerHandle_t xTimer, BaseType_t *pxHigherPriorityTaskWoken);

Espressif Systems 1940
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

A version of xTimerStop() that can be called from an interrupt service routine.

Example usage:

* // This scenario assumes xTimer has already been created and started. When
* // an interrupt occurs, the timer should be simply stopped.
*
* // The interrupt service routine that stops the timer.
* void vAnExampleInterruptServiceRoutine(void)
* {
* BaseType_t xHigherPriorityTaskWoken = pdFALSE;
*
* // The interrupt has occurred - simply stop the timer.
* // xHigherPriorityTaskWoken was set to pdFALSE where it was defined
* // (within this function). As this is an interrupt service routine, only
* // FreeRTOS API functions that end in "FromISR" can be used.
* if(xTimerStopFromISR(xTimer, &xHigherPriorityTaskWoken) != pdPASS)
* {
* // The stop command was not executed successfully. Take appropriate
* // action here.
* }
*
* // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
* // should be performed. The syntax required to perform a context switch
* // from inside an ISR varies from port to port, and from compiler to
* // compiler. Inspect the demos for the port you are using to find the
* // actual syntax required.
* if(xHigherPriorityTaskWoken != pdFALSE)
* {
* // Call the interrupt safe yield function here (actual function
* // depends on the FreeRTOS port being used).
* }
* }
*

Parameters
• xTimer -- The handle of the timer being stopped.
• pxHigherPriorityTaskWoken -- The timer service/daemon task spends most of
its time in the Blocked state, waiting for messages to arrive on the timer command queue.
Calling xTimerStopFromISR() writes a message to the timer command queue, so has the
potential to transition the timer service/daemon task out of the Blocked state. If call-
ing xTimerStopFromISR() causes the timer service/daemon task to leave the Blocked
state, and the timer service/ daemon task has a priority equal to or greater than the cur-
rently executing task (the task that was interrupted), then *pxHigherPriorityTaskWoken
will get set to pdTRUE internally within the xTimerStopFromISR() function. If xTimer-
StopFromISR() sets this value to pdTRUE then a context switch should be performed
before the interrupt exits.

Returns pdFAIL will be returned if the stop command could not be sent to the timer command
queue. pdPASS will be returned if the command was successfully sent to the timer command
queue. When the command is actually processed will depend on the priority of the timer ser-
vice/daemon task relative to other tasks in the system. The timer service/daemon task priority
is set by the configTIMER_TASK_PRIORITY configuration constant.

xTimerChangePeriodFromISR(xTimer, xNewPeriod, pxHigherPriorityTaskWoken)
BaseType_t xTimerChangePeriodFromISR(TimerHandle_t xTimer, TickType_t xNewPeriod, BaseType_t
*pxHigherPriorityTaskWoken);
A version of xTimerChangePeriod() that can be called from an interrupt service routine.

Espressif Systems 1941
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Example usage:

* // This scenario assumes xTimer has already been created and started. When
* // an interrupt occurs, the period of xTimer should be changed to 500ms.
*
* // The interrupt service routine that changes the period of xTimer.
* void vAnExampleInterruptServiceRoutine(void)
* {
* BaseType_t xHigherPriorityTaskWoken = pdFALSE;
*
* // The interrupt has occurred - change the period of xTimer to 500ms.
* // xHigherPriorityTaskWoken was set to pdFALSE where it was defined
* // (within this function). As this is an interrupt service routine, only
* // FreeRTOS API functions that end in "FromISR" can be used.
* if(xTimerChangePeriodFromISR(xTimer, &xHigherPriorityTaskWoken) !=␣
↪→pdPASS)
* {
* // The command to change the timers period was not executed
* // successfully. Take appropriate action here.
* }
*
* // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
* // should be performed. The syntax required to perform a context switch
* // from inside an ISR varies from port to port, and from compiler to
* // compiler. Inspect the demos for the port you are using to find the
* // actual syntax required.
* if(xHigherPriorityTaskWoken != pdFALSE)
* {
* // Call the interrupt safe yield function here (actual function
* // depends on the FreeRTOS port being used).
* }
* }
*

Parameters
• xTimer -- The handle of the timer that is having its period changed.
• xNewPeriod -- The new period for xTimer. Timer periods are specified in tick periods,
so the constant portTICK_PERIOD_MS can be used to convert a time that has been spec-
ified in milliseconds. For example, if the timer must expire after 100 ticks, then xNewPe-
riod should be set to 100. Alternatively, if the timer must expire after 500ms, then xNew-
Period can be set to (500 / portTICK_PERIOD_MS) provided configTICK_RATE_HZ
is less than or equal to 1000.

• pxHigherPriorityTaskWoken -- The timer service/daemon task spends most of
its time in the Blocked state, waiting for messages to arrive on the timer command queue.
Calling xTimerChangePeriodFromISR() writes a message to the timer command queue,
so has the potential to transition the timer service/ daemon task out of the Blocked state.
If calling xTimerChangePeriodFromISR() causes the timer service/daemon task to leave
the Blocked state, and the timer service/daemon task has a priority equal to or greater
than the currently executing task (the task that was interrupted), then *pxHigherPriority-
TaskWoken will get set to pdTRUE internally within the xTimerChangePeriodFromISR()
function. If xTimerChangePeriodFromISR() sets this value to pdTRUE then a context
switch should be performed before the interrupt exits.

Returns pdFAIL will be returned if the command to change the timers period could not be sent
to the timer command queue. pdPASS will be returned if the command was successfully sent
to the timer command queue. When the command is actually processed will depend on the
priority of the timer service/daemon task relative to other tasks in the system. The timer ser-
vice/daemon task priority is set by the configTIMER_TASK_PRIORITY configuration con-
stant.

xTimerResetFromISR(xTimer, pxHigherPriorityTaskWoken)

Espressif Systems 1942
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

BaseType_t xTimerResetFromISR(TimerHandle_t xTimer, BaseType_t *pxHigherPriorityTaskWoken);
A version of xTimerReset() that can be called from an interrupt service routine.

Example usage:

* // This scenario assumes xBacklightTimer has already been created. When a
* // key is pressed, an LCD back-light is switched on. If 5 seconds pass
* // without a key being pressed, then the LCD back-light is switched off. In
* // this case, the timer is a one-shot timer, and unlike the example given for
* // the xTimerReset() function, the key press event handler is an interrupt
* // service routine.
*
* // The callback function assigned to the one-shot timer. In this case the
* // parameter is not used.
* void vBacklightTimerCallback(TimerHandle_t pxTimer)
* {
* // The timer expired, therefore 5 seconds must have passed since a key
* // was pressed. Switch off the LCD back-light.
* vSetBacklightState(BACKLIGHT_OFF);
* }
*
* // The key press interrupt service routine.
* void vKeyPressEventInterruptHandler(void)
* {
* BaseType_t xHigherPriorityTaskWoken = pdFALSE;
*
* // Ensure the LCD back-light is on, then reset the timer that is
* // responsible for turning the back-light off after 5 seconds of
* // key inactivity. This is an interrupt service routine so can only
* // call FreeRTOS API functions that end in "FromISR".
* vSetBacklightState(BACKLIGHT_ON);
*
* // xTimerStartFromISR() or xTimerResetFromISR() could be called here
* // as both cause the timer to re-calculate its expiry time.
* // xHigherPriorityTaskWoken was initialised to pdFALSE when it was
* // declared (in this function).
* if(xTimerResetFromISR(xBacklightTimer, &xHigherPriorityTaskWoken) !=␣
↪→pdPASS)
* {
* // The reset command was not executed successfully. Take appropriate
* // action here.
* }
*
* // Perform the rest of the key processing here.
*
* // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
* // should be performed. The syntax required to perform a context switch
* // from inside an ISR varies from port to port, and from compiler to
* // compiler. Inspect the demos for the port you are using to find the
* // actual syntax required.
* if(xHigherPriorityTaskWoken != pdFALSE)
* {
* // Call the interrupt safe yield function here (actual function
* // depends on the FreeRTOS port being used).
* }
* }
*

Parameters
• xTimer -- The handle of the timer that is to be started, reset, or restarted.

Espressif Systems 1943
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• pxHigherPriorityTaskWoken -- The timer service/daemon task spends most of
its time in the Blocked state, waiting for messages to arrive on the timer command queue.
Calling xTimerResetFromISR() writes a message to the timer command queue, so has the
potential to transition the timer service/daemon task out of the Blocked state. If calling
xTimerResetFromISR() causes the timer service/daemon task to leave the Blocked state,
and the timer service/ daemon task has a priority equal to or greater than the currently
executing task (the task that was interrupted), then *pxHigherPriorityTaskWoken will get
set to pdTRUE internally within the xTimerResetFromISR() function. If xTimerReset-
FromISR() sets this value to pdTRUE then a context switch should be performed before
the interrupt exits.

Returns pdFAIL will be returned if the reset command could not be sent to the timer command
queue. pdPASS will be returned if the command was successfully sent to the timer command
queue. When the command is actually processed will depend on the priority of the timer
service/daemon task relative to other tasks in the system, although the timers expiry time is
relative to when xTimerResetFromISR() is actually called. The timer service/daemon task
priority is set by the configTIMER_TASK_PRIORITY configuration constant.

Type Definitions

typedef struct tmrTimerControl *TimerHandle_t

typedef void (*TimerCallbackFunction_t)(TimerHandle_t xTimer)

typedef void (*PendedFunction_t)(void*, uint32_t)

Event Group API

Header File
• components/freertos/FreeRTOS-Kernel/include/freertos/event_groups.h

Functions
EventGroupHandle_t xEventGroupCreate(void)

Create a new event group.
Internally, within the FreeRTOS implementation, event groups use a [small] block of memory, in which
the event group's structure is stored. If an event groups is created using xEventGroupCreate() then the
required memory is automatically dynamically allocated inside the xEventGroupCreate() function. (see
https://www.FreeRTOS.org/a00111.html). If an event group is created using xEventGroupCreateStatic() then
the application writer must instead provide the memory that will get used by the event group. xEventGroupCre-
ateStatic() therefore allows an event group to be created without using any dynamic memory allocation.
Although event groups are not related to ticks, for internal implementation reasons the number of bits avail-
able for use in an event group is dependent on the configUSE_16_BIT_TICKS setting in FreeRTOSConfig.h.
If configUSE_16_BIT_TICKS is 1 then each event group contains 8 usable bits (bit 0 to bit 7). If confi-
gUSE_16_BIT_TICKS is set to 0 then each event group has 24 usable bits (bit 0 to bit 23). The EventBits_t
type is used to store event bits within an event group.

Example usage:

// Declare a variable to hold the created event group.
EventGroupHandle_t xCreatedEventGroup;

// Attempt to create the event group.
xCreatedEventGroup = xEventGroupCreate();

(continues on next page)

Espressif Systems 1944
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/FreeRTOS-Kernel/include/freertos/event_groups.h
https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

// Was the event group created successfully?
if(xCreatedEventGroup == NULL)
{

// The event group was not created because there was insufficient
// FreeRTOS heap available.

}
else
{

// The event group was created.
}

Returns If the event group was created then a handle to the event group is returned. If there was
insufficient FreeRTOS heap available to create the event group then NULL is returned. See
https://www.FreeRTOS.org/a00111.html

EventGroupHandle_t xEventGroupCreateStatic(StaticEventGroup_t *pxEventGroupBuffer)
Create a new event group.
Internally, within the FreeRTOS implementation, event groups use a [small] block of memory, in which
the event group's structure is stored. If an event groups is created using xEventGroupCreate() then the
required memory is automatically dynamically allocated inside the xEventGroupCreate() function. (see
https://www.FreeRTOS.org/a00111.html). If an event group is created using xEventGroupCreateStatic() then
the application writer must instead provide the memory that will get used by the event group. xEventGroupCre-
ateStatic() therefore allows an event group to be created without using any dynamic memory allocation.
Although event groups are not related to ticks, for internal implementation reasons the number of bits avail-
able for use in an event group is dependent on the configUSE_16_BIT_TICKS setting in FreeRTOSConfig.h.
If configUSE_16_BIT_TICKS is 1 then each event group contains 8 usable bits (bit 0 to bit 7). If confi-
gUSE_16_BIT_TICKS is set to 0 then each event group has 24 usable bits (bit 0 to bit 23). The EventBits_t
type is used to store event bits within an event group.

Example usage:

// StaticEventGroup_t is a publicly accessible structure that has the same
// size and alignment requirements as the real event group structure. It is
// provided as a mechanism for applications to know the size of the event
// group (which is dependent on the architecture and configuration file
// settings) without breaking the strict data hiding policy by exposing the
// real event group internals. This StaticEventGroup_t variable is passed
// into the xSemaphoreCreateEventGroupStatic() function and is used to store
// the event group's data structures
StaticEventGroup_t xEventGroupBuffer;

// Create the event group without dynamically allocating any memory.
xEventGroup = xEventGroupCreateStatic(&xEventGroupBuffer);

Parameters pxEventGroupBuffer -- pxEventGroupBuffer must point to a variable of type
StaticEventGroup_t, which will be then be used to hold the event group's data structures, re-
moving the need for the memory to be allocated dynamically.

Returns If the event group was created then a handle to the event group is returned. If pxEvent-
GroupBuffer was NULL then NULL is returned.

EventBits_t xEventGroupWaitBits(EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToWaitFor,
const BaseType_t xClearOnExit, const BaseType_t xWaitForAllBits,
TickType_t xTicksToWait)

[Potentially] block to wait for one or more bits to be set within a previously created event group.

Espressif Systems 1945
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.FreeRTOS.org/a00111.html
https://www.FreeRTOS.org/a00111.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This function cannot be called from an interrupt.

Example usage:

#define BIT_0 (1 << 0)
#define BIT_4 (1 << 4)

void aFunction(EventGroupHandle_t xEventGroup)
{
EventBits_t uxBits;
const TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;

// Wait a maximum of 100ms for either bit 0 or bit 4 to be set within
// the event group. Clear the bits before exiting.
uxBits = xEventGroupWaitBits(

xEventGroup, // The event group being tested.
BIT_0 | BIT_4, // The bits within the event group to wait␣

↪→for.
pdTRUE, // BIT_0 and BIT_4 should be cleared before␣

↪→returning.
pdFALSE, // Don't wait for both bits, either bit will␣

↪→do.
xTicksToWait); // Wait a maximum of 100ms for either bit to␣

↪→be set.

if((uxBits & (BIT_0 | BIT_4)) == (BIT_0 | BIT_4))
{

// xEventGroupWaitBits() returned because both bits were set.
}
else if((uxBits & BIT_0) != 0)
{

// xEventGroupWaitBits() returned because just BIT_0 was set.
}
else if((uxBits & BIT_4) != 0)
{

// xEventGroupWaitBits() returned because just BIT_4 was set.
}
else
{

// xEventGroupWaitBits() returned because xTicksToWait ticks passed
// without either BIT_0 or BIT_4 becoming set.

}
}

Parameters
• xEventGroup -- The event group in which the bits are being tested. The event group
must have previously been created using a call to xEventGroupCreate().

• uxBitsToWaitFor -- A bitwise value that indicates the bit or bits to test inside the
event group. For example, to wait for bit 0 and/or bit 2 set uxBitsToWaitFor to 0x05. To
wait for bits 0 and/or bit 1 and/or bit 2 set uxBitsToWaitFor to 0x07. Etc.

• xClearOnExit -- If xClearOnExit is set to pdTRUE then any bits within uxBit-
sToWaitFor that are set within the event group will be cleared before xEventGroupWait-
Bits() returns if the wait condition was met (if the function returns for a reason other than
a timeout). If xClearOnExit is set to pdFALSE then the bits set in the event group are not
altered when the call to xEventGroupWaitBits() returns.

• xWaitForAllBits -- If xWaitForAllBits is set to pdTRUE then xEventGroupWait-
Bits() will return when either all the bits in uxBitsToWaitFor are set or the specified block
time expires. If xWaitForAllBits is set to pdFALSE then xEventGroupWaitBits() will re-
turn when any one of the bits set in uxBitsToWaitFor is set or the specified block time
expires. The block time is specified by the xTicksToWait parameter.

Espressif Systems 1946
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• xTicksToWait -- The maximum amount of time (specified in 'ticks') to wait for one/all
(depending on the xWaitForAllBits value) of the bits specified by uxBitsToWaitFor to
become set.

Returns The value of the event group at the time either the bits being waited for became set, or
the block time expired. Test the return value to know which bits were set. If xEventGroup-
WaitBits() returned because its timeout expired then not all the bits being waited for will be
set. If xEventGroupWaitBits() returned because the bits it was waiting for were set then the
returned value is the event group value before any bits were automatically cleared in the case
that xClearOnExit parameter was set to pdTRUE.

EventBits_t xEventGroupClearBits(EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear)
Clear bits within an event group. This function cannot be called from an interrupt.

Example usage:

#define BIT_0 (1 << 0)
#define BIT_4 (1 << 4)

void aFunction(EventGroupHandle_t xEventGroup)
{
EventBits_t uxBits;

// Clear bit 0 and bit 4 in xEventGroup.
uxBits = xEventGroupClearBits(

xEventGroup, // The event group being updated.
BIT_0 | BIT_4);// The bits being cleared.

if((uxBits & (BIT_0 | BIT_4)) == (BIT_0 | BIT_4))
{

// Both bit 0 and bit 4 were set before xEventGroupClearBits() was
// called. Both will now be clear (not set).

}
else if((uxBits & BIT_0) != 0)
{

// Bit 0 was set before xEventGroupClearBits() was called. It will
// now be clear.

}
else if((uxBits & BIT_4) != 0)
{

// Bit 4 was set before xEventGroupClearBits() was called. It will
// now be clear.

}
else
{

// Neither bit 0 nor bit 4 were set in the first place.
}

}

Parameters
• xEventGroup -- The event group in which the bits are to be cleared.
• uxBitsToClear -- A bitwise value that indicates the bit or bits to clear in the event
group. For example, to clear bit 3 only, set uxBitsToClear to 0x08. To clear bit 3 and bit
0 set uxBitsToClear to 0x09.

Returns The value of the event group before the specified bits were cleared.

EventBits_t xEventGroupSetBits(EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet)
Set bits within an event group. This function cannot be called from an interrupt. xEventGroupSetBits-
FromISR() is a version that can be called from an interrupt.
Setting bits in an event group will automatically unblock tasks that are blocked waiting for the bits.

Espressif Systems 1947
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Example usage:

#define BIT_0 (1 << 0)
#define BIT_4 (1 << 4)

void aFunction(EventGroupHandle_t xEventGroup)
{
EventBits_t uxBits;

// Set bit 0 and bit 4 in xEventGroup.
uxBits = xEventGroupSetBits(

xEventGroup, // The event group being updated.
BIT_0 | BIT_4);// The bits being set.

if((uxBits & (BIT_0 | BIT_4)) == (BIT_0 | BIT_4))
{

// Both bit 0 and bit 4 remained set when the function returned.
}
else if((uxBits & BIT_0) != 0)
{

// Bit 0 remained set when the function returned, but bit 4 was
// cleared. It might be that bit 4 was cleared automatically as a
// task that was waiting for bit 4 was removed from the Blocked
// state.

}
else if((uxBits & BIT_4) != 0)
{

// Bit 4 remained set when the function returned, but bit 0 was
// cleared. It might be that bit 0 was cleared automatically as a
// task that was waiting for bit 0 was removed from the Blocked
// state.

}
else
{

// Neither bit 0 nor bit 4 remained set. It might be that a task
// was waiting for both of the bits to be set, and the bits were
// cleared as the task left the Blocked state.

}
}

Parameters
• xEventGroup -- The event group in which the bits are to be set.
• uxBitsToSet -- A bitwise value that indicates the bit or bits to set. For example, to set
bit 3 only, set uxBitsToSet to 0x08. To set bit 3 and bit 0 set uxBitsToSet to 0x09.

Returns The value of the event group at the time the call to xEventGroupSetBits() returns. There
are two reasons why the returned value might have the bits specified by the uxBitsToSet pa-
rameter cleared. First, if setting a bit results in a task that was waiting for the bit leaving the
blocked state then it is possible the bit will be cleared automatically (see the xClearBitOnExit
parameter of xEventGroupWaitBits()). Second, any unblocked (or otherwise Ready state) task
that has a priority above that of the task that called xEventGroupSetBits() will execute and may
change the event group value before the call to xEventGroupSetBits() returns.

EventBits_t xEventGroupSync(EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, const
EventBits_t uxBitsToWaitFor, TickType_t xTicksToWait)

Atomically set bits within an event group, then wait for a combination of bits to be set within the same event
group. This functionality is typically used to synchronise multiple tasks, where each task has to wait for the
other tasks to reach a synchronisation point before proceeding.
This function cannot be used from an interrupt.

Espressif Systems 1948
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The function will return before its block time expires if the bits specified by the uxBitsToWait parameter are
set, or become set within that time. In this case all the bits specified by uxBitsToWait will be automatically
cleared before the function returns.

Example usage:

// Bits used by the three tasks.
#define TASK_0_BIT (1 << 0)
#define TASK_1_BIT (1 << 1)
#define TASK_2_BIT (1 << 2)

#define ALL_SYNC_BITS (TASK_0_BIT | TASK_1_BIT | TASK_2_BIT)

// Use an event group to synchronise three tasks. It is assumed this event
// group has already been created elsewhere.
EventGroupHandle_t xEventBits;

void vTask0(void *pvParameters)
{
EventBits_t uxReturn;
TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;

for(;;)
{

// Perform task functionality here.

// Set bit 0 in the event flag to note this task has reached the
// sync point. The other two tasks will set the other two bits defined
// by ALL_SYNC_BITS. All three tasks have reached the synchronisation
// point when all the ALL_SYNC_BITS are set. Wait a maximum of 100ms
// for this to happen.
uxReturn = xEventGroupSync(xEventBits, TASK_0_BIT, ALL_SYNC_BITS,␣

↪→xTicksToWait);

if((uxReturn & ALL_SYNC_BITS) == ALL_SYNC_BITS)
{

// All three tasks reached the synchronisation point before the call
// to xEventGroupSync() timed out.

}
}
}

void vTask1(void *pvParameters)
{
for(;;)
{

// Perform task functionality here.

// Set bit 1 in the event flag to note this task has reached the
// synchronisation point. The other two tasks will set the other two
// bits defined by ALL_SYNC_BITS. All three tasks have reached the
// synchronisation point when all the ALL_SYNC_BITS are set. Wait
// indefinitely for this to happen.
xEventGroupSync(xEventBits, TASK_1_BIT, ALL_SYNC_BITS, portMAX_DELAY);

// xEventGroupSync() was called with an indefinite block time, so
// this task will only reach here if the synchronisation was made by all
// three tasks, so there is no need to test the return value.

}
}

(continues on next page)

Espressif Systems 1949
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
void vTask2(void *pvParameters)
{
for(;;)
{

// Perform task functionality here.

// Set bit 2 in the event flag to note this task has reached the
// synchronisation point. The other two tasks will set the other two
// bits defined by ALL_SYNC_BITS. All three tasks have reached the
// synchronisation point when all the ALL_SYNC_BITS are set. Wait
// indefinitely for this to happen.
xEventGroupSync(xEventBits, TASK_2_BIT, ALL_SYNC_BITS, portMAX_DELAY);

// xEventGroupSync() was called with an indefinite block time, so
// this task will only reach here if the synchronisation was made by all
// three tasks, so there is no need to test the return value.

}
}

Parameters
• xEventGroup -- The event group in which the bits are being tested. The event group
must have previously been created using a call to xEventGroupCreate().

• uxBitsToSet -- The bits to set in the event group before determining if, and possibly
waiting for, all the bits specified by the uxBitsToWait parameter are set.

• uxBitsToWaitFor -- A bitwise value that indicates the bit or bits to test inside the
event group. For example, to wait for bit 0 and bit 2 set uxBitsToWaitFor to 0x05. To
wait for bits 0 and bit 1 and bit 2 set uxBitsToWaitFor to 0x07. Etc.

• xTicksToWait -- The maximum amount of time (specified in 'ticks') to wait for all of
the bits specified by uxBitsToWaitFor to become set.

Returns The value of the event group at the time either the bits being waited for became set, or
the block time expired. Test the return value to know which bits were set. If xEventGroup-
Sync() returned because its timeout expired then not all the bits being waited for will be set. If
xEventGroupSync() returned because all the bits it was waiting for were set then the returned
value is the event group value before any bits were automatically cleared.

EventBits_t xEventGroupGetBitsFromISR(EventGroupHandle_t xEventGroup)
A version of xEventGroupGetBits() that can be called from an ISR.

Parameters xEventGroup -- The event group being queried.
Returns The event group bits at the time xEventGroupGetBitsFromISR() was called.

void vEventGroupDelete(EventGroupHandle_t xEventGroup)
Delete an event group that was previously created by a call to xEventGroupCreate(). Tasks that are blocked on
the event group will be unblocked and obtain 0 as the event group's value.

Parameters xEventGroup -- The event group being deleted.
BaseType_t xEventGroupGetStaticBuffer(EventGroupHandle_t xEventGroup, StaticEventGroup_t

**ppxEventGroupBuffer)
Retrieve a pointer to a statically created event groups's data structure buffer. It is the same buffer that is supplied
at the time of creation.

Parameters
• xEventGroup -- The event group for which to retrieve the buffer.
• ppxEventGroupBuffer -- Used to return a pointer to the event groups's data structure
buffer.

Returns pdTRUE if the buffer was retrieved, pdFALSE otherwise.

Macros

Espressif Systems 1950
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

xEventGroupClearBitsFromISR(xEventGroup, uxBitsToClear)
A version of xEventGroupClearBits() that can be called from an interrupt.
Setting bits in an event group is not a deterministic operation because there are an unknown number of tasks
that may be waiting for the bit or bits being set. FreeRTOS does not allow nondeterministic operations to be
performed while interrupts are disabled, so protects event groups that are accessed from tasks by suspending
the scheduler rather than disabling interrupts. As a result event groups cannot be accessed directly from an
interrupt service routine. Therefore xEventGroupClearBitsFromISR() sends a message to the timer task to
have the clear operation performed in the context of the timer task.

Example usage:

#define BIT_0 (1 << 0)
#define BIT_4 (1 << 4)

// An event group which it is assumed has already been created by a call to
// xEventGroupCreate().
EventGroupHandle_t xEventGroup;

void anInterruptHandler(void)
{

// Clear bit 0 and bit 4 in xEventGroup.
xResult = xEventGroupClearBitsFromISR(

xEventGroup, // The event group being updated.
BIT_0 | BIT_4); // The bits being set.

if(xResult == pdPASS)
{

// The message was posted successfully.
}

}

Parameters
• xEventGroup -- The event group in which the bits are to be cleared.
• uxBitsToClear -- A bitwise value that indicates the bit or bits to clear. For example,
to clear bit 3 only, set uxBitsToClear to 0x08. To clear bit 3 and bit 0 set uxBitsToClear
to 0x09.

Returns If the request to execute the function was posted successfully then pdPASS is returned,
otherwise pdFALSE is returned. pdFALSE will be returned if the timer service queue was
full.

xEventGroupSetBitsFromISR(xEventGroup, uxBitsToSet, pxHigherPriorityTaskWoken)
A version of xEventGroupSetBits() that can be called from an interrupt.
Setting bits in an event group is not a deterministic operation because there are an unknown number of tasks
that may be waiting for the bit or bits being set. FreeRTOS does not allow nondeterministic operations to be
performed in interrupts or from critical sections. Therefore xEventGroupSetBitsFromISR() sends a message
to the timer task to have the set operation performed in the context of the timer task - where a scheduler lock
is used in place of a critical section.

Example usage:

#define BIT_0 (1 << 0)
#define BIT_4 (1 << 4)

// An event group which it is assumed has already been created by a call to
// xEventGroupCreate().
EventGroupHandle_t xEventGroup;

(continues on next page)

Espressif Systems 1951
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

void anInterruptHandler(void)
{
BaseType_t xHigherPriorityTaskWoken, xResult;

// xHigherPriorityTaskWoken must be initialised to pdFALSE.
xHigherPriorityTaskWoken = pdFALSE;

// Set bit 0 and bit 4 in xEventGroup.
xResult = xEventGroupSetBitsFromISR(

xEventGroup, // The event group being updated.
BIT_0 | BIT_4 // The bits being set.
&xHigherPriorityTaskWoken);

// Was the message posted successfully?
if(xResult == pdPASS)
{

// If xHigherPriorityTaskWoken is now set to pdTRUE then a context
// switch should be requested. The macro used is port specific and
// will be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() -
// refer to the documentation page for the port being used.
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}
}

Parameters
• xEventGroup -- The event group in which the bits are to be set.
• uxBitsToSet -- A bitwise value that indicates the bit or bits to set. For example, to set
bit 3 only, set uxBitsToSet to 0x08. To set bit 3 and bit 0 set uxBitsToSet to 0x09.

• pxHigherPriorityTaskWoken -- Asmentioned above, calling this function will re-
sult in a message being sent to the timer daemon task. If the priority of the timer daemon
task is higher than the priority of the currently running task (the task the interrupt inter-
rupted) then *pxHigherPriorityTaskWoken will be set to pdTRUE by xEventGroupSet-
BitsFromISR(), indicating that a context switch should be requested before the interrupt
exits. For that reason *pxHigherPriorityTaskWoken must be initialised to pdFALSE. See
the example code below.

Returns If the request to execute the function was posted successfully then pdPASS is returned,
otherwise pdFALSE is returned. pdFALSE will be returned if the timer service queue was
full.

xEventGroupGetBits(xEventGroup)
Returns the current value of the bits in an event group. This function cannot be used from an interrupt.

Parameters
• xEventGroup -- The event group being queried.

Returns The event group bits at the time xEventGroupGetBits() was called.

Type Definitions

typedef struct EventGroupDef_t *EventGroupHandle_t

typedef TickType_t EventBits_t

Stream Buffer API

Header File

Espressif Systems 1952
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• components/freertos/FreeRTOS-Kernel/include/freertos/stream_buffer.h

Functions
BaseType_t xStreamBufferGetStaticBuffers(StreamBufferHandle_t xStreamBuffer, uint8_t

**ppucStreamBufferStorageArea, StaticStreamBuffer_t
**ppxStaticStreamBuffer)

size_t xStreamBufferSend(StreamBufferHandle_t xStreamBuffer, const void *pvTxData, size_t
xDataLengthBytes, TickType_t xTicksToWait)

Sends bytes to a stream buffer. The bytes are copied into the stream buffer.
: Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message buffer implemen-
tation, as message buffers are built on top of stream buffers) assumes there is only one task or interrupt that
will write to the buffer (the writer), and only one task or interrupt that will read from the buffer (the reader). It
is safe for the writer and reader to be different tasks or interrupts, but, unlike other FreeRTOS objects, it is not
safe to have multiple different writers or multiple different readers. If there are to be multiple different writers
then the application writer must place each call to a writing API function (such as xStreamBufferSend()) inside
a critical section and set the send block time to 0. Likewise, if there are to be multiple different readers then
the application writer must place each call to a reading API function (such as xStreamBufferReceive()) inside
a critical section and set the receive block time to 0.
Use xStreamBufferSend() to write to a stream buffer from a task. Use xStreamBufferSendFromISR() to write
to a stream buffer from an interrupt service routine (ISR).

Example use:

void vAFunction(StreamBufferHandle_t xStreamBuffer)
{
size_t xBytesSent;
uint8_t ucArrayToSend[] = { 0, 1, 2, 3 };
char *pcStringToSend = "String to send";
const TickType_t x100ms = pdMS_TO_TICKS(100);

// Send an array to the stream buffer, blocking for a maximum of 100ms to
// wait for enough space to be available in the stream buffer.
xBytesSent = xStreamBufferSend(xStreamBuffer, (void *) ucArrayToSend,␣
↪→sizeof(ucArrayToSend), x100ms);

if(xBytesSent != sizeof(ucArrayToSend))
{

// The call to xStreamBufferSend() times out before there was enough
// space in the buffer for the data to be written, but it did
// successfully write xBytesSent bytes.

}

// Send the string to the stream buffer. Return immediately if there is not
// enough space in the buffer.
xBytesSent = xStreamBufferSend(xStreamBuffer, (void *) pcStringToSend,␣
↪→strlen(pcStringToSend), 0);

if(xBytesSent != strlen(pcStringToSend))
{

// The entire string could not be added to the stream buffer because
// there was not enough free space in the buffer, but xBytesSent bytes
// were sent. Could try again to send the remaining bytes.

}
}

Parameters
• xStreamBuffer -- The handle of the stream buffer to which a stream is being sent.

Espressif Systems 1953
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/FreeRTOS-Kernel/include/freertos/stream_buffer.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• pvTxData -- A pointer to the buffer that holds the bytes to be copied into the stream
buffer.

• xDataLengthBytes -- The maximum number of bytes to copy from pvTxData into
the stream buffer.

• xTicksToWait -- The maximum amount of time the task should remain in the Blocked
state to wait for enough space to become available in the stream buffer, should the
stream buffer contain too little space to hold the another xDataLengthBytes bytes. The
block time is specified in tick periods, so the absolute time it represents is dependent
on the tick frequency. The macro pdMS_TO_TICKS() can be used to convert a time
specified in milliseconds into a time specified in ticks. Setting xTicksToWait to port-
MAX_DELAY will cause the task to wait indefinitely (without timing out), provided IN-
CLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h. If a task times out before it can
write all xDataLengthBytes into the buffer it will still write as many bytes as possible. A
task does not use any CPU time when it is in the blocked state.

Returns The number of bytes written to the stream buffer. If a task times out before it can write
all xDataLengthBytes into the buffer it will still write as many bytes as possible.

size_t xStreamBufferSendFromISR(StreamBufferHandle_t xStreamBuffer, const void *pvTxData, size_t
xDataLengthBytes, BaseType_t *const pxHigherPriorityTaskWoken)

Interrupt safe version of the API function that sends a stream of bytes to the stream buffer.
: Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message buffer implemen-
tation, as message buffers are built on top of stream buffers) assumes there is only one task or interrupt that
will write to the buffer (the writer), and only one task or interrupt that will read from the buffer (the reader). It
is safe for the writer and reader to be different tasks or interrupts, but, unlike other FreeRTOS objects, it is not
safe to have multiple different writers or multiple different readers. If there are to be multiple different writers
then the application writer must place each call to a writing API function (such as xStreamBufferSend()) inside
a critical section and set the send block time to 0. Likewise, if there are to be multiple different readers then
the application writer must place each call to a reading API function (such as xStreamBufferReceive()) inside
a critical section and set the receive block time to 0.
Use xStreamBufferSend() to write to a stream buffer from a task. Use xStreamBufferSendFromISR() to write
to a stream buffer from an interrupt service routine (ISR).

Example use:

// A stream buffer that has already been created.
StreamBufferHandle_t xStreamBuffer;

void vAnInterruptServiceRoutine(void)
{
size_t xBytesSent;
char *pcStringToSend = "String to send";
BaseType_t xHigherPriorityTaskWoken = pdFALSE; // Initialised to pdFALSE.

// Attempt to send the string to the stream buffer.
xBytesSent = xStreamBufferSendFromISR(xStreamBuffer,

(void *) pcStringToSend,
strlen(pcStringToSend),
&xHigherPriorityTaskWoken);

if(xBytesSent != strlen(pcStringToSend))
{

// There was not enough free space in the stream buffer for the entire
// string to be written, ut xBytesSent bytes were written.

}

// If xHigherPriorityTaskWoken was set to pdTRUE inside
// xStreamBufferSendFromISR() then a task that has a priority above the

(continues on next page)

Espressif Systems 1954
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// priority of the currently executing task was unblocked and a context
// switch should be performed to ensure the ISR returns to the unblocked
// task. In most FreeRTOS ports this is done by simply passing
// xHigherPriorityTaskWoken into taskYIELD_FROM_ISR(), which will test the
// variables value, and perform the context switch if necessary. Check the
// documentation for the port in use for port specific instructions.
taskYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Parameters
• xStreamBuffer -- The handle of the stream buffer to which a stream is being sent.
• pvTxData -- A pointer to the data that is to be copied into the stream buffer.
• xDataLengthBytes -- The maximum number of bytes to copy from pvTxData into
the stream buffer.

• pxHigherPriorityTaskWoken -- It is possible that a stream buffer will have a task
blocked on it waiting for data. Calling xStreamBufferSendFromISR() can make data avail-
able, and so cause a task that was waiting for data to leave the Blocked state. If calling
xStreamBufferSendFromISR() causes a task to leave the Blocked state, and the unblocked
task has a priority higher than the currently executing task (the task that was interrupted),
then, internally, xStreamBufferSendFromISR() will set *pxHigherPriorityTaskWoken to
pdTRUE. If xStreamBufferSendFromISR() sets this value to pdTRUE, then normally a
context switch should be performed before the interrupt is exited. This will ensure that
the interrupt returns directly to the highest priority Ready state task. *pxHigherPriori-
tyTaskWoken should be set to pdFALSE before it is passed into the function. See the
example code below for an example.

Returns The number of bytes actually written to the stream buffer, which will be less than xDataL-
engthBytes if the stream buffer didn't have enough free space for all the bytes to be written.

size_t xStreamBufferReceive(StreamBufferHandle_t xStreamBuffer, void *pvRxData, size_t
xBufferLengthBytes, TickType_t xTicksToWait)

Receives bytes from a stream buffer.
: Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message buffer implemen-
tation, as message buffers are built on top of stream buffers) assumes there is only one task or interrupt that
will write to the buffer (the writer), and only one task or interrupt that will read from the buffer (the reader). It
is safe for the writer and reader to be different tasks or interrupts, but, unlike other FreeRTOS objects, it is not
safe to have multiple different writers or multiple different readers. If there are to be multiple different writers
then the application writer must place each call to a writing API function (such as xStreamBufferSend()) inside
a critical section and set the send block time to 0. Likewise, if there are to be multiple different readers then
the application writer must place each call to a reading API function (such as xStreamBufferReceive()) inside
a critical section and set the receive block time to 0.
Use xStreamBufferReceive() to read from a stream buffer from a task. Use xStreamBufferReceiveFromISR()
to read from a stream buffer from an interrupt service routine (ISR).

Example use:

void vAFunction(StreamBuffer_t xStreamBuffer)
{
uint8_t ucRxData[20];
size_t xReceivedBytes;
const TickType_t xBlockTime = pdMS_TO_TICKS(20);

// Receive up to another sizeof(ucRxData) bytes from the stream buffer.
// Wait in the Blocked state (so not using any CPU processing time) for a
// maximum of 100ms for the full sizeof(ucRxData) number of bytes to be
// available.

(continues on next page)

Espressif Systems 1955
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
xReceivedBytes = xStreamBufferReceive(xStreamBuffer,

(void *) ucRxData,
sizeof(ucRxData),
xBlockTime);

if(xReceivedBytes > 0)
{

// A ucRxData contains another xRecievedBytes bytes of data, which can
// be processed here....

}
}

Parameters
• xStreamBuffer -- The handle of the stream buffer fromwhich bytes are to be received.
• pvRxData -- A pointer to the buffer into which the received bytes will be copied.
• xBufferLengthBytes -- The length of the buffer pointed to by the pvRxData param-
eter. This sets themaximum number of bytes to receive in one call. xStreamBufferReceive
will return as many bytes as possible up to a maximum set by xBufferLengthBytes.

• xTicksToWait -- The maximum amount of time the task should remain in the Blocked
state to wait for data to become available if the stream buffer is empty. xStreamBuffer-
Receive() will return immediately if xTicksToWait is zero. The block time is specified in
tick periods, so the absolute time it represents is dependent on the tick frequency. The
macro pdMS_TO_TICKS() can be used to convert a time specified in milliseconds into a
time specified in ticks. Setting xTicksToWait to portMAX_DELAY will cause the task to
wait indefinitely (without timing out), provided INCLUDE_vTaskSuspend is set to 1 in
FreeRTOSConfig.h. A task does not use any CPU time when it is in the Blocked state.

Returns The number of bytes actually read from the stream buffer, which will be less than xBuffer-
LengthBytes if the call to xStreamBufferReceive() timed out before xBufferLengthBytes were
available.

size_t xStreamBufferReceiveFromISR(StreamBufferHandle_t xStreamBuffer, void *pvRxData, size_t
xBufferLengthBytes, BaseType_t *const
pxHigherPriorityTaskWoken)

An interrupt safe version of the API function that receives bytes from a stream buffer.
Use xStreamBufferReceive() to read bytes from a stream buffer from a task. Use xStreamBufferReceive-
FromISR() to read bytes from a stream buffer from an interrupt service routine (ISR).

Example use:

// A stream buffer that has already been created.
StreamBuffer_t xStreamBuffer;

void vAnInterruptServiceRoutine(void)
{
uint8_t ucRxData[20];
size_t xReceivedBytes;
BaseType_t xHigherPriorityTaskWoken = pdFALSE; // Initialised to pdFALSE.

// Receive the next stream from the stream buffer.
xReceivedBytes = xStreamBufferReceiveFromISR(xStreamBuffer,

(void *) ucRxData,
sizeof(ucRxData),
&xHigherPriorityTaskWoken);

if(xReceivedBytes > 0)
{

(continues on next page)

Espressif Systems 1956
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// ucRxData contains xReceivedBytes read from the stream buffer.
// Process the stream here....

}

// If xHigherPriorityTaskWoken was set to pdTRUE inside
// xStreamBufferReceiveFromISR() then a task that has a priority above the
// priority of the currently executing task was unblocked and a context
// switch should be performed to ensure the ISR returns to the unblocked
// task. In most FreeRTOS ports this is done by simply passing
// xHigherPriorityTaskWoken into taskYIELD_FROM_ISR(), which will test the
// variables value, and perform the context switch if necessary. Check the
// documentation for the port in use for port specific instructions.
taskYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Parameters
• xStreamBuffer -- The handle of the stream buffer from which a stream is being re-
ceived.

• pvRxData -- A pointer to the buffer into which the received bytes are copied.
• xBufferLengthBytes -- The length of the buffer pointed to by the pvRxData param-
eter. This sets themaximum number of bytes to receive in one call. xStreamBufferReceive
will return as many bytes as possible up to a maximum set by xBufferLengthBytes.

• pxHigherPriorityTaskWoken -- It is possible that a stream buffer will have a
task blocked on it waiting for space to become available. Calling xStreamBufferReceive-
FromISR() can make space available, and so cause a task that is waiting for space to leave
the Blocked state. If calling xStreamBufferReceiveFromISR() causes a task to leave the
Blocked state, and the unblocked task has a priority higher than the currently executing
task (the task that was interrupted), then, internally, xStreamBufferReceiveFromISR()
will set *pxHigherPriorityTaskWoken to pdTRUE. If xStreamBufferReceiveFromISR()
sets this value to pdTRUE, then normally a context switch should be performed before the
interrupt is exited. That will ensure the interrupt returns directly to the highest priority
Ready state task. *pxHigherPriorityTaskWoken should be set to pdFALSE before it is
passed into the function. See the code example below for an example.

Returns The number of bytes read from the stream buffer, if any.

void vStreamBufferDelete(StreamBufferHandle_t xStreamBuffer)
Deletes a stream buffer that was previously created using a call to xStreamBufferCreate() or xStreamBuffer-
CreateStatic(). If the stream buffer was created using dynamic memory (that is, by xStreamBufferCreate()),
then the allocated memory is freed.
A stream buffer handle must not be used after the stream buffer has been deleted.

Parameters xStreamBuffer -- The handle of the stream buffer to be deleted.
BaseType_t xStreamBufferIsFull(StreamBufferHandle_t xStreamBuffer)

Queries a stream buffer to see if it is full. A stream buffer is full if it does not have any free space, and therefore
cannot accept any more data.

Parameters xStreamBuffer -- The handle of the stream buffer being queried.
Returns If the stream buffer is full then pdTRUE is returned. Otherwise pdFALSE is returned.

BaseType_t xStreamBufferIsEmpty(StreamBufferHandle_t xStreamBuffer)
Queries a stream buffer to see if it is empty. A stream buffer is empty if it does not contain any data.

Parameters xStreamBuffer -- The handle of the stream buffer being queried.
Returns If the stream buffer is empty then pdTRUE is returned. Otherwise pdFALSE is returned.

BaseType_t xStreamBufferReset(StreamBufferHandle_t xStreamBuffer)
Resets a stream buffer to its initial, empty, state. Any data that was in the stream buffer is discarded. A stream
buffer can only be reset if there are no tasks blocked waiting to either send to or receive from the stream buffer.

Espressif Systems 1957
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters xStreamBuffer -- The handle of the stream buffer being reset.
Returns If the stream buffer is reset then pdPASS is returned. If there was a task blocked waiting

to send to or read from the stream buffer then the stream buffer is not reset and pdFAIL is
returned.

size_t xStreamBufferSpacesAvailable(StreamBufferHandle_t xStreamBuffer)
Queries a stream buffer to see how much free space it contains, which is equal to the amount of data that can
be sent to the stream buffer before it is full.

Parameters xStreamBuffer -- The handle of the stream buffer being queried.
Returns The number of bytes that can be written to the stream buffer before the stream buffer

would be full.
size_t xStreamBufferBytesAvailable(StreamBufferHandle_t xStreamBuffer)

Queries a stream buffer to see how much data it contains, which is equal to the number of bytes that can be
read from the stream buffer before the stream buffer would be empty.

Parameters xStreamBuffer -- The handle of the stream buffer being queried.
Returns The number of bytes that can be read from the stream buffer before the stream buffer

would be empty.
BaseType_t xStreamBufferSetTriggerLevel(StreamBufferHandle_t xStreamBuffer, size_t

xTriggerLevel)
A stream buffer's trigger level is the number of bytes that must be in the stream buffer before a task that is
blocked on the stream buffer to wait for data is moved out of the blocked state. For example, if a task is blocked
on a read of an empty stream buffer that has a trigger level of 1 then the task will be unblocked when a single
byte is written to the buffer or the task's block time expires. As another example, if a task is blocked on a read
of an empty stream buffer that has a trigger level of 10 then the task will not be unblocked until the stream
buffer contains at least 10 bytes or the task's block time expires. If a reading task's block time expires before
the trigger level is reached then the task will still receive however many bytes are actually available. Setting
a trigger level of 0 will result in a trigger level of 1 being used. It is not valid to specify a trigger level that is
greater than the buffer size.
A trigger level is set when the stream buffer is created, and can be modified using xStreamBufferSetTrigger-
Level().

Parameters
• xStreamBuffer -- The handle of the stream buffer being updated.
• xTriggerLevel -- The new trigger level for the stream buffer.

Returns If xTriggerLevel was less than or equal to the stream buffer's length then the trigger level
will be updated and pdTRUE is returned. Otherwise pdFALSE is returned.

BaseType_t xStreamBufferSendCompletedFromISR(StreamBufferHandle_t xStreamBuffer, BaseType_t
*pxHigherPriorityTaskWoken)

For advanced users only.
The sbSEND_COMPLETED() macro is called fromwithin the FreeRTOSAPIs when data is sent to a message
buffer or stream buffer. If there was a task that was blocked on the message or stream buffer waiting for
data to arrive then the sbSEND_COMPLETED() macro sends a notification to the task to remove it from
the Blocked state. xStreamBufferSendCompletedFromISR() does the same thing. It is provided to enable
application writers to implement their own version of sbSEND_COMPLETED(), and MUST NOT BE USED
AT ANY OTHER TIME.
See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for additional information.

Parameters
• xStreamBuffer -- The handle of the stream buffer to which data was written.
• pxHigherPriorityTaskWoken -- *pxHigherPriorityTaskWoken should be ini-
tialised to pdFALSE before it is passed into xStreamBufferSendCompletedFromISR(). If
calling xStreamBufferSendCompletedFromISR() removes a task from the Blocked state,
and the task has a priority above the priority of the currently running task, then *pxHigh-
erPriorityTaskWoken will get set to pdTRUE indicating that a context switch should be
performed before exiting the ISR.

Espressif Systems 1958
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns If a task was removed from the Blocked state then pdTRUE is returned. Otherwise
pdFALSE is returned.

BaseType_t xStreamBufferReceiveCompletedFromISR(StreamBufferHandle_t xStreamBuffer,
BaseType_t *pxHigherPriorityTaskWoken)

For advanced users only.
The sbRECEIVE_COMPLETED() macro is called from within the FreeRTOS APIs when data is read out of
a message buffer or stream buffer. If there was a task that was blocked on the message or stream buffer waiting
for data to arrive then the sbRECEIVE_COMPLETED() macro sends a notification to the task to remove it
from the Blocked state. xStreamBufferReceiveCompletedFromISR() does the same thing. It is provided to
enable application writers to implement their own version of sbRECEIVE_COMPLETED(), and MUST NOT
BE USED AT ANY OTHER TIME.
See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for additional information.

Parameters
• xStreamBuffer -- The handle of the stream buffer from which data was read.
• pxHigherPriorityTaskWoken -- *pxHigherPriorityTaskWoken should be ini-
tialised to pdFALSE before it is passed into xStreamBufferReceiveCompletedFromISR().
If calling xStreamBufferReceiveCompletedFromISR() removes a task from the Blocked
state, and the task has a priority above the priority of the currently running task, then *px-
HigherPriorityTaskWoken will get set to pdTRUE indicating that a context switch should
be performed before exiting the ISR.

Returns If a task was removed from the Blocked state then pdTRUE is returned. Otherwise
pdFALSE is returned.

Macros
xStreamBufferCreate(xBufferSizeBytes, xTriggerLevelBytes)

Creates a new stream buffer using dynamically allocated memory. See xStreamBufferCreateStatic() for a ver-
sion that uses statically allocated memory (memory that is allocated at compile time).
configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 or left undefined in FreeRTOSConfig.h for
xStreamBufferCreate() to be available.

Example use:

void vAFunction(void)
{
StreamBufferHandle_t xStreamBuffer;
const size_t xStreamBufferSizeBytes = 100, xTriggerLevel = 10;

// Create a stream buffer that can hold 100 bytes. The memory used to hold
// both the stream buffer structure and the data in the stream buffer is
// allocated dynamically.
xStreamBuffer = xStreamBufferCreate(xStreamBufferSizeBytes, xTriggerLevel);

if(xStreamBuffer == NULL)
{

// There was not enough heap memory space available to create the
// stream buffer.

}
else
{

// The stream buffer was created successfully and can now be used.
}
}

Parameters

Espressif Systems 1959
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• xBufferSizeBytes -- The total number of bytes the stream buffer will be able to hold
at any one time.

• xTriggerLevelBytes -- The number of bytes thatmust be in the stream buffer before
a task that is blocked on the stream buffer to wait for data is moved out of the blocked state.
For example, if a task is blocked on a read of an empty stream buffer that has a trigger
level of 1 then the task will be unblocked when a single byte is written to the buffer or the
task's block time expires. As another example, if a task is blocked on a read of an empty
stream buffer that has a trigger level of 10 then the task will not be unblocked until the
stream buffer contains at least 10 bytes or the task's block time expires. If a reading task's
block time expires before the trigger level is reached then the task will still receive however
many bytes are actually available. Setting a trigger level of 0 will result in a trigger level
of 1 being used. It is not valid to specify a trigger level that is greater than the buffer size.

Returns If NULL is returned, then the stream buffer cannot be created because there is insufficient
heap memory available for FreeRTOS to allocate the stream buffer data structures and storage
area. A non-NULL value being returned indicates that the stream buffer has been created
successfully - the returned value should be stored as the handle to the created stream buffer.

xStreamBufferCreateStatic(xBufferSizeBytes, xTriggerLevelBytes, pucStreamBufferStorageArea,
pxStaticStreamBuffer)

Creates a new stream buffer using statically allocated memory. See xStreamBufferCreate() for a version that
uses dynamically allocated memory.
configSUPPORT_STATIC_ALLOCATION must be set to 1 in FreeRTOSConfig.h for xStreamBufferCreat-
eStatic() to be available.

Example use:

// Used to dimension the array used to hold the streams. The available space
// will actually be one less than this, so 999.
#define STORAGE_SIZE_BYTES 1000

// Defines the memory that will actually hold the streams within the stream
// buffer.
static uint8_t ucStorageBuffer[STORAGE_SIZE_BYTES];

// The variable used to hold the stream buffer structure.
StaticStreamBuffer_t xStreamBufferStruct;

void MyFunction(void)
{
StreamBufferHandle_t xStreamBuffer;
const size_t xTriggerLevel = 1;

xStreamBuffer = xStreamBufferCreateStatic(sizeof(ucBufferStorage),
xTriggerLevel,
ucBufferStorage,
&xStreamBufferStruct);

// As neither the pucStreamBufferStorageArea or pxStaticStreamBuffer
// parameters were NULL, xStreamBuffer will not be NULL, and can be used to
// reference the created stream buffer in other stream buffer API calls.

// Other code that uses the stream buffer can go here.
}

Parameters
• xBufferSizeBytes -- The size, in bytes, of the buffer pointed to by the pucStream-
BufferStorageArea parameter.

• xTriggerLevelBytes -- The number of bytes thatmust be in the stream buffer before
a task that is blocked on the stream buffer to wait for data is moved out of the blocked state.

Espressif Systems 1960
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

For example, if a task is blocked on a read of an empty stream buffer that has a trigger
level of 1 then the task will be unblocked when a single byte is written to the buffer or the
task's block time expires. As another example, if a task is blocked on a read of an empty
stream buffer that has a trigger level of 10 then the task will not be unblocked until the
stream buffer contains at least 10 bytes or the task's block time expires. If a reading task's
block time expires before the trigger level is reached then the task will still receive however
many bytes are actually available. Setting a trigger level of 0 will result in a trigger level
of 1 being used. It is not valid to specify a trigger level that is greater than the buffer size.

• pucStreamBufferStorageArea -- Must point to a uint8_t array that is at least
xBufferSizeBytes + 1 big. This is the array to which streams are copied when they are
written to the stream buffer.

• pxStaticStreamBuffer -- Must point to a variable of type StaticStreamBuffer_t,
which will be used to hold the stream buffer's data structure.

Returns If the stream buffer is created successfully then a handle to the created stream buffer
is returned. If either pucStreamBufferStorageArea or pxStaticstreamBuffer are NULL then
NULL is returned.

Type Definitions

typedef struct StreamBufferDef_t *StreamBufferHandle_t

Message Buffer API

Header File
• components/freertos/FreeRTOS-Kernel/include/freertos/message_buffer.h

Macros
xMessageBufferCreate(xBufferSizeBytes)

Creates a new message buffer using dynamically allocated memory. See xMessageBufferCreateStatic() for a
version that uses statically allocated memory (memory that is allocated at compile time).
configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 or left undefined in FreeRTOSConfig.h for
xMessageBufferCreate() to be available.

Example use:

void vAFunction(void)
{
MessageBufferHandle_t xMessageBuffer;
const size_t xMessageBufferSizeBytes = 100;

// Create a message buffer that can hold 100 bytes. The memory used to hold
// both the message buffer structure and the messages themselves is allocated
// dynamically. Each message added to the buffer consumes an additional 4
// bytes which are used to hold the lengh of the message.
xMessageBuffer = xMessageBufferCreate(xMessageBufferSizeBytes);

if(xMessageBuffer == NULL)
{

// There was not enough heap memory space available to create the
// message buffer.

}
else
{

// The message buffer was created successfully and can now be used.
}

Espressif Systems 1961
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/FreeRTOS-Kernel/include/freertos/message_buffer.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• xBufferSizeBytes -- The total number of bytes (not messages) the message buffer
will be able to hold at any one time. When a message is written to the message buffer
an additional sizeof(size_t) bytes are also written to store the message's length. sizeof(
size_t) is typically 4 bytes on a 32-bit architecture, so on most 32-bit architectures a 10
byte message will take up 14 bytes of message buffer space.

Returns If NULL is returned, then the message buffer cannot be created because there is insuffi-
cient heap memory available for FreeRTOS to allocate the message buffer data structures and
storage area. A non-NULL value being returned indicates that the message buffer has been
created successfully - the returned value should be stored as the handle to the created message
buffer.

xMessageBufferCreateStatic(xBufferSizeBytes, pucMessageBufferStorageArea,
pxStaticMessageBuffer)

Creates a new message buffer using statically allocated memory. See xMessageBufferCreate() for a version
that uses dynamically allocated memory.

Example use:

// Used to dimension the array used to hold the messages. The available space
// will actually be one less than this, so 999.
#define STORAGE_SIZE_BYTES 1000

// Defines the memory that will actually hold the messages within the message
// buffer.
static uint8_t ucStorageBuffer[STORAGE_SIZE_BYTES];

// The variable used to hold the message buffer structure.
StaticMessageBuffer_t xMessageBufferStruct;

void MyFunction(void)
{
MessageBufferHandle_t xMessageBuffer;

xMessageBuffer = xMessageBufferCreateStatic(sizeof(ucBufferStorage),
ucBufferStorage,
&xMessageBufferStruct);

// As neither the pucMessageBufferStorageArea or pxStaticMessageBuffer
// parameters were NULL, xMessageBuffer will not be NULL, and can be used to
// reference the created message buffer in other message buffer API calls.

// Other code that uses the message buffer can go here.
}

Parameters
• xBufferSizeBytes -- The size, in bytes, of the buffer pointed to by the pucMes-
sageBufferStorageArea parameter. When a message is written to the message buffer an
additional sizeof(size_t) bytes are also written to store the message's length. sizeof(size_t
) is typically 4 bytes on a 32-bit architecture, so on most 32-bit architecture a 10 byte mes-
sage will take up 14 bytes of message buffer space. The maximum number of bytes that
can be stored in the message buffer is actually (xBufferSizeBytes - 1).

• pucMessageBufferStorageArea -- Must point to a uint8_t array that is at least
xBufferSizeBytes + 1 big. This is the array to which messages are copied when they are
written to the message buffer.

• pxStaticMessageBuffer --Must point to a variable of type StaticMessageBuffer_t,
which will be used to hold the message buffer's data structure.

Returns If the message buffer is created successfully then a handle to the created message buffer
is returned. If either pucMessageBufferStorageArea or pxStaticmessageBuffer are NULL then

Espressif Systems 1962
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

NULL is returned.

xMessageBufferGetStaticBuffers(xMessageBuffer, ppucMessageBufferStorageArea,
ppxStaticMessageBuffer)

xMessageBufferSend(xMessageBuffer, pvTxData, xDataLengthBytes, xTicksToWait)
Sends a discrete message to the message buffer. The message can be any length that fits within the buffer's free
space, and is copied into the buffer.
: Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message buffer implemen-
tation, as message buffers are built on top of stream buffers) assumes there is only one task or interrupt that
will write to the buffer (the writer), and only one task or interrupt that will read from the buffer (the reader). It
is safe for the writer and reader to be different tasks or interrupts, but, unlike other FreeRTOS objects, it is not
safe to have multiple different writers or multiple different readers. If there are to be multiple different writers
then the application writer must place each call to a writing API function (such as xMessageBufferSend())
inside a critical section and set the send block time to 0. Likewise, if there are to be multiple different readers
then the application writer must place each call to a reading API function (such as xMessageBufferRead())
inside a critical section and set the receive block time to 0.
Use xMessageBufferSend() to write to a message buffer from a task. Use xMessageBufferSendFromISR() to
write to a message buffer from an interrupt service routine (ISR).

Example use:

void vAFunction(MessageBufferHandle_t xMessageBuffer)
{
size_t xBytesSent;
uint8_t ucArrayToSend[] = { 0, 1, 2, 3 };
char *pcStringToSend = "String to send";
const TickType_t x100ms = pdMS_TO_TICKS(100);

// Send an array to the message buffer, blocking for a maximum of 100ms to
// wait for enough space to be available in the message buffer.
xBytesSent = xMessageBufferSend(xMessageBuffer, (void *) ucArrayToSend,␣
↪→sizeof(ucArrayToSend), x100ms);

if(xBytesSent != sizeof(ucArrayToSend))
{

// The call to xMessageBufferSend() times out before there was enough
// space in the buffer for the data to be written.

}

// Send the string to the message buffer. Return immediately if there is
// not enough space in the buffer.
xBytesSent = xMessageBufferSend(xMessageBuffer, (void *) pcStringToSend,␣
↪→strlen(pcStringToSend), 0);

if(xBytesSent != strlen(pcStringToSend))
{

// The string could not be added to the message buffer because there was
// not enough free space in the buffer.

}
}

Parameters
• xMessageBuffer -- The handle of the message buffer to which a message is being
sent.

• pvTxData -- A pointer to the message that is to be copied into the message buffer.
• xDataLengthBytes -- The length of the message. That is, the number of bytes to
copy from pvTxData into the message buffer. When a message is written to the message

Espressif Systems 1963
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

buffer an additional sizeof(size_t) bytes are also written to store the message's length.
sizeof(size_t) is typically 4 bytes on a 32-bit architecture, so on most 32-bit architecture
setting xDataLengthBytes to 20 will reduce the free space in the message buffer by 24
bytes (20 bytes of message data and 4 bytes to hold the message length).

• xTicksToWait -- The maximum amount of time the calling task should remain in
the Blocked state to wait for enough space to become available in the message buffer,
should the message buffer have insufficient space when xMessageBufferSend() is called.
The calling task will never block if xTicksToWait is zero. The block time is specified in
tick periods, so the absolute time it represents is dependent on the tick frequency. The
macro pdMS_TO_TICKS() can be used to convert a time specified in milliseconds into
a time specified in ticks. Setting xTicksToWait to portMAX_DELAY will cause the task
to wait indefinitely (without timing out), provided INCLUDE_vTaskSuspend is set to 1 in
FreeRTOSConfig.h. Tasks do not use any CPU time when they are in the Blocked state.

Returns The number of bytes written to the message buffer. If the call to xMessageBufferSend()
times out before there was enough space to write the message into the message buffer then zero
is returned. If the call did not time out then xDataLengthBytes is returned.

xMessageBufferSendFromISR(xMessageBuffer, pvTxData, xDataLengthBytes,
pxHigherPriorityTaskWoken)

Interrupt safe version of the API function that sends a discrete message to the message buffer. The message
can be any length that fits within the buffer's free space, and is copied into the buffer.
: Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message buffer implemen-
tation, as message buffers are built on top of stream buffers) assumes there is only one task or interrupt that
will write to the buffer (the writer), and only one task or interrupt that will read from the buffer (the reader). It
is safe for the writer and reader to be different tasks or interrupts, but, unlike other FreeRTOS objects, it is not
safe to have multiple different writers or multiple different readers. If there are to be multiple different writers
then the application writer must place each call to a writing API function (such as xMessageBufferSend())
inside a critical section and set the send block time to 0. Likewise, if there are to be multiple different readers
then the application writer must place each call to a reading API function (such as xMessageBufferRead())
inside a critical section and set the receive block time to 0.
Use xMessageBufferSend() to write to a message buffer from a task. Use xMessageBufferSendFromISR() to
write to a message buffer from an interrupt service routine (ISR).

Example use:

// A message buffer that has already been created.
MessageBufferHandle_t xMessageBuffer;

void vAnInterruptServiceRoutine(void)
{
size_t xBytesSent;
char *pcStringToSend = "String to send";
BaseType_t xHigherPriorityTaskWoken = pdFALSE; // Initialised to pdFALSE.

// Attempt to send the string to the message buffer.
xBytesSent = xMessageBufferSendFromISR(xMessageBuffer,

(void *) pcStringToSend,
strlen(pcStringToSend),
&xHigherPriorityTaskWoken);

if(xBytesSent != strlen(pcStringToSend))
{

// The string could not be added to the message buffer because there was
// not enough free space in the buffer.

}

// If xHigherPriorityTaskWoken was set to pdTRUE inside

(continues on next page)

Espressif Systems 1964
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
// xMessageBufferSendFromISR() then a task that has a priority above the
// priority of the currently executing task was unblocked and a context
// switch should be performed to ensure the ISR returns to the unblocked
// task. In most FreeRTOS ports this is done by simply passing
// xHigherPriorityTaskWoken into portYIELD_FROM_ISR(), which will test the
// variables value, and perform the context switch if necessary. Check the
// documentation for the port in use for port specific instructions.
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Parameters
• xMessageBuffer -- The handle of the message buffer to which a message is being
sent.

• pvTxData -- A pointer to the message that is to be copied into the message buffer.
• xDataLengthBytes -- The length of the message. That is, the number of bytes to
copy from pvTxData into the message buffer. When a message is written to the message
buffer an additional sizeof(size_t) bytes are also written to store the message's length.
sizeof(size_t) is typically 4 bytes on a 32-bit architecture, so on most 32-bit architecture
setting xDataLengthBytes to 20 will reduce the free space in the message buffer by 24
bytes (20 bytes of message data and 4 bytes to hold the message length).

• pxHigherPriorityTaskWoken -- It is possible that a message buffer will have a
task blocked on it waiting for data. Calling xMessageBufferSendFromISR() can make
data available, and so cause a task that was waiting for data to leave the Blocked state. If
calling xMessageBufferSendFromISR() causes a task to leave the Blocked state, and the
unblocked task has a priority higher than the currently executing task (the task that was
interrupted), then, internally, xMessageBufferSendFromISR() will set *pxHigherPriority-
TaskWoken to pdTRUE. If xMessageBufferSendFromISR() sets this value to pdTRUE,
then normally a context switch should be performed before the interrupt is exited. This
will ensure that the interrupt returns directly to the highest priority Ready state task. *px-
HigherPriorityTaskWoken should be set to pdFALSE before it is passed into the function.
See the code example below for an example.

Returns The number of bytes actually written to the message buffer. If the message buffer didn't
have enough free space for the message to be stored then 0 is returned, otherwise xDataL-
engthBytes is returned.

xMessageBufferReceive(xMessageBuffer, pvRxData, xBufferLengthBytes, xTicksToWait)
Receives a discrete message from a message buffer. Messages can be of variable length and are copied out of
the buffer.
: Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message buffer implemen-
tation, as message buffers are built on top of stream buffers) assumes there is only one task or interrupt that
will write to the buffer (the writer), and only one task or interrupt that will read from the buffer (the reader). It
is safe for the writer and reader to be different tasks or interrupts, but, unlike other FreeRTOS objects, it is not
safe to have multiple different writers or multiple different readers. If there are to be multiple different writers
then the application writer must place each call to a writing API function (such as xMessageBufferSend())
inside a critical section and set the send block time to 0. Likewise, if there are to be multiple different readers
then the application writer must place each call to a reading API function (such as xMessageBufferRead())
inside a critical section and set the receive block time to 0.
Use xMessageBufferReceive() to read from a message buffer from a task. Use xMessageBufferReceive-
FromISR() to read from a message buffer from an interrupt service routine (ISR).

Example use:

void vAFunction(MessageBuffer_t xMessageBuffer)
{

(continues on next page)

Espressif Systems 1965
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
uint8_t ucRxData[20];
size_t xReceivedBytes;
const TickType_t xBlockTime = pdMS_TO_TICKS(20);

// Receive the next message from the message buffer. Wait in the Blocked
// state (so not using any CPU processing time) for a maximum of 100ms for
// a message to become available.
xReceivedBytes = xMessageBufferReceive(xMessageBuffer,

(void *) ucRxData,
sizeof(ucRxData),
xBlockTime);

if(xReceivedBytes > 0)
{

// A ucRxData contains a message that is xReceivedBytes long. Process
// the message here....

}
}

Parameters
• xMessageBuffer -- The handle of the message buffer from which a message is being
received.

• pvRxData -- A pointer to the buffer into which the received message is to be copied.
• xBufferLengthBytes -- The length of the buffer pointed to by the pvRxData pa-
rameter. This sets the maximum length of the message that can be received. If xBuffer-
LengthBytes is too small to hold the next message then the message will be left in the
message buffer and 0 will be returned.

• xTicksToWait -- The maximum amount of time the task should remain in the Blocked
state to wait for a message, should the message buffer be empty. xMessageBufferReceive()
will return immediately if xTicksToWait is zero and the message buffer is empty. The
block time is specified in tick periods, so the absolute time it represents is dependent
on the tick frequency. The macro pdMS_TO_TICKS() can be used to convert a time
specified in milliseconds into a time specified in ticks. Setting xTicksToWait to port-
MAX_DELAY will cause the task to wait indefinitely (without timing out), provided IN-
CLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h. Tasks do not use any CPU time
when they are in the Blocked state.

Returns The length, in bytes, of the message read from the message buffer, if any. If xMessage-
BufferReceive() times out before a message became available then zero is returned. If the
length of the message is greater than xBufferLengthBytes then the message will be left in the
message buffer and zero is returned.

xMessageBufferReceiveFromISR(xMessageBuffer, pvRxData, xBufferLengthBytes,
pxHigherPriorityTaskWoken)

An interrupt safe version of the API function that receives a discrete message from a message buffer. Messages
can be of variable length and are copied out of the buffer.
: Uniquely among FreeRTOS objects, the stream buffer implementation (so also the message buffer implemen-
tation, as message buffers are built on top of stream buffers) assumes there is only one task or interrupt that
will write to the buffer (the writer), and only one task or interrupt that will read from the buffer (the reader). It
is safe for the writer and reader to be different tasks or interrupts, but, unlike other FreeRTOS objects, it is not
safe to have multiple different writers or multiple different readers. If there are to be multiple different writers
then the application writer must place each call to a writing API function (such as xMessageBufferSend())
inside a critical section and set the send block time to 0. Likewise, if there are to be multiple different readers
then the application writer must place each call to a reading API function (such as xMessageBufferRead())
inside a critical section and set the receive block time to 0.
Use xMessageBufferReceive() to read from a message buffer from a task. Use xMessageBufferReceive-
FromISR() to read from a message buffer from an interrupt service routine (ISR).

Espressif Systems 1966
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Example use:

// A message buffer that has already been created.
MessageBuffer_t xMessageBuffer;

void vAnInterruptServiceRoutine(void)
{
uint8_t ucRxData[20];
size_t xReceivedBytes;
BaseType_t xHigherPriorityTaskWoken = pdFALSE; // Initialised to pdFALSE.

// Receive the next message from the message buffer.
xReceivedBytes = xMessageBufferReceiveFromISR(xMessageBuffer,

(void *) ucRxData,
sizeof(ucRxData),
&xHigherPriorityTaskWoken);

if(xReceivedBytes > 0)
{

// A ucRxData contains a message that is xReceivedBytes long. Process
// the message here....

}

// If xHigherPriorityTaskWoken was set to pdTRUE inside
// xMessageBufferReceiveFromISR() then a task that has a priority above the
// priority of the currently executing task was unblocked and a context
// switch should be performed to ensure the ISR returns to the unblocked
// task. In most FreeRTOS ports this is done by simply passing
// xHigherPriorityTaskWoken into portYIELD_FROM_ISR(), which will test the
// variables value, and perform the context switch if necessary. Check the
// documentation for the port in use for port specific instructions.
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

Parameters
• xMessageBuffer -- The handle of the message buffer from which a message is being
received.

• pvRxData -- A pointer to the buffer into which the received message is to be copied.
• xBufferLengthBytes -- The length of the buffer pointed to by the pvRxData pa-
rameter. This sets the maximum length of the message that can be received. If xBuffer-
LengthBytes is too small to hold the next message then the message will be left in the
message buffer and 0 will be returned.

• pxHigherPriorityTaskWoken -- It is possible that a message buffer will have a
task blocked on it waiting for space to become available. Calling xMessageBufferReceive-
FromISR() can make space available, and so cause a task that is waiting for space to leave
the Blocked state. If calling xMessageBufferReceiveFromISR() causes a task to leave the
Blocked state, and the unblocked task has a priority higher than the currently executing
task (the task that was interrupted), then, internally, xMessageBufferReceiveFromISR()
will set *pxHigherPriorityTaskWoken to pdTRUE. If xMessageBufferReceiveFromISR()
sets this value to pdTRUE, then normally a context switch should be performed before the
interrupt is exited. That will ensure the interrupt returns directly to the highest priority
Ready state task. *pxHigherPriorityTaskWoken should be set to pdFALSE before it is
passed into the function. See the code example below for an example.

Returns The length, in bytes, of the message read from the message buffer, if any.

vMessageBufferDelete(xMessageBuffer)
Deletes a message buffer that was previously created using a call to xMessageBufferCreate() or xMessage-
BufferCreateStatic(). If the message buffer was created using dynamic memory (that is, by xMessageBuffer-
Create()), then the allocated memory is freed.

Espressif Systems 1967
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

A message buffer handle must not be used after the message buffer has been deleted.
Parameters

• xMessageBuffer -- The handle of the message buffer to be deleted.
xMessageBufferIsFull(xMessageBuffer)

Tests to see if a message buffer is full. A message buffer is full if it cannot accept any more messages, of any
size, until space is made available by a message being removed from the message buffer.

Parameters
• xMessageBuffer -- The handle of the message buffer being queried.

Returns If the message buffer referenced by xMessageBuffer is full then pdTRUE is returned.
Otherwise pdFALSE is returned.

xMessageBufferIsEmpty(xMessageBuffer)
Tests to see if a message buffer is empty (does not contain any messages).

Parameters
• xMessageBuffer -- The handle of the message buffer being queried.

Returns If the message buffer referenced by xMessageBuffer is empty then pdTRUE is returned.
Otherwise pdFALSE is returned.

xMessageBufferReset(xMessageBuffer)
Resets a message buffer to its initial empty state, discarding any message it contained.
A message buffer can only be reset if there are no tasks blocked on it.

Parameters
• xMessageBuffer -- The handle of the message buffer being reset.

Returns If the message buffer was reset then pdPASS is returned. If the message buffer could
not be reset because either there was a task blocked on the message queue to wait for space to
become available, or to wait for a a message to be available, then pdFAIL is returned.

xMessageBufferSpaceAvailable(xMessageBuffer)
Returns the number of bytes of free space in the message buffer.

Parameters
• xMessageBuffer -- The handle of the message buffer being queried.

Returns The number of bytes that can be written to the message buffer before the message buffer
would be full. When a message is written to the message buffer an additional sizeof(size_t
) bytes are also written to store the message's length. sizeof(size_t) is typically 4 bytes on
a 32-bit architecture, so if xMessageBufferSpacesAvailable() returns 10, then the size of the
largest message that can be written to the message buffer is 6 bytes.

xMessageBufferSpacesAvailable(xMessageBuffer)

xMessageBufferNextLengthBytes(xMessageBuffer)
Returns the length (in bytes) of the next message in a message buffer. Useful if xMessageBufferReceive()
returned 0 because the size of the buffer passed into xMessageBufferReceive() was too small to hold the next
message.

Parameters
• xMessageBuffer -- The handle of the message buffer being queried.

Returns The length (in bytes) of the next message in the message buffer, or 0 if the message buffer
is empty.

xMessageBufferSendCompletedFromISR(xMessageBuffer, pxHigherPriorityTaskWoken)
For advanced users only.
The sbSEND_COMPLETED() macro is called fromwithin the FreeRTOSAPIs when data is sent to a message
buffer or stream buffer. If there was a task that was blocked on the message or stream buffer waiting for data to
arrive then the sbSEND_COMPLETED() macro sends a notification to the task to remove it from the Blocked
state. xMessageBufferSendCompletedFromISR() does the same thing. It is provided to enable application

Espressif Systems 1968
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

writers to implement their own version of sbSEND_COMPLETED(), and MUST NOT BE USED AT ANY
OTHER TIME.
See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for additional information.

Parameters
• xMessageBuffer -- The handle of the stream buffer to which data was written.
• pxHigherPriorityTaskWoken -- *pxHigherPriorityTaskWoken should be ini-
tialised to pdFALSE before it is passed into xMessageBufferSendCompletedFromISR().
If calling xMessageBufferSendCompletedFromISR() removes a task from the Blocked
state, and the task has a priority above the priority of the currently running task, then *px-
HigherPriorityTaskWoken will get set to pdTRUE indicating that a context switch should
be performed before exiting the ISR.

Returns If a task was removed from the Blocked state then pdTRUE is returned. Otherwise
pdFALSE is returned.

xMessageBufferReceiveCompletedFromISR(xMessageBuffer, pxHigherPriorityTaskWoken)
For advanced users only.
The sbRECEIVE_COMPLETED() macro is called from within the FreeRTOS APIs when data is read out of
a message buffer or stream buffer. If there was a task that was blocked on the message or stream buffer waiting
for data to arrive then the sbRECEIVE_COMPLETED() macro sends a notification to the task to remove it
from the Blocked state. xMessageBufferReceiveCompletedFromISR() does the same thing. It is provided to
enable application writers to implement their own version of sbRECEIVE_COMPLETED(), and MUST NOT
BE USED AT ANY OTHER TIME.
See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for additional information.

Parameters
• xMessageBuffer -- The handle of the stream buffer from which data was read.
• pxHigherPriorityTaskWoken -- *pxHigherPriorityTaskWoken should be ini-
tialised to pdFALSE before it is passed into xMessageBufferReceiveCompleted-
FromISR(). If calling xMessageBufferReceiveCompletedFromISR() removes a task from
the Blocked state, and the task has a priority above the priority of the currently running
task, then *pxHigherPriorityTaskWoken will get set to pdTRUE indicating that a context
switch should be performed before exiting the ISR.

Returns If a task was removed from the Blocked state then pdTRUE is returned. Otherwise
pdFALSE is returned.

Type Definitions

typedef void *MessageBufferHandle_t
Type by which message buffers are referenced. For example, a call to xMessageBufferCreate() returns an
MessageBufferHandle_t variable that can then be used as a parameter to xMessageBufferSend(), xMessage-
BufferReceive(), etc.

2.10.12 FreeRTOS (Supplemental Features)

ESP-IDF provides multiple features to supplement the features offered by FreeRTOS. These supplemental features
are available on all FreeRTOS implementations supported by ESP-IDF (i.e., ESP-IDF FreeRTOS and Amazon SMP
FreeRTOS). This document describes these supplemental features and is split into the following sections:

Contents

• FreeRTOS (Supplemental Features)
– Overview
– Ring Buffers
– ESP-IDF Tick and Idle Hooks

Espressif Systems 1969
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

– TLSP Deletion Callbacks
– IDF Additional API
– Component Specific Properties
– API Reference

Overview

ESP-IDF adds various new features to supplement the capabilities of FreeRTOS as follows:
• Ring buffers: Ring buffers provide a FIFO buffer that can accept entries of arbitrary lengths.
• ESP-IDF Tick and Idle Hooks: ESP-IDF provides multiple custom tick interrupt hooks and idle task hooks
that are more numerous and more flexible when compared to FreeRTOS tick and idle hooks.

• Thread Local Storage Pointer (TLSP) Deletion Callbacks: TLSP Deletion callbacks are run automatically
when a task is deleted, thus allowing users to clean up their TLSPs automatically.

• Component Specific Properties: Currently added only one component specific property
ORIG_INCLUDE_PATH.

Ring Buffers

FreeRTOS provides stream buffers and message buffers as the primary mechanisms to send arbitrarily sized data
between tasks and ISRs. However, FreeRTOS stream buffers and message buffers have the following limitations:

• Strictly single sender and single receiver
• Data is passed by copy
• Unable to reserve buffer space for a deferred send (i.e., send acquire)

Therefore, ESP-IDF provides a separate ring buffer implementation to address the issues above. ESP-IDF ring buffers
are strictly FIFO buffers that supports arbitrarily sized items. Ring buffers are a more memory efficient alternative
to FreeRTOS queues in situations where the size of items is variable. The capacity of a ring buffer is not measured
by the number of items it can store, but rather by the amount of memory used for storing items. The ring buffer
provides APIs to send an item, or to allocate space for an item in the ring buffer to be filled manually by the user.
For efficiency reasons, items are always retrieved from the ring buffer by reference. As a result, all retrieved
items must also be returned to the ring buffer by using vRingbufferReturnItem() or vRingbufferRe-
turnItemFromISR(), in order for them to be removed from the ring buffer completely. The ring buffers are
split into the three following types:
No-Split buffers will guarantee that an item is stored in contiguous memory and will not attempt to split an item
under any circumstances. Use No-Split buffers when items must occupy contiguous memory. Only this buffer type
allows you to get the data item address and write to the item by yourself. Refer the documentation of the functions
xRingbufferSendAcquire() and xRingbufferSendComplete() for more details.
Allow-Split buffers will allow an item to be split in two parts when wrapping around the end of the buffer if there is
enough space at the tail and the head of the buffer combined to store the item. Allow-Split buffers are more memory
efficient than No-Split buffers but can return an item in two parts when retrieving.
Byte buffers do not store data as separate items. All data is stored as a sequence of bytes, and any number of bytes
can be sent or retrieved each time. Use byte buffers when separate items do not need to be maintained (e.g. a byte
stream).

Note: No-Split buffers and Allow-Split buffers will always store items at 32-bit aligned addresses. Therefore, when
retrieving an item, the item pointer is guaranteed to be 32-bit aligned. This is useful especially when you need to
send some data to the DMA.

Note: Each item stored in No-Split or Allow-Split buffers will require an additional 8 bytes for a header. Item
sizes will also be rounded up to a 32-bit aligned size (multiple of 4 bytes), however the true item size is recorded

Espressif Systems 1970
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

within the header. The sizes of No-Split and Allow-Split buffers will also be rounded up when created.

Usage The following example demonstrates the usage of xRingbufferCreate() and xRing-
bufferSend() to create a ring buffer and then send an item to it.

#include "freertos/ringbuf.h"
static char tx_item[] = "test_item";

...

//Create ring buffer
RingbufHandle_t buf_handle;
buf_handle = xRingbufferCreate(1028, RINGBUF_TYPE_NOSPLIT);
if (buf_handle == NULL) {

printf("Failed to create ring buffer\n");
}

//Send an item
UBaseType_t res = xRingbufferSend(buf_handle, tx_item, sizeof(tx_item), pdMS_

↪→TO_TICKS(1000));
if (res != pdTRUE) {

printf("Failed to send item\n");
}

The following example demonstrates the usage of xRingbufferSendAcquire() and xRingbufferSend-
Complete() instead of xRingbufferSend() to acquire memory on the ring buffer (of type RING-
BUF_TYPE_NOSPLIT) and then send an item to it. This adds one more step, but allows getting the address of
the memory to write to, and writing to the memory yourself.

#include "freertos/ringbuf.h"
#include "soc/lldesc.h"

typedef struct {
lldesc_t dma_desc;
uint8_t buf[1];

} dma_item_t;

#define DMA_ITEM_SIZE(N) (sizeof(lldesc_t)+(((N)+3)&(~3)))

...

//Retrieve space for DMA descriptor and corresponding data buffer
//This has to be done with SendAcquire, or the address may be different when␣

↪→we copy
dma_item_t *item;
UBaseType_t res = xRingbufferSendAcquire(buf_handle,

(void**) &item, DMA_ITEM_SIZE(buffer_size), pdMS_TO_
↪→TICKS(1000));

if (res != pdTRUE) {
printf("Failed to acquire memory for item\n");

}
item->dma_desc = (lldesc_t) {

.size = buffer_size,

.length = buffer_size,

.eof = 0,

.owner = 1,

.buf = item->buf,
};
//Actually send to the ring buffer for consumer to use
res = xRingbufferSendComplete(buf_handle, &item);

(continues on next page)

Espressif Systems 1971
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
if (res != pdTRUE) {

printf("Failed to send item\n");
}

The following example demonstrates retrieving and returning an item from a No-Split ring buffer using xRing-
bufferReceive() and vRingbufferReturnItem()

...

//Receive an item from no-split ring buffer
size_t item_size;
char *item = (char *)xRingbufferReceive(buf_handle, &item_size, pdMS_TO_

↪→TICKS(1000));

//Check received item
if (item != NULL) {

//Print item
for (int i = 0; i < item_size; i++) {

printf("%c", item[i]);
}
printf("\n");
//Return Item
vRingbufferReturnItem(buf_handle, (void *)item);

} else {
//Failed to receive item
printf("Failed to receive item\n");

}

The following example demonstrates retrieving and returning an item from anAllow-Split ring buffer usingxRing-
bufferReceiveSplit() and vRingbufferReturnItem()

...

//Receive an item from allow-split ring buffer
size_t item_size1, item_size2;
char *item1, *item2;
BaseType_t ret = xRingbufferReceiveSplit(buf_handle, (void **)&item1, (void␣

↪→**)&item2, &item_size1, &item_size2, pdMS_TO_TICKS(1000));

//Check received item
if (ret == pdTRUE && item1 != NULL) {

for (int i = 0; i < item_size1; i++) {
printf("%c", item1[i]);

}
vRingbufferReturnItem(buf_handle, (void *)item1);
//Check if item was split
if (item2 != NULL) {

for (int i = 0; i < item_size2; i++) {
printf("%c", item2[i]);

}
vRingbufferReturnItem(buf_handle, (void *)item2);

}
printf("\n");

} else {
//Failed to receive item
printf("Failed to receive item\n");

}

The following example demonstrates retrieving and returning an item from a byte buffer using xRingbuffer-
ReceiveUpTo() and vRingbufferReturnItem()

Espressif Systems 1972
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

...

//Receive data from byte buffer
size_t item_size;
char *item = (char *)xRingbufferReceiveUpTo(buf_handle, &item_size, pdMS_TO_

↪→TICKS(1000), sizeof(tx_item));

//Check received data
if (item != NULL) {

//Print item
for (int i = 0; i < item_size; i++) {

printf("%c", item[i]);
}
printf("\n");
//Return Item
vRingbufferReturnItem(buf_handle, (void *)item);

} else {
//Failed to receive item
printf("Failed to receive item\n");

}

For ISR safe versions of the functions used above, call xRingbufferSendFromISR(), xRing-
bufferReceiveFromISR(), xRingbufferReceiveSplitFromISR(), xRingbufferReceive-
UpToFromISR(), and vRingbufferReturnItemFromISR()

Note: Two calls to RingbufferReceive[UpTo][FromISR]() are required if the bytes wraps around the end of the
ring buffer.

Sending to Ring Buffer The following diagrams illustrate the differences between No-Split and Allow-Split buffers
as compared to byte buffers with regard to sending items/data. The diagrams assume that three items of sizes 18, 3,
and 27 bytes are sent respectively to a buffer of 128 bytes.

Fig. 31: Sending items to No-Split or Allow-Split ring buffers

For No-Split and Allow-Split buffers, a header of 8 bytes precedes every data item. Furthermore, the space occu-
pied by each item is rounded up to the nearest 32-bit aligned size in order to maintain overall 32-bit alignment.
However, the true size of the item is recorded inside the header which will be returned when the item is retrieved.
Referring to the diagram above, the 18, 3, and 27 byte items are rounded up to 20, 4, and 28 bytes respectively.
An 8 byte header is then added in front of each item.
Byte buffers treat data as a sequence of bytes and does not incur any overhead (no headers). As a result, all data sent
to a byte buffer is merged into a single item.
Referring to the diagram above, the 18, 3, and 27 byte items are sequentially written to the byte buffer and merged
into a single item of 48 bytes.

Using SendAcquire and SendComplete Items in No-Split buffers are acquired (by SendAcquire) in strict
FIFO order and must be sent to the buffer by SendComplete for the data to be accessible by the consumer.

Espressif Systems 1973
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 32: Sending items to byte buffers

Multiple items can be sent or acquired without calling SendComplete, and the items do not necessarily need to be
completed in the order they were acquired. However, the receiving of data items must occur in FIFO order, therefore
not calling SendComplete for the earliest acquired item will prevent the subsequent items from being received.
The following diagrams illustrate what will happen when SendAcquire and SendComplete don't happen in the
same order. At the beginning, there is already a data item of 16 bytes sent to the ring buffer. Then SendAcquire
is called to acquire space of 20, 8, 24 bytes on the ring buffer.

Fig. 33: SendAcquire/SendComplete items in No-Split ring buffers

After that, we fill (use) the buffers, and send them to the ring buffer by SendComplete in the order of 8, 24,
20. When 8 bytes and 24 bytes data are sent, the consumer still can only get the 16 bytes data item. Hence, if
SendComplete is not called for the 20 bytes, it will not be available, nor will the data items following the 20 bytes
item.
When the 20 bytes item is finally completed, all the 3 data items can be received now, in the order of 20, 8, 24 bytes,
right after the 16 bytes item existing in the buffer at the beginning.
Allow-Split buffers and byte buffers do not allow using SendAcquire or SendComplete since acquired buffers
are required to be complete (not wrapped).

Wrap around The following diagrams illustrate the differences between No-Split, Allow-Split, and byte buffers
when a sent item requires a wrap around. The diagrams assume a buffer of 128 bytes with 56 bytes of free space
that wraps around and a sent item of 28 bytes.

Fig. 34: Wrap around in No-Split buffers

Espressif Systems 1974
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

No-Split buffers will only store an item in continuous free space and will not split an item under any circum-
stances. When the free space at the tail of the buffer is insufficient to completely store the item and its header, the
free space at the tail will be marked as dummy data. The buffer will then wrap around and store the item in the
free space at the head of the buffer.
Referring to the diagram above, the 16 bytes of free space at the tail of the buffer is insufficient to store the 28 byte
item. Therefore, the 16 bytes is marked as dummy data and the item is written to the free space at the head of the
buffer instead.

Fig. 35: Wrap around in Allow-Split buffers

Allow-Split buffers will attempt to split the item into two parts when the free space at the tail of the buffer is
insufficient to store the item data and its header. Both parts of the split item will have their own headers (therefore
incurring an extra 8 bytes of overhead).
Referring to the diagram above, the 16 bytes of free space at the tail of the buffer is insufficient to store the 28 byte
item. Therefore, the item is split into two parts (8 and 20 bytes) and written as two parts to the buffer.

Note: Allow-Split buffers treat both parts of the split item as two separate items, therefore call xRingbuffer-
ReceiveSplit() instead of xRingbufferReceive() to receive both parts of a split item in a thread safe
manner.

Fig. 36: Wrap around in byte buffers

Byte buffers will store as much data as possible into the free space at the tail of buffer. The remaining data will
then be stored in the free space at the head of the buffer. No overhead is incurred when wrapping around in byte
buffers.
Referring to the diagram above, the 16 bytes of free space at the tail of the buffer is insufficient to completely store
the 28 bytes of data. Therefore, the 16 bytes of free space is filled with data, and the remaining 12 bytes are written
to the free space at the head of the buffer. The buffer now contains data in two separate continuous parts, and each
continuous part will be treated as a separate item by the byte buffer.

Retrieving/Returning The following diagrams illustrate the differences between No-Split and Allow-Split buffers
as compared to byte buffers in retrieving and returning data.
Items in No-Split buffers and Allow-Split buffers are retrieved in strict FIFO order andmust be returned for the
occupied space to be freed. Multiple items can be retrieved before returning, and the items do not necessarily need
to be returned in the order they were retrieved. However, the freeing of space must occur in FIFO order, therefore
not returning the earliest retrieved item will prevent the space of subsequent items from being freed.

Espressif Systems 1975
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 37: Retrieving/Returning items in No-Split and Allow-Split ring buffers

Referring to the diagram above, the 16, 20, and 8 byte items are retrieved in FIFO order. However, the items are
not returned in the order they were retrieved. First, the 20 byte item is returned followed by the 8 byte and the 16
byte items. The space is not freed until the first item, i.e., the 16 byte item is returned.

Fig. 38: Retrieving/Returning data in byte buffers

Byte buffers do not allow multiple retrievals before returning (every retrieval must be followed by a return
before another retrieval is permitted). When using xRingbufferReceive() or xRingbufferReceive-
FromISR(), all continuous stored data will be retrieved. xRingbufferReceiveUpTo() or xRingbuf-
ferReceiveUpToFromISR() can be used to restrict the maximum number of bytes retrieved. Since every
retrieval must be followed by a return, the space will be freed as soon as the data is returned.
Referring to the diagram above, the 38 bytes of continuous stored data at the tail of the buffer is retrieved, returned,
and freed. The next call to xRingbufferReceive() or xRingbufferReceiveFromISR() then wraps
around and does the same to the 30 bytes of continuous stored data at the head of the buffer.

Ring Buffers with Queue Sets Ring buffers can be added to FreeRTOS queue sets using xRingbufferAd-
dToQueueSetRead() such that every time a ring buffer receives an item or data, the queue set is notified. Once
added to a queue set, every attempt to retrieve an item from a ring buffer should be preceded by a call to xQueue-
SelectFromSet(). To check whether the selected queue set member is the ring buffer, call xRingbuffer-
CanRead().
The following example demonstrates queue set usage with ring buffers.

#include "freertos/queue.h"
#include "freertos/ringbuf.h"

...

//Create ring buffer and queue set
RingbufHandle_t buf_handle = xRingbufferCreate(1028, RINGBUF_TYPE_NOSPLIT);

(continues on next page)

Espressif Systems 1976
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
QueueSetHandle_t queue_set = xQueueCreateSet(3);

//Add ring buffer to queue set
if (xRingbufferAddToQueueSetRead(buf_handle, queue_set) != pdTRUE) {

printf("Failed to add to queue set\n");
}

...

//Block on queue set
QueueSetMemberHandle_t member = xQueueSelectFromSet(queue_set, pdMS_TO_

↪→TICKS(1000));

//Check if member is ring buffer
if (member != NULL && xRingbufferCanRead(buf_handle, member) == pdTRUE) {

//Member is ring buffer, receive item from ring buffer
size_t item_size;
char *item = (char *)xRingbufferReceive(buf_handle, &item_size, 0);

//Handle item
...

} else {
...

}

Ring Buffers with Static Allocation The xRingbufferCreateStatic() can be used to create ring buffers
with specific memory requirements (such as a ring buffer being allocated in external RAM). All blocks of memory
used by a ring buffer must be manually allocated beforehand then passed to the xRingbufferCreateStatic()
to be initialized as a ring buffer. These blocks include the following:

• The ring buffer's data structure of type StaticRingbuffer_t
• The ring buffer's storage area of size xBufferSize. Note that xBufferSize must be 32-bit aligned for
No-Split and Allow-Split buffers.

The manner in which these blocks are allocated will depend on the users requirements (e.g. all blocks being statically
declared, or dynamically allocated with specific capabilities such as external RAM).

Note: When deleting a ring buffer created via xRingbufferCreateStatic(), the function vRing-
bufferDelete() will not free any of the memory blocks. This must be done manually by the user after vRing-
bufferDelete() is called.

The code snippet below demonstrates a ring buffer being allocated entirely in external RAM.

#include "freertos/ringbuf.h"
#include "freertos/semphr.h"
#include "esp_heap_caps.h"

#define BUFFER_SIZE 400 //32-bit aligned size
#define BUFFER_TYPE RINGBUF_TYPE_NOSPLIT
...

//Allocate ring buffer data structure and storage area into external RAM
StaticRingbuffer_t *buffer_struct = (StaticRingbuffer_t *)heap_caps_
↪→malloc(sizeof(StaticRingbuffer_t), MALLOC_CAP_SPIRAM);
uint8_t *buffer_storage = (uint8_t *)heap_caps_malloc(sizeof(uint8_t)*BUFFER_SIZE,␣
↪→MALLOC_CAP_SPIRAM);

(continues on next page)

Espressif Systems 1977
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
//Create a ring buffer with manually allocated memory
RingbufHandle_t handle = xRingbufferCreateStatic(BUFFER_SIZE, BUFFER_TYPE, buffer_
↪→storage, buffer_struct);

...

//Delete the ring buffer after used
vRingbufferDelete(handle);

//Manually free all blocks of memory
free(buffer_struct);
free(buffer_storage);

ESP-IDF Tick and Idle Hooks

FreeRTOS allows applications to provide a tick hook and an idle hook at compile time:
• FreeRTOS tick hook can be enabled via the CONFIG_FREERTOS_USE_TICK_HOOK option. The application
must provide the void vApplicationTickHook(void) callback.

• FreeRTOS idle hook can be enabled via the CONFIG_FREERTOS_USE_IDLE_HOOK option. The application
must provide the void vApplicationIdleHook(void) callback.

However, the FreeRTOS tick hook and idle hook have the following draw backs:
• The FreeRTOS hooks are registered at compile time
• Only one of each hook can be registered
• On multi-core targets, the FreeRTOS hooks are symmetric, meaning each CPU's tick interrupt and idle tasks
ends up calling the same hook.

Therefore, ESP-IDF tick and idle hooks are provided to supplement the features of FreeRTOS tick and idle hooks.
The ESP-IDF hooks have the following features:

• The hooks can be registered and deregistered at run-time
• Multiple hooks can be registered (with a maximum of 8 hooks of each type per CPU)
• On multi-core targets, the hooks can be asymmetric, meaning different hooks can be registered to each CPU

ESP-IDF hooks can be registered and deregistered using the following APIs:
• For tick hooks:

– Register using esp_register_freertos_tick_hook() or
esp_register_freertos_tick_hook_for_cpu()

– Deregister using esp_deregister_freertos_tick_hook() or
esp_deregister_freertos_tick_hook_for_cpu()

• For idle hooks:
– Register using esp_register_freertos_idle_hook() or
esp_register_freertos_idle_hook_for_cpu()

– Deregister using esp_deregister_freertos_idle_hook() or
esp_deregister_freertos_idle_hook_for_cpu()

Note: The tick interrupt stays active while the cache is disabled, therefore any tick hook (FreeRTOS or ESP-IDF)
functions must be placed in internal RAM. Please refer to the SPI flash API documentation for more details.

TLSP Deletion Callbacks

Vanilla FreeRTOS provides a Thread Local Storage Pointers (TLSP) feature. These are pointers stored directly in
the Task Control Block (TCB) of a particular task. TLSPs allow each task to have its own unique set of pointers to
data structures. Vanilla FreeRTOS expects users to...

Espressif Systems 1978
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• set a task's TLSPs by calling vTaskSetThreadLocalStoragePointer() after the task has been
created.

• get a task's TLSPs by calling pvTaskGetThreadLocalStoragePointer() during the task's lifetime.
• free the memory pointed to by the TLSPs before the task is deleted.

However, there can be instances where users may want the freeing of TLSP memory to be automatic. Therefore,
ESP-IDF provides the additional feature of TLSP deletion callbacks. These user provided deletion callbacks are
called automatically when a task is deleted, thus allowing the TLSP memory to be cleaned up without needing to add
the cleanup logic explicitly to the code of every task.
The TLSP deletion callbacks are set in a similar fashion to the TLSPs themselves.

• vTaskSetThreadLocalStoragePointerAndDelCallback() sets both a particular TLSP and its
associated callback.

• Calling the Vanilla FreeRTOS function vTaskSetThreadLocalStoragePointer() will simply set
the TLSP's associated Deletion Callback toNULLmeaning that no callback will be called for that TLSP during
task deletion.

When implementing TLSP callbacks, users should note the following:
• The callback must never attempt to block or yield and critical sections should be kept as short as possible
• The callback is called shortly before a deleted task's memory is freed. Thus, the callback can either be called
from vTaskDelete() itself, or from the idle task.

IDF Additional API

The freertos/esp_additions/include/freertos/idf_additions.h header contains FreeRTOS related helper functions
added by ESP-IDF. Users can include this header via #include "freertos/idf_additions.h".

Component Specific Properties

Besides standard component variables that are available with basic cmake build properties, FreeRTOS component
also provides arguments (only one so far) for simpler integration with other modules:

• ORIG_INCLUDE_PATH - contains an absolute path to freertos root include folder. Thus instead of #include
"freertos/FreeRTOS.h" you can refer to headers directly: #include "FreeRTOS.h".

API Reference

Ring Buffer API

Header File
• components/esp_ringbuf/include/freertos/ringbuf.h

Functions
RingbufHandle_t xRingbufferCreate(size_t xBufferSize, RingbufferType_t xBufferType)

Create a ring buffer.

Note: xBufferSize of no-split/allow-split buffers will be rounded up to the nearest 32-bit aligned size.

Parameters
• xBufferSize -- [in] Size of the buffer in bytes. Note that items require space for a
header in no-split/allow-split buffers

• xBufferType -- [in] Type of ring buffer, see documentation.
Returns A handle to the created ring buffer, or NULL in case of error.

Espressif Systems 1979
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/esp_additions/include/freertos/idf_additions.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_ringbuf/include/freertos/ringbuf.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

RingbufHandle_t xRingbufferCreateNoSplit(size_t xItemSize, size_t xItemNum)
Create a ring buffer of type RINGBUF_TYPE_NOSPLIT for a fixed item_size.
This API is similar to xRingbufferCreate(), but it will internally allocate additional space for the headers.

Parameters
• xItemSize -- [in] Size of each item to be put into the ring buffer
• xItemNum -- [in]Maximum number of items the buffer needs to hold simultaneously

Returns A RingbufHandle_t handle to the created ring buffer, or NULL in case of error.
RingbufHandle_t xRingbufferCreateStatic(size_t xBufferSize, RingbufferType_t xBufferType, uint8_t

*pucRingbufferStorage, StaticRingbuffer_t
*pxStaticRingbuffer)

Create a ring buffer but manually provide the required memory.

Note: xBufferSize of no-split/allow-split buffers MUST be 32-bit aligned.

Parameters
• xBufferSize -- [in] Size of the buffer in bytes.
• xBufferType -- [in] Type of ring buffer, see documentation
• pucRingbufferStorage -- [in] Pointer to the ring buffer's storage area. Storage
area must have the same size as specified by xBufferSize

• pxStaticRingbuffer -- [in] Pointed to a struct of type StaticRingbuffer_t which
will be used to hold the ring buffer's data structure

Returns A handle to the created ring buffer

BaseType_t xRingbufferSend(RingbufHandle_t xRingbuffer, const void *pvItem, size_t xItemSize,
TickType_t xTicksToWait)

Insert an item into the ring buffer.
Attempt to insert an item into the ring buffer. This function will block until enough free space is available or
until it times out.

Note: For no-split/allow-split ring buffers, the actual size of memory that the item will occupy will be rounded
up to the nearest 32-bit aligned size. This is done to ensure all items are always stored in 32-bit aligned fashion.

Note: For no-split/allow-split buffers, an xItemSize of 0 will result in an item with no data being set (i.e., item
only contains the header). For byte buffers, an xItemSize of 0 will simply return pdTRUE without copying any
data.

Parameters
• xRingbuffer -- [in] Ring buffer to insert the item into
• pvItem -- [in] Pointer to data to insert. NULL is allowed if xItemSize is 0.
• xItemSize -- [in] Size of data to insert.
• xTicksToWait -- [in] Ticks to wait for room in the ring buffer.

Returns
• pdTRUE if succeeded
• pdFALSE on time-out or when the data is larger than the maximum permissible size of
the buffer

BaseType_t xRingbufferSendFromISR(RingbufHandle_t xRingbuffer, const void *pvItem, size_t
xItemSize, BaseType_t *pxHigherPriorityTaskWoken)

Insert an item into the ring buffer in an ISR.

Espressif Systems 1980
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Attempt to insert an item into the ring buffer from an ISR. This function will return immediately if there is
insufficient free space in the buffer.

Note: For no-split/allow-split ring buffers, the actual size of memory that the item will occupy will be rounded
up to the nearest 32-bit aligned size. This is done to ensure all items are always stored in 32-bit aligned fashion.

Note: For no-split/allow-split buffers, an xItemSize of 0 will result in an item with no data being set (i.e., item
only contains the header). For byte buffers, an xItemSize of 0 will simply return pdTRUE without copying any
data.

Parameters
• xRingbuffer -- [in] Ring buffer to insert the item into
• pvItem -- [in] Pointer to data to insert. NULL is allowed if xItemSize is 0.
• xItemSize -- [in] Size of data to insert.
• pxHigherPriorityTaskWoken -- [out] Value pointed to will be set to pdTRUE if
the function woke up a higher priority task.

Returns
• pdTRUE if succeeded
• pdFALSE when the ring buffer does not have space.

BaseType_t xRingbufferSendAcquire(RingbufHandle_t xRingbuffer, void **ppvItem, size_t xItemSize,
TickType_t xTicksToWait)

Acquire memory from the ring buffer to be written to by an external source and to be sent later.
Attempt to allocate buffer for an item to be sent into the ring buffer. This function will block until enough free
space is available or until it times out.
The item, as well as the following items SendAcquire or Send after it, will not be able to be read from the
ring buffer until this item is actually sent into the ring buffer.

Note: Only applicable for no-split ring buffers now, the actual size of memory that the item will occupy will
be rounded up to the nearest 32-bit aligned size. This is done to ensure all items are always stored in 32-bit
aligned fashion.

Note: An xItemSize of 0 will result in a buffer being acquired, but the buffer will have a size of 0.

Parameters
• xRingbuffer -- [in] Ring buffer to allocate the memory
• ppvItem -- [out] Double pointer to memory acquired (set to NULL if no memory were
retrieved)

• xItemSize -- [in] Size of item to acquire.
• xTicksToWait -- [in] Ticks to wait for room in the ring buffer.

Returns
• pdTRUE if succeeded
• pdFALSE on time-out or when the data is larger than the maximum permissible size of
the buffer

BaseType_t xRingbufferSendComplete(RingbufHandle_t xRingbuffer, void *pvItem)
Actually send an item into the ring buffer allocated before by xRingbufferSendAcquire.

Espressif Systems 1981
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: Only applicable for no-split ring buffers. Only call for items allocated by xRingbufferSendAc-
quire.

Parameters
• xRingbuffer -- [in] Ring buffer to insert the item into
• pvItem -- [in] Pointer to item in allocated memory to insert.

Returns
• pdTRUE if succeeded
• pdFALSE if fail for some reason.

void *xRingbufferReceive(RingbufHandle_t xRingbuffer, size_t *pxItemSize, TickType_t xTicksToWait)
Retrieve an item from the ring buffer.
Attempt to retrieve an item from the ring buffer. This function will block until an item is available or until it
times out.

Note: A call to vRingbufferReturnItem() is required after this to free the item retrieved.

Note: It is possible to receive items with a pxItemSize of 0 on no-split/allow split buffers.

Parameters
• xRingbuffer -- [in] Ring buffer to retrieve the item from
• pxItemSize -- [out] Pointer to a variable to which the size of the retrieved item will
be written.

• xTicksToWait -- [in] Ticks to wait for items in the ring buffer.
Returns

• Pointer to the retrieved item on success; *pxItemSize filled with the length of the item.
• NULL on timeout, *pxItemSize is untouched in that case.

void *xRingbufferReceiveFromISR(RingbufHandle_t xRingbuffer, size_t *pxItemSize)
Retrieve an item from the ring buffer in an ISR.
Attempt to retrieve an item from the ring buffer. This function returns immediately if there are no items
available for retrieval

Note: A call to vRingbufferReturnItemFromISR() is required after this to free the item retrieved.

Note: Byte buffers do not allow multiple retrievals before returning an item

Note: Two calls to RingbufferReceiveFromISR() are required if the bytes wrap around the end of the ring
buffer.

Note: It is possible to receive items with a pxItemSize of 0 on no-split/allow split buffers.

Parameters
• xRingbuffer -- [in] Ring buffer to retrieve the item from
• pxItemSize -- [out] Pointer to a variable to which the size of the retrieved item will
be written.

Espressif Systems 1982
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• Pointer to the retrieved item on success; *pxItemSize filled with the length of the item.
• NULL when the ring buffer is empty, *pxItemSize is untouched in that case.

BaseType_t xRingbufferReceiveSplit(RingbufHandle_t xRingbuffer, void **ppvHeadItem, void
**ppvTailItem, size_t *pxHeadItemSize, size_t *pxTailItemSize,
TickType_t xTicksToWait)

Retrieve a split item from an allow-split ring buffer.
Attempt to retrieve a split item from an allow-split ring buffer. If the item is not split, only a single item is
retried. If the item is split, both parts will be retrieved. This function will block until an item is available or
until it times out.

Note: Call(s) to vRingbufferReturnItem() is required after this to free up the item(s) retrieved.

Note: This function should only be called on allow-split buffers

Note: It is possible to receive items with a pxItemSize of 0 on allow split buffers.

Parameters
• xRingbuffer -- [in] Ring buffer to retrieve the item from
• ppvHeadItem -- [out] Double pointer to first part (set to NULL if no items were re-
trieved)

• ppvTailItem -- [out] Double pointer to second part (set to NULL if item is not split)
• pxHeadItemSize -- [out] Pointer to size of first part (unmodified if no items were
retrieved)

• pxTailItemSize -- [out] Pointer to size of second part (unmodified if item is not
split)

• xTicksToWait -- [in] Ticks to wait for items in the ring buffer.
Returns

• pdTRUE if an item (split or unsplit) was retrieved
• pdFALSE when no item was retrieved

BaseType_t xRingbufferReceiveSplitFromISR(RingbufHandle_t xRingbuffer, void **ppvHeadItem,
void **ppvTailItem, size_t *pxHeadItemSize, size_t
*pxTailItemSize)

Retrieve a split item from an allow-split ring buffer in an ISR.
Attempt to retrieve a split item from an allow-split ring buffer. If the item is not split, only a single item is
retried. If the item is split, both parts will be retrieved. This function returns immediately if there are no items
available for retrieval

Note: Calls to vRingbufferReturnItemFromISR() is required after this to free up the item(s) retrieved.

Note: This function should only be called on allow-split buffers

Note: It is possible to receive items with a pxItemSize of 0 on allow split buffers.

Parameters

Espressif Systems 1983
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• xRingbuffer -- [in] Ring buffer to retrieve the item from
• ppvHeadItem -- [out] Double pointer to first part (set to NULL if no items were re-
trieved)

• ppvTailItem -- [out] Double pointer to second part (set to NULL if item is not split)
• pxHeadItemSize -- [out] Pointer to size of first part (unmodified if no items were
retrieved)

• pxTailItemSize -- [out] Pointer to size of second part (unmodified if item is not
split)

Returns
• pdTRUE if an item (split or unsplit) was retrieved
• pdFALSE when no item was retrieved

void *xRingbufferReceiveUpTo(RingbufHandle_t xRingbuffer, size_t *pxItemSize, TickType_t
xTicksToWait, size_t xMaxSize)

Retrieve bytes from a byte buffer, specifying the maximum amount of bytes to retrieve.
Attempt to retrieve data from a byte buffer whilst specifying a maximum number of bytes to retrieve. This
function will block until there is data available for retrieval or until it times out.

Note: A call to vRingbufferReturnItem() is required after this to free up the data retrieved.

Note: This function should only be called on byte buffers

Note: Byte buffers do not allow multiple retrievals before returning an item

Note: Two calls to RingbufferReceiveUpTo() are required if the bytes wrap around the end of the ring buffer.

Parameters
• xRingbuffer -- [in] Ring buffer to retrieve the item from
• pxItemSize -- [out] Pointer to a variable to which the size of the retrieved item will
be written.

• xTicksToWait -- [in] Ticks to wait for items in the ring buffer.
• xMaxSize -- [in]Maximum number of bytes to return.

Returns
• Pointer to the retrieved item on success; *pxItemSize filled with the length of the item.
• NULL on timeout, *pxItemSize is untouched in that case.

void *xRingbufferReceiveUpToFromISR(RingbufHandle_t xRingbuffer, size_t *pxItemSize, size_t
xMaxSize)

Retrieve bytes from a byte buffer, specifying the maximum amount of bytes to retrieve. Call this from an ISR.
Attempt to retrieve bytes from a byte buffer whilst specifying a maximum number of bytes to retrieve. This
function will return immediately if there is no data available for retrieval.

Note: A call to vRingbufferReturnItemFromISR() is required after this to free up the data received.

Note: This function should only be called on byte buffers

Espressif Systems 1984
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: Byte buffers do not allow multiple retrievals before returning an item

Parameters
• xRingbuffer -- [in] Ring buffer to retrieve the item from
• pxItemSize -- [out] Pointer to a variable to which the size of the retrieved item will
be written.

• xMaxSize -- [in]Maximum number of bytes to return. Size of 0 simply returns NULL.
Returns

• Pointer to the retrieved item on success; *pxItemSize filled with the length of the item.
• NULL when the ring buffer is empty, *pxItemSize is untouched in that case.

void vRingbufferReturnItem(RingbufHandle_t xRingbuffer, void *pvItem)
Return a previously-retrieved item to the ring buffer.

Note: If a split item is retrieved, both parts should be returned by calling this function twice

Parameters
• xRingbuffer -- [in] Ring buffer the item was retrieved from
• pvItem -- [in] Item that was received earlier

void vRingbufferReturnItemFromISR(RingbufHandle_t xRingbuffer, void *pvItem, BaseType_t
*pxHigherPriorityTaskWoken)

Return a previously-retrieved item to the ring buffer from an ISR.

Note: If a split item is retrieved, both parts should be returned by calling this function twice

Parameters
• xRingbuffer -- [in] Ring buffer the item was retrieved from
• pvItem -- [in] Item that was received earlier
• pxHigherPriorityTaskWoken -- [out] Value pointed to will be set to pdTRUE if
the function woke up a higher priority task.

void vRingbufferDelete(RingbufHandle_t xRingbuffer)
Delete a ring buffer.

Note: This function will not deallocate any memory if the ring buffer was created using xRingbufferCreat-
eStatic(). Deallocation must be done manually be the user.

Parameters xRingbuffer -- [in] Ring buffer to delete

size_t xRingbufferGetMaxItemSize(RingbufHandle_t xRingbuffer)
Get maximum size of an item that can be placed in the ring buffer.
This function returns the maximum size an item can have if it was placed in an empty ring buffer.

Note: The max item size for a no-split buffer is limited to ((buffer_size/2)-header_size). This limit is imposed
so that an item ofmax item size can always be sent to an empty no-split buffer regardless of the internal positions
of the buffer's read/write/free pointers.

Parameters xRingbuffer -- [in] Ring buffer to query

Espressif Systems 1985
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns Maximum size, in bytes, of an item that can be placed in a ring buffer.

size_t xRingbufferGetCurFreeSize(RingbufHandle_t xRingbuffer)
Get current free size available for an item/data in the buffer.
This gives the real time free space available for an item/data in the ring buffer. This represents the maximum
size an item/data can have if it was currently sent to the ring buffer.

Note: An empty no-split buffer has a max current free size for an item that is limited to ((buffer_size/2)-
header_size). See API reference for xRingbufferGetMaxItemSize().

Warning: This API is not thread safe. So, if multiple threads are accessing the same ring buffer, it is the
application's responsibility to ensure atomic access to this API and the subsequent Send

Parameters xRingbuffer -- [in] Ring buffer to query
Returns Current free size, in bytes, available for an entry

BaseType_t xRingbufferAddToQueueSetRead(RingbufHandle_t xRingbuffer, QueueSetHandle_t
xQueueSet)

Add the ring buffer to a queue set. Notified when data has been written to the ring buffer.
This function adds the ring buffer to a queue set, thus allowing a task to block on multiple queues/ring buffers.
The queue set is notified when the new data becomes available to read on the ring buffer.

Parameters
• xRingbuffer -- [in] Ring buffer to add to the queue set
• xQueueSet -- [in] Queue set to add the ring buffer to

Returns
• pdTRUE on success, pdFALSE otherwise

static inline BaseType_t xRingbufferCanRead(RingbufHandle_t xRingbuffer, QueueSetMemberHandle_t
xMember)

Check if the selected queue set member is a particular ring buffer.
This API checks if queue set member returned from xQueueSelectFromSet() is a particular ring buffer. If so,
this indicates the ring buffer has items waiting to be retrieved.

Parameters
• xRingbuffer -- [in] Ring buffer to check
• xMember -- [in]Member returned from xQueueSelectFromSet

Returns
• pdTRUE when selected queue set member is the ring buffer
• pdFALSE otherwise.

BaseType_t xRingbufferRemoveFromQueueSetRead(RingbufHandle_t xRingbuffer, QueueSetHandle_t
xQueueSet)

Remove the ring buffer from a queue set.
This function removes a ring buffer from a queue set. The ring buffer must have been previously added to the
queue set using xRingbufferAddToQueueSetRead().

Parameters
• xRingbuffer -- [in] Ring buffer to remove from the queue set
• xQueueSet -- [in] Queue set to remove the ring buffer from

Returns
• pdTRUE on success
• pdFALSE otherwise

Espressif Systems 1986
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void vRingbufferGetInfo(RingbufHandle_t xRingbuffer, UBaseType_t *uxFree, UBaseType_t *uxRead,
UBaseType_t *uxWrite, UBaseType_t *uxAcquire, UBaseType_t
*uxItemsWaiting)

Get information about ring buffer status.
Get information of a ring buffer's current status such as free/read/write/acquire pointer positions, and number
of items waiting to be retrieved. Arguments can be set to NULL if they are not required.

Parameters
• xRingbuffer -- [in] Ring buffer to remove from the queue set
• uxFree -- [out] Pointer use to store free pointer position
• uxRead -- [out] Pointer use to store read pointer position
• uxWrite -- [out] Pointer use to store write pointer position
• uxAcquire -- [out] Pointer use to store acquire pointer position
• uxItemsWaiting -- [out] Pointer use to store number of items (bytes for byte buffer)
waiting to be retrieved

void xRingbufferPrintInfo(RingbufHandle_t xRingbuffer)
Debugging function to print the internal pointers in the ring buffer.

Parameters xRingbuffer -- Ring buffer to show

Structures

struct xSTATIC_RINGBUFFER
Struct that is equivalent in size to the ring buffer's data structure.
The contents of this struct are not meant to be used directly. This structure is meant to be used when creating
a statically allocated ring buffer where this struct is of the exact size required to store a ring buffer's control
data structure.

Type Definitions

typedef void *RingbufHandle_t
Type by which ring buffers are referenced. For example, a call to xRingbufferCreate() returns a RingbufHan-
dle_t variable that can then be used as a parameter to xRingbufferSend(), xRingbufferReceive(), etc.

typedef struct xSTATIC_RINGBUFFER StaticRingbuffer_t

Struct that is equivalent in size to the ring buffer's data structure.
The contents of this struct are not meant to be used directly. This structure is meant to be used when creating
a statically allocated ring buffer where this struct is of the exact size required to store a ring buffer's control
data structure.

Enumerations

enum RingbufferType_t

Values:

enumerator RINGBUF_TYPE_NOSPLIT
No-split buffers will only store an item in contiguous memory and will never split an item. Each item
requires an 8 byte overhead for a header and will always internally occupy a 32-bit aligned size of space.

enumerator RINGBUF_TYPE_ALLOWSPLIT
Allow-split buffers will split an item into two parts if necessary in order to store it. Each item requires
an 8 byte overhead for a header, splitting incurs an extra header. Each item will always internally occupy
a 32-bit aligned size of space.

Espressif Systems 1987
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator RINGBUF_TYPE_BYTEBUF
Byte buffers store data as a sequence of bytes and do not maintain separate items, therefore byte buffers
have no overhead. All data is stored as a sequence of byte and any number of bytes can be sent or retrieved
each time.

enumerator RINGBUF_TYPE_MAX

Hooks API

Header File
• components/esp_system/include/esp_freertos_hooks.h

Functions
esp_err_t esp_register_freertos_idle_hook_for_cpu(esp_freertos_idle_cb_t new_idle_cb,

UBaseType_t cpuid)
Register a callback to be called from the specified core's idle hook. The callback should return true if it
should be called by the idle hook once per interrupt (or FreeRTOS tick), and return false if it should be called
repeatedly as fast as possible by the idle hook.

Warning: Idle callbacks MUST NOT, UNDER ANY CIRCUMSTANCES, CALL A FUNCTION
THAT MIGHT BLOCK.

Parameters
• new_idle_cb -- [in] Callback to be called
• cpuid -- [in] id of the core

Returns
• ESP_OK: Callback registered to the specified core's idle hook
• ESP_ERR_NO_MEM: No more space on the specified core's idle hook to register call-
back

• ESP_ERR_INVALID_ARG: cpuid is invalid
esp_err_t esp_register_freertos_idle_hook(esp_freertos_idle_cb_t new_idle_cb)

Register a callback to the idle hook of the core that calls this function. The callback should return true if it
should be called by the idle hook once per interrupt (or FreeRTOS tick), and return false if it should be called
repeatedly as fast as possible by the idle hook.

Warning: Idle callbacks MUST NOT, UNDER ANY CIRCUMSTANCES, CALL A FUNCTION
THAT MIGHT BLOCK.

Parameters new_idle_cb -- [in] Callback to be called
Returns

• ESP_OK: Callback registered to the calling core's idle hook
• ESP_ERR_NO_MEM: No more space on the calling core's idle hook to register callback

esp_err_t esp_register_freertos_tick_hook_for_cpu(esp_freertos_tick_cb_t new_tick_cb,
UBaseType_t cpuid)

Register a callback to be called from the specified core's tick hook.
Parameters

• new_tick_cb -- [in] Callback to be called
• cpuid -- [in] id of the core

Espressif Systems 1988
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/include/esp_freertos_hooks.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK: Callback registered to specified core's tick hook
• ESP_ERR_NO_MEM: No more space on the specified core's tick hook to register the
callback

• ESP_ERR_INVALID_ARG: cpuid is invalid
esp_err_t esp_register_freertos_tick_hook(esp_freertos_tick_cb_t new_tick_cb)

Register a callback to be called from the calling core's tick hook.
Parameters new_tick_cb -- [in] Callback to be called
Returns

• ESP_OK: Callback registered to the calling core's tick hook
• ESP_ERR_NO_MEM: No more space on the calling core's tick hook to register the call-
back

void esp_deregister_freertos_idle_hook_for_cpu(esp_freertos_idle_cb_t old_idle_cb,
UBaseType_t cpuid)

Unregister an idle callback from the idle hook of the specified core.
Parameters

• old_idle_cb -- [in] Callback to be unregistered
• cpuid -- [in] id of the core

void esp_deregister_freertos_idle_hook(esp_freertos_idle_cb_t old_idle_cb)
Unregister an idle callback. If the idle callback is registered to the idle hooks of both cores, the idle hook will
be unregistered from both cores.

Parameters old_idle_cb -- [in] Callback to be unregistered
void esp_deregister_freertos_tick_hook_for_cpu(esp_freertos_tick_cb_t old_tick_cb,

UBaseType_t cpuid)
Unregister a tick callback from the tick hook of the specified core.

Parameters
• old_tick_cb -- [in] Callback to be unregistered
• cpuid -- [in] id of the core

void esp_deregister_freertos_tick_hook(esp_freertos_tick_cb_t old_tick_cb)
Unregister a tick callback. If the tick callback is registered to the tick hooks of both cores, the tick hook will
be unregistered from both cores.

Parameters old_tick_cb -- [in] Callback to be unregistered

Type Definitions

typedef bool (*esp_freertos_idle_cb_t)(void)

typedef void (*esp_freertos_tick_cb_t)(void)

Additional API

Header File
• components/freertos/esp_additions/include/freertos/idf_additions.h

Functions

Espressif Systems 1989
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/esp_additions/include/freertos/idf_additions.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

BaseType_t xTaskCreatePinnedToCoreWithCaps(TaskFunction_t pvTaskCode, const char *const
pcName, const configSTACK_DEPTH_TYPE
usStackDepth, void *const pvParameters,
UBaseType_t uxPriority, TaskHandle_t *const
pvCreatedTask, const BaseType_t xCoreID,
UBaseType_t uxMemoryCaps)

Creates a pinned task where its stack has specific memory capabilities.
This function is similar to xTaskCreatePinnedToCore(), except that it allows the memory allocated for the
task's stack to have specific capabilities (e.g., MALLOC_CAP_SPIRAM).
However, the specified capabilities will NOT apply to the task's TCB as a TCB must always be in internal
RAM.

Parameters
• pvTaskCode -- Pointer to the task entry function
• pcName -- A descriptive name for the task
• usStackDepth -- The size of the task stack specified as the number of bytes
• pvParameters -- Pointer that will be used as the parameter for the task being created.
• uxPriority -- The priority at which the task should run.
• pvCreatedTask -- Used to pass back a handle by which the created task can be refer-
enced.

• xCoreID -- Core to which the task is pinned to, or tskNO_AFFINITY if unpinned.
• uxMemoryCaps -- Memory capabilities of the task stack's memory (see
esp_heap_caps.h)

Returns pdPASS if the task was successfully created and added to a ready list, otherwise an error
code defined in the file projdefs.h

static inline BaseType_t xTaskCreateWithCaps(TaskFunction_t pvTaskCode, const char *const pcName,
configSTACK_DEPTH_TYPE usStackDepth, void *const
pvParameters, UBaseType_t uxPriority, TaskHandle_t
*pvCreatedTask, UBaseType_t uxMemoryCaps)

Creates a task where its stack has specific memory capabilities.
This function is similar to xTaskCreate(), except that it allows the memory allocated for the task's stack to have
specific capabilities (e.g., MALLOC_CAP_SPIRAM).
However, the specified capabilities will NOT apply to the task's TCB as a TCB must always be in internal
RAM.

Note: A task created using this function must only be deleted using vTaskDeleteWithCaps()

Parameters
• pvTaskCode -- Pointer to the task entry function
• pcName -- A descriptive name for the task
• usStackDepth -- The size of the task stack specified as the number of bytes
• pvParameters -- Pointer that will be used as the parameter for the task being created.
• uxPriority -- The priority at which the task should run.
• pvCreatedTask -- Used to pass back a handle by which the created task can be refer-
enced.

• uxMemoryCaps -- Memory capabilities of the task stack's memory (see
esp_heap_caps.h)

Returns pdPASS if the task was successfully created and added to a ready list, otherwise an error
code defined in the file projdefs.h

void vTaskDeleteWithCaps(TaskHandle_t xTaskToDelete)
Deletes a task previously created using xTaskCreateWithCaps() or xTaskCreatePinnedToCoreWithCaps()

Note: It is recommended to use this API to delete tasks from another task's context, rather than self-deletion.

Espressif Systems 1990
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

When the task is being deleted, it is vital to ensure that it is not running on another core. This API must not
be called from an interrupt context.

Parameters xTaskToDelete -- A handle to the task to be deleted

QueueHandle_t xQueueCreateWithCaps(UBaseType_t uxQueueLength, UBaseType_t uxItemSize,
UBaseType_t uxMemoryCaps)

Creates a queue with specific memory capabilities.
This function is similar to xQueueCreate(), except that it allows the memory allocated for the queue to have
specific capabilities (e.g., MALLOC_CAP_INTERNAL).

Note: A queue created using this function must only be deleted using vQueueDeleteWithCaps()

Parameters
• uxQueueLength -- The maximum number of items that the queue can contain.
• uxItemSize -- The number of bytes each item in the queue will require.
• uxMemoryCaps -- Memory capabilities of the queue's memory (see esp_heap_caps.h)

Returns Handle to the created queue or NULL on failure.

void vQueueDeleteWithCaps(QueueHandle_t xQueue)
Deletes a queue previously created using xQueueCreateWithCaps()

Parameters xQueue -- A handle to the queue to be deleted.
static inline SemaphoreHandle_t xSemaphoreCreateBinaryWithCaps(UBaseType_t uxMemoryCaps)

Creates a binary semaphore with specific memory capabilities.
This function is similar to vSemaphoreCreateBinary(), except that it allows the memory allocated for the binary
semaphore to have specific capabilities (e.g., MALLOC_CAP_INTERNAL).

Note: A binary semaphore created using this function must only be deleted using vSemaphoreDeleteWith-
Caps()

Parameters uxMemoryCaps -- Memory capabilities of the binary semaphore's memory (see
esp_heap_caps.h)

Returns Handle to the created binary semaphore or NULL on failure.

static inline SemaphoreHandle_t xSemaphoreCreateCountingWithCaps(UBaseType_t uxMaxCount,
UBaseType_t uxInitialCount,
UBaseType_t uxMemoryCaps)

Creates a counting semaphore with specific memory capabilities.
This function is similar to xSemaphoreCreateCounting(), except that it allows the memory allocated for the
counting semaphore to have specific capabilities (e.g., MALLOC_CAP_INTERNAL).

Note: A counting semaphore created using this function must only be deleted using vSemaphoreDeleteWith-
Caps()

Parameters
• uxMaxCount -- The maximum count value that can be reached.
• uxInitialCount -- The count value assigned to the semaphore when it is created.
• uxMemoryCaps -- Memory capabilities of the counting semaphore's memory (see
esp_heap_caps.h)

Espressif Systems 1991
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns Handle to the created counting semaphore or NULL on failure.

static inline SemaphoreHandle_t xSemaphoreCreateMutexWithCaps(UBaseType_t uxMemoryCaps)
Creates a mutex semaphore with specific memory capabilities.
This function is similar to xSemaphoreCreateMutex(), except that it allows the memory allocated for the mutex
semaphore to have specific capabilities (e.g., MALLOC_CAP_INTERNAL).

Note: A mutex semaphore created using this function must only be deleted using vSemaphoreDeleteWith-
Caps()

Parameters uxMemoryCaps -- Memory capabilities of the mutex semaphore's memory (see
esp_heap_caps.h)

Returns Handle to the created mutex semaphore or NULL on failure.

static inline SemaphoreHandle_t xSemaphoreCreateRecursiveMutexWithCaps(UBaseType_t
uxMemoryCaps)

Creates a recursive mutex with specific memory capabilities.
This function is similar to xSemaphoreCreateRecursiveMutex(), except that it allows the memory allocated for
the recursive mutex to have specific capabilities (e.g., MALLOC_CAP_INTERNAL).

Note: A recursivemutex created using this functionmust only be deleted using vSemaphoreDeleteWithCaps()

Parameters uxMemoryCaps -- Memory capabilities of the recursive mutex's memory (see
esp_heap_caps.h)

Returns Handle to the created recursive mutex or NULL on failure.

void vSemaphoreDeleteWithCaps(SemaphoreHandle_t xSemaphore)
Deletes a semaphore previously created using one of the xSemaphoreCreate...WithCaps() functions.

Parameters xSemaphore -- A handle to the semaphore to be deleted.
static inline StreamBufferHandle_t xStreamBufferCreateWithCaps(size_t xBufferSizeBytes, size_t

xTriggerLevelBytes, UBaseType_t
uxMemoryCaps)

Creates a stream buffer with specific memory capabilities.
This function is similar to xStreamBufferCreate(), except that it allows the memory allocated for the stream
buffer to have specific capabilities (e.g., MALLOC_CAP_INTERNAL).

Note: A stream buffer created using this function must only be deleted using vStreamBufferDeleteWithCaps()

Parameters
• xBufferSizeBytes -- The total number of bytes the stream buffer will be able to hold
at any one time.

• xTriggerLevelBytes -- The number of bytes thatmust be in the stream buffer before
unblocking

• uxMemoryCaps -- Memory capabilities of the stream buffer's memory (see
esp_heap_caps.h)

Returns Handle to the created stream buffer or NULL on failure.

static inline void vStreamBufferDeleteWithCaps(StreamBufferHandle_t xStreamBuffer)
Deletes a stream buffer previously created using xStreamBufferCreateWithCaps()

Espressif Systems 1992
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters xStreamBuffer -- A handle to the stream buffer to be deleted.
static inline MessageBufferHandle_t xMessageBufferCreateWithCaps(size_t xBufferSizeBytes,

UBaseType_t uxMemoryCaps)
Creates a message buffer with specific memory capabilities.
This function is similar to xMessageBufferCreate(), except that it allows the memory allocated for the message
buffer to have specific capabilities (e.g., MALLOC_CAP_INTERNAL).

Note: A message buffer created using this function must only be deleted using vMessageBufferDeleteWith-
Caps()

Parameters
• xBufferSizeBytes -- The total number of bytes (not messages) the message buffer
will be able to hold at any one time.

• uxMemoryCaps -- Memory capabilities of the message buffer's memory (see
esp_heap_caps.h)

Returns Handle to the created message buffer or NULL on failure.

static inline void vMessageBufferDeleteWithCaps(MessageBufferHandle_t xMessageBuffer)
Deletes a stream buffer previously created using xMessageBufferCreateWithCaps()

Parameters xMessageBuffer -- A handle to the message buffer to be deleted.
EventGroupHandle_t xEventGroupCreateWithCaps(UBaseType_t uxMemoryCaps)

Creates an event group with specific memory capabilities.
This function is similar to xEventGroupCreate(), except that it allows the memory allocated for the event group
to have specific capabilities (e.g., MALLOC_CAP_INTERNAL).

Note: An event group created using this function must only be deleted using vEventGroupDeleteWithCaps()

Parameters uxMemoryCaps -- Memory capabilities of the event group's memory (see
esp_heap_caps.h)

Returns Handle to the created event group or NULL on failure.

void vEventGroupDeleteWithCaps(EventGroupHandle_t xEventGroup)
Deletes an event group previously created using xEventGroupCreateWithCaps()

Parameters xEventGroup -- A handle to the event group to be deleted.

2.10.13 Heap Memory Allocation

Stack and Heap

ESP-IDF applications use the common computer architecture patterns of stack (dynamic memory allocated by pro-
gram control flow) and heap (dynamic memory allocated by function calls), as well as statically allocated memory
(allocated at compile time).
Because ESP-IDF is a multi-threaded RTOS environment, each RTOS task has its own stack. By default, each of
these stacks is allocated from the heap when the task is created. (See xTaskCreateStatic() for the alternative
where stacks are statically allocated.)
Because ESP32-C6 uses multiple types of RAM, it also contains multiple heaps with different capabilities. A
capabilities-based memory allocator allows apps to make heap allocations for different purposes.
For most purposes, the standard libc malloc() and free() functions can be used for heap allocation without any
special consideration.

Espressif Systems 1993
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

However, in order to fully make use of all of the memory types and their characteristics, ESP-IDF also has a
capabilities-based heap memory allocator. If you want to have memory with certain properties (for example, DMA-
Capable Memory or executable-memory), you can create an OR-mask of the required capabilities and pass that to
heap_caps_malloc().

Memory Capabilities

The ESP32-C6 contains multiple types of RAM:
• DRAM (Data RAM) is memory used to hold data. This is the most common kind of memory accessed as
heap.

• IRAM (Instruction RAM) usually holds executable data only. If accessed as generic memory, all accesses must
be 32-bit aligned.

• D/IRAM is RAM which can be used as either Instruction or Data RAM.
For more details on these internal memory types, see Memory Types.
DRAM uses capability MALLOC_CAP_8BIT (accessible in single byte reads and writes). To test the free DRAM
heap size at runtime, call cpp:func:heap_caps_get_free_size(MALLOC_CAP_8BIT).
When calling malloc(), the ESP-IDF malloc() implementation internally calls
cpp:func:heap_caps_malloc_default(size). This will allocate memory with capability MALLOC_CAP_DEFAULT,
which is byte-addressable.
Because malloc() uses the capabilities-based allocation system, memory allocated using
heap_caps_malloc() can be freed by calling the standard free() function.

Available Heap

DRAM At startup, the DRAMheap contains all data memory which is not statically allocated by the app. Reducing
statically allocated buffers will increase the amount of available free heap.
To find the amount of statically allocated memory, use the idf.py size command.

Note: At runtime, the available heap DRAM may be less than calculated at compile time, because at startup some
memory is allocated from the heap before the FreeRTOS scheduler is started (including memory for the stacks of
initial FreeRTOS tasks).

IRAM At startup, the IRAM heap contains all instruction memory which is not used by the app executable code.
The idf.py size command can be used to find the amount of IRAM used by the app.

D/IRAM Some memory in the ESP32-C6 is available as either DRAM or IRAM. If memory is allocated from a
D/IRAM region, the free heap size for both types of memory will decrease.

Heap Sizes At startup, all ESP-IDF apps log a summary of all heap addresses (and sizes) at level Info:

I (252) heap_init: Initializing. RAM available for dynamic allocation:
I (259) heap_init: At 3FFAE6E0 len 00001920 (6 KiB): DRAM
I (265) heap_init: At 3FFB2EC8 len 0002D138 (180 KiB): DRAM
I (272) heap_init: At 3FFE0440 len 00003AE0 (14 KiB): D/IRAM
I (278) heap_init: At 3FFE4350 len 0001BCB0 (111 KiB): D/IRAM
I (284) heap_init: At 4008944C len 00016BB4 (90 KiB): IRAM

Finding available heap See Heap Information.

Espressif Systems 1994
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Special Capabilities

DMA-Capable Memory Use the MALLOC_CAP_DMA flag to allocate memory which is suitable for use with
hardware DMA engines (for example SPI and I2S). This capability flag excludes any external PSRAM.

32-Bit Accessible Memory If a certain memory structure is only addressed in 32-bit units, for example an array of
ints or pointers, it can be useful to allocate it with the MALLOC_CAP_32BIT flag. This also allows the allocator to
give out IRAMmemory; something which it can't do for a normal malloc() call. This can help to use all the available
memory in the ESP32-C6.
Memory allocated with MALLOC_CAP_32BIT can only be accessed via 32-bit reads and writes, any other type of
access will generate a fatal LoadStoreError exception.

Thread Safety

Heap functions are thread safe, meaning they can be called from different tasks simultaneously without any limitations.
It is technically possible to call malloc, free, and related functions from interrupt handler (ISR) context (see
Calling heap related functions from ISR). However this is not recommended, as heap function calls may delay other
interrupts. It is strongly recommended to refactor applications so that any buffers used by an ISR are pre-allocated
outside of the ISR. Support for calling heap functions from ISRs may be removed in a future update.

Calling heap related functions from ISR

The following functions from the heap component can be called form interrupt handler (ISR):
• heap_caps_malloc()
• heap_caps_malloc_default()
• heap_caps_realloc_default()
• heap_caps_malloc_prefer()
• heap_caps_realloc_prefer()
• heap_caps_calloc_prefer()
• heap_caps_free()
• heap_caps_realloc()
• heap_caps_calloc()
• heap_caps_aligned_alloc()
• heap_caps_aligned_free()

Note however this practice is strongly discouraged.

Heap Tracing & Debugging

The following features are documented on the Heap Memory Debugging page:
• Heap Information (free space, etc.)
• Heap allocation and free function hooks
• Heap Corruption Detection
• Heap Tracing (memory leak detection, monitoring, etc.)

Implementation Notes

Knowledge about the regions of memory in the chip comes from the "soc" component, which contains memory layout
information for the chip, and the different capabilities of each region. Each region's capabilities are prioritised, so that
(for example) dedicated DRAM and IRAM regions will be used for allocations ahead of the more versatile D/IRAM
regions.

Espressif Systems 1995
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Each contiguous region of memory contains its own memory heap. The heaps are created using the multi_heap
functionality. multi_heap allows any contiguous region of memory to be used as a heap.
The heap capabilities allocator uses knowledge of the memory regions to initialize each individual heap. Allocation
functions in the heap capabilities API will find the most appropriate heap for the allocation (based on desired capa-
bilities, available space, and preferences for each region's use) and then calling multi_heap_malloc() for the
heap situated in that particular region.
Calling free() involves finding the particular heap corresponding to the freed address, and then calling
multi_heap_free() on that particular multi_heap instance.

API Reference - Heap Allocation

Header File
• components/heap/include/esp_heap_caps.h

Functions
esp_err_t heap_caps_register_failed_alloc_callback(esp_alloc_failed_hook_t callback)

registers a callback function to be invoked if a memory allocation operation fails
Parameters callback -- caller defined callback to be invoked
Returns ESP_OK if callback was registered.

void *heap_caps_malloc(size_t size, uint32_t caps)
Allocate a chunk of memory which has the given capabilities.
Equivalent semantics to libc malloc(), for capability-aware memory.

Parameters
• size -- Size, in bytes, of the amount of memory to allocate
• caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory to be
returned

Returns A pointer to the memory allocated on success, NULL on failure
void heap_caps_free(void *ptr)

Free memory previously allocated via heap_caps_malloc() or heap_caps_realloc().
Equivalent semantics to libc free(), for capability-aware memory.
In IDF, free(p) is equivalent to heap_caps_free(p).

Parameters ptr -- Pointer to memory previously returned from heap_caps_malloc() or
heap_caps_realloc(). Can be NULL.

void *heap_caps_realloc(void *ptr, size_t size, uint32_t caps)
Reallocate memory previously allocated via heap_caps_malloc() or heap_caps_realloc().
Equivalent semantics to libc realloc(), for capability-aware memory.
In IDF, realloc(p, s) is equivalent to heap_caps_realloc(p, s, MALLOC_CAP_8BIT).
'caps' parameter can be different to the capabilities that any original 'ptr' was allocated with. In this way, realloc
can be used to "move" a buffer if necessary to ensure it meets a new set of capabilities.

Parameters
• ptr -- Pointer to previously allocated memory, or NULL for a new allocation.
• size -- Size of the new buffer requested, or 0 to free the buffer.
• caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory desired
for the new allocation.

Returns Pointer to a new buffer of size 'size' with capabilities 'caps', or NULL if allocation failed.

Espressif Systems 1996
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/heap/include/esp_heap_caps.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void *heap_caps_aligned_alloc(size_t alignment, size_t size, uint32_t caps)
Allocate an aligned chunk of memory which has the given capabilities.
Equivalent semantics to libc aligned_alloc(), for capability-aware memory.

Parameters
• alignment -- How the pointer received needs to be aligned must be a power of two
• size -- Size, in bytes, of the amount of memory to allocate
• caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory to be
returned

Returns A pointer to the memory allocated on success, NULL on failure
void heap_caps_aligned_free(void *ptr)

Used to deallocate memory previously allocated with heap_caps_aligned_alloc.

Note: This function is deprecated, please consider using heap_caps_free() instead

Parameters ptr -- Pointer to the memory allocated

void *heap_caps_aligned_calloc(size_t alignment, size_t n, size_t size, uint32_t caps)
Allocate an aligned chunk of memory which has the given capabilities. The initialized value in the memory is
set to zero.

Parameters
• alignment -- How the pointer received needs to be aligned must be a power of two
• n -- Number of continuing chunks of memory to allocate
• size -- Size, in bytes, of a chunk of memory to allocate
• caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory to be
returned

Returns A pointer to the memory allocated on success, NULL on failure
void *heap_caps_calloc(size_t n, size_t size, uint32_t caps)

Allocate a chunk of memory which has the given capabilities. The initialized value in the memory is set to
zero.
Equivalent semantics to libc calloc(), for capability-aware memory.
In IDF, calloc(p) is equivalent to heap_caps_calloc(p, MALLOC_CAP_8BIT).

Parameters
• n -- Number of continuing chunks of memory to allocate
• size -- Size, in bytes, of a chunk of memory to allocate
• caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory to be
returned

Returns A pointer to the memory allocated on success, NULL on failure
size_t heap_caps_get_total_size(uint32_t caps)

Get the total size of all the regions that have the given capabilities.
This function takes all regions capable of having the given capabilities allocated in them and adds up the total
space they have.

Parameters caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory
Returns total size in bytes

size_t heap_caps_get_free_size(uint32_t caps)
Get the total free size of all the regions that have the given capabilities.
This function takes all regions capable of having the given capabilities allocated in them and adds up the free
space they have.

Espressif Systems 1997
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: Note that because of heap fragmentation it is probably not possible to allocate a single block of memory
of this size. Use heap_caps_get_largest_free_block() for this purpose.

Parameters caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory
Returns Amount of free bytes in the regions

size_t heap_caps_get_minimum_free_size(uint32_t caps)
Get the total minimum free memory of all regions with the given capabilities.
This adds all the low watermarks of the regions capable of delivering the memory with the given capabilities.

Note: Note the result may be less than the global all-time minimum available heap of this kind, as "low
watermarks" are tracked per-region. Individual regions' heaps may have reached their "low watermarks" at
different points in time. However, this result still gives a "worst case" indication for all-time minimum free
heap.

Parameters caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory
Returns Amount of free bytes in the regions

size_t heap_caps_get_largest_free_block(uint32_t caps)
Get the largest free block of memory able to be allocated with the given capabilities.
Returns the largest value of s for which heap_caps_malloc(s, caps) will succeed.

Parameters caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory
Returns Size of the largest free block in bytes.

void heap_caps_get_info(multi_heap_info_t *info, uint32_t caps)
Get heap info for all regions with the given capabilities.
Calls multi_heap_info() on all heaps which share the given capabilities. The information returned is an aggre-
gate across all matching heaps. The meanings of fields are the same as defined for multi_heap_info_t, except
that minimum_free_bytes has the same caveats described in heap_caps_get_minimum_free_size().

Parameters
• info -- Pointer to a structure which will be filled with relevant heap metadata.
• caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory

void heap_caps_print_heap_info(uint32_t caps)
Print a summary of all memory with the given capabilities.
Calls multi_heap_info on all heaps which share the given capabilities, and prints a two-line summary for each,
then a total summary.

Parameters caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory
bool heap_caps_check_integrity_all(bool print_errors)

Check integrity of all heap memory in the system.
Calls multi_heap_check on all heaps. Optionally print errors if heaps are corrupt.
Calling this function is equivalent to calling heap_caps_check_integrity with the caps argument set to MAL-
LOC_CAP_INVALID.

Note: Please increase the value of CONFIG_ESP_INT_WDT_TIMEOUT_MS when using this API with
PSRAM enabled.

Parameters print_errors -- Print specific errors if heap corruption is found.

Espressif Systems 1998
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns True if all heaps are valid, False if at least one heap is corrupt.

bool heap_caps_check_integrity(uint32_t caps, bool print_errors)
Check integrity of all heaps with the given capabilities.
Calls multi_heap_check on all heaps which share the given capabilities. Optionally print errors if the heaps are
corrupt.
See also heap_caps_check_integrity_all to check all heap memory in the system and
heap_caps_check_integrity_addr to check memory around a single address.

Note: Please increase the value of CONFIG_ESP_INT_WDT_TIMEOUT_MS when using this API with
PSRAM capability flag.

Parameters
• caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory
• print_errors -- Print specific errors if heap corruption is found.

Returns True if all heaps are valid, False if at least one heap is corrupt.

bool heap_caps_check_integrity_addr(intptr_t addr, bool print_errors)
Check integrity of heap memory around a given address.
This function can be used to check the integrity of a single region of heap memory, which contains the given
address.
This can be useful if debugging heap integrity for corruption at a known address, as it has a lower over-
head than checking all heap regions. Note that if the corrupt address moves around between runs (due to
timing or other factors) then this approach won't work, and you should call heap_caps_check_integrity or
heap_caps_check_integrity_all instead.

Note: The entire heap region around the address is checked, not only the adjacent heap blocks.

Parameters
• addr -- Address in memory. Check for corruption in region containing this address.
• print_errors -- Print specific errors if heap corruption is found.

Returns True if the heap containing the specified address is valid, False if at least one heap is
corrupt or the address doesn't belong to a heap region.

void heap_caps_malloc_extmem_enable(size_t limit)
Enable malloc() in external memory and set limit belowwhichmalloc() attempts are placed in internal memory.
When external memory is in use, the allocation strategy is to initially try to satisfy smaller allocation requests
with internal memory and larger requests with external memory. This sets the limit between the two, as well
as generally enabling allocation in external memory.

Parameters limit -- Limit, in bytes.
void *heap_caps_malloc_prefer(size_t size, size_t num, ...)

Allocate a chunk of memory as preference in decreasing order.

Attention The variable parameters are bitwise OR ofMALLOC_CAP_* flags indicating the type of memory.
This API prefers to allocate memory with the first parameter. If failed, allocate memory with the next
parameter. It will try in this order until allocating a chunk of memory successfully or fail to allocate
memories with any of the parameters.

Parameters
• size -- Size, in bytes, of the amount of memory to allocate

Espressif Systems 1999
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• num -- Number of variable parameters
Returns A pointer to the memory allocated on success, NULL on failure

void *heap_caps_realloc_prefer(void *ptr, size_t size, size_t num, ...)
Reallocate a chunk of memory as preference in decreasing order.

Parameters
• ptr -- Pointer to previously allocated memory, or NULL for a new allocation.
• size -- Size of the new buffer requested, or 0 to free the buffer.
• num -- Number of variable paramters

Returns Pointer to a new buffer of size 'size', or NULL if allocation failed.
void *heap_caps_calloc_prefer(size_t n, size_t size, size_t num, ...)

Allocate a chunk of memory as preference in decreasing order.
Parameters

• n -- Number of continuing chunks of memory to allocate
• size -- Size, in bytes, of a chunk of memory to allocate
• num -- Number of variable paramters

Returns A pointer to the memory allocated on success, NULL on failure
void heap_caps_dump(uint32_t caps)

Dump the full structure of all heaps with matching capabilities.
Prints a large amount of output to serial (because of locking limitations, the output bypasses stdout/stderr).
For each (variable sized) block in each matching heap, the following output is printed on a single line:

• Block address (the data buffer returned by malloc is 4 bytes after this if heap debugging is set to Basic,
or 8 bytes otherwise).

• Data size (the data size may be larger than the size requested by malloc, either due to heap fragmentation
or because of heap debugging level).

• Address of next block in the heap.
• If the block is free, the address of the next free block is also printed.

Parameters caps -- Bitwise OR of MALLOC_CAP_* flags indicating the type of memory

void heap_caps_dump_all(void)
Dump the full structure of all heaps.
Covers all registered heaps. Prints a large amount of output to serial.
Output is the same as for heap_caps_dump.

size_t heap_caps_get_allocated_size(void *ptr)
Return the size that a particular pointer was allocated with.

Note: The app will crash with an assertion failure if the pointer is not valid.

Parameters ptr -- Pointer to currently allocated heap memory. Must be a pointer value previ-
ously returned by heap_caps_malloc, malloc, calloc, etc. and not yet freed.

Returns Size of the memory allocated at this block.

Macros

HEAP_IRAM_ATTR

Espressif Systems 2000
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

MALLOC_CAP_EXEC

Flags to indicate the capabilities of the various memory systems.
Memory must be able to run executable code

MALLOC_CAP_32BIT

Memory must allow for aligned 32-bit data accesses.

MALLOC_CAP_8BIT

Memory must allow for 8/16/...-bit data accesses.

MALLOC_CAP_DMA

Memory must be able to accessed by DMA.

MALLOC_CAP_PID2

Memory must be mapped to PID2 memory space (PIDs are not currently used)

MALLOC_CAP_PID3

Memory must be mapped to PID3 memory space (PIDs are not currently used)

MALLOC_CAP_PID4

Memory must be mapped to PID4 memory space (PIDs are not currently used)

MALLOC_CAP_PID5

Memory must be mapped to PID5 memory space (PIDs are not currently used)

MALLOC_CAP_PID6

Memory must be mapped to PID6 memory space (PIDs are not currently used)

MALLOC_CAP_PID7

Memory must be mapped to PID7 memory space (PIDs are not currently used)

MALLOC_CAP_SPIRAM

Memory must be in SPI RAM.

MALLOC_CAP_INTERNAL

Memory must be internal; specifically it should not disappear when flash/spiram cache is switched off.

MALLOC_CAP_DEFAULT

Memory can be returned in a non-capability-specific memory allocation (e.g. malloc(), calloc()) call.

MALLOC_CAP_IRAM_8BIT

Memory must be in IRAM and allow unaligned access.

MALLOC_CAP_RETENTION

Memory must be able to accessed by retention DMA.

MALLOC_CAP_RTCRAM

Memory must be in RTC fast memory.

Espressif Systems 2001
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

MALLOC_CAP_INVALID

Memory can't be used / list end marker.

Type Definitions

typedef void (*esp_alloc_failed_hook_t)(size_t size, uint32_t caps, const char *function_name)
callback called when an allocation operation fails, if registered

Param size in bytes of failed allocation
Param caps capabilities requested of failed allocation
Param function_name function which generated the failure

API Reference - Initialisation

Header File
• components/heap/include/esp_heap_caps_init.h

Functions
void heap_caps_init(void)

Initialize the capability-aware heap allocator.
This is called once in the IDF startup code. Do not call it at other times.

void heap_caps_enable_nonos_stack_heaps(void)
Enable heap(s) in memory regions where the startup stacks are located.
On startup, the pro/app CPUs have a certain memory region they use as stack, so we cannot do allocations
in the regions these stack frames are. When FreeRTOS is completely started, they do not use that memory
anymore and heap(s) there can be enabled.

esp_err_t heap_caps_add_region(intptr_t start, intptr_t end)
Add a region of memory to the collection of heaps at runtime.
Most memory regions are defined in soc_memory_layout.c for the SoC, and are registered via heap_caps_init().
Some regions can't be used immediately and are later enabled via heap_caps_enable_nonos_stack_heaps().
Call this function to add a region of memory to the heap at some later time.
This function does not consider any of the "reserved" regions or other data in soc_memory_layout, caller needs
to consider this themselves.
All memory within the region specified by start & end parameters must be otherwise unused.
The capabilities of the newly registered memory will be determined by the start address, as looked up in the
regions specified in soc_memory_layout.c.
Use heap_caps_add_region_with_caps() to register a region with custom capabilities.

Note: Please refer to following example for memory regions allowed for addition to heap based on an existing
region (address range for demonstration purpose only):

Existing region: 0x1000 <-> 0x3000
New region: 0x1000 <-> 0x3000 (Allowed)
New region: 0x1000 <-> 0x2000 (Allowed)
New region: 0x0000 <-> 0x1000 (Allowed)
New region: 0x3000 <-> 0x4000 (Allowed)
New region: 0x0000 <-> 0x2000 (NOT Allowed)
New region: 0x0000 <-> 0x4000 (NOT Allowed)
New region: 0x1000 <-> 0x4000 (NOT Allowed)
New region: 0x2000 <-> 0x4000 (NOT Allowed)

Espressif Systems 2002
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/heap/include/esp_heap_caps_init.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• start -- Start address of new region.
• end -- End address of new region.

Returns ESP_OK on success, ESP_ERR_INVALID_ARG if a parameter is invalid,
ESP_ERR_NOT_FOUND if the specified start address doesn't reside in a known re-
gion, or any error returned by heap_caps_add_region_with_caps().

esp_err_t heap_caps_add_region_with_caps(const uint32_t caps[], intptr_t start, intptr_t end)
Add a region of memory to the collection of heaps at runtime, with custom capabilities.
Similar to heap_caps_add_region(), only custom memory capabilities are specified by the caller.

Note: Please refer to following example for memory regions allowed for addition to heap based on an existing
region (address range for demonstration purpose only):

Existing region: 0x1000 <-> 0x3000
New region: 0x1000 <-> 0x3000 (Allowed)
New region: 0x1000 <-> 0x2000 (Allowed)
New region: 0x0000 <-> 0x1000 (Allowed)
New region: 0x3000 <-> 0x4000 (Allowed)
New region: 0x0000 <-> 0x2000 (NOT Allowed)
New region: 0x0000 <-> 0x4000 (NOT Allowed)
New region: 0x1000 <-> 0x4000 (NOT Allowed)
New region: 0x2000 <-> 0x4000 (NOT Allowed)

Parameters
• caps -- Ordered array of capability masks for the new region, in order of priority. Must
have length SOC_MEMORY_TYPE_NO_PRIOS. Does not need to remain valid after
the call returns.

• start -- Start address of new region.
• end -- End address of new region.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if a parameter is invalid
• ESP_ERR_NO_MEM if no memory to register new heap.
• ESP_ERR_INVALID_SIZE if the memory region is too small to fit a heap
• ESP_FAIL if region overlaps the start and/or end of an existing region

API Reference - Multi Heap API

(Note: The multi heap API is used internally by the heap capabilities allocator. Most IDF programs will never need
to call this API directly.)

Header File
• components/heap/include/multi_heap.h

Functions
void *multi_heap_aligned_alloc(multi_heap_handle_t heap, size_t size, size_t alignment)

allocate a chunk of memory with specific alignment
Parameters

• heap -- Handle to a registered heap.
• size -- size in bytes of memory chunk

Espressif Systems 2003
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/heap/include/multi_heap.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• alignment -- how the memory must be aligned
Returns pointer to the memory allocated, NULL on failure

void *multi_heap_malloc(multi_heap_handle_t heap, size_t size)
malloc() a buffer in a given heap
Semantics are the same as standard malloc(), only the returned buffer will be allocated in the specified heap.

Parameters
• heap -- Handle to a registered heap.
• size -- Size of desired buffer.

Returns Pointer to new memory, or NULL if allocation fails.
void multi_heap_aligned_free(multi_heap_handle_t heap, void *p)

free() a buffer aligned in a given heap.

Note: This function is deprecated, consider using multi_heap_free() instead

Parameters
• heap -- Handle to a registered heap.
• p -- NULL, or a pointer previously returned frommulti_heap_aligned_alloc() for the same
heap.

void multi_heap_free(multi_heap_handle_t heap, void *p)
free() a buffer in a given heap.
Semantics are the same as standard free(), only the argument 'p' must be NULL or have been allocated in the
specified heap.

Parameters
• heap -- Handle to a registered heap.
• p -- NULL, or a pointer previously returned from multi_heap_malloc() or
multi_heap_realloc() for the same heap.

void *multi_heap_realloc(multi_heap_handle_t heap, void *p, size_t size)
realloc() a buffer in a given heap.
Semantics are the same as standard realloc(), only the argument 'p' must be NULL or have been allocated in
the specified heap.

Parameters
• heap -- Handle to a registered heap.
• p -- NULL, or a pointer previously returned from multi_heap_malloc() or
multi_heap_realloc() for the same heap.

• size -- Desired new size for buffer.
Returns New buffer of 'size' containing contents of 'p', or NULL if reallocation failed.

size_t multi_heap_get_allocated_size(multi_heap_handle_t heap, void *p)
Return the size that a particular pointer was allocated with.

Parameters
• heap -- Handle to a registered heap.
• p -- Pointer, must have been previously returned from multi_heap_malloc() or
multi_heap_realloc() for the same heap.

Returns Size of the memory allocated at this block. May be more than the original size argument,
due to padding and minimum block sizes.

multi_heap_handle_t multi_heap_register(void *start, size_t size)
Register a new heap for use.
This function initialises a heap at the specified address, and returns a handle for future heap operations.

Espressif Systems 2004
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

There is no equivalent function for deregistering a heap - if all blocks in the heap are free, you can immediately
start using the memory for other purposes.

Parameters
• start -- Start address of the memory to use for a new heap.
• size -- Size (in bytes) of the new heap.

Returns Handle of a new heap ready for use, or NULL if the heap region was too small to be
initialised.

void multi_heap_set_lock(multi_heap_handle_t heap, void *lock)
Associate a private lock pointer with a heap.
The lock argument is supplied to the MULTI_HEAP_LOCK() and MULTI_HEAP_UNLOCK() macros, de-
fined in multi_heap_platform.h.
The lock in question must be recursive.
When the heap is first registered, the associated lock is NULL.

Parameters
• heap -- Handle to a registered heap.
• lock -- Optional pointer to a locking structure to associate with this heap.

void multi_heap_dump(multi_heap_handle_t heap)
Dump heap information to stdout.
For debugging purposes, this function dumps information about every block in the heap to stdout.

Parameters heap -- Handle to a registered heap.
bool multi_heap_check(multi_heap_handle_t heap, bool print_errors)

Check heap integrity.
Walks the heap and checks all heap data structures are valid. If any errors are detected, an error-specific
message can be optionally printed to stderr. Print behaviour can be overridden at compile time by defining
MULTI_CHECK_FAIL_PRINTF in multi_heap_platform.h.

Note: This function is not thread-safe as it sets a global variable with the value of print_errors.

Parameters
• heap -- Handle to a registered heap.
• print_errors -- If true, errors will be printed to stderr.

Returns true if heap is valid, false otherwise.

size_t multi_heap_free_size(multi_heap_handle_t heap)
Return free heap size.
Returns the number of bytes available in the heap.
Equivalent to the total_free_bytes member returned by multi_heap_get_heap_info().
Note that the heap may be fragmented, so the actual maximum size for a single malloc() may be lower. To
know this size, see the largest_free_block member returned by multi_heap_get_heap_info().

Parameters heap -- Handle to a registered heap.
Returns Number of free bytes.

size_t multi_heap_minimum_free_size(multi_heap_handle_t heap)
Return the lifetime minimum free heap size.
Equivalent to the minimum_free_bytes member returned by multi_heap_get_info().
Returns the lifetime "lowwatermark" of possible values returned frommulti_free_heap_size(), for the specified
heap.

Espressif Systems 2005
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters heap -- Handle to a registered heap.
Returns Number of free bytes.

void multi_heap_get_info(multi_heap_handle_t heap, multi_heap_info_t *info)
Return metadata about a given heap.
Fills a multi_heap_info_t structure with information about the specified heap.

Parameters
• heap -- Handle to a registered heap.
• info -- Pointer to a structure to fill with heap metadata.

Structures

struct multi_heap_info_t
Structure to access heap metadata via multi_heap_get_info.

Public Members

size_t total_free_bytes
Total free bytes in the heap. Equivalent to multi_free_heap_size().

size_t total_allocated_bytes
Total bytes allocated to data in the heap.

size_t largest_free_block
Size of the largest free block in the heap. This is the largest malloc-able size.

size_t minimum_free_bytes
Lifetime minimum free heap size. Equivalent to multi_minimum_free_heap_size().

size_t allocated_blocks
Number of (variable size) blocks allocated in the heap.

size_t free_blocks
Number of (variable size) free blocks in the heap.

size_t total_blocks
Total number of (variable size) blocks in the heap.

Type Definitions

typedef struct multi_heap_info *multi_heap_handle_t
Opaque handle to a registered heap.

2.10.14 Memory Management for MMU Supported Memory

Introduction

ESP32-C6 Memory Management Unit (MMU) is relatively simple. It can do memory address translation between
physical memory addresses and virtual memory addresses. So CPU can access physical memories via virtual ad-
dresses. There are multiple types of virtual memory addresses, which have different capabilities.

Espressif Systems 2006
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP-IDF provides a memory mapping driver that manages the relation between these physical memory addresses and
virtual memory addresses, so as to achieve some features such as reading from SPI Flash via a pointer.
Memory mapping driver is actually a capabilities-based virtual memory address allocator that allows apps to make
virtual memory address allocations for different purposes. In the following chapters, we call this driver esp_mmap
driver.
ESP-IDF also provides a memory synchronisation driver which can be used for potential memory desychronisation
scenarios.

Physical Memory Types

Memory mapping driver currently supports mapping to following physical memory types:

• SPI Flash

Virtual Memory Capabilities

• MMU_MEM_CAP_EXEC. This capability indicates that the virtual memory address has the execute permission.
Note this permission scope is within the MMU hardware.

• MMU_MEM_CAP_READ. This capability indicates that the virtual memory address has the read permission.
Note this permission scope is within the MMU hardware.

• MMU_MEM_CAP_WRITE. This capability indicates that the virtual memory address has the write permission.
Note this permission scope is within the MMU hardware.

• MMU_MEM_CAP_32BIT. This capability indicates that the virtual memory address allows for 32 bits or mul-
tiples of 32 bits access.

• MMU_MEM_CAP_8BIT. This capability indicates that the virtual memory address allows for 8 bits or multiples
of 8 bits access.

You can call esp_mmu_map_get_max_consecutive_free_block_size() to know the largest consec-
utive mappable block size with certain capabilities.

Memory Management Drivers

Driver Concept

Terminology The virtual memory pool is made up with one or multiple virtual memory regions, see below figure:

• A virtual memory pool stands for the whole virtual address range that can be mapped to physical memory
• A virtual memory region is a range of virtual address with same attributes
• A virtual memory block is a piece of virtual address range that is dynamically mapped.
• A slot is the virtual address range between two virtual memory blocks.
• A physical memory block is a piece of physical address range that is to-be-mapped or already mapped to a
virtual memory block.

• Dynamical mapping is done by calling esp_mmap driver API esp_mmu_map(), this API will map the given
physical memory block to a virtual memory block which is allocated by the esp_mmap driver.

Espressif Systems 2007
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Relation between Memory Blocks When mapping a physical memory block A, block A can have one of the
following relations with another previously mapped physical memory block B:

• Enclosed: block A is completely enclosed within block B, see figure below:

• Identical: block A is completely the same as block B, see figure below:

Note esp_mmap driver will consider the identical scenario the same as the enclosed scenario.
• Overlapped: block A is overlapped with block B, see figure below:

There is a special condition, when block A entirely encloses block B, see figure below:

esp_mmap driver will consider this scenario the same as the overlapped scenario.

Espressif Systems 2008
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Driver Behaviour

Memory Map You can call esp_mmu_map() to do a dynamical mapping. This API will allocate a certain size
of virtual memory block according to the virtual memory capabilities you selected, then map this virtual memory
block to the physical memory block as you requested. The esp_mmap driver supports mapping to one or more types
of physical memory, so you should specify the physical memory target when mapping.
By default, physical memory blocks and virtual memory blocks are one-to-one mapped. This means, when calling
esp_mmu_map():

• If it's the enclosed scenario, this API will return an ESP_ERR_INVALID_STATE. The out_ptr will be as-
signed to the start virtual memory address of the previously mapped one which encloses the to-be-mapped
one.

• If it's the identical scenario, this API will behaves exactly the same as the enclosed scenario.
• If it's the overlapped scenario, this API will by default return an ESP_ERR_INVALID_ARG. This means,

esp_mmap driver by default doesn't allow mapping a physical memory address to multiple virtual memory
addresses.

Specially, you can use ESP_MMU_MMAP_FLAG_PADDR_SHARED. This flags stands for one-to-multiple mapping
between a physical address and multiple virtual addresses:

• If it's the overlapped scenario, this API will allocate a new virtual memory block as requested, then map to the
given physical memory block.

Memory Unmap You can call esp_mmu_unmap() to unmap a previously mapped memory block. This API
will return an ESP_ERR_NOT_FOUND if you are trying to unmap a virtual memory block that isn't mapped to any
physical memory block yet.

MemoryAddressConversion The esp_mmap driver provides two helper APIs to do the conversion between virtual
memory address and physical memory address.

• esp_mmu_vaddr_to_paddr(), convert virtual address to physical address.
• esp_mmu_paddr_to_vaddr(), convert physical address to virtual address.

Memory Synchronisation MMU supported physical memories can be accessed by one or multiple methods.
SPI Flash can be accessed by SPI1 (ESP-IDF esp_flash driver APIs), or by pointers. ESP-IDF esp_flash driver APIs
have already considered the memory synchronisation, so users don't need to worry about this.

Thread Safety

Following APIs in esp_mmu_map.h are not guaranteed to be thread-safe:
• esp_mmu_map_dump_mapped_blocks()

APIs in esp_cache.h are guaranteed to be thread-safe.

API Reference

API Reference - ESP MMAP Driver

Header File
• components/esp_mm/include/esp_mmu_map.h

Espressif Systems 2009
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_mm/include/esp_mmu_map.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
esp_err_t esp_mmu_map(esp_paddr_t paddr_start, size_t size, mmu_target_t target, mmu_mem_caps_t caps, int

flags, void **out_ptr)
Map a physical memory block to external virtual address block, with given capabilities.

Parameters
• paddr_start -- [in] Start address of the physical memory block
• size -- [in] Size to be mapped. Size will be rounded up by to the nearest multiple of
MMU page size

• target -- [in] Physical memory target you're going to map to, see mmu_target_t
• caps -- [in]Memory capabilities, see mmu_mem_caps_t
• flags -- [in]Mmap flags
• out_ptr -- [out] Start address of the mapped virtual memory

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG: Invalid argument, see printed logs
• ESP_ERR_NOT_SUPPORTED: Only on ESP32, PSRAM is not a supported physical
memory target

• ESP_ERR_NOT_FOUND: No enough size free block to use
• ESP_ERR_NO_MEM: Out of memory, this API will allocate some heap memory for
internal usage

• ESP_ERR_INVALID_STATE: Paddr is mapped already, this API will return correspond-
ing vaddr_start + new_block_offset as per the previously mapped block.
Only to-be-mapped paddr block is totally enclosed by a previously mapped block will lead
to this error. (Identical scenario will behave similarly) new_block_start new_block_end
|-----— New Block -----—| |------------— Block ------------—|
block_start block_end

esp_err_t esp_mmu_unmap(void *ptr)
Unmap a previously mapped virtual memory block.

Parameters ptr -- [in] Start address of the virtual memory
Returns

• ESP_OK
• ESP_ERR_INVALID_ARG: Null pointer
• ESP_ERR_NOT_FOUND: Vaddr is not in external memory, or it's not mapped yet

esp_err_t esp_mmu_map_get_max_consecutive_free_block_size(mmu_mem_caps_t caps,
mmu_target_t target, size_t
*out_len)

Get largest consecutive free external virtual memory block size, with given capabilities and given physical
target.

Parameters
• caps -- [in] Bitwise OR of MMU_MEM_CAP_* flags indicating the memory block
• target -- [in] Physical memory target you're going to map to, see mmu_target_t.
• out_len -- [out] Largest free block length, in bytes.

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG: Invalid arguments, could be null pointer

esp_err_t esp_mmu_map_dump_mapped_blocks(FILE *stream)
Dump all the previously mapped blocks

Note: This API shall not be called from an ISR.

Note: This API does not guarantee thread safety

Espressif Systems 2010
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters stream -- stream to print information to; use stdout or stderr to print to the console;
use fmemopen/open_memstream to print to a string buffer.

Returns
• ESP_OK

esp_err_t esp_mmu_vaddr_to_paddr(void *vaddr, esp_paddr_t *out_paddr, mmu_target_t *out_target)
Convert virtual address to physical address.

Parameters
• vaddr -- [in] Virtual address
• out_paddr -- [out] Physical address
• out_target -- [out] Physical memory target, see mmu_target_t

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG: Null pointer, or vaddr is not within external memory
• ESP_ERR_NOT_FOUND: Vaddr is not mapped yet

esp_err_t esp_mmu_paddr_to_vaddr(esp_paddr_t paddr, mmu_target_t target, mmu_vaddr_t type, void
**out_vaddr)

Convert physical address to virtual address.
Parameters

• paddr -- [in] Physical address
• target -- [in] Physical memory target, see mmu_target_t
• type -- [in] Virtual address type, could be either instruction or data
• out_vaddr -- [out] Virtual address

Returns
• ESP_OK
• ESP_ERR_INVALID_ARG: Null pointer
• ESP_ERR_NOT_FOUND: Paddr is not mapped yet

esp_err_t esp_mmu_paddr_find_caps(const esp_paddr_t paddr, mmu_mem_caps_t *out_caps)
If the physical address is mapped, this API will provide the capabilities of the virtual address where the physical
address is mapped to.

Note: : Only return value is ESP_OK(which means physically address is successfully mapped), then caps you
get make sense.

Note: This API only check one page (see CONFIG_MMU_PAGE_SIZE), starting from the paddr

Parameters
• paddr -- [in] Physical address
• out_caps -- [out] Bitwise OR of MMU_MEM_CAP_* flags indicating the capabilities
of a virtual address where the physical address is mapped to.

Returns
• ESP_OK: Physical address successfully mapped.
• ESP_ERR_INVALID_ARG: Null pointer
• ESP_ERR_NOT_FOUND: Physical address is not mapped successfully.

Macros

ESP_MMU_MMAP_FLAG_PADDR_SHARED

Share this mapping.
MMU Memory Mapping Driver APIs for MMU supported memory
Driver Backgrounds:

Espressif Systems 2011
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef uint32_t esp_paddr_t
Physical memory type.

API Reference - ESP MSYNC Driver

Header File
• components/esp_mm/include/esp_cache.h

Functions
esp_err_t esp_cache_msync(void *addr, size_t size, int flags)

Memory sync between Cache and external memory.

• For cache writeback supported chips (you can refer to SOC_CACHE_WRITEBACK_SUPPORTED in
soc_caps.h)
– this API will do a writeback to synchronise between cache and the PSRAM
– with ESP_CACHE_MSYNC_FLAG_INVALIDATE, this API will also invalidate the values that
just written

– note: although ESP32 is with PSRAM, but cache writeback isn't supported, so this API will do
nothing on ESP32

• For other chips, this API will do nothing. The out-of-sync should be already dealt by the SDK
This API is cache-safe and thread-safe

Note: You should not call this during any Flash operations (e.g. esp_flash APIs, nvs and some other APIs
that are based on esp_flash APIs)

Note: If XIP_From_PSRAM is enabled (by enabling both CONFIG_SPIRAM_FETCH_INSTRUCTIONS
and CONFIG_SPIRAM_RODATA), you can call this API during Flash operations

Parameters
• addr -- [in] Starting address to do the msync
• size -- [in] Size to do the msync
• flags -- [in] Flags, see ESP_CACHE_MSYNC_FLAG_x

Returns
• ESP_OK:
– Successful msync
– If this chip doesn't support cache writeback, if the input addr is a cache supported one,
this API will return ESP_OK

• ESP_ERR_INVALID_ARG: Invalid argument, not cache supported addr, see printed logs

Macros

ESP_CACHE_MSYNC_FLAG_INVALIDATE

Do an invalidation with the values that just written.
Cache msync flags

ESP_CACHE_MSYNC_FLAG_UNALIGNED

Allow writeback a block that are not aligned to the data cache line size.

Espressif Systems 2012
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_mm/include/esp_cache.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.10.15 Heap Memory Debugging

Overview

ESP-IDF integrates tools for requesting heap information, detecting heap corruption, and tracing memory leaks. These
can help track down memory-related bugs.
For general information about the heap memory allocator, see the Heap Memory Allocation page.

Heap Information

To obtain information about the state of the heap:
• xPortGetFreeHeapSize() is a FreeRTOS function which returns the number of free bytes in the (data
memory) heap. This is equivalent to calling heap_caps_get_free_size(MALLOC_CAP_8BIT).

• heap_caps_get_free_size() can also be used to return the current free memory for different memory
capabilities.

• heap_caps_get_largest_free_block() can be used to return the largest free block in the heap.
This is the largest single allocation which is currently possible. Tracking this value and comparing to total free
heap allows you to detect heap fragmentation.

• xPortGetMinimumEverFreeHeapSize() and the relatedheap_caps_get_minimum_free_size()
can be used to track the heap "low watermark" since boot.

• heap_caps_get_info() returns a multi_heap_info_t structure which contains the information
from the above functions, plus some additional heap-specific data (number of allocations, etc.).

• heap_caps_print_heap_info() prints a summary to stdout of the information returned by
heap_caps_get_info().

• heap_caps_dump() and heap_caps_dump_all() will output detailed information about the struc-
ture of each block in the heap. Note that this can be large amount of output.

Heap allocation and free function hooks

Heap allocation and free detection hooks allows you to be notified of every successful allocation and free operations:
- Providing a definition of esp_heap_trace_alloc_hook() will allow you to be notified of every successful
memory allocation operations - Providing a definition of esp_heap_trace_free_hook() will allow you to be
notified of every memory free operations
To activate the feature, navigate to Component config -> Heap Memory Debugging in
the configuration menu and select Use allocation and free hooks option (see CON-
FIG_HEAP_USE_HOOKS). esp_heap_trace_alloc_hook() and esp_heap_trace_free_hook()
have weak declarations, it is not necessary to provide a declarations for both hooks. Since allocating and free-
ing memory is allowed even though strongly recommended against, esp_heap_trace_alloc_hook() and
esp_heap_trace_free_hook() can potentially be called from ISR.

Heap Corruption Detection

Heap corruption detection allows you to detect various types of heap memory errors:
• Out of bounds writes & buffer overflow.
• Writes to freed memory.
• Reads from freed or uninitialized memory,

Assertions The heap implementation (multi_heap.c, etc.) includes a lot of assertions which will fail if the
heapmemory is corrupted. To detect heap corruptionmost effectively, ensure that assertions are enabled in the project
configuration menu under Compiler options -> CONFIG_COMPILER_OPTIMIZATION_ASSERTION_LEVEL.
If a heap integrity assertion fails, a line will be printed like CORRUPT HEAP: multi_heap.c:225 detected
at 0x3ffbb71c. The memory address which is printed is the address of the heap structure which has corrupt
content.

Espressif Systems 2013
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

It's also possible tomanually check heap integrity by callingheap_caps_check_integrity_all() or related
functions. This function checks all of requested heap memory for integrity, and can be used even if assertions are
disabled. If the integrity check prints an error, it will also contain the address(es) of corrupt heap structures.

Memory Allocation Failed Hook Users can use heap_caps_register_failed_alloc_callback()
to register a callback that will be invoked every time an allocation operation fails.
Additionally, users can enable the generation of a system abort if an allocation operation fails by follow-
ing the steps below: - In the project configuration menu, navigate to Component config -> Heap
Memory Debugging and select Abort if memory allocation fails option (see CON-
FIG_HEAP_ABORT_WHEN_ALLOCATION_FAILS).
The example below shows how to register an allocation failure callback:

#include "esp_heap_caps.h"

void heap_caps_alloc_failed_hook(size_t requested_size, uint32_t caps, const char␣
↪→*function_name)
{

printf("%s was called but failed to allocate %d bytes with 0x%X capabilities. \n
↪→",function_name, requested_size, caps);
}

void app_main()
{

...
esp_err_t error = heap_caps_register_failed_alloc_callback(heap_caps_alloc_

↪→failed_hook);
...
void *ptr = heap_caps_malloc(allocation_size, MALLOC_CAP_DEFAULT);
...

}

Finding Heap Corruption Memory corruption can be one of the hardest classes of bugs to find and fix, as one
area of memory can be corrupted from a totally different place. Some tips:

• A crash with a CORRUPT HEAP: message will usually include a stack trace, but this stack trace is rarely
useful. The crash is the symptom of memory corruption when the system realises the heap is corrupt, but
usually the corruption happened elsewhere and earlier in time.

• Increasing the Heap memory debugging Configuration level to "Light impact" or "Comprehensive" can give
you a more accurate message with the first corrupt memory address.

• Adding regular calls to heap_caps_check_integrity_all() or
heap_caps_check_integrity_addr() in your code will help you pin down the exact time
that the corruption happened. You can move these checks around to "close in on" the section of code that
corrupted the heap.

• Based on the memory address which is being corrupted, you can use JTAG debugging to set a watchpoint on
this address and have the CPU halt when it is written to.

• If you don't have JTAG, but you do know roughly when the corruption happens, then you can set
a watchpoint in software just beforehand via esp_cpu_set_watchpoint(). A fatal exception
will occur when the watchpoint triggers. The following is an example of how to use the function -
esp_cpu_set_watchpoint(0, (void *)addr, 4, ESP_WATCHPOINT_STORE). Note that
watchpoints are per-CPU and are set on the current running CPU only, so if you don't know which CPU is
corrupting memory then you will need to call this function on both CPUs.

• For buffer overflows, heap tracing in HEAP_TRACE_ALLmode lets you see which callers are allocating which
addresses from the heap. See Heap Tracing To Find Heap Corruption for more details. If you can find the
function which allocates memory with an address immediately before the address which is corrupted, this will
probably be the function which overflows the buffer.

• Calling heap_caps_dump() or heap_caps_dump_all() can give an indication of what heap blocks
are surrounding the corrupted region and may have overflowed/underflowed/etc.

Espressif Systems 2014
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Configuration Temporarily increasing the heap corruption detection level can givemore detailed information about
heap corruption errors.
In the project configuration menu, under Component config there is a menu Heap memory debugging.
The setting CONFIG_HEAP_CORRUPTION_DETECTION can be set to one of three levels:

Basic (no poisoning) This is the default level. No special heap corruption features are enabled, but provided
assertions are enabled (the default configuration) then a heap corruption error will be printed if any of the heap's
internal data structures appear overwritten or corrupted. This usually indicates a buffer overrun or out of bounds
write.
If assertions are enabled, an assertion will also trigger if a double-free occurs (the same memory is freed twice).
Calling heap_caps_check_integrity() in Basic mode will check the integrity of all heap structures, and
print errors if any appear to be corrupted.

Light Impact At this level, heap memory is additionally "poisoned" with head and tail "canary bytes" before and
after each block which is allocated. If an application writes outside the bounds of allocated buffers, the canary bytes
will be corrupted and the integrity check will fail.
The head canary word is 0xABBA1234 (3412BAAB in byte order), and the tail canary word is 0xBAAD5678
(7856ADBA in byte order).
"Basic" heap corruption checks can also detect most out of bounds writes, but this setting is more precise as even a
single byte overrun can be detected. With Basic heap checks, the number of overrun bytes before a failure is detected
will depend on the properties of the heap.
Enabling "Light Impact" checking increases memory usage, each individual allocation will use 9 to 12 additional
bytes of memory (depending on alignment).
Each time free() is called in Light Impact mode, the head and tail canary bytes of the buffer being freed are
checked against the expected values.
Whenheap_caps_check_integrity() is called, all allocated blocks of heapmemory have their canary bytes
checked against the expected values.
In both cases, the check is that the first 4 bytes of an allocated block (before the buffer returned to the user) should
be the word 0xABBA1234. Then the last 4 bytes of the allocated block (after the buffer returned to the user) should
be the word 0xBAAD5678.
Different values usually indicate buffer underrun or overrun, respectively.

Comprehensive This level incorporates the "light impact" detection features plus additional checks for
uninitialised-access and use-after-free bugs. In this mode, all freshly allocated memory is filled with the pattern
0xCE, and all freed memory is filled with the pattern 0xFE.
Enabling "Comprehensive" detection has a substantial runtime performance impact (as all memory needs to be set
to the allocation patterns each time a malloc/free completes, and the memory also needs to be checked each time.)
However, it allows easier detection of memory corruption bugs which are much more subtle to find otherwise. It is
recommended to only enable this mode when debugging, not in production.

Crashes in Comprehensive Mode If an application crashes reading/writing an address related to 0xCECECECE
in Comprehensive mode, this indicates it has read uninitialized memory. The application should be changed to either
use calloc() (which zeroes memory), or initialize the memory before using it. The value 0xCECECECE may also be
seen in stack-allocated automatic variables, because in IDF most task stacks are originally allocated from the heap
and in C stack memory is uninitialized by default.
If an application crashes and the exception register dump indicates that some addresses or values were 0xFEFEFEFE,
this indicates it is reading heap memory after it has been freed (a "use after free bug".) The application should be
changed to not access heap memory after it has been freed.

Espressif Systems 2015
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

If a call to malloc() or realloc() causes a crash because it expected to find the pattern 0xFEFEFEFE in free memory
and a different pattern was found, then this indicates the app has a use-after-free bug where it is writing to memory
which has already been freed.

Manual Heap Checks in Comprehensive Mode Calls to heap_caps_check_integrity()may print er-
rors relating to 0xFEFEFEFE, 0xABBA1234 or 0xBAAD5678. In each case the checker is expecting to find a given
pattern, and will error out if this is not found:

• For free heap blocks, the checker expects to find all bytes set to 0xFE. Any other values indicate a use-after-free
bug where free memory has been incorrectly overwritten.

• For allocated heap blocks, the behaviour is the same as for Light Impact mode. The canary bytes 0xABBA1234
and 0xBAAD5678 are checked at the head and tail of each allocated buffer, and any variation indicates a buffer
overrun/underrun.

Heap Task Tracking

Heap Task Tracking can be used to get per task info for heap memory allocation. Application has to specify the heap
capabilities for which the heap allocation is to be tracked.
Example code is provided in system/heap_task_tracking

Heap Tracing

Heap Tracing allows tracing of code which allocates/frees memory. Two tracing modes are supported:
• Standalone. In this mode trace data are kept on-board, so the size of gathered information is limited by the
buffer assigned for that purposes. Analysis is done by the on-board code. There are a couple of APIs available
for accessing and dumping collected info.

• Host-based. This mode does not have the limitation of the standalone mode, because trace data are sent to the
host over JTAG connection using app_trace library. Later on they can be analysed using special tools.

Heap tracing can perform two functions:
• Leak checking: find memory which is allocated and never freed.
• Heap use analysis: show all functions that are allocating/freeing memory while the trace is running.

How To Diagnose Memory Leaks If you suspect a memory leak, the first step is to figure out which part of the
program is leaking memory. Use the xPortGetFreeHeapSize(), heap_caps_get_free_size(), or
related functions to track memory use over the life of the application. Try to narrow the leak down to a single function
or sequence of functions where free memory always decreases and never recovers.

Standalone Mode Once you've identified the code which you think is leaking:
• In the project configuration menu, navigate to Component settings -> Heap Memory Debugging
-> Heap tracing and select Standalone option (see CONFIG_HEAP_TRACING_DEST).

• Call the function heap_trace_init_standalone() early in the program, to register a buffer which
can be used to record the memory trace.

• Call the function heap_trace_start() to begin recording all mallocs/frees in the system. Call this
immediately before the piece of code which you suspect is leaking memory.

• Call the function heap_trace_stop() to stop the trace once the suspect piece of code has finished exe-
cuting.

• Call the function heap_trace_dump() to dump the results of the heap trace.
An example:

Espressif Systems 2016
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/heap_task_tracking
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

#include "esp_heap_trace.h"

#define NUM_RECORDS 100
static heap_trace_record_t trace_record[NUM_RECORDS]; // This buffer must be in␣
↪→internal RAM

...

void app_main()
{

...
ESP_ERROR_CHECK(heap_trace_init_standalone(trace_record, NUM_RECORDS));
...

}

void some_function()
{

ESP_ERROR_CHECK(heap_trace_start(HEAP_TRACE_LEAKS));

do_something_you_suspect_is_leaking();

ESP_ERROR_CHECK(heap_trace_stop());
heap_trace_dump();
...

}

The output from the heap trace will look something like this:

2 allocations trace (100 entry buffer)
32 bytes (@ 0x3ffaf214) allocated CPU 0 ccount 0x2e9b7384 caller
8 bytes (@ 0x3ffaf804) allocated CPU 0 ccount 0x2e9b79c0 caller
40 bytes 'leaked' in trace (2 allocations)
total allocations 2 total frees 0

(Above example output is using IDFMonitor to automatically decode PC addresses to their source files& line number.)
The first line indicates how many allocation entries are in the buffer, compared to its total size.
InHEAP_TRACE_LEAKSmode, for each tracedmemory allocation which has not already been freed a line is printed
with:

• XX bytes is the number of bytes allocated
• @ 0x... is the heap address returned from malloc/calloc.
• Internal or PSRAM is the general location of the allocated memory.
• CPU x is the CPU (0 or 1) running when the allocation was made.
• ccount 0x... is the CCOUNT (CPU cycle count) register value when the allocation was mode. Is different
for CPU 0 vs CPU 1.

Finally, the total number of 'leaked' bytes (bytes allocated but not freed while trace was running) is printed, and the
total number of allocations this represents.
A warning will be printed if the trace buffer was not large enough to hold all the allocations which happened. If you
see this warning, consider either shortening the tracing period or increasing the number of records in the trace buffer.

Host-Based Mode Once you've identified the code which you think is leaking:
• In the project configuration menu, navigate to Component settings -> Heap Memory Debugging
-> CONFIG_HEAP_TRACING_DEST and select Host-Based.

• In the project configurationmenu, navigate toComponent settings ->Application Level Trac-
ing -> CONFIG_APPTRACE_DESTINATION1 and select Trace memory.

Espressif Systems 2017
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• In the project configurationmenu, navigate toComponent settings ->Application Level Trac-
ing -> FreeRTOS SystemView Tracing and enable CONFIG_APPTRACE_SV_ENABLE.

• Call the function heap_trace_init_tohost() early in the program, to initialize JTAG heap tracing
module.

• Call the function heap_trace_start() to begin recording all mallocs/frees in the system. Call this
immediately before the piece of code which you suspect is leaking memory. In host-based mode, the argument
to this function is ignored, and the heap tracing module behaves like HEAP_TRACE_ALL was passed: all
allocations and deallocations are sent to the host.

• Call the function heap_trace_stop() to stop the trace once the suspect piece of code has finished exe-
cuting.

An example:

#include "esp_heap_trace.h"

...

void app_main()
{

...
ESP_ERROR_CHECK(heap_trace_init_tohost());
...

}

void some_function()
{

ESP_ERROR_CHECK(heap_trace_start(HEAP_TRACE_LEAKS));

do_something_you_suspect_is_leaking();

ESP_ERROR_CHECK(heap_trace_stop());
...

}

To gather and analyse heap trace do the following on the host:
1. Build the program and download it to the target as described in Getting Started Guide.
2. Run OpenOCD (see JTAG Debugging).

Note: In order to use this feature you need OpenOCD version v0.10.0-esp32-20181105 or later.

3. You can use GDB to start and/or stop tracing automatically. To do this you need to prepare special gdbinit
file:

target remote :3333

mon reset halt
maintenance flush register-cache

tb heap_trace_start
commands
mon esp sysview start file:///tmp/heap.svdat
c
end

tb heap_trace_stop
commands
mon esp sysview stop
end

c

Espressif Systems 2018
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Using this file GDB will connect to the target, reset it, and start tracing when program hits breakpoint at
heap_trace_start(). Trace data will be saved to /tmp/heap_log.svdat. Tracing will be stopped when
program hits breakpoint at heap_trace_stop().

4. Run GDB using the following command riscv32-esp-elf-gdb -x gdbinit </path/to/
program/elf>

5. Quit GDB when program stops at heap_trace_stop(). Trace data are saved in /tmp/heap.svdat
6. Run processing script $IDF_PATH/tools/esp_app_trace/sysviewtrace_proc.py -p -b

</path/to/program/elf> /tmp/heap_log.svdat

The output from the heap trace will look something like this:

Parse trace from '/tmp/heap.svdat'...
Stop parsing trace. (Timeout 0.000000 sec while reading 1 bytes!)
Process events from '['/tmp/heap.svdat']'...
[0.002244575] HEAP: Allocated 1 bytes @ 0x3ffaffd8 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:47
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.002258425] HEAP: Allocated 2 bytes @ 0x3ffaffe0 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:48
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.002563725] HEAP: Freed bytes @ 0x3ffaffe0 from task "free" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:31 (discriminator 9)
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.002782950] HEAP: Freed bytes @ 0x3ffb40b8 from task "main" on core 0 by:
/home/user/projects/esp/esp-idf/components/freertos/tasks.c:4590
/home/user/projects/esp/esp-idf/components/freertos/tasks.c:4590

[0.002798700] HEAP: Freed bytes @ 0x3ffb50bc from task "main" on core 0 by:
/home/user/projects/esp/esp-idf/components/freertos/tasks.c:4590
/home/user/projects/esp/esp-idf/components/freertos/tasks.c:4590

[0.102436025] HEAP: Allocated 2 bytes @ 0x3ffaffe0 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:47
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.102449800] HEAP: Allocated 4 bytes @ 0x3ffaffe8 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:48
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.102666150] HEAP: Freed bytes @ 0x3ffaffe8 from task "free" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:31 (discriminator 9)
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.202436200] HEAP: Allocated 3 bytes @ 0x3ffaffe8 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:47
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.202451725] HEAP: Allocated 6 bytes @ 0x3ffafff0 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:48
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

(continues on next page)

Espressif Systems 2019
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
[0.202667075] HEAP: Freed bytes @ 0x3ffafff0 from task "free" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:31 (discriminator 9)
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.302436000] HEAP: Allocated 4 bytes @ 0x3ffafff0 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:47
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.302451475] HEAP: Allocated 8 bytes @ 0x3ffb40b8 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:48
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.302667500] HEAP: Freed bytes @ 0x3ffb40b8 from task "free" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:31 (discriminator 9)
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

Processing completed.
Processed 1019 events
=============== HEAP TRACE REPORT ===============
Processed 14 heap events.
[0.002244575] HEAP: Allocated 1 bytes @ 0x3ffaffd8 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:47
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.102436025] HEAP: Allocated 2 bytes @ 0x3ffaffe0 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:47
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.202436200] HEAP: Allocated 3 bytes @ 0x3ffaffe8 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:47
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

[0.302436000] HEAP: Allocated 4 bytes @ 0x3ffafff0 from task "alloc" on core 0 by:
/home/user/projects/esp/esp-idf/examples/system/sysview_tracing_heap_log/main/
↪→sysview_heap_log.c:47
/home/user/projects/esp/esp-idf/components/freertos/port.c:355 (discriminator 1)

Found 10 leaked bytes in 4 blocks.

Heap Tracing To Find Heap Corruption Heap tracing can also be used to help track down heap corruption.
When a region in heap is corrupted, it may be from some other part of the program which allocated memory at a
nearby address.
If you have some idea at what time the corruption occurred, enabling heap tracing in HEAP_TRACE_ALL mode
allows you to record all the functions which allocated memory, and the addresses of the allocations.
Using heap tracing in this way is very similar to memory leak detection as described above. For memory which is
allocated and not freed, the output is the same. However, records will also be shown for memory which has been
freed.

Performance Impact Enabling heap tracing in menuconfig increases the code size of your program, and has a very
small negative impact on performance of heap allocation/free operations even when heap tracing is not running.

Espressif Systems 2020
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

When heap tracing is running, heap allocation/free operations are substantially slower than when heap tracing is
stopped. Increasing the depth of stack frames recorded for each allocation (see above) will also increase this perfor-
mance impact.

False-PositiveMemory Leaks Not everything printed by heap_trace_dump() is necessarily a memory leak.
Among things which may show up here, but are not memory leaks:

• Any memory which is allocated after heap_trace_start() but then freed after
heap_trace_stop() will appear in the leak dump.

• Allocations may be made by other tasks in the system. Depending on the timing of these tasks, it's quite
possible this memory is freed after heap_trace_stop() is called.

• The first time a task uses stdio - for example, when it calls printf() - a lock (RTOS mutex semaphore) is
allocated by the libc. This allocation lasts until the task is deleted.

• Certain uses of printf(), such as printing floating point numbers, will allocate some memory from the heap
on demand. These allocations last until the task is deleted.

• The Bluetooth, Wi-Fi, and TCP/IP libraries will allocate heap memory buffers to handle incoming or outgoing
data. These memory buffers are usually short-lived, but some may be shown in the heap leak trace if the data
was received/transmitted by the lower levels of the network while the leak trace was running.

• TCP connections will continue to use some memory after they are closed, because of the TIME_WAIT state.
After the TIME_WAIT period has completed, this memory will be freed.

One way to differentiate between "real" and "false positive" memory leaks is to call the suspect code multiple times
while tracing is running, and look for patterns (multiple matching allocations) in the heap trace output.

API Reference - Heap Tracing

Header File
• components/heap/include/esp_heap_trace.h

Functions
esp_err_t heap_trace_init_standalone(heap_trace_record_t *record_buffer, size_t num_records)

Initialise heap tracing in standalone mode.
This function must be called before any other heap tracing functions.
To disable heap tracing and allow the buffer to be freed, stop tracing and then call
heap_trace_init_standalone(NULL, 0);

Parameters
• record_buffer -- Provide a buffer to use for heap trace data. Note: External RAM
is allowed, but it prevents recording allocations made from ISR's.

• num_records -- Size of the heap trace buffer, as number of record structures.
Returns

• ESP_ERR_NOT_SUPPORTED Project was compiled without heap tracing enabled in
menuconfig.

• ESP_ERR_INVALID_STATE Heap tracing is currently in progress.
• ESP_OK Heap tracing initialised successfully.

esp_err_t heap_trace_init_tohost(void)
Initialise heap tracing in host-based mode.
This function must be called before any other heap tracing functions.

Returns
• ESP_ERR_INVALID_STATE Heap tracing is currently in progress.
• ESP_OK Heap tracing initialised successfully.

Espressif Systems 2021
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/heap/include/esp_heap_trace.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t heap_trace_start(heap_trace_mode_t mode)
Start heap tracing. All heap allocations & frees will be traced, until heap_trace_stop() is called.

Note: heap_trace_init_standalone() must be called to provide a valid buffer, before this function is called.

Note: Calling this function while heap tracing is running will reset the heap trace state and continue tracing.

Parameters mode -- Mode for tracing.
• HEAP_TRACE_ALL means all heap allocations and frees are traced.
• HEAP_TRACE_LEAKSmeans only suspectedmemory leaks are traced. (Whenmemory
is freed, the record is removed from the trace buffer.)

Returns
• ESP_ERR_NOT_SUPPORTED Project was compiled without heap tracing enabled in
menuconfig.

• ESP_ERR_INVALID_STATE A non-zero-length buffer has not been set via
heap_trace_init_standalone().

• ESP_OK Tracing is started.

esp_err_t heap_trace_stop(void)
Stop heap tracing.

Returns
• ESP_ERR_NOT_SUPPORTED Project was compiled without heap tracing enabled in
menuconfig.

• ESP_ERR_INVALID_STATE Heap tracing was not in progress.
• ESP_OK Heap tracing stopped..

esp_err_t heap_trace_resume(void)
Resume heap tracing which was previously stopped.
Unlike heap_trace_start(), this function does not clear the buffer of any pre-existing trace records.
The heap trace mode is the same as when heap_trace_start() was last called (or HEAP_TRACE_ALL if
heap_trace_start() was never called).

Returns
• ESP_ERR_NOT_SUPPORTED Project was compiled without heap tracing enabled in
menuconfig.

• ESP_ERR_INVALID_STATE Heap tracing was already started.
• ESP_OK Heap tracing resumed.

size_t heap_trace_get_count(void)
Return number of records in the heap trace buffer.
It is safe to call this function while heap tracing is running.

esp_err_t heap_trace_get(size_t index, heap_trace_record_t *record)
Return a raw record from the heap trace buffer.

Note: It is safe to call this function while heap tracing is running, however in HEAP_TRACE_LEAK mode
record indexing may skip entries unless heap tracing is stopped first.

Parameters
• index -- Index (zero-based) of the record to return.
• record -- [out] Record where the heap trace record will be copied.

Returns

Espressif Systems 2022
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_NOT_SUPPORTED Project was compiled without heap tracing enabled in
menuconfig.

• ESP_ERR_INVALID_STATE Heap tracing was not initialised.
• ESP_ERR_INVALID_ARG Index is out of bounds for current heap trace record count.
• ESP_OK Record returned successfully.

void heap_trace_dump(void)
Dump heap trace record data to stdout.

Note: It is safe to call this function while heap tracing is running, however in HEAP_TRACE_LEAK mode
the dump may skip entries unless heap tracing is stopped first.

void heap_trace_dump_caps(const uint32_t caps)
Dump heap trace from the memory of the capabilities passed as parameter.

Parameters caps -- Capability(ies) of the memory from which to dump the trace. Set
MALLOC_CAP_INTERNAL to dump heap trace data from internal memory. Set MAL-
LOC_CAP_SPIRAM to dump heap trace data from PSRAM. Set both to dump both heap
trace data.

esp_err_t heap_trace_summary(heap_trace_summary_t *summary)
Get summary information about the result of a heap trace.

Note: It is safe to call this function while heap tracing is running.

Structures

struct heap_trace_record_t
Trace record data type. Stores information about an allocated region of memory.

Public Members

uint32_t ccount
CCOUNT of the CPU when the allocation was made. LSB (bit value 1) is the CPU number (0 or 1).

void *address
Address which was allocated. If NULL, then this record is empty.

size_t size
Size of the allocation.

void *alloced_by[CONFIG_HEAP_TRACING_STACK_DEPTH]
Call stack of the caller which allocated the memory.

void *freed_by[CONFIG_HEAP_TRACING_STACK_DEPTH]
Call stack of the caller which freed the memory (all zero if not freed.)

struct heap_trace_summary_t
Stores information about the result of a heap trace.

Espressif Systems 2023
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Public Members

heap_trace_mode_t mode

The heap trace mode we just completed / are running.

size_t total_allocations
The total number of allocations made during tracing.

size_t total_frees
The total number of frees made during tracing.

size_t count
The number of records in the internal buffer.

size_t capacity
The capacity of the internal buffer.

size_t high_water_mark
The maximum value that 'count' got to.

size_t has_overflowed
True if the internal buffer overflowed at some point.

Macros

CONFIG_HEAP_TRACING_STACK_DEPTH

Type Definitions

typedef struct heap_trace_record_t heap_trace_record_t
Trace record data type. Stores information about an allocated region of memory.

Enumerations

enum heap_trace_mode_t

Values:

enumerator HEAP_TRACE_ALL

enumerator HEAP_TRACE_LEAKS

2.10.16 High Resolution Timer (ESP Timer)

Espressif Systems 2024
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Overview

Although FreeRTOS provides software timers, FreeRTOS software timers have a few limitations:
• Maximum resolution is equal to the RTOS tick period
• Timer callbacks are dispatched from a low-priority timer service (i.e., daemon) task. This task can be pre-
empted by other tasks, leading to decreased precision and accuracy.

Although hardware timers are not subject to the limitations mentioned, they may not be as user-friendly. For instance,
application components may require timer events to be triggered at specific future times, but hardware timers typically
have only one "compare" value for interrupt generation. This necessitates the creation of an additional system on top
of the hardware timer to keep track of pending events and ensure that callbacks are executed when the corresponding
hardware interrupts occur.
esp_timer set of APIs provides one-shot and periodic timers, microsecond time resolution, and 52-bit range.
Internally, esp_timer uses a 52-bit hardware timer. The exact hardware timer implementation used will depend
on the target, where SYSTIMER is used for ESP32-C6.
Timer callbacks can be dispatched by two methods:

• ESP_TIMER_TASK.
• ESP_TIMER_ISR. Available only if CONFIG_ESP_TIMER_SUPPORTS_ISR_DISPATCH_METHOD is en-
abled (by default disabled).

ESP_TIMER_TASK. Timer callbacks are dispatched from a high-priority esp_timer task. Because all the call-
backs are dispatched from the same task, it is recommended to only do the minimal possible amount of work from
the callback itself, posting an event to a lower-priority task using a queue instead.
If other tasks with a priority higher than esp_timer are running, callback dispatching will be delayed until the
esp_timer task has a chance to run. For example, this will happen if an SPI Flash operation is in progress.
ESP_TIMER_ISR. Timer callbacks are dispatched directly from the timer interrupt handler. This method is useful
for some simple callbacks which aim for lower latency.
Creating and starting a timer, and dispatching the callback takes some time. Therefore, there is a lower limit to the
timeout value of one-shot esp_timer. If esp_timer_start_once() is called with a timeout value of less
than 20 us, the callback will be dispatched only after approximately 20 us.
Periodic esp_timer also imposes a 50 us restriction on the minimal timer period. Periodic software timers with a
period of less than 50 us are not practical since they would consume most of the CPU time. Consider using dedicated
hardware peripherals or DMA features if you find that a timer with a small period is required.

Using esp_timer APIs

A single timer is represented by esp_timer_handle_t type. Each timer has a callback function associated with
it. This callback function is called from the esp_timer task each time the timer elapses.

• To create a timer, call esp_timer_create().
• To delete the timer when it is no longer needed, call esp_timer_delete().

The timer can be started in one-shot mode or in periodic mode.
• To start the timer in one-shot mode, call esp_timer_start_once(), passing the time interval after
which the callback should be called. When the callback gets called, the timer is considered to be stopped.

• To start the timer in periodic mode, callesp_timer_start_periodic(), passing the period with which
the callback should be called. The timer keeps running until esp_timer_stop() is called.

Note that the timer must not be running when esp_timer_start_once() or
esp_timer_start_periodic() is called. To restart a running timer, call esp_timer_stop()
first, then call one of the start functions.

Espressif Systems 2025
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Callback Functions

Note: Keep the callback functions as short as possible. Otherwise, it will affect all timers.

Timer callbacks that are processed by the ESP_TIMER_ISR method should not call the context switch call -
portYIELD_FROM_ISR(). Instead, use the esp_timer_isr_dispatch_need_yield() function. The
context switch will be done after all ISR dispatch timers have been processed if required by the system.

ETM Event

The esp_timer is constructed based on a hardware timer called systimer, which is able to generate the alarm
event and interact with the ETM module. You can call esp_timer_new_etm_alarm_event() to get the
corresponding ETM event handle.
To know more about how to connect the event to an ETM channel, please refer to the ETM documentation.

esp_timer During Light-sleep

During Light-sleep, the esp_timer counter stops and no callback functions are called. Instead, the time is counted
by the RTC counter. Upon waking up, the system gets the difference between the counters and calls a function that
advances the esp_timer counter. Since the counter has been advanced, the system starts calling callbacks that
were not called during sleep. The number of callbacks depends on the duration of the sleep and the period of the
timers. It can lead to the overflow of some queues. This only applies to periodic timers, since one-shot timers will be
called once.
This behavior can be changed by calling esp_timer_stop() before sleeping. In some cases, this can be
inconvenient, and instead of the stop function, you can use the skip_unhandled_events option during
esp_timer_create(). When the skip_unhandled_events is true, if a periodic timer expires one or
more times during Light-sleep, then only one callback is called on wake.
Using the skip_unhandled_events option with automatic Light-sleep (see Power Management APIs) helps
to reduce the power consumption of the system when it is in Light-sleep. The duration of Light-sleep is also in
part determined by the next event occurs. Timers with skip_unhandled_events option will not wake up the
system.

Handling Callbacks

esp_timer is designed to achieve a high-resolution and low-latency timer with the ability to handle delayed
events. If the timer is late, then the callback will be called as soon as possible, and it will not be lost. In the
worst case, when the timer has not been processed for more than one period (for periodic timers), the callbacks
will be called one after the other without waiting for the set period. This can be bad for some applications, and the
skip_unhandled_events option is introduced to eliminate this behavior. If skip_unhandled_events
is set, then a periodic timer that has expired multiple times without being able to call the callback will still result in
only one callback event once processing is possible.

Obtaining Current Time

esp_timer also provides a convenience function to obtain the time passed since start-up, with microsecond pre-
cision: esp_timer_get_time(). This function returns the number of microseconds since esp_timer was
initialized, which usually happens shortly before app_main function is called.
Unlike gettimeofday function, values returned by esp_timer_get_time():

• Start from zero after the chip wakes up from Deep-sleep
• Do not have timezone or DST adjustments applied

Espressif Systems 2026
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Application Example

The following example illustrates the usage of esp_timer APIs: system/esp_timer.

API Reference

Header File
• components/esp_timer/include/esp_timer.h

Functions
esp_err_t esp_timer_early_init(void)

Minimal initialization of esp_timer.

This function can be called very early in startup process, after this call only esp_timer_get_time function can
be used.

Note: This function is called from startup code. Applications do not need to call this function before using
other esp_timer APIs.

Returns
• ESP_OK on success

esp_err_t esp_timer_init(void)
Initialize esp_timer library.

This function will be called from startup code on every core if CON-
FIG_ESP_TIMER_ISR_AFFINITY_NO_AFFINITY is enabled, It allocates the timer ISR on MULTIPLE
cores and creates the timer task which can be run on any core.

Note: This function is called from startup code. Applications do not need to call this function before using
other esp_timer APIs. Before calling this function, esp_timer_early_init must be called by the startup code.

Returns
• ESP_OK on success
• ESP_ERR_NO_MEM if allocation has failed
• ESP_ERR_INVALID_STATE if already initialized
• other errors from interrupt allocator

esp_err_t esp_timer_deinit(void)
De-initialize esp_timer library.

Note: Normally this function should not be called from applications

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if not yet initialized

Espressif Systems 2027
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/esp_timer
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_timer/include/esp_timer.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_timer_create(const esp_timer_create_args_t *create_args, esp_timer_handle_t *out_handle)
Create an esp_timer instance.

Note: When done using the timer, delete it with esp_timer_delete function.

Parameters
• create_args -- Pointer to a structure with timer creation arguments. Not saved by the
library, can be allocated on the stack.

• out_handle -- [out] Output, pointer to esp_timer_handle_t variable which will hold
the created timer handle.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if some of the create_args are not valid
• ESP_ERR_INVALID_STATE if esp_timer library is not initialized yet
• ESP_ERR_NO_MEM if memory allocation fails

esp_err_t esp_timer_start_once(esp_timer_handle_t timer, uint64_t timeout_us)
Start one-shot timer.
Timer should not be running when this function is called.

Parameters
• timer -- timer handle created using esp_timer_create
• timeout_us -- timer timeout, in microseconds relative to the current moment

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if the handle is invalid
• ESP_ERR_INVALID_STATE if the timer is already running

esp_err_t esp_timer_start_periodic(esp_timer_handle_t timer, uint64_t period)
Start a periodic timer.
Timer should not be running when this function is called. This function will start the timer which will trigger
every 'period' microseconds.

Parameters
• timer -- timer handle created using esp_timer_create
• period -- timer period, in microseconds

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if the handle is invalid
• ESP_ERR_INVALID_STATE if the timer is already running

esp_err_t esp_timer_restart(esp_timer_handle_t timer, uint64_t timeout_us)
Restart a currently running timer.
If the given timer is a one-shot timer, the timer is restarted immediately and will timeout once intimeout_us
microseconds. If the given timer is a periodic timer, the timer is restarted immediately with a new period of
timeout_us microseconds.

Parameters
• timer -- timer Handle created using esp_timer_create
• timeout_us -- Timeout, in microseconds relative to the current time. In case of a
periodic timer, also represents the new period.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if the handle is invalid
• ESP_ERR_INVALID_STATE if the timer is not running

Espressif Systems 2028
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_timer_stop(esp_timer_handle_t timer)
Stop the timer.
This function stops the timer previously started using esp_timer_start_once or esp_timer_start_periodic.

Parameters timer -- timer handle created using esp_timer_create
Returns

• ESP_OK on success
• ESP_ERR_INVALID_STATE if the timer is not running

esp_err_t esp_timer_delete(esp_timer_handle_t timer)
Delete an esp_timer instance.
The timer must be stopped before deleting. A one-shot timer which has expired does not need to be stopped.

Parameters timer -- timer handle allocated using esp_timer_create
Returns

• ESP_OK on success
• ESP_ERR_INVALID_STATE if the timer is running

int64_t esp_timer_get_time(void)
Get time in microseconds since boot.

Returns number of microseconds since underlying timer has been started
int64_t esp_timer_get_next_alarm(void)

Get the timestamp when the next timeout is expected to occur.
Returns Timestamp of the nearest timer event, in microseconds. The timebase is the same as for

the values returned by esp_timer_get_time.
int64_t esp_timer_get_next_alarm_for_wake_up(void)

Get the timestamp when the next timeout is expected to occur skipping those which have
skip_unhandled_events flag.

Returns Timestamp of the nearest timer event, in microseconds. The timebase is the same as for
the values returned by esp_timer_get_time.

esp_err_t esp_timer_get_period(esp_timer_handle_t timer, uint64_t *period)
Get the period of a timer.
This function fetches the timeout period of a timer.

Note: The timeout period is the time interval with which a timer restarts after expiry. For one-shot timers,
the period is 0 as there is no periodicity associated with such timers.

Parameters
• timer -- timer handle allocated using esp_timer_create
• period -- memory to store the timer period value in microseconds

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if the arguments are invalid

esp_err_t esp_timer_get_expiry_time(esp_timer_handle_t timer, uint64_t *expiry)
Get the expiry time of a one-shot timer.
This function fetches the expiry time of a one-shot timer.

Note: This API returns a valid expiry time only for a one-shot timer. It returns an error if the timer handle
passed to the function is for a periodic timer.

Espressif Systems 2029
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• timer -- timer handle allocated using esp_timer_create
• expiry -- memory to store the timeout value in microseconds

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if the arguments are invalid
• ESP_ERR_NOT_SUPPORTED if the timer type is periodic

esp_err_t esp_timer_dump(FILE *stream)
Dump the list of timers to a stream.
If CONFIG_ESP_TIMER_PROFILING option is enabled, this prints the list of all the existing timers. Oth-
erwise, only the list active timers is printed.
The format is:
name period alarm times_armed times_triggered total_callback_run_time
where:
name —timer name (if CONFIG_ESP_TIMER_PROFILING is defined), or timer pointer period —period
of timer, in microseconds, or 0 for one-shot timer alarm - time of the next alarm, in microseconds since boot,
or 0 if the timer is not started
The following fields are printed if CONFIG_ESP_TIMER_PROFILING is defined:
times_armed—number of times the timer was armed via esp_timer_start_X times_triggered - number of times
the callback was called total_callback_run_time - total time taken by callback to execute, across all calls

Parameters stream -- stream (such as stdout) to dump the information to
Returns

• ESP_OK on success
• ESP_ERR_NO_MEM if can not allocate temporary buffer for the output

void esp_timer_isr_dispatch_need_yield(void)
Requests a context switch from a timer callback function.
This only works for a timer that has an ISR dispatch method. The context switch will be called after all ISR
dispatch timers have been processed.

bool esp_timer_is_active(esp_timer_handle_t timer)
Returns status of a timer, active or not.
This function is used to identify if the timer is still active or not.

Parameters timer -- timer handle created using esp_timer_create
Returns

• 1 if timer is still active
• 0 if timer is not active.

esp_err_t esp_timer_new_etm_alarm_event(esp_etm_event_handle_t *out_event)
Get the ETM event handle of esp_timer underlying alarm event.

Note: The created ETM event object can be deleted later by calling esp_etm_del_event

Note: The ETM event is generated by the underlying hardware — systimer, therefore, if the esp_timer
is not clocked by systimer, then no ETM event will be generated.

Parameters out_event -- [out] Returned ETM event handle
Returns

• ESP_OK Success

Espressif Systems 2030
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_ARG Parameter error

Structures

struct esp_timer_create_args_t
Timer configuration passed to esp_timer_create.

Public Members

esp_timer_cb_t callback

Function to call when timer expires.

void *arg
Argument to pass to the callback.

esp_timer_dispatch_t dispatch_method

Call the callback from task or from ISR.

const char *name
Timer name, used in esp_timer_dump function.

bool skip_unhandled_events
Skip unhandled events for periodic timers.

Type Definitions

typedef struct esp_timer *esp_timer_handle_t
Opaque type representing a single esp_timer.

typedef void (*esp_timer_cb_t)(void *arg)
Timer callback function type.

Param arg pointer to opaque user-specific data

Enumerations

enum esp_timer_dispatch_t

Method for dispatching timer callback.
Values:

enumerator ESP_TIMER_TASK
Callback is called from timer task.

enumerator ESP_TIMER_MAX
Count of the methods for dispatching timer callback.

2.10.17 Internal and Unstable APIs

This section is listing some APIs that are internal or likely to be changed or removed in the next releases of ESP-IDF.

Espressif Systems 2031
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/esp_rom/include/esp_rom_sys.h

Functions
void esp_rom_software_reset_system(void)

Software Reset digital core include RTC.
It is not recommended to use this function in esp-idf, use esp_restart() instead.

void esp_rom_software_reset_cpu(int cpu_no)
Software Reset cpu core.
It is not recommended to use this function in esp-idf, use esp_restart() instead.

Parameters cpu_no -- : The CPU to reset, 0 for PRO CPU, 1 for APP CPU.
int esp_rom_printf(const char *fmt, ...)

Print formated string to console device.

Note: float and long long data are not supported!

Parameters
• fmt -- Format string
• ... -- Additional arguments, depending on the format string

Returns int: Total number of characters written on success; A negative number on failure.

void esp_rom_delay_us(uint32_t us)
Pauses execution for us microseconds.

Parameters us -- Number of microseconds to pause
void esp_rom_install_channel_putc(int channel, void (*putc)(char c))

esp_rom_printf can print message to different channels simultaneously. This function can help install the low
level putc function for esp_rom_printf.

Parameters
• channel -- Channel number (startting from 1)
• putc -- Function pointer to the putc implementation. Set NULL can disconnect
esp_rom_printf with putc.

void esp_rom_install_uart_printf(void)
Install UART1 as the default console channel, equivalent to esp_rom_install_channel_putc(1,
esp_rom_uart_putc)

soc_reset_reason_t esp_rom_get_reset_reason(int cpu_no)
Get reset reason of CPU.

Parameters cpu_no -- CPU number
Returns Reset reason code (see in soc/reset_reasons.h)

void esp_rom_route_intr_matrix(int cpu_core, uint32_t periph_intr_id, uint32_t cpu_intr_num)
Route peripheral interrupt sources to CPU's interrupt port by matrix.
Usually there're 4 steps to use an interrupt:
a. Route peripheral interrupt source to CPU. e.g. esp_rom_route_intr_matrix(0,

ETS_WIFI_MAC_INTR_SOURCE, ETS_WMAC_INUM)
b. Set interrupt handler for CPU
c. Enable CPU interupt

Espressif Systems 2032
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_rom/include/esp_rom_sys.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

d. Enable peripheral interrupt

Parameters
• cpu_core -- The CPU number, which the peripheral interupt will inform to
• periph_intr_id -- The peripheral interrupt source number
• cpu_intr_num -- The CPU interrupt number

uint32_t esp_rom_get_cpu_ticks_per_us(void)
Get the real CPU ticks per us.

Returns CPU ticks per us
void esp_rom_set_cpu_ticks_per_us(uint32_t ticks_per_us)

Set the real CPU tick rate.

Note: Call this function when CPU frequency is changed, otherwise the esp_rom_delay_us can be
inaccurate.

Parameters ticks_per_us -- CPU ticks per us

2.10.18 Interrupt allocation

Overview

The ESP32-C6 has one core, with 28 external asynchronous interrupts. Each interrupt has a programmable priority
level. In addition, there are also 4 core local interrupt sources (CLINT). See ESP32-C6 Technical Reference Manual
[PDF] for more details.
Because there are more interrupt sources than interrupts, sometimes it makes sense to share an interrupt in multiple
drivers. The esp_intr_alloc() abstraction exists to hide all these implementation details.
A driver can allocate an interrupt for a certain peripheral by calling esp_intr_alloc() (or
esp_intr_alloc_intrstatus()). It can use the flags passed to this function to set the type of inter-
rupt allocated, specifying a particular level or trigger method. The interrupt allocation code will then find an
applicable interrupt, use the interrupt mux to hook it up to the peripheral, and install the given interrupt handler and
ISR to it.
This code presents two different types of interrupts, handled differently: shared interrupts and non-shared interrupts.
The simplest ones are non-shared interrupts: a separate interrupt is allocated per esp_intr_alloc() call and
this interrupt is solely used for the peripheral attached to it, with only one ISR that will get called. On the other
hand, shared interrupts can have multiple peripherals triggering them, with multiple ISRs being called when one of
the peripherals attached signals an interrupt. Thus, ISRs that are intended for shared interrupts should check the
interrupt status of the peripheral they service in order to check if any action is required.
Non-shared interrupts can be either level- or edge-triggered. Shared interrupts can only be level interrupts due to the
chance of missed interrupts when edge interrupts are used.
For example, let's say DevA and DevB share an interrupt. DevB signals an interrupt, so INT line goes high. The
ISR handler calls code for DevA but does nothing. Then, ISR handler calls code for DevB, but while doing that,
DevA signals an interrupt. DevB's ISR is done, it clears interrupt status for DevB and exits interrupt code. Now, an
interrupt for DevA is still pending, but because the INT line never went low, as DevA kept it high even when the
interrupt for DevB was cleared, the interrupt is never serviced.

IRAM-Safe Interrupt Handlers

The ESP_INTR_FLAG_IRAM flag registers an interrupt handler that always runs from IRAM (and reads all its data
from DRAM), and therefore does not need to be disabled during flash erase and write operations.

Espressif Systems 2033
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#riscvcpu
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

This is useful for interrupts which need a guaranteed minimum execution latency, as flash write and erase operations
can be slow (erases can take tens or hundreds of milliseconds to complete).
It can also be useful to keep an interrupt handler in IRAM if it is called very frequently, to avoid flash cache misses.
Refer to the SPI flash API documentation for more details.

Multiple Handlers Sharing A Source

Several handlers can be assigned to a same source, given that all handlers are allocated using the
ESP_INTR_FLAG_SHARED flag. They will all be allocated to the interrupt, which the source is attached to, and
called sequentially when the source is active. The handlers can be disabled and freed individually. The source is
attached to the interrupt (enabled), if one or more handlers are enabled, otherwise detached. A handler will never be
called when disabled, while its source may still be triggered if any one of its handler enabled.
Sources attached to non-shared interrupt do not support this feature.
Though the framework support this feature, you have to use it very carefully. There usually exist two ways to stop
an interrupt from being triggered: disable the source or mask peripheral interrupt status. IDF only handles enabling
and disabling of the source itself, leaving status and mask bits to be handled by users. Status bits shall either
be masked before the handler responsible for it is disabled, either be masked and then properly handled
in another enabled interrupt. Please note that leaving some status bits unhandled without masking them, while
disabling the handlers for them, will cause the interrupt(s) to be triggered indefinitely, resulting therefore in a system
crash.

API Reference

Header File
• components/esp_hw_support/include/esp_intr_alloc.h

Functions
esp_err_t esp_intr_mark_shared(int intno, int cpu, bool is_in_iram)

Mark an interrupt as a shared interrupt.
This will mark a certain interrupt on the specified CPU as an interrupt that can be used to hook shared interrupt
handlers to.

Parameters
• intno -- The number of the interrupt (0-31)
• cpu -- CPU on which the interrupt should be marked as shared (0 or 1)
• is_in_iram -- Shared interrupt is for handlers that reside in IRAM and the int can be
left enabled while the flash cache is disabled.

Returns ESP_ERR_INVALID_ARG if cpu or intno is invalid ESP_OK otherwise
esp_err_t esp_intr_reserve(int intno, int cpu)

Reserve an interrupt to be used outside of this framework.
This will mark a certain interrupt on the specified CPU as reserved, not to be allocated for any reason.

Parameters
• intno -- The number of the interrupt (0-31)
• cpu -- CPU on which the interrupt should be marked as shared (0 or 1)

Returns ESP_ERR_INVALID_ARG if cpu or intno is invalid ESP_OK otherwise
esp_err_t esp_intr_alloc(int source, int flags, intr_handler_t handler, void *arg, intr_handle_t *ret_handle)

Allocate an interrupt with the given parameters.
This finds an interrupt that matches the restrictions as given in the flags parameter, maps the given interrupt
source to it and hooks up the given interrupt handler (with optional argument) as well. If needed, it can return
a handle for the interrupt as well.

Espressif Systems 2034
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_intr_alloc.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

The interrupt will always be allocated on the core that runs this function.
If ESP_INTR_FLAG_IRAM flag is used, and handler address is not in IRAM or RTC_FAST_MEM, then
ESP_ERR_INVALID_ARG is returned.

Parameters
• source -- The interrupt source. One of the ETS_*_INTR_SOURCE
interrupt mux sources, as defined in soc/soc.h, or one of the internal
ETS_INTERNAL_*_INTR_SOURCE sources as defined in this header.

• flags -- An ORred mask of the ESP_INTR_FLAG_* defines. These restrict the choice
of interrupts that this routine can choose from. If this value is 0, it will default to allocating
a non-shared interrupt of level 1, 2 or 3. If this is ESP_INTR_FLAG_SHARED, it will
allocate a shared interrupt of level 1. Setting ESP_INTR_FLAG_INTRDISABLED will
return from this function with the interrupt disabled.

• handler -- The interrupt handler. Must be NULL when an interrupt of level >3 is
requested, because these types of interrupts aren't C-callable.

• arg -- Optional argument for passed to the interrupt handler
• ret_handle -- Pointer to an intr_handle_t to store a handle that can later be used to
request details or free the interrupt. Can be NULL if no handle is required.

Returns ESP_ERR_INVALID_ARG if the combination of arguments is invalid.
ESP_ERR_NOT_FOUND No free interrupt found with the specified flags ESP_OK
otherwise

esp_err_t esp_intr_alloc_intrstatus(int source, int flags, uint32_t intrstatusreg, uint32_t
intrstatusmask, intr_handler_t handler, void *arg, intr_handle_t
*ret_handle)

Allocate an interrupt with the given parameters.
This essentially does the same as esp_intr_alloc, but allows specifying a register and mask combo. For shared
interrupts, the handler is only called if a read from the specified register, ANDed with the mask, returns non-
zero. By passing an interrupt status register address and a fitting mask, this can be used to accelerate interrupt
handling in the case a shared interrupt is triggered; by checking the interrupt statuses first, the code can decide
which ISRs can be skipped

Parameters
• source -- The interrupt source. One of the ETS_*_INTR_SOURCE
interrupt mux sources, as defined in soc/soc.h, or one of the internal
ETS_INTERNAL_*_INTR_SOURCE sources as defined in this header.

• flags -- An ORred mask of the ESP_INTR_FLAG_* defines. These restrict the choice
of interrupts that this routine can choose from. If this value is 0, it will default to allocating
a non-shared interrupt of level 1, 2 or 3. If this is ESP_INTR_FLAG_SHARED, it will
allocate a shared interrupt of level 1. Setting ESP_INTR_FLAG_INTRDISABLED will
return from this function with the interrupt disabled.

• intrstatusreg -- The address of an interrupt status register
• intrstatusmask -- A mask. If a read of address intrstatusreg has any of the bits that
are 1 in the mask set, the ISR will be called. If not, it will be skipped.

• handler -- The interrupt handler. Must be NULL when an interrupt of level >3 is
requested, because these types of interrupts aren't C-callable.

• arg -- Optional argument for passed to the interrupt handler
• ret_handle -- Pointer to an intr_handle_t to store a handle that can later be used to
request details or free the interrupt. Can be NULL if no handle is required.

Returns ESP_ERR_INVALID_ARG if the combination of arguments is invalid.
ESP_ERR_NOT_FOUND No free interrupt found with the specified flags ESP_OK
otherwise

esp_err_t esp_intr_free(intr_handle_t handle)
Disable and free an interrupt.
Use an interrupt handle to disable the interrupt and release the resources associated with it. If the current core
is not the core that registered this interrupt, this routine will be assigned to the core that allocated this interrupt,
blocking and waiting until the resource is successfully released.

Espressif Systems 2035
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: When the handler shares its source with other handlers, the interrupt status bits it's responsible for
should be managed properly before freeing it. see esp_intr_disable for more details. Please do not call
this function in esp_ipc_call_blocking.

Parameters handle -- The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
Returns ESP_ERR_INVALID_ARG the handle is NULL ESP_FAIL failed to release this handle

ESP_OK otherwise

int esp_intr_get_cpu(intr_handle_t handle)
Get CPU number an interrupt is tied to.

Parameters handle -- The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
Returns The core number where the interrupt is allocated

int esp_intr_get_intno(intr_handle_t handle)
Get the allocated interrupt for a certain handle.

Parameters handle -- The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
Returns The interrupt number

esp_err_t esp_intr_disable(intr_handle_t handle)
Disable the interrupt associated with the handle.

Note:
a. For local interrupts (ESP_INTERNAL_* sources), this function has to be called on the CPU the interrupt

is allocated on. Other interrupts have no such restriction.
b. When several handlers sharing a same interrupt source, interrupt status bits, which are handled in the

handler to be disabled, should be masked before the disabling, or handled in other enabled interrupts
properly. Miss of interrupt status handling will cause infinite interrupt calls and finally system crash.

Parameters handle -- The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
Returns ESP_ERR_INVALID_ARG if the combination of arguments is invalid. ESP_OK oth-

erwise

esp_err_t esp_intr_enable(intr_handle_t handle)
Enable the interrupt associated with the handle.

Note: For local interrupts (ESP_INTERNAL_* sources), this function has to be called on the CPU the
interrupt is allocated on. Other interrupts have no such restriction.

Parameters handle -- The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
Returns ESP_ERR_INVALID_ARG if the combination of arguments is invalid. ESP_OK oth-

erwise

esp_err_t esp_intr_set_in_iram(intr_handle_t handle, bool is_in_iram)
Set the "in IRAM" status of the handler.

Note: Does not work on shared interrupts.

Parameters
• handle -- The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus

Espressif Systems 2036
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• is_in_iram -- Whether the handler associated with this handle resides in IRAM. Han-
dlers residing in IRAM can be called when cache is disabled.

Returns ESP_ERR_INVALID_ARG if the combination of arguments is invalid. ESP_OK oth-
erwise

void esp_intr_noniram_disable(void)
Disable interrupts that aren't specifically marked as running from IRAM.

void esp_intr_noniram_enable(void)
Re-enable interrupts disabled by esp_intr_noniram_disable.

void esp_intr_enable_source(int inum)
enable the interrupt source based on its number

Parameters inum -- interrupt number from 0 to 31
void esp_intr_disable_source(int inum)

disable the interrupt source based on its number
Parameters inum -- interrupt number from 0 to 31

static inline int esp_intr_flags_to_level(int flags)
Get the lowest interrupt level from the flags.

Parameters flags -- The same flags that pass to esp_intr_alloc_intrstatus API

Macros

ESP_INTR_FLAG_LEVEL1

Interrupt allocation flags.
These flags can be used to specify which interrupt qualities the code calling esp_intr_alloc* needs. Accept a
Level 1 interrupt vector (lowest priority)

ESP_INTR_FLAG_LEVEL2

Accept a Level 2 interrupt vector.

ESP_INTR_FLAG_LEVEL3

Accept a Level 3 interrupt vector.

ESP_INTR_FLAG_LEVEL4

Accept a Level 4 interrupt vector.

ESP_INTR_FLAG_LEVEL5

Accept a Level 5 interrupt vector.

ESP_INTR_FLAG_LEVEL6

Accept a Level 6 interrupt vector.

ESP_INTR_FLAG_NMI

Accept a Level 7 interrupt vector (highest priority)

ESP_INTR_FLAG_SHARED

Interrupt can be shared between ISRs.

Espressif Systems 2037
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_INTR_FLAG_EDGE

Edge-triggered interrupt.

ESP_INTR_FLAG_IRAM

ISR can be called if cache is disabled.

ESP_INTR_FLAG_INTRDISABLED

Return with this interrupt disabled.

ESP_INTR_FLAG_LOWMED

Low and medium prio interrupts. These can be handled in C.

ESP_INTR_FLAG_HIGH

High level interrupts. Need to be handled in assembly.

ESP_INTR_FLAG_LEVELMASK

Mask for all level flags.

ETS_INTERNAL_TIMER0_INTR_SOURCE

Platform timer 0 interrupt source.
The esp_intr_alloc* functions can allocate an int for all ETS_*_INTR_SOURCE interrupt sources that are
routed through the interrupt mux. Apart from these sources, each core also has some internal sources that do
not pass through the interrupt mux. To allocate an interrupt for these sources, pass these pseudo-sources to the
functions.

ETS_INTERNAL_TIMER1_INTR_SOURCE

Platform timer 1 interrupt source.

ETS_INTERNAL_TIMER2_INTR_SOURCE

Platform timer 2 interrupt source.

ETS_INTERNAL_SW0_INTR_SOURCE

Software int source 1.

ETS_INTERNAL_SW1_INTR_SOURCE

Software int source 2.

ETS_INTERNAL_PROFILING_INTR_SOURCE

Int source for profiling.

ETS_INTERNAL_UNUSED_INTR_SOURCE

Interrupt is not assigned to any source.

ETS_INTERNAL_INTR_SOURCE_OFF

Provides SystemView with positive IRQ IDs, otherwise scheduler events are not shown properly
ESP_INTR_ENABLE(inum)

Enable interrupt by interrupt number
ESP_INTR_DISABLE(inum)

Disable interrupt by interrupt number

Espressif Systems 2038
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef void (*intr_handler_t)(void *arg)
Function prototype for interrupt handler function

typedef struct intr_handle_data_t intr_handle_data_t
Interrupt handler associated data structure

typedef intr_handle_data_t *intr_handle_t
Handle to an interrupt handler

2.10.19 Logging library

Overview

The logging library provides two ways for setting log verbosity:
• At compile time: in menuconfig, set the verbosity level using the option CONFIG_LOG_DEFAULT_LEVEL.
• Optionally, also in menuconfig, set the maximum verbosity level using the option CON-

FIG_LOG_MAXIMUM_LEVEL. By default this is the same as the default level, but it can be set higher
in order to compile more optional logs into the firmware.

• At runtime: all logs for verbosity levels lower than CONFIG_LOG_DEFAULT_LEVEL are enabled by default.
The function esp_log_level_set() can be used to set a logging level on a per module basis. Modules
are identified by their tags, which are human-readable ASCII zero-terminated strings.

There are the following verbosity levels:
• Error (lowest)
• Warning
• Info
• Debug
• Verbose (highest)

Note: The function esp_log_level_set() cannot set logging levels higher than specified by CON-
FIG_LOG_MAXIMUM_LEVEL. To increase log level for a specific file above this maximum at compile time, use
the macro LOG_LOCAL_LEVEL (see the details below).

How to use this library

In each C file that uses logging functionality, define the TAG variable as shown below:

static const char* TAG = "MyModule";

Then use one of logging macros to produce output, e.g:

ESP_LOGW(TAG, "Baud rate error %.1f%%. Requested: %d baud, actual: %d baud", error␣
↪→* 100, baud_req, baud_real);

Several macros are available for different verbosity levels:
• ESP_LOGE - error (lowest)
• ESP_LOGW - warning
• ESP_LOGI - info
• ESP_LOGD - debug
• ESP_LOGV - verbose (highest)

Espressif Systems 2039
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Additionally, there are ESP_EARLY_LOGx versions for each of these macros, e.g. ESP_EARLY_LOGE. These
versions have to be used explicitly in the early startup code only, before heap allocator and syscalls have been ini-
tialized. Normal ESP_LOGx macros can also be used while compiling the bootloader, but they will fall back to the
same implementation as ESP_EARLY_LOGx macros.
There are also ESP_DRAM_LOGx versions for each of these macros, e.g. ESP_DRAM_LOGE. These versions are
used in some places where logging may occur with interrupts disabled or with flash cache inaccessible. Use of this
macros should be as sparing as possible, as logging in these types of code should be avoided for performance reasons.

Note: Inside critical sections interrupts are disabled so it's only possible to use ESP_DRAM_LOGx (preferred) or
ESP_EARLY_LOGx. Even though it's possible to log in these situations, it's better if your program can be structured
not to require it.

To override default verbosity level at file or component scope, define the LOG_LOCAL_LEVEL macro.
At file scope, define it before including esp_log.h, e.g.:

#define LOG_LOCAL_LEVEL ESP_LOG_VERBOSE
#include "esp_log.h"

At component scope, define it in the component CMakeLists:

target_compile_definitions(${COMPONENT_LIB} PUBLIC "-DLOG_LOCAL_LEVEL=ESP_LOG_
↪→VERBOSE")

To configure logging output per module at runtime, add calls to the function esp_log_level_set() as follows:

esp_log_level_set("*", ESP_LOG_ERROR); // set all components to ERROR level
esp_log_level_set("wifi", ESP_LOG_WARN); // enable WARN logs from WiFi stack
esp_log_level_set("dhcpc", ESP_LOG_INFO); // enable INFO logs from DHCP client

Note: The "DRAM" and "EARLY" log macro variants documented above do not support per module setting of
log verbosity. These macros will always log at the "default" verbosity level, which can only be changed at runtime by
calling esp_log_level("*", level).

Logging to Host via JTAG By default, the logging library uses the vprintf-like function to write formatted output
to the dedicated UART. By calling a simple API, all log output may be routed to JTAG instead, making logging
several times faster. For details, please refer to Section Logging to Host.

Application Example

The logging library is commonly used by most esp-idf components and examples. For demonstration of log func-
tionality, check ESP-IDF's examples directory. The most relevant examples that deal with logging are the following:

• system/ota
• storage/sd_card
• protocols/https_request

API Reference

Header File
• components/log/include/esp_log.h

Espressif Systems 2040
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/ota
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/storage/sd_card
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/https_request
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/log/include/esp_log.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
void esp_log_level_set(const char *tag, esp_log_level_t level)

Set log level for given tag.
If logging for given component has already been enabled, changes previous setting.

Note: Note that this function can not raise log level above the level set using CON-
FIG_LOG_MAXIMUM_LEVEL setting in menuconfig. To raise log level above the default one for a
given file, define LOG_LOCAL_LEVEL to one of the ESP_LOG_* values, before including esp_log.h in
this file.

Parameters
• tag -- Tag of the log entries to enable. Must be a non-NULL zero terminated string.
Value "*" resets log level for all tags to the given value.

• level -- Selects log level to enable. Only logs at this and lower verbosity levels will be
shown.

esp_log_level_t esp_log_level_get(const char *tag)
Get log level for a given tag, can be used to avoid expensive log statements.

Parameters tag -- Tag of the log to query current level. Must be a non-NULL zero terminated
string.

Returns The current log level for the given tag
vprintf_like_t esp_log_set_vprintf(vprintf_like_t func)

Set function used to output log entries.
By default, log output goes to UART0. This function can be used to redirect log output to some other destina-
tion, such as file or network. Returns the original log handler, which may be necessary to return output to the
previous destination.

Note: Please note that function callback here must be re-entrant as it can be invoked in parallel from multiple
thread context.

Parameters func -- new Function used for output. Must have same signature as vprintf.
Returns func old Function used for output.

uint32_t esp_log_timestamp(void)
Function which returns timestamp to be used in log output.
This function is used in expansion of ESP_LOGx macros. In the 2nd stage bootloader, and at early application
startup stage this function uses CPU cycle counter as time source. Later when FreeRTOS scheduler start
running, it switches to FreeRTOS tick count.
For now, we ignore millisecond counter overflow.

Returns timestamp, in milliseconds
char *esp_log_system_timestamp(void)

Function which returns system timestamp to be used in log output.
This function is used in expansion of ESP_LOGx macros to print the system time as "HH:MM:SS.sss". The
system time is initialized to 0 on startup, this can be set to the correct time with an SNTP sync, or manually
with standard POSIX time functions.
Currently, this will not get used in logging from binary blobs (i.e. Wi-Fi & Bluetooth libraries), these will still
print the RTOS tick time.

Returns timestamp, in "HH:MM:SS.sss"

Espressif Systems 2041
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t esp_log_early_timestamp(void)
Function which returns timestamp to be used in log output.
This function uses HW cycle counter and does not depend on OS, so it can be safely used after application
crash.

Returns timestamp, in milliseconds
void esp_log_write(esp_log_level_t level, const char *tag, const char *format, ...)

Write message into the log.
This function is not intended to be used directly. Instead, use one of ESP_LOGE, ESP_LOGW, ESP_LOGI,
ESP_LOGD, ESP_LOGV macros.
This function or these macros should not be used from an interrupt.

void esp_log_writev(esp_log_level_t level, const char *tag, const char *format, va_list args)
Write message into the log, va_list variant.

This function is provided to ease integration toward other logging framework, so that esp_log can be used as a
log sink.
See also:
esp_log_write()

Macros
ESP_LOG_BUFFER_HEX_LEVEL(tag, buffer, buff_len, level)

Log a buffer of hex bytes at specified level, separated into 16 bytes each line.
Parameters

• tag -- description tag
• buffer -- Pointer to the buffer array
• buff_len -- length of buffer in bytes
• level -- level of the log

ESP_LOG_BUFFER_CHAR_LEVEL(tag, buffer, buff_len, level)
Log a buffer of characters at specified level, separated into 16 bytes each line. Buffer should contain only
printable characters.

Parameters
• tag -- description tag
• buffer -- Pointer to the buffer array
• buff_len -- length of buffer in bytes
• level -- level of the log

ESP_LOG_BUFFER_HEXDUMP(tag, buffer, buff_len, level)
Dump a buffer to the log at specified level.
The dump log shows just like the one below:

W (195) log_example: 0x3ffb4280 45 53 50 33 32 20 69 73 20 67 72 65 61 74␣
↪→2c 20 |ESP32 is great, |
W (195) log_example: 0x3ffb4290 77 6f 72 6b 69 6e 67 20 61 6c 6f 6e 67 20␣
↪→77 69 |working along wi|
W (205) log_example: 0x3ffb42a0 74 68 20 74 68 65 20 49 44 46 2e 00 ␣
↪→ |th the IDF..|

It is highly recommended to use terminals with over 102 text width.
Parameters

• tag -- description tag
• buffer -- Pointer to the buffer array

Espressif Systems 2042
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• buff_len -- length of buffer in bytes
• level -- level of the log

ESP_LOG_BUFFER_HEX(tag, buffer, buff_len)
Log a buffer of hex bytes at Info level.

See also:
esp_log_buffer_hex_level

Parameters
• tag -- description tag
• buffer -- Pointer to the buffer array
• buff_len -- length of buffer in bytes

ESP_LOG_BUFFER_CHAR(tag, buffer, buff_len)
Log a buffer of characters at Info level. Buffer should contain only printable characters.

See also:
esp_log_buffer_char_level

Parameters
• tag -- description tag
• buffer -- Pointer to the buffer array
• buff_len -- length of buffer in bytes

ESP_EARLY_LOGE(tag, format, ...)
macro to output logs in startup code, before heap allocator and syscalls have been initialized. Log at
ESP_LOG_ERROR level.
See also:
printf,ESP_LOGE,ESP_DRAM_LOGE In the future, we want to become compatible with clang. Hence,
we provide two versions of the following macros which are using variadic arguments. The first one is using
the GNU extension ##__VA_ARGS__. The second one is using the C++20 feature VA_OPT(,). This allows
users to compile their code with standard C++20 enabled instead of the GNU extension. Below C++20, we
haven't found any good alternative to using ##__VA_ARGS__.

ESP_EARLY_LOGW(tag, format, ...)
macro to output logs in startup code at ESP_LOG_WARN level.

See also:
ESP_EARLY_LOGE,ESP_LOGE, printf

ESP_EARLY_LOGI(tag, format, ...)
macro to output logs in startup code at ESP_LOG_INFO level.

See also:
ESP_EARLY_LOGE,ESP_LOGE, printf

ESP_EARLY_LOGD(tag, format, ...)
macro to output logs in startup code at ESP_LOG_DEBUG level.

Espressif Systems 2043
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

See also:
ESP_EARLY_LOGE,ESP_LOGE, printf

ESP_EARLY_LOGV(tag, format, ...)
macro to output logs in startup code at ESP_LOG_VERBOSE level.

See also:
ESP_EARLY_LOGE,ESP_LOGE, printf

_ESP_LOG_EARLY_ENABLED(log_level)

ESP_LOG_EARLY_IMPL(tag, format, log_level, log_tag_letter, ...)

ESP_LOGE(tag, format, ...)

ESP_LOGW(tag, format, ...)

ESP_LOGI(tag, format, ...)

ESP_LOGD(tag, format, ...)

ESP_LOGV(tag, format, ...)

ESP_LOG_LEVEL(level, tag, format, ...)
runtime macro to output logs at a specified level.

See also:
printf

Parameters
• tag -- tag of the log, which can be used to change the log level by
esp_log_level_set at runtime.

• level -- level of the output log.
• format -- format of the output log. See printf
• ... -- variables to be replaced into the log. See printf

ESP_LOG_LEVEL_LOCAL(level, tag, format, ...)
runtime macro to output logs at a specified level. Also check the level with LOG_LOCAL_LEVEL.

See also:
printf, ESP_LOG_LEVEL

ESP_DRAM_LOGE(tag, format, ...)
Macro to output logs when the cache is disabled. Log at ESP_LOG_ERROR level.

Similar to
Usage: ESP_DRAM_LOGE(DRAM_STR("my_tag"), "format", orESP_DRAM_LOGE(TAG,
"format", ...)`, where TAG is a char* that points to a str in the DRAM.
See also:
ESP_EARLY_LOGE, the log level cannot be changed per-tag, however esp_log_level_set("*", level) will set
the default level which controls these log lines also.

Espressif Systems 2044
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

See also:
esp_rom_printf,ESP_LOGE

Note: Unlike normal logging macros, it's possible to use this macro when interrupts are disabled or inside an
ISR.

Note: Placing log strings in DRAM reduces available DRAM, so only use when absolutely essential.

ESP_DRAM_LOGW(tag, format, ...)
macro to output logs when the cache is disabled at ESP_LOG_WARN level.

See also:
ESP_DRAM_LOGW,ESP_LOGW, esp_rom_printf

ESP_DRAM_LOGI(tag, format, ...)
macro to output logs when the cache is disabled at ESP_LOG_INFO level.

See also:
ESP_DRAM_LOGI,ESP_LOGI, esp_rom_printf

ESP_DRAM_LOGD(tag, format, ...)
macro to output logs when the cache is disabled at ESP_LOG_DEBUG level.

See also:
ESP_DRAM_LOGD,ESP_LOGD, esp_rom_printf

ESP_DRAM_LOGV(tag, format, ...)
macro to output logs when the cache is disabled at ESP_LOG_VERBOSE level.

See also:
ESP_DRAM_LOGV,ESP_LOGV, esp_rom_printf

Type Definitions

typedef int (*vprintf_like_t)(const char*, va_list)

Enumerations

enum esp_log_level_t

Log level.
Values:

enumerator ESP_LOG_NONE
No log output

Espressif Systems 2045
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_LOG_ERROR
Critical errors, software module can not recover on its own

enumerator ESP_LOG_WARN
Error conditions from which recovery measures have been taken

enumerator ESP_LOG_INFO
Information messages which describe normal flow of events

enumerator ESP_LOG_DEBUG
Extra information which is not necessary for normal use (values, pointers, sizes, etc).

enumerator ESP_LOG_VERBOSE
Bigger chunks of debugging information, or frequent messages which can potentially flood the output.

2.10.20 Miscellaneous System APIs

Software Reset

To perform software reset of the chip, the esp_restart() function is provided. When the function is called,
execution of the program stops, the CPU is reset, the application is loaded by the bootloader and starts execution
again.
Additionally, the esp_register_shutdown_handler() function can register a routine that will be automat-
ically called before a restart (that is triggered by esp_restart()) occurs. This is similar to the functionality of
atexit POSIX function.

Reset Reason

ESP-IDF applications can be started or restarted due to a variety of reasons. To get the last reset reason, call
esp_reset_reason() function. See description of esp_reset_reason_t for the list of possible reset
reasons.

Heap Memory

Two heap-memory-related functions are provided:
• esp_get_free_heap_size() returns the current size of free heap memory.
• esp_get_minimum_free_heap_size() returns the minimum size of free heap memory that has ever
been available (i.e., the smallest size of free heap memory in the application's lifetime).

Note that ESP-IDF supports multiple heaps with different capabilities. The functions mentioned in this section return
the size of heap memory that can be allocated using the malloc family of functions. For further information about
heap memory, see Heap Memory Allocation.

MAC Address

These APIs allow querying and customizing MAC addresses for different supported network interfaces (e.g., Wi-Fi,
Bluetooth, Ethernet).

Espressif Systems 2046
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

To fetch the MAC address for a specific network interface (e.g., Wi-Fi, Bluetooth, Ethernet), call the function
esp_read_mac().
In ESP-IDF, the MAC addresses for the various network interfaces are calculated from a single base MAC address.
By default, the Espressif base MAC address is used. This base MAC address is pre-programmed into the ESP32-C6
eFuse in the factory during production.

Interface MAC Address (4 universally adminis-
tered, default)

MAC Address (2 universally adminis-
tered)

Wi-Fi Station base_mac base_mac
Wi-Fi SoftAP base_mac, +1 to the last octet Local MAC (derived from Wi-Fi Station

MAC)
Bluetooth base_mac, +2 to the last octet base_mac, +1 to the last octet
Ethernet base_mac, +3 to the last octet Local MAC (derived from Bluetooth MAC)

Note: The configuration configures the number of universally administered MAC addresses that are provided by
Espressif.

Note: Although ESP32-C6 has no integrated Ethernet MAC, it is still possible to calculate an Ethernet MAC
address. However, this MAC address can only be used with an external ethernet interface such as an SPI-Ethernet
device. See Ethernet.

Custom InterfaceMAC Sometimes youmay need to define customMACaddresses that are not generated from the
base MAC address. To set a custom interface MAC address, use the esp_iface_mac_addr_set() function.
This function allows you to overwrite the MAC addresses of interfaces set (or not yet set) by the base MAC address.
Once a MAC address has been set for a particular interface, it will not be affected when the base MAC address is
changed.

Custom Base MAC The default base MAC is pre-programmed by Espressif in eFuse BLK1. To set a custom
base MAC instead, call the function esp_iface_mac_addr_set() with the ESP_MAC_BASE argument (or
esp_base_mac_addr_set()) before initializing any network interfaces or calling the esp_read_mac()
function. The custom MAC address can be stored in any supported storage device (e.g., flash, NVS).
The custom base MAC addresses should be allocated such that derivedMAC addresses will not overlap. Based on the
table above, users can configure the option CONFIG_ESP32C6_UNIVERSAL_MAC_ADDRESSES to set the number
of valid universal MAC addresses that can be derived from the custom base MAC.

Note: It is also possible to call the function esp_netif_set_mac() to set the specific MAC used by a network
interface after network initialization. But it is recommended to use the base MAC approach documented here to
avoid the possibility of the original MAC address briefly appearing on the network before being changed.

Custom MAC Address in eFuse When reading custom MAC addresses from eFuse, ESP-IDF pro-
vides a helper function esp__mac_get_custom(). Users can also use esp_read_mac() with
the ESP_MAC_EFUSE_CUSTOM argument. This loads the MAC address from eFuse BLK3. The
esp__mac_get_custom() function assumes that the custom base MAC address is stored in the following for-
mat:

Field # of bits Range of bits
MAC address 48 200:248

Espressif Systems 2047
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: The eFuse BLK3 uses RS-coding during burning, which means that all eFuse fields in this block must be
burnt at the same time.

Once custom eFuse MAC address has been obtained (using esp_efuse_mac_get_custom() or
esp_read_mac()), you need to set it as the base MAC address. There are two ways to do it:

1. Use an old API: call esp_base_mac_addr_set().
2. Use a new API: call esp_iface_mac_addr_set() with the ESP_MAC_BASE argument.

Local Versus Universal MAC Addresses ESP32-C6 comes pre-programmed with enough valid Espressif uni-
versally administered MAC addresses for all internal interfaces. The table above shows how to calculate and derive
the MAC address for a specific interface according to the base MAC address.
When using a custom MAC address scheme, it is possible that not all interfaces can be assigned with a universally
administeredMAC address. In these cases, a locally administeredMAC address is assigned. Note that these addresses
are intended for use on a single local network only.
See this article for the definition of locally and universally administered MAC addresses.
Function esp_derive_local_mac() is called internally to derive a local MAC address from a universal MAC
address. The process is as follows:

1. The U/L bit (bit value 0x2) is set in the first octet of the universal MAC address, creating a local MAC address.
2. If this bit is already set in the supplied universal MAC address (i.e., the supplied "universal" MAC address was

in fact already a local MAC address), then the first octet of the local MAC address is XORed with 0x4.

Chip Version

esp_chip_info() function fills esp_chip_info_t structure with information about the chip. This includes
the chip revision, number of CPU cores, and a bit mask of features enabled in the chip.

SDK Version

esp_get_idf_version() returns a string describing the ESP-IDF version which is used to compile the appli-
cation. This is the same value as the one available through IDF_VER variable of the build system. The version string
generally has the format of git describe output.
To get the version at build time, additional version macros are provided. They can be used to enable or disable parts
of the program depending on the ESP-IDF version.

• ESP_IDF_VERSION_MAJOR, ESP_IDF_VERSION_MINOR, ESP_IDF_VERSION_PATCH are de-
fined to integers representing major, minor, and patch version.

• ESP_IDF_VERSION_VAL and ESP_IDF_VERSION can be used when implementing version checks:

#include "esp_idf_version.h"

#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
// enable functionality present in ESP-IDF v4.0

#endif

App Version

The application version is stored in esp_app_desc_t structure. It is located in DROM sector and has a
fixed offset from the beginning of the binary file. The structure is located after esp_image_header_t and
esp_image_segment_header_t structures. The type of the field version is string and it has a maximum
length of 32 chars.

Espressif Systems 2048
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://en.wikipedia.org/wiki/MAC_address#Universal_vs._local_(U/L_bit)
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

To set the version in your project manually, you need to set the PROJECT_VER variable in the CMakeLists.txt
of your project. In application CMakeLists.txt, put set(PROJECT_VER "0.1.0.1") before including
project.cmake.
If the CONFIG_APP_PROJECT_VER_FROM_CONFIG option is set, the value of CONFIG_APP_PROJECT_VER
will be used. Otherwise, if the PROJECT_VER variable is not set in the project, it will be retrieved either
from the $(PROJECT_PATH)/version.txt file (if present) or using git command git describe.
If neither is available, PROJECT_VER will be set to "1". Application can make use of this by calling
esp_app_get_description() or esp_ota_get_partition_description() functions.

API Reference

Header File
• components/esp_system/include/esp_system.h

Functions
esp_err_t esp_register_shutdown_handler(shutdown_handler_t handle)

Register shutdown handler.
This function allows you to register a handler that gets invoked before the application is restarted using
esp_restart function.

Parameters handle -- function to execute on restart
Returns

• ESP_OK on success
• ESP_ERR_INVALID_STATE if the handler has already been registered
• ESP_ERR_NO_MEM if no more shutdown handler slots are available

esp_err_t esp_unregister_shutdown_handler(shutdown_handler_t handle)
Unregister shutdown handler.
This function allows you to unregister a handler which was previously registered using
esp_register_shutdown_handler function.

• ESP_OK on success
• ESP_ERR_INVALID_STATE if the given handler hasn't been registered before

void esp_restart(void)
Restart PRO and APP CPUs.
This function can be called both from PRO and APP CPUs. After successful restart, CPU reset reason will be
SW_CPU_RESET. Peripherals (except for Wi-Fi, BT, UART0, SPI1, and legacy timers) are not reset. This
function does not return.

esp_reset_reason_t esp_reset_reason(void)
Get reason of last reset.

Returns See description of esp_reset_reason_t for explanation of each value.
uint32_t esp_get_free_heap_size(void)

Get the size of available heap.

Note: Note that the returned value may be larger than the maximum contiguous block which can be allocated.

Returns Available heap size, in bytes.

Espressif Systems 2049
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/include/esp_system.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint32_t esp_get_free_internal_heap_size(void)
Get the size of available internal heap.

Note: Note that the returned value may be larger than the maximum contiguous block which can be allocated.

Returns Available internal heap size, in bytes.

uint32_t esp_get_minimum_free_heap_size(void)
Get the minimum heap that has ever been available.

Returns Minimum free heap ever available
void esp_system_abort(const char *details)

Trigger a software abort.
Parameters details -- Details that will be displayed during panic handling.

Type Definitions

typedef void (*shutdown_handler_t)(void)
Shutdown handler type

Enumerations

enum esp_reset_reason_t

Reset reasons.
Values:

enumerator ESP_RST_UNKNOWN
Reset reason can not be determined.

enumerator ESP_RST_POWERON
Reset due to power-on event.

enumerator ESP_RST_EXT
Reset by external pin (not applicable for ESP32)

enumerator ESP_RST_SW
Software reset via esp_restart.

enumerator ESP_RST_PANIC
Software reset due to exception/panic.

enumerator ESP_RST_INT_WDT
Reset (software or hardware) due to interrupt watchdog.

enumerator ESP_RST_TASK_WDT
Reset due to task watchdog.

enumerator ESP_RST_WDT
Reset due to other watchdogs.

Espressif Systems 2050
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_RST_DEEPSLEEP
Reset after exiting deep sleep mode.

enumerator ESP_RST_BROWNOUT
Brownout reset (software or hardware)

enumerator ESP_RST_SDIO
Reset over SDIO.

enumerator ESP_RST_USB
Reset by USB peripheral.

enumerator ESP_RST_JTAG
Reset by JTAG.

enumerator ESP_RST_EFUSE
Reset due to efuse error.

enumerator ESP_RST_PWR_GLITCH
Reset due to power glitch detected.

enumerator ESP_RST_CPU_LOCKUP
Reset due to CPU lock up.

Header File
• components/esp_common/include/esp_idf_version.h

Functions
const char *esp_get_idf_version(void)

Return full IDF version string, same as 'git describe' output.

Note: If you are printing the ESP-IDF version in a log file or other information, this function provides
more information than using the numerical version macros. For example, numerical version macros don't
differentiate between development, pre-release and release versions, but the output of this function does.

Returns constant string from IDF_VER

Macros

ESP_IDF_VERSION_MAJOR

Major version number (X.x.x)

ESP_IDF_VERSION_MINOR

Minor version number (x.X.x)

ESP_IDF_VERSION_PATCH

Patch version number (x.x.X)

Espressif Systems 2051
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_common/include/esp_idf_version.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

ESP_IDF_VERSION_VAL(major, minor, patch)
Macro to convert IDF version number into an integer
To be used in comparisons, such as ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)

ESP_IDF_VERSION

Current IDF version, as an integer
To be used in comparisons, such as ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)

Header File
• components/esp_hw_support/include/esp_mac.h

Functions
esp_err_t esp_base_mac_addr_set(const uint8_t *mac)

Set base MAC address with the MAC address which is stored in BLK3 of EFUSE or external storage e.g. flash
and EEPROM.
Base MAC address is used to generate the MAC addresses used by network interfaces.
If using a custom base MAC address, call this API before initializing any network interfaces. Refer to the
ESP-IDF Programming Guide for details about how the Base MAC is used.

Note: Base MAC must be a unicast MAC (least significant bit of first byte must be zero).

Note: If not using a valid OUI, set the "locally administered" bit (bit value 0x02 in the first byte) to avoid
collisions.

Parameters mac -- base MAC address, length: 6 bytes. length: 6 bytes for MAC-48
Returns ESP_OK on success ESP_ERR_INVALID_ARG If mac is NULL or is not a unicast

MAC
esp_err_t esp_base_mac_addr_get(uint8_t *mac)

Return base MAC address which is set using esp_base_mac_addr_set.

Note: If no custom Base MAC has been set, this returns the pre-programmed Espressif base MAC address.

Parameters mac -- base MAC address, length: 6 bytes. length: 6 bytes for MAC-48
Returns ESP_OK on success ESP_ERR_INVALID_ARG mac is NULL

ESP_ERR_INVALID_MAC base MAC address has not been set

esp_err_t esp_efuse_mac_get_custom(uint8_t *mac)
Return base MAC address which was previously written to BLK3 of EFUSE.
Base MAC address is used to generate the MAC addresses used by the networking interfaces. This API returns
the custom base MAC address which was previously written to EFUSE BLK3 in a specified format.
Writing this EFUSE allows setting of a different (non-Espressif) base MAC address. It is also possible to store
a custom base MAC address elsewhere, see esp_base_mac_addr_set() for details.

Note: This function is currently only supported on ESP32.

Espressif Systems 2052
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_mac.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters mac -- base MAC address, length: 6 bytes/8 bytes. length: 6
bytes for MAC-48 8 bytes for EUI-64(used for IEEE 802.15.4, if CON-
FIG_SOC_IEEE802154_SUPPORTED=y)

Returns ESP_OK on success ESP_ERR_INVALID_ARG mac is NULL
ESP_ERR_INVALID_MAC CUSTOM_MAC address has not been set, all zeros (for
esp32-xx) ESP_ERR_INVALID_VERSION An invalid MAC version field was read from
BLK3 of EFUSE (for esp32) ESP_ERR_INVALID_CRC An invalid MAC CRC was read
from BLK3 of EFUSE (for esp32)

esp_err_t esp_efuse_mac_get_default(uint8_t *mac)
Return base MAC address which is factory-programmed by Espressif in EFUSE.

Parameters mac -- base MAC address, length: 6 bytes/8 bytes. length: 6
bytes for MAC-48 8 bytes for EUI-64(used for IEEE 802.15.4, if CON-
FIG_SOC_IEEE802154_SUPPORTED=y)

Returns ESP_OK on success ESP_ERR_INVALID_ARG mac is NULL
esp_err_t esp_read_mac(uint8_t *mac, esp_mac_type_t type)

Read base MAC address and set MAC address of the interface.
This function first get base MAC address using esp_base_mac_addr_get(). Then calculates the MAC address
of the specific interface requested, refer to ESP-IDF Programming Guide for the algorithm.
The MAC address set by the esp_iface_mac_addr_set() function will not depend on the base MAC address.

Parameters
• mac -- base MAC address, length: 6 bytes/8 bytes. length: 6 bytes for MAC-48 8 bytes
for EUI-64(used for IEEE 802.15.4, if CONFIG_SOC_IEEE802154_SUPPORTED=y)

• type -- Type of MAC address to return
Returns ESP_OK on success

esp_err_t esp_derive_local_mac(uint8_t *local_mac, const uint8_t *universal_mac)
Derive local MAC address from universal MAC address.

This function copies a universal MAC address and then sets the "locally
administered" bit (bit 0x2) in the first octet, creating a locally administered MAC address.
If the universal MAC address argument is already a locally administered MAC address, then the first octet is
XORed with 0x4 in order to create a different locally administered MAC address.

Parameters
• local_mac -- base MAC address, length: 6 bytes. length: 6 bytes for MAC-48
• universal_mac -- Source universal MAC address, length: 6 bytes.

Returns ESP_OK on success
esp_err_t esp_iface_mac_addr_set(const uint8_t *mac, esp_mac_type_t type)

Set custom MAC address of the interface. This function allows you to overwrite the MAC addresses of the
interfaces set by the base MAC address.

Parameters
• mac -- MAC address, length: 6 bytes/8 bytes. length: 6 bytes for MAC-
48 8 bytes for EUI-64(used for ESP_MAC_IEEE802154 type, if CON-
FIG_SOC_IEEE802154_SUPPORTED=y)

• type -- Type of MAC address
Returns ESP_OK on success

size_t esp_mac_addr_len_get(esp_mac_type_t type)
Return the size of the MAC type in bytes.
If CONFIG_SOC_IEEE802154_SUPPORTED is set then for these types:

• ESP_MAC_IEEE802154 is 8 bytes.

Espressif Systems 2053
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_MAC_BASE, ESP_MAC_EFUSE_FACTORY and ESP_MAC_EFUSE_CUSTOM the MAC
size is 6 bytes.

• ESP_MAC_EFUSE_EXT is 2 bytes. If CONFIG_SOC_IEEE802154_SUPPORTED is not set then for
all types it returns 6 bytes.

Parameters type -- Type of MAC address
Returns 0 MAC type not found (not supported) 6 bytes for MAC-48. 8 bytes for EUI-64.

Macros
MAC2STR(a)

MACSTR

Enumerations

enum esp_mac_type_t

Values:

enumerator ESP_MAC_WIFI_STA
MAC for WiFi Station (6 bytes)

enumerator ESP_MAC_WIFI_SOFTAP
MAC for WiFi Soft-AP (6 bytes)

enumerator ESP_MAC_BT
MAC for Bluetooth (6 bytes)

enumerator ESP_MAC_ETH
MAC for Ethernet (6 bytes)

enumerator ESP_MAC_IEEE802154
if CONFIG_SOC_IEEE802154_SUPPORTED=y, MAC for IEEE802154 (8 bytes)

enumerator ESP_MAC_BASE
Base MAC for that used for other MAC types (6 bytes)

enumerator ESP_MAC_EFUSE_FACTORY
MAC_FACTORY eFuse which was burned by Espressif in production (6 bytes)

enumerator ESP_MAC_EFUSE_CUSTOM
MAC_CUSTOM eFuse which was can be burned by customer (6 bytes)

enumerator ESP_MAC_EFUSE_EXT
if CONFIG_SOC_IEEE802154_SUPPORTED=y, MAC_EXT eFuse which is used as an extender for
IEEE802154 MAC (2 bytes)

Header File
• components/esp_hw_support/include/esp_chip_info.h

Espressif Systems 2054
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_chip_info.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Functions
void esp_chip_info(esp_chip_info_t *out_info)

Fill an esp_chip_info_t structure with information about the chip.
Parameters out_info -- [out] structure to be filled

Structures

struct esp_chip_info_t
The structure represents information about the chip.

Public Members

esp_chip_model_t model

chip model, one of esp_chip_model_t

uint32_t features
bit mask of CHIP_FEATURE_x feature flags

uint16_t revision
chip revision number (in format MXX; where M - wafer major version, XX - wafer minor version)

uint8_t cores
number of CPU cores

Macros

CHIP_FEATURE_EMB_FLASH

Chip has embedded flash memory.

CHIP_FEATURE_WIFI_BGN

Chip has 2.4GHz WiFi.

CHIP_FEATURE_BLE

Chip has Bluetooth LE.

CHIP_FEATURE_BT

Chip has Bluetooth Classic.

CHIP_FEATURE_IEEE802154

Chip has IEEE 802.15.4.

CHIP_FEATURE_EMB_PSRAM

Chip has embedded psram.

Enumerations

enum esp_chip_model_t

Chip models.
Values:

Espressif Systems 2055
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator CHIP_ESP32
ESP32.

enumerator CHIP_ESP32S2
ESP32-S2.

enumerator CHIP_ESP32S3
ESP32-S3.

enumerator CHIP_ESP32C3
ESP32-C3.

enumerator CHIP_ESP32C2
ESP32-C2.

enumerator CHIP_ESP32C6
ESP32-C6.

enumerator CHIP_ESP32H2
ESP32-H2.

enumerator CHIP_POSIX_LINUX
The code is running on POSIX/Linux simulator.

Header File
• components/esp_hw_support/include/esp_cpu.h

Functions
void esp_cpu_stall(int core_id)

Stall a CPU core.
Parameters core_id -- The core's ID

void esp_cpu_unstall(int core_id)
Resume a previously stalled CPU core.

Parameters core_id -- The core's ID
void esp_cpu_reset(int core_id)

Reset a CPU core.
Parameters core_id -- The core's ID

void esp_cpu_wait_for_intr(void)
Wait for Interrupt.
This function causes the current CPU core to execute its Wait For Interrupt (WFI or equivalent) instruction.
After executing this function, the CPU core will stop execution until an interrupt occurs.

int esp_cpu_get_core_id(void)
Get the current core's ID.
This function will return the ID of the current CPU (i.e., the CPU that calls this function).

Returns The current core's ID [0..SOC_CPU_CORES_NUM - 1]

Espressif Systems 2056
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_cpu.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void *esp_cpu_get_sp(void)
Read the current stack pointer address.

Returns Stack pointer address
esp_cpu_cycle_count_t esp_cpu_get_cycle_count(void)

Get the current CPU core's cycle count.
Each CPU core maintains an internal counter (i.e., cycle count) that increments every CPU clock cycle.

Returns Current CPU's cycle count, 0 if not supported.
void esp_cpu_set_cycle_count(esp_cpu_cycle_count_t cycle_count)

Set the current CPU core's cycle count.
Set the given value into the internal counter that increments every CPU clock cycle.

Parameters cycle_count -- CPU cycle count
void *esp_cpu_pc_to_addr(uint32_t pc)

Convert a program counter (PC) value to address.
If the architecture does not store the true virtual address in the CPU's PC or return addresses, this function
will convert the PC value to a virtual address. Otherwise, the PC is just returned

Parameters pc -- PC value
Returns Virtual address

void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret)
Get a CPU interrupt's descriptor.
Each CPU interrupt has a descriptor describing the interrupt's capabilities and restrictions. This function gets
the descriptor of a particular interrupt on a particular CPU.

Parameters
• core_id -- [in] The core's ID
• intr_num -- [in] Interrupt number
• intr_desc_ret -- [out] The interrupt's descriptor

void esp_cpu_intr_set_ivt_addr(const void *ivt_addr)
Set the base address of the current CPU's Interrupt Vector Table (IVT)

Parameters ivt_addr -- Interrupt Vector Table's base address
void esp_cpu_intr_set_type(int intr_num, esp_cpu_intr_type_t intr_type)

Set the interrupt type of a particular interrupt.
Set the interrupt type (Level or Edge) of a particular interrupt on the current CPU.

Parameters
• intr_num -- Interrupt number (from 0 to 31)
• intr_type -- The interrupt's type

esp_cpu_intr_type_t esp_cpu_intr_get_type(int intr_num)
Get the current configured type of a particular interrupt.
Get the currently configured type (i.e., level or edge) of a particular interrupt on the current CPU.

Parameters intr_num -- Interrupt number (from 0 to 31)
Returns Interrupt type

void esp_cpu_intr_set_priority(int intr_num, int intr_priority)
Set the priority of a particular interrupt.
Set the priority of a particular interrupt on the current CPU.

Parameters
• intr_num -- Interrupt number (from 0 to 31)

Espressif Systems 2057
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• intr_priority -- The interrupt's priority
int esp_cpu_intr_get_priority(int intr_num)

Get the current configured priority of a particular interrupt.
Get the currently configured priority of a particular interrupt on the current CPU.

Parameters intr_num -- Interrupt number (from 0 to 31)
Returns Interrupt's priority

bool esp_cpu_intr_has_handler(int intr_num)
Check if a particular interrupt already has a handler function.
Check if a particular interrupt on the current CPU already has a handler function assigned.

Note: This function simply checks if the IVT of the current CPU already has a handler assigned.

Parameters intr_num -- Interrupt number (from 0 to 31)
Returns True if the interrupt has a handler function, false otherwise.

void esp_cpu_intr_set_handler(int intr_num, esp_cpu_intr_handler_t handler, void *handler_arg)
Set the handler function of a particular interrupt.
Assign a handler function (i.e., ISR) to a particular interrupt on the current CPU.

Note: This function simply sets the handler function (in the IVT) and does not actually enable the interrupt.

Parameters
• intr_num -- Interrupt number (from 0 to 31)
• handler -- Handler function
• handler_arg -- Argument passed to the handler function

void *esp_cpu_intr_get_handler_arg(int intr_num)
Get a handler function's argument of.
Get the argument of a previously assigned handler function on the current CPU.

Parameters intr_num -- Interrupt number (from 0 to 31)
Returns The the argument passed to the handler function

void esp_cpu_intr_enable(uint32_t intr_mask)
Enable particular interrupts on the current CPU.

Parameters intr_mask -- Bit mask of the interrupts to enable
void esp_cpu_intr_disable(uint32_t intr_mask)

Disable particular interrupts on the current CPU.
Parameters intr_mask -- Bit mask of the interrupts to disable

uint32_t esp_cpu_intr_get_enabled_mask(void)
Get the enabled interrupts on the current CPU.

Returns Bit mask of the enabled interrupts
void esp_cpu_intr_edge_ack(int intr_num)

Acknowledge an edge interrupt.
Parameters intr_num -- Interrupt number (from 0 to 31)

Espressif Systems 2058
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

void esp_cpu_configure_region_protection(void)
Configure the CPU to disable access to invalid memory regions.

esp_err_t esp_cpu_set_breakpoint(int bp_num, const void *bp_addr)
Set and enable a hardware breakpoint on the current CPU.

Note: This function is meant to be called by the panic handler to set a breakpoint for an attached debugger
during a panic.

Note: Overwrites previously set breakpoint with same breakpoint number.

Parameters
• bp_num -- Hardware breakpoint number [0..SOC_CPU_BREAKPOINTS_NUM - 1]
• bp_addr -- Address to set a breakpoint on

Returns ESP_OK if breakpoint is set. Failure otherwise

esp_err_t esp_cpu_clear_breakpoint(int bp_num)
Clear a hardware breakpoint on the current CPU.

Note: Clears a breakpoint regardless of whether it was previously set

Parameters bp_num -- Hardware breakpoint number [0..SOC_CPU_BREAKPOINTS_NUM -
1]

Returns ESP_OK if breakpoint is cleared. Failure otherwise

esp_err_t esp_cpu_set_watchpoint(int wp_num, const void *wp_addr, size_t size,
esp_cpu_watchpoint_trigger_t trigger)

Set and enable a hardware watchpoint on the current CPU.
Set and enable a hardware watchpoint on the current CPU, specifying the memory range and trigger operation.
Watchpoints will break/panic the CPU when the CPU accesses (according to the trigger type) on a certain
memory range.

Note: Overwrites previously set watchpoint with same watchpoint number. On RISC-V chips, this API uses
method0(Exact matching) and method1(NAPOT matching) according to the riscv-debug-spec-0.13 specifica-
tion for address matching. If the watch region size is 1byte, it uses exact matching (method 0). If the watch
region size is larger than 1byte, it uses NAPOT matching (method 1). This mode requires the watching region
start address to be aligned to the watching region size.

Parameters
• wp_num -- Hardware watchpoint number [0..SOC_CPU_WATCHPOINTS_NUM - 1]
• wp_addr -- Watchpoint's base address, must be naturally aligned to the size of the region
• size -- Size of the region to watch. Must be one of 2^n and in the range of [1 ...
SOC_CPU_WATCHPOINT_MAX_REGION_SIZE]

• trigger -- Trigger type
Returns ESP_ERR_INVALID_ARG on invalid arg, ESP_OK otherwise

esp_err_t esp_cpu_clear_watchpoint(int wp_num)
Clear a hardware watchpoint on the current CPU.

Note: Clears a watchpoint regardless of whether it was previously set

Espressif Systems 2059
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters wp_num -- Hardware watchpoint number [0..SOC_CPU_WATCHPOINTS_NUM
- 1]

Returns ESP_OK if watchpoint was cleared. Failure otherwise.

bool esp_cpu_dbgr_is_attached(void)
Check if the current CPU has a debugger attached.

Returns True if debugger is attached, false otherwise
void esp_cpu_dbgr_break(void)

Trigger a call to the current CPU's attached debugger.
intptr_t esp_cpu_get_call_addr(intptr_t return_address)

Given the return address, calculate the address of the preceding call instruction This is typically used to answer
the question "where was the function called from?".

Parameters return_address -- The value of the return address register. Typically set to the
value of __builtin_return_address(0).

Returns Address of the call instruction preceding the return address.
bool esp_cpu_compare_and_set(volatile uint32_t *addr, uint32_t compare_value, uint32_t new_value)

Atomic compare-and-set operation.
Parameters

• addr -- Address of atomic variable
• compare_value -- Value to compare the atomic variable to
• new_value -- New value to set the atomic variable to

Returns Whether the atomic variable was set or not

Structures

struct esp_cpu_intr_desc_t
CPU interrupt descriptor.
Each particular CPU interrupt has an associated descriptor describing that particular interrupt's characteristics.
Call esp_cpu_intr_get_desc() to get the descriptors of a particular interrupt.

Public Members

int priority
Priority of the interrupt if it has a fixed priority, (-1) if the priority is configurable.

esp_cpu_intr_type_t type

Whether the interrupt is an edge or level type interrupt, ESP_CPU_INTR_TYPE_NA if the type is
configurable.

uint32_t flags
Flags indicating extra details.

Macros

ESP_CPU_INTR_DESC_FLAG_SPECIAL

Interrupt descriptor flags of esp_cpu_intr_desc_t.
The interrupt is a special interrupt (e.g., a CPU timer interrupt)

ESP_CPU_INTR_DESC_FLAG_RESVD

The interrupt is reserved for internal use

Espressif Systems 2060
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef uint32_t esp_cpu_cycle_count_t
CPU cycle count type.
This data type represents the CPU's clock cycle count

typedef void (*esp_cpu_intr_handler_t)(void *arg)
CPU interrupt handler type.

Enumerations

enum esp_cpu_intr_type_t

CPU interrupt type.
Values:

enumerator ESP_CPU_INTR_TYPE_LEVEL

enumerator ESP_CPU_INTR_TYPE_EDGE

enumerator ESP_CPU_INTR_TYPE_NA

enum esp_cpu_watchpoint_trigger_t

CPU watchpoint trigger type.
Values:

enumerator ESP_CPU_WATCHPOINT_LOAD

enumerator ESP_CPU_WATCHPOINT_STORE

enumerator ESP_CPU_WATCHPOINT_ACCESS

Header File
• components/esp_app_format/include/esp_app_desc.h

Functions
const esp_app_desc_t *esp_app_get_description(void)

Return esp_app_desc structure. This structure includes app version.
Return description for running app.

Returns Pointer to esp_app_desc structure.
int esp_app_get_elf_sha256(char *dst, size_t size)

Fill the provided buffer with SHA256 of the ELF file, formatted as hexadecimal, null-terminated. If the buffer
size is not sufficient to fit the entire SHA256 in hex plus a null terminator, the largest possible number of bytes
will be written followed by a null.

Parameters
• dst -- Destination buffer
• size -- Size of the buffer

Returns Number of bytes written to dst (including null terminator)

Espressif Systems 2061
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_app_format/include/esp_app_desc.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Structures

struct esp_app_desc_t
Description about application.

Public Members

uint32_t magic_word
Magic word ESP_APP_DESC_MAGIC_WORD

uint32_t secure_version
Secure version

uint32_t reserv1[2]
reserv1

char version[32]
Application version

char project_name[32]
Project name

char time[16]
Compile time

char date[16]
Compile date

char idf_ver[32]
Version IDF

uint8_t app_elf_sha256[32]
sha256 of elf file

uint16_t min_efuse_blk_rev_full
Minimal eFuse block revision supported by image, in format: major * 100 + minor

uint16_t max_efuse_blk_rev_full
Maximal eFuse block revision supported by image, in format: major * 100 + minor

uint32_t reserv2[19]
reserv2

Macros

ESP_APP_DESC_MAGIC_WORD

The magic word for the esp_app_desc structure that is in DROM.

Espressif Systems 2062
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.10.21 Over The Air Updates (OTA)

OTA Process Overview

The OTA update mechanism allows a device to update itself based on data received while the normal firmware is
running (for example, over Wi-Fi or Bluetooth.)
OTA requires configuring the Partition Table of the device with at least two "OTA app slot" partitions (i.e. ota_0 and
ota_1) and an "OTA Data Partition".
The OTA operation functions write a new app firmware image to whichever OTA app slot that is currently not selected
for booting. Once the image is verified, the OTA Data partition is updated to specify that this image should be used
for the next boot.

OTA Data Partition

An OTA data partition (type data, subtype ota) must be included in the Partition Table of any project which uses
the OTA functions.
For factory boot settings, the OTA data partition should contain no data (all bytes erased to 0xFF). In this case the
esp-idf software bootloader will boot the factory app if it is present in the partition table. If no factory app is included
in the partition table, the first available OTA slot (usually ota_0) is booted.
After the first OTA update, the OTA data partition is updated to specify which OTA app slot partition should be
booted next.
The OTA data partition is two flash sectors (0x2000 bytes) in size, to prevent problems if there is a power failure
while it is being written. Sectors are independently erased and written with matching data, and if they disagree a
counter field is used to determine which sector was written more recently.

App rollback

The main purpose of the application rollback is to keep the device working after the update. This feature allows
you to roll back to the previous working application in case a new application has critical errors. When the rollback
process is enabled and an OTA update provides a new version of the app, one of three things can happen:

• The application works fine, esp_ota_mark_app_valid_cancel_rollback() marks the running
application with the state ESP_OTA_IMG_VALID. There are no restrictions on booting this application.

• The application has critical errors and further work is not possible, a rollback to the previous application is re-
quired, esp_ota_mark_app_invalid_rollback_and_reboot() marks the running application
with the state ESP_OTA_IMG_INVALID and reset. This application will not be selected by the bootloader
for boot and will boot the previously working application.

• If the CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE option is set, and a reset occurs without calling
either function then the application is rolled back.

Note: The state is not written to the binary image of the application but rather to the otadata partition. The
partition contains a ota_seq counter which is a pointer to the slot (ota_0, ota_1, ...) from which the application
will be selected for boot.

App OTA State States control the process of selecting a boot app:

Espressif Systems 2063
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

States Restriction of selecting a boot app in bootloader
ESP_OTA_IMG_VALIDNone restriction. Will be selected.
ESP_OTA_IMG_UNDEFINEDNone restriction. Will be selected.
ESP_OTA_IMG_INVALIDWill not be selected.
ESP_OTA_IMG_ABORTEDWill not be selected.
ESP_OTA_IMG_NEWIf CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE option is set it will

be selected only once. In bootloader the state immediately changes to
ESP_OTA_IMG_PENDING_VERIFY.

ESP_OTA_IMG_PENDING_VERIFYIf CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE option is set it will not be se-
lected, and the state will change to ESP_OTA_IMG_ABORTED.

If CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE option is not enabled (by default), then
the use of the following functions esp_ota_mark_app_valid_cancel_rollback() and
esp_ota_mark_app_invalid_rollback_and_reboot() are optional, and ESP_OTA_IMG_NEW and
ESP_OTA_IMG_PENDING_VERIFY states are not used.
An option in Kconfig CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE allows you to track the first
boot of a new application. In this case, the application must confirm its operability by calling
esp_ota_mark_app_valid_cancel_rollback() function, otherwise the application will be rolled back
upon reboot. It allows you to control the operability of the application during the boot phase. Thus, a new application
has only one attempt to boot successfully.

Rollback Process The description of the rollback process when CON-
FIG_BOOTLOADER_APP_ROLLBACK_ENABLE option is enabled:

• The new application is successfully downloaded and esp_ota_set_boot_partition() function
makes this partition bootable and sets the state ESP_OTA_IMG_NEW. This state means that the application
is new and should be monitored for its first boot.

• Reboot esp_restart().
• The bootloader checks for the ESP_OTA_IMG_PENDING_VERIFY state if it is set, then it will be written
to ESP_OTA_IMG_ABORTED.

• The bootloader selects a new application to boot so that the state is not set as ESP_OTA_IMG_INVALID or
ESP_OTA_IMG_ABORTED.

• The bootloader checks the selected application for ESP_OTA_IMG_NEW state if it is set, then it will
be written to ESP_OTA_IMG_PENDING_VERIFY. This state means that the application requires con-
firmation of its operability, if this does not happen and a reboot occurs, this state will be overwritten to
ESP_OTA_IMG_ABORTED (see above) and this application will no longer be able to start, i.e. there will
be a rollback to the previous working application.

• A new application has started and should make a self-test.
• If the self-test has completed successfully, then you must call the function
esp_ota_mark_app_valid_cancel_rollback() because the application is awaiting confir-
mation of operability (ESP_OTA_IMG_PENDING_VERIFY state).

• If the self-test fails then call esp_ota_mark_app_invalid_rollback_and_reboot() function to
roll back to the previous working application, while the invalid application is set ESP_OTA_IMG_INVALID
state.

• If the application has not been confirmed, the state remains ESP_OTA_IMG_PENDING_VERIFY, and the
next boot it will be changed to ESP_OTA_IMG_ABORTED. That will prevent re-boot of this application.
There will be a rollback to the previous working application.

Unexpected Reset If a power loss or an unexpected crash occurs at the time of the first boot of a new application,
it will roll back the application.
Recommendation: Perform the self-test procedure as quickly as possible, to prevent rollback due to power loss.
Only OTA partitions can be rolled back. Factory partition is not rolled back.

Espressif Systems 2064
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Booting invalid/aborted apps Booting an application which was previously set to ESP_OTA_IMG_INVALID or
ESP_OTA_IMG_ABORTED is possible:

• Get the last invalid application partition esp_ota_get_last_invalid_partition().
• Pass the received partition to esp_ota_set_boot_partition(), this will update the otadata.
• Restart esp_restart(). The bootloader will boot the specified application.

To determine if self-tests should be run during startup of an application, call the
esp_ota_get_state_partition() function. If result is ESP_OTA_IMG_PENDING_VERIFY then
self-testing and subsequent confirmation of operability is required.

Where the states are set A brief description of where the states are set:
• ESP_OTA_IMG_VALID state is set by esp_ota_mark_app_valid_cancel_rollback() func-
tion.

• ESP_OTA_IMG_UNDEFINED state is set by esp_ota_set_boot_partition() function if CON-
FIG_BOOTLOADER_APP_ROLLBACK_ENABLE option is not enabled.

• ESP_OTA_IMG_NEW state is set by esp_ota_set_boot_partition() function if CON-
FIG_BOOTLOADER_APP_ROLLBACK_ENABLE option is enabled.

• ESP_OTA_IMG_INVALID state is set byesp_ota_mark_app_invalid_rollback_and_reboot()
function.

• ESP_OTA_IMG_ABORTED state is set if there was no confirmation of the application operability and occurs
reboots (if CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE option is enabled).

• ESP_OTA_IMG_PENDING_VERIFY state is set in a bootloader if CON-
FIG_BOOTLOADER_APP_ROLLBACK_ENABLE option is enabled and selected app has
ESP_OTA_IMG_NEW state.

Anti-rollback

Anti-rollback prevents rollback to application with security version lower than one programmed in eFuse of chip.
This function works if set CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK option. In the bootloader, when se-
lecting a bootable application, an additional security version check is added which is on the chip and in the application
image. The version in the bootable firmware must be greater than or equal to the version in the chip.
CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK and CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE op-
tions are used together. In this case, rollback is possible only on the security version which is equal or higher than
the version in the chip.

A typical anti-rollback scheme is
• New firmware released with the elimination of vulnerabilities with the previous version of security.
• After the developer makes sure that this firmware is working. He can increase the security version and release
a new firmware.

• Download new application.
• To make it bootable, run the function esp_ota_set_boot_partition(). If the security version of
the new application is smaller than the version in the chip, the new application will be erased. Update to new
firmware is not possible.

• Reboot.
• In the bootloader, an application with a security version greater than or equal to the version in the chip will
be selected. If otadata is in the initial state, and one firmware was loaded via a serial channel, whose secure
version is higher than the chip, then the secure version of efuse will be immediately updated in the bootloader.

• New application booted. Then the application should perform diagnostics of the operation and if it is
completed successfully, you should call esp_ota_mark_app_valid_cancel_rollback() func-
tion to mark the running application with the ESP_OTA_IMG_VALID state and update the secure ver-
sion on chip. Note that if was called esp_ota_mark_app_invalid_rollback_and_reboot()
function a rollback may not happen as the device may not have any bootable apps. It will then return
ESP_ERR_OTA_ROLLBACK_FAILED error and stay in the ESP_OTA_IMG_PENDING_VERIFY state.

• The next update of app is possible if a running app is in the ESP_OTA_IMG_VALID state.

Espressif Systems 2065
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Recommendation:
If you want to avoid the download/erase overhead in case of the app from the server has security version lower than
the running app, you have to get new_app_info.secure_version from the first package of an image and
compare it with the secure version of efuse. Use esp_efuse_check_secure_version(new_app_info.
secure_version) function if it is true then continue downloading otherwise abort.

....
bool image_header_was_checked = false;
while (1) {

int data_read = esp_http_client_read(client, ota_write_data, BUFFSIZE);
...
if (data_read > 0) {

if (image_header_was_checked == false) {
esp_app_desc_t new_app_info;
if (data_read > sizeof(esp_image_header_t) + sizeof(esp_image_segment_

↪→header_t) + sizeof(esp_app_desc_t)) {
// check current version with downloading
if (esp_efuse_check_secure_version(new_app_info.secure_version) ==␣

↪→false) {
ESP_LOGE(TAG, "This a new app can not be downloaded due to a␣

↪→secure version is lower than stored in efuse.");
http_cleanup(client);
task_fatal_error();

}

image_header_was_checked = true;

esp_ota_begin(update_partition, OTA_SIZE_UNKNOWN, &update_handle);
}

}
esp_ota_write(update_handle, (const void *)ota_write_data, data_read);

}
}
...

Restrictions:

• The number of bits in the secure_version field is limited to 16 bits. This means that only
16 times you can do an anti-rollback. You can reduce the length of this efuse field using CON-
FIG_BOOTLOADER_APP_SEC_VER_SIZE_EFUSE_FIELD option.

• Factory and Test partitions are not supported in anti rollback scheme and hence partition table should not have
partition with SubType set to factory or test.

security_version:
• In application image it is stored in esp_app_desc structure. The number is set CON-

FIG_BOOTLOADER_APP_SECURE_VERSION.

Secure OTA Updates Without Secure boot

The verification of signed OTA updates can be performed even without enabling hardware secure
boot. This can be achieved by setting CONFIG_SECURE_SIGNED_APPS_NO_SECURE_BOOT and CON-
FIG_SECURE_SIGNED_ON_UPDATE_NO_SECURE_BOOT

OTA Tool (otatool.py)

The component app_update provides a tool otatool.py for performing OTA partition-related operations on a target
device. The following operations can be performed using the tool:

Espressif Systems 2066
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/app_update/otatool.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• read contents of otadata partition (read_otadata)
• erase otadata partition, effectively resetting device to factory app (erase_otadata)
• switch OTA partitions (switch_ota_partition)
• erasing OTA partition (erase_ota_partition)
• write to OTA partition (write_ota_partition)
• read contents of OTA partition (read_ota_partition)

The tool can either be imported and used from another Python script or invoked from shell script for users wanting
to perform operation programmatically. This is facilitated by the tool's Python API and command-line interface,
respectively.

Python API Before anything else, make sure that the otatool module is imported.

import sys
import os

idf_path = os.environ["IDF_PATH"] # get value of IDF_PATH from environment
otatool_dir = os.path.join(idf_path, "components", "app_update") # otatool.py␣
↪→lives in $IDF_PATH/components/app_update

sys.path.append(otatool_dir) # this enables Python to find otatool module
from otatool import * # import all names inside otatool module

The starting point for using the tool's Python API to do is create a OtatoolTarget object:

Create a partool.py target device connected on serial port /dev/ttyUSB1
target = OtatoolTarget("/dev/ttyUSB1")

The created object can now be used to perform operations on the target device:

Erase otadata, reseting the device to factory app
target.erase_otadata()

Erase contents of OTA app slot 0
target.erase_ota_partition(0)

Switch boot partition to that of app slot 1
target.switch_ota_partition(1)

Read OTA partition 'ota_3' and save contents to a file named 'ota_3.bin'
target.read_ota_partition("ota_3", "ota_3.bin")

The OTA partition to operate on is specified using either the app slot number or the partition name.
More information on the Python API is available in the docstrings for the tool.

Command-line Interface The command-line interface of otatool.py has the following structure:

otatool.py [command-args] [subcommand] [subcommand-args]

- command-args - these are arguments that are needed for executing the main␣
↪→command (parttool.py), mostly pertaining to the target device
- subcommand - this is the operation to be performed
- subcommand-args - these are arguments that are specific to the chosen operation

Erase otadata, resetting the device to factory app
otatool.py --port "/dev/ttyUSB1" erase_otadata

Erase contents of OTA app slot 0
otatool.py --port "/dev/ttyUSB1" erase_ota_partition --slot 0

(continues on next page)

Espressif Systems 2067
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)

Switch boot partition to that of app slot 1
otatool.py --port "/dev/ttyUSB1" switch_ota_partition --slot 1

Read OTA partition 'ota_3' and save contents to a file named 'ota_3.bin'
otatool.py --port "/dev/ttyUSB1" read_ota_partition --name=ota_3 --output=ota_3.bin

More information can be obtained by specifying --help as argument:

Display possible subcommands and show main command argument descriptions
otatool.py --help

Show descriptions for specific subcommand arguments
otatool.py [subcommand] --help

See also

• Partition Table documentation
• Partition API
• Lower-Level SPI Flash API
• ESP HTTPS OTA

Application Example

End-to-end example of OTA firmware update workflow: system/ota.

API Reference

Header File
• components/app_update/include/esp_ota_ops.h

Functions
const esp_app_desc_t *esp_ota_get_app_description(void)

Return esp_app_desc structure. This structure includes app version.

Return description for running app.

Note: This API is present for backward compatibility reasons. Alternative function with the same function-
ality is esp_app_get_description

Returns Pointer to esp_app_desc structure.
int esp_ota_get_app_elf_sha256(char *dst, size_t size)

Fill the provided buffer with SHA256 of the ELF file, formatted as hexadecimal, null-terminated. If the buffer
size is not sufficient to fit the entire SHA256 in hex plus a null terminator, the largest possible number of bytes
will be written followed by a null.

Note: This API is present for backward compatibility reasons. Alternative function with the same function-
ality is esp_app_get_elf_sha256

Espressif Systems 2068
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/ota
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/app_update/include/esp_ota_ops.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters
• dst -- Destination buffer
• size -- Size of the buffer

Returns Number of bytes written to dst (including null terminator)

esp_err_t esp_ota_begin(const esp_partition_t *partition, size_t image_size, esp_ota_handle_t *out_handle)
Commence an OTA update writing to the specified partition.
The specified partition is erased to the specified image size.
If image size is not yet known, pass OTA_SIZE_UNKNOWNwhich will cause the entire partition to be erased.
On success, this function allocates memory that remains in use until esp_ota_end() is called with the returned
handle.
Note: If the rollback option is enabled and the running application has
the ESP_OTA_IMG_PENDING_VERIFY state then it will lead to the
ESP_ERR_OTA_ROLLBACK_INVALID_STATE error. Confirm the running app before to run download
a new app, use esp_ota_mark_app_valid_cancel_rollback() function for it (this should be done as early as
possible when you first download a new application).

Parameters
• partition -- Pointer to info for partition which will receive the OTA update. Required.
• image_size -- Size of new OTA app image. Partition will be erased in order to receive
this size of image. If 0 or OTA_SIZE_UNKNOWN, the entire partition is erased.

• out_handle -- On success, returns a handle which should be used for subsequent
esp_ota_write() and esp_ota_end() calls.

Returns
• ESP_OK: OTA operation commenced successfully.
• ESP_ERR_INVALID_ARG: partition or out_handle arguments were NULL, or partition
doesn't point to an OTA app partition.

• ESP_ERR_NO_MEM: Cannot allocate memory for OTA operation.
• ESP_ERR_OTA_PARTITION_CONFLICT: Partition holds the currently running
firmware, cannot update in place.

• ESP_ERR_NOT_FOUND: Partition argument not found in partition table.
• ESP_ERR_OTA_SELECT_INFO_INVALID: The OTA data partition contains invalid
data.

• ESP_ERR_INVALID_SIZE: Partition doesn't fit in configured flash size.
• ESP_ERR_FLASH_OP_TIMEOUT or ESP_ERR_FLASH_OP_FAIL: Flash write
failed.

• ESP_ERR_OTA_ROLLBACK_INVALID_STATE: If the running app has not con-
firmed state. Before performing an update, the application must be valid.

esp_err_t esp_ota_write(esp_ota_handle_t handle, const void *data, size_t size)
Write OTA update data to partition.
This function can be called multiple times as data is received during the OTA operation. Data is written
sequentially to the partition.

Parameters
• handle -- Handle obtained from esp_ota_begin
• data -- Data buffer to write
• size -- Size of data buffer in bytes.

Returns
• ESP_OK: Data was written to flash successfully, or size = 0
• ESP_ERR_INVALID_ARG: handle is invalid.
• ESP_ERR_OTA_VALIDATE_FAILED: First byte of image contains invalid app image
magic byte.

• ESP_ERR_FLASH_OP_TIMEOUT or ESP_ERR_FLASH_OP_FAIL: Flash write
failed.

• ESP_ERR_OTA_SELECT_INFO_INVALID: OTA data partition has invalid contents

Espressif Systems 2069
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_ota_write_with_offset(esp_ota_handle_t handle, const void *data, size_t size, uint32_t
offset)

Write OTA update data to partition at an offset.
This function can write data in non-contiguous manner. If flash encryption is enabled, data should be 16 bytes
aligned.

Note: While performing OTA, if the packets arrive out of order, esp_ota_write_with_offset() can be used to
write data in non-contiguous manner. Use of esp_ota_write_with_offset() in combination with esp_ota_write()
is not recommended.

Parameters
• handle -- Handle obtained from esp_ota_begin
• data -- Data buffer to write
• size -- Size of data buffer in bytes
• offset -- Offset in flash partition

Returns
• ESP_OK: Data was written to flash successfully.
• ESP_ERR_INVALID_ARG: handle is invalid.
• ESP_ERR_OTA_VALIDATE_FAILED: First byte of image contains invalid app image
magic byte.

• ESP_ERR_FLASH_OP_TIMEOUT or ESP_ERR_FLASH_OP_FAIL: Flash write
failed.

• ESP_ERR_OTA_SELECT_INFO_INVALID: OTA data partition has invalid contents

esp_err_t esp_ota_end(esp_ota_handle_t handle)
Finish OTA update and validate newly written app image.

Note: After calling esp_ota_end(), the handle is no longer valid and any memory associated with it is freed
(regardless of result).

Parameters handle -- Handle obtained from esp_ota_begin().
Returns

• ESP_OK: Newly written OTA app image is valid.
• ESP_ERR_NOT_FOUND: OTA handle was not found.
• ESP_ERR_INVALID_ARG: Handle was never written to.
• ESP_ERR_OTA_VALIDATE_FAILED: OTA image is invalid (either not a valid app
image, or - if secure boot is enabled - signature failed to verify.)

• ESP_ERR_INVALID_STATE: If flash encryption is enabled, this result indicates an in-
ternal error writing the final encrypted bytes to flash.

esp_err_t esp_ota_abort(esp_ota_handle_t handle)
Abort OTA update, free the handle and memory associated with it.

Parameters handle -- obtained from esp_ota_begin().
Returns

• ESP_OK: Handle and its associated memory is freed successfully.
• ESP_ERR_NOT_FOUND: OTA handle was not found.

esp_err_t esp_ota_set_boot_partition(const esp_partition_t *partition)
Configure OTA data for a new boot partition.

Note: If this function returns ESP_OK, calling esp_restart() will boot the newly configured app partition.

Espressif Systems 2070
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Parameters partition -- Pointer to info for partition containing app image to boot.
Returns

• ESP_OK: OTA data updated, next reboot will use specified partition.
• ESP_ERR_INVALID_ARG: partition argument was NULL or didn't point to a valid OTA
partition of type "app".

• ESP_ERR_OTA_VALIDATE_FAILED: Partition contained invalid app image. Also re-
turned if secure boot is enabled and signature validation failed.

• ESP_ERR_NOT_FOUND: OTA data partition not found.
• ESP_ERR_FLASH_OP_TIMEOUT or ESP_ERR_FLASH_OP_FAIL: Flash erase or
write failed.

const esp_partition_t *esp_ota_get_boot_partition(void)
Get partition info of currently configured boot app.
If esp_ota_set_boot_partition() has been called, the partition which was set by that function will be returned.
If esp_ota_set_boot_partition() has not been called, the result is usually the same as
esp_ota_get_running_partition(). The two results are not equal if the configured boot partition does
not contain a valid app (meaning that the running partition will be an app that the bootloader chose via
fallback).
If the OTA data partition is not present or not valid then the result is the first app partition found in the partition
table. In priority order, this means: the factory app, the first OTA app slot, or the test app partition.
Note that there is no guarantee the returned partition is a valid app. Use
esp_image_verify(ESP_IMAGE_VERIFY, ...) to verify if the returned partition contains a bootable
image.

Returns Pointer to info for partition structure, or NULL if partition table is invalid or a flash read
operation failed. Any returned pointer is valid for the lifetime of the application.

const esp_partition_t *esp_ota_get_running_partition(void)
Get partition info of currently running app.
This function is different to esp_ota_get_boot_partition() in that it ignores any change of selected boot partition
caused by esp_ota_set_boot_partition(). Only the app whose code is currently running will have its partition
information returned.
The partition returned by this function may also differ from esp_ota_get_boot_partition() if the configured
boot partition is somehow invalid, and the bootloader fell back to a different app partition at boot.

Returns Pointer to info for partition structure, or NULL if no partition is found or flash read
operation failed. Returned pointer is valid for the lifetime of the application.

const esp_partition_t *esp_ota_get_next_update_partition(const esp_partition_t *start_from)
Return the next OTA app partition which should be written with a new firmware.
Call this function to find an OTA app partition which can be passed to esp_ota_begin().
Finds next partition round-robin, starting from the current running partition.

Parameters start_from -- If set, treat this partition info as describing the current running
partition. Can be NULL, in which case esp_ota_get_running_partition() is used to find the
currently running partition. The result of this function is never the same as this argument.

Returns Pointer to info for partition which should be updated next. NULL result indicates invalid
OTA data partition, or that no eligible OTA app slot partition was found.

esp_err_t esp_ota_get_partition_description(const esp_partition_t *partition, esp_app_desc_t
*app_desc)

Returns esp_app_desc structure for app partition. This structure includes app version.
Returns a description for the requested app partition.

Parameters
• partition -- [in] Pointer to app partition. (only app partition)

Espressif Systems 2071
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• app_desc -- [out] Structure of info about app.
Returns

• ESP_OK Successful.
• ESP_ERR_NOT_FOUND app_desc structure is not found. Magic word is incorrect.
• ESP_ERR_NOT_SUPPORTED Partition is not application.
• ESP_ERR_INVALID_ARG Arguments is NULL or if partition's offset exceeds partition
size.

• ESP_ERR_INVALID_SIZE Read would go out of bounds of the partition.
• or one of error codes from lower-level flash driver.

uint8_t esp_ota_get_app_partition_count(void)
Returns number of ota partitions provided in partition table.

Returns
• Number of OTA partitions

esp_err_t esp_ota_mark_app_valid_cancel_rollback(void)
This function is called to indicate that the running app is working well.

Returns
• ESP_OK: if successful.

esp_err_t esp_ota_mark_app_invalid_rollback_and_reboot(void)
This function is called to roll back to the previously workable app with reboot.
If rollback is successful then device will reset else API will return with error code. Checks applications on a
flash drive that can be booted in case of rollback. If the flash does not have at least one app (except the running
app) then rollback is not possible.

Returns
• ESP_FAIL: if not successful.
• ESP_ERR_OTA_ROLLBACK_FAILED: The rollback is not possible due to flash does
not have any apps.

const esp_partition_t *esp_ota_get_last_invalid_partition(void)
Returns last partition with invalid state (ESP_OTA_IMG_INVALID or ESP_OTA_IMG_ABORTED).

Returns partition.
esp_err_t esp_ota_get_state_partition(const esp_partition_t *partition, esp_ota_img_states_t

*ota_state)
Returns state for given partition.

Parameters
• partition -- [in] Pointer to partition.
• ota_state -- [out] state of partition (if this partition has a record in otadata).

Returns
• ESP_OK: Successful.
• ESP_ERR_INVALID_ARG: partition or ota_state arguments were NULL.
• ESP_ERR_NOT_SUPPORTED: partition is not ota.
• ESP_ERR_NOT_FOUND: Partition table does not have otadata or state was not found
for given partition.

esp_err_t esp_ota_erase_last_boot_app_partition(void)
Erase previous boot app partition and corresponding otadata select for this partition.
When current app is marked to as valid then you can erase previous app partition.

Returns
• ESP_OK: Successful, otherwise ESP_ERR.

bool esp_ota_check_rollback_is_possible(void)
Checks applications on the slots which can be booted in case of rollback.

Espressif Systems 2072
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

These applications should be valid (marked in otadata as not UNDEFINED, INVALID or ABORTED and crc
is good) and be able booted, and secure_version of app >= secure_version of efuse (if anti-rollback is enabled).

Returns
• True: Returns true if the slots have at least one app (except the running app).
• False: The rollback is not possible.

esp_err_t esp_ota_revoke_secure_boot_public_key(esp_ota_secure_boot_public_key_index_t
index)

Revokes the signature digest denoted by the given index. This should be called in the application only after the
rollback logic otherwise the device may end up in unrecoverable state.
Relevant for Secure boot v2 on ESP32-S2, ESP32-S3, ESP32-C3, ESP32-C6, ESP32-H2 where up to 3 key
digests can be stored (Key #N-1, Key #N, Key #N+1). When a key used to sign an app is invalidated, an OTA
update is to be sent with an app signed with at least one of the other two keys which has not been revoked
already. After successfully booting the OTA app should call this function to revoke Key #N-1.

Parameters index -- - The index of the signature block to be revoked
Returns

• ESP_OK: If revocation is successful.
• ESP_ERR_INVALID_ARG: If the index of the public key to be revoked is incorrect.
• ESP_FAIL: If secure boot v2 has not been enabled.

Macros

OTA_SIZE_UNKNOWN

Used for esp_ota_begin() if new image size is unknown

OTA_WITH_SEQUENTIAL_WRITES

Used for esp_ota_begin() if new image size is unknown and erase can be done in incremental manner (assuming
write operation is in continuous sequence)

ESP_ERR_OTA_BASE

Base error code for ota_ops api

ESP_ERR_OTA_PARTITION_CONFLICT

Error if request was to write or erase the current running partition

ESP_ERR_OTA_SELECT_INFO_INVALID

Error if OTA data partition contains invalid content

ESP_ERR_OTA_VALIDATE_FAILED

Error if OTA app image is invalid

ESP_ERR_OTA_SMALL_SEC_VER

Error if the firmware has a secure version less than the running firmware.

ESP_ERR_OTA_ROLLBACK_FAILED

Error if flash does not have valid firmware in passive partition and hence rollback is not possible

ESP_ERR_OTA_ROLLBACK_INVALID_STATE

Error if current active firmware is still marked in pending validation state
(ESP_OTA_IMG_PENDING_VERIFY), essentially first boot of firmware image post upgrade and
hence firmware upgrade is not possible

Espressif Systems 2073
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef uint32_t esp_ota_handle_t
Opaque handle for an application OTA update.
esp_ota_begin() returns a handle which is then used for subsequent calls to esp_ota_write() and esp_ota_end().

Enumerations

enum esp_ota_secure_boot_public_key_index_t

Secure Boot V2 public key indexes.
Values:

enumerator SECURE_BOOT_PUBLIC_KEY_INDEX_0
Points to the 0th index of the Secure Boot v2 public key

enumerator SECURE_BOOT_PUBLIC_KEY_INDEX_1
Points to the 1st index of the Secure Boot v2 public key

enumerator SECURE_BOOT_PUBLIC_KEY_INDEX_2
Points to the 2nd index of the Secure Boot v2 public key

Debugging OTA Failure

2.10.22 Power Management

Overview

Power management algorithm included in ESP-IDF can adjust the advanced peripheral bus (APB) frequency, CPU
frequency, and put the chip into light sleep mode to run an application at smallest possible power consumption, given
the requirements of application components.
Application components can express their requirements by creating and acquiring power management locks.
For example:

• Driver for a peripheral clocked from APB can request the APB frequency to be set to 80 MHz while the
peripheral is used.

• RTOS can request the CPU to run at the highest configured frequency while there are tasks ready to run.
• A peripheral driver may need interrupts to be enabled, which means it will have to request disabling light sleep.

Since requesting higher APB or CPU frequencies or disabling light sleep causes higher current consumption, please
keep the usage of power management locks by components to a minimum.

Configuration

Power management can be enabled at compile time, using the option CONFIG_PM_ENABLE.
Enabling power management features comes at the cost of increased interrupt latency. Extra latency depends on
a number of factors, such as the CPU frequency, single/dual core mode, whether or not frequency switch needs
to be done. Minimum extra latency is 0.2 us (when the CPU frequency is 240 MHz and frequency scaling is not
enabled). Maximum extra latency is 40 us (when frequency scaling is enabled, and a switch from 40 MHz to 80 MHz
is performed on interrupt entry).

Espressif Systems 2074
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Fig. 39: How to Debug When OTA Fails (click to enlarge)

Espressif Systems 2075
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Dynamic frequency scaling (DFS) and automatic light sleep can be enabled in an application by calling
the function esp_pm_configure(). Its argument is a structure defining the frequency scaling settings,
esp_pm_config_t. In this structure, three fields need to be initialized:

• max_freq_mhz: Maximum CPU frequency in MHz, i.e., the frequency used when the
ESP_PM_CPU_FREQ_MAX lock is acquired. This field will usually be set to the default CPU frequency.

• min_freq_mhz: Minimum CPU frequency in MHz, i.e., the frequency used when only the
ESP_PM_APB_FREQ_MAX lock is acquired. This field can be set to the XTAL frequency value, or the XTAL
frequency divided by an integer. Note that 10 MHz is the lowest frequency at which the default REF_TICK
clock of 1 MHz can be generated.

• light_sleep_enable: Whether the system should automatically enter light sleep when no locks are
acquired (true/false).
Alternatively, if you enable the option CONFIG_PM_DFS_INIT_AUTO in menuconfig, the maximum CPU
frequency will be determined by the CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ setting, and the minimum
CPU frequency will be locked to the XTAL frequency.

Note: Automatic light sleep is based on FreeRTOS Tickless Idle functionality. If automatic light
sleep is requested while the option CONFIG_FREERTOS_USE_TICKLESS_IDLE is not enabled in menuconfig,
esp_pm_configure() will return the error ESP_ERR_NOT_SUPPORTED.

Note: In light sleep, peripherals are clock gated, and interrupts (from GPIOs and internal peripherals) will not be
generated. A wakeup source described in the Sleep Modes documentation can be used to trigger wakeup from the
light sleep state.

For example, the EXT0 and EXT1 wakeup sources can be used to wake up the chip via a GPIO.

Power Management Locks

Applications have the ability to acquire/release locks in order to control the power management algorithm. When an
application acquires a lock, the power management algorithm operation is restricted in a way described below. When
the lock is released, such restrictions are removed.
Power management locks have acquire/release counters. If the lock has been acquired a number of times, it needs to
be released the same number of times to remove associated restrictions.
ESP32-C6 supports three types of locks described in the table below.

Lock Description
ESP_PM_CPU_FREQ_MAX Requests CPU frequency to be at the maximum value set

with esp_pm_configure(). For ESP32-C6, this value can be set
to 80 MHz or 160 MHz.

ESP_PM_APB_FREQ_MAX Requests the APB frequency to be at the maximum supported value. For
ESP32-C6, this is 80 MHz.

ESP_PM_NO_LIGHT_SLEEP Disables automatic switching to light sleep.

ESP32-C6 Power Management Algorithm

The table below shows how CPU and APB frequencies will be switched if dynamic frequency scaling is
enabled. You can specify the maximum CPU frequency with either esp_pm_configure() or CON-
FIG_ESP_DEFAULT_CPU_FREQ_MHZ.

Espressif Systems 2076
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Max CPU Frequency Set Lock Acquisition CPU and APB Frequencies
160 ESP_PM_CPU_FREQ_MAX

acquired CPU: 160 MHz
APB: 80 MHz

ESP_PM_APB_FREQ_MAX
acquired,
ESP_PM_CPU_FREQ_MAX
not acquired

CPU: 80 MHz
APB: 80 MHz

None Min values for both frequencies set
with esp_pm_configure()

80

Any of
ESP_PM_CPU_FREQ_MAX

or ESP_PM_APB_FREQ_MAX
acquired

CPU: 80 MHz
APB: 80 MHz

None Min values for both frequencies set
with esp_pm_configure()

If none of the locks are acquired, and light sleep is enabled in a call to esp_pm_configure(), the system will
go into light sleep mode. The duration of light sleep will be determined by:

• FreeRTOS tasks blocked with finite timeouts
• Timers registered with High resolution timer APIs

Light sleep duration will be chosen to wake up the chip before the nearest event (task being unblocked, or timer
elapses).
To skip unnecessary wake-up, you can consider initializing an esp_timer with the skip_unhandled_events option as
true. Timers with this flag will not wake up the system and it helps to reduce consumption.

Dynamic Frequency Scaling and Peripheral Drivers

When DFS is enabled, the APB frequency can be changed multiple times within a single RTOS tick. The APB
frequency change does not affect the operation of some peripherals, while other peripherals may have issues. For
example, Timer Group peripheral timers will keep counting, however, the speed at which they count will change
proportionally to the APB frequency.
Peripheral clock sources such as REF_TICK, XTAL, RC_FAST (i.e. RTC_8M), their frequencies will not be in-
flenced by APB frequency. And therefore, to ensure the peripheral behaves consistently during DFS, it is recom-
manded to select one of these clocks as the peripheral clock source. For more specific guidelines, please refer to the
"Power Management" section of each peripheral's "API Reference > Peripherals API" page.
Currently, the following peripheral drivers are aware of DFS and will use the ESP_PM_APB_FREQ_MAX lock for
the duration of the transaction:

• SPI master
• I2C
• I2S (If the APLL clock is used, then it will use the ESP_PM_NO_LIGHT_SLEEP lock)
• SDMMC

The following drivers will hold the ESP_PM_APB_FREQ_MAX lock while the driver is enabled:

• SPI slave: between calls to spi_slave_initialize() and spi_slave_free().
• GPTimer: between calls to gptimer_enable() and gptimer_disable().
• Ethernet: between calls to esp_eth_driver_install() and esp_eth_driver_uninstall().

Espressif Systems 2077
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• WiFi: between calls to esp_wifi_start() and esp_wifi_stop(). If modem sleep is enabled, the
lock will be released for the periods of time when radio is disabled.

• TWAI: between calls to twai_driver_install() and twai_driver_uninstall() (only when
the clock source is set to TWAI_CLK_SRC_APB).

• Bluetooth: between calls to esp_bt_controller_enable() and
esp_bt_controller_disable(). If Bluetooth Modem-sleep is enabled, the
ESP_PM_APB_FREQ_MAX lock will be released for the periods of time when radio is disabled. However
the ESP_PM_NO_LIGHT_SLEEP lock will still be held.

• PCNT: between calls to pcnt_unit_enable() and pcnt_unit_disable().
• Sigma-delta: between calls to sdm_channel_enable() and sdm_channel_disable().
• MCPWM: between calls to mcpwm_timer_enable() and mcpwm_timer_disable(), as well as
mcpwm_capture_timer_enable() and mcpwm_capture_timer_disable().

The following peripheral drivers are not aware of DFS yet. Applications need to acquire/release locks themselves,
when necessary:

• The legacy PCNT driver
• The legacy Sigma-delta driver
• The legacy timer group driver
• The legacy MCPWM driver

Light-sleep Peripheral Power Down

ESP32-C6 supports power-down peripherals during Light-sleep.
If CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP is enabled, when the driver initializes the pe-
ripheral, the driver will register the working register context of the peripheral to the sleep retention link. Before
entering sleep, the REG_DMA peripheral will read the configuration in the sleep retention link, and back up the
register context to memory according to the configuration. REG_DMA will also restore context from memory to
peripheral registers on wakeup.
Currently IDF supports Light-sleep context retention for the following peripherals: - INT_MTX - TEE/APM -
IO_MUX / GPIO - UART0 - TIMG0 - SPI0/1 - SYSTIMER
The following peripherals are not yet supported: - ETM - TIMG1 - ASSIST_DEBUG - Trace - Crypto:
AES/ECC/HMAC/RSA/SHA/DS/XTA_AES/ECDSA - SPI2 - I2C - I2S - PCNT - USB-Serial-JTAG - TWAI -
LEDC - MCPWM - RMT - SARADC - SDIO - PARL_IO - UART1
For peripherals that do not support Light-sleep context retention, if the Power management is enabled, the
ESP_PM_NO_LIGHT_SLEEP lock should be held when the peripheral is working to avoid losing the working context
of the peripheral when entering sleep.

Note: When the peripheral power domain is powered down during sleep, both the IO_MUX and GPIO modules
are inactive, meaning the chip pins' state is not maintained by these modules. To preserve the state of an IO during
sleep, it's essential to call gpio_hold_dis() and gpio_hold_en() before and after configuring the GPIO
state. This action ensures that the IO configuration is latched and prevents the IO from becoming floating while in
sleep mode.

API Reference

Header File
• components/esp_pm/include/esp_pm.h

Functions

Espressif Systems 2078
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_pm/include/esp_pm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_pm_configure(const void *config)
Set implementation-specific power management configuration.

Parameters config -- pointer to implementation-specific configuration structure (e.g.
esp_pm_config_esp32)

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if the configuration values are not correct
• ESP_ERR_NOT_SUPPORTED if certain combination of values is not supported, or if
CONFIG_PM_ENABLE is not enabled in sdkconfig

esp_err_t esp_pm_get_configuration(void *config)
Get implementation-specific power management configuration.

Parameters config -- pointer to implementation-specific configuration structure (e.g.
esp_pm_config_esp32)

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if the pointer is null

esp_err_t esp_pm_lock_create(esp_pm_lock_type_t lock_type, int arg, const char *name,
esp_pm_lock_handle_t *out_handle)

Initialize a lock handle for certain power management parameter.
When lock is created, initially it is not taken. Call esp_pm_lock_acquire to take the lock.
This function must not be called from an ISR.

Parameters
• lock_type -- Power management constraint which the lock should control
• arg -- argument, value depends on lock_type, see esp_pm_lock_type_t
• name -- arbitrary string identifying the lock (e.g. "wifi" or "spi"). Used by the
esp_pm_dump_locks function to list existing locks. May be set to NULL. If not set to
NULL, must point to a string which is valid for the lifetime of the lock.

• out_handle -- [out] handle returned from this function. Use this handle when calling
esp_pm_lock_delete, esp_pm_lock_acquire, esp_pm_lock_release. Must not be NULL.

Returns
• ESP_OK on success
• ESP_ERR_NO_MEM if the lock structure can not be allocated
• ESP_ERR_INVALID_ARG if out_handle is NULL or type argument is not valid
• ESP_ERR_NOT_SUPPORTED if CONFIG_PM_ENABLE is not enabled in sdkconfig

esp_err_t esp_pm_lock_acquire(esp_pm_lock_handle_t handle)
Take a power management lock.
Once the lock is taken, power management algorithm will not switch to the mode specified in a call to
esp_pm_lock_create, or any of the lower power modes (higher numeric values of 'mode').
The lock is recursive, in the sense that if esp_pm_lock_acquire is called a number of times,
esp_pm_lock_release has to be called the same number of times in order to release the lock.
This function may be called from an ISR.
This function is not thread-safe w.r.t. calls to other esp_pm_lock_* functions for the same handle.

Parameters handle -- handle obtained from esp_pm_lock_create function
Returns

• ESP_OK on success
• ESP_ERR_INVALID_ARG if the handle is invalid
• ESP_ERR_NOT_SUPPORTED if CONFIG_PM_ENABLE is not enabled in sdkconfig

esp_err_t esp_pm_lock_release(esp_pm_lock_handle_t handle)
Release the lock taken using esp_pm_lock_acquire.
Call to this functions removes power management restrictions placed when taking the lock.

Espressif Systems 2079
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Locks are recursive, so if esp_pm_lock_acquire is called a number of times, esp_pm_lock_release has to be
called the same number of times in order to actually release the lock.
This function may be called from an ISR.
This function is not thread-safe w.r.t. calls to other esp_pm_lock_* functions for the same handle.

Parameters handle -- handle obtained from esp_pm_lock_create function
Returns

• ESP_OK on success
• ESP_ERR_INVALID_ARG if the handle is invalid
• ESP_ERR_INVALID_STATE if lock is not acquired
• ESP_ERR_NOT_SUPPORTED if CONFIG_PM_ENABLE is not enabled in sdkconfig

esp_err_t esp_pm_lock_delete(esp_pm_lock_handle_t handle)
Delete a lock created using esp_pm_lock.
The lock must be released before calling this function.
This function must not be called from an ISR.

Parameters handle -- handle obtained from esp_pm_lock_create function
Returns

• ESP_OK on success
• ESP_ERR_INVALID_ARG if the handle argument is NULL
• ESP_ERR_INVALID_STATE if the lock is still acquired
• ESP_ERR_NOT_SUPPORTED if CONFIG_PM_ENABLE is not enabled in sdkconfig

esp_err_t esp_pm_dump_locks(FILE *stream)
Dump the list of all locks to stderr
This function dumps debugging information about locks created using esp_pm_lock_create to an output stream.
This function must not be called from an ISR. If esp_pm_lock_acquire/release are called while this function
is running, inconsistent results may be reported.

Parameters stream -- stream to print information to; use stdout or stderr to print to the console;
use fmemopen/open_memstream to print to a string buffer.

Returns
• ESP_OK on success
• ESP_ERR_NOT_SUPPORTED if CONFIG_PM_ENABLE is not enabled in sdkconfig

Structures

struct esp_pm_config_t
Power management config.
Pass a pointer to this structure as an argument to esp_pm_configure function.

Public Members

int max_freq_mhz
Maximum CPU frequency, in MHz

int min_freq_mhz
Minimum CPU frequency to use when no locks are taken, in MHz

bool light_sleep_enable
Enter light sleep when no locks are taken

Espressif Systems 2080
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Type Definitions

typedef esp_pm_config_t esp_pm_config_esp32_t

backward compatibility newer chips no longer require this typedef

typedef esp_pm_config_t esp_pm_config_esp32s2_t

typedef esp_pm_config_t esp_pm_config_esp32s3_t

typedef esp_pm_config_t esp_pm_config_esp32c3_t

typedef esp_pm_config_t esp_pm_config_esp32c2_t

typedef esp_pm_config_t esp_pm_config_esp32c6_t

typedef struct esp_pm_lock *esp_pm_lock_handle_t
Opaque handle to the power management lock.

Enumerations

enum esp_pm_lock_type_t

Power management constraints.
Values:

enumerator ESP_PM_CPU_FREQ_MAX
Require CPU frequency to be at the maximum value set via esp_pm_configure. Argument is unused and
should be set to 0.

enumerator ESP_PM_APB_FREQ_MAX
Require APB frequency to be at the maximum value supported by the chip. Argument is unused and
should be set to 0.

enumerator ESP_PM_NO_LIGHT_SLEEP
Prevent the system from going into light sleep. Argument is unused and should be set to 0.

2.10.23 POSIX Threads Support

Overview

ESP-IDF is based on FreeRTOS but offers a range of POSIX-compatible APIs that allow easy porting of third party
code. This includes support for common parts of the POSIX Threads "pthreads" API.
POSIX Threads are implemented in ESP-IDF as wrappers around equivalent FreeRTOS features. The runtime
memory or performance overhead of using the pthreads API is quite low, but not every feature available in either
pthreads or FreeRTOS is available via the ESP-IDF pthreads support.
Pthreads can be used in ESP-IDF by including standard pthread.h header, which is included in the toolchain libc.
An additional ESP-IDF specific header, esp_pthread.h, provides additional non-POSIX APIs for using some
ESP-IDF features with pthreads.
C++ Standard Library implementations for std::thread, std::mutex, std::condition_variable,
etc. are implemented using pthreads (via GCC libstdc++). Therefore, restrictions mentioned here also apply to the
equivalent C++ standard library functionality.

Espressif Systems 2081
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

RTOS Integration

Unlike many operating systems using POSIX Threads, ESP-IDF is a real-time operating system with a real-time
scheduler. This means that a thread will only stop running if a higher priority task is ready to run, the thread blocks
on an OS synchronization structure like a mutex, or the thread calls any of the functions sleep, vTaskDelay(),
or usleep.

Note: If calling a standard libc or C++ sleep function, such as usleep defined in unistd.h, then the task will
only block and yield the CPU if the sleep time is longer than one FreeRTOS tick period. If the time is shorter, the
thread will busy-wait instead of yielding to another RTOS task.

By default, all POSIX Threads have the same RTOS priority, but it is possible to change this by calling a custom API.

Standard features

The following standard APIs are implemented in ESP-IDF.
Refer to standard POSIX Threads documentation, or pthread.h, for details about the standard arguments and be-
haviour of each function. Differences or limitations compared to the standard APIs are noted below.

Thread APIs
• pthread_create() - The attr argument is supported for setting stack size and detach state only. Other
attribute fields are ignored. - Unlike FreeRTOS task functions, the start_routine function is allowed to
return. A "detached" type thread is automatically deleted if the function returns. The default "joinable" type
thread will be suspended until pthread_join() is called on it.

• pthread_join()
• pthread_detach()
• pthread_exit()
• sched_yield()
• pthread_self() - An assert will fail if this function is called from a FreeRTOS task which is not a pthread.
• pthread_equal()

Thread Attributes
• pthread_attr_init()
• pthread_attr_destroy() - This function doesn't need to free any resources and instead resets the
attr structure to defaults (implementation is same as pthread_attr_init()).

• pthread_attr_getstacksize() / pthread_attr_setstacksize()
• pthread_attr_getdetachstate() / pthread_attr_setdetachstate()

Once
• pthread_once()

Static initializer constant PTHREAD_ONCE_INIT is supported.

Note: This function can be called from tasks created using either pthread or FreeRTOS APIs

Mutexes POSIX Mutexes are implemented as FreeRTOS Mutex Semaphores (normal type for "fast" or "error
check" mutexes, and Recursive type for "recursive" mutexes). This means that they have the same priority inheritance
behaviour as mutexes created with xSemaphoreCreateMutex().

• pthread_mutex_init()
• pthread_mutex_destroy()

Espressif Systems 2082
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• pthread_mutex_lock()
• pthread_mutex_timedlock()
• pthread_mutex_trylock()
• pthread_mutex_unlock()
• pthread_mutexattr_init()
• pthread_mutexattr_destroy()
• pthread_mutexattr_gettype() / pthread_mutexattr_settype()

Static initializer constant PTHREAD_MUTEX_INITIALIZER is supported, but the non-standard static initializer
constants for other mutex types are not supported.

Note: These functions can be called from tasks created using either pthread or FreeRTOS APIs

Condition Variables
• pthread_cond_init() - The attr argument is not implemented and is ignored.
• pthread_cond_destroy()
• pthread_cond_signal()
• pthread_cond_broadcast()
• pthread_cond_wait()
• pthread_cond_timedwait()

Static initializer constant PTHREAD_COND_INITIALIZER is supported.
• The resolution of pthread_cond_timedwait() timeouts is the RTOS tick period (see CON-

FIG_FREERTOS_HZ). Timeouts may be delayed up to one tick period after the requested timeout.

Note: These functions can be called from tasks created using either pthread or FreeRTOS APIs

Semaphores In IDF, POSIX unnamed semaphores are implemented. The accessible API is described below. It
implements semaphores as specified in the POSIX standard, unless specified otherwise.

• sem_init()
• sem_destroy()

– pshared is ignored. Semaphores can always be shared between FreeRTOS tasks.
• sem_post()

– If the semaphore has a value of SEM_VALUE_MAX already, -1 is returned and errno is set to EAGAIN.
• sem_wait()
• sem_trywait()
• sem_timedwait()

– The time value passed by abstime will be rounded up to the next FreeRTOS tick.
– The actual timeout will happen after the tick the time was rounded to and before the following tick.
– It is possible, though unlikely, that the task is preempted directly after the timeout calculation, delaying
the timeout of the following blocking operating system call by the duration of the preemption.

• sem_getvalue()

Read/Write Locks
• pthread_rwlock_init() - The attr argument is not implemented and is ignored.
• pthread_rwlock_destroy()
• pthread_rwlock_rdlock()
• pthread_rwlock_wrlock()
• pthread_rwlock_unlock()

Static initializer constant PTHREAD_RWLOCK_INITIALIZER is supported.

Espressif Systems 2083
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/semaphore.h.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/sem_init.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/sem_destroy.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/sem_post.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/sem_wait.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/sem_trywait.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/sem_timedwait.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/sem_getvalue.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: These functions can be called from tasks created using either pthread or FreeRTOS APIs

Thread-Specific Data
• pthread_key_create() - The destr_function argument is supported and will be called if a thread
function exits normally, calls pthread_exit(), or if the underlying task is deleted directly using the FreeR-
TOS function vTaskDelete().

• pthread_key_delete()
• pthread_setspecific() / pthread_getspecific()

Note: These functions can be called from tasks created using either pthread or FreeRTOS APIs. When calling these
functions from tasks created using FreeRTOS APIs, CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS config
option must be enabled to ensure the thread-specific data is cleaned up before the task is deleted.

Note: There are other options for thread local storage in ESP-IDF, including options with higher performance. See
Thread Local Storage.

Not Implemented

The pthread.h header is a standard header and includes additional APIs and features which are not implemented
in ESP-IDF. These include:

• pthread_cancel() returns ENOSYS if called.
• pthread_condattr_init() returns ENOSYS if called.

Other POSIX Threads functions (not listed here) are not implemented and will produce either a compiler or a linker
error if referenced from an ESP-IDF application. If you identify a useful API that you would like to see implemented
in ESP-IDF, please open a feature request on GitHub <https://github.com/espressif/esp-idf/issues> with the details.

ESP-IDF Extensions

The API esp_pthread_set_cfg() defined in the esp_pthreads.h header offers custom extensions to
control how subsequent calls to pthread_create() will behave. Currently, the following configuration can be
set:

• Default stack size of new threads, if not specified when calling pthread_create() (overrides CON-
FIG_PTHREAD_TASK_STACK_SIZE_DEFAULT).

• RTOS priority of new threads (overrides CONFIG_PTHREAD_TASK_PRIO_DEFAULT).
• FreeRTOS task name for new threads (overrides CONFIG_PTHREAD_TASK_NAME_DEFAULT)

This configuration is scoped to the calling thread (or FreeRTOS task), meaning that esp_pthread_set_cfg()
can be called independently in different threads or tasks. If the inherit_cfg flag is set in the current configura-
tion then any new thread created will inherit the creator's configuration (if that thread calls pthread_create()
recursively), otherwise the new thread will have the default configuration.

Examples

• system/pthread demonstrates using the pthreads API to create threads
• cxx/pthread demonstrates using C++ Standard Library functions with threads

Espressif Systems 2084
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/pthread
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/cxx/pthread
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/pthread/include/esp_pthread.h

Functions
esp_pthread_cfg_t esp_pthread_get_default_config(void)

Creates a default pthread configuration based on the values set via menuconfig.
Returns A default configuration structure.

esp_err_t esp_pthread_set_cfg(const esp_pthread_cfg_t *cfg)
Configure parameters for creating pthread.
This API allows you to configure how the subsequent pthread_create() call will behave. This call can be used
to setup configuration parameters like stack size, priority, configuration inheritance etc.
If the 'inherit' flag in the configuration structure is enabled, then the same configuration is also inherited in the
thread subtree.

Note: Passing non-NULL attributes to pthread_create() will override the stack_size parameter set using this
API

Parameters cfg -- The pthread config parameters
Returns

• ESP_OK if configuration was successfully set
• ESP_ERR_NO_MEM if out of memory
• ESP_ERR_INVALID_ARG if stack_size is less than PTHREAD_STACK_MIN

esp_err_t esp_pthread_get_cfg(esp_pthread_cfg_t *p)
Get current pthread creation configuration.
This will retrieve the current configuration that will be used for creating threads.

Parameters p -- Pointer to the pthread config structure that will be updated with the currently
configured parameters

Returns
• ESP_OK if the configuration was available
• ESP_ERR_NOT_FOUND if a configuration wasn't previously set

esp_err_t esp_pthread_init(void)
Initialize pthread library.

Structures

struct esp_pthread_cfg_t
pthread configuration structure that influences pthread creation

Public Members

size_t stack_size
The stack size of the pthread.

size_t prio
The thread's priority.

Espressif Systems 2085
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/pthread/include/esp_pthread.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

bool inherit_cfg
Inherit this configuration further.

const char *thread_name
The thread name.

int pin_to_core
The core id to pin the thread to. Has the same value range as xCoreId argument of xTaskCreatePinned-
ToCore.

Macros

PTHREAD_STACK_MIN

2.10.24 Random Number Generation

ESP32-C6 contains a hardware random number generator, values from it can be obtained using the APIs
esp_random() and esp_fill_random().
The hardware RNG produces true random numbers under any of the following conditions:

• RF subsystem is enabled (i.e. Wi-Fi or Bluetooth or 802.15.4 Thread/Zigbee are enabled).
• An internal entropy source has been enabled by calling bootloader_random_enable() and not yet
disabled by calling bootloader_random_disable().

• While the ESP-IDF Second stage bootloader is running. This is because the default ESP-IDF boot-
loader implementation calls bootloader_random_enable() when the bootloader starts, and boot-
loader_random_disable() before executing the app.

When any of these conditions are true, samples of physical noise are continuously mixed into the internal hardware
RNG state to provide entropy. Consult the ESP32-C6 Technical Reference Manual > Random Number Generator
(RNG) [PDF] chapter for more details.
If none of the above conditions are true, the output of the RNG should be considered pseudo-random only.

Startup

During startup, ESP-IDF bootloader temporarily enables a non-RF entropy source (internal reference voltage noise)
that provides entropy for any first boot key generation. However, after the app starts executing then normally only
pseudo-random numbers are available until Wi-Fi or Bluetooth or 802.15.4 Thread/Zigbee are initialized.
To re-enable the entropy source temporarily during app startup, or for an application that does not use Wi-Fi or Blue-
tooth or 802.15.4 Thread/Zigbee, call the function bootloader_random_enable() to re-enable the internal
entropy source. The function bootloader_random_disable() must be called to disable the entropy source
again before using ADC, Wi-Fi or Bluetooth or 802.15.4 Thread/Zigbee.

Note: The entropy source enabled during the boot process by the ESP-IDF Second Stage Bootloader will seed the
internal RNG state with some entropy. However, the internal hardware RNG state is not large enough to provide a
continuous stream of true random numbers. This is why a continuous entropy source must be enabled whenever true
random numbers are required.

Note: If an application requires a source of true random numbers but it is not possible to permanently enable a
hardware entropy source, consider using a strong software DRBG implementation such as the mbedTLS CTR-DRBG
or HMAC-DRBG, with an initial seed of entropy from hardware RNG true random numbers.

Espressif Systems 2086
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#rng
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Secondary Entropy

ESP32-C6 RNG contains a secondary entropy source, based on sampling an asynchronous 8MHz internal oscillator
(see the Technical ReferenceManual for details). This entropy source is always enabled in ESP-IDF and continuously
mixed into the RNG state by hardware. In testing, this secondary entropy source was sufficient to pass the Dieharder
random number test suite without the main entropy source enabled (test input was created by concatenating short
samples from a continuously resetting ESP32-C6). However, it is currently only guaranteed that true random numbers
will be produced when the main entropy source is also enabled as described above.

API Reference

Header File
• components/esp_hw_support/include/esp_random.h

Functions
uint32_t esp_random(void)

Get one random 32-bit word from hardware RNG.
If Wi-Fi or Bluetooth are enabled, this function returns true random numbers. In other situations, if true
random numbers are required then consult the ESP-IDF Programming Guide "Random Number Generation"
section for necessary prerequisites.
This function automatically busy-waits to ensure enough external entropy has been introduced into the hardware
RNG state, before returning a new random number. This delay is very short (always less than 100 CPU cycles).

Returns Random value between 0 and UINT32_MAX
void esp_fill_random(void *buf, size_t len)

Fill a buffer with random bytes from hardware RNG.

Note: This function is implemented via calls to esp_random(), so the same constraints apply.

Parameters
• buf -- Pointer to buffer to fill with random numbers.
• len -- Length of buffer in bytes

Header File
• components/bootloader_support/include/bootloader_random.h

Functions
void bootloader_random_enable(void)

Enable an entropy source for RNG if RF subsystem is disabled.

The exact internal entropy source mechanism depends on the chip in use but all SoCs use the SAR ADC
to continuously mix random bits (an internal noise reading) into the HWRNG. Consult the SoC Technical
Reference Manual for more information.
Can also be called from app code, if true random numbers are required without initialized RF subsystem. This
might be the case in early startup code of the application when the RF subsystem has not started yet or if the
RF subsystem should not be enabled for power saving.
Consult ESP-IDF Programming Guide "Random Number Generation" section for details.

Espressif Systems 2087
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_random.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bootloader_support/include/bootloader_random.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Warning: This function is not safe to use if any other subsystem is accessing the RF subsystem or the
ADC at the same time!

void bootloader_random_disable(void)
Disable entropy source for RNG.
Disables internal entropy source. Must be called after bootloader_random_enable() and before RF subsystem
features, ADC, or I2S (ESP32 only) are initialized.
Consult the ESP-IDF Programming Guide "Random Number Generation" section for details.

void bootloader_fill_random(void *buffer, size_t length)
Fill buffer with 'length' random bytes.

Note: If this function is being called from app code only, and never from the bootloader, then it's better to
call esp_fill_random().

Parameters
• buffer -- Pointer to buffer
• length -- This many bytes of random data will be copied to buffer

getrandom

A compatible version of the Linux getrandom() function is also provided for ease of porting:

#include <sys/random.h>

ssize_t getrandom(void *buf, size_t buflen, unsigned int flags);

This function is implemented by calling esp_fill_random() internally.
The flags argument is ignored, this function is always non-blocking but the strength of any random numbers is
dependent on the same conditions described above.
Return value is -1 (with errno set to EFAULT) if the buf argument is NULL, and equal to buflen otherwise.

2.10.25 Sleep Modes

Overview

ESP32-C6 contains the following power saving modes: Light-sleep, and Deep-sleep.
In Light-sleep mode, the digital peripherals, most of the RAM, and CPUs are clock-gated and their supply voltage is
reduced. Upon exit from Light-sleep, the digital peripherals, RAM, and CPUs resume operation and their internal
states are preserved.
In Deep-sleep mode, the CPUs, most of the RAM, and all digital peripherals that are clocked from APB_CLK are
powered off. The only parts of the chip that remain powered on are:

• RTC controller
• ULP coprocessor
• RTC fast memory

Espressif Systems 2088
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

There are several wakeup sources in Deep-sleep and Light-sleep modes. These sources can also
be combined so that the chip will wake up when any of the sources are triggered. Wakeup
sources can be enabled using esp_sleep_enable_X_wakeup APIs and can be disabled using
esp_sleep_disable_wakeup_source() API. Next section describes these APIs in detail. Wakeup
sources can be configured at any moment before entering Light-sleep or Deep-sleep mode.
Additionally, the application can force specific powerdown modes for RTC peripherals and RTC memories using
esp_sleep_pd_config() API.
Once wakeup sources are configured, the application can enter sleep mode using esp_light_sleep_start()
or esp_deep_sleep_start() APIs. At this point, the hardware will be configured according to the requested
wakeup sources, and the RTC controller will either power down or power off the CPUs and digital peripherals.

Wi-Fi/Bluetooth and Sleep Modes

In Deep-sleep and Light-sleep modes, the wireless peripherals are powered down. Be-
fore entering Deep-sleep or Light-sleep modes, the application must disable Wi-Fi and Blue-
tooth using the appropriate calls (i.e., nimble_port_stop(), nimble_port_deinit(),
esp_bluedroid_disable(), esp_bluedroid_deinit(), esp_bt_controller_disable(),
esp_bt_controller_deinit(), esp_wifi_stop()). Wi-Fi and Bluetooth connections are not
maintained in Deep-sleep or Light-sleep mode, even if these functions are not called.
If Wi-Fi/Bluetooth connections need to be maintained, enable Wi-Fi/Bluetooth Modem-sleep mode and automatic
Light-sleep feature (see Power Management APIs). This will allow the system to wake up from sleep automatically
when required by the Wi-Fi/Bluetooth driver, thereby maintaining the connection.

Wakeup Sources

Timer The RTC controller has a built-in timer which can be used to wake up the chip after a predefined amount
of time. Time is specified at microsecond precision, but the actual resolution depends on the clock source selected
for RTC SLOW_CLK.
For details on RTC clock options, see ESP32-C6 Technical Reference Manual > ULP Coprocessor [PDF].
RTC peripherals or RTC memories don't need to be powered on during sleep in this wakeup mode.
esp_sleep_enable_timer_wakeup() function can be used to enable sleep wakeup using a timer.

External Wakeup (ext1) The RTC controller contains the logic to trigger wakeup using multiple RTC GPIOs.
One of the following two logic functions can be used to trigger ext1 wakeup:

• wake up if any of the selected pins is high (ESP_EXT1_WAKEUP_ANY_HIGH)
• wake up if any of the selected pins is low (ESP_EXT1_WAKEUP_ANY_LOW)

This wakeup source is controlled by the RTC controller. Unlike ext0, this wakeup source supports wakeup even
when the RTC peripheral is powered down. Although the power domain of the RTC peripheral, where RTC IOs are
located, is powered down during sleep modes, ESP-IDF will automatically lock the state of the wakeup pin before
the system enters sleep modes and unlock upon exiting sleep modes. Therefore, the internal pull-up or pull-down
resistors can still be configured for the wakeup pin:

esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
rtc_gpio_pullup_dis(gpio_num);
rtc_gpio_pulldown_en(gpio_num);

If we turn off the RTC_PERIPH domain, we will use the HOLD feature to maintain the pull-up and pull-down on
the pins during sleep. HOLD feature will be acted on the pin internally before the system enters sleep modes, and
this can further reduce power consumption:

rtc_gpio_pullup_dis(gpio_num);
rtc_gpio_pulldown_en(gpio_num);

Espressif Systems 2089
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#ulp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

If certain chips lack the RTC_PERIPH domain, we can only use the HOLD feature to maintain the pull-up and
pull-down on the pins during sleep:

gpio_pullup_dis(gpio_num);
gpio_pulldown_en(gpio_num);

esp_sleep_enable_ext1_wakeup_io() function can be used to append ext1 wakeup IO and set corre-
sponding wakeup level.
esp_sleep_disable_ext1_wakeup_io() function can be used to remove ext1 wakeup IO.
The RTC controller also supports triggering wakeup, allowing configurable IO to use different wakeup
levels simultaneously. This can be configured with esp_sleep_enable_ext1_wakeup_io() or
esp_sleep_enable_ext1_wakeup_with_level_mask().

Warning:
• To use the EXT1 wakeup, the IO pad(s) are configured as RTC IO. Therefore, before using these pads as
digital GPIOs, users need to reconfigure them by calling the rtc_gpio_deinit() function.

• If the RTC peripherals are configured to be powered down (which is by default), the wakeup IOs will be set
to the holding state before entering sleep. Therefore, after the chip wakes up from Light-sleep, please call
rtc_gpio_hold_dis to disable the hold function to perform any pin re-configuration. For Deep-sleep
wakeup, this is already being handled at the application startup stage.

ULP Coprocessor Wakeup ULP coprocessor can run while the chip is in sleep mode, and may be used to poll
sensors, monitor ADC or GPIO states, and wake up the chip when a specific event is detected. ULP coprocessor is
part of the RTC peripherals power domain, and it runs the program stored in RTC SLOW memory. RTC SLOW
memory will be powered on during sleep if this wakeup mode is requested. RTC peripherals will be automatically
powered on before ULP coprocessor starts running the program; once the program stops running, RTC peripherals
are automatically powered down again.
esp_sleep_enable_ulp_wakeup() function can be used to enable this wakeup source.

GPIO Wakeup (Light-sleep Only) In addition to EXT0 and EXT1 wakeup sources described above, one more
method of wakeup from external inputs is available in Light-sleep mode. With this wakeup source, each pin can be
individually configured to trigger wakeup on high or low level using gpio_wakeup_enable() function. Unlike
EXT0 and EXT1 wakeup sources, which can only be used with RTC IOs, this wakeup source can be used with any
IO (RTC or digital).
esp_sleep_enable_gpio_wakeup() function can be used to enable this wakeup source.

Warning: Before entering Light-sleep mode, check if any GPIO pin to be driven is part of the VDD_SPI power
domain. If so, this power domain must be configured to remain ON during sleep.
For example, on ESP32-WROOM-32 board, GPIO16 and GPIO17 are linked to VDD_SPI power domain. If
they are configured to remain high during Light-sleep, the power domain should be configured to remain powered
ON. This can be done with esp_sleep_pd_config():
esp_sleep_pd_config(ESP_PD_DOMAIN_VDDSDIO, ESP_PD_OPTION_ON);

Note: In Light-sleepmode, if you set Kconfig optionCONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP，
to continue using gpio_wakeup_enable() for GPIO wakeup, you need to first call rtc_gpio_init() and
rtc_gpio_set_direction(), setting the RTCIO to input mode.
Alternatively，you can use esp_deep_sleep_enable_gpio_wakeup() directly in that condition for GPIO

Espressif Systems 2090
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

wakeup, because the digital IO power domain is being powered off, where the situation is the same as entering Deep-
sleep.

UART Wakeup (Light-sleep Only) When ESP32-C6 receives UART input from external devices, it is often
necessary to wake up the chip when input data is available. The UART peripheral contains a feature which allows
waking up the chip from Light-sleep when a certain number of positive edges on RX pin are seen. This number
of positive edges can be set using uart_set_wakeup_threshold() function. Note that the character which
triggers wakeup (and any characters before it) will not be received by the UART after wakeup. This means that the
external device typically needs to send an extra character to the ESP32-C6 to trigger wakeup before sending the data.
esp_sleep_enable_uart_wakeup() function can be used to enable this wakeup source.
After waking-up from UART, you should send some extra data through the UART port in Active mode, so that the
internal wakeup indication signal can be cleared. Otherwises, the next UART wake-up would trigger with two less
rising edges than the configured threshold value.

Note: In Light-sleep mode, setting Kconfig option CON-
FIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP will invalidate UART wakeup.

Power-down of RTC Peripherals and Memories

By default, esp_deep_sleep_start() and esp_light_sleep_start() functions will power down
all RTC power domains which are not needed by the enabled wakeup sources. To override this behaviour,
esp_sleep_pd_config() function is provided.
In ESP32-C6, there is only RTC fast memory, so if some variables in the program are marked by RTC_DATA_ATTR,
RTC_SLOW_ATTR or RTC_FAST_ATTR attributes, all of them go to RTC fast memory. It will be kept powered
on by default. This can be overridden using esp_sleep_pd_config() function, if desired.

Power-down of Flash

By default, to avoid potential issues, esp_light_sleep_start() function will not power down flash. To be
more specific, it takes time to power down the flash and during this period the system may be woken up, which then
actually powers up the flash before this flash could be powered down completely. As a result, there is a chance that
the flash may not work properly.
So, in theory, it's ok if you only wake up the system after the flash is completely powered down. However, in reality,
the flash power-down period can be hard to predict (for example, this period can be much longer when you add filter
capacitors to the flash's power supply circuit) and uncontrollable (for example, the asynchronous wake-up signals
make the actual sleep time uncontrollable).

Warning: If a filter capacitor is added to your flash power supply circuit, please do everything possible to avoid
powering down flash.

Therefore, it's recommended not to power down flash when using ESP-IDF. For power-sensitive applications, it's rec-
ommended to use Kconfig option CONFIG_ESP_SLEEP_FLASH_LEAKAGE_WORKAROUND to reduce the power
consumption of the flash during light sleep, instead of powering down the flash.
However, for those who have fully understood the risk and are still willing to power down the flash to further reduce
the power consumption, please check the following mechanisms:

• Setting Kconfig option CONFIG_ESP_SLEEP_POWER_DOWN_FLASH only powers down the
flash when the RTC timer is the only wake-up source and the sleep time is longer than the flash
power-down period.

Espressif Systems 2091
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• Calling esp_sleep_pd_config(ESP_PD_DOMAIN_VDDSDIO,
ESP_PD_OPTION_OFF) powers down flash when the RTC timer is not enabled as a
wakeup source or the sleep time is longer than the flash power-down period.

Note:
• ESP-IDF does not provide any mechanism that can power down the flash in all conditions when light sleep.
• esp_deep_sleep_start() function will force power down flash regardless of user configuration.

Entering Light-sleep

esp_light_sleep_start() function can be used to enter Light-sleep once wakeup sources are configured. It
is also possible to enter Light-sleep with no wakeup sources configured. In this case, the chip will be in Light-sleep
mode indefinitely until external reset is applied.

Entering Deep-sleep

esp_deep_sleep_start() function can be used to enter Deep-sleep once wakeup sources are configured. It
is also possible to enter Deep-sleep with no wakeup sources configured. In this case, the chip will be in Deep-sleep
mode indefinitely until external reset is applied.

Configuring IOs

Some ESP32-C6 IOs have internal pullups or pulldowns, which are enabled by default. If an external circuit drives
this pin in Deep-sleep mode, current consumption may increase due to current flowing through these pullups and
pulldowns.
To isolate a pin to prevent extra current draw, call rtc_gpio_isolate() function.
For example, on ESP32-WROVER module, GPIO12 is pulled up externally, and it also has an internal pulldown in
the ESP32 chip. This means that in Deep-sleep, some current will flow through these external and internal resistors,
increasing Deep-sleep current above the minimal possible value.
Add the following code before esp_deep_sleep_start() to remove such extra current:

rtc_gpio_isolate(GPIO_NUM_12);

UART Output Handling

Before entering sleep mode, esp_deep_sleep_start() will flush the contents of UART FIFOs.
When entering Light-sleep mode using esp_light_sleep_start(), UART FIFOs will not be flushed. In-
stead, UART output will be suspended, and remaining characters in the FIFO will be sent out after wakeup from
Light-sleep.

Checking Sleep Wakeup Cause

esp_sleep_get_wakeup_cause() function can be used to check which wakeup source has triggered wakeup
from sleep mode.
For ext1 wakeup sources, it is possible to identify which GPIO has caused wakeup using
esp_sleep_get_ext1_wakeup_status() functions.

Espressif Systems 2092
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Disable Sleep Wakeup Source

Previously configured wakeup sources can be disabled later using esp_sleep_disable_wakeup_source()
API. This function deactivates trigger for the given wakeup source. Additionally, it can disable all triggers if the
argument is ESP_SLEEP_WAKEUP_ALL.

Application Example

• protocols/sntp: the implementation of basic functionality of Deep-sleep, where ESP module is periodically
waken up to retrieve time from NTP server.

• wifi/power_save: the implementation of Wi-Fi Modem-sleep example.
• bluetooth/nimble/power_save: the implementation of Bluetooth Modem-sleep example.
• system/deep_sleep: the usage of various Deep-sleep wakeup triggers and ULP coprocessor programming.

API Reference

Header File
• components/esp_hw_support/include/esp_sleep.h

Functions
esp_err_t esp_sleep_disable_wakeup_source(esp_sleep_source_t source)

Disable wakeup source.
This function is used to deactivate wake up trigger for source defined as parameter of the function.

See docs/sleep-modes.rst for details.

Note: This function does not modify wake up configuration in RTC. It will be performed in
esp_deep_sleep_start/esp_light_sleep_start function.

Parameters source -- - number of source to disable of type esp_sleep_source_t
Returns

• ESP_OK on success
• ESP_ERR_INVALID_STATE if trigger was not active

esp_err_t esp_sleep_enable_ulp_wakeup(void)
Enable wakeup by ULP coprocessor.

Note: On ESP32, ULP wakeup source cannot be used when RTC_PERIPH power domain is forced, to be
powered on (ESP_PD_OPTION_ON) or when ext0 wakeup source is used.

Returns
• ESP_OK on success
• ESP_ERR_NOT_SUPPORTED if additional current by touch (CON-
FIG_RTC_EXT_CRYST_ADDIT_CURRENT) is enabled.

• ESP_ERR_INVALID_STATE if ULP co-processor is not enabled or if wakeup triggers
conflict

Espressif Systems 2093
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/sntp
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/power_save
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/nimble/power_save
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/deep_sleep
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_sleep.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_sleep_enable_timer_wakeup(uint64_t time_in_us)
Enable wakeup by timer.

Note: The valid time_in_us value depends on the bit width of the lp_timer/rtc_timer counter and the
current slow clock source selection (Refer RTC clock source configuration in menuconfig). Valid values should
be positive values less than RTC slow clock period * (2 ^ RTC timer bitwidth).

Parameters time_in_us -- time before wakeup, in microseconds
Returns

• ESP_OK on success
• ESP_ERR_INVALID_ARG if value is out of range.

bool esp_sleep_is_valid_wakeup_gpio(gpio_num_t gpio_num)
Returns true if a GPIO number is valid for use as wakeup source.

Note: For SoCs with RTC IO capability, this can be any valid RTC IO input pin.

Parameters gpio_num -- Number of the GPIO to test for wakeup source capability
Returns True if this GPIO number will be accepted as a sleep wakeup source.

esp_err_t esp_sleep_enable_ext1_wakeup(uint64_t io_mask, esp_sleep_ext1_wakeup_mode_t
level_mode)

Enable wakeup using multiple pins.
This function uses external wakeup feature of RTC controller. It will work even if RTC peripherals are shut
down during sleep.
This feature can monitor any number of pins which are in RTC IOs. Once selected pins go into the state given
by level_mode argument, the chip will be woken up.

Note: This function does not modify pin configuration. The pins are configured in
esp_deep_sleep_start/esp_light_sleep_start, immediately before entering sleep mode.

Note: Internal pullups and pulldowns don't work when RTC peripherals are shut down. In this case, ex-
ternal resistors need to be added. Alternatively, RTC peripherals (and pullups/pulldowns) may be kept en-
abled using esp_sleep_pd_config function. If we turn off the RTC_PERIPH domain or certain chips lack
the RTC_PERIPH domain, we will use the HOLD feature to maintain the pull-up and pull-down on the pins
during sleep. HOLD feature will be acted on the pin internally before the system entering sleep, and this can
further reduce power consumption.

Note: Call this func will reset the previous ext1 configuration.

Note: This function will be deprecated in release/v6.0. Please switch to use
esp_sleep_enable_ext1_wakeup_io and esp_sleep_disable_ext1_wakeup_io

Parameters
• io_mask -- Bit mask of GPIO numbers which will cause wakeup. Only GPIOs which
have RTC functionality can be used in this bit map. For different SoCs, the related GPIOs
are:

Espressif Systems 2094
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

– ESP32: 0, 2, 4, 12-15, 25-27, 32-39
– ESP32-S2: 0-21
– ESP32-S3: 0-21
– ESP32-C6: 0-7
– ESP32-H2: 7-14

• level_mode -- Select logic function used to determine wakeup condition: When target
chip is ESP32:
– ESP_EXT1_WAKEUP_ALL_LOW: wake up when all selected GPIOs are low
– ESP_EXT1_WAKEUP_ANY_HIGH: wake up when any of the selected GPIOs is high
When target chip is ESP32-S2, ESP32-S3, ESP32-C6 or ESP32-H2:

– ESP_EXT1_WAKEUP_ANY_LOW: wake up when any of the selected GPIOs is low
– ESP_EXT1_WAKEUP_ANY_HIGH: wake up when any of the selected GPIOs is high

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if io_mask is zero, or mode is invalid

esp_err_t esp_sleep_enable_ext1_wakeup_io(uint64_t io_mask, esp_sleep_ext1_wakeup_mode_t
level_mode)

Enable ext1 wakeup pins with IO masks.
This will append selected IOs to the wakeup IOs, it will not reset previously enabled IOs. To reset specific
previously enabled IOs, call esp_sleep_disable_ext1_wakeup_io with the io_mask. To reset all the enabled
IOs, call esp_sleep_disable_ext1_wakeup_io(0).
This function uses external wakeup feature of RTC controller. It will work even if RTC peripherals are shut
down during sleep.
This feature can monitor any number of pins which are in RTC IOs. Once selected pins go into the state given
by level_mode argument, the chip will be woken up.

Note: This function does not modify pin configuration. The pins are configured in
esp_deep_sleep_start/esp_light_sleep_start, immediately before entering sleep mode.

Note: Internal pullups and pulldowns don't work when RTC peripherals are shut down. In this case, ex-
ternal resistors need to be added. Alternatively, RTC peripherals (and pullups/pulldowns) may be kept en-
abled using esp_sleep_pd_config function. If we turn off the RTC_PERIPH domain or certain chips lack
the RTC_PERIPH domain, we will use the HOLD feature to maintain the pull-up and pull-down on the pins
during sleep. HOLD feature will be acted on the pin internally before the system entering sleep, and this can
further reduce power consumption.

Parameters
• io_mask -- Bit mask of GPIO numbers which will cause wakeup. Only GPIOs which
have RTC functionality can be used in this bit map. For different SoCs, the related GPIOs
are:
– ESP32: 0, 2, 4, 12-15, 25-27, 32-39
– ESP32-S2: 0-21
– ESP32-S3: 0-21
– ESP32-C6: 0-7
– ESP32-H2: 7-14

• level_mode -- Select logic function used to determine wakeup condition: When target
chip is ESP32:
– ESP_EXT1_WAKEUP_ALL_LOW: wake up when all selected GPIOs are low
– ESP_EXT1_WAKEUP_ANY_HIGH: wake up when any of the selected GPIOs is high
When target chip is ESP32-S2, ESP32-S3, ESP32-C6 or ESP32-H2:

– ESP_EXT1_WAKEUP_ANY_LOW: wake up when any of the selected GPIOs is low
– ESP_EXT1_WAKEUP_ANY_HIGH: wake up when any of the selected GPIOs is high

Espressif Systems 2095
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if any of the selected GPIOs is not an RTC GPIO, or mode
is invalid

• ESP_ERR_NOT_SUPPORTED when wakeup level will become different between ext1
IOs if !SOC_PM_SUPPORT_EXT1_WAKEUP_MODE_PER_PIN

esp_err_t esp_sleep_disable_ext1_wakeup_io(uint64_t io_mask)
Disable ext1 wakeup pins with IO masks. This will remove selected IOs from the wakeup IOs.

Parameters io_mask -- Bit mask of GPIO numbers which will cause wakeup. Only GPIOs
which have RTC functionality can be used in this bit map. If value is zero, this func will
remove all previous ext1 configuration. For different SoCs, the related GPIOs are:
• ESP32: 0, 2, 4, 12-15, 25-27, 32-39
• ESP32-S2: 0-21
• ESP32-S3: 0-21
• ESP32-C6: 0-7
• ESP32-H2: 7-14

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if any of the selected GPIOs is not an RTC GPIO.

esp_err_t esp_sleep_enable_ext1_wakeup_with_level_mask(uint64_t io_mask, uint64_t
level_mask)

Enable wakeup using multiple pins, allows different trigger mode per pin.
This function uses external wakeup feature of RTC controller. It will work even if RTC peripherals are shut
down during sleep.
This feature can monitor any number of pins which are in RTC IOs. Once selected pins go into the state given
by level_mode argument, the chip will be woken up.

Note: This function does not modify pin configuration. The pins are configured in
esp_deep_sleep_start/esp_light_sleep_start, immediately before entering sleep mode.

Note: Internal pullups and pulldowns don't work when RTC peripherals are shut down. In this case, ex-
ternal resistors need to be added. Alternatively, RTC peripherals (and pullups/pulldowns) may be kept en-
abled using esp_sleep_pd_config function. If we turn off the RTC_PERIPH domain or certain chips lack
the RTC_PERIPH domain, we will use the HOLD feature to maintain the pull-up and pull-down on the pins
during sleep. HOLD feature will be acted on the pin internally before the system entering sleep, and this can
further reduce power consumption.

Parameters
• io_mask -- Bit mask of GPIO numbers which will cause wakeup. Only GPIOs which
have RTC functionality can be used in this bit map. For different SoCs, the related GPIOs
are:
– ESP32-C6: 0-7.
– ESP32-H2: 7-14.

• level_mask -- Select logic function used to determine wakeup condition per pin. Each
bit of the level_mask corresponds to the respective GPIO. Each bit's corresponding po-
sition is set to 0, the wakeup level will be low, on the contrary, each bit's corresponding
position is set to 1, the wakeup level will be high.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if any of the selected GPIOs is not an RTC GPIO, or mode
is invalid

Espressif Systems 2096
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_deep_sleep_enable_gpio_wakeup(uint64_t gpio_pin_mask,
esp_deepsleep_gpio_wake_up_mode_t mode)

Enable wakeup using specific gpio pins.
This function enables an IO pin to wake up the chip from deep sleep.

Note: 1.This function does not modify pin configuration. The pins are configured inside
esp_deep_sleep_start, immediately before entering sleep mode. 2.This function is also
applicable to waking up the lightsleep when the peripheral power domain is powered off, see
PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP in menuconfig.

Note: You don't need to worry about pull-up or pull-down resistors before using this function be-
cause the ESP_SLEEP_GPIO_ENABLE_INTERNAL_RESISTORS option is enabled by default. It will
automatically set pull-up or pull-down resistors internally in esp_deep_sleep_start based on the wakeup
mode. However, when using external pull-up or pull-down resistors, please be sure to disable the
ESP_SLEEP_GPIO_ENABLE_INTERNAL_RESISTORS option, as the combination of internal and exter-
nal resistors may cause interference. BTW, when you use low level to wake up the chip, we strongly recommend
you to add external resistors (pull-up).

Parameters
• gpio_pin_mask -- Bit mask of GPIO numbers which will cause wakeup. Only GPIOs
which have RTC functionality (pads that powered by VDD3P3_RTC) can be used in this
bit map.

• mode -- Select logic function used to determine wakeup condition:
– ESP_GPIO_WAKEUP_GPIO_LOW: wake up when the gpio turn to low.
– ESP_GPIO_WAKEUP_GPIO_HIGH: wake up when the gpio turn to high.

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if the mask contains any invalid deep sleep wakeup pin or
wakeup mode is invalid

esp_err_t esp_sleep_enable_gpio_wakeup(void)
Enable wakeup from light sleep using GPIOs.
Each GPIO supports wakeup function, which can be triggered on either low level or high level. Unlike EXT0
and EXT1 wakeup sources, this method can be used both for all IOs: RTC IOs and digital IOs. It can only be
used to wakeup from light sleep though.
To enable wakeup, first call gpio_wakeup_enable, specifying gpio number and wakeup level, for each GPIO
which is used for wakeup. Then call this function to enable wakeup feature.

Note: 1. On ESP32, GPIO wakeup source can not be used together with touch or ULP wakeup sources.
a. If PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP is enabled (if target supported),

this API is unavailable since the GPIO module is powered down during sleep. You can
use esp_deep_sleep_enable_gpio_wakeup instead, or use EXT1 wakeup source by
esp_sleep_enable_ext1_wakeup_io to achieve the same function. (Only GPIOs which have
RTC functionality can be used)

Returns
• ESP_OK on success
• ESP_ERR_INVALID_STATE if wakeup triggers conflict

Espressif Systems 2097
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_sleep_enable_uart_wakeup(int uart_num)
Enable wakeup from light sleep using UART.
Use uart_set_wakeup_threshold function to configure UART wakeup threshold.
Wakeup from light sleep takes some time, so not every character sent to the UART can be received by the
application.

Note: 1. ESP32 does not support wakeup from UART2.
a. If PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP is enabled (if target supported), this API

is unavailable since the UART module is powered down during sleep.

Parameters uart_num -- UART port to wake up from
Returns

• ESP_OK on success
• ESP_ERR_INVALID_ARG if wakeup from given UART is not supported

esp_err_t esp_sleep_enable_bt_wakeup(void)
Enable wakeup by bluetooth.

Returns
• ESP_OK on success
• ESP_ERR_NOT_SUPPORTED if wakeup from bluetooth is not supported

esp_err_t esp_sleep_disable_bt_wakeup(void)
Disable wakeup by bluetooth.

Returns
• ESP_OK on success
• ESP_ERR_NOT_SUPPORTED if wakeup from bluetooth is not supported

esp_err_t esp_sleep_enable_wifi_wakeup(void)
Enable wakeup by WiFi MAC.

Returns
• ESP_OK on success

esp_err_t esp_sleep_disable_wifi_wakeup(void)
Disable wakeup by WiFi MAC.

Returns
• ESP_OK on success

esp_err_t esp_sleep_enable_wifi_beacon_wakeup(void)
Enable beacon wakeup by WiFi MAC, it will wake up the system into modem state.

Returns
• ESP_OK on success

esp_err_t esp_sleep_disable_wifi_beacon_wakeup(void)
Disable beacon wakeup by WiFi MAC.

Returns
• ESP_OK on success

uint64_t esp_sleep_get_ext1_wakeup_status(void)
Get the bit mask of GPIOs which caused wakeup (ext1)
If wakeup was caused by another source, this function will return 0.

Returns bit mask, if GPIOn caused wakeup, BIT(n) will be set

Espressif Systems 2098
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

uint64_t esp_sleep_get_gpio_wakeup_status(void)
Get the bit mask of GPIOs which caused wakeup (gpio)
If wakeup was caused by another source, this function will return 0.

Returns bit mask, if GPIOn caused wakeup, BIT(n) will be set
esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain, esp_sleep_pd_option_t option)

Set power down mode for an RTC power domain in sleep mode.
If not set set using this API, all power domains default to ESP_PD_OPTION_AUTO.

Parameters
• domain -- power domain to configure
• option -- power down option (ESP_PD_OPTION_OFF, ESP_PD_OPTION_ON, or
ESP_PD_OPTION_AUTO)

Returns
• ESP_OK on success
• ESP_ERR_INVALID_ARG if either of the arguments is out of range

esp_err_t esp_deep_sleep_try_to_start(void)
Enter deep sleep with the configured wakeup options.

The reason for the rejection can be such as a short sleep time.

Note: In general, the function does not return, but if the sleep is rejected, then it returns from it.

Returns
• No return - If the sleep is not rejected.
• ESP_ERR_SLEEP_REJECT sleep request is rejected(wakeup source set before the sleep
request)

void esp_deep_sleep_start(void)
Enter deep sleep with the configured wakeup options.

Note: The function does not do a return (no rejection). Even if wakeup source set before the sleep request it
goes to deep sleep anyway.

esp_err_t esp_light_sleep_start(void)
Enter light sleep with the configured wakeup options.

Returns
• ESP_OK on success (returned after wakeup)
• ESP_ERR_SLEEP_REJECT sleep request is rejected(wakeup source set before the sleep
request)

• ESP_ERR_SLEEP_TOO_SHORT_SLEEP_DURATION after deducting the sleep flow
overhead, the final sleep duration is too short to cover the minimum sleep duration of the
chip, when rtc timer wakeup source enabled

esp_err_t esp_deep_sleep_try(uint64_t time_in_us)
Enter deep-sleep mode.
The device will automatically wake up after the deep-sleep time Upon waking up, the device calls deep sleep
wake stub, and then proceeds to load application.
Call to this function is equivalent to a call to esp_deep_sleep_enable_timer_wakeup followed by a call to
esp_deep_sleep_start.

Parameters time_in_us -- deep-sleep time, unit: microsecond

Espressif Systems 2099
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Returns
• No return - If the sleep is not rejected.
• ESP_ERR_SLEEP_REJECT sleep request is rejected(wakeup source set before the sleep
request)

void esp_deep_sleep(uint64_t time_in_us)
Enter deep-sleep mode.
The device will automatically wake up after the deep-sleep time Upon waking up, the device calls deep sleep
wake stub, and then proceeds to load application.
Call to this function is equivalent to a call to esp_deep_sleep_enable_timer_wakeup followed by a call to
esp_deep_sleep_start.

Note: The function does not do a return (no rejection).. Even if wakeup source set before the sleep request it
goes to deep sleep anyway.

Parameters time_in_us -- deep-sleep time, unit: microsecond

esp_err_t esp_deep_sleep_register_hook(esp_deep_sleep_cb_t new_dslp_cb)
Register a callback to be called from the deep sleep prepare.

Warning: deepsleep callbacks should without parameters, and MUST NOT, UNDER ANY CIRCUM-
STANCES, CALL A FUNCTION THAT MIGHT BLOCK.

Parameters new_dslp_cb -- Callback to be called
Returns

• ESP_OK: Callback registered to the deepsleep misc_modules_sleep_prepare
• ESP_ERR_NO_MEM: No more hook space for register the callback

void esp_deep_sleep_deregister_hook(esp_deep_sleep_cb_t old_dslp_cb)
Unregister an deepsleep callback.

Parameters old_dslp_cb -- Callback to be unregistered
esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause(void)

Get the wakeup source which caused wakeup from sleep.

Note: !!! This API will only return one wakeup source. If multiple wakeup sources wake up at the same time,
the wakeup source information may be lost.

Returns cause of wake up from last sleep (deep sleep or light sleep)

uint32_t esp_sleep_get_wakeup_causes(void)
Get all wakeup sources bitmap which caused wakeup from sleep.

Returns The bitmap of the wakeup sources of the last wakeup from sleep. (deep sleep or light
sleep)

void esp_wake_deep_sleep(void)
Default stub to run on wake from deep sleep.
Allows for executing code immediately on wake from sleep, before the software bootloader or ESP-IDF app
has started up.
This function is weak-linked, so you can implement your own version to run code immediately when the chip
wakes from sleep.

Espressif Systems 2100
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

See docs/deep-sleep-stub.rst for details.
void esp_set_deep_sleep_wake_stub(esp_deep_sleep_wake_stub_fn_t new_stub)

Install a new stub at runtime to run on wake from deep sleep.
If implementing esp_wake_deep_sleep() then it is not necessary to call this function.
However, it is possible to call this function to substitute a different deep sleep stub. Any function
used as a deep sleep stub must be marked RTC_IRAM_ATTR, and must obey the same rules given for
esp_wake_deep_sleep().

void esp_set_deep_sleep_wake_stub_default_entry(void)
Set wake stub entry to default esp_wake_stub_entry

esp_deep_sleep_wake_stub_fn_t esp_get_deep_sleep_wake_stub(void)
Get current wake from deep sleep stub.

Returns Return current wake from deep sleep stub, or NULL if no stub is installed.
void esp_default_wake_deep_sleep(void)

The default esp-idf-provided esp_wake_deep_sleep() stub.
See docs/deep-sleep-stub.rst for details.

void esp_deep_sleep_disable_rom_logging(void)
Disable logging from the ROM code after deep sleep.
Using LSB of RTC_STORE4.

esp_err_t esp_sleep_cpu_retention_init(void)
CPU Power down initialize.

Returns
• ESP_OK on success
• ESP_ERR_NO_MEM not enough retention memory

esp_err_t esp_sleep_cpu_retention_deinit(void)
CPU Power down de-initialize.

Release system retention memory.
Returns

• ESP_OK on success
void esp_sleep_config_gpio_isolate(void)

Configure to isolate all GPIO pins in sleep state.
void esp_sleep_enable_gpio_switch(bool enable)

Enable or disable GPIO pins status switching between slept status and waked status.
Parameters enable -- decide whether to switch status or not

Macros

ESP_PD_DOMAIN_RTC8M

Type Definitions

typedef void (*esp_deep_sleep_cb_t)(void)

typedef esp_sleep_source_t esp_sleep_wakeup_cause_t

Espressif Systems 2101
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

typedef void (*esp_deep_sleep_wake_stub_fn_t)(void)
Function type for stub to run on wake from sleep.

Enumerations

enum esp_sleep_ext1_wakeup_mode_t

Logic function used for EXT1 wakeup mode.
Values:

enumerator ESP_EXT1_WAKEUP_ANY_LOW
Wake the chip when any of the selected GPIOs go low.

enumerator ESP_EXT1_WAKEUP_ANY_HIGH
Wake the chip when any of the selected GPIOs go high.

enumerator ESP_EXT1_WAKEUP_ALL_LOW

enum esp_deepsleep_gpio_wake_up_mode_t

Values:

enumerator ESP_GPIO_WAKEUP_GPIO_LOW

enumerator ESP_GPIO_WAKEUP_GPIO_HIGH

enum esp_sleep_pd_domain_t

Power domains which can be powered down in sleep mode.
Values:

enumerator ESP_PD_DOMAIN_RTC_PERIPH
RTC IO, sensors and ULP co-processor.

enumerator ESP_PD_DOMAIN_XTAL
XTAL oscillator.

enumerator ESP_PD_DOMAIN_XTAL32K
External 32 kHz XTAL oscillator.

enumerator ESP_PD_DOMAIN_RC32K
Internal 32 kHz RC oscillator.

enumerator ESP_PD_DOMAIN_RC_FAST
Internal Fast oscillator.

enumerator ESP_PD_DOMAIN_CPU
CPU core.

enumerator ESP_PD_DOMAIN_VDDSDIO
VDD_SDIO.

Espressif Systems 2102
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_PD_DOMAIN_MODEM
MODEM, includes WiFi, Bluetooth and IEEE802.15.4.

enumerator ESP_PD_DOMAIN_TOP
SoC TOP.

enumerator ESP_PD_DOMAIN_MAX
Number of domains.

enum esp_sleep_pd_option_t

Power down options.
Values:

enumerator ESP_PD_OPTION_OFF
Power down the power domain in sleep mode.

enumerator ESP_PD_OPTION_ON
Keep power domain enabled during sleep mode.

enumerator ESP_PD_OPTION_AUTO
Keep power domain enabled in sleep mode, if it is needed by one of the wakeup options. Otherwise
power it down.

enum esp_sleep_source_t

Sleep wakeup cause.
Values:

enumerator ESP_SLEEP_WAKEUP_UNDEFINED
In case of deep sleep, reset was not caused by exit from deep sleep.

enumerator ESP_SLEEP_WAKEUP_ALL
Not a wakeup cause, used to disable all wakeup sources with esp_sleep_disable_wakeup_source.

enumerator ESP_SLEEP_WAKEUP_EXT0
Wakeup caused by external signal using RTC_IO.

enumerator ESP_SLEEP_WAKEUP_EXT1
Wakeup caused by external signal using RTC_CNTL.

enumerator ESP_SLEEP_WAKEUP_TIMER
Wakeup caused by timer.

enumerator ESP_SLEEP_WAKEUP_TOUCHPAD
Wakeup caused by touchpad.

enumerator ESP_SLEEP_WAKEUP_ULP
Wakeup caused by ULP program.

Espressif Systems 2103
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

enumerator ESP_SLEEP_WAKEUP_GPIO
Wakeup caused by GPIO (light sleep only on ESP32, S2 and S3)

enumerator ESP_SLEEP_WAKEUP_UART
Wakeup caused by UART0 (light sleep only)

enumerator ESP_SLEEP_WAKEUP_UART1
Wakeup caused by UART1 (light sleep only)

enumerator ESP_SLEEP_WAKEUP_UART2
Wakeup caused by UART2 (light sleep only)

enumerator ESP_SLEEP_WAKEUP_WIFI
Wakeup caused by WIFI (light sleep only)

enumerator ESP_SLEEP_WAKEUP_COCPU
Wakeup caused by COCPU int.

enumerator ESP_SLEEP_WAKEUP_COCPU_TRAP_TRIG
Wakeup caused by COCPU crash.

enumerator ESP_SLEEP_WAKEUP_BT
Wakeup caused by BT (light sleep only)

enum esp_sleep_mode_t

Sleep mode.
Values:

enumerator ESP_SLEEP_MODE_LIGHT_SLEEP
light sleep mode

enumerator ESP_SLEEP_MODE_DEEP_SLEEP
deep sleep mode

enum [anonymous]

Values:

enumerator ESP_ERR_SLEEP_REJECT

enumerator ESP_ERR_SLEEP_TOO_SHORT_SLEEP_DURATION

2.10.26 SoC Capabilities

This section lists definitions of the ESP32-C6's SoC hardware capabilities. These definitions are commonly used in
IDF to control which hardware dependent features are supported and thus compiled into the binary.

Note: These defines are currently not considered to be part of the public API, and may be changed at any time.

Espressif Systems 2104
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

API Reference

Header File
• components/soc/esp32c6/include/soc/soc_caps.h

Macros

SOC_ADC_SUPPORTED

SOC_DEDICATED_GPIO_SUPPORTED

SOC_UART_SUPPORTED

SOC_UHCI_SUPPORTED

SOC_GDMA_SUPPORTED

SOC_GPTIMER_SUPPORTED

SOC_PCNT_SUPPORTED

SOC_MCPWM_SUPPORTED

SOC_TWAI_SUPPORTED

SOC_ETM_SUPPORTED

SOC_PARLIO_SUPPORTED

SOC_BT_SUPPORTED

SOC_IEEE802154_SUPPORTED

SOC_ASYNC_MEMCPY_SUPPORTED

SOC_USB_SERIAL_JTAG_SUPPORTED

SOC_TEMP_SENSOR_SUPPORTED

SOC_WIFI_SUPPORTED

SOC_SUPPORTS_SECURE_DL_MODE

SOC_ULP_SUPPORTED

SOC_LP_CORE_SUPPORTED

Espressif Systems 2105
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/soc/esp32c6/include/soc/soc_caps.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_EFUSE_KEY_PURPOSE_FIELD

SOC_RTC_FAST_MEM_SUPPORTED

SOC_RTC_MEM_SUPPORTED

SOC_I2S_SUPPORTED

SOC_RMT_SUPPORTED

SOC_SDM_SUPPORTED

SOC_GPSPI_SUPPORTED

SOC_LEDC_SUPPORTED

SOC_I2C_SUPPORTED

SOC_SYSTIMER_SUPPORTED

SOC_SUPPORT_COEXISTENCE

SOC_AES_SUPPORTED

SOC_MPI_SUPPORTED

SOC_SHA_SUPPORTED

SOC_HMAC_SUPPORTED

SOC_DIG_SIGN_SUPPORTED

SOC_ECC_SUPPORTED

SOC_FLASH_ENC_SUPPORTED

SOC_SECURE_BOOT_SUPPORTED

SOC_SDIO_SLAVE_SUPPORTED

SOC_BOD_SUPPORTED

SOC_APM_SUPPORTED

SOC_PMU_SUPPORTED

Espressif Systems 2106
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_PAU_SUPPORTED

SOC_LP_TIMER_SUPPORTED

SOC_LP_AON_SUPPORTED

SOC_LP_I2C_SUPPORTED

SOC_XTAL_SUPPORT_40M

SOC_AES_SUPPORT_DMA

SOC_AES_GDMA

SOC_AES_SUPPORT_AES_128

SOC_AES_SUPPORT_AES_256

SOC_ADC_DIG_CTRL_SUPPORTED

< SAR ADC Module

SOC_ADC_DIG_IIR_FILTER_SUPPORTED

SOC_ADC_MONITOR_SUPPORTED

SOC_ADC_DIG_SUPPORTED_UNIT(UNIT)

SOC_ADC_DMA_SUPPORTED

SOC_ADC_PERIPH_NUM

SOC_ADC_CHANNEL_NUM(PERIPH_NUM)

SOC_ADC_MAX_CHANNEL_NUM

SOC_ADC_ATTEN_NUM

Digital

SOC_ADC_DIGI_CONTROLLER_NUM

SOC_ADC_PATT_LEN_MAX

Two pattern tables, each contains 4 items. Each item takes 1 byte

SOC_ADC_DIGI_MAX_BITWIDTH

SOC_ADC_DIGI_MIN_BITWIDTH

Espressif Systems 2107
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_ADC_DIGI_IIR_FILTER_NUM

SOC_ADC_DIGI_MONITOR_NUM

SOC_ADC_DIGI_RESULT_BYTES

SOC_ADC_DIGI_DATA_BYTES_PER_CONV

F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interval <= 4095

SOC_ADC_SAMPLE_FREQ_THRES_HIGH

SOC_ADC_SAMPLE_FREQ_THRES_LOW

RTC

SOC_ADC_RTC_MIN_BITWIDTH

SOC_ADC_RTC_MAX_BITWIDTH

Calibration

SOC_ADC_CALIBRATION_V1_SUPPORTED

support HW offset calibration version 1

SOC_ADC_SELF_HW_CALI_SUPPORTED

support HW offset self calibration

SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED

support channel compensation to the HW offset calibration Interrupt

SOC_ADC_TEMPERATURE_SHARE_INTR

SOC_APB_BACKUP_DMA

SOC_BROWNOUT_RESET_SUPPORTED

SOC_SHARED_IDCACHE_SUPPORTED

SOC_CACHE_FREEZE_SUPPORTED

SOC_CPU_CORES_NUM

SOC_CPU_INTR_NUM

SOC_CPU_HAS_FLEXIBLE_INTC

SOC_INT_PLIC_SUPPORTED

Espressif Systems 2108
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_CPU_BREAKPOINTS_NUM

SOC_CPU_WATCHPOINTS_NUM

SOC_CPU_WATCHPOINT_MAX_REGION_SIZE

SOC_CPU_HAS_PMA

SOC_CPU_IDRAM_SPLIT_USING_PMP

SOC_DS_SIGNATURE_MAX_BIT_LEN

The maximum length of a Digital Signature in bits.

SOC_DS_KEY_PARAM_MD_IV_LENGTH

Initialization vector (IV) length for the RSA key parameter message digest (MD) in bytes.

SOC_DS_KEY_CHECK_MAX_WAIT_US

Maximum wait time for DS parameter decryption key. If overdue, then key error. See TRM DS chapter for
more details

SOC_GDMA_GROUPS

SOC_GDMA_PAIRS_PER_GROUP

SOC_GDMA_SUPPORT_ETM

SOC_ETM_GROUPS

SOC_ETM_CHANNELS_PER_GROUP

SOC_GPIO_PORT

SOC_GPIO_PIN_COUNT

SOC_GPIO_SUPPORT_PIN_GLITCH_FILTER

SOC_GPIO_FLEX_GLITCH_FILTER_NUM

SOC_GPIO_SUPPORT_ETM

SOC_GPIO_SUPPORT_RTC_INDEPENDENT

SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP

SOC_GPIO_VALID_GPIO_MASK

Espressif Systems 2109
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_GPIO_VALID_OUTPUT_GPIO_MASK

SOC_GPIO_IN_RANGE_MAX

SOC_GPIO_OUT_RANGE_MAX

SOC_GPIO_DEEP_SLEEP_WAKE_VALID_GPIO_MASK

SOC_GPIO_VALID_DIGITAL_IO_PAD_MASK

SOC_GPIO_SUPPORT_FORCE_HOLD

SOC_GPIO_SUPPORT_HOLD_SINGLE_IO_IN_DSLP

SOC_RTCIO_PIN_COUNT

SOC_RTCIO_INPUT_OUTPUT_SUPPORTED

SOC_RTCIO_HOLD_SUPPORTED

SOC_RTCIO_WAKE_SUPPORTED

SOC_DEDIC_GPIO_OUT_CHANNELS_NUM

8 outward channels on each CPU core

SOC_DEDIC_GPIO_IN_CHANNELS_NUM

8 inward channels on each CPU core

SOC_DEDIC_PERIPH_ALWAYS_ENABLE

The dedicated GPIO (a.k.a. fast GPIO) is featured by some customized CPU instructions, which is always
enabled

SOC_I2C_NUM

SOC_I2C_FIFO_LEN

I2C hardware FIFO depth

SOC_I2C_CMD_REG_NUM

Number of I2C command registers

SOC_I2C_SUPPORT_SLAVE

SOC_I2C_SUPPORT_HW_CLR_BUS

SOC_I2C_SUPPORT_XTAL

Espressif Systems 2110
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_I2C_SUPPORT_RTC

SOC_LP_I2C_NUM

SOC_LP_I2C_FIFO_LEN

LP_I2C hardware FIFO depth

SOC_I2S_NUM

SOC_I2S_HW_VERSION_2

SOC_I2S_SUPPORTS_XTAL

SOC_I2S_SUPPORTS_PLL_F160M

SOC_I2S_SUPPORTS_PCM

SOC_I2S_SUPPORTS_PDM

SOC_I2S_SUPPORTS_PDM_TX

SOC_I2S_PDM_MAX_TX_LINES

SOC_I2S_SUPPORTS_TDM

SOC_LEDC_SUPPORT_PLL_DIV_CLOCK

SOC_LEDC_SUPPORT_XTAL_CLOCK

SOC_LEDC_CHANNEL_NUM

SOC_LEDC_TIMER_BIT_WIDTH

SOC_LEDC_SUPPORT_FADE_STOP

SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED

SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX

SOC_LEDC_FADE_PARAMS_BIT_WIDTH

SOC_MMU_PAGE_SIZE_CONFIGURABLE

SOC_MMU_PERIPH_NUM

Espressif Systems 2111
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_MMU_LINEAR_ADDRESS_REGION_NUM

SOC_MMU_DI_VADDR_SHARED

D/I vaddr are shared

SOC_MPU_CONFIGURABLE_REGIONS_SUPPORTED

SOC_MPU_MIN_REGION_SIZE

SOC_MPU_REGIONS_MAX_NUM

SOC_MPU_REGION_RO_SUPPORTED

SOC_MPU_REGION_WO_SUPPORTED

SOC_PCNT_GROUPS

SOC_PCNT_UNITS_PER_GROUP

SOC_PCNT_CHANNELS_PER_UNIT

SOC_PCNT_THRES_POINT_PER_UNIT

SOC_PCNT_SUPPORT_RUNTIME_THRES_UPDATE

SOC_RMT_GROUPS

One RMT group

SOC_RMT_TX_CANDIDATES_PER_GROUP

Number of channels that capable of Transmit

SOC_RMT_RX_CANDIDATES_PER_GROUP

Number of channels that capable of Receive

SOC_RMT_CHANNELS_PER_GROUP

Total 4 channels

SOC_RMT_MEM_WORDS_PER_CHANNEL

Each channel owns 48 words memory (1 word = 4 Bytes)

SOC_RMT_SUPPORT_RX_PINGPONG

Support Ping-Pong mode on RX path

SOC_RMT_SUPPORT_RX_DEMODULATION

Support signal demodulation on RX path (i.e. remove carrier)

Espressif Systems 2112
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_RMT_SUPPORT_ASYNC_STOP

Support stop transmission asynchronously

SOC_RMT_SUPPORT_TX_LOOP_COUNT

Support transmit specified number of cycles in loop mode

SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP

Hardware support of auto-stop in loop mode

SOC_RMT_SUPPORT_TX_SYNCHRO

Support coordinate a group of TX channels to start simultaneously

SOC_RMT_SUPPORT_TX_CARRIER_DATA_ONLY

TX carrier can be modulated to data phase only

SOC_RMT_SUPPORT_XTAL

Support set XTAL clock as the RMT clock source

SOC_RMT_SUPPORT_RC_FAST

Support set RC_FAST as the RMT clock source

SOC_MCPWM_GROUPS

1 MCPWM groups on the chip (i.e., the number of independent MCPWM peripherals)

SOC_MCPWM_TIMERS_PER_GROUP

The number of timers that each group has.

SOC_MCPWM_OPERATORS_PER_GROUP

The number of operators that each group has.

SOC_MCPWM_COMPARATORS_PER_OPERATOR

The number of comparators that each operator has.

SOC_MCPWM_GENERATORS_PER_OPERATOR

The number of generators that each operator has.

SOC_MCPWM_TRIGGERS_PER_OPERATOR

The number of triggers that each operator has.

SOC_MCPWM_GPIO_FAULTS_PER_GROUP

The number of fault signal detectors that each group has.

SOC_MCPWM_CAPTURE_TIMERS_PER_GROUP

The number of capture timers that each group has.

SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER

The number of capture channels that each capture timer has.

Espressif Systems 2113
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_MCPWM_GPIO_SYNCHROS_PER_GROUP

The number of GPIO synchros that each group has.

SOC_MCPWM_SWSYNC_CAN_PROPAGATE

Software sync event can be routed to its output.

SOC_MCPWM_SUPPORT_ETM

Support ETM (Event Task Matrix)

SOC_MCPWM_CAPTURE_CLK_FROM_GROUP

Capture timer shares clock with other PWM timers.

SOC_PARLIO_GROUPS

Number of parallel IO peripherals

SOC_PARLIO_TX_UNITS_PER_GROUP

number of TX units in each group

SOC_PARLIO_RX_UNITS_PER_GROUP

number of RX units in each group

SOC_PARLIO_TX_UNIT_MAX_DATA_WIDTH

Number of data lines of the TX unit

SOC_PARLIO_RX_UNIT_MAX_DATA_WIDTH

Number of data lines of the RX unit

SOC_PARLIO_TX_RX_SHARE_INTERRUPT

TX and RX unit share the same interrupt source number

SOC_RSA_MAX_BIT_LEN

SOC_SHA_DMA_MAX_BUFFER_SIZE

SOC_SHA_SUPPORT_DMA

SOC_SHA_SUPPORT_RESUME

SOC_SHA_GDMA

SOC_SHA_SUPPORT_SHA1

SOC_SHA_SUPPORT_SHA224

SOC_SHA_SUPPORT_SHA256

SOC_SDM_GROUPS

Espressif Systems 2114
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_SDM_CHANNELS_PER_GROUP

SOC_SDM_CLK_SUPPORT_PLL_F80M

SOC_SDM_CLK_SUPPORT_XTAL

SOC_SPI_PERIPH_NUM

SOC_SPI_PERIPH_CS_NUM(i)

SOC_SPI_MAX_CS_NUM

SOC_SPI_MAXIMUM_BUFFER_SIZE

SOC_SPI_SUPPORT_DDRCLK

SOC_SPI_SLAVE_SUPPORT_SEG_TRANS

SOC_SPI_SUPPORT_CD_SIG

SOC_SPI_SUPPORT_CONTINUOUS_TRANS

SOC_SPI_SUPPORT_SLAVE_HD_VER2

SOC_SPI_SUPPORT_CLK_XTAL

SOC_SPI_SUPPORT_CLK_PLL_F80M

SOC_SPI_SUPPORT_CLK_RC_FAST

SOC_SPI_PERIPH_SUPPORT_MULTILINE_MODE(host_id)

SOC_MEMSPI_IS_INDEPENDENT

SOC_SPI_MAX_PRE_DIVIDER

SOC_SPI_MEM_SUPPORT_AUTO_WAIT_IDLE

SOC_SPI_MEM_SUPPORT_AUTO_SUSPEND

SOC_SPI_MEM_SUPPORT_AUTO_RESUME

SOC_SPI_MEM_SUPPORT_IDLE_INTR

SOC_SPI_MEM_SUPPORT_SW_SUSPEND

Espressif Systems 2115
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_SPI_MEM_SUPPORT_CHECK_SUS

SOC_SPI_MEM_SUPPORT_WRAP

SOC_MEMSPI_SRC_FREQ_80M_SUPPORTED

SOC_MEMSPI_SRC_FREQ_40M_SUPPORTED

SOC_MEMSPI_SRC_FREQ_20M_SUPPORTED

SOC_SYSTIMER_COUNTER_NUM

SOC_SYSTIMER_ALARM_NUM

SOC_SYSTIMER_BIT_WIDTH_LO

SOC_SYSTIMER_BIT_WIDTH_HI

SOC_SYSTIMER_FIXED_DIVIDER

SOC_SYSTIMER_SUPPORT_RC_FAST

SOC_SYSTIMER_INT_LEVEL

SOC_SYSTIMER_ALARM_MISS_COMPENSATE

SOC_SYSTIMER_SUPPORT_ETM

SOC_LP_TIMER_BIT_WIDTH_LO

SOC_LP_TIMER_BIT_WIDTH_HI

SOC_TIMER_GROUPS

SOC_TIMER_GROUP_TIMERS_PER_GROUP

SOC_TIMER_GROUP_COUNTER_BIT_WIDTH

SOC_TIMER_GROUP_SUPPORT_XTAL

SOC_TIMER_GROUP_SUPPORT_RC_FAST

SOC_TIMER_GROUP_TOTAL_TIMERS

SOC_TIMER_SUPPORT_ETM

Espressif Systems 2116
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_MWDT_SUPPORT_XTAL

SOC_TWAI_CONTROLLER_NUM

SOC_TWAI_CLK_SUPPORT_XTAL

SOC_TWAI_BRP_MIN

SOC_TWAI_BRP_MAX

SOC_TWAI_SUPPORTS_RX_STATUS

SOC_EFUSE_DIS_DOWNLOAD_ICACHE

SOC_EFUSE_DIS_PAD_JTAG

SOC_EFUSE_DIS_USB_JTAG

SOC_EFUSE_DIS_DIRECT_BOOT

SOC_EFUSE_SOFT_DIS_JTAG

SOC_EFUSE_DIS_ICACHE

SOC_EFUSE_BLOCK9_KEY_PURPOSE_QUIRK

SOC_SECURE_BOOT_V2_RSA

SOC_SECURE_BOOT_V2_ECC

SOC_EFUSE_SECURE_BOOT_KEY_DIGESTS

SOC_EFUSE_REVOKE_BOOT_KEY_DIGESTS

SOC_SUPPORT_SECURE_BOOT_REVOKE_KEY

SOC_FLASH_ENCRYPTED_XTS_AES_BLOCK_MAX

SOC_FLASH_ENCRYPTION_XTS_AES

SOC_FLASH_ENCRYPTION_XTS_AES_128

SOC_CRYPTO_DPA_PROTECTION_SUPPORTED

SOC_UART_NUM

Espressif Systems 2117
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_UART_FIFO_LEN

The UART hardware FIFO length

SOC_UART_BITRATE_MAX

Max bit rate supported by UART

SOC_UART_SUPPORT_PLL_F80M_CLK

Support PLL_F80M as the clock source

SOC_UART_SUPPORT_RTC_CLK

Support RTC clock as the clock source

SOC_UART_SUPPORT_XTAL_CLK

Support XTAL clock as the clock source

SOC_UART_SUPPORT_WAKEUP_INT

Support UART wakeup interrupt

SOC_UART_SUPPORT_FSM_TX_WAIT_SEND

SOC_UHCI_NUM

SOC_COEX_HW_PTI

SOC_EXTERNAL_COEX_ADVANCE

HARDWARE ADVANCED EXTERNAL COEXISTENCE CAPS

SOC_EXTERNAL_COEX_LEADER_TX_LINE

EXTERNAL COEXISTENCE TX LINE CAPS

SOC_PHY_DIG_REGS_MEM_SIZE

SOC_WIFI_LIGHT_SLEEP_CLK_WIDTH

SOC_PM_SUPPORT_WIFI_WAKEUP

SOC_PM_SUPPORT_BEACON_WAKEUP

SOC_PM_SUPPORT_BT_WAKEUP

SOC_PM_SUPPORT_EXT1_WAKEUP

SOC_PM_SUPPORT_EXT1_WAKEUP_MODE_PER_PIN

Supports one bit per pin to configue the EXT1 trigger level

SOC_PM_SUPPORT_CPU_PD

Espressif Systems 2118
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_PM_SUPPORT_MODEM_PD

SOC_PM_SUPPORT_XTAL32K_PD

SOC_PM_SUPPORT_RC32K_PD

SOC_PM_SUPPORT_RC_FAST_PD

SOC_PM_SUPPORT_VDDSDIO_PD

SOC_PM_SUPPORT_TOP_PD

SOC_PM_SUPPORT_HP_AON_PD

SOC_PM_SUPPORT_MAC_BB_PD

SOC_PM_SUPPORT_RTC_PERIPH_PD

SOC_PM_SUPPORT_PMU_MODEM_STATE

MAC_SUPPORT_PMU_MODEM_STATE

SOC_PM_SUPPORT_DEEPSLEEP_CHECK_STUB_ONLY

Supports CRC only the stub code in RTC memory

SOC_PM_CPU_RETENTION_BY_SW

SOC_PM_MODEM_RETENTION_BY_REGDMA

SOC_PM_RETENTION_HAS_CLOCK_BUG

SOC_PM_MODEM_RF_FLAG_UPDATE_WORKAROUND

SOC_PM_PAU_LINK_NUM

SOC_PM_PAU_REGDMA_UPDATE_CACHE_BEFORE_WAIT_COMPARE

SOC_PM_PMU_MIN_SLP_SLOW_CLK_CYCLE_FIXED

SOC_CLK_RC_FAST_SUPPORT_CALIBRATION

SOC_MODEM_CLOCK_IS_INDEPENDENT

SOC_CLK_XTAL32K_SUPPORTED

Support to connect an external low frequency crystal

Espressif Systems 2119
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_CLK_OSC_SLOW_SUPPORTED

Support to connect an external oscillator, not a crystal

SOC_CLK_RC32K_SUPPORTED

Support an internal 32kHz RC oscillator

SOC_TEMPERATURE_SENSOR_SUPPORT_FAST_RC

SOC_TEMPERATURE_SENSOR_SUPPORT_XTAL

SOC_TEMPERATURE_SENSOR_INTR_SUPPORT

SOC_WIFI_HW_TSF

Support hardware TSF

SOC_WIFI_FTM_SUPPORT

Support FTM

SOC_WIFI_GCMP_SUPPORT

Support GCMP(GCMP128 and GCMP256)

SOC_WIFI_WAPI_SUPPORT

Support WAPI

SOC_WIFI_TXOP_SUPPORT

Support TXOP

SOC_WIFI_CSI_SUPPORT

Support CSI

SOC_WIFI_MESH_SUPPORT

Support WIFI MESH

SOC_WIFI_HE_SUPPORT

Support Wi-Fi 6

SOC_BLE_SUPPORTED

Support Bluetooth Low Energy hardware

SOC_BLE_MESH_SUPPORTED

Support BLE MESH

SOC_ESP_NIMBLE_CONTROLLER

Support BLE EMBEDDED controller V1

SOC_BLE_50_SUPPORTED

Support Bluetooth 5.0

Espressif Systems 2120
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

SOC_BLE_DEVICE_PRIVACY_SUPPORTED

Support BLE device privacy mode

SOC_BLE_POWER_CONTROL_SUPPORTED

Support Bluetooth Power Control

SOC_BLE_PERIODIC_ADV_ENH_SUPPORTED

Support For BLE Periodic Adv Enhancements

SOC_BLUFI_SUPPORTED

Support BLUFI

SOC_BLE_MULTI_CONN_OPTIMIZATION

Support multiple connections optimization

SOC_BLE_PERIODIC_ADV_WITH_RESPONSE

Support Bluetooth LE Periodic Advertising with Response (PAwR)

SOC_BLE_USE_WIFI_PWR_CLK_WORKAROUND

SOC_PHY_COMBO_MODULE

Support Wi-Fi, BLE and 15.4

SOC_CAPS_NO_RESET_BY_ANA_BOD

2.10.27 System Time

Overview

ESP32-C6 uses two hardware timers for the purpose of keeping system time. System time can be kept by using either
one or both of the hardware timers depending on the application's purpose and accuracy requirements for system time.
The two hardware timers are:

• RTC timer: This timer allows time keeping in various sleep modes, and can also persist time keeping across
any resets (with the exception of power-on resets which reset the RTC timer). The frequency deviation depends
on the RTC Timer Clock Sources and affects the accuracy only in sleep modes, in which case the time will be
measured at 6.6667 μs resolution.

• High-resolution timer: This timer is not available in sleep modes and will not persist over a reset, but has
greater accuracy. The timer uses the APB_CLK clock source (typically 80 MHz), which has a frequency
deviation of less than ±10 ppm. Time will be measured at 1 μs resolution.

The possible combinations of hardware timers used to keep system time are listed below:
• RTC and high-resolution timer (default)
• RTC
• High-resolution timer
• None

It is recommended that users stick to the default option as it provides the highest accuracy. However, users can also
select a different setting via the CONFIG_NEWLIB_TIME_SYSCALL configuration option.

Espressif Systems 2121
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

RTC Timer Clock Sources

The RTC timer has the following clock sources:

• Internal 150 kHz RC oscillator (default): Features the lowest Deep-sleep current consumption
and no dependence on any external components. However, the frequency stability of this clock source is
affected by temperature fluctuations, so time may drift in both Deep-sleep and Light-sleep modes.

• External 32 kHz crystal: Requires a 32 kHz crystal to be connected to the XTAL_32K_P and
XTAL_32K_N pins. This source provides a better frequency stability at the expense of a slightly higher (by 1
μA) Deep-sleep current consumption.

• External 32 kHz oscillator at XTAL_32K_P pin: Allows using 32 kHz clock generated
by an external circuit. The external clock signal must be connected to the XTAL_32K_P pin. The amplitude
should be less than 1.2 V for sine wave signal and less than 1 V for square wave signal. Common mode voltage
should be in the range of 0.1 < Vcm < 0.5xVamp, where Vamp stands for signal amplitude. In this case, the
XTAL_32K_P pin cannot be used as a GPIO pin.

The choice depends on your requirements for system time accuracy and power consumption in sleep modes. To
modify the RTC clock source, set CONFIG_RTC_CLK_SRC in project configuration.
More details about the wiring requirements for the external crystal or external oscillator, please refer to ESP32-C6
Hardware Design Guidelines.

Get Current Time

To get the current time, use the POSIX function gettimeofday(). Additionally, you can use the following
standard C library functions to obtain time and manipulate it:

gettimeofday
time
asctime
clock
ctime
difftime
gmtime
localtime
mktime
strftime
adjtime*

To stop smooth time adjustment and update the current time immediately, use the POSIX function settimeof-
day().
If you need to obtain time with one second resolution, use the following code snippet:

time_t now;
char strftime_buf[64];
struct tm timeinfo;

time(&now);
// Set timezone to China Standard Time
setenv("TZ", "CST-8", 1);
tzset();

localtime_r(&now, &timeinfo);
strftime(strftime_buf, sizeof(strftime_buf), "%c", &timeinfo);
ESP_LOGI(TAG, "The current date/time in Shanghai is: %s", strftime_buf);

If you need to obtain time with one microsecond resolution, use the code snippet below:

Espressif Systems 2122
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_hardware_design_guidelines_en.pdf#page=12
https://www.espressif.com/sites/default/files/documentation/esp32-c6_hardware_design_guidelines_en.pdf#page=12
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct timeval tv_now;
gettimeofday(&tv_now, NULL);
int64_t time_us = (int64_t)tv_now.tv_sec * 1000000L + (int64_t)tv_now.tv_usec;

SNTP Time Synchronization

To set the current time, you can use the POSIX functions settimeofday() and adjtime(). They are used
internally in the lwIP SNTP library to set current time when a response from the NTP server is received. These
functions can also be used separately from the lwIP SNTP library.
Some lwIP APIs, including SNTP functions, are not thread safe, so it is recommended to use esp_netif component
when interacting with SNTP module.
To initialize a particular SNTP server and also start the SNTP service, simply create a default SNTP server config-
uration with a particular server name, then call esp_netif_sntp_init() to register that server and start the
SNTP service.

esp_sntp_config_t config = ESP_NETIF_SNTP_DEFAULT_CONFIG("pool.ntp.org");
esp_netif_sntp_init(&config);

This code automatically performs time synchronization once a reply from the SNTP server is received. Sometimes it is
useful to wait until the time gets synchronized, esp_netif_sntp_sync_wait() can be used for this purpose:

if (esp_netif_sntp_sync_wait(pdMS_TO_TICKS(10000)) != ESP_OK) {
printf("Failed to update system time within 10s timeout");

}

To configure multiple NTP servers (or use more advanced settings, such as DHCP provided NTP servers), please
refer to the detailed description of SNTP API in esp_netif documentation.
The lwIP SNTP library could work in one of the following sync modes:

• SNTP_SYNC_MODE_IMMED (default): Updates system time immediately upon receiving a response from
the SNTP server after using settimeofday().

• SNTP_SYNC_MODE_SMOOTH: Updates time smoothly by gradually reducing time error using the function
adjtime(). If the difference between the SNTP response time and system time is more than 35 minutes,
update system time immediately by using settimeofday().

If you want to choose the SNTP_SYNC_MODE_SMOOTH mode, please set the esp_sntp_config::smooth
to true in the SNTP configuration struct. Otherwise (and by default) the SNTP_SYNC_MODE_IMMED mode will
be used.
For setting a callback function that is called when time gets synchronized, use the
esp_sntp_config::sync_cb field in the configuration struct.
An application with this initialization code will periodically synchronize the time. The time synchronization period
is determined by CONFIG_LWIP_SNTP_UPDATE_DELAY (the default value is one hour). To modify the variable,
set CONFIG_LWIP_SNTP_UPDATE_DELAY in project configuration.
A code example that demonstrates the implementation of time synchronization based on the lwIP SNTP library is
provided in the protocols/sntp directory.
Note that it's also possible to use lwIP API directly, but care must be taken to thread safety. Here we list the thread-
safe APIs:

• sntp_set_time_sync_notification_cb() can be used to set a callback function that will notify
of the time synchronization process.

• sntp_get_sync_status() and sntp_set_sync_status() can be used to get/set time synchro-
nization status.

• sntp_set_sync_mode() can be used to set the synchronization mode.
• esp_sntp_setoperatingmode() sets the preferred operatingmode.:cpp:enumerator:ESP_SNTP_OPMODE_POLL
and esp_sntp_init() initializes SNTP module.

Espressif Systems 2123
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/sntp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• esp_sntp_setservername() configures one SNTP server.

Timezones

To set the local timezone, use the following POSIX functions:
1. Call setenv() to set the TZ environment variable to the correct value based on the device location. The

format of the time string is the same as described in the GNU libc documentation (although the implementation
is different).

2. Call tzset() to update C library runtime data for the new timezone.
Once these steps are completed, call the standard C library function localtime(), and it will return the correct
local time taking into account the timezone offset and daylight saving time.

Year 2036 and 2038 Overflow Issues

SNTP/NTP 2036Overflow SNTP/NTP timestamps are represented as 64-bit unsigned fixed point numbers, where
the first 32 bits represent the integer part, and the last 32 bits represent the fractional part. The 64-bit unsigned fixed
point number represents the number of seconds since 00:00 on 1st of January 1900, thus SNTP/NTP times will
overflow in the year 2036.
To address this issue, lifetime of the SNTP/NTP timestamps has been extended by convention by using the MSB
(bit 0 by convention) of the integer part to indicate time ranges between years 1968 to 2104 (see RFC2030 for
more details). This convention is implemented in lwIP library SNTP module. Therefore SNTP-related functions in
ESP-IDF are future-proof until year 2104.

Unix Time 2038Overflow Unix time (typetime_t) was previously represented as a 32-bit signed integer, leading
to an overflow in year 2038 (i.e., Y2K38 issue). To address the Y2K38 issue, ESP-IDF uses a 64-bit signed integer
to represent time_t starting from release v5.0, thus deferring time_t overflow for another 292 billion years.

API Reference

Header File
• components/lwip/include/apps/esp_sntp.h

Functions
void sntp_sync_time(struct timeval *tv)

This function updates the system time.
This is a weak-linked function. It is possible to replace all SNTP update functionality by placing a
sntp_sync_time() function in the app firmware source. If the default implementation is used, calling
sntp_set_sync_mode() allows the time synchronization mode to be changed to instant or smooth. If a callback
function is registered via sntp_set_time_sync_notification_cb(), it will be called following time synchroniza-
tion.

Parameters tv -- Time received from SNTP server.
void sntp_set_sync_mode(sntp_sync_mode_t sync_mode)

Set the sync mode.
Modes allowed: SNTP_SYNC_MODE_IMMED and SNTP_SYNC_MODE_SMOOTH.

Parameters sync_mode -- Sync mode.
sntp_sync_mode_t sntp_get_sync_mode(void)

Get set sync mode.
Returns SNTP_SYNC_MODE_IMMED: Update time immediately.

SNTP_SYNC_MODE_SMOOTH: Smooth time updating.

Espressif Systems 2124
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://www.rfc-editor.org/rfc/rfc2030
https://en.wikipedia.org/wiki/Year_2038_problem
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/lwip/include/apps/esp_sntp.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

sntp_sync_status_t sntp_get_sync_status(void)
Get status of time sync.
After the update is completed, the status will be returned as SNTP_SYNC_STATUS_COMPLETED. After
that, the status will be reset to SNTP_SYNC_STATUS_RESET. If the update operation is not completed yet,
the status will be SNTP_SYNC_STATUS_RESET. If a smooth mode was chosen and the synchronization is
still continuing (adjtime works), then it will be SNTP_SYNC_STATUS_IN_PROGRESS.

Returns SNTP_SYNC_STATUS_RESET: Reset status. SNTP_SYNC_STATUS_COMPLETED:
Time is synchronized. SNTP_SYNC_STATUS_IN_PROGRESS: Smooth time sync in
progress.

void sntp_set_sync_status(sntp_sync_status_t sync_status)
Set status of time sync.

Parameters sync_status -- status of time sync (see sntp_sync_status_t)
void sntp_set_time_sync_notification_cb(sntp_sync_time_cb_t callback)

Set a callback function for time synchronization notification.
Parameters callback -- a callback function

void sntp_set_sync_interval(uint32_t interval_ms)
Set the sync interval of SNTP operation.
Note: SNTPv4 RFC 4330 enforces a minimum sync interval of 15 seconds. This sync interval will be used in
the next attempt update time throught SNTP. To apply the new sync interval call the sntp_restart() function,
otherwise, it will be applied after the last interval expired.

Parameters interval_ms -- The sync interval in ms. It cannot be lower than 15 seconds,
otherwise 15 seconds will be set.

uint32_t sntp_get_sync_interval(void)
Get the sync interval of SNTP operation.

Returns the sync interval
bool sntp_restart(void)

Restart SNTP.
Returns True - Restart False - SNTP was not initialized yet

void esp_sntp_setoperatingmode(esp_sntp_operatingmode_t operating_mode)
Sets SNTP operating mode. The mode has to be set before init.

Parameters operating_mode -- Desired operating mode
void esp_sntp_init(void)

Init and start SNTP service.
void esp_sntp_stop(void)

Stops SNTP service.
void esp_sntp_setserver(u8_t idx, const ip_addr_t *addr)

Sets SNTP server address.
Parameters

• idx -- Index of the server
• addr -- IP address of the server

void esp_sntp_setservername(u8_t idx, const char *server)
Sets SNTP hostname.

Parameters
• idx -- Index of the server
• server -- Name of the server

Espressif Systems 2125
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

const char *esp_sntp_getservername(u8_t idx)
Gets SNTP server name.

Parameters idx -- Index of the server
Returns Name of the server

const ip_addr_t *esp_sntp_getserver(u8_t idx)
Get SNTP server IP.

Parameters idx -- Index of the server
Returns IP address of the server

bool esp_sntp_enabled(void)
Checks if sntp is enabled.

Returns true if sntp module is enabled
uint8_t esp_sntp_getreachability(uint8_t idx)

Gets the server reachability shift register as described in RFC 5905.
Parameters idx -- Index of the SNTP server
Returns reachability shift register

esp_sntp_operatingmode_t esp_sntp_getoperatingmode(void)
Get the configured operating mode.

Returns operating mode enum
static inline void sntp_setoperatingmode(u8_t operating_mode)

if not build within lwip, provide translating inlines, that will warn about thread safety
static inline void sntp_servermode_dhcp(int set_servers_from_dhcp)

static inline void sntp_setservername(u8_t idx, const char *server)

static inline void sntp_init(void)

static inline const char *sntp_getservername(u8_t idx)

static inline const ip_addr_t *sntp_getserver(u8_t idx)

static inline uint8_t sntp_getreachability(uint8_t idx)

static inline esp_sntp_operatingmode_t sntp_getoperatingmode(void)

Macros

esp_sntp_sync_time

Aliases for esp_sntp prefixed API (inherently thread safe)

esp_sntp_set_sync_mode

esp_sntp_get_sync_mode

esp_sntp_get_sync_status

esp_sntp_set_sync_status

esp_sntp_set_time_sync_notification_cb

Espressif Systems 2126
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_sntp_set_sync_interval

esp_sntp_get_sync_interval

esp_sntp_restart

SNTP_OPMODE_POLL

Type Definitions

typedef void (*sntp_sync_time_cb_t)(struct timeval *tv)
SNTP callback function for notifying about time sync event.

Param tv Time received from SNTP server.

Enumerations

enum sntp_sync_mode_t

SNTP time update mode.
Values:

enumerator SNTP_SYNC_MODE_IMMED
Update system time immediately when receiving a response from the SNTP server.

enumerator SNTP_SYNC_MODE_SMOOTH
Smooth time updating. Time error is gradually reduced using adjtime function. If the difference between
SNTP response time and system time is large (more than 35 minutes) then update immediately.

enum sntp_sync_status_t

SNTP sync status.
Values:

enumerator SNTP_SYNC_STATUS_RESET

enumerator SNTP_SYNC_STATUS_COMPLETED

enumerator SNTP_SYNC_STATUS_IN_PROGRESS

enum esp_sntp_operatingmode_t

SNTP operating modes per lwip SNTP module.
Values:

enumerator ESP_SNTP_OPMODE_POLL

enumerator ESP_SNTP_OPMODE_LISTENONLY

Espressif Systems 2127
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.10.28 The Async memcpy API

Overview

ESP32-C6 has a DMA engine which can help to offload internal memory copy operations from the CPU in a asyn-
chronous way.
The async memcpy API wraps all DMA configurations and operations, the signature of esp_async_memcpy()
is almost the same to the standard libc one.
Thanks to the benefit of the DMA, we don't have to wait for each memory copy to be done before we issue another
memcpy request. By the way, it's still possible to know when memcpy is finished by listening in the memcpy callback
function.

Configure and Install driver

esp_async_memcpy_install() is used to install the driver with user's configuration. Please note that async
memcpy has to be called with the handle returned from esp_async_memcpy_install().
Driver configuration is described in async_memcpy_config_t:

• backlog: This is used to configure the maximum number of DMA operations being processed at the same
time.

• sram_trans_align: Declare SRAM alignment for both data address and copy size, set to zero if the data
has no restriction in alignment. If set to a quadruple value (i.e. 4X), the driver will enable the burst mode
internally, which is helpful for some performance related application.

• psram_trans_align: Declare PSRAM alignment for both data address and copy size. User has to give
it a valid value (only 16, 32, 64 are supported) if the destination of memcpy is located in PSRAM. The default
alignment (i.e. 16) will be applied if it's set to zero. Internally, the driver configures the size of block used by
DMA to access PSRAM, according to the alignment.

• flags: This is used to enable some special driver features.
ASYNC_MEMCPY_DEFAULT_CONFIG provides a default configuration, which specifies the backlog to 8.

async_memcpy_config_t config = ASYNC_MEMCPY_DEFAULT_CONFIG();
// update the maximum data stream supported by underlying DMA engine
config.backlog = 16;
async_memcpy_t driver = NULL;
ESP_ERROR_CHECK(esp_async_memcpy_install(&config, &driver)); // install driver,␣
↪→return driver handle

Send memory copy request

esp_async_memcpy() is the API to send memory copy request to DMA engine. It must be called after driver
is installed successfully. This API is thread safe, so it can be called from different tasks.
Different from the libc version of memcpy, user should also pass a callback to esp_async_memcpy(), if it's
necessary to be notified when the memory copy is done. The callback is executed in the ISR context, make sure you
won't violate the restriction applied to ISR handler.
Besides that, the callback function should reside in IRAM space by applying IRAM_ATTR attribute. The prototype
of the callback function is async_memcpy_isr_cb_t, please note that, the callback function should return true
if it wakes up a high priority task by some API like xSemaphoreGiveFromISR().

// Callback implementation, running in ISR context
static IRAM_ATTR bool my_async_memcpy_cb(async_memcpy_t mcp_hdl, async_memcpy_
↪→event_t *event, void *cb_args)
{

SemaphoreHandle_t sem = (SemaphoreHandle_t)cb_args;
BaseType_t high_task_wakeup = pdFALSE;

(continues on next page)

Espressif Systems 2128
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

(continued from previous page)
xSemaphoreGiveFromISR(semphr, &high_task_wakeup); // high_task_wakeup set to␣

↪→pdTRUE if some high priority task unblocked
return high_task_wakeup == pdTRUE;

}

// Create a semaphore used to report the completion of async memcpy
SemaphoreHandle_t semphr = xSemaphoreCreateBinary();

// Called from user's context
ESP_ERROR_CHECK(esp_async_memcpy(driver_handle, to, from, copy_len, my_async_
↪→memcpy_cb, my_semaphore));
// Do something else here
xSemaphoreTake(my_semaphore, portMAX_DELAY); // Wait until the buffer copy is done

Uninstall driver (optional)

esp_async_memcpy_uninstall() is used to uninstall asynchronous memcpy driver. It's not necessary to
uninstall the driver after each memcpy operation. If you know your application won't use this driver anymore, then
this API can recycle the memory for you.

ETM Event

Async memory copy is able to generate an event when one async memcpy operation is done. This event can be used to
interact with the ETM module. You can call esp_async_memcpy_new_etm_event() to get the ETM event
handle.
For how to connect the event to an ETM channel, please refer to the ETM documentation.

API Reference

Header File
• components/esp_hw_support/include/esp_async_memcpy.h

Functions
esp_err_t esp_async_memcpy_install(const async_memcpy_config_t *config, async_memcpy_t *asmcp)

Install async memcpy driver.
Parameters

• config -- [in] Configuration of async memcpy
• asmcp -- [out]Handle of async memcpy that returned from this API. If driver installation
is failed, asmcp would be assigned to NULL.

Returns
• ESP_OK: Install async memcpy driver successfully
• ESP_ERR_INVALID_ARG: Install async memcpy driver failed because of invalid argu-
ment

• ESP_ERR_NO_MEM: Install async memcpy driver failed because out of memory
• ESP_FAIL: Install async memcpy driver failed because of other error

esp_err_t esp_async_memcpy_uninstall(async_memcpy_t asmcp)
Uninstall async memcpy driver.

Parameters asmcp -- [in] Handle of async memcpy driver that returned from
esp_async_memcpy_install

Returns
• ESP_OK: Uninstall async memcpy driver successfully

Espressif Systems 2129
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_hw_support/include/esp_async_memcpy.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• ESP_ERR_INVALID_ARG: Uninstall async memcpy driver failed because of invalid ar-
gument

• ESP_FAIL: Uninstall async memcpy driver failed because of other error
esp_err_t esp_async_memcpy(async_memcpy_t asmcp, void *dst, void *src, size_t n, async_memcpy_isr_cb_t

cb_isr, void *cb_args)
Send an asynchronous memory copy request.

Note: The callback function is invoked in interrupt context, never do blocking jobs in the callback.

Parameters
• asmcp -- [in] Handle of async memcpy driver that returned from
esp_async_memcpy_install

• dst -- [in] Destination address (copy to)
• src -- [in] Source address (copy from)
• n -- [in] Number of bytes to copy
• cb_isr -- [in] Callback function, which got invoked in interrupt context. Set to NULL
can bypass the callback.

• cb_args -- [in] User defined argument to be passed to the callback function
Returns

• ESP_OK: Send memory copy request successfully
• ESP_ERR_INVALID_ARG: Send memory copy request failed because of invalid argu-
ment

• ESP_FAIL: Send memory copy request failed because of other error

esp_err_t esp_async_memcpy_new_etm_event(async_memcpy_t asmcp, async_memcpy_etm_event_t
event_type, esp_etm_event_handle_t *out_event)

Get the ETM event handle for async memcpy done signal.

Note: The created ETM event object can be deleted later by calling esp_etm_del_event

Parameters
• asmcp -- [in] Handle of async memcpy driver that returned from
esp_async_memcpy_install

• event_type -- [in] ETM event type
• out_event -- [out] Returned ETM event handle

Returns
Returns

• ESP_OK: Get ETM event successfully
• ESP_ERR_INVALID_ARG: Get ETM event failed because of invalid argument
• ESP_ERR_NOT_SUPPORTED: Get ETM event failed because the DMA hardware
doesn't support ETM submodule

• ESP_FAIL: Get ETM event failed because of other error

Structures

struct async_memcpy_event_t
Type of async memcpy event object.

Public Members

void *data
Event data

Espressif Systems 2130
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

struct async_memcpy_config_t
Type of async memcpy configuration.

Public Members

uint32_t backlog
Maximum number of streams that can be handled simultaneously

size_t sram_trans_align
DMA transfer alignment (both in size and address) for SRAM memory

size_t psram_trans_align
DMA transfer alignment (both in size and address) for PSRAM memory

uint32_t flags
Extra flags to control async memcpy feature

Macros
ASYNC_MEMCPY_DEFAULT_CONFIG()

Default configuration for async memcpy.

Type Definitions

typedef struct async_memcpy_context_t *async_memcpy_t
Type of async memcpy handle.

typedef bool (*async_memcpy_isr_cb_t)(async_memcpy_t mcp_hdl, async_memcpy_event_t *event, void
*cb_args)

Type of async memcpy interrupt callback function.

Note: User can call OS primitives (semaphore, mutex, etc) in the callback function. Keep in mind, if any OS
primitive wakes high priority task up, the callback should return true.

Param mcp_hdl Handle of async memcpy
Param event Event object, which contains related data, reserved for future
Param cb_args User defined arguments, passed from esp_async_memcpy function
Return Whether a high priority task is woken up by the callback function

Enumerations

enum async_memcpy_etm_event_t

Async memory copy specific events that supported by the ETM module.
Values:

enumerator ASYNC_MEMCPY_ETM_EVENT_COPY_DONE
memory copy finished

Espressif Systems 2131
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

2.10.29 Watchdogs

Overview

The ESP-IDF has support for multiple types of watchdogs, with the two main ones being: The Interrupt Watchdog
Timer and the Task Watchdog Timer (TWDT). The Interrupt Watchdog Timer and the TWDT can both be enabled
using Project Configuration Menu, however the TWDT can also be enabled during runtime. The Interrupt Watchdog
is responsible for detecting instances where FreeRTOS task switching is blocked for a prolonged period of time. The
TWDT is responsible for detecting instances of tasks running without yielding for a prolonged period.
ESP-IDF has support for the following types of watchdog timers:

• Interrupt Watchdog Timer (IWDT)
• Task Watchdog Timer (TWDT)

The various watchdog timers can be enabled using the Project Configuration Menu. However, the TWDT can also be
enabled during runtime.

Interrupt Watchdog Timer (IWDT)

The purpose of the IWDT is to ensure that interrupt service routines (ISRs) are not blocked from running for a pro-
longed period of time (i.e., the IWDT timeout period). Blocking ISRs from running in a timely manner is undesirable
as it can increases ISR latency, and also prevents task switching (as task switching is executed form an ISR). The
things that can block ISRs from running include:

• Disabling interrupts
• Critical Sections (also disables interrupts)
• Other same/higher priority ISRs (will block same/lower priority ISRs from running it completes execution)

The IWDTutilizes the watchdog timer in TimerGroup 1 as its underlying hardware timer and leverages the FreeRTOS
tick interrupt on each CPU to feed the watchdog timer. If the tick interrupt on a particular CPU is not run at within
the IWDT timeout period, it is indicative that something is blocking ISRs from being run on that CPU (see the list
of reasons above).
When the IWDT times out, the default action is to invoke the panic handler and display the panic reason as Inter-
rupt wdt timeout on CPU0 or Interrupt wdt timeout on CPU1 (as applicable). Depending
on the panic handler's configured behavior (see CONFIG_ESP_SYSTEM_PANIC), users can then debug the source of
the IWDT timeout (via the backtrace, OpenOCD, gdbstub etc) or simply reset the chip (which may be preferred in
a production environment).
If for whatever reason the panic handler is unable to run after an IWDT timeout, the IWDT has a secondary timeout
that will hard-reset the chip (i.e., a system reset).

Configuration
• The IWDT is enabled by default via the CONFIG_ESP_INT_WDT option.
• The IWDT's timeout is configured by setting the CONFIG_ESP_INT_WDT_TIMEOUT_MS option.

– Note that the default timeout is higher if PSRAM support is enabled, as a critical section or interrupt
routine that accesses a large amount of PSRAM will take longer to complete in some circumstances.

– The timeout should always at least twice longer than the period between FreeRTOS ticks (see CON-
FIG_FREERTOS_HZ).

Tuning If you find the IWDT timeout is triggered because an interrupt or critical section is running longer than
the timeout period, consider rewriting the code:

• Critical sections should be made as short as possible. Any non-critical code/computation should be placed
outside the critical section.

• Interrupt handlers should also perform the minimum possible amount of computation. Users can consider
deferring any computation to a task by having the ISR push data to a task using queues.

Espressif Systems 2132
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Neither critical sections or interrupt handlers should ever block waiting for another event to occur. If chang-
ing the code to reduce the processing time is not possible or desirable, it's possible to increase the CON-
FIG_ESP_INT_WDT_TIMEOUT_MS setting instead.

Task Watchdog Timer (TWDT)

The Task Watchdog Timer (TWDT) is used to monitor particular tasks, ensuring that they are able to execute within
a given timeout period. The TWDT primarily watches the Idle task, however any task can subscribe to be watched
by the TWDT. By watching the Idle task, the TWDT can detect instances of tasks running for a prolonged period of
time wihtout yielding. This can be an indicator of poorly written code that spinloops on a peripheral, or a task that is
stuck in an infinite loop.
The TWDT is built around the Hardware Watchdog Timer in Timer Group 0. When a timeout occurs, an interrupt
is triggered. Users can define the function esp_task_wdt_isr_user_handler in the user code, in order to receive the
timeout event and extend the default behavior.

Usage The following functions can be used to watch tasks using the TWDT:
• esp_task_wdt_init() to initialize the TWDT and subscribe the idle tasks.
• esp_task_wdt_add() subscribes other tasks to the TWDT.
• Once subscribed, esp_task_wdt_reset() should be called from the task to feed the TWDT.
• esp_task_wdt_delete() unsubscribes a previously subscribed task
• esp_task_wdt_deinit() unsubscribes the idle tasks and deinitializes the TWDT

In the case where applications need to watch at a more granular level (i.e., ensure that a particular functions/stub/code-
path is called), the TWDT allows subscription of "users".

• esp_task_wdt_add_user() to subscribe an arbitrary user of the TWDT. This function will return a
user handle to the added user.

• esp_task_wdt_reset_user()must be called using the user handle in order to prevent a TWDT time-
out.

• esp_task_wdt_delete_user() unsubscribes an arbitrary user of the TWDT.

Configuration The default timeout period for the TWDT is set using config item CON-
FIG_ESP_TASK_WDT_TIMEOUT_S. This should be set to at least as long as you expect any single task will
need to monopolize the CPU (for example, if you expect the app will do a long intensive calculation and should not
yield to other tasks). It is also possible to change this timeout at runtime by calling esp_task_wdt_init().

Note: Erasing large flash areas can be time consuming and can cause a task to run continuously, thus triggering a
TWDT timeout. The following two methods can be used to avoid this:

• Increase CONFIG_ESP_TASK_WDT_TIMEOUT_S in menuconfig for a larger watchdog timeout period.
• You can also call esp_task_wdt_init() to increase the watchdog timeout period before erasing a large
flash area.

For more information, you can refer to SPI Flash.

The following config options control TWDT configuration. They are all enabled by default:

• CONFIG_ESP_TASK_WDT_EN - enables TWDT feature. If this option is disabled, TWDT cannot be used,
even if initialized at runtime.

• CONFIG_ESP_TASK_WDT_INIT - the TWDT is initialized automatically during startup. If this option is
disabled, it is still possible to initialize the Task WDT at runtime by calling esp_task_wdt_init().

• CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU0 - Idle task is subscribed to the TWDT during startup.
If this option is disabled, it is still possible to subscribe the idle task by calling esp_task_wdt_init()
again.

Espressif Systems 2133
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Note: On a TWDT timeout the default behaviour is to simply print a warning and a backtrace before continuing
running the app. If you want a timeout to cause a panic and a system reset then this can be configured through
CONFIG_ESP_TASK_WDT_PANIC.

JTAG &Watchdogs

While debugging using OpenOCD, the CPUs will be halted every time a breakpoint is reached. However if the
watchdog timers continue to run when a breakpoint is encountered, they will eventually trigger a reset making it
very difficult to debug code. Therefore OpenOCD will disable the hardware timers of both the interrupt and task
watchdogs at every breakpoint. Moreover, OpenOCD will not reenable them upon leaving the breakpoint. This
means that interrupt watchdog and task watchdog functionality will essentially be disabled. No warnings or panics
from either watchdogs will be generated when the ESP32-C6 is connected to OpenOCD via JTAG.

API Reference

Task Watchdog A full example using the Task Watchdog is available in esp-idf: system/task_watchdog

Header File
• components/esp_system/include/esp_task_wdt.h

Functions
esp_err_t esp_task_wdt_init(const esp_task_wdt_config_t *config)

Initialize the Task Watchdog Timer (TWDT)
This function configures and initializes the TWDT. This function will subscribe the idle tasks if configured to
do so. For other tasks, users can subscribe them using esp_task_wdt_add() or esp_task_wdt_add_user(). This
function won't start the timer if no task have been registered yet.

Note: esp_task_wdt_init() must only be called after the scheduler is started. Moreover, it must not be called
by multiple tasks simultaneously.

Parameters config -- [in] Configuration structure
Returns

• ESP_OK: Initialization was successful
• ESP_ERR_INVALID_STATE: Already initialized
• Other: Failed to initialize TWDT

esp_err_t esp_task_wdt_reconfigure(const esp_task_wdt_config_t *config)
Reconfigure the Task Watchdog Timer (TWDT)
The function reconfigures the running TWDT. It must already be initialized when this function is called.

Note: esp_task_wdt_reconfigure() must not be called by multiple tasks simultaneously.

Parameters config -- [in] Configuration structure
Returns

• ESP_OK: Reconfiguring was successful
• ESP_ERR_INVALID_STATE: TWDT not initialized yet
• Other: Failed to initialize TWDT

Espressif Systems 2134
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/task_watchdog
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/include/esp_task_wdt.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_task_wdt_deinit(void)
Deinitialize the Task Watchdog Timer (TWDT)
This function will deinitialize the TWDT, and unsubscribe any idle tasks. Calling this function whilst other
tasks are still subscribed to the TWDT, or when the TWDT is already deinitialized, will result in an error code
being returned.

Note: esp_task_wdt_deinit() must not be called by multiple tasks simultaneously.

Returns
• ESP_OK: TWDT successfully deinitialized
• Other: Failed to deinitialize TWDT

esp_err_t esp_task_wdt_add(TaskHandle_t task_handle)
Subscribe a task to the Task Watchdog Timer (TWDT)
This function subscribes a task to the TWDT. Each subscribed task must periodically call esp_task_wdt_reset()
to prevent the TWDT from elapsing its timeout period. Failure to do so will result in a TWDT timeout.

Parameters task_handle -- Handle of the task. Input NULL to subscribe the current running
task to the TWDT

Returns
• ESP_OK: Successfully subscribed the task to the TWDT
• Other: Failed to subscribe task

esp_err_t esp_task_wdt_add_user(const char *user_name, esp_task_wdt_user_handle_t
*user_handle_ret)

Subscribe a user to the Task Watchdog Timer (TWDT)
This function subscribes a user to the TWDT. A user of the TWDT is usually a function that needs to run
periodically. Each subscribed user must periodically call esp_task_wdt_reset_user() to prevent the TWDT
from elapsing its timeout period. Failure to do so will result in a TWDT timeout.

Parameters
• user_name -- [in] String to identify the user
• user_handle_ret -- [out] Handle of the user

Returns
• ESP_OK: Successfully subscribed the user to the TWDT
• Other: Failed to subscribe user

esp_err_t esp_task_wdt_reset(void)
Reset the Task Watchdog Timer (TWDT) on behalf of the currently running task.
This function will reset the TWDT on behalf of the currently running task. Each subscribed task must peri-
odically call this function to prevent the TWDT from timing out. If one or more subscribed tasks fail to reset
the TWDT on their own behalf, a TWDT timeout will occur.

Returns
• ESP_OK: Successfully reset the TWDT on behalf of the currently running task
• Other: Failed to reset

esp_err_t esp_task_wdt_reset_user(esp_task_wdt_user_handle_t user_handle)
Reset the Task Watchdog Timer (TWDT) on behalf of a user.
This function will reset the TWDT on behalf of a user. Each subscribed user must periodically call this function
to prevent the TWDT from timing out. If one or more subscribed users fail to reset the TWDT on their own
behalf, a TWDT timeout will occur.

Parameters user_handle -- [in] User handle
• ESP_OK: Successfully reset the TWDT on behalf of the user
• Other: Failed to reset

Espressif Systems 2135
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

esp_err_t esp_task_wdt_delete(TaskHandle_t task_handle)
Unsubscribes a task from the Task Watchdog Timer (TWDT)
This function will unsubscribe a task from the TWDT. After being unsubscribed, the task should no longer call
esp_task_wdt_reset().

Parameters task_handle -- [in] Handle of the task. Input NULL to unsubscribe the current
running task.

Returns
• ESP_OK: Successfully unsubscribed the task from the TWDT
• Other: Failed to unsubscribe task

esp_err_t esp_task_wdt_delete_user(esp_task_wdt_user_handle_t user_handle)
Unsubscribes a user from the Task Watchdog Timer (TWDT)
This function will unsubscribe a user from the TWDT. After being unsubscribed, the user should no longer
call esp_task_wdt_reset_user().

Parameters user_handle -- [in] User handle
Returns

• ESP_OK: Successfully unsubscribed the user from the TWDT
• Other: Failed to unsubscribe user

esp_err_t esp_task_wdt_status(TaskHandle_t task_handle)
Query whether a task is subscribed to the Task Watchdog Timer (TWDT)
This function will query whether a task is currently subscribed to the TWDT, or whether the TWDT is initial-
ized.

Parameters task_handle -- [in]Handle of the task. Input NULL to query the current running
task.

Returns :
• ESP_OK: The task is currently subscribed to the TWDT
• ESP_ERR_NOT_FOUND: The task is not subscribed
• ESP_ERR_INVALID_STATE: TWDT was never initialized

void esp_task_wdt_isr_user_handler(void)
User ISR callback placeholder.
This function is called by task_wdt_isr function (ISR for when TWDT times out). It can be defined in user
code to handle TWDT events.

Note: It has the same limitations as the interrupt function. Do not use ESP_LOGx functions inside.

esp_err_t esp_task_wdt_print_triggered_tasks(task_wdt_msg_handler msg_handler, void *opaque,
int *cpus_fail)

Prints or retrieves information about tasks/users that triggered the Task Watchdog Timeout.
This function provides various operations to handle tasks/users that did not reset the Task Watchdog in time. It
can print detailed information about these tasks/users, such as their names, associated CPUs, and whether they
have been reset. Additionally, it can retrieve the total length of the printed information or the CPU affinity of
the failing tasks.

Note:
• If msg_handler is not provided, the information will be printed to console using
ESP_EARLY_LOGE.

• If msg_handler is provided, the function will send the printed information to the provided message
handler function.

• If cpus_fail is provided, the function will store the CPU affinity of the failing tasks in the provided
integer.

Espressif Systems 2136
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

• During the execution of this function, logging is allowed in critical sections, as TWDT timeouts are
considered fatal errors.

Parameters
• msg_handler -- [in] Optional message handler function that will be called for each
printed line.

• opaque -- [in]Optional pointer to opaque data that will be passed to the message handler
function.

• cpus_fail -- [out] Optional pointer to an integer where the CPU affinity of the failing
tasks will be stored.

Returns
• ESP_OK: The function executed successfully.
• ESP_FAIL: No triggered tasks were found, and thus no information was printed or re-
trieved.

Structures

struct esp_task_wdt_config_t
Task Watchdog Timer (TWDT) configuration structure.

Public Members

uint32_t timeout_ms
TWDT timeout duration in milliseconds

uint32_t idle_core_mask
Mask of the cores who's idle task should be subscribed on initialization

bool trigger_panic
Trigger panic when timeout occurs

Type Definitions

typedef struct esp_task_wdt_user_handle_s *esp_task_wdt_user_handle_t
Task Watchdog Timer (TWDT) user handle.

typedef void (*task_wdt_msg_handler)(void *opaque, const char *msg)

Code examples for this API section are provided in the system directory of ESP-IDF examples.

Espressif Systems 2137
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 2. API Reference

Espressif Systems 2138
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 3

Hardware Reference

2139

Chapter 3. Hardware Reference

Espressif Systems 2140
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4

API Guides

4.1 Application Level Tracing library

4.1.1 Overview

ESP-IDF provides a useful feature for program behavior analysis: application level tracing. It is implemented in the
corresponding library and can be enabled in menuconfig. This feature allows to transfer arbitrary data between host
and ESP32-C6 via JTAG, UART, or USB interfaces with small overhead on program execution. It is possible to
use JTAG and UART interfaces simultaneously. The UART interface is mostly used for connection with SEGGER
SystemView tool (see SystemView).
Developers can use this library to send application-specific state of execution to the host and receive commands or
other types of information from the opposite direction at runtime. The main use cases of this library are:

1. Collecting application-specific data. See Application Specific Tracing.
2. Lightweight logging to the host. See Logging to Host.
3. System behavior analysis. See System Behavior Analysis with SEGGER SystemView.
4. Source code coverage. See Gcov (Source Code Coverage).

Tracing components used when working over JTAG interface are shown in the figure below.

4.1.2 Modes of Operation

The library supports two modes of operation:
Post-mortem mode: This is the default mode. The mode does not need interaction with the host side. In this mode,
tracing module does not check whether the host has read all the data from HW UP BUFFER, but directly overwrites
old data with the new ones. This mode is useful when only the latest trace data is interesting to the user, e.g., for
analyzing program's behavior just before the crash. The host can read the data later on upon user request, e.g., via
special OpenOCD command in case of working via JTAG interface.
Streaming mode: Tracing module enters this mode when the host connects to ESP32-C6. In this mode, before
writing new data to HW UP BUFFER, the tracing module checks that whether there is enough space in it and if
necessary, waits for the host to read data and free enough memory. Maximum waiting time is controlled via timeout
values passed by users to corresponding API routines. So when application tries to write data to the trace buffer using
the finite value of the maximum waiting time, it is possible that this data will be dropped. This is especially true for
tracing from time critical code (ISRs, OS scheduler code, etc.) where infinite timeouts can lead to systemmalfunction.
In order to avoid loss of such critical data, developers can enable additional data buffering via menuconfig option

2141

https://www.segger.com/products/development-tools/systemview/

Chapter 4. API Guides

Fig. 1: Tracing Components Used When Working Over JTAG

CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX. This macro specifies the size of data which can be buffered in
above conditions. The option can also help to overcome situation when data transfer to the host is temporarily slowed
down, e.g., due to USB bus congestions. But it will not help when the average bitrate of the trace data stream exceeds
the hardware interface capabilities.

4.1.3 Configuration Options and Dependencies

Using of this feature depends on two components:
1. Host side: Application tracing is done over JTAG, so it needs OpenOCD to be set up and running on host

machine. For instructions on how to set it up, please see JTAG Debugging for details.
2. Target side: Application tracing functionality can be enabled in menuconfig. Please go to Component

config > Application Level Tracing menu, which allows selecting destination for the trace data
(hardware interface for transport: JTAG or/and UART). Choosing any of the destinations automatically enables
the CONFIG_APPTRACE_ENABLE option. For UART interfaces, users have to define baud rate, TX and
RX pins numbers, and additional UART-related parameters.

Note: In order to achieve higher data rates and minimize the number of dropped packets, it is recommended to
optimize the setting of JTAG clock frequency, so that it is at maximum and still provides stable operation of JTAG.
See Optimize JTAG Speed.

There are two additional menuconfig options not mentioned above:
1. Threshold for flushing last trace data to host on panic (CONFIG_APPTRACE_POSTMORTEM_FLUSH_THRESH).

This option is necessary due to the nature of working over JTAG. In this mode, trace data is exposed to the
host in 16 KB blocks. In post-mortem mode, when one block is filled, it is exposed to the host and the previous
one becomes unavailable. In other words, the trace data is overwritten in 16 KB granularity. On panic, the
latest data from the current input block is exposed to the host and the host can read them for post-analysis.
System panic may occur when a very small amount of data are not exposed to the host yet. In this case, the
previous 16 KB of collected data will be lost and the host will see the latest, but very small piece of the trace.

Espressif Systems 2142
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

It can be insufficient to diagnose the problem. This menuconfig option allows avoiding such situations. It
controls the threshold for flushing data in case of apanic. For example, users can decide that it needs no less
than 512 bytes of the recent trace data, so if there is less then 512 bytes of pending data at the moment of
panic, they will not be flushed and will not overwrite the previous 16 KB. The option is only meaningful in
post-mortem mode and when working over JTAG.

2. Timeout for flushing last trace data to host on panic (CONFIG_APPTRACE_ONPANIC_HOST_FLUSH_TMO).
The option is only meaningful in streaming mode and it controls the maximum time that the tracing module
will wait for the host to read the last data in case of panic.

3. UART RX/TX ring buffer size (CONFIG_APPTRACE_UART_TX_BUFF_SIZE). The size of the buffer depends
on the amount of data transfered through the UART.

4. UART TX message size (CONFIG_APPTRACE_UART_TX_MSG_SIZE). The maximum size of the single mes-
sage to transfer.

4.1.4 How to Use This Library

This library provides APIs for transferring arbitrary data between the host and ESP32-C6. When enabled in menu-
config, the target application tracing module is initialized automatically at the system startup, so all what the user
needs to do is to call corresponding APIs to send, receive or flush the data.

Application Specific Tracing

In general, users should decide what type of data should be transferred in every direction and how these data must be
interpreted (processed). The following steps must be performed to transfer data between the target and the host:

1. On the target side, users should implement algorithms for writing trace data to the host. Piece of code below
shows an example on how to do this.

#include "esp_app_trace.h"
...
char buf[] = "Hello World!";
esp_err_t res = esp_apptrace_write(ESP_APPTRACE_DEST_TRAX, buf,␣
↪→strlen(buf), ESP_APPTRACE_TMO_INFINITE);
if (res != ESP_OK) {

ESP_LOGE(TAG, "Failed to write data to host!");
return res;

}

esp_apptrace_write() function uses memcpy to copy user data to the internal buffer.
In some cases, it can be more optimal to use esp_apptrace_buffer_get() and
esp_apptrace_buffer_put() functions. They allow developers to allocate buffer and fill
it themselves. The following piece of code shows how to do this.

#include "esp_app_trace.h"
...
int number = 10;
char *ptr = (char *)esp_apptrace_buffer_get(ESP_APPTRACE_DEST_TRAX, 32,
↪→ 100/*tmo in us*/);
if (ptr == NULL) {

ESP_LOGE(TAG, "Failed to get buffer!");
return ESP_FAIL;

}
sprintf(ptr, "Here is the number %d", number);
esp_err_t res = esp_apptrace_buffer_put(ESP_APPTRACE_DEST_TRAX, ptr,␣
↪→100/*tmo in us*/);
if (res != ESP_OK) {

/* in case of error host tracing tool (e.g., OpenOCD) will report␣
↪→incomplete user buffer */

ESP_LOGE(TAG, "Failed to put buffer!");
return res;

}

Espressif Systems 2143
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Also according to his needs, the user may want to receive data from the host. Piece of code below
shows an example on how to do this.

#include "esp_app_trace.h"
...
char buf[32];
char down_buf[32];
size_t sz = sizeof(buf);

/* config down buffer */
esp_apptrace_down_buffer_config(down_buf, sizeof(down_buf));
/* check for incoming data and read them if any */
esp_err_t res = esp_apptrace_read(ESP_APPTRACE_DEST_TRAX, buf, &sz, 0/
↪→*do not wait*/);
if (res != ESP_OK) {

ESP_LOGE(TAG, "Failed to read data from host!");
return res;

}
if (sz > 0) {

/* we have data, process them */
...

}

esp_apptrace_read() function uses memcpy to copy host data to user buffer. In
some casesm it can be more optimal to use esp_apptrace_down_buffer_get() and
esp_apptrace_down_buffer_put() functions. They allow developers to occupy chunk
of read buffer and process it in-place. The following piece of code shows how to do this.

#include "esp_app_trace.h"
...
char down_buf[32];
uint32_t *number;
size_t sz = 32;

/* config down buffer */
esp_apptrace_down_buffer_config(down_buf, sizeof(down_buf));
char *ptr = (char *)esp_apptrace_down_buffer_get(ESP_APPTRACE_DEST_
↪→TRAX, &sz, 100/*tmo in us*/);
if (ptr == NULL) {

ESP_LOGE(TAG, "Failed to get buffer!");
return ESP_FAIL;

}
if (sz > 4) {

number = (uint32_t *)ptr;
printf("Here is the number %d", *number);

} else {
printf("No data");

}
esp_err_t res = esp_apptrace_down_buffer_put(ESP_APPTRACE_DEST_TRAX,␣
↪→ptr, 100/*tmo in us*/);
if (res != ESP_OK) {

/* in case of error host tracing tool (e.g., OpenOCD) will report␣
↪→incomplete user buffer */

ESP_LOGE(TAG, "Failed to put buffer!");
return res;

}

2. The next step is to build the program image and download it to the target as described in the Getting Started
Guide.

3. Run OpenOCD (see JTAG Debugging).
4. Connect to OpenOCD telnet server. It can be done using the following command in terminal telnet

<oocd_host> 4444. If telnet session is opened on the same machine which runs OpenOCD, you can
use localhost as <oocd_host> in the command above.

Espressif Systems 2144
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

5. Start trace data collection using special OpenOCD command. This command will transfer tracing data and
redirect them to the specified file or socket (currently only files are supported as trace data destination). For
description of the corresponding commands, see OpenOCD Application Level Tracing Commands.

6. The final step is to process received data. Since the format of data is defined by users, the processing stage is out
of the scope of this document. Good starting points for data processor are python scripts in $IDF_PATH/
tools/esp_app_trace: apptrace_proc.py (used for feature tests) and logtrace_proc.py
(see more details in section Logging to Host).

OpenOCD Application Level Tracing Commands HW UP BUFFER is shared between user data blocks and the
filling of the allocated memory is performed on behalf of the API caller (in task or ISR context). In multithreading
environment, it can happen that the task/ISR which fills the buffer is preempted by another high priority task/ISR.
So it is possible that the user data preparation process is not completed at the moment when that chunk is read by
the host. To handle such conditions, the tracing module prepends all user data chunks with header which contains
the allocated user buffer size (2 bytes) and the length of the actually written data (2 bytes). So the total length of
the header is 4 bytes. OpenOCD command which reads trace data reports error when it reads incomplete user data
chunk, but in any case, it puts the contents of the whole user chunk (including unfilled area) to the output file.
Below is the description of available OpenOCD application tracing commands.

Note: Currently, OpenOCD does not provide commands to send arbitrary user data to the target.

Command usage:
esp apptrace [start <options>] | [stop] | [status] | [dump <cores_num>
<outfile>]

Sub-commands:
start Start tracing (continuous streaming).
stop Stop tracing.
status Get tracing status.
dump Dump all data from (post-mortem dump).
Start command syntax:

start <outfile> [poll_period [trace_size [stop_tmo [wait4halt
[skip_size]]]]

outfile Path to file to save data from both CPUs. This argument should have the following format: file://
path/to/file.

poll_period Data polling period (in ms) for available trace data. If greater than 0, then command runs in non-
blocking mode. By default, 1 ms.

trace_size Maximum size of data to collect (in bytes). Tracing is stopped after specified amount of data is
received. By default, -1 (trace size stop trigger is disabled).

stop_tmo Idle timeout (in sec). Tracing is stopped if there is no data for specified period of time. By default, -1
(disable this stop trigger). Optionally set it to value longer than longest pause between tracing commands from
target.

wait4halt If 0, start tracing immediately, otherwise command waits for the target to be halted (after reset, by
breakpoint etc.) and then automatically resumes it and starts tracing. By default, 0.

skip_size Number of bytes to skip at the start. By default, 0.

Note: If poll_period is 0, OpenOCD telnet command line will not be available until tracing is stopped. You
must stop it manually by resetting the board or pressing Ctrl+C in OpenOCDwindow (not one with the telnet session).
Another option is to set trace_size and wait until this size of data is collected. At this point, tracing stops
automatically.

Command usage examples:

Espressif Systems 2145
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

1. Collect 2048 bytes of tracing data to the file trace.log. The file will be saved in the openocd-esp32
directory.

esp apptrace start file://trace.log 1 2048 5 0 0

The tracing data will be retrieved and saved in non-blocking mode. This process will stop automat-
ically after 2048 bytes are collected, or if no data are available for more than 5 seconds.

Note: Tracing data is buffered before it is made available to OpenOCD. If you see "Data timeout!"
message, then it is likely that the target is not sending enough data to empty the buffer to OpenOCD
before the timeout. Either increase the timeout or use the function esp_apptrace_flush()
to flush the data on specific intervals.

2. Retrieve tracing data indefinitely in non-blocking mode.

esp apptrace start file://trace.log 1 -1 -1 0 0

There is no limitation on the size of collected data and there is no data timeout set. This process may be
stopped by issuing esp apptrace stop command on OpenOCD telnet prompt, or by pressing Ctrl+C in
OpenOCD window.

3. Retrieve tracing data and save them indefinitely.

esp apptrace start file://trace.log 0 -1 -1 0 0

OpenOCD telnet command line prompt will not be available until tracing is stopped. To stop tracing, press
Ctrl+C in the OpenOCD window.

4. Wait for the target to be halted. Then resume the target's operation and start data retrieval. Stop after collecting
2048 bytes of data:

esp apptrace start file://trace.log 0 2048 -1 1 0

To configure tracing immediately after reset, use the OpenOCD reset halt command.

Logging to Host

ESP-IDF implements a useful feature: logging to the host via application level tracing library. This is a kind of
semihosting when all ESP_LOGx calls send strings to be printed to the host instead of UART. This can be useful
because "printing to host" eliminates some steps performed when logging to UART. Most part of the work is done
on the host.
By default, ESP-IDF's logging library uses vprintf-like function to write formatted output to dedicated UART. In
general, it involves the following steps:

1. Format string is parsed to obtain type of each argument.
2. According to its type, every argument is converted to string representation.
3. Format string combined with converted arguments is sent to UART.

Though the implementation of the vprintf-like function can be optimized to a certain level, all steps above have
to be performed in any case and every step takes some time (especially item 3). So it frequently occurs that with
additional log added to the program to identify the problem, the program behavior is changed and the problem cannot
be reproduced. And in the worst cases, the program cannot work normally at all and ends up with an error or even
hangs.
Possible ways to overcome this problem are to use higher UART bitrates (or another faster interface) and/or to move
string formatting procedure to the host.
The application level tracing feature can be used to transfer log information to the host using
esp_apptrace_vprintf function. This function does not perform full parsing of the format string and
arguments. Instead, it just calculates the number of arguments passed and sends them along with the format string
address to the host. On the host, log data is processed and printed out by a special Python script.

Limitations Current implementation of logging over JTAG has some limitations:

Espressif Systems 2146
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

1. No support for tracing from ESP_EARLY_LOGx macros.
2. No support for printf arguments whose size exceeds 4 bytes (e.g., double and uint64_t).
3. Only strings from the .rodata section are supported as format strings and arguments.
4. The maximum number of printf arguments is 256.

How To Use It In order to use logging via trace module, users need to perform the following steps:
1. On the target side, the special vprintf-like function esp_apptrace_vprintf() needs to be installed. It

sends log data to the host. An example is esp_log_set_vprintf(esp_apptrace_vprintf);. To
send log data to UART again, use esp_log_set_vprintf(vprintf);.

2. Follow instructions in items 2-5 in Application Specific Tracing.
3. To print out collected log records, run the following command in terminal: $IDF_PATH/tools/

esp_app_trace/logtrace_proc.py /path/to/trace/file /path/to/program/
elf/file.

Log Trace Processor Command Options Command usage:
logtrace_proc.py [-h] [--no-errors] <trace_file> <elf_file>

Positional arguments:
trace_file Path to log trace file.
elf_file Path to program ELF file.
Optional arguments:
-h, --help Show this help message and exit.
--no-errors, -n Do not print errors.

System Behavior Analysis with SEGGER SystemView

Another useful ESP-IDF feature built on top of application tracing library is the system level tracing which produces
traces compatible with SEGGER SystemView tool (see SystemView). SEGGER SystemView is a real-time recording
and visualization tool that allows to analyze runtime behavior of an application. It is possible to view events in real-
time through the UART interface.

HowTo Use It Support for this feature is enabled by Component config > Application Level Trac-
ing > FreeRTOS SystemView Tracing (CONFIG_APPTRACE_SV_ENABLE) menuconfig option. There
are several other options enabled under the same menu:

1. SytemView destination. Select the destination interface: JTAG or UART. In case of UART, it will be possible
to connect SystemView application to the ESP32-C6 directly and receive data in real-time.

2. ESP32-C6 timer to use as SystemView timestamp source: (CONFIG_APPTRACE_SV_TS_SOURCE) selects
the source of timestamps for SystemView events. In the single core mode, timestamps are generated using
ESP32-C6 internal cycle counter running at maximum 240 Mhz (~4 ns granularity). In the dual-core mode,
external timer working at 40 Mhz is used, so the timestamp granularity is 25 ns.

3. Individually enabled or disabled collection of SystemView events (CONFIG_APPTRACE_SV_EVT_XXX):
• Trace Buffer Overflow Event
• ISR Enter Event
• ISR Exit Event
• ISR Exit to Scheduler Event
• Task Start Execution Event
• Task Stop Execution Event
• Task Start Ready State Event
• Task Stop Ready State Event
• Task Create Event
• Task Terminate Event
• System Idle Event
• Timer Enter Event

Espressif Systems 2147
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.segger.com/products/development-tools/systemview/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Timer Exit Event
ESP-IDF has all the code required to produce SystemView compatible traces, so users can just configure necessary
project options (see above), build, download the image to target, and use OpenOCD to collect data as described in
the previous sections.

4. Select Pro or AppCPU inmenuconfig optionsComponent config >Application Level Tracing
> FreeRTOS SystemView Tracing to trace over the UART interface in real-time.

OpenOCD SystemView Tracing Command Options Command usage:
esp sysview [start <options>] | [stop] | [status]

Sub-commands:
start Start tracing (continuous streaming).
stop Stop tracing.
status Get tracing status.
Start command syntax:

start <outfile1> [outfile2] [poll_period [trace_size [stop_tmo]]]

outfile1 Path to file to save data from PRO CPU. This argument should have the following format: file://
path/to/file.

outfile2 Path to file to save data from APP CPU. This argument should have the following format: file://
path/to/file.

poll_period Data polling period (in ms) for available trace data. If greater than 0, then command runs in non-
blocking mode. By default, 1 ms.

trace_size Maximum size of data to collect (in bytes). Tracing is stopped after specified amount of data is
received. By default, -1 (trace size stop trigger is disabled).

stop_tmo Idle timeout (in sec). Tracing is stopped if there is no data for specified period of time. By default, -1
(disable this stop trigger).

Note: If poll_period is 0, OpenOCD telnet command line will not be available until tracing is stopped. You
must stop it manually by resetting the board or pressing Ctrl+C in the OpenOCD window (not the one with the telnet
session). Another option is to set trace_size and wait until this size of data is collected. At this point, tracing
stops automatically.

Command usage examples:
1. Collect SystemView tracing data to files pro-cpu.SVDat and app-cpu.SVDat. The files will be saved

in openocd-esp32 directory.

esp sysview start file://pro-cpu.SVDat file://app-cpu.SVDat

The tracing data will be retrieved and saved in non-blocking mode. To stop this process, enter esp sysview
stop command on OpenOCD telnet prompt, optionally pressing Ctrl+C in the OpenOCD window.

2. Retrieve tracing data and save them indefinitely.

esp sysview start file://pro-cpu.SVDat file://app-cpu.SVDat 0 -1 -1

OpenOCD telnet command line prompt will not be available until tracing is stopped. To stop tracing, press
Ctrl+C in the OpenOCD window.

Data Visualization After trace data are collected, users can use a special tool to visualize the results and inspect
behavior of the program.
It is uneasy and awkward to analyze data for every core in separate instance of the tool. Fortunately, there is an Eclipse
plugin called Impulse which can load several trace files, thus making it possible to inspect events from both cores in
one view. Also, this plugin has no limitation of 1,000,000 events as compared to the free version of SystemView.
Good instructions on how to install, configure, and visualize data in Impulse from one core can be found here.

Espressif Systems 2148
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://mcuoneclipse.com/2016/07/31/impulse-segger-systemview-in-eclipse/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: ESP-IDF uses its own mapping for SystemView FreeRTOS events IDs, so users need to replace the original
file mapping $SYSVIEW_INSTALL_DIR/Description/SYSVIEW_FreeRTOS.txt with $IDF_PATH/
tools/esp_app_trace/SYSVIEW_FreeRTOS.txt. Also, contents of that IDF-specific file should be used
when configuring SystemView serializer using the above link.

Gcov (Source Code Coverage)

Basics of Gcov and Gcovr Source code coverage is data indicating the count and frequency of every program
execution path that has been taken within a program's runtime. Gcov is a GCC tool that, when used in concert with
the compiler, can generate log files indicating the execution count of each line of a source file. The Gcovr tool is a
utility for managing Gcov and generating summarized code coverage results.
Generally, using Gcov to compile and run programs on the host will undergo these steps:

1. Compile the source code using GCC with the --coverage option enabled. This will cause the compiler
to generate a .gcno notes files during compilation. The notes files contain information to reconstruct execu-
tion path block graphs and map each block to source code line numbers. Each source file compiled with the
--coverage option should have their own .gcno file of the same name (e.g., a main.c will generate a
main.gcno when compiled).

2. Execute the program. During execution, the program should generate .gcda data files. These data files
contain the counts of the number of times an execution path was taken. The program will generate a .gcda
file for each source file compiled with the --coverage option (e.g., main.cwill generate a main.gcda).

3. Gcov or Gcovr can be used to generate a code coverage based on the .gcno, .gcda, and source files. Gcov
will generate a text-based coverage report for each source file in the form of a .gcov file, whilst Gcovr will
generate a coverage report in HTML format.

Gcov and Gcovr in ESP-IDF Using Gcov in ESP-IDF is complicated due to the fact that the program is running
remotely from the host (i.e., on the target). The code coverage data (i.e., the .gcda files) is initially stored on the
target itself. OpenOCD is then used to dump the code coverage data from the target to the host via JTAG during
runtime. Using Gcov in ESP-IDF can be split into the following steps.

1. Setting Up a Project for Gcov
2. Dumping Code Coverage Data
3. Generating Coverage Report

Setting Up a Project for Gcov

Compiler Option In order to obtain code coverage data in a project, one or more source files within the project
must be compiled with the --coverage option. In ESP-IDF, this can be achieved at the component level or the
individual source file level:

• To cause all source files in a component to be compiled with the --coverage option, you can add tar-
get_compile_options(${COMPONENT_LIB} PRIVATE --coverage) to the CMakeLists.
txt file of the component.

• To cause a select number of source files (e.g., source1.c and source2.c) in the same component to be
compiled with the --coverage option, you can add set_source_files_properties(source1.
c source2.c PROPERTIES COMPILE_FLAGS --coverage) to the CMakeLists.txt file of
the component.

When a source file is compiled with the--coverage option (e.g., gcov_example.c), the compiler will generate
the gcov_example.gcno file in the project's build directory.

Project Configuration Before building a project with source code coverage, make sure that the following project
configuration options are enabled by running idf.py menuconfig.

Espressif Systems 2149
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://en.wikipedia.org/wiki/Gcov
https://gcovr.com/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Enable the application tracing module by selecting Trace Memory for the CON-
FIG_APPTRACE_DESTINATION1 option.

• Enable Gcov to the host via the CONFIG_APPTRACE_GCOV_ENABLE.

Dumping Code Coverage Data Once a project has been complied with the --coverage option and flashed
onto the target, code coverage data will be stored internally on the target (i.e., in trace memory) whilst the application
runs. The process of transferring code coverage data from the target to the host is known as dumping.
The dumping of coverage data is done via OpenOCD (see JTAG Debugging on how to setup and run OpenOCD). A
dump is triggered by issuing commands to OpenOCD, therefore a telnet session to OpenOCDmust be opened to issue
such commands (run telnet localhost 4444). Note that GDB could be used instead of telnet to issue com-
mands to OpenOCD, however all commands issued fromGDBwill need to be prefixed as mon <oocd_command>.
When the target dumps code coverage data, the .gcda files are stored in the project's build directory. For ex-
ample, if gcov_example_main.c of the main component is compiled with the --coverage option, then
dumping the code coverage data would generate a gcov_example_main.gcda in build/esp-idf/main/
CMakeFiles/__idf_main.dir/gcov_example_main.c.gcda. Note that the .gcno files produced
during compilation are also placed in the same directory.
The dumping of code coverage data can be done multiple times throughout an application's lifetime. Each dump will
simply update the .gcda file with the newest code coverage information. Code coverage data is accumulative, thus
the newest data will contain the total execution count of each code path over the application's entire lifetime.
ESP-IDF supports two methods of dumping code coverage data form the target to the host:

• Instant Run-Time Dumpgit
• Hard-coded Dump

Instant Run-Time Dump An Instant Run-Time Dump is triggered by calling the ESP32-C6 gcov OpenOCD
command (via a telnet session). Once called, OpenOCD will immediately preempt the ESP32-C6's current state and
execute a built-in ESP-IDF Gcov debug stub function. The debug stub function will handle the dumping of data to
the host. Upon completion, the ESP32-C6 will resume its current state.

Hard-coded Dump A Hard-coded Dump is triggered by the application itself by calling esp_gcov_dump()
from somewhere within the application. When called, the application will halt and wait for OpenOCD to connect and
retrieve the code coverage data. Once esp_gcov_dump() is called, the host must execute the esp gcov dump
OpenOCD command (via a telnet session). The esp gcov dump command will cause OpenOCD to connect to
the ESP32-C6, retrieve the code coverage data, then disconnect from the ESP32-C6, thus allowing the application
to resume. Hard-coded Dumps can also be triggered multiple times throughout an application's lifetime.
Hard-coded dumps are useful if code coverage data is required at certain points of an application's lifetime by placing
esp_gcov_dump() where necessary (e.g., after application initialization, during each iteration of an application's
main loop).
GDB can be used to set a breakpoint on esp_gcov_dump(), then call mon esp gcov dump automatically
via the use a gdbinit script (see Using GDB from Command Line).
The following GDB script will add a breakpoint at esp_gcov_dump(), then call the mon esp gcov dump
OpenOCD command.

b esp_gcov_dump
commands
mon esp gcov dump
end

Note: Note that all OpenOCD commands should be invoked in GDB as: mon <oocd_command>.

Espressif Systems 2150
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Generating Coverage Report Once the code coverage data has been dumped, the .gcno, .gcda and the source
files can be used to generate a code coverage report. A code coverage report is simply a report indicating the number
of times each line in a source file has been executed.
Both Gcov and Gcovr can be used to generate code coverage reports. Gcov is provided along with the Xtensa
toolchain, whilst Gcovr may need to be installed separately. For details on how to use Gcov or Gcovr, refer to
Gcov documentation and Gcovr documentation.

Adding Gcovr Build Target to Project To make report generation more convenient, users can define additional
build targets in their projects such that the report generation can be done with a single build command.
Add the following lines to the CMakeLists.txt file of your project.

include($ENV{IDF_PATH}/tools/cmake/gcov.cmake)
idf_create_coverage_report(${CMAKE_CURRENT_BINARY_DIR}/coverage_report)
idf_clean_coverage_report(${CMAKE_CURRENT_BINARY_DIR}/coverage_report)

The following commands can now be used:
• cmake --build build/ --target gcovr-report will generate an HTML coverage report in
$(BUILD_DIR_BASE)/coverage_report/html directory.

• cmake --build build/ --target cov-data-clean will remove all coverage data files.

4.2 Application Startup Flow

This note explains various steps which happen before app_main function of an ESP-IDF application is called.
The high level view of startup process is as follows:

1. First stage bootloader in ROM loads second-stage bootloader image to RAM (IRAM & DRAM) from flash
offset 0x0.

2. Second stage bootloader loads partition table and main app image from flash. Main app incorporates both RAM
segments and read-only segments mapped via flash cache.

3. Application startup executes. At this point the second CPU and RTOS scheduler are started.
This process is explained in detail in the following sections.

4.2.1 First stage bootloader

After SoC reset, the CPU will start running immediately to perform initialization. The reset vector code is located
in the mask ROM of the ESP32-C6 chip and cannot be modified.
Startup code called from the reset vector determines the boot mode by checking GPIO_STRAP_REG register for
bootstrap pin states. Depending on the reset reason, the following takes place:

1. Reset from deep sleep: if the value in RTC_CNTL_STORE6_REG is non-zero, and CRC value of RTC mem-
ory in RTC_CNTL_STORE7_REG is valid, use RTC_CNTL_STORE6_REG as an entry point address and
jump immediately to it. If RTC_CNTL_STORE6_REG is zero, or RTC_CNTL_STORE7_REG contains in-
valid CRC, or once the code called via RTC_CNTL_STORE6_REG returns, proceed with boot as if it was a
power-on reset. Note: to run customized code at this point, a deep sleep stub mechanism is provided. Please
see deep sleep documentation for this.

2. For power-on reset, software SoC reset, and watchdog SoC reset: check the GPIO_STRAP_REG register if
a custom boot mode (such as UART Download Mode) is requested. If this is the case, this custom loader
mode is executed from ROM. Otherwise, proceed with boot as if it was due to software CPU reset. Consult
ESP32-C6 datasheet for a description of SoC boot modes and how to execute them.

Espressif Systems 2151
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcovr.com/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

3. For software CPU reset and watchdog CPU reset: configure SPI flash based on EFUSE values, and attempt to
load the code from flash. This step is described in more detail in the next paragraphs.

Note: During normal boot modes the RTC watchdog is enabled when this happens, so if the process is interrupted
or stalled then the watchdog will reset the SOC automatically and repeat the boot process. This may cause the SoC
to strap into a new boot mode, if the strapping GPIOs have changed.

Second stage bootloader binary image is loaded from the start of flash at offset 0x0.

4.2.2 Second stage bootloader

In ESP-IDF, the binary image which resides at offset 0x0 in flash is the second stage bootloader. Second stage
bootloader source code is available in components/bootloader directory of ESP-IDF. Second stage bootloader is
used in ESP-IDF to add flexibility to flash layout (using partition tables), and allow for various flows associated with
flash encryption, secure boot, and over-the-air updates (OTA) to take place.
When the first stage bootloader is finished checking and loading the second stage bootloader, it jumps to the second
stage bootloader entry point found in the binary image header.
Second stage bootloader reads the partition table found by default at offset 0x8000 (configurable value). See partition
tables documentation for more information. The bootloader finds factory and OTA app partitions. If OTA app
partitions are found in the partition table, the bootloader consults the otadata partition to determine which one
should be booted. See Over The Air Updates (OTA) for more information.
For a full description of the configuration options available for the ESP-IDF bootloader, see Bootloader.
For the selected partition, second stage bootloader reads the binary image from flash one segment at a time:

• For segments with load addresses in internal IRAM (Instruction RAM) or DRAM (Data RAM), the contents are
copied from flash to the load address.

• For segments which have load addresses in DROM (data stored in flash) or IROM (code executed from flash)
regions, the flash MMU is configured to provide the correct mapping from the flash to the load address.

Once all segments are processed - meaning code is loaded and flash MMU is set up, second stage bootloader verifies
the integrity of the application and then jumps to the application entry point found in the binary image header.

4.2.3 Application startup

Application startup covers everything that happens after the app starts executing and before the app_main function
starts running inside the main task. This is split into three stages:

• Port initialization of hardware and basic C runtime environment.
• System initialization of software services and FreeRTOS.
• Running the main task and calling app_main.

Note: Understanding all stages of ESP-IDF app initialization is often not necessary. To understand initialization
from the application developer's perspective only, skip forward to Running the main task.

Port Initialization

ESP-IDF application entry point is call_start_cpu0 function found in compo-
nents/esp_system/port/cpu_start.c. This function is executed by the second stage bootloader, and never returns.
This port-layer initialization function initializes the basic C Runtime Environment ("CRT") and performs initial con-
figuration of the SoC's internal hardware:

Espressif Systems 2152
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/components/bootloader
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/port/cpu_start.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/port/cpu_start.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Reconfigure CPU exceptions for the app (allowing app interrupt handlers to run, and causing Fatal Errors to
be handled using the options configured for the app rather than the simpler error handler provided by ROM).

• If the option CONFIG_BOOTLOADER_WDT_ENABLE is not set then the RTC watchdog timer is disabled.
• Initialize internal memory (data & bss).
• Finish configuring the MMU cache.
• Set the CPU clocks to the frequencies configured for the project.

Once call_start_cpu0 completes running, it calls the "system layer" initialization function start_cpu0
found in components/esp_system/startup.c.

System Initialization

The main system initialization function is start_cpu0. By default, this function is weak-linked to the function
start_cpu0_default. This means that it's possible to override this function to add some additional initialization
steps.
The primary system initialization stage includes:

• Log information about this application (project name, App Version, etc.) if default log level enables this.
• Initialize the heap allocator (before this point all allocations must be static or on the stack).
• Initialize newlib component syscalls and time functions.
• Configure the brownout detector.
• Setup libc stdin, stdout, and stderr according to the serial console configuration.
• Perform any security-related checks, including burning efuses that should be burned for this configuration
(including permanently limiting ROM download modes).

• Initialize SPI flash API support.
• Call global C++ constructors and any C functions marked with __attribute__((constructor)).

Secondary system initialization allows individual components to be initialized. If a component has an initialization
function annotated with the ESP_SYSTEM_INIT_FN macro, it will be called as part of secondary initialization.
Component initialization functions have priorities assigned to them to ensure the desired initialization order. The
priorities are documented in esp_system/system_init_fn.txt and ESP_SYSTEM_INIT_FN definition in source code
are checked against this file.

Running the main task

After all other components are initialized, the main task is created and the FreeRTOS scheduler starts running.
After doing some more initialization tasks (that require the scheduler to have started), the main task runs the
application-provided function app_main in the firmware.
The main task that runs app_main has a fixed RTOS priority (one higher than the minimum) and a configurable
stack size.
Unlike normal FreeRTOS tasks (or embedded C main functions), the app_main task is allowed to return. If this
happens, The task is cleaned up and the system will continue running with other RTOS tasks scheduled normally.
Therefore, it is possible to implement app_main as either a function that creates other application tasks and then
returns, or as a main application task itself.

4.3 Bluetooth® Low Energy

Espressif Systems 2153
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/startup.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/system_init_fn.txt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.3.1 Overview

Introduction

This document provides an architecture overview of the Bluetooth Low Energy (Bluetooth LE) stack in ESP-IDF
and some quick links to related documents and application examples.
ESP32-C6 supports Bluetooth 5.0 (LE) and is certified for Bluetooth LE 5.3.
The Bluetooth LE stack in ESP-IDF is a layered architecture that enables Bluetooth functionality on ESP32-C6 chip
series. The table below shows its architecture.

Fig. 2: ESP32-C6 Bluetooth LE Stack Architecture

The table below shows whether the Bluetooth LE modules are supported in a specific chip series.

Chip Series Controller ESP-Bluedroid ESP-NimBLE ESP-BLE-MESH BluFi
ESP32 Y Y Y Y Y
ESP32-S2 – – – – –
ESP32-S3 Y Y Y Y Y
ESP32-C2 Y Y Y – Y
ESP32-C3 Y Y Y Y Y
ESP32-C6 Y Y Y Y Y
ESP32-H2 Y Y Y Y –

The following sections briefly describe each layer and provide quick links to the related documents and application
examples.

ESP Bluetooth Controller At the bottom layer is ESP Bluetooth Controller, which encompasses various modules
such as PHY, Baseband, Link Controller, Link Manager, Device Manager, and HCI. It handles hardware interface
management and link management. It provides functions in the form of libraries and is accessible through APIs. This
layer directly interacts with the hardware and low-level Bluetooth protocols.

• API reference
• Application examples

Hosts There are two hosts, ESP-Bluedroid and ESP-NimBLE. The major difference between them is as follows:
• Although both support Bluetooth LE, ESP-NimBLE requires less heap and flash size.

Espressif Systems 2154
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/hci
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

ESP-Bluedroid ESP-Bluedroid is a modified version of the native Android Bluetooth stack, Bluedroid. It consists
of two layers: the Bluetooth Upper Layer (BTU) and the Bluetooth Transport Controller layer (BTC). The BTU
layer is responsible for processing bottom layer Bluetooth protocols such as L2CAP, GATT/ATT, SMP, GAP, and
other profiles. The BTU layer provides an interface prefixed with "bta". The BTC layer is mainly responsible for
providing a supported interface, prefixed with "esp", to the application layer, processing GATT-based profiles and
handling miscellaneous tasks. All the APIs are located in the ESP_API layer. Developers should use the Bluetooth
Low Energy APIs prefixed with "esp".
ESP-Bluedroid for ESP32-C6 supports Bluetooth LE only. Classic Bluetooth is not supported.

• API references
– Bluetooth® Common
– Bluetooth LE

• Bluetooth LE 4.2 Application Examples
• Bluetooth LE 5.0 Application Examples

ESP-NimBLE ESP-NimBLE is a host stack built on top of the NimBLE host stack developed by ApacheMynewt.
The NimBLE host stack is ported for ESP32-C6 chip series and FreeRTOS. The porting layer is kept clean by
maintaining all the existing APIs of NimBLE along with a single ESP-NimBLE API for initialization, making it
simpler for the application developers.
ESP-NimBLE supports Bluetooth LE only. Classic Bluetooth is not supported.

• Apache Mynewt NimBLE User Guide
• API references

– NimBLE API references
– ESP-NimBLE API references for initialization

• Application examples

Profiles Above the host stacks are the profile implementations by Espressif and some common profiles. Depending
on your configuration, these profiles can run on ESP-Bluedroid or ESP-NimBLE.

ESP-BLE-MESH Built on top of Zephyr Bluetooth Mesh stack, the ESP-BLE-MESH implementation supports
device provisioning and node control. It also supports such node features as Proxy, Relay, Low power and Friend.

• ESP-BLE-MESH documentation: feature list, get started, architecture, description of application examples,
frequently asked questions, etc.

• Application examples

BluFi The BluFi for ESP32-C6 is a Wi-Fi network configuration function via Bluetooth channel. It provides a
secure protocol to pass Wi-Fi configuration and credentials to ESP32-C6. Using this information, ESP32-C6 can
then connect to an AP or establish a softAP.

• BluFi documentation
• Application examples

Applications At the uppermost layer are applications. You can build your own applications on top of the ESP-
Bluedroid and ESP-NimBLE stacks, leveraging the provided APIs and profiles to create Bluetooth LE-enabled ap-
plications tailored to specific use cases.

Major Feature Support Status

The table below shows the support status of Bluetooth Low Energy major features on ESP32-C6.

Espressif Systems 2155
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble_50
https://mynewt.apache.org/latest/network/index.html
https://mynewt.apache.org/latest/network/ble_hs/ble_hs.html
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/nimble
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/blufi
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

supportedsupported This feature has completed development and internal testing.1

experimentalexperimental This feature has been developed and is currently undergoing internal testing. You can explore
these features for evaluation and feedback purposes but should be cautious of potential issues.

In ProgressIn Progress YYYY/MMYYYY/MM The feature is currently being actively developed, and expected to be supported by
the end of YYYY/MM.You should anticipate future updates regarding the progress and availability of these features.
If you do have an urgent need, please contact our customer support team for a possible feature trial.

unsupportedunsupported This feature is not supported on this chip series. If you have related requirements, please prioritize
selecting other Espressif chip series that support this feature. If none of our chip series meet your needs, please contact
customer support team, and our R&D team will conduct an internal feasibility assessment for you.

N/AN/A The feature with this label could be the following two types:
• Host-only Feature: The feature exists only above HCI, such as GATT Caching. It does not require the
support from the Controller.

• Controller-only Feature: The feature exists only below HCI, and cannot be configured/enabled via Host
API, such as Advertising Channel Index. It does not require the support from the Host.

1 If you would like to know the Bluetooth SIG certification information for supported features, please consult SIG Bluetooth Product Database.

Espressif Systems 2156
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/contact-us/sales-questions
https://www.espressif.com/en/contact-us/sales-questions
https://qualification.bluetooth.com/Listings/Search
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Core Spec Major Features ESP Controller ESP-Bluedroid
Host

ESP-NimBLE
Host

4.2 LE Data Packet
Length Extension

supportedsupported supportedsupported supportedsupported

LE Secure Connec-
tions

supportedsupported supportedsupported supportedsupported

Link Layer Privacy supportedsupported supportedsupported supportedsupported

Link Layer Ex-
tended Filter
Policies

supportedsupported supportedsupported supportedsupported

5.0 2 Msym/s PHY for
LE

supportedsupported supportedsupported supportedsupported

LE Long Range
(Coded PHY
S=2/S=8)

supportedsupported supportedsupported supportedsupported

High Duty Cycle
Non-Connectable
Advertising

supportedsupported supportedsupported supportedsupported

LE Advertising Ex-
tensions

supportedsupported supportedsupported supportedsupported

LE Channel Selec-
tion Algorithm #2

supportedsupported supportedsupported supportedsupported

5.1 Angle of Arrival
(AoA)/Angle of
Departure (AoD)

unsupportedunsupported unsupportedunsupported unsupportedunsupported

GATT Caching N/AN/A experimentalexperimental experimentalexperimental

Randomized Ad-
vertising Channel
Indexing

unsupportedunsupported N/AN/A N/AN/A

Periodic Advertis-
ing Sync Transfer

experimentalexperimental experimentalexperimental experimentalexperimental

5.2 LE Isochronous
Channels (BIS/CIS)

unsupportedunsupported unsupportedunsupported unsupportedunsupported

Enhanced Attribute
Protocol

N/AN/A unsupportedunsupported experimentalexperimental

LE Power Control experimentalexperimental unsupportedunsupported experimentalexperimental

5.3 AdvDataInfo in Pe-
riodic Advertising

supportedsupported supportedsupported supportedsupported

LE Enhanced
Connection Up-
date (Connection
Subrating)

unsupportedunsupported unsupportedunsupported unsupportedunsupported

LE Channel Classi-
fication

experimentalexperimental experimentalexperimental experimentalexperimental

5.4 Advertising Coding
Selection

unsupportedunsupported unsupportedunsupported unsupportedunsupported

Encrypted Adver-
tising Data

N/AN/A unsupportedunsupported experimentalexperimental

LE GATT Security
Levels Characteris-
tic

N/AN/A unsupportedunsupported experimentalexperimental

Periodic Advertis-
ing with Responses

unsupportedunsupported unsupportedunsupported unsupportedunsupported

6.0 Channel Sounding unsupportedunsupported unsupportedunsupported unsupportedunsupported

LL Extended Fea-
ture Set

unsupportedunsupported unsupportedunsupported unsupportedunsupported

Decision-Based
Advertising Filter-
ing

unsupportedunsupported unsupportedunsupported unsupportedunsupported

Enhancements for
ISOAL

unsupportedunsupported unsupportedunsupported unsupportedunsupported

Monitoring Adver-
tisers

unsupportedunsupported unsupportedunsupported unsupportedunsupported

Frame Space Up-
date

unsupportedunsupported unsupportedunsupported unsupportedunsupported

Espressif Systems 2157
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://www.bluetooth.com/specifications/specs/core-specification-5-0/
https://www.bluetooth.com/specifications/specs/core-specification-5-1/
https://www.bluetooth.com/specifications/specs/core-specification-5-2/
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://www.bluetooth.com/specifications/specs/core-specification-5-4/
https://www.bluetooth.com/specifications/specs/core-specification-6-0/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

For certain features, if the majority of the development is completed on the Controller, the Host's support status
will be limited by the Controller's support status. If you want Bluetooth LE Controller and Host to run on different
Espressif chips, the functionality of the Host will not be limited by the Controller's support status on the chip running
the Host, please check the ESP Host Feature Support Status Table .
It is important to clarify that this document is not a binding commitment to our customers. The above feature
support status information is for general informational purposes only and is subject to change without notice. You are
encouraged to consult with our customer support team for the most up-to-date information and to verify the suitability
of features for your specific needs.

Bluetooth® SIG Qualification

Controller The table below shows the latest qualification for Espressif Bluetooth LE Controller on each chip. For
the qualification of Espressif modules, please check the SIG Qualification Workspace.

Chip Name Design Number /
Qualified Design

ID1

Specification

Version2

ESP32
(Bluetooth LE Mode) 141661 5.0

ESP32
(Dual Mode: Bluetooth Classic & Bluetooth LE) 147845 4.2

ESP32-C2 (ESP8684) 194009 5.3

ESP32-C3 239440 5.4

ESP32-C6 199258 5.3

ESP32-S3 239440 5.4

ESP32-H2 Q331318 6.0

Host The table below shows the latest qualification for Espressif Bluetooth LE Host.
1 Since 1 July 2024, the identifying number for a new qualified design has changed from Qualified Design ID (QDID) to Design Number (DN).

Please log in to the Bluetooth SIG website to view Qualified Product Details, such as Design Details, TCRL Version, and ICS Details (passed
cases) and etc.

2 Some features of the Bluetooth Core Specification are optional. Therefore, passing the certification for a specific specification version does
not necessarily mean supporting all the features specified in that version. Please refer toMajor Feature Support Status for the supported Bluetooth
LE features on each chip.

Espressif Systems 2158
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/contact-us/sales-questions
https://qualification.bluetooth.com/MyProjects/ListingsSearch
https://qualification.bluetooth.com/ListingDetails/98048
https://qualification.bluetooth.com/ListingDetails/105426
https://qualification.bluetooth.com/ListingDetails/160725
https://qualification.bluetooth.com/ListingDetails/212759
https://qualification.bluetooth.com/ListingDetails/166887
https://qualification.bluetooth.com/ListingDetails/212759
https://qualification.bluetooth.com/ListingDetails/257081
https://qualification.support.bluetooth.com/hc/en-us/articles/26704417298573-What-do-I-need-to-know-about-the-new-Qualification-Program-Reference-Document-QPRD-v3#:~:text=The%20identifying%20number%20for%20a%20Design%20has%20changed%20from%20Qualified%20Design%20ID%20(QDID)%20to%20Design%20Number%20(DN)
https://www.bluetooth.com/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Host Design Number / Qualified
Design ID1

Specification Version2

ESP-Bluedroid 198312 5.3

ESP-NimBLE Q371597 6.1

Introduction to Low Power Mode in Bluetooth® Low Energy Scenarios

This section introduces clock source selection in low power modes for Bluetooth Low Energy (Bluetooth LE), along
with common related issues.

Clock Source Selection in Low Power Mode According to the Bluetooth specification, the sleep clock accuracy
must be within 500 PPM. Make sure the clock source selected for Bluetooth LE low power mode meets this re-
quirement. Otherwise, Bluetooth LE may not perform normally and can cause a series of problems, such as ACL
connection establishment failure or ACL connection timeout.

SelectingMain XTAL To select the main XTAL as the Bluetooth LE internal clock source, configure the following
option:
CONFIG_BT_LE_LP_CLK_SRC = Use main XTAL as RTC clock source (CON-
FIG_BT_LE_LP_CLK_SRC_MAIN_XTAL)
When this is selected, themain XTAL remains powered on during light-sleep, resulting in higher current consumption.
Please refer to Power Save README for the typical current consumption in light-sleep using XTAL versus a 32
kHz external crystal.

Selecting 32 kHz External Crystal To use a 32 kHz external crystal as the Bluetooth LE internal clock source,
configure the following options:
Configuration Path 1:
CONFIG_BT_LE_LP_CLK_SRC =Use systemRTC slow clock source (CONFIG_BT_LE_LP_CLK_SRC_DEFAULT)
Configuration Path 2:
CONFIG_RTC_CLK_SRC = External 32 kHz crystal (CONFIG_RTC_CLK_SRC_EXT_CRYS)
Note: Even if 32 kHz is selected in menuconfig, the system will fall back to the main XTAL if the external crystal
is not detected during Bluetooth LE initialization. This may lead to unexpected current consumption in light-sleep
mode.

Selecting 136 kHz RC Oscillator To use a 136 kHz internal RC oscillator as the Bluetooth LE internal clock
source, configure the following options:
Configuration Path 1:
CONFIG_BT_LE_LP_CLK_SRC =Use systemRTC slow clock source (CONFIG_BT_LE_LP_CLK_SRC_DEFAULT)
Configuration Path 2:
CONFIG_RTC_CLK_SRC = Internal 136 kHz RC oscillator (CONFIG_RTC_CLK_SRC_INT_RC)

Espressif Systems 2159
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://qualification.bluetooth.com/ListingDetails/165785
https://qualification.bluetooth.com/ListingDetails/310315
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/nimble/power_save/README.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

If low current consumption is required but there is no access to the External 32 kHz Crystal, this clock source is rec-
ommended. However, this clock source has a sleep clock accuracy exceeding 500 PPM, which is only supported when
pairing with another ESP chip. For non-ESP peer devices, the following Bluetooth LE features are not supported:

1. Central role of Connection
2. Advertiser of Periodic Advertising

If the peer device also uses 136 kHz RC as the clock source, the following configuration should be set:
Configuration Path:

• CONFIG_BT_LE_LL_PEER_SCA_SET_ENABLE = y
• CONFIG_BT_LE_LL_PEER_SCA = 3000

Note: Using the 136 kHz RC oscillator may occasionally cause issues such as connection establishment failures or
connection timeouts.

How to Check the Current Clock Source Used by Bluetooth LE You can check the current Bluetooth LE clock
source from the initialization logs:

Table 1: Bluetooth LE Initialization Logs and Clock Sources
Log Message Clock Source
Using main XTAL as clock source Main XTAL
Using 136 kHz RC as clock source Internal 136 kHz RC oscillator
Using external 32.768 kHz crystal as clock source External 32 kHz crystal
Using external 32.768 kHz oscillator at 32K_XP pin as
clock source

External 32 kHz oscillator at 32K_XP pin

FAQ

1. Bluetooth LE ACL Connection Fails or Disconnects in Low Power Mode As explained in the clock source
selection section above, when ACL connections fail to establish or unexpectedly disconnect in low power mode, first
verify whether the current clock source meets Bluetooth LE accuracy requirements.

2. Measured light-sleep Current Higher Than Expected As described in the clock source selection section
above, if the main XTAL is used as the clock source, it remains powered on during light-sleep, resulting in higher
current consumption than other clock sources. The average current may vary depending on the specific application,
Bluetooth LE configuration, and the duration spent in light-sleep. Some applications may have higher average current
because Bluetooth LE is active for a larger proportion of the time transmitting and receiving.

3. Unable to Enter light-sleep Mode If Auto light-sleep is enabled but the device fails to enter light-sleep, it's
usually due to insufficient IDLE time, which prevents the automatic entry conditions from being met. This can be
caused by excessive logging or Bluetooth LE configurations that reduce IDLE time, such as continuous scanning.

Multi-Connection Guide

Introduction The following table provides an overview of the maximum number of concurrent connections sup-
ported for each ESP Bluetooth LE Host. In multi-connection scenarios, connection parameters must be configured
appropriately. In general, as the number of connections increases, the connection interval should be increased ac-
cordingly. For detailed parameter configuration recommendations and SDK configuration details, please refer to the
corresponding example code in the following table.
In this document, the maximum number of connections refers to the maximum number of simultaneous active con-
nections that the device can maintain, whether operating as a central or peripheral.

Espressif Systems 2160
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Host SDKconfig

Table 2: Maximum Concurrent Connections by ESP Bluetooth LE Host
Host Max Connec-

tions
SDKconfig Example

ESP-
Bluedroid

50 BT_MULTI_CONNECTION_ENBALE
BT_ACL_CONNECTIONS

multi_conn

ESP-
NimBLE

70 BT_NIMBLE_MAX_CONNECTIONS multi_conn

Controller SDKconfig
• No controller-related SDK configuration is required.

Note
1. The ability to support multiple connections highly depends on the application’s overall memory usage. It is

recommended to disable unnecessary features to optimize multi-connection performance.
2. When the device operates in the peripheral role, connection stability and overall performance will be influenced

by the central device and the negotiated connection parameters.
3. Due to the relatively higher memory usage of ESP-Bluedroid, it supports fewer concurrent connections com-

pared to ESP-Nimble.
4. If your application requires more simultaneous connections than the values listed above, please contact our

customer support team for further assistance.

4.3.2 Get Started

Introduction

This document is the first tutorial in the Getting Started series on Bluetooth Low Energy (Bluetooth LE). It introduces
the basic concepts of Bluetooth LE and guides users through flashing a Bluetooth LE example onto an ESP32-C6
development board. The tutorial also instructs users on how to use the nRF Connect for Mobile app to control an
LED and read heart rate data from the board. The tutorial offers a hands-on approach to understanding Bluetooth
LE and working with the ESP-IDF framework for Bluetooth LE applications.

Learning Objectives
• Understand the layered architecture of Bluetooth LE
• Learn the basic functions of each layer in Bluetooth LE
• Understand the functions of GAP and GATT/ATT layers
• Master the method of flashing Bluetooth LE examples on ESP32-C6 development board and interacting with
it via a mobile phone

Preface Most people have experienced Bluetooth technology in their daily lives—perhaps you are even wearing
Bluetooth headphones right now, listening to audio from your phone or computer. However, audio transmission is a
typical use case of Bluetooth Classic, while Bluetooth LE is a Bluetooth protocol that is not compatible with Bluetooth
Classic and was introduced in Bluetooth 4.0. As the name suggests, Bluetooth LE is a low-power Bluetooth protocol
with a lower data transfer rate compared to Bluetooth Classic. It is typically used in data communication for the
Internet of Things (IoT), such as smart switches or sensors, as shown in the example in this tutorial. However, before
diving into the example project, let's first understand the basic concepts of Bluetooth LE to help you get started.

Espressif Systems 2161
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/bluedroid/ble/ble_multi_conn
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/nimble/ble_multi_conn
https://www.espressif.com/en/contact-us/sales-questions
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Layered Architecture of Bluetooth LE The Bluetooth LE protocol defines a three-layer software architecture,
listed from top to bottom:

• Application Layer
• Host Layer
• Controller Layer

The Application Layer is where applications are built using Bluetooth LE as the underlying communication technol-
ogy, relying on the API interfaces provided by the Host Layer.
The Host Layer implements low-level Bluetooth protocols such as L2CAP, GATT/ATT, SMP, and GAP, providing
API interfaces to the Application Layer above and communicating with the Controller Layer below via the Host
Controller Interface (HCI).
The Controller Layer consists of the Physical Layer (PHY) and the Link Layer (LL), which directly interacts with
the hardware below and communicates with the Host Layer above through the HCI.
It’s worth mentioning that the Bluetooth Core Specification allows the Host Layer and Controller Layer to be
physically separated, in which case the HCI is realized as a physical interface, including SDIO, USB, and UART,
among others. However, the Host and Controller Layers can also coexist on the same chip for higher integration, in
which case the HCI is referred to as the Virtual Host Controller Interface (VHCI). Generally, the Host Layer and
Controller Layer together make up the Bluetooth LE Stack.
The diagram below shows the layered structure of Bluetooth LE.
As an application developer, during the development process, we primarily interact with the APIs provided by the
Host Layer, which requires a certain understanding of the Bluetooth protocols within the Host Layer. Next, we
will introduce the basic concepts of the GAP and GATT/ATT layers from two perspectives: connection and data
exchange.

GAP Layer - Defining Device Connections The GAP (Generic Access Profile) layer defines the connection be-
haviors between Bluetooth LE devices and the roles they play in the connection.

GAP States and Roles The GAP layer defines three connection states and five different device roles, as follows:
• Idle

– In this state, the device is in a standby state without any role.
• Device Discovery

– Advertiser
– Scanner
– Initiator

• Connection
– Peripheral
– Central

The advertising data contains information such as the device address, indicating the advertiser's presence to external
devices and informing them whether they are connectable. A scanner continuously receives advertising packets in
the environment. If a scanner detects a connectable advertiser and wishes to establish a connection, it can switch its
role to initiator. When the initiator receives another advertising data from the same advertiser, it immediately sends
a Connection Request. If the advertiser has not enabled a Filter Accept List (also known as White List), or if the
initiator is included in the advertiser's Filter Accept List, the connection will be successfully established.
Once connected, the original advertiser becomes the peripheral device (formerly known as the slave device), and the
original scanner or connection initiator becomes the central device (formerly known as the master device).
The diagram below shows the relationship between the GAP roles.

Bluetooth LE Network Topology Bluetooth LE devices can connect to multiple Bluetooth LE devices simulta-
neously, playing multiple peripheral or central device roles, or acting as both a peripheral and a central device at the
same time. For example, a Bluetooth LE gateway can act as a central device to connect with peripheral devices such
as smart switches, while also functioning as a peripheral device to connect with central devices like smartphones,
serving as a data intermediary.

Espressif Systems 2162
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 3: Layered Architecture of Bluetooth LE

Espressif Systems 2163
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 4: GAP Roles Relationship

Espressif Systems 2164
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

In a Bluetooth LE network, if all devices are connected to at least one other device and each plays only one type
of role, this is referred to as a Connected Topology. If at least one device plays both peripheral and central roles
simultaneously, the network is called a Multi-role Topology.
Bluetooth LE also supports a connectionless network topology known as Broadcast Topology. In such a network,
there are two roles: the device sending the data is called the Broadcaster, and the device receiving the data is called
the Observer. The broadcaster only sends data and does not accept connections, while the observer only receives
advertising data and does not initiate connections. For example, in a network where a sensor's data is shared by
multiple devices, maintaining multiple connections can be costly, so advertising sensor data to all devices in the
network is a more suitable approach.

Learn More If you want to learn more about device discovery and connection, please refer to Device Discovery
and Connection.

GATT/ATT Layer - Data Representation and Exchange The GATT/ATT layer defines the methods for data
exchange between devices once they are connected, including how data is represented and the process of exchanging
it.

ATT Layer ATT stands for Attribute Protocol (ATT), which defines a basic data structure called Attribute and
data access methods based on a server/client architecture.
In simple terms, data is stored on a server as attributes, awaiting access by the client. For example, in a smart switch,
the switch state is stored in the Bluetooth chip (server) of the smart switch as data in the form of an attribute. The
user can then access the switch state attribute stored in the smart switch's Bluetooth chip (server) via their smartphone
(client), to either read the current state (read access) or open and close the switch (write access).
The attribute data structure typically consists of the following three parts:

• Handle
• Type
• Value
• Permissions

In the protocol stack implementation, attributes are generally managed in an array-like structure called an Attribute
Table. The index of an attribute in this table is its handle, usually an unsigned integer.
The type of an attribute is represented by a UUID and can be divided into three categories: 16-bit, 32-bit, and 128-
bit UUIDs. The 16-bit UUIDs are universally defined by the Bluetooth Special Interest Group (Bluetooth SIG) and
can be found in their publicly available Assigned Numbers document. The other two lengths of UUIDs are used for
vendor-defined attribute types, with the 128-bit UUID being the most commonly used.

GATT Layer GATT stands for Generic Attribute Profile (GATT), and it builds on ATT by defining the following
three concepts:

• Characteristic
• Service
• Profile

The hierarchical relationship between these three concepts is shown in the diagram below.
Both characteristics and services are composite data structures based on attributes. A characteristic is often described
by two or more attributes, including:

• Characteristic Declaration Attribute
• Characteristic Value Attribute

In addition, a characteristic may also include several optional Characteristic Descriptor Attributes.
A service itself is also described by an attribute, called the Service Declaration Attribute. A service can contain one
or more characteristics, with a dependency relationship between them. Additionally, a service can reference another

Espressif Systems 2165
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.bluetooth.com/specifications/assigned-numbers/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 5: GATT Hierarchical Architecture
Espressif Systems 2166

Submit Document Feedback
Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

service using the Include mechanism, reusing its characteristic definitions to avoid redundant definitions for common
characteristics, such as device names or manufacturer information.
A profile is a predefined set of services. A device that implements all the services defined in a profile is said to comply
with that profile. For example, the Heart Rate Profile includes the Heart Rate Service and the Device Information
Service. Thus, a device that implements both the Heart Rate Service and Device Information Service is considered
compliant with the Heart Rate Profile.
Broadly speaking, any device that stores and manages characteristics is called a GATT Server, while any device that
accesses the GATT Server to retrieve characteristics is called a GATT Client.

Learn More If you'd like to learn more about data representation and exchange, please refer to Data Exchange.

Hands-On Practice After learning the basic concepts of Bluetooth LE, let's load a simple Bluetooth LE example
onto the ESP32-C6 development board to experience the functionalities of LED control and heart rate data reading,
and gain an intuitive understanding of Bluetooth LE technology.

Prerequisites
1. An ESP32-C6 development board
2. ESP-IDF development environment
3. The nRF Connect for Mobile app installed on your phone

If you haven't set up the ESP-IDF development environment yet, please refer to IDF Get Started.

Try It Out

Building and Flashing The reference example for this tutorial is NimBLE_GATT_Server .
You can navigate to the example directory using the following command:

$ cd <ESP-IDF Path>/examples/bluetooth/ble_get_started/nimble/NimBLE_GATT_Server

Please replace <ESP-IDF Path> with your local ESP-IDF folder path. Then, you can open the Nim-
BLE_GATT_Server project using VSCode or another IDE you prefer. For example, after navigating to the example
directory via the command line, you can open the project in VSCode using the following command:

$ code .

Next, enter the ESP-IDF environment in the command line and set the target chip:

$ idf.py set-target <chip-name>

You should see messages like:

...
-- Configuring done
-- Generating done
-- Build files have been written to ...

These messages indicate that the chip has been successfully configured. Then, connect the development board to your
computer and run the following command to build the firmware, flash it to the board, and monitor the serial output
from the ESP32-C6 development board:

$ idf.py flash monitor

You should see messages like:

Espressif Systems 2167
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_GATT_Server
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

...
main_task: Returned from app_main()
NimBLE_GATT_Server: Heart rate updated to 70

The heart rate data will update at a frequency of about 1 Hz, fluctuating between 60 and 80.

Connecting to the Development Board Now the development board is ready. Next, open the nRF Connect for
Mobile app on your phone, refresh the SCANNER tab, and find the NimBLE_GATT device, as shown in the image
below.

Fig. 6: Device Scan

If the device list is long, it is recommended to filter the device names using NimBLE as a keyword to quickly find the
NimBLE_GATT device.
Click on the NimBLE_GATT device entry to expand and view the detailed advertising data.
Click the CONNECT button on the right. While the phone is connecting, you can observe many connection-related
log messages in the serial output of the development board. Then, the NimBLE_GATT tab will appear on the phone,

Espressif Systems 2168
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 7: Advertising Data Details

Espressif Systems 2169
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

and there should be a CONNECTED status in the upper left corner, indicating that the phone has successfully
connected to the development board via the Bluetooth LE protocol. On the CLIENT subpage, you should be able to
see four GATT services, as shown in the figure.

Fig. 8: GATT Services List

The first two services are the GAP service and GATT service, which are foundational services in Bluetooth LE
applications. The other two services are the Heart Rate Service and Automation IO Service, both defined by the
Bluetooth SIG. They provide heart rate data reading and LED control functionality, respectively.
Below the service names, you can see the corresponding UUIDs and the primary/secondary service designation. For
example, the UUID for the Heart Rate Service is 0x180D, which is a primary service. It’s important to note that
the service names are derived from the UUIDs. In nRF Connect for Mobile, when implementing a GATT client,
the developer preloads the database with services defined by the Bluetooth SIG or other customized services. Based
on the GATT service UUID, service information is parsed. Therefore, if a service's UUID is not in the database, its
information cannot be parsed, and the service name will be displayed as Unknown Service.

Let’s Light Up the LED! Now, let's try out the functionality of this example. First, click on the Automation
IO Service, and you will see an LED characteristic under this service.

Espressif Systems 2170
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 9: Automation IO Service

Espressif Systems 2171
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

As shown in the figure, the UUID of this LED characteristic is a 128-bit vendor-specific UUID. Click the UPLOAD
button on the right to perform a write operation on this characteristic, as shown in the figure.

Fig. 10: Write to LED Characteristic Data

Select theON option and send it. You should see the LED on the development board light up. Select theOFF option
and send it, and you should observe the LED on the development board turning off again.
If your development board does not have other LED except the one for the power indicator, you should be able to
observe the corresponding status indication in the log output.

Receiving Heart Rate Data Next, click on the Heart Rate Service. You will see a Heart Rate Measurement
characteristic under this service.
The UUID of the Heart Rate Measurement characteristic is 0x2A37, which is a Bluetooth SIG-defined characteristic.
Click the download button on the right to perform a read operation on the heart rate characteristic. You should see
the latest heart rate measurement data appear in the Value field of the characteristic data section, as shown in the
figure.

Espressif Systems 2172
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 11: Heart Rate Service

Espressif Systems 2173
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 12: Read Heart Rate Characteristic Data

Espressif Systems 2174
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

In the application, it is best for heart rate data to be synchronized to the GATT client immediately when the measure-
ment is updated. To achieve this, we can click the SUBSCRIPTION button on the far right to request the heart rate
characteristic to perform an indication operation. At this point, you should be able to see the heart rate measurement
data continuously updating, as shown in the figure.

Fig. 13: Subscribe to Heart Rate Characteristic Data

You might have noticed that under the heart rate characteristic, there is a descriptor named Client Characteristic
Configuration (often abbreviated as CCCD), with a UUID of 0x2902. When you click the subscribe button, the value
of this descriptor changes, which indicates that the characteristic's indications are enabled. Indeed, this descriptor
is used to indicate the status of notifications or indications for the characteristic data. When you unsubscribe, the
descriptor's value changes to indicate that notifications and indications are disabled.

Summary Through this tutorial, you have learned about the layered architecture of Bluetooth LE, the basic func-
tions of the host and controller layers in the Bluetooth LE protocol stack, and the roles of the GAP and GATT/ATT
layers. Additionally, using the NimBLE_GATT_Server example, you have mastered how to build and flash Blue-
tooth LE applications with the ESP-IDF framework, debug the application on your phone using nRF Connect for
Mobile, remotely control the LED on the development board, and receive randomly generated heart rate data. You've

Espressif Systems 2175
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_GATT_Server
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

taken the first step towards becoming a Bluetooth LE developer—congratulations!

Device Discovery

This document is the second tutorial in the Getting Started series on Bluetooth Low Energy (Bluetooth LE), aiming to
provide a brief overview of the Bluetooth LE device discovery process, including basic concepts related to advertising
and scanning. Following this, the tutorial introduces the code implementation of Bluetooth LE advertising, using the
NimBLE_Beacon example based on the NimBLE host layer stack.

Learning Objectives
• Understand the basic concepts of Advertising
• Understand the basic concepts of Scanning
• Learn about the code structure of the NimBLE_Beacon example

Advertising and Scanning are the states of Bluetooth LE devices during the device discovery phase before establishing
a connection. First, let’s understand the basic concepts related to advertising.

Basic Concepts of Advertising Advertising is the process where a device sends out advertising packets via its
Bluetooth antenna. Since the advertiser does not know whether there is a receiver in the environment or when the
receiver will activate its antenna, it needs to send advertising packets periodically until a device responds. During this
process, there are several questions for the advertiser to consider:

1. Where should the advertising packets be sent? (Where?)
2. How long should the interval between advertising packets be? (When?)
3. What information should be included in the advertising packets? (What?)

Where to Send Advertising Packets?

Bluetooth Radio Frequency Band The first question pertains to which radio frequency band the advertising pack-
ets should be sent on. The answer is provided by the Bluetooth Core Specification: the 2.4 GHz ISM band. This band
is a globally available, license-free radio frequency band that is not controlled by any country for military or other
purposes, and does not require payment to any organization. Thus, it has high availability and no usage costs. How-
ever, this also means the 2.4 GHz ISM band is very crowded and may interfere with other wireless communication
protocols such as 2.4 GHz WiFi.

Bluetooth Channels Similar to Bluetooth Classic, the Bluetooth SIG has adopted Adaptive Frequency Hopping
(AFH) in Bluetooth LE to address data collision issues. This technology can assess the congestion of RF channels and
avoid crowded channels through frequency hopping to improve communication quality. However, unlike Bluetooth
Classic, Bluetooth LE uses the 2.4 GHz ISM band divided into 40 RF channels, each with a 2 MHz bandwidth,
ranging from 2402 MHz to 2480 MHz, while Bluetooth Classic uses 79 RF channels, each with a 1 MHz bandwidth.
In the Bluetooth LE 4.2 standard, RF channels are categorized into two types, as follows:

Type Quantity Index Purpose
Advertising Channel 3 37-39 Used for sending advertising

packets and scan response
packets

Data Channel 37 0-36 Used for sending data channel
packets

During advertising, the advertiser will send advertising packets on the three advertising channels (37-39). Once the
advertising packets have been sent on all three channels, the advertising process is considered complete, and the
advertiser will repeat the process at the next advertising interval.

Espressif Systems 2176
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Beacon
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Beacon
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Extended Advertising Features In the Bluetooth LE 4.2 standard, advertising packets are limited to a maximum
of 31 bytes, which restricts the functionality of advertising. To enhance the capability of advertising, Bluetooth 5.0
introduced the Extended Advertising feature. This feature divides advertising packets into:

Type Abbreviation Max Payload
Size per Packet
(Bytes）

Max Total Pay-
load Size (Bytes)

Primary Advertising Packet Legacy ADV 31 31
Extended Advertising Packet Extended ADV 254 1650

Extended advertising packets are composed of ADV_EXT_IND and AUX_ADV_IND, transmitted on the primary
and secondary advertising channels, respectively. The primary advertising channels correspond to channels 37-39,
while the secondary advertising channels correspond to channels 0-36. Since the receiver always receives advertis-
ing data on the primary advertising channels, the advertiser must send ADV_EXT_IND on the primary advertising
channels and AUX_ADV_IND on the secondary advertising channels. ADV_EXT_IND will indicate the secondary
advertising channels where AUX_ADV_IND is transmitted. This mechanism allows the receiver to obtain the com-
plete extended advertising packet by first receiving ADV_EXT_IND on the primary advertising channels and then
going to the specified secondary advertising channels to receive AUX_ADV_IND.

Type Channels Purpose
Primary Advertising Channel 37-39 Used to transmit

ADV_EXT_IND of the ex-
tended advertising packet

Secondary Advertising Channel 0-36 Used to transmit
AUX_ADV_IND of the ex-
tended advertising packet

How long should the advertising interval be?

Advertising Interval For the second question, regarding the period for sending advertising packets, the Bluetooth
standard provides a clear parameter definition: Advertising Interval. The advertising interval can range from 20 ms
to 10.24 s, with a step size of 0.625 ms.
The choice of advertising interval affects both the discoverability of the advertiser and the device’s power consump-
tion. If the advertising interval is too long, the probability of the advertising packets being received by a receiver
becomes very low, which decreases the advertiser’s discoverability. Conversely, if the advertising interval is too
short, frequent advertising consumes more power. Therefore, the advertiser needs to balance between discoverability
and power consumption and choose the most appropriate advertising interval based on the application's needs.
It is worth noting that if there are two advertisers with the same advertising interval in the same space, packet collision
may occur, meaning both advertisers are sending advertising data to the same channel at the same time. Since
advertising is a one-way process with no reception, the advertiser cannot know if a packet collision has occurred.
To reduce the likelihood of such collisions, advertisers should add a random delay of 0-10 ms after each advertising
event.

What information is included in the advertising packet?

Advertising Packet Structure For the third question, regarding the information contained in the advertising
packet, the Bluetooth LE 4.2 standard defines the format of the advertising packet, as shown in the diagram be-
low:
Let’s break it down step by step. The outer layer of an advertising packet contains four parts, which are:

Espressif Systems 2177
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 14: Bluetooth LE 4.2 Advertising Packet Structure

Espressif Systems 2178
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

No. Name Byte
Size

Function

1 Preamble 1 A special bit sequence used for device clock
synchronization

2 Access Address 4 Marks the address of the advertising packet
3 Protocol Data Unit, PDU 2-39 The area where the actual data is stored
4 Cyclic Redundancy Check, CRC 3 Used for cyclic redundancy checking

The advertising packet is a type of Bluetooth packet, and its nature is determined by the type of PDU. Now, let's take
a detailed look at the PDU.

PDU The PDU segment is where the actual data is stored. Its structure is as follows:

No. Name Byte Size
1 Header 2
2 Payload 0-37

PDU Header The PDU header contains various pieces of information, which can be broken down into six parts:

No. Name Bit Size Notes
1 PDU Type 4
2 Reserved for Future Use, RFU 1
3 Channel Selection Bit, ChSel 1 Indicates whether the advertiser supports

the LE Channel Selection Algorithm #2
4 TX Address, TxAdd 1 0/1 indicates Public Address/Random Ad-

dress
5 Rx Address, RxAdd 1 0/1 indicates Public Address/Random Ad-

dress
6 Payload Length 8

The PDU Type bit reflects the advertising behavior of the device. In the Bluetooth protocol, there are three pairs of
advertising behaviors:

• Connectable vs. Non-connectable:
– Whether the device accepts connection requests from others.

• Scannable vs. Non-scannable:
– Whether the device accepts scan requests from others.

• Undirected vs. Directed:
– Whether the advertising packet is sent to a specific device.

These advertising behaviors can be combined into four common types of advertising, corresponding to four different
PDU types:

Con-
nectable？

Scannable？Undi-
rected？

PDU Type Purpose

Y Y Y ADV_IND The most common advertising type
Y N N ADV_DIRECT_IND Commonly used for reconnecting with

known devices
N N Y ADV_NONCONN_IND Used by beacon devices to advertising data

without connection
N Y Y ADV_SCAN_IND Used by beacons to advertise additional

data via a scan response when packet length
is insufficient

Espressif Systems 2179
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

PDU Payload The PDU Payload is divided into two parts:

No. Name Byte
Size

Notes

1 Advertisement Address, AdvA 6 The 48-bit Bluetooth address of
the advertiser

2 Advertisement Data, AdvData 0-31 Consists of multiple Advertise-
ment Data Structures

The Advertisement Address can be either a:

Type Description
Public Address A globally unique fixed device address that manufacturers must reg-

ister and pay fees to IEEE for
Random Address A randomly generated address

Random addresses are further divided into two categories:

Type Description
Random Static Address Can be either fixed in firmware or randomly generated at startup

but must not change during operation. Often used as an alternative
to a Public Address.

Random Private Address Periodically changes to prevent device tracking.

For devices using random private addresses to communicate with trusted devices, an Identity Resolving Key (IRK)
should be used to generate the random address. Devices with the same IRK can resolve and obtain the true address.
There are two types of random private addresses:

Type Description
Resolvable Random Private Address Can be resolved with an IRK to obtain the device’s true address
Non-resolvable Random Private Address Completely random and rarely used, as it cannot be resolved and is

only meant to prevent tracking

Let's look at the advertising data. The format of an advertising data structure is defined as follows:

No. Name Byte Size Notes
1 AD Length 1
2 AD Type n Most types take 1 byte
3 AD Data (AD Length - n)

Basic Concepts of Scanning Similar to the advertising process, scanning also raises three questions:
1. Where to scan? (Where?)
2. When to scan and for how long? (When?)
3. What to do during scanning? (What?)

For Bluetooth LE 4.2 devices, the advertiser only sends data on the advertising channels, which are channels 37-39.
For Bluetooth LE 5.0 devices, if the advertiser has enabled extended advertising, it sends ADV_EXT_IND on the
primary advertising channels and AUX_ADV_IND on the secondary advertising channels. Thus, for Bluetooth LE
4.2 devices, scanners only need to receive advertising data on advertising channels. For Bluetooth LE 5.0 devices,
scanners must first receive the ADV_EXT_IND on the primary advertising channels and, if it indicates a secondary
channel, move to the corresponding secondary channel to receive the AUX_ADV_IND.

Espressif Systems 2180
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Scan Window and Scan Interval The second question refers to the concepts of the Scan Window and the Scan
Interval.

• Scan Window: the duration for which the scanner continuously receives packets on a single RF channel. For
example, if the scan window is set to 50 ms, the scanner continuously scans for 50 ms on each RF channel.

• Scan Interval: the time between the start of two consecutive scan windows, which means the scan interval is
always greater than or equal to the scan window.

The diagram below illustrates the process of a scanner receiving advertising packets on a timeline. The scanner's scan
interval is 100 ms, and the scan window is 50 ms; the advertiser's advertising interval is 50 ms, and the duration of
the advertising packet transmission is for illustrative purposes only. As shown, the first scan window corresponds to
channel 37, where the scanner successfully receives the advertiser's first broadcasting packet sent on channel 37, and
this pattern continues.

Fig. 15: Advertising and Scanning Timing Diagram

Scan Request and Scan Response From the current introduction, it might seem that the advertiser only transmits
and the scanner only receives during the advertising process. However, scanning behavior is divided into two types:

• Passive Scanning:
– The scanner only receives advertising packets.

• Active Scanning:
– After receiving an advertising packet, the scanner sends a scan request to a scannable advertiser.

When a scannable advertiser receives a scan request, it sends a scan response packet, providing more advertising
information to the interested scanner. The structure of the scan response packet is identical to the advertising packet,
with the difference being the PDU type in the PDU header.
In scenarios where the advertiser operates in scannable advertising mode and the scanner in active scanning mode,
the data transmission timing between the advertiser and the scanner becomes more complex. For the scanner, after a
scan window ends, it briefly switches to TX mode to send a scan request, then quickly switches back to RX mode to
receive a possible scan response. For the advertiser, after each advertising, it briefly switches to RX mode to receive
any scan requests, and upon receiving one, it switches to TX mode to send the scan response.

Hands-On Practice After learning the relevant concepts of advertising and scanning, let's apply this knowledge in
practice using the NimBLE_Beacon example to create a simple beacon device.

Prerequisites
1. An ESP32-C6 development board

Espressif Systems 2181
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Beacon
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 16: Scan Request Reception and Scan Response Transmission

2. ESP-IDF development environment
3. The nRF Connect for Mobile app installed on your phone

If you haven't set up the ESP-IDF development environment yet, please refer to IDF Get Started.

Try It Out

Building and Flashing The reference example for this tutorial is NimBLE_Beacon .
You can navigate to the example directory using the following command:

$ cd <ESP-IDF Path>/examples/bluetooth/ble_get_started/nimble/NimBLE_Beacon

Please replace <ESP-IDF Path> with your local ESP-IDF folder path. Then, you can open the NimBLE_Beacon
project using VSCode or another IDE you prefer. For example, after navigating to the example directory via the
command line, you can open the project in VSCode using the following command:

$ code .

Next, enter the ESP-IDF environment in the command line and set the target chip:

$ idf.py set-target <chip-name>

You should see messages like:

...
-- Configuring done
-- Generating done
-- Build files have been written to ...

Espressif Systems 2182
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Beacon
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

These messages indicate that the chip has been successfully configured. Then, connect the development board to your
computer and run the following command to build the firmware, flash it to the board, and monitor the serial output
from the ESP32-C6 development board:

$ idf.py flash monitor

You should see messages like:

...
main_task: Returned from app_main()

Wait until the notification ends.

Viewing Beacon Device Information Open the nRF Connect for Mobile app on your phone, go to the SCAN-
NER tab, and pull down to refresh. Locate the NimBLE_Beacon device, as shown in the figure below.
If the device list is long, it is recommended to filter by the keyword NimBLE in the device name to quickly find the
NimBLE_Beacon device.
You will notice that the NimBLE Beacon device contains rich information, including the Espressif website (this
demonstrates the beacon advertising feature). Click the RAW button in the lower-right corner to view the raw ad-
vertising packet data, as shown below.
Details table summarizes all advertising data structures in the advertising data packet and the scan response data
packet:

Name Length Type Raw Data Resolved Infor-
mation

Flags 2 Bytes 0x01 0x06 General Discover-
able, BR/EDR Not
Supported

Complete Local Device Name 14
Bytes

0x09 0x4E696D424C455F426561636F6ENimBLE_Beacon

TX Power Level 2 Bytes 0x0A 0x09 9 dBm
Appearance 3 Bytes 0x19 0x0002 Generic Tag

(Generic category)
LE Role 2 Bytes 0x1C 0x00 Only Peripheral

Role supported
LE Bluetooth Device Address 8 Bytes 0x1B 0x46F506BDF5F000 F0:F5:BD:06:F5:46
URI 17

Bytes
0x24 0x172F2F6573707265737369662E636F6Dhttps://espressif.com

It is worth mentioning that the total length of the first five advertising data structures is 28 bytes, leaving only 3 bytes
of space in the advertising data packet, which is not enough to accommodate the last two data structures. Therefore,
the last two advertising data structures must be placed in the scan response data packet.
You may also notice that the Raw Data for the Device Appearance is 0x0002, while in the code, the definition for
Generic Tag is 0x0200. Additionally, the Raw Data for the Device Address appears to be completely reversed, except
for the last byte (0x00). This is because Bluetooth LE air packets follow a little-endian transmission order, meaning
the lower bytes are placed at the front.
Also, note that the nRF Connect for Mobile app does not provide a CONNECT button to connect to this device,
which aligns with our expectations since a Beacon device is inherently non-connectable. Now, let's dive into the code
details to see how such a Beacon device is implemented.

Code Explanation

Espressif Systems 2183
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 17: Locate NimBLE Beacon Device
Espressif Systems 2184

Submit Document Feedback
Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 18: Advertising Packet Raw Data
Espressif Systems 2185

Submit Document Feedback
Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Project Structure Overview The root directory of NimBLE_Beacon is roughly divided into the following parts:
• README*.md

– Documentation for the project
• sdkconfig.defaults*

– Default configurations for different chip development boards
• CMakeLists.txt

– Used to include the ESP-IDF build environment
• main

– The main project folder containing the source code, header files, and build configurations

Program Behavior Overview Before diving into the code details, let's first get a macro understanding of the
program behavior.
First, we initialize the various modules used in the program, mainly including NVS Flash, the NimBLE Host Stack,
and the GAP service.
After the NimBLE Host Stack synchronizes with the Bluetooth controller, we confirm the Bluetooth address is avail-
able, then initiate an undirected, non-connectable, and scannable advertisement.
The device remains in advertising mode continuously until a reboot occurs.

Entry Function As with other projects, the entry function of the application is the app_main function in the
main/main.c file, where we typically initialize the modules. In this example, we mainly do the following:

1. Initialize NVS Flash and the NimBLE Host Stack
2. Initialize the GAP service
3. Start the FreeRTOS task for the NimBLE Host Stack

The ESP32-C6 Bluetooth stack uses NVS Flash to store related configurations, so before initializing the Blue-
tooth stack, we must call the nvs_flash_init API to initialize NVS Flash. In some cases, we may need to call the
nvs_flash_erase API to erase NVS Flash before initialization.

void app_main(void) {
...

/* NVS flash initialization */
ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES ||

ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();

}
if (ret != ESP_OK) {

ESP_LOGE(TAG, "failed to initialize nvs flash, error code: %d ", ret);
return;

}

...
}

Next, you can call nimble_port_init API to initialize NimBLE host stack.

void app_main(void) {
...

/* NimBLE host stack initialization */
ret = nimble_port_init();
if (ret != ESP_OK) {

ESP_LOGE(TAG, "failed to initialize nimble stack, error code: %d ",
ret);

(continues on next page)

Espressif Systems 2186
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Beacon
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
return;

}

...
}

Then, we call the gap_init function defined in the gap.c file to initialize the GAP service and set the device name and
appearance.

void app_main(void) {
...

/* GAP service initialization */
rc = gap_init();
if (rc != 0) {

ESP_LOGE(TAG, "failed to initialize GAP service, error code: %d", rc);
return;

}

...
}

Next, we configure theNimBLE host stack, whichmainly involves setting some callback functions, including callbacks
for when the stack is reset and when synchronization is complete, and then saving the configuration.

static void nimble_host_config_init(void) {
/* Set host callbacks */
ble_hs_cfg.reset_cb = on_stack_reset;
ble_hs_cfg.sync_cb = on_stack_sync;
ble_hs_cfg.store_status_cb = ble_store_util_status_rr;

/* Store host configuration */
ble_store_config_init();

}

void app_main(void) {
...

/* NimBLE host configuration initialization */
nimble_host_config_init();

...
}

Finally, start the FreeRTOS thread for the NimBLE host stack.

static void nimble_host_task(void *param) {
/* Task entry log */
ESP_LOGI(TAG, "nimble host task has been started!");

/* This function won't return until nimble_port_stop() is executed */
nimble_port_run();

/* Clean up at exit */
vTaskDelete(NULL);

}

void app_main(void) {
...

/* Start NimBLE host task thread and return */

(continues on next page)

Espressif Systems 2187
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
xTaskCreate(nimble_host_task, "NimBLE Host", 4*1024, NULL, 5, NULL);

...
}

Start Advertising When developing applications using the NimBLE host stack, the programming model is event-
driven.
For example, after the NimBLE host stack synchronizes with the Bluetooth controller, a synchronization completion
event will be triggered, invoking the ble_hs_cfg.sync_cb function. When setting up the callback function, we point the
function pointer to the on_stack_sync function, which is the actual function called upon synchronization completion.
In the on_stack_sync function, we call the adv_init function to initialize advertising operations. In adv_init, we first
call the ble_hs_util_ensure_addr API to confirm that a usable Bluetooth address is available. Then, we call the
ble_hs_id_infer_auto API to obtain the optimal Bluetooth address type.

static void on_stack_sync(void) {
/* On stack sync, do advertising initialization */
adv_init();

}

void adv_init(void) {
...

/* Make sure we have proper BT identity address set */
rc = ble_hs_util_ensure_addr(0);
if (rc != 0) {

ESP_LOGE(TAG, "device does not have any available bt address!");
return;

}

/* Figure out BT address to use while advertising */
rc = ble_hs_id_infer_auto(0, &own_addr_type);
if (rc != 0) {

ESP_LOGE(TAG, "failed to infer address type, error code: %d", rc);
return;

}

...
}

Next, we copy the Bluetooth address data from the NimBLE stack's memory space into the local addr_val array,
preparing it for subsequent use.

void adv_init(void) {
...

/* Copy device address to addr_val */
rc = ble_hs_id_copy_addr(own_addr_type, addr_val, NULL);
if (rc != 0) {

ESP_LOGE(TAG, "failed to copy device address, error code: %d", rc);
return;

}
format_addr(addr_str, addr_val);
ESP_LOGI(TAG, "device address: %s", addr_str);

...
}

Finally, we call the start_advertising function to initiate advertising. Within the start_advertising function, we first
populate the advertising data structures, including the advertising flags, complete device name, transmission power

Espressif Systems 2188
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

level, device appearance, and LE role, into the advertising packet as follows:

static void start_advertising(void) {
/* Local variables */
int rc = 0;
const char *name;
struct ble_hs_adv_fields adv_fields = {0};

...

/* Set advertising flags */
adv_fields.flags = BLE_HS_ADV_F_DISC_GEN | BLE_HS_ADV_F_BREDR_UNSUP;

/* Set device name */
name = ble_svc_gap_device_name();
adv_fields.name = (uint8_t *)name;
adv_fields.name_len = strlen(name);
adv_fields.name_is_complete = 1;

/* Set device tx power */
adv_fields.tx_pwr_lvl = BLE_HS_ADV_TX_PWR_LVL_AUTO;
adv_fields.tx_pwr_lvl_is_present = 1;

/* Set device appearance */
adv_fields.appearance = BLE_GAP_APPEARANCE_GENERIC_TAG;
adv_fields.appearance_is_present = 1;

/* Set device LE role */
adv_fields.le_role = BLE_GAP_LE_ROLE_PERIPHERAL;
adv_fields.le_role_is_present = 1;

/* Set advertiement fields */
rc = ble_gap_adv_set_fields(&adv_fields);
if (rc != 0) {

ESP_LOGE(TAG, "failed to set advertising data, error code: %d", rc);
return;

}

...
}

The ble_hs_adv_fields structure predefines some commonly used advertising data types. After completing the data
setup, we can enable the corresponding advertising data structures by setting the relevant is_present field to 1 or
by assigning a non-zero value to the corresponding length field (len). For example, in the code above, we config-
ure the device's transmission power with adv_fields.tx_pwr_lvl = BLE_HS_ADV_TX_PWR_LVL_AUTO;, and then
enable that advertising data structure by setting adv_fields.tx_pwr_lvl_is_present = 1;. If we only configure the trans-
mission power without setting the corresponding is_present field, the advertising data structure becomes invalid.
Similarly, we configure the device name with adv_fields.name = (uint8_t *)name; and set the name's length with
adv_fields.name_len = strlen(name); to add the device name as an advertising data structure to the advertising packet.
If we only configure the device name without specifying its length, the advertising data structure will also be invalid.
Finally, we call the ble_gap_adv_set_fieldsAPI to finalize the setup of the advertising data structures in the advertising
packet.
In the same way, we can fill in the device address and URI into the scan response packet as follows:

static void start_advertising(void) {
...

struct ble_hs_adv_fields rsp_fields = {0};

...

(continues on next page)

Espressif Systems 2189
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)

/* Set device address */
rsp_fields.device_addr = addr_val;
rsp_fields.device_addr_type = own_addr_type;
rsp_fields.device_addr_is_present = 1;

/* Set URI */
rsp_fields.uri = esp_uri;
rsp_fields.uri_len = sizeof(esp_uri);

/* Set scan response fields */
rc = ble_gap_adv_rsp_set_fields(&rsp_fields);
if (rc != 0) {

ESP_LOGE(TAG, "failed to set scan response data, error code: %d", rc);
return;

}

...
}

Finally, we set the advertising parameters and initiate the advertising by calling the ble_gap_adv_start API.

static void start_advertising(void) {
...

struct ble_gap_adv_params adv_params = {0};

...

/* Set non-connetable and general discoverable mode to be a beacon */
adv_params.conn_mode = BLE_GAP_CONN_MODE_NON;
adv_params.disc_mode = BLE_GAP_DISC_MODE_GEN;

/* Start advertising */
rc = ble_gap_adv_start(own_addr_type, NULL, BLE_HS_FOREVER, &adv_params,

NULL, NULL);
if (rc != 0) {

ESP_LOGE(TAG, "failed to start advertising, error code: %d", rc);
return;

}
ESP_LOGI(TAG, "advertising started!");

}

Summary Through this tutorial, you have learned the basic concepts of advertising and scanning, and you mastered
the method of building a Bluetooth LE Beacon device using the NimBLE host stack through the NimBLE_Beacon
example.
You can try to modify the data in the example and observe the changes in the nRF Connect for Mobile app. For
instance, you might modify the adv_fields or rsp_fields structures to change the populated advertising data structures,
or swap the advertising data structures between the advertising packet and the scan response packet. However, keep
in mind that the maximum size for the advertising data in both the advertising packet and the scan response packet is
31 bytes; if the size of the advertising data structure exceeds this limit, calling the ble_gap_adv_start API will fail.

Connection

This document is the third tutorial in the Getting Started series on Bluetooth Low Energy (Bluetooth LE), aiming to
provide a brief overview of the connection process. Subsequently, the tutorial introduces the code implementation

Espressif Systems 2190
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Beacon
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

of peripheral devices using the NimBLE_Connection example based on the NimBLE host layer stack.

Learning Objectives
• Understand the basic concepts of connection
• Learn about connection-related parameters
• Explore the code structure of the NimBLE_Connection example

Basic Concepts

Initiating a Connection With the introduction of extended advertising features in Bluetooth LE 5.0, there are slight
differences in the connection establishment process between Legacy ADV and Extended ADV. Below, we take the Legacy
ADV connection establishment process as an example.

When a scanner receives an advertising packet on a specific advertising channel, if the advertiser is connectable, the
scanner can send a connection request on the same advertising channel. The advertiser can set a Filter Accept List
to filter out untrusted devices or accept connection requests from any scanner. Afterward, the advertiser becomes
the peripheral device, and the scanner becomes the central device, allowing for bidirectional communication over the
data channel.
As described in the section Scan Requests and Scan Responses, after each advertising period on a channel, the ad-
vertiser briefly enters RX mode to receive possible scan requests. In fact, this RX phase can also accept connection
requests. Thus, for the scanner, the time window for sending a connection request is similar to that for sending a scan
request.

Fig. 19: Initiating a Connection

Connection Interval and Connection Event During a connection, the central and peripheral devices periodically
exchange data, with this data exchange cycle referred to as the Connection Interval. The connection interval is one
of the connection parameters determined during the initial connection request and can be modified afterward. The
step size for the connection interval is 1.25 ms, with a range from 7.5 ms (6 steps) to 4.0 s (3200 steps).
A single data exchange process is termed Connection Event. During a connection event, there can be one or more
data packet exchanges (when the data volume is large, it may need to be fragmented). In a data packet exchange, the

Espressif Systems 2191
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Connection
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Connection
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

central device first sends a packet to the peripheral device, followed by a packet from the peripheral device back to
the central device. Even if either party does not need to send data at the start of a connection interval, it must send
an empty packet to maintain the connection.
The timing relationship between the connection interval and connection event can be referenced in the diagram below.

Fig. 20: Connection Interval and Connection Event

It's worth noting that if a connection event requires sending a large amount of data, causing the duration of the
connection event to exceed the connection interval, the connection event must be split into multiple events. This
means that if there isn't enough remaining time in the connection interval to complete the next packet exchange, the
next packet exchange must wait until the next connection interval begins.
When the required data exchange frequency is low, a longer connection interval can be set; during the connection
interval, the device can sleep outside of connection events to reduce power consumption.

Connection Parameters As mentioned earlier, the connection interval is a connection parameter whose initial
value is given by the central device in the connection request and can be modified in subsequent connections. In

Espressif Systems 2192
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

addition to the connection interval, there are many other important connection parameters. Below, we will explain
some of these key parameters.

Supervision Timeout Supervision Timeout defines the maximum time allowed between two successful connec-
tion events. If a successful connection event is followed by a period longer than the supervision timeout without
another successful connection event, the connection is considered to be disconnected. This parameter is critical for
maintaining connection status; for example, if one party unexpectedly loses power or moves out of range, the other
party can determine whether to disconnect to conserve communication resources by checking for a timeout.

Peripheral Latency Peripheral Latency specifies the maximum number of connection events that the peripheral
device can skip when there is no data to send.
To understand the purpose of this parameter, consider a Bluetooth mouse as an example. When a user is typing
on a keyboard, the mouse may not have any data to send, so it’s preferable to reduce the frequency of data packet
transmissions to save power. Conversely, duringmouse usage, we want themouse to send data as quickly as possible to
minimize latency. This means that the data transmission from the Bluetooth mouse is intermittently high-frequency.
If we rely solely on the connection interval for adjustments, a lower connection interval would lead to high energy
consumption, while a higher connection interval would result in high latency.
In this scenario, the peripheral latency mechanism is a perfect solution. To reduce the latency of a Bluetooth mouse,
we can set a smaller connection interval, such as 10 ms, which allows a data exchange frequency of up to 100 Hz
during intensive use. We can then set the peripheral latency to 100, allowing the mouse to effectively reduce the
data exchange frequency to 1 Hz when idle. This design achieves variable data exchange frequency without adjusting
connection parameters, maximizing user experience.

Maximum Transmission Unit The Maximum Transmission Unit (MTU) refers to the maximum byte size of a
single ATT data packet. Before discussing the MTU parameter, it's essential to describe the structure of the Data
Channel Packet.
The structure of the Data Channel Packet is similar to that of the Advertising Packet, with differences in the PDU
structure. The data PDU can be divided into three parts:

No. Name Byte Size Notes
1 Header 2
2 Payload 0-27 / 0-251 Before Bluetooth LE 4.2, the maximum

payload was 27 bytes; Bluetooth LE 4.2 in-
troduced Data Length Extension (DLE), al-
lowing a maximum payload of 251 bytes.

3 Message Integrity Check, MIC 4 Optional

The payload of the data PDU can be further divided into:

No. Name Byte Size
1 L2CAP Header 4
2 ATT Header + ATT Data 0-23 / 0-247

The default MTU value is 23 bytes, which matches the maximum ATT data byte size that can be carried in a single
data PDU before Bluetooth LE 4.2.
MTU can be set to larger values, such as 140 bytes. Before Bluetooth LE 4.2, with a maximum of 23 bytes carrying
ATT data in the payload, a complete ATT data packet would need to be split across multiple data PDUs. After
Bluetooth LE 4.2, a single data PDU can carry up to 247 bytes of ATT data, so an MTU of 140 bytes can still be
accommodated in a single data PDU.

Hands-On Practice Having understood the concepts related to connections, let’s move on to the Nim-
BLE_Connection example code to learn how to build a simple peripheral device using the NimBLE stack.

Espressif Systems 2193
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Connection
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Connection
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Prerequisites
1. An ESP32-C6 development board
2. ESP-IDF development environment
3. The nRF Connect for Mobile app installed on your phone

If you have not yet completed the ESP-IDF development environment setup, please refer to IDF Get Started.

Try It Out

Building and Flashing The reference example for this tutorial is NimBLE_Connection .
You can navigate to the example directory using the following command:

$ cd <ESP-IDF Path>/examples/bluetooth/ble_get_started/nimble/NimBLE_Connection

Please replace <ESP-IDF Path> with your local ESP-IDF folder path. Then, you can open the NimBLE_Connection
project using VSCode or another IDE you prefer. For example, after navigating to the example directory via the
command line, you can open the project in VSCode using the following command:

$ code .

Next, enter the ESP-IDF environment in the command line and set the target chip:

$ idf.py set-target <chip-name>

You should see messages like:

...
-- Configuring done
-- Generating done
-- Build files have been written to ...

These messages indicate that the chip has been successfully configured. Then, connect the development board to your
computer and run the following command to build the firmware, flash it to the board, and monitor the serial output
from the ESP32-C6 development board:

$ idf.py flash monitor

You should see messages like:

...
main_task: Returned from app_main()

Wait until the notification ends.

Connect and Disconnect Open the nRF Connect for Mobile app on your phone, pull down to refresh in the
SCANNER tab, and locate the NimBLE_CONN device as shown in the image below.
If the device list is long, it's recommended to filter by the keyword "NimBLE" to quickly find the NimBLE_CONN
device.
Compared to NimBLE_Beacon, you can observe that most of the advertising data is consistent, but there is an addi-
tional Advertising Interval data with a value of 500 ms. Below the CONNECT button, you should also see that the
advertising interval is around 510 ms.
Click the CONNECT button to connect to the device, and you should be able to see the GAP service on your phone
as shown below.
At this point, you should also see the LED on the development board light up. Click DISCONNECT to disconnect
from the device, and the LED on the development board should turn off.

Espressif Systems 2194
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Connection
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 21: Locate NimBLE_CONN Device
Espressif Systems 2195

Submit Document Feedback
Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 22: Connected to NimBLE_CONN Device
Espressif Systems 2196

Submit Document Feedback
Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

If your development board does not have any other LEDs except the one for the power indicator, you should be able
to observe the corresponding status indicators in the log output.

Viewing Log Output When connected to the device, you should see logs similar to the following:

I (36367) NimBLE_Connection: connection established; status=0
I (36367) NimBLE_Connection: connection handle: 0
I (36367) NimBLE_Connection: device id address: type=0, value=CE:4E:F7:F9:55:60
I (36377) NimBLE_Connection: peer id address: type=1, value=7F:BE:AD:66:6F:45
I (36377) NimBLE_Connection: conn_itvl=36, conn_latency=0, supervision_timeout=500,
↪→ encrypted=0, authenticated=0, bonded=0

I (36397) NimBLE: GAP procedure initiated:
I (36397) NimBLE: connection parameter update; conn_handle=0 itvl_min=36 itvl_
↪→max=36 latency=3 supervision_timeout=500 min_ce_len=0 max_ce_len=0
I (36407) NimBLE:

I (37007) NimBLE_Connection: connection updated; status=0
I (37007) NimBLE_Connection: connection handle: 0
I (37007) NimBLE_Connection: device id address: type=0, value=CE:4E:F7:F9:55:60
I (37007) NimBLE_Connection: peer id address: type=1, value=7F:BE:AD:66:6F:45
I (37017) NimBLE_Connection: conn_itvl=36, conn_latency=3, supervision_timeout=500,
↪→ encrypted=0, authenticated=0, bonded=0

The first part of the log shows the connection information output by the device when the connection is established,
including the connection handle, the Bluetooth addresses of both the device and the mobile phone, as well as the con-
nection parameters. Here, conn_itvl refers to the connection interval, conn_latency indicates the peripheral latency,
and supervision_timeout is the connection timeout parameter. Other parameters can be temporarily ignored.
The second part indicates that the device initiated an update to the connection parameters, requesting to set the
peripheral latency to 3.
The third part of the log displays the connection information after the update, showing that the peripheral latency has
been successfully updated to 3, while other connection parameters remain unchanged.
When the device disconnects, you should see logs similar to the following:

I (63647) NimBLE_Connection: disconnected from peer; reason=531
I (63647) NimBLE: GAP procedure initiated: advertise;
I (63647) NimBLE: disc_mode=2
I (63647) NimBLE: adv_channel_map=0 own_addr_type=0 adv_filter_policy=0 adv_itvl_
↪→min=800 adv_itvl_max=801
I (63657) NimBLE:

I (63657) NimBLE_Connection: advertising started!

You can observe that the device outputs the reason for disconnection when the connection is terminated, and then it
initiates advertising again.

Code Details

Project Structure Overview The root directory structure of NimBLE_Connection is identical to that of Nim-
BLE_Beacon. However, after building the firmware, you may notice an additional managed_components direc-
tory in the root, which contains dependencies automatically included during firmware construction; in this case,
it's the led_strip component used to control the development board's LED. This dependency is referenced in the
main/idf_component.yml file.
Additionally, LED control-related source code has been introduced in the main folder.

Espressif Systems 2197
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Connection
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Program Behavior Overview The behavior of this example is mostly consistent with that of NimBLE_Beacon,
with the key difference being that this example can accept scan requests from scanners and enter a connected state
after entering advertising mode. Furthermore, it utilizes a callback function, gap_event_handler, to handle connection
events and respond accordingly, such as turning on the LED when a connection is established and turning it off when
the connection is terminated.

Entry Function The entry function of this example is nearly the same as that of NimBLE_Beacon, except that
before initializing NVS Flash, we call the led_init function to initialize the LED.

Starting Advertising The process for initiating advertising is largely similar to that of NimBLE_Beacon, but there
are some details to note.
First, we've added the advertising interval parameter in the scan response. We want to set the advertising interval to
500 ms, and since the unit for the advertising interval is 0.625 ms, we need to set it to 0x320. However, NimBLE
provides a unit conversion macro BLE_GAP_ADV_ITVL_MS, which allows us to avoid manual calculations, as shown
below:

static void start_advertising(void) {
...

/* Set advertising interval */
rsp_fields.adv_itvl = BLE_GAP_ADV_ITVL_MS(500);
rsp_fields.adv_itvl_is_present = 1;

...
}

Next, we want the device to be connectable, so we need to modify the advertising mode from non-connectable to
connectable. Additionally, the advertising interval parameter set in the scan response serves only to inform other
devices and does not affect the actual advertising interval. This parameter must be set in the advertising parameter
structure to take effect. Here, we set the minimum and maximum values of the advertising interval to 500 ms and
510 ms, respectively. Finally, we want to handle GAP events using the callback function gap_event_handler, so we
pass this callback to the API ble_gap_adv_start that starts advertising. The relevant code is as follows:

static void start_advertising(void) {
...

/* Set non-connetable and general discoverable mode to be a beacon */
adv_params.conn_mode = BLE_GAP_CONN_MODE_UND;
adv_params.disc_mode = BLE_GAP_DISC_MODE_GEN;

/* Set advertising interval */
adv_params.itvl_min = BLE_GAP_ADV_ITVL_MS(500);
adv_params.itvl_max = BLE_GAP_ADV_ITVL_MS(510);

/* Start advertising */
rc = ble_gap_adv_start(own_addr_type, NULL, BLE_HS_FOREVER, &adv_params,

gap_event_handler, NULL);
if (rc != 0) {

ESP_LOGE(TAG, "failed to start advertising, error code: %d", rc);
return;

}
ESP_LOGI(TAG, "advertising started!");

...
}

When the return value of ble_gap_adv_start is 0, it indicates that the device has successfully initiated advertising.
Subsequently, the NimBLE protocol stack will call the gap_event_handler callback function whenever a GAP event
is triggered, passing the corresponding GAP event.

Espressif Systems 2198
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

GAP Event Handling In this example, we handle three different types of GAP events:
• Connection Event BLE_GAP_EVENT_CONNECT
• Disconnection Event BLE_GAP_EVENT_DISCONNECT
• Connection Update Event BLE_GAP_EVENT_CONN_UPDATE

The connection event is triggered when a connection is successfully established or when a connection attempt fails. If
the connection fails, we will restart advertising. If the connection is successful, we will log the connection information,
turn on the LED, and initiate a connection parameter update to set the peripheral latency parameter to 3. Here’s
how the code looks:

static int gap_event_handler(struct ble_gap_event *event, void *arg) {
/* Local variables */
int rc = 0;
struct ble_gap_conn_desc desc;

/* Handle different GAP event */
switch (event->type) {

/* Connect event */
case BLE_GAP_EVENT_CONNECT:

/* A new connection was established or a connection attempt failed. */
ESP_LOGI(TAG, "connection %s; status=%d",

event->connect.status == 0 ? "established" : "failed",
event->connect.status);

/* Connection succeeded */
if (event->connect.status == 0) {

/* Check connection handle */
rc = ble_gap_conn_find(event->connect.conn_handle, &desc);
if (rc != 0) {

ESP_LOGE(TAG,
"failed to find connection by handle, error code: %d",
rc);

return rc;
}

/* Print connection descriptor and turn on the LED */
print_conn_desc(&desc);
led_on();

/* Try to update connection parameters */
struct ble_gap_upd_params params = {.itvl_min = desc.conn_itvl,

.itvl_max = desc.conn_itvl,

.latency = 3,

.supervision_timeout =
desc.supervision_timeout};

rc = ble_gap_update_params(event->connect.conn_handle, ¶ms);
if (rc != 0) {

ESP_LOGE(
TAG,
"failed to update connection parameters, error code: %d",
rc);

return rc;
}

}
/* Connection failed, restart advertising */
else {

start_advertising();
}
return rc;

...

(continues on next page)

Espressif Systems 2199
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
}

return rc;
}

The disconnection event is triggered when either party disconnects from the connection. At this point, we log the
reason for the disconnection, turn off the LED, and restart advertising. Here’s the code:

static int gap_event_handler(struct ble_gap_event *event, void *arg) {
...

/* Disconnect event */
case BLE_GAP_EVENT_DISCONNECT:

/* A connection was terminated, print connection descriptor */
ESP_LOGI(TAG, "disconnected from peer; reason=%d",

event->disconnect.reason);

/* Turn off the LED */
led_off();

/* Restart advertising */
start_advertising();
return rc;

...
}

The connection update event is triggered when the connection parameters are updated. At this point, we log the
updated connection information. Here’s the code:

static int gap_event_handler(struct ble_gap_event *event, void *arg) {
...

/* Connection parameters update event */
case BLE_GAP_EVENT_CONN_UPDATE:

/* The central has updated the connection parameters. */
ESP_LOGI(TAG, "connection updated; status=%d",

event->conn_update.status);

/* Print connection descriptor */
rc = ble_gap_conn_find(event->conn_update.conn_handle, &desc);
if (rc != 0) {

ESP_LOGE(TAG, "failed to find connection by handle, error code: %d",
rc);

return rc;
}
print_conn_desc(&desc);
return rc;

...
}

Summary Through this tutorial, you have learned the basic concepts of connections and how to use the NimBLE
host stack to build a Bluetooth LE peripheral device using the NimBLE_Connection example.
You can try to modify parameters in the example and observe the results in the log output. For instance, you can
change the peripheral latency or connection timeout parameters to see if the modifications trigger connection update
events.

Espressif Systems 2200
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_Connection
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Data Exchange

This document is the fourth tutorial in the Getting Started series on Bluetooth Low Energy (Bluetooth LE), aiming to
provide a brief overview of the data exchange process within Bluetooth LE connections. Subsequently, this tutorial
introduces the code implementation of a GATT server, using the NimBLE_GATT_Server example based on the
NimBLE host layer stack.

Learning Objectives
• Understand the data structure details of characteristic data and services
• Learn about different data access operations in GATT
• Learn about the code structure of the NimBLE_GATT_Server example

GATT Data Characteristics and Services GATT services are the infrastructure for data exchange between two
devices in a Bluetooth LE connection, with the minimum data unit being an attribute. In the section on Data Rep-
resentation and Exchange, we briefly introduced the attributes at the ATT layer and the characteristic data, services,
and specifications at the GATT layer. Below are details regarding the attribute-based data structure.

Attributes An attribute consists of the following four parts:

No. Name Description
1 Handle A 16-bit unsigned integer representing the index of the attribute in

the attribute table
2 Type ATT attributes use UUID (Universally Unique Identifier) to differ-

entiate types
3 Access Permission Indicates whether encryption/authorization is needed; whether it is

readable or writable
4 Value Actual user data or metadata of another attribute

There are two types of UUIDs in Bluetooth LE:
1. 16-bit UUIDs defined by SIG
2. 128-bit UUIDs customized by manufacturers

Common characteristic and service UUIDs are provided in SIG's Assigned Numbers standard document, such as:

Category Type Name UUID
Service Blood Pressure Service 0x1810
Service Common Audio Service 0x1853
Characteristic Data Age 0x2A80
Characteristic Data Appearance 0x2A01

In fact, the definitions of these services and characteristic data are also provided by the SIG. For example, the value of
the Heart Rate Measurement must include a flag field and a heart rate measurement field, and may include fields such
as energy expended, RR-interval, and transmission interval, among others. Therefore, these definitions from SIG
allow Bluetooth LE devices from different manufacturers to recognize each other's services or characteristic data,
enabling cross-manufacturer communication.
Manufacturers' customized 128-bit UUIDs are used for proprietary services or data characteristics, such as the UUID
for the LED characteristic in this example: 0x00001525-1212-EFDE-1523-785FEABCD123.

Espressif Systems 2201
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_GATT_Server
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_GATT_Server
https://www.bluetooth.com/specifications/assigned-numbers/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Characteristic Data A characteristic data item typically consists of the following attributes:

No. Type Function Notes
1 Characteristic Declaration Contains properties, han-

dle, and UUID info for the
characteristic value

UUID is 0x2803, read-only

2 Characteristic Value user data UUID identifies the character-
istic type

3 Characteristic Descriptor Additional description for the
characteristic data

Optional attribute

Relationship between Characteristic Declaration and Characteristic Value Using the Heart Rate Measure-
ment as an example, the relationship between the characteristic declaration and characteristic value is illustrated as
follows:
The table below is an attribute table, containing two attributes of the Heart Rate Measurement characteristic. Let's
first look at the attribute with handle 0. Its UUID is 0x2803, and the access permission is read-only, indicating that
this is a characteristic declaration attribute. The attribute value shows that the read/write property is read-only, and
the handle points to 1, indicating that the attribute with handle 1 is the value attribute for this characteristic. The
UUID is 0x2A37, meaning that this characteristic type is Heart Rate Measurement.
Now, let's examine the attribute with handle 1. Its UUID is 0x2A37, and the access permission is also read-only,
corresponding directly with the characteristic declaration attribute. The value of this attribute consists of flag bits and
measurement values, which complies with the SIG specification for Heart Rate Measurement characteristic data.

Handle UUID Permissions Value Attribute Type
0 0x2803 Read-only Properties = Read-only Characteristic Declaration

Handle = 1
UUID = 0x2A37

1 0x2A37 Read-only Flags Characteristic Value
Measurement value

Characteristic Descriptors Characteristic descriptors provide supplementary information about characteristic
data. The most common is the Client Characteristic Configuration Descriptor (CCCD). When a characteristic sup-
ports server-initiated data operations (notifications or indications), CCCD must be used to describe the relevant
information. This is a read-write attribute that allows the GATT client to inform the server whether notifications or
indications should be enabled. Writing to this value is also referred to as subscribing or unsubscribing.
The UUID for CCCD is 0x2902, and its attribute value contains only 2 bits of information. The first bit indicates
whether notifications are enabled, and the second bit indicates whether indications are enabled. By adding the CCCD
to the attribute table and providing indication access permissions for the Heart Rate Measurement characteristic data,
we obtain the complete form of the Heart Rate Measurement characteristic data in the attribute table as follows:

Handle UUID Permissions Value Attribute Type
0 0x2803 Read-only Properties = Read/Indicate Characteristic Declaration

Handle = 1
UUID = 0x2A37

1 0x2A37 Read/Indicate Flags Characteristic Value
Measurement value

2 0x2902 Read/Write Notification status Characteristic Descriptor
Indication status

Services The data structure of a service can be broadly divided into two parts:

Espressif Systems 2202
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

No. Name
1 Service Declaration Attribute
2 Characteristic Definition Attributes

The three characteristic data attributes mentioned in the Characteristic Data belong to characteristic definition at-
tributes. In essence, the data structure of a service consists of several characteristic data attributes along with a service
declaration attribute.
The UUID for the service declaration attribute is 0x2800, which is read-only and holds the UUID identifying the
service type. For example, the UUID for the Heart Rate Service is 0x180D, so its service declaration attribute can
be represented as follows:

Handle UUID Permissions Value Attribute Type
0 0x2800 Read-only 0x180D Service Declaration

Attribute Example The following is an example of a possible attribute table for a GATT server, using the Nim-
BLE_GATT_Server as an illustration. The example includes two services: the Heart Rate Service and the Automa-
tion IO Service. The former contains a Heart Rate Measurement characteristic, while the latter includes an LED
characteristic. The complete attribute table for the GATT server is as follows:

Han-
dle

UUID Permis-
sions

Value Attribute Type

0 0x2800 Read-
only

UUID = 0x180D Service Declara-
tion

1 0x2803 Read-
only

Properties = Read/Indicate Characteristic
DeclarationHandle = 2

UUID = 0x2A37
2 0x2A37 Read/IndicateFlags Characteristic

ValueMeasurement value
3 0x2902 Read/WriteNotification status Characteristic

DescriptorIndication status
4 0x2800 Read-

only
UUID = 0x1815 Service Declara-

tion
5 0x2803 Read-

only
Properties = Write-only Characteristic

DeclarationHandle = 6
UUID = 0x00001525-1212-EFDE-
1523-785FEABCD123

6 0x00001525-1212-EFDE-
1523-785FE ABCD123

Write-
only

LED status Characteristic
Value

When a GATT client first establishes communication with a GATT server, it pulls metadata from the server's attribute
table to discover the available services and characteristics. This process is known as Service Discovery.

GATT Data Operations Data operations refer to accessing characteristic data on a GATT server, which can be
mainly categorized into two types:

1. Client-initiated operations
2. Server-initiated operations

Client-initiated Operations Client-initiated operations include the following three types:
• Read

– A straightforward operation to pull the current value of a specific characteristic from the GATT
server.

• Write

Espressif Systems 2203
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_GATT_Server
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_GATT_Server
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

– Standard write operations require confirmation from the GATT server upon receiving the client's
write request and data.

• Write without response
– This is another form of write operation that does not require server acknowledgment.

Server-Initiated Operations Server-initiated operations are divided into two types:
• Notify

– A GATT server actively pushes data to the client without requiring a confirmation response.
• Indicate

– Similar to notifications, but this requires confirmation from the client, which makes indication slower
than notification.

Although both notifications and indications are initiated by the server, the prerequisite for these operations is that the
client has enabled notifications or indications. Therefore, the data exchange process in GATT essentially begins with
a client request for data.

Hands-On Practice Having grasped the relevant knowledge of GATT data exchange, let’s combine the Nim-
BLE_GATT_Server example code to learn how to build a simple GATT server using the NimBLE protocol stack
and put our knowledge into practice.

Prerequisites
1. An ESP32-C6 development board
2. ESP-IDF development environment
3. The nRF Connect for Mobile application installed on your phone

If you have not completed the ESP-IDF development environment setup, please refer to IDF Get Started.

Try It Out Please refer to Bluetooth LE Introduction Try It Out.

Code Explanation

Project Structure Overview The root directory structure of NimBLE_GATT_Server is identical to that of Nim-
BLE_Connection. Additionally, themain folder includes source code related to the GATT service and simulated heart
rate generation.

Program Behavior Overview The program behavior of this example is largely consistent with that of Nim-
BLE_Connection, with the difference being that this example adds GATT services and handles access to GATT
characteristic data through corresponding callback functions.

Entry Function Based onNimBLE_Connection, a process to initialize the GATT service by calling the gatt_svc_init
function has been added. Moreover, in addition to the NimBLE thread, a new heart_rate_task thread has been
introduced, responsible for the random generation of simulated heart rate measurement data and indication handling.
Relevant code is as follows:

static void heart_rate_task(void *param) {
/* Task entry log */
ESP_LOGI(TAG, "heart rate task has been started!");

/* Loop forever */
while (1) {

/* Update heart rate value every 1 second */
update_heart_rate();

(continues on next page)

Espressif Systems 2204
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_GATT_Server
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_GATT_Server
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_GATT_Server
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
ESP_LOGI(TAG, "heart rate updated to %d", get_heart_rate());

/* Send heart rate indication if enabled */
send_heart_rate_indication();

/* Sleep */
vTaskDelay(HEART_RATE_TASK_PERIOD);

}

/* Clean up at exit */
vTaskDelete(NULL);

}

void app_main(void) {
...

xTaskCreate(heart_rate_task, "Heart Rate", 4*1024, NULL, 5, NULL);
return;

}

The heart_rate_task thread runs at a frequency of 1Hz, asHEART_RATE_TASK_PERIOD is defined as 1000ms. Each
time it executes, the thread calls the update_heart_rate function to randomly generate a new heart rate measurement
and then calls send_heart_rate_indication to handle the indication operation.

GATT Service Initialization In the gatt_svc.c file, there is a GATT service initialization function as follows:

int gatt_svc_init(void) {
/* Local variables */
int rc;

/* 1. GATT service initialization */
ble_svc_gatt_init();

/* 2. Update GATT services counter */
rc = ble_gatts_count_cfg(gatt_svr_svcs);
if (rc != 0) {

return rc;
}

/* 3. Add GATT services */
rc = ble_gatts_add_svcs(gatt_svr_svcs);
if (rc != 0) {

return rc;
}

return 0;
}

This function first calls the ble_svc_gatt_init API to initialize the GATT Service. It's important to note that this
GATT Service is a special service with the UUID 0x1801, which is used by the GATT server to notify clients when
services change (i.e., when GATT services are added or removed). In such cases, the client will re-execute the service
discovery process to update its service information.
Next, the function calls ble_gatts_count_cfg and ble_gatts_add_svcs APIs to add the services and characteristic data
defined in the gatt_svr_svcs service table to the GATT server.

GATT Service Table The gatt_svr_svcs service table is a crucial data structure in this example, defining all services
and characteristic data used. The relevant code is as follows:

Espressif Systems 2205
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

/* Heart rate service */
static const ble_uuid16_t heart_rate_svc_uuid = BLE_UUID16_INIT(0x180D);

...

static uint16_t heart_rate_chr_val_handle;
static const ble_uuid16_t heart_rate_chr_uuid = BLE_UUID16_INIT(0x2A37);

static uint16_t heart_rate_chr_conn_handle = 0;

...

/* Automation IO service */
static const ble_uuid16_t auto_io_svc_uuid = BLE_UUID16_INIT(0x1815);
static uint16_t led_chr_val_handle;
static const ble_uuid128_t led_chr_uuid =

BLE_UUID128_INIT(0x23, 0xd1, 0xbc, 0xea, 0x5f, 0x78, 0x23, 0x15, 0xde, 0xef,
0x12, 0x12, 0x25, 0x15, 0x00, 0x00);

/* GATT services table */
static const struct ble_gatt_svc_def gatt_svr_svcs[] = {

/* Heart rate service */
{.type = BLE_GATT_SVC_TYPE_PRIMARY,
.uuid = &heart_rate_svc_uuid.u,
.characteristics =

(struct ble_gatt_chr_def[]){
{/* Heart rate characteristic */
.uuid = &heart_rate_chr_uuid.u,
.access_cb = heart_rate_chr_access,
.flags = BLE_GATT_CHR_F_READ | BLE_GATT_CHR_F_INDICATE,
.val_handle = &heart_rate_chr_val_handle},
{

0, /* No more characteristics in this service. */
}}},

/* Automation IO service */
{

.type = BLE_GATT_SVC_TYPE_PRIMARY,

.uuid = &auto_io_svc_uuid.u,

.characteristics =
(struct ble_gatt_chr_def[]){/* LED characteristic */

{.uuid = &led_chr_uuid.u,
.access_cb = led_chr_access,
.flags = BLE_GATT_CHR_F_WRITE,
.val_handle = &led_chr_val_handle},
{0}},

},

{
0, /* No more services. */

},
};

The macros BLE_UUID16_INIT and BLE_UUID128_INIT provided by the NimBLE protocol stack allow for con-
venient conversion of 16-bit and 128-bit UUIDs from raw data into ble_uuid16_t and ble_uuid128_t type variables.
The gatt_svr_svcs is an array of structures of type ble_gatt_svc_def. The ble_gatt_svc_def structure defines a ser-
vice, with key fields being type, uuid, and characteristics. The type field indicates whether the service is primary
or secondary, with all services in this example being primary. The uuid field represents the UUID of the service.
The characteristics field is an array of ble_gatt_chr_def structures that stores the characteristics associated with the
service.
The ble_gatt_chr_def structure defines the characteristics, with key fields being uuid, access_cb, flags, and val_handle.

Espressif Systems 2206
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

The uuid field is the UUID of the characteristic. The access_cb field points to the access callback function for that
characteristic. The flags field indicates the access permissions for the characteristic data. The val_handle field points
to the variable handle address for the characteristic value.
It's important to note that when the BLE_GATT_CHR_F_INDICATE flag is set for a characteristic, the NimBLE
protocol stack automatically adds the CCCD, so there's no need to manually add the descriptor.
Based on variable naming, it's clear that gatt_svr_svcs implements all property definitions in the attribute table. Addi-
tionally, access to the Heart Rate Measurement characteristic is managed through the heart_rate_chr_access callback
function, while access to the LED characteristic is managed through the led_chr_access callback function.

Characteristic Data Access Management

LED Access Management Access to the LED characteristic data is managed through the led_chr_access callback
function, with the relevant code as follows:

static int led_chr_access(uint16_t conn_handle, uint16_t attr_handle,
struct ble_gatt_access_ctxt *ctxt, void *arg) {

/* Local variables */
int rc;

/* Handle access events */
/* Note: LED characteristic is write only */
switch (ctxt->op) {

/* Write characteristic event */
case BLE_GATT_ACCESS_OP_WRITE_CHR:

/* Verify connection handle */
if (conn_handle != BLE_HS_CONN_HANDLE_NONE) {

ESP_LOGI(TAG, "characteristic write; conn_handle=%d attr_handle=%d",
conn_handle, attr_handle);

} else {
ESP_LOGI(TAG,

"characteristic write by nimble stack; attr_handle=%d",
attr_handle);

}

/* Verify attribute handle */
if (attr_handle == led_chr_val_handle) {

/* Verify access buffer length */
if (ctxt->om->om_len == 1) {

/* Turn the LED on or off according to the operation bit */
if (ctxt->om->om_data[0]) {

led_on();
ESP_LOGI(TAG, "led turned on!");

} else {
led_off();
ESP_LOGI(TAG, "led turned off!");

}
} else {

goto error;
}
return rc;

}
goto error;

/* Unknown event */
default:

goto error;
}

(continues on next page)

Espressif Systems 2207
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
error:

ESP_LOGE(TAG,
"unexpected access operation to led characteristic, opcode: %d",
ctxt->op);

return BLE_ATT_ERR_UNLIKELY;
}

When the GATT client initiates access to the LED characteristic data, the NimBLE protocol stack will call
the led_chr_access callback function, passing in the handle information and access context. The op field of
ble_gatt_access_ctxt is used to identify different access events. Since the LED is a write-only characteristic, we
only handle the BLE_GATT_ACCESS_OP_WRITE_CHR event.
In this processing branch, we first validate the attribute handle to ensure that the client is accessing the LED char-
acteristic. Then, based on the om field of ble_gatt_access_ctxt, we verify the length of the access data. Finally, we
check if the data in om_data is equal to 1 to either turn the LED on or off.
If any other access events occur, they are considered unexpected, and we proceed to the error branch to return.

Heart Rate Measurement Read Access Management The heart rate measurement is a readable and indica-
tive characteristic. The read access initiated by the client for heart rate measurement values is managed by the
heart_rate_chr_access callback function, with the relevant code as follows:

static int heart_rate_chr_access(uint16_t conn_handle, uint16_t attr_handle,
struct ble_gatt_access_ctxt *ctxt, void *arg) {

/* Local variables */
int rc;

/* Handle access events */
/* Note: Heart rate characteristic is read only */
switch (ctxt->op) {

/* Read characteristic event */
case BLE_GATT_ACCESS_OP_READ_CHR:

/* Verify connection handle */
if (conn_handle != BLE_HS_CONN_HANDLE_NONE) {

ESP_LOGI(TAG, "characteristic read; conn_handle=%d attr_handle=%d",
conn_handle, attr_handle);

} else {
ESP_LOGI(TAG, "characteristic read by nimble stack; attr_handle=%d",

attr_handle);
}

/* Verify attribute handle */
if (attr_handle == heart_rate_chr_val_handle) {

/* Update access buffer value */
heart_rate_chr_val[1] = get_heart_rate();
rc = os_mbuf_append(ctxt->om, &heart_rate_chr_val,

sizeof(heart_rate_chr_val));
return rc == 0 ? 0 : BLE_ATT_ERR_INSUFFICIENT_RES;

}
goto error;

/* Unknown event */
default:

goto error;
}

error:
ESP_LOGE(

TAG,

(continues on next page)

Espressif Systems 2208
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
"unexpected access operation to heart rate characteristic, opcode: %d",
ctxt->op);

return BLE_ATT_ERR_UNLIKELY;
}

Similar to the LED access management, we use the op field of the ble_gatt_access_ctxt access context to determine
the access event, handling the BLE_GATT_ACCESS_OP_READ_CHR event.
In the handling branch, we first validate the attribute handle to confirm that the client is accessing the heart rate
measurement attribute. Then, we call the get_heart_rate function to retrieve the latest heart rate measurement, storing
it in the measurement area of the heart_rate_chr_val array. Finally, we copy the data from heart_rate_chr_val into
the om field of the ble_gatt_access_ctxt access context. The NimBLE protocol stack will send the data in this field
to the client after the current callback function ends, thus achieving read access to the Heart Rate Measurement
characteristic value.

Heart Rate Measurement Indication When the client enables indications for heart rate measurements, the pro-
cessing flow is a bit more complicated. First, enabling or disabling the heart rate measurement indications is a
subscription or unsubscription event at the GAP layer, so we need to add a handling branch for subscription events
in the gap_event_handler callback function, as follows:

static int gap_event_handler(struct ble_gap_event *event, void *arg) {
...

/* Subscribe event */
case BLE_GAP_EVENT_SUBSCRIBE:

/* Print subscription info to log */
ESP_LOGI(TAG,

"subscribe event; conn_handle=%d attr_handle=%d "
"reason=%d prevn=%d curn=%d previ=%d curi=%d",
event->subscribe.conn_handle, event->subscribe.attr_handle,
event->subscribe.reason, event->subscribe.prev_notify,
event->subscribe.cur_notify, event->subscribe.prev_indicate,
event->subscribe.cur_indicate);

/* GATT subscribe event callback */
gatt_svr_subscribe_cb(event);
return rc;

}

The subscription event is represented by BLE_GAP_EVENT_SUBSCRIBE. In this handling branch, we do not process
the subscription event directly; instead, we call the gatt_svr_subscribe_cb callback function to handle the subscription
event. This reflects the layered design philosophy of software, as the subscription event affects the GATT server's
behavior in sending characteristic data and is not directly related to the GAP layer. Thus, it should be passed to the
GATT layer for processing.
Next, let's take a look at the operations performed in the gatt_svr_subscribe_cb callback function.

void gatt_svr_subscribe_cb(struct ble_gap_event *event) {
/* Check connection handle */
if (event->subscribe.conn_handle != BLE_HS_CONN_HANDLE_NONE) {

ESP_LOGI(TAG, "subscribe event; conn_handle=%d attr_handle=%d",
event->subscribe.conn_handle, event->subscribe.attr_handle);

} else {
ESP_LOGI(TAG, "subscribe by nimble stack; attr_handle=%d",

event->subscribe.attr_handle);
}

/* Check attribute handle */
if (event->subscribe.attr_handle == heart_rate_chr_val_handle) {

/* Update heart rate subscription status */

(continues on next page)

Espressif Systems 2209
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
heart_rate_chr_conn_handle = event->subscribe.conn_handle;
heart_rate_chr_conn_handle_inited = true;
heart_rate_ind_status = event->subscribe.cur_indicate;

}
}

In this example, the callback handling is quite simple: it checks whether the attribute handle in the subscription event
corresponds to the heart rate measurement attribute handle. If it does, it saves the corresponding connection handle
and updates the indication status requested by the client.
As mentioned in Entry Function, the send_heart_rate_indication function is called by the heart_rate_task thread at a
frequency of 1 Hz. The implementation of this function is as follows:

void send_heart_rate_indication(void) {
if (heart_rate_ind_status && heart_rate_chr_conn_handle_inited) {

ble_gatts_indicate(heart_rate_chr_conn_handle,
heart_rate_chr_val_handle);

ESP_LOGI(TAG, "heart rate indication sent!");
}

}

The ble_gatts_indicate function is an API provided by the NimBLE protocol stack for sending indications. This
means that when the indication status for the heart rate measurement is true and the corresponding connection handle
is available, calling the send_heart_rate_indication function will send the heart rate measurement to the GATT client.
To summarize, when a GATT client subscribes to heart rate measurements, the gap_event_handler receives the sub-
scription event and passes it to the gatt_svr_subscribe_cb callback function, which updates the subscription status for
heart rate measurements. In the heart_rate_task thread, it checks the subscription status every second; if the status
is true, it sends the heart rate measurement to the client.

Summary Through this tutorial, you have learned how to create GATT services and their corresponding character-
istic data using a service table, and you mastered the management of access to GATT characteristic data, including
read, write, and subscription operations. You can now build more complex GATT service applications based on the
NimBLE_GATT_Server example.

4.3.3 Profile

ESP-BLE-MESH

Bluetooth® mesh networking enables many-to-many (m:m) device communications and is optimized for creating
large-scale device networks.
Devices may relay data to other devices not in direct radio range of the originating device. In this way, mesh networks
can span very large physical areas and contain large numbers of devices. It is ideally suited for building automation,
sensor networks, and other IoT solutions where tens, hundreds, or thousands of devices need to reliably and securely
communicate with one another.
Bluetooth mesh is not a wireless communications technology, but a networking technology. This technology is de-
pendent upon Bluetooth Low Energy (BLE) - a wireless communications protocol stack.
Built on top of Zephyr Bluetooth Mesh stack, the ESP-BLE-MESH implementation supports device provisioning and
node control. It also supports such node features as Proxy, Relay, Low power and Friend.
Please see the Architecture for information about the implementation of ESP-BLE-MESH architecture and ESP-BLE-
MESH API Reference for information about respective API.
ESP-BLE-MESH is implemented and certified based on the latest Mesh Profile v1.0.1, users can refer here for the
certification details of ESP-BLE-MESH.

Espressif Systems 2210
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/ble_get_started/nimble/NimBLE_GATT_Server
https://launchstudio.bluetooth.com/ListingDetails/94304
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: If you are looking for Wi-Fi based implementation of mesh for ESP32-C6, please check another product by
Espressif called ESP-WIFI-MESH. For more information and documentation see ESP-WIFI-MESH.

Getting Started This section is intended to help you get started with ESP-BLE-MESH for the hardware based on
the ESP32-C6 chip by Espressif.
We are going to demonstrate process of setting and operation of a small ESP-BLE-MESH network of three nodes.
This process will cover device provisioning and node configuration, and then sending on/off commands to Generic
OnOff Server Models on specific nodes.
If you are new to ESP-IDF, please first set up development environment, compile , flash and run example application
following top level ESP-IDF Get Started documentation.

What You Need Hardware:
• Three ESP32-C6 boards, see options.
• USB cables to connect the boards.
• Computer configured with ESP-IDF.
• Mobile phone or tablet running Android or iOS.

Software:
• Example application bluetooth/esp_ble_mesh/ble_mesh_node/onoff_server code to load to the ESP32-C6
boards.

• Mobile App: nRF Mesh for Android or iOS. Optionally you can use some other Apps:
– EspBleMesh Android App
– Silicon Labs Android or iOS App

Installation Step by Step This is a detailed roadmap to walk you through the installation process.

Step 1. Check Hardware Both ESP32-DevKitC and ESP-WROVER-KIT development boards are supported for
ESP-BLE-MESH implementation. You can choose particular board through menuconfig: idf.py menuconfig
> Example Configuration > Board selection for ESP-BLE-MESH

Note: If you plan to use ESP32-DevKitC, connect a RGB LED to GPIO pins 25, 26 and 27.

Step 2. Configure Software Enter the bluetooth/esp_ble_mesh/ble_mesh_node/onoff_server example directory,
run idf.py menuconfig to select your board and then run idf.py build to compile the example.

Step 3. Upload Application to Nodes After the bluetooth/esp_ble_mesh/ble_mesh_node/onoff_server example
is compiled successfully, users can run idf.py flash to upload the same generated binary files into each of the
three development boards.
Once boards are powered on, the RGB LED on each board should turn GREEN.

Step 4. Provision Nodes In this section, we will use the nRFMesh AndroidApp to demonstrate how to provision
an unprovisioned device. Users can also get its iOS version from the App Store.

4.1 Scanner The Scanner is App's functionality to search for unprovisioned devices in range. Open the App, press
Scanner at the bottom and the search will start. After a short while we should see three unprovisioned devices
displayed.

Espressif Systems 2211
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_node/onoff_server
https://github.com/EspressifApp/EspBLEMeshForAndroid/releases/tag/v1.0.0
https://www.espressif.com/en/products/devkits/esp32-devkitc/overview
https://www.espressif.com/en/products/hardware/esp-wrover-kit/overview
https://www.espressif.com/en/products/devkits/esp32-devkitc/overview
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_node/onoff_server
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_node/onoff_server
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 23: ESP-BLE-MESH Devices Power On

Fig. 24: nRF Mesh - Scanner

Espressif Systems 2212
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.2 Identify Users can select any unprovisioned device, then the App will try to set up a connection with the selected
device. After the Bluetooth LE connection is established successfully (sometimes users need to try multiple times to
get connected), and proper ESP-BLE-MESH GATT Service is discovered, users can see the IDENTIFY interface
button on the screen. The IDENTIFY operation can be used to tell users which device is going to be provisioned.

Note: The IDENTIFY operation also needs some cooperation on the device side, then users can see which device is
in the provisioning process. Currently when pressing the IDENTIFY interface button, no signs can been seen from
the device except from the log on the serial monitor.

After the IDENTIFY interface button is pressed, users can see the PROVISION interface button.

Fig. 25: nRF Mesh - IDENTIFY - PROVISION

4.3 Provision Then, the App will try to provision the unprovisioned device. When the device is provisioned suc-
cessfully, the RGB LED on the board will turn off, and the App will implement the following procedures:

1. Disconnect with the node
2. Try to reconnect with the node
3. Connect successfully and discover ESP-BLE-MESH GATT Service
4. Get Composition Data of the node and add AppKey to it

When all the procedures are finished, the node is configured properly. And after pressing OK, users can see that
unicast address is assigned, and Composition Data of the node is decoded successfully.
Sometimes in procedure 2, the App may fail to reconnect with the node. In this case, after pressing OK, users can
see that only unicast address of the node has been assigned, but no Composition Data has been got. Then users need
to press CONNECT on the top right, and the previously provisioned node will be displayed on the screen, and users
need to choose it and try to connect with the node.
After connecting successfully, the App will show the interface buttons which can be used to get Composition Data
and add AppKey.
If the device is the second or the third one which has been provisioned by the App, and after pressing CONNECT,
users can see two or three nodes on the screen. In this situation, users can choose any device to connect with, once
succeed then go back to the main screen to choose the node which needs to be configured.

Espressif Systems 2213
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 26: nRF Mesh - Configuration Complete

Fig. 27: nRF Mesh - Initial Configuration Failed

Espressif Systems 2214
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 28: nRF Mesh - Reconnect - Initial Configuration

Here an example of three devices listed.
• The left picture shows that the third device is provisioned successfully, but the App failed to connect with it.
When it tries to reconnect with the third node, three nodes are displayed on the App.

• The right picture shows that after connecting with any node successfully, the App displays the information of
the three nodes. Users can see that the App has got the Composition Data of the first and the second nodes,
but for the third one, only the unicast address has been assigned to it while the Composition Data is unknown.

4.4 Configuration When provisioning and initial configuration are finished, users can start to configure the node,
such as binding AppKey with each model with the elements, setting publication information to it, etc.
Example below shows how to bind AppKey with Generic OnOff Server Model within the Primary Element.

Note: No need to bind AppKey with the Configuration Server Model, since it only uses the DevKey to encrypt
messages in the Upper Transport Layer.

Step 5. Operate Network After all the Generic OnOff Server Models within the three elements are bound with
proper AppKey, users can use the App to turn on/off the RGB LED.
In the bluetooth/esp_ble_mesh/ble_mesh_node/onoff_server example, the first Generic OnOff Server Model is used
to control the RED color, the second one is used to control the GREEN color and the third one is used to control
the BLUE color.
The following screenshot shows different board with different color on.

Note: For nRF Mesh iOS App [version 1.0.4], when the node contains more than one element, the App is not
behaving correctly. If users try to turn on/off the second or the third Generic OnOff Server Model, the message sent
by the App is destinated to the first Generic OnOff Server Model within the Primary Element.

Espressif Systems 2215
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_node/onoff_server
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 29: nRF Mesh - Reconnect - Three Nodes

Fig. 30: nRF Mesh - Model Bind AppKey

Espressif Systems 2216
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 31: nRF Mesh - Generic OnOff Control

Fig. 32: Three ESP-BLE-MESH Nodes On

Espressif Systems 2217
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Examples
• ESP-BLE-MESH Node OnOff Server - shows the use of ESP-BLE-MESH as a node having a Configuration
Server model and a Generic OnOff Server model. A ESP-BLE-MESH Provisioner can then provision the
unprovisioned device and control a RGB LED representing on/off state, see example code .

• ESP-BLE-MESH Node OnOff Client - shows how a Generic OnOff Client model works within a node. The
node has a Configuration Server model and a Generic OnOff Client model, see example code .

• ESP-BLE-MESH Provisioner - shows how a device can act as an ESP-BLE-MESH Provisioner to provision
devices. The Provisioner has a Configuration Server model, a Configuration Client model and a Generic OnOff
Client model, see example code .

• ESP-BLE-MESH Fast Provisioning - Client and Server - this example is used for showing how fast provision-
ing can be used in order to create a mesh network. It takes no more than 60 seconds to provision 100 devices,
see example client code and example server code .

• ESP-BLE-MESH and Wi-Fi Coexistence - an example that demonstrates the Wi-Fi and Bluetooth
(BLE/BR/EDR) coexistence feature of ESP32-C6. Simply put, users can use the Wi-Fi while operating Blue-
tooth, see example code .

• ESP-BLE-MESHConsole - an example that implements BLEMesh basic features. Within this example a node
can be scanned and provisioned by Provisioner and reply to get/set message from Provisioner, see example node
code .

Demo Videos
• Espressif Fast Provisioning using ESP-BLE-MESH App
• Espressif ESP-BLE-MESH and Wi-Fi Coexistence

FAQ
• 1. Provisioner Development
• 2. Node Development
• 3. ESP-BLE-MESH and Wi-Fi Coexistence
• 4. Fast Provisioning
• 5. Log Help
• 6. Example Help
• 7. Others

Related Documents

Feature List

Supported Features

Mesh Core
• Provisioning:

– PB-ADV and PB-GATT
– OOB Authentication

• Networking
– Relay
– Segmentation and Reassembly
– Key Refresh Procedure
– IV Update Procedure
– Friend
– Low Power
– Proxy Server
– Proxy Client

• Multiple Client Models Run Simultaneously

Espressif Systems 2218
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_node/onoff_server/tutorial/BLE_Mesh_Node_OnOff_Server_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_node/onoff_server
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_node/onoff_client/tutorial/BLE_Mesh_Node_OnOff_Client_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_node/onoff_client
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_provisioner/tutorial/BLE_Mesh_Provisioner_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_provisioner
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_fast_provision/fast_prov_client/tutorial/BLE_Mesh_Fast_Prov_Client_Example_Walkthrough.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_fast_provision/fast_prov_server/tutorial/BLE_Mesh_Fast_Prov_Server_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_fast_provision/fast_prov_client
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_fast_provision/fast_prov_server
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_wifi_coexist/tutorial/BLE_Mesh_WiFi_Coexist_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_wifi_coexist
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_console
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_console
https://dl.espressif.com/BLE/public/ESP32_BLE_Mesh_Fast_Provision.mp4
https://dl.espressif.com/BLE/public/ESP_BLE_MESH_WIFI_Coexistence.mp4
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

– Support multiple client models send packets to different nodes simultaneously
– No blocking between client model and server model

• NVS Storing
– Store provisioning and configuration information of ESP-BLE-MESH Node

Mesh Models
• Foundation models

– Configuration Server model
– Configuration Client model
– Health Server model
– Health Client model

• Generic client models
– Generic OnOff Client
– Generic Level Client
– Generic Default Transition Time Client
– Generic Power OnOff Client
– Generic Power Level Client
– Generic Battery Client
– Generic Location Client
– Generic Property Client

• Sensor client models
– Sensor Client

• Time and Scenes client models
– Time Client
– Scene Client
– Scheduler Client

• Lighting client models
– Light Lightness Client
– Light CTL Client
– Light HSL Client
– Light xyL Client
– Light LC Client

• Generic server models
– Generic OnOff Server
– Generic Level Server
– Generic Default Transition Time Server
– Generic Power OnOff Server
– Generic Power OnOff Setup Server
– Generic Power Level Server
– Generic Power Level Setup Server
– Generic Battery Server
– Generic Location Server
– Generic Location Setup Server
– Generic User Property Server
– Generic Admin Property Server
– Generic Manufacturer Property Server
– Generic Client Property Server

• Sensor server models
– Sensor Server
– Sensor Setup Server

• Time and Scenes server models
– Time Server
– Time Setup Server
– Scene Server
– Scene Setup Server
– Scheduler Server
– Scheduler Setup Server

Espressif Systems 2219
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Lighting server models
– Light Lightness Server
– Light Lightness Setup Server
– Light CTL Server
– Light CTL Temperature Server
– Light CTL Setup Server
– Light HSL Server
– Light HSL Hue Server
– Light HSL Saturation Server
– Light HSL Setup Server
– Light xyL Server
– Light xyL Setup Server
– Light LC Server
– Light LC Setup Server

Mesh Examples
• ESP-BLE-MESH Node

– Tutorial
– Tutorial
– Example

• ESP-BLE-MESH Provisioner
– Tutorial
– Example

• ESP-BLE-MESH Fast Provisioning
– Fast Provisioning Client Model Tutorial
– Fast Provisioning Server Model Tutorial
– Example
– Demo Video

• ESP-BLE-MESH and Wi-Fi Coexistence
– Tutorial
– Example
– Demo Video

• ESP-BLE-MESH Console Commands
– Example

Architecture
This document introduces ESP-BLE-MESH architecture overview, ESP-BLE-MESH architecture implementation
as well as ESP-BLE-MESH auxiliary routines.

• ESP-BLE-MESH Architecture Overview
– Describes the five major parts of ESP-BLE-MESH architecture and the functionality of each part.

• ESP-BLE-MESH Architecture Implementation
– Describes the basic functions of ESP-BLE-MESH files, the correspondence between files and ESP-BLE-
MESH architecture, and the interface for calling among files.

• ESP-BLE-MESH Auxiliary Routines
– Describe the auxiliary routines of ESP-BLE-MESH, such as Mesh network management, Mesh features,
etc.

1. ESP-BLE-MESH Architecture Overview Currently ESP-BLE-MESH has implemented most functions of
Mesh Profile and all the Client Models defined in Mesh Model specification. Those missing functions/models are
under development and will be provided soon. ESP-BLE-MESH architecture has been granted the official Bluetooth
certification.
ESP-BLE-MESH architecture includes five key parts:

• Mesh Protocol Stack

Espressif Systems 2220
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_node/onoff_client/tutorial/BLE_Mesh_Node_OnOff_Client_Example_Walkthrough.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_node/onoff_server/tutorial/BLE_Mesh_Node_OnOff_Server_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_node
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_provisioner/tutorial/BLE_Mesh_Provisioner_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_provisioner
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_fast_provision/fast_prov_client/tutorial/BLE_Mesh_Fast_Prov_Client_Example_Walkthrough.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_fast_provision/fast_prov_server/tutorial/BLE_Mesh_Fast_Prov_Server_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_fast_provision
https://dl.espressif.com/BLE/public/ESP32_BLE_Mesh_Fast_Provision.mp4
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_wifi_coexist/tutorial/BLE_Mesh_WiFi_Coexist_Example_Walkthrough.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_wifi_coexist
https://dl.espressif.com/BLE/public/ESP_BLE_MESH_WIFI_Coexistence.mp4
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/bluetooth/esp_ble_mesh/ble_mesh_console
https://launchstudio.bluetooth.com/ListingDetails/76255
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 33: Figure 1.1 ESP-BLE-MESH Architecture Diagram

Espressif Systems 2221
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

– Mesh Networking is responsible for processing of messages of ESP-BLE-MESH nodes.
– Mesh Provisioning is responsible for provisioning flow of ESP-BLE-MESH devices.
– Mesh Models is responsible for the implementation of SIG-defined models.

• Network Management
– Implements several network management procedures, including node removal procedure, IV Index re-
covery procedure, etc.

• Features
– Include several ESP-BLE-MESH features, e.g., Low Power feature, Friend feature, Relay feature, etc.

• Mesh Bearer Layer
– Includes Advertising Bearer and GATT Bearer. The bearer layer is crucial to ESP-BLE-
MESH protocol stack which is built on Bluetooth Low-Energy technology, because the protocol stack
must make use of the bearer layer to transmit data via the BLE advertising channel and connection chan-
nel.

• Applications
– Based on ESP-BLE-MESH protocol stack and Mesh Models.
– By calling API and handling Event, Applications interact with Mesh Networking and Mesh
Provisioning in ESP-BLE-MESH protocol stack, as well as a series of Models provided by Mesh
Models.

1.1 Mesh Protocol Stack

1.1.1 Mesh Networking Mesh Networking in the protocol stack architecture implements the following func-
tions:

• The communication between nodes in the Mesh network.
• Encryption and decryption of messages in the Mesh network.
• Management of Mesh network resources (Network Key, IV Index, etc.).
• Segmentation and reassembly of Mesh network messages.
• Model mapping of messages between different models.
• For more features, please see Feature List.

The implementation of Mesh Networking functions is based on hierarchy structure. Functions of each layer are
shown in Table 1.1:

Table 3: Table 1.1 Mesh Networking Architecture Description
Layer Function
Access Layer Access Layer not only defines the format of application data, but also defines and controls

the encryption and decryption of the data packets conducted by Upper Transport Layer.
Upper Transport
Layer

Upper Transport Layer encrypts, decrypts, and authenticates application data to and from
the access layer; it also handles special messages called "transport control messages",
including messages related to "friendship" and heartbeat messages.

Lower Transport
Layer

Lower Transport Layer handles segmentation and reassembly of PDU.

Network Layer Network Layer defines the address type and format of the network messages, and imple-
ments the relay function of the device.

1.1.2 Mesh Provisioning Mesh Provisioning in the protocol stack architecture implements the following
functions:

• Provisioning of unprovisioned devices.
• Allocation of Mesh network resources (unicast address, IV Index, NetKey, etc.).
• Four authentication methods support during provisioning.
• For more features, please see Feature List.

The implementation of Mesh Provisioning functions is based on hierarchy structure. Functions of each layer
are shown in Table 1.2:

Espressif Systems 2222
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 4: Table 1.2 Mesh Provisioning Architecture Description
Layer Function
Provisioning PDUs Provisioning PDUs from different layers are handled using provisioning protocol.
Generic Provisioning
PDU/Proxy PDU

The Provisioning PDUs are transmitted to an unprovisioned device using a Generic Pro-
visioning layer or Proxy protocol layer.

PB-ADV/PB-GATT These layers define how the Provisioning PDUs are transmitted as transactions that can
be segmented and reassembled.

Advertis-
ing/Provisioning
Service

The provisioning bearers define how sessions are established such that the transactions
from the generic provisioning layer can be delivered to a single device.

1.1.3 Mesh Models Mesh Models in the protocol stack architecture implements the following functions:
• Configuration Client/Server Models
• Health Client/Server Models
• Generic Client/Server Models
• Sensor Client/Server Models
• Time and Scenes Client/Server Models
• Lighting Client/Server Models

Functions of each layer are shown in Table 1.3:

Table 5: Table 1.3 Mesh Models Architecture Description
Layer Function
Model Layer Model Layer implements models used to standardize the operation of typical user sce-

narios, including Generic Client/Server Models, Sensor Client/Server Models, Time and
Scenes Client/Server Models, Lighting Client/Server Models and several vendor models.

Foundation Model
Layer

Foundation Model Layer implements models related to ESP-BLE-MESH configuration,
management, self diagnosis, etc.

1.2 Mesh Network Management Network Management implements the following functions:
• Node removal procedure is used to remove a node from the network.
• IV Index recovery procedure is used to recover a node's IV Index.
• IV update procedure is used to update the nodes' IV Index.
• Key refresh procedure is used to update the nodes' NetKey, AppKey, etc.
• Network creation procedure is used to create a mesh network.
• NVS storage is used to store node's networking information.

1.3 Mesh Features Features includes the following options:
• Low Power feature is used to reduce node's power consumption.
• Friend feature is used to store messages for Low Power nodes.
• Relay feature is used to relay/forward Network PDUs received by a node over the advertising bearer.
• Proxy Server/Client are two node roles in proxy protocol, which enable nodes to send and receive Network
PDUs, mesh beacons, proxy configuration messages and Provisioning PDUs over a connection-oriented bearer.

1.4 Mesh Bearer Layer Bearers in the protocol stack architecture are responsible for passing of data between
ESP-BLE-MESH protocol stack and Bluetooth Low Energy Core.
Bearers can be taken as a carrier layer based on Bluetooth Low Energy Core, which implements the function of
receiving and transmitting data for the ESP-BLE-MESH protocol stack.

Espressif Systems 2223
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 6: Table 1.3 Mesh Bearers Description
Layer Function
GATT Bearer TheGATTBearer uses the Proxy protocol to transmit and receiveProxy PDUs between

two devices over a GATT connection.
Advertising Bearer When using the Advertising Bearer, a mesh packet shall be sent in the Advertising Data

of a Bluetooth Low Energy advertising PDU using the Mesh Message AD
Type.

1.5 Mesh Applications The Applications in the protocol stack architecture implement the corresponding
functions by calling the API provided by the ESP-BLE-MESH protocol stack and processing the Event reported by
the protocol stack. There are some common applications, such as gateway, lighting and etc.
Interaction between application layer (Applications) and API/Event

• Application layer calls API
– Call the provisioning-related API for provisioning.
– Call the model-related API to send messages.
– Call the device-attributes-related API to get local information about the device.

• Application layer processes Event
The application layer is designed based on events, which take parameters to the application layer. Events are
mainly divided into two categories.

– The events completed by calling API.
∗ Such as nodes sending messages.

– The events that the protocol stack actively reports to the application layer.
∗ The Event that the protocol stack actively reports.
∗ The Event that Model actively reports.

• The event is reported by the callback function registered by the application layer, and the callback function also
contains the corresponding processing of the event.

Interaction between API / Event and ESP-BLE-MESH protocol stack
• API used by user mainly calls functions provided by Mesh Networking, Mesh Provisioning and
Mesh Models.

• The interaction between API / Event and the protocol stack does not operate across the hierarchy of the
protocol stack. For example, API does not call functions related to Network Layer.

2. ESP-BLE-MESH Architecture Implementation The design and implementation of ESP-BLE-MESH archi-
tecture is based on layers and modules. In details, Section 2.1 (Mesh Networking Implementation), Section 2.2 (Mesh
Provisioning Implementation) and Section 2.3 (Mesh Bearers Implementation) are based on layers, and Section 2.4
(Mesh Models Implementation) is on modules.

• Layer-based Approach: With Layer-based approach, the architecture is designed according to the layers
specified in the Mesh Profile Specification. Each layer has its unique files which include APIs of this layer and
etc. The specific design is shown in Figure 2.1.

• Module-based Approach: Every file implements an independent function that can be called by other pro-
grams.

The design of ESP-BLE-MESH architecture uses layer-based approach. The sequence of layers which data packets
are processed through is fixed, i.e., the processing of packets will form a message flow. Thus, we could see flows
of messages from the Protocol Stack Interface Diagram in Figure 2.1.

2.1 Mesh Protocol Stack Implementation

2.1.1 Mesh Networking Implementation The list of files and the functions implemented in each file in Mesh
Networking are shown in Table 2.1:

Espressif Systems 2224
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 34: Figure 2.1 ESP-BLE-MESH Architecture Implementation Diagram
Espressif Systems 2225

Submit Document Feedback
Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 7: Table 2.1 Mesh Networking File Description :widths: 40 150
:header-rows: 1

File Functionality
ac-
cess.c

ESP-BLE-MESH Access Layer

trans-
port.c

ESP-BLE-MESH Lower/Upper Transport Layer

net.c ESP-BLE-MESH Network Layer
adv.c A task used to send ESP-BLE-MESH advertising packets, a callback used to handle received adver-

tising packets and APIs used to allocate adv buffers

2.1.2 Mesh Provisioning Implementation The implementation of Mesh Provisioning is divided into two chunks
due to the Node/Provisioner coexistence.
Specific files that provide implementation of provisioning of Node are shown in Table 2.2:

Table 8: Table 2.2 Mesh Provisioning (Node) File Description
File Functionality
prov.c ESP-BLE-MESH Node provisioning (PB-ADV & PB-GATT)
proxy_server.c ESP-BLE-MESH Proxy Server related functionalities
beacon.c APIs used to handle ESP-BLE-MESH Beacons

Specific files that implement functions of Provisioner are shown in Table 2.3:

Table 9: Table 2.3 Mesh Provisioning (Provisioner) File Description
File Functionality
provisioner_prov.c ESP-BLE-MESH Provisioner provisioning (PB-ADV & PB-GATT)
proxy_client.c ESP-BLE-MESH Proxy Client related functionalities
provisioner_main.c ESP-BLE-MESH Provisioner networking related functionalities

2.1.3MeshModels Implementation MeshModels are used to implement the specific functions of model in nodes.
Server model is used to maintain node status. Client model is used to obtain and modify node state.

Espressif Systems 2226
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/access.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/access.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/transport.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/transport.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/net.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/adv.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/prov.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/proxy_server.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/beacon.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/provisioner_prov.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/proxy_client.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/provisioner_main.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 10: Table 2.4 Mesh Models File Description
File Functionality
cfg_cli.c Send Configuration Client messages and receive corresponding response messages
cfg_srv.c Receive Configuration Client messages and send proper response messages
health_cli.c Send Health Client messages and receive corresponding response messages
health_srv.c Receive Health Client messages and send proper response messages
client_common.c ESP-BLE-MESH model related operations
generic_client.c Send ESP-BLE-MESH Generic Client messages and receive corresponding response

messages
lighting_client.c Send ESP-BLE-MESH Lighting Client messages and receive corresponding response

messages
sensor_client.c Send ESP-BLE-MESH Sensor Client messages and receive corresponding response mes-

sages
time_scene_client.c Send ESP-BLE-MESH Time Scene Client messages and receive corresponding response

messages
generic_server.c Receive ESP-BLE-MESH Generic Client messages and send corresponding response

messages
lighting_server.c Receive ESP-BLE-MESH Lighting Client messages and send corresponding response

messages
sensor_server.c Receive ESP-BLE-MESH Sensor Client messages and send corresponding response mes-

sages
time_scene_server.c Receive ESP-BLE-MESH Time Scene Client messages and send corresponding response

messages

2.2 Mesh Bearers Implementation Portability is fully considered in the implementation of Mesh Bearers.
When the ESP-BLE-MESH protocol stack is being ported to other platforms, users only need to modify
mesh_bearer_adapt.c (example of NimBLE version).

Table 11: Table 2.5 Mesh Bearers File Description
File Functionality
mesh_bearer_adapt.c ESP-BLE-MESH Bearer Layer adapter，This file provides the interfaces used to receive

and send ESP-BLE-MESH ADV & GATT related packets.

Note: mesh_bearer_adapt.c is the implementation of Advertising Bearer and GATT Bearer in Mesh
Networking framework.

2.3 Mesh Applications Implementation We have provided a series of application examples for customer devel-
opment, and users can develop products based on Examples.

3. Auxiliary Routine Auxiliary routine refers to optional functions in the ESP-BLE-MESH protocol stack. The
design of the auxiliary routine generally implement the truncation of code through CONFIG_BLE_MESH.

3.1 Features
• Low Power
• Friend
• Relay
• Proxy Client/Server

Espressif Systems 2227
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/cfg_cli.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/cfg_srv.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/health_cli.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/health_srv.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_models/client/client_common.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_models/client/generic_client.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_models/client/lighting_client.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_models/client/sensor_client.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_models/client/time_scene_client.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_models/server/generic_server.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_models/server/lighting_server.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_models/server/sensor_server.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_models/server/time_scene_server.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/bluedroid_host/mesh_bearer_adapt.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/nimble_host/mesh_bearer_adapt.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/bluedroid_host/mesh_bearer_adapt.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/bluedroid_host/mesh_bearer_adapt.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

3.2 Network Management
• Node Removal procedure
• IV Index Recovery procedure
• IV Update procedure
• Key Refresh procedure
• Network Creation procedure
• NVS Storage

3.3 Auxiliary Routine Implementation When adopting the design of independent module, the two main factors
should be considered:

• The module can not be implemented hierarchically, and it can be completely independent, which means it does
not rely on the implementation of other modules.

• The functions in the module will be used repeatedly, so it is reasonable to design it into a module. Independent
module is shown in Table 3.1:

Table 12: Table 3.1 Module File Description
File Functionality
lpn.c ESP-BLE-MESH Low Power functionality
friend.c ESP-BLE-MESH Friend functionality
net.c ESP-BLE-MESH Relay feature, network creation, IV Update procedure, IV Index re-

covery procedure, Key Refresh procedure related functionalities
proxy_server.c ESP-BLE-MESH Proxy Server related functionalities
proxy_client.c ESP-BLE-MESH Proxy Client related functionalities
settings.c ESP-BLE-MESH NVS storage functionality
main.c ESP-BLE-MESH stack initialize, stack enable, node removal related functionalities

FAQ
This document provides a summary of frequently asked questions about developing with ESP-BLE-MESH, and is
divided into seven sections:

• 1. Provisioner Development
• 2. Node Development
• 3. ESP-BLE-MESH and Wi-Fi Coexistence
• 4. Fast Provisioning
• 5. Log Help
• 6. Example Help
• 7. Others

Users could refer to the sections for quick answer to their questions. This document will be updated based on the
feedback collected via various channels.

1. Provisioner Development Generally, a Provisioner is used to provision unprovisioned devices and form a mesh
network. And after provisioning, roles of the unprovisioned devices will be changed to those of a node.

1.1 What Is the Flow for an Unprovisioned Device to Join ESP-BLE-MESH Network?
There are two phases for a device to join ESP-BLE-MESH network via a Provisioner, namely, provi-
sioning and configuration.

• The phase of provisioning is to assign unicast address, add NetKey and etc. to a device. By
provisioning, the device joins the ESP-BLE-MESH network and its role is changed from an un-
provisioned device to a node.

• The phase of configuration is to add AppKeys to the node and bind AppKeys to corresponding
models. And some items are optional during configuration, including adding subscription addresses

Espressif Systems 2228
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/lpn.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/friend.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/net.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/proxy_server.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/proxy_client.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/settings.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/mesh_core/main.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

to the node, set publication information, etc. By configuration, the node can actually transmit
messages to a Provisioner and receive messages from it.

1.2 If a ProvisionerWants to Change States of a Node, What Requirements Should BeMet for a Provisioner?
• Client model that corresponds to server model of the node is required.
• NetKey and AppKey used to encrypt messages shall be owned by both the node and the Provisioner.
• The address owned by the node shall be known, which could be its unicast address or subscription address.

1.3 How Can NetKey and AppKey Be Used?
• NetKey is used for encryption of messages in Network Layer. Nodes with the same NetKey are assumed to
be in the same subnet while those with different NetKeys cannot communicate with each other.

• AppKey is used for encryption of messages in Upper Transport Layer. If client model and server model are
bound to different AppKeys, the communication cannot be achieved.

1.4 How to Generate a NetKey or AppKey for Provisioner? Can We Use a Fixed NetKey or AppKey?
• TheAPIesp_ble_mesh_provisioner_add_local_net_key() can be used to add aNetKey with
a fixed or random value.

• The API esp_ble_mesh_provisioner_add_local_app_key() can be used to add an AppKey
with a fixed or random value.

1.5 Is the Unicast Address of Provisioner Fixed?
The value of prov_unicast_addr in esp_ble_mesh_prov_t is used to set the unicast address
of Provisioner, it can be set only once during initialization and cannot be changed afterwards.

1.6 Can the Address of Provisioner Serve as Destination Address of the Node-reporting-status Message?
The unicast address of Provisioner can be set only once during initialization and cannot be changed after-
wards. In theory, it can serve as the destination address of the node-reporting-status message, provided
that the unicast address of the Provisioner is known by nodes. Nodes can know the unicast address of
Provisioner during configuration since Provisioner sends messages to them with its unicast address used
as the source address.
Subscription address can also be used. Provisioner subscribes to a group address or virtual address, and
nodes send messages to the subscription address.

1.7 Is the Unicast Address of the Node That Is Firstly Provisioned by ProvIsioner to ESP-BLE-MESH Net-
work Fixed?

The value of prov_start_address in esp_ble_mesh_prov_t is used to set the starting ad-
dress when the Provisioner provisions unprovisioned devices, i.e., the unicast address of the node it
firstly provisioned. It can be set only once during initialization and cannot be changed afterwards.

1.8 Is the Unicast Address of the Node That Mobile App Firstly Provisioned Fixed?
The App will decide the unicast address, and currently most of them are fixed.

1.9 How to Know Which Unprovisioned Device Is the ProvIsioner That Is Provisioning Currently?
The value of prov_attention in esp_ble_mesh_prov_t is used by Provisioner set to unpro-
visioned device during provisioning. It can be set only once during initialization and cannot be changed
afterwards. When the unprovisioned device is joining the mesh network, it can display in a specific way
like flashing light to notify Provisioner that it is being provisioned.

Espressif Systems 2229
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

1.10 How Many Ways to Authenticate the Devices During Provisioning? Which Way Was Used in the pro-
vided examples ?

There are four authentication methods, i.e., No OOB, Static OOB, Output OOB and Input OOB. In the
provided examples, No OOB is used.

1.11 What Information Can Be Carried by the Advertising Packets of the Unprovisioned Device Before Pro-
visioning into the Network?

• Device UUID
• OOB Info
• URL Hash (optional)

1.12 Can Such Information Be Used for Device Identification?
For example, each unprovisioned device contains a unique Device UUID, which can be used for device
identification.

1.13 How Is the Unicast Address Assigned When the Node Provisioned by ProvIsioner Contains Multiple
Elements?

• Provisioner will assign an unicast address for the primary element of the node, and unicast address of the
remaining elements are incremented one by one.

• For example: If an unprovisioned device has three elements, i.e., the primary element, the second element and
the third element. After provisioning, the primary element address of the node is 0x0002 while the second
element address is 0x0003, and the third element address is 0x0004.

1.14 How Can Provisioner Get and Parse the Composition Data of Nodes Through Configuration Client
Model?

• Provisioner can get the Composition Data of nodes using the Configuration Client Model API
esp_ble_mesh_config_client_set_state()with comp_data_get in the param-
eter esp_ble_mesh_cfg_client_get_state_t set properly.

• Users can refer to the following code to parse the Composition Data:

#include <stdio.h>
#include <string.h>
#include <stdint.h>

//test date: 0C001A0001000800030000010501000000800100001003103F002A00
//0C00 1A00 0100 0800 0300 0001 05 01 0000 0080 0100 0010 0310 3F002A00

// CID is 0x000C
// PID is 0x001A
// VID is 0x0001
// CRPL is 0x0008
// Features is 0x0003 – Relay and Friend features.
// Loc is “front” – 0x0100
// NumS is 5
// NumV is 1
// The Bluetooth SIG Models supported are: 0x0000, 0x8000, 0x0001, 0x1000,
↪→ 0x1003
// The Vendor Models supported are: Company Identifier 0x003F and Model␣
↪→Identifier 0x002A

typedef struct {
int16_t cid;
int16_t pid;
int16_t vid;

(continues on next page)

Espressif Systems 2230
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
int16_t crpl;
int16_t features;
int16_t all_models;
uint8_t sig_models;
uint8_t vnd_models;

} esp_ble_mesh_composition_head;

typedef struct {
uint16_t model_id;
uint16_t vendor_id;

} tsModel;

typedef struct {
// reserve space for up to 20 SIG models
uint16_t SIG_models[20];
uint8_t numSIGModels;

// reserve space for up to 4 vendor models
tsModel Vendor_models[4];
uint8_t numVendorModels;

} esp_ble_mesh_composition_decode;

int decode_comp_data(esp_ble_mesh_composition_head *head, esp_ble_mesh_
↪→composition_decode *data, uint8_t *mystr, int size)
{

int pos_sig_base;
int pos_vnd_base;
int i;

memcpy(head, mystr, sizeof(*head));

if(size < sizeof(*head) + head->sig_models * 2 + head->vnd_models *␣
↪→4) {

return -1;
}

pos_sig_base = sizeof(*head) - 1;

for(i = 1; i < head->sig_models * 2; i = i + 2) {
data->SIG_models[i/2] = mystr[i + pos_sig_base] | (mystr[i + pos_

↪→sig_base + 1] << 8);
printf("%d: %4.4x\n", i/2, data->SIG_models[i/2]);

}

pos_vnd_base = head->sig_models * 2 + pos_sig_base;

for(i = 1; i < head->vnd_models * 2; i = i + 2) {
data->Vendor_models[i/2].model_id = mystr[i + pos_vnd_base] |␣

↪→(mystr[i + pos_vnd_base + 1] << 8);
printf("%d: %4.4x\n", i/2, data->Vendor_models[i/2].model_id);

data->Vendor_models[i/2].vendor_id = mystr[i + pos_vnd_base + 2]␣
↪→| (mystr[i + pos_vnd_base + 3] << 8);

printf("%d: %4.4x\n", i/2, data->Vendor_models[i/2].vendor_id);
}

return 0;
}

void app_main(void)
{

(continues on next page)

Espressif Systems 2231
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
esp_ble_mesh_composition_head head = {0};
esp_ble_mesh_composition_decode data = {0};
uint8_t mystr[] = { 0x0C, 0x00, 0x1A, 0x00,

0x01, 0x00, 0x08, 0x00,
0x03, 0x00, 0x00, 0x01,
0x05, 0x01, 0x00, 0x00,
0x00, 0x80, 0x01, 0x00,
0x00, 0x10, 0x03, 0x10,
0x3F, 0x00, 0x2A, 0x00};

int ret;

ret = decode_comp_data(&head, &data, mystr, sizeof(mystr));
if (ret == -1) {

printf("decode_comp_data error");
}

}

1.15 How Can Provisioner Further Configure Nodes Through Obtained Composition Data?
Provisioner do the following configuration by calling the Configuration Client Model API
esp_ble_mesh_config_client_set_state().

• Add AppKey to nodes with app_key_add in the parameter
esp_ble_mesh_cfg_client_set_state_t set properly.

• Add subscription address to the models of nodes with model_sub_add in the parameter
esp_ble_mesh_cfg_client_set_state_t set properly.

• Set publication information to the models of nodes with model_pub_set in the parameter
esp_ble_mesh_cfg_client_set_state_t set properly.

1.16 Can Nodes Add Corresponding Configurations for Themselves?
This method can be used in special cases like testing period.

• Here is an example to show nodes add new group addresses for their models.

esp_err_t example_add_fast_prov_group_address(uint16_t model_id, uint16_t␣
↪→group_addr)
{

const esp_ble_mesh_comp_t *comp = NULL;
esp_ble_mesh_elem_t *element = NULL;
esp_ble_mesh_model_t *model = NULL;
int i, j;

if (!ESP_BLE_MESH_ADDR_IS_GROUP(group_addr)) {
return ESP_ERR_INVALID_ARG;

}

comp = esp_ble_mesh_get_composition_data();
if (!comp) {

return ESP_FAIL;
}

for (i = 0; i < comp->element_count; i++) {
element = &comp->elements[i];
model = esp_ble_mesh_find_sig_model(element, model_id);
if (!model) {

continue;
}
for (j = 0; j < ARRAY_SIZE(model->groups); j++) {

if (model->groups[j] == group_addr) {

(continues on next page)

Espressif Systems 2232
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
break;

}
}
if (j != ARRAY_SIZE(model->groups)) {

ESP_LOGW(TAG, "%s: Group address already exists, element␣
↪→index: %d", __func__, i);

continue;
}
for (j = 0; j < ARRAY_SIZE(model->groups); j++) {

if (model->groups[j] == ESP_BLE_MESH_ADDR_UNASSIGNED) {
model->groups[j] = group_addr;
break;

}
}
if (j == ARRAY_SIZE(model->groups)) {

ESP_LOGE(TAG, "%s: Model is full of group addresses, element␣
↪→index: %d", __func__, i);

}
}

return ESP_OK;
}

Note: When the NVS storage of the node is enabled, group address added and AppKey bound by this method will
not be saved in the NVS when the device is powered off currently. These configuration information can only be saved
if they are configured by Configuration Client Model.

1.17 How Does Provisioner Control Nodes by Grouping?
Generally there are two approaches to implement group control in ESP-BLE-MESH network, group
address approach and virtual address approach. And supposing there are 10 devices, i.e., five devices
with blue lights and five devices with red lights.

• Method 1: 5 blue lights can subscribe to a group address, 5 red lights subscribe to another one. By
sending messages to different group addresses, Provisioner can realize group control.

• Method 2: 5 blue lights can subscribe to a virtual address, 5 red lights subscribe to another one.
By sending messages to different virtual addresses, Provisioner can realize group control.

1.18 How Does Provisioner Add Nodes to Multiple Subnets?
Provisioner can add multiple NetKeys to nodes during configuration, and nodes sharing the same NetKey
belong to the same subnet. Provisioner can communicate with nodes on different subnets by using dif-
ferent NetKeys.

1.19 How Does ProvIsioner Know If a Node in the Mesh Network Is Offline?
Node offline is usually defined as: the condition that the node cannot be properly communicated with
other nodes in the mesh network due to power failure or some other reasons.
There is no connection between nodes and nodes in the ESP-BLE-MESH network. They communicate
with each other through advertising channels.
An example is given here to show how to detect a node is offline by Provisioner.

• The node can periodically send heartbeat messages to Provisioner. And if Provisioner failed to
receive heartbeat messages in a certain period, the node is considered to be offline.

Espressif Systems 2233
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: The heartbeat message should be designed into a single package (less than 11 bytes), so the transmission and
reception of it can be more efficient.

1.20 What Operations Should Be Performed When Provisioner Removes Nodes from the Network?
Usually when Provisioner tries to remove node from the mesh network, the procedure includes three
main steps:

• Firstly, Provisioner adds the node that need to be removed to the "blacklist".
• Secondly, Provisioner performs the Key Refresh procedure.
• Lastly, the node performs node reset procedure, and switches itself to an unprovisioned device.

1.21 In the Key Refresh Procedure, How Does Provisioner Update the Netkey Owned by Nodes?
• Provisioner updates the NetKey of nodes using the Configuration Client Model API
esp_ble_mesh_config_client_set_state() with net_key_update in the parameter
esp_ble_mesh_cfg_client_set_state_t set properly.

• Provisioner updates the AppKey of nodes using the Configuration Client Model API
esp_ble_mesh_config_client_set_state() with app_key_update in the parameter
esp_ble_mesh_cfg_client_set_state_t set properly.

1.22 How Does Provisioner Manage Nodes in the Mesh Network?
ESP-BLE-MESH implements several functions related to basic node management in the example,
such as esp_ble_mesh_store_node_info(). And ESP-BLE-MESH also provides the API
esp_ble_mesh_provisioner_set_node_name() which can be used to set the node's local
name and the API esp_ble_mesh_provisioner_get_node_name() which can be used to
get the node's local name.

1.23 What Does Provisioner Need When Trying to Control the Server Model of Nodes?
Provisioner must include corresponding client model before controlling the server model of nodes.
Provisioner shall add its local NetKey and AppKey.

• Provisioner addNetKey by calling theAPIesp_ble_mesh_provisioner_add_local_net_key().
• Provisioner addAppKey by calling theAPIesp_ble_mesh_provisioner_add_local_app_key().

Provisioner shall configure its own client model.
• Provisioner bind AppKey to its own client model by calling the API
esp_ble_mesh_provisioner_bind_app_key_to_local_model().

1.24 How Does Provisioner Control the Server Model of Nodes?
ESP-BLE-MESH supports all SIG-defined client models. Provisioner can use these client models to
control the servermodels of nodes. And the client models are divided into 6 categories with each category
has the corresponding functions.

• Configuration Client Model
– The API esp_ble_mesh_config_client_get_state() can be used to get the
esp_ble_mesh_cfg_client_get_state_t values of Configuration Server Model.

– The API esp_ble_mesh_config_client_set_state() can be used to set the
esp_ble_mesh_cfg_client_set_state_t values of Configuration Server Model.

• Health Client Model
– The API esp_ble_mesh_health_client_get_state() can be used to get the
esp_ble_mesh_health_client_get_state_t values of Health Server Model.

Espressif Systems 2234
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

– The API esp_ble_mesh_health_client_set_state() can be used to set the
esp_ble_mesh_health_client_set_state_t values of Health Server Model.

• Generic Client Models
– The API esp_ble_mesh_generic_client_get_state() can be used to get the
esp_ble_mesh_generic_client_get_state_t values of Generic Server Mod-
els.

– The API esp_ble_mesh_generic_client_set_state() can be used to set the
esp_ble_mesh_generic_client_set_state_t values of Generic Server Mod-
els.

• Lighting Client Models
– The API esp_ble_mesh_light_client_get_state() can be used to get the
esp_ble_mesh_light_client_get_state_t values of Lighting Server Models.

– The API esp_ble_mesh_light_client_set_state() can be used to set the
esp_ble_mesh_light_client_set_state_t values of Lighting Server Models.

• Sensor Client Models
– The API esp_ble_mesh_sensor_client_get_state() can be used to get the
esp_ble_mesh_sensor_client_get_state_t values of Sensor Server Model.

– The API esp_ble_mesh_sensor_client_set_state() can be used to set the
esp_ble_mesh_sensor_client_set_state_t values of Sensor Server Model.

• Time and Scenes Client Models
– The API esp_ble_mesh_time_scene_client_get_state() can be used to
get the esp_ble_mesh_time_scene_client_get_state_t values of Time
and Scenes Server Models.

– The API esp_ble_mesh_time_scene_client_set_state() can be used to
set the esp_ble_mesh_time_scene_client_set_state_t values of Time
and Scenes Server Models.

2. Node Development

2.1 What Kind of Models Are Included by Nodes?
• In ESP-BLE-MESH, nodes are all composed of a series of models with each model implements some functions
of the node.

• Model has two types, client model and server model. Client model can get and set the states of server model.
• Model can also be divided into SIGmodel and vendor model. All behaviors of SIGmodels are officially defined
while behaviors of vendor models are defined by users.

2.2 Is the Format of Messages Corresponding to Each Model Fixed?
• Messages, which consist of opcode and payload, are divided by opcode.
• The type and the format of the messages corresponding to models are both fixed, which means the messages
transmitted between models are fixed.

2.3 Which Functions Can Be Used to Send Messages with the Models of Nodes?
• For client models, users can use the API esp_ble_mesh_client_model_send_msg() to send mes-
sages.

• For server models, users can use the API esp_ble_mesh_server_model_send_msg() to send mes-
sages.

• For publication, users call the API esp_ble_mesh_model_publish() to publish messages.

2.4 How to Achieve the Transmission of Messages Without Packet Loss?
Acknowledged message is needed if users want to transmit messages without packet loss. The default
time to wait for corresponding response is set inCONFIG_BLE_MESH_CLIENT_MSG_TIMEOUT . If the
sender waits for the response until the timer expires, the corresponding timeout event would be triggered.

Espressif Systems 2235
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: Response timeout can be set in the API esp_ble_mesh_client_model_send_msg(). The default
value (4 seconds) would be applied if the parameter msg_timeout is set to 0.

2.5 How to Send Unacknowledged Messages?
For client models, users can use the API esp_ble_mesh_client_model_send_msg() with
the parameter need_rsp set to false to send unacknowledged messages.
For servermodels, themessages sent by using theAPIesp_ble_mesh_server_model_send_msg()
are always unacknowledged messages.

2.6 How to Add Subscription Address to Models?
Subscription address can be added through Configuration Client Model.

2.7 What Is the Difference Between Messages Sent and Published by Models?
Messages sent by calling the API esp_ble_mesh_client_model_send_msg() or
esp_ble_mesh_server_model_send_msg() will be sent in the duration determined by
the Network Transmit state.
Messages published by calling the API esp_ble_mesh_model_publish() will be published de-
termined by the Model Publication state. And the publication of messages is generally periodic or with
a fixed number of counts. The publication period and publication count are controlled by the Model
Publication state, and can be configured through Configuration Client Model.

2.8 How Many Bytes Can Be Carried When Sending Unsegmented Messages?
The total payload length (which can be set by users) of unsegmented message is 11 octets, so if the
opcode of the message is 2 octets, then the message can carry 9-octets of valid information. For vendor
messages, due to the 3-octets opcode, the remaining payload length is 8 octets.

2.9 When Should the Relay Feature of Nodes Be Enabled?
Users can enable the Relay feature of all nodes when nodes detected in the mesh network are sparse.
For dense mesh network, users can choose to just enable the Relay feature of several nodes.
And users can enable the Relay feature by default if the mesh network size is unknown.

2.10 When Should the Proxy Feature of Node Be Enabled?
If the unprovisioned device is expected to be provisioned by a phone, then it should enable the Proxy
feature since almost all the phones do not support sending ESP-BLE-MESH packets through advertis-
ing bearer currently. And after the unprovisioned device is provisioned successfully and becoming a
Proxy node, it will communicate with the phone using GATT bearer and using advertising bearer to
communicate with other nodes in the mesh network.

2.11 How to Use the Proxy Filter?
The Proxy filter is used to reduce the number of Network PDUs exchanged between a Proxy Client (e.g.,
the phone) and a Proxy Server (e.g., the node). And with the Proxy filter, Proxy Client can explicitly
request to receive only mesh messages with certain destination addresses from Proxy Server.

Espressif Systems 2236
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

2.12 When a Message Can Be Relayed by a Relay Node?
If a message need to be relayed, the following conditions should be met.

• The message is in the mesh network.
• The message is not sent to the unicast address of the node.
• The value of TTL in the message is greater than 1.

2.13 If a Message Is Segmented into Several Segments, Should the Other Relay Nodes Just Relay When One
of These Segments Is Received or Wait Until the Message Is Received Completely?

Relay nodes will forward segments when one of them are received rather than keeping waiting until all
the segments are received.

2.14 What Is the Principle of Reducing Power Consumption Using Low Power Feature?
• When the radio is turned on for listening, the device is consuming energy. When low power feature of the node
is enabled, it will turn off its radio in the most of the time.

• And cooperation is needed between low power node and friend node, thus low power node can receivemessages
at an appropriate or lower frequency without the need to keep listening.

• When there are some new messages for low power node, its friend node will store the messages for it. And low
power node can poll friend nodes to see if there are new messages at a fixed interval.

2.15 How to Continue the Communication on the Network After Powering-down and Powering-up Again?
Enable the configuration Store ESP-BLE-MESH Node configuration persistently
in menuconfig.

2.16 How to Send out the Self-test Results of Nodes?
It is recommended that nodes can publish its self-test results periodically through Health Server Model.

2.17 How to Transmit Information Between Nodes?
One possible application scenario for transmitting information between nodes is that spray nodes would
be triggered once smoke alarm detected high smoke concentration. There are two approaches in imple-
mentation.

• Approach 1 is that spray node subscribes to a group address. When smoke alarm detects high smoke
concentration, it will publish a message whose destination address is the group address which has
been subscribed by spray node.

• Approach 2 is that Provisioner can configure the unicast address of spray node to the smoke alarm.
When high smoke concentration is detected, smoke alarm can use send messages to the spray node
with the spray node's unicast address as the destination address.

2.18 Is Gateway a Must for Nodes Communication?
• Situation 1: nodes only communicate within themesh network. In this situation, no gateway is need. ESP-BLE-
MESH network is a flooded network, messages in the network have no fixed paths, and nodes can communicate
with each other freely.

• Situation 2: if users want to control the nodes remotely, for example turn on some nodes before getting home,
then a gateway is needed.

2.19 When Will the IV Update Procedure Be Performed?
IV Update procedure would be performed once sequence number of messages sent detected by the
bottom layer of node reached a critical value.

Espressif Systems 2237
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

2.20 How to Perform IV Update Procedure?
Nodes can perform IV Update procedure with Secure Network Beacon.

3. ESP-BLE-MESH and Wi-Fi Coexistence

3.1 Which Modes Does Wi-Fi Support When it Coexists with ESP-BLE-MESH?
Currently only Wi-Fi station mode supports the coexistence.

3.2 Why Is the Wi-Fi Throughput So Low When Wi-Fi and ESP-BLE-MESH Coexist?
Some configurations in menuconfig shall be enabled to support PSRAM.

• ESP32-C6-specific > Support for external,SPI-connected RAM > Try to
allocate memories of Wi-Fi and LWIP...

• Bluetooth > Bluedroid Enable > BT/BLE will first malloc the memory
from the PSRAM

• Bluetooth > Bluedroid Enable > Use dynamic memory allocation in
BT/BLE stack

• Bluetooth > Bluetooth controller > BLE full scan feature supported
• Wi-Fi > Software controls Wi-Fi/Bluetooth coexistence > Wi-Fi

4. Fast Provisioning

4.1 Why Is Fast Provisioning Needed?
Normally when they are several unprovisioned devices, users can provision them one by one. But when
it comes to a large number of unprovisioned devices (e.g., 100), provisioning them one by one will take
huge amount of time. With fast provisioning, users can provision 100 unprovisioned devices in about 50
seconds.

4.2 Why EspBleMesh App Would Wait for a Long Time During Fast Provisioning?
After the App provisioned one Proxy node, it will disconnect from the App during fast provisioning, and
reconnect with the App when all the nodes are provisioned.

4.3 Why Is the Number of Node Addresses Displayed in the App Is More than That of Existing Node Ad-
dresses?

Each time after a fast provisioning process, and before starting a new one, the node addresses in the App
should be cleared, otherwise the number of the node address will be incorrect.

4.4 What Is the Usage of the count Value Which Was Input in EspBleMesh App?
The count value is provided to the Proxy node which is provisioned by the App so as to determine when
to start Proxy advertising in advance.

4.5 When will Configuration Client Model of the node running fast_prov_server example start to work?
Configuration Client Model will start to work after the Temporary Provisioner functionality is enabled.

4.6 Will the Temporary Provisioner Functionality Be Enabled All the Time?
After the nodes receive messages used to turn on/off lights, all the nodes will disable its Temporary
Provisioner functionality and become nodes.

Espressif Systems 2238
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

5. Log Help You can find meaning of errors or warnings when they appear at the bottom of ESP-BLE-MESH
stack.

5.1 What Is the Meaning of Warning ran out of retransmit attempts?
When the node transmits a segmented message, and due to some reasons, the receiver does not receive
the complete message. Then the node will retransmit the message. When the retransmission count
reaches the maximum number, which is 4 currently, then this warning will appear.

5.2 What Is the Meaning of Warning Duplicate found in Network Message Cache?
When the node receives a message, it will compare the message with the ones stored in the network
cache. If the same has been found in the cache, which means it has been received before, then the
message will be dropped.

5.3 What Is the Meaning of Warning Incomplete timer expired?
When the node does not receive all the segments of a segmented message during a certain period (e.g.,
10 seconds), then the Incomplete timer will expire and this warning will appear.

5.4 What Is the Meaning of Warning No matching TX context for ack?
When the node receives a segment ack and it does not find any self-send segmented message related with
this ack, then this warning will appear.

5.5 What Is the Meaning of Warning No free slots for new incoming segmented messages?
When the node has no space for receiving new segmented message, this warning will appear. Users can
make the space larger through the configuration CONFIG_BLE_MESH_RX_SEG_MSG_COUNT .

5.6 What Is the Meaning of Error Model not bound to Appkey 0x0000?
When the node sends messages with a model and the model has not been bound to the AppKey with
AppKey Index 0x000, then this error will appear.

5.7 What Is the Meaning of Error Busy sending message to DST xxxx?
This error means client model of the node has transmitted a message to the target node and now is waiting
for a response, users can not send messages to the same node with the same unicast address. After the
corresponding response is received or timer is expired, then another message can be sent.

6. Example Help

6.1 How Are the ESP-BLE-MESH Callback Functions Classified?
• The API esp_ble_mesh_register_prov_callback() is used to register callback function used to
handle provisioning and networking related events.

• The API esp_ble_mesh_register_config_client_callback() is used to register callback
function used to handle Configuration Client Model related events.

• The API esp_ble_mesh_register_config_server_callback() is used to register callback
function used to handle Configuration Server Model related events.

• The API esp_ble_mesh_register_health_client_callback() is used to register callback
function used to handle Health Client Model related events.

• The API esp_ble_mesh_register_health_server_callback() is used to register callback
function used to handle Health Server Model related events.

Espressif Systems 2239
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• The API esp_ble_mesh_register_generic_client_callback() is used to register callback
function used to handle Generic Client Models related events.

• The API esp_ble_mesh_register_light_client_callback() is used to register callback
function used to handle Lighting Client Models related events.

• The API esp_ble_mesh_register_sensor_client_callback() is used to register callback
function used to handle Sensor Client Model related events.

• The API esp_ble_mesh_register_time_scene_client_callback() is used to register call-
back function used to handle Time and Scenes Client Models related events.

• The API esp_ble_mesh_register_custom_model_callback() is used to register callback
function used to handle vendor model and unrealized server models related events.

7. Others

7.1 How to Print the Message Context?
The examples use ESP_LOG_BUFFER_HEX() to print the message context while the ESP-BLE-
MESH protocol stack uses bt_hex().

7.2 Which API Can Be Used to Restart ESP32-C6?
The API esp_restart().

7.3 How to Monitor the Remaining Space of the Stack of a Task?
The API vTaskList() can be used to print the remaining space of the task stack periodically.

7.4 How to Change the Level of Log Without Changing the Menuconfig Output Level?
The API esp_log_level_set() can be used to change the log output level rather than using menu-
config to change it.

Terminology

Espressif Systems 2240
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 13: Table 1 ESP-BLE-MESH Terminology - Role
Term Official Definition Detailed Explanation
Un-
provi-
sioned
Device

A device that is not a member of amesh
network is known as an unprovisioned
device.

Examples: lighting devices, temperature control devices,
manufacturing equipment and electric doors, etc.

Node A node is a provisioned device. The role of unprovisioned device will change to node af-
ter being provisioned to ESP-BLE-MESH network. Nodes
(such as lighting devices, temperature control devices, man-
ufacturing equipment, and electric doors) are devices that
can send, receive, or relaymessages in ESP-BLE-MESH net-
work, and they can optionally support one or more subnets.

Relay
Node

A node that supports the Relay feature
and has the Relay feature enabled is
known as a Relay node.

Relay nodes can receive and resend ESP-BLE-MESH mes-
sages, so the messages can be transferred further. Users can
decide whether or not to enable forwarding function of nodes
according to nodes' status. Messages can be relayed for mul-
tiple times, and each relay is considered as a "hop". Mes-
sages can hop up to 126 times, which is enough for message
transmission in a wide area.

Proxy
Node

A node that supports the Proxy feature
and has the Proxy feature enabled is
known as a Proxy node.

Proxy nodes receive messages from one bearer (it generally
includes advertising bearer and GATT bearer) and resend it
from another one. The purpose is to connect communica-
tion equipment that only support GATT bearer to ESP-BLE-
MESH network. Generally, mobile apps need a Proxy node
to access Mesh network. Without Proxy nodes, mobile apps
cannot communicate with members in Mesh network.

Friend
Node

A node that supports the Friend feature,
has the Friend feature enabled, and has
a friendship with a node that supports
the Low Power feature is known as a
Friend node.

Friend node, like the backup of Low Power node (LPN), can
store messages that are sent to Low Power node and security
updates; the stored information will be transferred to Low
Power node when Low Power node needs it. Low Power
node must establish "friendship" with another node that sup-
ports the Friend Feature to reduce duty cycle of its receiver,
thus power consumption of Low Power node can be reduced.
Low Power node needs to find a Friend node to establish a
friendship with it. The process involved is called "friendship
establishment". Cooperation between Low Power node and
Friend nodes enables Low Power node to schedule the use of
the radio, thus Low Power node can receive messages at an
appropriate or lower frequency without the need of keeping
listening. Low Power node will poll Friend node to see if
there is new message.

Low
Power
Node

A node that supports the Low Power
feature and has a friendship with a
node that supports the Friend feature is
known as a Low Power node.

By polling, Low Power node gets information from Friend
node, such as messages, security updates, and etc.

Provi-
sioner

A node that is capable of adding a de-
vice to a mesh network.

The device that can provision unprovisioned devices is called
a Provisioner. This process usually needs to be implemented
through an app that is typically provided by the product man-
ufacturer and can be used on a gateway, a smartphone, tablet
or other carriers.

Espressif Systems 2241
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 14: Table 2 ESP-BLE-MESH Terminology - Composition
Term Official Definition Detailed Explanation
State A value representing a condition of an

element that is exposed by an element
of a node.

Each node in a ESP-BLE-MESH network has an indepen-
dent set of state values that indicate certain states of the de-
vice, like brightness, and color of lighting device. Change
of state value will lead to change of the physical state of de-
vices. For example, changing the on/off state of a device is
actually turning on/off the device.

Model A model defines the basic functionality
of a node.

A node may contain multiple models, and each model de-
fines basic functionalities of nodes, like the states needed by
the nodes, the messages controlling the states, and actions
resulted from messages handling. The function implementa-
tion of the nodes is based on models, which can be divided
into SIG Model and Vendor Model, with the former defined
by SIG and latter defined by users.

Ele-
ment

An addressable entity within a device. A node can contain one or more elements, with each having
a unicast address and one or more models, and the models
contained by the same element must not be the same.

Com-
posi-
tion
Data
State

The Composition Data state contains
information about a node, the elements
it includes, and the supported models.

By reading the value of the CompositionData state, users can
know basic information of the node, such as the number of
elements, and the models in each element. Provisioner gets
this message to further provision the device, such as config-
uring subscription address and publishing address of nodes.

Table 15: Table 3 ESP-BLE-MESH Terminology - Features
Term Official Definition Detailed Explanation
Low
Power
Fea-
ture

The ability to operate within a mesh
network at significantly reduced re-
ceiver duty cycles only in conjunction
with a node supporting the Friend fea-
ture.

Low Power feature reduces power consumption of nodes.
When a Low Power node is searching for a Friend node, and
there are multiple Friend nodes nearby, it selects the most
suitable Friend node through algorithm.

Friend
Fea-
ture

The ability to help a node support-
ing the Low Power feature to operate
by storing messages destined for those
nodes.

By enabling friend feature, the node can help to store infor-
mation for Low Power node. The nodes enabled with friend
feature may cause more power and memory consumption.

Relay
Fea-
ture

The ability to receive and retransmit
mesh messages over the advertising
bearer to enable larger networks.

The relay feature enables ESP-BLE-MESH messages to hop
among nodes for multiple times, and the transmission dis-
tance can exceed the range of direct radio transmission be-
tween two nodes, thereby covering the entire network. When
a node is enabled with the relay feature to relay messages, it
only relays the messages of its own subnet, and does not re-
lay the messages of other subnets. The data integrity will
not be considered when the node enabled with relay feature
relays segmented messages. The node would relay every seg-
mented message once it receives one rather than waiting for
the complete message.

Proxy
Fea-
ture

The ability to receive and retransmit
mesh messages between GATT and ad-
vertising bearers.

The purpose of the proxy feature is to allow nodes without an
advertising bearer to access the ESP-BLE-MESH network.
The proxy feature is typically used in nodes that need to con-
nect to mobile apps.

Espressif Systems 2242
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 16: Table 4 ESP-BLE-MESH Terminology - Provisioning
Term Official Definition Detailed Explanation
PB-
ADV

PB-ADV is a provisioning bearer used
to provision a device using Generic
Provisioning PDUs over the advertising
channels.

PB-ADV transfers packets generated during the provision-
ing process over the advertising channels. This way can only
be used for provisioning when provisioner and unprovisioned
device both support PB-ADV.

PB-
GATT

PB-GATT is a provisioning bearer
used to provision a device using
Proxy PDUs to encapsulate Provision-
ing PDUs within the Mesh Provision-
ing Service.

PB-GATT uses connection channels to transfer packets gen-
erated during the provisioning process. If an unprovisioned
device wants to be provisioned through this method, it needs
to implement the related Mesh Provisioning Service. Unpro-
visioned devices which don't implement such service cannot
be provisioned into mesh network through PB-GATT bearer.

Provi-
sioning

Provisioning is a process of adding an
unprovisioned device to a mesh net-
work, managed by a Provisioner.

The process of provisioning turns the "unprovisioned device"
into a "node", making it a member of the ESP-BLE-MESH
network.

Au-
thenti-
cation
Method

Authentication is a step during the pro-
visioning of nodes.

There are four authentication methods for unprovisioned de-
vices: Output OOB, Input OOB, Static OOB, and No OOB.

Input
OOB

Input Out-of-Band For example, a Provisioner generates and displays a random
number, and then prompts users to take appropriate actions
to input the random number into the unprovisioned device.
Taking lighting switch as an example, users can press the but-
ton for several times in a certain period of time to input the
random number displayed on the Provisioner. Authentica-
tion method of the Input OOB is similar to that of Output
OOB, but the role of the device is reversed.

Output
OOB

Output Out-of-Band For example, an unprovisioned device will choose a random
number and output the number in a way that is compatible
with its functionality. If the unprovisioned device is a bulb,
it can flash a specified number of times. If the unprovisioned
device has an LCD screen, the random number can display
as a multi-digit value. Users who start provisioning should
input the observed number to authenticate the unprovisioned
device.

Static
OOB

Static Out-of-Band Authentication method of Static OOB: use Static OOB in-
formation. Use 0 as Static OOB information if No OOB
information is needed. Use Static OOB information to au-
thenticate devices which are going through provisioning if
OOB information is needed.

No
OOB

No Out-of-Band Authentication method of No OOB: Set the value of the
Static OOB field to 0. Using this way is like not authenti-
cating the unprovisioned devices.

Espressif Systems 2243
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 17: Table 5 ESP-BLE-MESH Terminology - Address
Term Official Definition Detailed Explanation
Unas-
signed
Ad-
dress

This is a special address type, with a
value of 0x0000. Its use indicates that
an Element has not yet been configured
or had a Unicast Address assigned to it.

The addresses owned by elements which has not been config-
ured yet or no address has been allocated are unassigned ad-
dresses. These elements will not be used for messages trans-
fer because they have no fixed address. Unassigned address
is recommended to set as the value of the address before set-
ting the address of user code.

Uni-
cast
Ad-
dress

A unicast address is a unique address
allocated to each element.

During provisioning, the Provisioner will assign a unicast ad-
dress to each element of node within the life cycle of the
nodes in the network. A unicast address may appear in the
source/destination address field of a message. Messages sent
to a unicast address can only be processed by the element
that owns the unicast address.

Virtual
Ad-
dress

A virtual address represents a set of
destination addresses. Each virtual
address logically represents a Label
UUID, which is a 128-bit value that
does not have to be managed centrally.

Associated with specific UUID labels, a virtual address may
serve as the publishing or subscription address of the model.
A UUID label is a 128-bit value associated with elements
of one or more nodes. For virtual addresses, the 15th and
14th bits are set to 1 and 0 respectively; bits from 13th to
0 are set to hash values (providing 16384 hash values). The
hash is a derivation of the Label UUID. To use subscribing
elements to check the full 128-bit UUID is very inefficient
while hash values provide a more efficient way to determine
which elements that which messages are finally sent to.

Group
Ad-
dress

A group address is an address that is
programmed into zero or more ele-
ments

Group address is another kind of multicast address in the
ESP-BLE-MESH network, which is usually used to group
nodes. A message sent to the all-proxies address shall be
processed by the primary element of all nodes that have
the proxy functionality enabled. A message sent to the all-
friends address shall be processed by the primary element of
all nodes that have the friend functionality enabled. A mes-
sage sent to the all-relays address shall be processed by the
primary element of all nodes that have the relay functional-
ity enabled. A message sent to the all-nodes address shall be
processed by the primary element of all nodes.

Espressif Systems 2244
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 18: Table 6 ESP-BLE-MESH Terminology - Security
Term Official Definition Detailed Explanation
Device
Key
(De-
vKey)

There is also a device key, which is a
special application key that is unique to
each node, is known only to the node
and a Configuration Client, and is used
to secure communications between the
node and a Configuration Client.

The device key enables you to provision the devices, config-
ure the nodes. The device key is used to encrypt Configu-
ration Messages, i.e., the message transferred between the
Provisioner and the node when the device is configured.

Appli-
cation
Key
(App-
Key)

Application keys are used to secure
communications at the upper transport
layer.

Application key is used for decryption of application data
before delivering application data to application layer and
encryption of them during the delivery of application layer.
Some nodes in the network have a specific purpose and
can restrict access to potentially sensitive data based on the
needs of the application. With specific application keys,
these nodes are associated with specific applications. Gener-
ally speaking, the fields using different application keys in-
clude security (access control of buildings, machine rooms
and CEO offices), lighting (plant, exterior building and side-
walks) and HVAC systems. Application keys are bound to
Network keys. This means application keys are only used in
a context of a Network key they are bound to. An application
key shall only be bound to a single Network key.

Master
Secu-
rity
Mate-
rial

The master security material is derived
from the network key (NetKey) and can
be used by other nodes in the same net-
work. Messages encrypted with master
securitymaterial can be decoded by any
node in the same network.

The corresponding friendship messages encrypted with the
friendship security material: 1. Friend Poll, 2. Friend Up-
date, 3. Friend Subscription List, add/delete/confirm, 4. The
Stored Messages" sent by friend nodes to Low Power node.
The corresponding friendship messages encrypted with the
master security material: 1. Friend Clear, 2. Friend Clear
Confirm. Based on the setup of the applications, the mes-
sages sent from the Low Power node to the friend nodes will
be encrypted with the friendship security material or mas-
ter security material, with the former being used by the mes-
sages transmitted between Low Power node and friend nodes
and the latter being used by other network messages.

Table 19: Table 7 ESP-BLE-MESH Terminology - Message
Term Official Definition Detailed Explanation
Re-
assem-
bly/Segmentation

Segmentation and reassembly (SAR) is
a method of communication network,
which is divided into small units before
transmitting packets and reassembled
in a proper order at the communication
receiving end.

The lower transport layer will automatically segment the
message whose size is too big. The receiving end will return
a response message, and the transmitting end will send the
data packet again that the receiving end does not receive ac-
cording to the response message. This is automatically com-
pleted by the lower transport layer. Unsegmented messages
have at most 15 bytes, of which 4 bytes are transMIC, so the
remaining is 11 bytes; in the case of segmentation, there are
12 valid bytes in the first several packets, and 8 in the last
one. Special case: A shorter packet requires mandatory seg-
mentation from lower transport layer, in which case the valid
byte is 8 bytes.

Unac-
knowl-
edged/Acknowledged

There are two types of messages: Un-
acknowledged or Acknowledged

Based on the whether or not the receiving end needs to send
the response message, the messages sent are divided into two
kinds. The sending end should set the maximum number of
retransmission.

Espressif Systems 2245
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 20: Table 8 ESP-BLE-MESH Terminology - Foundation Models
Term Official Definition Detailed Explanation
Con-
figu-
ration
Server
Model

This model is used to represent a mesh
network configuration of a device.

The node must contain the Configuration Server Model,
which is responsible for maintaining configuration-related
states. The states that Configuration Server Model maintains
include: NetKey List, AppKey List, Model to AppKey List,
Node Identity, Key Refresh Phase, Heartbeat Publish, Heart-
beat Subscription, Network Transmit, Relay Retransmit etc.

Con-
figu-
ration
Client
Model

The model is used to represent an ele-
ment that can control and monitor the
configuration of a node.

The Configuration Client Model uses messages to control the
state maintained by the Configuration Server Model. The
Provisioner must contain the Configuration Client Model,
with which the configuration messages, like Configuration
Composition Data Get can be sent.

Health
Server
Model

This model is used to represent a mesh
network diagnostics of a device.

The Health Server Model is primarily used by devices to
check their states and see if there is an error. The states
maintained by Health Server model include: Current Fault,
Registered Fault, Health Period, and Attention Timer.

Health
Client
Model

The model is used to represent an ele-
ment that can control and monitor the
health of a node.

The Health Client Model uses messages to control the state
maintained by the Health Server Model. The model can get
the self-test information of other nodes through the message
"Health Fault Get".

Table 21: Table 9 ESP-BLE-MESH Terminology - Network Management
Term Official Definition Detailed Explanation
Key
Re-
fresh
proce-
dure

This procedure is used when the secu-
rity of one or more network keys and/or
one or more of the application keys has
been compromised or could be com-
promised.

Key Refresh Procedure is used to update network key and
application key of ESP-BLE-MESH network. Key Refresh
Procedure is used when the security of one or more network
keys and/or one or more application keys is threatened or
potentially threatened. Keys are usually updated after some
nodes in the network are removed.

IV
(Ini-
tial-
ization
Vec-
tor)
Update
Proce-
dure

A node can also use an IV Update pro-
cedure to signal to peer nodes that it is
updating the IV Index.

The IVUpdate procedure is used to update the value of ESP-
BLE-MESH network's IV Index. This value is related to the
random number required for message encryption. To ensure
that the value of the random number is not repeated, this
value is periodically incremented. IV Index is a 32-bit value
and a shared network resource. For example, all nodes in a
mesh network share the same IV Index value. Starting from
0x00000000, the IV Index increments during the IV Update
procedure and maintained by a specific process, ensuring the
IV Index shared in themesh network is the same. This can be
done when the node believes that it has the risk of exhaust-
ing its sequence number, or when it determines that another
node is nearly exhausting its sequence number. Note: The
update time must not be less than 96 hours. It can be trig-
gered when a secure network beacon is received, or when the
node determines that its sequence number is greater than a
certain value.

For more terms, please see: ESP-BLE-MESH Glossary of Terms.

Bluetooth SIG Documentation
• BLE Mesh Core Specification
• BLE Mesh Model Specification
• An Intro to Bluetooth Mesh Part 1 / Part 2

Espressif Systems 2246
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/mesh/mesh-glossary/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=429633
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=429634
https://www.bluetooth.com/blog/an-intro-to-bluetooth-mesh-part1
https://www.bluetooth.com/blog/an-intro-to-bluetooth-mesh-part2
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• The Fundamental Concepts of Bluetooth Mesh Networking, Part 1 / Part 2
• Bluetooth Mesh Networking: Friendship
• Management of Devices in a Bluetooth Mesh Network
• Bluetooth Mesh Security Overview
• Provisioning a Bluetooth Mesh Network Part 1 / Part 2

BluFi

Overview The BluFi for ESP32-C6 is a Wi-Fi network configuration function via Bluetooth channel. It provides
a secure protocol to pass Wi-Fi configuration and credentials to ESP32-C6. Using this information, ESP32-C6 can
then connect to an AP or establish a SoftAP.
Fragmenting, data encryption, and checksum verification in the BluFi layer are the key elements of this process.
You can customize symmetric encryption, asymmetric encryption, and checksum support customization. Here we use
the DH algorithm for key negotiation, 128-AES algorithm for data encryption, and CRC16 algorithm for checksum
verification.

The BluFi Flow The BluFi networking flow includes the configuration of the SoftAP and Station.
The following uses Station as an example to illustrate the core parts of the procedure, including broadcast, connection,
service discovery, negotiation of the shared key, data transmission, and connection status backhaul.

1. Set the ESP32-C6 into GATT Server mode and then it will send broadcasts with specific advertising data. You
can customize this broadcast as needed, which is not a part of the BluFi Profile.

2. Use the App installed on the mobile phone to search for this particular broadcast. The mobile phone will
connect to ESP32-C6 as the GATT Client once the broadcast is confirmed. The App used during this part is
up to you.

3. After the GATT connection is successfully established, the mobile phone will send a data frame for key nego-
tiation to ESP32-C6 (see the section The Frame Formats Defined in BluFi for details).

4. After ESP32-C6 receives the data frame of key negotiation, it will parse the content according to the user-
defined negotiation method.

5. The mobile phone works with ESP32-C6 for key negotiation using the encryption algorithms, such as DH,
RSA, or ECC.

6. After the negotiation process is completed, the mobile phone will send a control frame for security-mode setup
to ESP32-C6.

7. When receiving this control frame, ESP32-C6 will be able to encrypt and decrypt the communication data
using the shared key and the security configuration.

8. The mobile phone sends the data frame defined in the section of The Frame Formats Defined in BluFi,with the
Wi-Fi configuration information to ESP32-C6, including SSID, password, etc.

9. The mobile phone sends a control frame of Wi-Fi connection request to ESP32-C6. When receiving this
control frame, ESP32-C6 will regard the communication of essential information as done and get ready to
connect to the Wi-Fi.

10. After connecting to the Wi-Fi, ESP32-C6 will send a control frame of Wi-Fi connection status report to the
mobile phone. At this point, the networking procedure is completed.

Note:
1. After ESP32-C6 receives the control frame of security-mode configuration, it will execute the operations in

accordance with the defined security mode.
2. The data lengths before and after symmetric encryption/decryptionmust stay the same. It also supports in-place

encryption and decryption.

The Flow Chart of BluFi

Espressif Systems 2247
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.bluetooth.com/blog/the-fundamental-concepts-of-bluetooth-mesh-networking-part-1
https://www.bluetooth.com/blog/the-fundamental-concepts-of-bluetooth-mesh-networking-part-2
https://www.bluetooth.com/blog/bluetooth-mesh-networking-series-friendship
https://www.bluetooth.com/blog/management-of-devices-bluetooth-mesh-network
https://www.bluetooth.com/blog/bluetooth-mesh-security-overview
https://www.bluetooth.com/blog/provisioning-a-bluetooth-mesh-network-part-1
https://www.bluetooth.com/blog/provisioning-a-bluetooth-mesh-network-part-2
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 35: BluFi Flow Chart

Espressif Systems 2248
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

The Frame Formats Defined in BluFi The frame formats for the communication between the mobile phone App
and ESP32-C6 are defined as follows:
The frame format with no fragment:

Field Value (Byte)
Type (Least Significant Bit) 1
Frame Control 1
Sequence Number 1
Data Length 1
Data ${Data Length}
CheckSum (Most Significant Bit) 2

If the frag frame bit in the Frame Control field is enabled, there would be a 2-byte Total Content Length field in
theData field. This Total Content Length field indicates the length of the remaining part of the frame and also tells
the remote how much memory needs to be allocated.
The frame format with fragments:

Field Value (Byte)
Type (Least Significant Bit) 1
Frame Control (Frag) 1
Sequence Number 1
Data Length 1
Data • Total Content Length: 2

• Content: ${Data Length} - 2

CheckSum (Most Significant Bit) 2

Normally, the control frame does not contain data bits, except for ACK Frame.
The format of ACK Frame:

Field Value (Byte)
Type - ACK (Least Significant Bit) 1
Frame Control 1
Sequence Number 1
Data Length 1
Data Acked Sequence Number: 2
CheckSum (Most Significant Bit) 2

1. Type
Type field takes 1 byte and is divided into Type and Subtype. Type uses the lower two bits, indicating whether
the frame is a data frame or a control frame. Subtype uses the upper six bits, indicating the specific meaning
of this data frame or control frame.

• The control frame is not encrypted for the time being and supports to be verified.
• The data frame supports to be encrypted and verified.

1.1 Control Frame (Binary: 0x0 b'00)

Espressif Systems 2249
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Con-
trol
Frame

Implication Explanation Note

0x0
(b’
000000)

ACK The data field of the ACK
frame uses the same sequence
value of the frame to reply to.

The data field consumes a byte and its value is
the same as the sequence field of the frame to
reply to.

0x1
(b’
000001)

Set the ESP device to
the security mode.

To inform the ESP device of
the security mode to use when
sending data, which is allowed
to be reset multiple times dur-
ing the process. Each setting
affects the subsequent secu-
rity mode used.
If it is not set, the ESP device
will send the control frame
and data frame with no check-
sum and encryption by de-
fault. The data transmission
from the mobile phone to the
ESP device is controlled by
this control frame.

The data field consumes a byte. The higher four
bits are for the securitymode setting of the con-
trol frame, and the lower four bits are for the
security mode setting of the data frame.

• b’0000: no checksum and no encryp-
tion;

• b’0001: with checksum but no encryp-
tion;

• b’0010: no checksum but with encryp-
tion;

• b’0011: with both checksum and en-
cryption.

0x2
(b’
000010)

Set the opmode of
Wi-Fi.

The frame contains opmode
settings for configuring the
Wi-Fi mode of the ESP de-
vice.

data[0] is for opmode settings, including:
• 0x00: NULL
• 0x01: STA
• 0x02: SoftAP
• 0x03: SoftAP & STA

Please set the SSID/Password/MaxConnection
Number of the AP mode in the first place if an
AP gets involved.

0x3
(b’
000011)

Connect the ESP de-
vice to the AP.

To notify the ESP device that
the essential information has
been sent and it is allowed to
connect to the AP.

No data field is contained.

0x4
(b’
000100)

Disconnect the ESP
device from the AP.

No data field is contained.

0x5
(b’
000101)

To get the informa-
tion of the ESP de-
vice’s Wi-Fi mode
and it’s status.

• No data field is contained. When receiv-
ing this control frame, the ESP device
will send back a follow-up frame of Wi-
Fi connection state report to the mobile
phone with the information of the cur-
rent opmode, connection status, SSID,
and so on.

• The types of information sent to the mo-
bile phone is defined by the application
installed on the phone.

0x6
(b’
000110)

Disconnect the STA
device from the
SoftAP (in SoftAP
mode).

Data[0~5] is taken as the MAC address for the
STA device. If there is a second STA device,
then it uses data[6-11] and the rest can be done
in the same manner.

0x7
(b’
000111)

Get the version infor-
mation.

0x8
(b’
001000)

Disconnect the Blue-
tooth LE GATT link.

The ESP device will disconnect the Bluetooth
LE GATT link after receives this command.

0x9
(b’
001001)

Get the Wi-Fi list. To get the ESP device to
scan the Wi-Fi access points
around.

No data field is contained. When receiving this
control frame, the ESP device will send back
a follow-up frame of Wi-Fi list report to the
mobile phone.

Espressif Systems 2250
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

1.2 Data Frame (Binary: 0x1 b'01)

Espressif Systems 2251
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Data
Frame

Implication Explanation Note

0x0
(b’
000000)

Send the negotiation
data.

The negotiation data will be
sent to the callback function
registered in the application
layer.

The length of the data depends on the length
field.

0x1
(b’
000001)

Send the SSID for
STA mode.

To send the BSSID of the AP
for the STA device to connect
under the condition that the
SSID is hidden.

Please refer to Note 1 below.

0x2
(b’
000010)

Send the SSID for
STA mode.

To send the SSID of the AP
for the STA device to connect.

Please refer to Note 1 below.

0x3
(b’
000011)

Send the password for
STA mode.

To send the password of the
AP for the STA device to con-
nect.

Please refer to Note 1 below.

0x4
(b’
000100)

Send the SSID for
SoftAP mode.

Please refer to Note 1 below.

0x5
(b’
000101)

Send the password for
SoftAPmode.

Please refer to Note 1 below.

0x6
(b’
000110)

Set the maximum
connection number
for SoftAP mode.

data[0] represents the value of the connection
number, ranging from 1 to 4. When the trans-
mission direction is ESP device to the mobile
phone, it means to provide the mobile phone
with the needed information.

0x7
(b’
000111)

Set the authentication
mode for SoftAP
mode.

data[0]：
• 0x00: OPEN
• 0x01: WEP
• 0x02: WPA_PSK
• 0x03: WPA2_PSK
• 0x04: WPA_WPA2_PSK

When the transmission direction is from the
ESP device to the mobile phone, it means to
provide the mobile phone with the needed in-
formation.

0x8
(b’
001000)

Set the number of
channels for SoftAP
mode.

data[0] represents the quantity of the supported
channels, ranging from 1 to 14. When the
transmission direction is from the ESP device
to the mobile phone, it means to provide the
mobile phone with the needed information.

0x9
(b’
001001)

Username It provides the username of
the GATT client when using
encryption of enterprise level.

The length of the data depends on the length
field.

0xa
(b’
001010)

CA Certification It provides the CA Certifica-
tion when using encryption of
enterprise level.

Please refer to Note 2 below.

0xb
(b’
001011)

Client Certification It provides the client certifica-
tion when using encryption of
enterprise level. Whether the
private key is contained or not
depends on the content of the
certification.

Please refer to Note 2 below.

0xc
(b’
001100)

Server Certification It provides the sever certifica-
tion when using encryption of
enterprise level. Whether the
private key is contained or not
depends on the content of the
certification.

Please refer to Note 2 below.

0xd
(b’
001101)

Client Private Key It provides the private key of
the client when using encryp-
tion of enterprise level.

Please refer to Note 2 below.

0xe
(b’
001110)

Server Private Key It provides the private key of
the sever when using encryp-
tion of enterprise level.

Please refer to Note 2 below.

0xf
(b’
001111)

Wi-Fi Connection
State Report

To notify the phone of the
ESP device’s Wi-Fi status,
including STA status and Sof-
tAP status. It is for the
STA device to connect to
the mobile phone or the Sof-
tAP. However, when the mo-
bile phone receives the Wi-
Fi status, it can reply to other
frames in addition to this
frame.

data[0] represents opmode, including:
• 0x00: NULL
• 0x01: STA
• 0x02: SoftAP
• 0x03: SoftAP & STA

data[1]: connection state of the STA device.
0x0 indicates a connection state with IP ad-
dress, 0x1 represent a disconnected state, 0x2
indicates a connecting state, and 0x3 indicates
a connection state but no IP address.
data[2]: connection state of SoftAP. That is,
how many STA devices have been connected.
data[3] and the subsequent is in accordance
with the format of SSID/BSSID information.
If device is in connecting state, maximum Wi-
Fi reconnecting time would be included here.
If device is in disconnected state, Wi-Fi con-
nection end reason and RSSI would be included
here.

0x10
(b’
010000)

Version • data[0]= great version
• data[1]= sub version

0x11
(b’
010001)

Wi-Fi List To send the Wi-Fi list to ESP
device.

The format of the data frame is length + RSSI
+ SSID. It supports to be sent into fragments if
the data length is too long.

0x12
(b’
010010)

Report Error To notify the mobile phone
that there is an error with
BluFi.

• 0x00: sequence error
• 0x01: checksum error
• 0x02: decrypt error
• 0x03: encrypt error
• 0x04: init security error
• 0x05: dh malloc error
• 0x06: dh param error
• 0x07: read param error
• 0x08: make public error
• 0x09: data format error
• 0x0a: calculate MD5 error
• 0x0b: Wi-Fi scan error

0x13
(b’
010011)

Custom Data To send or receive custom
data.

The data frame supports to be sent into frag-
ments if the data length is too long.

0x14
(b’
010100)

Set the maximum
Wi-Fi reconnecting
time.

data[0] represents the maximum Wi-Fi recon-
necting time.

0x15
(b’
010101)

Set the Wi-Fi con-
nection end reason.

data[0] represents the Wi-Fi connection end
reason, whose type shall be same with struct
wifi_err_reason_t.

0x16
(b’
010110)

Set the RSSI at Wi-Fi
connection end.

data[0] represents the RSSI at Wi-Fi connec-
tion end. If there is no meaningful RSSI in the
connection end, this value shall be the mean-
ingless one, which is -128.

Espressif Systems 2252
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note:
• Note 1: The length of the data depends on the data length field. When the transmission direction is from the
ESP device to the mobile phone, it means to provide the mobile phone with the needed information.

• Note 2: The length of the data depends on the data length field. The frame supports to be fragmented if the
data length is not long enough.

2. Frame Control
The Frame Control field takes one byte and each bit has a different meaning.

Bit Meaning
0x01 Indicates whether the frame is encrypted.

• 1 means encrypted.
• 0 means unencrypted.

The encrypted part of the frame includes the full clear data before the DATA field is
encrypted (no checksum). Control frame is not encrypted, so this bit is 0.

0x02 Indicates whether a frame contains a checksum (such as SHA1, MD5, CRC) for the end
of the frame. Data field includes sequence, data length, and clear text. Both the control
frame and the data frame can choose whether to contain a check bit or not.

0x04 Indicates the data direction.
• 0 means from the mobile phone to the ESP device.
• 1 means from the ESP device to the mobile phone.

0x08 Indicates whether the other person is required to reply to an ACK.
• 0 indicates not required to reply to an ACK.
• 1 indicates required to reply to an ACK.

0x10 Indicates whether there are subsequent data fragments.
• 0 indicates that there is no subsequent data fragment for this frame.
• 1 indicates that there are subsequent data fragments which used to transmit longer
data.

In the case of a frag frame, the total length of the current content section + subsequent
content section is given in the first two bytes of the data field (that is, the content data
of the maximum support 64 K).

0x10~0x80 Reserved

3. Sequence Number
The Sequence Number field is the field for sequence control. When a frame is sent, the value of this field is
automatically incremented by 1 regardless of the type of frame, which prevents Replay Attack. The sequence
would be cleared after each reconnection.

4. Data Length
The Data Length field indicates the length of the data field, which does not include CheckSum.

5. Data
Content of the Data field can be different according to various values of Type or Subtype. Please refer to the
table above.

6. CheckSum
The CheckSum field takes two bytes, which is used to check "sequence + data length + clear text data".

The Security Implementation of ESP32-C6
1. Securing Data

To ensure that the transmission of the Wi-Fi SSID and password is secure, the message needs to be encrypted
using symmetric encryption algorithms, such as AES, DES, and so on. Before using symmetric encryption
algorithms, the devices are required to negotiate (or generate) a shared key using an asymmetric encryption
algorithm (DH, RSA, ECC, etc).

2. Ensuring Data Integrity
To ensure data integrity, you need to add a checksum algorithm, such as SHA1, MD5, CRC, etc.

Espressif Systems 2253
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

3. Securing Identity (Signature)
Algorithm like RSA can be used to secure identity. But for DH, it needs other algorithms as an companion for
signature.

4. Replay Attack Prevention
It is added to the Sequence Number field and used during the checksum verification.
For the coding of ESP32-C6, you can determine and develop the security processing, such as key negotiation.
The mobile application sends the negotiation data to ESP32-C6, and then the data will be sent to the application
layer for processing. If the application layer does not process it, you can use the DH encryption algorithm
provided by BluFi to negotiate the key.
The application layer needs to register several security-related functions to BluFi:

typedef void (*esp_blufi_negotiate_data_handler_t)(uint8_t *data, int len, uint8_t␣
↪→**output_data, int *output_len, bool *need_free)

This function is for ESP32-C6 to receive normal data during negotiation. After processing is completed, the data will
be transmitted using Output_data and Output_len.
BluFi will send output_data from Negotiate_data_handler after Negotiate_data_handler is called.
Here are two "*", which means the length of the data to be emitted is unknown. Therefore, it requires the func-
tion to allocate itself (malloc) or point to the global variable to inform whether the memory needs to be freed by
NEED_FREE.

typedef int (* esp_blufi_encrypt_func_t)(uint8_t iv8, uint8_t *crypt_data, int␣
↪→crypt_len)

The data to be encrypted and decrypted must be in the same length. The IV8 is an 8-bit sequence value of frames,
which can be used as a 8-bit of IV.

typedef int (* esp_blufi_decrypt_func_t)(uint8_t iv8, uint8_t *crypt_data, int␣
↪→crypt_len)

The data to be encrypted and decrypted must be in the same length. The IV8 is an 8-bit sequence value of frames,
which can be used as an 8-bit of IV.

typedef uint16_t (*esp_blufi_checksum_func_t)(uint8_t iv8, uint8_t *data, int len)

This function is used to compute CheckSum and return a value of CheckSum. BluFi uses the returned value to
compare the CheckSum of the frame.

5. Implementing Stronger Security
The default encryption/decryption logic in this example is intended for demonstration purposes only.
If you require a higher level of security, it is recommended to implement your own encryption, decryption, authen-
tication, and checksum algorithms by customizing the security callbacks in the BluFi framework.

esp_err_t esp_blufi_register_callbacks(esp_blufi_callbacks_t *callbacks)

GATT Related Instructions

UUID BluFi Service UUID: 0xFFFF, 16 bit
BluFi (the mobile > ESP32-C6): 0xFF01, writable
Blufi (ESP32-C6 > the mobile phone): 0xFF02, readable and callable

4.4 Bootloader

Espressif Systems 2254
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

The ESP-IDF Software Bootloader performs the following functions:
1. Minimal initial configuration of internal modules;
2. Initialize Flash Encryption and/or Secure features, if configured;
3. Select the application partition to boot, based on the partition table and ota_data (if any);
4. Load this image to RAM (IRAM & DRAM) and transfer management to the image that was just loaded.

Bootloader is located at the address 0x0 in the flash.
For a full description of the startup process including the ESP-IDF bootloader, see Application Startup Flow.

4.4.1 Bootloader Compatibility

It is recommended to update to newer versions of ESP-IDF: when they are released. The OTA (over the air) update
process can flash new apps in the field but cannot flash a new bootloader. For this reason, the bootloader supports
booting apps built from newer versions of ESP-IDF.
The bootloader does not support booting apps from older versions of ESP-IDF. When updating ESP-IDF manually
on an existing product that might need to downgrade the app to an older version, keep using the older ESP-IDF
bootloader binary as well.

Note: If testing an OTA update for an existing product in production, always test it using the same ESP-IDF
bootloader binary that is deployed in production.

SPI Flash Configuration

Each ESP-IDF application or bootloader .bin file contains a header withCONFIG_ESPTOOLPY_FLASHMODE,CON-
FIG_ESPTOOLPY_FLASHFREQ, CONFIG_ESPTOOLPY_FLASHSIZE embedded in it. These are used to configure
the SPI flash during boot.
The First stage bootloader in ROM reads the Second stage bootloader header information from flash and uses this
infomation to load the rest of the Second stage bootloader from flash. However, at this time the system clock speed
is lower than configured and not all flash modes are supported. When the Second stage bootloader then runs, it will
reconfigure the flash using values read from the currently selected app binary's header (and NOT from the Second
stage bootloader header). This allows an OTA update to change the SPI flash settings in use.

4.4.2 Log Level

The default bootloader log level is "Info". By setting the CONFIG_BOOTLOADER_LOG_LEVEL option, it's possible
to increase or decrease this level. This log level is separate from the log level used in the app (see Logging library).
Reducing bootloader log verbosity can improve the overall project boot time by a small amount.

4.4.3 Factory Reset

Sometimes it is desirable to have a way for the device to fall back to a known-good state, in case of some problem
with an update.
To roll back to the original "factory" device configuration and clear any user settings, configure the config item
CONFIG_BOOTLOADER_FACTORY_RESET in the bootloader.
The factory reset mechanism allows the device to be factory reset in two ways:

• Clear one or more data partitions. The CONFIG_BOOTLOADER_DATA_FACTORY_RESET option allows
users to specify which data partitions will be erased when the factory reset is executed.
Users can specify the names of partitions as a comma-delimited list with optional spaces for readability. (Like
this: nvs, phy_init, nvs_custom).

Espressif Systems 2255
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Make sure that the names of partitions specified in the option are the same as those found in the partition table.
Partitions of type "app" cannot be specified here.

• Boot from "factory" app partition. Enabling the CONFIG_BOOTLOADER_OTA_DATA_ERASE option will
cause the device to boot from the default "factory" app partition after a factory reset (or if there is no factory
app partition in the partition table then the default ota app partition is selected instead). This reset process
involves erasing the OTA data partition which holds the currently selected OTA partition slot. The "factory"
app partition slot (if it exists) is never updated via OTA, so resetting to this allows reverting to a "known good"
firmware application.

Either or both of these configuration options can be enabled independently.
In addition, the following configuration options control the reset condition:

• CONFIG_BOOTLOADER_NUM_PIN_FACTORY_RESET- The input GPIO number used to trigger a factory
reset. This GPIO must be pulled low or high (configurable) on reset to trigger this.

• CONFIG_BOOTLOADER_HOLD_TIME_GPIO- this is hold time of GPIO for reset/test mode (by default 5
seconds). The GPIO must be held continuously for this period of time after reset before a factory reset or test
partition boot (as applicable) is performed.

• CONFIG_BOOTLOADER_FACTORY_RESET_PIN_LEVEL - configure whether a factory reset should trigger
on a high or low level of the GPIO. If the GPIO has an internal pullup then this is enabled before the pin is
sampled, consult the ESP32-C6 datasheet for details on pin internal pullups.

If an application needs to know if the factory reset has occurred, users can call the function boot-
loader_common_get_rtc_retain_mem_factory_reset_state().

• If the status is read as true, the function will return the status, indicating that the factory reset has occurred.
The function then resets the status to false for subsequent factory reset judgement.

• If the status is read as false, the function will return the status, indicating that the factory reset has not occurred,
or the memory where this status is stored is invalid.

Note that this feature reserves some RTC FAST memory (the same size as the CON-
FIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP feature).

4.4.4 Boot from Test Firmware

It's possible to write a special firmware app for testing in production, and boot this firmware when needed. The
project partition table will need a dedicated app partition entry for this testing app, type app and subtype test (see
Partition Tables).
Implementing a dedicated test app firmware requires creating a totally separate ESP-IDF project for the test app (each
project in ESP-IDF only builds one app). The test app can be developed and tested independently of the main project,
and then integrated at production testing time as a pre-compiled .bin file which is flashed to the address of the main
project's test app partition.
To support this functionality in the main project's bootloader, set the configuration item CON-
FIG_BOOTLOADER_APP_TEST and configure the following two items:

• CONFIG_BOOTLOADER_NUM_PIN_APP_TEST - GPIO number to boot TEST partition. The selected GPIO
will be configured as an input with internal pull-up enabled. To trigger a test app, this GPIO must be pulled
low on reset.
Once the GPIO input is released (allowing it to be pulled up) and the device has been reboot, the normally
configured application will boot (factory or any OTA app partition slot).

• CONFIG_BOOTLOADER_HOLD_TIME_GPIO - this is hold time of GPIO for reset/test mode (by default 5
seconds). The GPIO must be held low continuously for this period of time after reset before a factory reset or
test partition boot (as applicable) is performed.

4.4.5 Rollback

Rollback and anti-rollback features must be configured in the bootloader as well.
Consult the App rollback and Anti-rollback sections in the OTA API reference document.

Espressif Systems 2256
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.4.6 Watchdog

By default, the hardware RTCWatchdog timer remains running while the bootloader is running and will automatically
reset the chip if no app has successfully started after 9 seconds.

• The timeout period can be adjusted by setting CONFIG_BOOTLOADER_WDT_TIME_MS and recompiling the
bootloader.

• The app's behaviour can be adjusted so the RTC Watchdog remains enabled after app startup. The Watch-
dog would need to be explicitly reset (i.e., fed) by the app to avoid a reset. To do this, set the CON-
FIG_BOOTLOADER_WDT_DISABLE_IN_USER_CODE option, modify the app as needed, and then recom-
pile the app.

• The RTC Watchdog can be disabled in the bootloader by disabling the CON-
FIG_BOOTLOADER_WDT_ENABLE setting and recompiling the bootloader. This is not recommended.

4.4.7 Bootloader Size

When enabling additional bootloader functions, including Flash Encryption or Secure Boot, and especially if setting
a high CONFIG_BOOTLOADER_LOG_LEVEL level, then it is important to monitor the bootloader .bin file's size.
When using the default CONFIG_PARTITION_TABLE_OFFSET value 0x8000, the size limit is 0x8000 bytes.
If the bootloader binary is too large, then the bootloader build will fail with an error "Bootloader binary size [..] is
too large for partition table offset". If the bootloader binary is flashed anyhow then the ESP32-C6 will fail to boot -
errors will be logged about either invalid partition table or invalid bootloader checksum.
Options to work around this are:

• Set bootloader compiler optimization back to "Size" if it has been changed from this default value.
• Reduce bootloader log level. Setting log level to Warning, Error or None all significantly reduce the final binary
size (but may make it harder to debug).

• Set CONFIG_PARTITION_TABLE_OFFSET to a higher value than 0x8000, to place the partition table later
in the flash. This increases the space available for the bootloader. If the partition table CSV file con-
tains explicit partition offsets, they will need changing so no partition has an offset lower than CON-
FIG_PARTITION_TABLE_OFFSET + 0x1000. (This includes the default partition CSV files supplied
with ESP-IDF.)

When Secure Boot V2 is enabled, there is also an absolute binary size limit of 64 KB (0x10000 bytes) (excluding the
4 KB signature), because the bootloader is first loaded into a fixed size buffer for verification.

4.4.8 Fast Boot from Deep-Sleep

The bootloader has the CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP option which allows the
wake-up time from Deep-sleep to be reduced (useful for reducing power consumption). This option is available
when CONFIG_SECURE_BOOT option is disabled. Reduction of time is achieved due to the lack of image verifi-
cation. During the first boot, the bootloader stores the address of the application being launched in the RTC FAST
memory. And during the awakening, this address is used for booting without any checks, thus fast loading is achieved.

4.4.9 Custom Bootloader

The current bootloader implementation allows a project to extend it or modify it. There are two ways of doing it: by
implementing hooks or by overriding it. Both ways are presented in custom_bootloader folder in ESP-IDF examples:

• bootloader_hooks which presents how to connect some hooks to the bootloader initialization
• bootloader_override which presents how to override the bootloader implementation

In the bootloader space, you cannot use the drivers and functions from other components. If necessary, then the
required functionality should be placed in the project's bootloader_components directory (note that this will increase
its size).

Espressif Systems 2257
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/custom_bootloader
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

If the bootloader grows too large then it can collide with the partition table, which is flashed at offset 0x8000 by
default. Increase the partition table offset value to place the partition table later in the flash. This increases the space
available for the bootloader.

4.5 Build System

This document explains the implementation of the ESP-IDF build system and the concept of "components". Read
this document if you want to know how to organize and build a new ESP-IDF project or component.

4.5.1 Overview

An ESP-IDF project can be seen as an amalgamation of a number of components. For example, for a web server
that shows the current humidity, there could be:

• The ESP-IDF base libraries (libc, ROM bindings, etc)
• The Wi-Fi drivers
• A TCP/IP stack
• The FreeRTOS operating system
• A web server
• A driver for the humidity sensor
• Main code tying it all together

ESP-IDF makes these components explicit and configurable. To do that, when a project is compiled, the build system
will look up all the components in the ESP-IDF directories, the project directories and (optionally) in additional
custom component directories. It then allows the user to configure the ESP-IDF project using a text-based menu
system to customize each component. After the components in the project are configured, the build system will
compile the project.

Concepts

• A "project" is a directory that contains all the files and configuration to build a single "app" (executable), as
well as additional supporting elements such as a partition table, data/filesystem partitions, and a bootloader.

• "Project configuration" is held in a single file called sdkconfig in the root directory of the project. This
configuration file is modified via idf.py menuconfig to customize the configuration of the project. A
single project contains exactly one project configuration.

• An "app" is an executable that is built by ESP-IDF. A single project will usually build two apps - a "project
app" (the main executable, ie your custom firmware) and a "bootloader app" (the initial bootloader program
which launches the project app).

• "components" are modular pieces of standalone code that are compiled into static libraries (.a files) and linked
to an app. Some are provided by ESP-IDF itself, others may be sourced from other places.

• "Target" is the hardware for which an application is built. A full list of supported targets in your version of
ESP-IDF can be seen by running idf.py --list-targets.

Some things are not part of the project:
• "ESP-IDF" is not part of the project. Instead, it is standalone, and linked to the project via the IDF_PATH
environment variable which holds the path of the esp-idf directory. This allows the IDF framework to be
decoupled from your project.

• The toolchain for compilation is not part of the project. The toolchain should be installed in the system com-
mand line PATH.

4.5.2 Using the Build System

Espressif Systems 2258
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

idf.py

The idf.py command-line tool provides a front-end for easily managing your project builds. It manages the fol-
lowing tools:

• CMake, which configures the project to be built
• Ninja which builds the project
• esptool.py for flashing the target.

You can read more about configuring the build system using idf.py here.

Using CMake Directly

idf.py is a wrapper around CMake for convenience. However, you can also invoke CMake directly if you prefer.
When idf.py does something, it prints each command that it runs for easy reference. For example, the idf.
py build command is the same as running these commands in a bash shell (or similar commands for Windows
Command Prompt):

mkdir -p build
cd build
cmake .. -G Ninja # or 'Unix Makefiles'
ninja

In the above list, the cmake command configures the project and generates build files for use with the final build
tool. In this case, the final build tool is Ninja: running ninja actually builds the project.
It's not necessary to run cmakemore than once. After the first build, you only need to run ninja each time. ninja
will automatically re-invoke cmake if the project needs reconfiguration.
If using CMake with ninja or make, there are also targets for more of the idf.py sub-commands. For example,
running make menuconfig or ninja menuconfig in the build directory will work the same as idf.py
menuconfig.

Note: If you're already familiar with CMake, youmay find the ESP-IDF CMake-based build system unusual because
it wraps a lot of CMake's functionality to reduce boilerplate. Seewriting pure CMake components for some information
about writing more "CMake style" components.

Flashing with Ninja or Make It's possible to build and flash directly from ninja or make by running a target like:

ninja flash

Or:

make app-flash

Available targets are: flash, app-flash (app only), bootloader-flash (bootloader only).
When flashing this way, optionally set the ESPPORT and ESPBAUD environment variables to specify the serial port
and baud rate. You can set environment variables in your operating system or IDE project. Alternatively, set them
directly on the command line:

ESPPORT=/dev/ttyUSB0 ninja flash

Note: Providing environment variables at the start of the command like this is Bash shell Syntax. It will work on
Linux and macOS. It won't work when using Windows Command Prompt, but it will work when using Bash-like
shells on Windows.

Espressif Systems 2259
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://cmake.org
https://ninja-build.org
https://github.com/espressif/esptool/#readme
https://cmake.org
https://ninja-build.org
https://cmake.org
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Or:

make -j3 app-flash ESPPORT=COM4 ESPBAUD=2000000

Note: Providing variables at the end of the command line is make syntax, and works for make on all platforms.

Using CMake in an IDE

You can also use an IDEwith CMake integration. The IDEwill want to know the path to the project'sCMakeLists.
txt file. IDEs with CMake integration often provide their own build tools (CMake calls these "generators") to build
the source files as part of the IDE.
When adding custom non-build steps like "flash" to the IDE, it is recommended to executeidf.py for these "special"
commands.
For more detailed information about integrating ESP-IDF with CMake into an IDE, see Build System Metadata.

Setting up the Python Interpreter

ESP-IDF works well with Python version 3.7+.
idf.py and other Python scripts will run with the default Python interpreter, i.e. python. You can switch to a
different one like python3 $IDF_PATH/tools/idf.py ..., or you can set up a shell alias or another script
to simplify the command.
If using CMake directly, running cmake -D PYTHON=python3 ... will cause CMake to override the default
Python interpreter.
If using an IDE with CMake, setting the PYTHON value as a CMake cache override in the IDE UI will override the
default Python interpreter.
To manage the Python version more generally via the command line, check out the tools pyenv or virtualenv. These
let you change the default Python version.

4.5.3 Example Project

An example project directory tree might look like this:

- myProject/
- CMakeLists.txt
- sdkconfig
- components/ - component1/ - CMakeLists.txt

- Kconfig
- src1.c

- component2/ - CMakeLists.txt
- Kconfig
- src1.c
- include/ - component2.h

- main/ - CMakeLists.txt
- src1.c
- src2.c

- build/

This example "myProject" contains the following elements:
• A top-level project CMakeLists.txt file. This is the primary file which CMake uses to learn how to build
the project; and may set project-wide CMake variables. It includes the file /tools/cmake/project.cmake which
implements the rest of the build system. Finally, it sets the project name and defines the project.

Espressif Systems 2260
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/pyenv/pyenv#readme
https://virtualenv.pypa.io/en/stable/
https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/cmake/project.cmake
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• "sdkconfig" project configuration file. This file is created/updated when idf.py menuconfig runs, and
holds the configuration for all of the components in the project (including ESP-IDF itself). The "sdkconfig"
file may or may not be added to the source control system of the project.

• Optional "components" directory contains components that are part of the project. A project does not have to
contain custom components of this kind, but it can be useful for structuring reusable code or including third-
party components that aren't part of ESP-IDF. Alternatively, EXTRA_COMPONENT_DIRS can be set in the
top-level CMakeLists.txt to look for components in other places.

• "main" directory is a special component that contains source code for the project itself. "main" is a default
name, the CMake variable COMPONENT_DIRS includes this component but you can modify this variable.
See the renaming main section for more info. If you have a lot of source files in your project, we recommend
grouping most into components instead of putting them all in "main".

• "build" directory is where the build output is created. This directory is created by idf.py if it doesn't already
exist. CMake configures the project and generates interim build files in this directory. Then, after the main
build process is run, this directory will also contain interim object files and libraries as well as final binary
output files. This directory is usually not added to source control or distributed with the project source code.

Component directories each contain a component CMakeLists.txt file. This file contains variable definitions to
control the build process of the component, and its integration into the overall project. See Component CMakeLists
Files for more details.
Each component may also include a Kconfig file defining the component configuration options that can be set via
menuconfig. Some components may also include Kconfig.projbuild and project_include.cmake
files, which are special files for overriding parts of the project.

4.5.4 Project CMakeLists File

Each project has a single top-level CMakeLists.txt file that contains build settings for the entire project. By
default, the project CMakeLists can be quite minimal.

Minimal Example CMakeLists

Minimal project:

cmake_minimum_required(VERSION 3.16)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(myProject)

Mandatory Parts

The inclusion of these three lines, in the order shown above, is necessary for every project:
• cmake_minimum_required(VERSION 3.16) tells CMake the minimum version that is required to
build the project. ESP-IDF is designed to work with CMake 3.16 or newer. This line must be the first line in
the CMakeLists.txt file.

• include($ENV{IDF_PATH}/tools/cmake/project.cmake) pulls in the rest of the CMake
functionality to configure the project, discover all the components, etc.

• project(myProject) creates the project itself, and specifies the project name. The project name is used
for the final binary output files of the app - ie myProject.elf, myProject.bin. Only one project can
be defined per CMakeLists file.

Optional Project Variables

These variables all have default values that can be overridden for custom behavior. Look in
/tools/cmake/project.cmake for all of the implementation details.

Espressif Systems 2261
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/cmake/project.cmake
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• COMPONENT_DIRS: Directories to search for components. Defaults to IDF_PATH/components,
PROJECT_DIR/components, and EXTRA_COMPONENT_DIRS. Override this variable if you don't want
to search for components in these places.

• EXTRA_COMPONENT_DIRS: Optional list of additional directories to search for components. Paths can be
relative to the project directory, or absolute.

• COMPONENTS: A list of component names to build into the project. Defaults to all components found in the
COMPONENT_DIRS directories. Use this variable to "trim down" the project for faster build times. Note that
any component which "requires" another component via the REQUIRES or PRIV_REQUIRES arguments on
component registration will automatically have it added to this list, so the COMPONENTS list can be very short.

Any paths in these variables can be absolute paths, or set relative to the project directory.
To set these variables, use the cmake set command ie set(VARIABLE "VALUE"). The set() commands
should be placed after the cmake_minimum(...) line but before the include(...) line.

Renaming main Component

The build system provides special treatment to the main component. It is a component that gets automatically added
to the build provided that it is in the expected location, PROJECT_DIR/main. All other components in the build are
also added as its dependencies, saving the user from hunting down dependencies and providing a build that works right
out of the box. Renaming the main component causes the loss of these behind-the-scenes heavy lifting, requiring
the user to specify the location of the newly renamed component and manually specify its dependencies. Specifically,
the steps to renaming main are as follows:

1. Rename main directory.
2. Set EXTRA_COMPONENT_DIRS in the project CMakeLists.txt to include the renamed main directory.
3. Specify the dependencies in the renamed component's CMakeLists.txt file via REQUIRES or

PRIV_REQUIRES arguments on component registration.

Overriding Default Build Specifications

The build sets some global build specifications (compile flags, definitions, etc.) that gets used in compiling all sources
from all components.
For example, one of the default build specifications set is the compile option -Wextra. Suppose a user wants to use
override this with -Wno-extra, it should be done after project():

cmake_minimum_required(VERSION 3.16)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(myProject)

idf_build_set_property(COMPILE_OPTIONS "-Wno-error" APPEND)

This ensures that the compile options set by the user won't be overridden by the default build specifications, since the
latter are set inside project().

4.5.5 Component CMakeLists Files

Each project contains one or more components. Components can be part of ESP-IDF, part of the project's own
components directory, or added from custom component directories (see above).
A component is any directory in the COMPONENT_DIRS list which contains a CMakeLists.txt file.

Searching for Components

The list of directories in COMPONENT_DIRS is searched for the project's components. Directories in this list can
either be components themselves (ie they contain a CMakeLists.txt file), or they can be top-level directories whose
sub-directories are components.

Espressif Systems 2262
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://cmake.org/cmake/help/v3.16/command/set.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

When CMake runs to configure the project, it logs the components included in the build. This list can be useful for
debugging the inclusion/exclusion of certain components.

Multiple Components with the Same Name

When ESP-IDF is collecting all the components to compile, it will do this in the order specified by COMPO-
NENT_DIRS; by default, this means ESP-IDF's internal components first (IDF_PATH/components), then
any components in directories specified in EXTRA_COMPONENT_DIRS, and finally the project's components
(PROJECT_DIR/components). If two or more of these directories contain component sub-directories with the
same name, the component in the last place searched is used. This allows, for example, overriding ESP-IDF com-
ponents with a modified version by copying that component from the ESP-IDF components directory to the project
components directory and then modifying it there. If used in this way, the ESP-IDF directory itself can remain
untouched.

Note: If a component is overridden in an existing project by moving it to a new location, the project will not
automatically see the new component path. Run idf.py reconfigure (or delete the project build folder) and
then build again.

Minimal Component CMakeLists

The minimal component CMakeLists.txt file simply registers the component to the build system using
idf_component_register:

idf_component_register(SRCS "foo.c" "bar.c"
INCLUDE_DIRS "include"
REQUIRES mbedtls)

• SRCS is a list of source files (*.c, *.cpp, *.cc, *.S). These source files will be compiled into the com-
ponent library.

• INCLUDE_DIRS is a list of directories to add to the global include search path for any component which
requires this component, and also the main source files.

• REQUIRES is not actually required, but it is very often required to declare what other components this com-
ponent will use. See component requirements.

A library with the name of the component will be built and linked to the final app.
Directories are usually specified relative to the CMakeLists.txt file itself, although they can be absolute.
There are other arguments that can be passed to idf_component_register. These arguments are discussed
here.
See example component requirements and example component CMakeLists for more complete component CMake-
Lists.txt examples.

Preset Component Variables

The following component-specific variables are available for use inside component CMakeLists, but should not be
modified:

• COMPONENT_DIR: The component directory. Evaluates to the absolute path of the directory con-
taining CMakeLists.txt. The component path cannot contain spaces. This is the same as the
CMAKE_CURRENT_SOURCE_DIR variable.

• COMPONENT_NAME: Name of the component. Same as the name of the component directory.
• COMPONENT_ALIAS: Alias of the library created internally by the build system for the component.
• COMPONENT_LIB: Name of the library created internally by the build system for the component.

The following variables are set at the project level, but available for use in component CMakeLists:

Espressif Systems 2263
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• CONFIG_*: Each value in the project configuration has a corresponding variable available in cmake. All
names begin with CONFIG_. More information here.

• ESP_PLATFORM: Set to 1 when the CMake file is processed within the ESP-IDF build system.

Build/Project Variables

The following are some project/build variables that are available as build properties and whose values can be queried
using idf_build_get_property from the component CMakeLists.txt:

• PROJECT_NAME: Name of the project, as set in project CMakeLists.txt file.
• PROJECT_DIR: Absolute path of the project directory containing the project CMakeLists. Same as the
CMAKE_SOURCE_DIR variable.

• COMPONENTS: Names of all components that are included in this build, formatted as a semicolon-delimited
CMake list.

• IDF_VER: Git version of ESP-IDF (produced by git describe)
• IDF_VERSION_MAJOR, IDF_VERSION_MINOR, IDF_VERSION_PATCH: Components of ESP-IDF
version, to be used in conditional expressions. Note that this information is less precise than that provided
by IDF_VER variable. v4.0-dev-*, v4.0-beta1, v4.0-rc1 and v4.0 will all have the same values
of IDF_VERSION_* variables, but different IDF_VER values.

• IDF_TARGET: Name of the target for which the project is being built.
• PROJECT_VER: Project version.

– If CONFIG_APP_PROJECT_VER_FROM_CONFIG option is set, the value of CON-
FIG_APP_PROJECT_VER will be used.

– Else, if PROJECT_VER variable is set in project CMakeLists.txt file, its value will be used.
– Else, if the PROJECT_DIR/version.txt exists, its contents will be used as PROJECT_VER.
– Else, if the project is located inside a Git repository, the output of git description will be used.
– Otherwise, PROJECT_VER will be "1".

• EXTRA_PARTITION_SUBTYPES: CMake list of extra partition subtypes. Each subtype description is a
comma-separated string with type_name, subtype_name, numeric_value format. Components
may add new subtypes by appending them to this list.

Other build properties are listed here.

Controlling Component Compilation

To pass compiler options when compiling source files belonging to a particular component, use the tar-
get_compile_options function:

target_compile_options(${COMPONENT_LIB} PRIVATE -Wno-unused-variable)

To apply the compilation flags to a single source file, use the CMake set_source_files_properties command:

set_source_files_properties(mysrc.c
PROPERTIES COMPILE_FLAGS
-Wno-unused-variable

)

This can be useful if there is upstream code that emits warnings.
When using these commands, place them after the call to idf_component_register in the component
CMakeLists file.

4.5.6 Component Configuration

Each component can also have a Kconfig file, alongside CMakeLists.txt. This contains configuration settings
to add to the configuration menu for this component.
These settings are found under the "Component Settings" menu when menuconfig is run.

Espressif Systems 2264
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://cmake.org/cmake/help/v3.16/command/target_compile_options.html
https://cmake.org/cmake/help/v3.16/command/target_compile_options.html
https://cmake.org/cmake/help/v3.16/command/set_source_files_properties.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

To create a component Kconfig file, it is easiest to start with one of the Kconfig files distributed with ESP-IDF.
For an example, see Adding conditional configuration.

4.5.7 Preprocessor Definitions

The ESP-IDF build system adds the following C preprocessor definitions on the command line:
• ESP_PLATFORM : Can be used to detect that build happens within ESP-IDF.
• IDF_VER : Defined to a git version string. E.g. v2.0 for a tagged release or v1.0-275-g0efaa4f for
an arbitrary commit.

4.5.8 Component Requirements

When compiling each component, the ESP-IDF build system recursively evaluates its dependencies. This means each
component needs to declare the components that it depends on ("requires").

When Writing a Component

idf_component_register(...
REQUIRES mbedtls
PRIV_REQUIRES console spiffs)

• REQUIRES should be set to all components whose header files are #included from the public header files of
this component.

• PRIV_REQUIRES should be set to all components whose header files are #included from any source files in
this component, unless already listed in REQUIRES. Also, any component which is required to be linked in
order for this component to function correctly.

• The values of REQUIRES and PRIV_REQUIRES should not depend on any configuration choices (CON-
FIG_xxx macros). This is because requirements are expanded before the configuration is loaded. Other
component variables (like include paths or source files) can depend on configuration choices.

• Not setting either or both REQUIRES variables is fine. If the component has no requirements except for the
Common component requirements needed for RTOS, libc, etc.

If a component only supports some target chips (values of IDF_TARGET) then it can specify RE-
QUIRED_IDF_TARGETS in the idf_component_register call to express these requirements. In this case,
the build system will generate an error if the component is included in the build, but does not support the selected
target.

Note: In CMake terms, REQUIRES& PRIV_REQUIRES are approximate wrappers around the CMake functions
target_link_libraries(... PUBLIC ...) and target_link_libraries(... PRIVATE .
..).

Example of Component Requirements

Imagine there is a car component, which uses the engine component, which uses the spark_plug component:

- autoProject/
- CMakeLists.txt
- components/ - car/ - CMakeLists.txt

- car.c
- car.h

- engine/ - CMakeLists.txt
- engine.c
- include/ - engine.h

(continues on next page)

Espressif Systems 2265
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
- spark_plug/ - CMakeLists.txt

- spark_plug.c
- spark_plug.h

Car Component The car.h header file is the public interface for the car component. This header includes
engine.h directly because it uses some declarations from this header:

/* car.h */
#include "engine.h"

#ifdef ENGINE_IS_HYBRID
#define CAR_MODEL "Hybrid"
#endif

And car.c includes car.h as well:

/* car.c */
#include "car.h"

This means the car/CMakeLists.txt file needs to declare that car requires engine:

idf_component_register(SRCS "car.c"
INCLUDE_DIRS "."
REQUIRES engine)

• SRCS gives the list of source files in the car component.
• INCLUDE_DIRS gives the list of public include directories for this component. Because the public interface
is car.h, the directory containing car.h is listed here.

• REQUIRES gives the list of components required by the public interface of this component. Because car.h
is a public header and includes a header from engine, we include engine here. This makes sure that any
other component which includes car.h will be able to recursively include the required engine.h also.

EngineComponent Theengine component also has a public header fileinclude/engine.h, but this header
is simpler:

/* engine.h */
#define ENGINE_IS_HYBRID

void engine_start(void);

The implementation is in engine.c:

/* engine.c */
#include "engine.h"
#include "spark_plug.h"

...

In this component, engine depends onspark_plug but this is a private dependency. spark_plug.h is needed
to compile engine.c, but not needed to include engine.h.
This means that the engine/CMakeLists.txt file can use PRIV_REQUIRES:

idf_component_register(SRCS "engine.c"
INCLUDE_DIRS "include"
PRIV_REQUIRES spark_plug)

Espressif Systems 2266
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

As a result, source files in the car component don't need the spark_plug include directories added to their
compiler search path. This can speed up compilation, and stops compiler command lines from becoming longer than
necessary.

Spark Plug Component The spark_plug component doesn't depend on anything else. It has a public header
file spark_plug.h, but this doesn't include headers from any other components.
This means that the spark_plug/CMakeLists.txt file doesn't need any REQUIRES or PRIV_REQUIRES
clauses:

idf_component_register(SRCS "spark_plug.c"
INCLUDE_DIRS ".")

Source File Include Directories

Each component's source file is compiled with these include path directories, as specified in the passed arguments to
idf_component_register:

idf_component_register(..
INCLUDE_DIRS "include"
PRIV_INCLUDE_DIRS "other")

• The current component's INCLUDE_DIRS and PRIV_INCLUDE_DIRS.
• The INCLUDE_DIRS belonging to all other components listed in the REQUIRES and PRIV_REQUIRES
parameters (ie all the current component's public and private dependencies).

• Recursively, all of the INCLUDE_DIRS of those components REQUIRES lists (ie all public dependencies of
this component's dependencies, recursively expanded).

Main Component Requirements

The component named main is special because it automatically requires all other components in the build. So it's
not necessary to pass REQUIRES or PRIV_REQUIRES to this component. See renaming main for a description of
what needs to be changed if no longer using the main component.

Common Component Requirements

To avoid duplication, every component automatically requires some "common" IDF components even if they are not
mentioned explicitly. Headers from these components can always be included.
The list of common components is: cxx, newlib, freertos, esp_hw_support, heap, log, soc, hal, esp_rom,
esp_common, esp_system, xtensa/riscv.

Including Components in the Build

• By default, every component is included in the build.
• If you set the COMPONENTS variable to a minimal list of components used directly by your project, then the
build will expand to also include required components. The full list of components will be:

– Components mentioned explicitly in COMPONENTS.
– Those components' requirements (evaluated recursively).
– The "common" components that every component depends on.

• Setting COMPONENTS to the minimal list of required components can significantly reduce compile times.

Espressif Systems 2267
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Circular Dependencies

It's possible for a project to contain Component A that requires (REQUIRES or PRIV_REQUIRES) Component B,
and Component B that requires Component A. This is known as a dependency cycle or a circular dependency.
CMake will usually handle circular dependencies automatically by repeating the component library names twice on
the linker command line. However this strategy doesn't always work, and the build may fail with a linker error about
"Undefined reference to ...", referencing a symbol defined by one of the components inside the circular dependency.
This is particularly likely if there is a large circular dependency, i.e. A->B->C->D->A.
The best solution is to restructure the components to remove the circular dependency. In most cases, a software
architecture without circular dependencies has desirable properties of modularity and clean layering and will be more
maintainable in the long term. However, removing circular dependencies is not always possible.
To bypass a linker error caused by a circular dependency, the simplest workaround is to increase the CMake
LINK_INTERFACE_MULTIPLICITY property of one of the component libraries. This causes CMake to repeat
this library and its dependencies more than two times on the linker command line.
For example:

set_property(TARGET ${COMPONENT_LIB} APPEND PROPERTY LINK_INTERFACE_MULTIPLICITY 3)

• This line should be placed after idf_component_register in the component CMakeLists.txt file.
• If possible, place this line in the component that creates the circular dependency by depending on a lot of
other components. However, the line can be placed inside any component that is part of the cycle. Choosing
the component that owns the source file shown in the linker error message, or the component that defines the
symbol(s) mentioned in the linker error message, is a good place to start.

• Usually increasing the value to 3 (default is 2) is enough, but if this doesn't work then try increasing the number
further.

• Adding this option will make the linker command line longer, and the linking stage slower.

Advanced Workaround: Undefined Symbols If only one or two symbols are causing a circular dependency, and
all other dependencies are linear, then there is an alternative method to avoid linker errors: Specify the specific
symbols required for the "reverse" dependency as undefined symbols at link time.
For example, if component A depends on component B but component B also needs to reference reverse_ops
from component A (but nothing else), then you can add a line like the following to the component B CMakeLists.txt
to resolve the cycle at link time:

This symbol is provided by 'Component A' at link time
target_link_libraries(${COMPONENT_LIB} INTERFACE "-u reverse_ops")

• The -u argument means that the linker will always include this symbol in the link, regardless of dependency
ordering.

• This line should be placed after idf_component_register in the component CMakeLists.txt file.
• If 'Component B' doesn't need to access any headers of 'Component A', only link to a few symbol(s), then this
line can be used instead of any REQUIRES from B to A. This further simplifies the component structure in
the build system.

See the target_link_libraries documentation for more information about this CMake function.

Requirements in the Build System Implementation

• Very early in the CMake configuration process, the script expand_requirements.cmake is run. This
script does a partial evaluation of all component CMakeLists.txt files and builds a graph of component require-
ments (this graph may have cycles). The graph is used to generate a file component_depends.cmake in
the build directory.

• The main CMake process then includes this file and uses it to determine the list of components to include
in the build (internal BUILD_COMPONENTS variable). The BUILD_COMPONENTS variable is sorted so
dependencies are listed first, however, as the component dependency graph has cycles this cannot be guaranteed

Espressif Systems 2268
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://cmake.org/cmake/help/v3.16/prop_tgt/LINK_INTERFACE_MULTIPLICITY.html
https://cmake.org/cmake/help/v3.16/command/target_link_libraries.html#command:target_link_libraries
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

for all components. The order should be deterministic given the same set of components and component
dependencies.

• The value of BUILD_COMPONENTS is logged by CMake as "Component names: "
• Configuration is then evaluated for the components included in the build.
• Each component is included in the build normally and the CMakeLists.txt file is evaluated again to add the
component libraries to the build.

Component Dependency Order The order of components in the BUILD_COMPONENTS variable determines
other orderings during the build:

• Order that project_include.cmake files are included in the project.
• Order that the list of header paths is generated for compilation (via -I argument). (Note that for a given
component's source files, only that component's dependency's header paths are passed to the compiler.)

Adding Link-Time Dependencies The ESP-IDF CMake helper function
idf_component_add_link_dependency adds a link-only dependency between one component and
another. In almost all cases, it is better to use the PRIV_REQUIRES feature in idf_component_register to
create a dependency. However, in some cases, it's necessary to add the link-time dependency of another component
to this component, i.e., the reverse order to PRIV_REQUIRES (for example: Overriding Default Chip Drivers).
To make another component depend on this component at link time:

idf_component_add_link_dependency(FROM other_component)

Place this line after the line with idf_component_register.
It's also possible to specify both components by name:

idf_component_add_link_dependency(FROM other_component TO that_component)

4.5.9 Overriding Parts of the Project

project_include.cmake

For components that have build requirements that must be evaluated before any component CMakeLists files are
evaluated, you can create a file called project_include.cmake in the component directory. This CMake file
is included when project.cmake is evaluating the entire project.
project_include.cmake files are used inside ESP-IDF, for defining project-wide build features such as es-
ptool.py command line arguments and the bootloader "special app".
Unlike component CMakeLists.txt files, when including a project_include.cmake file the current
source directory (CMAKE_CURRENT_SOURCE_DIR and working directory) is the project directory. Use the vari-
able COMPONENT_DIR for the absolute directory of the component.
Note that project_include.cmake isn't necessary for the most common component uses, such as adding
include directories to the project, or LDFLAGS to the final linking step. These values can be customized via the
CMakeLists.txt file itself. See Optional Project Variables for details.
project_include.cmake files are included in the order given in BUILD_COMPONENTS variable (as logged
by CMake). This means that a component's project_include.cmake file will be included after it's all de-
pendencies' project_include.cmake files, unless both components are part of a dependency cycle. This is
important if a project_include.cmake file relies on variables set by another component. See also above.
Take great care when setting variables or targets in a project_include.cmake file. As the values are included
in the top-level project CMake pass, they can influence or break functionality across all components!

Espressif Systems 2269
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

KConfig.projbuild

This is an equivalent to project_include.cmake for Component Configuration KConfig files. If you want
to include configuration options at the top level of menuconfig, rather than inside the "Component Configuration"
sub-menu, then these can be defined in the KConfig.projbuild file alongside the CMakeLists.txt file.
Take care when adding configuration values in this file, as they will be included across the entire project configuration.
Where possible, it's generally better to create a KConfig file for Component Configuration.
project_include.cmake files are used inside ESP-IDF, for defining project-wide build features such as es-
ptool.py command line arguments and the bootloader "special app".

Wrappers to Redefine or Extend Existing Functions

Thanks to the linker's wrap feature, it is possible to redefine or extend the behavior of an existing ESP-IDF function.
To do so, you will need to provide the following CMake declaration in your project's CMakeLists.txt file:

target_link_libraries(${COMPONENT_LIB} INTERFACE "-Wl,--wrap=function_to_redefine")

Where function_to_redefine is the name of the function to redefine or extend. This option will let
the linker replace all the calls to function_to_redefine functions in the binary libraries with calls to
__wrap_function_to_redefine function. Thus, you must define this new symbol in your application.
The linker will provide a new symbol named __real_function_to_redefine which points to the former
implementation of the function to redefine. It can be called from the new implementation, making it an extension of
the former one.
This mechanism is shown in the example build_system/wrappers. Check exam-
ples/build_system/wrappers/README.md for more details.

4.5.10 Configuration-Only Components

Special components which contain no source files, only Kconfig.projbuild and KConfig, can have a one-line
CMakeLists.txt file which calls the function idf_component_register() with no arguments specified.
This function will include the component in the project build, but no library will be built and no header files will be
added to any included paths.

4.5.11 Debugging CMake

For full details about CMake and CMake commands, see the CMake v3.16 documentation.
Some tips for debugging the ESP-IDF CMake-based build system:

• When CMake runs, it prints quite a lot of diagnostic information including lists of components and component
paths.

• Running cmake -DDEBUG=1 will produce more verbose diagnostic output from the IDF build system.
• Running cmake with the --trace or --trace-expand options will give a lot of information about
control flow. See the cmake command line documentation.

When included from a project CMakeLists file, the project.cmake file defines some utility modules and global
variables and then sets IDF_PATH if it was not set in the system environment.
It also defines an overridden custom version of the built-in CMake project function. This function is overridden
to add all of the ESP-IDF specific project functionality.

Warning On Undefined Variables

By default, the function of warnings on undefined variables is disabled.

Espressif Systems 2270
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/build_system/wrappers
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/build_system/wrappers/README.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/build_system/wrappers/README.md
https://cmake.org
https://cmake.org/cmake/help/v3.16/index.html
https://cmake.org/cmake/help/v3.16/manual/cmake.1.html#options
https://cmake.org
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

To enable this function, we can pass the --warn-uninitialized flag to CMake or pass the
--cmake-warn-uninitialized flag to idf.py so it will print a warning if an undefined variable is ref-
erenced in the build. This can be very useful to find buggy CMake files.
Browse the /tools/cmake/project.cmake file and supporting functions in /tools/cmake/ for more details.

4.5.12 Example Component CMakeLists

Because the build environment tries to set reasonable defaults that will work most of the time, component CMake-
Lists.txt can be very small or even empty (see Minimal Component CMakeLists). However, overriding pre-
set_component_variables is usually required for some functionality.
Here are some more advanced examples of component CMakeLists files.

Adding Conditional Configuration

The configuration system can be used to conditionally compile some files depending on the options selected in the
project configuration.
Kconfig:

config FOO_ENABLE_BAR
bool "Enable the BAR feature."
help

This enables the BAR feature of the FOO component.

CMakeLists.txt:

set(srcs "foo.c" "more_foo.c")

if(CONFIG_FOO_ENABLE_BAR)
list(APPEND srcs "bar.c")

endif()

idf_component_register(SRCS "${srcs}"
...)

This example makes use of the CMake if function and list APPEND function.
This can also be used to select or stub out an implementation, as such:
Kconfig:

config ENABLE_LCD_OUTPUT
bool "Enable LCD output."
help

Select this if your board has an LCD.

config ENABLE_LCD_CONSOLE
bool "Output console text to LCD"
depends on ENABLE_LCD_OUTPUT
help

Select this to output debugging output to the LCD

config ENABLE_LCD_PLOT
bool "Output temperature plots to LCD"
depends on ENABLE_LCD_OUTPUT
help

Select this to output temperature plots

CMakeLists.txt:

Espressif Systems 2271
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://cmake.org
https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/cmake/project.cmake
https://github.com/espressif/esp-idf/tree/b0f5707906b/tools/cmake/
https://cmake.org/cmake/help/v3.16/command/if.html
https://cmake.org/cmake/help/v3.16/command/list.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

if(CONFIG_ENABLE_LCD_OUTPUT)
set(srcs lcd-real.c lcd-spi.c)

else()
set(srcs lcd-dummy.c)

endif()

We need font if either console or plot is enabled
if(CONFIG_ENABLE_LCD_CONSOLE OR CONFIG_ENABLE_LCD_PLOT)

list(APPEND srcs "font.c")
endif()

idf_component_register(SRCS "${srcs}"
...)

Conditions Which Depend on the Target

The current target is available to CMake files via IDF_TARGET variable.
In addition to that, if target xyz is used (IDF_TARGET=xyz), then Kconfig variable CON-
FIG_IDF_TARGET_XYZ will be set.
Note that component dependencies may depend on IDF_TARGET variable, but not on Kconfig variables. Also one
can not use Kconfig variables in include statements in CMake files, but IDF_TARGET can be used in such context.

Source Code Generation

Some components will have a situation where a source file isn't supplied with the component itself but has to be
generated from another file. Say our component has a header file that consists of the converted binary data of a BMP
file, converted using a hypothetical tool called bmp2h. The header file is then included in as C source file called
graphics_lib.c:

add_custom_command(OUTPUT logo.h
COMMAND bmp2h -i ${COMPONENT_DIR}/logo.bmp -o log.h
DEPENDS ${COMPONENT_DIR}/logo.bmp
VERBATIM)

add_custom_target(logo DEPENDS logo.h)
add_dependencies(${COMPONENT_LIB} logo)

set_property(DIRECTORY "${COMPONENT_DIR}" APPEND PROPERTY
ADDITIONAL_CLEAN_FILES logo.h)

This answer is adapted from the CMake FAQ entry, which contains some other examples that will also work with
ESP-IDF builds.
In this example, logo.h will be generated in the current directory (the build directory) while logo.bmp comes with the
component and resides under the component path. Because logo.h is a generated file, it should be cleaned when the
project is cleaned. For this reason, it is added to the ADDITIONAL_CLEAN_FILES property.

Note: If generating files as part of the project CMakeLists.txt file, not a component CMakeLists.txt, then use build
property PROJECT_DIR instead of ${COMPONENT_DIR} and ${PROJECT_NAME}.elf instead of ${COM-
PONENT_LIB}.)

If a a source file from another component included logo.h, then add_dependencies would need to be called
to add a dependency between the two components, to ensure that the component source files were always compiled
in the correct order.

Espressif Systems 2272
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://gitlab.kitware.com/cmake/community/-/wikis/FAQ#how-can-i-generate-a-source-file-during-the-build
https://cmake.org/cmake/help/v3.16/prop_dir/ADDITIONAL_CLEAN_FILES.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Embedding Binary Data

Sometimes you have a file with some binary or text data that you'd like to make available to your component, but you
don't want to reformat the file as a C source.
You can specify argument EMBED_FILES in the component registration, giving space-delimited names of the files
to embed:

idf_component_register(...
EMBED_FILES server_root_cert.der)

Or if the file is a string, you can use the variable EMBED_TXTFILES. This will embed the contents of the text file
as a null-terminated string:

idf_component_register(...
EMBED_TXTFILES server_root_cert.pem)

The file's contents will be added to the .rodata section in flash, and are available via symbol names as follows:

extern const uint8_t server_root_cert_pem_start[] asm("_binary_server_root_cert_
↪→pem_start");
extern const uint8_t server_root_cert_pem_end[] asm("_binary_server_root_cert_
↪→pem_end");

The names are generated from the full name of the file, as given in EMBED_FILES. Characters /, ., etc. are replaced
with underscores. The _binary prefix in the symbol name is added by objcopy and is the same for both text and binary
files.
To embed a file into a project, rather than a component, you can call the function target_add_binary_data
like this:

target_add_binary_data(myproject.elf "main/data.bin" TEXT)

Place this line after the project() line in your project CMakeLists.txt file. Replace myproject.elfwith your
project name. The final argument can be TEXT to embed a null-terminated string, or BINARY to embed the content
as-is.
For an example of using this technique, see the "main" component of the file_serving example proto-
cols/http_server/file_serving/main/CMakeLists.txt - two files are loaded at build time and linked into the firmware.
It is also possible to embed a generated file:

add_custom_command(OUTPUT my_processed_file.bin
COMMAND my_process_file_cmd my_unprocessed_file.bin)

target_add_binary_data(my_target "my_processed_file.bin" BINARY)

In the example above, my_processed_file.bin is generated from my_unprocessed_file.bin through
some command my_process_file_cmd, then embedded into the target.
To specify a dependence on a target, use the DEPENDS argument:

add_custom_target(my_process COMMAND ...)
target_add_binary_data(my_target "my_embed_file.bin" BINARY DEPENDS my_process)

The DEPENDS argument to target_add_binary_data ensures that the target executes first.

Code and Data Placements

ESP-IDF has a feature called linker script generation that enables components to define where its code and data will
be placed in memory through linker fragment files. These files are processed by the build system, and is used to
augment the linker script used for linking app binary. See Linker Script Generation for a quick start guide as well as
a detailed discussion of the mechanism.

Espressif Systems 2273
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/protocols/http_server/file_serving/main/CMakeLists.txt
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/protocols/http_server/file_serving/main/CMakeLists.txt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fully Overriding the Component Build Process

Obviously, there are cases where all these recipes are insufficient for a certain component, for example when the
component is basically a wrapper around another third-party component not originally intended to be compiled under
this build system. In that case, it's possible to forego the ESP-IDF build system entirely by using a CMake feature
called ExternalProject. Example component CMakeLists:

External build process for quirc, runs in source dir and
produces libquirc.a
externalproject_add(quirc_build

PREFIX ${COMPONENT_DIR}
SOURCE_DIR ${COMPONENT_DIR}/quirc
CONFIGURE_COMMAND ""
BUILD_IN_SOURCE 1
BUILD_COMMAND make CC=${CMAKE_C_COMPILER} libquirc.a
INSTALL_COMMAND ""
)

Add libquirc.a to the build process
add_library(quirc STATIC IMPORTED GLOBAL)
add_dependencies(quirc quirc_build)

set_target_properties(quirc PROPERTIES IMPORTED_LOCATION
${COMPONENT_DIR}/quirc/libquirc.a)

set_target_properties(quirc PROPERTIES INTERFACE_INCLUDE_DIRECTORIES
${COMPONENT_DIR}/quirc/lib)

set_directory_properties(PROPERTIES ADDITIONAL_CLEAN_FILES
"${COMPONENT_DIR}/quirc/libquirc.a")

(The above CMakeLists.txt can be used to create a component named quirc that builds the quirc project using its
own Makefile.)

• externalproject_add defines an external build system.
– SOURCE_DIR, CONFIGURE_COMMAND, BUILD_COMMAND and INSTALL_COMMAND should al-
ways be set. CONFIGURE_COMMAND can be set to an empty string if the build system has no "configure"
step. INSTALL_COMMAND will generally be empty for ESP-IDF builds.

– Setting BUILD_IN_SOURCEmeans the build directory is the same as the source directory. Otherwise,
you can set BUILD_DIR.

– Consult the ExternalProject documentation for more details about externalproject_add()
• The second set of commands adds a library target, which points to the "imported" library file built by the
external system. Some properties need to be set in order to add include directories and tell CMake where this
file is.

• Finally, the generated library is added to ADDITIONAL_CLEAN_FILES. This means make clean will
delete this library. (Note that the other object files from the build won't be deleted.)

ExternalProject Dependencies and Clean Builds CMake has some unusual behavior around external project
builds:

• ADDITIONAL_CLEAN_FILES only works when "make" or "ninja" is used as the build system. If an IDE
build system is used, it won't delete these files when cleaning.

• However, the ExternalProject configure & build commands will always be re-run after a clean is run.
• Therefore, there are two alternative recommended ways to configure the external build command:

1. Have the external BUILD_COMMAND run a full clean compile of all sources. The build command will
be run if any of the dependencies passed to externalproject_add with DEPENDS have changed,
or if this is a clean build (ie any of idf.py clean, ninja clean, or make clean was run.)

2. Have the external BUILD_COMMAND be an incremental build command. Pass the parameter
BUILD_ALWAYS 1 to externalproject_add. This means the external project will be built
each time a build is run, regardless of dependencies. This is only recommended if the external project
has correct incremental build behavior, and doesn't take too long to run.

Espressif Systems 2274
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://cmake.org/cmake/help/v3.16/module/ExternalProject.html
https://github.com/dlbeer/quirc
https://cmake.org/cmake/help/v3.16/module/ExternalProject.html
https://cmake.org/cmake/help/v3.16/prop_dir/ADDITIONAL_CLEAN_FILES.html
https://cmake.org/cmake/help/v3.16/prop_dir/ADDITIONAL_CLEAN_FILES.html
https://cmake.org/cmake/help/v3.16/module/ExternalProject.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

The best of these approaches for building an external project will depend on the project itself, its build system, and
whether you anticipate needing to frequently recompile the project.

4.5.13 Custom Sdkconfig Defaults

For example projects or other projects where you don't want to specify a full sdkconfig configuration, but you do want
to override some key values from the ESP-IDF defaults, it is possible to create a file sdkconfig.defaults in
the project directory. This file will be used when creating a new config from scratch, or when any new config value
hasn't yet been set in the sdkconfig file.
To override the name of this file or to specify multiple files, set the SDKCONFIG_DEFAULTS environment variable
or set SDKCONFIG_DEFAULTS in top-level CMakeLists.txt. File names that are not specified as full paths
are resolved relative to current project's directory.
When specifying multiple files, use a semicolon as the list separator. Files listed first will be applied first. If a
particular key is defined in multiple files, the definition in the latter file will override definitions from former files.
Some of the IDF examples include a sdkconfig.ci file. This is part of the continuous integration (CI) test
framework and is ignored by the normal build process.

Target-dependent Sdkconfig Defaults

In addition to sdkconfig.defaults file, build system will also load defaults from sdkconfig.defaults.
TARGET_NAME file, where TARGET_NAME is the value of IDF_TARGET. For example, for esp32 target, default
settings will be taken from sdkconfig.defaults first, and then from sdkconfig.defaults.esp32.
If SDKCONFIG_DEFAULTS is used to override the name of defaults file/files, the name of target-specific defaults
file will be derived from SDKCONFIG_DEFAULTS value/values using the rule above. When there are multiple files
in SDKCONFIG_DEFAULTS, target-specific file will be applied right after the file bringing it in, before all latter files
in SDKCONFIG_DEFAULTS
For example, if SDKCONFIG_DEFAULTS="sdkconfig.defaults;sdkconfig_devkit1", and there is
a file sdkconfig.defaults.esp32 in the same folder, then the files will be applied in the following order: (1)
sdkconfig.defaults (2) sdkconfig.defaults.esp32 (3) sdkconfig_devkit1.

4.5.14 Flash Arguments

There are some scenarios that we want to flash the target board without IDF. For this case we want to save the built
binaries, esptool.py and esptool write_flash arguments. It's simple to write a script to save binaries and esptool.py.
After running a project build, the build directory contains binary output files (.bin files) for the project and also the
following flashing data files:

• flash_project_args contains arguments to flash the entire project (app, bootloader, partition table,
PHY data if this is configured).

• flash_app_args contains arguments to flash only the app.
• flash_bootloader_args contains arguments to flash only the bootloader.

You can pass any of these flasher argument files to esptool.py as follows:

python esptool.py --chip esp32 write_flash @build/flash_project_args

Alternatively, it is possible to manually copy the parameters from the argument file and pass them on the command
line.
The build directory also contains a generated file flasher_args.json which contains project flash information,
in JSON format. This file is used by idf.py and can also be used by other tools which need information about the
project build.

Espressif Systems 2275
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.5.15 Building the Bootloader

The bootloader is a special "subproject" inside /components/bootloader/subproject. It has its own project CMake-
Lists.txt file and builds separate .ELF and .BIN files to the main project. However, it shares its configuration and
build directory with the main project.
The subproject is inserted as an external project from the top-level project, by the file /compo-
nents/bootloader/project_include.cmake. The main build process runs CMake for the subproject, which includes
discovering components (a subset of the main components) and generating a bootloader-specific config (derived
from the main sdkconfig).

4.5.16 Writing Pure CMake Components

The ESP-IDF build system "wraps" CMake with the concept of "components", and helper functions to automatically
integrate these components into a project build.
However, underneath the concept of "components" is a full CMake build system. It is also possible to make a
component which is pure CMake.
Here is an example minimal "pure CMake" component CMakeLists file for a component named json:

add_library(json STATIC
cJSON/cJSON.c
cJSON/cJSON_Utils.c)

target_include_directories(json PUBLIC cJSON)

• This is actually an equivalent declaration to the IDF json component /components/json/CMakeLists.txt.
• This file is quite simple as there are not a lot of source files. For components with a large number of files, the
globbing behavior of ESP-IDF's component logic can make the component CMakeLists style simpler.)

• Any time a component adds a library target with the component name, the ESP-IDF build system will auto-
matically add this to the build, expose public include directories, etc. If a component wants to add a library
target with a different name, dependencies will need to be added manually via CMake commands.

4.5.17 Using Third-Party CMake Projects with Components

CMake is used for a lot of open-source C and C++ projects —code that users can tap into for their applications.
One of the benefits of having a CMake build system is the ability to import these third-party projects, sometimes
even without modification! This allows for users to be able to get functionality that may not yet be provided by a
component, or use another library for the same functionality.
Importing a library might look like this for a hypothetical library foo to be used in the main component:

Register the component
idf_component_register(...)

Set values of hypothetical variables that control the build of `foo`
set(FOO_BUILD_STATIC OFF)
set(FOO_BUILD_TESTS OFF)

Create and import the library targets
add_subdirectory(foo)

Publicly link `foo` to `main` component
target_link_libraries(main PUBLIC foo)

For an actual example, take a look at build_system/cmake/import_lib. Take note that what needs to be done in order
to import the library may vary. It is recommended to read up on the library's documentation for instructions on how
to import it from other projects. Studying the library's CMakeLists.txt and build structure can also be helpful.

Espressif Systems 2276
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/components/bootloader/subproject
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bootloader/project_include.cmake
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bootloader/project_include.cmake
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/json/CMakeLists.txt
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/build_system/cmake/import_lib
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

It is also possible to wrap a third-party library to be used as a component in this manner. For example, the mbedtls
component is a wrapper for Espressif's fork of mbedtls. See its component CMakeLists.txt .
The CMake variable ESP_PLATFORM is set to 1 whenever the ESP-IDF build system is being used. Tests such as
if (ESP_PLATFORM) can be used in generic CMake code if special IDF-specific logic is required.

Using ESP-IDF Components from External Libraries

The above example assumes that the external library foo (or tinyxml in the case of the import_lib example)
doesn't need to use any ESP-IDF APIs apart from common APIs such as libc, libstdc++, etc. If the external library
needs to use APIs provided by other ESP-IDF components, this needs to be specified in the external CMakeLists.txt
file by adding a dependency on the library target idf::<componentname>.
For example, in the foo/CMakeLists.txt file:

add_library(foo bar.c fizz.cpp buzz.cpp)

if(ESP_PLATFORM)
On ESP-IDF, bar.c needs to include esp_flash.h from the spi_flash component
target_link_libraries(foo PRIVATE idf::spi_flash)

endif()

4.5.18 Using Prebuilt Libraries with Components

Another possibility is that you have a prebuilt static library (.a file), built by some other build process.
The ESP-IDF build system provides a utility function add_prebuilt_library for users to be able to easily
import and use prebuilt libraries:

add_prebuilt_library(target_name lib_path [REQUIRES req1 req2 ...] [PRIV_REQUIRES␣
↪→req1 req2 ...])

where:
• target_name- name that can be used to reference the imported library, such as when linking to other targets
• lib_path- path to prebuilt library; may be an absolute or relative path to the component directory

Optional arguments REQUIRES and PRIV_REQUIRES specify dependency on other components. These have the
same meaning as the arguments for idf_component_register.
Take note that the prebuilt library must have been compiled for the same target as the consuming project. Configu-
ration relevant to the prebuilt library must also match. If not paid attention to, these two factors may contribute to
subtle bugs in the app.
For an example, take a look at build_system/cmake/import_prebuilt.

4.5.19 Using ESP-IDF in Custom CMake Projects

ESP-IDF provides a template CMake project for easily creating an application. However, in some instances the user
might already have an existing CMake project or may want to create a custom one. In these cases it is desirable to be
able to consume IDF components as libraries to be linked to the user's targets (libraries/executables).
It is possible to do so by using the build system APIs provided by tools/cmake/idf.cmake. For example:

cmake_minimum_required(VERSION 3.16)
project(my_custom_app C)

Include CMake file that provides ESP-IDF CMake build system APIs.
include($ENV{IDF_PATH}/tools/cmake/idf.cmake)

(continues on next page)

Espressif Systems 2277
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/components/mbedtls
https://github.com/Mbed-TLS/mbedtls
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/mbedtls/CMakeLists.txt
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/build_system/cmake/import_prebuilt
https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/cmake/idf.cmake
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
Include ESP-IDF components in the build, may be thought as an equivalent of
add_subdirectory() but with some additional processing and magic for ESP-IDF␣
↪→build
specific build processes.
idf_build_process(esp32)

Create the project executable and plainly link the newlib component to it using
its alias, idf::newlib.
add_executable(${CMAKE_PROJECT_NAME}.elf main.c)
target_link_libraries(${CMAKE_PROJECT_NAME}.elf idf::newlib)

Let the build system know what the project executable is to attach more targets,␣
↪→dependencies, etc.
idf_build_executable(${CMAKE_PROJECT_NAME}.elf)

The example in build_system/cmake/idf_as_lib demonstrates the creation of an application equivalent to hello world
application using a custom CMake project.

4.5.20 ESP-IDF CMake Build System API

idf-build-commands

idf_build_get_property(var property [GENERATOR_EXPRESSION])

Retrieve a build property property and store it in var accessible from the current scope. Specifying GENERA-
TOR_EXPRESSION will retrieve the generator expression string for that property, instead of the actual value, which
can be used with CMake commands that support generator expressions.

idf_build_set_property(property val [APPEND])

Set a build property property with value val. Specifying APPEND will append the specified value to the current value
of the property. If the property does not previously exist or it is currently empty, the specified value becomes the first
element/member instead.

idf_build_component(component_dir)

Present a directory component_dir that contains a component to the build system. Relative paths are converted to ab-
solute paths with respect to current directory. All calls to this command must be performed before idf_build_process.
This command does not guarantee that the component will be processed during build (see the COMPONENTS argu-
ment description for idf_build_process)

idf_build_process(target
[PROJECT_DIR project_dir]
[PROJECT_VER project_ver]
[PROJECT_NAME project_name]
[SDKCONFIG sdkconfig]
[SDKCONFIG_DEFAULTS sdkconfig_defaults]
[BUILD_DIR build_dir]
[COMPONENTS component1 component2 ...])

Performs the bulk of the behind-the-scenes magic for including ESP-IDF components such as component configu-
ration, libraries creation, dependency expansion and resolution. Among these functions, perhaps the most important
from a user's perspective is the libraries creation by calling each component's idf_component_register.
This command creates the libraries for each component, which are accessible using aliases in the form
idf::component_name. These aliases can be used to link the components to the user's own targets, either libraries
or executables.
The call requires the target chip to be specified with target argument. Optional arguments for the call include:

Espressif Systems 2278
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/build_system/cmake/idf_as_lib
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/hello_world
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/hello_world
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• PROJECT_DIR - directory of the project; defaults to CMAKE_SOURCE_DIR
• PROJECT_NAME - name of the project; defaults to CMAKE_PROJECT_NAME
• PROJECT_VER - version/revision of the project; defaults to "1"
• SDKCONFIG - output path of generated sdkconfig file; defaults to PROJECT_DIR/sdkconfig or
CMAKE_SOURCE_DIR/sdkconfig depending if PROJECT_DIR is set

• SDKCONFIG_DEFAULTS - list of files containing default config to use in the build (list must contain full
paths); defaults to empty. For each value filename in the list, the config from file filename.target, if it exists, is
also loaded.

• BUILD_DIR - directory to place ESP-IDF build-related artifacts, such as generated binaries, text files, com-
ponents; defaults to CMAKE_BINARY_DIR

• COMPONENTS - select components to process among the components known by the build system (added via
idf_build_component). This argument is used to trim the build. Other components are automatically added if
they are required in the dependency chain, i.e. the public and private requirements of the components in this
list are automatically added, and in turn the public and private requirements of those requirements, so on and
so forth. If not specified, all components known to the build system are processed.

idf_build_executable(executable)

Specify the executable executable for ESP-IDF build. This attaches additional targets such as dependencies related
to flashing, generating additional binary files, etc. Should be called after idf_build_process.

idf_build_get_config(var config [GENERATOR_EXPRESSION])

Get the value of the specified config. Much like build properties, specifyingGENERATOR_EXPRESSION will retrieve
the generator expression string for that config, instead of the actual value, which can be used with CMake commands
that support generator expressions. Actual config values are only known after call to idf_build_process,
however.

idf-build-properties

These are properties that describe the build. Values of build properties can be retrieved by using the build command
idf_build_get_property. For example, to get the Python interpreter used for the build:

idf_build_get_property(python PYTHON)
message(STATUS "The Python intepreter is: ${python}")

• BUILD_DIR - build directory; set from idf_build_process BUILD_DIR argument
• BUILD_COMPONENTS - list of components included in the build; set by idf_build_process
• BUILD_COMPONENT_ALIASES - list of library alias of components included in the build; set by
idf_build_process

• C_COMPILE_OPTIONS - compile options applied to all components' C source files
• COMPILE_OPTIONS - compile options applied to all components' source files, regardless of it being C or
C++

• COMPILE_DEFINITIONS - compile definitions applied to all component source files
• CXX_COMPILE_OPTIONS - compile options applied to all components' C++ source files
• DEPENDENCIES_LOCK - lock file path used in component manager. The default value is dependencies.lock
under the project path.

• EXECUTABLE - project executable; set by call to idf_build_executable
• EXECUTABLE_NAME - name of project executable without extension; set by call to
idf_build_executable

• EXECUTABLE_DIR - path containing the output executable
• IDF_COMPONENT_MANAGER - the component manager is enabled by default, but if this property is set
to 0 it was disabled by the IDF_COMPONENT_MANAGER environment variable

• IDF_PATH - ESP-IDF path; set from IDF_PATH environment variable, if not, inferred from the location of
idf.cmake

• IDF_TARGET - target chip for the build; set from the required target argument for idf_build_process
• IDF_VER - ESP-IDF version; set from either a version file or the Git revision of the IDF_PATH repository
• INCLUDE_DIRECTORIES - include directories for all component source files

Espressif Systems 2279
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• KCONFIGS - list of Kconfig files found in components in build; set by idf_build_process
• KCONFIG_PROJBUILDS - list of Kconfig.projbuild files found in components in build; set by
idf_build_process

• PROJECT_NAME - name of the project; set from idf_build_process PROJECT_NAME argument
• PROJECT_DIR - directory of the project; set from idf_build_process PROJECT_DIR argument
• PROJECT_VER - version of the project; set from idf_build_process PROJECT_VER argument
• PYTHON - Python interpreter used for the build; set from PYTHON environment variable if available, if not
"python" is used

• SDKCONFIG - full path to output config file; set from idf_build_process SDKCONFIG argument
• SDKCONFIG_DEFAULTS - list of files containing default config to use in the build; set from
idf_build_process SDKCONFIG_DEFAULTS argument

• SDKCONFIG_HEADER - full path to C/C++ header file containing component configuration; set by
idf_build_process

• SDKCONFIG_CMAKE - full path to CMake file containing component configuration; set by
idf_build_process

• SDKCONFIG_JSON - full path to JSON file containing component configuration; set by
idf_build_process

• SDKCONFIG_JSON_MENUS - full path to JSON file containing config menus; set by
idf_build_process

idf-component-commands

idf_component_get_property(var component property [GENERATOR_EXPRESSION])

Retrieve a specified component's component property, property and store it in var accessible from the current scope.
Specifying GENERATOR_EXPRESSION will retrieve the generator expression string for that property, instead of the
actual value, which can be used with CMake commands that support generator expressions.

idf_component_set_property(component property val [APPEND])

Set a specified component's component property, property with value val. Specifying APPEND will append the spec-
ified value to the current value of the property. If the property does not previously exist or it is currently empty, the
specified value becomes the first element/member instead.

idf_component_register([[SRCS src1 src2 ...] | [[SRC_DIRS dir1 dir2 ...] [EXCLUDE_
↪→SRCS src1 src2 ...]]

[INCLUDE_DIRS dir1 dir2 ...]
[PRIV_INCLUDE_DIRS dir1 dir2 ...]
[REQUIRES component1 component2 ...]
[PRIV_REQUIRES component1 component2 ...]
[LDFRAGMENTS ldfragment1 ldfragment2 ...]
[REQUIRED_IDF_TARGETS target1 target2 ...]
[EMBED_FILES file1 file2 ...]
[EMBED_TXTFILES file1 file2 ...]
[KCONFIG kconfig]
[KCONFIG_PROJBUILD kconfig_projbuild]
[WHOLE_ARCHIVE])

Register a component to the build system. Much like the project() CMake command, this should be
called from the component's CMakeLists.txt directly (not through a function or macro) and is recommended to
be called before any other command. Here are some guidelines on what commands can not be called before
idf_component_register:

• commands that are not valid in CMake script mode
• custom commands defined in project_include.cmake
• build system API commands except idf_build_get_property; although consider whether the property
may not have been set yet

Commands that set and operate on variables are generally okay to call before idf_component_register.

Espressif Systems 2280
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

The arguments for idf_component_register include:
• SRCS - component source files used for creating a static library for the component; if not specified, component
is a treated as a config-only component and an interface library is created instead.

• SRC_DIRS, EXCLUDE_SRCS - used to glob source files (.c, .cpp, .S) by specifying directories, instead of
specifying source files manually via SRCS. Note that this is subject to the limitations of globbing in CMake.
Source files specified in EXCLUDE_SRCS are removed from the globbed files.

• INCLUDE_DIRS - paths, relative to the component directory, which will be added to the include search path
for all other components which require the current component

• PRIV_INCLUDE_DIRS - directory paths, must be relative to the component directory, which will be added
to the include search path for this component's source files only

• REQUIRES - public component requirements for the component
• PRIV_REQUIRES - private component requirements for the component; ignored on config-only components
• LDFRAGMENTS - component linker fragment files
• REQUIRED_IDF_TARGETS - specify the only target the component supports
• KCONFIG - override the default Kconfig file
• KCONFIG_PROJBUILD - override the default Kconfig.projbuild file
• WHOLE_ARCHIVE - if specified, the component library is surrounded by -Wl,--whole-archive,
-Wl,--no-whole-archive when linked. This has the same effect as setting WHOLE_ARCHIVE com-
ponent property.

The following are used for embedding data into the component, and is considered as source files when determining if
a component is config-only. This means that even if the component does not specify source files, a static library is
still created internally for the component if it specifies either:

• EMBED_FILES - binary files to be embedded in the component
• EMBED_TXTFILES - text files to be embedded in the component

idf-component-properties

These are properties that describe a component. Values of component properties can be retrieved by using the build
command idf_component_get_property. For example, to get the directory of the freertos component:

idf_component_get_property(dir freertos COMPONENT_DIR)
message(STATUS "The 'freertos' component directory is: ${dir}")

• COMPONENT_ALIAS - alias for COMPONENT_LIB used for linking the component to external targets;
set by idf_build_component and alias library itself is created by idf_component_register

• COMPONENT_DIR - component directory; set by idf_build_component
• COMPONENT_OVERRIDEN_DIR - contains the directory of the original component if this component over-

rides another component
• COMPONENT_LIB - name for created component static/interface library; set by
idf_build_component and library itself is created by idf_component_register

• COMPONENT_NAME - name of the component; set by idf_build_component based on the compo-
nent directory name

• COMPONENT_TYPE - type of the component, whether LIBRARY or CONFIG_ONLY. A component is of
type LIBRARY if it specifies source files or embeds a file

• EMBED_FILES - list of files to embed in component; set from idf_component_register EM-
BED_FILES argument

• EMBED_TXTFILES - list of text files to embed in component; set from idf_component_register
EMBED_TXTFILES argument

• INCLUDE_DIRS - list of component include directories; set from idf_component_register IN-
CLUDE_DIRS argument

• KCONFIG - component Kconfig file; set by idf_build_component
• KCONFIG_PROJBUILD - component Kconfig.projbuild; set by idf_build_component
• LDFRAGMENTS - list of component linker fragment files; set from idf_component_register LD-
FRAGMENTS argument

• MANAGED_PRIV_REQUIRES - list of private component dependencies added by the IDF component man-
ager from dependencies in idf_component.yml manifest file

Espressif Systems 2281
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• MANAGED_REQUIRES - list of public component dependencies added by the IDF component manager
from dependencies in idf_component.yml manifest file

• PRIV_INCLUDE_DIRS - list of component private include directories; set from
idf_component_register PRIV_INCLUDE_DIRS on components of type LIBRARY

• PRIV_REQUIRES - list of private component dependencies; set from value of
idf_component_register PRIV_REQUIRES argument and dependencies in idf_component.
yml manifest file

• REQUIRED_IDF_TARGETS - list of targets the component supports; set from
idf_component_register EMBED_TXTFILES argument

• REQUIRES - list of public component dependencies; set from value of idf_component_register RE-
QUIRES argument and dependencies in idf_component.yml manifest file

• SRCS - list of component source files; set from SRCS or SRC_DIRS/EXCLUDE_SRCS argument of
idf_component_register

• WHOLE_ARCHIVE - if this property is set to TRUE (or any boolean "true" CMake value: 1, ON, YES, Y),
the component library is surrounded by -Wl,--whole-archive, -Wl,--no-whole-archive when
linked. This can be used to force the linker to include every object file into the executable, even if the object
file doesn't resolve any references from the rest of the application. This is commonly used when a component
contains plugins or modules which rely on link-time registration. This property is FALSE by default. It can be
set to TRUE from the component CMakeLists.txt file.

4.5.21 File Globbing & Incremental Builds

The preferred way to include source files in an ESP-IDF component is to list them manually via SRCS argument to
idf_component_register:

idf_component_register(SRCS library/a.c library/b.c platform/platform.c
...)

This preference reflects the CMake best practice of manually listing source files. This could, however, be inconvenient
when there are lots of source files to add to the build. The ESP-IDF build system provides an alternative way for
specifying source files using SRC_DIRS:

idf_component_register(SRC_DIRS library platform
...)

This uses globbing behind the scenes to find source files in the specified directories. Be aware, however, that if a new
source file is added and this method is used, then CMake won't know to automatically re-run and this file won't be
added to the build.
The trade-off is acceptable when you're adding the file yourself, because you can trigger a clean build or run idf.py
reconfigure to manually re-run CMake. However, the problem gets harder when you share your project with
others who may check out a new version using a source control tool like Git...
For components which are part of ESP-IDF, we use a third party Git CMake integration module
(/tools/cmake/third_party/GetGitRevisionDescription.cmake) which automatically re-runs CMake any time the
repository commit changes. This means if you check out a new ESP-IDF version, CMake will automatically re-
run.
For project components (not part of ESP-IDF), there are a few different options:

• If keeping your project file in Git, ESP-IDF will automatically track the Git revision and re-run CMake if the
revision changes.

• If some components are kept in a third git repository (not the project repository or ESP-IDF repository), you
can add a call to the git_describe function in a component CMakeLists file in order to automatically
trigger re-runs of CMake when the Git revision changes.

• If not using Git, remember to manually run idf.py reconfigure whenever a source file may change.
• To avoid this problem entirely, use SRCS argument to idf_component_register to list all source files
in project components.

The best option will depend on your particular project and its users.

Espressif Systems 2282
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://gist.github.com/mbinna/c61dbb39bca0e4fb7d1f73b0d66a4fd1/
https://cmake.org
https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/cmake/third_party/GetGitRevisionDescription.cmake
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.5.22 Build System Metadata

For integration into IDEs and other build systems, when CMake runs the build process generates a number ofmetadata
files in the build/ directory. To regenerate these files, run cmake or idf.py reconfigure (or any other
idf.py build command).

• compile_commands.json is a standard format JSON file which describes every source file which is
compiled in the project. A CMake feature generates this file, and many IDEs know how to parse it.

• project_description.json contains some general information about the ESP-IDF project, configured
paths, etc.

• flasher_args.json contains esptool.py arguments to flash the project's binary files. There are also
flash_*_args files which can be used directly with esptool.py. See Flash arguments.

• CMakeCache.txt is the CMake cache file which contains other information about the CMake process,
toolchain, etc.

• config/sdkconfig.json is a JSON-formatted version of the project configuration values.
• config/kconfig_menus.json is a JSON-formatted version of the menus shown in menuconfig, for
use in external IDE UIs.

JSON Configuration Server

A tool called kconfserver is provided to allow IDEs to easily integrate with the configuration system logic.
kconfserver is designed to run in the background and interact with a calling process by reading and writing
JSON over process stdin & stdout.
You can run kconfserver from a project via idf.py confserver or ninja kconfserver, or a similar
target triggered from a different build generator.
For more information about kconfserver, see the esp-idf-kconfig documentation.

4.5.23 Build System Internals

Build Scripts

The listfiles for the ESP-IDF build system reside in /tools/cmake. The modules which implement core build system
functionality are as follows:

• build.cmake - Build related commands i.e. build initialization, retrieving/setting build properties,
build processing.

• component.cmake - Component related commands i.e. adding components, retrieving/setting
component properties, registering components.

• kconfig.cmake - Generation of configuration files (sdkconfig, sdkconfig.h, sdkconfig.cmake, etc.)
from Kconfig files.

• ldgen.cmake - Generation of final linker script from linker fragment files.
• target.cmake - Setting build target and toolchain file.
• utilities.cmake - Miscellaneous helper commands.

Aside from these files, there are two other important CMake scripts in /tools/cmake:
• idf.cmake - Sets up the build and includes the core modules listed above. Included in CMake
projects in order to access ESP-IDF build system functionality.

• project.cmake - Includes idf.cmake and provides a custom project() command that takes
care of all the heavy lifting of building an executable. Included in the top-level CMakeLists.txt of
standard ESP-IDF projects.

The rest of the files in /tools/cmake are support or third-party scripts used in the build process.

Espressif Systems 2283
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://docs.espressif.com/projects/esp-idf-kconfig/en/latest/kconfserver/index.html
https://github.com/espressif/esp-idf/tree/b0f5707906b/tools/cmake
https://github.com/espressif/esp-idf/tree/b0f5707906b/tools/cmake
https://github.com/espressif/esp-idf/tree/b0f5707906b/tools/cmake
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Build Process

This section describes the standard ESP-IDF application build process. The build process can be broken down roughly
into four phases:

Fig. 36: ESP-IDF Build System Process

Initialization This phase sets up necessary parameters for the build.
• Upon inclusion of idf.cmake in project.cmake, the following steps are performed:

– Set IDF_PATH from environment variable or inferred from path to project.cmake
included in the top-level CMakeLists.txt.

– Add /tools/cmake to CMAKE_MODULE_PATH and include core modules plus the various
helper/third-party scripts.

– Set build tools/executables such as default Python interpreter.
– Get ESP-IDF git revision and store as IDF_VER.
– Set global build specifications i.e. compile options, compile definitions, include directo-
ries for all components in the build.

– Add components in components to the build.
• The initial part of the custom project() command performs the following steps:

– Set IDF_TARGET from environment variable or CMake cache and the corresponding
CMAKE_TOOLCHAIN_FILE to be used.

– Add components in EXTRA_COMPONENT_DIRS to the build.
– Prepare arguments for calling command idf_build_process() from vari-
ables such as COMPONENTS/EXCLUDE_COMPONENTS, SDKCONFIG, SDKCON-
FIG_DEFAULTS.

The call to idf_build_process() command marks the end of this phase.

Enumeration
This phase builds a final list of components to be processed in the build, and is performed in the first
half of idf_build_process().

• Retrieve each component's public and private requirements. A child process is cre-
ated which executes each component's CMakeLists.txt in script mode. The values
of idf_component_register REQUIRES and PRIV_REQUIRES argument is re-
turned to the parent build process. This is called early expansion. The variable
CMAKE_BUILD_EARLY_EXPANSION is defined during this step.

• Recursively include components based on public and private requirements.

Processing
This phase processes the components in the build, and is the second half ofidf_build_process().

• Load project configuration from sdkconfig file and generate an sdkconfig.cmake and sdkconfig.h
header. These define configuration variables/macros that are accessible from the build scripts and
C/C++ source/header files, respectively.

• Include each component's project_include.cmake.
• Add each component as a subdirectory, processing its CMakeLists.txt. The component CMake-
Lists.txt calls the registration command, idf_component_registerwhich adds source files,
include directories, creates component library, links dependencies, etc.

Espressif Systems 2284
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/tools/cmake
https://github.com/espressif/esp-idf/tree/b0f5707906b/components
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Finalization
This phase is everything after idf_build_process().

• Create executable and link the component libraries to it.
• Generate project metadata files such as project_description.json and display relevant information
about the project built.

Browse /tools/cmake/project.cmake for more details.

4.5.24 Migrating from ESP-IDF GNU Make System

Some aspects of the CMake-based ESP-IDF build system are very similar to the older GNUMake-based system. The
developer needs to provide values the include directories, source files etc. There is a syntactical difference, however,
as the developer needs to pass these as arguments to the registration command, idf_component_register.

Automatic Conversion Tool

An automatic project conversion tool is available in tools/cmake/convert_to_cmake.py in ESP-IDF v4.x releases. The
script was removed in v5.0 because of its make build system dependency.

No Longer Available in CMake

Some features are significantly different or removed in the CMake-based system. The following variables no longer
exist in the CMake-based build system:

• COMPONENT_BUILD_DIR: Use CMAKE_CURRENT_BINARY_DIR instead.
• COMPONENT_LIBRARY: Defaulted to $(COMPONENT_NAME).a, but the library name could be overriden
by the component. The name of the component library can no longer be overriden by the component.

• CC, LD, AR, OBJCOPY: Full paths to each tool from the gcc xtensa cross-toolchain. Use
CMAKE_C_COMPILER, CMAKE_C_LINK_EXECUTABLE, CMAKE_OBJCOPY, etc instead. Full list here.

• HOSTCC, HOSTLD, HOSTAR: Full names of each tool from the host native toolchain. These are no longer
provided, external projects should detect any required host toolchain manually.

• COMPONENT_ADD_LDFLAGS: Used to override linker flags. Use the CMake target_link_libraries command
instead.

• COMPONENT_ADD_LINKER_DEPS: List of files that linking should depend on. target_link_libraries will
usually infer these dependencies automatically. For linker scripts, use the provided custom CMake function
target_linker_scripts.

• COMPONENT_SUBMODULES: No longer used, the build system will automatically enumerate all submodules
in the ESP-IDF repository.

• COMPONENT_EXTRA_INCLUDES: Used to be an alternative to COMPONENT_PRIV_INCLUDEDIRS for
absolute paths. Use PRIV_INCLUDE_DIRS argument to idf_component_register for all cases now
(can be relative or absolute).

• COMPONENT_OBJS: Previously, component sources could be specified as a list of object files. Now they can
be specified as a list of source files via SRCS argument to idf_component_register.

• COMPONENT_OBJEXCLUDE: Has been replaced with EXCLUDE_SRCS argument to
idf_component_register. Specify source files (as absolute paths or relative to component di-
rectory), instead.

• COMPONENT_EXTRA_CLEAN: Set property ADDITIONAL_CLEAN_FILES instead but note CMake has
some restrictions around this functionality.

• COMPONENT_OWNBUILDTARGET& COMPONENT_OWNCLEANTARGET: Use CMake ExternalProject in-
stead. See Fully Overriding the Component Build Process for full details.

• COMPONENT_CONFIG_ONLY: Call idf_component_register without any arguments instead. See
Configuration-Only Components.

• CFLAGS, CPPFLAGS, CXXFLAGS: Use equivalent CMake commands instead. See Controlling Component
Compilation.

Espressif Systems 2285
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/cmake/project.cmake
https://cmake.org/cmake/help/v3.16/manual/cmake-variables.7.html#variables-for-languages
https://cmake.org/cmake/help/v3.16/command/target_link_libraries.html#command:target_link_libraries
https://cmake.org/cmake/help/v3.16/command/target_link_libraries.html#command:target_link_libraries
https://cmake.org/cmake/help/v3.16/module/ExternalProject.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

No Default Values

Unlike in the legacy Make-based build system, the following have no default values:
• Source directories (COMPONENT_SRCDIRS variable in Make, SRC_DIRS argument to
idf_component_register in CMake)

• Include directories (COMPONENT_ADD_INCLUDEDIRS variable in Make, INCLUDE_DIRS argument to
idf_component_register in CMake)

No Longer Necessary

• In the legacy Make-based build system, it is required to also set COMPONENT_SRCDIRS if COM-
PONENT_SRCS is set. In CMake, the equivalent is not necessary i.e. specifying SRC_DIRS to
idf_component_register if SRCS is also specified (in fact, SRCS is ignored if SRC_DIRS is speci-
fied).

Flashing from Make

make flash and similar targets still work to build and flash. However, project sdkconfig no longer specifies
serial port and baud rate. Environment variables can be used to override these. See Flashing with Ninja or Make for
more details.

4.6 RF Coexistence

4.6.1 Overview

ESP boards now support three modules: Bluetooth (BT & BLE), IEEE 802.15.4 (Thread / Zigbee), and Wi-Fi. Each
type of board has only one 2.4 GHz ISM band RF module, shared by two or three modules. Consequently, a module
cannot receive or transmit data while another module is engaged in data transmission or reception. In such scenarios,
ESP32-C6 employs the time-division multiplexing method to manage the reception and transmission of packets.

4.6.2 Supported Coexistence Scenario for ESP32-C6

Table 22: Supported Features of Wi-Fi and BLE Coexistence
BLE
Scan Advertising Connected

Wi-Fi STA Scan Y Y Y
Connecting Y Y Y
Connected Y Y Y

SOFTAP TX Beacon Y Y Y
Connecting C1 C1 C1
Connected C1 C1 C1

Sniffer RX C1 C1 C1
ESP-NOW RX S S S

TX Y Y Y

Espressif Systems 2286
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 23: Supported Features of Wi-Fi and IEEE 802.15.4 (Thread / Zig-
bee) Coexistence

Thread / Zigbee
Scan Router End Device

Wi-Fi STA Scan C1 C1 Y
Connecting C1 C1 Y
Connected C1 C1 Y

SOFTAP TX Beacon Y X Y
Connecting C1 X C1
Connected C1 X C1

Sniffer RX C1 X C1

Table 24: Supported Features of IEEE 802.15.4 (Thread / Zigbee) and
BLE Coexistence

BLE
Scan Advertising Connected

Thread / Zigbee Scan X Y Y
Router X Y Y
End Device C1 Y Y

Note:
• Y: supported and the performance is stable
• C1: supported but the performance is unstable
• X: not supported
• S: supported and the performance is stable in STA mode, otherwise not supported

Note: Routers in Thread and Zigbee networks maintain unsynchronized links with their neighbors, requiring con-
tinuous signal reception. With only a single RF path, increased Wi-Fi or BLE traffic may lead to higher packet loss
rates for Thread and Zigbee communications.
To build a Wi-Fi based Thread Border Router or Zigbee Gateway product, we recommend using a dual-SoC solution
(e.g., ESP32-S3 + ESP32-H2) with separate antennas. This setup enables simultaneous reception of Wi-Fi and
802.15.4 signals, ensuring optimal performance.

4.6.3 Coexistence Mechanism and Policy

Coexistence Mechanism

The RF resource allocation mechanism is based on priority. As shown below,Wi-Fi, Bluetooth and 802.15.4 modules
request RF resources from the coexistence module, and the coexistence module decides who will use the RF resource
based on their priority.

Coexistence Policy

Coexistence Period and Time Slice Wi-Fi and BLE have their fixed time slice to use the RF. In the Wi-Fi time
slice, Wi-Fi will send a higher priority request to the coexistence arbitration module. Similarly, BLE can enjoy
higher priority at their own time slice. The duration of the coexistence period and the proportion of each time slice
are divided into four categories according to the Wi-Fi status:

Espressif Systems 2287
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 37: Coexistence Mechanism

1) IDLE status: RF module is controlled by Bluetooth module.
2) CONNECTED status: the coexistence period starts at the Target Beacon Transmission Time (TBTT) and is

more than 100 ms.
3) SCAN status: Wi-Fi slice and coexistence period are longer than in the CONNECTED status. To ensure

Bluetooth performance, the Bluetooth time slice will also be adjusted accordingly.
4) CONNECTING status: Wi-Fi slice is longer than in the CONNECTED status. To ensure Bluetooth perfor-

mance, the Bluetooth time slice will also be adjusted accordingly.
According to the coexistence logic, different coexistence periods and time slice strategies will be selected based
on the Wi-Fi and Bluetooth usage scenarios. A Coexistence policy corresponding to a certain usage scenarios is
called a "coexistence scheme". For example, the scenario of Wi-Fi CONNECTED and BLE CONNECTED has a
corresponding coexistence scheme. In this scheme, the time slices of Wi-Fi and BLE in a coexistence period each
account for 50%. The time allocation is shown in the following figure:

Fig. 38: Time Slice Under the Status of Wi-Fi CONNECTED and BLE CONNECTED

The IEEE 802.15.4 module requests RF resources based on pre-assigned priorities. Normal receive operations are
assigned the lowest priority, meaning Wi-Fi and BLE will take over the RF whenever needed, while 802.15.4 can
only receive during the remaining time. Other 802.15.4 operations, such as transmitting or receiving ACKs and
transmitting or receiving at given time, are assigned higher priorities. However, their access to RF ultimately depends
on the priorities of Wi-Fi and BLE operations at that moment.

Dynamic Priority The coexistence module assigns varying priorities to different statuses of each module, and these
priorities are dynamic. For example, in every N BLE Advertising events, there is always one event with high priority.
If a high-priority BLE Advertising event occurs within theWi-Fi time slice, the right to use the RFmay be preempted
by BLE.

Espressif Systems 2288
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Wi-Fi ConnectionlessModules Coexistence To some extent, some combinations of connectionless power-saving
parametersWindow and Interval would lead to extra Wi-Fi priority request out of Wi-Fi time slice. It`s for obtaining
RF resources at coexistence for customized parameters, while leading to impact on Bluetooth performance.
If connectionless power-saving parameters are configured with default values, the coexistence module would perform
in stable mode and the behaviour above would not happen. So please configure Wi-Fi connectionless power-saving
parameters to default values unless you have plenty of coexistence performance tests for customized parameters.
Please refer to connectionless module power save to get more detail.

4.6.4 How to Use the Coexistence Feature

Coexistence API

For most coexistence cases, ESP32-C6 will switch the coexistence status automatically without calling API.
However, ESP32-C6 provides two APIs for the coexistence of BLE MESH and Wi-Fi. When the status of
BLE MESH changes, call esp_coex_status_bit_clear to clear the previous status first and then call
esp_coex_status_bit_set to set the current status.

BLE MESH Coexistence Status As the firmware of Wi-Fi and Bluetooth are not aware of the current scenario
of the upper layer application, some coexistence schemes require application code to call the coexistence API to take
effect. The application layer needs to pass the working status of BLE MESH to the coexistence module for selecting
the coexistence scheme.

• ESP_COEX_BLE_ST_MESH_CONFIG: network is provisioning
• ESP_COEX_BLE_ST_MESH_TRAFFIC: data is transmitting
• ESP_COEX_BLE_ST_MESH_STANDBY: in idle status with no significant data interaction

Coexistence API Error Codes

All coexistence APIs have custom return values, i.e. error codes. These error codes can be categorized as:
• No error. For example, the return value ESP_OK siginifies the API returned successfully.
• Recoverable errors. For example, the return value ESP_ERR_INVALID_ARG signifies API parameter errors.

Setting Coexistence Compile-time Options

• After writing the coexistence program, you must check CONFIG_ESP_COEX_SW_COEXIST_ENABLE op-
tion through menuconfig to open coexistence configuration on software, otherwise the coexistence function
mentioned above cannot be used.

• When using LE Coded PHY during a BLE connection, to avoid affecting Wi-Fi performance due to the long
duration of Bluetooth packets, you can select BT_LE_COEX_PHY_CODED_TX_RX_TLIM_EN in the sub-
options of CONFIG_BT_LE_COEX_PHY_CODED_TX_RX_TLIM to limit the maximum time of TX/RX.

• You can reduce the memory consumption by configuring the following options on menuconfig.
– CONFIG_BT_BLE_DYNAMIC_ENV_MEMORY: enable the configuration of dynamic memory for Blue-
tooth protocol stack.

– CONFIG_ESP_WIFI_STATIC_RX_BUFFER_NUM: reduce the number of Wi-Fi static RX buffers.
– CONFIG_ESP_WIFI_DYNAMIC_RX_BUFFER_NUM: reduce the number ofWi-Fi dynamic RX buffers.
– CONFIG_ESP_WIFI_TX_BUFFER: enable the configuration of dynamic allocation TX buffers.
– CONFIG_ESP_WIFI_DYNAMIC_TX_BUFFER_NUM: reduce the number of Wi-Fi dynamic TX buffers.
– CONFIG_ESP_WIFI_TX_BA_WIN: reduce the number of Wi-Fi Block Ack TX windows.
– CONFIG_ESP_WIFI_RX_BA_WIN: reduce the number of Wi-Fi Block Ack RX windows.
– CONFIG_ESP_WIFI_MGMT_SBUF_NUM: reduce the number of Wi-Fi Management Short Buffer.
– CONFIG_ESP_WIFI_RX_IRAM_OPT : turning off this configuration option will reduce the IRAMmem-
ory by approximately 17 KB.

Espressif Systems 2289
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

– CONFIG_LWIP_TCP_SND_BUF_DEFAULT : reduce the default TX buffer size for TCP sockets.
– CONFIG_LWIP_TCP_WND_DEFAULT : reduce the default size of the RX window for TCP sockets.
– CONFIG_LWIP_TCP_RECVMBOX_SIZE: reduce the size of the TCP receive mailbox. Receive mailbox
buffers data within active connections and handles data flow during connections。

– CONFIG_LWIP_UDP_RECVMBOX_SIZE: reduce the size of the UDP receive mailbox.
– CONFIG_LWIP_TCPIP_RECVMBOX_SIZE: reduce the size of TCPIP task receive mailbox.

Note: As the coexistence configuration option relies on the presence of any two enabled modules, please ensure that
both modules are activated before configuring any coexistence features.

4.7 Core Dump

4.7.1 Overview

A core dump is a set of software state information that is automatically saved by the panic handler when a fatal error
occurs. Core dumps are useful for conducting post-mortem analysis of the software's state at the moment of failure.
ESP-IDF provides support for generating core dumps.
A core dump contains snapshots of all tasks in the system at the moment of failure, where each snapshot includes a
task's control block (TCB) and stack. By analyzing the task snapshots, it is possible to find out what task, at what
instruction (line of code), and what call stack of that task lead to the crash. It is also possible to dump the contents
of variables on demand, provided those variables are assigned special core dump attributes.
Core dump data is saved to a core dump file according to a particular format, see Core dump internals for more details.
However, ESP-IDF's idf.py command provides special subcommands to decode and analyze the core dump file.

4.7.2 Configurations

Destination

The CONFIG_ESP_COREDUMP_TO_FLASH_OR_UART option enables or disables core dump, and selects the core
dump destination if enabled. When a crash occurs, the generated core dump file can either be saved to flash, or output
to a connected host over UART.

Format & Size

The CONFIG_ESP_COREDUMP_DATA_FORMAT option controls the format of the core dump file, namely ELF
format or Binary format.
The ELF format contains extended features and allows more information regarding erroneous tasks and crashed soft-
ware to be saved. However, using the ELF format causes the core dump file to be larger. This format is recommended
for new software designs and is flexible enough to be extended in future revisions to save more information.
The Binary format is kept for compatibility reasons. Binary format core dump files are smaller while provide better
performance.
The CONFIG_ESP_COREDUMP_MAX_TASKS_NUM option configures the number of task snapshots saved by the
core dump. Crashed task registers and the stack are always saved, regardless of this configuration option. Other tasks
are included in order of their priority (starting with the highest-priority ready task).
Core dump data integrity checking is supported via the Components > Core dump > Core dump data
integrity check option.

Espressif Systems 2290
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Reserved Stack Size

Core dump routines run from a separate stack due to core dump itself needing to parse and save all other task stacks.
The CONFIG_ESP_COREDUMP_STACK_SIZE option controls the size of the core dump's stack in number of bytes.
Setting this option to 0 bytes will cause the core dump routines to run from the ISR stack, thus saving a bit of memory.
Setting the option greater than zero will cause a separate stack to be instantiated.

Note: If a separate stack is used, the recommended stack size should be larger than 800 bytes to ensure that the core
dump routines themselves do not cause a stack overflow.

4.7.3 Core Dump to Flash

When the core dump file is saved to flash, the file is saved to a special core dump partition in flash. Specifying the
core dump partition will reserve space on the flash chip to store the core dump file.
The core dump partition is automatically declared when using the default partition table provided by ESP-IDF. How-
ever, when using a custom partition table, you need to declare the core dump partition, as illustrated below:

Name, Type, SubType, Offset, Size
Note: if you have increased the bootloader size, make sure to update the offsets␣
↪→to avoid overlap
nvs, data, nvs, 0x9000, 0x6000
phy_init, data, phy, 0xf000, 0x1000
factory, app, factory, 0x10000, 1M
coredump, data, coredump,, 64K

Important: If Flash Encryption is enabled on the device, please add an encrypted flag to the core dump partition
declaration.

coredump, data, coredump,, 64K, encrypted

There are no special requirements for the partition name. It can be chosen according to the application's needs, but
the partition type should be data and the sub-type should be coredump. Also, when choosing partition size, note
that the core dump file introduces a constant overhead of 20 bytes and a per-task overhead of 12 bytes. This overhead
does not include the size of TCB and stack for every task. So the partition size should be at least 20 + max tasks
number x (12 + TCB size + max task stack size) bytes.
An example of the generic command to analyze core dump from flash is:

idf.py coredump-info

or

idf.py coredump-debug

4.7.4 Core Dump to UART

When the core dump file is output to UART, the output file is Base64-encoded. The CON-
FIG_ESP_COREDUMP_DECODE option allows for selecting whether the output file is automatically decoded
by the ESP-IDF monitor or kept encoded for manual decoding.

Espressif Systems 2291
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Automatic Decoding

If CONFIG_ESP_COREDUMP_DECODE is set to automatically decode the UART core dump, ESP-IDF monitor
will automatically decode the data, translate any function addresses to source code lines, and display it in the monitor.
The output to ESP-IDF monitor would resemble the following output:
The CONFIG_ESP_COREDUMP_UART_DELAY allows for an optional delay to be added before the core dump file
is output to UART.

===
==================== ESP32 CORE DUMP START ====================

Crashed task handle: 0x3ffc5640, name: 'main', GDB name: 'process 1073501760'

================== CURRENT THREAD REGISTERS ===================
exccause 0x1d (StoreProhibitedCause)
excvaddr 0x0
epc1 0x40027657
epc2 0x0
...
==================== CURRENT THREAD STACK =====================
#0 0x400251cd in panic_abort (details=0x3ffc553b "abort() was called at PC␣
↪→0x40087b84 on core 0") at /home/User/esp/esp-idf/components/esp_system/panic.
↪→c:452
#1 0x40028970 in esp_system_abort (details=0x3ffc553b "abort() was called at PC␣
↪→0x40087b84 on core 0") at /home/User/esp/esp-idf/components/esp_system/port/esp_
↪→system_chip.c:93
...
======================== THREADS INFO =========================
Id Target Id Frame
* 1 process 1073501760 0x400251cd in panic_abort (details=0x3ffc553b "abort()␣
↪→was called at PC 0x40087b84 on core 0") at /home/User/esp/esp-idf/components/esp_
↪→system/panic.c:452
2 process 1073503644 vPortTaskWrapper (pxCode=0x0, pvParameters=0x0) at /home/
↪→User/esp/esp-idf/components/freertos/FreeRTOS-Kernel/portable/xtensa/port.c:161
...
==================== THREAD 1 (TCB: 0x3ffc5640, name: 'main') =====================
#0 0x400251cd in panic_abort (details=0x3ffc553b "abort() was called at PC␣
↪→0x40087b84 on core 0") at /home/User/esp/esp-idf/components/esp_system/panic.
↪→c:452
#1 0x40028970 in esp_system_abort (details=0x3ffc553b "abort() was called at PC␣
↪→0x40087b84 on core 0") at /home/User/esp/esp-idf/components/esp_system/port/esp_
↪→system_chip.c:93
...
==================== THREAD 2 (TCB: 0x3ffc5d9c, name: 'IDLE') =====================
#0 vPortTaskWrapper (pxCode=0x0, pvParameters=0x0) at /home/User/esp/esp-idf/
↪→components/freertos/FreeRTOS-Kernel/portable/xtensa/port.c:161
#1 0x40000000 in ?? ()
...
======================= ALL MEMORY REGIONS ========================
Name Address Size Attrs
...
.iram0.vectors 0x40024000 0x403 R XA
.dram0.data 0x3ffbf1c0 0x2c0c RW A
...
===================== ESP32 CORE DUMP END =====================
===

Manual Decoding

If you set CONFIG_ESP_COREDUMP_DECODE to no decoding, then the raw Base64-encoded body of core dump
is output to UART between the following header and footer of the UART output:

Espressif Systems 2292
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

================= CORE DUMP START =================
<body of Base64-encoded core dump, save it to file on disk>
================= CORE DUMP END ===================

It is advised to manually save the core dump text body to a file. The CORE DUMP START and CORE DUMP END
lines must not be included in a core dump text file. The saved text can the be decoded using the following command:

idf.py coredump-info -c </path/to/saved/base64/text>

or

idf.py coredump-debug -c </path/to/saved/base64/text>

4.7.5 Core Dump Commands

ESP-IDF provides special commands to help to retrieve and analyze core dumps:
• idf.py coredump-info - prints crashed task's registers, call stack, list of available tasks in the system,
memory regions, and contents of memory stored in core dump (TCBs and stacks).

• idf.py coredump-debug - creates core dump ELF file and runs GDB debug session with this file. You
can examine memory, variables, and task states manually. Note that since not all memory is saved in the core
dump, only the values of variables allocated on the stack are meaningful.

4.7.6 ROM Functions in Backtraces

It is a possible that at the moment of a crash, some tasks and/or the crashed task itself have one or more ROM
functions in their call stacks. Since ROM is not part of the program ELF, it is impossible for GDB to parse such call
stacks due to GDB analyzing functions' prologues to decode backtraces. Thus, call stack parsing will break with an
error message upon the first ROM function that is encountered.
To overcome this issue, the ROM ELF provided by Espressif is loaded automatically by ESP-IDF monitor based on
the target and its revision. More details about ROM ELFs can be found in esp-rom-elfs.

4.7.7 Dumping Variables on Demand

Sometimes you want to read the last value of a variable to understand the root cause of a crash. Core dump supports
retrieving variable data over GDB by applying special attributes to declared variables.

Supported Notations and RAM Regions

• COREDUMP_DRAM_ATTR places the variable into the DRAM area, which is included in the dump.
• COREDUMP_RTC_ATTR places the variable into the RTC area, which is included in the dump.
• COREDUMP_RTC_FAST_ATTR places the variable into the RTC_FAST area, which is included in the dump.

Example

1. In Project Configuration Menu, enable COREDUMP TO FLASH, then save and exit.
2. In your project, create a global variable in the DRAM area, such as:

// uint8_t global_var;
COREDUMP_DRAM_ATTR uint8_t global_var;

3. In the main application, set the variable to any value and assert(0) to cause a crash.

Espressif Systems 2293
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-rom-elfs/releases
https://github.com/espressif/esp-rom-elfs/blob/master/README.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

global_var = 25;
assert(0);

4. Build, flash, and run the application on a target device and wait for the dumping information.
5. Run the command below to start core dumping in GDB, where PORT is the device USB port:

idf.py coredump-debug

6. In GDB shell, type p global_var to get the variable content:

(gdb) p global_var
$1 = 25 '\031'

4.7.8 Running idf.py coredump-info and idf.py coredump-debug

idf.py coredump-info --help and idf.py coredump-debug --help commands can be used to
get more details on usage.

Related Documents

Anatomy of Core Dump Image
A core dump file's format can be configured to use the ELF format, or a legacy binary format. The ELF format is
recommended for all new designs as it provides more information regarding the software's state at the moment the
crash occurs, e.g., CPU registers and memory contents.
The memory state embeds a snapshot of all tasks mapped in the memory space of the program. The CPU state
contains register values when the core dump has been generated. The core dump file uses a subset of the ELF
structures to register this information.
Loadable ELF segments are used to store the process' memory state, while ELF notes (ELF.PT_NOTE) are used to
store the process' metadata (e.g., PID, registers, signal etc). In particular, the CPU's status is stored in a note with a
special name and type (CORE, NT_PRSTATUS type).
Here is an overview of the core dump layout:

Note: The format of the image file shown in the above pictures represents the current version of the image and can
be changed in future releases.

Overview of Implementation The figure below describes some basic aspects related to the implementation of the
core dump:

Note: The diagram above hides some details and represents the current implementation of the core dump which can
be changed later.

4.8 C++ Support

ESP-IDF is primarily written in C and provides C APIs. However, ESP-IDF supports development of applications
in C++. This document covers various topics relevant to C++ development.
The following C++ features are supported:

Espressif Systems 2294
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 39: Core Dump ELF Image Format

Fig. 40: Core Dump Binary Image Format

Espressif Systems 2295
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 41: Core Dump Implementation Overview

• Exception Handling
• C++ language standard
• Runtime Type Information (RTTI)
• Thread Local Storage (thread_local keyword)
• All C++ features implemented by GCC, except for some Limitations. See GCC documentation for details on
features implemented by GCC.

4.8.1 esp-idf-cxx Component

esp-idf-cxx component provides higher-level C++ APIs for some of the ESP-IDF features. This component is avail-
able from the ESP-IDF Component Registry.

4.8.2 C++ language standard

By default, ESP-IDF compiles C++ code with C++23 language standard with GNU extensions (-std=gnu++23).
To compile the source code of a certain component using a different language standard, set the desired compiler flag
in the component's CMakeLists.txt file:

idf_component_register(...)
target_compile_options(${COMPONENT_LIB} PRIVATE -std=gnu++11)

Use PUBLIC instead of PRIVATE if the public header files of the component also need to be compiled with the
same language standard.

Espressif Systems 2296
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://gcc.gnu.org/projects/cxx-status.html
https://github.com/espressif/esp-idf-cxx
https://components.espressif.com/components/espressif/esp-idf-cxx
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.8.3 Multithreading

C++ threads, mutexes, and condition variables are supported. C++ threads are built on top of pthreads, which in turn
wrap FreeRTOS tasks.
See cxx/pthread for an example of creating threads in C++.

4.8.4 Exception Handling

Support for C++ Exceptions in ESP-IDF is disabled by default, but can be enabled using the CON-
FIG_COMPILER_CXX_EXCEPTIONS option.
If an exception is thrown, but there is no catch block, the program is terminated by the abort function, and the
backtrace is printed. See Fatal Errors for more information about backtraces.
C++ Exceptions should only be used for exceptional cases, i.e., something happening unexpectedly and occurs rarely,
such as events that happen less frequently than 1/100 times. Do not use them for control flow (see also the section
about resource usage below). For more information on how to use C++ Exceptions, see the ISO C++ FAQ and CPP
Core Guidelines.
See cxx/exceptions for an example of C++ exception handling.

C++ Exception Handling and Resource Usage

Enabling exception handling normally increases application binary size by a few KB.
Additionally, it may be necessary to reserve some amount of RAM for the exception emergency memory pool.
Memory from this pool is used if it is not possible to allocate an exception object from the heap.
The amount of memory in the emergency pool can be set using the CON-
FIG_COMPILER_CXX_EXCEPTIONS_EMG_POOL_SIZE variable.
Some additional stack memory (around 200 bytes) is also used if and only if a C++ Exception is actually thrown,
because it requires calling some functions from the top of the stack to initiate exception handling.
The run time of code using C++ exceptions depends on what actually happens at run time.

• If no exception is thrown, the code tends to be somewhat faster since there is no need to check error codes.
• If an exception is thrown, the run time of the code that handles exceptions is orders of magnitude slower than
code returning an error code.

If an exception is thrown, the run time of the code that unwinds the stack is orders of magnitude slower than code
returning an error code. The significance of the increased run time will depend on the application's requirements and
implementation of error handling (e.g., requiring user input or messaging to a cloud). As a result, exception-throwing
code should never be used in real-time critical code paths.

4.8.5 Runtime Type Information (RTTI)

Support for RTTI in ESP-IDF is disabled by default, but can be enabled using CONFIG_COMPILER_CXX_RTTI
option.
Enabling this option compiles all C++ files with RTTI support enabled, which allows using dynamic_cast con-
version and typeid operator. Enabling this option typically increases the binary size by tens of kB.
See cxx/rtti for an example of using RTTI in ESP-IDF.

4.8.6 Developing in C++

The following sections provide tips on developing ESP-IDF applications in C++.

Espressif Systems 2297
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/cxx/pthread
https://isocpp.org/wiki/faq/exceptions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-errors
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-errors
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/cxx/exceptions
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/cxx/rtti
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Combining C and C++ Code

When an application is developed using both C and C++, it is important to understand the concept of language linkage.
In order for a C++ function to be callable from C code, it has to be both declared and defined with C linkage
(extern "C"):

// declaration in the .h file:
#ifdef __cplusplus
extern "C" {
#endif

void my_cpp_func(void);

#ifdef __cplusplus
}
#endif

// definition in a .cpp file:
extern "C" void my_cpp_func(void) {

// ...
}

In order for a C function to be callable from C++, it has to be declared with C linkage:

// declaration in .h file:
#ifdef __cplusplus
extern "C" {
#endif

void my_c_func(void);

#ifdef __cplusplus
}
#endif

// definition in a .c file:
void my_c_func(void) {

// ...
}

Defining app_main in C++

ESP-IDF expects the application entry point, app_main, to be defined with C linkage. When app_main is defined
in a .cpp source file, it has to be designated as extern "C":

extern "C" void app_main()
{
}

Designated Initializers

Many of the ESP-IDF components use Configuration Structures as arguments to the initialization functions. ESP-IDF
examples written in C routinely use designated initializers to fill these structures in a readable and a maintainable way.
C and C++ languages have different rules with regards to the designated initializers. For example, C++23 (currently
the default in ESP-IDF) does not support out-of-order designated initialization, nested designated initialization, mix-
ing of designated initializers and regular initializers, and designated initialization of arrays. Therefore, when porting
ESP-IDF C examples to C++, some changes to the structure initializers may be necessary. See the C++ aggregate
initialization reference for more details.

Espressif Systems 2298
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://en.cppreference.com/w/cpp/language/language_linkage
https://en.cppreference.com/w/c/language/struct_initialization
https://en.cppreference.com/w/cpp/language/aggregate_initialization
https://en.cppreference.com/w/cpp/language/aggregate_initialization
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

iostream

iostream functionality is supported in ESP-IDF, with a couple of caveats:
1. Normally, ESP-IDF build process eliminates the unused code. However, in the case of iostreams, simply

including <iostream> header in one of the source files significantly increases the binary size by about 200
kB.

2. By default, ESP-IDF uses a simple non-blocking implementation of the standard input stream (stdin). To
get the usual behavior of std::cin, the application has to initialize the UART driver and enable the blocking
mode as shown in common_components/protocol_examples_common/stdin_out.c.

4.8.7 Limitations

• Linker script generator does not support function level placements for functions with C++ linkage.
• Various section attributes (such as IRAM_ATTR) are ignored when used with template functions.
• Vtables are placed into Flash and are not accessible when the flash cache is disabled. Therefore, virtual function
calls should be avoided in IRAM-Safe Interrupt Handlers. Placement of Vtables cannot be adjusted using the
linker script generator, yet.

• C++ filesystem (std::filesystem) features are not supported.

4.8.8 What to Avoid

Do not use setjmp/longjmp in C++. longjmp blindly jumps up the stack without calling any destructors,
easily introducing undefined behavior and memory leaks. Use C++ exceptions instead, they guarantee correctly
calling destructors. If you cannot use C++ exceptions, use alternatives (except setjmp/longjmp themselves) such
as simple return codes.

4.9 Deep Sleep Wake Stubs

ESP32-C6 supports running a "deep sleep wake stub" when coming out of deep sleep. This function runs immediately
as soon as the chip wakes up - before any normal initialisation, bootloader, or ESP-IDF code has run. After the wake
stub runs, the SoC can go back to sleep or continue to start ESP-IDF normally.
Deep sleep wake stub code is loaded into "RTC Fast Memory" and any data which it uses must also be loaded into
RTC memory. RTC memory regions hold their contents during deep sleep.

4.9.1 Rules for Wake Stubs

Wake stub code must be carefully written:
• As the SoC has freshly woken from sleep, most of the peripherals are in reset states. The SPI flash is unmapped.
• The wake stub code can only call functions implemented in ROMor loaded into RTCFastMemory (see below.)
• The wake stub code can only access data loaded in RTC memory. All other RAM will be unintiailised and
have random contents. The wake stub can use other RAM for temporary storage, but the contents will be
overwritten when the SoC goes back to sleep or starts ESP-IDF.

• RTC memory must include any read-only data (.rodata) used by the stub.
• Data in RTC memory is initialised whenever the SoC restarts, except when waking from deep sleep. When
waking from deep sleep, the values which were present before going to sleep are kept.

• Wake stub code is a part of the main esp-idf app. During normal running of esp-idf, functions can call the
wake stub functions or access RTC memory. It is as if these were regular parts of the app.

Espressif Systems 2299
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/common_components/protocol_examples_common/stdin_out.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.9.2 Implementing A Stub

The wake stub in esp-idf is called esp_wake_deep_sleep(). This function runs whenever the SoC wakes from
deep sleep. There is a default version of this function provided in esp-idf, but the default function is weak-linked so
if your app contains a function named esp_wake_deep_sleep() then this will override the default.
If supplying a custom wake stub, the first thing it does should be to call esp_default_wake_deep_sleep().
It is not necessary to implement esp_wake_deep_sleep() in your app in order to use deep sleep. It is only
necessary if you want to have special behaviour immediately on wake.
If you want to swap between different deep sleep stubs at runtime, it is also possible to do this by calling
the esp_set_deep_sleep_wake_stub() function. This is not necessary if you only use the default
esp_wake_deep_sleep() function.
All of these functions are declared in the esp_sleep.h header under components/esp32c6.

4.9.3 Loading Code Into RTC Memory

Wake stub code must be resident in RTC Fast Memory. This can be done in one of two ways.
The first way is to use the RTC_IRAM_ATTR attribute to place a function into RTC memory:

void RTC_IRAM_ATTR esp_wake_deep_sleep(void) {
esp_default_wake_deep_sleep();
// Add additional functionality here

}

The second way is to place the function into any source file whose name starts with rtc_wake_stub. Files names
rtc_wake_stub* have their contents automatically put into RTC memory by the linker.
The first way is simpler for very short and simple code, or for source files where you want to mix "normal" and "RTC"
code. The second way is simpler when you want to write longer pieces of code for RTC memory.

4.9.4 Loading Data Into RTC Memory

Data used by stub code must be resident in RTC memory.
Specifying this data can be done in one of two ways:
The first way is to use the RTC_DATA_ATTR and RTC_RODATA_ATTR to specify any data (writeable or read-only,
respectively) which should be loaded into RTC memory:

RTC_DATA_ATTR int wake_count;

void RTC_IRAM_ATTR esp_wake_deep_sleep(void) {
esp_default_wake_deep_sleep();
static RTC_RODATA_ATTR const char fmt_str[] = "Wake count %d\n";
esp_rom_printf(fmt_str, wake_count++);

}

The attributes RTC_FAST_ATTR and RTC_SLOW_ATTR can be used to specify data that will be force placed
into RTC_FAST and RTC_SLOW memory respectively, but for ESP32-C6 there is only RTC fast memory, so both
attributes will map to this region.
Unfortunately, any string constants used in this way must be declared as arrays and marked with
RTC_RODATA_ATTR, as shown in the example above.
The second way is to place the data into any source file whose name starts with rtc_wake_stub.
For example, the equivalent example in rtc_wake_stub_counter.c:

Espressif Systems 2300
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

int wake_count;

void RTC_IRAM_ATTR esp_wake_deep_sleep(void) {
esp_default_wake_deep_sleep();
esp_rom_printf("Wake count %d\n", wake_count++);

}

The second way is a better option if you need to use strings, or write other more complex code.
To reduce wake-up time use the CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP Kconfig option, see
more information in Fast boot from Deep Sleep.

4.9.5 CRC Check For Wake Stubs

During deep sleep, only the wake stubs area of RTC Fast memory is validated with CRC. When ESP32-C6 wakes up
from deep sleep, the wake stubs area is validated again. If the validation passes, the wake stubs code will be executed.
Otherwise, the normal initialization, bootloader, and esp-idf codes will be executed.

Note: When the CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP option is enabled, all the RTC fast
memory except the wake stubs area is added to the heap.

4.9.6 Example

ESP-IDF provides an example to show how to implement the Deep-sleep wake stub.
• system/deep_sleep_wake_stub

4.10 Error Handling

4.10.1 Overview

Identifying and handling run-time errors is important for developing robust applications. There can be multiple kinds
of run-time errors:

• Recoverable errors:
– Errors indicated by functions through return values (error codes)
– C++ exceptions, thrown using throw keyword

• Unrecoverable (fatal) errors:
– Failed assertions (using assert macro and equivalent methods, see Assertions) and abort() calls.
– CPU exceptions: access to protected regions of memory, illegal instruction, etc.
– System level checks: watchdog timeout, cache access error, stack overflow, stack smashing, heap corrup-
tion, etc.

This guide explains ESP-IDF error handling mechanisms related to recoverable errors, and provides some common
error handling patterns.
For instructions on diagnosing unrecoverable errors, see Fatal Errors.

Espressif Systems 2301
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/deep_sleep_wake_stub
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.10.2 Error codes

The majority of ESP-IDF-specific functions use esp_err_t type to return error codes. esp_err_t is a signed
integer type. Success (no error) is indicated with ESP_OK code, which is defined as zero.
Various ESP-IDF header files define possible error codes using preprocessor defines. Usually these defines start
with ESP_ERR_ prefix. Common error codes for generic failures (out of memory, timeout, invalid argument, etc.)
are defined in esp_err.h file. Various components in ESP-IDF may define additional error codes for specific
situations.
For the complete list of error codes, see Error Code Reference.

4.10.3 Converting error codes to error messages

For each error code defined in ESP-IDF components, esp_err_t value can be converted to an error code
name using esp_err_to_name() or esp_err_to_name_r() functions. For example, passing 0x101 to
esp_err_to_name() will return "ESP_ERR_NO_MEM" string. Such strings can be used in log output to make
it easier to understand which error has happened.
Additionally, esp_err_to_name_r() function will attempt to interpret the error code as a standard POSIX error
code, if no matching ESP_ERR_ value is found. This is done using strerror_r function. POSIX error codes
(such as ENOENT, ENOMEM) are defined in errno.h and are typically obtained from errno variable. In ESP-IDF
this variable is thread-local: multiple FreeRTOS tasks have their own copies of errno. Functions which set errno
only modify its value for the task they run in.
This feature is enabled by default, but can be disabled to reduce application binary size. See CON-
FIG_ESP_ERR_TO_NAME_LOOKUP. When this feature is disabled, esp_err_to_name() and
esp_err_to_name_r() are still defined and can be called. In this case, esp_err_to_name() will
return UNKNOWN ERROR, and esp_err_to_name_r() will return Unknown error 0xXXXX(YYYYY),
where 0xXXXX and YYYYY are the hexadecimal and decimal representations of the error code, respectively.

4.10.4 ESP_ERROR_CHECK macro

ESP_ERROR_CHECK macro serves similar purpose as assert, except that it checks esp_err_t value rather
than a bool condition. If the argument of ESP_ERROR_CHECK is not equal ESP_OK, then an error message is
printed on the console, and abort() is called.
Error message will typically look like this:

ESP_ERROR_CHECK failed: esp_err_t 0x107 (ESP_ERR_TIMEOUT) at 0x400d1fdf

file: "/Users/user/esp/example/main/main.c" line 20
func: app_main
expression: sdmmc_card_init(host, &card)

Backtrace: 0x40086e7c:0x3ffb4ff0 0x40087328:0x3ffb5010 0x400d1fdf:0x3ffb5030␣
↪→0x400d0816:0x3ffb5050

Note: If IDF monitor is used, addresses in the backtrace will be converted to file names and line numbers.

• The first linementions the error code as a hexadecimal value, and the identifier used for this error in source code.
The latter depends on CONFIG_ESP_ERR_TO_NAME_LOOKUP option being set. Address in the program
where error has occured is printed as well.

• Subsequent lines show the location in the program where ESP_ERROR_CHECK macro was called, and the
expression which was passed to the macro as an argument.

• Finally, backtrace is printed. This is part of panic handler output common to all fatal errors. See Fatal Errors
for more information about the backtrace.

Espressif Systems 2302
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.10.5 ESP_ERROR_CHECK_WITHOUT_ABORT macro

ESP_ERROR_CHECK_WITHOUT_ABORT macro serves similar purpose as ESP_ERROR_CHECK, except that it
won't call abort().

4.10.6 ESP_RETURN_ON_ERROR macro

ESP_RETURN_ON_ERROR macro checks the error code, if the error code is not equal ESP_OK, it prints the
message and returns.

4.10.7 ESP_GOTO_ON_ERROR macro

ESP_GOTO_ON_ERRORmacro checks the error code, if the error code is not equal ESP_OK, it prints the message,
sets the local variable ret to the code, and then exits by jumping to goto_tag.

4.10.8 ESP_RETURN_ON_FALSE macro

ESP_RETURN_ON_FALSE macro checks the condition, if the condition is not equal true, it prints the message and
returns with the supplied err_code.

4.10.9 ESP_GOTO_ON_FALSE macro

ESP_GOTO_ON_FALSE macro checks the condition, if the condition is not equal true, it prints the message, sets
the local variable ret to the supplied err_code, and then exits by jumping to goto_tag.

4.10.10 CHECK MACROS Examples

Some examples:

static const char* TAG = "Test";

esp_err_t test_func(void)
{

esp_err_t ret = ESP_OK;

ESP_ERROR_CHECK(x); // err message␣
↪→printed if `x` is not `ESP_OK`, and then `abort()`.

ESP_ERROR_CHECK_WITHOUT_ABORT(x); // err message␣
↪→printed if `x` is not `ESP_OK`, without `abort()`.

ESP_RETURN_ON_ERROR(x, TAG, "fail reason 1"); // err message␣
↪→printed if `x` is not `ESP_OK`, and then function returns with code `x`.

ESP_GOTO_ON_ERROR(x, err, TAG, "fail reason 2"); // err message␣
↪→printed if `x` is not `ESP_OK`, `ret` is set to `x`, and then jumps to `err`.

ESP_RETURN_ON_FALSE(a, err_code, TAG, "fail reason 3"); // err message␣
↪→printed if `a` is not `true`, and then function returns with code `err_code`.

ESP_GOTO_ON_FALSE(a, err_code, err, TAG, "fail reason 4"); // err message␣
↪→printed if `a` is not `true`, `ret` is set to `err_code`, and then jumps to␣
↪→`err`.

err:
// clean up
return ret;

}

Espressif Systems 2303
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: If the optionCONFIG_COMPILER_OPTIMIZATION_CHECKS_SILENT in Kconfig is enabled, the errmessage
will be discarded, while the other action works as is.
The ESP_RETURN_XX and ESP_GOTO_xx macros can't be called from ISR. While there are xx_ISR versions
for each of them, e.g., ESP_RETURN_ON_ERROR_ISR, these macros could be used in ISR.

4.10.11 Error handling patterns

1. Attempt to recover. Depending on the situation, we may try the following methods:
• retry the call after some time;
• attempt to de-initialize the driver and re-initialize it again;
• fix the error condition using an out-of-band mechanism (e.g reset an external peripheral which is not
responding).

Example:

esp_err_t err;
do {

err = sdio_slave_send_queue(addr, len, arg, timeout);
// keep retrying while the sending queue is full

} while (err == ESP_ERR_TIMEOUT);
if (err != ESP_OK) {

// handle other errors
}

2. Propagate the error to the caller. In some middleware components this means that a function must exit with
the same error code, making sure any resource allocations are rolled back.
Example:

sdmmc_card_t* card = calloc(1, sizeof(sdmmc_card_t));
if (card == NULL) {

return ESP_ERR_NO_MEM;
}
esp_err_t err = sdmmc_card_init(host, &card);
if (err != ESP_OK) {

// Clean up
free(card);
// Propagate the error to the upper layer (e.g. to notify the user).
// Alternatively, application can define and return custom error code.
return err;

}

3. Convert into unrecoverable error, for example using ESP_ERROR_CHECK. See ESP_ERROR_CHECK macro
section for details.
Terminating the application in case of an error is usually undesirable behavior for middleware components, but
is sometimes acceptable at application level.
Many ESP-IDF examples use ESP_ERROR_CHECK to handle errors from various APIs. This is not the best
practice for applications, and is done to make example code more concise.
Example:

ESP_ERROR_CHECK(spi_bus_initialize(host, bus_config, dma_chan));

4.10.12 C++ Exceptions

See Exception Handling.

Espressif Systems 2304
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.11 ESP-WIFI-MESH

This guide provides information regarding the ESP-WIFI-MESH protocol. Please see the ESP-WIFI-MESH API
Reference for more information about API usage.

4.11.1 Overview

ESP-WIFI-MESH is a networking protocol built atop the Wi-Fi protocol. ESP-WIFI-MESH allows numerous de-
vices (henceforth referred to as nodes) spread over a large physical area (both indoors and outdoors) to be intercon-
nected under a single WLAN (Wireless Local-Area Network). ESP-WIFI-MESH is self-organizing and self-healing
meaning the network can be built and maintained autonomously.
The ESP-WIFI-MESH guide is split into the following sections:

1. Introduction
2. ESP-WIFI-MESH Concepts
3. Building a Network
4. Managing a Network
5. Data Transmission
6. Channel Switching
7. Performance
8. Further Notes

4.11.2 Introduction

Fig. 42: Traditional Wi-Fi Network Architecture

A traditional infrastructure Wi-Fi network is a point-to-multipoint network where a single central node known as the
access point (AP) is directly connected to all other nodes known as stations. The AP is responsible for arbitrating and
forwarding transmissions between the stations. Some APs also relay transmissions to/from an external IP network
via a router. Traditional infrastructure Wi-Fi networks suffer the disadvantage of limited coverage area due to the
requirement that every station must be in range to directly connect with the AP. Furthermore, traditional Wi-Fi
networks are susceptible to overloading as the maximum number of stations permitted in the network is limited by
the capacity of the AP.

Espressif Systems 2305
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 43: ESP-WIFI-MESH Network Architecture

ESP-WIFI-MESH differs from traditional infrastructure Wi-Fi networks in that nodes are not required to connect to
a central node. Instead, nodes are permitted to connect with neighboring nodes. Nodes are mutually responsible for
relaying each others transmissions. This allows an ESP-WIFI-MESH network to have much greater coverage area as
nodes can still achieve interconnectivity without needing to be in range of the central node. Likewise, ESP-WIFI-
MESH is also less susceptible to overloading as the number of nodes permitted on the network is no longer limited
by a single central node.

4.11.3 ESP-WIFI-MESH Concepts

Espressif Systems 2306
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Terminology

Term Description
Node Any device that is or can be part of an ESP-WIFI-MESH network
Root Node The top node in the network
Child Node A nodeX is a child node when it is connected to another node Ywhere the connection

makes node X more distant from the root node than node Y (in terms of number of
connections).

Parent Node The converse notion of a child node
Descendant Node Any node reachable by repeated proceeding from parent to child
Sibling Nodes Nodes that share the same parent node
Connection A traditional Wi-Fi association between an AP and a station. A node in ESP-WIFI-

MESH will use its station interface to associate with the softAP interface of another
node, thus forming a connection. The connection process includes the authentication
and association processes in Wi-Fi.

Upstream Connection The connection from a node to its parent node
Downstream Connection The connection from a node to one of its child nodes
Wireless Hop The portion of the path between source and destination nodes that corresponds to a

single wireless connection. A data packet that traverses a single connection is known
as single-hop whereas traversing multiple connections is known as multi-hop.

Subnetwork A subnetwork is subdivision of an ESP-WIFI-MESH network which consists of a
node and all of its descendant nodes. Therefore the subnetwork of the root node
consists of all nodes in an ESP-WIFI-MESH network.

MAC Address Media Access Control Address used to uniquely identify each node or router within
an ESP-WIFI-MESH network.

DS Distribution System (External IP Network)

Tree Topology

ESP-WIFI-MESH is built atop the infrastructure Wi-Fi protocol and can be thought of as a networking protocol that
combines many individual Wi-Fi networks into a single WLAN. In Wi-Fi, stations are limited to a single connection
with an AP (upstream connection) at any time, whilst an AP can be simultaneously connected to multiple stations
(downstream connections). However ESP-WIFI-MESH allows nodes to simultaneously act as a station and an AP.
Therefore a node in ESP-WIFI-MESH can have multiple downstream connections using its softAP interface,
whilst simultaneously having a single upstream connection using its station interface. This naturally results in a
tree network topology with a parent-child hierarchy consisting of multiple layers.
ESP-WIFI-MESH is a multiple hop (multi-hop) network meaning nodes can transmit packets to other nodes in the
network through one or more wireless hops. Therefore, nodes in ESP-WIFI-MESH not only transmit their own
packets, but simultaneously serve as relays for other nodes. Provided that a path exists between any two nodes
on the physical layer (via one or more wireless hops), any pair of nodes within an ESP-WIFI-MESH network can
communicate.

Note: The size (total number of nodes) in an ESP-WIFI-MESH network is dependent on the maximum number of
layers permitted in the network, and the maximum number of downstream connections each node can have. Both of
these variables can be configured to limit the size of the network.

Node Types

Root Node: The root node is the top node in the network and serves as the only interface between the ESP-WIFI-
MESH network and an external IP network. The root node is connected to a conventional Wi-Fi router and relays
packets to/from the external IP network to nodes within the ESP-WIFI-MESH network. There can only be one
root node within an ESP-WIFI-MESH network and the root node's upstream connection may only be with the
router. Referring to the diagram above, node A is the root node of the network.

Espressif Systems 2307
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 44: ESP-WIFI-MESH Tree Topology

Fig. 45: ESP-WIFI-MESH Node Types

Espressif Systems 2308
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Leaf Nodes: A leaf node is a node that is not permitted to have any child nodes (no downstream connections).
Therefore a leaf node can only transmit or receive its own packets, but cannot forward the packets of other nodes.
If a node is situated on the network's maximum permitted layer, it will be assigned as a leaf node. This prevents
the node from forming any downstream connections thus ensuring the network does not add an extra layer. Some
nodes without a softAP interface (station only) will also be assigned as leaf nodes due to the requirement of a softAP
interface for any downstream connections. Referring to the diagram above, nodes L/M/N are situated on the networks
maximum permitted layer hence have been assigned as leaf nodes .
Intermediate Parent Nodes: Connected nodes that are neither the root node or a leaf node are intermediate parent
nodes. An intermediate parent node must have a single upstream connection (a single parent node), but can have
zero to multiple downstream connections (zero to multiple child nodes). Therefore an intermediate parent node
can transmit and receive packets, but also forward packets sent from its upstream and downstream connections.
Referring to the diagram above, nodes B to J are intermediate parent nodes. Intermediate parent nodes without
downstream connections such as nodes E/F/G/I/J are not equivalent to leaf nodes as they are still permitted to
form downstream connections in the future.
Idle Nodes: Nodes that have yet to join the network are assigned as idle nodes. Idle nodes will attempt to form
an upstream connection with an intermediate parent node or attempt to become the root node under the correct
circumstances (see Automatic Root Node Selection). Referring to the diagram above, nodes K and O are idle nodes.

Beacon Frames & RSSI Thresholding

Every node in ESP-WIFI-MESH that is able to form downstream connections (i.e. has a softAP interface) will
periodically transmit Wi-Fi beacon frames. A node uses beacon frames to allow other nodes to detect its presence
and know of its status. Idle nodes will listen for beacon frames to generate a list of potential parent nodes, one of
which the idle node will form an upstream connection with. ESP-WIFI-MESH uses the Vendor Information Element
to store metadata such as:

• Node Type (Root, Intermediate Parent, Leaf, Idle)
• Current layer of Node
• Maximum number of layers permitted in the network
• Current number of child nodes
• Maximum number of downstream connections to accept

The signal strength of a potential upstream connection is represented by RSSI (Received Signal Strength Indication)
of the beacon frames of the potential parent node. To prevent nodes from forming a weak upstream connection,
ESP-WIFI-MESH implements an RSSI threshold mechanism for beacon frames. If a node detects a beacon frame
with an RSSI below a preconfigured threshold, the transmitting node will be disregarded when forming an upstream
connection.
Panel A of the illustration above demonstrates how the RSSI threshold affects the number of parent node candidates
an idle node has.
Panel B of the illustration above demonstrates how an RF shielding object can lower the RSSI of a potential parent
node. Due to the RF shielding object, the area in which the RSSI of node X is above the threshold is significantly
reduced. This causes the idle node to disregard node X even though node X is physically adjacent. The idle node will
instead form an upstream connection with the physically distant node Y due to a stronger RSSI.

Note: Nodes technically still receive all beacon frames on the MAC layer. The RSSI threshold is an ESP-WIFI-
MESH feature that simply filters out all received beacon frames that are below the preconfigured threshold.

Preferred Parent Node

When an idle node has multiple parent nodes candidates (potential parent nodes), the idle node will form an upstream
connection with the preferred parent node. The preferred parent node is determined based on the following criteria:

• Which layer the parent node candidate is situated on
• The number of downstream connections (child nodes) the parent node candidate currently has

Espressif Systems 2309
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 46: Effects of RSSI Thresholding

The selection of the preferred parent node will always prioritize the parent node candidate on the shallowest layer
of the network (including the root node). This helps minimize the total number of layers in an ESP-WIFI-MESH
network when upstream connections are formed. For example, given a second layer node and a third layer node, the
second layer node will always be preferred.
If there are multiple parent node candidates within the same layer, the parent node candidate with the least child
nodes will be preferred. This criteria has the effect of balancing the number of downstream connections amongst
nodes of the same layer.

Fig. 47: Preferred Parent Node Selection

Panel A of the illustration above demonstrates an example of how the idle node G selects a preferred parent node
given the five parent node candidates B/C/D/E/F. Nodes on the shallowest layer are preferred, hence nodes B/C are
prioritized since they are second layer nodes whereas nodes D/E/F are on the third layer. Node C is selected as the
preferred parent node due it having fewer downstream connections (fewer child nodes) compared to node B.
Panel B of the illustration above demonstrates the case where the root node is within range of the idle node G. In

Espressif Systems 2310
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

other words, the root node's beacon frames are above the RSSI threshold when received by node G. The root node is
always the shallowest node in an ESP-WIFI-MESH network hence is always the preferred parent node given multiple
parent node candidates.

Note: Users may also define their own algorithm for selecting a preferred parent node, or force a node to only
connect with a specific parent node (see the Mesh Manual Networking Example).

Routing Tables

Each node within an ESP-WIFI-MESH network will maintain its individual routing table used to correctly route ESP-
WIFI-MESH packets (see ESP-WIFI-MESH Packet) to the correct destination node. The routing table of a particular
node will consist of the MAC addresses of all nodes within the particular node's subnetwork (including the
MAC address of the particular node itself). Each routing table is internally partitioned into multiple subtables with
each subtable corresponding to the subnetwork of each child node.

Fig. 48: ESP-WIFI-MESH Routing Tables Example

Using the diagram above as an example, the routing table of node B would consist of the MAC addresses of nodes B
to I (i.e. equivalent to the subnetwork of node B). Node B's routing table is internally partitioned into two subtables
containing of nodes C to F and nodes G to I (i.e. equivalent to the subnetworks of nodes C and G respectively).
ESP-WIFI-MESH utilizes routing tables to determine whether an ESP-WIFI-MESH packet should be for-
warded upstream or downstream based on the following rules.
1. If the packet's destination MAC address is within the current node's routing table and is not the current node,
select the subtable that contains the destination MAC address and forward the data packet downstream to the child
node corresponding to the subtable.
2. If the destination MAC address is not within the current node's routing table, forward the data packet upstream
to the current node's parent node. Doing so repeatedly will result in the packet arriving at the root node where the
routing table should contain all nodes within the network.

Note: Users can call esp_mesh_get_routing_table() to obtain a node's routing ta-
ble, or esp_mesh_get_routing_table_size() to obtain the size of a node's routing table.
esp_mesh_get_subnet_nodes_list() can be used to obtain the corresponding subtable of a spe-
cific child node. Likewise esp_mesh_get_subnet_nodes_num() can be used to obtain the size of the

Espressif Systems 2311
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/mesh/manual_networking
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

subtable.

4.11.4 Building a Network

General Process

Warning: Before the ESP-WIFI-MESH network building process can begin, certain parts of the configuration
must be uniform across each node in the network (see mesh_cfg_t). Each node must be configured with the
same Mesh Network ID, router configuration, and softAP configuration.

An ESP-WIFI-MESH network building process involves selecting a root node, then forming downstream connections
layer by layer until all nodes have joined the network. The exact layout of the network can be dependent on factors
such as root node selection, parent node selection, and asynchronous power-on reset. However, the ESP-WIFI-MESH
network building process can be generalized into the following steps:

Fig. 49: ESP-WIFI-MESH Network Building Process

1. Root Node Selection The root node can be designated during configuration (see section on User Designated
Root Node), or dynamically elected based on the signal strength between each node and the router (see Automatic
Root Node Selection). Once selected, the root node will connect with the router and begin allowing downstream
connections to form. Referring to the figure above, node A is selected to be the root node hence node A forms an
upstream connection with the router.

2. Second Layer Formation Once the root node has connected to the router, idle nodes in range of the root
node will begin connecting with the root node thereby forming the second layer of the network. Once connected,
the second layer nodes become intermediate parent nodes (assuming maximum permitted layers > 2) hence the next
layer to form. Referring to the figure above, nodes B to D are in range of the root node. Therefore nodes B to D form
upstream connections with the root node and become intermediate parent nodes.

3. Formation of remaining layers The remaining idle nodes will connect with intermediate parent nodes within
range thereby forming a new layer in the network. Once connected, the idles nodes become intermediate parent node
or leaf nodes depending on the networks maximum permitted layers. This step is repeated until there are no more idle

Espressif Systems 2312
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

nodes within the network or until the maximum permitted layer of the network has been reached. Referring to the
figure above, nodes E/F/G connect with nodes B/C/D respectively and become intermediate parent nodes themselves.

4. Limiting Tree Depth To prevent the network from exceeding the maximum permitted number of layers, nodes
on the maximum layer will automatically become leaf nodes once connected. This prevents any other idle node
from connecting with the leaf node thereby prevent a new layer form forming. However if an idle node has no
other potential parent node, it will remain idle indefinitely. Referring to the figure above, the network's number of
maximum permitted layers is set to four. Therefore when node H connects, it becomes a leaf node to prevent any
downstream connections from forming.

Automatic Root Node Selection

The automatic selection of a root node involves an election process amongst all idle nodes based on their signal
strengths with the router. Each idle node will transmit their MAC addresses and router RSSI values via Wi-Fi beacon
frames. TheMAC address is used to uniquely identify each node in the network whilst the router RSSI is used
to indicate a node's signal strength with reference to the router.
Each node will then simultaneously scan for the beacon frames from other idle nodes. If a node detects a beacon
frame with a stronger router RSSI, the node will begin transmitting the contents of that beacon frame (i.e. voting for
the node with the stronger router RSSI). The process of transmission and scanning will repeat for a preconfigured
minimum number of iterations (10 iterations by default) and result in the beacon frame with the strongest router RSSI
being propagated throughout the network.
After all iterations, each node will individually check for its vote percentage (number of votes/number of
nodes participating in election) to determine if it should become the root node. If a node has a
vote percentage larger than a preconfigured threshold (90% by default), the node will become a root node.
The following diagram demonstrates how an ESP-WIFI-MESH network is built when the root node is automatically
selected.

Fig. 50: Root Node Election Example

1. On power-on reset, each node begins transmitting beacon frames consisting of their own MAC addresses and their
router RSSIs.
2. Over multiple iterations of transmission and scanning, the beacon frame with the strongest router RSSI is propa-
gated throughout the network. Node C has the strongest router RSSI (-10 dB) hence its beacon frame is propagated

Espressif Systems 2313
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

throughout the network. All nodes participating in the election vote for node C thus giving node C a vote percentage
of 100%. Therefore node C becomes a root node and connects with the router.
3. Once Node C has connected with the router, nodes A/B/D/E connectwith node C as it is the preferred parent node
(i.e. the shallowest node). Nodes A/B/D/E form the second layer of the network.
4. Node F and G connect with nodes D and E respectively and the network building process is complete.

Note: The minimum number of iterations for the election process can be configured using
esp_mesh_set_attempts(). Users should adjust the number of iterations based on the number of
nodes within the network (i.e. the larger the network the larger number of scan iterations required).

Warning: Vote percentage threshold can also be configured using
esp_mesh_set_vote_percentage(). Setting a low vote percentage threshold can result in two
or more nodes becoming root nodes within the same ESP-WIFI-MESH network leading to the building of
multiple networks. If such is the case, ESP-WIFI-MESH has internal mechanisms to autonomously resolve the
root node conflict. The networks of the multiple root nodes will be combined into a single network with a single
root node. However, root node conflicts where two or more root nodes have the same router SSID but different
router BSSID are not handled.

User Designated Root Node

The root node can also be designated by user which will entail the designated root node to directly connect with the
router and forgo the election process. When a root node is designated, all other nodes within the network must also
forgo the election process to prevent the occurrence of a root node conflict. The following diagram demonstrates how
an ESP-WIFI-MESH network is built when the root node is designated by the user.

Fig. 51: Root Node Designation Example (Root Node = A, Max Layers = 4)

1. Node A is designated the root node by the user therefore directly connects with the router. All other nodes forgo
the election process.
2. Nodes C/D connect with node A as their preferred parent node. Both nodes form the second layer of the network.

Espressif Systems 2314
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

3. Likewise, nodes B/E connect with node C, and node F connects with node D. Nodes B/E/F form the third layer
of the network.
4. Node G connects with node E, forming the fourth layer of the network. However the maximum permitted number
of layers in this network is configured as four, therefore node G becomes a leaf node to prevent any new layers from
forming.

Note: When designating a root node, the root node should call esp_mesh_set_parent() in order to directly
connect with the router. Likewise, all other nodes should call esp_mesh_fix_root() to forgo the election
process.

Parent Node Selection

By default, ESP-WIFI-MESH is self organizing meaning that each node will autonomously select which potential
parent node to form an upstream connection with. The autonomously selected parent node is known as the preferred
parent node. The criteria used for selecting the preferred parent node is designed to reduce the number of layers
in the ESP-WIFI-MESH network and to balance the number of downstream connections between potential parent
nodes (see section on Preferred Parent Node).
However ESP-WIFI-MESH also allows users to disable self-organizing behavior which will allow users to define their
own criteria for parent node selection, or to configure nodes to have designated parent nodes (see the Mesh Manual
Networking Example).

Asynchronous Power-on Reset

ESP-WIFI-MESH network building can be affected by the order in which nodes power-on. If certain nodes within
the network power-on asynchronously (i.e. separated by several minutes), the final structure of the network could
differ from the ideal case where all nodes are powered on synchronously. Nodes that are delayed in powering
on will adhere to the following rules:
Rule 1: If a root node already exists in the network, the delayed node will not attempt to elect a new root node, even
if it has a stronger RSSI with the router. The delayed node will instead join the network like any other idle node
by connecting with a preferred parent node. If the delayed node is the designated root node, all other nodes in the
network will remain idle until the delayed node powers-on.
Rule 2: If a delayed node forms an upstream connection and becomes an intermediate parent node, it may also
become the new preferred parent of other nodes (i.e. being a shallower node). This will cause the other nodes to
switch their upstream connections to connect with the delayed node (see Parent Node Switching).
Rule 3: If an idle node has a designated parent node which is delayed in powering-on, the idle node will not attempt to
form any upstream connections in the absence of its designated parent node. The idle node will remain idle indefinitely
until its designated parent node powers-on.
The following example demonstrates the effects of asynchronous power-on with regards to network building.
1. Nodes A/C/D/F/G/H are powered-on synchronously and begin the root node election process by broadcasting their
MAC addresses and router RSSIs. Node A is elected as the root node as it has the strongest RSSI.
2. Once node A becomes the root node, the remaining nodes begin forming upstream connections layer by layer with
their preferred parent nodes. The result is a network with five layers.
3. Node B/E are delayed in powering-on but neither attempt to become the root node even though they have stronger
router RSSIs (-20 dB and -10 dB) compared to node A. Instead both delayed nodes form upstream connections
with their preferred parent nodes A and C respectively. Both nodes B/E become intermediate parent nodes after
connecting.
4. Nodes D/G switch their upstream connections as node B is the new preferred parent node due to it being on a
shallower layer (second layer node). Due to the switch, the resultant network has three layers instead of the original
five layers.

Espressif Systems 2315
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/mesh/manual_networking
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/mesh/manual_networking
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 52: Network Building with Asynchronous Power On Example

Espressif Systems 2316
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Synchronous Power-On: Had all nodes powered-on synchronously, node E would have become the root node as it
has the strongest router RSSI (-10 dB). This would result in a significantly different network layout compared to the
network formed under the conditions of asynchronous power-on. However the synchronous power-on network
layout can still be reached if the user manually switches the root node (see esp_mesh_waive_root()).

Note: Differences in parent node selection caused by asynchronous power-on are autonomously corrected for to
some extent in ESP-WIFI-MESH (see Parent Node Switching)

Loop-back Avoidance, Detection, and Handling

A loop-back is the situation where a particular node forms an upstream connection with one of its descendant nodes
(a node within the particular node's subnetwork). This results in a circular connection path thereby breaking the tree
topology. ESP-WIFI-MESH prevents loop-back during parent selection by excluding nodes already present in the
selecting node's routing table (see Routing Tables) thus prevents a particular node from attempting to connect to any
node within its subnetwork.
In the event that a loop-back occurs, ESP-WIFI-MESH utilizes a path verification mechanism and energy transfer
mechanism to detect the loop-back occurrence. The parent node of the upstream connection that caused the loop-
back will then inform the child node of the loop-back and initiate a disconnection.

4.11.5 Managing a Network

ESP-WIFI-MESH is a self healing networkmeaning it can detect and correct for failures in network routing.
Failures occur when a parent node with one or more child nodes breaks down, or when the connection between a
parent node and its child nodes becomes unstable. Child nodes in ESP-WIFI-MESH will autonomously select a new
parent node and form an upstream connection with it to maintain network interconnectivity. ESP-WIFI-MESH can
handle both Root Node Failures and Intermediate Parent Node Failures.

Root Node Failure

If the root node breaks down, the nodes connected with it (second layer nodes) will promptly detect the failure of
the root node. The second layer nodes will initially attempt to reconnect with the root node. However after multiple
failed attempts, the second layer nodes will initialize a new round of root node election. The second layer node with
the strongest router RSSI will be elected as the new root node whilst the remaining second layer nodes will form
an upstream connection with the new root node (or a neighboring parent node if not in range).
If the root node and multiple downstream layers simultaneously break down (e.g. root node, second layer, and
third layer), the shallowest layer that is still functioning will initialize the root node election. The following example
illustrates an example of self healing from a root node break down.
1. Node C is the root node of the network. Nodes A/B/D/E are second layer nodes connected to node C.
2. Node C breaks down. After multiple failed attempts to reconnect, the second layer nodes begin the election process
by broadcasting their router RSSIs. Node B has the strongest router RSSI.
3. Node B is elected as the root node and begins accepting downstream connections. The remaining second layer
nodes A/D/E form upstream connections with node B thus the network is healed and can continue operating normally.

Note: If a designated root node breaks down, the remaining nodes will not autonomously attempt to elect a new
root node as an election process will never be attempted whilst a designated root node is used.

Espressif Systems 2317
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 53: Self Healing From Root Node Failure

Intermediate Parent Node Failure

If an intermediate parent node breaks down, the disconnected child nodes will initially attempt to reconnect with the
parent node. After multiple failed attempts to reconnect, each child node will begin to scan for potential parent nodes
(see Beacon Frames & RSSI Thresholding).
If other potential parent nodes are available, each child node will individually select a new preferred parent node (see
Preferred Parent Node) and form an upstream connection with it. If there are no other potential parent nodes for a
particular child node, it will remain idle indefinitely.
The following diagram illustrates an example of self healing from an Intermediate Parent Node break down.

Fig. 54: Self Healing From Intermediate Parent Node Failure

1. The following branch of the network consists of nodes A to G.
2. Node C breaks down. Nodes F/G detect the break down and attempt to reconnect with node C. After multiple
failed attempts to reconnect, nodes F/G begin to select a new preferred parent node.
3. Node G is out of range from any other parent node hence remains idle for the time being. Node F is in range of
nodes B/E, however node B is selected as it is the shallower node. Node F becomes an intermediate parent node after
connecting with Node B thus node G can connect with node F. The network is healed, however the network routing
as been affected and an extra layer has been added.

Note: If a child node has a designated parent node that breaks down, the child node will make no attempt to connect
with a new parent node. The child node will remain idle indefinitely.

Espressif Systems 2318
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Root Node Switching

ESP-WIFI-MESH does not automatically switch the root node unless the root node breaks down. Even if the root
node's router RSSI degrades to the point of disconnection, the root node will remain unchanged. Root node switching
is the act of explicitly starting a new election such that a node with a stronger router RSSI will be elected as the new
root node. This can be a useful method of adapting to degrading root node performance.
To trigger a root node switch, the current root node must explicitly call esp_mesh_waive_root() to trigger a
new election. The current root node will signal all nodes within the network to begin transmitting and scanning for
beacon frames (see Automatic Root Node Selection) whilst remaining connected to the network (i.e. not idle). If
another node receives more votes than the current root node, a root node switch will be initiated. The root node will
remain unchanged otherwise.
A newly elected root node sends a switch request to the current root node which in turn will respond with an
acknowledgment signifying both nodes are ready to switch. Once the acknowledgment is received, the newly elected
root node will disconnect from its parent and promptly form an upstream connection with the router thereby becoming
the new root node of the network. The previous root node will disconnect from the router whilst maintaining all of
its downstream connections and enter the idle state. The previous root node will then begin scanning for potential
parent nodes and selecting a preferred parent.
The following diagram illustrates an example of a root node switch.

Fig. 55: Root Node Switch Example

1. Node C is the current root node but has degraded signal strength with the router (-85db). The node C triggers a
new election and all nodes begin transmitting and scanning for beacon frames whilst still being connected.
2. After multiple rounds of transmission and scanning, node B is elected as the new root node. Node B sends node
C a switch request and node C responds with an acknowledgment.
3. Node B disconnects from its parent and connects with the router becoming the network's new root node. Node C
disconnects from the router, enters the idle state, and begins scanning for and selecting a new preferred parent node.
Node C maintains all its downstream connections throughout this process.
4. Node C selects node B as its preferred parent node, forms an upstream connection, and becomes a second layer
node. The network layout is similar after the switch as node C still maintains the same subnetwork. However each
node in node C's subnetwork has been placed one layer deeper as a result of the switch. Parent Node Switching may
adjust the network layout afterwards if any nodes have a new preferred parent node as a result of the root node switch.

Espressif Systems 2319
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: Root node switching must require an election hence is only supported when using a self-organized ESP-WIFI-
MESH network. In other words, root node switching cannot occur if a designated root node is used.

Parent Node Switching

Parent Node Switching entails a child node switching its upstream connection to another parent node of a shallower
layer. Parent Node Switching occurs autonomouslymeaning that a child node will change its upstream connection
automatically if a potential parent node of a shallower layer becomes available (i.e. due to a Asynchronous Power-on
Reset).
All potential parent nodes periodically transmit beacon frames (see Beacon Frames & RSSI Thresholding) allowing
for a child node to scan for the availability of a shallower parent node. Due to parent node switching, a self-organized
ESP-WIFI-MESH network can dynamically adjust its network layout to ensure each connection has a good RSSI and
that the number of layers in the network is minimized.

4.11.6 Data Transmission

ESP-WIFI-MESH Packet

ESP-WIFI-MESH network data transmissions use ESP-WIFI-MESH packets. ESP-WIFI-MESH packets are en-
tirely contained within the frame body of a Wi-Fi data frame. A multi-hop data transmission in an ESP-WIFI-
MESH network will involve a single ESP-WIFI-MESH packet being carried over each wireless hop by a different
Wi-Fi data frame.
The following diagram shows the structure of an ESP-WIFI-MESH packet and its relation with a Wi-Fi data frame.

Fig. 56: ESP-WIFI-MESH Packet

The header of an ESP-WIFI-MESH packet contains the MAC addresses of the source and destination nodes.
The options field contains information pertaining to the special types of ESP-WIFI-MESH packets such as a
group transmission or a packet originating from the external IP network (see MESH_OPT_SEND_GROUP and
MESH_OPT_RECV_DS_ADDR).
The payload of an ESP-WIFI-MESH packet contains the actual application data. This data can be raw binary data,
or encoded under an application layer protocol such as HTTP, MQTT, and JSON (see mesh_proto_t).

Note: When sending an ESP-WIFI-MESH packet to the external IP network, the destination address field of
the header will contain the IP address and port of the target server rather than the MAC address of a node (see
mesh_addr_t). Furthermore the root node will handle the formation of the outgoing TCP/IP packet.

Group Control & Multicasting

Multicasting is a feature that allows a single ESP-WIFI-MESH packet to be transmitted simultaneously to mul-
tiple nodes within the network. Multicasting in ESP-WIFI-MESH can be achieved by either specifying a list

Espressif Systems 2320
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

of target nodes, or specifying a preconfigured group of nodes. Both methods of multicasting are called via
esp_mesh_send().
To multicast by specifying a list of target nodes, users must first set the ESP-WIFI-MESH packet's destina-
tion address to the Multicast-Group Address (01:00:5E:xx:xx:xx). This signifies that the ESP-WIFI-
MESH packet is a multicast packet with a group of addresses, and that the address should be obtained from the
header options. Users must then list the MAC addresses of the target nodes as options (see mesh_opt_t and
MESH_OPT_SEND_GROUP). This method of multicasting requires no prior setup but can incur a large amount of
overhead data as each target node's MAC address must be listed in the options field of the header.
Multicasting by group allows a ESP-WIFI-MESH packet to be transmitted to a preconfigured group of nodes. Each
grouping is identified by a unique ID, and a node can be placed into a group via esp_mesh_set_group_id().
Multicasting to a group involves setting the destination address of the ESP-WIFI-MESH packet to the target group ID.
Furthermore, the MESH_DATA_GROUP flag must set. Using groups to multicast incurs less overhead, but requires
nodes to previously added into groups.

Note: During a multicast, all nodes within the network still receive the ESP-WIFI-MESH packet on the MAC layer.
However, nodes not included in the MAC address list or the target group will simply filter out the packet.

Broadcasting

Broadcasting is a feature that allows a single ESP-WIFI-MESH packet to be transmitted simultaneously to all nodes
within the network. Each node essentially forwards a broadcast packet to all of its upstream and downstream con-
nections such that the packet propagates throughout the network as quickly as possible. However, ESP-WIFI-MESH
utilizes the following methods to avoid wasting bandwidth during a broadcast.
1. When an intermediate parent node receives a broadcast packet from its parent, it will forward the packet to each
of its child nodes whilst storing a copy of the packet for itself.
2. When an intermediate parent node is the source node of the broadcast, it will transmit the broadcast packet
upstream to is parent node and downstream to each of its child nodes.
3. When an intermediate parent node receives a broadcast packet from one of its child nodes, it will forward the
packet to its parent node and each of its remaining child nodes whilst storing a copy of the packet for itself.
4. When a leaf node is the source node of a broadcast, it will directly transmit the packet to its parent node.
5. When the root node is the source node of a broadcast, the root node will transmit the packet to all of its child
nodes.
6. When the root node receives a broadcast packet from one of its child nodes, it will forward the packet to each of
its remaining child nodes whilst storing a copy of the packet for itself.
7. When a node receives a broadcast packet with a source address matching its own MAC address, the node will
discard the broadcast packet.
8. When an intermediate parent node receives a broadcast packet from its parent nodewhichwas originally transmitted
from one of its child nodes, it will discard the broadcast packet

Upstream Flow Control

ESP-WIFI-MESH relies on parent nodes to control the upstream data flow of their immediate child nodes. To prevent
a parent node's message buffer from overflowing due to an overload of upstream transmissions, a parent node will
allocate a quota for upstream transmissions known as a receiving window for each of its child nodes. Each child
node must apply for a receiving window before it is permitted to transmit upstream. The size of a receiving
window can be dynamically adjusted. An upstream transmission from a child node to the parent node consists of the
following steps:
1. Before each transmission, the child node sends a window request to its parent node. The window request consists
of a sequence number which corresponds to the child node's data packet that is pending transmission.

Espressif Systems 2321
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

2. The parent node receives the window request and compares the sequence number with the sequence number of the
previous packet sent by the child node. The comparison is used to calculate the size of the receiving window which
is transmitted back to the child node.
3. The child node transmits the data packet in accordance with the window size specified by the parent node. If the
child node depletes its receiving window, it must obtain another receiving windows by sending a request before it is
permitted to continue transmitting.

Note: ESP-WIFI-MESH does not support any downstream flow control.

Warning: Due to Parent Node Switching, packet loss may occur during upstream transmissions.

Due to the fact that the root node acts as the sole interface to an external IP network, it is critical that downstream
nodes are aware of the root node's connection status with the external IP network. Failing to do so can lead to
nodes attempting to pass data upstream to the root node whilst it is disconnected from the IP network. This results
in unnecessary transmissions and packet loss. ESP-WIFI-MESH address this issue by providing a mechanism to
stabilize the throughput of outgoing data based on the connection status between the root node and the external
IP network. The root node can broadcast its external IP network connection status to all other nodes by calling
esp_mesh_post_toDS_state().

Bi-Directional Data Stream

The following diagram illustrates the various network layers involved in an ESP-WIFI-MESH Bidirectional Data
Stream.

Fig. 57: ESP-WIFI-MESH Bidirectional Data Stream

Due to the use of Routing Tables, ESP-WIFI-MESH is able to handle pack forwarding entirely on the mesh
layer. A TCP/IP layer is only required on the root node when it transmits/receives a packet to/from an external IP
network.

4.11.7 Channel Switching

Background

In traditional Wi-Fi networks, channels are predetermined frequency ranges. In an infrastructure basic service set
(BSS), the serving AP and its connected stations must be on the same operating channels (1 to 14) in which beacons
are transmitted. Physically adjacent BSS (Basic Service Sets) operating on the same channel can lead to interference
and degraded performance.

Espressif Systems 2322
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

In order to allow a BSS adapt to changing physical layer conditions and maintain performance, Wi-Fi contains mech-
anisms for network channel switching. A network channel switch is an attempt to move a BSS to a new operating
channel whilst minimizing disruption to the BSS during this process. However it should be recognized that a channel
switch may be unsuccessful in moving all stations to the new operating channel.
In an infrastructure Wi-Fi network, network channel switches are triggered by the AP with the aim of having the
AP and all connected stations synchronously switch to a new channel. Network channel switching is implemented
by embedding a Channel Switch Announcement (CSA) element within the AP's periodically transmitted beacon
frames. The CSA element is used to advertise to all connected stations regarding an upcoming network channel
switch and will be included in multiple beacon frames up until the switch occurs.
A CSA element contains information regarding the New Channel Number and a Channel Switch Count which
indicates the number of beacon frame intervals (TBTTs) remaining until the network channel switch occurs. There-
fore, the Channel Switch Count is decremented every beacon frame and allows connected stations to synchronize
their channel switch with the AP.

ESP-WIFI-MESH Network Channel Switching

ESP-WIFI-MESH Network Channel Switching also utilize beacon frames that contain a CSA element. However,
being a multi-hop network makes the switching process in ESP-WIFI-MESH is more complex due to the fact that a
beacon frame might not be able to reach all nodes within the network (i.e. in a single hop). Therefore, an ESP-WIFI-
MESH network relies on nodes to forward the CSA element so that it is propagated throughout the network.
When an intermediate parent node with one or more child nodes receives a beacon frame containing a CSA, the node
will forward the CSA element by including the element in its next transmitted beacon frame (i.e. with the same New
Channel Number and Channel Switch Count). Given that all nodes within an ESP-WIFI-MESH network receive
the same CSA, the nodes can synchronize their channel switches using the Channel Switch Count, albeit with a short
delay due to CSA element forwarding.
An ESP-WIFI-MESH network channel switch can be triggered by either the router or the root node.

Root Node Triggered A root node triggered channel switch can only occur when the ESP-WIFI-MESH
network is not connected to a router. By calling esp_mesh_switch_channel(), the root node will set an
initial Channel Switch Count value and begin including a CSA element in its beacon frames. Each CSA element is
then received by second layer nodes, and forwarded downstream in their own beacon frames.

Router Triggered When an ESP-WIFI-MESH network is connected to a router, the entire network must use the
same channel as the router. Therefore, the root node will not be permitted to trigger a channel switch when it
is connected to a router.
When the root node receives beacon frame containing a CSA element from the router, the root nodewill set Channel
SwitchCount value in theCSA element to a custom value before forwarding it downstream via beacon frames.
It will also decrement the Channel Switch Count of subsequent CSA elements relative to the custom value. This
custom value can be based on factors such as the number of network layers, the current number of nodes etc.
The setting the Channel Switch Count value to a custom value is due to the fact that the ESP-WIFI-MESH net-
work and its router may have a different and varying beacon intervals. Therefore, the Channel Switch Count value
provided by the router is irrelevant to an ESP-WIFI-MESH network. By using a custom value, nodes within the ESP-
WIFI-MESH network are able to switch channels synchronously relative to the ESP-WIFI-MESH network's beacon
interval. However, this will also result in the ESP-WIFI-MESH network's channel switch being unsynchronized with
the channel switch of the router and its connected stations.

Impact of Network Channel Switching

• Due to the ESP-WIFI-MESH network channel switch being unsynchronized with the router's channel switch, there will be a temporary channel discrepancy between the ESP-WIFI-MESH network and the router.

– The ESP-WIFI-MESH network's channel switch time is dependent on the ESP-WIFI-MESH net-
work's beacon interval and the root node's custom Channel Switch Count value.

Espressif Systems 2323
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

– The channel discrepancy prevents any data exchange between the root node and the router during
that ESP-WIFI-MESH network's switch.

– In the ESP-WIFI-MESH network, the root node and intermediate parent nodes will request their
connected child nodes to stop transmissions until the channel switch takes place by setting theChan-
nel Switch Mode field in the CSA element to 1.

– Frequent router triggered network channel switches can degrade the ESP-WIFI-MESH network's
performance. Note that this can be caused by the ESP-WIFI-MESH network itself (e.g. due to
wireless medium contention with ESP-WIFI-MESH network). If this is the case, users should dis-
able the automatic channel switching on the router and use a specified channel instead.

• When there is a temporary channel discrepancy, the root node remains technically connected to the router.

– Disconnection occurs after the root node fails to receive any beacon frames or probe responses from
the router over a fixed number of router beacon intervals.

– Upon disconnection, the root node will automatically re-scan all channels for the presence of a router.
• If the root node is unable to receive any of the router's CSA beacon frames (e.g. due to short switch time given by the router), the router will switch channels without the ESP-WIFI-MESH network's knowledge.

– After the router switches channels, the root node will no longer be able to receive the router's beacon
frames and probe responses and result in a disconnection after a fixed number of beacon intervals.

– The root node will re-scan all channels for the router after disconnection.
– The root node will maintain downstream connections throughout this process.

Note: Although ESP-WIFI-MESH network channel switching aims to move all nodes within the network to a new
operating channel, it should be recognized that a channel switch might not successfully move all nodes (e.g. due to
reasons such as node failures).

Channel and Router Switching Configuration

ESP-WIFI-MESH allows for autonomous channel switching to be enabled/disabled via configuration. Likewise,
autonomous router switching (i.e. when a root node autonomously connects to another router) can also be en-
abled/disabled by configuration. Autonomous channel switching and router switching is dependent on the following
configuration parameters and run-time conditions.
Allow Channel Switch: This parameter is set via the allow_channel_switch field of the mesh_cfg_t
structure and permits an ESP-WIFI-MESH network to dynamically switch channels when set.
Preset Channel: An ESP-WIFI-MESH network can have a preset channel by setting the channel field of the
mesh_cfg_t structure to the desired channel number. If this field is unset, the allow_channel_switch
parameter is overridden such that channel switches are always permitted.
Allow Router Switch: This parameter is set via the allow_router_switch field of the mesh_router_t
and permits an ESP-WIFI-MESH to dynamically switch to a different router when set.
Preset Router BSSID: An ESP-WIFI-MESH network can have a preset router by setting the bssid field
of the mesh_router_t structure to the BSSID of the desired router. If this field is unset, the al-
low_router_switch parameter is overridden such that router switches are always permitted.
Root Node Present: The presence of a root node will can also affect whether or a channel or router switch is
permitted.
The following table illustrates how the different combinations of parameters/conditions affect whether channel
switching and/or router switching is permitted. Note that X represents a "don't care" for the parameter.

Espressif Systems 2324
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Preset Chan-
nel

Allow Channel
Switch

Preset Router
BSSID

Allow Router
Switch

Root Node
Present

Permitted
Switches？

N X N X X Channel and
Router

N X Y N X Channel Only
N X Y Y X Channel and

Router
Y Y N X X Channel and

Router
Y N N X N Router Only
Y N N X Y Channel and

Router
Y Y Y N X Channel Only
Y N Y N N N
Y N Y N Y Channel Only
Y Y Y Y X Channel and

Router
Y N Y Y N Router Only
Y N Y Y Y Channel and

Router

4.11.8 Performance

The performance of an ESP-WIFI-MESH network can be evaluated based on multiple metrics such as the following:
Network Building Time: The amount of time taken to build an ESP-WIFI-MESH network from scratch.
Healing Time: The amount of time taken for the network to detect a node break down and carry out appropriate
actions to heal the network (such as generating a new root node or forming new connections).
Per-hop latency: The latency of data transmission over one wireless hop. In other words, the time taken to transmit
a data packet from a parent node to a child node or vice versa.
Network Node Capacity: The total number of nodes the ESP-WIFI-MESH network can simultaneously support.
This number is determined by the maximum number of downstream connections a node can accept and the maximum
number of layers permissible in the network.
The following table lists the common performance figures of an ESP-WIFI-MESH network:

• Network Building Time: < 60 seconds
• Healing time:

– Root node break down: < 10 seconds
– Child node break down: < 5 seconds

• Per-hop latency: 10 to 30 milliseconds

Note: The following test conditions were used to generate the performance figures above.
• Number of test devices: 100
• Maximum Downstream Connections to Accept: 6
• Maximum Permissible Layers: 6

Note: Throughput depends on packet error rate and hop count.

Note: The throughput of root node's access to the external IP network is directly affected by the number of nodes
in the ESP-WIFI-MESH network and the bandwidth of the router.

Espressif Systems 2325
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: The performance figures can vary greatly between installations based on network configuration and operating
environment.

4.11.9 Further Notes

• Data transmission uses Wi-Fi WPA2-PSK encryption
• Mesh networking IE uses AES encryption

Router and internet icon made by Smashicons from www.flaticon.com

4.12 Fatal Errors

4.12.1 Overview

In certain situations, execution of the program can not be continued in a well definedway. In ESP-IDF, these situations
include:

• CPU Exceptions: Illegal Instruction, Load/Store Alignment Error, Load/Store Prohibited error.
• System level checks and safeguards:

– Interrupt watchdog timeout
– Task watchdog timeout (only fatal if CONFIG_ESP_TASK_WDT_PANIC is set)
– Cache access error
– Brownout detection event
– Stack overflow
– Stack smashing protection check
– Heap integrity check
– Undefined behavior sanitizer (UBSAN) checks

• Failed assertions, via assert, configASSERT and similar macros.
This guide explains the procedure used in ESP-IDF for handling these errors, and provides suggestions on trou-
bleshooting the errors.

4.12.2 Panic Handler

Every error cause listed in the Overview will be handled by the panic handler.
The panic handler will start by printing the cause of the error to the console. For CPU exceptions, the message will
be similar to
Guru Meditation Error: Core 0 panic'ed (Illegal instruction). Exception␣
↪→was unhandled.

For some of the system level checks (interrupt watchdog, cache access error), the message will be similar to
Guru Meditation Error: Core 0 panic'ed (Cache error). Exception was␣
↪→unhandled.

In all cases, the error cause will be printed in parentheses. See Guru Meditation Errors for a list of possible error
causes.
Subsequent behavior of the panic handler can be set using CONFIG_ESP_SYSTEM_PANIC configuration choice. The
available options are:

Espressif Systems 2326
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://smashicons.com
https://smashicons.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Print registers and reboot (CONFIG_ESP_SYSTEM_PANIC_PRINT_REBOOT)—default option.
This will print register values at the point of the exception, print the backtrace, and restart the chip.

• Print registers and halt (CONFIG_ESP_SYSTEM_PANIC_PRINT_HALT)
Similar to the above option, but halt instead of rebooting. External reset is required to restart the program.

• Silent reboot (CONFIG_ESP_SYSTEM_PANIC_SILENT_REBOOT)
Don't print registers or backtrace, restart the chip immediately.

• Invoke GDB Stub (CONFIG_ESP_SYSTEM_PANIC_GDBSTUB)
Start GDB server which can communicate with GDB over console UART port. This option will only provide
read-only debugging or post-mortem debugging. See GDB Stub for more details.

• Invoke dynamic GDB Stub (ESP_SYSTEM_GDBSTUB_RUNTIME)
Start GDB server which can communicate with GDB over console UART port. This option allows the user to
debug a program at run time and set break points, alter the execution, etc. See GDB Stub for more details.

The behavior of the panic handler is affected by three other configuration options.
• If CONFIG_ESP_DEBUG_OCDAWARE is enabled (which is the default), the panic handler will detect whether
a JTAG debugger is connected. If it is, execution will be halted and control will be passed to the debugger. In
this case, registers and backtrace are not dumped to the console, and GDBStub / Core Dump functions are not
used.

• If the Core Dump feature is enabled, then the system state (task stacks and registers) will be dumped to either
Flash or UART, for later analysis.

• If CONFIG_ESP_PANIC_HANDLER_IRAM is disabled (disabled by default), the panic handler code is placed
in flashmemory, not IRAM. This means that if ESP-IDF crashes while flash cache is disabled, the panic handler
will automatically re-enable flash cache before running GDB Stub or Core Dump. This adds some minor risk,
if the flash cache status is also corrupted during the crash.
If this option is enabled, the panic handler code (including required UART functions) is placed in IRAM, and
hence will decrease the usable memory space in SRAM. But this may be necessary to debug some complex
issues with crashes while flash cache is disabled (for example, when writing to SPI flash) or when flash cache
is corrupted when an exception is triggered.

• If CONFIG_ESP_SYSTEM_PANIC_REBOOT_DELAY_SECONDS is enabled (disabled by default) and set to a
number higher than 0, the panic handler will delay the reboot for that amount of time in seconds. This can help
if the tool used to monitor serial output does not provide a possibility to stop and examine the serial output. In
that case, delaying the reboot will allow users to examine and debug the panic handler output (backtrace, etc.)
for the duration of the delay. After the delay, the device will reboot. The reset reason is preserved.

The following diagram illustrates the panic handler behavior:

4.12.3 Register Dump and Backtrace

Unless the CONFIG_ESP_SYSTEM_PANIC_SILENT_REBOOT option is enabled, the panic handler prints some
of the CPU registers, and the backtrace, to the console

Core 0 register dump:
MEPC : 0x420048b4 RA : 0x420048b4 SP : 0x3fc8f2f0 GP :␣
↪→0x3fc8a600
TP : 0x3fc8a2ac T0 : 0x40057fa6 T1 : 0x0000000f T2 :␣
↪→0x00000000
S0/FP : 0x00000000 S1 : 0x00000000 A0 : 0x00000001 A1 :␣
↪→0x00000001
A2 : 0x00000064 A3 : 0x00000004 A4 : 0x00000001 A5 :␣
↪→0x00000000
A6 : 0x42001fd6 A7 : 0x00000000 S2 : 0x00000000 S3 :␣
↪→0x00000000
S4 : 0x00000000 S5 : 0x00000000 S6 : 0x00000000 S7 :␣
↪→0x00000000
S8 : 0x00000000 S9 : 0x00000000 S10 : 0x00000000 S11 :␣
↪→0x00000000
T3 : 0x00000000 T4 : 0x00000000 T5 : 0x00000000 T6 :␣
↪→0x00000000
MSTATUS : 0x00001881 MTVEC : 0x40380001 MCAUSE : 0x00000007 MTVAL :␣
↪→0x00000000 (continues on next page)

Espressif Systems 2327
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 58: Panic Handler Flowchart (click to enlarge)

Espressif Systems 2328
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
MHARTID : 0x00000000

The register values printed are the register values in the exception frame, i.e., values at the moment when the CPU
exception or another fatal error has occurred.
A Register dump is not printed if the panic handler has been executed as a result of an abort() call.
If IDF Monitor is used, Program Counter values will be converted to code locations (function name, file name, and
line number), and the output will be annotated with additional lines:

Core 0 register dump:
MEPC : 0x420048b4 RA : 0x420048b4 SP : 0x3fc8f2f0 GP :␣
↪→0x3fc8a600
0x420048b4: app_main at /Users/user/esp/example/main/hello_world_main.c:20

0x420048b4: app_main at /Users/user/esp/example/main/hello_world_main.c:20

TP : 0x3fc8a2ac T0 : 0x40057fa6 T1 : 0x0000000f T2 :␣
↪→0x00000000
S0/FP : 0x00000000 S1 : 0x00000000 A0 : 0x00000001 A1 :␣
↪→0x00000001
A2 : 0x00000064 A3 : 0x00000004 A4 : 0x00000001 A5 :␣
↪→0x00000000
A6 : 0x42001fd6 A7 : 0x00000000 S2 : 0x00000000 S3 :␣
↪→0x00000000
0x42001fd6: uart_write at /Users/user/esp/esp-idf/components/vfs/vfs_uart.c:201

S4 : 0x00000000 S5 : 0x00000000 S6 : 0x00000000 S7 :␣
↪→0x00000000
S8 : 0x00000000 S9 : 0x00000000 S10 : 0x00000000 S11 :␣
↪→0x00000000
T3 : 0x00000000 T4 : 0x00000000 T5 : 0x00000000 T6 :␣
↪→0x00000000
MSTATUS : 0x00001881 MTVEC : 0x40380001 MCAUSE : 0x00000007 MTVAL :␣
↪→0x00000000
MHARTID : 0x00000000

Moreover, the IDF Monitor is also capable of generating and printing a backtrace thanks to the stack dump provided
by the board in the panic handler. The output looks like this:

Backtrace:

0x42006686 in bar (ptr=ptr@entry=0x0) at ../main/hello_world_main.c:18
18 *ptr = 0x42424242;
#0 0x42006686 in bar (ptr=ptr@entry=0x0) at ../main/hello_world_main.c:18
#1 0x42006692 in foo () at ../main/hello_world_main.c:22
#2 0x420066ac in app_main () at ../main/hello_world_main.c:28
#3 0x42015ece in main_task (args=<optimized out>) at /Users/user/esp/components/
↪→freertos/port/port_common.c:142
#4 0x403859b8 in vPortEnterCritical () at /Users/user/esp/components/freertos/
↪→port/riscv/port.c:130
#5 0x00000000 in ?? ()
Backtrace stopped: frame did not save the PC

While the backtrace above is very handy, it requires the user to use IDFMonitor. Thus, in order to generate and print a
backtrace while using another monitor program, it is possible to activate CONFIG_ESP_SYSTEM_USE_EH_FRAME
option from the menuconfig.
This option will let the compiler generate DWARF information for each function of the project. Then, when a CPU
exception occurs, the panic handler will parse these data and determine the backtrace of the task that failed. The
output looks like this:

Espressif Systems 2329
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Backtrace: 0x42009e9a:0x3fc92120 0x42009ea6:0x3fc92120 0x42009ec2:0x3fc92130␣
↪→0x42024620:0x3fc92150 0x40387d7c:0x3fc92160 0xfffffffe:0x3fc92170

These PC:SP pairs represent the PC (Program Counter) and SP (Stack Pointer) for each stack frame of the current
task.
The main benefit of the CONFIG_ESP_SYSTEM_USE_EH_FRAME option is that the backtrace is generated by the
board itself (without the need for IDF Monitor). However, the option's drawback is that it results in an increase of
the compiled binary's size (ranging from 20% to 100% increase in size). Furthermore, this option causes debug
information to be included within the compiled binary. Therefore, users are strongly advised not to enable this option
in mass/final production builds.
To find the location where a fatal error has happened, look at the lines which follow the "Backtrace" line. Fatal error
location is the top line, and subsequent lines show the call stack.

4.12.4 GDB Stub

If the CONFIG_ESP_SYSTEM_PANIC_GDBSTUB option is enabled, the panic handler will not reset the chip when
a fatal error happens. Instead, it will start a GDB remote protocol server, commonly referred to as GDB Stub. When
this happens, a GDB instance running on the host computer can be instructed to connect to the ESP32-C6 UART
port.
If IDF Monitor is used, GDB is started automatically when a GDB Stub prompt is detected on the UART. The output
looks like this:

Entering gdb stub now.
$T0b#e6GNU gdb (crosstool-NG crosstool-ng-1.22.0-80-gff1f415) 7.10
Copyright (C) 2015 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=x86_64-build_apple-darwin16.3.0 --
↪→target=riscv32-esp-elf".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from /Users/user/esp/example/build/example.elf...done.
Remote debugging using /dev/cu.usbserial-31301
0x400e1b41 in app_main ()

at /Users/user/esp/example/main/main.cpp:36
36 *((int*) 0) = 0;
(gdb)

TheGDB prompt can be used to inspect CPU registers, local and static variables, and arbitrary locations inmemory. It
is not possible to set breakpoints, change the PC, or continue execution. To reset the program, exit GDB and perform
an external reset: Ctrl-T Ctrl-R in IDF Monitor, or using the external reset button on the development board.

4.12.5 RTC Watchdog Timeout

The RTC watchdog is used in the startup code to keep track of execution time and it also helps to prevent a lock-up
caused by an unstable power source. It is enabled by default (see CONFIG_BOOTLOADER_WDT_ENABLE). If the
execution time is exceeded, the RTC watchdog will restart the system. In this case, the ROM bootloader will print a
message with the RTC Watchdog Timeout reason for the reboot.

Espressif Systems 2330
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

rst:0x10 (LP_WDT_SYS)

The RTC watchdog covers the execution time from the first stage bootloader (ROM bootloader) to applica-
tion startup. It is initially set in the ROM bootloader, then configured in the bootloader with the CON-
FIG_BOOTLOADER_WDT_TIME_MS option (9000 ms by default). During the application initialization stage,
it is reconfigured because the source of the slow clock may have changed, and finally disabled right before the
app_main() call. There is an option CONFIG_BOOTLOADER_WDT_DISABLE_IN_USER_CODE which pre-
vents the RTC watchdog from being disabled before app_main. Instead, the RTC watchdog remains active and
must be fed periodically in your application's code.
The RTC watchdog is also used by the system panic handler to protect the system from hanging during a panic. The
RTC watchdog is reconfigured in the panic handler to have a timeout of 10 seconds. If the panic handler takes longer
than 10 seconds to execute, the system will be reset by the RTC watchdog.

4.12.6 Guru Meditation Errors

This section explains the meaning of different error causes, printed in parens after the Guru Meditation Er-
ror: Core panic'ed message.

Note: See the Guru Meditation Wikipedia article for historical origins of "Guru Meditation".

Illegal instruction

This CPU exception indicates that the instruction which was executed was not a valid instruction. Most common
reasons for this error include:

• FreeRTOS task function has returned. In FreeRTOS, if a task function needs to terminate, it should call
vTaskDelete() and delete itself, instead of returning.

• Failure to read next instruction from SPI flash. This usually happens if:
– Application has reconfigured the SPI flash pins as some other function (GPIO, UART, etc.). Consult the
Hardware Design Guidelines and the datasheet for the chip or module for details about the SPI flash pins.

– Some external device has accidentally been connected to the SPI flash pins, and has interfered with
communication between ESP32-C6 and SPI flash.

• In C++ code, exiting from a non-void function without returning a value is considered to be an unde-
fined behavior. When optimizations are enabled, the compiler will often omit the epilogue in such func-
tions. This most often results in an Illegal instruction exception. By default, ESP-IDF build system enables
-Werror=return-type which means that missing return statements are treated as compile time errors.
However if the application project disables compiler warnings, this issue might go undetected and the Illegal
instruction exception will occur at run time.

Instruction address misaligned

This CPU exception indicates that the address of the instruction to execute is not 2-byte aligned.

Instruction access fault, Load access fault, Store access fault

This CPU exception happens when application attempts to execute, read from or write to an invalid memory location.
The address which was written/read is found in MTVAL register in the register dump. If this address is zero, it usually
means that application attempted to dereference a NULL pointer. If this address is close to zero, it usually means that
application attempted to access member of a structure, but the pointer to the structure was NULL. If this address is
something else (garbage value, not in 0x3fxxxxxx - 0x6xxxxxxx range), it likely means that the pointer used
to access the data was either not initialized or was corrupted.

Espressif Systems 2331
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://en.wikipedia.org/wiki/Guru_Meditation
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Breakpoint

This CPU exception happens when the instruction EBREAK is executed.

Load address misaligned, Store address misaligned

Application has attempted to read or write memory location, and address alignment did not match load/store size.
For example, 32-bit load can only be done from 4-byte aligned address, and 16-bit load can only be done from a
2-byte aligned address.

Interrupt Watchdog Timeout on CPU0/CPU1

Indicates that an interrupt watchdog timeout has occurred. SeeWatchdogs for more information.

Cache error

In some situations, ESP-IDF will temporarily disable access to external SPI Flash and SPI RAM via caches. For
example, this happens when spi_flash APIs are used to read/write/erase/mmap regions of SPI Flash. In these situa-
tions, tasks are suspended, and interrupt handlers not registered with ESP_INTR_FLAG_IRAM are disabled. Make
sure that any interrupt handlers registered with this flag have all the code and data in IRAM/DRAM. Refer to the SPI
flash API documentation for more details.

4.12.7 Other Fatal Errors

Brownout

ESP32-C6 has a built-in brownout detector, which is enabled by default. The brownout detector can trigger a
system reset if the supply voltage goes below a safe level. The brownout detector can be configured using CON-
FIG_ESP_BROWNOUT_DET and CONFIG_ESP_BROWNOUT_DET_LVL_SEL options.
When the brownout detector triggers, the following message is printed:

Brownout detector was triggered

The chip is reset after the message is printed.
Note that if the supply voltage is dropping at a fast rate, only part of the message may be seen on the console.

Corrupt Heap

ESP-IDF's heap implementation contains a number of run-time checks of the heap structure. Additional checks
("Heap Poisoning") can be enabled in menuconfig. If one of the checks fails, a message similar to the following will
be printed:

CORRUPT HEAP: Bad tail at 0x3ffe270a. Expected 0xbaad5678 got 0xbaac5678
assertion "head != NULL" failed: file "/Users/user/esp/esp-idf/components/heap/
↪→multi_heap_poisoning.c", line 201, function: multi_heap_free
abort() was called at PC 0x400dca43 on core 0

Consult Heap Memory Debugging documentation for further information.

Espressif Systems 2332
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Stack Smashing

Stack smashing protection (based on GCC -fstack-protector* flags) can be enabled in ESP-IDF using CON-
FIG_COMPILER_STACK_CHECK_MODE option. If stack smashing is detected, message similar to the following
will be printed:

Stack smashing protect failure!

abort() was called at PC 0x400d2138 on core 0

Backtrace: 0x4008e6c0:0x3ffc1780 0x4008e8b7:0x3ffc17a0 0x400d2138:0x3ffc17c0␣
↪→0x400e79d5:0x3ffc17e0 0x400e79a7:0x3ffc1840 0x400e79df:0x3ffc18a0␣
↪→0x400e2235:0x3ffc18c0 0x400e1916:0x3ffc18f0 0x400e19cd:0x3ffc1910␣
↪→0x400e1a11:0x3ffc1930 0x400e1bb2:0x3ffc1950 0x400d2c44:0x3ffc1a80
0

The backtrace should point to the function where stack smashing has occurred. Check the function code for un-
bounded access to local arrays.

Undefined Behavior Sanitizer (UBSAN) Checks

Undefined behavior sanitizer (UBSAN) is a compiler feature which adds run-time checks for potentially incorrect
operations, such as:

• overflows (multiplication overflow, signed integer overflow)
• shift base or exponent errors (e.g. shift by more than 32 bits)
• integer conversion errors

See GCC documentation of -fsanitize=undefined option for the complete list of supported checks.

Enabling UBSAN UBSAN is disabled by default. It can be enabled at file, component, or project level by adding
the -fsanitize=undefined compiler option in the build system.
When enabling UBSAN for code which uses the SOC hardware register header files (soc/xxx_reg.h), it is
recommended to disable shift-base sanitizer using -fno-sanitize=shift-base option. This is due to the
fact that ESP-IDF register header files currently contain patterns which cause false positives for this specific sanitizer
option.
To enable UBSAN at project level, add the following code at the end of the project's CMakeLists.txt file:

idf_build_set_property(COMPILE_OPTIONS "-fsanitize=undefined" "-fno-sanitize=shift-
↪→base" APPEND)

Alternatively, pass these options through the EXTRA_CFLAGS and EXTRA_CXXFLAGS environment variables.
Enabling UBSAN results in significant increase of code and data size. Most applications, except for the trivial ones,
will not fit into the available RAM of the microcontroller when UBSAN is enabled for the whole application. There-
fore it is recommended that UBSAN is instead enabled for specific components under test.
To enable UBSAN for a specific component (component_name) from the project's CMakeLists.txt file, add
the following code at the end of the file:

idf_component_get_property(lib component_name COMPONENT_LIB)
target_compile_options(${lib} PRIVATE "-fsanitize=undefined" "-fno-sanitize=shift-
↪→base")

Note: See the build system documentation for more information about build properties and component properties.

To enable UBSAN for a specific component (component_name) from CMakeLists.txt of the same compo-
nent, add the following at the end of the file:

Espressif Systems 2333
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

target_compile_options(${COMPONENT_LIB} PRIVATE "-fsanitize=undefined" "-fno-
↪→sanitize=shift-base")

UBSAN Output When UBSAN detects an error, a message and the backtrace are printed, for example:

Undefined behavior of type out_of_bounds

Backtrace:0x4008b383:0x3ffcd8b0 0x4008c791:0x3ffcd8d0 0x4008c587:0x3ffcd8f0␣
↪→0x4008c6be:0x3ffcd950 0x400db74f:0x3ffcd970 0x400db99c:0x3ffcd9a0

When using IDF Monitor, the backtrace will be decoded to function names and source code locations, pointing to the
location where the issue has happened (here it is main.c:128):

0x4008b383: panic_abort at /path/to/esp-idf/components/esp_system/panic.c:367

0x4008c791: esp_system_abort at /path/to/esp-idf/components/esp_system/system_api.
↪→c:106

0x4008c587: __ubsan_default_handler at /path/to/esp-idf/components/esp_system/
↪→ubsan.c:152

0x4008c6be: __ubsan_handle_out_of_bounds at /path/to/esp-idf/components/esp_system/
↪→ubsan.c:223

0x400db74f: test_ub at main.c:128

0x400db99c: app_main at main.c:56 (discriminator 1)

The types of errors reported by UBSAN can be as follows:

Name Meaning
type_mismatch,
type_mismatch_v1

Incorrect pointer value: null, unaligned, not compatible with the
given type.

add_overflow, sub_overflow,
mul_overflow, negate_overflow

Integer overflow during addition, subtraction, multiplication, nega-
tion.

divrem_overflow Integer division by 0 or INT_MIN.
shift_out_of_bounds Overflow in left or right shift operators.
out_of_bounds Access outside of bounds of an array.
unreachable Unreachable code executed.
missing_return Non-void function has reached its end without returning a value

(C++ only).
vla_bound_not_positive Size of variable length array is not positive.
load_invalid_value Value of bool or enum (C++ only) variable is invalid (out of

bounds).
nonnull_arg Null argument passed to a function which is declared with a non-

null attribute.
nonnull_return Null value returned from a function which is declared with re-

turns_nonnull attribute.
builtin_unreachable __builtin_unreachable function called.
pointer_overflow Overflow in pointer arithmetic.

4.13 Flash Encryption

Espressif Systems 2334
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

This is a quick start guide to ESP32-C6's flash encryption feature. Using application code as an example, it demon-
strates how to test and verify flash encryption operations during development and production.

4.13.1 Introduction

Flash encryption is intended for encrypting the contents of the ESP32-C6's off-chip flash memory. Once this feature
is enabled, firmware is flashed as plaintext, and then the data is encrypted in place on the first boot. As a result,
physical readout of flash will not be sufficient to recover most flash contents.

Important: For production use, flash encryption should be enabled in the "Release" mode only.

Important: Enabling flash encryption limits the options for further updates of ESP32-C6. Before using this feature,
read the document and make sure to understand the implications.

4.13.2 Encrypted Partitions

With flash encryption enabled, the following types of data are encrypted by default:
• Firmware bootloader
• Partition Table
• NVS Key Partition
• Otadata
• All "app" type partitions

Other types of data can be encrypted conditionally:
• Any partition marked with the encrypted flag in the partition table. For details, see Encrypted Partition

Flag.
• Secure Boot bootloader digest if Secure Boot is enabled (see below).

4.13.3 Relevant eFuses

The flash encryption operation is controlled by various eFuses available on ESP32-C6. The list of eFuses
and their descriptions is given in the table below. The names in eFuse column are also used by es-
pefuse.py tool. For usage in the eFuse API, modify the name by adding ESP_EFUSE_, for example:
esp_efuse_read_field_bit(ESP_EFUSE_DISABLE_DL_ENCRYPT).

Table 25: eFuses Used in Flash Encryption
eFuse Description Bit Depth
BLOCK_KEYN AES key storage. N is between 0 and 5. 256 bit key

block
KEY_PURPOSE_N Control the purpose of eFuse block BLOCK_KEYN, where

N is between 0 and 5. For flash encryption, the only valid
value is 4 for XTS_AES_128_KEY.

4

DIS_DOWNLOAD_MANUAL_ENCRYPTIf set, disable flash encryption when in download boot-
modes.

1

SPI_BOOT_CRYPT_CNT Enable encryption and decryption, when an SPI boot mode
is set. Feature is enabled if 1 or 3 bits are set in the eFuse,
disabled otherwise.

3

Note:

Espressif Systems 2335
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• R/W access control is available for all the eFuse bits listed in the table above.
• The default value of these bits is 0 afer manufacturing.

Read and write access to eFuse bits is controlled by appropriate fields in the registers WR_DIS and RD_DIS.
For more information on ESP32-C6 eFuses, see eFuse manager. To change protection bits of eFuse field using
espefuse.py, use these two commands: read_protect_efuse and write_protect_efuse. Example espefuse.py
write_protect_efuse DISABLE_DL_ENCRYPT.

4.13.4 Flash Encryption Process

Assuming that the eFuse values are in their default states and the firmware bootloader is compiled to support flash
encryption, the flash encryption process executes as shown below:

1. On the first power-on reset, all data in flash is un-encrypted (plaintext). The ROMbootloader loads the firmware
bootloader.

2. Firmware bootloader reads the SPI_BOOT_CRYPT_CNT eFuse value (0b000). Since the value is 0 (even
number of bits set), it configures and enables the flash encryption block. For more information on the flash
encryption block, see ESP32-C6 Technical Reference Manual.

3. Firmware bootloader uses RNG (random) module to generate an 256 bit key and then writes it into
BLOCK_KEYN eFuse. The software also updates the KEY_PURPOSE_N for the block where the key is stored.
The key cannot be accessed via software as the write and read protection bits for BLOCK_KEYN eFuse are set.
KEY_PURPOSE_N field is write-protected as well. The flash encryption is completely conducted by hardware,
and the key cannot be accessed via software.

4. Flash encryption block encrypts the flash contents - the firmware bootloader, applications and partitions marked
as encrypted. Encrypting in-place can take time, up to a minute for large partitions.

5. Firmware bootloader sets the first available bit inSPI_BOOT_CRYPT_CNT (0b001) tomark the flash contents
as encrypted. Odd number of bits is set.

6. For Development Mode, the firmware bootloader allows the UART bootloader to re-flash encrypted binaries.
Also, the SPI_BOOT_CRYPT_CNT eFuse bits are NOT write-protected. In addition, the firmware boot-
loader by default sets the eFuse bits DIS_DOWNLOAD_ICACHE, DIS_PAD_JTAG, DIS_USB_JTAG and
DIS_LEGACY_SPI_BOOT.

7. For Release Mode, the firmware bootloader sets all the eFuse bits set under development mode as well as
DIS_DOWNLOAD_MANUAL_ENCRYPT. It also write-protects the SPI_BOOT_CRYPT_CNT eFuse bits. To
modify this behavior, see Enabling UART Bootloader Encryption/Decryption.

8. The device is then rebooted to start executing the encrypted image. The firmware bootloader calls the flash
decryption block to decrypt the flash contents and then loads the decrypted contents into IRAM.

During the development stage, there is a frequent need to program different plaintext flash images and test the flash
encryption process. This requires that Firmware Download mode is able to load new plaintext images as many times
as it might be needed. However, during manufacturing or production stages, Firmware Download mode should not
be allowed to access flash contents for security reasons.
Hence, two different flash encryption configurations were created: for development and for production. For details
on these configurations, see Section Flash Encryption Configuration.

4.13.5 Flash Encryption Configuration

The following flash encryption modes are available:
• Development Mode - recommended for use only during development. In this mode, it is still possible to flash
new plaintext firmware to the device, and the bootloader will transparently encrypt this firmware using the key
stored in hardware. This allows, indirectly, to read out the plaintext of the firmware in flash.

• Release Mode - recommended for manufacturing and production. In this mode, flashing plaintext firmware to
the device without knowing the encryption key is no longer possible.

This section provides information on the mentioned flash encryption modes and step by step instructions on how to
use them.

Espressif Systems 2336
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Development Mode

During development, you can encrypt flash using either an ESP32-C6 generated key or external host-generated key.

Using ESP32-C6 Generated Key Development mode allows you to download multiple plaintext images using
Firmware Download mode.
To test flash encryption process, take the following steps:

1. Ensure that you have an ESP32-C6 device with default flash encryption eFuse settings as shown in Relevant
eFuses.
See how to check ESP32-C6 Flash Encryption Status.

2. In Project Configuration Menu, do the following:

• Enable flash encryption on boot.
• Select encryption mode (Development mode by default).
• Select UART ROM download mode (enabled by default).
• Select the appropriate bootloader log verbosity.
• Save the configuration and exit.

Enabling flash encryption will increase the size of bootloader, which might require updating partition table offset.
See Bootloader Size.

3. Run the command given below to build and flash the complete images.

idf.py flash monitor

Note: This command does not include any user files which should be written to the partitions on the
flash memory. Please write them manually before running this command otherwise the files should be
encrypted separately before writing.

This command will write to flash memory unencrypted images: the firmware bootloader, the partition
table and applications. Once the flashing is complete, ESP32-C6 will reset. On the next boot, the
firmware bootloader encrypts: the firmware bootloader, application partitions and partitions marked as
encrypted then resets. Encrypting in-place can take time, up to a minute for large partitions. After
that, the application is decrypted at runtime and executed.

A sample output of the first ESP32-C6 boot after enabling flash encryption is given below:

rst:0x1 (POWERON),boot:0xc (SPI_FAST_FLASH_BOOT)
SPIWP:0xee
mode:DIO, clock div:2
load:0x4086c410,len:0xd5c
load:0x4086e610,len:0x4584
load:0x40875888,len:0x2bac
entry 0x4086c410
I (25) boot: ESP-IDF v5.1-dev-4270-g4bff4ed6e5-dirty 2nd stage bootloader
I (25) boot: compile time Mar 27 2023 16:48:49
I (27) boot: chip revision: v0.0
I (30) boot.esp32c6: SPI Speed : 40MHz
I (35) boot.esp32c6: SPI Mode : DIO
I (40) boot.esp32c6: SPI Flash Size : 2MB
I (44) boot: Enabling RNG early entropy source...
W (50) bootloader_random: bootloader_random_enable() has not been implemented yet
I (58) boot: Partition Table:
I (62) boot: ## Label Usage Type ST Offset Length
I (69) boot: 0 nvs WiFi data 01 02 0000a000 00006000
I (76) boot: 1 storage Unknown data 01 ff 00010000 00001000

(continues on next page)

Espressif Systems 2337
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
I (84) boot: 2 factory factory app 00 00 00020000 00100000
I (91) boot: 3 nvs_key NVS keys 01 04 00120000 00001000
I (99) boot: 4 custom_nvs WiFi data 01 02 00121000 00006000
I (106) boot: End of partition table
I (110) esp_image: segment 0: paddr=00020020 vaddr=42018020 size=090e8h (37096)␣
↪→map
I (126) esp_image: segment 1: paddr=00029110 vaddr=40800000 size=06f08h (28424)␣
↪→load
I (134) esp_image: segment 2: paddr=00030020 vaddr=42000020 size=12fd8h (77784)␣
↪→map
I (151) esp_image: segment 3: paddr=00043000 vaddr=40806f08 size=03c00h (15360)␣
↪→load
I (158) boot: Loaded app from partition at offset 0x20000
I (158) boot: Checking flash encryption...
I (160) efuse: Batch mode of writing fields is enabled
I (165) flash_encrypt: Generating new flash encryption key...
I (174) efuse: Writing EFUSE_BLK_KEY0 with purpose 4
W (178) flash_encrypt: Not disabling UART bootloader encryption
I (184) flash_encrypt: Disable UART bootloader cache...
I (190) flash_encrypt: Disable JTAG...
I (197) efuse: BURN BLOCK4
I (204) efuse: BURN BLOCK4 - OK (write block == read block)
I (206) efuse: BURN BLOCK0
I (212) efuse: BURN BLOCK0 - OK (all write block bits are set)
I (216) efuse: Batch mode. Prepared fields are committed
I (222) esp_image: segment 0: paddr=00000020 vaddr=4086c410 size=00d5ch (3420)
I (231) esp_image: segment 1: paddr=00000d84 vaddr=4086e610 size=04584h (17796)
I (240) esp_image: segment 2: paddr=00005310 vaddr=40875888 size=02bach (11180)
I (632) flash_encrypt: bootloader encrypted successfully
I (679) flash_encrypt: partition table encrypted and loaded successfully
I (680) flash_encrypt: Encrypting partition 1 at offset 0x10000 (length 0x1000)...
I (732) flash_encrypt: Done encrypting
I (732) esp_image: segment 0: paddr=00020020 vaddr=42018020 size=090e8h (37096)␣
↪→map
I (741) esp_image: segment 1: paddr=00029110 vaddr=40800000 size=06f08h (28424)
I (747) esp_image: segment 2: paddr=00030020 vaddr=42000020 size=12fd8h (77784)␣
↪→map
I (765) esp_image: segment 3: paddr=00043000 vaddr=40806f08 size=03c00h (15360)
I (769) flash_encrypt: Encrypting partition 2 at offset 0x20000 (length 0x100000)..
↪→.
I (13025) flash_encrypt: Done encrypting
I (13025) flash_encrypt: Encrypting partition 3 at offset 0x120000 (length 0x1000).
↪→..
I (13074) flash_encrypt: Done encrypting
I (13075) efuse: BURN BLOCK0
I (13077) efuse: BURN BLOCK0 - OK (all write block bits are set)
I (13078) flash_encrypt: Flash encryption completed
I (13083) boot: Resetting with flash encryption enabled...

A sample output of subsequent ESP32-C6 boots just mentions that flash encryption is already enabled:

rst:0x3 (LP_SW_HPSYS),boot:0xc (SPI_FAST_FLASH_BOOT)
Saved PC:0x4001974a
SPIWP:0xee
mode:DIO, clock div:2
load:0x4086c410,len:0xd5c
load:0x4086e610,len:0x4584
load:0x40875888,len:0x2bac
entry 0x4086c410
I (24) boot: ESP-IDF v5.1-dev-4270-g4bff4ed6e5-dirty 2nd stage bootloader
I (24) boot: compile time Mar 27 2023 16:48:49

(continues on next page)

Espressif Systems 2338
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
I (25) boot: chip revision: v0.0
I (29) boot.esp32c6: SPI Speed : 40MHz
I (34) boot.esp32c6: SPI Mode : DIO
I (39) boot.esp32c6: SPI Flash Size : 2MB
I (43) boot: Enabling RNG early entropy source...
W (49) bootloader_random: bootloader_random_enable() has not been implemented yet
I (57) boot: Partition Table:
I (60) boot: ## Label Usage Type ST Offset Length
I (68) boot: 0 nvs WiFi data 01 02 0000a000 00006000
I (75) boot: 1 storage Unknown data 01 ff 00010000 00001000
I (83) boot: 2 factory factory app 00 00 00020000 00100000
I (90) boot: 3 nvs_key NVS keys 01 04 00120000 00001000
I (98) boot: 4 custom_nvs WiFi data 01 02 00121000 00006000
I (105) boot: End of partition table
I (109) esp_image: segment 0: paddr=00020020 vaddr=42018020 size=090e8h (37096)␣
↪→map
I (126) esp_image: segment 1: paddr=00029110 vaddr=40800000 size=06f08h (28424)␣
↪→load
I (134) esp_image: segment 2: paddr=00030020 vaddr=42000020 size=12fd8h (77784)␣
↪→map
I (152) esp_image: segment 3: paddr=00043000 vaddr=40806f08 size=03c00h (15360)␣
↪→load
I (159) boot: Loaded app from partition at offset 0x20000
I (159) boot: Checking flash encryption...
I (160) flash_encrypt: flash encryption is enabled (1 plaintext flashes left)
I (168) boot: Disabling RNG early entropy source...
W (173) bootloader_random: bootloader_random_enable() has not been implemented yet
I (193) cpu_start: Pro cpu up.
W (202) clk: esp_perip_clk_init() has not been implemented yet
I (208) cpu_start: Pro cpu start user code
I (209) cpu_start: cpu freq: 160000000 Hz
I (209) cpu_start: Application information:
I (211) cpu_start: Project name: flash_encryption
I (217) cpu_start: App version: v5.1-dev-4270-g4bff4ed6e5-dirty
I (224) cpu_start: Compile time: Mar 27 2023 16:49:00
I (230) cpu_start: ELF file SHA256: df1dd35054510e16...
I (236) cpu_start: ESP-IDF: v5.1-dev-4270-g4bff4ed6e5-dirty
I (243) cpu_start: Min chip rev: v0.0
I (248) cpu_start: Max chip rev: v0.99
I (253) cpu_start: Chip rev: v0.0
I (258) heap_init: Initializing. RAM available for dynamic allocation:
I (265) heap_init: At 4080B9E0 len 00070C30 (451 KiB): D/IRAM
I (271) heap_init: At 4087C610 len 00002F54 (11 KiB): STACK/DIRAM
I (278) heap_init: At 50000010 len 00003FF0 (15 KiB): RTCRAM
I (285) spi_flash: detected chip: generic
I (289) spi_flash: flash io: dio
W (293) spi_flash: Detected size(4096k) larger than the size in the binary image␣
↪→header(2048k). Using the size in the binary image header.
W (306) flash_encrypt: Flash encryption mode is DEVELOPMENT (not secure)
I (314) sleep: Configure to isolate all GPIO pins in sleep state
I (320) sleep: Enable automatic switching of GPIO sleep configuration
I (327) coexist: coex firmware version: 5315623
I (333) coexist: coexist rom version 5b8dcfa
I (338) app_start: Starting scheduler on CPU0
I (342) main_task: Started on CPU0
I (342) main_task: Calling app_main()

Example to check Flash Encryption status
This is esp32c6 chip with 1 CPU core(s), WiFi/BLE, silicon revision v0.0, 2MB␣
↪→external flash
FLASH_CRYPT_CNT eFuse value is 1

(continues on next page)

Espressif Systems 2339
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
Flash encryption feature is enabled in DEVELOPMENT mode

At this stage, if you need to update and re-flash binaries, see Re-flashing Updated Partitions.

Using Host Generated Key It is possible to pre-generate a flash encryption key on the host computer and burn
it into the eFuse. This allows you to pre-encrypt data on the host and flash already encrypted data without needing
a plaintext flash update. This feature can be used in both Development Mode and Release Mode. Without a pre-
generated key, data is flashed in plaintext and then ESP32-C6 encrypts the data in-place.

Note: This option is not recommended for production, unless a separate key is generated for each individual device.

To use a host generated key, take the following steps:
1. Ensure that you have an ESP32-C6 device with default flash encryption eFuse settings as shown in Relevant

eFuses.
See how to check ESP32-C6 Flash Encryption Status.

2. Generate a random key by running:

espsecure.py generate_flash_encryption_key my_flash_encryption_key.bin

3. Before the first encrypted boot, burn the key into your device's eFuse using the command below. This action
can be done only once.

espefuse.py --port PORT burn_key BLOCK my_flash_encryption_key.bin XTS_
↪→AES_128_KEY

where BLOCK is a free keyblock between BLOCK_KEY0 and BLOCK_KEY5.
If the key is not burned and the device is started after enabling flash encryption, the ESP32-C6 will
generate a random key that software cannot access or modify.

4. In Project Configuration Menu, do the following:
• Enable flash encryption on boot
• Select encryption mode (Development mode by default)
• Select the appropriate bootloader log verbosity
• Save the configuration and exit.

Enabling flash encryption will increase the size of bootloader, which might require updating partition table offset.
See Bootloader Size.

5. Run the command given below to build and flash the complete images.

idf.py flash monitor

Note: This command does not include any user files which should be written to the partitions on the
flash memory. Please write them manually before running this command otherwise the files should be
encrypted separately before writing.

This command will write to flash memory unencrypted images: the firmware bootloader, the partition
table and applications. Once the flashing is complete, ESP32-C6 will reset. On the next boot, the
firmware bootloader encrypts: the firmware bootloader, application partitions and partitions marked as
encrypted then resets. Encrypting in-place can take time, up to a minute for large partitions. After
that, the application is decrypted at runtime and executed.

If using Development Mode, then the easiest way to update and re-flash binaries is Re-flashing Updated Partitions.

Espressif Systems 2340
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

If using Release Mode, then it is possible to pre-encrypt the binaries on the host and then flash them as ciphertext.
See Manually Encrypting Files.

Re-flashing Updated Partitions If you update your application code (done in plaintext) and want to re-flash it,
you will need to encrypt it before flashing. To encrypt the application and flash it in one step, run:

idf.py encrypted-app-flash monitor

If all partitions needs to be updated in encrypted format, run:

idf.py encrypted-flash monitor

Release Mode

In Release mode, UART bootloader cannot perform flash encryption operations. New plaintext images can ONLY
be downloaded using the over-the-air (OTA) scheme which will encrypt the plaintext image before writing to flash.
To use this mode, take the following steps:

1. Ensure that you have an ESP32-C6 device with default flash encryption eFuse settings as shown in Relevant
eFuses.
See how to check ESP32-C6 Flash Encryption Status.

2. In Project Configuration Menu, do the following:

• Enable flash encryption on boot.
• Select Release mode. (Note that once Release mode is selected, the
EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT eFuse bit will be burned to disable flash
encryption hardware in ROM Download Mode.)

• Select UART ROM download mode (Permanently switch to Secure mode (recommended)). This is
the default option, and is recommended. It is also possible to change this configuration setting to
permanently disable UART ROM download mode, if this mode is not needed.

• Select the appropriate bootloader log verbosity.
• Save the configuration and exit.

Enabling flash encryption will increase the size of bootloader, which might require updating partition table offset.
See Bootloader Size.

3. Run the command given below to build and flash the complete images.

idf.py flash monitor

Note: This command does not include any user files which should be written to the partitions on the
flash memory. Please write them manually before running this command otherwise the files should be
encrypted separately before writing.

This command will write to flash memory unencrypted images: the firmware bootloader, the partition
table and applications. Once the flashing is complete, ESP32-C6 will reset. On the next boot, the
firmware bootloader encrypts: the firmware bootloader, application partitions and partitions marked as
encrypted then resets. Encrypting in-place can take time, up to a minute for large partitions. After
that, the application is decrypted at runtime and executed.

Once the flash encryption is enabled in Release mode, the bootloader will write-protect the
SPI_BOOT_CRYPT_CNT eFuse.
For subsequent plaintext field updates, use OTA scheme.

Espressif Systems 2341
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: If you have pre-generated the flash encryption key and stored a copy, and the UART download mode is not
permanently disabled via CONFIG_SECURE_UART_ROM_DL_MODE , then it is possible to update the flash locally
by pre-encrypting the files and then flashing the ciphertext. See Manually Encrypting Files.

Best Practices

When using Flash Encryption in production:

• Do not reuse the same flash encryption key between multiple devices. This means that an attacker who copies
encrypted data from one device cannot transfer it to a second device.

• The UART ROM Download Mode should be disabled entirely if it is not needed, or permanently set
to "Secure Download Mode" otherwise. Secure Download Mode permanently limits the available com-
mands to updating SPI config, changing baud rate, basic flash write, and returning a summary of the cur-
rently enabled security features with the get_security_info command. The default behaviour is to set Se-
cure Download Mode on first boot in Release mode. To disable Download Mode entirely, select CON-
FIG_SECURE_UART_ROM_DL_MODE to "Permanently disable ROM Download Mode (recommended)" or
call esp_efuse_disable_rom_download_mode() at runtime.

• Enable Secure Boot as an extra layer of protection, and to prevent an attacker from selectively corrupting any
part of the flash before boot.

4.13.6 Possible Failures

Once flash encryption is enabled, the SPI_BOOT_CRYPT_CNT eFuse value will have an odd number of bits set. It
means that all the partitions marked with the encryption flag are expected to contain encrypted ciphertext. Below are
the three typical failure cases if the ESP32-C6 is erroneously loaded with plaintext data:

1. If the bootloader partition is re-flashed with a plaintext firmware bootloader image, the ROM bootloader
will fail to load the firmware bootloader resulting in the following failure:

rst:0x3 (SW_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
invalid header: 0xb414f76b
invalid header: 0xb414f76b
invalid header: 0xb414f76b
invalid header: 0xb414f76b
invalid header: 0xb414f76b
invalid header: 0xb414f76b
invalid header: 0xb414f76b

Note: The value of invalid header will be different for every application.

Note: This error also appears if the flash contents are erased or corrupted.

2. If the firmware bootloader is encrypted, but the partition table is re-flashed with a plaintext partition table
image, the bootloader will fail to read the partition table resulting in the following failure:

rst:0x3 (SW_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0xee
clk_drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00,wp_drv:0x00
mode:DIO, clock div:2
load:0x3fff0018,len:4
load:0x3fff001c,len:10464
ho 0 tail 12 room 4

(continues on next page)

Espressif Systems 2342
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
load:0x40078000,len:19168
load:0x40080400,len:6664
entry 0x40080764
I (60) boot: ESP-IDF v4.0-dev-763-g2c55fae6c-dirty 2nd stage bootloader
I (60) boot: compile time 19:15:54
I (62) boot: Enabling RNG early entropy source...
I (67) boot: SPI Speed : 40MHz
I (72) boot: SPI Mode : DIO
I (76) boot: SPI Flash Size : 4MB
E (80) flash_parts: partition 0 invalid magic number 0x94f6
E (86) boot: Failed to verify partition table
E (91) boot: load partition table error!

3. If the bootloader and partition table are encrypted, but the application is re-flashed with a plaintext application
image, the bootloader will fail to load the application resulting in the following failure:

rst:0x3 (SW_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0xee
clk_drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00,wp_drv:0x00
mode:DIO, clock div:2
load:0x3fff0018,len:4
load:0x3fff001c,len:8452
load:0x40078000,len:13616
load:0x40080400,len:6664
entry 0x40080764
I (56) boot: ESP-IDF v4.0-dev-850-gc4447462d-dirty 2nd stage bootloader
I (56) boot: compile time 15:37:14
I (58) boot: Enabling RNG early entropy source...
I (64) boot: SPI Speed : 40MHz
I (68) boot: SPI Mode : DIO
I (72) boot: SPI Flash Size : 4MB
I (76) boot: Partition Table:
I (79) boot: ## Label Usage Type ST Offset Length
I (87) boot: 0 nvs WiFi data 01 02 0000a000 00006000
I (94) boot: 1 phy_init RF data 01 01 00010000 00001000
I (102) boot: 2 factory factory app 00 00 00020000 00100000
I (109) boot: End of partition table
E (113) esp_image: image at 0x20000 has invalid magic byte
W (120) esp_image: image at 0x20000 has invalid SPI mode 108
W (126) esp_image: image at 0x20000 has invalid SPI size 11
E (132) boot: Factory app partition is not bootable
E (138) boot: No bootable app partitions in the partition table

4.13.7 ESP32-C6 Flash Encryption Status

1. Ensure that you have an ESP32-C6 device with default flash encryption eFuse settings as shown in Relevant
eFuses.

To check if flash encryption on your ESP32-C6 device is enabled, do one of the following:
• flash the application example security/flash_encryption onto your device. This application prints the
SPI_BOOT_CRYPT_CNT eFuse value and if flash encryption is enabled or disabled.

• Find the serial port name under which your ESP32-C6 device is connected, replace PORT with your port name
in the following command, and run it:

espefuse.py -p PORT summary

Espressif Systems 2343
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/security/flash_encryption
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.13.8 Reading and Writing Data in Encrypted Flash

ESP32-C6 application code can check if flash encryption is currently enabled by calling
esp_flash_encryption_enabled(). Also, a device can identify the flash encryption mode by call-
ing esp_get_flash_encryption_mode().
Once flash encryption is enabled, be more careful with accessing flash contents from code.

Scope of Flash Encryption

Whenever the SPI_BOOT_CRYPT_CNT eFuse is set to a value with an odd number of bits, all flash content accessed
via the MMU's flash cache is transparently decrypted. It includes:

• Executable application code in flash (IROM).
• All read-only data stored in flash (DROM).
• Any data accessed via spi_flash_mmap().
• The firmware bootloader image when it is read by the ROM bootloader.

Important: The MMU flash cache unconditionally decrypts all existing data. Data which is stored unencrypted
in flash memory will also be "transparently decrypted" via the flash cache and will appear to software as random
garbage.

Reading from Encrypted Flash

To read data without using a flash cache MMU mapping, you can use the partition read function
esp_partition_read(). This function will only decrypt data when it is read from an encrypted partition.
Data read from unencrypted partitions will not be decrypted. In this way, software can access encrypted and non-
encrypted flash in the same way.
You can also use the following SPI flash API functions:

• esp_flash_read() to read raw (encrypted) data which will not be decrypted
• esp_flash_read_encrypted() to read and decrypt data

Data stored using the Non-Volatile Storage (NVS) API is always stored and read decrypted from the perspective of
flash encryption. It is up to the library to provide encryption feature if required. Refer to NVS Encryption for more
details.

Writing to Encrypted Flash

It is recommended to use the partition write function esp_partition_write(). This function will only encrypt
data when it is written to an encrypted partition. Data written to unencrypted partitions will not be encrypted. In this
way, software can access encrypted and non-encrypted flash in the same way.
You can also pre-encrypt and write data using the function esp_flash_write_encrypted()
Also, the following ROM function exist but not supported in esp-idf applications:

• esp_rom_spiflash_write_encrypted pre-encrypts and writes data to flash
• SPIWrite writes unencrypted data to flash

Since data is encrypted in blocks, the minimum write size for encrypted data is 16 bytes and the alignment is also 16
bytes.

Espressif Systems 2344
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.13.9 Updating Encrypted Flash

OTA Updates

OTA updates to encrypted partitions will automatically write encrypted data if the function
esp_partition_write() is used.
Before building the application image for OTA updating of an already encrypted device, enable the option Enable
flash encryption on boot in project configuration menu.
For general information about ESP-IDF OTA updates, please refer to OTA

Updating Encrypted Flash via Serial

Flashing an encrypted device via serial bootloader requires that the serial bootloader download interface has not been
permanently disabled via eFuse.
In Development Mode, the recommended method is Re-flashing Updated Partitions.
In Release Mode, if a copy of the same key stored in eFuse is available on the host then it's possible to pre-encrypt
files on the host and then flash them. See Manually Encrypting Files.

4.13.10 Disabling Flash Encryption

If flash encryption was enabled accidentally, flashing of plaintext data will soft-brick the ESP32-C6. The device will
reboot continuously, printing the error flash read err, 1000 or invalid header: 0xXXXXXX.
For flash encryption in Development mode, encryption can be disabled by burning the SPI_BOOT_CRYPT_CNT
eFuse. It can only be done one time per chip by taking the following steps:

1. In Project Configuration Menu, disable Enable flash encryption on boot, then save and exit.
2. Open project configuration menu again and double-check that you have disabled this option! If this option is

left enabled, the bootloader will immediately re-enable encryption when it boots.
3. With flash encryption disabled, build and flash the new bootloader and application by running idf.py

flash.
4. Use espefuse.py (in components/esptool_py/esptool) to disable the

SPI_BOOT_CRYPT_CNT by running:

espefuse.py burn_efuse SPI_BOOT_CRYPT_CNT

Reset the ESP32-C6. Flash encryption will be disabled, and the bootloader will boot as usual.

4.13.11 Key Points About Flash Encryption

• Flash memory contents is encrypted using XTS-AES-128. The flash encryption key is 256 bits and stored in
one BLOCK_KEYN eFuse internal to the chip and, by default, is protected from software access.

• Flash access is transparent via the flash cache mapping feature of ESP32-C6 - any flash regions which are
mapped to the address space will be transparently decrypted when read.
Some data partitions might need to remain unencrypted for ease of access or might require the use of flash-
friendly update algorithms which are ineffective if the data is encrypted. NVS partitions for non-volatile storage
cannot be encrypted since the NVS library is not directly compatible with flash encryption. For details, refer
to NVS Encryption.

• If flash encryption might be used in future, the programmer must keep it in mind and take certain precautions
when writing code that uses encrypted flash.

• If secure boot is enabled, re-flashing the bootloader of an encrypted device requires a "Re-flashable" secure
boot digest (see Flash Encryption and Secure Boot).

Espressif Systems 2345
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Enabling flash encryption will increase the size of bootloader, which might require updating partition table offset.
See Bootloader Size.

Important: Do not interrupt power to the ESP32-C6 while the first boot encryption pass is running.
If power is interrupted, the flash contents will be corrupted and will require flashing with unencrypted
data again. In this case, re-flashing will not count towards the flashing limit.

4.13.12 Limitations of Flash Encryption

Flash encryption protects firmware against unauthorised readout and modification. It is important to understand the
limitations of the flash encryption feature:

• Flash encryption is only as strong as the key. For this reason, we recommend keys are generated on the device
during first boot (default behaviour). If generating keys off-device, ensure proper procedure is followed and
don't share the same key between all production devices.

• Not all data is stored encrypted. If storing data on flash, check if the method you are using (library, API, etc.)
supports flash encryption.

• Flash encryption does not prevent an attacker from understanding the high-level layout of the flash. This is
because the same AES key is used for every pair of adjacent 16 byte AES blocks. When these adjacent 16
byte blocks contain identical content (such as empty or padding areas), these blocks will encrypt to produce
matching pairs of encrypted blocks. This may allow an attacker to make high-level comparisons between
encrypted devices (i.e. to tell if two devices are probably running the same firmware version).

• Flash encryption alone may not prevent an attacker from modifying the firmware of the device. To prevent
unauthorised firmware from running on the device, use flash encryption in combination with Secure Boot.

4.13.13 Flash Encryption and Secure Boot

It is recommended to use flash encryption in combination with Secure Boot. However, if Secure Boot is enabled,
additional restrictions apply to device re-flashing:

• OTA Updates are not restricted, provided that the new app is signed correctly with the Secure Boot signing key.

4.13.14 Advanced Features

The following section covers advanced features of flash encryption.

Encrypted Partition Flag

Some partitions are encrypted by default. Other partitions can be marked in the partition table description as requiring
encryption by adding the flag encrypted to the partitions' flag field. As a result, data in these marked partitions
will be treated as encrypted in the same manner as an app partition.

Name, Type, SubType, Offset, Size, Flags
nvs, data, nvs, 0x9000, 0x6000
phy_init, data, phy, 0xf000, 0x1000
factory, app, factory, 0x10000, 1M
secret_data, 0x40, 0x01, 0x20000, 256K, encrypted

For details on partition table description, see partition table.
Further information about encryption of partitions:

• Default partition tables do not include any encrypted data partitions.
• With flash encryption enabled, the app partition is always treated as encrypted and does not require marking.

Espressif Systems 2346
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• If flash encryption is not enabled, the flag "encrypted" has no effect.
• You can also consider protecting phy_init data from physical access, readout, or modification, by marking
the optional phy partition with the flag encrypted.

• The nvs partition cannot be encrypted, because the NVS library is not directly compatible with flash encryp-
tion.

Enabling UART Bootloader Encryption/Decryption

On the first boot, the flash encryption process burns by default the following eFuses:

• DIS_DOWNLOAD_MANUAL_ENCRYPT which disables flash encryption operation when running in UART
bootloader boot mode.

• DIS_DOWNLOAD_ICACHE which disables the entire MMU flash cache when running in UART bootloader
mode.

• DIS_PAD_JTAG and DIS_USB_JTAG which disables JTAG.
• DIS_DIRECT_BOOT (old name DIS_LEGACY_SPI_BOOT) which disables direct boot mode

However, before the first boot you can choose to keep any of these features enabled by burning only selected eFuses
and write-protect the rest of eFuses with unset value 0. For example:

espefuse.py --port PORT burn_efuse DIS_DOWNLOAD_MANUAL_ENCRYPT
espefuse.py --port PORT write_protect_efuse DIS_DOWNLOAD_MANUAL_ENCRYPT

Note: Set all appropriate bits before write-protecting!
Write protection of all the three eFuses is controlled by one bit. It means that write-protecting one eFuse bit will
inevitably write-protect all unset eFuse bits.

Write protecting these eFuses to keep them unset is not currently very useful, as esptool.py does not support
reading encrypted flash.

JTAG Debugging

By default, when Flash Encryption is enabled (in either Development or Release mode) then JTAG debugging is
disabled via eFuse. The bootloader does this on first boot, at the same time it enables flash encryption.
See JTAG with Flash Encryption or Secure Boot for more information about using JTAG Debugging with Flash
Encryption.

Manually Encrypting Files

Manually encrypting or decrypting files requires the flash encryption key to be pre-burned in eFuse (see Using Host
Generated Key) and a copy to be kept on the host. If the flash encryption is configured in Development Mode then
it's not necessary to keep a copy of the key or follow these steps, the simpler Re-flashing Updated Partitions steps can
be used.
The key file should be a single raw binary file (example: key.bin).
For example, these are the steps to encrypt the file build/my-app.bin to flash at offset 0x10000. Run espse-
cure.py as follows:

espsecure.py encrypt_flash_data --aes_xts --keyfile /path/to/key.bin --address␣
↪→0x10000 --output my-app-ciphertext.bin build/my-app.bin

The file my-app-ciphertext.bin can then be flashed to offset 0x10000 using esptool.py. To see all of the
command line options recommended for esptool.py, see the output printed when idf.py build succeeds.

Espressif Systems 2347
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: If the flashed ciphertext file is not recognized by the ESP32-C6 when it boots, check that the keys match and
that the command line arguments match exactly, including the correct offset.

The command espsecure.py decrypt_flash_data can be used with the same options (and different
input/output files), to decrypt ciphertext flash contents or a previously encrypted file.

4.13.15 Technical Details

The following sections provide some reference information about the operation of flash encryption.

Flash Encryption Algorithm

• ESP32-C6 use the XTS-AES block chiper mode with 256 bit size for flash encryption.
• XTS-AES is a block chiper mode specifically designed for disc encryption and addresses the weaknesses other
potential modes (e.g. AES-CTR) have for this use case. A detailed description of the XTS-AES algorithm can
be found in IEEE Std 1619-2007.

• The flash encryption key is stored in one BLOCK_KEYN eFuse and, by default, is protected from further writes
or software readout.

• To see the full flash encryption algorithm implemented in Python, refer to the _flash_encryption_operation()
function in the espsecure.py source code.

4.14 Hardware Abstraction

ESP-IDF provides a group of APIs for hardware abstraction. These APIs allow you to control peripherals at dif-
ferent levels of abstraction, giving you more flexibility compared to using only the ESP-IDF drivers to interact with
hardware. ESP-IDF Hardware abstraction is likely to be useful for writing high-performance bare-metal drivers, or
for attempting to port an ESP chip to another platform.
This guide is split into the following sections:

1. Architecture
2. LL (Low Level) Layer
3. HAL (Hardware Abstraction Layer)

Warning: Hardware abstraction API (excluding the driver and xxx_types.h) should be considered an ex-
perimental feature, thus cannot be considered public API. The hardware abstraction API does not adhere to the
API name changing restrictions of ESP-IDF's versioning scheme. In other words, it is possible that Hardware
Abstraction API may change in between non-major release versions.

Note: Although this document mainly focuses on hardware abstraction of peripherals, e.g., UART, SPI, I2C, certain
layers of hardware abstraction extend to other aspects of hardware as well, e.g., some of the CPU's features are
partially abstracted.

4.14.1 Architecture

Hardware abstraction in ESP-IDF is comprised of the following layers, ordered from low level of abstraction that is
closer to hardware, to high level of abstraction that is further away from hardware.

• Low Level (LL) Layer

Espressif Systems 2348
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://ieeexplore.ieee.org/document/4493450
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Hardware Abstraction Layer (HAL)
• Driver Layers

The LL Layer, and HAL are entirely contained within the hal component. Each layer is dependent on the layer
below it, i.e, driver depends on HAL, HAL depends on LL, LL depends on the register header files.
For a particular peripheral xxx, its hardware abstraction generally consists of the header files described in the table
below. Files that are Target Specific have a separate implementation for each target, i.e., a separate copy for each
chip. However, the #include directive is still target-independent, i.e., is the same for different targets, as the build
system automatically includes the correct version of the header and source files.

Table 26: Hardware Abstraction Header Files
Include Directive Tar-

get
Spe-
cific

Description

#include 'soc/
xxx_caps.h"

Y This header contains a list of C macros specifying the various capabilities of
the ESP32-C6's peripheral xxx. Hardware capabilities of a peripheral include
things such as the number of channels, DMA support, hardware FIFO/buffer
lengths, etc.

#include "soc/
xxx_struct.h"
#include "soc/
xxx_reg.h"

Y The two headers contain a representation of a peripheral's registers in C struc-
ture and C macro format respectively, allowing you to operate a peripheral at
the register level via either of these two header files.

#include "soc/
xxx_pins.h"

Y If certain signals of a peripheral are mapped to a particular pin of the ESP32-
C6, their mappings are defined in this header as C macros.

#include "soc/
xxx_periph.h"

N This header is mainly used as a convenience header file to automatically include
xxx_caps.h, xxx_struct.h, and xxx_reg.h.

#include "hal/
xxx_types.h

N This header contains type definitions and macros that are shared among the
LL, HAL, and driver layers. Moreover, it is considered public API thus can
be included by the application level. The shared types and definitions usually
related to non-implementation specific concepts such as the following:

• Protocol-related types/macros such a frames, modes, common bus
speeds, etc.

• Features/characteristics of an xxx peripheral that are likely to be present
on any implementation (implementation-independent) such as channels,
operating modes, signal amplification or attenuation intensities, etc.

#include "hal/
xxx_ll.h"

Y This header contains the Low Level (LL) Layer of hardware abstraction. LL
Layer API are primarily used to abstract away register operations into readable
functions.

#include "hal/
xxx_hal.h"

Y The Hardware Abstraction Layer (HAL) is used to abstract away peripheral
operation steps into functions (e.g., reading a buffer, starting a transmission,
handling an event, etc). The HAL is built on top of the LL Layer.

#include "driver/
xxx.h"

N The driver layer is the highest level of ESP-IDF's hardware abstraction. Driver
layer API are meant to be called from ESP-IDF applications, and internally
utilize OS primitives. Thus, driver layer API are event-driven, and can used in
a multi-threaded environment.

4.14.2 LL (Low Level) Layer

The primary purpose of the LLLayer is to abstract away register field access intomore easily understandable functions.
LL functions essentially translate various in/out arguments into the register fields of a peripheral in the form of get/set
functions. All the necessary bit shifting, masking, offsetting, and endianness of the register fields should be handled
by the LL functions.

Espressif Systems 2349
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

//Inside xxx_ll.h

static inline void xxx_ll_set_baud_rate(xxx_dev_t *hw,
xxx_ll_clk_src_t clock_source,
uint32_t baud_rate) {

uint32_t src_clk_freq = (source_clk == XXX_SCLK_APB) ? APB_CLK_FREQ : REF_CLK_
↪→FREQ;

uint32_t clock_divider = src_clk_freq / baud;
// Set clock select field
hw->clk_div_reg.divider = clock_divider >> 4;
// Set clock divider field
hw->config.clk_sel = (source_clk == XXX_SCLK_APB) ? 0 : 1;

}

static inline uint32_t xxx_ll_get_rx_byte_count(xxx_dev_t *hw) {
return hw->status_reg.rx_cnt;

}

The code snippet above illustrates typical LL functions for a peripheralxxx. LL functions typically have the following
characteristics:

• All LL functions are defined as static inline so that there is minimal overhead when calling these
functions due to compiler optimization. These functions are not guaranteed to be inlined by the compiler, so
any LL function that is called when the cache is disabled (e.g., from an IRAM ISR context) should be marked
with __attribute__((always_inline)).

• The first argument should be a pointer to a xxx_dev_t type. The xxx_dev_t type is a structure represent-
ing the peripheral's registers, thus the first argument is always a pointer to the starting address of the peripheral's
registers. Note that in some cases where the peripheral has multiple channels with identical register layouts,
xxx_dev_t *hw may point to the registers of a particular channel instead.

• LL functions should be short, and in most cases are deterministic. In other words, in the worst case, runtime of
the LL function can be determined at compile time. Thus, any loops in LL functions should be finite bounded;
however, there are currently a few exceptions to this rule.

• LL functions are not thread-safe, it is the responsibility of the upper layers (driver layer) to ensure that registers
or register fields are not accessed concurrently.

4.14.3 HAL (Hardware Abstraction Layer)

The HAL layer models the operational process of a peripheral as a set of general steps, where each step has an
associated function. For each step, the details of a peripheral's register implementation (i.e., which registers need to
be set/read) are hidden (abstracted away) by the HAL. By modeling peripheral operation as a set of functional steps,
any minor hardware implementation differences of the peripheral between different targets or chip versions can be
abstracted away by the HAL (i.e., handled transparently). In other words, the HAL API for a particular peripheral
remains mostly the same across multiple targets/chip versions.
The following HAL function examples are selected from the Watchdog Timer HAL as each function maps to one of
the steps in aWDT's operation life cycle, thus illustrating how a HAL abstracts a peripheral's operation into functional
steps.

// Initialize one of the WDTs
void wdt_hal_init(wdt_hal_context_t *hal, wdt_inst_t wdt_inst, uint32_t prescaler,␣
↪→bool enable_intr);

// Configure a particular timeout stage of the WDT
void wdt_hal_config_stage(wdt_hal_context_t *hal, wdt_stage_t stage, uint32_t␣
↪→timeout, wdt_stage_action_t behavior);

// Start the WDT
void wdt_hal_enable(wdt_hal_context_t *hal);

(continues on next page)

Espressif Systems 2350
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
// Feed (i.e., reset) the WDT
void wdt_hal_feed(wdt_hal_context_t *hal);

// Handle a WDT timeout
void wdt_hal_handle_intr(wdt_hal_context_t *hal);

// Stop the WDT
void wdt_hal_disable(wdt_hal_context_t *hal);

// De-initialize the WDT
void wdt_hal_deinit(wdt_hal_context_t *hal);

HAL functions generally have the following characteristics:
• The first argument to a HAL function has the xxx_hal_context_t * type. The HAL context type is used
to store information about a particular instance of the peripheral (i.e., the context instance). A HAL context is
initialized by the xxx_hal_init() function and can store information such as the following:

– The channel number of this instance
– Pointer to the peripheral's (or channel's) registers (i.e., a xxx_dev_t * type)
– Information about an ongoing transaction (e.g., pointer to DMA descriptor list in use)
– Some configuration values for the instance (e.g., channel configurations)
– Variables to maintain state information regarding the instance (e.g., a flag to indicate if the instance is
waiting for transaction to complete)

• HAL functions should not contain any OS primitives such as queues, semaphores, mutexes, etc. All synchro-
nization/concurrency should be handled at higher layers (e.g., the driver).

• Some peripherals may have steps that cannot be further abstracted by the HAL, thus end up being a direct
wrapper (or macro) for an LL function.

• Some HAL functions may be placed in IRAM thus may carry an IRAM_ATTR or be placed in a separate
xxx_hal_iram.c source file.

4.15 JTAG Debugging

This document provides a guide to installing OpenOCD for ESP32-C6 and debugging using GDB. The document is
structured as follows:
Introduction Introduction to the purpose of this guide.
How it Works? Description how ESP32-C6, JTAG interface, OpenOCD and GDB are interconnected and working

together to enable debugging of ESP32-C6.
Selecting JTAG Adapter What are the criteria and options to select JTAG adapter hardware.
Setup of OpenOCD Procedure to install OpenOCD and verify that it is installed.
Configuring ESP32-C6 Target Configuration of OpenOCD software and setting up of JTAG adapter hardware,

which together make up the debugging target.
Launching Debugger Steps to start up a debug session with GDB from Eclipse and from Command Line.
Debugging Examples If you are not familiar with GDB, check this section for debugging examples provided from

Eclipse as well as from Command Line.
Building OpenOCD from Sources Procedure to build OpenOCD from sources for Windows, Linux and macOS op-

erating systems.
Tips and Quirks This section provides collection of tips and quirks related to JTAG debugging of ESP32-C6 with

OpenOCD and GDB.

4.15.1 Introduction

Espressif has ported OpenOCD to support the ESP32-C6 processor and the multi-core FreeRTOS （which is the
foundation of most ESP32-C6 apps). Additionally, some extra tools have been written to provide extra features that
OpenOCD does not support natively.

Espressif Systems 2351
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

This document provides a guide to installing OpenOCD for ESP32-C6 and debugging using GDB under Linux,
Windows and macOS. Except for OS specific installation procedures, the s/w user interface and use procedures are
the same across all supported operating systems.

Note: Screenshots presented in this document have been made for Eclipse Neon 3 running on Ubuntu 16.04 LTS.
There may be some small differences in what a particular user interface looks like, depending on whether you are
using Windows, macOS or Linux and / or a different release of Eclipse.

4.15.2 How it Works?

The key software and hardware components that perform debugging of ESP32-C6 with OpenOCD over JTAG (Joint
Test Action Group) interface is presented in the diagram below under the "Debugging With JTAG" label. These
components include riscv32-esp-elf-gdb debugger, OpenOCD on chip debugger, and the JTAG adapter connected
to ESP32-C6 target.

Fig. 59: JTAG debugging - overview diagram

Likewise, the "Application Loading and Monitoring" label indicates the key software and hardware components that
allow an application to be compiled, built, and flashed to ESP32-C6, as well as to provide means to monitor diagnostic
messages from ESP32-C6.
"Debugging With JTAG" and "Application Loading and Monitoring" is integrated under the Eclipse IDE in order to
provide a quick and easy transition between writing/compiling/loading/debugging code. The Eclipse IDE (and the
integrated debugging software) is available for Windows, Linux and macOS platforms. Depending on user prefer-
ences, both the debugger and idf.py build can also be used directly from terminal/command line, instead of
Eclipse.
The connection from PC to ESP32-C6 is done effectively with a single USB cable. This is made possible by the
ESP32-C6 chip itself, which provides two USB channels, one for JTAG and the other for the USB terminal con-
nection. The USB cable should be connected to the D+/D- USB pins of ESP32-C6 and not to the serial RxD/TxD
through a USB-to-UART chip. The proper connection is explained later in subsection Configuring ESP32-C6 Target.

Espressif Systems 2352
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.eclipse.org/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.15.3 Selecting JTAG Adapter

The quickest and most convenient way to start with JTAG debugging is through a USB cable connected to the D+/D-
USB pins of ESP32-C6. No need for an external JTAG adapter and extra wiring / cable to connect JTAG to ESP32-
C6.
If you decide to use separate JTAG adapter, look for one that is compatible with both the voltage levels on the ESP32-
C6 as well as with the OpenOCD software. The JTAG port on the ESP32-C6 is an industry-standard JTAG port
which lacks (and does not need) the TRST pin. The JTAG I/O pins all are powered from the VDD_3P3_RTC pin
(which normally would be powered by a 3.3 V rail) so the JTAG adapter needs to be able to work with JTAG pins in
that voltage range.
On the software side, OpenOCD supports a fair amount of JTAG adapters. See https://openocd.org/doc/html/
Debug-Adapter-Hardware.html for an (unfortunately slightly incomplete) list of the adapters OpenOCD works with.
This page lists SWD-compatible adapters as well; take note that the ESP32-C6 does not support SWD. JTAG adapters
that are hardcoded to a specific product line, e.g. ST-LINK debugging adapters for STM32 families, will not work.
The minimal signalling to get a working JTAG connection are TDI, TDO, TCK, TMS and GND. Some JTAG de-
buggers also need a connection from the ESP32-C6 power line to a line called e.g. Vtar to set the working voltage.
SRST can optionally be connected to the CH_PD of the ESP32-C6, although for now, support in OpenOCD for that
line is pretty minimal.
ESP-Prog is an example for using an external board for debugging by connecting it to the JTAG pins of ESP32-C6.

4.15.4 Setup of OpenOCD

If you have already set up ESP-IDF with CMake build system according to the Getting Started Guide, then OpenOCD
is already installed. After setting up the environment in your terminal, you should be able to run OpenOCD. Check
this by executing the following command:

openocd --version

The output should be as follows (although the version may be more recent than listed here):

Open On-Chip Debugger v0.10.0-esp32-20190708 (2019-07-08-11:04)
Licensed under GNU GPL v2
For bug reports, read

https://openocd.org/doc/doxygen/bugs.html

You may also verify that OpenOCD knows where its configuration scripts are located by printing the value of
OPENOCD_SCRIPTS environment variable, by typing echo $OPENOCD_SCRIPTS (for Linux and macOS)
or echo %OPENOCD_SCRIPTS% (for Windows). If a valid path is printed, then OpenOCD is set up correctly.
If any of these steps do not work, please go back to the setting up the tools section of the Getting Started Guide.

Note: It is also possible to build OpenOCD from source. Please refer to Building OpenOCD from Sources section
for details.

4.15.5 Configuring ESP32-C6 Target

Once OpenOCD is installed, you can proceed to configuring the ESP32-C6 target (i.e ESP32-C6 board with JTAG
interface). Configuring the target is split into the following three steps:

• Configure and connect JTAG interface
• Run OpenOCD
• Upload application for debugging

Espressif Systems 2353
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://openocd.org/doc/html/Debug-Adapter-Hardware.html
https://openocd.org/doc/html/Debug-Adapter-Hardware.html
https://docs.espressif.com/projects/espressif-esp-iot-solution/en/latest/hw-reference/ESP-Prog_guide.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Configure and connect JTAG interface

This step depends on the JTAG and ESP32-C6 board you are using (see the two cases described below).

Configure ESP32-C6 built-in JTAG Interface ESP32-C6 has a built-in JTAG circuitry and can be debugged
without any additional chip. Only an USB cable connected to the D+/D- pins is necessary. The necessary connections
are shown in the following section.

Configure Hardware

Table 27: ESP32-C6 pins and USB signals
ESP32-C6 Pin USB Signal
GPIO12 D-
GPIO13 D+
5V V_BUS
GND Ground

Please verify that the ESP32-C6 pins used for USB communication are not connected to some other HW that may
disturb the JTAG operation.

Configure USB Drivers JTAG communication should work on all supported platforms. Windows users might get
LIBUSB_ERROR_NOT_FOUND errors. Please use version 2.8 (or newer) of the ESP-IDF Tools Installer and select
the driver "Espressif - WinUSB support for JTAG (ESP32-C3/S3)" in order to resolve this issue. If you don't want to
re-run the installer then the same can be achieved with idf-env by running the following command from PowerShell:

Invoke-WebRequest 'https://dl.espressif.com/dl/idf-env/idf-env.exe' -OutFile .\idf-
↪→env.exe; .\idf-env.exe driver install --espressif

On Linux adding OpenOCD udev rules is required and is done by placing the following udev rules file in the /etc/
udev/rules.d folder.

Configure Other JTAG Interfaces
For guidance about which JTAG interface to select when using OpenOCD with ESP32-C6, refer to the section
Selecting JTAG Adapter. Then follow the configuration steps below to get it working.

Configure eFuses By default, ESP32-C6 JTAG interface is connected to the built-in USB_SERIAL_JTAG periph-
eral. To use an external JTAG adapter instead, you need to switch the JTAG interface to the GPIO pins. This can
be done by burning eFuses using espefuse.py tool.

• Burning DIS_USB_JTAG eFuse will permanently disable the connection between USB_SERIAL_JTAG and
the JTAG port of the ESP32-C6. JTAG interface can then be connected to GPIO4-GPIO7. Note that USB
CDC functionality of USB_SERIAL_JTAG will still be usable, i.e., flashing and monitoring over USB CDC
will still work.

• Burning JTAG_SEL_ENABLE eFuse will enable selection of JTAG interface by a strapping pin, GPIO15. If
the strapping pin is low when ESP32-C6 is reset, JTAG interface will use GPIO4-GPIO7. If the strapping pin
is high, USB_SERIAL_JTAG will be used as the JTAG interface.

Warning: Burning eFuses is an irreversible operation, so please consider the above option before starting the
process.

Espressif Systems 2354
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/idf-env
https://github.com/espressif/openocd-esp32/blob/master/contrib/60-openocd.rules
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Configure Hardware
1. Identify all pins/signals on JTAG interface and ESP32-C6 board that should be connected to establish com-

munication.

Table 28: ESP32-C6 pins and JTAG signals
ESP32-C6 Pin JTAG Signal
MTDO / GPIO7 TDO
MTDI / GPIO5 TDI
MTCK / GPIO6 TCK
MTMS / GPIO4 TMS

2. Verify if ESP32-C6 pins used for JTAG communication are not connected to some other hardware that may
disturb JTAG operation.

3. Connect identified pin/signals of ESP32-C6 and JTAG interface.

Configure Drivers You may need to install driver software to make JTAG work with computer. Refer to docu-
mentation of your JTAG adapter for related details.
On Linux, adding OpenOCD udev rules is required and is done by copying the udev rules file into the /etc/udev/
rules.d directory.

Connect Connect JTAG interface to the computer. Power on ESP32-C6 and JTAG interface boards. Check if the
JTAG interface is visible on the computer.
To carry on with debugging environment setup, proceed to section Run OpenOCD.

Run OpenOCD

Once target is configured and connected to computer, you are ready to launch OpenOCD.
Open a terminal and set it up for using the ESP-IDF as described in the setting up the environment section of the
Getting Started Guide. Then run OpenOCD (this command works on Windows, Linux, and macOS):

openocd -f board/esp32c6-builtin.cfg

Note: The files provided after -f above are specific for ESP32-C6 through built-in USB connection. You may need
to provide different files depending on the hardware that is used. For guidance see Configuration of OpenOCD for
Specific Target.
For example, board/esp32c6-ftdi.cfg can be used for a custom board with an FT2232H or FT232H chip
used for JTAG connection, or with ESP-Prog.

You should now see similar output (this log is for ESP32-C6 through built-in USB connection):

user-name@computer-name:~/esp/esp-idf$ openocd -f board/esp32c6-builtin.cfg
Open On-Chip Debugger v0.11.0-esp32-20221026-85-g0718fffd (2023-01-12-07:28)
Licensed under GNU GPL v2
For bug reports, read

http://openocd.org/doc/doxygen/bugs.html
Info : only one transport option; autoselect 'jtag'
Info : esp_usb_jtag: VID set to 0x303a and PID to 0x1001
Info : esp_usb_jtag: capabilities descriptor set to 0x2000
Warn : Transport "jtag" was already selected
WARNING: ESP flash support is disabled!
force hard breakpoints
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections

(continues on next page)

Espressif Systems 2355
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/openocd-esp32/blob/master/contrib/60-openocd.rules
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
Info : esp_usb_jtag: serial (60:55:F9:F6:03:3C)
Info : esp_usb_jtag: Device found. Base speed 24000KHz, div range 1 to 255
Info : clock speed 24000 kHz
Info : JTAG tap: esp32c6.cpu tap/device found: 0x0000dc25 (mfg: 0x612 (Espressif␣
↪→Systems), part: 0x000d, ver: 0x0)
Info : datacount=2 progbufsize=16
Info : Examined RISC-V core; found 2 harts
Info : hart 0: XLEN=32, misa=0x40903105
Info : starting gdb server for esp32c6 on 3333
Info : Listening on port 3333 for gdb connections

• If there is an error indicating permission problems, please see section on "Permissions delegation" in the
OpenOCD README file located in the ~/esp/openocd-esp32 directory.

• In case there is an error in finding the configuration files, e.g. Can't find board/esp32c6-builtin.
cfg, check if the OPENOCD_SCRIPTS environment variable is set correctly. This variable is used by
OpenOCD to look for the files specified after the -f option. See Setup of OpenOCD section for details. Also
check if the file is indeed under the provided path.

• If you see JTAG errors (e.g., ...all ones or ...all zeroes), please check your JTAG connections,
whether other signals are connected to JTAG besides ESP32-C6's pins, and see if everything is powered on
correctly.

Upload application for debugging

Build and upload your application to ESP32-C6 as usual, see Step 5. First Steps on ESP-IDF.
Another option is to write application image to flash using OpenOCD via JTAG with commands like this:

openocd -f board/esp32c6-builtin.cfg -c "program_esp filename.bin 0x10000 verify␣
↪→exit"

OpenOCD flashing command program_esp has the following format:
program_esp <image_file> <offset> [verify] [reset] [exit] [compress] [en-
crypt]

• image_file - Path to program image file.
• offset - Offset in flash bank to write image.
• verify - Optional. Verify flash contents after writing.
• reset - Optional. Reset target after programing.
• exit - Optional. Finally exit OpenOCD.
• compress - Optional. Compress image file before programming.
• encrypt - Optional. Encrypt binary before writing to flash. Same functionality with idf.py en-
crypted-flash

• no_clock_boost - Optional. Disable setting target clock frequency to its maximum possible value before
programming. Clock boost is enabled by default.

• restore_clock - Optional. Restore clock frequency to its initial value after programming. Disabled by
default.

You are now ready to start application debugging. Follow the steps described in the section below.

4.15.6 Launching Debugger

The toolchain for ESP32-C6 features GNU Debugger, in short GDB. It is available with other toolchain programs
under filename: riscv32-esp-elf-gdb. GDB can be called and operated directly from command line in a terminal.
Another option is to call it from within IDE (like Eclipse, Visual Studio Code, etc.) and operate indirectly with help
of GUI instead of typing commands in a terminal.
The options of using debugger are discussed under links below.

Espressif Systems 2356
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Eclipse
• Command Line
• Configuration for Visual Studio Code Debug

It is recommended to first check if debugger works from Command Line and then move to using Eclipse.

4.15.7 Debugging Examples

This section is intended for users not familiar with GDB. It presents example debugging session from Eclipse using
simple application available under get-started/blink and covers the following debugging actions:

1. Navigating through the code, call stack and threads
2. Setting and clearing breakpoints
3. Halting the target manually
4. Stepping through the code
5. Checking and setting memory
6. Watching and setting program variables
7. Setting conditional breakpoints

Similar debugging actions are provided using GDB from Command Line.

Note: Debugging FreeRTOS Objects is currently only available for command line debugging.

Before proceeding to examples, set up your ESP32-C6 target and load it with get-started/blink.

4.15.8 Building OpenOCD from Sources

Please refer to separate documents listed below, that describe build process.

Building OpenOCD from Sources for Windows

Note: This document outlines how to build a binary of OpenOCD from its source files instead of downloading
the pre-built binary. For a quick setup, users can download a pre-built binary of OpenOCD from Espressif GitHub
instead of compiling it themselves (see Setup of OpenOCD for more details).

Note: All code snippets in this document are assumed to be running in an MSYS2 shell with the MINGW32
subsystem.

Install Dependencies Install packages that are required to compile OpenOCD:

pacman -S --noconfirm --needed autoconf automake git make \
mingw-w64-i686-gcc \
mingw-w64-i686-toolchain \
mingw-w64-i686-libtool \
mingw-w64-i686-pkg-config \
mingw-w64-cross-winpthreads-git \
p7zip

Espressif Systems 2357
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/DEBUGGING.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/blink
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/blink
https://github.com/espressif/openocd-esp32/releases
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Download Sources of OpenOCD The sources for the ESP32-C6-enabled variant of OpenOCD are available from
Espressif's GitHub under https://github.com/espressif/openocd-esp32. These source files can be pulled via Git using
the following commands:

cd ~/esp
git clone --recursive https://github.com/espressif/openocd-esp32.git

The clone of sources should be now saved in ~/esp/openocd-esp32 directory.

Downloading libusb The libusb library is also required when building OpenOCD. The following commands will
download a particular release of libusb and uncompress it to the current directory.

wget https://github.com/libusb/libusb/releases/download/v1.0.22/libusb-1.0.22.7z
7z x -olibusb ./libusb-1.0.22.7z

We now need to export the following variables such that the libusb library gets linked into the OpenOCD build.

export CPPFLAGS="$CPPFLAGS -I${PWD}/libusb/include/libusb-1.0"
export LDFLAGS="$LDFLAGS -L${PWD}/libusb/MinGW32/.libs/dll"

Build OpenOCD The following commands will configure OpenOCD then build it.

cd ~/esp/openocd-esp32
export CPPFLAGS="$CPPFLAGS -D__USE_MINGW_ANSI_STDIO=1 -Wno-error"; export CFLAGS="
↪→$CFLAGS -Wno-error"
./bootstrap
./configure --disable-doxygen-pdf --enable-ftdi --enable-jlink --enable-ulink --
↪→build=i686-w64-mingw32 --host=i686-w64-mingw32
make
cp ../libusb/MinGW32/dll/libusb-1.0.dll ./src
cp /opt/i686-w64-mingw32/bin/libwinpthread-1.dll ./src

Once the build is completed, the OpenOCD binary will be placed in ~/esp/openocd-esp32/src/.
You can then optionally call make install. This will copy the OpenOCD binary to a user specified location.

• This location can be specified when OpenOCD is configured, or by setting export DESTDIR="/custom/
install/dir" before calling make install.

• If you have an existing OpenOCD (from e.g. another development platform), you may want to skip this call as
your existing OpenOCD may get overwritten.

Note:
• Should an error occur, resolve it and try again until the command make works.
• If there is a submodule problem from OpenOCD, please cd to the openocd-esp32 directory and input
git submodule update --init.

• If the ./configure is successfully run, information of enabled JTAG will be printed under OpenOCD
configuration summary.

• If the information of your device is not shown in the log, use ./configure to enable it as described in
../openocd-esp32/doc/INSTALL.txt.

• For details concerning compiling OpenOCD, please refer to openocd-esp32/README.Windows.
• Don't forget to copy libusb-1.0.dll and libwinpthread-1.dll into OOCD_INSTALLDIR/bin from ~/esp/
openocd-esp32/src.

Once make process is successfully completed, the executable of OpenOCD will be saved in ~/esp/
openocd-esp32/src directory.

Espressif Systems 2358
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/openocd-esp32
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Full Listing For greater convenience, all of commands called throughout the OpenOCD build process have been
listed in the code snippet below. Users can copy this code snippet into a shell script then execute it:

pacman -S --noconfirm --needed autoconf automake git make mingw-w64-i686-gcc mingw-
↪→w64-i686-toolchain mingw-w64-i686-libtool mingw-w64-i686-pkg-config mingw-w64-
↪→cross-winpthreads-git p7zip
cd ~/esp
git clone --recursive https://github.com/espressif/openocd-esp32.git

wget https://github.com/libusb/libusb/releases/download/v1.0.22/libusb-1.0.22.7z
7z x -olibusb ./libusb-1.0.22.7z
export CPPFLAGS="$CPPFLAGS -I${PWD}/libusb/include/libusb-1.0"; export LDFLAGS="
↪→$LDFLAGS -L${PWD}/libusb/MinGW32/.libs/dll"

export CPPFLAGS="$CPPFLAGS -D__USE_MINGW_ANSI_STDIO=1 -Wno-error"; export CFLAGS="
↪→$CFLAGS -Wno-error"
cd ~/esp/openocd-esp32
./bootstrap
./configure --disable-doxygen-pdf --enable-ftdi --enable-jlink --enable-ulink --
↪→build=i686-w64-mingw32 --host=i686-w64-mingw32
make
cp ../libusb/MinGW32/dll/libusb-1.0.dll ./src
cp /opt/i686-w64-mingw32/bin/libwinpthread-1.dll ./src

optional
export DESTDIR="$PWD"
make install
cp ./src/libusb-1.0.dll $DESTDIR/mingw32/bin
cp ./src/libwinpthread-1.dll $DESTDIR/mingw32/bin

Next Steps To carry on with debugging environment setup, proceed to section Configuring ESP32-C6 Target.

Building OpenOCD from Sources for Linux

The following instructions are alternative to downloading binary OpenOCD from Espressif GitHub. To quickly setup
the binary OpenOCD, instead of compiling it yourself, backup and proceed to section Setup of OpenOCD.

Download Sources of OpenOCD The sources for the ESP32-C6-enabled variant of OpenOCD are available from
Espressif GitHub under https://github.com/espressif/openocd-esp32. To download the sources, use the following
commands:

cd ~/esp
git clone --recursive https://github.com/espressif/openocd-esp32.git

The clone of sources should be now saved in ~/esp/openocd-esp32 directory.

Install Dependencies Install packages that are required to compile OpenOCD.

Note: Install the following packages one by one, check if installation was successful and then proceed to the next
package. Resolve reported problems before moving to the next step.

sudo apt-get install make
sudo apt-get install libtool
sudo apt-get install pkg-config

(continues on next page)

Espressif Systems 2359
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/openocd-esp32/releases
https://github.com/espressif/openocd-esp32
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
sudo apt-get install autoconf
sudo apt-get install automake
sudo apt-get install texinfo
sudo apt-get install libusb-1.0

Note:
• Version of pkg-config should be 0.2.3 or above.
• Version of autoconf should be 2.6.4 or above.
• Version of automake should be 1.9 or above.
• When using USB-Blaster, ASIX Presto, OpenJTAG and FT2232 as adapters, drivers libFTDI and FTD2XX
need to be downloaded and installed.

• When using CMSIS-DAP, HIDAPI is needed.

Build OpenOCD Proceed with configuring and building OpenOCD:

cd ~/esp/openocd-esp32
./bootstrap
./configure
make

Optionally you can add sudo make install step at the end. Skip it, if you have an existing OpenOCD (from
e.g. another development platform), as it may get overwritten.

Note:
• Should an error occur, resolve it and try again until the command make works.
• If there is a submodule problem from OpenOCD, please cd to the openocd-esp32 directory and input
git submodule update --init.

• If the ./configure is successfully run, information of enabled JTAG will be printed under OpenOCD
configuration summary.

• If the information of your device is not shown in the log, use ./configure to enable it as described in
../openocd-esp32/doc/INSTALL.txt.

• For details concerning compiling OpenOCD, please refer to openocd-esp32/README.

Once make process is successfully completed, the executable of OpenOCD will be saved in ~/openocd-esp32/
bin directory.

Next Steps To carry on with debugging environment setup, proceed to section Configuring ESP32-C6 Target.

Building OpenOCD from Sources for MacOS

The following instructions are alternative to downloading binary OpenOCD from Espressif GitHub. To quickly setup
the binary OpenOCD, instead of compiling it yourself, backup and proceed to section Setup of OpenOCD.

Download Sources of OpenOCD The sources for the ESP32-C6-enabled variant of OpenOCD are available from
Espressif GitHub under https://github.com/espressif/openocd-esp32. To download the sources, use the following
commands:

cd ~/esp
git clone --recursive https://github.com/espressif/openocd-esp32.git

Espressif Systems 2360
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/openocd-esp32/releases
https://github.com/espressif/openocd-esp32
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

The clone of sources should be now saved in ~/esp/openocd-esp32 directory.

Install Dependencies Install packages that are required to compile OpenOCD using Homebrew:

brew install automake libtool libusb wget gcc@4.9 pkg-config

Build OpenOCD Proceed with configuring and building OpenOCD:

cd ~/esp/openocd-esp32
./bootstrap
./configure
make

Optionally you can add sudo make install step at the end. Skip it, if you have an existing OpenOCD (from
e.g. another development platform), as it may get overwritten.

Note:
• Should an error occur, resolve it and try again until the command make works.
• Error Unknown command 'raggedright' may indicate that the required version of texinfo was
not installed on your computer or installed but was not linked to your PATH. To resolve this issue make sure
texinfo is installed and PATH is adjusted prior to the ./bootstrap by running:

brew install texinfo
export PATH=/usr/local/opt/texinfo/bin:$PATH

• If there is a submodule problem from OpenOCD, please cd to the openocd-esp32 directory and input
git submodule update --init.

• If the ./configure is successfully run, information of enabled JTAG will be printed under OpenOCD
configuration summary.

• If the information of your device is not shown in the log, use ./configure to enable it as described in
../openocd-esp32/doc/INSTALL.txt.

• For details concerning compiling OpenOCD, please refer to openocd-esp32/README.OSX.

Once make process is successfully completed, the executable of OpenOCD will be saved in ~/esp/
openocd-esp32/src/openocd directory.

Next Steps To carry on with debugging environment setup, proceed to section Configuring ESP32-C6 Target.
The examples of invoking OpenOCD in this document assume using pre-built binary distribution described in section
Setup of OpenOCD.
To use binaries build locally from sources, change the path to OpenOCD executable to src/openocd and set
the OPENOCD_SCRIPTS environment variable so that OpenOCD can find the configuration files. For Linux and
macOS:

cd ~/esp/openocd-esp32
export OPENOCD_SCRIPTS=$PWD/tcl

For Windows:

cd %USERPROFILE%\esp\openocd-esp32
set "OPENOCD_SCRIPTS=%CD%\tcl"

Example of invoking OpenOCD build locally from sources, for Linux and macOS:

src/openocd -f board/esp32c6-builtin.cfg

and Windows:

Espressif Systems 2361
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

src\openocd -f board/esp32c6-builtin.cfg

4.15.9 Tips and Quirks

This section provides collection of links to all tips and quirks referred to from various parts of this guide.

Tips and Quirks

This section provides collection of all tips and quirks referred to from various parts of this guide.

Breakpoints and Watchpoints Available ESP32-C6 debugger supports 4 hardware implemented breakpoints
and 64 software ones. Hardware breakpoints are implemented by ESP32-C6 chip's logic and can be set any-
where in the code: either in flash or IRAM program's regions. Additionally there are 2 types of software break-
points implemented by OpenOCD: flash (up to 32) and IRAM (up to 32) breakpoints. Currently GDB can not
set software breakpoints in flash. So until this limitation is removed those breakpoints have to be emulated by
OpenOCD as hardware ones (see below for details). ESP32-C6 also supports 4 watchpoints, so 4 variables can be
watched for change or read by the GDB command watch myVariable. Note that menuconfig option CON-
FIG_FREERTOS_WATCHPOINT_END_OF_STACK uses the last watchpoint and will not provide expected results, if
you also try to use it within OpenOCD/GDB. See menuconfig's help for detailed description.

What Else Should I Know About Breakpoints? Emulating part of hardware breakpoints using software flash
ones means that the GDB command hb myFunction which is invoked for function in flash will use pure hardware
breakpoint if it is avalable otherwise one of the 32 software flash breakpoints is used. The same rule applies to b
myFunction-like commands. In this case GDB will decide what type of breakpoint to set itself. If myFunction
is resided in writable region (IRAM) software IRAM breakpoint will be used otherwise hardware or software flash
breakpoint is used as it is done for hb command.

FlashMappings vs SWFlash Breakpoints In order to set/clear software breakpoints in flash, OpenOCD needs to
know their flash addresses. To accomplish conversion from the ESP32-C6 address space to the flash one, OpenOCD
uses mappings of program's code regions resided in flash. Those mappings are kept in the image header which is
prepended to program binary data (code and data segments) and is specific to every application image written to the
flash. So to support software flash breakpoints OpenOCD should know where application image under debugging is
resided in the flash. By default OpenOCD reads partition table at 0x8000 and uses mappings from the first found
application image, but there can be the cases when it will not work, e.g. partition table is not at standard flash location
or even there can be multiple images: one factory and two OTA and you may want to debbug any of them. To cover
all possible debugging scenarios OpenOCD supports special command which can be used to set arbitrary location of
application image to debug. The command has the following format:
esp appimage_offset <offset>

Offset should be in hex format. To reset to the default behaviour you can specify -1 as offset.

Note: Since GDB requests memory map from OpenOCD only once when connecting to it, this command should
be specified in one of the TCL configuration files, or passed to OpenOCD via its command line. In the latter case
command line should look like below:

openocd -f board/esp32c6-builtin.cfg -c "init; halt; esp appimage_offset 0x210000"

Another option is to execute that command via OpenOCD telnet session and then connect GDB, but it seems to be
less handy.

Espressif Systems 2362
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Why Stepping with "next" Does Not Bypass Subroutine Calls? When stepping through the code with next
command, GDB is internally setting a breakpoint ahead in the code to bypass the subroutine calls. If all 4 breakpoints
are already set, this functionality will not work. If this is the case, delete breakpoints to have one "spare". With all
breakpoints already used, stepping through the code with next command will work as like with step command
and debugger will step inside subroutine calls.

Support Options for OpenOCD at Compile Time ESP-IDF has some support options for OpenOCD debugging
which can be set at compile time:

• CONFIG_ESP_DEBUG_OCDAWARE is enabled by default. If a panic or unhandled exception is thrown and a
JTAG debugger is connected (ie OpenOCD is running), ESP-IDF will break into the debugger.

• CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK (disabled by default) sets watchpoint index 1 (the
second of two) at the end of any task stack. This is the most accurate way to debug task stack overflows.
Click the link for more details.

Please see the project configuration menu menu for more details on setting compile-time options.

FreeRTOS Support OpenOCD has explicit support for the ESP-IDF FreeRTOS. GDB can see FreeRTOS tasks
as threads. Viewing them all can be done using the GDB i threads command, changing to a certain task is
done with thread n, with n being the number of the thread. FreeRTOS detection can be disabled in target's
configuration. For more details see Configuration of OpenOCD for Specific Target.
GDB has a Python extension for FreeRTOS support. ESP-IDF automatically loads this module into GDB with the
idf.py gdb command when the system requirements are met. See more details in Debugging FreeRTOS Objects.

Optimize JTAG Speed In order to achieve higher data rates and minimize number of dropped packets it is rec-
ommended to optimize setting of JTAG clock frequency, so it is at maximum and still provides stable operation of
JTAG. To do so use the following tips.

1. The upper limit of JTAG clock frequency is 20 MHz if CPU runs at 80 MHz, or 26 MHz if CPU runs at 160
MHz or 240 MHz.

2. Depending on particular JTAG adapter and the length of connecting cables, you may need to reduce JTAG
frequency below 20 MHz or 26 MHz.

3. In particular reduce frequency, if you get DSR/DIR errors (and they do not relate to OpenOCD trying to read
from a memory range without physical memory being present there).

4. ESP-WROVER-KIT operates stable at 20 MHz or 26 MHz.

What is the Meaning of Debugger's Startup Commands? On startup, debugger is issuing sequence of com-
mands to reset the chip and halt it at specific line of code. This sequence (shown below) is user defined to pick up at
most convenient/appropriate line and start debugging.

• set remote hardware-watchpoint-limit 4 —Restrict GDB to using available hardware
watchpoints supported by the chip, 4 for ESP32-C6. For more information see https://sourceware.org/gdb/
onlinedocs/gdb/Remote-Configuration.html.

• mon reset halt—reset the chip and keep the CPUs halted
• maintenance flush register-cache —monitor (mon) command can not inform GDB that the
target state has changed. GDB will assume that whatever stack the target had before mon reset halt
will still be valid. In fact, after reset the target state will change, and executing maintenance flush
register-cache is a way to force GDB to get new state from the target.

• thb app_main—insert a temporary hardware breakpoint at app_main, put here another function name
if required

• c—resume the program. It will then stop at breakpoint inserted at app_main.

Configuration of OpenOCD for Specific Target There are several kinds of OpenOCD configuration files (*.
cfg). All configuration files are located in subdirectories of share/openocd/scripts directory of OpenOCD
distribution (or tcl/scripts directory of the source repository). For the purposes of this guide, the most impor-
tant ones are board, interface and target.

Espressif Systems 2363
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Configuration.html
https://sourceware.org/gdb/onlinedocs/gdb/Remote-Configuration.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• interface configuration files describe the JTAG adapter. Examples of JTAG adapters are ESP-Prog and
J-Link.

• target configuration files describe specific chips, or in some cases, modules.
• board configuration files are provided for development boards with a built-in JTAG adapter. Such files in-
clude an interface configuration file to choose the adapter, and target configuration file to choose the
chip/module.

The following configuration files are available for ESP32-C6:

Table 29: OpenOCD configuration files for ESP32-C6
Name Description
board/
esp32c6-builtin.
cfg

Board configuration file for ESP32-C6 through built-in USB, includes target and
adapter configuration.

board/
esp32c6-ftdi.cfg

Board configuration file for ESP32-C6 for via externally connected FTDI-based
probe like ESP-Prog, includes target and adapter configuration.

target/esp32c6.
cfg

ESP32-C6 target configuration file. Can be used together with one of the inter-
face/ configuration files.

interface/
esp_usb_jtag.cfg

JTAG adapter configuration file for ESP32-C6.

interface/ftdi/
esp_ftdi.cfg

JTAG adapter configuration file for ESP-Prog boards.

If you are using one of the boards which have a pre-defined configuration file, you only need to pass one -f argument
to OpenOCD, specifying that file.
If you are using a board not listed here, you need to specify both the interface configuration file and target configuration
file.

Custom Configuration Files OpenOCD configuration files are written in TCL, and include a variety of choices
for customization and scripting. This can be useful for non-standard debugging situations. Please refer to OpenOCD
Manual for the TCL scripting reference.

OpenOCD Configuration Variables The following variables can be optionally set before including the ESP-
specific target configuration file. This can be done either in a custom configuration file, or from the command line.
The syntax for setting a variable in TCL is:

set VARIABLE_NAME value

To set a variable from the command line (replace the name of .cfg file with the correct file for your board):

openocd -c 'set VARIABLE_NAME value' -f board/esp-xxxxx-kit.cfg

It is important to set the variable before including the ESP-specific configuration file, otherwise the variable will not
have effect. You can set multiple variables by repeating the -c option.

Table 30: Common ESP-related OpenOCD variables
Variable Description
ESP_RTOS Set to none to disable RTOS support. In this case, thread list will not be available

in GDB. Can be useful when debugging FreeRTOS itself, and stepping through the
scheduler code.

ESP_FLASH_SIZE Set to 0 to disable Flash breakpoints support.
ESP_SEMIHOST_BASEDIRSet to the path (on the host) which will be the default directory for semihosting func-

tions.
ESP_ONLYCPU For multi-core targets, can be set to 1 to only enable single core debugging.

Espressif Systems 2364
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://openocd.org/doc/html/index.html
https://openocd.org/doc/html/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

How Debugger Resets ESP32-C6? The board can be reset by entering mon reset or mon reset halt
into GDB.

Can JTAG Pins be Used for Other Purposes? ESP32-C6 contains a USB Serial/JTAG Controller which can
be used for debugging. By default, ESP32-C6 JTAG interface is connected to the built-in USB SERIAL/JTAG
peripheral. For details, please refer to Configure ESP32-C6 built-in JTAG Interface.
When you use USB Serial/JTAG Controller for debugging, GPIO4-GPIO7 can be used for other purposes.
However, if you switch the USB JTAG interface to the GPIOs by burning eFuses, GPIO4-GPIO7 can be used for
JTAG debugging. When they perform this function, they cannot be used for other purposes.
Operation of JTAG may be disturbed, if some other hardware is connected to JTAG pins besides ESP32-C6 module
and JTAG adapter. ESP32-C6 JTAG is using the following pins:

Table 31: ESP32-C6 pins and JTAG signals
ESP32-C6 Pin JTAG Signal
MTDO / GPIO7 TDO
MTDI / GPIO5 TDI
MTCK / GPIO6 TCK
MTMS / GPIO4 TMS

JTAG communication will likely fail, if configuration of JTAG pins is changed by a user application. If OpenOCD
initializes correctly (detects all the CPU cores in the SOC), but loses sync and spews out a lot of DTR/DIR errors
when the program is running, it is likely that the application reconfigures the JTAG pins to something else, or the
user forgot to connect Vtar to a JTAG adapter that requires it.

JTAG with Flash Encryption or Secure Boot By default, enabling Flash Encryption and/or Secure Boot will
disable JTAG debugging. On first boot, the bootloader will burn an eFuse bit to permanently disable JTAG at the
same time it enables the other features.
The project configuration option CONFIG_SECURE_BOOT_ALLOW_JTAG will keep JTAG enabled at this time,
removing all physical security but allowing debugging. (Although the name suggests Secure Boot, this option can be
applied even when only Flash Encryption is enabled).
However, OpenOCD may attempt to automatically read and write the flash in order to set software breakpoints. This
has two problems:

• Software breakpoints are incompatible with Flash Encryption, OpenOCD currently has no support for encrypt-
ing or decrypting flash contents.

• If Secure Boot is enabled, setting a software breakpoint will change the digest of a signed app and make the
signature invalid. This means if a software breakpoint is set and then a reset occurs, the signature verification
will fail on boot.

To disable software breakpoints while using JTAG, add an extra argument -c 'set ESP_FLASH_SIZE 0' to
the start of the OpenOCD command line, see OpenOCD Configuration Variables.

Note: For the same reason, the ESP-IDF app may fail bootloader verification of app signatures, when this option is
enabled and a software breakpoint is set.

Reporting Issues with OpenOCD/GDB In case you encounter a problem with OpenOCD or GDB programs
itself and do not find a solution searching available resources on the web, open an issue in the OpenOCD issue tracker
under https://github.com/espressif/openocd-esp32/issues.

1. In issue report provide details of your configuration:
a. JTAG adapter type, and the chip/module being debugged.
b. Release of ESP-IDF used to compile and load application that is being debugged.
c. Details of OS used for debugging.

Espressif Systems 2365
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/openocd-esp32/issues
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

d. Is OS running natively on a PC or on a virtual machine?
2. Create a simple example that is representative to observed issue. Describe steps how to reproduce it. In such

an example debugging should not be affected by non-deterministic behaviour introduced by the Wi-Fi stack,
so problems will likely be easier to reproduce, if encountered once.

3. Prepare logs from debugging session by adding additional parameters to start up commands.
OpenOCD:

openocd -l openocd_log.txt -d3 -f board/esp32c6-builtin.cfg

Logging to a file this way will prevent information displayed on the terminal. This may be a good thing taken
amount of information provided, when increased debug level -d3 is set. If you still like to see the log on the
screen, then use another command instead:

openocd -d3 -f board/esp32c6-builtin.cfg 2>&1 | tee openocd.log

Debugger:

riscv32-esp-elf-gdb -ex "set remotelogfile gdb_log.txt" <all other options>

Optionally add command remotelogfile gdb_log.txt to the gdbinit file.
4. Attach both openocd_log.txt and gdb_log.txt files to your issue report.

4.15.10 Related Documents

Using Debugger

This section covers configuration and running debugger using several methods:
• from Eclipse
• from Command Line
• using idf.py debug targets

See also a separate document Configuration for Visual Studio Code Debug describing how to run a debugger from
VS Code.

Eclipse
Note: It is recommended to first check if debugger works using idf.py debug targets or from Command Line and
then move to using Eclipse.

Debugging functionality is provided out of box in standard Eclipse installation. Another option is to use pluggins like
"GDB Hardware Debugging" plugin. We have found this plugin quite convenient and decided to use throughout this
guide.
To begin with, install "GDB Hardware Debugging" plugin by opening Eclipse and going to Help > Install New Soft-
ware.
Once installation is complete, configure debugging session following steps below. Please note that some of configu-
ration parameters are generic and some are project specific. This will be shown below by configuring debugging for
"blink" example project. If not done already, add this project to Eclipse workspace following guidance in Eclipse
Plugin. The source of get-started/blink application is available in examples directory of ESP-IDF repository.

1. In Eclipse go to Run > Debug Configuration. A new window will open. In the window's left pane double click
"GDB Hardware Debugging" (or select "GDB Hardware Debugging" and press the "New" button) to create a
new configuration.

2. In a form that will show up on the right, enter the "Name:" of this configuration, e.g. "Blink checking".
3. On the "Main" tab below, under "Project:", press "Browse" button and select the "blink" project.
4. In next line "C/C++ Application:" press "Browse" button and select "blink.elf" file. If "blink.elf" is not there,

then likely this project has not been build yet. See Eclipse Plugin how to do it.

Espressif Systems 2366
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/DEBUGGING.md
https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/blink
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples
https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

5. Finally, under "Build (if required) before launching" click "Disable auto build".
A sample window with settings entered in points 1 - 5 is shown below.

Fig. 60: Configuration of GDB Hardware Debugging - Main tab

6. Click "Debugger" tab. In field "GDB Command" enter riscv32-esp-elf-gdb to invoke debugger.
7. Change default configuration of "Remote host" by entering 3333 under the "Port number".

Configuration entered in points 6 and 7 is shown on the following picture.
8. The last tab to that requires changing of default configuration is "Startup". Under "Initialization Commands"

uncheck "Reset and Delay (seconds)" and "Halt"". Then, in entry field below, enter the following lines:

mon reset halt
maintenance flush register-cache
set remote hardware-watchpoint-limit 2

Note: If you want to update image in the flash automatically before starting new debug session add the
following lines of commands at the beginning of "Initialization Commands" textbox:

mon reset halt
mon program_esp ${workspace_loc:blink/build/blink.bin} 0x10000 verify

For description of program_esp command see Upload application for debugging.
9. Under "Load Image and Symbols" uncheck "Load image" option.
10. Further down on the same tab, establish an initial breakpoint to halt CPUs after they are reset by debugger. The

plugin will set this breakpoint at the beginning of the function entered under "Set break point at:". Checkout
this option and enter app_main in provided field.

11. Checkout "Resume" option. This will make the program to resume after mon reset halt is invoked per
point 8. The program will then stop at breakpoint inserted at app_main.
Configuration described in points 8 - 11 is shown below.

Espressif Systems 2367
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 61: Configuration of GDB Hardware Debugging - Debugger tab

Espressif Systems 2368
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 62: Configuration of GDB Hardware Debugging - Startup tab

Espressif Systems 2369
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

If the "Startup" sequence looks convoluted and respective "Initialization Commands" are not clear to you, check
What is the Meaning of Debugger's Startup Commands? for additional explanation.

12. If you previously completed Configuring ESP32-C6 Target steps described above, so the target is running and
ready to talk to debugger, go right to debugging by pressing "Debug" button. Otherwise press "Apply" to save
changes, go back to Configuring ESP32-C6 Target and return here to start debugging.

Once all 1 - 12 configuration steps are satisfied, the new Eclipse perspective called "Debug" will open as shown on
example picture below.

Fig. 63: Debug Perspective in Eclipse

If you are not quite sure how to use GDB, check Eclipse example debugging session in section Debugging Examples.

Command Line
1. Begin with completing steps described under Configuring ESP32-C6 Target. This is prerequisite to start a

debugging session.
2. Open a new terminal session and go to directory that contains project for debugging, e.g.

cd ~/esp/blink

3. When launching a debugger, you will need to provide couple of configuration parameters and commands.
Instead of entering them one by one in command line, create a configuration file and name it gdbinit:

target remote :3333
set remote hardware-watchpoint-limit 2
mon reset halt
maintenance flush register-cache
thb app_main
c

Espressif Systems 2370
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Save this file in current directory.
For more details what's inside gdbinit file, seeWhat is the Meaning of Debugger's Startup Commands?

4. Now you are ready to launch GDB. Type the following in terminal:

riscv32-esp-elf-gdb -x gdbinit build/blink.elf

5. If previous steps have been done correctly, you will see a similar log concluded with (gdb) prompt:

user-name@computer-name:~/esp/blink$ riscv32-esp-elf-gdb -x gdbinit build/
↪→blink.elf
GNU gdb (crosstool-NG crosstool-ng-1.22.0-61-gab8375a) 7.10
Copyright (C) 2015 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=x86_64-build_pc-linux-gnu --target=riscv32-
↪→esp-elf".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from build/blink.elf...done.
0x400d10d8 in esp_vApplicationIdleHook () at /home/user-name/esp/esp-idf/
↪→components/esp32c6/./freertos_hooks.c:52
52 asm("waiti 0");
JTAG tap: esp32c6.cpu0 tap/device found: 0x120034e5 (mfg: 0x272 (Tensilica),␣
↪→part: 0x2003, ver: 0x1)
JTAG tap: esp32c6.slave tap/device found: 0x120034e5 (mfg: 0x272 (Tensilica),␣
↪→part: 0x2003, ver: 0x1)
esp32c6: Debug controller was reset (pwrstat=0x5F, after clear 0x0F).
esp32c6: Core was reset (pwrstat=0x5F, after clear 0x0F).
Target halted. PRO_CPU: PC=0x5000004B (active) APP_CPU: PC=0x00000000
esp32c6: target state: halted
esp32c6: Core was reset (pwrstat=0x1F, after clear 0x0F).
Target halted. PRO_CPU: PC=0x40000400 (active) APP_CPU: PC=0x40000400
esp32c6: target state: halted
Hardware assisted breakpoint 1 at 0x400db717: file /home/user-name/esp/blink/
↪→main/./blink.c, line 43.
0x0: 0x00000000
Target halted. PRO_CPU: PC=0x400DB717 (active) APP_CPU: PC=0x400D10D8
[New Thread 1073428656]
[New Thread 1073413708]
[New Thread 1073431316]
[New Thread 1073410672]
[New Thread 1073408876]
[New Thread 1073432196]
[New Thread 1073411552]
[Switching to Thread 1073411996]

Temporary breakpoint 1, app_main () at /home/user-name/esp/blink/main/./blink.
↪→c:43
43 xTaskCreate(&blink_task, "blink_task", 512, NULL, 5, NULL);
(gdb)

Note the third line from bottom that shows debugger halting at breakpoint established in gdbinit file at function
app_main(). Since the processor is halted, the LED should not be blinking. If this is what you see as well, you
are ready to start debugging.
If you are not quite sure how to use GDB, check Command Line example debugging session in section Debugging

Espressif Systems 2371
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Examples.

idf.py debug targets It is also possible to execute the described debugging tools conveniently fromidf.py. These
commands are supported:

1. idf.py openocd
Runs OpenOCD in a console with configuration defined in the environment or via command line. It uses default
script directory defined as OPENOCD_SCRIPTS environmental variable, which is automatically added from
an Export script (export.sh or export.bat). It is possible to override the script location using command
line argument --openocd-scripts.
As for the JTAG configuration of the current board, please use the environmental variable
OPENOCD_COMMANDS or --openocd-commands command line argument. If none of the above
is defined, OpenOCD is started with -f board/esp32c6-builtin.cfg board definition.

2. idf.py gdb
Starts the gdb the same way as the Command Line, but generates the initial gdb scripts referring to the current
project elf file.

3. idf.py gdbtui
The same as 2, but starts the gdb with tui argument allowing very simple source code view.

4. idf.py gdbgui
Starts gdbgui debugger frontend enabling out-of-the-box debugging in a browser window. Please run the in-
stall script with the "--enable-gdbgui" argument in order to make this option supported, e.g. install.sh
--enable-gdbgui.
It is possible to combine these debugging actions on a single command line allowing convenient setup of block-
ing and non-blocking actions in one step. idf.py implements a simple logic to move the background actions
(such as openocd) to the beginning and the interactive ones (such as gdb, monitor) to the end of the action list.
An example of a very useful combination is:

idf.py openocd gdbgui monitor

The above command runs OpenOCD in the background, starts gdbgui to open a browser window with active
debugger frontend and opens a serial monitor in the active console.

Debugging Examples

This section describes debugging with GDB from Eclipse as well as from Command Line.

Eclipse Verify if your target is ready and loaded with get-started/blink example. Configure and start debugger
following steps in section Eclipse. Pick up where target was left by debugger, i.e. having the application halted at
breakpoint established at app_main().

Examples in this section
1. Navigating through the code, call stack and threads
2. Setting and clearing breakpoints
3. Halting the target manually
4. Stepping through the code
5. Checking and setting memory
6. Watching and setting program variables
7. Setting conditional breakpoints

Navigating through the code, call stack and threads When the target is halted, debugger shows the list of threads
in "Debug" window. The line of code where program halted is highlighted in another window below, as shown on
the following picture. The LED stops blinking.

Espressif Systems 2372
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.gdbgui.com
https://www.gdbgui.com
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/blink
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 64: Debug Perspective in Eclipse

Espressif Systems 2373
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 65: Target halted during debugging

Espressif Systems 2374
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Specific thread where the program halted is expanded showing the call stack. It represents function calls that lead up
to the highlighted line of code, where the target halted. The first line of call stack under Thread #1 contains the last
called function app_main(), that in turn was called from function main_task() shown in a line below. Each
line of the stack also contains the file name and line number where the function was called. By clicking / highlighting
the stack entries, in window below, you will see contents of this file.
By expanding threads you can navigate throughout the application. Expand Thread #5 that contains much longer call
stack. You will see there, besides function calls, numbers like 0x4000000c. They represent addresses of binary
code not provided in source form.

Fig. 66: Navigate through the call stack

In another window on right, you can see the disassembled machine code no matter if your project provides it in source
or only the binary form.
Go back to the app_main() in Thread #1 to familiar code of blink.c file that will be examined in more details
in the following examples. Debugger makes it easy to navigate through the code of entire application. This comes
handy when stepping through the code and working with breakpoints and will be discussed below.

Setting and clearing breakpoints When debugging, we would like to be able to stop the application at critical
lines of code and then examine the state of specific variables, memory and registers / peripherals. To do so we are
using breakpoints. They provide a convenient way to quickly get to and halt the application at specific line.
Let's establish two breakpoints when the state of LED changes. Basing on code listing above, this happens at lines
33 and 36. To do so, hold the "Control" on the keyboard and double clink on number 33 in file blink.c file. A
dialog will open where you can confirm your selection by pressing "OK" button. If you do not like to see the dialog
just double click the line number. Set another breakpoint in line 36.
Information how many breakpoints are set and where is shown in window "Breakpoints" on top right. Click "Show
Breakpoints Supported by Selected Target" to refresh this list. Besides the two just set breakpoints the list may contain

Espressif Systems 2375
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 67: Setting a breakpoint

Espressif Systems 2376
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

temporary breakpoint at function app_main() established at debugger start. As maximum two breakpoints are
allowed (see Breakpoints and Watchpoints Available), you need to delete it, or debugging will fail.

Fig. 68: Three breakpoints are set / maximum two are allowed

If you now click "Resume" (click blink_task() under "Tread #8", if "Resume" button is grayed out), the pro-
cessor will run and halt at a breakpoint. Clicking "Resume" another time will make it run again, halt on second
breakpoint, and so on.
You will be also able to see that LED is changing the state after each click to "Resume" program execution.
Read more about breakpoints under Breakpoints and Watchpoints Available and What Else Should I Know About
Breakpoints?

Halting the target manually When debugging, you may resume application and enter code waiting for some event
or staying in infinite loop without any break points defined. In such case, to go back to debugging mode, you can
break program execution manually by pressing "Suspend" button.
To check it, delete all breakpoints and click "Resume". Then click "Suspend". Application will be halted at some
random point and LEDwill stop blinking. Debugger will expand tread and highlight the line of code where application
halted.
In particular case above, the application has been halted in line 52 of code in file freertos_hooks.c Now you
can resume it again by pressing "Resume" button or do some debugging as discussed below.

Stepping through the code It is also possible to step through the code using "Step Into (F5)" and "Step Over (F6)"
commands. The difference is that "Step Into (F5)" is entering inside subroutines calls, while "Step Over (F6)" steps
over the call, treating it as a single source line.
Before being able to demonstrate this functionality, using information discussed in previous paragraph, make sure
that you have only one breakpoint defined at line 36 of blink.c.

Espressif Systems 2377
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 69: Target halted manually

Espressif Systems 2378
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Resume program by entering pressing F8 and let it halt. Now press "Step Over (F6)", one by one couple of times, to
see how debugger is stepping one program line at a time.

Fig. 70: Stepping through the code with "Step Over (F6)"

If you press "Step Into (F5)" instead, then debugger will step inside subroutine calls.
In this particular case debugger stepped inside gpio_set_level(BLINK_GPIO, 0) and effectively moved to
gpio.c driver code.
SeeWhy Stepping with "next" Does Not Bypass Subroutine Calls? for potential limitation of using next command.

Checking and setting memory To display or set contents of memory use "Memory" tab at the bottom of "Debug"
perspective.
With the "Memory" tab, we will read from and write to the memory location 0x3FF44004 labeled as
GPIO_OUT_REG used to set and clear individual GPIO's.
For more information, see ESP32-C6 Technical Reference Manual > IO MUX and GPIO Matrix (GPIO, IO_MUX)
[PDF].
Being in the same blink.c project as before, set two breakpoints right after gpio_set_level instruction. Click
"Memory" tab and then "Add Memory Monitor" button. Enter 0x3FF44004 in provided dialog.
Now resume program by pressing F8 and observe "Monitor" tab.
You should see one bit being flipped over at memory location 0x3FF44004 (and LED changing the state) each time
F8 is pressed.
To set memory use the same "Monitor" tab and the same memory location. Type in alternate bit pattern as previously
observed. Immediately after pressing enter you will see LED changing the state.

Espressif Systems 2379
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#iomuxgpio
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 71: Stepping through the code with "Step Into (F5)"

Fig. 72: Observing memory location 0x3FF44004 changing one bit to "ON"

Espressif Systems 2380
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 73: Observing memory location 0x3FF44004 changing one bit to "OFF"

Watching and setting program variables A common debugging tasks is checking the value of a program variable
as the program runs. To be able to demonstrate this functionality, update file blink.c by adding a declaration of
a global variable int i above definition of function blink_task. Then add i++ inside while(1) of this
function to get i incremented on each blink.
Exit debugger, so it is not confused with new code, build and flash the code to the ESP and restart debugger. There
is no need to restart OpenOCD.
Once application is halted, enter a breakpoint in the line where you put i++.
In next step, in the window with "Breakpoints", click the "Expressions" tab. If this tab is not visible, then add it by
going to the top menu Window > Show View > Expressions. Then click "Add new expression" and enter i.
Resume program execution by pressing F8. Each time the program is halted you will see i value being incremented.
To modify i enter a new number in "Value" column. After pressing "Resume (F8)" the program will keep incre-
menting i starting from the new entered number.

Setting conditional breakpoints Here comes more interesting part. You may set a breakpoint to halt the program
execution, if certain condition is satisfied. Right click on the breakpoint to open a context menu and select "Breakpoint
Properties". Change the selection under "Type:" to "Hardware" and enter a "Condition:" like i == 2.
If current value of i is less than 2 (change it if required) and program is resumed, it will blink LED in a loop until
condition i == 2 gets true and then finally halt.

Command Line Verify if your target is ready and loaded with get-started/blink example. Configure and start
debugger following steps in section Command Line. Pick up where target was left by debugger, i.e. having the
application halted at breakpoint established at app_main():

Temporary breakpoint 1, app_main () at /home/user-name/esp/blink/main/./blink.c:43
43 xTaskCreate(&blink_task, "blink_task", configMINIMAL_STACK_SIZE, NULL, 5,␣
↪→NULL);
(gdb)

Examples in this section
1. Navigating through the code, call stack and threads
2. Setting and clearing breakpoints
3. Halting and resuming the application
4. Stepping through the code
5. Checking and setting memory

Espressif Systems 2381
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/get-started/blink
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 74: Watching program variable "i"

Espressif Systems 2382
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 75: Setting a conditional breakpoint

Espressif Systems 2383
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

6. Watching and setting program variables
7. Setting conditional breakpoints
8. Debugging FreeRTOS Objects

Navigating through the code, call stack and threads When you see the (gdb) prompt, the application is halted.
LED should not be blinking.
To find out where exactly the code is halted, enter l or list, and debugger will show couple of lines of code around
the halt point (line 43 of code in file blink.c)

(gdb) l
38 }
39 }
40
41 void app_main()
42 {
43 xTaskCreate(&blink_task, "blink_task", configMINIMAL_STACK_SIZE, NULL, 5,␣
↪→NULL);
44 }
(gdb)

Check how code listing works by entering, e.g. l 30, 40 to see particular range of lines of code.
You can use bt or backtrace to see what function calls lead up to this code:

(gdb) bt
#0 app_main () at /home/user-name/esp/blink/main/./blink.c:43
#1 0x400d057e in main_task (args=0x0) at /home/user-name/esp/esp-idf/components/
↪→esp32c6/./cpu_start.c:339
(gdb)

Line #0 of output provides the last function call before the application halted, i.e. app_main () we have listed
previously. The app_main () was in turn called by function main_task from line 339 of code located in file
cpu_start.c.
To get to the context of main_task in file cpu_start.c, enter frame N, where N = 1, because the
main_task is listed under #1):

(gdb) frame 1
#1 0x400d057e in main_task (args=0x0) at /home/user-name/esp/esp-idf/components/
↪→esp32c6/./cpu_start.c:339
339 app_main();
(gdb)

Enter l and this will reveal the piece of code that called app_main() (in line 339):

(gdb) l
334 ;
335 }
336 #endif
337 //Enable allocation in region where the startup stacks were located.
338 heap_caps_enable_nonos_stack_heaps();
339 app_main();
340 vTaskDelete(NULL);
341 }
342
(gdb)

By listing some lines before, you will see the function name main_task we have been looking for:

(gdb) l 326, 341
326 static void main_task(void* args)

(continues on next page)

Espressif Systems 2384
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
327 {
328 // Now that the application is about to start, disable boot watchdogs
329 REG_CLR_BIT(TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN_S);
330 REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN);
331 #if !CONFIG_FREERTOS_UNICORE
332 // Wait for FreeRTOS initialization to finish on APP CPU, before replacing␣
↪→its startup stack
333 while (port_xSchedulerRunning[1] == 0) {
334 ;
335 }
336 #endif
337 //Enable allocation in region where the startup stacks were located.
338 heap_caps_enable_nonos_stack_heaps();
339 app_main();
340 vTaskDelete(NULL);
341 }
(gdb)

To see the other code, enter i threads. This will show the list of threads running on target:

(gdb) i threads
Id Target Id Frame
8 Thread 1073411336 (dport) 0x400d0848 in dport_access_init_core (arg=

↪→<optimized out>)
at /home/user-name/esp/esp-idf/components/esp32c6/./dport_access.c:170

7 Thread 1073408744 (ipc0) xQueueGenericReceive (xQueue=0x3ffae694,␣
↪→pvBuffer=0x0, xTicksToWait=1644638200,

xJustPeeking=0) at /home/user-name/esp/esp-idf/components/freertos/./queue.
↪→c:1452
6 Thread 1073431096 (Tmr Svc) prvTimerTask (pvParameters=0x0)
at /home/user-name/esp/esp-idf/components/freertos/./timers.c:445

5 Thread 1073410208 (ipc1 : Running) 0x4000bfea in ?? ()
4 Thread 1073432224 (dport) dport_access_init_core (arg=0x0)
at /home/user-name/esp/esp-idf/components/esp32c6/./dport_access.c:150

3 Thread 1073413156 (IDLE) prvIdleTask (pvParameters=0x0)
at /home/user-name/esp/esp-idf/components/freertos/./tasks.c:3282

2 Thread 1073413512 (IDLE) prvIdleTask (pvParameters=0x0)
at /home/user-name/esp/esp-idf/components/freertos/./tasks.c:3282

* 1 Thread 1073411772 (main : Running) app_main () at /home/user-name/esp/blink/
↪→main/./blink.c:43
(gdb)

The thread list shows the last function calls per each thread together with the name of C source file if available.
You can navigate to specific thread by entering thread N, where N is the thread Id. To see how it works go to
thread thread 5:

(gdb) thread 5
[Switching to thread 5 (Thread 1073410208)]
#0 0x4000bfea in ?? ()
(gdb)

Then check the backtrace:

(gdb) bt
#0 0x4000bfea in ?? ()
#1 0x40083a85 in vPortCPUReleaseMutex (mux=<optimized out>) at /home/user-name/
↪→esp/esp-idf/components/freertos/./port.c:415
#2 0x40083fc8 in vTaskSwitchContext () at /home/user-name/esp/esp-idf/components/
↪→freertos/./tasks.c:2846
#3 0x4008532b in _frxt_dispatch ()

(continues on next page)

Espressif Systems 2385
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
#4 0x4008395c in xPortStartScheduler () at /home/user-name/esp/esp-idf/components/
↪→freertos/./port.c:222
#5 0x4000000c in ?? ()
#6 0x4000000c in ?? ()
#7 0x4000000c in ?? ()
#8 0x4000000c in ?? ()
(gdb)

As you see, the backtrace may contain several entries. This will let you check what exact sequence of function calls
lead to the code where the target halted. Question marks ?? instead of a function name indicate that application is
available only in binary format, without any source file in C language. The value like 0x4000bfea is the memory
address of the function call.
Using bt, i threads, thread N and list commands we are now able to navigate through the code of entire
application. This comes handy when stepping through the code and working with breakpoints and will be discussed
below.

Setting and clearing breakpoints When debugging, we would like to be able to stop the application at critical
lines of code and then examine the state of specific variables, memory and registers / peripherals. To do so we are
using breakpoints. They provide a convenient way to quickly get to and halt the application at specific line.
Let's establish two breakpoints when the state of LED changes. Basing on code listing above this happens at lines 33
and 36. Breakpoints may be established using command break M where M is the code line number:

(gdb) break 33
Breakpoint 2 at 0x400db6f6: file /home/user-name/esp/blink/main/./blink.c, line 33.
(gdb) break 36
Breakpoint 3 at 0x400db704: file /home/user-name/esp/blink/main/./blink.c, line 36.

If you new enter c, the processor will run and halt at a breakpoint. Entering c another time will make it run again,
halt on second breakpoint, and so on:

(gdb) c
Continuing.
Target halted. PRO_CPU: PC=0x400DB6F6 (active) APP_CPU: PC=0x400D10D8

Breakpoint 2, blink_task (pvParameter=0x0) at /home/user-name/esp/blink/main/./
↪→blink.c:33
33 gpio_set_level(BLINK_GPIO, 0);
(gdb) c
Continuing.
Target halted. PRO_CPU: PC=0x400DB6F8 (active) APP_CPU: PC=0x400D10D8
Target halted. PRO_CPU: PC=0x400DB704 (active) APP_CPU: PC=0x400D10D8

Breakpoint 3, blink_task (pvParameter=0x0) at /home/user-name/esp/blink/main/./
↪→blink.c:36
36 gpio_set_level(BLINK_GPIO, 1);
(gdb)

You will be also able to see that LED is changing the state only if you resume program execution by entering c.
To examine how many breakpoints are set and where, use command info break:

(gdb) info break
Num Type Disp Enb Address What
2 breakpoint keep y 0x400db6f6 in blink_task at /home/user-name/esp/
↪→blink/main/./blink.c:33

breakpoint already hit 1 time
3 breakpoint keep y 0x400db704 in blink_task at /home/user-name/esp/
↪→blink/main/./blink.c:36

(continues on next page)

Espressif Systems 2386
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
breakpoint already hit 1 time

(gdb)

Please note that breakpoint numbers (listed under Num) start with 2. This is because first breakpoint has been
already established at function app_main() by running command thb app_main on debugger launch. As it
was a temporary breakpoint, it has been automatically deleted and now is not listed anymore.
To remove breakpoints enter delete N command (in short d N), where N is the breakpoint number:

(gdb) delete 1
No breakpoint number 1.
(gdb) delete 2
(gdb)

Read more about breakpoints under Breakpoints and Watchpoints Available and What Else Should I Know About
Breakpoints?

Halting and resuming the application When debugging, you may resume application and enter code waiting for
some event or staying in infinite loop without any break points defined. In such case, to go back to debugging mode,
you can break program execution manually by entering Ctrl+C.
To check it delete all breakpoints and enter c to resume application. Then enter Ctrl+C. Application will be halted
at some random point and LED will stop blinking. Debugger will print the following:

(gdb) c
Continuing.
^CTarget halted. PRO_CPU: PC=0x400D0C00 APP_CPU: PC=0x400D0C00 (active)
[New Thread 1073433352]

Program received signal SIGINT, Interrupt.
[Switching to Thread 1073413512]
0x400d0c00 in esp_vApplicationIdleHook () at /home/user-name/esp/esp-idf/
↪→components/esp32c6/./freertos_hooks.c:52
52 asm("waiti 0");
(gdb)

In particular case above, the application has been halted in line 52 of code in file freertos_hooks.c. Now you
can resume it again by enter c or do some debugging as discussed below.

Stepping through the code It is also possible to step through the code using step and next commands (in short
s and n). The difference is that step is entering inside subroutines calls, while next steps over the call, treating it
as a single source line.
To demonstrate this functionality, using command break and delete discussed in previous paragraph, make sure
that you have only one breakpoint defined at line 36 of blink.c:

(gdb) info break
Num Type Disp Enb Address What
3 breakpoint keep y 0x400db704 in blink_task at /home/user-name/esp/
↪→blink/main/./blink.c:36

breakpoint already hit 1 time
(gdb)

Resume program by entering c and let it halt:

(gdb) c
Continuing.
Target halted. PRO_CPU: PC=0x400DB754 (active) APP_CPU: PC=0x400D1128

(continues on next page)

Espressif Systems 2387
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
Breakpoint 3, blink_task (pvParameter=0x0) at /home/user-name/esp/blink/main/./
↪→blink.c:36
36 gpio_set_level(BLINK_GPIO, 1);
(gdb)

Then enter n couple of times to see how debugger is stepping one program line at a time:

(gdb) n
Target halted. PRO_CPU: PC=0x400DB756 (active) APP_CPU: PC=0x400D1128
Target halted. PRO_CPU: PC=0x400DB758 (active) APP_CPU: PC=0x400D1128
Target halted. PRO_CPU: PC=0x400DC04C (active) APP_CPU: PC=0x400D1128
Target halted. PRO_CPU: PC=0x400DB75B (active) APP_CPU: PC=0x400D1128
37 vTaskDelay(1000 / portTICK_PERIOD_MS);
(gdb) n
Target halted. PRO_CPU: PC=0x400DB75E (active) APP_CPU: PC=0x400D1128
Target halted. PRO_CPU: PC=0x400846FC (active) APP_CPU: PC=0x400D1128
Target halted. PRO_CPU: PC=0x400DB761 (active) APP_CPU: PC=0x400D1128
Target halted. PRO_CPU: PC=0x400DB746 (active) APP_CPU: PC=0x400D1128
33 gpio_set_level(BLINK_GPIO, 0);
(gdb)

If you enter s instead, then debugger will step inside subroutine calls:

(gdb) s
Target halted. PRO_CPU: PC=0x400DB748 (active) APP_CPU: PC=0x400D1128
Target halted. PRO_CPU: PC=0x400DB74B (active) APP_CPU: PC=0x400D1128
Target halted. PRO_CPU: PC=0x400DC04C (active) APP_CPU: PC=0x400D1128
Target halted. PRO_CPU: PC=0x400DC04F (active) APP_CPU: PC=0x400D1128
gpio_set_level (gpio_num=GPIO_NUM_4, level=0) at /home/user-name/esp/esp-idf/
↪→components/driver/gpio/gpio.c:183
183 GPIO_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "GPIO output gpio_num error
↪→", ESP_ERR_INVALID_ARG);
(gdb)

In this particular case debugger stepped inside gpio_set_level(BLINK_GPIO, 0) and effectively moved to
gpio.c driver code.
SeeWhy Stepping with "next" Does Not Bypass Subroutine Calls? for potential limitation of using next command.

Checking and setting memory Displaying the contents of memory is done with command x. With additional
parameters you may vary the format and count of memory locations displayed. Run help x to see more details.
Companion command to x is set that let you write values to the memory.
We will demonstrate how x and set work by reading from and writing to the memory location 0x3FF44004
labeled as GPIO_OUT_REG used to set and clear individual GPIO's.
For more information, see ESP32-C6 Technical Reference Manual > IO MUX and GPIO Matrix (GPIO, IO_MUX)
[PDF].
Being in the same blink.c project as before, set two breakpoints right after gpio_set_level instruction. Enter
two times c to get to the break point followed by x /1wx 0x3FF44004 to display contents of GPIO_OUT_REG
memory location:

(gdb) c
Continuing.
Target halted. PRO_CPU: PC=0x400DB75E (active) APP_CPU: PC=0x400D1128
Target halted. PRO_CPU: PC=0x400DB74E (active) APP_CPU: PC=0x400D1128

Breakpoint 2, blink_task (pvParameter=0x0) at /home/user-name/esp/blink/main/./
↪→blink.c:34
34 vTaskDelay(1000 / portTICK_PERIOD_MS);

(continues on next page)

Espressif Systems 2388
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#iomuxgpio
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
(gdb) x /1wx 0x3FF44004
0x3ff44004: 0x00000000
(gdb) c
Continuing.
Target halted. PRO_CPU: PC=0x400DB751 (active) APP_CPU: PC=0x400D1128
Target halted. PRO_CPU: PC=0x400DB75B (active) APP_CPU: PC=0x400D1128

Breakpoint 3, blink_task (pvParameter=0x0) at /home/user-name/esp/blink/main/./
↪→blink.c:37
37 vTaskDelay(1000 / portTICK_PERIOD_MS);
(gdb) x /1wx 0x3FF44004
0x3ff44004: 0x00000010
(gdb)

If your are blinking LED connected to GPIO4, then you should see fourth bit being flipped each time the LED
changes the state:

0x3ff44004: 0x00000000
...
0x3ff44004: 0x00000010

Now, when the LED is off, that corresponds to 0x3ff44004: 0x00000000 being displayed, try using set
command to set this bit by writting 0x00000010 to the same memory location:

(gdb) x /1wx 0x3FF44004
0x3ff44004: 0x00000000
(gdb) set {unsigned int}0x3FF44004=0x000010

You should see the LED to turn on immediately after entering set {unsigned
int}0x3FF44004=0x000010 command.

Watching and setting program variables A common debugging tasks is checking the value of a program variable
as the program runs. To be able to demonstrate this functionality, update file blink.c by adding a declaration of
a global variable int i above definition of function blink_task. Then add i++ inside while(1) of this
function to get i incremented on each blink.
Exit debugger, so it is not confused with new code, build and flash the code to the ESP and restart debugger. There
is no need to restart OpenOCD.
Once application is halted, enter the command watch i:

(gdb) watch i
Hardware watchpoint 2: i
(gdb)

This will insert so called "watchpoint" in each place of code where variable i is being modified. Now enter con-
tinue to resume the application and observe it being halted:

(gdb) c
Continuing.
Target halted. PRO_CPU: PC=0x400DB751 (active) APP_CPU: PC=0x400D0811
[New Thread 1073432196]

Program received signal SIGTRAP, Trace/breakpoint trap.
[Switching to Thread 1073432196]
0x400db751 in blink_task (pvParameter=0x0) at /home/user-name/esp/blink/main/./
↪→blink.c:33
33 i++;
(gdb)

Espressif Systems 2389
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Resume application couple more times so i gets incremented. Now you can enter print i (in short p i) to check
the current value of i:

(gdb) p i
$1 = 3
(gdb)

To modify the value of i use set command as below (you can then print it out to check if it has been indeed
changed):

(gdb) set var i = 0
(gdb) p i
$3 = 0
(gdb)

You may have up to two watchpoints, see Breakpoints and Watchpoints Available.

Setting conditional breakpoints Here comes more interesting part. You may set a breakpoint to halt the program
execution, if certain condition is satisfied. Delete existing breakpoints and try this:

(gdb) break blink.c:34 if (i == 2)
Breakpoint 3 at 0x400db753: file /home/user-name/esp/blink/main/./blink.c, line 34.
(gdb)

Above command sets conditional breakpoint to halt program execution in line 34 of blink.c if i == 2.
If current value of i is less than 2 and program is resumed, it will blink LED in a loop until condition i == 2 gets
true and then finally halt:

(gdb) set var i = 0
(gdb) c
Continuing.
Target halted. PRO_CPU: PC=0x400DB755 (active) APP_CPU: PC=0x400D112C
Target halted. PRO_CPU: PC=0x400DB753 (active) APP_CPU: PC=0x400D112C
Target halted. PRO_CPU: PC=0x400DB755 (active) APP_CPU: PC=0x400D112C
Target halted. PRO_CPU: PC=0x400DB753 (active) APP_CPU: PC=0x400D112C

Breakpoint 3, blink_task (pvParameter=0x0) at /home/user-name/esp/blink/main/./
↪→blink.c:34
34 gpio_set_level(BLINK_GPIO, 0);
(gdb)

Debugging FreeRTOS Objects This part might be interesting when you are debugging FreeRTOS tasks interac-
tions. Users that need to use the FreeRTOS task interactions can use the GDB freertos command. The freer-
tos command is not native to GDB and comes from the freertos-gdb Python extension module. The freertos
command contains a series of sub-commands as demonstrated in the code snippet:

(gdb) freertos
"freertos" must be followed by the name of a subcommand.
List of freertos subcommands:

freertos queue -- Generate a print out of the current queues info.
freertos semaphore -- Generate a print out of the current semaphores info.
freertos task -- Generate a print out of the current tasks and their states.
freertos timer -- Generate a print out of the current timers info.

For a more detailed description of this extension, please refer to https://pypi.org/project/freertos-gdb.

Note: The freertos-gdb Python module is included as a Python package requirement by ESP-IDF, thus should be
automatically installed (see Step 3. Set up the tools for more details).

Espressif Systems 2390
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://pypi.org/project/freertos-gdb
https://pypi.org/project/freertos-gdb
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

The FreeRTOS extension automatically loads in case GDB is executed with command via idf.py gdb. Otherwise,
the module could be enabled via the python import freertos_gdb command inside GDB.
Users only need to have Python 3.6 (or above) that contains a Python shared library.

Obtaining help on commands Commands presented so for should provide are very basis and intended to let you
quickly get started with JTAG debugging. Check help what are the other commands at you disposal. To obtain help
on syntax and functionality of particular command, being at (gdb) prompt type help and command name:

(gdb) help next
Step program, proceeding through subroutine calls.
Usage: next [N]
Unlike "step", if the current source line calls a subroutine,
this command does not enter the subroutine, but instead steps over
the call, in effect treating it as a single source line.
(gdb)

By typing just help, you will get top level list of command classes, to aid you drilling down to more details. Option-
ally refer to available GDB cheat sheets, for instance https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf. Good
to have as a reference (even if not all commands are applicable in an embedded environment).

Ending debugger session To quit debugger enter q:

(gdb) q
A debugging session is active.

Inferior 1 [Remote target] will be detached.

Quit anyway? (y or n) y
Detaching from program: /home/user-name/esp/blink/build/blink.elf, Remote target
Ending remote debugging.
user-name@computer-name:~/esp/blink$

• Using Debugger
• Debugging Examples
• Tips and Quirks
• Application Level Tracing library
• Introduction to ESP-Prog Board

4.16 Linker Script Generation

4.16.1 Overview

There are several memory regions where code and data can be placed. Code and read-only data are placed by default
in flash, writable data in RAM, etc. However, it is sometimes necessary to change these default placements.
For example, it may be necessary to place:

• critical code in RAM for performance reasons.
• executable code in IRAM so that it can be ran while cache is disabled.
• code in RTC memory for use in a wake stub.
• code in RTC memory for use by the ULP coprocessor.

Espressif Systems 2391
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
https://docs.espressif.com/projects/espressif-esp-iot-solution/en/latest/hw-reference/ESP-Prog_guide.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

With the linker script generation mechanism, it is possible to specify these placements at the component level within
ESP-IDF. The component presents information on how it would like to place its symbols, objects or the entire archive.
During build, the information presented by the components are collected, parsed and processed; and the placement
rules generated is used to link the app.

4.16.2 Quick Start

This section presents a guide for quickly placing code/data to RAM and RTCmemory - placements ESP-IDF provides
out-of-the-box.
For this guide, suppose we have the following:

components
└── my_component

├── CMakeLists.txt
├── Kconfig
├── src/
│ ├── my_src1.c
│ ├── my_src2.c
│ └── my_src3.c
└── my_linker_fragment_file.lf

• a component named my_component that is archived as library libmy_component.a during build
• three source files archived under the library, my_src1.c, my_src2.c and my_src3.c which are com-
piled as my_src1.o, my_src2.o and my_src3.o, respectively

• under my_src1.o, the function my_function1 is defined; under my_src2.o, the function
my_function2 is defined

• there is bool-type config PERFORMANCE_MODE (y/n) and int type config PERFORMANCE_LEVEL (with
range 0-3) in my_component's Kconfig

Creating and Specifying a Linker Fragment File

Before anything else, a linker fragment file needs to be created. A linker fragment file is simply a text file with a .lf
extension upon which the desired placements will be written. After creating the file, it is then necessary to present it
to the build system. The instructions for the build systems supported by ESP-IDF are as follows:
In the component's CMakeLists.txt file, specify argument LDFRAGMENTS in the
idf_component_register call. The value of LDFRAGMENTS can either be an absolute path or a
relative path from the component directory to the created linker fragment file.

file paths relative to CMakeLists.txt
idf_component_register(...

LDFRAGMENTS "path/to/linker_fragment_file.lf" "path/to/
↪→another_linker_fragment_file.lf"

...
)

Specifying placements

It is possible to specify placements at the following levels of granularity:
• object file (.obj or .o files)
• symbol (function/variable)
• archive (.a files)

Espressif Systems 2392
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Placing object files Suppose the entirety of my_src1.o is performance-critical, so it is desirable to place it in
RAM. On the other hand, the entirety of my_src2.o contains symbols needed coming out of deep sleep, so it needs
to be put under RTC memory.
In the linker fragment file, we can write:

[mapping:my_component]
archive: libmy_component.a
entries:

my_src1 (noflash) # places all my_src1 code/read-only data under IRAM/DRAM
my_src2 (rtc) # places all my_src2 code/ data and read-only data under␣

↪→RTC fast memory/RTC slow memory

What happens to my_src3.o? Since it is not specified, default placements are used for my_src3.o. More on
default placements here.

Placing symbols Continuing our example, suppose that among functions defined under object1.o, only
my_function1 is performance-critical; and under object2.o, only my_function2 needs to execute after
the chip comes out of deep sleep. This could be accomplished by writing:

[mapping:my_component]
archive: libmy_component.a
entries:

my_src1:my_function1 (noflash)
my_src2:my_function2 (rtc)

The default placements are used for the rest of the functions in my_src1.o and my_src2.o and the entire ob-
ject3.o. Something similar can be achieved for placing data by writing the variable name instead of the function
name, like so:

my_src1:my_variable (noflash)

Warning: There are limitations in placing code/data at symbol granularity. In order to ensure proper placements,
an alternative would be to group relevant code and data into source files, and use object-granularity placements.

Placing entire archive In this example, suppose that the entire component archive needs to be placed in RAM.
This can be written as:

[mapping:my_component]
archive: libmy_component.a
entries:

* (noflash)

Similarly, this places the entire component in RTC memory:

[mapping:my_component]
archive: libmy_component.a
entries:

* (rtc)

Configuration-dependent placements Suppose that the entire component library should only have special place-
ment when a certain condition is true; for example, when CONFIG_PERFORMANCE_MODE == y. This could be
written as:

[mapping:my_component]
archive: libmy_component.a

(continues on next page)

Espressif Systems 2393
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
entries:

if PERFORMANCE_MODE = y:
* (noflash)

else:
* (default)

For a more complex config-dependent placement, suppose the following requirements: when
CONFIG_PERFORMANCE_LEVEL == 1, only object1.o is put in RAM; when CON-
FIG_PERFORMANCE_LEVEL == 2, object1.o and object2.o; and when CON-
FIG_PERFORMANCE_LEVEL == 3 all object files under the archive are to be put into RAM. When
these three are false however, put entire library in RTC memory. This scenario is a bit contrived, but, it can be
written as:

[mapping:my_component]
archive: libmy_component.a
entries:

if PERFORMANCE_LEVEL = 1:
my_src1 (noflash)

elif PERFORMANCE_LEVEL = 2:
my_src1 (noflash)
my_src2 (noflash)

elif PERFORMANCE_LEVEL = 3:
my_src1 (noflash)
my_src2 (noflash)
my_src3 (noflash)

else:
* (rtc)

Nesting condition-checking is also possible. The following is equivalent to the snippet above:

[mapping:my_component]
archive: libmy_component.a
entries:

if PERFORMANCE_LEVEL <= 3 && PERFORMANCE_LEVEL > 0:
if PERFORMANCE_LEVEL >= 1:

object1 (noflash)
if PERFORMANCE_LEVEL >= 2:

object2 (noflash)
if PERFORMANCE_LEVEL >= 3:

object2 (noflash)
else:

* (rtc)

The 'default' placements

Up until this point, the term 'default placements' has been mentioned as fallback placements when the placement
rules rtc and noflash are not specified. It is important to note that the tokens noflash or rtc are not merely
keywords, but are actually entities called fragments, specifically schemes.
In the same manner as rtc and noflash are schemes, there exists a default scheme which defines what the de-
fault placement rules should be. As the name suggests, it is where code and data are usually placed, i.e. code/constants
is placed in flash, variables placed in RAM, etc. More on the default scheme here.

Note: For an example of an ESP-IDF component using the linker script generation mechanism, see freer-
tos/CMakeLists.txt. freertos uses this to place its object files to the instruction RAM for performance reasons.

This marks the end of the quick start guide. The following text discusses the internals of the mechanism in a little bit
more detail. The following sections should be helpful in creating custom placements or modifying default behavior.

Espressif Systems 2394
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/CMakeLists.txt
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/CMakeLists.txt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.16.3 Linker Script Generation Internals

Linking is the last step in the process of turning C/C++ source files into an executable. It is performed by the
toolchain's linker, and accepts linker scripts which specify code/data placements, among other things. With the
linker script generation mechanism, this process is no different, except that the linker script passed to the linker is
dynamically generated from: (1) the collected linker fragment files and (2) linker script template.

Note: The tool that implements the linker script generation mechanism lives under tools/ldgen.

Linker Fragment Files

Asmentioned in the quick start guide, fragment files are simple text files with the.lf extension containing the desired
placements. This is a simplified description of what fragment files contain, however. What fragment files actually
contain are 'fragments'. Fragments are entities which contain pieces of information which, when put together, form
placement rules that tell where to place sections of object files in the output binary. There are three types of fragments:
sections, scheme and mapping.

Grammar The three fragment types share a common grammar:

[type:name]
key: value
key:

value
value
value
...

• type: Corresponds to the fragment type, can either be sections, scheme or mapping.
• name: The name of the fragment, should be unique for the specified fragment type.
• key, value: Contents of the fragment; each fragment type may support different keys and different grammars
for the key values.

– For sections and scheme, the only supported key is entries
– For mappings, both archive and entries are supported.

Note: In cases where multiple fragments of the same type and name are encountered, an exception is thrown.

Note: The only valid characters for fragment names and keys are alphanumeric characters and underscore.

Condition Checking
Condition checking enable the linker script generation to be configuration-aware. Depending on whether expressions
involving configuration values are true or not, a particular set of values for a key can be used. The evaluation uses
eval_string from kconfiglib package and adheres to its required syntax and limitations. Supported operators are
as follows:

• comparison
– LessThan <
– LessThanOrEqualTo <=
– MoreThan >
– MoreThanOrEqualTo >=
– Equal =
– NotEqual !=

• logical
– Or ||

Espressif Systems 2395
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/tools/ldgen
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

– And &&
– Negation !

• grouping
– Parenthesis ()

Condition checking behaves as you would expect an if...elseif/elif...else block in other languages.
Condition-checking is possible for both key values and entire fragments. The two sample fragments below are equiv-
alent:

Value for keys is dependent on config
[type:name]
key_1:

if CONDITION = y:
value_1

else:
value_2

key_2:
if CONDITION = y:

value_a
else:

value_b

Entire fragment definition is dependent on config
if CONDITION = y:

[type:name]
key_1:

value_1
key_2:

value_a
else:

[type:name]
key_1:

value_2
key_2:

value_b

Comments
Comment in linker fragment files begin with #. Like in other languages, comment are used to provide helpful de-
scriptions and documentation and are ignored during processing.

Types Sections
Sections fragments defines a list of object file sections that the GCC compiler emits. It may be a default section (e.g.
.text, .data) or it may be user defined section through the __attribute__ keyword.
The use of an optional '+' indicates the inclusion of the section in the list, as well as sections that start with it. This is
the preferred method over listing both explicitly.

[sections:name]
entries:

.section+

.section

...

Example:

Non-preferred
[sections:text]
entries:

.text

.text.*

(continues on next page)

Espressif Systems 2396
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
.literal
.literal.*

Preferred, equivalent to the one above
[sections:text]
entries:

.text+ # means .text and .text.*

.literal+ # means .literal and .literal.*

Scheme
Scheme fragments define what target a sections fragment is assigned to.

[scheme:name]
entries:

sections -> target
sections -> target
...

Example:

[scheme:noflash]
entries:

text -> iram0_text # the entries under the sections fragment named␣
↪→text will go to iram0_text

rodata -> dram0_data # the entries under the sections fragment named␣
↪→rodata will go to dram0_data

The default scheme
There exists a special scheme with the name default. This scheme is special because catch-all placement rules
are generated from its entries. This means that, if one of its entries is text -> flash_text, the placement rule
will be generated for the target flash_text.

(.literal .literal. .text .text.*)

These catch-all rules then effectively serve as fallback rules for those whose mappings were not specified.
The default scheme is defined in esp_system/app.lf. The noflash and rtc scheme fragments which are
built-in schemes referenced in the quick start guide are also defined in this file.
Mapping
Mapping fragments define what scheme fragment to use for mappable entities, i.e. object files, function names,
variable names, archives.

[mapping:name]
archive: archive # output archive file name, as built (i.e. libxxx.
↪→a)
entries:

object:symbol (scheme) # symbol granularity
object (scheme) # object granularity
* (scheme) # archive granularity

There are three levels of placement granularity:
• symbol: The object file name and symbol name are specified. The symbol name can be a function name or a
variable name.

• object: Only the object file name is specified.
• archive: * is specified, which is a short-hand for all the object files under the archive.

To know what an entry means, let us expand a sample object-granularity placement:

Espressif Systems 2397
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/app.lf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

object (scheme)

Then expanding the scheme fragment from its entries definitions, we have:

object (sections -> target,
sections -> target,
...)

Expanding the sections fragment with its entries definition:

object (.section, # given this object file
.section, # put its sections listed here at this
... -> target, # target

.section,

.section, # same should be done for these sections

... -> target,

...) # and so on

Example:

[mapping:map]
archive: libfreertos.a
entries:

* (noflash)

Aside from the entity and scheme, flags can also be specified in an entry. The following flags are supported (note: <>
= argument name, [] = optional):

1. ALIGN(<alignment>[, pre, post])
Align the placement by the amount specified in alignment. Generates

2. SORT([<sort_by_first>, <sort_by_second>])
Emits SORT_BY_NAME, SORT_BY_ALIGNMENT, SORT_BY_INIT_PRIORITY or SORT in
the input section description.
Possible values for sort_by_first and sort_by_second are: name, alignment,
init_priority.
If both sort_by_first andsort_by_second are not specified, the input sections are sorted
by name. If both are specified, then the nested sorting follows the same rules discussed in https:
//sourceware.org/binutils/docs/ld/Input-Section-Wildcards.html.

3. KEEP()
Prevent the linker from discarding the placement by surrounding the input section description with
KEEP command. See https://sourceware.org/binutils/docs/ld/Input-Section-Keep.html for more
details.

4.SURROUND(<name>)
Generate symbols before and after the placement. The generated symbols follow the naming
_<name>_start and _<name>_end. For example, if name == sym1,

When adding flags, the specific section -> target in the scheme needs to be specified. For multiple section
-> target, use a comma as a separator. For example,

Notes:
A. semicolon after entity-scheme
B. comma before section2 -> target2
C. section1 -> target1 and section2 -> target2 should be defined in entries of␣
↪→scheme1
entity1 (scheme1);

section1 -> target1 KEEP() ALIGN(4, pre, post),
section2 -> target2 SURROUND(sym) ALIGN(4, post) SORT()

Espressif Systems 2398
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://sourceware.org/binutils/docs/ld/Input-Section-Wildcards.html
https://sourceware.org/binutils/docs/ld/Input-Section-Wildcards.html
https://sourceware.org/binutils/docs/ld/Input-Section-Keep.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Putting it all together, the following mapping fragment, for example,

[mapping:name]
archive: lib1.a
entries:

obj1 (noflash);
rodata -> dram0_data KEEP() SORT() ALIGN(8) SURROUND(my_sym)

generates an output on the linker script:

. = ALIGN(8)
_my_sym_start = ABSOLUTE(.)
KEEP(lib1.a:obj1.*(SORT(.rodata) SORT(.rodata.*)))
_my_sym_end = ABSOLUTE(.)

Note that ALIGN and SURROUND, as mentioned in the flag descriptions, are order sensitive. Therefore, if for the
same mapping fragment these two are switched, the following is generated instead:

_my_sym_start = ABSOLUTE(.)
. = ALIGN(8)
KEEP(lib1.a:obj1.*(SORT(.rodata) SORT(.rodata.*)))
_my_sym_end = ABSOLUTE(.)

On Symbol-Granularity Placements Symbol granularity placements is possible due to compiler flags
-ffunction-sections and -ffdata-sections. ESP-IDF compiles with these flags by default. If the
user opts to remove these flags, then the symbol-granularity placements will not work. Furthermore, even with the
presence of these flags, there are still other limitations to keep in mind due to the dependence on the compiler's
emitted output sections.
For example, with -ffunction-sections, separate sections are emitted for each function; with section names
predictably constructed i.e. .text.{func_name} and .literal.{func_name}. This is not the case for
string literals within the function, as they go to pooled or generated section names.
With -fdata-sections, for global scope data the compiler predictably emits either .data.{var_name},
.rodata.{var_name} or .bss.{var_name}; and so Type I mapping entry works for these. However,
this is not the case for static data declared in function scope, as the generated section name is a result of mangling
the variable name with some other information.

Linker Script Template

The linker script template is the skeleton in which the generated placement rules are put into. It is an otherwise
ordinary linker script, with a specific marker syntax that indicates where the generated placement rules are placed.
To reference the placement rules collected under a target token, the following syntax is used:

mapping[target]

Example:
The example below is an excerpt from a possible linker script template. It defines an output section .iram0.text,
and inside is a marker referencing the target iram0_text.

.iram0.text :
{

/* Code marked as runnning out of IRAM */
_iram_text_start = ABSOLUTE(.);

/* Marker referencing iram0_text */
mapping[iram0_text]

(continues on next page)

Espressif Systems 2399
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
_iram_text_end = ABSOLUTE(.);

} > iram0_0_seg

Suppose the generator collected the fragment definitions below:

[sections:text]
.text+
.literal+

[sections:iram]
.iram1+

[scheme:default]
entries:

text -> flash_text
iram -> iram0_text

[scheme:noflash]
entries:

text -> iram0_text

[mapping:freertos]
archive: libfreertos.a
entries:

* (noflash)

Then the corresponding excerpt from the generated linker script will be as follows:

.iram0.text :
{

/* Code marked as runnning out of IRAM */
_iram_text_start = ABSOLUTE(.);

/* Placement rules generated from the processed fragments, placed where the␣
↪→marker was in the template */

(.iram1 .iram1.)
libfreertos.a:(.literal .text .literal. .text.*)

_iram_text_end = ABSOLUTE(.);
} > iram0_0_seg

libfreertos.a:(.literal .text .literal. .text.*)

Rule generated from the entry* (noflash) of thefreertosmapping fragment. Alltext sections
of all object files under the archive libfreertos.a will be collected under the target iram0_text
(as per the noflash scheme) and placed wherever in the template iram0_text is referenced by a
marker.

(.iram1 .iram1.)

Rule generated from the default scheme entry iram -> iram0_text. Since the default scheme
specifies an iram -> iram0_text entry, it too is placed wherever iram0_text is referenced
by a marker. Since it is a rule generated from the default scheme, it comes first among all other rules
collected under the same target name.
The linker script template currently used is esp_system/ld/esp32c6/sections.ld.in; the generated output
script sections.ld is put under its build directory.

Espressif Systems 2400
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/ld/esp32c6/sections.ld.in
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Migrate to ESP-IDF v5.0 Linker Script Fragment Files Grammar

The old grammar supported in ESP-IDF v3.x would be dropped in ESP-IDF v5.0. Here are a few notes on how to
migrate properly:

1. Now indentation is enforced and improperly indented fragment files would generate a runtime parse excep-
tion. This was not enforced in the old version but previous documentation and examples demonstrate properly
indented grammar.

2. Migrate the old condition entry to the if...elif...else structure for conditionals. You can refer to the
earlier chapter for detailed grammar.

3. mapping fragments now requires a name like other fragment types.

4.17 lwIP

ESP-IDF uses the open source lwIP lightweight TCP/IP stack. The ESP-IDF version of lwIP (esp-lwip) has some
modifications and additions compared to the upstream project.

4.17.1 Supported APIs

ESP-IDF supports the following lwIP TCP/IP stack functions:
• BSD Sockets API
• Netconn API is enabled but not officially supported for ESP-IDF applications

Adapted APIs

Warning: When using any lwIPAPI (other than BSD Sockets API), please make sure that it is thread
safe. To check if a given API call is safe, enable CONFIG_LWIP_CHECK_THREAD_SAFETY and
run the application. This way lwIP asserts the TCP/IP core functionality to be correctly accessed;
the execution aborts if it is not locked properly or accessed from the correct task (lwIP FreeRTOS
Task). The general recommendation is to use ESP-NETIF component to interact with lwIP.

Some common lwIP "app" APIs are supported indirectly by ESP-IDF:
• DHCP Server & Client are supported indirectly via the ESP-NETIF functionality
• Domain Name System (DNS) is supported in lwIP; DNS servers could be assigned automatically when acquir-
ing a DHCP address, or manually configured using the ESP-NETIF API.

Note: DNS server configuration in lwIP is global, not interface-specific. If you are using multiple network interfaces
with distinct DNS servers, exercise caution to prevent inadvertent overwrites of one interface's DNS settings when
acquiring a DHCP lease from another interface.

• Simple Network Time Protocol (SNTP) is also supported via the ESP-NETIF, or directly via the
lwip/include/apps/esp_sntp.h functions that provide thread-safe API to lwip/lwip/src/include/lwip/apps/sntp.h
functions (see also SNTP Time Synchronization)

• ICMP Ping is supported using a variation on the lwIP ping API. See ICMP Echo.
• NetBIOS lookup is available using the standard lwIP API. protocols/http_server/restful_server has an option
to demonstrate using NetBIOS to look up a host on the LAN.

• mDNS uses a different implementation to the lwIP default mDNS (see mDNS Service), but lwIP can look up
mDNS hosts using standard APIs such as gethostbyname() and the convention hostname.local,
provided the CONFIG_LWIP_DNS_SUPPORT_MDNS_QUERIES setting is enabled.

Espressif Systems 2401
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://savannah.nongnu.org/projects/lwip/
https://github.com/espressif/esp-lwip
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/lwip/include/apps/esp_sntp.h
https://github.com/espressif/esp-lwip/blob/392707e/src/include/lwip/apps/sntp.h
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/http_server/restful_server
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• The PPP implementation in lwIP can be used to create PPPoS (PPP over serial) interface in ESP-IDF. Please
refer to the documentation ofESP-NETIF component to create and configure a PPP network interface, bymeans
of the ESP_NETIF_DEFAULT_PPP()macro defined in esp_netif/include/esp_netif_defaults.h. Additional
runtime settings are provided via the esp_netif/include/esp_netif_ppp.h. PPPoS interfaces are typically used
to interact with NBIoT/GSM/LTE modems; more application level friendly API is supported by esp_modem
library, which uses this PPP lwIP module behind the scenes.

4.17.2 BSD Sockets API

The BSD Sockets API is a common cross-platform TCP/IP sockets API that originated in the Berkeley Standard
Distribution of UNIX but is now standardized in a section of the POSIX specification. BSD Sockets are sometimes
called POSIX Sockets or Berkeley Sockets.
As implemented in ESP-IDF, lwIP supports all of the common usages of the BSD Sockets API.

References

A wide range of BSD Sockets reference material is available, including:
• Single UNIX Specification BSD Sockets page
• Berkeley Sockets Wikipedia page

Examples

A number of ESP-IDF examples show how to use the BSD Sockets APIs:
• protocols/sockets/tcp_server
• protocols/sockets/tcp_client
• protocols/sockets/udp_server
• protocols/sockets/udp_client
• protocols/sockets/udp_multicast
• protocols/http_request (Note: this is a simplified example of using a TCP socket to send an HTTP request.
The ESP HTTP Client is a much better option for sending HTTP requests.)

Supported functions

The following BSD socket API functions are supported. For full details see lwip/lwip/src/include/lwip/sockets.h.
• socket()
• bind()
• accept()
• shutdown()
• getpeername()
• getsockopt() & setsockopt() (see Socket Options)
• close() (via Virtual filesystem component)
• read(), readv(), write(), writev() (via Virtual filesystem component)
• recv(), recvmsg(), recvfrom()
• send(), sendmsg(), sendto()
• select() (via Virtual filesystem component)
• poll() (Note: on ESP-IDF, poll() is implemented by calling select internally, so using select()
directly is recommended if a choice of methods is available.)

• fcntl() (see fcntl)
Non-standard functions:

• ioctl() (see ioctls)

Espressif Systems 2402
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif_defaults.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif_ppp.h
https://components.espressif.com/component/espressif/esp_modem
https://pubs.opengroup.org/onlinepubs/007908799/xnsix.html
https://en.wikipedia.org/wiki/Berkeley_sockets
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/sockets/tcp_server
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/sockets/tcp_client
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/sockets/udp_server
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/sockets/udp_client
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/sockets/udp_multicast
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/protocols/http_request
https://github.com/espressif/esp-lwip/blob/392707e/src/include/lwip/sockets.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: Some lwIP application sample code uses prefixed versions of BSD APIs, for example lwip_socket()
instead of the standard socket(). Both forms can be used with ESP-IDF, but using standard names is recom-
mended.

Socket Error Handling

BSD Socket error handling code is very important for robust socket applications. Normally the socket error handling
involves the following aspects:

• Detecting the error.
• Geting the error reason code.
• Handle the error according to the reason code.

In lwIP, we have two different scenarios of handling socket errors:
• Socket API returns an error. For more information, see Socket API Errors.
• select(int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset,
struct timeval *timeout) has exception descriptor indicating that the socket has an error. For more
information, see select() Errors.

Socket API Errors
The error detection

• We can know that the socket API fails according to its return value.
Get the error reason code

• When socket API fails, the return value doesn't contain the failure reason and the application can get the
error reason code by accessing errno. Different values indicate different meanings. For more information,
see <Socket Error Reason Code>.

Example:

int err;
int sockfd;

if (sockfd = socket(AF_INET,SOCK_STREAM,0) < 0) {
// the error code is obtained from errno
err = errno;
return err;

}

select() Errors
The error detection

• Socket error when select() has exception descriptor
Get the error reason code

• If theselect indicates that the socket fails, we can't get the error reason code by accessing errno, instead
we should call getsockopt() to get the failure reason code. Because select() has exception
descriptor, the error code will not be given to errno.

Note: getsockopt function prototype int getsockopt(int s, int level, int optname,
void *optval, socklen_t *optlen). Its function is to get the current value of the option of any type,
any state socket, and store the result in optval. For example, when you get the error code on a socket, you can get it
by getsockopt(sockfd, SOL_SOCKET, SO_ERROR, &err, &optlen).

Example:

Espressif Systems 2403
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

int err;

if (select(sockfd + 1, NULL, NULL, &exfds, &tval) <= 0) {
err = errno;
return err;

} else {
if (FD_ISSET(sockfd, &exfds)) {

// select() exception set using getsockopt()
int optlen = sizeof(int);
getsockopt(sockfd, SOL_SOCKET, SO_ERROR, &err, &optlen);
return err;

}
}

Socket Error Reason Code Below is a list of common error codes. For more detailed list of standard POSIX/C
error codes, please see newlib errno.h and the platform-specific extensions newlib/platform_include/errno.h

Error code Description
ECONNREFUSED Connection refused
EADDRINUSE Address already in use
ECONNABORTED Software caused connection abort
ENETUNREACH Network is unreachable
ENETDOWN Network interface is not configured
ETIMEDOUT Connection timed out
EHOSTDOWN Host is down
EHOSTUNREACH Host is unreachable
EINPROGRESS Connection already in progress
EALREADY Socket already connected
EDESTADDRREQ Destination address required
EPROTONOSUPPORT Unknown protocol

Socket Options

The getsockopt() and setsockopt() functions allow getting/setting per-socket options.
Not all standard socket options are supported by lwIP in ESP-IDF. The following socket options are supported:

Common options Used with level argument SOL_SOCKET.
• SO_REUSEADDR (available if CONFIG_LWIP_SO_REUSE is set, behavior can be customized by setting CON-

FIG_LWIP_SO_REUSE_RXTOALL)
• SO_KEEPALIVE
• SO_BROADCAST
• SO_ACCEPTCONN
• SO_RCVBUF (available if CONFIG_LWIP_SO_RCVBUF is set)
• SO_SNDTIMEO / SO_RCVTIMEO
• SO_ERROR (this option is only used with select(), see Socket Error Handling)
• SO_TYPE
• SO_NO_CHECK (for UDP sockets only)

IP options Used with level argument IPPROTO_IP.
• IP_TOS
• IP_TTL
• IP_PKTINFO (available if CONFIG_LWIP_NETBUF_RECVINFO is set)

Espressif Systems 2404
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/newlib-esp32/blob/master/newlib/libc/include/sys/errno.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/newlib/platform_include/errno.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

For multicast UDP sockets:
• IP_MULTICAST_IF
• IP_MULTICAST_LOOP
• IP_MULTICAST_TTL
• IP_ADD_MEMBERSHIP
• IP_DROP_MEMBERSHIP

TCP options TCP sockets only. Used with level argument IPPROTO_TCP.
• TCP_NODELAY

Options relating to TCP keepalive probes:
• TCP_KEEPALIVE (int value, TCP keepalive period in milliseconds)
• TCP_KEEPIDLE (same as TCP_KEEPALIVE, but the value is in seconds)
• TCP_KEEPINTVL (int value, interval between keepalive probes in seconds)
• TCP_KEEPCNT (int value, number of keepalive probes before timing out)

IPv6 options IPv6 sockets only. Used with level argument IPPROTO_IPV6
• IPV6_CHECKSUM
• IPV6_V6ONLY

For multicast IPv6 UDP sockets:
• IPV6_JOIN_GROUP / IPV6_ADD_MEMBERSHIP
• IPV6_LEAVE_GROUP / IPV6_DROP_MEMBERSHIP
• IPV6_MULTICAST_IF
• IPV6_MULTICAST_HOPS
• IPV6_MULTICAST_LOOP

fcntl

The fcntl() function is a standard API for manipulating options related to a file descriptor. In ESP-IDF, the
Virtual filesystem component layer is used to implement this function.
When the file descriptor is a socket, only the following fcntl() values are supported:

• O_NONBLOCK to set/clear non-blocking I/O mode. Also supports O_NDELAY, which is identical to
O_NONBLOCK.

• O_RDONLY, O_WRONLY, O_RDWR flags for different read/write modes. These can read via F_GETFL only,
they cannot be set using F_SETFL. A TCP socket will return a different mode depending on whether the
connection has been closed at either end or is still open at both ends. UDP sockets always return O_RDWR.

ioctls

The ioctl() function provides a semi-standard way to access some internal features of the TCP/IP stack. In
ESP-IDF, the Virtual filesystem component layer is used to implement this function.
When the file descriptor is a socket, only the following ioctl() values are supported:

• FIONREAD returns the number of bytes of pending data already received in the socket's network buffer.
• FIONBIO is an alternative way to set/clear non-blocking I/O status for a socket, equivalent to fcntl(fd,
F_SETFL, O_NONBLOCK, ...).

Espressif Systems 2405
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.17.3 Netconn API

lwIP supports two lower level APIs as well as the BSD Sockets API: the Netconn API and the Raw API.
The lwIP Raw API is designed for single threaded devices and is not supported in ESP-IDF.
The Netconn API is used to implement the BSD Sockets API inside lwIP, and it can also be called directly from
ESP-IDF apps. This API has lower resource usage than the BSD Sockets API, in particular it can send and receive
data without needing to first copy it into internal lwIP buffers.

Important: Espressif does not test the Netconn API in ESP-IDF. As such, this functionality is enabled but not
supported. Some functionality may only work correctly when used from the BSD Sockets API.

For more information about the Netconn API, consult lwip/lwip/src/include/lwip/api.h and this wiki page which is
part of the unofficial lwIP Application Developers Manual.

4.17.4 lwIP FreeRTOS Task

lwIP creates a dedicated TCP/IP FreeRTOS task to handle socket API requests from other tasks.
A number of configuration items are available to modify the task and the queues ("mailboxes") used to send data
to/from the TCP/IP task:

• CONFIG_LWIP_TCPIP_RECVMBOX_SIZE
• CONFIG_LWIP_TCPIP_TASK_STACK_SIZE
• CONFIG_LWIP_TCPIP_TASK_AFFINITY

4.17.5 IPv6 Support

Both IPv4 and IPv6 are supported as a dual stack and are enabled by default. Both IPv6 and IPv4 may be disabled
separately if they are not needed (see Minimum RAM usage). IPv6 support is limited to Stateless Autoconfiguration
only, Stateful configuration is not supported in ESP-IDF (not in upstream lwip). IPv6 Address configuration is defined
by means of these protocols or services:

• SLAAC IPv6 Stateless Address Autoconfiguration (RFC-2462)
• DHCPv6 Dynamic Host Configuration Protocol for IPv6 (RFC-8415)

None of these two types of address configuration is enabled by default, so the device uses only Link Local addresses
or statically defined addresses.

Stateless Autoconfiguration Process

To enable address autoconfiguration using Router Advertisement protocol please enable:
• CONFIG_LWIP_IPV6_AUTOCONFIG

This configuration option enables IPv6 autoconfiguration for all network interfaces (in contrast to
the upstream lwIP, where the autoconfiguration needs to be explicitly enabled for each netif with
netif->ip6_autoconfig_enabled=1

DHCPv6

DHCPv6 in lwIP is very simple and support only stateless configuration. It could be enabled using:
• CONFIG_LWIP_IPV6_DHCP6

Since the DHCPv6 works only in its stateless configuration, the Stateless Autoconfiguration Process has to be enabled,
too, by means of CONFIG_LWIP_IPV6_AUTOCONFIG. Moreover, the DHCPv6 needs to be explicitly enabled form
the application code using

Espressif Systems 2406
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

http://www.nongnu.org/lwip/2_0_x/api_8h.html
https://lwip.fandom.com/wiki/Netconn_API
https://lwip.fandom.com/wiki/Netconn_API
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

dhcp6_enable_stateless(netif);

DNS servers in IPv6 autoconfiguration

In order to autoconfigure DNS server(s), especially in IPv6 only networks, we have these two options
• Recursive domain name system -- this belongs to the Neighbor Discovery Protocol (NDP), uses Stateless Au-

toconfiguration Process. Number of servers must be set CONFIG_LWIP_IPV6_RDNSS_MAX_DNS_SERVERS,
this is option is disabled (set to 0) by default.

• DHCPv6 stateless configuration -- uses DHCPv6 to configure DNS servers. Note that the this configuration
assumes IPv6 Router Advertisement Flags (RFC-5175) to be set to

– Managed Address Configuration Flag = 0
– Other Configuration Flag = 1

4.17.6 esp-lwip custom modifications

Additions

The following code is added which is not present in the upstream lwIP release:

Thread-safe sockets It is possible to close() a socket from a different thread to the one that created it. The
close() call will block until any function calls currently using that socket from other tasks have returned.
It is, however, not possible to delete a task while it is actively waiting on select() or poll() APIs. It is always
necessary that these APIs exit before destroying the task, as this might corrupt internal structures and cause subsequent
crashes of the lwIP. (These APIs allocate globally referenced callback pointers on stack, so that when the task gets
destroyed before unrolling the stack, the lwIP would still hold pointers to the deleted stack)

On demand timers lwIP IGMP and MLD6 features both initialize a timer in order to trigger timeout events at
certain times.
The default lwIP implementation is to have these timers enabled all the time, even if no timeout events are active. This
increases CPU usage and power consumption when using automatic light sleep mode. esp-lwip default behaviour
is to set each timer "on demand" so it is only enabled when an event is pending.
To return to the default lwIP behaviour (always-on timers), disable CONFIG_LWIP_TIMERS_ONDEMAND.

Lwip timers API When users are not using WiFi, these APIs provide users with the ability to turn off LwIP timer
to reduce power consumption.
The following API functions are supported. For full details see lwip/lwip/src/include/lwip/timeouts.h.

• sys_timeouts_init()
• sys_timeouts_deinit()

Additional Socket Options
• Some standard IPV4 and IPV6 multicast socket options are implemented (see Socket Options).
• Possible to set IPV6-only UDP and TCP sockets with IPV6_V6ONLY socket option (normal lwIP is TCP
only).

IP layer features
• IPV4 source based routing implementation is different.
• IPV4 mapped IPV6 addresses are supported.

Espressif Systems 2407
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-lwip/blob/392707e/src/include/lwip/timeouts.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Customized lwIP hooks The original lwIP supports implementing custom compile-time modifications via
LWIP_HOOK_FILENAME. This file is already used by the IDF port layer, but IDF users could still include and im-
plement any custom additions via a header file defined by the macro ESP_IDF_LWIP_HOOK_FILENAME. Here
is an exmaple of adding a custom hook file to the build process (the hook is called my_hook.h and located in the
project's main folder):

idf_component_get_property(lwip lwip COMPONENT_LIB)
target_compile_options(${lwip} PRIVATE "-I${PROJECT_DIR}/main")
target_compile_definitions(${lwip} PRIVATE "-DESP_IDF_LWIP_HOOK_FILENAME=\"my_hook.
↪→h\"")

Customized lwIP Options From ESP-IDF Build System The most common lwIP options are configurable
through the component configuration menu. However, certain definitions need to be injected from the command
line. The CMake function target_compile_definitions() can be employed to define macros, as illus-
trated below:

idf_component_get_property(lwip lwip COMPONENT_LIB)
target_compile_definitions(${lwip} PRIVATE "-DETHARP_SUPPORT_VLAN=1")

This approach may not work for function-like macros, as there is no guarantee that the definition
will be accepted by all compilers, although it is supported in GCC. To address this limitation, the
add_definitions() function can be utilized to define the macro for the entire project, for example:
add_definitions("-DFALLBACK_DNS_SERVER_ADDRESS(addr)=\"IP_ADDR4((addr), 8,
8,8,8)\"").
Alternatively, you can define your function-like macro in a header file which will be pre-included as an lwIP hook
file, see Customized lwIP hooks.

Limitations

ESP-IDF additions to lwIP still suffer from the global DNS limitation, described in Adapted APIs. To address this
limitation from application code, the FALLBACK_DNS_SERVER_ADDRESS() macro can be utilized to define a
global DNS fallback server accessible from all interfaces. Alternatively, you have the option to maintain per-interface
DNS servers and reconfigure them whenever the default interface changes.
Calling send() or sendto() repeatedly on a UDP socket may eventually fail with errno equal to ENOMEM.
This is a limitation of buffer sizes in the lower layer network interface drivers. If all driver transmit buffers are full
then UDP transmission will fail. Applications sending a high volume of UDP datagrams who don't wish for any to
be dropped by the sender should check for this error code and re-send the datagram after a short delay.
Increasing the number of TX buffers in theWi-Fi project configuration may also help.

4.17.7 Performance Optimization

TCP/IP performance is a complex subject, and performance can be optimized towards multiple goals. The default
settings of ESP-IDF are tuned for a compromise between throughput, latency, and moderate memory usage.

Maximum throughput

Espressif tests ESP-IDF TCP/IP throughput using the wifi/iperf example in an RF sealed enclosure.
The wifi/iperf/sdkconfig.defaults file for the iperf example contains settings known to maximize TCP/IP throughput,
usually at the expense of higher RAM usage. To get maximum TCP/IP throughput in an application at the expense
of other factors then suggest applying settings from this file into the project sdkconfig.

Espressif Systems 2408
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/iperf
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/iperf/sdkconfig.defaults
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Important: Suggest applying changes a few at a time and checking the performance each time with a particular
application workload.

• If a lot of tasks are competing for CPU time on the system, consider that the lwIP task has
configurable CPU affinity (CONFIG_LWIP_TCPIP_TASK_AFFINITY) and runs at fixed priority (18,
ESP_TASK_TCPIP_PRIO). Configure competing tasks to be pinned to a different core, or to run at a lower
priority. See also Built-in Task Priorities.

• If using select() function with socket arguments only, disabling CONFIG_VFS_SUPPORT_SELECT will
make select() calls faster.

• If there is enough free IRAM, select CONFIG_LWIP_IRAM_OPTIMIZATION and CON-
FIG_LWIP_EXTRA_IRAM_OPTIMIZATION to improve TX/RX throughput

If using a Wi-Fi network interface, please also refer toWi-Fi Buffer Usage.

Minimum latency

Except for increasing buffer sizes, most changes which increase throughput will also decrease latency by reducing the
amount of CPU time spent in lwIP functions.

• For TCP sockets, lwIP supports setting the standard TCP_NODELAY flag to disable Nagle's algorithm.

Minimum RAM usage

Most lwIP RAM usage is on-demand, as RAM is allocated from the heap as needed. Therefore, changing lwIP
settings to reduce RAM usage may not change RAM usage at idle but can change it at peak.

• Reducing CONFIG_LWIP_MAX_SOCKETS reduces the maximum number of sockets in the system. This will
also cause TCP sockets in the WAIT_CLOSE state to be closed and recycled more rapidly (if needed to open
a new socket), further reducing peak RAM usage.

• Reducing CONFIG_LWIP_TCPIP_RECVMBOX_SIZE, CONFIG_LWIP_TCP_RECVMBOX_SIZE and CON-
FIG_LWIP_UDP_RECVMBOX_SIZE reduce memory usage at the expense of throughput, depending on usage.

• Reducing CONFIG_LWIP_TCP_MSL, CONFIG_LWIP_TCP_FIN_WAIT_TIMEOUT reduces the maximum
segment lifetime in the system. This will also cause TCP sockets in the TIME_WAIT, FIN_WAIT_2 state to
be closed and recycled more rapidly

• Disabling CONFIG_LWIP_IPV6 can save about 39 KB for firmware size and 2KB RAM when the system is
powered up and 7KB RAM when the TCPIP stack is running. If there is no requirement for supporting IPV6
then it can be disabled to save flash and RAM footprint.

• Disabling CONFIG_LWIP_IPV4 can save about 26 KB of firmware size and 600B RAM on power up and 6
KB RAM when the TCP/IP stack is running. If the local network supports IPv6-only configuration then IPv4
can be disabled to save flash and RAM footprint.

If using Wi-Fi, please also refer toWi-Fi Buffer Usage.

Peak Buffer Usage The peak heap memory that lwIP consumes is the theoretically-maximum memory that the
lwIP driver consumes. Generally, the peak heap memory that lwIP consumes depends on:

• the memory required to create a UDP connection: lwip_udp_conn
• the memory required to create a TCP connection: lwip_tcp_conn
• the number of UDP connections that the application has: lwip_udp_con_num
• the number of TCP connections that the application has: lwip_tcp_con_num
• the TCP TX window size: lwip_tcp_tx_win_size
• the TCP RX window size: lwip_tcp_rx_win_size

So, the peak heap memory that the LwIP consumes can be calculated with the following formula:
lwip_dynamic_peek_memory = (lwip_udp_con_num * lwip_udp_conn) + (lwip_tcp_con_num *
(lwip_tcp_tx_win_size + lwip_tcp_rx_win_size + lwip_tcp_conn))

Espressif Systems 2409
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Some TCP-based applications need only one TCP connection. However, they may choose to close this TCP con-
nection and create a new one when an error (such as a sending failure) occurs. This may result in multiple TCP
connections existing in the system simultaneously, because it may take a long time for a TCP connection to close,
according to the TCP state machine (refer to RFC793).

4.18 Memory Types

ESP32-C6 chip has multiple memory types and flexible memory mapping features. This section describes how ESP-
IDF uses these features by default.
ESP-IDF distinguishes between instruction memory bus (IRAM, IROM, RTC FAST memory) and data memory
bus (DRAM, DROM). Instruction memory is executable, and can only be read or written via 4-byte aligned words.
Data memory is not executable and can be accessed via individual byte operations. For more information about the
different memory buses consult the ESP32-C6 Technical Reference Manual > System and Memory [PDF].

4.18.1 DRAM (Data RAM)

Non-constant static data (.data) and zero-initialized data (.bss) is placed by the linker into Internal SRAM as data
memory. The remaining space in this region is used for the runtime heap.

Note: Themaximum statically allocated DRAM size is reduced by the IRAM (Instruction RAM) size of the compiled
application. The available heap memory at runtime is reduced by the total static IRAM and DRAM usage of the
application.

Constant data may also be placed into DRAM, for example if it is used in an non-flash-safe ISR (see explanation
under How to Place Code in IRAM).

"noinit" DRAM

The macro __NOINIT_ATTR can be used as attribute to place data into .noinit section. The values placed into
this section will not be initialized at startup and should keep its value after software restart.
Example:

__NOINIT_ATTR uint32_t noinit_data;

4.18.2 IRAM (Instruction RAM)

Note: Any internal SRAM which is not used for Instruction RAM will be made available as DRAM (Data RAM)
for static data and dynamic allocation (heap).

When to Place Code in IRAM

Cases when parts of the application should be placed into IRAM:
• Interrupt handlers must be placed into IRAM if ESP_INTR_FLAG_IRAM is used when registering the in-
terrupt handler. For more information, see IRAM-Safe Interrupt Handlers.

• Some timing critical code may be placed into IRAM to reduce the penalty associated with loading the code
from flash. ESP32-C6 reads code and data from flash via the MMU cache. In some cases, placing a function
into IRAM may reduce delays caused by a cache miss and significantly improve that function's performance.

Espressif Systems 2410
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/sites/default/files/documentation/esp32-c6_technical_reference_manual_en.pdf#sysmem
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

How to Place Code in IRAM

Some code is automatically placed into the IRAM region using the linker script.
If some specific application code needs to be placed into IRAM, it can be done by using the Linker Script Generation
feature and adding a linker script fragment file to your component that targets at the entire source files or functions
with the noflash placement. See the Linker Script Generation docs for more information.
Alternatively, it's possible to specify IRAM placement in the source code using the IRAM_ATTR macro:

#include "esp_attr.h"

void IRAM_ATTR gpio_isr_handler(void* arg)
{

// ...
}

There are some possible issues with placement in IRAM, that may cause problems with IRAM-safe interrupt handlers:
• Strings or constants inside an IRAM_ATTR function may not be placed in RAM automatically. It's possible to
use DRAM_ATTR attributes to mark these, or using the linker script method will cause these to be automatically
placed correctly.

void IRAM_ATTR gpio_isr_handler(void* arg)
{

const static DRAM_ATTR uint8_t INDEX_DATA[] = { 45, 33, 12, 0 };
const static char *MSG = DRAM_STR("I am a string stored in RAM");

}

Note that knowing which data should be marked with DRAM_ATTR can be hard, the compiler will sometimes rec-
ognize that a variable or expression is constant (even if it is not marked const) and optimize it into flash, unless it
is marked with DRAM_ATTR.

• GCC optimizations that automatically generate jump tables or switch/case lookup tables place these tables in
flash. IDF by default builds all files with -fno-jump-tables -fno-tree-switch-conversion
flags to avoid this.

Jump table optimizations can be re-enabled for individual source files that don't need to be placed in IRAM. For in-
structions on how to add the -fno-jump-tables -fno-tree-switch-conversion options when com-
piling individual source files, see Controlling Component Compilation.

4.18.3 IROM (code executed from flash)

If a function is not explicitly placed into IRAM (Instruction RAM) or RTC memory, it is placed into flash. As IRAM
is limited, most of an application's binary code must be placed into IROM instead.
During Application Startup Flow, the bootloader (which runs from IRAM) configures the MMU flash cache to map
the app's instruction code region to the instruction space. Flash accessed via the MMU is cached using some internal
SRAM and accessing cached flash data is as fast as accessing other types of internal memory.

4.18.4 DROM (data stored in flash)

By default, constant data is placed by the linker into a region mapped to the MMU flash cache. This is the same as
the IROM (code executed from flash) section, but is for read-only data not executable code.
The only constant data not placed into this memory type by default are literal constants which are embedded by the
compiler into application code. These are placed as the surrounding function's executable instructions.
The DRAM_ATTR attribute can be used to force constants from DROM into the DRAM (Data RAM) section (see
above).

Espressif Systems 2411
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.18.5 RTC FAST memory

Note: On ESP32-C6 what was previously referred to as RTC memory has been renamed LP (low power) memory.
You might see both terms being used interchangeably in IDF code, docs and the technical reference manual.

The same region of RTC FAST memory can be accessed as both instruction and data memory. Code which has to
run after wake-up from deep sleep mode has to be placed into RTC memory. Please check detailed description in
deep sleep documentation.
Remaining RTC FAST memory is added to the heap unless the option CON-
FIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP is disabled. This memory can be used interchangeably
with DRAM (Data RAM), but is slightly slower to access.

4.18.6 DMA Capable Requirement

Most peripheral DMA controllers (e.g. SPI, sdmmc, etc.) have requirements that sending/receiving buffers should
be placed in DRAM and word-aligned. We suggest to place DMA buffers in static variables rather than in the stack.
Use macro DMA_ATTR to declare global/local static variables like:

DMA_ATTR uint8_t buffer[]="I want to send something";

void app_main()
{

// initialization code...
spi_transaction_t temp = {

.tx_buffer = buffer,

.length = 8 * sizeof(buffer),
};
spi_device_transmit(spi, &temp);
// other stuff

}

Or:

void app_main()
{

DMA_ATTR static uint8_t buffer[] = "I want to send something";
// initialization code...
spi_transaction_t temp = {

.tx_buffer = buffer,

.length = 8 * sizeof(buffer),
};
spi_device_transmit(spi, &temp);
// other stuff

}

It is also possible to allocate DMA-capable memory buffers dynamically by using the MALLOC_CAP_DMA capa-
bilities flag.

4.18.7 DMA Buffer in the Stack

Placing DMA buffers in the stack is possible but discouraged. If doing so, pay attention to the following:

• Use macro WORD_ALIGNED_ATTR in functions before variables to place them in proper positions like:

Espressif Systems 2412
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

void app_main()
{

uint8_t stuff;
WORD_ALIGNED_ATTR uint8_t buffer[] = "I want to send something"; //or␣

↪→the buffer will be placed right after stuff.
// initialization code...
spi_transaction_t temp = {

.tx_buffer = buffer,

.length = 8 * sizeof(buffer),
};
spi_device_transmit(spi, &temp);
// other stuff

}

4.19 OpenThread

OpenThread is an IP stack running on the 802.15.4 MAC layer which features mesh network and low power con-
sumption.

4.19.1 Modes of the OpenThread stack

OpenThread can run under the following modes on Espressif chips:

Standalone Node

The full OpenThread stack and the application layer run on the same chip. This mode is available on chips with 15.4
radio such as ESP32-H2 and ESP32-C6.

Radio Co-Processor (RCP)

The chip is connected to another host running the OpenThread IP stack. It sends and receives 15.4 packets on behalf
of the host. This mode is available on chips with 15.4 radio such as ESP32-H2 and ESP32-C6. The underlying
transport between the chip and the host can be SPI or UART. For the sake of latency, we recommend using SPI as
the underlying transport.

OpenThread Host

For chips without a 15.4 radio, it can be connected to an RCP and run OpenThread under host mode. This mode
enables OpenThread on Wi-Fi chips such as ESP32, ESP32-S2, ESP32-S3, and ESP32-C3. The following diagram
shows how devices work under different modes:

4.19.2 How to Write an OpenThread Application

The OpenThread openthread/ot_cli example is a good place to start at. It demonstrates basic OpenThread initializa-
tion and simple socket-based server and client.

Espressif Systems 2413
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/openthread/openthread
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/openthread/ot_cli
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 76: OpenThread device modes

Before OpenThread Initialization

• s1.1: The main task calls esp_vfs_eventfd_register() to initialize the eventfd virtual file system.
The eventfd file system is used for task notification in the OpenThread driver.

• s1.2: The main task calls nvs_flash_init() to initialize the NVS where the Thread network data is
stored.

• s1.3: Optional. The main task calls esp_netif_init() only when it wants to create the network interface
for Thread.

• s1.4: The main task calls esp_event_loop_create() to create the system Event task and initialize an
application event's callback function.

OpenThread Stack Initialization

• s2.1: Call esp_openthread_init() to initialize the OpenThread stack.

OpenThread Network Interface Initialization

The whole stage is optional and only required if the application wants to create the network interface for Thread.
• s3.1: Call esp_netif_new() with ESP_NETIF_DEFAULT_OPENTHREAD to create the interface.
• s3.2: Call esp_openthread_netif_glue_init() to create the OpenThread interface handlers.
• s3.3: Call esp_netif_attach() to attach the handlers to the interface.

The OpenThread Main Loop

• s4.3: Call esp_openthread_launch_mainloop() to launch the OpenThread main loop. Note that
this is a busy loop and does not return until the OpenThread stack is terminated.

Calling OpenThread APIs

The OpenThread APIs are not thread-safe. When calling OpenThread APIs from other tasks, make
sure to hold the lock with esp_openthread_lock_acquire() and release the lock with
esp_openthread_lock_release() afterwards.

Espressif Systems 2414
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Deinitialization

The following steps are required to deinitialize the OpenThread stack:
• Call esp_netif_destroy() and esp_openthread_netif_glue_deinit() to deinitialize the
OpenThread network interface if you have created one.

• Call esp_openthread_deinit() to deinitialize the OpenThread stack.

4.19.3 OpenThread Macro Definitions

In the OpenThread protocol stack, defining macros to enable features and configure parameters is a common practice.
Users can define macro values to enable or disable specific features and adjust parameters. ESP provides the following
methods for defining OpenThread macros:

• Using configuration menu (menuconfig): Some macros are mapped to Kconfig files and can be configured
through idf.py menuconfig → Component config → OpenThread. This allows enabling or
disabling features and setting related parameters.

• Using user-defined header files: Users can create a custom header file and enable it via idf.py menucon-
fig → Component config → OpenThread → Thread Extended Features → Use a
header file defined by customer. The priority of the custom header file is second only to the
menuconfig.

• Using openthread-core-esp32x-xxx-config.h for configuration: Some macros have default val-
ues set in the OpenThread private header files. These cannot currently be modified through the menuconfig,
but can be modified via user-defined header files.

• Using OpenThread stack default configurations: Other macros are assigned default values when defined in the
OpenThread stack.

Note: The priority of the above configuration methods, from highest to lowest, is as follows: Configuration Menu
→ User-defined Header File → openthread-core-esp32x-xxx-config.h → OpenThread Stack Default Configuration

4.19.4 The OpenThread Border Router

The OpenThread border router connects the Thread network with other IP networks. It provides IPv6 connectivity,
service registration, and commission functionality.
To launch an OpenThread border router on an ESP chip, you need to connect an RCP to a Wi-Fi capable chip such
as ESP32.
Calling esp_openthread_border_router_init() during the initialization launches all the border routing
functionalities.
You may refer to the openthread/ot_br example and the README for further border router details.

4.20 Partition Tables

4.20.1 Overview

A single ESP32-C6's flash can contain multiple apps, as well as many different kinds of data (calibration data, filesys-
tems, parameter storage, etc). For this reason a partition table is flashed to (default offset) 0x8000 in the flash.
The partition table length is 0xC00 bytes, as we allow a maximum of 95 entries. An MD5 checksum, used for
checking the integrity of the partition table at runtime, is appended after the table data. Thus, the partition table

Espressif Systems 2415
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/openthread/ot_br
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

occupies an entire flash sector, which size is 0x1000 (4 KB). As a result, any partition following it must be at least
located at (default offset) + 0x1000.
Each entry in the partition table has a name (label), type (app, data, or something else), subtype and the offset in flash
where the partition is loaded.
The simplest way to use the partition table is to open the project configuration menu (idf.py menuconfig) and
choose one of the simple predefined partition tables under CONFIG_PARTITION_TABLE_TYPE:

• "Single factory app, no OTA"
• "Factory app, two OTA definitions"

In both cases the factory app is flashed at offset 0x10000. If you execute idf.py partition-table then it will print a
summary of the partition table.

4.20.2 Built-in Partition Tables

Here is the summary printed for the "Single factory app, no OTA" configuration:

ESP-IDF Partition Table
Name, Type, SubType, Offset, Size, Flags
nvs, data, nvs, 0x9000, 0x6000,
phy_init, data, phy, 0xf000, 0x1000,
factory, app, factory, 0x10000, 1M,

• At a 0x10000 (64 KB) offset in the flash is the app labelled "factory". The bootloader will run this app by
default.

• There are also two data regions defined in the partition table for storing NVS library partition and PHY init
data.

Here is the summary printed for the "Factory app, two OTA definitions" configuration:

ESP-IDF Partition Table
Name, Type, SubType, Offset, Size, Flags
nvs, data, nvs, 0x9000, 0x4000,
otadata, data, ota, 0xd000, 0x2000,
phy_init, data, phy, 0xf000, 0x1000,
factory, app, factory, 0x10000, 1M,
ota_0, app, ota_0, 0x110000, 1M,
ota_1, app, ota_1, 0x210000, 1M,

• There are now three app partition definitions. The type of the factory app (at 0x10000) and the next two "OTA"
apps are all set to "app", but their subtypes are different.

• There is also a new "otadata" slot, which holds the data for OTA updates. The bootloader consults this data in
order to know which app to execute. If "ota data" is empty, it will execute the factory app.

4.20.3 Creating Custom Tables

If you choose "Custom partition table CSV" in menuconfig then you can also enter the name of a CSV file (in the
project directory) to use for your partition table. The CSV file can describe any number of definitions for the table
you need.
The CSV format is the same format as printed in the summaries shown above. However, not all fields are required in
the CSV. For example, here is the "input" CSV for the OTA partition table:

Name, Type, SubType, Offset, Size, Flags
nvs, data, nvs, 0x9000, 0x4000
otadata, data, ota, 0xd000, 0x2000
phy_init, data, phy, 0xf000, 0x1000
factory, app, factory, 0x10000, 1M
ota_0, app, ota_0, , 1M

(continues on next page)

Espressif Systems 2416
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
ota_1, app, ota_1, , 1M
nvs_key, data, nvs_keys, , 0x1000

• Whitespace between fields is ignored, and so is any line starting with # (comments).
• Each non-comment line in the CSV file is a partition definition.
• The "Offset" field for each partition is empty. The gen_esp32part.py tool fills in each blank offset, starting
after the partition table and making sure each partition is aligned correctly.

Name Field

Name field can be any meaningful name. It is not significant to the ESP32-C6. The maximum length of names is 16
bytes, including one null terminator. Names longer than the maximum length will be truncated.

Type Field

Partition type field can be specified as app (0x00) or data (0x01). Or it can be a number 0-254 (or as hex 0x00-
0xFE). Types 0x00-0x3F are reserved for ESP-IDF core functions.
If your app needs to store data in a format not already supported by ESP-IDF, then please add a custom partition type
value in the range 0x40-0xFE.
See esp_partition_type_t for the enum definitions for app and data partitions.
If writing in C++ then specifying a application-defined partition type requires casting an integer to
esp_partition_type_t in order to use it with the partition API. For example:

static const esp_partition_type_t APP_PARTITION_TYPE_A = (esp_partition_type_
↪→t)0x40;

The ESP-IDF bootloader ignores any partition types other than app (0x00) and data (0x01).

SubType

The 8-bit SubType field is specific to a given partition type. ESP-IDF currently only specifies the meaning of the
subtype field for app and data partition types.
See enumesp_partition_subtype_t for the full list of subtypes defined by ESP-IDF, including the following:

• When type is app, the SubType field can be specified as factory (0x00), ota_0 (0x10) ... ota_15 (0x1F)
or test (0x20).

– factory (0x00) is the default app partition. The bootloader will execute the factory app unless there it
sees a partition of type data/ota, in which case it reads this partition to determine which OTA image to
boot.
∗ OTA never updates the factory partition.
∗ If you want to conserve flash usage in an OTA project, you can remove the factory partition and use
ota_0 instead.

– ota_0 (0x10) ... ota_15 (0x1F) are the OTA app slots. When OTA is in use, the OTA data partition
configures which app slot the bootloader should boot. When using OTA, an application should have at
least two OTA application slots (ota_0 & ota_1). Refer to the OTA documentation for more details.

– test (0x20) is a reserved subtype for factory test procedures. It will be used as the fallback boot partition
if no other valid app partition is found. It is also possible to configure the bootloader to read a GPIO
input during each boot, and boot this partition if the GPIO is held low, see Boot from Test Firmware.

• When type is data, the subtype field can be specified as ota (0x00), phy (0x01), nvs (0x02), nvs_keys
(0x04), or a range of other component-specific subtypes (see subtype enum).

– ota (0) is the OTA data partition which stores information about the currently selected OTA app slot.
This partition should be 0x2000 bytes in size. Refer to the OTA documentation for more details.

– phy (1) is for storing PHY initialisation data. This allows PHY to be configured per-device, instead of
in firmware.

Espressif Systems 2417
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

∗ In the default configuration, the phy partition is not used and PHY initialisation data is compiled into
the app itself. As such, this partition can be removed from the partition table to save space.

∗ To load PHY data from this partition, open the project configuration menu (idf.py menucon-
fig) and enable CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION option. You will also need to
flash your devices with phy init data as the esp-idf build system does not do this automatically.

– nvs (2) is for the Non-Volatile Storage (NVS) API.
∗ NVS is used to store per-device PHY calibration data (different to initialisation data).
∗ NVS is used to store Wi-Fi data if the esp_wifi_set_storage(WIFI_STORAGE_FLASH) initialization
function is used.

∗ The NVS API can also be used for other application data.
∗ It is strongly recommended that you include an NVS partition of at least 0x3000 bytes in your project.
∗ If using NVS API to store a lot of data, increase the NVS partition size from the default 0x6000
bytes.

– nvs_keys (4) is for the NVS key partition. See Non-Volatile Storage (NVS) API for more details.
∗ It is used to store NVS encryption keys when NVS Encryption feature is enabled.
∗ The size of this partition should be 4096 bytes (minimum partition size).

– There are other predefined data subtypes for data storage supported by ESP-IDF.
These include FAT filesystem (ESP_PARTITION_SUBTYPE_DATA_FAT), SPIFFS
(ESP_PARTITION_SUBTYPE_DATA_SPIFFS), etc.

Other subtypes of data type are reserved for future ESP-IDF uses.
• If the partition type is any application-defined value (range 0x40-0xFE), then subtype field can be any value
chosen by the application (range 0x00-0xFE).
Note that when writing in C++, an application-defined subtype value requires casting to type
esp_partition_subtype_t in order to use it with the partition API.

Extra Partition SubTypes

A component can define a new partition subtype by setting the EXTRA_PARTITION_SUBTYPES prop-
erty. This property is a CMake list, each entry of which is a comma separated string with <type>,
<subtype>, <value> format. The build system uses this property to add extra subtypes and creates
fields named ESP_PARTITION_SUBTYPE_<type>_<subtype> in esp_partition_subtype_t. The
project can use this subtype to define partitions in the partitions table CSV file and use the new fields in
esp_partition_subtype_t.

Offset & Size

The offset represents the partition address in the SPI flash, which sector size is 0x1000 (4 KB). Thus, the offset must
be a multiple of 4 KB.
Partitions with blank offsets in the CSV file will start after the previous partition, or after the partition table in the
case of the first partition.
Partitions of type app have to be placed at offsets aligned to 0x10000 (64 K). If you leave the offset field blank,
gen_esp32part.py will automatically align the partition. If you specify an unaligned offset for an app partition,
the tool will return an error.
Sizes and offsets can be specified as decimal numbers, hex numbers with the prefix 0x, or size multipliers K or M
(1024 and 1024*1024 bytes).
If you want the partitions in the partition table to work relative to any placement (CON-
FIG_PARTITION_TABLE_OFFSET) of the table itself, leave the offset field (in CSV file) for all partitions
blank. Similarly, if changing the partition table offset then be aware that all blank partition offsets may change to
match, and that any fixed offsets may now collide with the partition table (causing an error).

Flags

Only one flag is currently supported, encrypted. If this field is set to encrypted, this partition will be encrypted
if Flash Encryption is enabled.

Espressif Systems 2418
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: app type partitions will always be encrypted, regardless of whether this flag is set or not.

4.20.4 Generating Binary Partition Table

The partition table which is flashed to the ESP32-C6 is in a binary format, not CSV. The tool parti-
tion_table/gen_esp32part.py is used to convert between CSV and binary formats.
If you configure the partition table CSV name in the project configuration (idf.py menuconfig) and then build
the project or run idf.py partition-table, this conversion is done as part of the build process.
To convert CSV to Binary manually:

python gen_esp32part.py input_partitions.csv binary_partitions.bin

To convert binary format back to CSV manually:

python gen_esp32part.py binary_partitions.bin input_partitions.csv

To display the contents of a binary partition table on stdout (this is how the summaries displayed when running
idf.py partition-table are generated:

python gen_esp32part.py binary_partitions.bin

4.20.5 Partition Size Checks

The ESP-IDF build system will automatically check if generated binaries fit in the available partition space, and will
fail with an error if a binary is too large.
Currently these checks are performed for the following binaries:

• Bootloader binary must fit in space before partition table (see Bootloader Size).
• App binary should fit in at least one partition of type "app". If the app binary doesn't fit in any app partition,
the build will fail. If it only fits in some of the app partitions, a warning is printed about this.

Note: Although the build process will fail if the size check returns an error, the binary files are still generated and
can be flashed (although they may not work if they are too large for the available space.)

MD5 Checksum

The binary format of the partition table contains an MD5 checksum computed based on the partition table. This
checksum is used for checking the integrity of the partition table during the boot.
The MD5 checksum generation can be disabled by the --disable-md5sum option of gen_esp32part.py
or by the CONFIG_PARTITION_TABLE_MD5 option.

4.20.6 Flashing the Partition Table

• idf.py partition-table-flash: will flash the partition table with esptool.py.
• idf.py flash: Will flash everything including the partition table.

A manual flashing command is also printed as part of idf.py partition-table output.

Espressif Systems 2419
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/partition_table/gen_esp32part.py
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/partition_table/gen_esp32part.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: Note that updating the partition table doesn't erase data that may have been stored according to the old
partition table. You can use idf.py erase-flash (or esptool.py erase_flash) to erase the entire
flash contents.

4.20.7 Partition Tool (parttool.py)

The component partition_table provides a tool parttool.py for performing partition-related operations on a target
device. The following operations can be performed using the tool:

• reading a partition and saving the contents to a file (read_partition)
• writing the contents of a file to a partition (write_partition)
• erasing a partition (erase_partition)
• retrieving info such as name, offset, size and flag ("encrypted") of a given partition (get_partition_info)

The tool can either be imported and used from another Python script or invoked from shell script for users wanting
to perform operation programmatically. This is facilitated by the tool's Python API and command-line interface,
respectively.

Python API

Before anything else, make sure that the parttool module is imported.

import sys
import os

idf_path = os.environ["IDF_PATH"] # get value of IDF_PATH from environment
parttool_dir = os.path.join(idf_path, "components", "partition_table") # parttool.
↪→py lives in $IDF_PATH/components/partition_table

sys.path.append(parttool_dir) # this enables Python to find parttool module
from parttool import * # import all names inside parttool module

The starting point for using the tool's Python API to do is create a ParttoolTarget object:

Create a partool.py target device connected on serial port /dev/ttyUSB1
target = ParttoolTarget("/dev/ttyUSB1")

The created object can now be used to perform operations on the target device:

Erase partition with name 'storage'
target.erase_partition(PartitionName("storage"))

Read partition with type 'data' and subtype 'spiffs' and save to file 'spiffs.bin
↪→'
target.read_partition(PartitionType("data", "spiffs"), "spiffs.bin")

Write to partition 'factory' the contents of a file named 'factory.bin'
target.write_partition(PartitionName("factory"), "factory.bin")

Print the size of default boot partition
storage = target.get_partition_info(PARTITION_BOOT_DEFAULT)
print(storage.size)

The partition to operate on is specified using PartitionName or PartitionType or PARTITION_BOOT_DEFAULT.
As the name implies, these can be used to refer to partitions of a particular name, type-subtype combination, or the
default boot partition.
More information on the Python API is available in the docstrings for the tool.

Espressif Systems 2420
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/partition_table/parttool.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Command-line Interface

The command-line interface of parttool.py has the following structure:

parttool.py [command-args] [subcommand] [subcommand-args]

- command-args - These are arguments that are needed for executing the main␣
↪→command (parttool.py), mostly pertaining to the target device
- subcommand - This is the operation to be performed
- subcommand-args - These are arguments that are specific to the chosen operation

Erase partition with name 'storage'
parttool.py --port "/dev/ttyUSB1" erase_partition --partition-name=storage

Read partition with type 'data' and subtype 'spiffs' and save to file 'spiffs.bin
↪→'
parttool.py --port "/dev/ttyUSB1" read_partition --partition-type=data --partition-
↪→subtype=spiffs --output "spiffs.bin"

Write to partition 'factory' the contents of a file named 'factory.bin'
parttool.py --port "/dev/ttyUSB1" write_partition --partition-name=factory --input
↪→"factory.bin"

Print the size of default boot partition
parttool.py --port "/dev/ttyUSB1" get_partition_info --partition-boot-default --
↪→info size

More information can be obtained by specifying --help as argument:

Display possible subcommands and show main command argument descriptions
parttool.py --help

Show descriptions for specific subcommand arguments
parttool.py [subcommand] --help

4.21 Performance

ESP-IDF ships with default settings that are designed for a trade-off between performance, resource usage, and
available functionality.
These guides describe how to optimize a firmware application for a particular aspect of performance. Usually this
involves some trade-off in terms of limiting available functions, or swapping one aspect of performance (such as
execution speed) for another (such as RAM usage).

4.21.1 How to Optimize Performance

1. Decide what the performance-critical aspects of your application are (for example: a particular response time
to a certain network operation, a particular startup time limit, particular peripheral data throughput, etc.).

2. Find a way to measure this performance (some methods are outlined in the guides below).
3. Modify the code and project configuration and compare the new measurement to the old measurement.
4. Repeat step 3 until the performance meets the requirements set out in step 1.

4.21.2 Guides

Speed Optimization

Espressif Systems 2421
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Overview Optimizing execution speed is a key element of software performance. Code that executes faster can
also have other positive effects, e.g., reducing overall power consumption. However, improving execution speed may
have trade-offs with other aspects of performance such as Minimizing Binary Size.

Choose What to Optimize If a function in the application firmware is executed once per week in the background,
it may not matter if that function takes 10 ms or 100 ms to execute. If a function is executed constantly at 10 Hz, it
matters greatly if it takes 10 ms or 100 ms to execute.
Most kinds of application firmware only have a small set of functions that require optimal performance. Perhaps
those functions are executed very often, or have to meet some application requirements for latency or throughput.
Optimization efforts should be targeted at these particular functions.

Measuring Performance The first step to improving something is to measure it.

Basic Performance Measurements You may be able to measure directly the performance relative to an external
interaction with the world, e.g., see the examples wifi/iperf and ethernet/iperf for measuring general network per-
formance. Or you can use an oscilloscope or logic analyzer to measure the timing of an interaction with a device
peripheral.
Otherwise, one way to measure performance is to augment the code to take timing measurements:

#include "esp_timer.h"

void measure_important_function(void) {
const unsigned MEASUREMENTS = 5000;
uint64_t start = esp_timer_get_time();

for (int retries = 0; retries < MEASUREMENTS; retries++) {
important_function(); // This is the thing you need to measure

}

uint64_t end = esp_timer_get_time();

printf("%u iterations took %llu milliseconds (%llu microseconds per␣
↪→invocation)\n",

MEASUREMENTS, (end - start)/1000, (end - start)/MEASUREMENTS);
}

Executing the target multiple times can help average out factors, e.g., RTOS context switches, overhead of measure-
ments, etc.

• Using esp_timer_get_time() generates "wall clock" timestamps with microsecond precision, but has
moderate overhead each time the timing functions are called.

• It is also possible to use the standard Unix gettimeofday() and utime() functions, although the over-
head is slightly higher.

• Otherwise, including hal/cpu_hal.h and calling the HAL function cpu_hal_get_cycle_count()
returns the number of CPU cycles executed. This function has lower overhead than the others, which is good
for measuring very short execution times with high precision.

• While performing "microbenchmarks" (i.e., benchmarking only a very small routine of code that runs in less
than 1-2milliseconds), the flash cache performance can sometimes cause big variations in timingmeasurements
depending on the binary. This happens because binary layout can cause different patterns of cache misses in
a particular sequence of execution. If the test code is larger, then this effect usually averages out. Execut-
ing a small function multiple times when benchmarking can help reduce the impact of flash cache misses.
Alternatively, move this code to IRAM (see Targeted Optimizations).

External Tracing The Application Level Tracing library allows measuring code execution with minimal impact on
the code itself.

Espressif Systems 2422
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/iperf
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/ethernet/iperf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Tasks If the option CONFIG_FREERTOS_GENERATE_RUN_TIME_STATS is enabled, then the FreeRTOS API
vTaskGetRunTimeStats() can be used to retrieve runtime information about the processor time used by each
FreeRTOS task.
SEGGER SystemView is an excellent tool for visualizing task execution and looking for performance issues or im-
provements in the system as a whole.

Improving Overall Speed The following optimizations improve the execution of nearly all code, including boot
times, throughput, latency, etc:

• Set CONFIG_ESPTOOLPY_FLASHMODE to QIO or QOUT mode (Quad I/O). Both almost double the speed
at which code is loaded or executed from flash compared to the default DIO mode. QIO is slightly faster than
QOUT if both are supported. Note that both the flash chip model, and the electrical connections between the
ESP32-C6 and the flash chip must support quad I/O modes or the SoC will not work correctly.

• Set CONFIG_COMPILER_OPTIMIZATION to Optimize for performance (-O2) . This may slightly
increase binary size compared to the default setting, but almost certainly increases the performance of some
code. Note that if your code contains C or C++ Undefined Behavior, then increasing the compiler optimization
level may expose bugs that otherwise are not seen.

• Avoid using floating point arithmetic float. On ESP32-C6 these calculations are emulated in software and
are very slow. If possible, use fixed point representations, a different method of integer representation, or
convert part of the calculation to be integer only before switching to floating point.

• Avoid using double precision floating point arithmetic double. These calculations are emulated in software
and are very slow. If possible then use an integer-based representation, or single-precision floating point.

Reduce Logging Overhead Although standard output is buffered, it is possible for an application to be limited by
the rate at which it can print data to log output once buffers are full. This is particularly relevant for startup time if
a lot of output is logged, but such problem can happen at other times as well. There are multiple ways to solve this
problem:

• Reduce the volume of log output by lowering the app CONFIG_LOG_DEFAULT_LEVEL (the equivalent boot-
loader setting is CONFIG_BOOTLOADER_LOG_LEVEL). This also reduces the binary size, and saves some
CPU time spent on string formatting.

• Increase the speed of logging output by increasing the CONFIG_ESP_CONSOLE_UART_BAUDRATE.

Not Recommended The following options also increase execution speed, but are not recommended as they also
reduce the debuggability of the firmware application and may increase the severity of any bugs.

• Set CONFIG_COMPILER_OPTIMIZATION_ASSERTION_LEVEL to disabled. This also reduces firmware bi-
nary size by a small amount. However, it may increase the severity of bugs in the firmware including security-
related bugs. If it is necessary to do this to optimize a particular function, consider adding #define NDEBUG
at the top of that single source file instead.

Targeted Optimizations The following changes increase the speed of a chosen part of the firmware application:

• Move frequently executed code to IRAM. By default, all code in the app is executed from flash cache. This
means that it is possible for the CPU to have to wait on a "cache miss" while the next instructions are loaded
from flash. Functions which are copied into IRAM are loaded once at boot time, and then always execute at
full speed.
IRAM is a limited resource, and using more IRAM may reduce available DRAM, so a strategic approach is
needed when moving code to IRAM. See IRAM (Instruction RAM) for more information.

Espressif Systems 2423
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Jump table optimizations can be re-enabled for individual source files that do not need to be placed in IRAM.
For hot paths in large switch cases, this improves performance. For instructions on how to add the
-fjump-tables and -ftree-switch-conversion options when compiling individual source files,
see Controlling Component Compilation

Improving Startup Time In addition to the overall performance improvements shown above, the following options
can be tweaked to specifically reduce startup time:

• Minimizing the CONFIG_LOG_DEFAULT_LEVEL and CONFIG_BOOTLOADER_LOG_LEVEL has a
large impact on startup time. To enable more logging after the app starts up, set the CON-
FIG_LOG_MAXIMUM_LEVEL as well, and then call esp_log_level_set() to restore higher level logs.
The system/startup_time main function shows how to do this.

• If using Deep-sleep mode, setting CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP allows a
faster wake from sleep. Note that if using Secure Boot, this represents a security compromise, as Secure
Boot validation are not be performed on wake.

• Setting CONFIG_BOOTLOADER_SKIP_VALIDATE_ON_POWER_ON skips verifying the binary on every
boot from the power-on reset. How much time this saves depends on the binary size and the flash settings.
Note that this setting carries some risk if the flash becomes corrupt unexpectedly. Read the help text of the
config item for an explanation and recommendations if using this option.

• It is possible to save a small amount of time during boot by disabling RTC slow clock calibration. To do so,
set CONFIG_RTC_CLK_CAL_CYCLES to 0. Any part of the firmware that uses RTC slow clock as a timing
source will be less accurate as a result.

The example project system/startup_time is pre-configured to optimize startup time. The file sys-
tem/startup_time/sdkconfig.defaults contain all of these settings. You can append these to the end of your project's
own sdkconfig file to merge the settings, but please read the documentation for each setting first.

Task Priorities As ESP-IDF FreeRTOS is a real-time operating system, it is necessary to ensure that high-
throughput or low-slatency tasks are granted a high priority in order to run immediately. Priority is set when calling
xTaskCreate() orxTaskCreatePinnedToCore() and can be changed at runtime by callingvTaskPri-
oritySet().
It is also necessary to ensure that tasks yield CPU (by calling vTaskDelay(), sleep(), or by blocking on
semaphores, queues, task notifications, etc) in order to not starve lower-priority tasks and cause problems for the
overall system. The Task Watchdog Timer (TWDT) provides a mechanism to automatically detect if task starvation
happens. However, note that a TWDT timeout does not always indicate a problem, because sometimes the correct
operation of the firmware requires some long-running computation. In these cases, tweaking the TWDT timeout or
even disabling the TWDT may be necessary.

Built-in Task Priorities ESP-IDF starts a number of system tasks at fixed priority levels. Some are automatically
started during the boot process, while some are started only if the application firmware initializes a particular feature.
To optimize performance, structure the task priorities of your application properly to ensure the tasks are not delayed
by the system tasks, while also not starving system tasks and impacting other functions of the system.
This may require splitting up a particular task. For example, perform a time-critical operation in a high-priority task
or an interrupt handler and do the non-time-critical part in a lower-priority task.
Header components/esp_system/include/esp_task.h contains macros for the priority levels used for built-in ESP-IDF
tasks system. See Background Tasks for more details about the system tasks.
Common priorities are:

• Running the main task that executes app_main function has minimum priority (1).
• High Resolution Timer (ESP Timer) system task to manage timer events and execute callbacks has high priority
(22, ESP_TASK_TIMER_PRIO)

• FreeRTOS Timer Task to handle FreeRTOS timer callbacks is created when the scheduler initializes and has
minimum task priority (1, configurable).

Espressif Systems 2424
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/startup_time
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/system/startup_time
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/system/startup_time/sdkconfig.defaults
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/system/startup_time/sdkconfig.defaults
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/include/esp_task.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Event Loop Library system task to manage the default system event loop and execute callbacks has
high priority (20, ESP_TASK_EVENT_PRIO). This configuration is only used if the application calls
esp_event_loop_create_default(). It is possible to call esp_event_loop_create() with
a custom task configuration instead.

• lwIP TCP/IP task has high priority (18, ESP_TASK_TCPIP_PRIO).
• Wi-Fi Driver task has high priority (23).
• Wi-Fi wpa_supplicant component may create dedicated tasks while the Wi-Fi Protected Setup (WPS), WPA2
EAP-TLS, Device Provisioning Protocol (DPP) or BSS Transition Management (BTM) features are in use.
These tasks all have low priority (2).

• Controller & HCI task has high priority (23, ESP_TASK_BT_CONTROLLER_PRIO). The Bluetooth Con-
troller needs to respond to requests with low latency, so it should always be among the highest priority task in
the system.

• NimBLE-based host APIs task has high priority (21).
• The Ethernet driver creates a task for the MAC to receive Ethernet frames. If using the default config
ETH_MAC_DEFAULT_CONFIG then the priority is medium-high (15). This setting can be changed by pass-
ing a custom eth_mac_config_t struct when initializing the Ethernet MAC.

• If using the ESP-MQTT component, it creates a task with default priority 5 (configurable), depending on
CONFIG_MQTT_USE_CUSTOM_CONFIG, and also configurable at runtime by task_prio field in the
esp_mqtt_client_config_t)

• To see what is the task priority for mDNS service, please check Performance Optimization.

Choosing Task Priorities of the Application In general, it is not recommended to set task priorities higher than
the built-in Wi-Fi/Bluetooth/802.15.4 operations as starving them of CPU may make the system unstable. For very
short timing-critical operations that do not use the network, use an ISR or a very restricted task (with very short bursts
of runtime only) at the highest priority (24). Choosing priority 19 allows lower-layer Wi-Fi/Bluetooth/802.15.4
functionality to run without delays, but still preempts the lwIP TCP/IP stack and other less time-critical internal
functionality - this is the best option for time-critical tasks that do not perform network operations. Any task that
does TCP/IP network operations should run at a lower priority than the lwIP TCP/IP task (18) to avoid priority-
inversion issues.

Note: Task execution is always completely suspended when writing to the built-in SPI flash chip. Only IRAM-Safe
Interrupt Handlers continues executing.

Improving Interrupt Performance ESP-IDF supports dynamic Interrupt allocation with interrupt preemption.
Each interrupt in the system has a priority, and higher-priority interrupts preempts lower priority ones.
Interrupt handlers execute in preference to any task, provided the task is not inside a critical section. For this reason,
it is important to minimize the amount of time spent in executing an interrupt handler.
To obtain the best performance for a particular interrupt handler:

• Assign more important interrupts a higher priority using a flag such as ESP_INTR_FLAG_LEVEL2 or
ESP_INTR_FLAG_LEVEL3 when calling esp_intr_alloc().

• If you are sure the entire interrupt handler can run from IRAM (see IRAM-Safe Interrupt Handlers) then set the
ESP_INTR_FLAG_IRAM flag when calling esp_intr_alloc() to assign the interrupt. This prevents it
being temporarily disabled if the application firmware writes to the internal SPI flash.

• Even if the interrupt handler is not IRAM-safe, if it is going to be executed frequently then consider moving the
handler function to IRAM anyhow. This minimizes the chance of a flash cache miss when the interrupt code is
executed (see Targeted Optimizations). It is possible to do this without adding the ESP_INTR_FLAG_IRAM
flag to mark the interrupt as IRAM-safe, if only part of the handler is guaranteed to be in IRAM.

Improving Network Speed
• For Wi-Fi, see How to Improve Wi-Fi Performance andWi-Fi Buffer Usage
• For lwIP TCP/IP (Wi-Fi and Ethernet), see Performance Optimization

Espressif Systems 2425
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://docs.espressif.com/projects/esp-protocols/mdns/docs/latest/en/index.html#performance-optimization
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• The wifi/iperf example contains a configuration that is heavily optimized for Wi-Fi TCP/IP through-
put. Append the contents of the files wifi/iperf/sdkconfig.defaults, wifi/iperf/sdkconfig.defaults.esp32c6 and
wifi/iperf/sdkconfig.ci.99 to the sdkconfig file in your project in order to add all of these options. Note
that some of these options may have trade-offs in terms of reduced debuggability, increased firmware size,
increased memory usage, or reduced performance of other features. To get the best result, read the documen-
tation pages linked above and use related information to determine exactly which options are best suited for
your app.

Improving I/O Performance Using standard C library functions like fread and fwrite instead of platform
specific unbuffered syscalls such as read and write can be slow.These functions are designed to be portable, so
they are not necessarily optimized for speed, have a certain overhead and are buffered.
FAT Filesystem Support specific information and tips:

• Maximum size of the R/W request = FatFS cluster size (allocation unit size).
• Use read and write instead of fread and fwrite.
• To increase speed of buffered reading functions like fread and fgets, you can increase a size of the file
buffer (Newlib's default is 128 bytes) to a higher number like 4096, 8192 or 16384. This can be done lo-
cally via the setvbuf function used on a certain file pointer or globally applied to all files via modifying
CONFIG_FATFS_VFS_FSTAT_BLKSIZE.

Note: Setting a bigger buffer size also increases the heap memory usage.

Minimizing Binary Size

The ESP-IDF build system compiles all source files in the project and ESP-IDF, but only functions and variables that
are actually referenced by the program are linked into the final binary. In some cases, it is necessary to reduce the
total size of the firmware binary (for example, in order to fit it into the available flash partition size).
The first step to reducing the total firmware binary size is measuring what is causing the size to increase.

Measuring Static Sizes To optimize both firmware binary size and memory usage it's necessary to measure stati-
cally allocated RAM ("data", "bss"), code ("text") and read-only data ("rodata") in your project.
Using the idf.py sub-commands size, size-components and size-files provides a summary of memory
used by the project:

Size Summary (idf.py size)
$ idf.py size
[...]
Total sizes:
DRAM .data size: 11584 bytes
DRAM .bss size: 19624 bytes

Used static DRAM: 0 bytes (0 available, nan% used)
Used static IRAM: 0 bytes (0 available, nan% used)
Used stat D/IRAM: 136276 bytes (519084 available, 20.8% used)

Flash code: 630508 bytes
Flash rodata: 177048 bytes

Total image size:~ 924208 bytes (.bin may be padded larger)

This output breaks down the size of all static memory regions in the firmware binary:

• DRAM .data size is statically allocated RAM that is assigned to non-zero values at startup. This uses
RAM (DRAM) at runtime and also uses space in the binary file.

Espressif Systems 2426
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/iperf
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/iperf/sdkconfig.defaults
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/iperf/sdkconfig.defaults.esp32c6
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/iperf/sdkconfig.ci.99
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• DRAM .bss size is statically allocated RAM that is assigned zero at startup. This uses RAM (DRAM) at
runtime but doesn't use any space in the binary file.

• Used static DRAM, Used static IRAM - these options are kept for compatibility with ESP32 target,
and currently read 0.

• Used stat D/IRAM - This is total internal RAM usage, the sum of static DRAM .data + .bss, and also
static IRAM (Instruction RAM) used by the application for executable code. The available size is the
estimated amount of DRAM which will be available as heap memory at runtime (due to metadata overhead
and implementation constraints, and heap allocations done by ESP-IDF during startup, the actual free heap at
startup will be lower than this).

• Flash code is the total size of executable code executed from flash cache (IROM). This uses space in the
binary file.

• Flash rodata is the total size of read-only data loaded from flash cache (DROM). This uses space in the
binary file.

• Total image size is the estimated total binary file size, which is the total of all the used memory types
except for .bss.

Component Usage Summary (idf.py size-components) The summary output provided by idf.py size does
not give enough detail to find the main contributor to excessive binary size. To analyze in more detail, use idf.py
size-components

$ idf.py size-components
[...]

Total sizes:
DRAM .data size: 14956 bytes
DRAM .bss size: 15808 bytes

Used static DRAM: 30764 bytes (149972 available, 17.0% used)
Used static IRAM: 83918 bytes (47154 available, 64.0% used)

Flash code: 559943 bytes
Flash rodata: 176736 bytes

Total image size:~ 835553 bytes (.bin may be padded larger)
Per-archive contributions to ELF file:

Archive File DRAM .data & .bss & other IRAM D/IRAM Flash code &␣
↪→rodata Total

libnet80211.a 1267 6044 0 5490 0 107445 ␣
↪→18484 138730

liblwip.a 21 3838 0 0 0 97465 ␣
↪→16116 117440

libmbedtls.a 60 524 0 0 0 27655 ␣
↪→69907 98146

libmbedcrypto.a 64 81 0 30 0 76645 ␣
↪→11661 88481

libpp.a 2427 1292 0 20851 0 37208 ␣
↪→4708 66486

libc.a 4 0 0 0 0 57056 ␣
↪→6455 63515

libphy.a 1439 715 0 7798 0 33074 ␣
↪→ 0 43026

libwpa_supplicant.a 12 848 0 0 0 35505 ␣
↪→1446 37811

libfreertos.a 3104 740 0 15711 0 367 ␣
↪→4228 24150

libnvs_flash.a 0 24 0 0 0 14347 ␣
↪→2924 17295

libspi_flash.a 1562 294 0 8851 0 1840 ␣
↪→1913 14460

libesp_system.a 245 206 0 3078 0 5990 ␣
↪→3817 13336

libesp-tls.a 0 4 0 0 0 5637 ␣
↪→3524 9165
[... removed some lines here ...]

(continues on next page)

Espressif Systems 2427
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
libesp_rom.a 0 0 0 112 0 0 ␣

↪→ 0 112
libcxx.a 0 0 0 0 0 47 ␣

↪→ 0 47
(exe) 0 0 0 3 0 3 ␣

↪→ 12 18
libesp_pm.a 0 0 0 0 0 8 ␣

↪→ 0 8
libesp_eth.a 0 0 0 0 0 0 ␣

↪→ 0 0
libmesh.a 0 0 0 0 0 0 ␣

↪→ 0 0

The first lines of output from idf.py size-components are the same as idf.py size. After this a table is
printed of "per-archive contributions to ELF file". This means how much each static library archive has contributed
to the final binary size.
Generally, one static library archive is built per component, although some are binary libraries included by a particular
component (for example, libnet80211.a is included by esp_wifi component). There are also toolchain
libraries such as libc.a and libgcc.a listed here, these provide Standard C/C++ Library and toolchain built-in
functionality.
If your project is simple and only has a "main" component, then all of the project's code will be shown under lib-
main.a. If your project includes its own components (see Build System), then they will each be shown on a separate
line.
The table is sorted in descending order of the total contribution to the binary size.
The columns are as follows:

• DRAM .data & .bss & other - .data and .bss are the same as for the totals shown above (static variables,
these both reduce total available RAM at runtime but .bss doesn't contribute to the binary file size). "other" is
a column for any custom section types that also contribute to RAM size (usually this value is 0).

• IRAM - is the same as for the totals shown above (code linked to execute from IRAM, uses space in the binary
file and also reduces DRAM available as heap at runtime.

• Flash code & rodata - these are the same as the totals above, IROM and DROM space accessed from
flash cache that contribute to the binary size.

Source File Usage Summary (idf.py size-files) For even more detail, run idf.py size-files to get a
summary of the contribution each object file has made to the final binary size. Each object file corresponds to a single
source file.

$ idf.py size-files
[...]
Total sizes:
DRAM .data size: 14956 bytes
DRAM .bss size: 15808 bytes

Used static DRAM: 30764 bytes (149972 available, 17.0% used)
Used static IRAM: 83918 bytes (47154 available, 64.0% used)

Flash code: 559943 bytes
Flash rodata: 176736 bytes

Total image size:~ 835553 bytes (.bin may be padded larger)
Per-file contributions to ELF file:

Object File DRAM .data & .bss & other IRAM D/IRAM Flash code &␣
↪→rodata Total

x509_crt_bundle.S.o 0 0 0 0 0 0 ␣
↪→64212 64212

wl_cnx.o 2 3183 0 221 0 13119 ␣
↪→3286 19811

(continues on next page)

Espressif Systems 2428
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

(continued from previous page)
phy_chip_v7.o 721 614 0 1642 0 16820 ␣

↪→ 0 19797
ieee80211_ioctl.o 740 96 0 437 0 15325 ␣

↪→2627 19225
pp.o 1142 45 0 8871 0 5030 ␣

↪→537 15625
ieee80211_output.o 2 20 0 2118 0 11617 ␣

↪→914 14671
ieee80211_sta.o 1 41 0 1498 0 10858 ␣

↪→2218 14616
lib_a-vfprintf.o 0 0 0 0 0 13829 ␣

↪→752 14581
lib_a-svfprintf.o 0 0 0 0 0 13251 ␣

↪→752 14003
ssl_tls.c.o 60 0 0 0 0 12769 ␣

↪→463 13292
sockets.c.o 0 648 0 0 0 11096 ␣

↪→1030 12774
nd6.c.o 8 932 0 0 0 11515 ␣

↪→314 12769
phy_chip_v7_cal.o 477 53 0 3499 0 8561 ␣

↪→ 0 12590
pm.o 32 364 0 2673 0 7788 ␣

↪→782 11639
ieee80211_scan.o 18 288 0 0 0 8889 ␣

↪→1921 11116
lib_a-svfiprintf.o 0 0 0 0 0 9654 ␣

↪→1206 10860
lib_a-vfiprintf.o 0 0 0 0 0 10069 ␣

↪→734 10803
ieee80211_ht.o 0 4 0 1186 0 8628 ␣

↪→898 10716
phy_chip_v7_ana.o 241 48 0 2657 0 7677 ␣

↪→ 0 10623
bignum.c.o 0 4 0 0 0 9652 ␣

↪→752 10408
tcp_in.c.o 0 52 0 0 0 8750 ␣

↪→1282 10084
trc.o 664 88 0 1726 0 6245 ␣

↪→1108 9831
tasks.c.o 8 704 0 7594 0 0 ␣

↪→1475 9781
ecp_curves.c.o 28 0 0 0 0 7384 ␣

↪→2325 9737
ecp.c.o 0 64 0 0 0 8864 ␣

↪→286 9214
ieee80211_hostap.o 1 41 0 0 0 8578 ␣

↪→585 9205
wdev.o 121 125 0 4499 0 3684 ␣

↪→580 9009
tcp_out.c.o 0 0 0 0 0 5686 ␣

↪→2161 7847
tcp.c.o 2 26 0 0 0 6161 ␣

↪→1617 7806
ieee80211_input.o 0 0 0 0 0 6797 ␣

↪→973 7770
wpa.c.o 0 656 0 0 0 6828 ␣

↪→ 55 7539
[... additional lines removed ...]

After the summary of total sizes, a table of "Per-file contributions to ELF file" is printed.

Espressif Systems 2429
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

The columns are the same as shown above for idy.py size-components, but this time the granularity is the
contribution of each individual object file to the binary size.
For example, we can see that the file x509_crt_bundle.S.o contributed 64212 bytes to the total firmware size,
all as .rodata in flash. Therefore we can guess that this application is using the ESP x509 Certificate Bundle feature
and not using this feature would save at last this many bytes from the firmware size.
Some of the object files are linked from binary libraries and therefore you won't find a corresponding source file. To
locate which component a source file belongs to, it's generally possible to search in the ESP-IDF source tree or look
in the Linker Map File for the full path.

Comparing Two Binaries If making some changes that affect binary size, it's possible to use an ESP-IDF tool to
break down the exact differences in size.
This operation isn't part of idf.py, it's necessary to run the esp_idf_size Python tool directly.
To do so, first locate the linker map file in the build directory. It will have the name PROJECTNAME.map. The
esp_idf_size tool performs its analysis based on the output of the linker map file.
To compare with another binary, you will also need its corresponding .map file saved from the build directory.
For example, to compare two builds: one with the default CONFIG_COMPILER_OPTIMIZATION setting "Debug
(-Og)" configuration and one with "Optimize for size (-Os)":

$ python -m esp_idf_size --diff build_Og/https_request.map build_Os/https_request.
↪→map
<CURRENT> MAP file: build_Os/https_request.map
<REFERENCE> MAP file: build_Og/https_request.map
Difference is counted as <CURRENT> - <REFERENCE>, i.e. a positive number means␣
↪→that <CURRENT> is larger.
Total sizes of <CURRENT>:
↪→<REFERENCE> Difference
DRAM .data size: 14516 bytes ␣
↪→14956 -440
DRAM .bss size: 15792 bytes ␣
↪→15808 -16
Used static DRAM: 30308 bytes (150428 available, 16.8% used) ␣
↪→30764 -456 (+456 available, +0 total)
Used static IRAM: 78498 bytes (52574 available, 59.9% used) ␣
↪→83918 -5420 (+5420 available, +0 total)

Flash code: 509183 bytes ␣
↪→559943 -50760

Flash rodata: 170592 bytes ␣
↪→176736 -6144
Total image size:~ 772789 bytes (.bin may be padded larger) ␣
↪→835553 -62764

We can see from the "Difference" column that changing this one setting caused the whole binary to be over 60 KB
smaller and over 5 KB more RAM is available.
It's also possible to use the "diff" mode to output a table of component-level (static library archive) differences:

Note: To get the output in JSON or CSV format using esp_idf_size it is possible to use the --format option.

python -m esp_idf_size --archives --diff build_Og/https_request.map build_Oshttps_
↪→request.map

Also at the individual source file level:

python -m esp_idf_size --files --diff build_Og/https_request.map build_Oshttps_
↪→request.map

Espressif Systems 2430
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf-size
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Other options (like writing the output to a file) are available, pass --help to see the full list.

Showing Size When Linker Fails If too much static memory is used, then the linker will fail with an error such
as DRAM segment data does not fit, region `iram0_0_seg' overflowed by 44 bytes,
or similar.
In these cases, idf.py size will not succeed either. However it is possible to run esp_idf_size manually in
order to view the partial static memory usage (the memory usage will miss the variables which could not be linked,
so there still appears to be some free space.)
The map file argument is <projectname>.map in the build directory

python -m esp_idf_size build/project_name.map

It is also possible to view the equivalent of size-components or size-files output:

python -m esp_idf_size --archives build/project_name.map
python -m esp_idf_size --files build/project_name.map

Linker Map File This is an advanced analysis method, but it can be very useful. Feel free to skip ahead to
:ref:`reducing-overall-size` and possibly come back to this later.

The idf.py size analysis tools all work by parsing the GNU binutils "linker map file", which is a summary of
everything the linker did when it created ("linked") the final firmware binary file
Linker map files themselves are plain text files, so it's possible to read them and find out exactly what the linker did.
However, they are also very complex and long - often 100,000 or more lines!
The map file itself is broken into parts and each part has a heading. The parts are:

• Archive member included to satisfy reference by file (symbol). This shows you:
for each object file included in the link, what symbol (function or variable) was the linker searching for when
it included that object file. If you're wondering why some object file in particular was included in the binary,
this part may give a clue. This part can be used in conjunction with the Cross Reference Table at the
end of the file. Note that not every object file shown in this list ends up included in the final binary, some end
up in the Discarded input sections list instead.

• Allocating common symbols - This is a list of (some) global variables along with their sizes. Common
symbols have a particular meaning in ELF binary files, but ESP-IDF doesn't make much use of them.

• Discarded input sections - These sections were read by the linker as part of an object file to be linked
into the final binary, but then nothing else referred to them so they were discarded from the final binary. For
ESP-IDF this list can be very long, as we compile each function and static variable to a unique section in order
to minimize the final binary size (specifically ESP-IDF uses compiler options -ffunction-sections
-fdata-sections and linker option --gc-sections). Items mentioned in this list do not contribute
to the final binary.

• Memory Configuration, Linker script and memory map These two parts go together. Some
of the output comes directly from the linker command line and the Linker Script, both provided by the Build
System. The linker script is partially generated from the ESP-IDF project using the Linker Script Generation
feature.
As the output of the Linker script and memory map part of the map unfolds, you can see each
symbol (function or static variable) linked into the final binary along with its address (as a 16 digit hex number),
its length (also in hex), and the library and object file it was linked from (which can be used to determine the
component and the source file).
Following all of the output sections that take up space in the final .bin file, the memory map also includes
some sections in the ELF file that are only used for debugging (ELF sections .debug_*, etc.). These don't
contribute to the final binary size. You'll notice the address of these symbols is a very low number (starting
from 0x0000000000000000 and counting up).

• Cross Reference Table. This table shows for each symbol (function or static variable), the list of
object file(s) that referred to it. If you're wondering why a particular thing is included in the binary, this will
help determine what included it.

Espressif Systems 2431
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: Unfortunately, the Cross Reference Table doesn't only include symbols that made it into the
final binary. It also includes symbols in discarded sections. Therefore, just because something is shown here
doesn't mean that it was included in the final binary - this needs to be checked separately.

Note: Linker map files are generated by the GNU binutils linker "ld", not ESP-IDF. You can find additional in-
formation online about the linker map file format. This quick summary is written from the perspective of ESP-IDF
build system in particular.

ReducingOverall Size The following configuration options will reduce the final binary size of almost any ESP-IDF
project:

• Set CONFIG_COMPILER_OPTIMIZATION to "Optimize for size (-Os)". In some cases, "Optimize for per-
formance (-O2)" will also reduce the binary size compared to the default. Note that if your code contains C
or C++ Undefined Behaviour then increasing the compiler optimization level may expose bugs that otherwise
don't happen.

• Reduce the compiled-in log output by lowering the app CONFIG_LOG_DEFAULT_LEVEL. If the CON-
FIG_LOG_MAXIMUM_LEVEL is changed from the default then this setting controls the binary size instead.
Reducing compiled-in logging reduces the number of strings in the binary, and also the code size of the calls
to logging functions.

• Set the CONFIG_COMPILER_OPTIMIZATION_ASSERTION_LEVEL to "Silent". This avoids compiling in a
dedicated assertion string and source file name for each assert that may fail. It's still possible to find the failed
assert in the code by looking at the memory address where the assertion failed.

• Besides the CONFIG_COMPILER_OPTIMIZATION_ASSERTION_LEVEL, you can disable or silent the
assertion for HAL component separately by setting CONFIG_HAL_DEFAULT_ASSERTION_LEVEL. It
is to notice that ESP-IDF lowers HAL assertion level in bootloader to be silent even if CON-
FIG_HAL_DEFAULT_ASSERTION_LEVEL is set to full-assertion level. This is to reduce the bootloader size.

• Set CONFIG_COMPILER_OPTIMIZATION_CHECKS_SILENT . This removes specific error messages for par-
ticular internal ESP-IDF error check macros. This may make it harder to debug some error conditions by
reading the log output.

• Don't enable CONFIG_COMPILER_CXX_EXCEPTIONS, CONFIG_COMPILER_CXX_RTTI, or set the CON-
FIG_COMPILER_STACK_CHECK_MODE to Overall. All of these options are already disabled by default, but
they have a large impact on binary size.

• Disabling CONFIG_ESP_ERR_TO_NAME_LOOKUP will remove the lookup table to translate user-friendly
names for error values (see Error Handling) in error logs, etc. This saves some binary size, but error values
will be printed as integers only.

• Setting CONFIG_ESP_SYSTEM_PANIC to "Silent reboot" will save a small amount of binary size, however this
is only recommended if no one will use UART output to debug the device.

• Set CONFIG_COMPILER_SAVE_RESTORE_LIBCALLS to reduce binary size by replacing inlined pro-
logues/epilogues with library calls.

• If the application binary uses only one of the security versions of the protocomm com-
ponent, then the support for others can be disabled to save some code size. The sup-
port can be disabled through CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_0,
CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_1 or CON-
FIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_2 respectively.

Note: In addition to the many configuration items shown here, there are a number of configuration options where
changing the option from the default will increase binary size. These are not noted here. Where the increase is
significant, this is usually noted in the configuration item help text.

Targeted Optimizations The following binary size optimizations apply to a particular component or a function:

Espressif Systems 2432
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Wi-Fi
• Disabling CONFIG_ESP_WIFI_ENABLE_WPA3_SAE will save some Wi-Fi binary size if WPA3 support is
not needed. (Note that WPA3 is mandatory for new Wi-Fi device certifications.)

• Disabling CONFIG_ESP_WIFI_SOFTAP_SUPPORT will save someWi-Fi binary size if soft-AP support is not
needed.

• DisablingCONFIG_ESP_WIFI_ENTERPRISE_SUPPORT will save someWi-Fi binary size if enterprise support
is not needed.

Bluetooth NimBLE If using NimBLE Bluetooth Host then the following modifications can reduce binary size:

• CONFIG_BT_NIMBLE_MAX_CONNECTIONS to 1 if only one BLE connection is needed.
• Disable either CONFIG_BT_NIMBLE_ROLE_CENTRAL or CONFIG_BT_NIMBLE_ROLE_OBSERVER if
these roles are not needed.

• Reducing CONFIG_BT_NIMBLE_LOG_LEVEL can reduce binary size. Note that if the overall log level has
been reduced as described above in Reducing Overall Size then this also reduces the NimBLE log level.

lwIP IPv6
• Setting CONFIG_LWIP_IPV6 to false will reduce the size of the lwIP TCP/IP stack, at the cost of only sup-
porting IPv4.

Note: IPv6 is required by some components such as coap and ASIO port, These components will not be
available if IPV6 is disabled.

lwIP IPv4
• If IPv4 connectivity is not required, setting CONFIG_LWIP_IPV4 to false will reduce the size of the lwIP,
supporting IPv6 only TCP/IP stack.

Note: Before disabling IPv4 support, please note that IPv6 only network environments are not ubiquitous
and must be supported in the local network, e.g. by your internet service provider or using constrained local
network settings.

Newlib nano formatting By default, ESP-IDF uses newlib "full" formating for I/O (printf, scanf, etc.)
Disabling the config option CONFIG_NEWLIB_NANO_FORMAT will switch newlib to the "full" formatting mode.
This will reduce the binary size, as ESP32-C6 has the full formatting version of the functions in ROM, so it doesn't
need to be included in the binary at all.
Enabling Nano formatting reduces the stack usage of each function that calls printf() or another string formatting
function, see Reducing Stack Sizes.
"Nano" formatting doesn't support 64-bit integers, or C99 formatting features. For a full list of restrictions, search
for --enable-newlib-nano-formatted-io in the Newlib README file.

mbedTLS features Under Component Config ->mbedTLS there are multiple mbedTLS features which are enabled
by default but can be disabled if not needed to save code size.
These include:

• CONFIG_MBEDTLS_HAVE_TIME
• CONFIG_MBEDTLS_ECDSA_DETERMINISTIC
• CONFIG_MBEDTLS_SHA512_C

Espressif Systems 2433
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://sourceware.org/newlib/README
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• CONFIG_MBEDTLS_SHA3_C
• CONFIG_MBEDTLS_CLIENT_SSL_SESSION_TICKETS
• CONFIG_MBEDTLS_SERVER_SSL_SESSION_TICKETS
• CONFIG_MBEDTLS_SSL_CONTEXT_SERIALIZATION
• CONFIG_MBEDTLS_SSL_ALPN
• CONFIG_MBEDTLS_SSL_RENEGOTIATION
• CONFIG_MBEDTLS_CCM_C
• CONFIG_MBEDTLS_GCM_C
• CONFIG_MBEDTLS_ECP_C (Alternatively: Leave this option enabled but disable some of the elliptic curves
listed in the sub-menu.)

• CONFIG_MBEDTLS_ECP_NIST_OPTIM
• CONFIG_MBEDTLS_ECP_FIXED_POINT_OPTIM
• Change CONFIG_MBEDTLS_TLS_MODE if both server & client functionalities are not needed.
• Consider disabling some cipher suites listed in the TLS Key Exchange Methods sub-menu (i.e., CON-

FIG_MBEDTLS_KEY_EXCHANGE_RSA).
• Consider disabling CONFIG_MBEDTLS_ERROR_STRINGS if the application is already pulling in mbedTLS
error strings through using mbedtls_strerror().

The help text for each option has some more information.

Important: It is strongly not recommended to disable all these mbedTLS options. Only disable options where
you understand the functionality and are certain that it is not needed in the application. In particular:

• Ensure that any TLS server(s) the device connects to can still be used. If the server is controlled by a third
party or a cloud service, recommend ensuring that the firmware supports at least two of the supported cipher
suites in case one is disabled in a future update.

• Ensure that any TLS client(s) that connect to the device can still connect with supported/recommended cipher
suites. Note that future versions of client operating systems may remove support for some features, so it is
recommended to enable multiple supported cipher suites or algorithms for redundancy.

If depending on third party clients or servers, always pay attention to announcements about future changes to sup-
ported TLS features. If not, the ESP32-C6 device may become inaccessible if support changes.

Note: Not every combination of mbedTLS compile-time config is tested in ESP-IDF. If you find a combination that
fails to compile or function as expected, please report the details on GitHub.

VFS Virtual filesystem feature in ESP-IDF allows multiple filesystem drivers and file-like peripheral drivers to
be accessed using standard I/O functions (open, read, write, etc.) and C library functions (fopen, fread,
fwrite, etc.). When filesystem or file-like peripheral driver functionality is not used in the application this feature
can be fully or partially disabled. VFS component provides the following configuration options:

• CONFIG_VFS_SUPPORT_TERMIOS —can be disabled if the application doesn't use termios family of
functions. Currently, these functions are implemented only for UART VFS driver. Most applications can
disable this option. Disabling this option reduces the code size by about 1.8 kB.

• CONFIG_VFS_SUPPORT_SELECT — can be disabled if the application doesn't use select function with
file descriptors. Currently, only the UART and eventfd VFS drivers implement select support. Note that
when this option is disabled, select can still be used for socket file descriptors. Disabling this option reduces
the code size by about 2.7 kB.

• CONFIG_VFS_SUPPORT_DIR—can be disabled if the application doesn't use directory related functions, such
as readdir (see the description of this option for the complete list). Applications which only open, read and
write specific files and don't need to enumerate or create directories can disable this option, reducing the code
size by 0.5 kB or more, depending on the filesystem drivers in use.

• CONFIG_VFS_SUPPORT_IO—can be disabled if the application doesn't use filesystems or file-like peripheral
drivers. This disables all VFS functionality, including the three options mentioned above. When this option is
disabled, console can't be used. Note that the application can still use standard I/O functions with socket file
descriptors when this option is disabled. Compared to the default configuration, disabling this option reduces

Espressif Systems 2434
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

code size by about 9.4 kB.

HAL
• Enabling CONFIG_HAL_SYSTIMER_USE_ROM_IMPL can reduce the IRAM usage and binary size by linking
in the systimer HAL driver of ROM implementation.

• Enabling CONFIG_HAL_WDT_USE_ROM_IMPL can reduce the IRAM usage and binary size by linking in
the watchdog HAL driver of ROM implementation.

Heap
• Enabling CONFIG_HEAP_PLACE_FUNCTION_INTO_FLASH can reduce the IRAM usage and binary size by
placing the entirety of the heap functionalities in flash memory.

• Enabling CONFIG_HEAP_TLSF_USE_ROM_IMPL can reduce the IRAM usage and binary size by linking in
the TLSF library of ROM implementation.

Bootloader Size This document deals with the size of an ESP-IDF app binary only, and not the ESP-IDF Second
stage bootloader.
For a discussion of ESP-IDF bootloader binary size, see Bootloader Size.

IRAM Binary Size If the IRAM section of a binary is too large, this issue can be resolved by reducing IRAM
memory usage. See Optimizing IRAM Usage.

Minimizing RAM Usage

In some cases, a firmware application's available RAMmay run low or run out entirely. In these cases, it is necessary
to tune the memory usage of the firmware application.
In general, firmware should aim to leave some headroom of free internal RAM to deal with extraordinary situations
or changes in RAM usage in future updates.

Background Before optimizing ESP-IDF RAM usage, it is necessary to understand the basics of ESP32-C6 mem-
ory types, the difference between static and dynamic memory usage in C, and the way ESP-IDF uses stack and heap.
This information can all be found in Heap Memory Allocation.

Measuring Static Memory Usage The idf.py tool can be used to generate reports about the static memory usage
of an application, see Measuring Static Sizes.

Measuring DynamicMemory Usage ESP-IDF contains a range of heap APIs for measuring free heap at runtime,
see Heap Memory Debugging.

Note: In embedded systems, heap fragmentation can be a significant issue alongside total RAM usage. The heap
measurement APIs provide ways to measure the largest free block. Monitoring this value along with the total number
of free bytes can give a quick indication of whether heap fragmentation is becoming an issue.

Espressif Systems 2435
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Reducing Static Memory Usage
• Reducing the static memory usage of the application increases the amount of RAM available for heap at run-
time, and vice versa.

• Generally speaking, minimizing static memory usage requires monitoring the .data and .bss sizes. For
tools to do this, see Measuring Static Sizes.

• Internal ESP-IDF functions do not make heavy use of static RAM in C. In many instances (such as Wi-Fi
library, Bluetooth controller, IEEE 802.15.4 library), static buffers are still allocated from the heap. However,
the allocation is performed only once during feature initialization and will be freed if the feature is deinitialized.
This approach is adopted to optimize the availability of free memory at various stages of the application's life
cycle.

To minimize static memory use:

• Constant data can be stored in flash memory instead of RAM, thus it is recommended to declare structures,
buffers, or other variables as const. This approach may require modifying firmware functions to accept
const * arguments instead of mutable pointer arguments. These changes can also help reduce the stack
usage of certain functions.

• If using Bluedroid, setting the option CONFIG_BT_BLE_DYNAMIC_ENV_MEMORY will cause Bluedroid to
allocate memory on initialization and free it on deinitialization. This does not necessarily reduce the peak
memory usage, but changes it from static memory usage to runtime memory usage.

• If usingOpenThread, enabling the optionCONFIG_OPENTHREAD_PLATFORM_MSGPOOL_MANAGEMENT
will cause OpenThread to allocate message pool buffers from PSRAM, which will reduce static memory use.

Reducing Stack Sizes In FreeRTOS, task stacks are usually allocated from the heap. The stack size for each task
is fixed and passed as an argument to xTaskCreate(). Each task can use up to its allocated stack size, but using
more than this will cause an otherwise valid program to crash, with a stack overflow or heap corruption.
Therefore, determining the optimum sizes of each task stack, minimizing the required size of each task stack, and
minimizing the number of task stacks as whole, can all substantially reduce RAM usage.
To determine the optimum size for a particular task stack, users can consider the following methods:

• At runtime, call the function uxTaskGetStackHighWaterMark() with the handle of any task where
you think there is unused stack memory. This function returns the minimum lifetime free stack memory in
bytes.

– The easiest time to call uxTaskGetStackHighWaterMark() is from the task itself: call ux-
TaskGetStackHighWaterMark(NULL) to get the current task's high water mark after the time
that the task has achieved its peak stack usage, i.e., if there is a main loop, execute the main loop a
number of times with all possible states, and then call uxTaskGetStackHighWaterMark().

– Often, it is possible to subtract almost the entire value returned here from the total stack size of a task,
but allow some safety margin to account for unexpected small increases in stack usage at runtime.

• Call uxTaskGetSystemState() at runtime to get a summary of all tasks in the system. This includes
their individual stack high watermark values.

• When debugger watchpoints are not being used, users can set the CON-
FIG_FREERTOS_WATCHPOINT_END_OF_STACK option. This will cause one of the watchpoints to watch
the last word of the task's stack. If that word is overwritten (such as in a stack overflow), a panic is triggered
immediately. This is slightly more reliable than the default CONFIG_FREERTOS_CHECK_STACKOVERFLOW
option of Check using canary bytes, because the panic happens immediately, rather than on the
next RTOS context switch. Neither option is perfect. In some cases, it is possible that the stack pointer skips
the watchpoint or canary bytes and corrupts another region of RAM instead.

To reduce the required size of a particular task stack, users can consider the following methods:
• Avoid stack heavy functions. String formatting functions (like printf()) are particularly heavy users of the
stack, so any task which does not ever call these can usually have its stack size reduced.

– Enabling Newlib nano formatting reduces the stack usage of any task that calls printf() or other C
string formatting functions.

• Avoid allocating large variables on the stack. In C, any large structures or arrays allocated as an automatic
variable (i.e., default scope of a C declaration) uses space on the stack. To minimize the sizes of these, allocate

Espressif Systems 2436
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

them statically and/or see if you can save memory by dynamically allocating them from the heap only when
they are needed.

• Avoid deep recursive function calls. Individual recursive function calls do not always add a lot of stack usage
each time they are called, but if each function includes large stack-based variables then the overhead can get
quite high.

To reduce the total number of tasks, users can consider the following method:
• Combine tasks. If a particular task is never created, the task's stack is never allocated, thus reducing RAM
usage significantly. Unnecessary tasks can typically be removed if those tasks can be combined with another
task. In an application, tasks can typically be combined or removed if:

– The work done by the tasks can be structured into multiple functions that are called sequentially.
– The work done by the tasks can be structured into smaller jobs that are serialized (via a FreeRTOS queue
or similar) for execution by a worker task.

Internal Task Stack Sizes ESP-IDF allocates a number of internal tasks for housekeeping purposes or operating
system functions. Some are created during the startup process, and some are created at runtime when particular
features are initialized.
The default stack sizes for these tasks are usually set conservatively high to allow all common usage patterns. Many
of the stack sizes are configurable, and it may be possible to reduce them to match the real runtime stack usage of
the task.

Important: If internal task stack sizes are set too small, ESP-IDF will crash unpredictably. Even if the root cause
is task stack overflow, this is not always clear when debugging. It is recommended that internal stack sizes are only
reduced carefully (if at all), with close attention to high water mark free space under load. If reporting an issue that
occurs when internal task stack sizes have been reduced, please always include the following information and the
specific configuration that is being used.

• Running the main task has stack size CONFIG_ESP_MAIN_TASK_STACK_SIZE.
• High Resolution Timer (ESP Timer) system task which executes callbacks has stack size CON-

FIG_ESP_TIMER_TASK_STACK_SIZE.
• FreeRTOS Timer Task to handle FreeRTOS timer callbacks has stack size CON-

FIG_FREERTOS_TIMER_TASK_STACK_DEPTH.
• Event Loop Library system task to execute callbacks for the default system event loop has stack size CON-

FIG_ESP_SYSTEM_EVENT_TASK_STACK_SIZE.
• lwIP TCP/IP task has stack size CONFIG_LWIP_TCPIP_TASK_STACK_SIZE.
• Bluetooth API have task stack sizes CONFIG_BT_BTC_TASK_STACK_SIZE, CON-

FIG_BT_BTU_TASK_STACK_SIZE.
• NimBLE-based host APIs has task stack size CONFIG_BT_NIMBLE_HOST_TASK_STACK_SIZE.
• The Ethernet driver creates a task for the MAC to receive Ethernet frames. If using the default config
ETH_MAC_DEFAULT_CONFIG then the task stack size is 4 KB. This setting can be changed by passing
a custom eth_mac_config_t struct when initializing the Ethernet MAC.

• FreeRTOS idle task stack size is configured by CONFIG_FREERTOS_IDLE_TASK_STACKSIZE.
• If using the ESP-MQTT component, it creates a task with stack size configured by CON-

FIG_MQTT_TASK_STACK_SIZE. MQTT stack size can also be configured using task_stack field
of esp_mqtt_client_config_t.

• To see how to optimize RAM usage when using mDNS, please check Minimizing RAM Usage.

Note: Aside from built-in system features such as ESP-timer, if an ESP-IDF feature is not initialized by the firmware,
then no associated task is created. In those cases, the stack usage is zero, and the stack-size configuration for the task
is not relevant.

Reducing Heap Usage For functions that assist in analyzing heap usage at runtime, see Heap Memory Debugging.

Espressif Systems 2437
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://docs.espressif.com/projects/esp-protocols/mdns/docs/latest/en/index.html#minimizing-ram-usage
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Normally, optimizing heap usage consists of analyzing the usage and removing calls to malloc() that are not being
used, reducing the corresponding sizes, or freeing previously allocated buffers earlier.
There are some ESP-IDF configuration options that can reduce heap usage at runtime:

• lwIP documentation has a section to configure Minimum RAM usage.
• Wi-Fi Buffer Usage describes options to either reduce the number of static buffers or reduce the maximum
number of dynamic buffers in use, so as to minimize memory usage at a possible cost of performance. Note
that static Wi-Fi buffers are still allocated from the heap when Wi-Fi is initialized, and will be freed if Wi-Fi
is deinitialized.

• Several Mbed TLS configuration options can be used to reduce heap memory usage. See the Reducing Heap
Usage docs for details.

Note: There are other configuration options that increases heap usage at runtime if changed from the defaults. These
options are not listed above, but the help text for the configuration item will mention if there is some memory impact.

Optimizing IRAM Usage The available DRAM at runtime for heap usage is also reduced by the static IRAM
usage. Therefore, one way to increase available DRAM is to reduce IRAM usage.
If the app allocates more static IRAM than available, then the app will fail to build, and linker errors such assection
'.iram0.text' will not fit in region 'iram0_0_seg', IRAM0 segment data does
not fit, and region 'iram0_0_seg' overflowed by 84-bytes will be seen. If this happens, it is
necessary to find ways to reduce static IRAM usage in order to link the application.
To analyze the IRAM usage in the firmware binary, useMeasuring Static Sizes. If the firmware failed to link, steps to
analyze are shown at Showing Size When Linker Fails.
The following options will reduce IRAM usage of some ESP-IDF features:

• Enable CONFIG_FREERTOS_PLACE_FUNCTIONS_INTO_FLASH. Provided these functions are not incor-
rectly used from ISRs, this option is safe to enable in all configurations.

• Enable CONFIG_FREERTOS_PLACE_SNAPSHOT_FUNS_INTO_FLASH. Enabling this option places
snapshot-related functions, such as vTaskGetSnapshot or uxTaskGetSnapshotAll, in flash.

• Enable CONFIG_RINGBUF_PLACE_FUNCTIONS_INTO_FLASH. Provided these functions are not incorrectly
used from ISRs, this option is safe to enable in all configurations.

• Enable CONFIG_RINGBUF_PLACE_ISR_FUNCTIONS_INTO_FLASH. This option is not safe to use if the ISR
ringbuf functions are used from an IRAM interrupt context, e.g., if CONFIG_UART_ISR_IN_IRAM is enabled.
For the ESP-IDF drivers where this is the case, you can get an error at run-time when installing the driver in
question.

• Disabling Wi-Fi options CONFIG_ESP_WIFI_IRAM_OPT and/or CONFIG_ESP_WIFI_RX_IRAM_OPT op-
tions frees available IRAM at the cost of Wi-Fi performance.

• Enabling CONFIG_SPI_FLASH_ROM_IMPL frees some IRAM but means that esp_flash bugfixes and new flash
chip support are not available, see SPI Flash API ESP-IDF version vs Chip-ROM version for details.

• Disabling CONFIG_ESP_EVENT_POST_FROM_IRAM_ISR prevents posting esp_event events from
IRAM-Safe Interrupt Handlers but saves some IRAM.

• Disabling CONFIG_SPI_MASTER_ISR_IN_IRAM prevents spi_master interrupts from being serviced while
writing to flash, and may otherwise reduce spi_master performance, but saves some IRAM.

• Disabling CONFIG_SPI_SLAVE_ISR_IN_IRAM prevents spi_slave interrupts from being serviced while writing
to flash, which saves some IRAM.

• Setting CONFIG_HAL_DEFAULT_ASSERTION_LEVEL to disable assertion for HAL component saves some
IRAM, especially for HAL code who calls HAL_ASSERT a lot and resides in IRAM.

• Refer to the sdkconfig menu Auto-detect Flash chips, and you can disable flash drivers which you
do not need to save some IRAM.

• Enable CONFIG_HEAP_PLACE_FUNCTION_INTO_FLASH. Provided that CON-
FIG_SPI_MASTER_ISR_IN_IRAM is not enabled and the heap functions are not incorrectly used from
ISRs, this option is safe to enable in all configurations.

Espressif Systems 2438
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note: Moving frequently-called functions from IRAM to flash may increase their execution time.

Note: Other configuration options exist that will increase IRAM usage by moving some functionality into IRAM,
usually for performance, but the default option is not to do this. These are not listed here. The IRAM size impact of
enabling these options is usually noted in the configuration item help text.

4.22 Reproducible Builds

4.22.1 Introduction

ESP-IDF build system has support for reproducible builds.
When reproducible builds are enabled, the application built with ESP-IDF doesn't depend on the build environment.
Both the .elf file and .bin files of the application remains exactly the same, even if the following variables change:

• Directory where the project is located
• Directory where ESP-IDF is located (IDF_PATH)
• Build time

4.22.2 Reasons for non-reproducible builds

There are several reasons why an application may depend on the build environment, even when the same source code
and tools versions are used.

• In C code, __FILE__ preprocessor macro is expanded to the full path of the source file.
• __DATE__ and __TIME__ preprocessor macros are expanded to compilation date and time.
• When the compiler generates object files, it adds sections with debug information. These sections help de-
buggers, like GDB, to locate the source code which corresponds to a particular location in the machine code.
These sections typically contain paths of relevant source files. These paths may be absolute, and will include
the path to ESP-IDF or to the project.

There are also other possible reasons, such as unstable order of inputs and non-determinism in the build system.

4.22.3 Enabling reproducible builds in ESP-IDF

Reproducible builds can be enabled in ESP-IDF using CONFIG_APP_REPRODUCIBLE_BUILD option.
This option is disabled by default. It can be enabled in menuconfig.
The option may also be added into sdkconfig.defaults. If adding the option into sdkconfig.defaults,
delete the sdkconfig file and run the build again. See Custom Sdkconfig Defaults for more information.

4.22.4 How reproducible builds are achieved

ESP-IDF achieves reproducible builds using the following measures:
• In ESP-IDF source code, __DATE__ and __TIME__ macros are not used when reproducible builds are
enabled. Note, if the application source code uses these macros, the build will not be reproducible.

• ESP-IDF build system passes a set of -fmacro-prefix-map and -fdebug-prefix-map flags to
replace base paths with placeholders:

– Path to ESP-IDF is replaced with /IDF
– Path to the project is replaced with /IDF_PROJECT
– Path to the build directory is replaced with /IDF_BUILD

Espressif Systems 2439
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://reproducible-builds.org/docs/definition/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

– Paths to components are replaced with /COMPONENT_NAME_DIR (where NAME is the name of the
component)

• Build date and time are not included into the application metadata structure if CON-
FIG_APP_REPRODUCIBLE_BUILD is enabled.

• ESP-IDF build system ensures that source file lists, component lists and other sequences are sorted before
passing them to CMake. Various other parts of the build system, such as the linker script generator also
perform sorting to ensure that same output is produced regardless of the environment.

4.22.5 Reproducible builds and debugging

When reproducible builds are enabled, file names included in debug information sections are altered as shown in the
previous section. Due to this fact, the debugger (GDB) is not able to locate the source files for the given code location.
This issue can be solved using GDB set substitute-path command. For example, by adding the following
command to GDB init script, the altered paths can be reverted to the original ones:

set substitute-path /COMPONENT_FREERTOS_DIR /home/user/esp/esp-idf/components/
↪→freertos

ESP-IDF build system generates a file with the list of such set substitute-path commands automatically
during the build process. The file is called prefix_map_gdbinit and is located in the project build directory.
When idf.py gdb is used to start debugging, this additional gdbinit file is automatically passed to GDB. When
launching GDB manually or from and IDE, please pass this additional gdbinit script to GDB using -x build/
prefix_map_gdbinit argument.

4.22.6 Factors which still affect reproducible builds

Note that the built application still depends on:
• ESP-IDF version
• Versions of the build tools (CMake, Ninja) and the cross-compiler

IDF Docker Image can be used to ensure that these factors do not affect the build.

4.23 RF Calibration

ESP32-C6 supports three RF calibration methods during RF initialization:
1. Partial calibration
2. Full calibration
3. No calibration

4.23.1 Partial Calibration

During RF initialization, the partial calibration method is used by default for RF calibration. It is done based on
the full calibration data which is stored in the NVS. To use this method, please go to menuconfig and enable
CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE.

4.23.2 Full Calibration

Full calibration is triggered in the following conditions:
1. NVS does not exist.
2. The NVS partition to store calibration data has been erased.

Espressif Systems 2440
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

3. Hardware MAC address has changed.
4. PHY library version has changed.
5. The RF calibration data loaded from the NVS partition is broken.

Full calibration takes 100 ms longer than the partial calibration method. If boot duration is not of critical impor-
tance to the application, the full calibration method is recommended. To switch to the full calibration method, go
to menuconfig and disable CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE. If you use the default
method of RF calibration, there are two ways to add the function of triggering full calibration as a last-resort remedy.

1. Erase the NVS partition if you do not mind all of the data stored in the NVS partition is erased. That is indeed
the easiest way.

2. Call API esp_phy_erase_cal_data_in_nvs() before initializing Wi-Fi and Bluetooth®/Bluetooth
Low Energy based on some conditions (e.g., an option provided in some diagnostic mode). In this case, only
the PHY namespace of the NVS partition is erased.

4.23.3 No Calibration

The no calibration method is only used when the device wakes up from Deep-sleep mode.

4.23.4 PHY Initialization Data

The PHY initialization data is used for RF calibration. There are two ways to get the PHY initialization data.
One is to use the default initialization data which is located in the header file compo-
nents/esp_phy/esp32c6/include/phy_init_data.h. It is embedded into the application binary after compiling
and then stored into read-only memory (DROM). To use the default initialization data, please go to menuconfig
and disable CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION.
An alternative is to store the initialization data in a PHY data partition. A PHY data partition is included in the
default partition table. However, when using a custom partition table, please ensure that a PHY data partition (type:
data, subtype: phy) is included in the custom partition table. Whether you are using a custom partition table or
the default partition table, if initialization data is stored in a partition, it has to be flashed there, otherwise a runtime
error occurs. If you want to use initialization data stored in a partition, go to menuconfig and enable the option
CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION.

4.23.5 API Reference

Header File

• components/esp_phy/include/esp_phy_init.h

Functions

const esp_phy_init_data_t *esp_phy_get_init_data(void)
Get PHY init data.
If "Use a partition to store PHY init data" option is set in menuconfig, This function will load PHY init data
from a partition. Otherwise, PHY init data will be compiled into the application itself, and this function will
return a pointer to PHY init data located in read-only memory (DROM).
If "Use a partition to store PHY init data" option is enabled, this function may return NULL if the data loaded
from flash is not valid.

Note: Call esp_phy_release_init_data to release the pointer obtained using this function after the call to
esp_wifi_init.

Espressif Systems 2441
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_phy/esp32c6/include/phy_init_data.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_phy/esp32c6/include/phy_init_data.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_phy/include/esp_phy_init.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Returns pointer to PHY init data structure

void esp_phy_release_init_data(const esp_phy_init_data_t *data)
Release PHY init data.

Parameters data -- pointer to PHY init data structure obtained from esp_phy_get_init_data
function

esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t *out_cal_data)
Function called by esp_phy_load_cal_and_init to load PHY calibration data.
This is a convenience function which can be used to load PHY calibration data from NVS. Data can be stored
to NVS using esp_phy_store_cal_data_to_nvs function.
If calibration data is not present in the NVS, or data is not valid (was obtained for a chip with a different MAC
address, or obtained for a different version of software), this function will return an error.

Parameters out_cal_data -- pointer to calibration data structure to be filled with loaded data.
Returns ESP_OK on success

esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t *cal_data)
Function called by esp_phy_load_cal_and_init to store PHY calibration data.
This is a convenience function which can be used to store PHY calibration data to the NVS. Calibration data
is returned by esp_phy_load_cal_and_init function. Data saved using this function to the NVS can later be
loaded using esp_phy_store_cal_data_to_nvs function.

Parameters cal_data -- pointer to calibration data which has to be saved.
Returns ESP_OK on success

esp_err_t esp_phy_erase_cal_data_in_nvs(void)
Erase PHY calibration data which is stored in the NVS.
This is a function which can be used to trigger full calibration as a last-resort remedy if partial calibration is
used. It can be called in the application based on some conditions (e.g. an option provided in some diagnostic
mode).

Returns ESP_OK on success
Returns others on fail. Please refer to NVS API return value error number.

void esp_phy_enable(esp_phy_modem_t modem)
Enable PHY and RF module.
PHY and RF module should be enabled in order to use WiFi or BT. Now PHY and RF enabling job is done
automatically when start WiFi or BT. Users should not call this API in their application.

Parameters modem -- the modem to call the phy enable.
void esp_phy_disable(esp_phy_modem_t modem)

Disable PHY and RF module.
PHY module should be disabled in order to shutdown WiFi or BT. Now PHY and RF disabling job is done
automatically when stop WiFi or BT. Users should not call this API in their application.

Parameters modem -- the modem to call the phy disable.
void esp_btbb_enable(void)

Enable BTBB module.
BTBB module should be enabled in order to use IEEE802154 or BT. Now BTBB enabling job is done auto-
matically when start IEEE802154 or BT. Users should not call this API in their application.

void esp_btbb_disable(void)
Disable BTBB module.
Dsiable BTBB module, used by IEEE802154 or Bluetooth. Users should not call this API in their application.

Espressif Systems 2442
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

void esp_phy_load_cal_and_init(void)
Load calibration data from NVS and initialize PHY and RF module.

void esp_phy_modem_init(void)
Initialize backup memory for Phy power up/down.

void esp_phy_modem_deinit(void)
Deinitialize backup memory for Phy power up/down Set phy_init_flag if all modems deinit on ESP32C3.

void esp_phy_common_clock_enable(void)
Enable WiFi/BT common clock.

void esp_phy_common_clock_disable(void)
Disable WiFi/BT common clock.

int64_t esp_phy_rf_get_on_ts(void)
Get the time stamp when PHY/RF was switched on.

Returns return 0 if PHY/RF is never switched on. Otherwise return time in microsecond since
boot when phy/rf was last switched on

esp_err_t esp_phy_update_country_info(const char *country)
Update the corresponding PHY init type according to the country code of Wi-Fi.

Parameters country -- country code
Returns ESP_OK on success.
Returns esp_err_t code describing the error on fail

char *get_phy_version_str(void)
Get PHY lib version.

Returns PHY lib version.
void phy_init_param_set(uint8_t param)

Set PHY init parameters.
Parameters param -- is 1 means combo module

void phy_wifi_enable_set(uint8_t enable)
Wi-Fi RX enable.

Parameters enable -- True for enable wifi receiving mode as default, false for closing wifi re-
ceiving mode as default.

Structures

struct esp_phy_init_data_t
Structure holding PHY init parameters.

Public Members

uint8_t params[128]
opaque PHY initialization parameters

struct esp_phy_calibration_data_t
Opaque PHY calibration data.

Espressif Systems 2443
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Public Members

uint8_t version[4]
PHY version

uint8_t mac[6]
The MAC address of the station

uint8_t opaque[1894]
calibration data

Enumerations

enum esp_phy_modem_t

PHY enable or disable modem.
Values:

enumerator PHY_MODEM_WIFI
PHY modem WIFI

enumerator PHY_MODEM_BT
PHY modem BT

enumerator PHY_MODEM_IEEE802154
PHY modem IEEE802154

enumerator PHY_MODEM_MAX
Don't use it. Used by ESP_PHY_MODEM_COUNT_MAX

enum esp_phy_calibration_mode_t

PHY calibration mode.
Values:

enumerator PHY_RF_CAL_PARTIAL
Do part of RF calibration. This should be used after power-on reset.

enumerator PHY_RF_CAL_NONE
Don't do any RF calibration. This mode is only suggested to be used after deep sleep reset.

enumerator PHY_RF_CAL_FULL
Do full RF calibration. Produces best results, but also consumes a lot of time and current. Suggested to
be used once.

Header File

• components/esp_phy/include/esp_phy_cert_test.h

Espressif Systems 2444
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_phy/include/esp_phy_cert_test.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Functions

void esp_wifi_power_domain_on(void)
Wifi power domain power on.

void esp_wifi_power_domain_off(void)
Wifi power domain power off.

void esp_phy_rftest_config(uint8_t conf)
Environment variable configuration.

Parameters conf -- Set to 1 to enter RF test mode.
void esp_phy_rftest_init(void)

RF initialization configuration.
void esp_phy_tx_contin_en(bool contin_en)

TX Continuous mode.
Parameters contin_en -- Set to true for continuous packet sending, which can be used for

certification testing; Set to false to cancel continuous mode, which is the default mode and can
be used for WLAN tester.

void esp_phy_cbw40m_en(bool en)
HT40/HT20 mode selection.

Parameters en -- Set to false to enter 11n HT20 mode; Set to true to enter 11n HT40 mode;
void esp_phy_wifi_tx(uint32_t chan, esp_phy_wifi_rate_t rate, int8_t backoff, uint32_t length_byte,

uint32_t packet_delay, uint32_t packet_num)
Wi-Fi TX command.

Parameters
• chan -- channel setting, 1~14;
• rate -- rate setting;
• backoff -- Transmit power attenuation, unit is 0.25dB. For example, 4 means that the
power is attenuated by 1dB;

• length_byte -- TX packet length configuration, indicating PSDU Length, unit is byte;
• packet_delay -- TX packet interval configuration, unit is us;
• packet_num -- The number of packets sent, 0 means sending packets continuously,
other values represent the number of packets to send.

void esp_phy_test_start_stop(uint8_t value)
Test start/stop command, used to stop transmitting or receiving state.

Parameters value -- Value should be set to 3 before TX/RX. Set value to 0 to end TX/RX state.
void esp_phy_wifi_rx(uint32_t chan, esp_phy_wifi_rate_t rate)

Wi-Fi RX command.
Parameters

• chan -- channel setting, 1~14;
• rate -- rate setting;

void esp_phy_wifi_tx_tone(uint32_t start, uint32_t chan, uint32_t backoff)
Wi-Fi Carrier Wave(CW) TX command.

Parameters
• start -- enable CW, 1 means transmit, 0 means stop transmitting;
• chan -- CW channel setting, 1~14;
• backoff -- CW power attenuation parameter, unit is 0.25dB. 4 indicates the power is
attenuated by 1dB.

Espressif Systems 2445
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

void esp_phy_ble_tx(uint32_t txpwr, uint32_t chan, uint32_t len, esp_phy_ble_type_t data_type, uint32_t
syncw, esp_phy_ble_rate_t rate, uint32_t tx_num_in)

BLE TX command.
Parameters

• txpwr -- Transmit power level. Tx power is about (level-8)*3 dBm, step is 3dB. Level 8
is around 0 dBm;

• chan -- channel setting, range is 0~39, corresponding frequency = 2402+chan*2;
• len -- Payload length setting, range is 0-255, unit is byte, 37 bytes is employed generally;
• data_type -- Data type setting;
• syncw -- Packet identification (need to be provided by the packet generator or instrument
manufacturer), 0x71764129 is employed generally;

• rate -- rate setting;
• tx_num_in -- The number of packets sent, 0 means sending packets continuously, other
values represent the number of packets to send.

void esp_phy_ble_rx(uint32_t chan, uint32_t syncw, esp_phy_ble_rate_t rate)
BLE RX command.

Parameters
• chan -- channel selection, range is 0-39; Channels 0, 1, 2~10 correspond to 2404MHz,
2406MHz, 2408MHz~2424MHz respectively; Channels 11, 12, 13~36 correspond to
2428MHz, 2430MHz, 2432MHz~2478MHz respectively; Channel 37: 2402MHz, Chan-
nel 38: 2426MHz, Channel 39: 2480MHz;

• syncw -- Packet identification (need to be provided by the packet generator or instrument
manufacturer), 0x71764129 is employed generally;

• rate -- rate setting;
void esp_phy_bt_tx_tone(uint32_t start, uint32_t chan, uint32_t power)

BLE Carrier Wave(CW) TX command.
Parameters

• start -- enable CW, 1 means transmit, 0 means stop transmitting;
• chan -- Single carrier transmission channel selection, range is 0~39, corresponding fre-
quency freq = 2402+chan*2;

• power -- CW power attenuation parameter, unit is 0.25dB. 4 indicates the power is at-
tenuated by 1dB.

void esp_phy_get_rx_result(esp_phy_rx_result_t *rx_result)
Get some RX information.

Parameters rx_result -- This struct for storing RX information;
void esp_phy_11ax_tx_set(uint32_t he_format, uint32_t pe, uint32_t giltf_num, uint32_t ru_index)

Structures

struct esp_phy_rx_result_t
Structure holding PHY RX result.

Public Members

uint32_t phy_rx_correct_count
The number of desired packets received

int phy_rx_rssi
Average RSSI of desired packets

Espressif Systems 2446
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

uint32_t phy_rx_total_count
The number of total packets received

uint32_t phy_rx_result_flag
0 means no RX info; 1 means the latest Wi-Fi RX info; 2 means the latest BLE RX info.

Enumerations

enum esp_phy_wifi_rate_t

Values:

enumerator PHY_RATE_1M

enumerator PHY_RATE_2M

enumerator PHY_RATE_5M5

enumerator PHY_RATE_11M

enumerator PHY_RATE_6M

enumerator PHY_RATE_9M

enumerator PHY_RATE_12M

enumerator PHY_RATE_18M

enumerator PHY_RATE_24M

enumerator PHY_RATE_36M

enumerator PHY_RATE_48M

enumerator PHY_RATE_54M

enumerator PHY_RATE_MCS0

enumerator PHY_RATE_MCS1

enumerator PHY_RATE_MCS2

enumerator PHY_RATE_MCS3

enumerator PHY_RATE_MCS4

Espressif Systems 2447
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

enumerator PHY_RATE_MCS5

enumerator PHY_RATE_MCS6

enumerator PHY_RATE_MCS7

enumerator PHY_RATE_11AX_MCS0

enumerator PHY_RATE_11AX_MCS1

enumerator PHY_RATE_11AX_MCS2

enumerator PHY_RATE_11AX_MCS3

enumerator PHY_RATE_11AX_MCS4

enumerator PHY_RATE_11AX_MCS5

enumerator PHY_RATE_11AX_MCS6

enumerator PHY_RATE_11AX_MCS7

enumerator PHY_RATE_11AX_MCS8

enumerator PHY_RATE_11AX_MCS9

enumerator PHY_WIFI_RATE_MAX

enum esp_phy_ble_rate_t

Values:

enumerator PHY_BLE_RATE_1M

enumerator PHY_BLE_RATE_2M

enumerator PHY_BLE_RATE_125K

enumerator PHY_BLE_RATE_500k

enumerator PHY_BLE_RATE_MAX

enum esp_phy_ble_type_t

Values:

enumerator PHY_BLE_TYPE_1010

Espressif Systems 2448
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

enumerator PHY_BLE_TYPE_00001111

enumerator PHY_BLE_TYPE_prbs9

enumerator PHY_BLE_TYPE_00111100

enumerator PHY_BLE_TYPE_MAX

4.24 Security

This guide provides an overview of the overall security features available in Espressif solutions. It is highly recom-
mended to consider this guide while designing the products with Espressif platform and ESP-IDF software stack from
the "security" perspective.

4.24.1 Goals

High level security goals are as follows:
1. Preventing untrusted code execution
2. Protecting the identity and integrity of the code stored in the off-chip flash memory
3. Securing device identity
4. Secure storage for confidential data
5. Authenticated and encrypted communication from the device

4.24.2 Platform Security

Secure Boot

Secure Boot feature ensures that only authenticated software can execute on the device. Secure boot process forms
chain of trust by verifying all mutable software entities involved in the ESP-IDF boot process. Signature verification
happens during both boot-up as well as OTA updates.
Please refer to the Secure Boot (v2) Guide for detailed documentation about this feature.

Important: It is highly recommended that a secure boot feature be enabled on all production devices.

Secure Boot Best Practices
• Generate the signing key on a system with a quality source of entropy.
• Always keep the signing key private. A leak of this key will compromise the Secure Boot system.
• Do not allow any third party to observe any aspects of the key generation or signing process using espsecure.py.
Both processes are vulnerable to timing or other side-channel attacks.

• Ensure that all security eFuses have been correctly programmed, includes disabling of the debug interfaces,
non-required boot mediums (e.g., UART DL mode) etc.

Flash Encryption

Flash Encryption feature helps to encrypt the contents on the off-chip flash memory and thus provides the "confiden-
tiality" aspect to the software or data stored in the flash memory.
Please refer to the Flash Encryption Guide for detailed documentation about this feature.

Espressif Systems 2449
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Flash Encryption Best Practices
• It is recommended to use Flash Encryption release mode for the production use-cases.
• It is recommended to have a unique flash encryption key per device.
• Enable Secure Boot as an extra layer of protection, and to prevent an attacker from selectively corrupting any
part of the flash before boot.

Device Identity

Digital Signature Peripheral in ESP32-C6 produces hardware accelerated RSA digital signatures (with assistance of
HMAC), without the RSA private key being accessible by software. This allows the private key to be kept secured
on the device without anyone other than the device hardware being able to access it.
DS peripheral can help to establish the Secure Device Identity to the remote endpoint, e.g., in the case of TLS
mutual authentication based on the RSA cipher scheme.
Please refer to the Digital Signature (DS) for detailed documentation.

Memory Protection

ESP32-C6 supports "Memory Protection" scheme (either through architecture or special peripheral like PMS) which
provides an ability to enforce and monitor permission attributes to memory (and peripherals in some cases). ESP-
IDF application startup code configures the permissions attributes like Read/Write access on data memories and
Read/Execute access on instruction memories using this peripheral. If there is any attempt made that breaks these
permission attributes (e.g., a write operation to instruction memory region) then a violation interrupt is raised, and it
results in system panic.
This feature depends on the config option CONFIG_ESP_SYSTEM_MEMPROT_FEATURE and it is kept default en-
abled. Please note that the API for this feature is private and used exclusively by ESP-IDF code only.

Note: This feature can help to prevent the possibility of remote code injection due to the existing vulnerabilities in
the software.

Protection Against Side-Channel Attacks

DPA (Differential Power Analysis) Protection ESP32-C6 has support for protection mechanisms against the
Differential Power Analysis related security attacks. DPA protection dynamically adjusts the clock frequency of the
crypto peripherals, thereby blurring the power consumption trajectory during its operation. Based on the config-
ured DPA security level, the clock variation range changes. Please refer to the TRM for more details on this topic.
CONFIG_ESP_CRYPTO_DPA_PROTECTION_LEVEL can help to select the DPA level. Higher level means better
security, but it can also have an associated performance impact. By default, the lowest DPA level is kept enabled but
it can be modified based on the security requirement.

Note: Please note that hardware RNG must be enabled for DPA protection to work correctly.

Debug Interfaces

JTAG
• JTAG interfaces stays disabled if any of the security features are enabled, please refer to JTAG with Flash

Encryption or Secure Boot for more information.
• JTAG interface can also be disabled in the absence of any other security features using eFuse API.
• ESP32-C6 supports soft disabling the JTAG interface and it can be re-enabled by programming a secret key
through HMAC. (HMAC for Enabling JTAG)

Espressif Systems 2450
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

UART DL Mode In ESP32-C6, Secure UART Download mode gets activated if any of the security features are
enabled.

• SecureUARTDownloadmode can also be enabled by callingesp_efuse_enable_rom_secure_download_mode().
• This mode does not allow any arbitrary code to execute if downloaded through the UART download mode.
• It also limits the available commands in Download mode to update SPI config, changing baud rate, basic flash
write and a command to return a summary of currently enabled security features (get_security_info).

• To disable Download Mode entirely select the CONFIG_SECURE_UART_ROM_DL_MODE
to "Permanently disable ROM Download Mode (recommended)" or call
esp_efuse_disable_rom_download_mode() at runtime.

Important: In Secure UART Download mode, esptool can only work with the argument --no-stub.

4.24.3 Network Security

Wi-Fi

In addition to the traditional security methods (WEP/WPA-TKIP/WPA2-CCMP), Wi-Fi driver in ESP-IDF also
supports additional state-of-the-art security protocols. Please refer to theWi-Fi Security for detailed documentation.

TLS (Transport Layer Security)

It is recommended to use TLS (Transport Layer Security) in all external communications, e.g., cloud communication,
OTA updates etc. from the ESP device. ESP-IDF supports mbedTLS as the official TLS stack.
TLS is default integrated in ESP HTTP Client, ESP HTTPS Server and several other components that ship with ESP-
IDF.

Note: It is recommended to use ESP-IDF protocol components in their default configuration which has been ensured
to be secure. Disabling HTTPS and similar security critical configurations should be avoided.

ESP-TLS Abstraction ESP-IDF provides an abstraction layer for most used TLS functionalities and hence it is
recommended that an application makes use of the API exposed by ESP-TLS.
TLS Server verification section highlights diverse ways in which the identity of server could be established on the
device side.

ESP Certificate Bundle The ESP x509 Certificate Bundle API provides an easy way to include a bundle of custom
x509 root certificates for TLS server verification. The certificate bundle is the easiest way to verify the identity of
almost all standard TLS servers.

Important: It is highly recommended to verify the identity of the server (based on X.509 certificates) to avoid
establishing communication with the fake server.

4.24.4 Product Security

Secure Provisioning

Secure Provisioning refers to a process of secure on-boarding of the ESP device on to the Wi-Fi network. This
mechanism also allows provision of additional custom configuration data during the initial provisioning phase from
the provisioning entity (e.g., Smartphone).

Espressif Systems 2451
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

ESP-IDF provides various security schemes to establish a secure session between ESP and the provisioning entity,
they are highlighted at Security Schemes.
Please refer to theWi-Fi Provisioning documentation for details and example code for this feature.

Note: Espressif provides Android and iOS Phone Apps along with their sources so that it could be easy to further
customize them as per the product requirement.

Secure OTA (Over-the-air) Updates

• OTA Updates must happen over secure transport, e.g., HTTPS.
• ESP-IDF provides a simplified abstraction layer ESP HTTPS OTA for this.
• If Secure Boot is enabled then server should host the signed application image.
• If Flash Encryption is enabled then no additional steps are required on the server side, encryption shall be taken
care on the device itself during flash write.

• OTA update Rollback Process can help to switch the application as active only after its functionality has
been verified.

Anti-Rollback Protection Anti-rollback protection feature ensures that device only executes application that meets
the security version criteria as stored in its eFuse. So even though the application is trusted and signed by legitimate
key it may contain some revoked security feature or credential and hence device must reject any such application.
ESP-IDF allows this feature for the application only and it's managed through 2nd stage bootloader. The security
version is stored in the device eFuse and it's compared against the application image header during both bootup and
over-the-air updates.
Please see more information to enable this feature in the Anti-rollback guide.

Encrypted Firmware Distribution Encrypted firmware distribution during over-the-air updates ensure that the
application stays encrypted in transit from server to the the device. This can act as an additional layer of protection
on top of the TLS communication during OTA updates and protect the identity of the application.
Please see working example for this documented in OTA Upgrades with Pre-Encrypted Firmware section.

Secure Storage

Secure storage refers to the application specific data that can be stored in a secure manner on the device (off-chip
flash memory). This is typically read-write flash partition and holds device specific configuration data e.g., Wi-Fi
credentials.
ESP-IDF provides "NVS (Non-volatile Storage)" management component which allows encrypted data partitions.
This feature is tied with the platform Flash Encryption feature described earlier.
Please refer to the NVS Encryption for detailed documentation on the working and instructions to enable this feature.

Important: By default, ESP-IDF components writes the device specific data into the default NVS partition (includes
Wi-Fi credentials too) and it is recommended to protect this data using "NVS Encryption" feature.

Secure Device Control

ESP-IDF provides capability to control an ESP device over Wi-Fi + HTTP or BLE in a secure manner using ESP
Local Control component.
Please refer to the ESP Local Control for detailed documentation about this feature.

Espressif Systems 2452
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.24.5 Security Policy

ESP-IDF GitHub repository has attached Security Policy Brief.

Advisories

• Espressif publishes critical Security Advisories on the website, this includes both hardware and software related.
• ESP-IDF software components specific advisories are published through the GitHub repository.

Software Updates

Critical security issues in the ESP-IDF components, 3rd party libraries are fixed as and when we find them or when
they are reported to us. Gradually, we make the fixes available in all applicable release branches in ESP-IDF.
Applicable security issues and CVEs for the ESP-IDF components, 3rd party libraries are mentioned in the ESP-IDF
release notes.

Important: We recommend periodically updating to the latest bugfix version of the ESP-IDF release to have all
critical security fixes available.

4.25 Secure Boot V2

Important: This document is about Secure Boot V2, supported on ESP32-C6
Secure Boot V2 uses RSA-PSS or ECDSA based app and bootloader verification. This document can also be used
as a reference for signing apps using the RSA-PSS or ECDSA scheme without signing the bootloader.

4.25.1 Background

Secure Boot protects a device from running any unauthorized (i.e., unsigned) code by checking that each piece of
software that is being booted is signed. On an ESP32-C6, these pieces of software include the second stage bootloader
and each application binary. Note that the first stage bootloader does not require signing as it is ROM code thus cannot
be changed.
ESP32-C6 has provision to choose between a RSA-PSS or ECDSA based secure boot verification scheme.
The Secure Boot process on the ESP32-C6 involves the following steps:

1. When the first stage bootloader loads the second stage bootloader, the second stage bootloader's RSA-PSS or
ECDSA signature is verified. If the verification is successful, the second stage bootloader is executed.

2. When the second stage bootloader loads a particular application image, the application's RSA-PSS or ECDSA
signature is verified. If the verification is successful, the application image is executed.

4.25.2 Advantages

• The RSA-PSS or ECDSA public key is stored on the device. The corresponding RSA-PSS or ECDSA private
key is kept at a secret place and is never accessed by the device.

• Up to three public keys can be generated and stored in the chip during manufacturing.
• ESP32-C6 provides the facility to permanently revoke individual public keys. This can be configured conser-
vatively or aggressively.

Espressif Systems 2453
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/master/SECURITY.md
https://www.espressif.com/en/support/documents/advisories
https://github.com/espressif/esp-idf/security/advisories
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Conservatively - The old key is revoked after the bootloader and application have successfully migrated to a
new key. Aggressively - The key is revoked as soon as verification with this key fails.

• Same image format and signature verification method is applied for applications and software bootloader.
• No secrets are stored on the device. Therefore, it is immune to passive side-channel attacks (timing or power
analysis, etc.)

4.25.3 Secure Boot V2 Process

This is an overview of the Secure Boot V2 Process. Instructions how to enable Secure Boot are supplied in section
How To Enable Secure Boot V2.
Secure Boot V2 verifies the bootloader image and application binary images using a dedicated signature block. Each
image has a separately generated signature block which is appended to the end of the image.
Up to 3 signature blocks can be appended to the bootloader or application image in ESP32-C6.
Each signature block contains a signature of the preceding image as well as the corresponding RSA-3072, ECDSA-
256, or ECDSA-192 public key. For more details about the format, refer to Signature Block Format. A digest of the
RSA-3072, ECDSA-256, or ECDSA-192 public key is stored in the eFuse.
The application image is not only verified on every boot but also on each over the air (OTA) update. If the cur-
rently selected OTA app image cannot be verified, the bootloader will fall back and look for another correctly signed
application image.
The Secure Boot V2 process follows these steps:

1. On startup, the ROM code checks the Secure Boot V2 bit in the eFuse. If Secure Boot is disabled, a normal
boot will be executed. If Secure Boot is enabled, the boot will proceed according to the following steps.

2. The ROM code verifies the bootloader's signature block (Verifying a Signature Block). If this fails, the boot
process will be aborted.

3. The ROM code verifies the bootloader image using the raw image data, its corresponding signature block(s),
and the eFuse (Verifying an Image). If this fails, the boot process will be aborted.

4. The ROM code executes the bootloader.
5. The bootloader verifies the application image's signature block (Verifying a Signature Block). If this fails, the

boot process will be aborted.
6. The bootloader verifies the application image using the raw image data, its corresponding signature blocks and

the eFuse (Verifying an Image). If this fails, the boot process will be aborted. If the verification fails but
another application image is found, the bootloader will then try to verify that other image using steps 5 to 7.
This repeats until a valid image is found or no other images are found.

7. The bootloader executes the verified application image.

4.25.4 Signature Block Format

The signature block starts on a 4KB aligned boundary and has a flash sector of its own. The signature is calculated
over all bytes in the image including the padding bytes (Secure Padding).

Note: ESP32-C6 has a provision to choose between RSA scheme and ECDSA scheme. Only one scheme can be
used per device.
ECDSA provides similar security strength, compared to RSA, with shorter key lengths. Current estimates are that
ECDSA with curve P-256 has an approximate equivalent strength to RSA with 3072-bit keys. However, ECDSA
signature verification takes considerably more amount of time as compared to RSA signature verification.
RSA is recommended for use cases where fast bootup time is required whereas ECDSA is recommended for use
cases where shorter key length is required.

Espressif Systems 2454
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 32: Comparison between signature verification time
Verification scheme Time CPU Frequency
RSA-3072 ~2.7 ms 160 MHz
ECDSA-P256 ~21.5 ms 160 MHz

The above table compares the time taken to verify a signature in a particular scheme. It does not indicate the bootup
time.

The content of each signature block is shown in the following table:

Table 33: Content of a RSA Signature Block
Offset Size (bytes) Description
0 1 Magic byte
1 1 Version number byte (currently 0x02), 0x01 is for Secure Boot V1.
2 2 Padding bytes, Reserved. Should be zero.
4 32 SHA-256 hash of only the image content, not including the signature block.
36 384 RSA Public Modulus used for signature verification. (value ‘n’in

RFC8017).
420 4 RSA Public Exponent used for signature verification (value ‘e’in

RFC8017).
424 384 Pre-calculated R, derived from‘n’.
808 4 Pre-calculated M’, derived from‘n’
812 384 RSA-PSS Signature result (section 8.1.1 of RFC8017) of image content,

computed using following PSS parameters: SHA256 hash, MGF1 func-
tion, salt length 32 bytes, default trailer field (0xBC).

1196 4 CRC32 of the preceding 1196 bytes.
1200 16 Zero padding to length 1216 bytes.

Note: R and M' are used for hardware-assisted Montgomery Multiplication.

Table 34: Content of a ECDSA Signature Block
Offset Size (bytes) Description
0 1 Magic byte.
1 1 Version number byte (currently 0x03).
2 2 Padding bytes, Reserved. Should be zero.
4 32 SHA-256 hash of only the image content, not including the signature block.
36 1 Curve ID (1 for NIST192p curve. 2 for NIST256p curve).
37 64 ECDSA Public key: 32 byte X coordinate followed by 32 byte Y coordi-

nate.
101 64 ECDSA Signature result (section 5.3.2 of RFC6090) of the image content:

32 byte R component followed by 32 byte S component.
165 1031 Reserved.
1196 4 CRC32 of the preceding 1196 bytes.
1200 16 Zero padding to length 1216 bytes.

The remainder of the signature sector is erased flash (0xFF) which allows writing other signature blocks after previous
signature block.

4.25.5 Secure Padding

In Secure Boot V2 scheme, the application image is padded to the flash MMU page size boundary to ensure that only
verified contents are mapped in the internal address space. This is known as secure padding. Signature of the image

Espressif Systems 2455
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

is calculated after padding and then signature block (4KB) gets appended to the image.

• Default flash MMU page size is 64KB
• ESP32-C6 supports configurable flash MMU page size, it (CONFIG_MMU_PAGE_SIZE) gets set based on
the CONFIG_ESPTOOLPY_FLASHSIZE

• Secure padding is applied through the option --secure-pad-v2 in the elf2image conversion using
esptool.py

Following table explains the Secure Boot V2 signed image with secure padding and signature block appended:

Table 35: Contents of a signed application
Offset Size (KB) Description
0 580 Unsigned application size (as an ex-

ample)
580 60 Secure padding (aligned to next

64KB boundary)
640 4 Signature block

Note: Please note that the application image always starts on the next flashMMU page size boundary (default 64KB)
and hence the space left over after the signature block shown above can be utilized to store any other data partitions
(e.g., nvs).

4.25.6 Verifying a Signature Block

A signature block is“valid”if the first byte is 0xe7 and a valid CRC32 is stored at offset 1196. Otherwise it's invalid.

4.25.7 Verifying an Image

An image is “verified”if the public key stored in any signature block is valid for this device, and if the stored
signature is valid for the image data read from flash.

1. Compare the SHA-256 hash digest of the public key embedded in the bootloader's signature block with the
digest(s) saved in the eFuses. If public key's hash doesn't match any of the hashes from the eFuses, the verifi-
cation fails.

2. Generate the application image digest and match it with the image digest in the signature block. If the digests
don't match, the verification fails.

3. Use the public key to verify the signature of the bootloader image, using either RSA-PSS (section 8.1.2 of
RFC8017) or ECDSA signature verification (section 5.3.3 of RFC6090) with the image digest calculated in
step (2) for comparison.

4.25.8 Bootloader Size

Enabling Secure boot and/or flash encryption will increase the size of bootloader, which might require updating
partition table offset. See Bootloader Size.
In the case when CONFIG_SECURE_BOOT_BUILD_SIGNED_BINARIES is disabled, the bootloader is sector padded
(4KB) using the --pad-to-size option in elf2image command of esptool.

4.25.9 eFuse usage

• SECURE_BOOT_EN - Enables Secure Boot protection on boot.

Espressif Systems 2456
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• KEY_PURPOSE_X - Set the purpose of the key block on ESP32-C6 by programming SE-
CURE_BOOT_DIGESTX (X = 0, 1, 2) into KEY_PURPOSE_X (X = 0, 1, 2, 3, 4, 5). Example: If
KEY_PURPOSE_2 is set to SECURE_BOOT_DIGEST1, then BLOCK_KEY2 will have the Secure Boot
V2 public key digest. The write-protection bit must be set (this field does not have a read-protection bit).

• BLOCK_KEYX - The block contains the data corresponding to its purpose programmed in
KEY_PURPOSE_X. Stores the SHA-256 digest of the public key. SHA-256 hash of public key mod-
ulus, exponent, pre-calculated R & M’values (represented as 776 bytes –offsets 36 to 812 - as per the
Signature Block Format) is written to an eFuse key block. The write-protection bit must be set, but the
read-protection bit must not.

• KEY_REVOKEX - The revocation bits corresponding to each of the 3 key block. Ex. Setting
KEY_REVOKE2 revokes the key block whose key purpose is SECURE_BOOT_DIGEST2.

• SECURE_BOOT_AGGRESSIVE_REVOKE - Enables aggressive revocation of keys. The key is revoked as
soon as verification with this key fails.

To ensure no trusted keys can be added later by an attacker, each unused key digest slot should be revoked
(KEY_REVOKEX). It will be checked during app startup in esp_secure_boot_init_checks() and fixed
unless CONFIG_SECURE_BOOT_ALLOW_UNUSED_DIGEST_SLOTS is enabled.
The key(s) must be readable in order to give software access to it. If the key(s) is read-protected then the software
reads the key(s) as all zeros and the signature verification process will fail, and the boot process will be aborted.

4.25.10 How To Enable Secure Boot V2

1. Open the Project Configuration Menu, in "Security features" set "Enable hardware Secure Boot in bootloader"
to enable Secure Boot.

2. The "Secure Boot V2" option will be selected and the "App Signing Scheme" would be set to RSA by default.
RSA is recommended because of faster verification time. You can choose between RSA and ECDSA scheme
from the menu.

3. Specify the path to Secure Boot signing key, relative to the project directory.
4. Select the desired UART ROM download mode in "UART ROM download mode". By default, it is set to

"Permanently switch to Secure mode" which is generally recommended. For production devices, the most
secure option is to set it to "Permanently disabled".

5. Set other menuconfig options (as desired). Then exit menuconfig and save your configuration.
6. The first time you run idf.py build, if the signing key is not found then an error message will be printed

with a command to generate a signing key via espsecure.py generate_signing_key.

Important: A signing key generated this way will use the best random number source available to the OS and
its Python installation (/dev/urandom on OSX/Linux and CryptGenRandom() on Windows). If this random number
source is weak, then the private key will be weak.

Important: For production environments, we recommend generating the key pair using openssl or another industry
standard encryption program. See Generating Secure Boot Signing Key for more details.

7. Run idf.py bootloader to build a Secure Boot enabled bootloader. The build output will include a
prompt for a flashing command, using esptool.py write_flash.

8. When you're ready to flash the bootloader, run the specified command (you have to enter it yourself, this step
is not performed by the build system) and then wait for flashing to complete.

9. Run idf.py flash to build and flash the partition table and the just-built app image. The app image will
be signed using the signing key you generated in step 6.

Note: idf.py flash doesn't flash the bootloader if Secure Boot is enabled.

10. Reset the ESP32-C6 and it will boot the software bootloader you flashed. The software bootloader will enable
Secure Boot on the chip, and then it verifies the app image signature and boots the app. You should watch the

Espressif Systems 2457
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

serial console output from the ESP32-C6 to verify that Secure Boot is enabled and no errors have occurred
due to the build configuration.

Note: Secure boot won't be enabled until after a valid partition table and app image have been flashed. This is to
prevent accidents before the system is fully configured.

Note: If the ESP32-C6 is reset or powered down during the first boot, it will start the process again on the next
boot.

11. On subsequent boots, the Secure Boot hardware will verify the software bootloader has not changed and the
software bootloader will verify the signed app image (using the validated public key portion of its appended
signature block).

4.25.11 Restrictions after Secure Boot is enabled

• Any updated bootloader or app will need to be signed with a key matching the digest already stored in eFuse.
• Please note that enabling Secure Boot or flash encryption disables the USB-OTG USB stack in the ROM,
disallowing updates via the serial emulation or Device Firmware Update (DFU) on that port.

Burning read-protected keys

After Secure Boot is enabled, no further eFuses can be read-protected, because this might allow an attacker to read-
protect the efuse block holding the public key digest, causing an immediate denial of service and possibly allowing
an additional fault injection attack to bypass the signature protection.
If Flash Encryption is enabled by the 2nd stage bootloader, it ensures that the flash encryption key generated on the
first boot shall already be read-protected.
In case you need to read-protect a key after Secure Boot has been enabled on the device, for example,

• the flash encryption key
• HMAC keys

you need to enable the config CONFIG_SECURE_BOOT_V2_ALLOW_EFUSE_RD_DIS at the same time when you
enable Secure Boot to prevent disabling the ability to read-protect further efuses.
It is highly recommended that all such keys must been burned before enabling secure boot.
In case you need to enable CONFIG_SECURE_BOOT_V2_ALLOW_EFUSE_RD_DIS, make sure that you burn the
efuse ESP_EFUSE_WR_DIS_RD_DIS, using esp_efuse_write_field_bit() API from esp_efuse.
h, once all the read-protected efuse keys have been programmed.

4.25.12 Generating Secure Boot Signing Key

The build system will prompt you with a command to generate a new signing key via espsecure.py gener-
ate_signing_key.
The--version 2 parameter will generate the RSA3072 private key for Secure Boot V2. Additionally--scheme
rsa3072 can be passed as well to generate RSA 3072 private key
Select the ECDSA scheme by passing --version 2 --scheme ecdsa256 or --version 2 --scheme
ecdsa192 to generate corresponding ECDSA private key
The strength of the signing key is proportional to (a) the random number source of the system, and (b) the correctness
of the algorithm used. For production devices, we recommend generating signing keys from a system with a quality
entropy source, and using the best available RSA-PSS or ECDSA key generation utilities.

Espressif Systems 2458
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

For example, to generate a signing key using the openssl command line:
For RSA 3072
` openssl genrsa -out my_secure_boot_signing_key.pem 3072 `

For ECC NIST192p curve
` openssl ecparam -name prime192v1 -genkey -noout -out
my_secure_boot_signing_key.pem `

For ECC NIST256p curve
` openssl ecparam -name prime256v1 -genkey -noout -out
my_secure_boot_signing_key.pem `

Remember that the strength of the Secure Boot system depends on keeping the signing key private.

4.25.13 Remote Signing of Images

Signing using espsecure.py

For production builds, it can be good practice to use a remote signing server rather than have the signing key on the
build machine (which is the default esp-idf Secure Boot configuration). The espsecure.py command line program can
be used to sign app images & partition table data for Secure Boot, on a remote system.
To use remote signing, disable the option CONFIG_SECURE_BOOT_BUILD_SIGNED_BINARIES and build the
firmware. The private signing key does not need to be present on the build system.
After the app image and partition table are built, the build system will print signing steps using espsecure.py:

espsecure.py sign_data BINARY_FILE --version 2 --keyfile PRIVATE_SIGNING_KEY

The above command appends the image signature to the existing binary. You can use the --output argument to write
the signed binary to a separate file:

espsecure.py sign_data --version 2 --keyfile PRIVATE_SIGNING_KEY --output SIGNED_
↪→BINARY_FILE BINARY_FILE

Signing using Pre-calculated Signatures

If you have valid pre-calculated signatures generated for an image and their corresponding public keys, you can use
these signatures to generate a signature sector and append it to the image. Note that the pre-calculated signature
should be calculated over all bytes in the image including the secure-padding bytes.
In such cases, the firmware image should be built by disabling the option CON-
FIG_SECURE_BOOT_BUILD_SIGNED_BINARIES. This image will be secure-padded and to generate a signed
binary use the following command:

espsecure.py sign_data --version 2 --pub-key PUBLIC_SIGNING_KEY --signature␣
↪→SIGNATURE_FILE --output SIGNED_BINARY_FILE BINARY_FILE

The above command verifies the signature, generates a signature block (refer to Signature Block Format) and appends
it to the binary file.

Signing using an External Hardware Security Module (HSM)

For security reasons, you might also use an external Hardware Security Module (HSM) to store your private sign-
ing key, which cannot be accessed directly but has an interface to generate the signature of a binary file and its
corresponding public key.

Espressif Systems 2459
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

In such cases, disable the optionCONFIG_SECURE_BOOT_BUILD_SIGNED_BINARIES and build the firmware. This
secure-padded image then can be used to supply the external HSM for generating a signature. Refer to Signing using
an External HSM to generate a signed image.

Note: For all the above three remote signing workflows, the signed binary is written to the filename provided to the
--output argument and the option --append_signatures allows us to append multiple signatures (up to 3)
the image.

4.25.14 Secure Boot Best Practices

• Generate the signing key on a system with a quality source of entropy.
• Keep the signing key private at all times. A leak of this key will compromise the Secure Boot system.
• Do not allow any third party to observe any aspects of the key generation or signing process using espsecure.py.
Both processes are vulnerable to timing or other side-channel attacks.

• Enable all Secure Boot options in the Secure Boot Configuration. These include flash encryption, disabling of
JTAG, disabling BASIC ROM interpreter, and disabling the UART bootloader encrypted flash access.

• Use Secure Boot in combination with flash encryption to prevent local readout of the flash contents.

4.25.15 Key Management

• Between 1 and 3 RSA-3072, ECDSA-256, or ECDSA-192 public key pairs (Keys #0, #1, #2) should be
computed independently and stored separately.

• The KEY_DIGEST eFuses should be write protected after being programmed.
• The unused KEY_DIGEST slots must have their corresponding KEY_REVOKE eFuse burned to permanently
disable them. This must happen before the device leaves the factory.

• The eFuses can either be written by the software bootloader during during first boot after enabling "Secure
Boot V2" from menuconfig or can be done using espefuse.py which communicates with the serial bootloader
program in ROM.

• The KEY_DIGESTs should be numbered sequentially beginning at key digest #0. (i.e., if key digest #1 is used,
key digest #0 should be used. If key digest #2 is used, key digest #0 & #1 must be used.)

• The software bootloader (non OTA upgradeable) is signed using at least one, possibly all three, private keys
and flashed in the factory.

• Apps should only be signed with a single private key (the others being stored securely elsewhere), however they
may be signed with multiple private keys if some are being revoked (see Key Revocation, below).

4.25.16 Multiple Keys

• The bootloader should be signed with all the private key(s) that are needed for the life of the device, before it
is flashed.

• The build system can sign with at most one private key, user has to run manual commands to append more
signatures if necessary.

• You can use the append functionality of espsecure.py, this command would also printed at the end of the Secure Boot V2 enabled bootloader compilation.
espsecure.py sign_data -k secure_boot_signing_key2.pem -v 2 --append_signatures -o
signed_bootloader.bin build/bootloader/bootloader.bin

• While signing with multiple private keys, it is recommended that the private keys be signed independently, if
possible on different servers and stored separately.

• You can check the signatures attached to a binary using - espsecure.py signature_info_v2 datafile.bin

4.25.17 Key Revocation

• Keys are processed in a linear order. (key #0, key #1, key #2).
• Applications should be signed with only one key at a time, to minimize the exposure of unused private keys.
• The bootloader can be signed with multiple keys from the factory.

Espressif Systems 2460
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://docs.espressif.com/projects/esptool/en/latest/esp32c6/espsecure/index.html#remote-signing-using-an-external-hsm
https://docs.espressif.com/projects/esptool/en/latest/esp32c6/espsecure/index.html#remote-signing-using-an-external-hsm
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Conservative approach:

Assuming a trusted private key (N-1) has been compromised, to update to new key pair (N).
1. Server sends an OTA update with an application signed with the new private key (#N).
2. The new OTA update is written to an unused OTA app partition.
3. The new application's signature block is validated. The public keys are checked against the digests programmed

in the eFuse & the application is verified using the verified public key.
4. The active partition is set to the new OTA application's partition.
5. Device resets, loads the bootloader (verified with key #N-1 and #N) which then boots new app (verified with

key #N).
6. The new app verifies bootloader and application with key #N (as a final check) and then runs code to revoke

key #N-1 (sets KEY_REVOKE eFuse bit).
7. The API esp_ota_revoke_secure_boot_public_key() can be used to revoke the key #N-1.
• A similar approach can also be used to physically re-flash with a new key. For physical re-flashing, the boot-
loader content can also be changed at the same time.

Aggressive approach:

ROM code has an additional feature of revoking a public key digest if the signature verification fails.
To enable this feature, you need to burn SECURE_BOOT_AGGRESSIVE_REVOKE efuse or enable CON-
FIG_SECURE_BOOT_ENABLE_AGGRESSIVE_KEY_REVOKE

Key revocation is not applicable unless secure boot is successfully enabled. Also, a key is not revoked in case of
invalid signature block or invalid image digest, it is only revoked in case the signature verification fails, i.e. revoke
key only if failure in step 3 of Verifying an Image

Once a key is revoked, it can never be used for verfying a signature of an image. This feature provides strong
resistance against physical attacks on the device. However, this could also brick the device permanently if all the keys
are revoked because of signature verification failure.

4.25.18 Technical Details

The following sections contain low-level reference descriptions of various Secure Boot elements:

Manual Commands

Secure boot is integrated into the esp-idf build system, so idf.py build will sign an app image and idf.py
bootloader will produce a signed bootloader if secure signed binaries on build is enabled.
However, it is possible to use the espsecure.py tool to make standalone signatures and digests.
To sign a binary image:

espsecure.py sign_data --version 2 --keyfile ./my_signing_key.pem --output ./image_
↪→signed.bin image-unsigned.bin

Keyfile is the PEM file containing an RSA-3072, ECDSA-256, or ECDSA-192 private signing key.

4.25.19 Secure Boot & Flash Encryption

If Secure Boot is used without Flash Encryption, it is possible to launch "time-of-check to time-of-use" attack, where
flash contents are swapped after the image is verified and running. Therefore, it is recommended to use both the
features together.

Espressif Systems 2461
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.25.20 Signed App Verification Without Hardware Secure Boot

The Secure Boot V2 signature of apps can be checked on OTA update, without enabling the hardware Secure Boot
option. This option uses the same app signature scheme as Secure Boot V2, but unlike hardware Secure Boot it does
not prevent an attacker who can write to flash from bypassing the signature protection.
This may be desirable in cases where the delay of Secure Boot verification on startup is unacceptable, and/or where
the threat model does not include physical access or attackers writing to bootloader or app partitions in flash.
In this mode, the public key which is present in the signature block of the currently running app will be used to verify
the signature of a newly updated app. (The signature on the running app isn't verified during the update process, it's
assumed to be valid.) In this way the system creates a chain of trust from the running app to the newly updated app.
For this reason, it's essential that the initial app flashed to the device is also signed. A check is run on app startup and
the app will abort if no signatures are found. This is to try and prevent a situation where no update is possible. The
app should have only one valid signature block in the first position. Note again that, unlike hardware Secure Boot V2,
the signature of the running app isn't verified on boot. The system only verifies a signature block in the first position
and ignores any other appended signatures.
Although multiple trusted keys are supported when using hardware Secure Boot, only the first public key in the
signature block is used to verify updates if signature checking without Secure Boot is configured. If multiple trusted
public keys are required, it's necessary to enable the full Secure Boot feature instead.

Note: In general, it's recommended to use full hardware Secure Boot unless certain that this option is sufficient for
application security needs.

How To Enable Signed App Verification

1. Open Project Configuration Menu -> Security features
2. Choose App Signing Scheme. Either RSA or ECDSA (V2)

3. Enable CONFIG_SECURE_SIGNED_APPS_NO_SECURE_BOOT
4. By default, "Sign binaries during build" will be enabled on selecting "Require signed app images" option, which

will sign binary files as a part of build process. The file named in "Secure boot private signing key" will be
used to sign the image.

5. If you disable "Sign binaries during build" option then all app binaries must be manually signed by following
instructions in Remote Signing of Images.

Warning: It is very important that all apps flashed have been signed, either during the build or after the build.

4.25.21 Advanced Features

JTAG Debugging

By default, when Secure Boot is enabled then JTAG debugging is disabled via eFuse. The bootloader does this on
first boot, at the same time it enables Secure Boot.
See JTAGwith Flash Encryption or Secure Boot for more information about using JTAGDebugging with either Secure
Boot or signed app verification enabled.

4.26 Thread Local Storage

Espressif Systems 2462
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.26.1 Overview

Thread-local storage (TLS) is a mechanism by which variables are allocated such that there is one instance of the
variable per extant thread. ESP-IDF provides three ways to make use of such variables:

• FreeRTOS Native APIs: ESP-IDF FreeRTOS native APIs.
• Pthread APIs: ESP-IDF pthread APIs.
• C11 Standard: C11 standard introduces special keywords to declare variables as thread local.

4.26.2 FreeRTOS Native APIs

The ESP-IDF FreeRTOS provides the following APIs to manage thread local variables:
• vTaskSetThreadLocalStoragePointer()
• pvTaskGetThreadLocalStoragePointer()
• vTaskSetThreadLocalStoragePointerAndDelCallback()

In this case, the maximum number of variables that can be allocated is limited by CON-
FIG_FREERTOS_THREAD_LOCAL_STORAGE_POINTERS. Variables are kept in the task control block (TCB) and
accessed by their index. Note that index 0 is reserved for ESP-IDF internal uses.
Using the APIs above, you can allocate thread local variables of an arbitrary size, and assign them to any number of
tasks. Different tasks can have different sets of TLS variables.
If size of the variable is more then 4 bytes, then you need to allocate/deallocate memory for it. Variable's deallocation
is initiated by FreeRTOS when task is deleted, but user must provide callback function to do proper cleanup.

4.26.3 Pthread APIs

The ESP-IDF provides the following POSIX Threads Support to manage thread local variables:
• pthread_key_create()
• pthread_key_delete()
• pthread_getspecific()
• pthread_setspecific()

These APIs have all benefits of the ones above, but eliminates some their limits. The number of variables is limited
only by size of available memory on the heap. Due to the dynamic nature, this APIs introduce additional performance
overhead compared to the native one.

4.26.4 C11 Standard

The ESP-IDF FreeRTOS supports thread local variables according to C11 standard, ones specified with __thread
keyword. For details on this feature, please refer to the GCC documentation.
Storage for that kind of variables is allocated on the task stack. Note that area for all such variables in the program
is allocated on the stack of every task in the system even if that task does not use such variables at all. For example,
ESP-IDF system tasks (e.g., ipc, timer tasks etc.) will also have that extra stack space allocated. Thus feature
should be used with care.
Using C11 thread local variables comes at a trade-off. One one hand, they are quite handy to use in programming and
can be accessed using minimal CPU instructions. However, this benefit comes at the cost of additional stack usage
for all tasks in the system. Due to static nature of variables allocation, all tasks in the system have the same sets of
C11 thread local variables.

4.27 Tools

Espressif Systems 2463
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://gcc.gnu.org/onlinedocs/gcc-5.5.0/gcc/Thread-Local.html#Thread-Local
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.27.1 IDF Frontend - idf.py

The idf.py command-line tool provides a front-end for easily managing your project builds, deployment and de-
bugging, and more. It manages several tools, for example:

• CMake, which configures the project to be built.
• Ninja, which builds the project.
• esptool.py, which flashes the target.

The Step 5. First Steps on ESP-IDF contains a brief introduction on how to set up idf.py to configure, build, and
flash projects.

Important: idf.py should be run in an ESP-IDF project directory, i.e., a directory containing a CMakeLists.
txt file. Older style projects that contain a Makefile will not work with idf.py.

Commands

Start a New Project: create-project
idf.py create-project <project name>

This command creates a new ESP-IDF project. Additionally, the folder where the project will be created in can be
specified by the --path option.

Create a New Component: create-component
idf.py create-component <component name>

This command creates a new component, which will have a minimum set of files necessary for building. The -C
option can be used to specify the directory the component will be created in. For more information about components
see the Component CMakeLists Files.

Select the Target Chip: set-target ESP-IDF supports multiple targets (chips). A full list of supported targets
in your version of ESP-IDF can be seen by running idf.py --list-targets.

idf.py set-target <target>

This command sets the current project target.

Important: idf.py set-target will clear the build directory and re-generate the sdkconfig file from
scratch. The old sdkconfig file will be saved as sdkconfig.old.

Note: The behavior of the idf.py set-target command is equivalent to:
1. clearing the build directory (idf.py fullclean)
2. removing the sdkconfig file (mv sdkconfig sdkconfig.old)
3. configuring the project with the new target (idf.py -DIDF_TARGET=esp32 reconfigure)

It is also possible to pass the desired IDF_TARGET as an environment variable (e.g., export
IDF_TARGET=esp32s2) or as a CMake variable (e.g., -DIDF_TARGET=esp32s2 argument to CMake
or idf.py). Setting the environment variable is a convenient method if you mostly work with one type of the chip.
To specify the default value of IDF_TARGET for a given project, please add the CONFIG_IDF_TARGET option to
the project's sdkconfig.defaults file, e.g., CONFIG_IDF_TARGET="esp32s2". This value of the option

Espressif Systems 2464
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://cmake.org
https://ninja-build.org
https://github.com/espressif/esptool/#readme
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

will be used if IDF_TARGET is not specified by other methods, such as using an environment variable, a CMake
variable, or the idf.py set-target command.
If the target has not been set by any of these methods, the build system will default to esp32 target.

Start the Graphical Configuration Tool: menuconfig
idf.py menuconfig

Build the Project: build
idf.py build

This command builds the project found in the current directory. This can involve multiple steps:
• Create the build directory if needed. The sub-directory build is used to hold build output, although this can
be changed with the -B option.

• Run CMake as necessary to configure the project and generate build files for the main build tool.
• Run the main build tool (Ninja or GNU Make). By default, the build tool is automatically detected but it can
be explicitly set by passing the -G option to idf.py.

Building is incremental, so if no source files or configuration has changed since the last build, nothing will be done.
Additionally, the command can be run with app, bootloader and partition-table arguments to build only
the app, bootloader or partition table as applicable.

Remove the Build Output: clean
idf.py clean

This command removes the project build output files from the build directory, and the project will be fully rebuilt on
next build. Using this command does not remove the CMake configuration output inside the build folder.

Delete the Entire Build Contents: fullclean
idf.py fullclean

This command deletes the entire "build" directory contents, which includes all CMake configuration output. The next
time the project is built, CMake will configure it from scratch. Note that this option recursively deletes all files in the
build directory, so use with care. Project configuration is not deleted.

Flash the Project: flash
idf.py flash

This command automatically builds the project if necessary, and then flash it to the target. You can use -p and -b
options to set serial port name and flasher baud rate, respectively.

Note: The environment variables ESPPORT and ESPBAUD can be used to set default values for the -p and -b
options, respectively. Providing these options on the command line overrides the default.

idf.py uses the write_flash command of esptool.py under the hood to flash the target. You
can pass additional arguments to configure the flash writing process using the --extra-args option.
For example, to write to an external SPI flash chip, use the following command: idf.py flash
--extra-args="--spi-connection <CLK>,<Q>,<D>,<HD>,<CS>". To see the full list of available
arguments, run esptool.py write_flash --help or see the esptool.py documentation.
Similarly to the build command, the command can be run with app, bootloader and partition-table
arguments to flash only the app, bootloader or partition table as applicable.

Espressif Systems 2465
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://cmake.org
https://ninja-build.org
https://docs.espressif.com/projects/esptool/en/latest/esptool/advanced-options.html#custom-spi-pin-configuration
https://docs.espressif.com/projects/esptool/en/latest/esptool/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Hints on How to Resolve Errors

idf.py will try to suggest hints on how to resolve errors. It works with a database of hints stored in
tools/idf_py_actions/hints.yml and the hints will be printed if a match is found for the given error. The menuconfig
target is not supported at the moment by automatic hints on resolving errors.
The --no-hints argument of idf.py can be used to turn the hints off in case they are not desired.

Important Notes

Multiple idf.py commands can be combined into one. For example, idf.py -p COM4 clean flash
monitor will clean the source tree, then build the project and flash it to the target before running the serial monitor.
The order of multiple idf.py commands on the same invocation is not important, as they will automatically be
executed in the correct order for everything to take effect (e.g., building before flashing, erasing before flashing).
For commands that are not known to idf.py, an attempt to execute them as a build system target will be made.
The command idf.py supports shell autocompletion for bash, zsh and fish shells.
In order to make shell autocompletion supported, please make sure you have at least Python 3.5 and click 7.1 or newer
(Software).
To enable autocompletion for idf.py, use the export command (Step 4. Set up the environment variables).
Autocompletion is initiated by pressing the TAB key. Type idf.py - and press the TAB key to autocomplete
options.
The autocomplete support for PowerShell is planned in the future.

Advanced Commands

Open the Documentation: docs
idf.py docs

This command opens the documentation for the projects target and ESP-IDF version in the browser.

Show Size: size
idf.py size

This command prints app size information including the occupied RAM and flash and section (i.e., .bss) sizes.

idf.py size-components

Similarly, this command prints the same information for each component used in the project.

idf.py size-files

This command prints size information per source file in the project.

Options
• --format specifies the output format with available options: text, csv, json, default being text.
• --output-file optionally specifies the name of the file to print the command output to instead of the
standard output.

Espressif Systems 2466
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/idf_py_actions/hints.yml
https://click.palletsprojects.com/shell-completion/
https://click.palletsprojects.com/shell-completion/
https://click.palletsprojects.com/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Reconfigure the Project: reconfigure
idf.py reconfigure

This command forces CMake to be rerun regardless of whether it is necessary. It's unnecessary during normal usage,
but can be useful after adding/removing files from the source tree, or when modifying CMake cache variables. For
example, idf.py -DNAME='VALUE' reconfigure can be used to set variable NAME in CMake cache to
value VALUE.

Clean the Python Byte Code: python-clean
idf.py python-clean

This command deletes generated python byte code from the ESP-IDF directory. The byte code may cause issues
when switching between ESP-IDF and Python versions. It is advised to run this target after switching versions of
Python.

Generate a UF2 binary: uf2
idf.py uf2

This command will generate a UF2 (USB Flashing Format) binary uf2.bin in the build directory. This file includes
all the necessary binaries (bootloader, app, and partition table) for flashing the target.
This UF2 file can be copied to a USB mass storage device exposed by another ESP running the ESP USB Bridge
project. The bridge MCU will use it to flash the target MCU. This is as simple copying (or "drag-and-dropping") the
file to the exposed disk accessed by a file explorer in your machine.
To generate a UF2 binary for the application only (not including the bootloader and partition table), use the uf2-app
command.

idf.py uf2-app

Global Options

To list all available root level options, run idf.py --help. To list options that are specific for a subcommand,
run idf.py <command> --help, e.g., idf.py monitor --help. Here is a list of some useful options:

• -C <dir> allows overriding the project directory from the default current working directory.
• -B <dir> allows overriding the build directory from the default build subdirectory of the project directory.
• --ccache enables CCache when compiling source files if the CCache tool is installed. This can dramatically
reduce the build time.

Important: Note that some older versions of CCache may exhibit bugs on some platforms, so if files are
not rebuilt as expected, try disabling CCache and rebuiling the project. To enable CCache by default, set the
IDF_CCACHE_ENABLE environment variable to a non-zero value.

• -v flag causes both idf.py and the build system to produce verbose build output. This can be useful for
debugging build problems.

• --cmake-warn-uninitialized (or -w) causes CMake to print uninitialized variable warnings
found in the project directory only. This only controls CMake variable warnings inside CMake it-
self, not other types of build warnings. This option can also be set permanently by setting the
IDF_CMAKE_WARN_UNINITIALIZED environment variable to a non-zero value.

• --no-hints flag disables hints on resolving errors and disable capturing output.

Espressif Systems 2467
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://cmake.org
https://github.com/microsoft/uf2
https://github.com/espressif/esp-usb-bridge
https://ccache.dev/
https://ccache.dev/
https://ccache.dev/
https://ccache.dev/
https://ccache.dev/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.27.2 IDF Docker Image

IDF Docker image (espressif/idf) is intended for building applications and libraries with specific versions of
ESP-IDF, when doing automated builds.
The image contains:

• Common utilities such as git, wget, curl, zip.
• Python 3.7 or newer.
• A copy of a specific version of ESP-IDF (see below for information about versions). IDF_PATH environment
variable is set, and points to ESP-IDF location in the container.

• All the build tools required for the specific version of ESP-IDF: CMake, ninja, cross-compiler toolchains, etc.
• All Python packages required by ESP-IDF are installed in a virtual environment.

The image entrypoint sets up PATH environment variable to point to the correct version of tools, and activates the
Python virtual environment. As a result, the environment is ready to use the ESP-IDF build system.
The image can also be used as a base for custom images, if additional utilities are required.

Tags

Multiple tags of this image are maintained:
• latest: tracks master branch of ESP-IDF
• vX.Y: corresponds to ESP-IDF release vX.Y
• release-vX.Y: tracks release/vX.Y branch of ESP-IDF

Note: Versions of ESP-IDF released before this feature was introduced do not have corresponding Docker image
versions. You can check the up-to-date list of available tags at https://hub.docker.com/r/espressif/idf/tags.

Usage

Setting up Docker Before using the espressif/idf Docker image locally, make sure you have Docker in-
stalled. Follow the instructions at https://docs.docker.com/install/, if it is not installed yet.
If using the image in CI environment, consult the documentation of your CI service on how to specify the image used
for the build process.

Building a project with CMake In the project directory, run:

docker run --rm -v $PWD:/project -w /project espressif/idf idf.py build

The above command explained:
• docker run: runs a Docker image. It is a shorter form of the command docker container run.
• --rm: removes the container when the build is finished
• -v $PWD:/project: mounts the current directory on the host ($PWD) as /project directory in the
container

• espressif/idf: uses Docker image espressif/idf with tag latest (implicitly added by Docker
when no tag is specified)

• idf.py build: runs this command inside the container

Note: When the mounted directory, /project, contains a git repository owned by a different user (UID) than the
one running the Docker container, git commands executed within /projectmight fail, displaying an error message
fatal: detected dubious ownership in repository at '/project'. To resolve this
issue, you can designate the /project directory as safe by setting the IDF_GIT_SAFE_DIR environment variable

Espressif Systems 2468
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://hub.docker.com/r/espressif/idf/tags
https://docs.docker.com/install/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

during the Docker container startup. For instance, you can achieve this by including -e IDF_GIT_SAFE_DIR='/
project' as a parameter. Additionally, multiple directories can be specified by using a : separator. To entirely
disable this git security check, * can be used.

To build with a specific Docker image tag, specify it as espressif/idf:TAG, for example:

docker run --rm -v $PWD:/project -w /project espressif/idf:release-v4.4 idf.py␣
↪→build

You can check the up-to-date list of available tags at https://hub.docker.com/r/espressif/idf/tags.

Using the image interactively It is also possible to do builds interactively, to debug build issues or test the auto-
mated build scripts. Start the container with -i -t flags:

docker run --rm -v $PWD:/project -w /project -it espressif/idf

Then inside the container, use idf.py as usual:

idf.py menuconfig
idf.py build

Note: Commands which communicate with the development board, such as idf.py flash and idf.py mon-
itor will not work in the container unless the serial port is passed through into the container. This can be done with
Docker for Linux with the device option. However currently this is not possible with Docker for Windows (https:
//github.com/docker/for-win/issues/1018) and Docker for Mac (https://github.com/docker/for-mac/issues/900).
This limitation may be overcome by using remote serial ports. An example how to do this can be found in the
following using remote serial port section.

Using remote serial port The RFC2217 (Telnet) protocol can be used to remotely connect to a serial port. For
more information please see the remote serial ports documentation in the esptool project. This method can also be
used to access the serial port inside a Docker container if it cannot be accessed directly. Following is an example how
to use the flash command from within a Docker container.
On host install and start esp_rfc2217_server:

• On Windows, package is available as a one-file bundled executable created by pyinstaller and it can be down-
loaded from the esptool releases page in a zip archive along with other esptool utilities:

esp_rfc2217_server -v -p 4000 COM3

• On Linux/MacOS, package is available as part of esptool which can be found in ESP-IDF environment or by
installing using pip:

pip install esptool

And then starting the server by executing:

esp_rfc2217_server.py -v -p 4000 /dev/ttyUSB0

Now the device attached to the host can be flashed from inside a Docker container by using:

docker run --rm -v <host_path>:/<container_path> -w /<container_path> espressif/
↪→idf idf.py --port 'rfc2217://host.docker.internal:4000?ign_set_control' flash

Please make sure that <host_path> is properly set to your project path on the host and <container_path>
is set as a working directory inside the container with the -w option. The host.docker.internal is a special
Docker DNS name to access the host. This can be replaced with host IP if necessary.

Espressif Systems 2469
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://hub.docker.com/r/espressif/idf/tags
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://github.com/docker/for-win/issues/1018
https://github.com/docker/for-win/issues/1018
https://github.com/docker/for-mac/issues/900
https://docs.espressif.com/projects/esptool/en/latest/esptool/remote-serial-ports.html
http://www.ietf.org/rfc/rfc2217.txt
https://docs.espressif.com/projects/esptool/en/latest/esptool/remote-serial-ports.html
https://github.com/espressif/esptool/releases
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Building custom images

The Dockerfile in ESP-IDF repository provides several build arguments which can be used to customize the Docker
image:

• IDF_CLONE_URL: URL of the repository to clone ESP-IDF from. Can be set to a customURLwhenworking
with a fork of ESP-IDF. The default is https://github.com/espressif/esp-idf.git.

• IDF_CLONE_BRANCH_OR_TAG: Name of a git branch or tag used when cloning ESP-IDF. This value is
passed to the git clone command using the --branch argument. The default is master.

• IDF_CHECKOUT_REF: If this argument is set to a non-empty value, git checkout
$IDF_CHECKOUT_REF command performs after cloning. This argument can be set to the SHA of
the specific commit to check out, for example, if some specific commit on a release branch is desired.

• IDF_CLONE_SHALLOW: If this argument is set to a non-empty value, --depth=1
--shallow-submodules arguments are used when performing git clone. Depth can be cus-
tomized using IDF_CLONE_SHALLOW_DEPTH. Doing a shallow clone significantly reduces the amount of
data downloaded and the size of the resulting Docker image. However, if switching to a different branch in
such a "shallow" repository is necessary, an additional git fetch origin <branch> command must
be executed first.

• IDF_CLONE_SHALLOW_DEPTH: This argument specifies the depth value to use when doing a shallow clone.
If not set, --depth=1 will be used. This argument has effect only if IDF_CLONE_SHALLOW is used. Use
this argument if you are building a Docker image for a branch, and the image has to contain the latest tag on
that branch. To determine the required depth, run git describe for the given branch and note the offset
number. Increment it by 1, then use it as the value of this argument. The resulting image will contain the
latest tag on the branch, and consequently git describe command inside the Docker image will work as
expected.

• IDF_INSTALL_TARGETS: Comma-separated list of ESP-IDF targets to install toolchains for, or all to
install toolchains for all targets. Selecting specific targets reduces the amount of data downloaded and the size
of the resulting Docker image. The default is all.

• IDF_GITHUB_ASSETS: Hostname used to download ESP-IDF tools from a mirror server instead of directly
from github.com. This is useful when github.com is not accessible from your network. The default
value is empty.

To use these arguments, pass them via the --build-arg command line option. For example, the following com-
mand will build a Docker image with a shallow clone of ESP-IDF v4.4.1 and tools for ESP32-C3, only:

docker build -t idf-custom:v4.4.1-esp32c3 \
--build-arg IDF_CLONE_BRANCH_OR_TAG=v4.4.1 \
--build-arg IDF_CLONE_SHALLOW=1 \
--build-arg IDF_INSTALL_TARGETS=esp32c3 \
tools/docker

4.27.3 IDF Windows Installer

Command-line parameters

Windows Installer esp-idf-tools-setup provides the following command-line parameters:
• /CONFIG=[PATH] - Path to ini configuration file to override default configuration of the installer. Default:
config.ini.

• /GITCLEAN=[yes|no] - Perform git clean and remove untracked directories in Offline mode installation.
Default: yes.

• /GITRECURSIVE=[yes|no] - Clone recursively all git repository submodules. Default: yes
• /GITREPO=[URL|PATH] - URL of repository to clone ESP-IDF. Default: https://github.com/espressif/
esp-idf.git

• /GITRESET=[yes|no] - Enable/Disable git reset of repository during installation. Default: yes.
• /HELP - Display command line options provided by Inno Setup installer.
• /IDFDIR=[PATH] - Path to directory where it will be installed. Default: {userdesktop}\esp-idf}
• /IDFVERSION=[v4.3|v4.1|master] - Use specific IDF version. E.g. v4.1, v4.2, master. Default:
empty, pick the first version in the list.

Espressif Systems 2470
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf.git
https://github.com/espressif/esp-idf.git
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• /IDFVERSIONSURL=[URL] - Use URL to download list of IDF versions. Default: https://dl.espressif.
com/dl/esp-idf/idf_versions.txt

• /LOG=[PATH] - Store installation log file in specific directory. Default: empty.
• /OFFLINE=[yes|no] - Execute installation of Python packages by PIP in offline mode. The same result
can be achieved by setting the environment variable PIP_NO_INDEX. Default: no.

• /USEEMBEDDEDPYTHON=[yes|no] - Use Embedded Python version for the installation. Set to no to
allow Python selection screen in the installer. Default: yes.

• /PYTHONNOUSERSITE=[yes|no] - Set PYTHONNOUSERSITE variable before launching any Python
command to avoid loading Python packages from AppDataRoaming. Default: yes.

• /PYTHONWHEELSURL=[URL] - Specify URLs to PyPi repositories for resolving binary Python Wheel de-
pendencies. The same result can be achieved by setting the environment variable PIP_EXTRA_INDEX_URL.
Default: https://dl.espressif.com/pypi

• /SKIPSYSTEMCHECK=[yes|no] - Skip System Check page. Default: no.
• /VERYSILENT /SUPPRESSMSGBOXES /SP- /NOCANCEL - Perform silent installation.

Unattended installation

The unattended installation of IDF can be achieved by following command-line parameters:

esp-idf-tools-setup-x.x.exe /VERYSILENT /SUPPRESSMSGBOXES /SP- /NOCANCEL

The installer detaches its process from the command-line. Waiting for installation to finish could be achieved by
following PowerShell script:

esp-idf-tools-setup-x.x.exe /VERYSILENT /SUPPRESSMSGBOXES /SP- /NOCANCEL
$InstallerProcess = Get-Process esp-idf-tools-setup
Wait-Process -Id $InstallerProcess.id

Custom Python and custom location of Python wheels

The IDF installer is using by default embedded Python with reference to Python Wheel mirror.
Following parameters allows to select custom Python and custom location of Python wheels:

esp-idf-tools-setup-x.x.exe /USEEMBEDDEDPYTHON=no /PYTHONWHEELSURL=https://pypi.
↪→org/simple/

4.27.4 IDF Component Manager

The IDF Component manager is a tool that downloads dependencies for any ESP-IDF CMake project. The download
happens automatically during a run of CMake. It can source components either from the component registry or from
a git repository.
A list of components can be found on https://components.espressif.com/

Using with a project

Dependencies for each component in the project are defined in a separate manifest file named idf_component.
yml placed in the root of the component. The manifest file template can be created for a component by running
idf.py create-manifest --component=my_component. When a new manifest is added to one of
the components in the project it's necessary to reconfigure it manually by running idf.py reconfigure. Then
build will track changes in idf_component.yml manifests and automatically triggers CMake when necessary.
There is an example application: example:build_system/cmake/component_manager that uses components installed
by the component manager.
It's not necessary to have a manifest for components that don't need any managed dependencies.

Espressif Systems 2471
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://dl.espressif.com/dl/esp-idf/idf_versions.txt
https://dl.espressif.com/dl/esp-idf/idf_versions.txt
https://dl.espressif.com/pypi
https://components.espressif.com
https://components.espressif.com/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

When CMake configures the project (e.g. idf.py reconfigure) component manager does a few things:
• Processes idf_component.yml manifests for every component in the project and recursively solves de-
pendencies

• Creates a dependencies.lock file in the root of the project with a full list of dependencies
• Downloads all dependencies to the managed_components directory

The lock-file dependencies.lock and content of managed_components directory is not supposed to be
modified by a user. When the component manager runs it always make sure they are up to date. If these files were
accidentally modified it's possible to re-run the component manager by triggering CMake with idf.py recon-
figure

You may set build property DEPENDENCIES_LOCK to specify the lock-file path in the top-level CMake-
Lists.txt. For example, adding idf_build_set_property(DEPENDENCIES_LOCK dependencies.
lock.${IDF_TARGET}) before project(PROJECT_NAME) could help generate different lock files for dif-
ferent targets.

Defining dependencies in the manifest

dependencies:
Required IDF version
idf: ">=4.1"
Defining a dependency from the registry:
https://components.espressif.com/component/example/cmp
example/cmp: ">=1.0.0"

Other ways to define dependencies
#
For components maintained by Espressif only name can be used.
Same as `espressif/cmp`
component: "~1.0.0"
#
Or in a longer form with extra parameters
component2:
version: ">=2.0.0"
#
For transient dependencies `public` flag can be set.
`public` flag doesn't affect the `main` component.
All dependencies of `main` are public by default.
public: true
#
For components hosted on non-default registry:
service_url: "https://componentregistry.company.com"
#
For components in git repository:
test_component:
path: test_component
git: ssh://git@gitlab.com/user/components.git
#
For test projects during component development
components can be used from a local directory
with relative or absolute path
some_local_component:
path: ../../projects/component

Disabling the Component Manager

The component manager can be explicitly disabled by setting IDF_COMPONENT_MANAGER environment variable
to 0.

Espressif Systems 2472
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.27.5 IDF Clang Tidy

The IDF Clang Tidy is a tool that uses clang-tidy to run static analysis on your current app.

Warning: This functionality and the toolchain it relies on are still under development. There may be breaking
changes before a final release.

Warning: This tool does not support RISC-V based chips yet. For now, we don't provide clang based toolchain
for RISC-V.

Prerequisites

If you have never run this tool before, take the following steps to get this tool prepared.
1. Run idf_tools.py install esp-clang to install the clang-tidy required binaries

Note: This toolchain is still under development. After the final release, you don't have to install themmanually.

2. Run the export scripts (export.sh / export.bat / ...) again to refresh the environment variables.

Extra Commands

clang-check Run idf.py clang-check to re-generate the compilation database and run clang-tidy
under your current project folder. The output would be written to <project_dir>/warnings.txt.
Run idf.py clang-check --help to see the full documentation.

clang-html-report

1. Run pip install codereport to install the additional dependency.
2. Run idf.py clang-html-report to generate an HTML report in folder <project_dir>/

html_report according to the warnings.txt. Please open the <project_dir>/html_report/
index.html in your browser to check the report.

Bug Report

This tool is hosted in espressif/clang-tidy-runner. If you faced any bugs or have any feature request, please report
them via github issues.

4.27.6 Downloadable Tools

ESP-IDF build process relies on a number of tools: cross-compiler toolchains, CMake build system, and others.
Installing the tools using an OS-specific package manager (like apt, yum, brew, etc.) is the preferred method when the
required version of the tool is available. This recommendation is reflected in the Getting Started guide. For example,
on Linux and macOS it is recommended to install CMake using an OS package manager.
However, some of the tools are IDF-specific and are not available in OS package repositories. Furthermore, different
versions of ESP-IDF require different versions of the tools to operate correctly. To solve these two problems, ESP-
IDF provides a set of scripts for downloading and installing the correct versions of tools, and exposing them in the
environment.
The rest of the document refers to these downloadable tools simply as "tools". Other kinds of tools used in ESP-IDF
are:

Espressif Systems 2473
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://clang.llvm.org/extra/clang-tidy/
https://github.com/espressif/clang-tidy-runner
https://github.com/espressif/clang-tidy-runner/issues
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Python scripts bundled with ESP-IDF (such as idf.py)
• Python packages installed from PyPI.

The following sections explain the installation method, and provide the list of tools installed on each platform.

Note: This document is provided for advanced users who need to customize their installation, users who wish to
understand the installation process, and ESP-IDF developers.
If you are looking for instructions on how to install the tools, see the Getting Started Guide.

Tools metadata file

The list of tools and tool versions required for each platform is located in tools/tools.json. The schema of this file is
defined by tools/tools_schema.json.
This file is used by tools/idf_tools.py script when installing the tools or setting up the environment variables.

Tools installation directory

IDF_TOOLS_PATH environment variable specifies the location where the tools are to be downloaded and installed.
If not set, IDF_TOOLS_PATH defaults to HOME/.espressif on Linux and macOS, and %USER_PROFILE%\
.espressif on Windows.
Inside IDF_TOOLS_PATH, the scripts performing tools installation create the following directories and files:

• dist—where the archives of the tools are downloaded.
• tools—where the tools are extracted. The tools are extracted into subdirectories: tools/TOOL_NAME/
VERSION/. This arrangement allows different versions of tools to be installed side by side.

• idf-env.json —user install options (targets, features) are stored in this file. Targets are selected chip
targets for which tools are installed and kept up-to-date. Features determine the Python package set which
should be installed. These options will be discussed later.

• python_env —not tools related; virtual Python environments are installed in the sub-directories. Note
that the Python environment directory can be placed elsewhere by setting the IDF_PYTHON_ENV_PATH
environment variable.

• espidf.constraints.*.txt—one constraint file for each ESP-IDF release containing Python pack-
age version requirements.

GitHub Assets Mirror

Most of the tools downloaded by the tools installer are GitHub Release Assets, which are files attached to a software
release on GitHub.
If GitHub downloads are inaccessible or slow to access, it's possible to configure a GitHub assets mirror.
To use Espressif's download server, set the environment variable IDF_GITHUB_ASSETS to dl.espressif.
com/github_assets. When the install process is downloading a tool from github.com, the URL will be
rewritten to use this server instead.
Any mirror server can be used provided the URL matches the github.com download URL format: the install pro-
cess will replace https://github.com with https://${IDF_GITHUB_ASSETS} for any GitHub asset
URL that it downloads.

Note: The Espressif download server doesn't currently mirror everything from GitHub, it only mirrors files attached
as Assets to some releases as well as source archives for some releases.

Espressif Systems 2474
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/tools.json
https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/tools_schema.json
https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/idf_tools.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

idf_tools.py script

tools/idf_tools.py script bundled with ESP-IDF performs several functions:
• install: Download the tool into ${IDF_TOOLS_PATH}/dist directory, extract it into
${IDF_TOOLS_PATH}/tools/TOOL_NAME/VERSION.
install command accepts the list of tools to install, in TOOL_NAME or TOOL_NAME@VERSION format.
If all is given, all the tools (required and optional ones) are installed. If no argument or required is given,
only the required tools are installed.

• download: Similar to install but doesn't extract the tools. An optional --platform argument may
be used to download the tools for the specific platform.

• export: Lists the environment variables which need to be set to use the installed tools. For most of the tools,
setting PATH environment variable is sufficient, but some tools require extra environment variables.
The environment variables can be listed in either of shell or key-value formats, set by --format
parameter:

– export optional parameters:
∗ --unset Creates statement that unset some global variables, so the environment gets to the state
it was before calling export.{sh/fish}.

∗ --add_paths_extras Adds extra ESP-IDF-related paths of $PATH to
${IDF_TOOLS_PATH}/esp-idf.json, which is used to remove global variables when
the active ESP-IDF environment is deactivated. Example: While processing export.{sh/
fish} script, new paths are added to global variable $PATH. This option is used to save these new
paths to the ${IDF_TOOLS_PATH}/esp-idf.json.

– shell produces output suitable for evaluation in the shell. For example,

export PATH="/home/user/.espressif/tools/tool/v1.0.0/bin:$PATH"

on Linux and macOS, and

set "PATH=C:\Users\user\.espressif\tools\v1.0.0\bin;%PATH%"

on Windows.

Note: Exporting environment variables in Powershell format is not supported at the moment.
key-value format may be used instead.

The output of this command may be used to update the environment variables, if the shell supports this.
For example:

eval $($IDF_PATH/tools/idf_tools.py export)

– key-value produces output in VARIABLE=VALUE format, suitable for parsing by other scripts:

PATH=/home/user/.espressif/tools/tool/v1.0.0:$PATH

Note that the script consuming this output has to perform expansion of $VAR or %VAR% patterns found
in the output.

• list: Lists the known versions of the tools, and indicates which ones are installed.
Following options are available to customize the output.

– --outdated: List only outdated versions of tools installed in IDF_TOOLS_PATH.
• check: For each tool, checks whether the tool is available in the system path and in IDF_TOOLS_PATH.
• install-python-env: Create a Python virtual environment in the ${IDF_TOOLS_PATH}/
python_env directory (or directly in the directory set by the IDF_PYTHON_ENV_PATH environment
variable) and install there the required Python packages. An optional --features argument allows one
to specify a comma-separated list of features to be added or removed. Feature that begins with - will be
removed and features with + or without any sign will be added. Example syntax for removing feature XY
is --features=-XY and for adding --features=+XY or --features=XY. If both removing and
adding options are provided with the same feature, no operation is performed. For each feature a requirements
file must exist. For example, feature XY is a valid feature if ${IDF_PATH}/tools/requirements/
requirements.XY.txt is an existing file with a list of Python packages to be installed. There is one
mandatory core feature ensuring core functionality of ESP-IDF (build, flash, monitor, debug in console).
There can be an arbitrary number of optional features. The selected list of features is stored in idf-env.

Espressif Systems 2475
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/idf_tools.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

json. The requirement files contain a list of the desired Python packages to be installed and espidf.
constraints.*.txt downloaded from https://dl.espressif.com and stored in ${IDF_TOOLS_PATH}
the package version requirements for a given ESP-IDF version. Althought it is not recommended, the down-
load and use of constraint files can be disabled with the --no-constraints argument or setting the
IDF_PYTHON_CHECK_CONSTRAINTS environment variable to no.

• check-python-dependencies: Checks if all required Python packages are installed. Packages from
${IDF_PATH}/tools/requirements/requirements.*.txt files selected by the feature list of
idf-env.json are checked with the package versions specified in the espidf.constraints.*.txt
file. The constraint file is downloaded with install-python-env command. The use of constraints files
can be disabled similarly to the install-python-env command.

• uninstall: Print and remove tools, that are currently not used by active ESP-IDF version.
– --dry-run Print installed unused tools.
– --remove-archives Additionally remove all older versions of previously downloaded installation
packages.

Install scripts

Shell-specific user-facing scripts are provided in the root of ESP-IDF repository to facilitate tools installation. These
are:

• install.bat for Windows Command Prompt
• install.ps1 for Powershell
• install.sh for Bash
• install.fish for Fish

Aside from downloading and installing the tools into IDF_TOOLS_PATH, these scripts prepare a Python virtual
environment, and install the required packages into that environment.
These scripts accept optionally a comma separated list of chip targets and --enable-* arguments for enabling
features. These arguments are passed to the idf_tools.py script which stores them in idf-env.json. There-
fore, chip targets and features can be enabled incrementally.
Running the scripts without any optional arguments will install tools for all chip targets (by running idf_tools.py
install --targets=all) and Python packages for core ESP-IDF functionality (by running idf_tools.py
install-python-env --features=core).
Or for example, install.sh esp32 will install tools only for ESP32. See the Getting Started Guide for more
examples.
install.sh --enable-XY will enable feature XY (by running idf_tools.py install-python-env
--features=core,XY).

Export scripts

Since the installed tools are not permanently added into the user or system PATH environment variable, an extra step
is required to use them in the command line. The following scripts modify the environment variables in the current
shell to make the correct versions of the tools available:

• export.bat for Windows Command Prompt
• export.ps1 for Powershell
• export.sh for Bash
• export.fish for Fish

Note: To modify the shell environment in Bash, export.sh must be "sourced": . ./export.sh (note the
leading dot and space).
export.sh may be used with shells other than Bash (such as zsh). However in this case the IDF_PATH environ-
ment variable must be set before running the script. When used in Bash, the script will guess the IDF_PATH value
from its own location.

Espressif Systems 2476
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://dl.espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

In addition to calling idf_tools.py, these scripts list the directories which have been added to the PATH.

Other installation methods

Depending on the environment, more user-friendly wrappers for idf_tools.py are provided:
• IDF Tools installer for Windows can download and install the tools. Internally the installer uses idf_tools.
py.

• Eclipse Plugin includes a menu item to set up the tools. Internally the plugin calls idf_tools.py.
• VSCode Extension for ESP-IDF includes an onboarding flow. This flow helps setting up the tools. Although
the extension does not rely on idf_tools.py, the same installation method is used.

Custom installation

Although the methods above are recommended for ESP-IDF users, they are not a must for building ESP-IDF appli-
cations. ESP-IDF build system expects that all the necessary tools are installed somewhere, and made available in
the PATH.

Uninstall ESP-IDF

Uninstalling ESP-IDF requires removing both the tools and the environment variables that have been configured
during the installation.

• Windows users using the Windows ESP-IDF Tools Installer can simply run the uninstall wizard to remove
ESP-IDF.

• To remove an installation performed by running the supported install scripts, simply delete the tools installation
directory including the downloaded and installed tools. Any environment variables set by the export scripts are
not permanent and will not be present after opening a new environment.

• When dealing with a custom installation, in addition to deleting the tools as mentioned above, you may also
need to manually revert any changes to environment variables or system paths that were made to accommodate
the ESP-IDF tools (e.g., IDF_PYTHON_ENV_PATH or IDF_TOOLS_PATH). If you manually copied any
tools, you would need to track and delete those files manually.

• If you installed any plugins like the ESP-IDF Eclipse Plugin or VSCode ESP-IDF Extension, you should follow
the specific uninstallation instructions described in the documentation of those components.

Note: Uninstalling the ESP-IDF tools does not remove any project files or your code. Be mindful of what you are
deleting to avoid losing any work. If you are unsure about a step, refer back to the installation instructions.
These instructions assume that the tools were installed following the procedures in this provided document. If you've
used a custom installation method, you might need to adapt these instructions accordingly.

List of IDF Tools

xtensa-esp-elf-gdb GDB for Xtensa
License: GPL-3.0-or-later
More info: https://github.com/espressif/binutils-gdb

Espressif Systems 2477
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/docs/tutorial/install.md
https://spdx.org/licenses/GPL-3.0-or-later
https://github.com/espressif/binutils-gdb
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Plat-
form

Re-
quired

Download

linux-
amd64

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
xtensa-esp-elf-gdb-12.1_20231023-x86_64-linux-gnu.tar.gz
SHA256: d0743ec43cd92c35452a9097f7863281de4e72f04120d63cfbcf9d591a373529

linux-
arm64

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
xtensa-esp-elf-gdb-12.1_20231023-aarch64-linux-gnu.tar.gz
SHA256: bc1fac0366c6a08e26c45896ca21c8c90efc2cdd431b8ba084e8772e15502d0e

linux-
armel

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
xtensa-esp-elf-gdb-12.1_20231023-arm-linux-gnueabi.tar.gz
SHA256: 25efc51d52b71f097ccec763c5c885c8f5026b432fec4b5badd6a5f36fe34d04

linux-
armhf

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
xtensa-esp-elf-gdb-12.1_20231023-arm-linux-gnueabihf.tar.gz
SHA256: 0f9ff39fdec4d8c9c1ef33149a3fcdd2cf1bae121529c507817c994d5ac38ca4

linux-
i686

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
xtensa-esp-elf-gdb-12.1_20231023-i586-linux-gnu.tar.gz
SHA256: e0af0b3b4a6b29a843cd5f47e331a966d9258f7d825b4656c6251490f71b05b2

macos required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
xtensa-esp-elf-gdb-12.1_20231023-x86_64-apple-darwin14.tar.gz
SHA256: bd146fd99a52b2d71c7ce0f62b9e18f3423d6cae7b2b2c954046b0dd7a23142f

macos-
arm64

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
xtensa-esp-elf-gdb-12.1_20231023-aarch64-apple-darwin21.1.tar.gz
SHA256: 5edc76565bf9d2fadf24e443ddf3df7567354f336a65d4af5b2ee805cdfcec24

win32 required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
xtensa-esp-elf-gdb-12.1_20231023-i686-w64-mingw32.zip
SHA256: ea4f3ee6b95ad1ad2e07108a21a50037a3e64a420cdeb34b2ba95d612faed898

win64 required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
xtensa-esp-elf-gdb-12.1_20231023-x86_64-w64-mingw32.zip
SHA256: 13bb97f39173948d1cfb6e651d9b335ea9d52f1fdd0dda1eda3a2d23d8c63644

riscv32-esp-elf-gdb GDB for RISC-V
License: GPL-3.0-or-later
More info: https://github.com/espressif/binutils-gdb

Espressif Systems 2478
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-x86_64-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-x86_64-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-aarch64-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-aarch64-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-arm-linux-gnueabi.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-arm-linux-gnueabi.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-arm-linux-gnueabihf.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-arm-linux-gnueabihf.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-i586-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-i586-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-x86_64-apple-darwin14.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-x86_64-apple-darwin14.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-aarch64-apple-darwin21.1.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-aarch64-apple-darwin21.1.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-i686-w64-mingw32.zip
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-i686-w64-mingw32.zip
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-x86_64-w64-mingw32.zip
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/xtensa-esp-elf-gdb-12.1_20231023-x86_64-w64-mingw32.zip
https://spdx.org/licenses/GPL-3.0-or-later
https://github.com/espressif/binutils-gdb
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Plat-
form

Re-
quired

Download

linux-
amd64

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
riscv32-esp-elf-gdb-12.1_20231023-x86_64-linux-gnu.tar.gz
SHA256: 2c78b806be176b1e449e07ff83429d38dfc39a13f89a127ac1ffa6c1230537a0

linux-
arm64

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
riscv32-esp-elf-gdb-12.1_20231023-aarch64-linux-gnu.tar.gz
SHA256: 33f80117c8777aaff9179e27953e41764c5c46b3c576dc96a37ecc7a368807ec

linux-
armel

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
riscv32-esp-elf-gdb-12.1_20231023-arm-linux-gnueabi.tar.gz
SHA256: 292e6ec0a9381c1480bbadf5caae25e86428b68fb5d030c9be7deda5e7f070e0

linux-
armhf

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
riscv32-esp-elf-gdb-12.1_20231023-arm-linux-gnueabihf.tar.gz
SHA256: 3b803ab1ae619d62a885afd31c2798de77368d59b888c27ec6e525709e782ef5

linux-
i686

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
riscv32-esp-elf-gdb-12.1_20231023-i586-linux-gnu.tar.gz
SHA256: 68a25fbcfc6371ec4dbe503ec92211977eb2006f0c29e67dbce6b93c70c6b7ec

macos required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
riscv32-esp-elf-gdb-12.1_20231023-x86_64-apple-darwin14.tar.gz
SHA256: 322c722e6c12225ed8cd97f95a0375105756dc5113d369958ce0858ad1a90257

macos-
arm64

required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
riscv32-esp-elf-gdb-12.1_20231023-aarch64-apple-darwin21.1.tar.gz
SHA256: c2224b3a8d02451c530cf004c29653292d963a1b4021b4b472b862b6dbe97e0b

win32 required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
riscv32-esp-elf-gdb-12.1_20231023-i686-w64-mingw32.zip
SHA256: 4b42149a99dd87ee7e6dde25c99bad966c7f964253fa8f771593d7cef69f5602

win64 required https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/
riscv32-esp-elf-gdb-12.1_20231023-x86_64-w64-mingw32.zip
SHA256: 728231546ad5006d34463f972658b2a89e52f660a42abab08a29bedd4a8046ad

xtensa-esp32-elf Toolchain for Xtensa (ESP32) based on GCC
License: GPL-3.0-with-GCC-exception
More info: https://github.com/espressif/crosstool-NG

Espressif Systems 2479
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-x86_64-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-x86_64-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-aarch64-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-aarch64-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-arm-linux-gnueabi.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-arm-linux-gnueabi.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-arm-linux-gnueabihf.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-arm-linux-gnueabihf.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-i586-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-i586-linux-gnu.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-x86_64-apple-darwin14.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-x86_64-apple-darwin14.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-aarch64-apple-darwin21.1.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-aarch64-apple-darwin21.1.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-i686-w64-mingw32.zip
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-i686-w64-mingw32.zip
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-x86_64-w64-mingw32.zip
https://github.com/espressif/binutils-gdb/releases/download/esp-gdb-v12.1_20231023/riscv32-esp-elf-gdb-12.1_20231023-x86_64-w64-mingw32.zip
https://spdx.org/licenses/GPL-3.0-with-GCC-exception
https://github.com/espressif/crosstool-NG
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Plat-
form

Re-
quired

Download

linux-
amd64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
SHA256: a1d024b2de33dd58d298d9d8f5dd2847c919867ee979e2d22e11e05fbe62e55f

linux-
arm64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
SHA256: 9731441d73f112b6457bfdb08eaac1170b041e0272af3aeceb1a863dbd3445b0

linux-
armel

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
SHA256: 7f1327e222e133a113cfe07efc6d5799b39e58b9ea200acb1b2584baaf819044

linux-
armhf

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
SHA256: d7e8473f004357df32b5fb5c36f0565ae8db7a79eaddeb8d933e171952c18e52

linux-
i686

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
SHA256: 2eba7719ddd0fce6582e11131d325984064a3a5ba37972fce29815417fdbd09d

macos required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
SHA256: e52398ec24a91b66c65a1d19dd804b6bab7b77ed3ce8d02cb41df2a50994b7fe

macos-
arm64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
SHA256: ddb81280e27d9dd7223898a244fe292223b70d9815b545e6dea9cb9d51eb7438

win32 required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32-elf-12.2.0_20250801-i686-w64-mingw32.zip
SHA256: 81776179ade9aaf6498d311790284eaf9b0ab7e3f84f21eeef54beb144f81653

win64 required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
SHA256: 96ae7285b53ded48f62e3b14ad7843b309ddbdd79e5dd135a26bdbb75bc19ebe

xtensa-esp32s2-elf Toolchain for Xtensa (ESP32-S2) based on GCC
License: GPL-3.0-with-GCC-exception
More info: https://github.com/espressif/crosstool-NG

Espressif Systems 2480
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-i686-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-i686-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
https://spdx.org/licenses/GPL-3.0-with-GCC-exception
https://github.com/espressif/crosstool-NG
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Plat-
form

Re-
quired

Download

linux-
amd64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s2-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
SHA256: 9c4cc5733f8272a8367d4cf9046501d3c08822b724b037c3b28e71806eb4a614

linux-
arm64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s2-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
SHA256: c72772c4e9e649c17973c513890a4d8541056cf68837a6f215a49efb2c6bc18d

linux-
armel

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s2-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
SHA256: 861109f132a2af3e0ca810c3496d0fdda904efa059145b31cea26fc48bce0e94

linux-
armhf

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s2-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
SHA256: aff2aaaad31d8a83671f90314b0f26033aa7c60a54aedcddb4c087c052f09dfa

linux-
i686

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s2-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
SHA256: 56a6f092abdd647105b4f6b08de931c755f7651fa2ec4bbc6eae72b579830bc4

macos required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s2-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
SHA256: 8b765b230a22908986e6aefc5329660fa3c9cb3b3149cecb2c7d4d508e8a7cea

macos-
arm64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s2-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
SHA256: bd17a4e3fcd265aa64207be4548d1e741dbabbb053b9e840f7634445204894e7

win32 required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s2-elf-12.2.0_20250801-i686-w64-mingw32.zip
SHA256: 38bcc2ef0b1116291cf31a869648d2d010d92500b6195f0eaa460c442a56ce64

win64 required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s2-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
SHA256: 69eebbd3413283e7276aa696fc10837057710fab7e4d5897383d32b247782dc3

xtensa-esp32s3-elf Toolchain for Xtensa (ESP32-S3) based on GCC
License: GPL-3.0-with-GCC-exception
More info: https://github.com/espressif/crosstool-NG

Espressif Systems 2481
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-i686-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-i686-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s2-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
https://spdx.org/licenses/GPL-3.0-with-GCC-exception
https://github.com/espressif/crosstool-NG
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Plat-
form

Re-
quired

Download

linux-
amd64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s3-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
SHA256: 75bd315fe9be2a344adb09f0af791e2d443c67350ede84f1268c050fc97913e6

linux-
arm64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s3-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
SHA256: 408fea3de25551d5aa2927ec238dc5fb9978ee2e66db82e1bf162292ba226ba8

linux-
armel

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s3-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
SHA256: 5262987d6126c07cb25a1134526fb80186b40f68761e4afc522a74101c1af9bb

linux-
armhf

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s3-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
SHA256: 61353180ddd44f6447787fd78404ce927dcc4db46b0f76cc50f39b168db30bc5

linux-
i686

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s3-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
SHA256: 2372090da1c16a63b400ec2cad1bc8b2af8b4495198afcee9e3e09d3c531ae5f

macos required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s3-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
SHA256: 3223e4dd5f5379e8deadc7c8303edbfab7da681e2ff67c8caf2b47f4c2f51e41

macos-
arm64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s3-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
SHA256: 060b635904dd12ab42be2300537be9f69435c3a499cd23eee54832273c21a3a3

win32 required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s3-elf-12.2.0_20250801-i686-w64-mingw32.zip
SHA256: 246a80cddb47915f47c8326e2963d10b184f828e81f63533ce4530d1e94d1283

win64 required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
xtensa-esp32s3-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
SHA256: be2e091f5370386eb2d329c6f7cd5fbd415f291ef152927497e331fb68ec95e5

esp-clang Toolchain for all Espressif chips based on clang
License: Apache-2.0
More info: https://github.com/espressif/llvm-project

Plat-
form

Re-
quired

Download

linux-
amd64

optional https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/
llvm-esp-15.0.0-20221201-linux-amd64.tar.xz
SHA256: 839e5adfa7f44982e8a2d828680f6e4aa435dcd3d1df765e02f015b04286056f

linux-
arm64

optional https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/
llvm-esp-15.0.0-20221201-linux-arm64.tar.xz
SHA256: 614c44ab7305d65dde54a884c5614516777038027dc61bcc125d02171c248c53

linux-
armhf

optional https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/
llvm-esp-15.0.0-20221201-linux-armhf.tar.xz
SHA256: 158076696e4fc608e6e2b54bf739223b78949e0492ad4aa5119632ebfbea0499

macos optional https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/
llvm-esp-15.0.0-20221201-macos.tar.xz
SHA256: 46f0f0368b5aa8d7e81558796c3acd67d943c9071b9619f2b487136c8e59c97c

macos-
arm64

optional https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/
llvm-esp-15.0.0-20221201-macos-arm64.tar.xz
SHA256: dc5a99186f9f532a5076d6900828310e4673cf01e8071a3d041456e8aab2cc4a

win64 optional https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/
llvm-esp-15.0.0-20221201-win64.tar.xz
SHA256: 87c9b2c2b8837535f102ae3fd5789defecbffa80b317f86055f3e9d6292aaa05

Espressif Systems 2482
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-i686-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-i686-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/xtensa-esp32s3-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
https://spdx.org/licenses/Apache-2.0
https://github.com/espressif/llvm-project
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-linux-amd64.tar.xz
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-linux-amd64.tar.xz
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-linux-arm64.tar.xz
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-linux-arm64.tar.xz
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-linux-armhf.tar.xz
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-linux-armhf.tar.xz
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-macos.tar.xz
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-macos.tar.xz
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-macos-arm64.tar.xz
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-macos-arm64.tar.xz
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-win64.tar.xz
https://github.com/espressif/llvm-project/releases/download/esp-15.0.0-20221201/llvm-esp-15.0.0-20221201-win64.tar.xz
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

riscv32-esp-elf Toolchain for 32-bit RISC-V based on GCC
License: GPL-3.0-with-GCC-exception
More info: https://github.com/espressif/crosstool-NG

Plat-
form

Re-
quired

Download

linux-
amd64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
riscv32-esp-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
SHA256: 9aa20309fe65e06a5210f65b5b97f143427d050355de0f5cae19b5128e865626

linux-
arm64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
riscv32-esp-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
SHA256: f3e84aa18a8684c2c9011a89316518019b44b372caf4250abc32043139354ca9

linux-
armel

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
riscv32-esp-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
SHA256: af3ffc468e9d3de9f621a432670d2784397f34a58cd9abf302aef3c5ad66f72e

linux-
armhf

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
riscv32-esp-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
SHA256: b154caa1c145f6fa65131c1a0721c7b832e3a41d06b4174dbeaec00e450caa68

linux-
i686

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
riscv32-esp-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
SHA256: 4e15ae2c9e7089f064e5021f7bbd5aa1df3f3da14665a8de7948c70606745349

macos required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
riscv32-esp-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
SHA256: 7414baaac6a629dba8330ecde46b0376185b3dc9125a8e389f703ed3dd3ec7d3

macos-
arm64

required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
riscv32-esp-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
SHA256: 7414baaac6a629dba8330ecde46b0376185b3dc9125a8e389f703ed3dd3ec7d3

win32 required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
riscv32-esp-elf-12.2.0_20250801-i686-w64-mingw32.zip
SHA256: fa1f89dd2fe81791d9fd5e1df8403248d36b523242ad1037f43c06dbecd13375

win64 required https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/
riscv32-esp-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
SHA256: a67f53cbdfb0521a8ad2340f1c6d7a384d43614005ca5c848b1ffa799fb3e27b

esp32ulp-elf Toolchain for ESP32 ULP coprocessor
License: GPL-3.0-or-later
More info: https://github.com/espressif/binutils-gdb

Espressif Systems 2483
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://spdx.org/licenses/GPL-3.0-with-GCC-exception
https://github.com/espressif/crosstool-NG
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-x86_64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-aarch64-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-arm-linux-gnueabi.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-arm-linux-gnueabihf.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-i686-linux-gnu.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-x86_64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-aarch64-apple-darwin_signed.tar.xz
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-i686-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-i686-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
https://github.com/espressif/crosstool-NG/releases/download/esp-12.2.0_20250801/riscv32-esp-elf-12.2.0_20250801-x86_64-w64-mingw32.zip
https://spdx.org/licenses/GPL-3.0-or-later
https://github.com/espressif/binutils-gdb
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Plat-
form

Re-
quired

Download

linux-
amd64

required https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_
20220830/esp32ulp-elf-2.35_20220830-linux-amd64.tar.gz
SHA256: b1f7801c3a16162e72393ebb772c0cbfe4d22d907be7c2c2dac168736e9195fd

linux-
arm64

required https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_
20220830/esp32ulp-elf-2.35_20220830-linux-arm64.tar.gz
SHA256: d6671b31bab31b9b13aea25bb7d60f15484cb8bf961ddbf67a62867e5563eae5

linux-
armel

required https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_
20220830/esp32ulp-elf-2.35_20220830-linux-armel.tar.gz
SHA256: e107e7a9cd50d630b034f435a16a52db5a57388dc639a99c4c393c5e429711e9

linux-
armhf

required https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_
20220830/esp32ulp-elf-2.35_20220830-linux-armhf.tar.gz
SHA256: 6c6dd25477b2e758d4669da3774bf664d1f012442c880f17dfdf0339e9c3dae9

linux-
i686

required https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_
20220830/esp32ulp-elf-2.35_20220830-linux-i686.tar.gz
SHA256: beb9b6737c975369b6959007739c88f44eb5afbb220f40737071540b2c1a9064

macos required https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_
20220830/esp32ulp-elf-2.35_20220830-macos.tar.gz
SHA256: 5a952087b621ced16af1e375feac1371a61cb51ab7e7b44cbefb5afda2d573de

macos-
arm64

required https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_
20220830/esp32ulp-elf-2.35_20220830-macos-arm64.tar.gz
SHA256: 73bda8476ef92d4f4abee96519abbba40e5ee32f368427469447b83cc7bb9b42

win32 required https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_
20220830/esp32ulp-elf-2.35_20220830-win32.zip
SHA256: 77344715ea7d7a7a9fd0b27653f880efaf3bcc1ac843f61492d8a0365d91f731

win64 required https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_
20220830/esp32ulp-elf-2.35_20220830-win64.zip
SHA256: 525e5b4c8299869a3fdddb51baad76612c5c104bd96952ae6460ad7e5b5a4e21

cmake CMake build system
On Linux and macOS, it is recommended to install CMake using the OS-specific package manager (like apt, yum,
brew, etc.). However, for convenience it is possible to install CMake using idf_tools.py along with the other tools.
License: BSD-3-Clause
More info: https://github.com/Kitware/CMake

Espressif Systems 2484
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-linux-amd64.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-linux-amd64.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-linux-arm64.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-linux-arm64.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-linux-armel.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-linux-armel.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-linux-armhf.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-linux-armhf.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-linux-i686.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-linux-i686.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-macos.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-macos.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-macos-arm64.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-macos-arm64.tar.gz
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-win32.zip
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-win32.zip
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-win64.zip
https://github.com/espressif/binutils-gdb/releases/download/esp32ulp-elf-v2.35_20220830/esp32ulp-elf-2.35_20220830-win64.zip
https://spdx.org/licenses/BSD-3-Clause
https://github.com/Kitware/CMake
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Plat-
form

Re-
quired

Download

linux-
amd64

optional https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.
2-linux-x86_64.tar.gz
SHA256: cdd7fb352605cee3ae53b0e18b5929b642900e33d6b0173e19f6d4f2067ebf16

linux-
arm64

optional https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.
2-linux-aarch64.tar.gz
SHA256: d18f50f01b001303d21f53c6c16ff12ee3aa45df5da1899c2fe95be7426aa026

linux-
armel

optional https://dl.espressif.com/dl/cmake/cmake-3.30.2-Linux-armv7l.tar.gz
SHA256: 446650c69ea74817a770f96446c162bb7ad24ffecaacb35fcd4845ec7d3c9099

linux-
armhf

optional https://dl.espressif.com/dl/cmake/cmake-3.30.2-Linux-armv7l.tar.gz
SHA256: 446650c69ea74817a770f96446c162bb7ad24ffecaacb35fcd4845ec7d3c9099

macos optional https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.
2-macos-universal.tar.gz
SHA256: c6fdda745f9ce69bca048e91955c7d043ba905d6388a62e0ff52b681ac17183c

macos-
arm64

optional https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.
2-macos-universal.tar.gz
SHA256: c6fdda745f9ce69bca048e91955c7d043ba905d6388a62e0ff52b681ac17183c

win32 required https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.
2-windows-x86_64.zip
SHA256: 48bf4b3dc2d668c578e0884cac7878e146b036ca6b5ce4f8b5572f861b004c25

win64 required https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.
2-windows-x86_64.zip
SHA256: 48bf4b3dc2d668c578e0884cac7878e146b036ca6b5ce4f8b5572f861b004c25

openocd-esp32 OpenOCD for ESP32
License: GPL-2.0-only
More info: https://github.com/espressif/openocd-esp32

Plat-
form

Re-
quired

Download

linux-
amd64

required https://github.com/espressif/openocd-esp32/releases/download/v0.12.
0-esp32-20250707/openocd-esp32-linux-amd64-0.12.0-esp32-20250707.tar.gz
SHA256: 766293bd7a08900d3536f87a0a7ade960f07266f16e4147f95ca5ce4e15d4c5d

linux-
arm64

required https://github.com/espressif/openocd-esp32/releases/download/v0.12.
0-esp32-20250707/openocd-esp32-linux-arm64-0.12.0-esp32-20250707.tar.gz
SHA256: 34b6883c372444b49950893b2fc0101aefd10d404a88ef72c97e80199f8544d3

linux-
armel

required https://github.com/espressif/openocd-esp32/releases/download/v0.12.
0-esp32-20250707/openocd-esp32-linux-armel-0.12.0-esp32-20250707.tar.gz
SHA256: fd48492cf3ee16577c661fdccc14c349d34a9ab93aac5039ddf72332d4f4b70b

linux-
armhf

required https://github.com/espressif/openocd-esp32/releases/download/v0.12.
0-esp32-20250707/openocd-esp32-linux-armhf-0.12.0-esp32-20250707.tar.gz
SHA256: a468cc108578a1f4553ac0502c814d47791ef79f5997a31e941908fa5119de9c

macos required https://github.com/espressif/openocd-esp32/releases/download/v0.12.
0-esp32-20250707/openocd-esp32-macos-0.12.0-esp32-20250707.tar.gz
SHA256: 6267be53892a76d535938a1b044b685adc7d292f090447e8a3e3d0f0996474d1

macos-
arm64

required https://github.com/espressif/openocd-esp32/releases/download/v0.12.
0-esp32-20250707/openocd-esp32-macos-arm64-0.12.0-esp32-20250707.tar.gz
SHA256: 150e938ac48a6ee031ddbc8b31043bc7f2073ab2ee4896b658918d35899673c3

win32 required https://github.com/espressif/openocd-esp32/releases/download/v0.12.
0-esp32-20250707/openocd-esp32-win32-0.12.0-esp32-20250707.zip
SHA256: 666274b04af7f36b430b6d063006051c37b8635b5175735ad5af07a1fbc6f486

win64 required https://github.com/espressif/openocd-esp32/releases/download/v0.12.
0-esp32-20250707/openocd-esp32-win64-0.12.0-esp32-20250707.zip
SHA256: 5186ba3f7ee29fb6ab68a4ed7bb417211bad76ecdcdf9280a9187ebfd549a3c1

Espressif Systems 2485
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-linux-x86_64.tar.gz
https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-linux-x86_64.tar.gz
https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-linux-aarch64.tar.gz
https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-linux-aarch64.tar.gz
https://dl.espressif.com/dl/cmake/cmake-3.30.2-Linux-armv7l.tar.gz
https://dl.espressif.com/dl/cmake/cmake-3.30.2-Linux-armv7l.tar.gz
https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-macos-universal.tar.gz
https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-macos-universal.tar.gz
https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-macos-universal.tar.gz
https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-macos-universal.tar.gz
https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-windows-x86_64.zip
https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-windows-x86_64.zip
https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-windows-x86_64.zip
https://github.com/Kitware/CMake/releases/download/v3.30.2/cmake-3.30.2-windows-x86_64.zip
https://spdx.org/licenses/GPL-2.0-only
https://github.com/espressif/openocd-esp32
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-linux-amd64-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-linux-amd64-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-linux-arm64-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-linux-arm64-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-linux-armel-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-linux-armel-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-linux-armhf-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-linux-armhf-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-macos-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-macos-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-macos-arm64-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-macos-arm64-0.12.0-esp32-20250707.tar.gz
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-win32-0.12.0-esp32-20250707.zip
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-win32-0.12.0-esp32-20250707.zip
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-win64-0.12.0-esp32-20250707.zip
https://github.com/espressif/openocd-esp32/releases/download/v0.12.0-esp32-20250707/openocd-esp32-win64-0.12.0-esp32-20250707.zip
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

ninja Ninja build system
On Linux and macOS, it is recommended to install ninja using the OS-specific package manager (like apt, yum, brew,
etc.). However, for convenience it is possible to install ninja using idf_tools.py along with the other tools.
License: Apache-2.0
More info: https://github.com/ninja-build/ninja

Plat-
form

Re-
quired

Download

linux-
amd64

optional https://dl.espressif.com/dl/ninja-1.12.1-linux64.tar.gz
SHA256: 68f750dd763ba1a0dd976c3b4145d715cf7806191e05e871e5f5d1a8de4e1cd0

macos optional https://dl.espressif.com/dl/ninja-1.12.1-osx.tar.gz
SHA256: 9087d29e959612b91027ce75151c72910b6a1f42832af70eeae94353e3b05b2e

macos-
arm64

optional https://dl.espressif.com/dl/ninja-1.12.1-osx.tar.gz
SHA256: 9087d29e959612b91027ce75151c72910b6a1f42832af70eeae94353e3b05b2e

win64 required https://dl.espressif.com/dl/ninja-1.12.1-win64.zip
SHA256: f550fec705b6d6ff58f2db3c374c2277a37691678d6aba463adcbb129108467a

idf-exe IDF wrapper tool for Windows
License: Apache-2.0
More info: https://github.com/espressif/idf_py_exe_tool

Plat-
form

Re-
quired

Download

win32 required https://github.com/espressif/idf_py_exe_tool/releases/download/v1.0.3/idf-exe-v1.0.3.
zip
SHA256: 7c81ef534c562354a5402ab6b90a6eb1cc8473a9f4a7b7a7f93ebbd23b4a2755

win64 required https://github.com/espressif/idf_py_exe_tool/releases/download/v1.0.3/idf-exe-v1.0.3.
zip
SHA256: 7c81ef534c562354a5402ab6b90a6eb1cc8473a9f4a7b7a7f93ebbd23b4a2755

ccache Ccache (compiler cache)
License: GPL-3.0-or-later
More info: https://github.com/ccache/ccache

Plat-
form

Re-
quired

Download

win64 required https://github.com/ccache/ccache/releases/download/v4.12.1/ccache-4.12.
1-windows-x86_64.zip
SHA256: 98aea520d66905b8ba7a8e648a4cc0ca941d5e119d441f1e879a4a9045bf18f6

dfu-util dfu-util (Device Firmware Upgrade Utilities)
License: GPL-2.0-only
More info: http://dfu-util.sourceforge.net/

Plat-
form

Re-
quired

Download

win64 required https://dl.espressif.com/dl/dfu-util-0.11-win64.zip
SHA256: 652eb94cb1c074c6dbead9e47adb628922aeb198a4d440a346ab32e7a0e9bf64

Espressif Systems 2486
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://spdx.org/licenses/Apache-2.0
https://github.com/ninja-build/ninja
https://dl.espressif.com/dl/ninja-1.12.1-linux64.tar.gz
https://dl.espressif.com/dl/ninja-1.12.1-osx.tar.gz
https://dl.espressif.com/dl/ninja-1.12.1-osx.tar.gz
https://dl.espressif.com/dl/ninja-1.12.1-win64.zip
https://spdx.org/licenses/Apache-2.0
https://github.com/espressif/idf_py_exe_tool
https://github.com/espressif/idf_py_exe_tool/releases/download/v1.0.3/idf-exe-v1.0.3.zip
https://github.com/espressif/idf_py_exe_tool/releases/download/v1.0.3/idf-exe-v1.0.3.zip
https://github.com/espressif/idf_py_exe_tool/releases/download/v1.0.3/idf-exe-v1.0.3.zip
https://github.com/espressif/idf_py_exe_tool/releases/download/v1.0.3/idf-exe-v1.0.3.zip
https://spdx.org/licenses/GPL-3.0-or-later
https://github.com/ccache/ccache
https://github.com/ccache/ccache/releases/download/v4.12.1/ccache-4.12.1-windows-x86_64.zip
https://github.com/ccache/ccache/releases/download/v4.12.1/ccache-4.12.1-windows-x86_64.zip
https://spdx.org/licenses/GPL-2.0-only
http://dfu-util.sourceforge.net/
https://dl.espressif.com/dl/dfu-util-0.11-win64.zip
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

esp-rom-elfs ESP ROM ELFs
License: Apache-2.0
More info: https://github.com/espressif/esp-rom-elfs

Plat-
form

Re-
quired

Download

any required https://github.com/espressif/esp-rom-elfs/releases/download/20240305/
esp-rom-elfs-20240305.tar.gz
SHA256: a26609b415710f0163d785850c769752717004059c129c472e9a0cbd54e0422c

qemu-xtensa QEMU for Xtensa
Some ESP-specific instructions for running QEMU for Xtensa chips are here: https://github.com/espressif/
esp-toolchain-docs/blob/main/qemu/esp32/README.md
License: GPL-2.0-only
More info: https://github.com/espressif/qemu

Plat-
form

Re-
quired

Download

linux-
amd64

optional https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/
qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-x86_64-linux-gnu.tar.xz
SHA256: 88176f41c2fb17448372b4a120109275270c0e6bc49af4938f9f82d48e02f126

linux-
arm64

optional https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/
qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-aarch64-linux-gnu.tar.xz
SHA256: 37e15a038456e9692394e7ab7faf4d8e04b937476bb22c346e7ce0aaa579a003

macos optional https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/
qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-x86_64-apple-darwin.tar.xz
SHA256: e9321b29f59aa5c5f8d713ddcde301e46348493cdbf2dc12df2e047e6f456b58

macos-
arm64

optional https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/
qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-aarch64-apple-darwin.tar.xz
SHA256: ab5f2c0c7f9428dfdd970f1cd9cac66e9d455e4ba87308d42882f43580433cd6

win64 optional https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/
qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-x86_64-w64-mingw32.tar.xz
SHA256: cc1b0f87317e92aad71b40c409f404ce6df83bec0752feb6429eae65af606ae5

qemu-riscv32 QEMU for RISC-V
Some ESP-specific instructions for running QEMU for RISC-V chips are here: https://github.com/espressif/
esp-toolchain-docs/blob/main/qemu/esp32c3/README.md
License: GPL-2.0-only
More info: https://github.com/espressif/qemu

Espressif Systems 2487
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://spdx.org/licenses/Apache-2.0
https://github.com/espressif/esp-rom-elfs
https://github.com/espressif/esp-rom-elfs/releases/download/20240305/esp-rom-elfs-20240305.tar.gz
https://github.com/espressif/esp-rom-elfs/releases/download/20240305/esp-rom-elfs-20240305.tar.gz
https://github.com/espressif/esp-toolchain-docs/blob/main/qemu/esp32/README.md
https://github.com/espressif/esp-toolchain-docs/blob/main/qemu/esp32/README.md
https://spdx.org/licenses/GPL-2.0-only
https://github.com/espressif/qemu
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-x86_64-linux-gnu.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-x86_64-linux-gnu.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-aarch64-linux-gnu.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-aarch64-linux-gnu.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-x86_64-apple-darwin.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-x86_64-apple-darwin.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-aarch64-apple-darwin.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-aarch64-apple-darwin.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-x86_64-w64-mingw32.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-xtensa-softmmu-esp_develop_8.1.3_20231206-x86_64-w64-mingw32.tar.xz
https://github.com/espressif/esp-toolchain-docs/blob/main/qemu/esp32c3/README.md
https://github.com/espressif/esp-toolchain-docs/blob/main/qemu/esp32c3/README.md
https://spdx.org/licenses/GPL-2.0-only
https://github.com/espressif/qemu
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Plat-
form

Re-
quired

Download

linux-
amd64

optional https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/
qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-x86_64-linux-gnu.tar.xz
SHA256: 88373441ce34d598da372e313f2ff0d6a6bed9a11f8152a2dde0be1cc89b917f

linux-
arm64

optional https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/
qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-aarch64-linux-gnu.tar.xz
SHA256: 925be5f64c27fad9b982fb24870119fe2af7d1aa36b3607044f5db4d83633f8c

macos optional https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/
qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-x86_64-apple-darwin.tar.xz
SHA256: 02fb7a928fe2f35debb561a1531458ef756c1b7dc2226afdb464eba81392920b

macos-
arm64

optional https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/
qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-aarch64-apple-darwin.tar.xz
SHA256: 2a5836a02070964d05b947220906575e2f6a88dd68473eea72622705cb18105b

win64 optional https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/
qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-x86_64-w64-mingw32.tar.xz
SHA256: 8ecef3ccb770cce5b82c0683c318eedd6da288d878151c7d002d89ae64e7c1bb

4.28 Unit Testing in ESP32-C6

ESP-IDF provides the following methods to test software.
• Target based tests using a central unit test application which runs on the esp32c6. These tests use the Unity
unit test framework. They can be integrated into an ESP-IDF component by placing them in the component's
test subdirectory. This document mainly introduces this target based tests.

• Linux-host based unit tests in which part of the hardware can be abstracted via mocks. Currently, Linux-host
based tests are still under development and only a small fraction of IDF components support them. More
information on running IDF applications on the host can be found here: Running Applications on the Host
Machine.

4.28.1 Normal Test Cases

Unit tests are located in the test subdirectory of a component. Tests are written in C, and a single C source file can
contain multiple test cases. Test files start with the word "test".
Each test file should include the unity.h header and the header for the C module to be tested.
Tests are added in a function in the C file as follows:

TEST_CASE("test name", "[module name]")
{

// Add test here
}

• The first argument is a descriptive name for the test.
• The second argument is an identifier in square brackets. Identifiers are used to group related test, or tests with
specific properties.

Note: There is no need to add a main function with UNITY_BEGIN() and UNITY_END() in each test
case. unity_platform.c will run UNITY_BEGIN() autonomously, and run the test cases, then call
 UNITY_END().

The test subdirectory should contain a component CMakeLists.txt, since they are themselves components (i.e., a test
component). ESP-IDF uses the Unity test framework located in the unity component. Thus, each test component

Espressif Systems 2488
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-x86_64-linux-gnu.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-x86_64-linux-gnu.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-aarch64-linux-gnu.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-aarch64-linux-gnu.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-x86_64-apple-darwin.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-x86_64-apple-darwin.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-aarch64-apple-darwin.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-aarch64-apple-darwin.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-x86_64-w64-mingw32.tar.xz
https://github.com/espressif/qemu/releases/download/esp-develop-8.1.3-20231206/qemu-riscv32-softmmu-esp_develop_8.1.3_20231206-x86_64-w64-mingw32.tar.xz
https://www.throwtheswitch.org/unity
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

should specify the unity component as a component requirement using the REQUIRES argument. Normally,
components should list their sources manually; for component tests however, this requirement is relaxed and the use
of the SRC_DIRS argument in idf_component_register is advised.
Overall, the minimal test subdirectory CMakeLists.txt file should contain the following:

idf_component_register(SRC_DIRS "."
INCLUDE_DIRS "."
REQUIRES unity)

See http://www.throwtheswitch.org/unity for more information about writing tests in Unity.

4.28.2 Multi-device Test Cases

The normal test cases will be executed on one DUT (Device Under Test). However, components that require some
form of communication (e.g., GPIO, SPI) require another device to communicate with, thus cannot be tested through
normal test cases. Multi-device test cases involve writing multiple test functions, and running them onmultiple DUTs.
The following is an example of a multi-device test case:

void gpio_master_test()
{

gpio_config_t slave_config = {
.pin_bit_mask = 1 << MASTER_GPIO_PIN,
.mode = GPIO_MODE_INPUT,

};
gpio_config(&slave_config);
unity_wait_for_signal("output high level");
TEST_ASSERT(gpio_get_level(MASTER_GPIO_PIN) == 1);

}

void gpio_slave_test()
{

gpio_config_t master_config = {
.pin_bit_mask = 1 << SLAVE_GPIO_PIN,
.mode = GPIO_MODE_OUTPUT,

};
gpio_config(&master_config);
gpio_set_level(SLAVE_GPIO_PIN, 1);
unity_send_signal("output high level");

}

TEST_CASE_MULTIPLE_DEVICES("gpio multiple devices test example", "[driver]", gpio_
↪→master_test, gpio_slave_test);

The macro TEST_CASE_MULTIPLE_DEVICES is used to declare a multi-device test case.
• The first argument is test case name.
• The second argument is test case description.
• From the third argument, up to 5 test functions can be defined, each function will be the entry point of tests
running on each DUT.

Running test cases from different DUTs could require synchronizing between DUTs. We provide
unity_wait_for_signal and unity_send_signal to support synchronizing with UART. As the sce-
nario in the above example, the slave should get GPIO level after master set level. DUT UART console will prompt
and user interaction is required:
DUT1 (master) console:

Waiting for signal: [output high level]!
Please press "Enter" key to once any board send this signal.

DUT2 (slave) console:

Espressif Systems 2489
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

http://www.throwtheswitch.org/unity
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Send signal: [output high level]!

Once the signal is sent from DUT2, you need to press "Enter" on DUT1, then DUT1 unblocks from
unity_wait_for_signal and starts to change GPIO level.

4.28.3 Multi-stage Test Cases

The normal test cases are expected to finish without reset (or only need to check if reset happens). Sometimes we
expect to run some specific tests after certain kinds of reset. For example, we want to test if the reset reason is correct
after a wake up from deep sleep. We need to create a deep-sleep reset first and then check the reset reason. To
support this, we can define multi-stage test cases, to group a set of test functions:

static void trigger_deepsleep(void)
{

esp_sleep_enable_timer_wakeup(2000);
esp_deep_sleep_start();

}

void check_deepsleep_reset_reason()
{

soc_reset_reason_t reason = esp_rom_get_reset_reason(0);
TEST_ASSERT(reason == RESET_REASON_CORE_DEEP_SLEEP);

}

TEST_CASE_MULTIPLE_STAGES("reset reason check for deepsleep", "[esp32c6]", trigger_
↪→deepsleep, check_deepsleep_reset_reason);

Multi-stage test cases present a group of test functions to users. It needs user interactions (select cases and select
different stages) to run the case.

4.28.4 Tests For Different Targets

Some tests (especially those related to hardware) cannot run on all targets. Below is a guide how to make your unit
tests run on only specified targets.

1. Wrap your test code by !(TEMPORARY_)DISABLED_FOR_TARGETS()macros and place them either in
the original test file, or separate the code into files grouped by functions, but make sure all these files will be
processed by the compiler. E.g.:

#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP8266)
TEST_CASE("a test that is not ready for esp32 and esp8266 yet", "[]")
{
}
#endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP8266)

Once you need one of the tests to be compiled on a specified target, just modify the targets in the disabled
list. It's more encouraged to use some general conception that can be described in soc_caps.h to control
the disabling of tests. If this is done but some of the tests are not ready yet, use both of them (and remove !
(TEMPORARY_)DISABLED_FOR_TARGETS() later). E.g.:

#if SOC_SDIO_SLAVE_SUPPORTED
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP64)
TEST_CASE("a sdio slave tests that is not ready for esp64 yet", "[sdio_slave]")
{

//available for esp32 now, and will be available for esp64 in the future
}
#endif //!TEMPORARY_DISABLED_FOR_TARGETS(ESP64)
#endif //SOC_SDIO_SLAVE_SUPPORTED

Espressif Systems 2490
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

2. For test code that you are 100% for sure that will not be supported (e.g. no peripheral at all), use DIS-
ABLED_FOR_TARGETS; for test code that should be disabled temporarily, or due to lack of runners, etc.,
use TEMPORARY_DISABLED_FOR_TARGETS.

Some old ways of disabling unit tests for targets, that have obvious disadvantages, are deprecated:
• DON'T put the test code under test/target folder and use CMakeLists.txt to choose one of the target
folder. This is prevented because test code is more likely to be reused than the implementations. If you put
something into test/esp32 just to avoid building it on esp32s2, it's hard to make the code tidy if you want
to enable the test again on esp32s3.

• DON'T use CONFIG_IDF_TARGET_xxx macros to disable the test items any more. This makes it harder
to track disabled tests and enable them again. Also, a black-list style #if !disabled is preferred to white-
list style #if CONFIG_IDF_TARGET_xxx, since you will not silently disable cases when new targets are
added in the future. But for test implementations, it's allowed to use #if CONFIG_IDF_TARGET_xxx to
pick one of the implementation code.

– Test item: some items that will be performed on some targets, but skipped on other targets. E.g.
There are three test items SD 1-bit, SD 4-bit and SDSPI. For ESP32-S2, which doesn't have SD host,
among the tests only SDSPI is enabled on ESP32-S2.

– Test implementation: some code will always happen, but in different ways. E.g.
There is no SDIO PKT_LEN register on ESP8266. If you want to get the length from the slave
as a step in the test process, you can have different implementation code protected by #if CON-
FIG_IDF_TARGET_ reading in different ways.
But please avoid using #else macro. When new target is added, the test case will fail at building stage,
so that the maintainer will be aware of this, and choose one of the implementations explicitly.

4.28.5 Building Unit Test App

Follow the setup instructions in the top-level esp-idf README. Make sure that IDF_PATH environment variable is
set to point to the path of esp-idf top-level directory.
Change into tools/unit-test-app directory to configure and build it:

• idf.py menuconfig - configure unit test app.
• idf.py -T all build - build unit test app with tests for each component having tests in the test
subdirectory.

• idf.py -T "xxx yyy" build - build unit test app with tests for some space-separated specific com-
ponents (For instance: idf.py -T heap build - build unit tests only for heap component directory).

• idf.py -T all -E "xxx yyy" build - build unit test app with all unit tests, except for unit tests of
some components (For instance: idf.py -T all -E "ulp mbedtls" build - build all unit tests
excludes ulp and mbedtls components).

Note: Due to inherent limitations of Windows command prompt, following syntax has to be used in order to build
unit-test-app with multiple components: idf.py -T xxx -T yyy build or with escaped quotes: idf.py
-T \`"xxx yyy\`" build in PowerShell or idf.py -T \^"ssd1306 hts221\^" build inWindows
command prompt.

When the build finishes, it will print instructions for flashing the chip. You can simply run idf.py flash to flash
all build output.
You can also run idf.py -T all flash or idf.py -T xxx flash to build and flash. Everything needed
will be rebuilt automatically before flashing.
Use menuconfig to set the serial port for flashing. For more information, see tools/unit-test-app/README.md.

4.28.6 Running Unit Tests

After flashing reset the ESP32-C6 and it will boot the unit test app.
When unit test app is idle, press "Enter" will make it print test menu with all available tests:

Espressif Systems 2491
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/unit-test-app/README.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Here's the test menu, pick your combo:
(1) "esp_ota_begin() verifies arguments" [ota]
(2) "esp_ota_get_next_update_partition logic" [ota]
(3) "Verify bootloader image in flash" [bootloader_support]
(4) "Verify unit test app image" [bootloader_support]
(5) "can use new and delete" [cxx]
(6) "can call virtual functions" [cxx]
(7) "can use static initializers for non-POD types" [cxx]
(8) "can use std::vector" [cxx]
(9) "static initialization guards work as expected" [cxx]
(10) "global initializers run in the correct order" [cxx]
(11) "before scheduler has started, static initializers work correctly" [cxx]
(12) "adc2 work with wifi" [adc]
(13) "gpio master/slave test example" [ignore][misc][test_env=UT_T2_1][multi_
↪→device]

(1) "gpio_master_test"
(2) "gpio_slave_test"

(14) "SPI Master clockdiv calculation routines" [spi]
(15) "SPI Master test" [spi][ignore]
(16) "SPI Master test, interaction of multiple devs" [spi][ignore]
(17) "SPI Master no response when switch from host1 (SPI2) to host2 (SPI3)"␣
↪→[spi]
(18) "SPI Master DMA test, TX and RX in different regions" [spi]
(19) "SPI Master DMA test: length, start, not aligned" [spi]
(20) "reset reason check for deepsleep" [esp32c6][test_env=UT_T2_1][multi_stage]

(1) "trigger_deepsleep"
(2) "check_deepsleep_reset_reason"

The normal case will print the case name and description. Master-slave cases will also print the sub-menu (the
registered test function names).
Test cases can be run by inputting one of the following:

• Test case name in quotation marks to run a single test case
• Test case index to run a single test case
• Module name in square brackets to run all test cases for a specific module
• An asterisk to run all test cases

[multi_device] and [multi_stage] tags tell the test runner whether a test case is a multiple devices or
multiple stages of test case. These tags are automatically added by `TEST_CASE_MULTIPLE_STAGES and
TEST_CASE_MULTIPLE_DEVICES macros.
After you select a multi-device test case, it will print sub-menu:

Running gpio master/slave test example...
gpio master/slave test example

(1) "gpio_master_test"
(2) "gpio_slave_test"

You need to input a number to select the test running on the DUT.
Similar to multi-device test cases, multi-stage test cases will also print sub-menu:

Running reset reason check for deepsleep...
reset reason check for deepsleep

(1) "trigger_deepsleep"
(2) "check_deepsleep_reset_reason"

First time you execute this case, input 1 to run first stage (trigger deepsleep). After DUT is rebooted and able to run
test cases, select this case again and input 2 to run the second stage. The case only passes if the last stage passes and
all previous stages trigger reset.

Espressif Systems 2492
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.28.7 Timing Code with Cache Compensated Timer

Instructions and data stored in external memory (e.g. SPI Flash and SPI RAM) are accessed through the CPU's
unified instruction and data cache. When code or data is in cache, access is very fast (i.e., a cache hit).
However, if the instruction or data is not in cache, it needs to be fetched from external memory (i.e., a cache miss).
Access to external memory is significantly slower, as the CPU must execute stall cycles whilst waiting for the instruc-
tion or data to be retrieved from external memory. This can cause the overall code execution speed to vary depending
on the number of cache hits or misses.
Code and data placements can vary between builds, and some arrangements may be more favorable with regards to
cache access (i.e., minimizing cache misses). This can technically affect execution speed, however these factors are
usually irrelevant as their effect 'average out' over the device's operation.
The effect of the cache on execution speed, however, can be relevant in benchmarking scenarios (especially micro
benchmarks). There might be some variability in measured time between runs and between different builds. A tech-
nique for eliminating for some of the variability is to place code and data in instruction or data RAM (IRAM/DRAM),
respectively. The CPU can access IRAM and DRAM directly, eliminating the cache out of the equation. However,
this might not always be viable as the size of IRAM and DRAM is limited.
The cache compensated timer is an alternative to placing the code/data to be benchmarked in IRAM/DRAM. This
timer uses the processor's internal event counters in order to determine the amount of time spent on waiting for
code/data in case of a cache miss, then subtract that from the recorded wall time.

// Start the timer
ccomp_timer_start();

// Function to time
func_code_to_time();

// Stop the timer, and return the elapsed time in microseconds relative to
// ccomp_timer_start
int64_t t = ccomp_timer_stop();

One limitation of the cache compensated timer is that the task that benchmarked functions should be pinned to a
core. This is due to each core having its own event counters that are independent of each other. For example, if
ccomp_timer_start gets called on one core, put to sleep by the scheduler, wakes up, and gets rescheduled on
the other core, then the corresponding ccomp_timer_stop will be invalid.

4.28.8 Mocks

Note: Currently, mocking is only possible with some selected components when running on the Linux host. In the
future, we plan to make essential components in IDF mock-able. This will also include mocking when running on
the ESP32-C6.

One of the biggest problems regarding unit testing on embedded systems are the strong hardware dependencies.
Running unit tests directly on the ESP32-C6 can be especially difficult for higher layer components for the following
reasons:

• Decreased test reliability due to lower layer components and/or hardware setup.
• Increased difficulty in testing edge cases due to limitations of lower layer components and/or hardware setup
• Increased difficulty in identifying the root cause due to the large number of dependencies influencing the
behavior

When testing a particular component, (i.e., the component under test), mocking allows the dependencies of the
component under test to be substituted (i.e., mocked) entirely in software. Through mocking, hardware details are
emulated and specified at run time, but only if necessary. To allowmocking, ESP-IDF integrates the CMockmocking
framework as a component. With the addition of some CMake functions in the ESP-IDF build system, it is possible
to conveniently mock the entirety (or a part) of an IDF component.

Espressif Systems 2493
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.throwtheswitch.org/cmock
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Ideally, all components that the component under test is dependent on should be mocked, thus allowing the test
environment complete control over all interactions with the component under test. However, if mocking all dependent
components becomes too complex or too tedious (e.g. because you need to mock too many function calls) you have
the following options:

• Include more "real" IDF code in the tests. This may work but increases the dependency on the "real" code's
behavior. Furthermore, once a test fails, you may not know if the failure is in your actual code under test or
the "real" IDF code.

• Re-evaluate the design of the code under test and attempt to reduce its dependencies by dividing the code
under test into more manageable components. This may seem burdensome but it is quite common that unit
tests expose software design weaknesses. Fixing design weaknesses will not only help with unit testing in the
short term, but will help future code maintenance as well.

Refer to cmock/CMock/docs/CMock_Summary.md for more details on how CMock works and how to create and
use mocks.

Requirements

Mocking with CMock requires Ruby on the host machine. Furthermore, since mocking currently only works on the
Linux target, the requirements of the latter also need to be fulfilled:

• Installed ESP-IDF including all ESP-IDF requirements
• System package requirements (libbsd, libbsd-dev)
• A recent enough Linux or macOS version and GCC compiler
• All components the application depends on must be either supported on the Linux target (Linux/POSIX sim-
ulator) or mock-able

An application that runs on the Linux target has to set the COMPONENTS variable to main in the CMakeLists.txt of
the application's root directory:

set(COMPONENTS main)

This prevents the automatic inclusion of all components from ESP-IDF to the build process which is otherwise done
for convenience.

Mock a Component

If a mocked component, called a component mock, is already available in ESP-IDF, then it can be used right away
as long as it satisfies the required functionality. Refer to Component Linux/Mock Support Overview to see which
components are mocked already. Then refer to Adjustments in Unit Test in order to use the component mock.
It is necessary to create component mocks if they are not yet provided in ESP-IDF. To create a component mock,
the component needs to be overwritten in a particular way. Overriding a component entails creating a component
with the exact same name as the original component, then letting the build system discover it later than the original
component (see Multiple components with the same name for more details).
In the component mock, the following parts are specified:

• The headers providing the functions to generate mocks for
• Include paths of the aforementioned headers
• Dependencies of themock component (this is necessary e.g. if the headers include files from other components)

All these parts have to be specified using the IDF build system function idf_component_mock. You can use the
IDF build system function idf_component_get_property with the tag COMPONENT_OVERRIDEN_DIR
to access the component directory of the original component and then register the mock component parts using
idf_component_mock:

Espressif Systems 2494
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/ThrowTheSwitch/CMock/blob/eeecc49/docs/CMock_Summary.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

idf_component_get_property(original_component_dir <original-component-name>␣
↪→COMPONENT_OVERRIDEN_DIR)
...
idf_component_mock(INCLUDE_DIRS "${original_component_dir}/include"

REQUIRES freertos
MOCK_HEADER_FILES ${original_component_dir}/include/header_containing_

↪→functions_to_mock.h)

The component mock also requires a separate mock directory containing a mock_config.yaml file that config-
ures CMock. A simple mock_config.yaml could look like this:

:cmock:
:plugins:

- expect
- expect_any_args

For more details about the CMock configuration yaml file, have a look at cmock/CMock/docs/CMock_Summary.md.
Note that the component mock does not have to mock the original component in its entirety. As long as the test
project's dependencies and dependencies of other code to the original components are satisfied by the component
mock, partial mocking is adequate. In fact, most of the component mocks in IDF in tools/mocks are only
partially mocking the original component.
Examples of component mocks can be found under tools/mocks in the IDF directory. General information on how
to override an IDF component can be found in Multiple components with the same name. There are several examples
for testing code while mocking dependencies with CMock (non-exhaustive list):

• unit test for the NVS Page class .
• unit test for esp_event .
• unit test for mqtt .

Adjustments in Unit Test

The unit test needs to inform the cmake build system to mock dependent components (i.e., it needs to override the
original component with the mock component). This is done by either placing the component mock into the project's
components directory or adding the mock component's directory using the following line in the project's root
CMakeLists.txt:

list(APPEND EXTRA_COMPONENT_DIRS "<mock_component_dir>")

Both methods will override existing components in ESP-IDF with the component mock. The latter is particularly
convenient if you use component mocks that are already supplied by IDF.
Users can refer to theesp_event host-based unit test and its esp_event/host_test/esp_event_unit_test/CMakeLists.txt
as an example of a component mock.

4.29 Running Applications on Host

Note: Running IDF applications on host is currently still an experimental feature, thus there is no guarantee for API
stability. However, user feedback via the ESP-IDF GitHub repository or the ESP32 forum is highly welcome, and
may help influence the future of design of the IDF host-based applications.

This document provides an overview of the methods to run IDF applications on Linux, and what type of IDF appli-
cations can typically be run on Linux.

Espressif Systems 2495
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/ThrowTheSwitch/CMock/blob/eeecc49/docs/CMock_Summary.md
https://github.com/espressif/esp-idf/tree/b0f5707906b/tools/mocks
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/nvs_flash/host_test/nvs_page_test/README.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_event/host_test/esp_event_unit_test/main/esp_event_test.cpp
https://github.com/espressif/esp-mqtt/blob/cac1552/host_test/README.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_event/host_test/esp_event_unit_test/CMakeLists.txt
https://github.com/espressif/esp-idf
https://esp32.com/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.29.1 Introduction

Typically, an IDF application is built (cross-compiled) on a host machine, uploaded (i.e., flashed) to an ESP chip
for execution, and monitored by the host machine via a UART/USB port. However, execution of an IDF application
on an ESP chip (hence forth referred to as "running on target") can be limiting in various development/usage/testing
scenarios.
Therefore, it is possible for an IDF application to be built and executed entirely within the same Linux host machine
(hence forth referred to as "running on host"). Running ESP-IDF applications on host has several advantages:

• No need to upload to a target.
• Faster execution on a host machine, compared to running on an ESP chip.
• No requirements for any specific hardware, except the host machine itself.
• Easier automation and setup for software testing.
• Large number of tools for code and runtime analysis (e.g. Valgrind).

A large number of IDF components depend on chip-specific hardware. These hardware dependenciesmust bemocked
or simulated when running on host. ESP-IDF currently supports the following mocking and simulation approaches:

1. Using the FreeRTOS POSIX/Linux simulator that simulates FreeRTOS scheduling. On top of this simulation,
other APIs are also simulated or implemented when running on host.

2. Using CMock to mock all dependencies and run the code in complete isolation.
In principle, it is possible to mix both approaches (POSIX/Linux simulator and mocking using CMock), but this has
not been done yet in ESP-IDF. Note that despite the name, the FreeRTOS POSIX/Linux simulator currently also
works on MacOS. Running IDF applications on host machines is often used for testing. However, simulating the
environment and mocking dependencies does not fully represent the target device. Thus, testing on the target device
is still necessary, though with a different focus that usually puts more weight on integration and system testing.

Note: Another possibility to run applications on the host is to use the QEMU simulator. However, QEMU devel-
opment for IDF applications is currently work in progress and has not been documented yet.

CMock-Based Approach

This approach uses the CMock framework to solve the problem of missing hardware and software dependencies.
CMock-based applications running on the host machine have the added advantage that they usually only compile the
necessary code, i.e., the (mostly mocked) dependencies instead of the entire system. For a general introduction to
Mocks and how to configure and use them in ESP-IDF, please refer to Mocks.

POSIX/Linux Simulator Approach

The FreeRTOS POSIX/Linux simulator is available on ESP-IDF as a preview target already. It is the base for the
Linux target which is already available as a preview. Using this simulator, IDF components can be implemented
on the host to make them available to IDF applications when running on host. Currently, only a limited number
of components are ready to be built on Linux. Furthermore the functionality of each component ported to Linux
may also be limited or different compared to the functionality when building that component for a chip target. For
more information if the desired components are supported on Linux, please refer to Component Linux/Mock Support
Overview.

4.29.2 Requirements

• Installed ESP-IDF including all ESP-IDF requirements
• System package requirements (libbsd, libbsd-dev)
• A recent enough Linux or macOS version and GCC compiler
• All components the application depends on must be either supported on the Linux target (Linux/POSIX sim-
ulator) or mock-able

Espressif Systems 2496
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.freertos.org/FreeRTOS-simulator-for-Linux.html
https://www.throwtheswitch.org/cmock
https://www.throwtheswitch.org/cmock
https://www.freertos.org/FreeRTOS-simulator-for-Linux.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

An application that runs on the Linux target has to set the COMPONENTS variable to main in the CMakeLists.txt of
the application's root directory:

set(COMPONENTS main)

This prevents the automatic inclusion of all components from ESP-IDF to the build process which is otherwise done
for convenience.
If any mocks are used, then Ruby is required, too.

4.29.3 Build and Run

To build the application on Linux, the target has to be set to linux and then it can be built and run:

idf.py --preview set-target linux
idf.py build
idf.py monitor

4.29.4 Component Linux/Mock Support Overview

Note that any "Yes" here does not necessarily mean a full implementation or mocking. It can also mean a partial
implementation or mocking of functionality. Usually, the implementation or mocking is done to a point where
enough functionality is provided to build and run a test application.

Component Mock Simulation
driver Yes No
esp_common No Yes
esp_event Yes Yes
esp_hw_support Yes Yes
esp_partition Yes No
esp_rom No Yes
esp_system No Yes
esp_timer Yes No
esp_tls Yes No
freertos Yes Yes
hal No Yes
heap No Yes
http_parser Yes No
log No Yes
lwip Yes No
soc No Yes
spi_flash Yes No
tcp_transport Yes No

4.30 USB Serial/JTAG Controller Console

On chips with an integrated USB Serial/JTAG Controller, it is possible to use the part of this controller that im-
plements a serial port (CDC) to implement the serial console, instead of using UART with an external USB-UART
bridge chip. ESP32-C6 contains this controller, providing the following functions:

• Bidirectional serial console, which can be used with IDF Monitor or another serial monitor.
• Flashing using esptool.py and idf.py flash.
• JTAG debugging using e.g. OpenOCD, simultaneous with serial operations.

Espressif Systems 2497
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note that, in contrast with the USB OTG peripheral in some Espressif chips, the USB Serial/JTAG Controller is
a fixed function device, implemented entirely in hardware. This means it cannot be reconfigured to perform any
function other than to provide a serial channel and JTAG debugging functionality.

4.30.1 Hardware Requirements

Connect ESP32-C6 to the USB port as follows:

GPIO USB
13 D+ (green)
12 D- (white)
GND GND (black)

+5V (red)

Some development boards may offer a USB connector for the USB Serial/JTAG Controller—in that case, no extra
connections are required.

4.30.2 Software Configuration

USB console feature can be enabled using CONFIG_ESP_CONSOLE_USB_SERIAL_JTAG option in menuconfig
tool (see CONFIG_ESP_CONSOLE_UART).
Once the option is enabled, build the project as usual.
Alternatively, you can access the output through usb_serial_jtag port but make sure the option CON-
FIG_ESP_CONSOLE_SECONDARY_USB_SERIAL_JTAG in choice ESP_CONSOLE_SECONDARY is se-
lected.

Warning: Besides output, if you also want to input or use REPL with console, please select CON-
FIG_ESP_CONSOLE_USB_SERIAL_JTAG.

4.30.3 Uploading the Application

The USB Serial/JTAG Controller is able to put the ESP32-C6 into download mode automatically. Simply flash as
usual, but specify the USB Serial/JTAG Controller port on your system: idf.py flash -p PORT where PORT
is the name of the proper port.

4.30.4 Limitations

There are several limitations to the USB Serial/JTAG console feature. These may or may not be significant, depending
on the type of application being developed, and the development workflow.
1. If the application accidentally reconfigures the USB peripheral pins, or disables the USB Serial/JTAG Controller,
the device will disappear from the system. After fixing the issue in the application, you will need to manually put the
ESP32-C6 into download mode by pulling low GPIO9 and resetting the chip. .. note:

In rare cases it's possible that data sent from the ESP32-C6 to the host gets
↪→'stuck' in host memory. Sending more data will get it 'unstuck', but if the␣
↪→application does not send more data, depending on the driver, this data needs to␣
↪→be flushed to the host manually. The non-blocking (default) driver and the VFS␣
↪→implementation will flush automatically after a newline. The blocking (interrupt-
↪→based) driver will automatically flush when its transmit buffer becomes empty.

2. If the application enters deep sleep mode, the USB Serial/JTAG device will disappear from the system.

Espressif Systems 2498
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

3. For data sent in the direction of ESP32-C6 to PC Terminal (e.g. stdout, logs), the ESP32-C6 first writes to a
small internal buffer. If this buffer becomes full (for example, if no PC Terminal is connected), the ESP32-C6
will do a one-time wait of 50ms hoping for the PC Terminal to request the data. This can appear as a very
brief 'pause' in your application.

4. For data sent in the PC Terminal to ESP32-C6 direction (e.g. console commands), many PC Terminals will
wait for the ESP32-C6 to ingest the bytes before allowing you to sending more data. This is in contrast to
using a USB-to-Serial (UART) bridge chip, which will always ingest the bytes and send them to a (possibly not
listening) ESP32-C6.

5. The USB Serial/JTAG controller will not work during sleep (both light and deep sleep) due to the lack of
an APB and USB PHY clock during sleep. Thus, entering sleep has the following implications on the USB
Serial/JTAG controller:

i. Both the APB clock and the USB PHY clock (derived form the main PLL clock) will be disabled during
sleep. As a result, the USB Serial/JTAG controller will not be able receive or respond to any USB
transactions from the connected host (including periodic CDC Data IN transactions). Thus it may appear
to the host that the USB Serial/JTAG controller has disconnected.

ii. If users enter sleep manually (via esp_light_sleep_start() or
esp_deep_sleep_start()), users should be cognizant of the fact that USB Serial/JTAG
controller will not work during sleep. ESP-IDF does not add any safety check to reject entry to sleep
even if the USB Serial/JTAG controller is connected. In the case where sleep is entered while the USB
Serial/JTAG controller is connected, connection can be re-established by unplugging and re-plugging
the USB cable.

iii. If users enter sleep automatically (via esp_pm_configure()), enabling the CON-
FIG_USJ_NO_AUTO_LS_ON_CONNECTION option will allow the ESP32-C6 to automatically
detect whether the USB Serial/JTAG controller is currently connected to a host, and prevent automatic
entry to sleep as long as the connection persists. However, note that this option will increase power
consumption.

4.31 Wi-Fi Driver

4.31.1 ESP32-C6 Wi-Fi Feature List

The following features are supported:
• 4 virtual Wi-Fi interfaces, which are STA, AP, Sniffer and reserved.
• Station-only mode, AP-only mode, station/AP-coexistence mode
• IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, IEEE 802.11ax, and APIs to configure the protocol mode
• WPA/WPA2/WPA3/WPA2-Enterprise/WPA3-Enterprise/WAPI/WPS and DPP
• AMSDU, AMPDU, HT40, QoS, and other key features
• Modem-sleep
• The Espressif-specific ESP-NOW protocol and Long Range mode, which supports up to 1 km of data traffic
• Up to 20 MBit/s TCP throughput and 30 MBit/s UDP throughput over the air
• Sniffer
• Both fast scan and all-channel scan
• Multiple antennas
• Channel state information
• TWT
• Downlink MU-MIMO
• OFDMA
• BSS Color

4.31.2 How To Write a Wi-Fi Application

Espressif Systems 2499
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Preparation

Generally, the most effective way to begin your ownWi-Fi application is to select an example which is similar to your
own application, and port the useful part into your project. It is not a MUST, but it is strongly recommended that you
take some time to read this article first, especially if you want to program a robust Wi-Fi application.
This article is supplementary to the Wi-Fi APIs/Examples. It describes the principles of using the Wi-Fi APIs, the
limitations of the current Wi-Fi API implementation, and the most common pitfalls in using Wi-Fi. This article also
reveals some design details of the Wi-Fi driver. We recommend you to select an example .

Setting Wi-Fi Compile-time Options

Refer toWi-Fi Menuconfig.

Init Wi-Fi

Refer to ESP32-C6 Wi-Fi station General Scenario and ESP32-C6 Wi-Fi AP General Scenario.

Start/Connect Wi-Fi

Refer to ESP32-C6 Wi-Fi station General Scenario and ESP32-C6 Wi-Fi AP General Scenario.

Event-Handling

Generally, it is easy to write code in "sunny-day" scenarios, such as WIFI_EVENT_STA_START and
WIFI_EVENT_STA_CONNECTED. The hard part is to write routines in "rainy-day" scenarios, such as
WIFI_EVENT_STA_DISCONNECTED. Good handling of "rainy-day" scenarios is fundamental to robust Wi-Fi ap-
plications. Refer to ESP32-C6 Wi-Fi Event Description, ESP32-C6 Wi-Fi station General Scenario, and ESP32-C6
Wi-Fi AP General Scenario. See also the overview of the Event Loop Library in ESP-IDF.

Write Error-Recovery Routines Correctly at All Times

Just like the handling of "rainy-day" scenarios, a good error-recovery routine is also fundamental to robust Wi-Fi
applications. Refer to ESP32-C6 Wi-Fi API Error Code.

4.31.3 ESP32-C6 Wi-Fi API Error Code

All of the ESP32-C6 Wi-Fi APIs have well-defined return values, namely, the error code. The error code can be
categorized into:

• No errors, e.g., ESP_OK means that the API returns successfully.
• Recoverable errors, such as ESP_ERR_NO_MEM .
• Non-recoverable, non-critical errors.
• Non-recoverable, critical errors.

Whether the error is critical or not depends on the API and the application scenario, and it is defined by the API user.
The primary principle to write a robust application with Wi-Fi API is to always check the error code and
write the error-handling code. Generally, the error-handling code can be used:

• For recoverable errors, in which case you can write a recoverable-error code. For example, when
esp_wifi_start() returns ESP_ERR_NO_MEM , the recoverable-error code vTaskDelay can be called
in order to get a microseconds' delay for another try.

• For non-recoverable, yet non-critical errors, in which case printing the error code is a good method for error
handling.

Espressif Systems 2500
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• For non-recoverable and also critical errors, in which case "assert" may be a good method for error handling.
For example, if esp_wifi_set_mode() returns ESP_ERR_WIFI_NOT_INIT, it means that the Wi-Fi
driver is not initialized by esp_wifi_init() successfully. You can detect this kind of error very quickly
in the application development phase.

In esp_common/include/esp_err.h, ESP_ERROR_CHECK checks the return values. It is a rather commonplace error-
handling code and can be used as the default error-handling code in the application development phase. However, it
is strongly recommended that API users write their own error-handling code.

4.31.4 ESP32-C6 Wi-Fi API Parameter Initialization

When initializing struct parameters for the API, one of two approaches should be followed:
• Explicitly set all fields of the parameter.
• Use get API to get current configuration first, then set application specific fields.

Initializing or getting the entire structure is very important, because most of the time the value 0 indicates that the
default value is used. More fields may be added to the struct in the future and initializing these to zero ensures the
application will still work correctly after ESP-IDF is updated to a new release.

4.31.5 ESP32-C6 Wi-Fi Programming Model

The ESP32-C6 Wi-Fi programming model is depicted as follows:

Fig. 77: Wi-Fi Programming Model

The Wi-Fi driver can be considered a black box that knows nothing about high-layer code, such as the TCP/IP stack,
application task, and event task. The application task (code) generally calls Wi-Fi driver APIs to initialize Wi-Fi
and handles Wi-Fi events when necessary. Wi-Fi driver receives API calls, handles them, and posts events to the
application.
Wi-Fi event handling is based on the esp_event library. Events are sent by the Wi-Fi driver to the default event loop.
Application may handle these events in callbacks registered using esp_event_handler_register(). Wi-Fi
events are also handled by esp_netif component to provide a set of default behaviors. For example, whenWi-Fi station
connects to an AP, esp_netif will automatically start the DHCP client by default.

4.31.6 ESP32-C6 Wi-Fi Event Description

Espressif Systems 2501
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_common/include/esp_err.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

WIFI_EVENT_WIFI_READY

The Wi-Fi driver will never generate this event, which, as a result, can be ignored by the application event callback.
This event may be removed in future releases.

WIFI_EVENT_SCAN_DONE

The scan-done event is triggered by esp_wifi_scan_start() and will arise in the following scenarios:
• The scan is completed, e.g., the target AP is found successfully, or all channels have been scanned.
• The scan is stopped by esp_wifi_scan_stop().
• The esp_wifi_scan_start() is called before the scan is completed. A new scan will override the
current scan and a scan-done event will be generated.

The scan-done event will not arise in the following scenarios:
• It is a blocked scan.
• The scan is caused by esp_wifi_connect().

Upon receiving this event, the event task does nothing. The application event callback needs to call
esp_wifi_scan_get_ap_num() and esp_wifi_scan_get_ap_records() to fetch the scanned AP
list and trigger the Wi-Fi driver to free the internal memory which is allocated during the scan (do not forget to do
this!). Refer to ESP32-C6 Wi-Fi Scan for a more detailed description.

WIFI_EVENT_STA_START

If esp_wifi_start() returns ESP_OK and the current Wi-Fi mode is station or station/AP, then this event
will arise. Upon receiving this event, the event task will initialize the LwIP network interface (netif). Generally, the
application event callback needs to call esp_wifi_connect() to connect to the configured AP.

WIFI_EVENT_STA_STOP

If esp_wifi_stop() returns ESP_OK and the current Wi-Fi mode is station or station/AP, then this event will
arise. Upon receiving this event, the event task will release the station's IP address, stop the DHCP client, remove
TCP/UDP-related connections, and clear the LwIP station netif, etc. The application event callback generally does
not need to do anything.

WIFI_EVENT_STA_CONNECTED

If esp_wifi_connect() returns ESP_OK and the station successfully connects to the target AP, the connection
event will arise. Upon receiving this event, the event task starts the DHCP client and begins the DHCP process
of getting the IP address. Then, the Wi-Fi driver is ready for sending and receiving data. This moment is good
for beginning the application work, provided that the application does not depend on LwIP, namely the IP address.
However, if the application is LwIP-based, then you need to wait until the got ip event comes in.

WIFI_EVENT_STA_DISCONNECTED

This event can be generated in the following scenarios:
• When esp_wifi_disconnect() or esp_wifi_stop() is called and the station is already connected
to the AP.

• When esp_wifi_connect() is called, but the Wi-Fi driver fails to set up a connection with the AP due
to certain reasons, e.g., the scan fails to find the target AP or the authentication times out. If there are more
than one AP with the same SSID, the disconnected event will be raised after the station fails to connect all of
the found APs.

• When the Wi-Fi connection is disrupted because of specific reasons, e.g., the station continuously loses N
beacons, the AP kicks off the station, or the AP's authentication mode is changed.

Espressif Systems 2502
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Upon receiving this event, the default behaviors of the event task are:
• Shutting down the station's LwIP netif.
• Notifying the LwIP task to clear the UDP/TCP connections which cause the wrong status to all sockets. For
socket-based applications, the application callback can choose to close all sockets and re-create them, if nec-
essary, upon receiving this event.

The most common event handle code for this event in application is to call esp_wifi_connect() to reconnect
the Wi-Fi. However, if the event is raised because esp_wifi_disconnect() is called, the application should
not call esp_wifi_connect() to reconnect. It is the application's responsibility to distinguish whether the event
is caused by esp_wifi_disconnect() or other reasons. Sometimes a better reconnection strategy is required.
Refer toWi-Fi Reconnect and Scan When Wi-Fi Is Connecting.
Another thing that deserves attention is that the default behavior of LwIP is to abort all TCP socket connections on
receiving the disconnect. In most cases, it is not a problem. However, for some special applications, this may not be
what they want. Consider the following scenarios:

• The application creates a TCP connection to maintain the application-level keep-alive data that is sent out every
60 seconds.

• Due to certain reasons, theWi-Fi connection is cut off, and theWIFI_EVENT_STA_DISCONNECTED is raised.
According to the current implementation, all TCP connections will be removed and the keep-alive socket will
be in a wrong status. However, since the application designer believes that the network layer should ignore this
error at the Wi-Fi layer, the application does not close the socket.

• Five seconds later, the Wi-Fi connection is restored because esp_wifi_connect() is called in the appli-
cation event callback function. Moreover, the station connects to the same AP and gets the same IPV4
address as before.

• Sixty seconds later, when the application sends out data with the keep-alive socket, the socket returns an error
and the application closes the socket and re-creates it when necessary.

In above scenarios, ideally, the application sockets and the network layer should not be affected, since the Wi-Fi
connection only fails temporarily and recovers very quickly. The application can enable "Keep TCP connections
when IP changed" via LwIP menuconfig.

IP_EVENT_STA_GOT_IP

This event arises when the DHCP client successfully gets the IPV4 address from the DHCP server, or when the IPV4
address is changed. The event means that everything is ready and the application can begin its tasks (e.g., creating
sockets).
The IPV4 may be changed because of the following reasons:

• The DHCP client fails to renew/rebind the IPV4 address, and the station's IPV4 is reset to 0.
• The DHCP client rebinds to a different address.
• The static-configured IPV4 address is changed.

Whether the IPV4 address is changed or not is indicated by the field ip_change of ip_event_got_ip_t.
The socket is based on the IPV4 address, which means that, if the IPV4 changes, all sockets relating to this IPV4 will
become abnormal. Upon receiving this event, the application needs to close all sockets and recreate the application
when the IPV4 changes to a valid one.

IP_EVENT_GOT_IP6

This event arises when the IPV6 SLAAC support auto-configures an address for the ESP32-C6, or when this address
changes. The event means that everything is ready and the application can begin its tasks, e.g., creating sockets.

IP_EVENT_STA_LOST_IP

This event arises when the IPV4 address becomes invalid.

Espressif Systems 2503
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

IP_EVENT_STA_LOST_IP does not arise immediately after the Wi-Fi disconnects. Instead, it starts an IPV4 ad-
dress lost timer. If the IPV4 address is got before ip lost timer expires, IP_EVENT_STA_LOST_IP does not happen.
Otherwise, the event arises when the IPV4 address lost timer expires.
Generally, the application can ignore this event, because it is just a debug event to inform that the IPV4 address is
lost.

WIFI_EVENT_AP_START

Similar toWIFI_EVENT_STA_START .

WIFI_EVENT_AP_STOP

Similar toWIFI_EVENT_STA_STOP.

WIFI_EVENT_AP_STACONNECTED

Every time a station is connected to ESP32-C6 AP, the WIFI_EVENT_AP_STACONNECTED will arise. Upon re-
ceiving this event, the event task will do nothing, and the application callback can also ignore it. However, you may
want to do something, for example, to get the info of the connected STA.

WIFI_EVENT_AP_STADISCONNECTED

This event can happen in the following scenarios:
• The application calls esp_wifi_disconnect(), or esp_wifi_deauth_sta(), to manually dis-
connect the station.

• TheWi-Fi driver kicks off the station, e.g., because the AP has not received any packets in the past fiveminutes.
The time can be modified by esp_wifi_set_inactive_time().

• The station kicks off the AP.
When this event happens, the event task will do nothing, but the application event callback needs to do something,
e.g., close the socket which is related to this station.

WIFI_EVENT_AP_PROBEREQRECVED

This event is disabled by default. The application can enable it via API esp_wifi_set_event_mask(). When
this event is enabled, it will be raised each time the AP receives a probe request.

WIFI_EVENT_STA_BEACON_TIMEOUT

If the station does not receive the beacon of the connected AP within the inactive time, the beacon timeout
happens, the WIFI_EVENT_STA_BEACON_TIMEOUT will arise. The application can set inactive time via API
esp_wifi_set_inactive_time().

WIFI_EVENT_CONNECTIONLESS_MODULE_WAKE_INTERVAL_START

TheWIFI_EVENT_CONNECTIONLESS_MODULE_WAKE_INTERVAL_START will arise at the start of connection-
less module Interval. See connectionless module power save.

4.31.7 ESP32-C6 Wi-Fi Station General Scenario

Below is a "big scenario" which describes some small scenarios in station mode:

Espressif Systems 2504
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 78: Sample Wi-Fi Event Scenarios in Station Mode
Espressif Systems 2505

Submit Document Feedback
Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

1. Wi-Fi/LwIP Init Phase

• s1.1: The main task calls esp_netif_init() to create an LwIP core task and initialize LwIP-related
work.

• s1.2: The main task calls esp_event_loop_create() to create a system Event task and initialize an
application event's callback function. In the scenario above, the application event's callback function does
nothing but relaying the event to the application task.

• s1.3: The main task calls esp_netif_create_default_wifi_ap() or
esp_netif_create_default_wifi_sta() to create default network interface instance bind-
ing station or AP with TCP/IP stack.

• s1.4: The main task calls esp_wifi_init() to create the Wi-Fi driver task and initialize the Wi-Fi driver.
• s1.5: The main task calls OS API to create the application task.

Step 1.1 ~ 1.5 is a recommended sequence that initializes a Wi-Fi-/LwIP-based application. However, it is NOT a
must-follow sequence, which means that you can create the application task in step 1.1 and put all other initialization
in the application task. Moreover, you may not want to create the application task in the initialization phase if the
application task depends on the sockets. Rather, you can defer the task creation until the IP is obtained.

2. Wi-Fi Configuration Phase

Once the Wi-Fi driver is initialized, you can start configuring the Wi-Fi driver. In this scenario, the mode is station,
so you may need to call esp_wifi_set_mode() (WIFI_MODE_STA) to configure the Wi-Fi mode as station.
You can call other esp_wifi_set_xxx APIs to configure more settings, such as the protocol mode, the country code,
and the bandwidth. Refer to ESP32-C6 Wi-Fi Configuration.
Generally, the Wi-Fi driver should be configured before the Wi-Fi connection is set up. But this is NOT mandatory,
which means that you can configure the Wi-Fi connection anytime, provided that the Wi-Fi driver is initialized
successfully. However, if the configuration does not need to change after the Wi-Fi connection is set up, you should
configure the Wi-Fi driver at this stage, because the configuration APIs (such as esp_wifi_set_protocol())
will cause the Wi-Fi to reconnect, which may not be desirable.
If the Wi-Fi NVS flash is enabled by menuconfig, all Wi-Fi configuration in this phase, or later phases, will be stored
into flash. When the board powers on/reboots, you do not need to configure the Wi-Fi driver from scratch. You only
need to call esp_wifi_get_xxxAPIs to fetch the configuration stored in flash previously. You can also configure
the Wi-Fi driver if the previous configuration is not what you want.

3. Wi-Fi Start Phase

• s3.1: Call esp_wifi_start() to start the Wi-Fi driver.
• s3.2: The Wi-Fi driver posts WIFI_EVENT_STA_START to the event task; then, the event task will do some
common things and will call the application event callback function.

• s3.3: The application event callback function relays theWIFI_EVENT_STA_START to the application task. We
recommend that you call esp_wifi_connect(). However, you can also call esp_wifi_connect()
in other phrases after theWIFI_EVENT_STA_START arises.

4. Wi-Fi Connect Phase

• s4.1: Once esp_wifi_connect() is called, the Wi-Fi driver will start the internal scan/connection pro-
cess.

• s4.2: If the internal scan/connection process is successful, the WIFI_EVENT_STA_CONNECTED will be gen-
erated. In the event task, it starts the DHCP client, which will finally trigger the DHCP process.

• s4.3: In the above-mentioned scenario, the application event callback will relay the event to the application
task. Generally, the application needs to do nothing, and you can do whatever you want, e.g., print a log.

In step 4.2, the Wi-Fi connection may fail because, for example, the password is wrong, or the AP is not found. In a
case like this,WIFI_EVENT_STA_DISCONNECTED will arise and the reason for such a failure will be provided. For
handling events that disrupt Wi-Fi connection, please refer to phase 6.

Espressif Systems 2506
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

5. Wi-Fi 'Got IP' Phase

• s5.1: Once the DHCP client is initialized in step 4.2, the got IP phase will begin.
• s5.2: If the IP address is successfully received from the DHCP server, then IP_EVENT_STA_GOT_IP will arise
and the event task will perform common handling.

• s5.3: In the application event callback, IP_EVENT_STA_GOT_IP is relayed to the application task. For LwIP-
based applications, this event is very special and means that everything is ready for the application to be-
gin its tasks, e.g., creating the TCP/UDP socket. A very common mistake is to initialize the socket before
IP_EVENT_STA_GOT_IP is received. DO NOT start the socket-related work before the IP is received.

6. Wi-Fi Disconnect Phase

• s6.1: When the Wi-Fi connection is disrupted, e.g., the AP is powered off or the RSSI is poor,
WIFI_EVENT_STA_DISCONNECTED will arise. This event may also arise in phase 3. Here, the event task
will notify the LwIP task to clear/remove all UDP/TCP connections. Then, all application sockets will be in a
wrong status. In other words, no socket can work properly when this event happens.

• s6.2: In the scenario described above, the application event callback function relays
WIFI_EVENT_STA_DISCONNECTED to the application task. The recommended actions are: 1) call
esp_wifi_connect() to reconnect the Wi-Fi, 2) close all sockets, and 3) re-create them if necessary.
For details, please refer toWIFI_EVENT_STA_DISCONNECTED.

7. Wi-Fi IP Change Phase

• s7.1: If the IP address is changed, the IP_EVENT_STA_GOT_IP will arise with "ip_change" set to true.
• s7.2: This event is important to the application. When it occurs, the timing is good for closing all
created sockets and recreating them.

8. Wi-Fi Deinit Phase

• s8.1: Call esp_wifi_disconnect() to disconnect the Wi-Fi connectivity.
• s8.2: Call esp_wifi_stop() to stop the Wi-Fi driver.
• s8.3: Call esp_wifi_deinit() to unload the Wi-Fi driver.

4.31.8 ESP32-C6 Wi-Fi AP General Scenario

Below is a "big scenario" which describes some small scenarios in AP mode:

4.31.9 ESP32-C6 Wi-Fi Scan

Currently, the esp_wifi_scan_start() API is supported only in station or station/AP mode.

Espressif Systems 2507
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 79: Sample Wi-Fi Event Scenarios in AP Mode

Espressif Systems 2508
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Scan Type

Mode Description
Active Scan Scan by sending a probe request. The default scan is an active scan.
Passive Scan No probe request is sent out. Just switch to the specific channel and wait for a beacon.

Application can enable it via the scan_type field of wifi_scan_config_t.
Foreground Scan This scan is applicable when there is noWi-Fi connection in station mode. Foreground

or background scanning is controlled by the Wi-Fi driver and cannot be configured by
the application.

Background Scan This scan is applicable when there is a Wi-Fi connection in station mode or in sta-
tion/AP mode. Whether it is a foreground scan or background scan depends on the
Wi-Fi driver and cannot be configured by the application.

All-Channel Scan It scans all of the channels. If the channel field of wifi_scan_config_t is set to
0, it is an all-channel scan.

Specific Channel Scan It scans specific channels only. If the channel field of wifi_scan_config_t set
to 1-14, it is a specific-channel scan.

The scan modes in above table can be combined arbitrarily, so there are in total 8 different scans:
• All-Channel Background Active Scan
• All-Channel Background Passive Scan
• All-Channel Foreground Active Scan
• All-Channel Foreground Passive Scan
• Specific-Channel Background Active Scan
• Specific-Channel Background Passive Scan
• Specific-Channel Foreground Active Scan
• Specific-Channel Foreground Passive Scan

Scan Configuration

The scan type and other per-scan attributes are configured by esp_wifi_scan_start(). The table below
provides a detailed description of wifi_scan_config_t.

Field Description
ssid If the SSID is not NULL, it is only the AP with the same SSID that can be scanned.
bssid If the BSSID is not NULL, it is only the AP with the same BSSID that can be scanned.
channel If“channel”is 0, there will be an all-channel scan; otherwise, there will be a specific-

channel scan.
show_hidden If“show_hidden”is 0, the scan ignores the AP with a hidden SSID; otherwise, the

scan considers the hidden AP a normal one.
scan_type If“scan_type”is WIFI_SCAN_TYPE_ACTIVE, the scan is“active”; otherwise,

it is a“passive”one.
scan_time This field is used to control how long the scan dwells on each channel.

For passive scans, scan_time.passive designates the dwell time for each channel.
For active scans, dwell times for each channel are listed in the table below. Here, min
is short for scan time.active.min and max is short for scan_time.active.max.

• min=0, max=0: scan dwells on each channel for 120 ms.
• min>0, max=0: scan dwells on each channel for 120 ms.
• min=0, max>0: scan dwells on each channel for max ms.
• min>0, max>0: the minimum time the scan dwells on each channel is min ms.
If no AP is found during this time frame, the scan switches to the next channel.
Otherwise, the scan dwells on the channel for max ms.

If you want to improve the performance of the scan, you can try to modify these two
parameters.

There are also some global scan attributes which are configured by API esp_wifi_set_config(), refer to

Espressif Systems 2509
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Station Basic Configuration

Scan All APs on All Channels (Foreground)

Scenario:

Fig. 80: Foreground Scan of all Wi-Fi Channels

The scenario above describes an all-channel, foreground scan. The foreground scan can only occur in station mode
where the station does not connect to any AP. Whether it is a foreground or background scan is totally determined
by the Wi-Fi driver, and cannot be configured by the application.
Detailed scenario description:

Scan Configuration Phase
• s1.1: Call esp_wifi_set_country() to set the country info if the default country info is not what you
want. Refer toWi-Fi Country Code.

Espressif Systems 2510
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• s1.2: Call esp_wifi_scan_start() to configure the scan. To do so, you can refer to Scan Configuration.
Since this is an all-channel scan, just set the SSID/BSSID/channel to 0.

Wi-Fi Driver's Internal Scan Phase
• s2.1: The Wi-Fi driver switches to channel 1. In this case, the scan type is WIFI_SCAN_TYPE_ACTIVE,
and a probe request is broadcasted. Otherwise, the Wi-Fi will wait for a beacon from the APs. The Wi-Fi
driver will stay in channel 1 for some time. The dwell time is configured in min/max time, with the default
value being 120 ms.

• s2.2: The Wi-Fi driver switches to channel 2 and performs the same operation as in step 2.1.
• s2.3: TheWi-Fi driver scans the last channel N, where N is determined by the country code which is configured
in step 1.1.

Scan-Done Event Handling Phase
• s3.1: When all channels are scanned,WIFI_EVENT_SCAN_DONE will arise.
• s3.2: The application's event callback function notifies the application task that WIFI_EVENT_SCAN_DONE
is received. esp_wifi_scan_get_ap_num() is called to get the number of
APs that have been found in this scan. Then, it allocates enough entries and calls
esp_wifi_scan_get_ap_records() to get the AP records. Please note that the AP
records in the Wi-Fi driver will be freed once esp_wifi_scan_get_ap_records() is
called. Do not call esp_wifi_scan_get_ap_records() twice for a single scan-done
event. If esp_wifi_scan_get_ap_records() is not called when the scan-done event oc-
curs, the AP records allocated by the Wi-Fi driver will not be freed. So, make sure you call
esp_wifi_scan_get_ap_records(), yet only once.

Scan All APs on All Channels (Background)

Scenario:
The scenario above is an all-channel background scan. Compared to Scan All APs on All Channels (Foreground) , the
difference in the all-channel background scan is that the Wi-Fi driver will scan the back-to-home channel for 30 ms
before it switches to the next channel to give the Wi-Fi connection a chance to transmit/receive data.

Scan for Specific AP on All Channels

Scenario:
This scan is similar to Scan All APs on All Channels (Foreground). The differences are:

• s1.1: In step 1.2, the target AP will be configured to SSID/BSSID.
• s2.1 ~ s2.N: Each time the Wi-Fi driver scans an AP, it will check whether it is a target AP or not. If the scan
is WIFI_FAST_SCAN scan and the target AP is found, then the scan-done event will arise and scanning will
end; otherwise, the scan will continue. Please note that the first scanned channel may not be channel 1, because
the Wi-Fi driver optimizes the scanning sequence.

It is a possible situation that there are multiple APs that match the target AP info, e.g., two APs with the SSID of
"ap" are scanned. In this case, if the scan is WIFI_FAST_SCAN, then only the first scanned "ap" will be found. If
the scan is WIFI_ALL_CHANNEL_SCAN, both "ap" will be found and the station will connect the "ap" according
to the configured strategy. Refer to Station Basic Configuration.
You can scan a specific AP, or all of them, in any given channel. These two scenarios are very similar.

Scan in Wi-Fi Connect

When esp_wifi_connect() is called, the Wi-Fi driver will try to scan the configured AP first. The scan in
"Wi-Fi Connect" is the same as Scan for Specific AP On All Channels, except that no scan-done event will be generated

Espressif Systems 2511
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 81: Background Scan of all Wi-Fi Channels

Espressif Systems 2512
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 82: Scan of specific Wi-Fi Channels

Espressif Systems 2513
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

when the scan is completed. If the target AP is found, the Wi-Fi driver will start the Wi-Fi connection; otherwise,
WIFI_EVENT_STA_DISCONNECTED will be generated. Refer to Scan for Specific AP On All Channels.

Scan in Blocked Mode

If the block parameter of esp_wifi_scan_start() is true, then the scan is a blocked one, and the application
task will be blocked until the scan is done. The blocked scan is similar to an unblocked one, except that no scan-done
event will arise when the blocked scan is completed.

Parallel Scan

Two application tasks may call esp_wifi_scan_start() at the same time, or the same application task calls
esp_wifi_scan_start() before it gets a scan-done event. Both scenarios can happen. However, the Wi-
Fi driver does not support multiple concurrent scans adequately. As a result, concurrent scans should be
avoided. Support for concurrent scan will be enhanced in future releases, as the ESP32-C6's Wi-Fi functionality
improves continuously.

Scan When Wi-Fi Is Connecting

The esp_wifi_scan_start() fails immediately if the Wi-Fi is connecting, because the connecting has higher
priority than the scan. If scan fails because of connecting, the recommended strategy is to delay for some time and
retry scan again. The scan will succeed once the connecting is completed.
However, the retry/delay strategy may not work all the time. Considering the following scenarios:

• The station is connecting a non-existing AP or it connects the existing AP with a wrong password, it always
raises the eventWIFI_EVENT_STA_DISCONNECTED.

• The application calls esp_wifi_connect() to reconnect on receiving the disconnect event.
• Another application task, e.g., the console task, calls esp_wifi_scan_start() to do scan, the scan
always fails immediately because the station keeps connecting.

• When scan fails, the application simply delays for some time and retries the scan.
In the above scenarios, the scan will never succeed because the connecting is in process. So if the application supports
similar scenario, it needs to implement a better reconnection strategy. For example:

• The application can choose to define a maximum continuous reconnection counter and stop reconnecting once
the counter reaches the maximum.

• The application can choose to reconnect immediately in the first N continuous reconnection, then give a delay
sometime and reconnect again.

The application can define its own reconnection strategy to avoid the scan starve to death. Refer to <Wi-Fi Reconnect>.

4.31.10 ESP32-C6 Wi-Fi Station Connecting Scenario

This scenario depicts the case if only one target AP is found in the scan phase. For scenarios where more than one
AP with the same SSID is found, refer to ESP32-C6 Wi-Fi Station Connecting When Multiple APs Are Found.
Generally, the application can ignore the connecting process. Below is a brief introduction to the process for those
who are really interested.
Scenario:

Scan Phase

• s1.1: The Wi-Fi driver begins scanning in "Wi-Fi Connect". Refer to Scan in Wi-Fi Connect for more details.
• s1.2: If the scan fails to find the target AP, WIFI_EVENT_STA_DISCONNECTED will arise and the reason
code will be WIFI_REASON_NO_AP_FOUND. Refer toWi-Fi Reason Code.

Espressif Systems 2514
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 83: Wi-Fi Station Connecting Process
Espressif Systems 2515

Submit Document Feedback
Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Auth Phase

• s2.1: The authentication request packet is sent and the auth timer is enabled.
• s2.2: If the authentication response packet is not received before the authentication timer
times out, WIFI_EVENT_STA_DISCONNECTED will arise and the reason code will be
WIFI_REASON_AUTH_EXPIRE. Refer toWi-Fi Reason Code.

• s2.3: The auth-response packet is received and the auth-timer is stopped.
• s2.4: The AP rejects authentication in the response and WIFI_EVENT_STA_DISCONNECTED arises, while
the reason code is WIFI_REASON_AUTH_FAIL or the reasons specified by the AP. Refer to Wi-Fi Reason
Code.

Association Phase

• s3.1: The association request is sent and the association timer is enabled.
• s3.2: If the association response is not received before the association timer times
out, WIFI_EVENT_STA_DISCONNECTED will arise and the reason code will be
WIFI_REASON_DISASSOC_DUE_TO_INACTIVITY. Refer toWi-Fi Reason Code.

• s3.3: The association response is received and the association timer is stopped.
• s3.4: The AP rejects the association in the response and WIFI_EVENT_STA_DISCONNECTED arises, while
the reason code is the one specified in the association response. Refer toWi-Fi Reason Code.

Four-way Handshake Phase

• s4.1: The handshake timer is enabled, and the 1/4 EAPOL is not received before the hand-
shake timer expires. WIFI_EVENT_STA_DISCONNECTED will arise and the reason code will be
WIFI_REASON_HANDSHAKE_TIMEOUT. Refer toWi-Fi Reason Code.

• s4.2: The 1/4 EAPOL is received.
• s4.3: The station replies 2/4 EAPOL.
• s4.4: If the 3/4 EAPOL is not received before the handshake timer ex-
pires, WIFI_EVENT_STA_DISCONNECTED will arise and the reason code will be
WIFI_REASON_HANDSHAKE_TIMEOUT. Refer toWi-Fi Reason Code.

• s4.5: The 3/4 EAPOL is received.
• s4.6: The station replies 4/4 EAPOL.
• s4.7: The station raisesWIFI_EVENT_STA_CONNECTED.

Wi-Fi Reason Code

The table below shows the reason-code defined in ESP32-C6. The first column is the macro name defined in
esp_wifi/include/esp_wifi_types.h. The common prefix WIFI_REASON is removed, which means that UNSPECI-
FIED actually stands for WIFI_REASON_UNSPECIFIED and so on. The second column is the value of the reason.
The third column is the standard value to which this reason is mapped in section 9.4.1.7 of IEEE 802.11-2020. (For
more information, refer to the standard mentioned above.) The last column describes the reason.

Rea-
son
code

Value Mapped To Description

UN-
SPEC-
I-
FIED

1 1 Generally, it means an internal failure, e.g., the memory runs out,
the internal TX fails, or the reason is received from the remote side.

continues on next page

Espressif Systems 2516
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_wifi/include/esp_wifi_types.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 36 – continued from previous page
Rea-
son
code

Value Mapped To Description

AUTH_EXPIRE2 2 The previous authentication is no longer valid.
For the ESP station, this reason is reported when:

• auth is timed out.
• the reason is received from the AP.

For the ESP AP, this reason is reported when:
• the AP has not received any packets from the station in the
past five minutes.

• the AP is stopped by calling esp_wifi_stop().
• the station is de-authed by calling
esp_wifi_deauth_sta().

AUTH_LEAVE3 3 De-authenticated, because the sending station is leaving (or has
left).
For the ESP station, this reason is reported when:

• it is received from the AP.

DIS-
AS-
SOC_DUE_TO_INACTIVITY

4 4 Disassociated due to inactivity.
For the ESP station, this reason is reported when:

• assoc is timed out.
• it is received from the AP.

AS-
SOC_TOOMANY

5 5 Disassociated, because the AP is unable to handle all currently as-
sociated STAs at the same time.
For the ESP station, this reason is reported when:

• it is received from the AP.
For the ESP AP, this reason is reported when:

• the stations associated with the AP reach the maximum
number that the AP can support.

CLASS2_FRAME_FROM_NONAUTH_STA6 6 Class-2 frame received from a non-authenticated STA.
For the ESP station, this reason is reported when:

• it is received from the AP.
For the ESP AP, this reason is reported when:

• the AP receives a packet with data from a non-authenticated
station.

CLASS3_FRAME_FROM_NONASSOC_STA7 7 Class-3 frame received from a non-associated STA.
For the ESP station, this reason is reported when:

• it is received from the AP.
For the ESP AP, this reason is reported when:

• the AP receives a packet with data from a non-associated
station.

AS-
SOC_LEAVE

8 8 Disassociated, because the sending station is leaving (or has left)
BSS.
For the ESP station, this reason is reported when:

• it is received from the AP.
• the station is disconnected by
esp_wifi_disconnect() and other APIs.

continues on next page

Espressif Systems 2517
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 36 – continued from previous page
Rea-
son
code

Value Mapped To Description

AS-
SOC_NOT_AUTHED

9 9 station requesting (re)association is not authenticated by the re-
sponding STA.
For the ESP station, this reason is reported when:

• it is received from the AP.
For the ESP AP, this reason is reported when:

• the AP receives packets with data from an associated, yet
not authenticated, station.

DIS-
AS-
SOC_PWRCAP_BAD

10 10 Disassociated, because the information in the Power Capability el-
ement is unacceptable.
For the ESP station, this reason is reported when:

• it is received from the AP.

DIS-
AS-
SOC_SUPCHAN_BAD

11 11 Disassociated, because the information in the Supported Channels
element is unacceptable.
For the ESP station, this reason is reported when:

• it is received from the AP.

IE_INVALID13 13 Invalid element, i.e., an element whose content does not meet the
specifications of the Standard in frame formats clause.
For the ESP station, this reason is reported when:

• it is received from the AP.
For the ESP AP, this reason is reported when:

• the AP parses a wrong WPA or RSN IE.

MIC_FAILURE14 14 Message integrity code (MIC) failure.
For the ESP station, this reason is reported when:

• it is received from the AP.

4WAY_HANDSHAKE_TIMEOUT15 15 Four-way handshake times out. For legacy rea-
sons, in ESP this reason code is replaced with
WIFI_REASON_HANDSHAKE_TIMEOUT.
For the ESP station, this reason is reported when:

• the handshake times out.
• it is received from the AP.

GROUP_KEY_UPDATE_TIMEOUT16 16 Group-Key Handshake times out.
For the ESP station, this reason is reported when:

• it is received from the AP.

IE_IN_4WAY_DIFFERS17 17 The element in the four-way handshake is different from the (Re-
)Association Request/Probe and Response/Beacon frame.
For the ESP station, this reason is reported when:

• it is received from the AP.
• the station finds that the four-way handshake IE differs
from the IE in the (Re-)Association Request/Probe and Re-
sponse/Beacon frame.

GROUP_CIPHER_INVALID18 18 Invalid group cipher.
For the ESP station, this reason is reported when:

• it is received from the AP.

continues on next page

Espressif Systems 2518
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 36 – continued from previous page
Rea-
son
code

Value Mapped To Description

PAIR-
WISE_CIPHER_INVALID

19 19 Invalid pairwise cipher.
For the ESP station, this reason is reported when:

• it is received from the AP.

AKMP_INVALID20 20 Invalid AKMP.
For the ESP station, this reason is reported when: - it is received
from the AP.

UN-
SUPP_RSN_IE_VERSION

21 21 Unsupported RSNE version.
For the ESP station, this reason is reported when:

• it is received from the AP.

IN-
VALID_RSN_IE_CAP

22 22 Invalid RSNE capabilities.
For the ESP station, this reason is reported when:

• it is received from the AP.

802_1X_AUTH_FAILED23 23 IEEE 802.1X. authentication failed.
For the ESP station, this reason is reported when:

• it is received from the AP.
For the ESP AP, this reason is reported when:

• IEEE 802.1X. authentication fails.

CI-
PHER_SUITE_REJECTED

24 24 Cipher suite rejected due to security policies.
For the ESP station, this reason is reported when:

• it is received from the AP.

TDLS_PEER_UNREACHABLE25 25 TDLS direct-link teardown due to TDLS peer STA unreachable
via the TDLS direct link.

TDLS_UNSPECIFIED26 26 TDLS direct-link teardown for unspecified reason.
SSP_REQUESTED_DISASSOC27 27 Disassociated because session terminated by SSP request.
NO_SSP_ROAMING_AGREEMENT28 28 Disassociated because of lack of SSP roaming agreement.
BAD_CIPHER_OR_AKM29 29 Requested service rejected because of SSP cipher suite or AKM

requirement.
NOT_AUTHORIZED_THIS_LOCATION30 30 Requested service not authorized in this location.
SER-
VICE_CHANGE_PRECLUDES_TS

31 31 TS deleted because QoSAP lacks sufficient bandwidth for this QoS
STA due to a change in BSS service characteristics or operational
mode (e.g., an HT BSS change from 40 MHz channel to 20 MHz
channel).

UN-
SPEC-
I-
FIED_QOS

32 32 Disassociated for unspecified, QoS-related reason.

NOT_ENOUGH_BANDWIDTH33 33 Disassociated because QoS AP lacks sufficient bandwidth for this
QoS STA.

MISS-
ING_ACKS

34 34 Disassociated because excessive number of frames need to be ac-
knowledged, but are not acknowledged due to AP transmissions
and/or poor channel conditions.

EX-
CEEDED_TXOP

35 35 Disassociated because STA is transmitting outside the limits of its
TXOPs.

STA_LEAVING36 36 Requesting STA is leaving the BSS (or resetting).
END_BA37 37 Requesting STA is no longer using the stream or session.
UN-
KNOWN_BA

38 38 Requesting STA received frames using a mechanism for which a
setup has not been completed.

continues on next page

Espressif Systems 2519
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Table 36 – continued from previous page
Rea-
son
code

Value Mapped To Description

TIME-
OUT

39 39 Requested from peer STA due to timeout

Re-
served

40 ~ 45 40 ~ 45

PEER_INITIATED46 46 In a Disassociation frame: Disassociated because authorized ac-
cess limit reached.

AP_INITIATED47 47 In a Disassociation frame: Disassociated due to external service
requirements.

IN-
VALID_FT_ACTION_FRAME_COUNT

48 48 Invalid FT Action frame count.

IN-
VALID_PMKID

49 49 Invalid pairwise master key identifier (PMKID).

IN-
VALID_MDE

50 50 Invalid MDE.

IN-
VALID_FTE

51 51 Invalid FTE

TRANS-
MIS-
SION_LINK_ESTABLISHMENT_FAILED

67 67 Transmission link establishment in alternative channel failed.

AL-
TER-
ATIVE_CHANNEL_OCCUPIED

68 68 The alternative channel is occupied.

BEA-
CON_TIMEOUT

200 reserved Espressif-specificWi-Fi reason code: when the station loses N bea-
cons continuously, it will disrupt the connection and report this
reason.

NO_AP_FOUND201 reserved Espressif-specificWi-Fi reason code: when the station fails to scan
the target AP, this reason code will be reported.

AUTH_FAIL202 reserved Espressif-specific Wi-Fi reason code: the authentication fails, but
not because of a timeout.

AS-
SOC_FAIL

203 reserved Espressif-specific Wi-Fi reason code: the association fails, but
not because of DISASSOC_DUE_TO_INACTIVITY or AS-
SOC_TOOMANY.

HAND-
SHAKE_TIMEOUT

204 reserved Espressif-specific Wi-Fi reason code: the hand-
shake fails for the same reason as that in
WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT.

CON-
NEC-
TION_FAIL

205 reserved Espressif-specificWi-Fi reason code: the connection to the AP has
failed.

Wi-Fi Reason code related to wrong password

The table below shows the Wi-Fi reason-code may related to wrong password.

Espressif Systems 2520
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Rea-
son
code

Value Description

4WAY_HANDSHAKE_TIMEOUT15 Four-way handshake times out. Setting wrong password when STA connecting to
an encrpyted AP.

NO_AP_FOUND201 This may related to wrong password in the two scenarios:
• Setting password when STA connecting to an unencrypted AP.
• Doesn't setting password when STA connecting to an encrypted AP.

HAND-
SHAKE_TIMEOUT

204 Four-way handshake fails.

Wi-Fi Reason code related to low RSSI

The table below shows the Wi-Fi reason-code may related to low RSSI.

Rea-
son
code

Value Description

NO_AP_FOUND201 The station fails to scan the target AP due to low RSSI
HAND-
SHAKE_TIMEOUT

204 Four-way handshake fails.

4.31.11 ESP32-C6 Wi-Fi Station Connecting When Multiple APs Are Found

This scenario is similar as ESP32-C6 Wi-Fi Station Connecting Scenario. The difference is that the station will not
raise the eventWIFI_EVENT_STA_DISCONNECTED unless it fails to connect all of the found APs.

4.31.12 Wi-Fi Reconnect

The station may disconnect due to many reasons, e.g., the connected AP is restarted. It is the application's responsi-
bility to reconnect. The recommended reconnection strategy is to call esp_wifi_connect() on receiving event
WIFI_EVENT_STA_DISCONNECTED.
Sometimes the application needs more complex reconnection strategy:

• If the disconnect event is raised because the esp_wifi_disconnect() is called, the application may not
want to do the reconnection.

• If the esp_wifi_scan_start() may be called at anytime, a better reconnection strategy is necessary.
Refer to Scan When Wi-Fi Is Connecting.

Another thing that need to be considered is that the reconnection may not connect the same AP if there are more
than one APs with the same SSID. The reconnection always select current best APs to connect.

4.31.13 Wi-Fi Beacon Timeout

The beacon timeout mechanism is used by ESP32-C6 station to detect whether the AP is alive or not. If the station
does not receive the beacon of the connectedAPwithin the inactive time, the beacon timeout happens. The application
can set inactive time via API esp_wifi_set_inactive_time().
After the beacon times out, the station sends 5 probe requests to the AP. If still no probe response or beacon is
received from AP, the station disconnects from the AP and raises the eventWIFI_EVENT_STA_DISCONNECTED.
It should be considered that the timer used for beacon timeout will be reset during the scanning process. It means
that the scan process will affect the triggering of the eventWIFI_EVENT_STA_BEACON_TIMEOUT .

Espressif Systems 2521
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.31.14 ESP32-C6 Wi-Fi Configuration

All configurations will be stored into flash when the Wi-Fi NVS is enabled; otherwise, refer toWi-Fi NVS Flash.

Wi-Fi Mode

Call esp_wifi_set_mode() to set the Wi-Fi mode.

Mode Description
WIFI_MODE_NULL NULL mode: in this mode, the internal data struct is not allocated to the station and

the AP, while both the station and AP interfaces are not initialized for RX/TX Wi-Fi
data. Generally, this mode is used for Sniffer, or when you only want to stop both
the station and the AP without calling esp_wifi_deinit() to unload the whole
Wi-Fi driver.

WIFI_MODE_STA Station mode: in this mode, esp_wifi_start() will init the internal station
data, while the station’s interface is ready for the RX and TX Wi-Fi data. Af-
ter esp_wifi_connect(), the station will connect to the target AP.

WIFI_MODE_AP AP mode: in this mode, esp_wifi_start() will init the internal AP data, while
the AP’s interface is ready for RX/TX Wi-Fi data. Then, the Wi-Fi driver starts
broad-casting beacons, and the AP is ready to get connected to other stations.

WIFI_MODE_APSTA Station/AP coexistence mode: in this mode, esp_wifi_start() will simultane-
ously initialize both the station and the AP. This is done in station mode and AP mode.
Please note that the channel of the external AP, which the ESP station is connected to,
has higher priority over the ESP AP channel.

Station Basic Configuration

API esp_wifi_set_config() can be used to configure the station. And the configuration will be stored in
NVS. The table below describes the fields in detail.

Espressif Systems 2522
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Field Description
ssid This is the SSID of the target AP, to which the station wants to connect.
password Password of the target AP.
scan_method For WIFI_FAST_SCAN scan, the scan ends when the first matched AP is found. For

WIFI_ALL_CHANNEL_SCAN, the scan finds all matched APs on all channels. The
default scan is WIFI_FAST_SCAN.

bssid_set If bssid_set is 0, the station connects to the AP whose SSID is the same as the field
“ssid”, while the field“bssid”is ignored. In all other cases, the station connects to
the AP whose SSID is the same as the“ssid”field, while its BSSID is the same the
“bssid”field .

bssid This is valid only when bssid_set is 1; see field“bssid_set”.
channel If the channel is 0, the station scans the channel 1 ~ N to search for the target AP;

otherwise, the station starts by scanning the channel whose value is the same as that of
the“channel”field, and then scans the channel 1 ~ N but skip the specific channel to
find the target AP. For example, if the channel is 3, the scan order will be 3, 1, 2, 4,...,
N. If you do not know which channel the target AP is running on, set it to 0.

sort_method This field is only for WIFI_ALL_CHANNEL_SCAN.
If the sort_method is WIFI_CONNECT_AP_BY_SIGNAL, all matched APs are
sorted by signal, and the AP with the best signal will be connected firstly. For ex-
ample, the station wants to connect an AP whose SSID is“apxx”. If the scan finds
two APs whose SSID equals to“apxx”, and the first AP’s signal is -90 dBm while
the second AP’s signal is -30 dBm, the station connects the second AP firstly, and it
would not connect the first one unless it fails to connect the second one.
If the sort_method is WIFI_CONNECT_AP_BY_SECURITY, all matched APs are
sorted by security. For example, the station wants to connect an AP whose SSID is
“apxx”. If the scan finds two APs whose SSID is“apxx”, and the security of the first
found AP is open while the second one is WPA2, the station connects to the second
AP firstly, and it would not connect the first one unless it fails to connect the second
one.

threshold The threshold is used to filter the found AP. If the RSSI or security mode is less than
the configured threshold, the AP will be discarded.
If the RSSI is set to 0, it means the default threshold and the default RSSI threshold are
-127 dBm. If the authmode threshold is set to 0, it means the default threshold and the
default authmode threshold are open.

Attention: WEP/WPA security modes are deprecated in IEEE 802.11-2016 specifications and are recom-
mended not to be used. These modes can be rejected using authmode threshold by setting threshold as WPA2 by
threshold.authmode as WIFI_AUTH_WPA2_PSK.

AP Basic Configuration

API esp_wifi_set_config() can be used to configure the AP. And the configuration will be stored in NVS.
The table below describes the fields in detail.

Espressif Systems 2523
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Field Description
ssid SSID of AP; if the ssid[0] is 0xFF and ssid[1] is 0xFF, the AP defaults the SSID to

ESP_aabbcc, where“aabbcc”is the last three bytes of the AP MAC.
password Password of AP; if the auth mode is WIFI_AUTH_OPEN, this field will be ignored.
ssid_len Length of SSID; if ssid_len is 0, check the SSID until there is a termination character.

If ssid_len > 32, change it to 32; otherwise, set the SSID length according to ssid_len.
channel Channel of AP; if the channel is out of range, the Wi-Fi driver defaults to channel 1.

So, please make sure the channel is within the required range. For more details, refer
toWi-Fi Country Code.

authmode Auth mode of ESP AP; currently, ESP AP does not support AUTH_WEP. If the auth-
mode is an invalid value, AP defaults the value to WIFI_AUTH_OPEN.

ssid_hidden If ssid_hidden is 1, AP does not broadcast the SSID; otherwise, it does broadcast the
SSID.

max_connection The max number of stations allowed to connect in, the default value is 10.
ESP Wi-Fi supports up to 10 (ESP_WIFI_MAX_CONN_NUM) Wi-Fi connec-
tions. Please note that ESP AP and ESP-NOW share the same encryption
hardware keys, so the max_connection parameter will be affected by the CON-
FIG_ESP_WIFI_ESPNOW_MAX_ENCRYPT_NUM. The total number of encryption
hardware keys is 17, if CONFIG_ESP_WIFI_ESPNOW_MAX_ENCRYPT_NUM <= 7, the
max_connection can be set up to 10, otherwise the max_connection can be set up to (17
- CONFIG_ESP_WIFI_ESPNOW_MAX_ENCRYPT_NUM).

beacon_interval Beacon interval; the value is 100 ~ 60000 ms, with default value being 100 ms. If the
value is out of range, AP defaults it to 100 ms.

Wi-Fi Protocol Mode

Currently, the ESP-IDF supports the following protocol modes:

Protocol Mode Description
802.11b Call esp_wifi_set_protocol(ifx, WIFI_PROTOCOL_11B) to set the sta-

tion/AP to 802.11b-only mode.
802.11bg Callesp_wifi_set_protocol(ifx, WIFI_PROTOCOL_11B|WIFI_PROTOCOL_11G)

to set the station/AP to 802.11bg mode.
802.11g Callesp_wifi_set_protocol(ifx, WIFI_PROTOCOL_11B|WIFI_PROTOCOL_11G)

and esp_wifi_config_11b_rate(ifx, true) to set the station/AP to
802.11g mode.

802.11bgn Call esp_wifi_set_protocol(ifx, WIFI_PROTOCOL_11B|
WIFI_PROTOCOL_11G|WIFI_PROTOCOL_11N) to set the station/ AP to
BGN mode.

802.11gn Callesp_wifi_set_protocol(ifx, WIFI_PROTOCOL_11B|WIFI_PROTOCOL_11G|WIFI_PROTOCOL_11N)
and esp_wifi_config_11b_rate(ifx, true) to set the station/AP to 802.11gn mode.

802.11 BGNLR Call esp_wifi_set_protocol(ifx, WIFI_PROTOCOL_11B|
WIFI_PROTOCOL_11G|WIFI_PROTOCOL_11N|WIFI_PROTOCOL_LR)
to set the station/AP to BGN and the LR mode.

802.11bgnax Call esp_wifi_set_protocol(ifx, WIFI_PROTOCOL_11B|
WIFI_PROTOCOL_11G|WIFI_PROTOCOL_11N|WIFI_PROTOCOL_11AX) to
set the station/ AP to 802.11bgnax mode.

802.11 BGNAXLR Call esp_wifi_set_protocol(ifx, WIFI_PROTOCOL_11B|
WIFI_PROTOCOL_11G|WIFI_PROTOCOL_11N|WIFI_PROTOCOL_11AX|WIFI_PROTOCOL_LR)
to set the station/ AP to 802.11bgnax and LR mode.

802.11 LR Call esp_wifi_set_protocol(ifx, WIFI_PROTOCOL_LR) to set the sta-
tion/AP only to the LR mode.
This mode is an Espressif-patented mode which can achieve a one-kilometer line
of sight range. Please make sure both the station and the AP are connected to an
ESP device.

Espressif Systems 2524
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Long Range (LR)

Long Range (LR) mode is an Espressif-patented Wi-Fi mode which can achieve a one-kilometer line of sight range.
Compared to the traditional 802.11b mode, it has better reception sensitivity, stronger anti-interference ability, and
longer transmission distance.

LR Compatibility Since LR is Espressif-unique Wi-Fi mode, only ESP32 chip series devices (except ESP32-C2)
can transmit and receive the LR data. In other words, the ESP32 chip series devices (except ESP32-C2) should
NOT transmit the data in LR data rate if the connected device does not support LR. The application can achieve this
by configuring a suitable Wi-Fi mode. If the negotiated mode supports LR, the ESP32 chip series devices (except
ESP32-C2) may transmit data in LR rate. Otherwise, ESP32 chip series devices (except ESP32-C2) will transmit all
data in the traditional Wi-Fi data rate.
The following table depicts the Wi-Fi mode negotiation:

AP-
STA

BG-
NAX

BGN BG B BG-
NAXLR

BGNLR BGLR BLR LR

BG-
NAX

BGAX BGN BG B BGAX BGN BG B •

BGN BGN BGN BG B BGN BGN BG B •

BG BG BG BG B BG BG BG B •

B B B B B B B B B •

BG-
NAXLR • • • • BGAXLR BGNLR BGLR BLR LR

BGNLR • • • • BGNLR BGNLR BGLR BLR LR

BGLR • • • • BGLR BGLR BGLR BLR LR

BLR • • • • BLR BLR BLR BLR LR

LR • • • • LR LR LR LR LR

In the above table, the row is the Wi-Fi mode of AP and the column is the Wi-Fi mode of station. The "-" indicates
Wi-Fi mode of the AP and station are not compatible.
According to the table, the following conclusions can be drawn:

• For LR-enabled AP of ESP32-C6, it is incompatible with traditional 802.11 mode, because the beacon is sent
in LR mode.

• For LR-enabled station of ESP32-C6 whose mode is NOT LR-only mode, it is compatible with traditional
802.11 mode.

• If both station and AP are ESP32 series chips devices (except ESP32-C2) and both of them have enabled LR
mode, the negotiated mode supports LR.

If the negotiated Wi-Fi mode supports both traditional 802.11 mode and LR mode, it is the Wi-Fi driver's responsi-
bility to automatically select the best data rate in different Wi-Fi modes and the application can ignore it.

LR Impacts to Traditional Wi-Fi Device The data transmission in LR rate has no impacts on the traditional
Wi-Fi device because:

• The CCA and backoff process in LR mode are consistent with 802.11 specification.

Espressif Systems 2525
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• The traditional Wi-Fi device can detect the LR signal via CCA and do backoff.
In other words, the transmission impact in LR mode is similar to that in 802.11b mode.

LR Transmission Distance The reception sensitivity gain of LR is about 4 dB larger than that of the traditional
802.11b mode. Theoretically, the transmission distance is about 2 to 2.5 times the distance of 11B.

LR Throughput The LR rate has very limited throughput, because the raw PHY data rate LR is 1/2 Mbps and 1/4
Mbps.

When to Use LR The general conditions for using LR are:
• Both the AP and station are Espressif devices.
• Long distance Wi-Fi connection and data transmission is required.
• Data throughput requirements are very small, such as remote device control.

Wi-Fi Country Code

Call esp_wifi_set_country() to set the country info. The table below describes the fields in detail. Please
consult local 2.4 GHz RF operating regulations before configuring these fields.

Field Description
cc[3] Country code string. This attribute identifies the country or noncountry entity in which

the station/AP is operating. If it is a country, the first two octets of this string is the two-
character country info as described in the document ISO/IEC3166-1. The third octet is
one of the following:

• an ASCII space character, whichmeans the regulations under which the station/AP
is operating encompass all environments for the current frequency band in the
country.

• an ASCII‘O’character, which means the regulations under which the station/AP
is operating are for an outdoor environment only.

• an ASCII‘I’character, which means the regulations under which the station/AP
is operating are for an indoor environment only.

• an ASCII‘X’character, which means the station/AP is operating under a non-
country entity. The first two octets of the noncountry entity is two ASCII‘XX’
characters.

• the binary representation of the Operating Class table number currently in use.
Refer to Annex E of IEEE Std 802.11-2020.

schan Start channel. It is the minimum channel number of the regulations under which the
station/AP can operate.

nchan Total number of channels as per the regulations. For example, if the schan=1, nchan=13,
then the station/AP can send data from channel 1 to 13.

policy Country policy. This field controls which country info will be used if the configured
country info is in conflict with the connected AP’s. For more details on related policies,
see the following section.

The default country info is:

wifi_country_t config = {
.cc = "01",
.schan = 1,
.nchan = 11,
.policy = WIFI_COUNTRY_POLICY_AUTO,

};

Espressif Systems 2526
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

If the Wi-Fi Mode is station/AP coexist mode, they share the same configured country info. Sometimes, the country
info of AP, to which the station is connected, is different from the country info of configured. For example, the
configured station has country info:

wifi_country_t config = {
.cc = "JP",
.schan = 1,
.nchan = 14,
.policy = WIFI_COUNTRY_POLICY_AUTO,

};

but the connected AP has country info:

wifi_country_t config = {
.cc = "CN",
.schan = 1,
.nchan = 13,

};

then country info of connected AP's is used.
The following table depicts which country info is used in different Wi-Fi modes and different country policies, and it
also describes the impact on active scan.

Wi-Fi Mode Policy Description
Station WIFI_COUNTRY_POLICY_AUTOIf the connected AP has country IE in its beacon, the coun-

try info equals to the country info in beacon. Otherwise, use
the default country info.
For scan:

Use active scan from 1 to 11 and use passive
scan from 12 to 14.

Always keep in mind that if an AP with hidden SSID
and station is set to a passive scan channel, the passive
scan will not find it. In other words, if the application
hopes to find the AP with hidden SSID in every chan-
nel, the policy of country info should be configured to
WIFI_COUNTRY_POLICY_MANUAL.

Station WIFI_COUNTRY_POLICY_MANUALAlways use the configured country info.
For scan:

Use active scan from schan to schan+nchan-1.

AP WIFI_COUNTRY_POLICY_AUTOAlways use the configured country info.
AP WIFI_COUNTRY_POLICY_MANUALAlways use the configured country info.
Station/AP-coexistence WIFI_COUNTRY_POLICY_AUTOStation: Same as station mode with policy

WIFI_COUNTRY_POLICY_AUTO. AP: If the sta-
tion does not connect to any external AP, the AP uses
the configured country info. If the station connects to
an external AP, the AP has the same country info as the
station.

Station/AP-coexistence WIFI_COUNTRY_POLICY_MANUALStation: Same as station mode with pol-
icy WIFI_COUNTRY_POLICY_MANUAL.
AP: Same as AP mode with policy
WIFI_COUNTRY_POLICY_MANUAL.

Home Channel In AP mode, the home channel is defined as the AP channel. In station mode, home channel is
defined as the channel of AP which the station is connected to. In station/AP-coexistence mode, the home channel
of AP and station must be the same, and if they are different, the station's home channel is always in priority. For
example, assume that the AP is on channel 6, and the station connects to an AP whose channel is 9. Since the station's
home channel has higher priority, the AP needs to switch its channel from 6 to 9 to make sure that it has the same

Espressif Systems 2527
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

home channel as the station. While switching channel, the ESP32-C6 in AP mode will notify the connected stations
about the channel migration using a Channel Switch Announcement (CSA). Station that supports channel switching
will transit without disconnecting and reconnecting to the AP.

Wi-Fi Vendor IE Configuration

By default, all Wi-Fi management frames are processed by the Wi-Fi driver, and the application can ignore
them. However, some applications may have to handle the beacon, probe request, probe response, and other
management frames. For example, if you insert some vendor-specific IE into the management frames, it is
only the management frames which contain this vendor-specific IE that will be processed. In ESP32-C6,
esp_wifi_set_vendor_ie() and esp_wifi_set_vendor_ie_cb() are responsible for this kind of
tasks.

4.31.15 Wi-Fi Easy Connect™ (DPP)

Wi-Fi Easy ConnectTM (or Device Provisioning Protocol) is a secure and standardized provisioning protocol for
configuring Wi-Fi devices. More information can be found in esp_dpp.

WPA2-Enterprise

WPA2-Enterprise is the secure authentication mechanism for enterprise wireless networks. It uses RADIUS server
for authentication of network users before connecting to the Access Point. The authentication process is based on
802.1X policy and comes with different Extended Authentication Protocol (EAP) methods such as TLS, TTLS, and
PEAP. RADIUS server authenticates the users based on their credentials (username and password), digital certificates,
or both. When ESP32-C6 in station mode tries to connect an AP in enterprise mode, it sends authentication request
to AP which is sent to RADIUS server by AP for authenticating the station. Based on different EAP methods, the
parameters can be set in configuration which can be opened using idf.py menuconfig. WPA2_Enterprise is
supported by ESP32-C6 only in station mode.
For establishing a secure connection, AP and station negotiate and agree on the best possible cipher suite to be used.
ESP32-C6 supports 802.1X/EAP (WPA) method of AKM and Advanced encryption standard with Counter Mode
Cipher Block Chaining Message Authentication protocol (AES-CCM) cipher suite. It also supports the cipher suites
supported by mbedtls if USE_MBEDTLS_CRYPTO flag is set.
ESP32-C6 currently supports the following EAP methods:

• EAP-TLS: This is a certificate-based method and only requires SSID and EAP-IDF.
• PEAP: This is a Protected EAP method. Username and Password are mandatory.
• EAP-TTLS: This is a credential-based method. Only server authentication is mandatory while user authentication is optional. Username and Password are mandatory. It supports different Phase2 methods, such as:

– PAP: Password Authentication Protocol.
– CHAP: Challenge Handshake Authentication Protocol.
– MSCHAP and MSCHAP-V2.

• EAP-FAST: This is an authentication method based on Protected Access Credentials (PAC) which also
uses identity and password. Currently, USE_MBEDTLS_CRYPTO flag should be disabled to use this
feature.

Detailed information on creating certificates and how to run wpa2_enterprise example on ESP32-C6 can be found in
wifi/wifi_enterprise.

4.31.16 Wireless Network Management

Wireless Network Management allows client devices to exchange information about the network topology, including
information related to RF environment. This makes each client network-aware, facilitating overall improvement in
the performance of the wireless network. It is part of 802.11v specification. It also enables the client to support
Network assisted Roaming. - Network assisted Roaming: Enables WLAN to send messages to associated clients,

Espressif Systems 2528
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/wifi_enterprise
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

resulting clients to associate with APs with better link metrics. This is useful for both load balancing and in directing
poorly connected clients.
Current implementation of 802.11v includes support for BSS transition management frames.

4.31.17 Radio Resource Measurement

Radio Resource Measurement (802.11k) is intended to improve the way traffic is distributed within a network. In
a WLAN, each device normally connects to the access point (AP) that provides the strongest signal. Depending on
the number and geographic locations of the subscribers, this arrangement can sometimes lead to excessive demand
on one AP and underutilization of others, resulting in degradation of overall network performance. In a network
conforming to 802.11k, if the AP having the strongest signal is loaded to its full capacity, a wireless device can be
moved to one of the underutilized APs. Even though the signal may be weaker, the overall throughput is greater
because more efficient use is made of the network resources.
Current implementation of 802.11k includes support for beacon measurement report, link measurement report, and
neighbor request.
Refer ESP-IDF example examples/wifi/roaming/README.md to set up and use these APIs. Example code only
demonstrates how these APIs can be used, and the application should define its own algorithm and cases as required.

4.31.18 Fast BSS Transition

Fast BSS transition (802.11R FT), is a standard to permit continuous connectivity aboard wireless devices in motion,
with fast and secure client transitions from one Basic Service Set (abbreviated BSS, and also known as a base station
or more colloquially, an access point) to another performed in a nearly seamless manner avoiding 802.1i 4 way
handshake . 802.11R specifies transitions between access points by redefining the security key negotiation protocol,
allowing both the negotiation and requests for wireless resources to occur in parallel. The key derived from the server
to be cached in the wireless network, so that a reasonable number of future connections can be based on the cached
key, avoiding the 802.1X process
ESP32-C6 station supports FT for WPA2-PSK networks. Do note that ESP32-C6 station only support FT over the
air protocol only.
A config option CONFIG_ESP_WIFI_11R_SUPPORT and configuration parameter ft_enabled in
wifi_sta_config_t is provided to enable 802.11R support for station. Refer ESP-IDF example exam-
ples/wifi/roaming/README.md for further details.
ESP32-C6 ECO1 and older versions do not support FTM Initiator mode.

Attention: Distance measurement using RTT is not accurate, and factors such as RF interference, multi-path
travel, antenna orientation, and lack of calibration increase these inaccuracies. For better results, it is suggested
to perform FTM between two ESP32 chip series devices as station and AP.
Refer to ESP-IDF example examples/wifi/ftm/README.md for steps on how to set up and perform FTM.

4.31.19 Wi-Fi Location

Wi-Fi Location will improve the accuracy of a device's location data beyond the Access Point, which will enable
creation of new and feature-rich applications and services such as geo-fencing, network management, and naviga-
tion. One of the protocols used to determine the device location with respect to the Access Point is Fine Timing
Measurement which calculates Time-of-Flight of a Wi-Fi frame.

Espressif Systems 2529
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/roaming/README.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/roaming/README.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/roaming/README.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/ftm/README.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fine Timing Measurement (FTM)

FTM is used to measure Wi-Fi Round Trip Time (Wi-Fi RTT) which is the time a Wi-Fi signal takes to travel from a
device to another device and back again. Using Wi-Fi RTT, the distance between the devices can be calculated with
a simple formula of RTT * c / 2, where c is the speed of light.
FTM uses timestamps given by Wi-Fi interface hardware at the time of arrival or departure of frames exchanged
between a pair of devices. One entity called FTM Initiator (mostly a station device) discovers the FTM Responder
(can be a station or an Access Point) and negotiates to start an FTM procedure. The procedure uses multiple Action
frames sent in bursts and its ACK's to gather the timestamps data. FTM Initiator gathers the data in the end to
calculate an average Round-Trip-Time.
ESP32-C6 supports FTM in below configuration:

• ESP32-C6 as FTM Initiator in station mode.
• ESP32-C6 as FTM Responder in AP mode.

4.31.20 ESP32-C6 Wi-Fi Power-saving Mode

This subsection will briefly introduce the concepts and usage related toWi-Fi Power SavingMode, for a more detailed
introduction please refer to the Low Power Mode User Guide

Station Sleep

Currently, ESP32-C6 Wi-Fi supports the Modem-sleep mode which refers to the legacy power-saving mode in the
IEEE 802.11 protocol. Modem-sleep mode works in station-only mode and the station must connect to the AP first.
If the Modem-sleep mode is enabled, station will switch between active and sleep state periodically. In sleep state,
RF, PHY and BB are turned off in order to reduce power consumption. Station can keep connection with AP in
modem-sleep mode.
Modem-sleepmode includes minimum andmaximum power-saving modes. In minimum power-saving mode, station
wakes up every DTIM to receive beacon. Broadcast data will not be lost because it is transmitted after DTIM.
However, it cannot save much more power if DTIM is short for DTIM is determined by AP.
In maximum power-saving mode, station wakes up in every listen interval to receive beacon. This listen interval can
be set to be longer than the AP DTIM period. Broadcast data may be lost because station may be in sleep state at
DTIM time. If listen interval is longer, more power is saved, but broadcast data is more easy to lose. Listen interval
can be configured by calling API esp_wifi_set_config() before connecting to AP.
Call esp_wifi_set_ps(WIFI_PS_MIN_MODEM) to enable Modem-sleep minimum power-saving mode or
esp_wifi_set_ps(WIFI_PS_MAX_MODEM) to enable Modem-sleep maximum power-saving mode after
calling esp_wifi_init(). When station connects to AP, Modem-sleep will start. When station disconnects
from AP, Modem-sleep will stop.
Call esp_wifi_set_ps(WIFI_PS_NONE) to disable Modem-sleep mode entirely. Disabling it increases
power consumption, but minimizes the delay in receiving Wi-Fi data in real time. When Modem-sleep mode is
enabled, the delay in receiving Wi-Fi data may be the same as the DTIM cycle (minimum power-saving mode) or
the listening interval (maximum power-saving mode).
Note that in coexist mode, Wi-Fi will remain active only during Wi-Fi time slice, and sleep during non Wi-Fi time
slice even if esp_wifi_set_ps(WIFI_PS_NONE) is called. Please refer to coexist policy.
The default Modem-sleep mode is WIFI_PS_MIN_MODEM.

AP Sleep

Currently, ESP32-C6 AP does not support all of the power-saving feature defined in Wi-Fi specification. To be
specific, the AP only caches unicast data for the stations connect to this AP, but does not cache the multicast data
for the stations. If stations connected to the ESP32-C6 AP are power-saving enabled, they may experience multicast
packet loss.

Espressif Systems 2530
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

In the future, all power-saving features will be supported on ESP32-C6 AP.

Disconnected State Sleep

Disconnected state is the duration without Wi-Fi connection between esp_wifi_start() to
esp_wifi_stop().
Currently, ESP32-C6Wi-Fi supports sleep mode in disconnected state if running at station mode. This feature could
be configured by Menuconfig choice CONFIG_ESP_WIFI_STA_DISCONNECTED_PM_ENABLE.
If CONFIG_ESP_WIFI_STA_DISCONNECTED_PM_ENABLE is enabled, RF, PHY and BB would be turned off in
disconnected state when IDLE. The current would be same with current at modem-sleep.
The choice CONFIG_ESP_WIFI_STA_DISCONNECTED_PM_ENABLE would be selected by default, while it would
be selected forcefully in Menuconfig at coexistence mode.

Connectionless Modules Power-saving

Connectionless modules are thoseWi-Fi modules not relying onWi-Fi connection, e.g ESP-NOW,DPP, FTM. These
modules start from esp_wifi_start(), working until esp_wifi_stop().
Currently, if ESP-NOW works at station mode, its supported to sleep at both connected state and disconnected state.

Connectionless Modules TX For each connectionless module, its supported to TX at any sleeping time without
any extra configuration.
Meanwhile, esp_wifi_80211_tx() is supported at sleep as well.

Connectionless Modules RX For each connectionless module, two parameters shall be configured to RX at sleep,
which areWindow and Interval.
At the start of Interval time, RF, PHY, BB would be turned on and kept for Window time. Connectionless Module
could RX in the duration.
Interval

• There is only one Interval. Its configured by esp_wifi_set_connectionless_interval(). The
unit is milliseconds.

• The default value of Interval is ESP_WIFI_CONNECTIONLESS_INTERVAL_DEFAULT_MODE.
• EventWIFI_EVENT_CONNECTIONLESS_MODULE_WAKE_INTERVAL_START would be posted at the start
of Interval. SinceWindow also starts at that moment, its recommended to TX in that event.

• At connected state, the start of Interval would be aligned with TBTT. To improve the packet reception success
rate in connectionless modules, the sender and receiver can be connected to the same AP, and packets can be
transmitted within the eventWIFI_EVENT_CONNECTIONLESS_MODULE_WAKE_INTERVAL_START . This
synchronization helps align the connectionless modules transmission window.

Window
• Each connectionless module has its own Window after start. Connectionless Modules Power-saving would
work with the max one among them.

• Window is configured by module_name_set_wake_window(). The unit is milliseconds.
• The default value ofWindow is the maximum.

Table 37: RF, PHY and BB usage under different circumstances
Interval
ESP_WIFI_CONNECTIONLESS_INTERVAL_DEFAULT_MODE1 - maximum

Win-
dow

0 not used
1 - max-
imum

default mode used periodically (Window < Interval) / used
all time (Window ≥ Interval)

Espressif Systems 2531
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Default mode If Interval is ESP_WIFI_CONNECTIONLESS_INTERVAL_DEFAULT_MODE with non-zero
Window, Connectionless Modules Power-saving would work in default mode.
In default mode, RF, PHY, BB would be kept on if no coexistence with non-Wi-Fi protocol.
With coexistence, RF, PHY, BB resources are allocated by coexistence module to Wi-Fi connectionless module and
non-Wi-Fi module，using time-division method. In default mode, Wi-Fi connectionless module is allowed to use
RF, BB, PHY periodically under a stable performance.
Its recommended to configure Connectionless Modules Power-saving to default mode if there is Wi-Fi connectionless
module coexists with non-Wi-Fi module.

4.31.21 ESP32-C6 Wi-Fi Throughput

The table below shows the best throughput results gained in Espressif's lab and in a shielded box.

Type/ThroughputAir In Lab Shield-box Test Tool IDF Version (commit ID)
Raw 802.11
Packet RX

N/A 130 MBit/s Internal tool NA

Raw 802.11
Packet TX

N/A 130 MBit/s Internal tool NA

UDP RX 30 MBit/s 45 MBit/s iperf example 420ebd20
UDP TX 30 MBit/s 40 MBit/s iperf example 420ebd20
TCP RX 20 MBit/s 30 MBit/s iperf example 420ebd20
TCP TX 20 MBit/s 31 MBit/s iperf example 420ebd20

When the throughput is tested by iperf example, the sdkconfig is examples/wifi/iperf/sdkconfig.defaults.esp32c6.

4.31.22 Wi-Fi 80211 Packet Send

The esp_wifi_80211_tx() API can be used to:
• Send the beacon, probe request, probe response, and action frame.
• Send the non-QoS data frame.

It cannot be used for sending encrypted or QoS frames.

Preconditions of Using esp_wifi_80211_tx()

• The Wi-Fi mode is station, or AP, or station/AP.
• Eitheresp_wifi_set_promiscuous(true), oresp_wifi_start(), or both of these APIs return
ESP_OK. This is because Wi-Fi hardware must be initialized before esp_wifi_80211_tx() is called.
In ESP32-C6, both esp_wifi_set_promiscuous(true) and esp_wifi_start() can trigger the
initialization of Wi-Fi hardware.

• The parameters of esp_wifi_80211_tx() are hereby correctly provided.

Data Rate

• The default data rate is 1 Mbps.
• Can set any rate through esp_wifi_config_80211_tx_rate() API.
• Can set any bandwidth through esp_wifi_set_bandwidth() API.

Espressif Systems 2532
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/iperf/sdkconfig.defaults.esp32c6
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Side-Effects to Avoid in Different Scenarios

Theoretically, if the side-effects the API imposes on the Wi-Fi driver or other stations/APs are not considered, a raw
802.11 packet can be sent over the air with any destination MAC, any source MAC, any BSSID, or any other types
of packet. However, robust or useful applications should avoid such side-effects. The table below provides some tips
and recommendations on how to avoid the side-effects of esp_wifi_80211_tx() in different scenarios.

Scenario Description
No Wi-Fi con-
nection

In this scenario, no Wi-Fi connection is set up, so there are no side-effects on the Wi-Fi
driver. If en_sys_seq==true, the Wi-Fi driver is responsible for the sequence control.
If en_sys_seq==false, the application needs to ensure that the buffer has the correct
sequence.
Theoretically, the MAC address can be any address. However, this may impact other sta-
tions/APs with the same MAC/BSSID.
Side-effect example#1 The application calls esp_wifi_80211_tx() to send a beacon
with BSSID == mac_x in AP mode, but the mac_x is not the MAC of the AP interface.
Moreover, there is another AP, e.g.,“other-AP”, whose BSSID is mac_x. If this happens, an
“unexpected behavior”may occur, because the stations which connect to the“other-AP”cannot
figure out whether the beacon is from the“other-AP”or the esp_wifi_80211_tx().
To avoid the above-mentioned side-effects, it is recommended that:

• If esp_wifi_80211_tx() is called in station mode, the first MAC should be a
multicast MAC or the exact target-device’s MAC, while the second MAC should be
that of the station interface.

• If esp_wifi_80211_tx() is called in AP mode, the first MAC should be a mul-
ticast MAC or the exact target-device’s MAC, while the second MAC should be that
of the AP interface.

The recommendations above are only for avoiding side-effects and can be ignored when there
are good reasons.

Have Wi-Fi
connection

When the Wi-Fi connection is already set up, and the sequence is controlled by the applica-
tion, the latter may impact the sequence control of the Wi-Fi connection as a whole. So, the
en_sys_seq need to be true, otherwise ESP_ERR_INVALID_ARG is returned.
The MAC-address recommendations in the“No Wi-Fi connection”scenario also apply to
this scenario.
If the Wi-Fi mode is station mode, the MAC address1 is the MAC of AP to which the station
is connected, and the MAC address2 is the MAC of station interface, it is said that the packet
is sent from the station to AP. Otherwise, if the Wi-Fi is in AP mode, the MAC address1 is
the MAC of the station that connects to this AP, and the MAC address2 is the MAC of AP
interface, it is said that the packet is sent from the AP to station. To avoid conflicting with
Wi-Fi connections, the following checks are applied:

• If the packet type is data and is sent from the station to AP, the ToDS bit in IEEE 80211
frame control should be 1 and the FromDS bit should be 0. Otherwise, the packet will
be discarded by Wi-Fi driver.

• If the packet type is data and is sent from the AP to station, the ToDS bit in IEEE 80211
frame control should be 0 and the FromDS bit should be 1. Otherwise, the packet will
be discarded by Wi-Fi driver.

• If the packet is sent from station to AP or from AP to station, the Power Management,
More Data, and Re-Transmission bits should be 0. Otherwise, the packet will be dis-
carded by Wi-Fi driver.

ESP_ERR_INVALID_ARG is returned if any check fails.

4.31.23 Wi-Fi Sniffer Mode

The Wi-Fi sniffer mode can be enabled by esp_wifi_set_promiscuous(). If the sniffer mode is enabled,
the following packets can be dumped to the application:

• 802.11 Management frame.
• 802.11 Data frame, including MPDU, AMPDU, and AMSDU.

Espressif Systems 2533
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• 802.11 MIMO frame, for MIMO frame, the sniffer only dumps the length of the frame.
• 802.11 Control frame.
• 802.11 CRC error frame.

The following packets will NOT be dumped to the application:
• Other 802.11 error frames.

For frames that the sniffer can dump, the application can additionally decide which specific type of
packets can be filtered to the application by using esp_wifi_set_promiscuous_filter()
and esp_wifi_set_promiscuous_ctrl_filter(). By default, it will filter all 802.11
data and management frames to the application. If you want to filter the 802.11 control
frames, the filter parameter in esp_wifi_set_promiscuous_filter() should include
WIFI_PROMIS_FILTER_MASK_CTRL type, and if you want to differentiate control frames further, then call
esp_wifi_set_promiscuous_ctrl_filter().
The Wi-Fi sniffer mode can be enabled in the Wi-Fi mode of WIFI_MODE_NULL, WIFI_MODE_STA,
WIFI_MODE_AP, or WIFI_MODE_APSTA. In other words, the sniffer mode is active when the station is con-
nected to the AP, or when the AP has a Wi-Fi connection. Please note that the sniffer has a great impact on the
throughput of the station or AP Wi-Fi connection. Generally, the sniffer should be enabled only if the station/AP
Wi-Fi connection does not experience heavy traffic.
Another noteworthy issue about the sniffer is the callback wifi_promiscuous_cb_t. The callback will be
called directly in the Wi-Fi driver task, so if the application has a lot of work to do for each filtered packet, the
recommendation is to post an event to the application task in the callback and defer the real work to the application
task.

4.31.24 Wi-Fi Multiple Antennas

The Wi-Fi multiple antennas selecting can be depicted as following picture:

|Enabled |

___|Antenna 0 |\\ ________
↪→_

|__________| \\ GPIO[0] <----> antenna_select[0] ---| ␣
↪→ | --- antenna 0
RX/TX ___ ____\ GPIO[1] <----> antenna_select[1] ---|␣
↪→Antenna | --- antenna 1

\ __________ // / GPIO[2] <----> antenna_select[2] ---| Switch␣
↪→ |

\ ___|Enabled | // GPIO[3] <----> antenna_select[3] ---|________
↪→_| --- antenna 15

\ |Antenna 1 |//
|__________|

ESP32-C6 supports up to sixteen antennas through external antenna switch. The antenna switch can be controlled by
up to four address pins - antenna_select[0:3]. Different input value of antenna_select[0:3] means selecting different
antenna. For example, the value '0b1011' means the antenna 11 is selected. The default value of antenna_select[3:0]
is '0b0000', which means the antenna 0 is selected by default.
Up to four GPIOs are connected to the four active high antenna_select pins. ESP32-C6 can select the antenna by
control the GPIO[0:3]. The API esp_wifi_set_ant_gpio() is used to configure which GPIOs are connected
to antenna_selects. If GPIO[x] is connected to antenna_select[x], then gpio_config->gpio_cfg[x].gpio_select should
be set to 1 and gpio_config->gpio_cfg[x].gpio_num should be provided.
For the specific implementation of the antenna switch, there may be illegal values in antenna_select[0:3]. It means
that ESP32-C6may support less than sixteen antennas through the switch. For example, ESP32-WROOM-DAwhich
uses RTC6603SP as the antenna switch, supports two antennas. Two GPIOs are connected to two active high antenna
selection inputs. The value '0b01' means the antenna 0 is selected, the value '0b10' means the antenna 1 is selected.
Values '0b00' and '0b11' are illegal.

Espressif Systems 2534
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Although up to sixteen antennas are supported, only one or two antennas can be simultaneously enabled for RX/TX.
The API esp_wifi_set_ant() is used to configure which antennas are enabled.
The enabled antennas selecting algorithm is also configured by esp_wifi_set_ant(). The RX/TX antenna
mode can be WIFI_ANT_MODE_ANT0, WIFI_ANT_MODE_ANT1, or WIFI_ANT_MODE_AUTO. If the antenna
mode is WIFI_ANT_MODE_ANT0, the enabled antenna 0 is selected for RX/TX data. If the antenna mode is
WIFI_ANT_MODE_ANT1, the enabled antenna 1 is selected for RX/TX data. Otherwise, Wi-Fi automatically
selects the enabled antenna that has better signal.
If the RX antenna mode is WIFI_ANT_MODE_AUTO, the default antenna mode also needs to be set, because the
RX antenna switching only happens when some conditions are met. For example, the RX antenna starts to switch if
the RSSI is lower than -65 dBm or another antenna has better signal. RX uses the default antenna if the conditions
are not met. If the default antenna mode is WIFI_ANT_MODE_ANT1, the enabled antenna 1 is used as the default
RX antenna, otherwise the enabled antenna 0 is used.
Some limitations need to be considered:

• The TX antenna can be set to WIFI_ANT_MODE_AUTO only if the RX antenna mode is
WIFI_ANT_MODE_AUTO, because TX antenna selecting algorithm is based on RX antenna in
WIFI_ANT_MODE_AUTO type.

• When the TX antenna mode or RX antenna mode is configured to WIFI_ANT_MODE_AUTO the switching
mode will easily trigger the switching phase, as long as there is deterioration of the RF signal. So in situations
where the RF signal is not stable, the antenna switching will occur frequently, resulting in an RF performance
that may not meet expectations.

• Currently, Bluetooth® does not support the multiple antennas feature, so please do not use multiple antennas
related APIs.

Following is the recommended scenarios to use the multiple antennas:
• The applications can always choose to select a specified antenna or implement their own antenna selecting
algorithm, e.g., selecting the antenna mode based on the information collected by the application. Refer to
ESP-IDF example examples/wifi/antenna/README.md for the antenna selecting algorithm design.

• Both RX/TX antenna modes are configured to WIFI_ANT_MODE_ANT0 or WIFI_ANT_MODE_ANT1.

Wi-Fi Multiple Antennas Configuration

Generally, following steps can be taken to configure the multiple antennas:
• Configure which GPIOs are connected to the antenna_selects. For example, if four antennas are supported and
GPIO20/GPIO21 are connected to antenna_select[0]/antenna_select[1], the configurations look like:

wifi_ant_gpio_config_t ant_gpio_config = {
.gpio_cfg[0] = { .gpio_select = 1, .gpio_num = 20 },
.gpio_cfg[1] = { .gpio_select = 1, .gpio_num = 21 }

};

• Configure which antennas are enabled and how RX/TX use the enabled antennas. For example, if antenna1
and antenna3 are enabled, the RX needs to select the better antenna automatically and uses antenna1 as its
default antenna, the TX always selects the antenna3. The configuration looks like:

wifi_ant_config_t config = {
.rx_ant_mode = WIFI_ANT_MODE_AUTO,
.rx_ant_default = WIFI_ANT_ANT0,
.tx_ant_mode = WIFI_ANT_MODE_ANT1,
.enabled_ant0 = 1,
.enabled_ant1 = 3

};

Espressif Systems 2535
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/antenna/README.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

4.31.25 Wi-Fi Channel State Information

Channel state information (CSI) refers to the channel information of a Wi-Fi connection. In ESP32-C6, this infor-
mation consists of channel frequency responses of sub-carriers and is estimated when packets are received from the
transmitter. Each channel frequency response of sub-carrier is recorded by two bytes of signed characters. The first
one is imaginary part and the second one is real part. There are up to three fields of channel frequency responses
according to the type of received packet. They are legacy long training field (LLTF), high throughput LTF (HT-LTF),
and space time block code HT-LTF (STBC-HT-LTF). For different types of packets which are received on channels
with different state, the sub-carrier index and total bytes of signed characters of CSI are shown in the following table.

chan-
nel

sec-
ondary
chan-
nel

none below above

packet
in-
for-
ma-
tion

sig-
nal
mode

non
HT

HT non
HT

HT non
HT

HT

chan-
nel
band-
width

20
MHz

20 MHz 20
MHz

20 MHz 40 MHz 20
MHz

20 MHz 40 MHz

STBC non
STBC

non
STBC

STBC non
STBC

non
STBC

STBC non
STBC

STBC non
STBC

non
STBC

STBC non
STBC

STBC

sub-
carrier
in-
dex

LLTF 0~31,
-
32~-
1

0~31,
-
32~-
1

0~31,
-
32~-
1

0~63 0~63 0~63 0~63 0~63 -
64~-
1

-
64~-
1

-
64~-
1

-
64~-
1

-
64~-
1

HT-
LTF • 0~31,

-
32~-
1

0~31,
-
32~-
1

• 0~63 0~62 0~63,
-
64~-
1

0~60,
-
60~-
1

• -
64~-
1

-
62~-
1

0~63,
-
64~-
1

0~60,
-
60~-
1

STBC-
HT-
LTF

• • 0~31,
-
32~-
1

• • 0~62 • 0~60,
-
60~-
1

• • -
62~-
1

• 0~60,
-
60~-
1

total bytes 128 256 384 128 256 380 384 612 128 256 376 384 612

All of the information in the table can be found in the structure wifi_csi_info_t.
• Secondary channel refers to secondary_channel field of rx_ctrl field.
• Signal mode of packet refers to sig_mode field of rx_ctrl field.
• Channel bandwidth refers to cwb field of rx_ctrl field.
• STBC refers to stbc field of rx_ctrl field.
• Total bytes refers to len field.
• The CSI data corresponding to each Long Training Field (LTF) type is stored in a buffer starting from the buf
field. Each item is stored as two bytes: imaginary part followed by real part. The order of each item is the
same as the sub-carrier in the table. The order of LTF is: LLTF, HT-LTF, STBC-HT-LTF. However, all 3
LTFs may not be present, depending on the channel and packet information (see above).

• If first_word_invalid field of wifi_csi_info_t is true, it means that the first four bytes of CSI data is
invalid due to a hardware limitation in ESP32-C6.

• More information like RSSI, noise floor of RF, receiving time and antenna is in the rx_ctrl field.
When imaginary part and real part data of sub-carrier are used, please refer to the table below.

PHY standard Sub-carrier range Pilot sub-carrier Sub-carrier(total/data)
802.11a/g -26 to +26 -21, -7, +7, +21 52 total, 48 usable
802.11n, 20MHz -28 to +28 -21, -7, +7, +21 56 total, 52 usable
802.11n, 40MHz -57 to +57 -53, -25, -11, +11, +25, +53 114 total, 108 usable

Espressif Systems 2536
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Note:
• For STBC packet, CSI is provided for every space-time stream without CSD (cyclic shift delay). As each
cyclic shift on the additional chains shall be -200 ns, only the CSD angle of first space-time stream is recorded
in sub-carrier 0 of HT-LTF and STBC-HT-LTF for there is no channel frequency response in sub-carrier 0.
CSD[10:0] is 11 bits, ranging from -pi to pi.

• If LLTF, HT-LTF, or STBC-HT-LTF is not enabled by calling API esp_wifi_set_csi_config(), the
total bytes of CSI data will be fewer than that in the table. For example, if LLTF and HT-LTF is not enabled
and STBC-HT-LTF is enabled, when a packet is received with the condition above/HT/40MHz/STBC, the
total bytes of CSI data is 244 ((61 + 60) * 2 + 2 = 244. The result is aligned to four bytes, and the last two
bytes are invalid).

4.31.26 Wi-Fi Channel State Information Configure

To use Wi-Fi CSI, the following steps need to be done.
• Select Wi-Fi CSI in menuconfig. Go to Menuconfig > Components config > Wi-Fi > Wi-Fi CSI
(Channel State Information).

• Set CSI receiving callback function by calling API esp_wifi_set_csi_rx_cb().
• Configure CSI by calling API esp_wifi_set_csi_config().
• Enable CSI by calling API esp_wifi_set_csi().

The CSI receiving callback function runs fromWi-Fi task. So, do not do lengthy operations in the callback function.
Instead, post necessary data to a queue and handle it from a lower priority task. Because station does not receive
any packet when it is disconnected and only receives packets from AP when it is connected, it is suggested to enable
sniffer mode to receive more CSI data by calling esp_wifi_set_promiscuous().

4.31.27 Wi-Fi HT20/40

ESP32-C6 supports Wi-Fi bandwidth HT20 or HT40 and does not support HT20/40 coexist.
esp_wifi_set_bandwidth() can be used to change the default bandwidth of station or AP. The de-
fault bandwidth for ESP32-C6 station and AP is HT40.
In station mode, the actual bandwidth is firstly negotiated during the Wi-Fi connection. It is HT40 only if both the
station and the connected AP support HT40, otherwise it is HT20. If the bandwidth of connected AP is changes, the
actual bandwidth is negotiated again without Wi-Fi disconnecting.
Similarly, in AP mode, the actual bandwidth is negotiated between AP and the stations that connect to the AP. It is
HT40 if the AP and one of the stations support HT40, otherwise it is HT20.
In station/AP coexist mode, the station/AP can configure HT20/40 seperately. If both station and AP are negotiated
to HT40, the HT40 channel should be the channel of station because the station always has higher priority than AP
in ESP32-C6. For example, the configured bandwidth of AP is HT40, the configured primary channel is 6, and the
configured secondary channel is 10. The station is connected to an router whose primary channel is 6 and secondary
channel is 2, then the actual channel of AP is changed to primary 6 and secondary 2 automatically.
Theoretically, the HT40 can gain better throughput because the maximum raw physicial (PHY) data rate for HT40 is
150 Mbps while it is 72 Mbps for HT20. However, if the device is used in some special environment, e.g., there are
too many other Wi-Fi devices around the ESP32-C6 device, the performance of HT40 may be degraded. So if the
applications need to support same or similar scenarios, it is recommended that the bandwidth is always configured to
HT20.

4.31.28 Wi-Fi QoS

ESP32-C6 supports all the mandatory features required in WFA Wi-Fi QoS Certification.

Espressif Systems 2537
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Four ACs (Access Category) are defined in Wi-Fi specification, and each AC has its own priority to access the Wi-
Fi channel. Moreover, a map rule is defined to map the QoS priority of other protocol, e.g., 802.11D or TCP/IP
precedence is mapped to Wi-Fi AC.
The table below describes how the IP Precedences are mapped to Wi-Fi ACs in ESP32-C6. It also indicates whether
the AMPDU is supported for this AC. The table is sorted from high to low priority. That is to say, the AC_VO has
the highest priority.

IP Precedence Wi-Fi AC Support AMPDU?
6, 7 AC_VO (Voice) No
4, 5 AC_VI (Video) Yes
3, 0 AC_BE (Best Effort) Yes
1, 2 AC_BK (Background) Yes

The application can make use of the QoS feature by configuring the IP precedence via socket option IP_TOS. Here
is an example to make the socket to use VI queue:

const int ip_precedence_vi = 4;
const int ip_precedence_offset = 5;
int priority = (ip_precedence_vi << ip_precedence_offset);
setsockopt(socket_id, IPPROTO_IP, IP_TOS, &priority, sizeof(priority));

Theoretically, the higher priority AC has better performance than the lower priority AC. However, it is not always
true. Here are some suggestions about how to use the Wi-Fi QoS:

• Some really important application traffic can be put into the AC_VO queue. But avoid using the AC_VO queue
for heavy traffic, as it may impact the management frames which also use this queue. Eventually, it is worth
noting that the AC_VO queue does not support AMPDU, and its performance with heavy traffic is no better
than other queues.

• Avoid using more than two precedences supported by different AMPDUs, e.g., when socket A uses precedence
0, socket B uses precedence 1, and socket C uses precedence 2. This can be a bad design because it may need
much more memory. To be specific, the Wi-Fi driver may generate a Block Ack session for each precedence
and it needs more memory if the Block Ack session is set up.

4.31.29 Wi-Fi AMSDU

ESP32-C6 supports receiving AMSDU.

4.31.30 Wi-Fi Fragment

ESP32-C6 supports Wi-Fi receiving and transmitting fragment.

4.31.31 WPS Enrollee

ESP32-C6 supports WPS enrollee feature in Wi-Fi mode WIFI_MODE_STA or WIFI_MODE_APSTA. Currently,
ESP32-C6 supports WPS enrollee type PBC and PIN.

4.31.32 Wi-Fi Buffer Usage

This section is only about the dynamic buffer configuration.

Espressif Systems 2538
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Why Buffer Configuration Is Important

In order to get a high-performance system, consider the memory usage/configuration carefully for the following rea-
sons:

• the available memory in ESP32-C6 is limited.
• currently, the default type of buffer in LwIP andWi-Fi drivers is "dynamic",whichmeans that both the LwIP
and Wi-Fi share memory with the application. Programmers should always keep this in mind; otherwise,
they will face a memory issue, such as "running out of heap memory".

• it is very dangerous to run out of heap memory, as this will cause ESP32-C6 an "undefined behavior". Thus,
enough heap memory should be reserved for the application, so that it never runs out of it.

• the Wi-Fi throughput heavily depends on memory-related configurations, such as the TCP window size and
Wi-Fi RX/TX dynamic buffer number.

• the peak heap memory that the ESP32-C6 LwIP/Wi-Fi may consume depends on a number of factors, such as
the maximum TCP/UDP connections that the application may have.

• the total memory that the application requires is also an important factor when considering memory configu-
ration.

Due to these reasons, there is not a good-for-all application configuration. Rather, it is recommended to consider
memory configurations separately for every different application.

Dynamic vs. Static Buffer

The default type of buffer in Wi-Fi drivers is "dynamic". Most of the time the dynamic buffer can significantly save
memory. However, it makes the application programming a little more difficult, because in this case the application
needs to consider memory usage in Wi-Fi.
lwIP also allocates buffers at the TCP/IP layer, and this buffer allocation is also dynamic. See lwIP documentation
section about memory use and performance.

Peak Wi-Fi Dynamic Buffer

TheWi-Fi driver supports several types of buffer (refer toWi-Fi Buffer Configure). However, this section is about the
usage of the dynamicWi-Fi buffer only. The peak heapmemory thatWi-Fi consumes is the theoretically-maximum
memory that the Wi-Fi driver consumes. Generally, the peak memory depends on:

• brx the number of dynamic RX buffers that are configured
• btx the number of dynamic TX buffers that are configured
• mrx the maximum packet size that the Wi-Fi driver can receive
• mtx the maximum packet size that the Wi-Fi driver can send

So, the peak memory that the Wi-Fi driver consumes (p) can be calculated with the following formula:

p = (brx ∗mrx) + (btx ∗mtx)

Generally, the dynamic TX long buffers and dynamic TX long long buffers can be ignored, because they are manage-
ment frames which only have a small impact on the system.

4.31.33 How to Improve Wi-Fi Performance

The performance of ESP32-C6 Wi-Fi is affected by many parameters, and there are mutual constraints between
each parameter. A proper configuration cannot only improve performance, but also increase available memory for
applications and improve stability.
This section briefly explains the operating mode of the Wi-Fi/LwIP protocol stack and the role of each parameter.
It also gives several recommended configuration ranks to help choose the appropriate rank according to the usage
scenario.

Espressif Systems 2539
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Protocol Stack Operation Mode

Fig. 84: ESP32-C6 datapath

The ESP32-C6 protocol stack is divided into four layers: Application, LwIP, Wi-Fi, and Hardware.
• During receiving, hardware puts the received packet into DMA buffer, and then transfers it into the RX buffer
of Wi-Fi and LwIP in turn for related protocol processing, and finally to the application layer. The Wi-Fi RX
buffer and the LwIP RX buffer shares the same buffer by default. In other words, theWi-Fi forwards the packet
to LwIP by reference by default.

• During sending, the application copies the messages to be sent into the TX buffer of the LwIP layer for TCP/IP
encapsulation. The messages will then be passed to the TX buffer of the Wi-Fi layer for MAC encapsulation
and wait to be sent.

Parameters

Increasing the size or number of the buffers mentioned above properly can improve Wi-Fi performance. Meanwhile,
it will reduce available memory to the application. The following is an introduction to the parameters that users need
to configure:
RX direction:

• CONFIG_ESP_WIFI_STATIC_RX_BUFFER_NUM This parameter indicates the number of DMA buffer at
the hardware layer. Increasing this parameter will increase the sender's one-time receiving throughput,
thereby improving the Wi-Fi protocol stack ability to handle burst traffic.

• CONFIG_ESP_WIFI_DYNAMIC_RX_BUFFER_NUM This parameter indicates the number of RX buffer
in the Wi-Fi layer. Increasing this parameter will improve the performance of packet reception. This
parameter needs to match the RX buffer size of the LwIP layer.

• CONFIG_ESP_WIFI_RX_BA_WIN This parameter indicates the size of the AMPDU BA
Window at the receiving end. This parameter should be configured to the smaller
value between twice of CONFIG_ESP_WIFI_STATIC_RX_BUFFER_NUM and CON-
FIG_ESP_WIFI_DYNAMIC_RX_BUFFER_NUM.

• CONFIG_LWIP_TCP_WND_DEFAULT This parameter represents the RX buffer size of the LwIP layer for
each TCP stream. Its value should be configured to the value ofWIFI_DYNAMIC_RX_BUFFER_NUM
(KB) to reach a high and stable performance. Meanwhile, in case of multiple streams, this value needs
to be reduced proportionally.

TX direction:
• CONFIG_ESP_WIFI_TX_BUFFER This parameter indicates the type of TX buffer, it is recommended to

configure it as a dynamic buffer, which can make full use of memory.

Espressif Systems 2540
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• CONFIG_ESP_WIFI_DYNAMIC_TX_BUFFER_NUM This parameter indicates the number of TX buffer
on the Wi-Fi layer. Increasing this parameter will improve the performance of packet sending. The
parameter value needs to match the TX buffer size of the LwIP layer.

• CONFIG_LWIP_TCP_SND_BUF_DEFAULT This parameter represents the TX buffer size of
the LwIP layer for each TCP stream. Its value should be configured to the value of
WIFI_DYNAMIC_TX_BUFFER_NUM (KB) to reach a high and stable performance. In case
of multiple streams, this value needs to be reduced proportionally.

Throughput optimization by placing code in IRAM:
• CONFIG_ESP_WIFI_IRAM_OPT If this option is enabled, some Wi-Fi functions are moved to IRAM, im-

proving throughput. This increases IRAM usage by 13 kB.
• CONFIG_ESP_WIFI_RX_IRAM_OPT If this option is enabled, some Wi-Fi RX functions are moved to

IRAM, improving throughput. This increases IRAM usage by 7 kB.
• CONFIG_LWIP_IRAM_OPTIMIZATION If this option is enabled, some LwIP functions are moved to

IRAM, improving throughput. This increases IRAM usage by 14 kB.

Note: The buffer size mentioned above is fixed as 1.6 KB.

How to Configure Parameters

The memory of ESP32-C6 is shared by protocol stack and applications.
Here, several configuration ranks are given. In most cases, the user should select a suitable rank for parameter
configuration according to the size of the memory occupied by the application.
The parameters not mentioned in the following table should be set to the default.

Rank Iperf Default Minimum
Available memory
(KB)

223 276 299

WIFI_STATIC_RX_BUFFER_NUM20 8 3
WIFI_DYNAMIC_RX_BUFFER_NUM40 16 6
WIFI_DYNAMIC_TX_BUFFER_NUM40 16 6
WIFI_RX_BA_WIN 32 16 6
TCP_SND_BUF_DEFAULT
(KB)

40 16 6

TCP_WND_DEFAULT
(KB)

40 16 6

LWIP_IRAM_OPTIMIZATIONENABLE ENABLE DISABLE
TCP TX throughput
(Mbit/s)

30.5 25.9 16.4

TCP RX throughput
(Mbit/s)

27.8 21.6 14.3

UDP TX throughput
(Mbit/s)

37.8 36.1 34.6

UDP RX throughput
(Mbit/s)

41.5 36.8 36.7

Note: The test was performedwith a single stream in a shielded box using anXIAOMIAX-6000 router. ESP32-C6's
CPU is single core with 160 MHz. ESP32-C6's flash is in QIO mode with 80 MHz.

Ranks:
• Iperf rank ESP32-C6 extreme performance rank used to test extreme performance.

Espressif Systems 2541
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Default rank ESP32-C6's default configuration rank, the available memory, and performance are in balance.
• Minimum rank This is the minimum configuration rank of ESP32-C6. The protocol stack only uses the

necessary memory for running. It is suitable for scenarios where there is no requirement for performance
and the application requires lots of space.

4.31.34 Wi-Fi Menuconfig

Wi-Fi Buffer Configure

If you are going to modify the default number or type of buffer, it would be helpful to also have an overview of how
the buffer is allocated/freed in the data path. The following diagram shows this process in the TX direction:

Fig. 85: TX Buffer Allocation

Description:
• The application allocates the data which needs to be sent out.
• The application calls TCPIP-/Socket-related APIs to send the user data. These APIs will allocate a PBUF used
in LwIP, and make a copy of the user data.

• When LwIP calls a Wi-Fi API to send the PBUF, theWi-Fi API will allocate a "Dynamic Tx Buffer" or "Static
Tx Buffer", make a copy of the LwIP PBUF, and finally send the data.

The following diagram shows how buffer is allocated/freed in the RX direction:

Fig. 86: RX Buffer Allocation

Description:
• The Wi-Fi hardware receives a packet over the air and puts the packet content to the "Static Rx Buffer", which
is also called "RX DMA Buffer".

• The Wi-Fi driver allocates a "Dynamic Rx Buffer", makes a copy of the "Static Rx Buffer", and returns the
"Static Rx Buffer" to hardware.

• TheWi-Fi driver delivers the packet to the upper-layer (LwIP), and allocates a PBUF for holding the "Dynamic
Rx Buffer".

• The application receives data from LwIP.

Espressif Systems 2542
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

The diagram shows the configuration of the Wi-Fi internal buffer.

Buffer Type Alloc Type Default Configurable Description
Static RX
Buffer (Hard-
ware RX
Buffer)

Static 10 * 1600
Bytes

Yes This is a kind of DMA memory. It is
initialized in esp_wifi_init() and
freed in esp_wifi_deinit(). The
‘Static Rx Buffer’forms the hardware re-
ceiving list. Upon receiving a frame over
the air, hardware writes the frame into
the buffer and raises an interrupt to the
CPU. Then, the Wi-Fi driver reads the
content from the buffer and returns the
buffer back to the list.
If needs be, the application can reduce the
memory statically allocated by Wi-Fi. It
can reduce this value from 10 to 6 to save
6400 Bytes of memory. It is not recom-
mended to reduce the configuration to a
value less than 6 unless the AMPDU fea-
ture is disabled.

Dynamic RX
Buffer

Dynamic 32 Yes The buffer length is variable and it de-
pends on the received frames’length.
When the Wi-Fi driver receives a frame
from the‘Hardware RxBuffer’, the‘Dy-
namic Rx Buffer’needs to be allocated
from the heap. The number of the Dy-
namic Rx Buffer, configured in the menu-
config, is used to limit the total un-freed
Dynamic Rx Buffer number.

Dynamic TX
Buffer

Dynamic 32 Yes This is a kind of DMA memory. It is
allocated to the heap. When the upper-
layer (LwIP) sends packets to the Wi-Fi
driver, it firstly allocates a‘Dynamic TX
Buffer’and makes a copy of the upper-
layer buffer.
The Dynamic and Static TX Buffers are
mutually exclusive.

Static TX
Buffer

Static 16 *
1600Bytes

Yes This is a kind of DMA memory. It is
initialized in esp_wifi_init() and
freed in esp_wifi_deinit().
When the upper-layer (LwIP) sends
packets to the Wi-Fi driver, it firstly
allocates a ‘Static TX Buffer’and
makes a copy of the upper-layer buffer.
The Dynamic and Static TX Buffer are
mutually exclusive.
The TX buffer must be a DMA buffer.
For this reason, if PSRAM is enabled, the
TX buffer must be static.

Management
Short Buffer

Dynamic 8 NO Wi-Fi driver’s internal buffer.

Management
Long Buffer

Dynamic 32 NO Wi-Fi driver’s internal buffer.

Management
Long Long
Buffer

Dynamic 32 NO Wi-Fi driver’s internal buffer.

Espressif Systems 2543
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Wi-Fi NVS Flash

If the Wi-Fi NVS flash is enabled, all Wi-Fi configurations set via the Wi-Fi APIs will be stored into flash, and the
Wi-Fi driver will start up with these configurations the next time it powers on/reboots. However, the application can
choose to disable the Wi-Fi NVS flash if it does not need to store the configurations into persistent memory, or has
its own persistent storage, or simply due to debugging reasons, etc.

Wi-Fi Aggregate MAC Protocol Data Unit (AMPDU)

ESP32-C6 supports both receiving and transmitting AMPDU, and the AMPDU can greatly improve the Wi-Fi
throughput.
Generally, the AMPDU should be enabled. Disabling AMPDU is usually for debugging purposes.

4.31.35 Troubleshooting

Please refer to a separate document with Espressif Wireshark User Guide.

Espressif Wireshark User Guide

1. Overview

1.1 What is Wireshark? Wireshark (originally named "Ethereal") is a network packet analyzer that captures net-
work packets and displays the packet data as detailed as possible. It uses WinPcap as its interface to directly capture
network traffic going through a network interface controller (NIC).
You could think of a network packet analyzer as a measuring device used to examine what is going on inside a network
cable, just like a voltmeter is used by an electrician to examine what is going on inside an electric cable.
In the past, such tools were either very expensive, proprietary, or both. However, with the advent of Wireshark, all
that has changed.
Wireshark is released under the terms of the GNU General Public License, which means you can use the software
and the source code free of charge. It also allows you to modify and customize the source code.
Wireshark is, perhaps, one of the best open source packet analyzers available today.

1.2 Some Intended Purposes Here are some examples of how Wireshark is typically used:
• Network administrators use it to troubleshoot network problems.
• Network security engineers use it to examine security problems.
• Developers use it to debug protocol implementations.
• People use it to learn more about network protocol internals.

Beside these examples, Wireshark can be used for many other purposes.

1.3 Features The main features of Wireshark are as follows:
• Available for UNIX and Windows
• Captures live packet data from a network interface
• Displays packets along with detailed protocol information
• Opens/saves the captured packet data
• Imports/exports packets into a number of file formats, supported by other capture programs
• Advanced packet filtering
• Searches for packets based on multiple criteria

Espressif Systems 2544
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.wireshark.org
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

• Colorizes packets according to display filters
• Calculates statistics
• ⋯and a lot more!

1.4 Wireshark Can or Can't Do
• Live capture from different network media.
Wireshark can capture traffic from different network media, including wireless LAN.

• Import files from many other capture programs.
Wireshark can import data from a large number of file formats, supported by other capture programs.

• Export files for many other capture programs.
Wireshark can export data into a large number of file formats, supported by other capture programs.

• Numerous protocol dissectors.
Wireshark can dissect, or decode, a large number of protocols.

• Wireshark is not an intrusion detection system.
It will not warn you if there are any suspicious activities on your network. However, if strange things happen,
Wireshark might help you figure out what is really going on.

• Wireshark does not manipulate processes on the network, it can only perform "measurements" within
it.
Wireshark does not send packets on the network or influence it in any other way, except for resolving names
(converting numerical address values into a human readable format), but even that can be disabled.

2. Where to Get Wireshark You can get Wireshark from the official website: https://www.wireshark.org/
download.html
Wireshark can run on various operating systems. Please download the correct version according to the operating
system you are using.

3. Step-by-step Guide This demonstration uses Wireshark 2.2.6 on Linux.
a) Start Wireshark
On Linux, you can run the shell script provided below. It starts Wireshark, then configures NIC and the channel for
packet capture.

ifconfig $1 down
iwconfig $1 mode monitor
iwconfig $1 channel $2
ifconfig $1 up
Wireshark&

In the above script, the parameter$1 represents NIC and$2 represents channel. For example, wlan0 in./xxx.sh
wlan0 6, specifies the NIC for packet capture, and 6 identifies the channel of an AP or Soft-AP.
b) Run the Shell Script to Open Wireshark and Display Capture Interface
c) Select the Interface to Start Packet Capture
As the red markup shows in the picture above, many interfaces are available. The first one is a local NIC and the
second one is a wireless NIC.
Please select the NIC according to your requirements. This document will use the wireless NIC to demonstrate packet
capture.
Double click wlan0 to start packet capture.
d) Set up Filters
Since all packets in the channel will be captured, and many of them are not needed, you have to set up filters to get
the packets that you need.
Please find the picture below with the red markup, indicating where the filters should be set up.

Espressif Systems 2545
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 87: Wireshark Capture Interface

Fig. 88: Setting up Filters in Wireshark

Espressif Systems 2546
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Click Filter, the top left blue button in the picture below. The display filter dialogue box will appear.

Fig. 89: Display Filter Dialogue Box

Click the Expression button to bring up the Filter Expression dialogue box and set the filter according to your require-
ments.
The quickest way: enter the filters directly in the toolbar.
Click on this area to enter or modify the filters. If you enter a wrong or unfinished filter, the built-in syntax check
turns the background red. As soon as the correct expression is entered, the background becomes green.
The previously entered filters are automatically saved. You can access them anytime by opening the drop down list.
For example, as shown in the picture below, enter two MAC addresses as the filters and click Apply (the blue arrow).
In this case, only the packet data transmitted between these two MAC addresses will be captured.
e) Packet List
You can click any packet in the packet list and check the detailed information about it in the box below the list. For
example, if you click the first packet, its details will appear in that box.
f) Stop/Start Packet Capture
As shown in the picture below, click the red button to stop capturing the current packet.
Click the top left blue button to start or resume packet capture.
g) Save the Current Packet
On Linux, go to File -> Export Packet Dissections -> As Plain Text File to save the packet.
Please note that All packets, Displayed and All expanded must be selected.
By default, Wireshark saves the captured packet in a libpcap file. You can also save the file in other formats, e.g. txt,
to analyze it in other tools.

4.32 Wi-Fi Security

4.32.1 ESP32-C6 Wi-Fi Security Features

• Support for Protected Management Frames (PMF)
• Support for WPA3-Personal
• Support for Opportunistic Wireless Encryption

Espressif Systems 2547
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 90: Filter Expression Dialogue Box

Fig. 91: Filter Toolbar

Fig. 92: Example of MAC Addresses applied in the Filter Toolbar

Espressif Systems 2548
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 93: Example of Packet List Details

Fig. 94: Stopping Packet Capture

Fig. 95: Starting or Resuming the Packets Capture

Espressif Systems 2549
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Fig. 96: Saving Captured Packets

In addition to traditional security methods (WEP/WPA-TKIP/WPA2-CCMP), ESP32-C6 Wi-Fi supports state-of-
the-art security protocols, namely Protected Management, Wi-Fi Protected Access 3 and Enhanced Open based on
Opportunistic Wireless Encryption. WPA3 provides better privacy and robustness against known attacks on tradi-
tional modes. Enhanced Open enhances security and privacy of users connecting to open (public) Wireless Network
without authentication.

4.32.2 Protected Management Frames (PMF)

Introduction

In Wi-Fi, management frames such as beacons, probes, (de)authentication, (dis)association are used by non-AP
stations to scan and connect to an AP. Unlike data frames, these frames are sent unencrypted. An attacker can
use eavesdropping and packet injection to send spoofed (de)authentication/(dis)association frames at the right time,
leading to attacks such as Denial-of-Service (DOS) and man-in-the-middle
PMF provides protection against these attacks by encrypting unicast management frames and providing integrity
checks for broadcast management frames. These include deauthentication, disassociation and robust management
frames. It also provides Secure Association (SA) teardown mechanism to prevent spoofed association/authentication
frames from disconnecting already connected clients.
There are 3 types of PMF configuration modes on both station and AP side -

• PMF Optional
• PMF Required
• PMF Disabled

API & Usage

ESP32-C6 supports PMF in both Station and SoftAP mode. For both, the default mode is PMF Optional. For
even higher security, PMF required mode can be enabled by setting the required flag in pmf_cfg while using the
esp_wifi_set_config() API. This will result in the device only connecting to a PMF enabled device and
rejecting others. PMF optional can be disabled using esp_wifi_disable_pmf_config() API. If softAP is
started in WPA3 or WPA2/WPA3 mixed mode trying to disable PMF will result in error.

Espressif Systems 2550
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Attention: capable flag in pmf_cfg is deprecated and set to true internally. This is to take the additional
security benefit of PMF whenever possible.

4.32.3 WiFi Enterprise

Introduction

Enterprise security is the secure authentication mechanism for enterprise wireless networks. It uses RADIUS server
for authentication of network users before connecting to the Access Point. The authentication process is based on
802.1X policy and comes with different ExtendedAuthentication Protocol (EAP)methods such as TLS, TTLS, PEAP
and EAP-FAST. RADIUS server authenticates the users based on their credentials (username and password), digital
certificates or both.
ESP32-C6 supports WiFi Enterprise only in station mode.
ESP32-C6 Supports WPA2-Enterprise and WPA3-Enterprise. WPA3-Enterprise builds upon the foundation of
WPA2-Enterprise with the additional requirement of using Protected Management Frames (PMF) and server certifi-
cate validation on all WPA3 connections. WPA3-Enterprise also offers an addition secure mode using 192-bit
minimum-strength security protocols and cryptographic tools to better protect sensitive data. The 192-bit
security mode offered by WPA3-Enterprise ensures the right combination of cryptographic tools are used and sets
a consistent baseline of security within a WPA3 network. WPA3-Enterprise 192-bit mode is only supported by
modules having SOC_WIFI_GCMP_SUPPORT support. Enable CONFIG_ESP_WIFI_SUITE_B_192 flag to sup-
port WPA3-Enterprise with 192-bit mode.
ESP32-C6 supports the following EAP methods:

• EAP-TLS: This is a certificate-based method and only requires SSID and EAP-IDF.
• PEAP: This is a Protected EAP method. Username and password are mandatory.
• EAP-TTLS: This is a credential-based method. Only server authentication is mandatory while user authentication is optional. Username and Password are mandatory. It supports different Phase2 methods, such as:

– PAP: Password Authentication Protocol.
– CHAP: Challenge Handshake Authentication Protocol.
– MSCHAP and MSCHAP-V2.

• EAP-FAST: This is an authentication method based on Protected Access Credentials (PAC) which also
uses identity and password. Currently, CONFIG_ESP_WIFI_MBEDTLS_TLS_CLIENT flag should be
disabled to use this feature.

Example wifi/wifi_enterprise demonstrates all the supported WiFi Enterprise methods except EAP-FAST. Please
refer wifi/wifi_eap_fast for EAP-FAST example. EAP method can be selected from the Example Configuration
menu in idf.py menuconfig. Refer to examples/wifi/wifi_enterprise/README.md for information on how to
generate certificates and run the example.

4.32.4 WPA3-Personal

Introduction

Wi-Fi Protected Access-3 (WPA3) is a set of enhancements to Wi-Fi access security intended to replace the current
WPA2 standard. It includes new features and capabilities that offer significantly better protection against different
types of attacks. It improves upon WPA2-Personal in following ways:

• WPA3 uses Simultaneous Authentication of Equals (SAE), which is password-authenticated key agreement
method based on Diffie-Hellman key exchange. Unlike WPA2, the technology is resistant to offline-dictionary
attack, where the attacker attempts to determine shared password based on captured 4-way handshake without
any further network interaction.

• Disallows outdated protocols such as TKIP, which is susceptible to simple attacks likeMIC key recovery attack.
• Mandates Protected Management Frames (PMF), which provides protection for unicast and multicast robust
management frames which include Disassoc and Deauth frames. This means that the attacker cannot disrupt

Espressif Systems 2551
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/wifi_enterprise
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples/wifi/wifi_eap_fast
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/wifi_enterprise/README.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

an established WPA3 session by sending forged Assoc frames to the AP or Deauth/Disassoc frames to the
Station.

• Provides forward secrecy, whichmeans the captured data cannot be decrypted even if password is compromised
after data transmission.

ESP32-C6 station also supports following additional Wi-Fi CERTIFIED WPA3™ features.
• Transition Disable : WPA3 defines transition modes for client devices so that they can connect to a network
even when some of the APs in that network do not support the strongest security mode. Client device imple-
mentations typically configure network profiles in a transition mode by default. However, such a client device
could be subject to an active downgrade attack in which the attacker causes the client device to use a lower
security mode in order to exploit a vulnerability with that mode. WPA3 has introduced the Transition Disable
feature to mitigate such attacks, by enabling client devices to change from a transition mode to an “only”
mode when connecting to a network, once that network indicates it fully supports the higher security mode.
Enable transition_disable in wifi_sta_config_t to enable this feature for ESP32-C6 station.

• SAE PUBLIC-KEY (PK) : As the password at small public networks is shared with multiple users it may be
relatively easy for an attacker to find out the password, which is sufficient to launch an evil twin attack. Such
attacks are prevented by an extension toWPA3-Personal called SAE-PK. The SAE-PK authentication exchange
is very similar to the regular SAE exchange, with the addition of a digital signature sent by the AP to the client
device. The client device validates the public key asserted by the AP based on the password fingerprint, and
verifies the signature using the public key. So even if the attacker knows the password, it does not know
the private key to generate a valid signature, and therefore the client device is protected against an evil twin
attack. Enable CONFIG_ESP_WIFI_ENABLE_SAE_PK and sae_pk_mode in wifi_sta_config_t to
add support of SAE PK for ESP32-C6 station.

• SAE PWEMethods: ESP32-C6 station as well as softAP supports SAE Password Element derivation method
Hunting And Pecking andHash to Element (H2E). H2E is computationally efficient as it uses less iterations than
Hunt and Peck, also it mitigates side channel attacks. These can be configured using parametersae_pwe_h2e
from wifi_sta_config_t and wifi_ap_config_t for station and softAP respectively. Hunt and
peck, H2E both can be enabled by using WPA3_SAE_PWE_BOTH configuration.

Please refer to Security section of Wi-Fi Alliance's official website for further details.

Setting up WPA3 Personal with ESP32-C6

A config option CONFIG_ESP_WIFI_ENABLE_WPA3_SAE is provided to Enable/Disable WPA3 for station. By
default it is kept enabled, if disabled ESP32-C6 will not be able to establish a WPA3 connection. Also under WI-FI
component a config option CONFIG_ESP_WIFI_SOFTAP_SAE_SUPPORT is provided to Enable/Disable WPA3 for
softAP. Additionally, since PMF is mandated by WPA3 protocol, PMF Mode Optional is set by default for station
and softAP. PMF Required can be configured using WiFi config. For WPA3 softAP, PMF required is mandatory
and will be configured and stored in NVS implicitly if not specified by user.
Refer to Protected Management Frames (PMF) on how to set this mode.
After configuring all required settings for WPA3-Personal station, application developers need not worry about the
underlying security mode of the AP. WPA3-Personal is now the highest supported protocol in terms of security, so
it will be automatically selected for the connection whenever available. For example, if an AP is configured to be
in WPA3 Transition Mode, where it will advertise as both WPA2 and WPA3 capable, Station will choose WPA3
for the connection with above settings. Note that Wi-Fi stack size requirement will increase 3kB when "Enable
WPA3-Personal" is used.
After configuring all required setting for WPA3-Personal softAP, application developers have to set
WIFI_AUTH_WPA3_PSK for authmode in wifi_ap_config_t to start AP in WPA3 security. SoftAP can
be also configured to use WIFI_AUTH_WPA2_WPA3_PSKmixed mode. Note that binary size will be increased by
~6.5 kilobytes after enabling "CONFIG_ESP_WIFI_SOFTAP_SAE_SUPPORT .

4.32.5 Wi-Fi Enhanced Open™

Espressif Systems 2552
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.wi-fi.org/discover-wi-fi/security
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Introduction

Enhanced open is used for providing security and privacy to users connecting to open (public) wireless networks,
particularly in scenarios where user authentication is not desired or distribution of credentials impractical. Each user
is provided with unique individual encryption keys that protect data exchange between a user device and the Wi-
Fi network. Protected Management Frames further protects management traffic between the access point and user
device. Enhanced Open is based on Opportunistic Wireless Encryption (OWE) standard. OWE Transition Mode
enables a seamless transition from Open unencryptedWLANs to OWEWLANs without adversely impacting the end
user experience.
ESP32-C6 supports Wi‑Fi Enhanced Open™ only in station mode.

Setting up OWE with ESP32-C6

A config option CONFIG_ESP_WIFI_ENABLE_WPA3_OWE_STA and configuration parameter owe_enabled in
wifi_sta_config_t is provided to enable OWE support for station. To use OWE transition mode, along with
the config provided above, authmode from wifi_scan_threshold_t should be set toWIFI_AUTH_OPEN.

4.33 Low Power Mode User Guide

The document has not been translated into English yet. In the meantime, please refer to the Chinese version.

Espressif Systems 2553
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 4. API Guides

Espressif Systems 2554
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5

Migration Guides

5.1 ESP-IDF 5.x Migration Guide

5.1.1 Migration from 4.4 to 5.0

Bluetooth Low Energy

Bluedroid
The following Bluedroid macros, types, and functions have been renamed:

• bt/host/bluedroid/api/include/api/esp_gap_ble_api.h
– In esp_gap_ble_cb_event_t:

∗ ESP_GAP_BLE_SET_PREFERED_DEFAULT_PHY_COMPLETE_EVT renamed to
ESP_GAP_BLE_SET_PREFERRED_DEFAULT_PHY_COMPLETE_EVT

∗ ESP_GAP_BLE_SET_PREFERED_PHY_COMPLETE_EVT renamed to
ESP_GAP_BLE_SET_PREFERRED_PHY_COMPLETE_EVT

∗ ESP_GAP_BLE_CHANNEL_SELETE_ALGORITHM_EVT renamed to
ESP_GAP_BLE_CHANNEL_SELECT_ALGORITHM_EVT

– esp_ble_wl_opration_t renamed to esp_ble_wl_operation_t
– esp_ble_gap_cb_param_t.pkt_data_lenth_cmpl renamed to
pkt_data_length_cmpl

– esp_ble_gap_cb_param_t.update_whitelist_cmpl.wl_opration
renamed to wl_operation

– esp_ble_gap_set_prefered_default_phy renamed to
esp_ble_gap_set_preferred_default_phy()

– esp_ble_gap_set_prefered_phy renamed toesp_ble_gap_set_preferred_phy()
• bt/host/bluedroid/api/include/api/esp_gatt_defs.h

– In esp_gatt_status_t:
∗ ESP_GATT_ENCRYPED_MITM renamed to ESP_GATT_ENCRYPTED_MITM
∗ ESP_GATT_ENCRYPED_NO_MITM renamed toESP_GATT_ENCRYPTED_NO_MITM

2555

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/host/bluedroid/api/include/api/esp_gap_ble_api.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/host/bluedroid/api/include/api/esp_gatt_defs.h

Chapter 5. Migration Guides

Nimble
The following Nimble APIs have been removed:

• bt/host/nimble/esp-hci/include/esp_nimble_hci.h
– Remove esp_err_t esp_nimble_hci_and_controller_init(void)

∗ Controller initialization, enable and HCI initialization calls have been moved to nim-
ble_port_init. This function can be deleted directly.

– Remove esp_err_t esp_nimble_hci_and_controller_deinit(void)
∗ Controller deinitialization, disable and HCI deinitialization calls have been moved to nim-

ble_port_deinit. This function can be deleted directly.

ESP-BLE-MESH
The following ESP-BLE-MESH macro has been renamed:

• bt/esp_ble_mesh/api/esp_ble_mesh_defs.h
– In esp_ble_mesh_prov_cb_event_t:

∗ ESP_BLE_MESH_PROVISIONER_DRIECT_ERASE_SETTINGS_COMP_EVT re-
named toESP_BLE_MESH_PROVISIONER_DIRECT_ERASE_SETTINGS_COMP_EVT

Build System

Migrating from GNUMake Build System ESP-IDF v5.0 no longer supports GNU make-based projects. Please
follow the build system guide for migration.

Update Fragment File Grammar Please follow the migrate linker script fragment files grammar chapter for mi-
grating v3.x grammar to the new one.

Specify Component Requirements Explicitly In previous versions of ESP-IDF, some components were always
added as public requirements (dependencies) to every component in the build, in addition to the common component
requirements:

• driver
• efuse
• esp_timer
• lwip
• vfs
• esp_wifi
• esp_event
• esp_netif
• esp_eth
• esp_phy

This means that it was possible to include header files of those components without specifying them as requirements
in idf_component_register. This behavior was caused by transitive dependencies of various common com-
ponents.
In ESP-IDF v5.0, this behavior is fixed and these components are no longer added as public requirements by default.
Every component depending on one of the components which isn't part of common requirements has to declare this
dependency explicitly. This can be done by adding REQUIRES <component_name> or PRIV_REQUIRES
<component_name> in idf_component_register call inside component's CMakeLists.txt. See
Component Requirements for more information on specifying requirements.

Setting COMPONENT_DIRS and EXTRA_COMPONENT_DIRS Variables ESP-IDF v5.0 includes a number of
improvements to support building projects with space characters in their paths. To make that possible, there are
some changes related to setting COMPONENT_DIRS and EXTRA_COMPONENT_DIRS variables in project CMake-
Lists.txt files.

Espressif Systems 2556
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/host/nimble/esp-hci/include/esp_nimble_hci.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bt/esp_ble_mesh/api/esp_ble_mesh_defs.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

Adding non-existent directories to COMPONENT_DIRS or EXTRA_COMPONENT_DIRS is no longer supported and
will result in an error.
Using string concatenation to define COMPONENT_DIRS or EXTRA_COMPONENT_DIRS variables is now depre-
cated. These variables should be defined as CMake lists, instead. For example, use:

set(EXTRA_COMPONENT_DIRS path1 path2)
list(APPEND EXTRA_COMPONENT_DIRS path3)

instead of:

set(EXTRA_COMPONENT_DIRS "path1 path2")
set(EXTRA_COMPONENT_DIRS "${EXTRA_COMPONENT_DIRS} path3")

Defining these variables as CMake lists is compatible with previous ESP-IDF versions.

Update Usage of target_link_libraries with project_elf ESP-IDF v5.0 fixes CMake variable propagation issues
for components. This issue caused compiler flags and definitions that were supposed to apply to one component to
be applied to every component in the project.
As a side effect of this, user projects from ESP-IDF v5.0 onwards must use target_link_libraries with
project_elf explicitly and custom CMake projects must specify PRIVATE, PUBLIC, or INTERFACE argu-
ments. This is a breaking change and is not backward compatible with previous ESP-IDF versions.
For example:

target_link_libraries(${project_elf} PRIVATE "-Wl,--wrap=esp_panic_handler")

instead of:

target_link_libraries(${project_elf} "-Wl,--wrap=esp_panic_handler")

Update CMake Version In ESP-IDF v5.0 minimal CMake version was increased to 3.16 and versions lower than
3.16 are not supported anymore. Run tools/idf_tools.py install cmake to install a suitable version if
your OS version doesn't have one.
This affects ESP-IDF users who use system-provided CMake and custom CMake.

Reorder the Applying of the Target-Specific Config Files ESP-IDF v5.0 reorders the applying order of target-
specific config files and other files listed in SDKCONFIG_DEFAULTS. Now, target-specific files will be applied right
after the file brings it in, before all latter files in SDKCONFIG_DEFAULTS.
For example:

If ``SDKCONFIG_DEFAULTS="sdkconfig.defaults;sdkconfig_devkit1"``, and there is a␣
↪→file ``sdkconfig.defaults.esp32`` in the same folder, then the files will be␣
↪→applied in the following order: (1) sdkconfig.defaults (2) sdkconfig.defaults.
↪→esp32 (3) sdkconfig_devkit1.

If you have a key with different values in the target-specific files of the former item (e.g., sdkconfig.defaults.
esp32 above) and the latter item (e.g., sdkconfig_devkit1 above), please note the latter will override the
target-specific file of the former.
If you do want to have some target-specific config values, please put it into the target-specific file of the latter item
(e.g., sdkconfig_devkit1.esp32).

GCC

Espressif Systems 2557
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

GCC Version The previous GCC version was GCC 8.4.0. This has now been upgraded to GCC 11.2.0 on all
targets. Users that need to port their code from GCC 8.4.0 to 11.2.0 should refer to the series of official GCC porting
guides listed below:

• Porting to GCC 9
• Porting to GCC 10
• Porting to GCC 11

Warnings The upgrade to GCC 11.2.0 has resulted in the addition of new warnings, or enhancements to existing
warnings. The full details of all GCC warnings can be found in GCCWarning Options. Users are advised to double-
check their code, then fix the warnings if possible. Unfortunately, depending on the warning and the complexity of
the user's code, some warnings will be false positives that require non-trivial fixes. In such cases, users can choose to
suppress the warning inmultiple ways. This section outlines some commonwarnings that users are likely to encounter,
and ways to suppress them.

Warning: Users are advised to check that a warning is indeed a false positive before attempting to suppress
them it.

-Wstringop-overflow, -Wstringop-overread, -Wstringop-truncation, and
-Warray-bounds Users that use memory/string copy/compare functions will run into one of the-Wstringop
warnings if the compiler cannot properly determine the size of the memory/string. The examples below demonstrate
code that triggers these warnings and how to suppress them.

#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#pragma GCC diagnostic ignored "-Warray-bounds"

memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); // <<-- This line␣
↪→leads to warnings
#pragma GCC diagnostic pop

#pragma GCC diagnostic push
#if __GNUC__ >= 11
#pragma GCC diagnostic ignored "-Wstringop-overread" // <<-- This key had been␣
↪→introduced since GCC 11
#endif
#pragma GCC diagnostic ignored "-Warray-bounds"

memcpy(backup_write_data, (void *)EFUSE_PGM_DATA0_REG, sizeof(backup_
↪→write_data)); // <<-- This line leads to warnings
#pragma GCC diagnostic pop

-Waddress-of-packed-member GCC will issue this warning when accessing an unaligned member of a
packed struct due to the incurred penalty of unaligned memory access. However, all ESP chips (on both Xtensa
and RISC-V architectures) allow for unaligned memory access and incur no extra penalty. Thus, this warning can be
ignored in most cases.

components/bt/host/bluedroid/btc/profile/std/gatt/btc_gatt_util.c: In function
↪→'btc_to_bta_gatt_id':
components/bt/host/bluedroid/btc/profile/std/gatt/btc_gatt_util.c:105:21: warning:␣
↪→taking address of packed member of 'struct <anonymous>' may result in an␣
↪→unaligned pointer value [-Waddress-of-packed-member]
105 | btc_to_bta_uuid(&p_dest->uuid, &p_src->uuid);

| ^~~~~~~~~~~~~

If the warning occurs in multiple places across multiple source files, users can suppress the warning at the CMake
level as demonstrated below.

Espressif Systems 2558
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://gcc.gnu.org/gcc-9/porting_to.html
https://gcc.gnu.org/gcc-10/porting_to.html
https://gcc.gnu.org/gcc-11/porting_to.html
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/gcc/Warning-Options.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

set_source_files_properties(
"host/bluedroid/bta/gatt/bta_gattc_act.c"
"host/bluedroid/bta/gatt/bta_gattc_cache.c"
"host/bluedroid/btc/profile/std/gatt/btc_gatt_util.c"
"host/bluedroid/btc/profile/std/gatt/btc_gatts.c"
PROPERTIES COMPILE_FLAGS -Wno-address-of-packed-member)

However, if there are only one or two instances, users can suppress the warning directly in the source code itself as
demonstrated below.

#pragma GCC diagnostic push
#if __GNUC__ >= 9
#pragma GCC diagnostic ignored "-Waddress-of-packed-member" <<-- This key had been␣
↪→introduced since GCC 9
#endif

uint32_t* reg_ptr = (uint32_t*)src;
#pragma GCC diagnostic pop

llabs() for 64-bit Integers The function abs() from stdlib.h takes int argument. Please use llabs() for
types that are intended to be 64-bit. It is particularly important for time_t.

Espressif Toolchain Changes

int32_t and uint32_t for Xtensa Compiler The types int32_t and uint32_t have been changed from
the previous int and unsigned int to long and unsigned long respectively for the Xtensa compiler. This
change now matches upstream GCC which long integers for int32_t and uint32_t on Xtensa, RISC-V, and
other architectures.

2021r2 and older, GCC 8 2022r1, GCC 11
Xtensa (unsigned) int (unsigned) long
riscv32 (unsigned) long (unsigned) long

The change mostly affects code that formats strings using types provided by <inttypes.h>. Users will need to
replace placeholders such as %i and %x with PRIi32 and PRIxx respectively.
In other cases, it should be noted that enums have the int type.
In common, int32_t and int, as well as uint32_t and unsigned int, are different types.
If users do not make the aforementioned updates to format strings in their applications, the following error will be
reported during compilation:

/Users/name/esp/esp-rainmaker/components/esp-insights/components/esp_diagnostics/
↪→include/esp_diagnostics.h:238:29: error: format '%u' expects argument of type
↪→'unsigned int', but argument 3 has type 'uint32_t' {aka 'long unsigned int'} [-
↪→Werror=format=]
238 | esp_diag_log_event(tag, "EV (%u) %s: " format, esp_log_timestamp(), tag,
↪→##__VA_ARGS__); \

| ^~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
| |
| uint32_t {aka long␣

↪→unsigned int}
uint32_t {aka long unsigned int}

Removing CONFIG_COMPILER_DISABLE_GCC8_WARNINGS Build Option CON-
FIG_COMPILER_DISABLE_GCC8_WARNINGS option was introduced to allow building of legacy code

Espressif Systems 2559
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

dating from the rigid GCC 5 toolchain. However, enough time has passed to allow for the warnings to be fixed, thus
this option has been removed.
For now in GCC 11, users are advised to review their code and fix the compiler warnings where possible.

Networking

Wi-Fi

Callback function type esp_now_recv_cb_t Previously, the first parameter of esp_now_recv_cb_t was of
type const uint8_t *mac_addr, which only included the address of ESP-NOW peer device.
This now changes. The first parameter is of type esp_now_recv_info_t, which has members src_addr,
des_addr and rx_ctrl. Therefore, the following updates are required:

• Redefine ESP-NOW receive callback function.
• src_addr can be used to replace original mac_addr.
• des_addr is the destination MAC address of ESP-NOW packet, which can be unitcast or broadcast address.
With des_addr, the user can distinguish unitcast and broadcast ESP-NOW packets where broadcast ESP-
NOW packets can be non-encrypted even when encryption policy is configured for the ESP-NOW.

• rx_ctrl is Rx control info of the ESP-NOW packet, which provides more information about the packet.
Please refer to the ESP-NOW example: wifi/espnow/main/espnow_example_main.c

Ethernet

esp_eth_ioctl() API Previously, the esp_eth_ioctl() API had the following issues:
• The third parameter (which is of type void *) would accept an int/bool type arguments (i.e., not pointers)
as input in some cases. However, these cases were not documented properly.

• To pass int/bool type argument as the third parameter, the argument had to be "unnaturally" casted to a
void * type, to prevent a compiler warning as demonstrated in the code snippet below. This casting could
lead to misuse of the esp_eth_ioctl() function.

esp_eth_ioctl(eth_handle, ETH_CMD_S_FLOW_CTRL, (void *)true);

Therefore, the usage of esp_eth_ioctl() is now unified. Arguments to the third parameter must be passed as
pointers to a specific data type to/from where data will be stored/read by esp_eth_ioctl(). The code snippets
below demonstrate the usage of esp_eth_ioctl().
Usage example to set Ethernet configuration:

eth_duplex_t new_duplex_mode = ETH_DUPLEX_HALF;
esp_eth_ioctl(eth_handle, ETH_CMD_S_DUPLEX_MODE, &new_duplex_mode);

Usage example to get Ethernet configuration:

eth_duplex_t duplex_mode;
esp_eth_ioctl(eth_handle, ETH_CMD_G_DUPLEX_MODE, &duplex_mode);

KSZ8041/81 and LAN8720 Driver Update The KSZ8041/81 and LAN8720 drivers are updated to support more
devices (i.e., generations) from their associated product families. The drivers can recognize particular chip numbers
and their potential support by the driver.
As a result, the specific "chip number" functions calls are replaced by generic ones as follows:

Espressif Systems 2560
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/espnow/main/espnow_example_main.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

• Removed esp_eth_phy_new_ksz8041() and esp_eth_phy_new_ksz8081(), and use
esp_eth_phy_new_ksz80xx() instead

• Removed esp_eth_phy_new_lan8720(), and use esp_eth_phy_new_lan87xx() instead

ESP NETIF Glue Event Handlers esp_eth_set_default_handlers() and
esp_eth_clear_default_handlers() functions are removed. Registration of the default IP layer
handlers for Ethernet is now handled automatically. If you have already followed the suggestion to fully initialize the
Ethernet driver and network interface before registering their Ethernet/IP event handlers, then no action is required
(except for deleting the affected functions). Otherwise, you may start the Ethernet driver right after they register the
user event handler.

PHYAddress Auto-detect The Ethernet PHY address auto-detect functionesp_eth_detect_phy_addr()
is renamed to esp_eth_phy_802_3_detect_phy_addr() and its header declaration is moved to
esp_eth/include/esp_eth_phy_802_3.h.

SPI-Ethernet Module Initialization The SPI-Ethernet Module initialization is now simplified. Previously, you
had to manually allocate an SPI device using spi_bus_add_device() before instantiating the SPI-Ethernet
MAC.
Now, you no longer need to call spi_bus_add_device() as SPI devices are allocated internally. As a
result, the eth_dm9051_config_t, eth_w5500_config_t, and eth_ksz8851snl_config_t con-
figuration structures are updated to include members for SPI device configuration (e.g., to allow fine tuning
of SPI timing which may be dependent on PCB design). Likewise, the ETH_DM9051_DEFAULT_CONFIG,
ETH_W5500_DEFAULT_CONFIG, and ETH_KSZ8851SNL_DEFAULT_CONFIG configuration initialization
macros are updated to accept new input parameters. Refer to Ethernet API Reference Guide for an example of
SPI-Ethernet Module initialization.

TCP/IP Adapter The TCP/IP Adapter was a network interface abstraction component used in ESP-IDF prior to
v4.1. This section outlines migration from tcpip_adapter API to its successor ESP-NETIF.

Updating Network Connection Code

Network Stack Initialization
• Youmay simply replace tcpip_adapter_init()with esp_netif_init(). However, please should
note that the esp_netif_init() function now returns standard error codes. See ESP-NETIF for more
details.

• The esp_netif_deinit() function is provided to de-initialize the network stack.
• You should also replace #include "tcpip_adapter.h" with #include "esp_netif.h".

Network Interface Creation Previously, the TCP/IP Adapter defined the following network interfaces statically:
• WiFi Station
• WiFi Access Point
• Ethernet

This now changes. Network interface instance should be explicitly constructed, so that the ESP-NETIF can
connect to the TCP/IP stack. For example, after the TCP/IP stack and the event loop are initialized,
the initialization code for WiFi must explicitly call esp_netif_create_default_wifi_sta(); or
esp_netif_create_default_wifi_ap();.
Please refer to the example initialization code for these three interfaces:

• WiFi Station: wifi/getting_started/station/main/station_example_main.c
• WiFi Access Point: wifi/getting_started/softAP/main/softap_example_main.c
• Ethernet: ethernet/basic/main/ethernet_example_main.c

Espressif Systems 2561
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/include/esp_eth_phy_802_3.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/getting_started/station/main/station_example_main.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/getting_started/softAP/main/softap_example_main.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/ethernet/basic/main/ethernet_example_main.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

Other tcpip_adapter API Replacement All the tcpip_adapter functions have their esp-netif counter-part. Please
refer to the esp_netif.h grouped into these sections:

• Setters/Getters
• DHCP
• DNS
• IP address

The TCP/IP Adapter API tcpip_adapter_get_sta_list() that was used to acquire a list of associ-
ated Wi-Fi stations to the Software Access Point (softAP) has been moved to the Wi-Fi component and re-
named to esp_wifi_ap_get_sta_list_with_ip(), which is a special case of the ESP-NETIF API
esp_netif_dhcps_get_clients_by_mac() that could be used more generally to provide a list of clients
connected to a DHCP server no matter which network interface the server is running on.

Default Event Handlers Event handlers are moved from tcpip_adapter to appropriate driver code. There is no
change from application code perspective, as all events should be handled in the same way. Please note that for
IP-related event handlers, application code usually receives IP addresses in the form of an esp-netif specific struct
instead of the LwIP structs. However, both structs are binary compatible.
This is the preferred way to print the address:

ESP_LOGI(TAG, "got ip:" IPSTR "\n", IP2STR(&event->ip_info.ip));

Instead of

ESP_LOGI(TAG, "got ip:%s\n", ip4addr_ntoa(&event->ip_info.ip));

Sinceip4addr_ntoa() is a LwIPAPI, the esp-netif providesesp_ip4addr_ntoa() as a replacement. How-
ever, the above method using IP2STR() is generally preferred.

IP Addresses You are advised to use esp-netif defined IP structures. Please note that with default compatibility
enabled, the LwIP structs will still work.

• esp-netif IP address definitions

Peripherals

Peripheral Clock Gating As usual, peripheral clock gating is still handled by driver itself, users don't need to take
care of the peripheral module clock gating.
However, for advanced users who implement their own drivers based onhal andsoc components, the previous clock
gating include path has been changed from driver/periph_ctrl.h to esp_private/periph_ctrl.h.

RTC Subsystem Control RTC control APIs have been moved from driver/rtc_cntl.h to
esp_private/rtc_ctrl.h.

ADC

ADC Oneshot & Continuous Mode drivers The ADC oneshot mode driver has been redesigned.
• The new driver is in esp_adc component and the include path is esp_adc/adc_oneshot.h.
• The legacy driver is still available in the previous include path driver/adc.h.

The ADC continuous mode driver has been moved from driver component to esp_adc component.
• The include path has been changed from driver/adc.h to esp_adc/adc_continuous.h.

Espressif Systems 2562
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif.h#L241
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif.h#L387
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif.h#L516
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif.h#L568
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_netif/include/esp_netif_ip_addr.h#L96
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

Attempting to use the legacy include path driver/adc.h of either driver will trigger the build warning below by
default. However, the warning can be suppressed by enabling the CONFIG_ADC_SUPPRESS_DEPRECATE_WARN
Kconfig option.

legacy adc driver is deprecated, please migrate to use esp_adc/adc_oneshot.h and␣
↪→esp_adc/adc_continuous.h for oneshot mode and continuous mode drivers␣
↪→respectively

ADC Calibration Driver The ADC calibration driver has been redesigned.
• The new driver is in esp_adc component and the include path is esp_adc/adc_cali.h and esp_adc/
adc_cali_scheme.h.

Legacy driver is still available by including esp_adc_cal.h. However, if users still would like to use the in-
clude path of the legacy driver, users should add esp_adc component to the list of component requirements in
CMakeLists.txt.
Attempting to use the legacy include path esp_adc_cal.h will trigger the build warning below by default. How-
ever, the warning can be suppressed by enabling theCONFIG_ADC_CALI_SUPPRESS_DEPRECATE_WARN Kconfig
option.

legacy adc calibration driver is deprecated, please migrate to use esp_adc/adc_
↪→cali.h and esp_adc/adc_cali_scheme.h

API Changes
• The ADC power management APIs adc_power_acquire and adc_power_release have made pri-
vate and moved to esp_private/adc_share_hw_ctrl.h.

– The two APIs were previously made public due to a HW errata workaround.
– Now, ADC power management is completely handled internally by drivers.
– Users who still require this API can include esp_private/adc_share_hw_ctrl.h to continue
using these functions.

• driver/adc2_wifi_private.h has been moved to esp_private/adc_share_hw_ctrl.h.
• Enums ADC_UNIT_BOTH, ADC_UNIT_ALTER, and ADC_UNIT_MAX in adc_unit_t have been re-
moved.

• The following enumerations have been removed as some of their enumeration values are not supported on all
chips. This would lead to the driver triggering a runtime error if an unsupported value is used.

– Enum ADC_CHANNEL_MAX
– Enum ADC_ATTEN_MAX
– Enum ADC_CONV_UNIT_MAX

• API hall_sensor_read on ESP32 has been removed. Hall sensor is no longer supported on ESP32.
• API adc_set_i2s_data_source and adc_i2s_mode_init have been deprecated. Related enum
adc_i2s_source_t has been deprecated. Please migrate to use esp_adc/adc_continuous.h.

• API adc_digi_filter_reset, adc_digi_filter_set_config,
adc_digi_filter_get_config and adc_digi_filter_enable have been re-
moved. These APIs behaviours are not guaranteed. Enum adc_digi_filter_idx_t,
adc_digi_filter_mode_t and structure adc_digi_iir_filter_t have been removed as
well.

• API esp_adc_cal_characterize has been deprecated, please migrate to
adc_cali_create_scheme_curve_fitting oradc_cali_create_scheme_line_fitting
instead.

• API esp_adc_cal_raw_to_voltage has been deprecated, please migrate to
adc_cali_raw_to_voltage instead.

• API esp_adc_cal_get_voltage has been deprecated, please migrate to
adc_oneshot_get_calibrated_result instead.

GPIO

Espressif Systems 2563
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

• The previous Kconfig option RTCIO_SUPPORT_RTC_GPIO_DESC has been removed, thus the
rtc_gpio_desc array is unavailable. Please use rtc_io_desc array instead.

• The user callback of a GPIO interrupt should no longer read the GPIO interrupt status register to get the
GPIO's pin number of triggering the interrupt. You should use the callback argument to determine the GPIO's
pin number instead.

– Previously, when a GPIO interrupt occurs, the GPIO's interrupt status register is cleared after calling
the user callbacks. Thus, it was possible for users to read the GPIO's interrupt status register inside the
callback to determine which GPIO was used to trigger the interrupt.

– However, clearing the interrupt status register after calling the user callbacks can potentially cause edge-
triggered interrupts to be lost. For example, if an edge-triggered interrupt (re)is triggered while the user
callbacks are being called, that interrupt will be cleared without its registered user callback being handled.

– Now, the GPIO's interrupt status register is cleared before invoking the user callbacks. Thus, users can no
longer read the GPIO interrupt status register to determine which pin has triggered the interrupt. Instead,
users should use the callback argument to pass the pin number.

Sigma-Delta Modulator The Sigma-Delta Modulator driver has been redesigned into SDM.
• The new driver implements a factory pattern, where the SDM channels are managed in a pool internally, thus
users don't have to fix a SDM channel to a GPIO manually.

• All SDM channels can be allocated dynamically.
Although it's recommended to use the new driver APIs, the legacy driver is still available in the previous include
path driver/sigmadelta.h. However, by default, including driver/sigmadelta.hwill trigger the build
warning below. The warning can be suppressed by Kconfig option CONFIG_SDM_SUPPRESS_DEPRECATE_WARN.

The legacy sigma-delta driver is deprecated, please use driver/sdm.h

The major breaking changes in concept and usage are listed as follows:

Breaking Changes in Concepts
• SDM channel representation has changed from sigmadelta_channel_t to
sdm_channel_handle_t, which is an opaque pointer.

• SDM channel configurations are stored in sdm_config_t now, instead the previous sig-
madelta_config_t.

• In the legacy driver, users don't have to set the clock source for SDM channel. But in the new driver, users
need to set a proper one in the sdm_config_t::clk_src. The available clock sources are listed in the
soc_periph_sdm_clk_src_t.

• In the legacy driver, users need to set a prescale for the channel, which reflects the frequency in which the
modulator outputs a pulse. In the new driver, users should use sdm_config_t::sample_rate_hz to
set the over sample rate.

• In the legacy driver, users set duty to decide the output analog value, it's now renamed to a more appropriate
name density.

Breaking Changes in Usage
• Channel configuration was done by channel allocation, in sdm_new_channel(). In the new driver, only the
density can be changed at runtime, by sdm_channel_set_pulse_density(). Other parameters
like gpio number and prescale are only allowed to set during channel allocation.

• Before further channel operations, users should enable the channel in advance, by calling
sdm_channel_enable(). This function will help to manage some system level services, like
Power Management.

Timer Group Driver Timer Group driver has been redesigned into GPTimer, which aims to unify and simplify
the usage of general purpose timer.

Espressif Systems 2564
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

Although it's recommended to use the new driver APIs, the legacy driver is still available in the previous include path
driver/timer.h. However, by default, including driver/timer.h will trigger the build warning below.
The warning can be suppressed by the Kconfig option CONFIG_GPTIMER_SUPPRESS_DEPRECATE_WARN.

legacy timer group driver is deprecated, please migrate to driver/gptimer.h

The major breaking changes in concept and usage are listed as follows:

Breaking Changes in Concepts
• timer_group_t and timer_idx_t which used to identify the hardware timer are removed from user's
code. In the new driver, a timer is represented by gptimer_handle_t.

• Definition of timer clock source is moved to gptimer_clock_source_t, the previous
timer_src_clk_t is not used.

• Definition of timer count direction is moved to gptimer_count_direction_t, the previous
timer_count_dir_t is not used.

• Only level interrupt is supported, timer_intr_t and timer_intr_mode_t are not used.
• Auto-reload is enabled by set the gptimer_alarm_config_t::auto_reload_on_alarm flag.
timer_autoreload_t is not used.

Breaking Changes in Usage
• Timer initialization is done by creating a timer instance from gptimer_new_timer(). Basic configura-
tions like clock source, resolution and direction should be set in gptimer_config_t. Note that, specific
configurations of alarm events are not needed during the installation stage of the driver.

• Alarm event is configured by gptimer_set_alarm_action(), with parameters set in the gpti-
mer_alarm_config_t.

• Setting and getting count value are done by gptimer_get_raw_count() and gpti-
mer_set_raw_count(). The driver doesn't help convert the raw value into UTC time-stamp.
Instead, the conversion should be done from user's side as the timer resolution is also known to the user.

• The driver will install the interrupt service as well if gptimer_event_callbacks_t::on_alarm
is set to a valid callback function. In the callback, users do not have to deal with the low
level registers (like "clear interrupt status", "re-enable alarm event" and so on). So functions like
timer_group_get_intr_status_in_isr and timer_group_get_auto_reload_in_isr
are not used anymore.

• To update the alarm configurations when alarm event happens, one can call gpti-
mer_set_alarm_action() in the interrupt callback, then the alarm will be re-enabled again.

• Alarmwill always be re-enabled by the driver ifgptimer_alarm_config_t::auto_reload_on_alarm
is set to true.

UART

Removed/Deprecated items Replacement Remarks
uart_isr_register() None UART interrupt handling is imple-

mented by driver itself.
uart_isr_free() None UART interrupt handling is imple-

mented by driver itself.
use_ref_tick in
uart_config_t

uart_config_t::source_clk Select the clock source.

uart_enable_pattern_det_intr()uart_enable_pattern_det_baud_intr()Enable pattern detection interrupt.

I2C

Removed/Deprecated items Replacement Remarks
i2c_isr_register() None I2C interrupt handling is implemented by driver itself.
i2c_isr_register() None I2C interrupt handling is implemented by driver itself.
i2c_opmode_t None It's not used anywhere in esp-idf.

Espressif Systems 2565
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

SPI
Removed/Deprecated items Replacement Remarks
spi_cal_clock() spi_get_actual_clock() Get SPI real working frequency.

• The internal header file spi_common_internal.h has been moved to esp_private/
spi_common_internal.h.

LEDC

Removed/Deprecated items Replacement Remarks
bit_num in
ledc_timer_config_t

ledc_timer_config_t::duty_resolutionSet resolution of the duty
cycle.

Pulse Counter Driver Pulse counter driver has been redesigned (see PCNT), which aims to unify and simplify the
usage of PCNT peripheral.
Although it's recommended to use the new driver APIs, the legacy driver is still available in the previous include path
driver/pcnt.h. However, including driver/pcnt.h will trigger the build warning below by default. The
warning can be suppressed by the Kconfig option CONFIG_PCNT_SUPPRESS_DEPRECATE_WARN.

legacy pcnt driver is deprecated, please migrate to use driver/pulse_cnt.h

The major breaking changes in concept and usage are listed as follows:

Breaking Changes in Concepts
• pcnt_port_t, pcnt_unit_t and pcnt_channel_t which used to identify the hardware unit
and channel are removed from user's code. In the new driver, PCNT unit is represented by
pcnt_unit_handle_t, likewise, PCNT channel is represented by pcnt_channel_handle_t. Both
of them are opaque pointers.

• pcnt_evt_type_t is not used any more, they have been replaced by a universal Watch Point Event.
In the event callback pcnt_watch_cb_t, it's still possible to distinguish different watch points from
pcnt_watch_event_data_t.

• pcnt_count_mode_t is replaced by pcnt_channel_edge_action_t, and
pcnt_ctrl_mode_t is replaced by pcnt_channel_level_action_t.

Breaking Changes in Usage
• Previously, the PCNT unit configuration and channel configuration were combined into a single func-
tion: pcnt_unit_config. They are now split into the two factory APIs: pcnt_new_unit() and
pcnt_new_channel() respectively.

– Only the count range is necessary for initializing a PCNT unit. GPIO number assignment has been moved
to pcnt_new_channel().

– High/Low control mode and positive/negative edge count mode are set by stand-alone functions:
pcnt_channel_set_edge_action() and pcnt_channel_set_level_action().

• pcnt_get_counter_value is replaced by pcnt_unit_get_count().
• pcnt_counter_pause is replaced by pcnt_unit_stop().
• pcnt_counter_resume is replaced by pcnt_unit_start().
• pcnt_counter_clear is replaced by pcnt_unit_clear_count().
• pcnt_intr_enable andpcnt_intr_disable are removed. In the new driver, the interrupt is enabled
by registering event callbacks pcnt_unit_register_event_callbacks().

• pcnt_event_enable and pcnt_event_disable are removed. In the new driver, the PCNT
events are enabled/disabled by adding/removing watch points pcnt_unit_add_watch_point(),
pcnt_unit_remove_watch_point().

• pcnt_set_event_value is removed. In the new driver, event value is also set when adding watch point
by pcnt_unit_add_watch_point().

• pcnt_get_event_value and pcnt_get_event_status are removed. In the new driver, these
information are provided by event callback pcnt_watch_cb_t in the pcnt_watch_event_data_t.

Espressif Systems 2566
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

• pcnt_isr_register and pcnt_isr_unregister are removed. Register of the ISR handler
from user's code is no longer permitted. Users should register event callbacks instead by calling
pcnt_unit_register_event_callbacks().

• pcnt_set_pin is removed and the new driver no longer allows the switching of the GPIO at runtime. If
users want to change to other GPIOs, please delete the existing PCNT channel by pcnt_del_channel()
and reinstall with the new GPIO number by pcnt_new_channel().

• pcnt_filter_enable, pcnt_filter_disable and pcnt_set_filter_value are replaced
by pcnt_unit_set_glitch_filter(). Meanwhile, pcnt_get_filter_value has been re-
moved.

• pcnt_set_mode is replaced by pcnt_channel_set_edge_action() and
pcnt_channel_set_level_action().

• pcnt_isr_service_install, pcnt_isr_service_uninstall,
pcnt_isr_handler_add and pcnt_isr_handler_remove are replaced by
pcnt_unit_register_event_callbacks(). The default ISR handler is lazy installed in the
new driver.

Temperature Sensor Driver The temperature sensor driver has been redesigned and it is recommended to use the
new driver. However, the old driver is still available but cannot be used with the new driver simultaneously.
The new driver can be included via driver/temperature_sensor.h. The old driver is still available in
the previous include path driver/temp_sensor.h. However, including driver/temp_sensor.h will
trigger the build warning below by default. The warning can be suppressed by enabling the menuconfig option CON-
FIG_TEMP_SENSOR_SUPPRESS_DEPRECATE_WARN.

legacy temperature sensor driver is deprecated, please migrate to driver/
↪→temperature_sensor.h

Configuration contents has been changed. In the old version, users need to configure clk_div and dac_offset.
While in the new version, users only need to choose tsens_range.
The process of using temperature sensor has been changed. In the old version, users can use con-
fig->start->read_celsius to get value. In the new version, users should install the temperature sensor
driver firstly, by temperature_sensor_install and uninstall it when finished. For more information, please
refer to Temperature Sensor .

RMT Driver RMT driver has been redesigned (see RMT transceiver), which aims to unify and extend the usage of
RMT peripheral.
Although it's recommended to use the new driver APIs, the legacy driver is still available in the previous include
path driver/rmt.h. However, including driver/rmt.h will trigger the build warning below by default. The
warning can be suppressed by the Kconfig option CONFIG_RMT_SUPPRESS_DEPRECATE_WARN.

The legacy RMT driver is deprecated, please use driver/rmt_tx.h and/or driver/rmt_
↪→rx.h

The major breaking changes in concept and usage are listed as follows:

Breaking Changes in Concepts
• rmt_channel_t which used to identify the hardware channel are removed from user space. In the new
driver, RMT channel is represented by rmt_channel_handle_t. The channel is dynamically allocated
by the driver, instead of designated by user.

• rmt_item32_t is replaced by rmt_symbol_word_t, which avoids a nested union inside a struct.
• rmt_mem_t is removed, as we don't allow users to access RMT memory block (a.k.an RMTMEM) directly.
Direct access to RMTMEM doesn't make sense but make mistakes, especially when the RMT channel also
connected with a DMA channel.

• rmt_mem_owner_t is removed, as the ownership is controlled by driver, not by user anymore.
• rmt_source_clk_t is replaced by rmt_clock_source_t, and note they're not binary compatible.

Espressif Systems 2567
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

• rmt_data_mode_t is removed, the RMT memory access mode is configured to always use Non-FIFO and
DMA mode.

• rmt_mode_t is removed, as the driver has stand alone install functions for TX and RX channels.
• rmt_idle_level_t is removed, setting IDLE level for TX channel is available in
rmt_transmit_config_t::eot_level.

• rmt_carrier_level_t is removed, setting carrier polarity is available in
rmt_carrier_config_t::polarity_active_low.

• rmt_channel_status_t and rmt_channel_status_result_t are removed, they're not used
anywhere.

• Transmitting by RMT channel doesn't expect user to prepare the RMT symbols, instead, user needs to provide
an RMT Encoder to tell the driver how to convert user data into RMT symbols.

Breaking Changes in Usage
• Channel installation has been separated for TX and RX channels into rmt_new_tx_channel() and
rmt_new_rx_channel().

• rmt_set_clk_div and rmt_get_clk_div are removed. Channel clock configuration can only be done
during channel installation.

• rmt_set_rx_idle_thresh and rmt_get_rx_idle_thresh are removed. In
the new driver, the RX channel IDLE threshold is redesigned into a new concept
rmt_receive_config_t::signal_range_max_ns.

• rmt_set_mem_block_num and rmt_get_mem_block_num are removed. In the new driver, the
memory block number is determined by rmt_tx_channel_config_t::mem_block_symbols and
rmt_rx_channel_config_t::mem_block_symbols.

• rmt_set_tx_carrier is removed, the new driver uses rmt_apply_carrier() to set carrier behav-
ior.

• rmt_set_mem_pd and rmt_get_mem_pd are removed. The memory power is managed by the driver
automatically.

• rmt_memory_rw_rst, rmt_tx_memory_reset and rmt_rx_memory_reset are removed.
Memory reset is managed by the driver automatically.

• rmt_tx_start and rmt_rx_start are merged into a single function rmt_enable(), for both TX
and RX channels.

• rmt_tx_stop and rmt_rx_stop are merged into a single function rmt_disable(), for both TX and
RX channels.

• rmt_set_memory_owner and rmt_get_memory_owner are removed. RMT memory owner guard
is added automatically by the driver.

• rmt_set_tx_loop_mode and rmt_get_tx_loop_mode are removed. In the new driver, the loop
mode is configured in rmt_transmit_config_t::loop_count.

• rmt_set_source_clk and rmt_get_source_clk are removed. Configuring clock source
is only possible during channel installation by rmt_tx_channel_config_t::clk_src and
rmt_rx_channel_config_t::clk_src.

• rmt_set_rx_filter is removed. In the new driver, the filter threshold is redesigned into a new concept
rmt_receive_config_t::signal_range_min_ns.

• rmt_set_idle_level and rmt_get_idle_level are removed. Setting IDLE level for TX channel
is available in rmt_transmit_config_t::eot_level.

• rmt_set_rx_intr_en, rmt_set_err_intr_en, rmt_set_tx_intr_en,
rmt_set_tx_thr_intr_en and rmt_set_rx_thr_intr_en are removed. The new driver
doesn't allow user to turn on/off interrupt from user space. Instead, it provides callback functions.

• rmt_set_gpio and rmt_set_pin are removed. The new driver doesn't support to switch GPIO dynam-
ically at runtime.

• rmt_config is removed. In the new driver, basic configuration is done during the channel installation stage.
• rmt_isr_register and rmt_isr_deregister are removed, the interrupt is allocated by the driver
itself.

• rmt_driver_install is replaced by rmt_new_tx_channel() and rmt_new_rx_channel().
• rmt_driver_uninstall is replaced by rmt_del_channel().
• rmt_fill_tx_items, rmt_write_items and rmt_write_sample are removed. In the new
driver, user needs to provide an encoder to "translate" the user data into RMT symbols.

• rmt_get_counter_clock is removed, as the channel clock resolution is configured by user from

Espressif Systems 2568
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

rmt_tx_channel_config_t::resolution_hz.
• rmt_wait_tx_done is replaced by rmt_tx_wait_all_done().
• rmt_translator_init, rmt_translator_set_context and
rmt_translator_get_context are removed. In the new driver, the translator has been replaced by
the RMT encoder.

• rmt_get_ringbuf_handle is removed. The new driver doesn't use Ringbuffer to save RMT symbols.
Instead, the incoming data are saved to the user provided buffer directly. The user buffer can even be mounted
to DMA link internally.

• rmt_register_tx_end_callback is replaced by rmt_tx_register_event_callbacks(),
where user can register rmt_tx_event_callbacks_t::on_trans_done event callback.

• rmt_set_intr_enable_mask and rmt_clr_intr_enable_mask are removed, as the interrupt is
handled by the driver, user doesn't need to take care of it.

• rmt_add_channel_to_group and rmt_remove_channel_from_group are replaced by RMT
sync manager. Please refer to rmt_new_sync_manager().

• rmt_set_tx_loop_count is removed. The loop count in the new driver is configured in
rmt_transmit_config_t::loop_count.

• rmt_enable_tx_loop_autostop is removed. In the new driver, TX loop auto stop is always enabled
if available, it's not configurable anymore.

LCD
• The LCD panel initialization flow is slightly changed. Now the esp_lcd_panel_init() won't turn on
the display automatically. User needs to call esp_lcd_panel_disp_on_off() to manually turn on the
display. Note, this is different from turning on backlight. With this breaking change, user can flash a predefined
pattern to the screen before turning on the screen. This can help avoid random noise on the screen after a power
on reset.

• esp_lcd_panel_disp_off() is deprecated, please use esp_lcd_panel_disp_on_off() in-
stead.

• dc_as_cmd_phase is removed. The SPI LCD driver currently doesn't support a 9-bit SPI LCD. Please
always use a dedicated GPIO to control the LCD D/C line.

• The way to register RGB panel event callbacks has been moved
from the esp_lcd_rgb_panel_config_t into a separate API
esp_lcd_rgb_panel_register_event_callbacks(). However, the event callback signa-
ture is not changed.

• Previous relax_on_idle flag in esp_lcd_rgb_panel_config_t has been renamed into
esp_lcd_rgb_panel_config_t::refresh_on_demand, which expresses the same meaning but
with a clear name.

• If the RGB LCD is created with the refresh_on_demand flag enabled, the driver will
not start a refresh in the esp_lcd_panel_draw_bitmap(). Now users have to call
esp_lcd_rgb_panel_refresh() to refresh the screen by themselves.

• esp_lcd_color_space_t is deprecated, please use lcd_color_space_t to describe the color
space, and use lcd_rgb_element_order_t to describe the data order of RGB color.

MCPWM MCPWM driver was redesigned (see MCPWM), meanwhile, the legacy driver is deprecated.
The new driver's aim is to make each MCPWM submodule independent to each other, and give the freedom of
resource connection back to users.
Although it's recommended to use the new driver APIs, the legacy driver is still available in the previous include path
driver/mcpwm.h. However, using legacy driver will rigger the build warning below by default. This warning can
be suppressed by the Kconfig option CONFIG_MCPWM_SUPPRESS_DEPRECATE_WARN.

legacy MCPWM driver is deprecated, please migrate to the new driver (include␣
↪→driver/mcpwm_prelude.h)

The major breaking changes in concept and usage are listed as follows:

Espressif Systems 2569
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

Breaking Changes in Concepts The new MCPWM driver is object-oriented, where most of the MCPWM
submodule has a driver object associated with it. The driver object is created by factory function like
mcpwm_new_timer(). IO control function always needs an object handle, in the first place.
The legacy driver has an inappropriate assumption, that is the MCPWM operator should be connected to different
MCPWM timer. In fact, the hardware doesn't have such limitation. In the new driver, a MCPWM timer can be
connected to multiple operators, so that the operators can achieve the best synchronization performance.
The legacy driver presets the way to generate a PWM waveform into a so called mcpwm_duty_type_t.
However, the duty cycle modes listed there are far from sufficient. Likewise, legacy driver has several preset
mcpwm_deadtime_type_t, which also doesn't cover all the use cases. What's more, user usually gets con-
fused by the name of the duty cycle mode and dead-time mode. In the new driver, there're no such limitation, but
user has to construct the generator behavior from scratch.
In the legacy driver, the ways to synchronize the MCPWM timer by GPIO, software and other timer module are not
unified. It increased learning costs for users. In the new driver, the synchronization APIs are unified.
The legacy driver has mixed the concepts of "Fault detector" and "Fault handler". Which make the APIs very con-
fusing to users. In the new driver, the fault object just represents a failure source, and we introduced a new concept
-- brake to express the concept of "Fault handler". What's more, the new driver supports software fault.
The legacy drive only provides callback functions for the capture submodule. The new driver provides more useful
callbacks for various MCPWM submodules, like timer stop, compare match, fault enter, brake, etc.

• mcpwm_io_signals_t and mcpwm_pin_config_t are not used. GPIO configuration has beenmoved
into submodule's configuration structure.

• mcpwm_timer_t, mcpwm_generator_t are not used. Timer and generator are represented by
mcpwm_timer_handle_t and mcpwm_gen_handle_t.

• mcpwm_fault_signal_t and mcpwm_sync_signal_t are not used. Fault and sync source are rep-
resented by mcpwm_fault_handle_t and mcpwm_sync_handle_t.

• mcpwm_capture_signal_t is not used. A capture channel is represented by
mcpwm_cap_channel_handle_t.

Breaking Changes in Usage
• mcpwm_gpio_init and mcpwm_set_pin: GPIO configurations are moved to submodule's own config-
uration. e.g. set the PWM GPIO in mcpwm_generator_config_t::gen_gpio_num.

• mcpwm_init: To get an expected PWM waveform, users need to allocated at
least one MCPWM timer and MCPWM operator, then connect them by calling
mcpwm_operator_connect_timer(). After that, users should set the generator's actions
on various events by calling e.g. mcpwm_generator_set_actions_on_timer_event(),
mcpwm_generator_set_actions_on_compare_event().

• mcpwm_group_set_resolution: in the new driver, the group resolution is fixed to the maximum,
usually it's 80MHz.

• mcpwm_timer_set_resolution: MCPWM Timer resolution is set in
mcpwm_timer_config_t::resolution_hz.

• mcpwm_set_frequency: PWMfrequency is determined bymcpwm_timer_config_t::resolution_hz,
mcpwm_timer_config_t::count_mode and mcpwm_timer_config_t::period_ticks.

• mcpwm_set_duty: To set the PWM duty cycle, users should call
mcpwm_comparator_set_compare_value() to change comparator's threshold.

• mcpwm_set_duty_type: There won't be any preset duty cycle types, the duty cycle type is configured by
setting different generator actions. e.g. mcpwm_generator_set_actions_on_timer_event().

• mcpwm_set_signal_high and mcpwm_set_signal_low are replaced by
mcpwm_generator_set_force_level(). In the new driver, it's implemented by setting force
action for the generator, instead of changing the duty cycle to 0% or 100% at the background.

• mcpwm_start and mcpwm_stop are replaced by mcpwm_timer_start_stop(). You have more
modes to start and stop the MCPWM timer, see mcpwm_timer_start_stop_cmd_t.

• mcpwm_carrier_init is replaced by mcpwm_operator_apply_carrier().
• mcpwm_carrier_enable and mcpwm_carrier_disable: Enabling and disabling car-
rier submodule is done automatically by checking whether the carrier configuration structure
mcpwm_carrier_config_t is NULL.

Espressif Systems 2570
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

• mcpwm_carrier_set_period is replaced by mcpwm_carrier_config_t::frequency_hz.
• mcpwm_carrier_set_duty_cycle is replaced bymcpwm_carrier_config_t::duty_cycle.
• mcpwm_carrier_oneshot_mode_enable is replaced bymcpwm_carrier_config_t::first_pulse_duration_us.
• mcpwm_carrier_oneshot_mode_disable is removed. Disabling the first pulse (a.k.a the one-shot
pulse) in the carrier is never supported by the hardware.

• mcpwm_carrier_output_invert is replaced bymcpwm_carrier_config_t::invert_before_modulate
and mcpwm_carrier_config_t::invert_after_modulate.

• mcpwm_deadtime_enable and mcpwm_deadtime_disable are replaced by
mcpwm_generator_set_dead_time().

• mcpwm_fault_init is replaced by mcpwm_new_gpio_fault().
• mcpwm_fault_set_oneshot_mode, mcpwm_fault_set_cyc_mode
are replaced by mcpwm_operator_set_brake_on_fault() and
mcpwm_generator_set_actions_on_brake_event().

• mcpwm_capture_enable is removed. It's duplicated to mcpwm_capture_enable_channel().
• mcpwm_capture_disable is removed. It's duplicated tomcpwm_capture_capture_disable_channel().
• mcpwm_capture_enable_channel and mcpwm_capture_disable_channel are replaced by
mcpwm_capture_channel_enable() and mcpwm_capture_channel_disable().

• mcpwm_capture_signal_get_value and mcpwm_capture_signal_get_edge:
Capture timer count value and capture edge are provided in the capture event callback, via
mcpwm_capture_event_data_t. Capture data are only valuable when capture event happens.
Providing single API to fetch capture data is meaningless.

• mcpwm_sync_enable is removed. It's duplicated to mcpwm_sync_configure().
• mcpwm_sync_configure is replaced by mcpwm_timer_set_phase_on_sync().
• mcpwm_sync_disable is equivalent to settingmcpwm_timer_sync_phase_config_t::sync_src
to NULL.

• mcpwm_set_timer_sync_output is replaced by mcpwm_new_timer_sync_src().
• mcpwm_timer_trigger_soft_sync is replaced by mcpwm_soft_sync_activate().
• mcpwm_sync_invert_gpio_synchro is equivalent to settingmcpwm_gpio_sync_src_config_t::active_neg.
• mcpwm_isr_register is removed. You can register various event call-
backs instead. For example, to register capture event callback, users can use
mcpwm_capture_channel_register_event_callbacks().

Dedicated GPIO Driver
• All of the dedicated GPIO related Low Level (LL) functions in cpu_ll.h have been moved to
dedic_gpio_cpu_ll.h and renamed.

I2S driver The I2S driver has been redesigned (see I2S Driver), which aims to rectify the shortcomings of
the driver that were exposed when supporting all the new features of ESP32-C3 & ESP32-S3. The new
driver's APIs are available by including corresponding I2S mode's header files driver/i2s/include/driver/i2s_std.h,
driver/i2s/include/driver/i2s_pdm.h, or driver/i2s/include/driver/i2s_tdm.h.
Meanwhile, the old driver's APIs in driver/deprecated/driver/i2s.h are still supported for backward compatibility.
But there will be warnings if users keep using the old APIs in their projects, these warnings can be suppressed by the
Kconfig option CONFIG_I2S_SUPPRESS_DEPRECATE_WARN.
Here is the general overview of the current I2S files:

Breaking changes in Concepts

Independent TX/RX channels The minimum control unit in new I2S driver are now individual TX/RX channels
instead of an entire I2S controller (that consistes of multiple channels).

• The TX and RX channels of the same I2S controller can be controlled separately, meaning that they are con-
figured such that they can be started or stopped separately.

• The c:type:i2s_chan_handle_t handle type is used to uniquely identify I2S channels. All the APIs will require
the channel handle and users need to maintain the channel handles by themselves.

Espressif Systems 2571
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_std.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_pdm.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_tdm.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/deprecated/driver/i2s.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

• On the ESP32-C3 and ESP32-S3, TX and RX channels in the same controller can be configured to different
clocks or modes.

• However, on the ESP32 and ESP32-S2, the TX and RX channels of the same controller still share some hard-
ware resources. Thus, configurations may cause one channel to affect another channel in the same controller.

• The channels can be registered to an available I2S controller automatically by setting
i2s_port_t::I2S_NUM_AUTO as I2S port ID which will cause the driver to search for the avail-
able TX/RX channels. However, the driver also supports registering channels to a specific port.

• In order to distinguish between TX/RX channels and sound channels, the term 'channel' in the context of the
I2S driver will only refer to TX/RX channels. Meanwhile, sound channels will be referred to as "slots".

I2S Mode Categorization I2S communication modes are categorized into the following three modes. Note that:
• Standard mode: Standard mode always has two slots, it can support Philips, MSB, and PCM (short frame
sync) formats. Please refer to driver/i2s/include/driver/i2s_std.h for more details.

• PDM mode: PDM mode only supports two slots with 16-bit data width, but the configu-
rations of PDM TX and PDM RX are slightly different. For PDM TX, the sample rate
can be set by i2s_pdm_tx_clk_config_t::sample_rate, and its clock frequency
depends on the up-sampling configuration. For PDM RX, the sample rate can be set by
i2s_pdm_rx_clk_config_t::sample_rate, and its clock frequency depends on the down-
sampling configuration. Please refer to driver/i2s/include/driver/i2s_pdm.h for details.

• TDM mode: TDM mode can support up to 16 slots. It can work in Philips, MSB, PCM (short frame sync),
and PCM (long frame sync) formats. Please refer to driver/i2s/include/driver/i2s_tdm.h for details.

When allocating a new channel in a specific mode, users should initialize that channel by its corresponding function.
It is strongly recommended to use the helper macros to generate the default configurations in case the default values
are changed in the future.

Independent Slot and Clock Configuration The slot configurations and clock configurations can be configured
separately.

• Call i2s_channel_init_std_mode(), i2s_channel_init_pdm_rx_mode(),
i2s_channel_init_pdm_tx_mode(), or i2s_channel_init_tdm_mode() to initialize
the slot/clock/gpio_pin configurations.

• Calling i2s_channel_reconfig_std_slot(), i2s_channel_reconfig_pdm_rx_slot(),
i2s_channel_reconfig_pdm_tx_slot(), or i2s_channel_reconfig_tdm_slot() can
change the slot configurations after initialization.

Espressif Systems 2572
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_std.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_pdm.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/i2s/include/driver/i2s_tdm.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

• Callingi2s_channel_reconfig_std_clock(), i2s_channel_reconfig_pdm_rx_clock(),
i2s_channel_reconfig_pdm_tx_clock(), or i2s_channel_reconfig_tdm_clock()
can change the clock configurations after initialization.

• Calling i2s_channel_reconfig_std_gpio(), i2s_channel_reconfig_pdm_rx_gpio(),
i2s_channel_reconfig_pdm_tx_gpio(), or i2s_channel_reconfig_tdm_gpio() can
change the GPIO configurations after initialization.

Misc
• States and state-machine are adopted in the new I2S driver to avoid APIs called in wrong state.
• ADC and DACmodes are removed. They will only be supported in their own drivers and the legacy I2S driver.

Breaking Changes in Usage To use the new I2S driver, please follow these steps:
1. Call i2s_new_channel() to acquire channel handles. We should specify the work role and I2S port in

this step. Besides, the TX or RX channel handle will be generated by the driver. Inputting both two TX and RX
channel handles is not necessary but at least one handle is needed. In the case of inputting both two handles,
the driver will work at the duplex mode. Both TX and RX channels will be avaliable on a same port, and they
will share the MCLK, BCLK and WS signal. But if only one of the TX or RX channel handle is inputted, this
channel will only work in the simplex mode.

2. Call i2s_channel_init_std_mode(), i2s_channel_init_pdm_rx_mode(),
i2s_channel_init_pdm_tx_mode() or i2s_channel_init_tdm_mode() to initialize
the channel to the specified mode. Corresponding slot, clock and GPIO configurations are needed in this step.

3. (Optional) Call i2s_channel_register_event_callback() to register the ISR event callback
functions. I2S events now can be received by the callback function synchronously, instead of from the event
queue asynchronously.

4. Call i2s_channel_enable() to start the hardware of I2S channel. In the new driver, I2S won't start
automatically after installed, and users are supposed to know clearly whether the channel has started or not.

5. Read or write data by i2s_channel_read() or i2s_channel_write(). Certainly, only the RX
channel handle is suppoesd to be inputted in i2s_channel_read() and the TX channel handle in
i2s_channel_write().

6. (Optional) The slot, clock and GPIO configurations can be changed by corresponding 'reconfig' functions, but
i2s_channel_disable() must be called before updating the configurations.

7. Call i2s_channel_disable() to stop the hardware of I2S channel.
8. Call i2s_del_channel() to delete and release the resources of the channel if it is not needed any more,

but the channel must be disabled before deleting it.

TWAI Driver The deprecated CAN peripheral driver is removed. Please use TWAI driver instead (i.e., include
driver/twai.h in your application).

Register Access Macros Previously, all register access macros could be used as expressions, so the following was
allowed:

uint32_t val = REG_SET_BITS(reg, mask);

In ESP-IDF v5.0, register access macros which write or read-modify-write the register can no longer be used as ex-
pressions, and can only be used as statements. This applies to the following macros: REG_WRITE, REG_SET_BIT,
REG_CLR_BIT, REG_SET_BITS, REG_SET_FIELD, WRITE_PERI_REG, CLEAR_PERI_REG_MASK,
SET_PERI_REG_MASK, SET_PERI_REG_BITS.
To store the value which would have been written into the register, split the operation as follows:

uint32_t new_val = REG_READ(reg) | mask;
REG_WRITE(reg, new_val);

To get the value of the register after modification (which may be different from the value written), add an explicit
read:

Espressif Systems 2573
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

REG_SET_BITS(reg, mask);
uint32_t new_val = REG_READ(reg);

Protocols

Mbed TLS For ESP-IDF v5.0, Mbed TLS has been updated from v2.x to v3.1.0.
For more details about Mbed TLS's migration from version 2.x to version 3.0 or greater, please refer to the official
guide.

Breaking Changes (Summary)

Most structure fields are now private
• Direct access to fields of structures (struct types) declared in public headers is no longer supported.
• Appropriate accessor functions (getter/setter) must be used for the same. A temporary workaround would be
to use MBEDTLS_PRIVATE macro (not recommended).

• For more details, refer to the official guide.

SSL
• Removed support for TLS 1.0, 1.1, and DTLS 1.0
• Removed support for SSL 3.0

Deprecated Functions Were Removed from Cryptography Modules
• The functions mbedtls_*_ret() (related to MD, SHA, RIPEMD, RNG, HMAC modules) was renamed
to replace the corresponding functions without _ret appended and updated return value.

• For more details, refer to the official guide.

Deprecated Config Options Following are some of the important config options deprecated by this update. The
configs related to and/or dependent on these have also been deprecated.

• MBEDTLS_SSL_PROTO_SSL3 : Support for SSL 3.0
• MBEDTLS_SSL_PROTO_TLS1 : Support for TLS 1.0
• MBEDTLS_SSL_PROTO_TLS1_1: Support for TLS 1.1
• MBEDTLS_SSL_PROTO_DTLS : Support for DTLS 1.1 (Only DTLS 1.2 is supported now)
• MBEDTLS_DES_C : Support for 3DES ciphersuites
• MBEDTLS_RC4_MODE : Support for RC4-based ciphersuites

Note: This list includes only major options configurable through idf.py menuconfig. For more details on
deprecated options, refer to the official guide.

Miscellaneous

Espressif Systems 2574
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/Mbed-TLS/mbedtls
https://github.com/espressif/mbedtls/blob/9bb5effc3298265f829878825d9bd38478e67514/docs/3.0-migration-guide.md
https://github.com/espressif/mbedtls/blob/9bb5effc3298265f829878825d9bd38478e67514/docs/3.0-migration-guide.md
https://github.com/espressif/mbedtls/blob/9bb5effc3298265f829878825d9bd38478e67514/docs/3.0-migration-guide.md#most-structure-fields-are-now-private
https://github.com/espressif/mbedtls/blob/9bb5effc3298265f829878825d9bd38478e67514/docs/3.0-migration-guide.md#deprecated-functions-were-removed-from-hashing-modules
https://github.com/espressif/mbedtls/blob/9bb5effc3298265f829878825d9bd38478e67514/docs/3.0-migration-guide.md#most-structure-fields-are-now-private
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

Disabled Diffie-Hellman Key Exchange Modes The Diffie-Hellman Key Exchange modes have now been dis-
abled by default due to security risks (see warning text here). Related configs are given below:

• MBEDTLS_DHM_C : Support for the Diffie-Hellman-Merkle module
• MBEDTLS_KEY_EXCHANGE_DHE_PSK : Support for Diffie-Hellman PSK (pre-shared-key) TLS authenti-
cation modes

• MBEDTLS_KEY_EXCHANGE_DHE_RSA : Support for cipher suites with the prefix
TLS-DHE-RSA-WITH-

Note: During the initial step of the handshake (i.e. client_hello), the server selects a cipher from the list that
the client publishes. As the DHE_PSK/DHE_RSA ciphers have now been disabled by the above change, the server
would fall back to an alternative cipher; if in a rare case, it does not support any other cipher, the handshake would
fail. To retrieve the list of ciphers supported by the server, one must attempt to connect with the server with a specific
cipher from the client-side. Few utilities can help do this, e.g. sslscan.

Remove certsModule from X509 Library
• The mbedtls/certs.h header is no longer available in mbedtls 3.1. Most applications can safely remove
it from the list of includes.

Breaking Change for esp_crt_bundle_set API
• The esp_crt_bundle_set() API now requires one additional argument named bundle_size. The
return type of the API has also been changed to esp_err_t from void.

Breaking Change for esp_ds_rsa_sign API
• The esp_ds_rsa_sign()API now requires one less argument. The argument mode is no longer required.

HTTPS Server

BreakingChanges (Summary) Names of variables holding different certs inhttpd_ssl_config_t structure
have been updated.

• httpd_ssl_config::servercert variable inherits role of cacert_pem variable.
• httpd_ssl_config::servercert_len variable inherits role of cacert_len variable
• httpd_ssl_config::cacert_pem variable inherits role of client_verify_cert_pem variable
• httpd_ssl_config::cacert_len variable inherits role of client_verify_cert_len variable

The return type of the httpd_ssl_stop() API has been changed to esp_err_t from void.

ESP HTTPS OTA

Breaking Changes (Summary)
• The function esp_https_ota() now requires pointer to esp_https_ota_config_t as argument
instead of pointer to esp_http_client_config_t.

ESP-TLS

Breaking Changes (Summary)

Espressif Systems 2575
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/mbedtls/blob/9bb5effc3298265f829878825d9bd38478e67514/include/mbedtls/dhm.h#L20
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

esp_tls_t Structure is Now Private The esp_tls_t has now been made completely private. You cannot
access its internal structures directly. Any necessary data that needs to be obtained from the ESP-TLS handle can
be done through respective getter/setter functions. If there is a requirement of a specific getter/setter function, please
raise an issue on ESP-IDF.
The list of newly added getter/setter function is as as follows:

• esp_tls_get_ssl_context() - Obtain the ssl context of the underlying ssl stack from the ESP-TLS
handle.

Function Deprecations And Recommended Alternatives Following table summarizes the deprecated functions
removed and their alternatives to be used from ESP-IDF v5.0 onwards.

Deprecated Function Alternative
esp_tls_conn_new() esp_tls_conn_new_sync()
esp_tls_conn_delete() esp_tls_conn_destroy()

• The function esp_tls_conn_http_new() has now been termed as deprecated. Please
use the alternative function esp_tls_conn_http_new_sync() (or its asynchronous
esp_tls_conn_http_new_async()). Note that the alternatives need an additional parameter
esp_tls_t, which has to be initialized using the esp_tls_init() function.

HTTP Server

Breaking Changes (Summary)
• http_server.h header is no longer available in esp_http_server. Please use
esp_http_server.h instead.

ESP HTTP Client

Breaking Changes (Summary)
• The functions esp_http_client_read() and esp_http_client_fetch_headers() now re-
turn an additional return value -ESP_ERR_HTTP_EAGAIN for timeout errors - call timed-out before any
data was ready.

TCP Transport

Breaking Changes (Summary)
• The function esp_transport_read() now returns 0 for a connection timeout and < 0 for other errors.
Please refer esp_tcp_transport_err_t for all possible return values.

MQTT Client

Breaking Changes (Summary)
• esp_mqtt_client_config_t have all fields grouped in sub structs.

Most common configurations are listed below:
• Broker address now is set in esp_mqtt_client_config_t::broker::address::uri
• Security related to broker verification inesp_mqtt_client_config_t::broker::verification

Espressif Systems 2576
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/issues
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

• Client username is set in esp_mqtt_client_config_t::credentials::username
• esp_mqtt_client_config_t no longer supports the user_context field. Please use
esp_mqtt_client_register_event() instead for registering an event handler; the last argu-
ment event_handler_arg can be used to pass user context to the handler.

ESP-Modbus

Breaking Changes (Summary) The ESP-IDF component freemodbus has been removed from ESP-IDF and
is supported as a separate component. Additional information for the ESP-Modbus component can be found in the
separate repository:

• ESP-Modbus component on GitHub
The main component folder of the new application shall include the component manager manifest file
idf_component.yml as in the example below:

dependencies:
espressif/esp-modbus:
version: "^1.0"

The esp-modbus component can be found in component manager registry. Refer to component manager docu-
mentation for more information on how to set up the component manager.
For applications targeting v4.x releases of ESP-IDF that need to use new esp-modbus component, adding the
component manager manifest file idf_component.ymlwill be sufficient to pull in the new component. However,
users should also exclude the legacy freemodbus component from the build. This can be achieved using the
statement below in the project's CMakeLists.txt:

set(EXCLUDE_COMPONENTS freemodbus)

Provisioning

Protocomm The pop field in the protocomm_set_security() API is now deprecated. Please use the
sec_params field instead of pop. This parameter should contain the structure (including the security parameters)
as required by the protocol version used.
For example, when using security version 2, the sec_params parameter should contain the pointer to the structure
of type protocomm_security2_params_t.

Wi-Fi Provisioning
• The pop field in the wifi_prov_mgr_start_provisioning() API is now deprecated. For back-
ward compatibility, pop can be still passed as a string for security version 1. However, for security version 2,
the wifi_prov_sec_params argument needs to be passed instead of pop. This parameter should con-
tain the structure (containing the security parameters) as required by the protocol version used. For example,
when using security version 2, the wifi_prov_sec_params parameter should contain the pointer to the
structure of type wifi_prov_security2_params_t. For security 1, the behaviour and the usage of
the API remain the same.

• The API wifi_prov_mgr_is_provisioned() does not return ESP_ERR_INVALID_STATE error
any more. This API now works without any dependency on provisioning manager initialization state.

Espressif Systems 2577
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.github.com/espressif/esp-modbus
https://components.espressif.com/component/espressif/esp-modbus
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/tools/idf-component-manager.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/tools/idf-component-manager.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

ESP Local Control The pop field in the esp_local_ctrl_proto_sec_cfg_t API is now deprecated.
Please use the sec_params field instead of pop. This field should contain the structure (containing the security
parameters) as required by the protocol version used.
For example, when using security version 2, the sec_params field should contain pointer to the structure of type
esp_local_ctrl_security2_params_t.

Removed or Deprecated Components

ComponentsMoved to IDFComponent Registry Following components are removed fromESP-IDF andmoved
to IDF Component Registry:

• libsodium
• cbor
• jsmn
• esp_modem
• nghttp
• mdns
• esp_websocket_client
• asio
• freemodbus
• sh2lib
• expat
• coap
• esp-cryptoauthlib
• qrcode
• tjpgd
• esp_serial_slave_link
• tinyusb

Note: Please note that http parser functionality which was previously part of nghttp component is now part of
http_parser component.

These components can be installed using idf.py add-dependency command.
For example, to install libsodium component with the exact version X.Y, run idf.py add-dependency lib-
sodium==X.Y.
To install libsodium component with the latest version compatible to X.Y according to semver rules, run idf.py
add-dependency libsodium~X.Y.
To find out which versions of each component are available, open https://components.espressif.com, search for the
component by its name and check the versions listed on the component page.

Deprecated Components The following components are removed since they were deprecated in IDF v4.x:
• tcpip_adapter. Please use the ESP-NETIF component instead; you can follow the TCP/IP Adapter.

Note: OpenSSL-API component is no longer supported. It is not available in the IDF Component Registry, either.
Please use ESP-TLS or mbedtls API directly.

Note: esp_adc_cal component is no longer supported. New adc calibration driver is in esp_adc component.
Legacy adc calibration driver has been moved into esp_adc component. To use legacy esp_adc_cal driver

Espressif Systems 2578
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://components.espressif.com/
https://components.espressif.com/component/espressif/libsodium
https://components.espressif.com/component/espressif/cbor
https://components.espressif.com/component/espressif/jsmn
https://components.espressif.com/component/espressif/esp_modem
https://components.espressif.com/component/espressif/nghttp
https://components.espressif.com/component/espressif/mdns
https://components.espressif.com/component/espressif/esp_websocket_client
https://components.espressif.com/component/espressif/asio
https://components.espressif.com/component/espressif/esp-modbus
https://components.espressif.com/component/espressif/sh2lib
https://components.espressif.com/component/espressif/expat
https://components.espressif.com/component/espressif/coap
https://components.espressif.com/component/espressif/esp-cryptoauthlib
https://components.espressif.com/component/espressif/qrcode
https://components.espressif.com/component/espressif/esp_jpeg
https://components.espressif.com/components/espressif/esp_serial_slave_link
https://components.espressif.com/components/espressif/esp_tinyusb
https://github.com/espressif/esp-idf/tree/b0f5707906b/components/http_parser
https://semver.org/
https://components.espressif.com
https://github.com/espressif/esp-idf/tree/b0f5707906b/components/mbedtls
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

APIs, you should add esp_adc component to the list of component requirements in CMakeLists.txt. Also check
Peripherals Migration Guide for more details.

The targets components are no longer necessary after refactoring and have been removed:
• esp32
• esp32s2
• esp32s3
• esp32c2
• esp32c3
• esp32h2

Storage

New Component for the Partition APIs Breaking change: all the Partition API code has been moved to a new
component esp_partition. For the complete list of affected functions and data-types, see header file esp_partition.h .
These API functions and data-types were previously a part of the spi_flash component, and thus possible dependencies
on the spi_flash in existing applications may cause the build failure, in case of direct esp_partition_* APIs/data-
types use (for instance, fatal error: esp_partition.h: No such file or directory at
lines with #include "esp_partition.h"). If you encounter such an issue, please update your project's
CMakeLists.txt file as follows:
Original dependency setup:

idf_component_register(...
REQUIRES spi_flash)

Updated dependency setup:

idf_component_register(...
REQUIRES spi_flash esp_partition)

Note: Please update relevant REQUIRES or PRIV_REQUIRES section according to your project. The above-
presented code snippet is just an example.

If the issue persists, please let us know and we will assist you with your code migration.

SDMMC/SDSPI SD card frequency on SDMMC/SDSPI interface can be now configured through sd-
mmc_host_t.max_freq_khz to a specific value, not only SDMMC_FREQ_PROBING (400 kHz), SD-
MMC_FREQ_DEFAULT (20 MHz), or SDMMC_FREQ_HIGHSPEED (40 MHz). Previously, in case you have spec-
ified a custom frequency other than any of the above-mentioned values, the closest lower-or-equal one was selected
anyway.
Now, the underlaying drivers calculate the nearest fitting value, given by available frequency dividers instead of an
enumeration item selection. This could cause troubles in communication with your SD card without a change of the
existing application code.If you encounter such an issue, please, keep trying different frequencies around your desired
value unless you find the one working well. To check the frequency value calculated and actually applied, use void
sdmmc_card_print_info(FILE* stream, const sdmmc_card_t* card) function.

FatFs FatFs is now updated to v0.14. As a result, the function signature of f_mkfs() has changed. The new
signature is FRESULT f_mkfs (const TCHAR* path, const MKFS_PARM* opt, void* work,
UINT len); which uses MKFS_PARM struct as a second argument.

Espressif Systems 2579
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/components/esp_partition
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_partition/include/esp_partition.h
https://github.com/espressif/esp-idf/tree/b0f5707906b/components/spi_flash
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

Partition Table The partition table generator no longer supports misaligned partitions. When generating a partition
table, ESP-IDF only accepts partitions with offsets that align to 4 KB. This change only affects generating new
partition tables. Reading and writing to already existing partitions remains unchanged.

VFS The esp_vfs_semihost_register() function signature is changed as follows:
• The new signature isesp_err_t esp_vfs_semihost_register(const char* base_path);
• The host_path parameter of the old signature no longer exists. Instead, the OpenOCD command
ESP_SEMIHOST_BASEDIR should be used to set the full path on the host.

Function Signature Changes The following functions now return esp_err_t instead of void or
nvs_iterator_t. Previously, when parameters were invalid or when something goes wrong internally, these
functions would assert() or return a nullptr. With an esp_err_t returned, you can get better error report-
ing.

• nvs_entry_find()
• nvs_entry_next()
• nvs_entry_info()

Because the esp_err_t return type changes, the usage patterns of nvs_entry_find() and
nvs_entry_next() become different. Both functions now modify iterators via parameters instead of
returning an iterator.
The old programming pattern to iterate over an NVS partition was as follows:

nvs_iterator_t it = nvs_entry_find(<nvs_partition_name>, <namespace>, NVS_TYPE_
↪→ANY);
while (it != NULL) {

nvs_entry_info_t info;
nvs_entry_info(it, &info);
it = nvs_entry_next(it);
printf("key '%s', type '%d'", info.key, info.type);

};

The new programming pattern to iterate over an NVS partition is now:

nvs_iterator_t it = nullptr;
esp_err_t res = nvs_entry_find(<nvs_partition_name>, <namespace>, NVS_TYPE_ANY, &
↪→it);
while(res == ESP_OK) {

nvs_entry_info_t info;
nvs_entry_info(it, &info); // Can omit error check if parameters are␣

↪→guaranteed to be non-NULL
printf("key '%s', type '%d'", info.key, info.type);
res = nvs_entry_next(&it);

}
nvs_release_iterator(it);

Iterator Validity Note that because the function signature changes, if there is a parameter error, you
may get an invalid iterator from nvs_entry_find(). Hence, it is important to initialize the iterator
to NULL before using nvs_entry_find(), so that you can avoid complex error checking before calling
nvs_release_iterator(). A good example is the programming pattern above.

Removed SDSPI Deprecated API Structure sdspi_slot_config_t and function sd-
spi_host_init_slot() are removed, and replaced by structure sdspi_device_config_t and
function sdspi_host_init_device() respectively.

Espressif Systems 2580
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

ROM SPI Flash In versions before v5.0, ROM SPI flash functions were included via esp32**/rom/
spi_flash.h. Thus, code written to support different ESP chips might be filled with ROM headers of different
targets. Furthermore, not all of the APIs could be used on all ESP chips.
Now, the common APIs are extracted to esp_rom_spiflash.h. Although it is not a breaking change, you are
strongly recommended to only use the functions from this header (i.e., prefixed with esp_rom_spiflash and
included by esp_rom_spiflash.h) for better cross-compatibility between ESP chips.
To make ROM SPI flash APIs clearer, the following functions are also renamed:

• esp_rom_spiflash_lock() to esp_rom_spiflash_set_bp()
• esp_rom_spiflash_unlock() to esp_rom_spiflash_clear_bp()

SPI Flash Driver The esp_flash_speed_t enum type is now deprecated. Instead, you may now directly
pass the real clock frequency value to the flash configuration structure. The following example demonstrates how to
configure a flash frequency of 80MHz:

esp_flash_spi_device_config_t dev_cfg = {
// Other members
.freq_mhz = 80,
// Other members

};

Legacy SPI Flash Driver To make SPI flash drivers more stable, the legacy SPI flash driver is removed from
v5.0. The legacy SPI flash driver refers to default spi_flash driver since v3.0, and the SPI flash driver with configu-
ration option CONFIG_SPI_FLASH_USE_LEGACY_IMPL enabled since v4.0. The major breaking change here
is that the legacy spi_flash driver is no longer supported from v5.0. Therefore, the legacy driver APIs and the CON-
FIG_SPI_FLASH_USE_LEGACY_IMPL configuration option are both removed. Please use the new spi_flash
driver's APIs instead.

Removed items Replacement
spi_flash_erase_sector() esp_flash_erase_region()
spi_flash_erase_range() esp_flash_erase_region()
spi_flash_write() esp_flash_write()
spi_flash_read() esp_flash_read()
spi_flash_write_encrypted() esp_flash_write_encrypted()
spi_flash_read_encrypted() esp_flash_read_encrypted()

Note: New functions with prefix esp_flash accept an additional esp_flash_t* parameter. You can simply
set it to NULL. This will make the function to run the main flash (esp_flash_default_chip).

The esp_spi_flash.h header is deprecated as system functions are no longer public. To use flash memory
mapping APIs, you may include spi_flash_mmap.h instead.

System

Inter-Processor Call IPC (Inter-Processor Call) feature is no longer a stand-alone component and has been inte-
grated into the esp_system component.
Thus, any project presenting a CMakeLists.txt file with the parameters PRIV_REQUIRES esp_ipc or
REQUIRES esp_ipc should be modified to simply remove these options as the esp_system component is
included by default.

Espressif Systems 2581
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

ESP Clock The ESP Clock API (functions/types/macros prefixed with esp_clk) has been made into a private
API. Thus, the previous include paths #include "ESP32-C6/clk.h" and #include "esp_clk.h" have
been removed. If users still require usage of the ESP Clock API (though this is not recommended), it can be included
via #include "esp_private/esp_clk.h".

Note: Private APIs are not stable and no are longer subject to the ESP-IDF versioning scheme's breaking change
rules. Thus, it is not recommended for users to continue calling private APIs in their applications.

Cache Error Interrupt The Cache Error Interrupt API (functions/types/macros prefixed with
esp_cache_err) has been made into a private API. Thus, the previous include path #include "ESP32-C6/
cache_err_int.h" has been removed. If users still require usage of the Cache Error Interrupt API (though
this is not recommended), it can be included via #include "esp_private/cache_err_int.h".

bootloader_support
• The function bootloader_common_get_reset_reason() has been removed. Please use the func-
tion esp_rom_get_reset_reason() in the ROM component.

• The functions esp_secure_boot_verify_sbv2_signature_block() and
esp_secure_boot_verify_rsa_signature_block() have been removed without replace-
ment. We do not expect users to use these directly. If they are indeed still neccessary, please open a feature
request on GitHub explaining why these functions are necessary to you.

Brownout The Brownout API (functions/types/macros prefixed with esp_brownout) has been made into a
private API. Thus, the previous include path #include "brownout.h" has been removed. If users still require
usage of the Brownout API (though this is not recommended), it can be included via#include "esp_private/
brownout.h".

Trax The Trax API (functions/types/macros prefixed with trax_) has been made into a private API. Thus, the
previous include path #include "trax.h" has been removed. If users still require usage of the Trax API
(though this is not recommended), it can be included via #include "esp_private/trax.h".

ROM The previously deprecated ROM-related header files located in components/esp32/rom/ (old in-
clude path: rom/*.h) have been moved. Please use the new target-specific path from components/esp_rom/
include/ESP32-C6/ (new include path: ESP32-C6/rom/*.h).

esp_hw_support
• The header files soc/cpu.h have been deleted and deprecated CPU util functions have been removed. ESP-
IDF developers should include esp_cpu.h instead for equivalent functions.

• The header files hal/cpu_ll.h, hal/cpu_hal.h, hal/soc_ll.h, hal/soc_hal.h and in-
terrupt_controller_hal.h CPU API functions have been deprecated. ESP-IDF developers should
include esp_cpu.h instead for equivalent functions.

• The header file compare_set.h have been deleted. ESP-IDF developers should use
esp_cpu_compare_and_set() function provided in esp_cpu.h instead.

• esp_cpu_get_ccount(), esp_cpu_set_ccount() and esp_cpu_in_ocd_debug_mode()
were removed from esp_cpu.h. ESP-IDF developers should use respec-
tively esp_cpu_get_cycle_count(), esp_cpu_set_cycle_count() and
esp_cpu_dbgr_is_attached() instead.

• The header file esp_intr.h has been deleted. Please include esp_intr_alloc.h to allocate and ma-
nipulate interrupts.

• The Panic API (functions/types/macros prefixed with esp_panic) has been made into a private API. Thus,
the previous include path #include "esp_panic.h" has been removed. If users still require usage

Espressif Systems 2582
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/issues/new/choose
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

of the Trax API (though this is not recommended), it can be included via #include "esp_private/
panic_reason.h". Besides, developers should include esp_debug_helpers.h instead to use any
debug-related helper functions, e.g., print backtrace.

• The header file soc_log.h is now renamed to esp_hw_log.h and has been made private. Users are
encouraged to use logging APIs provided under esp_log.h instead.

• The header files spinlock.h, clk_ctrl_os.h, and rtc_wdt.h must now be included without the
soc prefix. For example, #include "spinlock.h".

• esp_chip_info() returns the chip version in the format = 100 * major eFuse version + minor
eFuse version. Thus, the revision in the esp_chip_info_t structure is expanded to uint16_t to
fit the new format.

PSRAM
• The target-specific header file spiram.h and the header file esp_spiram.h have been removed. A
new component esp_psram is created instead. For PSRAM/SPIRAM-related functions, users now include
esp_psram.h and set the esp_psram component as a component requirement in their CMakeLists.
txt project files.

• esp_spiram_get_chip_size and esp_spiram_get_size have been deleted. You should use
esp_psram_get_size instead.

eFuse
• The parameter type of function esp_secure_boot_read_key_digests() changed from
ets_secure_boot_key_digests_t* to esp_secure_boot_key_digests_t*. The
new type is the same as the old one, except that the allow_key_revoke flag has been removed. The latter
was always set to true in current code, not providing additional information.

• Added eFuse wafer revisions: major and minor. The esp_efuse_get_chip_ver() API is
not compatible with these changes, so it was removed. Instead, please use the following APIs:
efuse_hal_get_major_chip_version(), efuse_hal_get_minor_chip_version() or
efuse_hal_chip_revision().

esp_common EXT_RAM_ATTR is deprecated. Use the new macro EXT_RAM_BSS_ATTR to put .bss on
PSRAM.

esp_system
• The header files esp_random.h, esp_mac.h, and esp_chip_info.h, which were all previously indi-
rectly included via the header file esp_system.h, must now be included directly. These indirect inclusions
from esp_system.h have been removed.

• The Backtrace Parser API (functions/types/macros prefixed with esp_eh_frame_) has been made into a
private API. Thus, the previous include path #include "eh_frame_parser.h" has been removed. If
users still require usage of the Backtrace Parser API (though this is not recommended), it can be included via
#include "esp_private/eh_frame_parser.h".

• The Interrupt Watchdog API (functions/types/macros prefixed with esp_int_wdt_) has been made into a
private API. Thus, the previous include path #include "esp_int_wdt.h" has been removed. If users
still require usage of the Interrupt Watchdog API (though this is not recommended), it can be included via
#include "esp_private/esp_int_wdt.h".

SOC Dependency
• Public API headers listed in the Doxyfiles will not expose unstable and unnecessary soc header files, such as
soc/soc.h and soc/rtc.h. That means the user has to explicitly include them in their code if these
"missing" header files are still wanted.

• Kconfig option LEGACY_INCLUDE_COMMON_HEADERS is also removed.
• The header file soc/soc_memory_types.h has been deprecated. Users should use the
esp_memory_utils.h instead. Including soc/soc_memory_types.h will bring a build warning
like soc_memory_types.h is deprecated, please migrate to esp_memory_utils.h

Espressif Systems 2583
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

APP Trace One of the timestamp sources has changed from the legacy timer group driver to the new
GPTimer. Kconfig choices like APPTRACE_SV_TS_SOURCE_TIMER00 has been changed to APP-
TRACE_SV_TS_SOURCE_GPTIMER. User no longer need to choose the group and timer ID.

esp_timer The FRC2-based legacy implementation of esp_timer available on ESP32 has been removed. The sim-
pler and more efficient implementation based on the LAC timer is now the only option.

ESP Image The image SPI speed enum definitions have been renamed.
• Enum ESP_IMAGE_SPI_SPEED_80M has been renamed to ESP_IMAGE_SPI_SPEED_DIV_1.
• Enum ESP_IMAGE_SPI_SPEED_40M has been renamed to ESP_IMAGE_SPI_SPEED_DIV_2.
• Enum ESP_IMAGE_SPI_SPEED_26M has been renamed to ESP_IMAGE_SPI_SPEED_DIV_3.
• Enum ESP_IMAGE_SPI_SPEED_20M has been renamed to ESP_IMAGE_SPI_SPEED_DIV_4.

Task Watchdog Timers
• The API for esp_task_wdt_init() has changed as follows:

– Configuration is now passed as a configuration structure.
– The function will now handle subscribing of the idle tasks if configured to do so.

• The former CONFIG_ESP_TASK_WDT configuration option has been renamed to CON-
FIG_ESP_TASK_WDT_INIT and a new CONFIG_ESP_TASK_WDT_EN option has been introduced.

FreeRTOS

Legacy API and Data Types Previously, the configENABLE_BACKWARD_COMPATIBILITY option was
set by default, thus allowing pre FreeRTOS v8.0.0 function names and data types to be used. The configEN-
ABLE_BACKWARD_COMPATIBILITY is now disabled by default, thus legacy FreeRTOS names/types are no
longer supportd by default. Users should do one of the followings:

• Update their code to remove usage of legacy FreeRTOS names/types.
• Enable the CONFIG_FREERTOS_ENABLE_BACKWARD_COMPATIBILITY to explicitly allow the usage of
legacy names/types.

Tasks Snapshot The header task_snapshot.h has been removed from freertos/task.h. ESP-IDF
developers should include freertos/task_snapshot.h if they need tasks snapshot API.
The function vTaskGetSnapshot() now returns BaseType_t. Return value shall be pdTRUE on success and
pdFALSE otherwise.

FreeRTOSAsserts Previously, FreeRTOS asserts were configured separately from the rest of the system using the
FREERTOS_ASSERT kconfig option. This option has now been removed and the configuration is now done through
COMPILER_OPTIMIZATION_ASSERTION_LEVEL.

Port Macro API The file portmacro_deprecated.h which was added to maintain backward compatibility
for deprecated APIs is removed. Users are advised to use the alternate functions for the deprecated APIs as listed
below:

• portENTER_CRITICAL_NESTED() is removed. Users should use the port-
SET_INTERRUPT_MASK_FROM_ISR() macro instead.

• portEXIT_CRITICAL_NESTED() is removed. Users should use the port-
CLEAR_INTERRUPT_MASK_FROM_ISR() macro instead.

• vPortCPUInitializeMutex() is removed. Users should use thespinlock_initialize() func-
tion instead.

• vPortCPUAcquireMutex() is removed. Users should use the spinlock_acquire() function in-
stead.

Espressif Systems 2584
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

• vPortCPUAcquireMutexTimeout() is removed. Users should use the spinlock_acquire()
function instead.

• vPortCPUReleaseMutex() is removed. Users should use the spinlock_release() function in-
stead.

App Update
• The functions esp_ota_get_app_description() and esp_ota_get_app_elf_sha256()
have been termed as deprecated. Please use the alternative functions esp_app_get_description()
and esp_app_get_elf_sha256() respectively. These functions have now been moved to a new com-
ponent esp_app_format. Please refer to the header file esp_app_desc.h .

Bootloader Support
• The esp_app_desc_t structure, which used to be declared in esp_app_format.h , is now declared in
esp_app_desc.h .

• The function bootloader_common_get_partition_description() has now been made pri-
vate. Please use the alternative function esp_ota_get_partition_description(). Note that this
function takes esp_partition_t as its first argument instead of esp_partition_pos_t.

Chip Revision The bootloader checks the chip revision at the beginning of the application loading.
The application can only be loaded if the version is >= CONFIG_ESP32C6_REV_MIN and < CON-
FIG_ESP32C6_REV_MAX_FULL.
During the OTA upgrade, the version requirements and chip revision in the application header are checked for com-
patibility. The application can only be updated if the version is >= CONFIG_ESP32C6_REV_MIN and < CON-
FIG_ESP32C6_REV_MAX_FULL.

Tools

IDF Monitor IDF Monitor makes the following changes regarding baud-rate:
• IDF monitor now uses the custom console baud-rate (CONFIG_ESP_CONSOLE_UART_BAUDRATE) by de-
fault instead of 115200.

• Setting a custom baud from menuconfig is no longer supported.
• A custom baud-rate can be specified from command line with the idf.py monitor -b <baud> com-
mand or through setting environment variables.

• Please note that the baud-rate argument has been renamed from -B to -b in order to be consistent with the
global baud-rate idf.py -b <baud>. Run idf.py monitor --help for more information.

Deprecated Commands idf.py sub-commands and cmake target names have been unified to use hyphens (-)
instead of underscores (_). Using a deprecated sub-command or target name will produce a warning. Users are
advised to migrate to using the new sub-commands and target names. The following changes have been made:

Espressif Systems 2585
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/components/esp_app_format
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_app_format/include/esp_app_desc.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/bootloader_support/include/esp_app_format.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_app_format/include/esp_app_desc.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

Table 1: Deprecated Sub-command and Target Names
Old Name New Name
efuse_common_table efuse-common-table
efuse_custom_table efuse-custom-table
erase_flash erase-flash
partition_table partition-table
partition_table-flash partition-table-flash
post_debug post-debug
show_efuse_table show-efuse-table
erase_otadata erase-otadata
read_otadata read-otadata

Esptool The CONFIG_ESPTOOLPY_FLASHSIZE_DETECT option has been renamed to CON-
FIG_ESPTOOLPY_HEADER_FLASHSIZE_UPDATE and has been disabled by default. New and existing projects
migrated to ESP-IDF v5.0 will have to set CONFIG_ESPTOOLPY_FLASHSIZE. If this is not possible due to an
unknown flash size at build time, then CONFIG_ESPTOOLPY_HEADER_FLASHSIZE_UPDATE can be enabled.
However, once enabled, to keep the digest valid, a SHA256 digest will no longer be appended to the image when
updating the binary header with the flash size during flashing.

Windows Environment The Msys/Mingw-based Windows environment support got deprecated in ESP-IDF v4.0
and was entirely removed in v5.0. Please use ESP-IDF Tools Installer to set up a compatible environment. The
options include Windows Command Line, Power Shell and the graphical user interface based on Eclipse IDE.
In addition, a VS Code-based environment can be set up with the supported plugin: https://github.com/espressif/
vscode-esp-idf-extension.

5.1.2 Migration from 5.0 to 5.1

GCC

GCC Version The previous GCC version was GCC 11.2.0. This has now been upgraded to GCC 12.2.0 on all
targets. Users that need to port their code from GCC 11.2.0 to 12.2.0 should refer to the series of official GCC
porting guides listed below:

• Porting to GCC 12

Warnings The upgrade to GCC 12.2.0 has resulted in the addition of new warnings, or enhancements to existing
warnings. The full details of all GCC warnings can be found in GCCWarning Options. Users are advised to double-
check their code, then fix the warnings if possible. Unfortunately, depending on the warning and the complexity of
the user's code, some warnings will be false positives that require non-trivial fixes. In such cases, users can choose to
suppress the warning in multiple ways. This section outlines some common warnings that users are likely to encounter
and ways to fix them.

-Wuse-after-free Typically, this warning should not produce false-positives for release-level code. But this
may appear in test cases. There is an example of how it was fixed in IDF's test_realloc.c.

void *x = malloc(64);
void *y = realloc(x, 48);
TEST_ASSERT_EQUAL_PTR(x, y);

Espressif Systems 2586
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/vscode-esp-idf-extension
https://github.com/espressif/vscode-esp-idf-extension
https://gcc.gnu.org/gcc-12/porting_to.html
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Warning-Options.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

Pointers may be converted to int to avoid warning -Wuse-after-free.

int x = (int) malloc(64);
int y = (int) realloc((void *) x, 48);
TEST_ASSERT_EQUAL_UINT32((uint32_t) x, (uint32_t) y);

-Waddress GCC 12.2.0 introduces an enhanced version of the -Waddresswarning option, which is nowmore
eager in detecting the checking of pointers to an array in if-statements.
The following code will trigger the warning:

char array[8];
...
if (array)

memset(array, 0xff, sizeof(array));

Eliminating unnecessary checks resolves the warning.

char array[8];
...
memset(array, 0xff, sizeof(array));

RISC-V Builds Outside of IDF The RISC-V extensions zicsr and zifencei have been separated from the
I extension. GCC 12 reflects this change, and as a result, when building for RISC-V ESP32 chips outside of the IDF
framework, you must include the _zicsr_zifencei postfix when specifying the -march option in your build
system.
Example:

riscv32-esp-elf-gcc main.c -march=rv32imac

Now is replaced with:

riscv32-esp-elf-gcc main.c -march=rv32imac_zicsr_zifencei

IEEE 802.15.4

ReceiveHandleDone
Note: It is required since IDF v5.1.3 release.

User must call the function esp_ieee802154_receive_handle_done() to notify 802.15.4 driver after the
received frame is handled. Otherwise the frame buffer will not be freed for future use.

Peripherals

GPSPI Following items are deprecated. Since ESP-IDF v5.1, GPSPI clock source is configurable.
• spi_get_actual_clock is deprecated, you should use spi_device_get_actual_freq() in-
stead.

Espressif Systems 2587
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

LEDC
• soc_periph_ledc_clk_src_legacy_t::LEDC_USE_RTC8M_CLK is deprecated. Please use
LEDC_USE_RC_FAST_CLK instead.

Storage

FatFs esp_vfs_fat_sdmmc_unmount() is now deprecated, you can use
esp_vfs_fat_sdcard_unmount() instead. This API is deprecated in previous IDF versions, but without
deprecation warning and migration guide. Since IDF v5.1, calling this esp_vfs_fat_sdmmc_unmount()
API will generate deprecation warning.

SPI_FLASH
• spi_flash_get_counters() is deprecated, please use esp_flash_get_counters() instead.
• spi_flash_dump_counters() is deprecated, please use esp_flash_dump_counters() in-
stead.

• spi_flash_reset_counters() is deprecated, please use esp_flash_reset_counters() in-
stead.

SPI Flash Driver XMC-C series flash suspend support has been removed. According to feedback from the
flash manufacturer, in some situations the XMC-C flash would require a 1ms interval between resume and next
command. This is too long for a software request. Based on the above reason, in order to use suspend safely,
we decide to remove flash suspend support from XMC-C series. But you can still force enable it via CON-
FIG_SPI_FLASH_FORCE_ENABLE_XMC_C_SUSPEND. If you have any questions, please contact espressif business
support.

Networking

SNTP SNTP module now provides thread safe APIs to access lwIP functionality. It's recommended to use
ESP_NETIF API. Please refer to the chapter SNTP API for more details.

System

FreeRTOS

Power Management
• esp_pm_config_esp32xx_t is deprecated, use esp_pm_config_t instead.
• esp32xx/pm.h is deprecated, use esp_pm.h instead.

WiFi

Espressif Systems 2588
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

WiFi Enterprise security APIs defined in esp_wpa2.h have been deprecated. Please use newer APIs from
esp_eap_client.h.

Espressif Systems 2589
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 5. Migration Guides

Espressif Systems 2590
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 6

Libraries and Frameworks

6.1 Cloud Frameworks

ESP32-C6 supports multiple cloud frameworks using agents built on top of ESP-IDF. Here are the pointers to various
supported cloud frameworks' agents and examples:

6.1.1 ESP RainMaker

ESP RainMaker is a complete solution for accelerated AIoT development. ESP RainMaker on GitHub.

6.1.2 AWS IoT

https://github.com/espressif/esp-aws-iot is an open source repository for ESP32-C6 based on AmazonWeb Services'
aws-iot-device-sdk-embedded-C.

6.1.3 Azure IoT

https://github.com/espressif/esp-azure is an open source repository for ESP32-C6 based onMicrosoft Azure's azure-
iot-sdk-c SDK.

6.1.4 Google IoT Core

https://github.com/espressif/esp-google-iot is an open source repository for ESP32-C6 based on Google's iot-device-
sdk-embedded-c SDK.

6.1.5 Aliyun IoT

https://github.com/espressif/esp-aliyun is an open source repository for ESP32-C6 based on Aliyun's iotkit-
embedded SDK.

6.1.6 Joylink IoT

https://github.com/espressif/esp-joylink is an open source repository for ESP32-C6 based on Joylink's
joylink_dev_sdk SDK.

2591

https://rainmaker.espressif.com/
https://github.com/espressif/esp-rainmaker
https://github.com/espressif/esp-aws-iot
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/espressif/esp-azure
https://github.com/Azure/azure-iot-sdk-c
https://github.com/Azure/azure-iot-sdk-c
https://github.com/espressif/esp-google-iot
https://github.com/GoogleCloudPlatform/iot-device-sdk-embedded-c
https://github.com/GoogleCloudPlatform/iot-device-sdk-embedded-c
https://github.com/espressif/esp-aliyun
https://github.com/aliyun/iotkit-embedded
https://github.com/aliyun/iotkit-embedded
https://github.com/espressif/esp-joylink
https://storage.jd.com/testsmartcloud/joylink_dev_sdk.zip

Chapter 6. Libraries and Frameworks

6.1.7 Tencent IoT

https://github.com/espressif/esp-welink is an open source repository for ESP32-C6 based on Tencent's welink SDK.

6.1.8 Tencentyun IoT

https://github.com/espressif/esp-qcloud is an open source repository for ESP32-C6 based on Tencentyun's qcloud-
iot-sdk-embedded-c SDK.

6.1.9 Baidu IoT

https://github.com/espressif/esp-baidu-iot is an open source repository for ESP32-C6 based on Baidu's iot-sdk-c
SDK.

6.2 Espressif's Frameworks

Here you will find a collection of the official Espressif libraries and frameworks.

6.2.1 Espressif Audio Development Framework

The ESP-ADF is a comprehensive framework for audio applications including:
• CODEC's HAL
• Music Players and Recorders
• Audio Processing
• Bluetooth Speakers
• Internet Radios
• Hands-free devices
• Speech Recognition

This framework is available at GitHub: ESP-ADF.

6.2.2 ESP-CSI

ESP-CSI is an experimental implementation that uses the Wi-Fi Channel State Information to detect the presence of
a human body.
See ESP-CSI project for more information about it.

6.2.3 Espressif DSP Library

The library provides algorithms optimized specifically for digital signal processing applications. This library supports:
• Matrix multiplication
• Dot product
• FFT (Fast Fourier Transform)
• IIR (Infinite Impulse Response)
• FIR (Finite Impulse Response)
• Vector math operations

This library is available here: ESP-DSP library.

Espressif Systems 2592
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-welink
https://open.welink.qq.com/#/dev-resource/sdk
https://github.com/espressif/esp-qcloud
https://github.com/TencentCloud/tencentcloud-iot-sdk-embedded-c
https://github.com/TencentCloud/tencentcloud-iot-sdk-embedded-c
https://github.com/espressif/esp-baidu-iot
https://github.com/baidu/iot-sdk-c
https://github.com/baidu/iot-sdk-c
https://github.com/espressif/esp-adf
https://github.com/espressif/esp-csi
https://github.com/espressif/esp-dsp
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 6. Libraries and Frameworks

6.2.4 ESP-WIFI-MESH Development Framework

This framework is based on the ESP-WIFI-MESH protocol with the following features:
• Fast network configuration
• Stable upgrade
• Efficient debugging
• LAN control
• Various application demos

ESP-MDF.

6.2.5 ESP-WHO

The ESP-WHO is a face detection and recognition framework using the ESP32 and camera. To know more about
the project, see ESP-WHO on GitHub.

6.2.6 ESP RainMaker

ESP RainMaker is a complete solution for accelerated AIoT development. Using ESP RainMaker, you can create
AIoT devices from the firmware to the integration with voice-assistant, phone apps and cloud backend.
ESP RainMaker on GitHub.

6.2.7 ESP-IoT-Solution

ESP-IoT-Solution contains commonly used device drivers and code frameworks when developing IoT systems. The
device drivers and code frameworks within the ESP-IoT-Solution are organized as separate components, allowing
them to be easily integrated into an ESP-IDF project.
ESP-IoT-Solution includes:

• Device drivers for sensors, display, audio, GUI, input, actuators, etc.
• Framework and documentation for low power, security, storage, etc.
• Guide for Espressif open source solutions from practical application point.

ESP-IoT-Solution on GitHub.

6.2.8 ESP-Protocols

ESP-Protocols repository contains collection of protocol components for ESP-IDF. The code within the ESP-
Protocols is organized into separate components, allowing them to be easily integrated into an ESP-IDF project.
In addition to that, each component is available in IDF Component Registry.
ESP-Protocols components:

• esp_modem enables connectivity with GSM/LTE modems using AT commands or PPP protocol, see the
esp_modem documentation.

• mdns (mDNS) is a multicast UDP service that is used to provide local network service and host discovery, see
the mdns documentation.

• esp_websocket_client is a managed component for esp-idf that contains implementation of [WebSocket proto-
col client](https://datatracker.ietf.org/doc/html/rfc6455) for ESP32, see the esp_websocket_client documen-
tation.

• asio is a cross-platform C++ library, see https://think-async.com/Asio/. It provides a consistent asynchronous
model using a modern C++ approach. , see the asio documentation.

Espressif Systems 2593
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-mdf
https://github.com/espressif/esp-who
https://rainmaker.espressif.com/
https://github.com/espressif/esp-rainmaker
https://docs.espressif.com/projects/espressif-esp-iot-solution/en/latest/
https://github.com/espressif/esp-iot-solution
https://github.com/espressif/esp-protocols
https://components.espressif.com/
https://components.espressif.com/component/espressif/esp_modem
https://docs.espressif.com/projects/esp-protocols/esp_modem/docs/latest/index.html
https://components.espressif.com/component/espressif/mdns
https://docs.espressif.com/projects/esp-protocols/mdns/docs/latest/en/index.html
https://components.espressif.com/component/espressif/esp_websocket_client
https://datatracker.ietf.org/doc/html/rfc6455
https://docs.espressif.com/projects/esp-protocols/esp_websocket_client/docs/latest/index.html
https://docs.espressif.com/projects/esp-protocols/esp_websocket_client/docs/latest/index.html
https://components.espressif.com/component/espressif/asio
https://think-async.com/Asio/
https://docs.espressif.com/projects/esp-protocols/asio/docs/latest/index.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 6. Libraries and Frameworks

6.2.9 ESP-BSP

ESP-BSP repository contains Board Support Packages (BSPs) for various Espressif's and 3rd party development
boards. BSPs are useful for quick start on a supported board. Usually they contain pinout definition and helper
functions, that will initialize peripherals for the specific board. Additionally, the BSP would contain drivers for
external chips populated on the development board, such as sensors, displays, audio codecs etc.

6.2.10 ESP-IDF-CXX

ESP-IDF-CXX contains C++ wrappers for part of ESP-IDF. The focus is on ease of use, safety, automatic resource
management and shifting checks to compile time instead of failing at run time. There are C++ classes for ESP-Timer,
I2C, SPI, GPIO and other peripherals or features of ESP-IDF. ESP-IDF-CXX is available as a component from the
component registry. Please check the project's README.md for more information.

Espressif Systems 2594
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-bsp
https://github.com/espressif/esp-idf-cxx
https://components.espressif.com/components/espressif/esp-idf-cxx
https://github.com/espressif/esp-idf-cxx/blob/main/README.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7

Contributions Guide

We welcome contributions to the esp-idf project!

7.1 How to Contribute

Contributions to esp-idf - fixing bugs, adding features, adding documentation - are welcome. We accept contributions
via Github Pull Requests.

7.2 Before Contributing

Before sending us a Pull Request, please consider this list of points:
• Is the contribution entirely your own work, or already licensed under an Apache License 2.0 compatible Open
Source License? If not then we unfortunately cannot accept it. Please check the Copyright Header Guide for
additional information.

• Does any new code conform to the esp-idf Style Guide?
• Have you installed the pre-commit hook for esp-idf project?
• Does the code documentation follow requirements in Documenting Code?
• Is the code adequately commented for people to understand how it is structured?
• Is there documentation or examples that go with code contributions? There are additional suggestions for
writing good examples in examples readme.

• Are comments and documentation written in clear English, with no spelling or grammar errors?
• Example contributions are also welcome. Please check the Creating Examples guide for these.
• If the contribution contains multiple commits, are they grouped together into logical changes (onemajor change
per pull request)? Are any commits with names like "fixed typo" squashed into previous commits?

• If you're unsure about any of these points, please open the Pull Request anyhow and then ask us for feedback.

7.3 Pull Request Process

After you open the Pull Request, there will probably be some discussion in the comments field of the request itself.
Once the Pull Request is ready to merge, it will first be merged into our internal git system for in-house automated
testing.
If this process passes, it will be merged into the public GitHub repository.

2595

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples
https://eli.thegreenplace.net/2014/02/19/squashing-github-pull-requests-into-a-single-commit/

Chapter 7. Contributions Guide

7.4 Legal Part

Before a contribution can be accepted, you will need to sign our Contributor Agreement. You will be prompted for
this automatically as part of the Pull Request process.

7.5 Related Documents

7.5.1 Espressif IoT Development Framework Style Guide

About This Guide

Purpose of this style guide is to encourage use of common coding practices within the ESP-IDF.
Style guide is a set of rules which are aimed to help create readable, maintainable, and robust code. By writing
code which looks the same way across the code base we help others read and comprehend the code. By using same
conventions for spaces and newlines we reduce chances that future changes will produce huge unreadable diffs. By
following common patterns formodule structure and by using language features consistently we help others understand
code behavior.
We try to keep rules simple enough, which means that they can not cover all potential cases. In some cases one has
to bend these simple rules to achieve readability, maintainability, or robustness.
When doing modifications to third-party code used in ESP-IDF, follow the way that particular project is written. That
will help propose useful changes for merging into upstream project.

C Code Formatting

Naming
• Any variable or function which is only used in a single source file should be declared static.
• Public names (non-static variables and functions) should be namespaced with a per-component or per-unit
prefix, to avoid naming collisions. ie esp_vfs_register() or esp_console_run(). Starting the
prefix with esp_ for Espressif-specific names is optional, but should be consistent with any other names in the
same component.

• Static variables should be prefixed with s_ for easy identification. For example, static bool s_invert.
• Avoid unnecessary abbreviations (ie shortening data to dat), unless the resulting name would otherwise be
very long.

Indentation Use 4 spaces for each indentation level. Don't use tabs for indentation. Configure the editor to emit 4
spaces each time you press tab key.

Vertical Space Place one empty line between functions. Don't begin or end a function with an empty line.

void function1()
{

do_one_thing();
do_another_thing();

// INCORRECT, don't place empty line here
}

// place empty line here
void function2()
{

// INCORRECT, don't use an empty line here
int var = 0;
while (var < SOME_CONSTANT) {

do_stuff(&var);

(continues on next page)

Espressif Systems 2596
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

(continued from previous page)
}

}

The maximum line length is 120 characters as long as it doesn't seriously affect the readability.

Horizontal Space Always add single space after conditional and loop keywords:

if (condition) { // correct
// ...

}

switch (n) { // correct
case 0:

// ...
}

for(int i = 0; i < CONST; ++i) { // INCORRECT
// ...

}

Add single space around binary operators. No space is necessary for unary operators. It is okay to drop space around
multiply and divide operators:

const int y = y0 + (x - x0) * (y1 - y0) / (x1 - x0); // correct

const int y = y0 + (x - x0)*(y1 - y0)/(x1 - x0); // also okay

int y_cur = -y; // correct
++y_cur;

const int y = y0+(x-x0)*(y1-y0)/(x1-x0); // INCORRECT

No space is necessary around . and -> operators.
Sometimes adding horizontal space within a line can help make code more readable. For example, you can add space
to align function arguments:

esp_rom_gpio_connect_in_signal(PIN_CAM_D6, I2S0I_DATA_IN14_IDX, false);
esp_rom_gpio_connect_in_signal(PIN_CAM_D7, I2S0I_DATA_IN15_IDX, false);
esp_rom_gpio_connect_in_signal(PIN_CAM_HREF, I2S0I_H_ENABLE_IDX, false);
esp_rom_gpio_connect_in_signal(PIN_CAM_PCLK, I2S0I_DATA_IN15_IDX, false);

Note however that if someone goes to add new line with a longer identifier as first argument (e.g. PIN_CAM_VSYNC),
it will not fit. So other lines would have to be realigned, adding meaningless changes to the commit.
Therefore, use horizontal alignment sparingly, especially if you expect new lines to be added to the list later.
Never use TAB characters for horizontal alignment.
Never add trailing whitespace at the end of the line.

Braces
• Function definition should have a brace on a separate line:

// This is correct:
void function(int arg)
{

}

(continues on next page)

Espressif Systems 2597
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

(continued from previous page)
// NOT like this:
void function(int arg) {

}

• Within a function, place opening brace on the same line with conditional and loop statements:

if (condition) {
do_one();

} else if (other_condition) {
do_two();

}

Comments Use // for single line comments. For multi-line comments it is okay to use either // on each line or
a /* */ block.
Although not directly related to formatting, here are a few notes about using comments effectively.

• Don't use single comments to disable some functionality:

void init_something()
{

setup_dma();
// load_resources(); // WHY is this thing commented, asks␣

↪→the reader?
start_timer();

}

• If some code is no longer required, remove it completely. If you need it you can always look it up in git history
of this file. If you disable some call because of temporary reasons, with an intention to restore it in the future,
add explanation on the adjacent line:

void init_something()
{

setup_dma();
// TODO: we should load resources here, but loader is not fully integrated␣

↪→yet.
// load_resources();
start_timer();

}

• Same goes for #if 0 ... #endif blocks. Remove code block completely if it is not used. Otherwise,
add comment explaining why the block is disabled. Don't use #if 0 ... #endif or comments to store
code snippets which you may need in the future.

• Don't add trivial comments about authorship and change date. You can always look up who modified any given
line using git. E.g. this comment adds clutter to the code without adding any useful information:

void init_something()
{

setup_dma();
// XXX add 2016-09-01
init_dma_list();
fill_dma_item(0);
// end XXX add
start_timer();

}

Line Endings Commits should only contain files with LF (Unix style) endings.
Windows users can configure git to check out CRLF (Windows style) endings locally and commit LF endings by
setting the core.autocrlf setting. Github has a document about setting this option <github-line-endings>.

Espressif Systems 2598
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

If you accidentally have some commits in your branch that add LF endings, you can convert them to Unix by running
this command in an MSYS2 or Unix terminal (change directory to the IDF working directory and check the correct
branch is currently checked out, beforehand):

git rebase --exec 'git diff-tree --no-commit-id --name-only -r HEAD | xargs␣
↪→dos2unix && git commit -a --amend --no-edit --allow-empty' master

(Note that this line rebases on master, change the branch name at the end to rebase on another branch.)
For updating a single commit, it's possible to run dos2unix FILENAME and then run git commit --amend

Formatting Your Code You can use astyle program to format your code according to the above recommen-
dations.
If you are writing a file from scratch, or doing a complete rewrite, feel free to re-format the entire file. If you are
changing a small portion of file, don't re-format the code you didn't change. This will help others when they review
your changes.
To re-format a file, run:

tools/format.sh components/my_component/file.c

Type Definitions Should be snake_case, ending with _t suffix:

typedef int signed_32_bit_t;

Enum Enums should be defined through the typedef and be namespaced:

typedef enum
{

MODULE_FOO_ONE,
MODULE_FOO_TWO,
MODULE_FOO_THREE

} module_foo_t;

Assertions The standard C assert() function, defined in assert.h should be used to check conditions that
should be true in source code. In the default configuration, an assert condition that returns false or 0 will call
abort() and trigger a Fatal Error.
assert() should only be used to detect unrecoverable errors due to a serious internal logic bug or corruption,
where it's not possible for the program to continue. For recoverable errors, including errors that are possible due to
invalid external input, an error value should be returned.

Note: When asserting a value of type esp_err_t``is equal to ``ESP_OK, use the ESP_ERROR_CHECK
macro instead of an assert().

It's possible to configure ESP-IDF projects with assertions disabled (see CON-
FIG_COMPILER_OPTIMIZATION_ASSERTION_LEVEL). Therefore, functions called in an assert() statement
should not have side-effects.
It's also necessary to use particular techniques to avoid "variable set but not used" warnings when assertions are
disabled, due to code patterns such as:

int res = do_something();
assert(res == 0);

Espressif Systems 2599
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

Once the assert is optimized out, the res value is unused and the compiler will warn about this. However the
function do_something() must still be called, even if assertions are disabled.
When the variable is declared and initialized in a single statement, a good strategy is to cast it to void on a new line.
The compiler will not produce a warning, and the variable can still be optimized out of the final binary:

int res = do_something();
assert(res == 0);
(void)res;

If the variable is declared separately, for example if it is used for multiple assertions, then it can be declared with the
GCC attribute __attribute__((unused)). The compiler will not produce any unused variable warnings, but
the variable can still be optimized out:

int res __attribute__((unused));

res = do_something();
assert(res == 0);

res = do_something_else();
assert(res != 0);

Header file guards

All public facing header files should have preprocessor guards. A pragma is preferred:

#pragma once

over the following pattern:

#ifndef FILE_NAME_H
#define FILE_NAME_H
...
#endif // FILE_NAME_H

In addition to guard macros, all C header files should have extern "C" guards to allow the header to be used from
C++ code. Note that the following order should be used: pragma once, then any #include statements, then
extern "C" guards:

#pragma once

#include <stdint.h>

#ifdef __cplusplus
extern "C" {
#endif

/* declarations go here */

#ifdef __cplusplus
}
#endif

Include statements

When writing #include statements, try to maintain the following order:
• C standard library headers.
• Other POSIX standard headers and common extensions to them (such as sys/queue.h.)
• Common IDF headers (esp_log.h, esp_system.h, esp_timer.h, esp_sleep.h, etc.)

Espressif Systems 2600
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

• Headers of other components, such as FreeRTOS.
• Public headers of the current component.
• Private headers.

Use angle brackets for C standard library headers and other POSIX headers (#include <stdio.h>).
Use double quotes for all other headers (#include "esp_log.h").

C++ Code Formatting

The same rules as for C apply. Where they are not enough, apply the following rules.

File Naming C++ Header files have the extension .hpp. C++ source files have the extension .cpp. The latter is
important for the compiler to distinguish them from normal C source files.

Naming
• Class and struct names shall be written in CamelCase with a capital letter as beginning. Member variables
and methods shall be in snake_case. An exception from CamelCase is if the readability is severely
decreased, e.g. in GPIOOutput, then an underscore _ is allowed to make it more readable: GPIO_Output.

• Namespaces shall be in lower snake_case.
• Templates are specified in the line above the function declaration.
• Interfaces in terms of Object-Oriented Programming shall be named without the suffix ...Interface.
Later, this makes it easier to extract interfaces from normal classes and vice versa without making a breaking
change.

Member Order in Classes In order of precedence:
• First put the public members, then the protected, then private ones. Omit public, protected or private sections
without any members.

• First put constructors/destructors, then member functions, then member variables.
For example:

class ForExample {
public:

// first constructors, then default constructor, then destructor
ForExample(double example_factor_arg);
ForExample();
~ForExample();

// then remaining pubic methods
set_example_factor(double example_factor_arg);

// then public member variables
uint32_t public_data_member;

private:
// first private methods
void internal_method();

// then private member variables
double example_factor;

};

Spacing
• Don't indent inside namespaces.

Espressif Systems 2601
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

• Put public, protected and private labels at the same indentation level as the corresponding class
label.

Simple Example
// file spaceship.h
#ifndef SPACESHIP_H_
#define SPACESHIP_H_
#include <cstdlib>

namespace spaceships {

class SpaceShip {
public:

SpaceShip(size_t crew);
size_t get_crew_size() const;

private:
const size_t crew;

};

class SpaceShuttle : public SpaceShip {
public:

SpaceShuttle();
};

class Sojuz : public SpaceShip {
public:

Sojuz();
};

template <typename T>
class CargoShip {
public:

CargoShip(const T &cargo);

private:
T cargo;

};

} // namespace spaceships

#endif // SPACESHIP_H_

// file spaceship.cpp
#include "spaceship.h"

namespace spaceships {

// Putting the curly braces in the same line for constructors is OK if it only␣
↪→initializes
// values in the initializer list
SpaceShip::SpaceShip(size_t crew) : crew(crew) { }

size_t SpaceShip::get_crew_size() const
{

return crew;
}

SpaceShuttle::SpaceShuttle() : SpaceShip(7)
{

// doing further initialization

(continues on next page)

Espressif Systems 2602
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

(continued from previous page)
}

Sojuz::Sojuz() : SpaceShip(3)
{

// doing further initialization
}

template <typename T>
CargoShip<T>::CargoShip(const T &cargo) : cargo(cargo) { }

} // namespace spaceships

CMake Code Style

• Indent with four spaces.
• Maximum line length 120 characters. When splitting lines, try to focus on readability where possible (for
example, by pairing up keyword/argument pairs on individual lines).

• Don't put anything in the optional parentheses after endforeach(), endif(), etc.
• Use lowercase (with_underscores) for command, function, and macro names.
• For locally scoped variables, use lowercase (with_underscores).
• For globally scoped variables, use uppercase (WITH_UNDERSCORES).
• Otherwise follow the defaults of the cmake-lint project.

Configuring the Code Style for a Project Using EditorConfig

EditorConfig helps developers define and maintain consistent coding styles between different editors and IDEs. The
EditorConfig project consists of a file format for defining coding styles and a collection of text editor plugins that
enable editors to read the file format and adhere to defined styles. EditorConfig files are easily readable and they work
nicely with version control systems.
For more information, see EditorConfig Website.

Third Party Component Code Styles

ESP-IDF integrates a number of third party components where these components may have differing code styles.

FreeRTOS The code style adopted by FreeRTOS is described in the FreeRTOS style guide. Formatting of FreeR-
TOS source code is automated using Uncrustify, thus a copy of the FreeRTOS code style's Uncrustify configuration
(uncrustify.cfg) is stored within ESP-IDF FreeRTOS component.
If a FreeRTOS source file is modified, the updated file can be formatted again by following the steps below:

1. Ensure that Uncrustify (v0.69.0) is installed on your system
2. Run the following command on the update FreeRTOS source file (where source.c is the path to the source

file that requires formatting).

uncrustify -c $IDF_PATH/components/freertos/FreeRTOS-Kernel/uncrustify.cfg --
↪→replace source.c --no-backup

Documenting Code

Please see the guide here: Documenting Code.

Espressif Systems 2603
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/richq/cmake-lint
https://editorconfig.org
https://www.freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html#StyleGuide
https://github.com/uncrustify/uncrustify
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

Structure

To be written.

Language Features

To be written.

7.5.2 Install pre-commit Hook for ESP-IDF Project

Required Dependency

Python 3.7.* or above. This is our recommended python version for IDF developers.
If you still have python versions not compatible, update your python versions before installing the pre-commit hook.

Install pre-commit

Run pip install pre-commit

Install pre-commit hook

1. Go to the IDF Project Directory
2. Run pre-commit install --allow-missing-config. Install hook by this approach will let you

commit successfully even in branches without the .pre-commit-config.yaml
3. pre-commit hook will run automatically when you're running git commit command

Uninstall pre-commit

Run pre-commit uninstall

What's More?

For detailed usage, please refer to the documentation of pre-commit.

Common Problems For Windows Users

/usr/bin/env: python: Permission denied.

If you're in Git Bash, please check the python executable location by run which python.
If the executable is under ~/AppData/Local/Microsoft/WindowsApps/, then it's a link to
Windows AppStore, not a real one.
Please install python manually and update this in your PATH environment variable.

Your %USERPROFILE% contains non-ASCII characters
pre-commit may fail when initializing an environment for a particular hook when the path of
pre-commit's cache contains non-ASCII characters. The solution is to set PRE_COMMIT_HOME
to a path containing only standard characters before running pre-commit.

• CMD: set PRE_COMMIT_HOME=C:\somepath\pre-commit
• PowerShell: $Env:PRE_COMMIT_HOME = "C:\somepath\pre-commit"
• git bash: export PRE_COMMIT_HOME="/c/somepath/pre-commit"

Espressif Systems 2604
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://pre-commit.com/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

7.5.3 Documenting Code

The purpose of this description is to provide quick summary on documentation style used in espressif/esp-idf repos-
itory and how to add new documentation.

Introduction

When documenting code for this repository, please follow Doxygen style. You are doing it by inserting special
commands, for instance @param, into standard comments blocks, for example:

/**
* @param ratio this is oxygen to air ratio
*/

Doxygen is phrasing the code, extracting the commands together with subsequent text, and building documentation
out of it.
Typical comment block, that contains documentation of a function, looks like below.

Doxygen supports couple of formatting styles. It also gives you great flexibility on level of details to include in
documentation. To get familiar with available features, please check data rich and very well organized Doxygen
Manual.

Why we need it?

The ultimate goal is to ensure that all the code is consistently documented, so we can use tools like Sphinx and Breathe
to aid preparation and automatic updates of API documentation when the code changes.
With these tools the above piece of code renders like below:

Espressif Systems 2605
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/
https://www.doxygen.nl/manual/docblocks.html#specialblock
https://www.doxygen.nl/manual/index.html
https://www.doxygen.nl/manual/index.html
https://www.sphinx-doc.org/
https://breathe.readthedocs.io/en/latest/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

Go for it!

When writing code for this repository, please follow guidelines below.
1. Document all building blocks of code: functions, structs, typedefs, enums, macros, etc. Provide enough in-

formation about purpose, functionality and limitations of documented items, as you would like to see them
documented when reading the code by others.

2. Documentation of function should describe what this function does. If it accepts input parameters and returns
some value, all of them should be explained.

3. Do not add a data type before parameter or any other characters besides spaces. All spaces and line breaks are
compressed into a single space. If you like to break a line, then break it twice.

4. If function has void input or does not return any value, then skip @param or @return

Espressif Systems 2606
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

5. When documenting a define as well as members of a struct or enum, place specific comment like below
after each member.

6. To provide well formatted lists, break the line after command (like @return in example below).

*
* @return
* - ESP_OK if erase operation was successful
* - ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
* - ESP_ERR_NVS_READ_ONLY if handle was opened as read only
* - ESP_ERR_NVS_NOT_FOUND if the requested key doesn't exist
* - other error codes from the underlying storage driver
*

7. Overview of functionality of documented header file, or group of files that make a library, should be placed in
a separate README.rst file of the same directory. If this directory contains header files for different APIs,
then the file name should be apiname-readme.rst.

Go one extra mile

Here are a couple of tips on how you can make your documentation even better and more useful to the reader and
writer.
When writing codes, please follow the guidelines below:

1. Add code snippets to illustrate implementation. To do so, enclose snippet using @code{c} and @endcode
commands.

*
* @code{c}
* // Example of using nvs_get_i32:
* int32_t max_buffer_size = 4096; // default value
* esp_err_t err = nvs_get_i32(my_handle, "max_buffer_size", &max_buffer_size);
* assert(err == ESP_OK || err == ESP_ERR_NVS_NOT_FOUND);
* // if ESP_ERR_NVS_NOT_FOUND was returned, max_buffer_size will still
* // have its default value.

(continues on next page)

Espressif Systems 2607
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

(continued from previous page)
* @endcode
*

The code snippet should be enclosed in a comment block of the function that it illustrates.
2. To highlight some important information use command @attention or @note.

*
* @attention
* 1. This API only impact WIFI_MODE_STA or WIFI_MODE_APSTA mode
* 2. If the ESP32 is connected to an AP, call esp_wifi_disconnect to␣
↪→disconnect.
*

Above example also shows how to use a numbered list.
3. To provide common description to a group of similar functions, enclose them using /**@{*/ and /**@}*/

markup commands:

/**@{*/
/**
* @brief common description of similar functions
*
*/
void first_similar_function (void);
void second_similar_function (void);
/**@}*/

For practical example see nvs_flash/include/nvs.h.
4. You may want to go even further and skip some code like repetitive defines or enumerations. In such case,

enclose the code within /** @cond */ and /** @endcond */ commands. Example of such imple-
mentation is provided in driver/gpio/include/driver/gpio.h.

5. Use markdown to make your documentation even more readable. You will add headers, links, tables and more.

*
* [ESP32-C6 Technical Reference Manual](https://www.espressif.com/sites/
↪→default/files/documentation/esp32-c6_technical_reference_manual_en.pdf)
*

Note: Code snippets, notes, links, etc. will not make it to the documentation, if not enclosed in a comment block
associated with one of documented objects.

6. Prepare one or more complete code examples together with description. Place description to a separate file
README.md in specific folder of examples directory.

Standardize Document Format

When it comes to text, please follow guidelines below to provide well formatted Markdown (.md) or reST (.rst)
documents.

1. Please ensure that one paragraph is written in one line. Don't break lines like below. Breaking lines to enhance
readability is only suitable for writing codes. To make the text easier to read, it is recommended to place an
empty line to separate the paragraph.

2. Please make the line number of CN and EN documents consistent like below. The benefit of this approach
is that it can save time for both writers and translators. When non-bilingual writers need to update text, they
only need to update the same line in the corresponding CN or EN document. For translators, if documents
are updated in English, then translators can quickly locate where to update in the corresponding CN document
later. Besides, by comparing the total number of lines in EN and CN documents, you can quickly find out
whether the CN version lags behind the EN version.

Espressif Systems 2608
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/nvs_flash/include/nvs.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/driver/gpio/include/driver/gpio.h
https://github.com/espressif/esp-idf/tree/b0f5707906b/examples
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

Fig. 1: One line for one paragraph (click to enlarge)

Fig. 2: No line breaks within the same paragraph (click to enlarge)

Fig. 3: Keep the line number for EN and CN documents consistent (click to enlarge)

Espressif Systems 2609
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

Building Documentation

The documentation is built with the esp-docs Python package, which is a wrapper around Sphinx
To install it simply do:

pip install esp-docs

After a successful install then the documentation can be built from the docs folder with:

build-docs build

or for specific target and language with:

build-docs -t esp32 -l en build

For more in-depth documentation about esp-docs features please see the documentation at esp-docs.

Wrap up

We love good code that is doing cool things. We love it even better, if it is well documented, so we can quickly make
it run and also do the cool things.
Go ahead, contribute your code and documentation!

Related Documents

• API Documentation Template

7.5.4 Creating Examples

Each ESP-IDF example is a complete project that someone else can copy and adapt the code to solve their own
problem. Examples should demonstrate ESP-IDF functionality, while keeping this purpose in mind.

Structure

• The main directory should contain a source file named (something)_example_main.c with the main
functionality.

• If the example has additional functionality, split it logically into separate C or C++ source files under main
and place a corresponding header file in the same directory.

• If the example has a lot of additional functionality, consider adding a components directory to the example
project and make some example-specific components with library functionality. Only do this if the components
are specific to the example, if they're generic or common functionality then they should be added to ESP-IDF
itself.

• The example should have a README.md file. Use the template example README and adapt it for your
particular example.

• Examples should have a pytest_<example name>.py file for running an automated example test. If
submitting a GitHub Pull Request which includes an example, it's OK not to include this file initially. The
details can be discussed as part of the Pull Request. Please refer to IDF Tests with Pytest Guide for details.

General Guidelines

Example code should follow the Espressif IoT Development Framework Style Guide.

Espressif Systems 2610
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.sphinx-doc.org/
https://docs.espressif.com/projects/esp-docs/en/latest/
https://github.com/espressif/esp-idf/blob/b0f5707906b/docs/TEMPLATE_EXAMPLE_README.md
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

Checklist

Checklist before submitting a new example:
• Example project name (in README.md) uses the word "example". Use "example" instead of "demo", "test"
or similar words.

• Example does one distinct thing. If the example does more than one thing at a time, split it into two or more
examples.

• Example has a README.md file which is similar to the template example README .
• Functions and variables in the example are named according to naming section of the style guide. (For non-static
names which are only specific to the example's source files, you can use example or something similar as a
prefix.)

• All code in the example is well structured and commented.
• Any unnecessary code (old debugging logs, commented-out code, etc.) is removed from the example.
• Options in the example (like network names, addresses, etc) are not hard-coded. Use configuration items if
possible, or otherwise declare macros or constants)

• Configuration items are provided in a KConfig.projbuild file with a menu named "Example Configura-
tion". See existing example projects to see how this is done.

• All original example code has a license header saying it is "in the public domain / CC0", and a warranty
disclaimer clause. Alternatively, the example is licensed under Apache License 2.0. See existing examples for
headers to adapt from.

• Any adapted or third party example code has the original license header on it. This code must be licensed
compatible with Apache License 2.0.

7.5.5 API Documentation Template

Note: INSTRUCTIONS

1. Use this file (docs/en/api-reference/template.rst) as a template to document API.
2. Change the file name to the name of the header file that represents documented API.
3. Include respective files with descriptions from the API folder using ..include::

• README.rst
• example.rst
• ...

4. Optionally provide description right in this file.
5. Once done, remove all instructions like this one and any superfluous headers.

Overview

Note: INSTRUCTIONS

1. Provide overview where and how this API may be used.
2. Where applicable include code snippets to illustrate functionality of particular functions.
3. To distinguish between sections, use the following heading levels:

• # with overline, for parts
• * with overline, for chapters
• =, for sections
• -, for subsections
• ^, for subsubsections
• ", for paragraphs

Espressif Systems 2611
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/docs/TEMPLATE_EXAMPLE_README.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/docs/en/api-reference/template.rst
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#sections
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

Application Example

Note: INSTRUCTIONS

1. Prepare one or more practical examples to demonstrate functionality of this API.
2. Each example should follow pattern of projects located in esp-idf/examples/ folder.
3. Place example in this folder complete with README.md file.
4. Provide overview of demonstrated functionality in README.md.
5. With good overview reader should be able to understand what example does without opening the source code.
6. Depending on complexity of example, break down description of code into parts and provide overview of

functionality of each part.
7. Include flow diagram and screenshots of application output if applicable.
8. Finally add in this section synopsis of each example together with link to respective folder in esp-idf/

examples/.

API Reference

Note: INSTRUCTIONS

1. This repository provides for automatic update of API reference documentation using code markup retrieved by
Doxygen from header files.

2. Update is done on each documentation build by invoking Sphinx extension :esp_extensions/run_doxygen.py for
all header files listed in the INPUT statement of docs/doxygen/Doxyfile.

3. Each line of the INPUT statement (other than a comment that begins with ##) contains a path to header file
*.h that will be used to generate corresponding *.inc files:

##
Wi-Fi - API Reference
##
../components/esp32/include/esp_wifi.h \
../components/esp32/include/esp_smartconfig.h \

4. When the headers are expanded, any macros defined by default in sdkconfig.h as well as any macros
defined in SOC-specific include/soc/*_caps.h headers will be expanded. This allows the headers to
include/exclude material based on the IDF_TARGET value.

5. The *.inc files contain formatted reference of API members generated automatically on each documen-
tation build. All *.inc files are placed in Sphinx _build directory. To see directives generated for e.g.
esp_wifi.h, run python gen-dxd.py esp32/include/esp_wifi.h.

6. To show contents of *.inc file in documentation, include it as follows:

.. include-build-file:: inc/esp_wifi.inc

For example see docs/en/api-reference/network/esp_wifi.rst
7. Optionally, rather that using *.inc files, you may want to describe API in you own way. See docs/en/api-

reference/storage/fatfs.rst for example.
Below is the list of common .. doxygen...:: directives:

• Functions - .. doxygenfunction:: name_of_function
• Unions -.. doxygenunion:: name_of_union
• Structures -.. doxygenstruct:: name_of_structure together with :members:
• Macros - .. doxygendefine:: name_of_define
• Type Definitions - .. doxygentypedef:: name_of_type
• Enumerations - .. doxygenenum:: name_of_enumeration

See Breathe documentation for additional information.
To provide a link to header file, use the link custom role directive as follows:

* :component_file:`path_to/header_file.h`

Espressif Systems 2612
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/docs/doxygen/Doxyfile
https://github.com/espressif/esp-idf/blob/b0f5707906b/docs/en/api-reference/network/esp_wifi.rst
https://github.com/espressif/esp-idf/blob/b0f5707906b/docs/en/api-reference/storage/fatfs.rst
https://github.com/espressif/esp-idf/blob/b0f5707906b/docs/en/api-reference/storage/fatfs.rst
https://breathe.readthedocs.io/en/latest/directives.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

8. In any case, to generate API reference, the file docs/doxygen/Doxyfile should be updated with paths to *.h
headers that are being documented.

9. When changes are committed and documentation is build, check how this section has been rendered. Correct
annotations in respective header files, if required.

7.5.6 Contributor Agreement

Individual Contributor Non-Exclusive License Agreement including the Traditional Patent LicenseOPTION

Thank you for your interest in contributing to this Espressif project hosted on GitHub ("We" or "Us").
The purpose of this contributor agreement ("Agreement") is to clarify and document the rights granted by contributors
to Us. To make this document effective, please follow the instructions in the Contributions Guide.

1. DEFINITIONS "You" means the Individual Copyright owner who submits a Contribution to Us. If You are
an employee and submit the Contribution as part of your employment, You have had Your employer approve this
Agreement or sign the Entity version of this document.
"Contribution"means any original work of authorship (software and/or documentation) including anymodifications
or additions to an existing work, Submitted by You to Us, in which You own the Copyright. If You do not own the
Copyright in the entire work of authorship, please contact Us by submitting a comment on GitHub.
"Copyright"means all rights protecting works of authorship owned or controlled by You, including copyright, moral
and neighboring rights, as appropriate, for the full term of their existence including any extensions by You.
"Material"means the software or documentation made available by Us to third parties. When this Agreement covers
more than one software project, the Material means the software or documentation to which the Contribution was
Submitted. After You Submit the Contribution, it may be included in the Material.
"Submit"means any form of physical, electronic, or written communication sent to Us, including but not limited to
electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of,
Us, but excluding communication that is conspicuously marked or otherwise designated in writing by You as "Not a
Contribution."
"Submission Date" means the date You Submit a Contribution to Us.
"Documentation" means any non-software portion of a Contribution.

2. LICENSE GRANT 2.1 Copyright License to Us
Subject to the terms and conditions of this Agreement, You hereby grant to Us a worldwide, royalty-free, NON-
exclusive, perpetual and irrevocable license, with the right to transfer an unlimited number of non-exclusive licenses
or to grant sublicenses to third parties, under the Copyright covering the Contribution to use the Contribution by all
means, including, but not limited to:

• to publish the Contribution,
• to modify the Contribution, to prepare derivative works based upon or containing the Contribution and to
combine the Contribution with other software code,

• to reproduce the Contribution in original or modified form,
• to distribute, to make the Contribution available to the public, display and publicly perform the Contribution
in original or modified form.

2.2 Moral Rights remain unaffected to the extent they are recognized and not waivable by applicable law. Notwith-
standing, You may add your name in the header of the source code files of Your Contribution and We will respect
this attribution when using Your Contribution.

Espressif Systems 2613
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/docs/doxygen/Doxyfile
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

3. PATENTS 3.1 Patent License
Subject to the terms and conditions of this Agreement You hereby grant to us a worldwide, royalty-free, non-exclusive,
perpetual and irrevocable (except as stated in Section 3.2) patent license, with the right to transfer an unlimited number
of non-exclusive licenses or to grant sublicenses to third parties, to make, have made, use, sell, offer for sale, import
and otherwise transfer the Contribution and the Contribution in combination with the Material (and portions of such
combination). This license applies to all patents owned or controlled by You, whether already acquired or hereafter
acquired, that would be infringed by making, having made, using, selling, offering for sale, importing or otherwise
transferring of Your Contribution(s) alone or by combination of Your Contribution(s) with the Material.
3.2 Revocation of Patent License
You reserve the right to revoke the patent license stated in section 3.1 if we make any infringement claim that is
targeted at your Contribution and not asserted for a Defensive Purpose. An assertion of claims of the Patents shall be
considered for a "Defensive Purpose" if the claims are asserted against an entity that has filed, maintained, threatened,
or voluntarily participated in a patent infringement lawsuit against Us or any of Our licensees.

4. DISCLAIMER THE CONTRIBUTION IS PROVIDED "AS IS". MORE PARTICULARLY, ALL EX-
PRESS OR IMPLIED WARRANTIES INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
EXPRESSLY DISCLAIMED BY YOU TO US AND BY US TO YOU. TO THE EXTENT THAT ANY SUCH
WARRANTIESCANNOTBEDISCLAIMED, SUCHWARRANTY IS LIMITED INDURATIONTOTHEMIN-
IMUM PERIOD PERMITTED BY LAW.

5. Consequential Damage Waiver TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
IN NO EVENT WILL YOU OR US BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF ANTICIPATED
SAVINGS, LOSS OF DATA, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL AND EXEMPLARY
DAMAGES ARISING OUT OF THIS AGREEMENT REGARDLESS OF THE LEGAL OR EQUITABLE THE-
ORY (CONTRACT, TORT OR OTHERWISE) UPON WHICH THE CLAIM IS BASED.

6. Approximation of Disclaimer and Damage Waiver IF THE DISCLAIMER AND DAMAGE WAIVER
MENTIONED IN SECTION 4 AND SECTION 5 CANNOT BE GIVEN LEGAL EFFECT UNDER APPLICA-
BLELOCALLAW, REVIEWINGCOURTS SHALLAPPLYLOCALLAWTHATMOSTCLOSELYAPPROX-
IMATES AN ABSOLUTE WAIVER OF ALL CIVIL LIABILITY IN CONNECTION WITH THE CONTRIBU-
TION.

7. Term 7.1 This Agreement shall come into effect upon Your acceptance of the terms and conditions.
7.2 In the event of a termination of this Agreement Sections 4, 5, 6, 7 and 8 shall survive such termination and shall
remain in full force thereafter. For the avoidance of doubt, Contributions that are already licensed under a free and
open source license at the date of the termination shall remain in full force after the termination of this Agreement.

8. Miscellaneous 8.1 This Agreement and all disputes, claims, actions, suits or other proceedings arising out of
this agreement or relating in any way to it shall be governed by the laws of People's Republic of China excluding its
private international law provisions.
8.2 This Agreement sets out the entire agreement between You and Us for Your Contributions to Us and overrides
all other agreements or understandings.
8.3 If any provision of this Agreement is found void and unenforceable, such provision will be replaced to the extent
possible with a provision that comes closest to the meaning of the original provision and that is enforceable. The
terms and conditions set forth in this Agreement shall apply notwithstanding any failure of essential purpose of this
Agreement or any limited remedy to the maximum extent possible under law.
8.4 You agree to notify Us of any facts or circumstances of which you become aware that would make this Agreement
inaccurate in any respect.

Espressif Systems 2614
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

You

Date:
Name:
Title:
Address:

Us

Date:
Name:
Title:
Address:

7.5.7 Copyright Header Guide

ESP-IDF is released under the Apache License 2.0 with some additional third-party copyrighted code released under
various licenses. For further information please refer to the list of copyrights and licenses.
This page explains how the source code should be properly marked with a copyright header. ESP-IDF uses The
Software Package Data Exchange (SPDX) format which is short and can be easily read by humans or processed by
automated tools for copyright checks.

How to Check the Copyright Headers

Please make sure you have installed the pre-commit hooks which contain a copyright header checker as well. The
checker can suggest a header if it is not able to detect a properly formatted SPDX header.

What if the Checker's Suggestion is Incorrect?

No automated checker (no matter how good is) can replace humans. So the developer's responsibility is to modify
the offered header to be in line with the law and the license restrictions of the original code on which the work is
based on. Certain licenses are not compatible between each other. Such corner cases will be covered by the following
examples.
The checker can be configured with the tools/ci/check_copyright_config.yaml configuration file.
Please check the options it offers and consider updating it in order to match the headers correctly.

Common Examples of Copyright Headers

The simplest case is when the code is not based on any licensed previous work, e.g. it was written completely from
scratch. Such code can be decorated with the following copyright header and put under the license of ESP-IDF:

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/

Espressif Systems 2615
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/LICENSE
https://spdx.dev
https://spdx.dev
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

Less restrictive parts of ESP-IDF Some parts of ESP-IDF are deliberately under less restrictive licenses in order
to ease their re-use in commercial closed source projects. This is the case for ESP-IDF examples which are in Public
domain or under the Creative Commons Zero Universal (CC0) license. The following header can be used in such
source files:

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/

The option allowing multiple licenses joined with the OR keyword from the above example can be achieved with the
definition of multiple allowed licenses in the tools/ci/check_copyright_config.yaml configuration
file. Please use this option with care and only selectively for a limited part of ESP-IDF.

Third party licenses Code licensed under different licenses, modified by Espressif Systems and included in ESP-
IDF cannot be licensed under Apache License 2.0 not even if the checker suggests it. It is advised to keep the original
copyright header and add an SPDX before it.
The following example is a suitable header for a code licensed under the "GNU General Public License v2.0 or later"
held by John Doe with some additional modifications done by Espressif Systems:

/*
* SPDX-FileCopyrightText: 1991 John Doe
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* SPDX-FileContributor: 2019-2023 Espressif Systems (Shanghai) CO LTD
*/

The licenses can be identified and the short SPDX identifiers can be found in the official SPDX license list. Other
very common licenses are the GPL-2.0-only, the BSD-3-Clause, and the BSD-2-Clause.
In exceptional case, when a license is not present on the SPDX license list, it can be expressed by using the LicenseRef-
[idString] custom license identifier, for example LicenseRef-Special-License. The full license text must
be added into the LICENSES directory under Special-License filename.

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: LicenseRef-Special-License
*/

Dedicated LicenseRef-Included custom license identifier can be used to express a situation when the custom
license is included directly in the source file.

/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: LicenseRef-Included
*
* <Full custom license text>
*/

The configuration stored in tools/ci/check_copyright_config.yaml offers features useful for third
party licenses:

• A different license can be defined for the files part of a third party library.
• The check for a selected set of files can be permanently disabled. Please use this option with care and only in
cases when none of the other options are suitable.

Espressif Systems 2616
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/tree/b0f5707906b/examples
https://spdx.org/licenses
https://spdx.org/licenses
https://spdx.github.io/spdx-spec/v2.3/other-licensing-information-detected/#101-license-identifier-field
https://spdx.github.io/spdx-spec/v2.3/other-licensing-information-detected/#101-license-identifier-field
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

7.5.8 ESP-IDF Tests with Pytest Guide

This documentation is a guide that introduces the following aspects:
1. The basic idea of different test types in ESP-IDF
2. How to apply the pytest framework to the test python scripts to make sure the apps are working as expected.
3. ESP-IDF CI target test process
4. Run ESP-IDF tests with pytest locally
5. Tips and tricks on pytest

Disclaimer

In ESP-IDF, we use the following plugins by default:
• pytest-embedded with default services esp,idf
• pytest-rerunfailures

All the introduced concepts and usages are based on the default behavior in ESP-IDF. Not all of them are available
in vanilla pytest.

Installation

All dependencies could be installed by running the install script with the --enable-pytest argument, e.g., $
install.sh --enable-pytest.

Common Issues During Installation

No Package 'dbus-1' found If you're facing an error message like:

configure: error: Package requirements (dbus-1 >= 1.8) were not met:

No package 'dbus-1' found

Consider adjusting the PKG_CONFIG_PATH environment variable if you
installed software in a non-standard prefix.

If you're running under ubuntu system, you may need to run:

sudo apt-get install libdbus-glib-1-dev

or

sudo apt-get install libdbus-1-dev

For other linux distros, you may Google the error message and find the solution. This issue could be solved by
installing the related header files.

Invalid command 'bdist_wheel' If you're facing an error message like:

error: invalid command 'bdist_wheel'

You may need to run:

python -m pip install -U pip

Or

Espressif Systems 2617
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/pytest-embedded
https://github.com/pytest-dev/pytest-rerunfailures
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

python -m pip install wheel

Before running the pip commands, please make sure you're using the IDF python virtual environment.

Basic Concepts

Component-based Unit Tests Component-based unit tests are our recommended way to test your component. All
the test apps should be located under ${IDF_PATH}/components/<COMPONENT_NAME>/test_apps.
For example:

components/
└── my_component/

├── include/
│ └── ...
├── test_apps/
│ ├── test_app_1
│ │ ├── main/
│ │ │ └── ...
│ │ ├── CMakeLists.txt
│ │ └── pytest_my_component_app_1.py
│ ├── test_app_2
│ │ ├── ...
│ │ └── pytest_my_component_app_2.py
│ └── parent_folder
│ ├── test_app_3
│ │ ├── ...
│ │ └── pytest_my_component_app_3.py
│ └── ...
├── my_component.c
└── CMakeLists.txt

Example Tests Example Tests are tests for examples that are intended to demonstrate parts of the ESP-IDF func-
tionality to our customers.
All the test apps should be located under ${IDF_PATH}/examples. For more information please refer to the
Examples Readme .
For example:

examples/
└── parent_folder/

└── example_1/
├── main/
│ └── ...
├── CMakeLists.txt
└── pytest_example_1.py

Custom Tests Custom Tests are tests that aim to run some arbitrary test internally. They are not intended to
demonstrate the ESP-IDF functionality to our customers in any way.
All the test apps should be located under ${IDF_PATH}/tools/test_apps. For more information please
refer to the Custom Test Readme .

Pytest in ESP-IDF

Pytest Execution Process

Espressif Systems 2618
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/README.md
https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/test_apps/README.md
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

1. Bootstrapping Phase
Create session-scoped caches:

• port-target cache
• port-app cache

2. Collection Phase
1. Get all the python files with the prefix pytest_
2. Get all the test functions with the prefix test_
3. Apply the params, and duplicate the test functions.
4. Filter the test cases with CLI options. Introduced detailed usages here

3. Test Running Phase
1. Construct the fixtures. In ESP-IDF, the common fixtures are initialized in this order:

1. pexpect_proc: pexpect instance
2. app: IdfApp instance

The information of the app, like sdkconfig, flash_files, partition_table, etc., would be parsed at this
phase.

3. serial: IdfSerial instance
The port of the host which connected to the target type parsed from the app would be auto-detected.
The flash files would be auto flashed.

4. dut: IdfDut instance
2. Run the real test function
3. Deconstruct the fixtures in this order:

1. dut
1. close the serial port
2. (Only for apps with unity test framework) generate junit report of the unity test cases

2. serial
3. app
4. pexpect_proc: Close the file descriptor

4. (Only for apps with unity test framework)
Raise AssertionError when detected unity test failed if you call dut.
expect_from_unity_output() in the test function.

4. Reporting Phase
1. Generate junit report of the test functions
2. Modify the junit report test case name into ESP-IDF test case ID format: <target>.<config>.

<test function name>
5. Finalizing Phase (Only for apps with unity test framework)

Combine the junit reports if the junit reports of the unity test cases are generated.

Getting Started Example This code example is taken from pytest_console_basic.py .

@pytest.mark.esp32
@pytest.mark.esp32c3
@pytest.mark.generic
@pytest.mark.parametrize('config', [

'history',
'nohistory',

], indirect=True)
def test_console_advanced(config: str, dut: IdfDut) -> None:

if config == 'history':
dut.expect('Command history enabled')

elif config == 'nohistory':
dut.expect('Command history disabled')

Let's go through this simple test case line by line in the following subsections.

Use Markers to Specify the Supported Targets
@pytest.mark.esp32 # <-- support esp32
@pytest.mark.esp32c3 # <-- support esp32c3

(continues on next page)

Espressif Systems 2619
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://docs.pytest.org/en/latest/how-to/parametrize.html
https://docs.pytest.org/en/latest/how-to/fixtures.html
https://github.com/pexpect/pexpect
https://docs.espressif.com/projects/pytest-embedded/en/latest/references/pytest_embedded_idf/#pytest_embedded_idf.app.IdfApp
https://docs.espressif.com/projects/pytest-embedded/en/latest/references/pytest_embedded_idf/#pytest_embedded_idf.serial.IdfSerial
https://docs.espressif.com/projects/pytest-embedded/en/latest/references/pytest_embedded_idf/#pytest_embedded_idf.dut.IdfDut
https://github.com/ThrowTheSwitch/Unity
https://github.com/ThrowTheSwitch/Unity
https://github.com/ThrowTheSwitch/Unity
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/system/console/basic/pytest_console_basic.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

(continued from previous page)
@pytest.mark.generic # <-- test env "generic"

The above lines indicate that this test case supports target esp32 and esp32c3, the target board type should be "generic".
If you want to know what is the "generic" type refers to, you may run pytest --markers to get the detailed
information of all markers.

Note: If the test case supports all officially ESP-IDF supported targets (You may check the value via "idf.py --list-
targets"), you can use a special marker supported_targets to apply all of them in one line.

Use Params to Specify the sdkconfig Files You can use pytest.mark.parametrize with“config”to
apply the same test to different apps with different sdkconfig files. For more information about sdkconfig.ci.
xxx files, please refer to the Configuration Files section under this readme .

@pytest.mark.parametrize('config', [
'history', # <-- run with app built by sdkconfig.ci.history
'nohistory', # <-- run with app built by sdkconfig.ci.nohistory

], indirect=True) # <-- `indirect=True` is required

Overall, this test function would be replicated to 4 test cases:
• esp32.history.test_console_advanced
• esp32.nohistory.test_console_advanced
• esp32c3.history.test_console_advanced
• esp32c3.nohistory.test_console_advanced

Expect From the Serial output
def test_console_advanced(config: str, dut: IdfDut) -> None: # The value of␣
↪→argument ``config`` is assigned by the parametrization.

if config == 'history':
dut.expect('Command history enabled')

elif config == 'nohistory':
dut.expect('Command history disabled')

When we're using dut.expect(...), the string would be compiled into regex at first, and then seeks through
the serial output until the compiled regex is matched, or a timeout is exceeded. You may have to pay extra attention
when the string contains regex keyword characters, like parentheses, or square brackets.
Actually using dut.expect_exact(...) here is better, since it would seek until the string is matched. For
further reading about the different types of expect functions, please refer to the pytest-embedded Expecting doc-
umentation.

Advanced Examples

Multi Dut Tests with the Same App
@pytest.mark.esp32s2
@pytest.mark.esp32s3
@pytest.mark.usb_host
@pytest.mark.parametrize('count', [

2,
], indirect=True)
def test_usb_host(dut: Tuple[IdfDut, IdfDut]) -> None:

device = dut[0] # <-- assume the first dut is the device
host = dut[1] # <-- and the second dut is the host
...

Espressif Systems 2620
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/test_apps/README.md
https://docs.espressif.com/projects/pytest-embedded/en/latest/expecting
https://docs.espressif.com/projects/pytest-embedded/en/latest/expecting
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

After setting the param count to 2, all these fixtures are changed into tuples.

Multi Dut Tests with Different Apps This code example is taken from pytest_wifi_getting_started.py .

@pytest.mark.esp32
@pytest.mark.multi_dut_generic
@pytest.mark.parametrize(

'count, app_path', [
(2,
f'{os.path.join(os.path.dirname(__file__), "softAP")}|{os.path.join(os.

↪→path.dirname(__file__), "station")}'),
], indirect=True

)
def test_wifi_getting_started(dut: Tuple[IdfDut, IdfDut]) -> None:

softap = dut[0]
station = dut[1]
...

Here the first dut was flashed with the app softap , and the second dut was flashed with the app station .

Note: Here the app_path should be set with absolute path. the __file__ macro in python would return the
absolute path of the test script itself.

Multi Dut Tests with Different Apps, and Targets This code example is taken from
pytest_wifi_getting_started.py . As the comment says, for now it's not running in the ESP-IDF CI.

@pytest.mark.parametrize(
'count, app_path, target', [

(2,
f'{os.path.join(os.path.dirname(__file__), "softAP")}|{os.path.join(os.

↪→path.dirname(__file__), "station")}',
'esp32|esp32s2'),
(2,
f'{os.path.join(os.path.dirname(__file__), "softAP")}|{os.path.join(os.

↪→path.dirname(__file__), "station")}',
'esp32s2|esp32'),

],
indirect=True,

)
def test_wifi_getting_started(dut: Tuple[IdfDut, IdfDut]) -> None:

softap = dut[0]
station = dut[1]
...

Overall, this test function would be replicated to 2 test cases:
• softap with esp32 target, and station with esp32s2 target
• softap with esp32s2 target, and station with esp32 target

Support different targets with different sdkconfig files This code example is taken from pytest_panic.py as an
advanced example.

CONFIGS = [
pytest.param('coredump_flash_bin_crc', marks=[pytest.mark.esp32, pytest.mark.

↪→esp32s2]),
pytest.param('coredump_flash_elf_sha', marks=[pytest.mark.esp32]), # sha256␣

↪→only supported on esp32
pytest.param('coredump_uart_bin_crc', marks=[pytest.mark.esp32, pytest.mark.

↪→esp32s2]), (continues on next page)

Espressif Systems 2621
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/getting_started/pytest_wifi_getting_started.py
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/getting_started/softAP/main/softap_example_main.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/getting_started/station/main/station_example_main.c
https://github.com/espressif/esp-idf/blob/b0f5707906b/examples/wifi/getting_started/pytest_wifi_getting_started.py
https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/test_apps/system/panic/pytest_panic.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

(continued from previous page)
pytest.param('coredump_uart_elf_crc', marks=[pytest.mark.esp32, pytest.mark.

↪→esp32s2]),
pytest.param('gdbstub', marks=[pytest.mark.esp32, pytest.mark.esp32s2]),
pytest.param('panic', marks=[pytest.mark.esp32, pytest.mark.esp32s2]),

]

@pytest.mark.parametrize('config', CONFIGS, indirect=True)
...

Use Custom Class Usually, you can write a custom class in these conditions:
1. Add more reusable functions for a certain number of DUTs
2. Add custom setup and teardown functions in different phases described here

This code example is taken from panic/conftest.py

class PanicTestDut(IdfDut):
...

@pytest.fixture(scope='module')
def monkeypatch_module(request: FixtureRequest) -> MonkeyPatch:

mp = MonkeyPatch()
request.addfinalizer(mp.undo)
return mp

@pytest.fixture(scope='module', autouse=True)
def replace_dut_class(monkeypatch_module: MonkeyPatch) -> None:

monkeypatch_module.setattr('pytest_embedded_idf.dut.IdfDut', PanicTestDut)

monkeypatch_module provide a module-scoped monkeypatch fixture.
replace_dut_class is a module-scoped autouse fixture. This function replaces the IdfDut class with your
custom class.

Mark Flaky Tests Sometimes, our test is based on ethernet or wifi. The network may cause the test flaky. We
could mark the single test case within the code repo.
This code example is taken from pytest_esp_eth.py

@pytest.mark.flaky(reruns=3, reruns_delay=5)
def test_esp_eth_ip101(dut: IdfDut) -> None:

...

This flaky marker means that if the test function failed, the test case would rerun for a maximum of 3 times with 5
seconds delay.

Mark Known Failure Cases Sometimes a test couldn't pass for the following reasons:
• Has a bug
• The success ratio is too low because of environment issue, such as network issue. Retry couldn't help

Now you may mark this test case with marker xfail with a user-friendly readable reason.
This code example is taken from pytest_panic.py

@pytest.mark.xfail('config.getvalue("target") == "esp32s2"', reason='raised␣
↪→IllegalInstruction instead')
def test_cache_error(dut: PanicTestDut, config: str, test_func_name: str) -> None:

This marker means that if the test would be a known failure one on esp32s2.

Espressif Systems 2622
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/test_apps/system/panic/conftest.py
https://docs.pytest.org/en/latest/how-to/fixtures.html#scope-sharing-fixtures-across-classes-modules-packages-or-session
https://docs.pytest.org/en/latest/how-to/monkeypatch.html
https://docs.pytest.org/en/latest/how-to/fixtures.html#scope-sharing-fixtures-across-classes-modules-packages-or-session
https://docs.pytest.org/en/latest/how-to/fixtures.html#autouse-fixtures-fixtures-you-don-t-have-to-request
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_eth/test_apps/pytest_esp_eth.py
https://docs.pytest.org/en/latest/how-to/skipping.html#xfail-mark-test-functions-as-expected-to-fail
https://github.com/espressif/esp-idf/blob/b0f5707906b/tools/test_apps/system/panic/pytest_panic.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

Mark Nightly Run Test Cases Some test cases are only triggered in nightly run pipelines due to a lack of runners.

@pytest.mark.nightly_run

Thismarkermeans that the test case would only be run with env varNIGHTLY_RUN orINCLUDE_NIGHTLY_RUN.

Mark Temp Disabled in CI Some test cases which can pass locally may need to be temporarily disabled in CI
due to a lack of runners.

@pytest.mark.temp_skip_ci(targets=['esp32', 'esp32s2'], reason='lack of runners')

This marker means that the test case could still be run locally with pytest --target esp32, but will not run
in CI.

Run Unity Test Cases For component-based unit test apps, one line could do the trick to run all single-board test
cases, including normal test cases and multi-stage test cases:

def test_component_ut(dut: IdfDut):
dut.run_all_single_board_cases()

It would also skip all the test cases with [ignore] mark.
If you need to run a group of test cases, you may run:

def test_component_ut(dut: IdfDut):
dut.run_all_single_board_cases(group='psram')

It would trigger all test cases with module name [psram].
You may also see that there are some test scripts with the following statements, which are deprecated. Please use the
suggested one as above.

def test_component_ut(dut: IdfDut):
dut.expect_exact('Press ENTER to see the list of tests')
dut.write('*')
dut.expect_unity_test_output()

For further reading about our unit testing in ESP-IDF, please refer to our unit testing guide.

Run the Tests in CI

The workflow in CI is simple, build jobs -> target test jobs.

Build Jobs

Build Job Names
• Component-based Unit Tests: build_pytest_components_<target>
• Example Tests: build_pytest_examples_<target>
• Custom Tests: build_pytest_test_apps_<target>

Build Job Commands The command used by CI to build all the relevant tests is: python $IDF_PATH/
tools/ci/ci_build_apps.py <parent_dir> --target <target> -vv --pytest-apps

All apps which supported the specified target would be built with all supported sdkconfig files under
build_<target>_<config>.

Espressif Systems 2623
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

For example, If you run python $IDF_PATH/tools/ci/ci_build_apps.py $IDF_PATH/
examples/system/console/basic --target esp32 --pytest-apps, the folder structure would
be like this:

basic
├── build_esp32_history/
│ └── ...
├── build_esp32_nohistory/
│ └── ...
├── main/
├── CMakeLists.txt
├── pytest_console_basic.py
└── ...

All the binaries folders would be uploaded as artifacts under the same directories.

Target Test Jobs

Target Test Job Names
• Component-based Unit Tests: component_ut_pytest_<target>_<test_env>
• Example Tests: example_test_pytest_<target>_<test_env>
• Custom Tests: test_app_test_pytest_<target>_<test_env>

Target Test Job Commands The command used by CI to run all the relevant tests is: pytest <parent_dir>
--target <target> -m <test_env_marker>

All test cases with the specified target marker and the test env marker under the parent folder would be executed.
The binaries in the target test jobs are downloaded from build jobs, the artifacts would be placed under the same
directories.

Run the Tests Locally

First you need to install ESP-IDF with additional python requirements:

$ cd $IDF_PATH
$ bash install.sh --enable-pytest
$. ./export.sh

By default, the pytest script will look for the build directory in this order:
• build_<target>_<sdkconfig>
• build_<target>
• build_<sdkconfig>
• build

Which means, the simplest way to run pytest is calling idf.py build.
For example, if you want to run all the esp32 tests under the $IDF_PATH/examples/get-started/
hello_world folder, you should run:

$ cd examples/get-started/hello_world
$ idf.py build
$ pytest --target esp32

If you havemultiple sdkconfig files in your test app, like thosesdkconfig.ci.* files, the simpleidf.py build
won't apply the extra sdkconfig files. Let's take $IDF_PATH/examples/system/console/basic as an
example.
If you want to test this app with config history, and build with idf.py build, you should run

Espressif Systems 2624
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

$ cd examples/system/console/basic
$ idf.py -DSDKCONFIG_DEFAULTS="sdkconfig.defaults;sdkconfig.ci.history" build
$ pytest --target esp32 --sdkconfig history

If you want to build and test with all sdkconfig files at the same time, you should use our CI script as an helper script:

$ cd examples/system/console/basic
$ python $IDF_PATH/tools/ci/ci_build_apps.py . --target esp32 -vv --pytest-apps
$ pytest --target esp32

The app with sdkconfig.ci.history will be built in build_esp32_history, and the app with sd-
kconfig.ci.nohistory will be built in build_esp32_nohistory. pytest --target esp32 will
run tests on both apps.

Tips and Tricks

Filter the Test Cases
• filter by target with pytest --target <target>
pytest would run all the test cases that support specified target.

• filter by sdkconfig file with pytest --sdkconfig <sdkconfig>
if <sdkconfig> is default, pytest would run all the test cases with the sdkconfig file sdkconfig.
defaults.
In other cases, pytest would run all the test cases with sdkconfig file sdkconfig.ci.<sdkconfig>.

Add New Markers We’re using two types of custom markers, target markers which indicate that the test cases
should support this target, and env markers which indicate that the test case should be assigned to runners with these
tags in CI.
You can add new markers by adding one line under the ${IDF_PATH}/conftest.py. If it's a target marker,
it should be added into TARGET_MARKERS. If it's a marker that specifies a type of test environment, it should be
added into ENV_MARKERS. The grammar should be: <marker_name>: <marker_description>.

Generate JUnit Report You can call pytest with --junitxml <filepath> to generate the JUnit report. In
ESP-IDF, the test case name would be unified as "<target>.<config>.<function_name>".

Skip Auto Flash Binary Skipping auto-flash binary every time would be useful when you're debugging your test
script.
You can call pytest with --skip-autoflash y to achieve it.

Record Statistics Sometimes you may need to record some statistics while running the tests, like the performance
test statistics.
You can use record_xml_attribute fixture in your test script, and the statistics would be recorded as attributes in the
JUnit report.

Logging System Sometimes you may need to add some extra logging lines while running the test cases.
You can use python logging module to achieve this.

Useful Logging Functions (as Fixture)

Espressif Systems 2625
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://docs.pytest.org/en/latest/how-to/output.html?highlight=junit#record-xml-attribute
https://docs.python.org/3/library/logging.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 7. Contributions Guide

log_performance

def test_hello_world(
dut: IdfDut,
log_performance: Callable[[str, object], None],

) -> None:
log_performance('test', 1)

The above example would log the performance item with pre-defined format: "[performance][test]: 1" and record it
under the properties tag in the junit report if --junitxml <filepath> is specified. The junit test case
node would look like:

<testcase classname="examples.get-started.hello_world.pytest_hello_world" file=
↪→"examples/get-started/hello_world/pytest_hello_world.py" line="13" name="esp32.
↪→default.test_hello_world" time="8.389">

<properties>
<property name="test" value="1"/>

</properties>
</testcase>

check_performance We provide C macros TEST_PERFORMANCE_LESS_THAN and
TEST_PERFORMANCE_GREATER_THAN to log the performance item and check if the value is in the valid range.
Sometimes the performance item value could not be measured in C code, so we also provide a python function for
the same purpose. Please note that using C macros is the preferred approach, since the python function couldn't
recognize the threshold values of the same performance item under different ifdef blocks well.

def test_hello_world(
dut: IdfDut,
check_performance: Callable[[str, float, str], None],

) -> None:
check_performance('RSA_2048KEY_PUBLIC_OP', 123, 'esp32')
check_performance('RSA_2048KEY_PUBLIC_OP', 19001, 'esp32')

The above example would first get the threshold values of the performance item RSA_2048KEY_PUBLIC_OP
from components/idf_test/include/idf_performance.h and the target-specific one compo-
nents/idf_test/include/esp32/idf_performance_target.h, then check if the value reached the minimum limit or
exceeded the maximum limit.
Let's assume the value of IDF_PERFORMANCE_MAX_RSA_2048KEY_PUBLIC_OP is 19000. so the first
check_performance line would pass and the second one would fail with warning: [Performance]
RSA_2048KEY_PUBLIC_OP value is 19001, doesn\'t meet pass standard 19000.0

Further Readings

• pytest documentation: https://docs.pytest.org/en/latest/contents.html
• pytest-embedded documentation: https://docs.espressif.com/projects/pytest-embedded/en/latest/

Espressif Systems 2626
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/blob/b0f5707906b/components/idf_test/include/idf_performance.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/idf_test/include/esp32/idf_performance_target.h
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/idf_test/include/esp32/idf_performance_target.h
https://docs.pytest.org/en/latest/contents.html
https://docs.espressif.com/projects/pytest-embedded/en/latest/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 8

ESP-IDF Versions

The ESP-IDF GitHub repository is updated regularly, especially the master branch where new development takes
place.
For production use, there are also stable releases available.

8.1 Releases

The documentation for the current stable release version can always be found at this URL:
https://docs.espressif.com/projects/esp-idf/en/stable/
Documentation for the latest version (master branch) can always be found at this URL:
https://docs.espressif.com/projects/esp-idf/en/latest/
The full history of releases can be found on the GitHub repository Releases page. There you can find release notes,
links to each version of the documentation, and instructions for obtaining each version.

8.2 Which Version Should I Start With?

• For production purposes, use the current stable version. Stable versions have been manually tested, and are
updated with "bugfix releases" which fix bugs without changing other functionality (see Versioning Scheme for
more details). Every stable release version can be found on the Releases page.

• For prototyping, experimentation or for developing new ESP-IDF features, use the latest version (master branch
in Git). The latest version in the master branch has all the latest features and has passed automated testing, but
has not been completely manually tested ("bleeding edge").

• If a required feature is not yet available in a stable release, but you do not want to use the master branch, it is
possible to check out a pre-release version or a release branch. It is recommended to start from a stable version
and then follow the instructions for Updating to a Pre-Release Version or Updating to a Release Branch.

• If you plan to use another project which is based on ESP-IDF, please check the documentation of that project
to determine the version(s) of ESP-IDF it is compatible with.

See Updating ESP-IDF if you already have a local copy of ESP-IDF and wish to update it.

8.3 Versioning Scheme

ESP-IDF uses Semantic Versioning. This means that:

2627

https://docs.espressif.com/projects/esp-idf/en/stable/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://github.com/espressif/esp-idf/releases
https://docs.espressif.com/projects/esp-idf/en/stable/
https://github.com/espressif/esp-idf/releases
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://semver.org/

Chapter 8. ESP-IDF Versions

• Major Releases, like v3.0, add new functionality and may change functionality. This includes removing
deprecated functionality.
If updating to a new major release (for example, from v2.1 to v3.0), some of your project's code may need
updating and functionality may need to be re-tested. The release notes on the Releases page include lists of
Breaking Changes to refer to.

• Minor Releases like v3.1 add new functionality and fix bugs but will not change or remove documented
functionality, or make incompatible changes to public APIs.
If updating to a new minor release (for example, from v3.0 to v3.1), your project's code does not require
updating, but you should re-test your project. Pay particular attention to the items mentioned in the release
notes on the Releases page.

• Bugfix Releases like v3.0.1 only fix bugs and do not add new functionality.
If updating to a new bugfix release (for example, from v3.0 to v3.0.1), you do not need to change any code
in your project, and you only need to re-test the functionality directly related to bugs listed in the release notes
on the Releases page.

8.4 Support Periods

Each ESP-IDF major and minor release version has an associated support period. After this period, the release is
End of Life and no longer supported.
The ESP-IDF Support Period Policy explains this in detail, and describes how the support periods for each release
are determined.
Each release on the Releases page includes information about the support period for that particular release.
As a general guideline:

• If starting a new project, use the latest stable release.
• If you have a GitHub account, click the "Watch" button in the top-right of the Releases page and choose
"Releases only". GitHub will notify you whenever a new release is available. Whenever a bug fix release is
available for the version you are using, plan to update to it.

• If possible, periodically update the project to a new major or minor ESP-IDF version (for example, once a
year.) The update process should be straightforward for Minor updates, but may require some planning and
checking of the release notes for Major updates.

• Always plan to update to a newer release before the release you are using becomes End of Life.
Each ESP-IDF major and minor release (V4.1, V4.2, etc) is supported for 30 months after the initial stable release
date.
Supported means that the ESP-IDF team will continue to apply bug fixes, security fixes, etc to the release branch on
GitHub, and periodically make new bugfix releases as needed.
Support period is divided into "Service" and "Maintenance" period:

Period Duration Recommended for new projects?
Service 12 months Yes
Maintenance 18 months No

During the Service period, bugfixes releases are more frequent. In some cases, support for new features may be added
during the Service period (this is reserved for features which are needed to meet particular regulatory requirements
or standards for new products, and which carry a very low risk of introducing regressions.)
During the Maintenance period, the version is still supported but only bugfixes for high severity issues or security
issues will be applied.
Using an“In Service”version is recommended when starting a new project.
Users are encouraged to upgrade all projects to a newer ESP-IDF release before the support period finishes and the
release becomes End of Life (EOL). It is our policy to not continue fixing bugs in End of Life releases.

Espressif Systems 2628
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/releases
https://github.com/espressif/esp-idf/releases
https://github.com/espressif/esp-idf/releases
https://github.com/espressif/esp-idf/blob/master/SUPPORT_POLICY.md
https://github.com/espressif/esp-idf/releases
https://github.com/espressif/esp-idf/releases
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 8. ESP-IDF Versions

Pre-release versions (betas, previews, -rc and -dev versions, etc) are not covered by any support period. Sometimes a
particular feature is marked as "Preview" in a release, which means it is also not covered by the support period.
The ESP-IDF Programming Guide has information about the different versions of ESP-IDF (major, minor, bugfix,
etc).

8.5 Checking the Current Version

The local ESP-IDF version can be checked by using idf.py:

idf.py --version

The ESP-IDF version is also compiled into the firmware and can be accessed (as a string) via the macro IDF_VER.
The default ESP-IDF bootloader will print the version on boot (the version information is not always updated if
the code in the GitHub repo is updated, it only changes if there is a clean build or if that particular source file is
recompiled).
If writing code that needs to support multiple ESP-IDF versions, the version can be checked at compile time using
compile-time macros.
Examples of ESP-IDF versions:

Espressif Systems 2629
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://docs.espressif.com/projects/esp-idf/en/latest/versions.html
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 8. ESP-IDF Versions

Version String Meaning
v3.2-dev-306-gbeb3611ca

Master branch pre-release.
- v3.2-dev - in development for version 3.2.
- 306 - number of commits after v3.2 development
started.
- beb3611ca - commit identifier.

v3.0.2

Stable release, tagged v3.0.2.

v3.1-beta1-75-g346d6b0ea

Beta version in development (on a release branch).
- v3.1-beta1 - pre-release tag.
- 75 - number of commits after the pre-release beta
tag was assigned.
- 346d6b0ea - commit identifier.

v3.0.1-dirty

Stable release, tagged v3.0.1.
- dirty means that there are modifications in the
local ESP-IDF directory.

8.6 Git Workflow

The development (Git) workflow of the Espressif ESP-IDF team is as follows:
• New work is always added on the master branch (latest version) first. The ESP-IDF version on master is
always tagged with -dev (for "in development"), for example v3.1-dev.

• Changes are first added to an internal Git repository for code review and testing but are pushed to GitHub after
automated testing passes.

• When a new version (developed on master) becomes feature complete and "beta" quality, a new branch
is made for the release, for example release/v3.1. A pre-release tag is also created, for example v3.
1-beta1. You can see a full list of branches and a list of tags on GitHub. Beta pre-releases have release
notes which may include a significant number of Known Issues.

• As testing of the beta version progresses, bug fixes will be added to both the master branch and the release
branch. New features for the next release may start being added to master at the same time.

• Once testing is nearly complete a new release candidate is tagged on the release branch, for example v3.
1-rc1. This is still a pre-release version.

• If no more significant bugs are found or reported, then the final Major or Minor Version is tagged, for example
v3.1. This version appears on the Releases page.

• As bugs are reported in released versions, the fixes will continue to be committed to the same release branch.
• Regular bugfix releases are made from the same release branch. After manual testing is complete, a bugfix
release is tagged (i.e. v3.1.1) and appears on the Releases page.

8.7 Updating ESP-IDF

Updating ESP-IDF depends on which version(s) you wish to follow:
• Updating to Stable Release is recommended for production use.

Espressif Systems 2630
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/branches
https://github.com/espressif/esp-idf/tags
https://github.com/espressif/esp-idf/releases
https://github.com/espressif/esp-idf/releases
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 8. ESP-IDF Versions

• Updating to Master Branch is recommended for the latest features, development use, and testing.
• Updating to a Release Branch is a compromise between the first two.

Note: These guides assume that you already have a local copy of ESP-IDF cloned. To get one, check Step 2 in the
Getting Started guide for any ESP-IDF version.

8.7.1 Updating to Stable Release

To update to a new ESP-IDF release (recommended for production use), this is the process to follow:
• Check the Releases page regularly for new releases.
• When a bugfix release for the version you are using is released (for example, if using v3.0.1 and v3.0.2
is released), check out the new bugfix version into the existing ESP-IDF directory.

• In Linux or macOS system, please run the following commands to update the local branch to vX.Y.Z:

cd $IDF_PATH
git fetch
git checkout vX.Y.Z
git submodule update --init --recursive

• In the Windows system, please replace cd $IDF_PATH with cd %IDF_PATH%.
• When major or minor updates are released, check the Release Notes on the releases page and decide if you
want to update or to stay with your current release. Updating is via the same Git commands shown above.

Note: If you installed the stable release via zip file instead of using git, it might not be possible to update versions
using the commands. In this case, update by downloading a new zip file and replacing the entire IDF_PATH directory
with its contents.

8.7.2 Updating to a Pre-Release Version

It is also possible to git checkout a tag corresponding to a pre-release version or release candidate, the process
is the same as Updating to Stable Release.
Pre-release tags are not always found on the Releases page. Consult the list of tags on GitHub for a full list. Caveats
for using a pre-release are similar to Updating to a Release Branch.

8.7.3 Updating to Master Branch

Note: Using Master branch means living "on the bleeding edge" with the latest ESP-IDF code.

To use the latest version on the ESP-IDF master branch, this is the process to follow:
• In Linux or macOS system, please run the following commands to check out to the master branch locally:

cd $IDF_PATH
git checkout master
git pull
git submodule update --init --recursive

• In the Windows system, please replace cd $IDF_PATH with cd %IDF_PATH%.
• Periodically, re-run git pull to pull the latest version of master. Note that you may need to change your
project or report bugs after updating your master branch.

Espressif Systems 2631
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/releases
https://github.com/espressif/esp-idf/releases
https://github.com/espressif/esp-idf/tags
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 8. ESP-IDF Versions

• To switch from master to a release branch or stable version, run git checkout as shown in the other
sections.

Important: It is strongly recommended to regularly run git pull and then git submodule update
--init --recursive so a local copy of master does not get too old. Arbitrary old master branch revisions are
effectively unsupportable "snapshots" that may have undocumented bugs. For a semi-stable version, try Updating to
a Release Branch instead.

8.7.4 Updating to a Release Branch

In terms of stability, using a release branch is part-way between using the master branch and only using stable releases.
A release branch is always beta quality or better, and receives bug fixes before they appear in each stable release.
You can find a list of branches on GitHub.
For example, in Linux or macOS system, you can execute the following commands to follow the branch for ESP-IDF
v3.1, including any bugfixes for future releases like v3.1.1, etc:

cd $IDF_PATH
git fetch
git checkout release/v3.1
git pull
git submodule update --init --recursive

In the Windows system, please replace cd $IDF_PATH with cd %IDF_PATH%.
Each time you git pull this branch, ESP-IDF will be updated with fixes for this release.

Note: There is no dedicated documentation for release branches. It is recommended to use the documentation for
the closest version to the branch which is currently checked out.

Espressif Systems 2632
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/espressif/esp-idf/branches
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 9

Resources

9.1 PlatformIO

• What is PlatformIO?
• Installation
• Configuration
• Tutorials
• Project Examples
• Next Steps

9.1.1 What is PlatformIO?

PlatformIO is a cross-platform embedded development environment with out-of-the-box support for ESP-IDF.
Since ESP-IDF support within PlatformIO is not maintained by the Espressif team, please report any issues with
PlatformIO directly to its developers in the official PlatformIO repositories.
A detailed overview of the PlatformIO ecosystem and its philosophy can be found in the official PlatformIO docu-
mentation.

9.1.2 Installation

• PlatformIO IDE is a toolset for embedded C/C++ development available on Windows, macOS and Linux
platforms

• PlatformIO Core (CLI) is a command-line tool that consists of multi-platform build system, platform and
library managers and other integration components. It can be used with a variety of code development envi-
ronments and allows integration with cloud platforms and web services

2633

https://platformio.org/?utm_source=docs.espressif.com
https://platformio.org/?utm_source=docs.espressif.com
https://github.com/platformio
https://docs.platformio.org/en/latest/what-is-platformio.html?utm_source=docs.espressif.com
https://docs.platformio.org/en/latest/what-is-platformio.html?utm_source=docs.espressif.com
https://platformio.org/platformio-ide?utm_source=docs.espressif.com
https://docs.platformio.org/en/latest/core/index.html?utm_source=docs.espressif.com

Chapter 9. Resources

9.1.3 Configuration

Please go through the official PlatformIO configuration guide for ESP-IDF.

9.1.4 Tutorials

• ESP-IDF and ESP32-DevKitC: debugging, unit testing, project analysis

9.1.5 Project Examples

Please check ESP-IDF page in the official PlatformIO documentation

9.1.6 Next Steps

Here are some useful links for exploring the PlatformIO ecosystem:
• Learn more about integrations with other IDEs/Text Editors
• Get help from PlatformIO community

9.2 Useful Links

• The esp32.com forum is a place to ask questions and find community resources.
• Check the Issues section on GitHub if you find a bug or have a feature request. Please check existing Issues
before opening a new one.

• A comprehensive collection of solutions, practical applications, components and drivers based on ESP-IDF is
available in ESP IoT Solution repository. In most of cases descriptions are provided both in English and in中
文.

• To develop applications using Arduino platform, refer to Arduino core for the ESP32, ESP32-S2 and ESP32-
C3.

• Several books have been written about ESP32 and they are listed on Espressif web site.
• If you're interested in contributing to ESP-IDF, please check the Contributions Guide.
• For additional ESP32-C6 product related information, please refer to documentation section of Espressif site.
• Download latest and previous versions of this documentation in PDF and HTML format.

Espressif Systems 2634
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://docs.platformio.org/en/latest/frameworks/espidf.html?utm_source=docs.espressif.com#configuration
https://docs.platformio.org/en/latest/tutorials/espressif32/espidf_debugging_unit_testing_analysis.html?utm_source=docs.espressif.com
https://docs.platformio.org/en/latest/frameworks/espidf.html?utm_source=docs.espressif.com#examples
https://docs.platformio.org/en/latest/integration/ide/index.html?utm_source=docs.espressif.com
https://community.platformio.org/?utm_source=docs.espressif.com
https://esp32.com/
https://github.com/espressif/esp-idf/issues
https://github.com/espressif/esp-idf/issues
https://github.com/espressif/esp-iot-solution#solutions
https://github.com/espressif/esp-iot-solution#esp32-iot-example-list
https://github.com/espressif/esp-iot-solution#components
https://github.com/espressif/esp-iot-solution
https://github.com/espressif/arduino-esp32#readme
https://github.com/espressif/arduino-esp32#readme
https://www.espressif.com/en/ecosystem/community-engagement/books
https://www.espressif.com/en/ecosystem/community-engagement/books
https://espressif.com/en/support/download/documents
https://espressif.com/en/support/download/documents
https://readthedocs.com/projects/espressif-esp-idf/downloads/
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 10

Copyrights and Licenses

10.1 Software Copyrights

All original source code in this repository is Copyright (C) 2015-2022 Espressif Systems. This source code is licensed
under the Apache License 2.0 as described in the file LICENSE.
Additional third party copyrighted code is included under the following licenses.
Where source code headers specify Copyright & License information, this information takes precedence over the
summaries made here.
Some examples use external components which are not Apache licensed, please check the copyright description in
each example source code.

10.1.1 Firmware Components

These third party libraries can be included into the application (firmware) produced by ESP-IDF.
• Newlib is licensed under the BSD License and is Copyright of various parties, as described in COPY-
ING.NEWLIB.

• Xtensa header files are Copyright (C) 2013 Tensilica Inc and are licensed under the MIT License as reproduced
in the individual header files.

• Original parts of FreeRTOS (components/freertos) are Copyright (C) 2017 Amazon.com, Inc. or its affiliates
are licensed under the MIT License, as described in license.txt.

• Original parts of LWIP (components/lwip) are Copyright (C) 2001, 2002 Swedish Institute of Computer Sci-
ence and are licensed under the BSD License as described in COPYING file.

• wpa_supplicant Copyright (c) 2003-2022 Jouni Malinen <j@w1.fi> and contributors and licensed under the
BSD license.

• Fast PBKDF2 Copyright (c) 2015 Joseph Birr-Pixton and licensed under CC0 Public Domain Dedication
license.

• FreeBSD net80211 Copyright (c) 2004-2008 Sam Leffler, Errno Consulting and licensed under the BSD li-
cense.

• argtable3 argument parsing library Copyright (C) 1998-2001,2003-2011,2013 Stewart Heitmann and licensed
under 3-clause BSD license. argtable3 also includes the following software components. For details, please
see argtable3 LICENSE file.

– C Hash Table library, Copyright (c) 2002, Christopher Clark and licensed under 3-clause BSD license.
– The Better String library, Copyright (c) 2014, Paul Hsieh and licensed under 3-clause BSD license.
– TCL library, Copyright the Regents of the University of California, Sun Microsystems, Inc., Scriptics
Corporation, ActiveState Corporation and other parties, and licensed under TCL/TK License.

• linenoise line editing library Copyright (c) 2010-2014 Salvatore Sanfilippo, Copyright (c) 2010-2013 Pieter
Noordhuis, licensed under 2-clause BSD license.

• FatFS library, Copyright (C) 2017 ChaN, is licensed under a BSD-style license .

2635

https://github.com/espressif/esp-idf/tree/b0f5707906b/components/newlib
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/newlib/COPYING.NEWLIB
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/newlib/COPYING.NEWLIB
https://github.com/espressif/esp-idf/tree/b0f5707906b/components/xtensa/include/xtensa
https://freertos.org/
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/freertos/FreeRTOS-Kernel/LICENSE.md
https://savannah.nongnu.org/projects/lwip/
https://github.com/espressif/esp-lwip/blob/392707e/COPYING
https://w1.fi/wpa_supplicant/
mailto:j@w1.fi
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/wpa_supplicant/esp_supplicant/src/crypto/crypto_mbedtls.c
https://github.com/freebsd/freebsd-src/tree/master/sys/net80211
https://github.com/argtable/argtable3
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/console/argtable3/LICENSE
https://github.com/antirez/linenoise
http://elm-chan.org/fsw/ff/00index_e.html
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/fatfs/src/ff.h#L1-L18

Chapter 10. Copyrights and Licenses

• cJSON library, Copyright (c) 2009-2017 Dave Gamble and cJSON contributors, is licensed under MIT license
as described in LICENSE file .

• micro-ecc library, Copyright (c) 2014 Kenneth MacKay, is licensed under 2-clause BSD license.
• Mbed TLS library, Copyright (C) 2006-2018ARMLimited, is licensed under Apache License 2.0 as described
in LICENSE file .

• SPIFFS library, Copyright (c) 2013-2017 Peter Andersson, is licensed under MIT license as described in
LICENSE file .

• SD/MMCdriver is derived fromOpenBSD SD/MMCdriver, Copyright (c) 2006 Uwe Stuehler, and is licensed
under BSD license.

• ESP-MQTT MQTT Package (contiki-mqtt) - Copyright (c) 2014, Stephen Robinson, MQTT-ESP - Tuan PM
<tuanpm at live dot com> is licensed under Apache License 2.0 as described in LICENSE file .

• BLE Mesh is adapted from Zephyr Project, Copyright (c) 2017-2018 Intel Corporation and licensed under
Apache License 2.0.

• mynewt-nimble Apache Mynewt NimBLE, Copyright 2015-2018, The Apache Software Foundation, is li-
censed under Apache License 2.0 as described in LICENSE file.

• TLSF allocator Two Level Segregated Fit memory allocator, Copyright (c) 2006-2016, Matthew Conte, and
licensed under the BSD 3-clause license.

• openthread, Copyright (c) The OpenThread Authors, is licensed under BSD License as described in LICENSE
file.

• UBSAN runtime —Copyright (c) 2016, Linaro Limited and Jiří Zárevúcky, licensed under the BSD 2-clause
license.

• HTTP Parser Based on src/http/ngx_http_parse.c from NGINX copyright Igor Sysoev. Additional changes
are licensed under the same terms as NGINX and Joyent, Inc. and other Node contributors. For details please
check LICENSE file.

• SEGGER SystemView target-side library, Copyright (c) 1995-2021 SEGGER Microcontroller GmbH, is li-
censed under BSD 1-clause license.

10.1.2 Documentation

• HTML version of the ESP-IDF Programming Guide uses the Sphinx theme sphinx_idf_theme, which is Copy-
right (c) 2013-2020 Dave Snider, Read the Docs, Inc. & contributors, and Espressif Systems (Shanghai) CO.,
LTD. It is based on sphinx_rtd_theme. Both are licensed under MIT license.

10.2 ROM Source Code Copyrights

ESP32, ESP32-S and ESP32-C Series SoCs mask ROM hardware includes binaries compiled from portions of the
following third party software:

• Newlib , licensed under the BSD License and is Copyright of various parties, as described in COPY-
ING.NEWLIB.

• Xtensa libhal, Copyright (c) Tensilica Inc and licensed under the MIT license (see below).
• TinyBasic Plus, Copyright Mike Field & Scott Lawrence and licensed under the MIT license (see below).
• miniz, by Rich Geldreich - placed into the public domain.
• TJpgDec Copyright (C) 2011, ChaN, all right reserved. See below for license.
• Parts of Zephyr RTOS USB stack:

– DesignWare USB device driver Copyright (c) 2016 Intel Corporation and licensed under Apache
2.0 license.

– Generic USB device driver Copyright (c) 2006 Bertrik Sikken (bertrik@sikken.nl), 2016 Intel Cor-
poration and licensed under BSD 3-clause license.

– USB descriptors functionality Copyright (c) 2017 PHYTEC Messtechnik GmbH, 2017-2018 Intel
Corporation and licensed under Apache 2.0 license.

– USB DFU class driver Copyright(c) 2015-2016 Intel Corporation, 2017 PHYTEC Messtechnik
GmbH and licensed under BSD 3-clause license.

– USB CDC ACM class driver Copyright(c) 2015-2016 Intel Corporation and licensed under Apache
2.0 license

Espressif Systems 2636
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://github.com/DaveGamble/cJSON
https://github.com/DaveGamble/cJSON/blob/c859b25/LICENSE
https://github.com/kmackay/micro-ecc
https://github.com/Mbed-TLS/mbedtls
https://github.com/espressif/mbedtls/blob/ffb280b/LICENSE
https://github.com/pellepl/spiffs
https://github.com/pellepl/spiffs/blob/0dbb3f7/LICENSE
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/sdmmc/sdmmc_cmd.c
https://github.com/openbsd/src/blob/f303646/sys/dev/sdmmc/sdmmc.c
https://github.com/espressif/esp-idf/tree/b0f5707906b/components/mqtt
https://github.com/espressif/esp-mqtt/blob/cac1552/LICENSE
https://github.com/espressif/esp-idf/tree/b0f5707906b/components/bt/esp_ble_mesh
https://github.com/apache/mynewt-nimble
https://github.com/espressif/esp-nimble/blob/45bae8d/LICENSE
https://github.com/espressif/tlsf
https://github.com/espressif/esp-idf/tree/b0f5707906b/components/openthread
https://github.com/espressif/openthread/blob/36b14d3/LICENSE
https://github.com/espressif/openthread/blob/36b14d3/LICENSE
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/esp_system/ubsan.c
https://github.com/espressif/esp-idf/tree/b0f5707906b/components/http_parser
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/http_parser/LICENSE.txt
https://www.segger.com/downloads/systemview/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://github.com/espressif/sphinx_idf_theme
https://github.com/readthedocs/sphinx_rtd_theme
https://github.com/espressif/esp-idf/tree/b0f5707906b/components/newlib
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/newlib/COPYING.NEWLIB
https://github.com/espressif/esp-idf/blob/b0f5707906b/components/newlib/COPYING.NEWLIB
https://github.com/BleuLlama/TinyBasicPlus
https://code.google.com/archive/p/miniz/
http://elm-chan.org/fsw/tjpgd/00index.html
https://github.com/zephyrproject-rtos/zephyr/blob/v1.12-branch/drivers/usb/device/usb_dc_dw.c
https://github.com/zephyrproject-rtos/zephyr/blob/v1.12-branch/subsys/usb/usb_device.c
mailto:bertrik@sikken.nl
https://github.com/zephyrproject-rtos/zephyr/blob/v1.12-branch/subsys/usb/usb_descriptor.c
https://github.com/zephyrproject-rtos/zephyr/blob/v1.12-branch/subsys/usb/class/usb_dfu.c
https://github.com/zephyrproject-rtos/zephyr/blob/v1.12-branch/subsys/usb/class/cdc_acm.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 10. Copyrights and Licenses

10.3 Xtensa libhal MIT License

Copyright (c) 2003, 2006, 2010 Tensilica Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTYOFANYKIND, EXPRESS OR IMPLIED,
INCLUDINGBUTNOTLIMITEDTOTHEWARRANTIESOFMERCHANTABILITY, FITNESS FORAPAR-
TICULARPURPOSEANDNONINFRINGEMENT. INNOEVENTSHALLTHEAUTHORSORCOPYRIGHT
HOLDERS BE LIABLE FORANYCLAIM, DAMAGESOROTHER LIABILITY,WHETHER INANACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

10.4 TinyBasic Plus MIT License

Copyright (c) 2012-2013
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTYOFANYKIND, EXPRESS OR IMPLIED,
INCLUDINGBUTNOTLIMITEDTOTHEWARRANTIESOFMERCHANTABILITY, FITNESS FORAPAR-
TICULARPURPOSEANDNONINFRINGEMENT. INNOEVENTSHALLTHEAUTHORSORCOPYRIGHT
HOLDERS BE LIABLE FORANYCLAIM, DAMAGESOROTHER LIABILITY,WHETHER INANACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

10.5 TJpgDec License

TJpgDec - Tiny JPEG Decompressor R0.01 (C)ChaN, 2011 The TJpgDec is a generic JPEG decompressor module
for tiny embedded systems. This is a free software that opened for education, research and commercial developments
under license policy of following terms.
Copyright (C) 2011, ChaN, all right reserved.

• The TJpgDec module is a free software and there is NO WARRANTY.
• No restriction on use. You can use, modify and redistribute it for personal, non-profit or commercial products
UNDER YOUR RESPONSIBILITY.

• Redistributions of source code must retain the above copyright notice.

Espressif Systems 2637
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 10. Copyrights and Licenses

Espressif Systems 2638
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 11

About

This is documentation of ESP-IDF, the framework to develop applications for ESP32-C6.
The ESP32-C6 is a 2.4 GHz Wi-Fi, Bluetooth Low Energy, and 802.15.4 Thread/Zigbee combo SoC, which inte-
grates a 32-bit RISC-V RV32IMAC single-core processor.

Fig. 1: Espressif IoT Integrated Development Framework

The ESP-IDF, Espressif IoT Development Framework, provides toolchain, API, components and workflows to de-
velop applications for ESP32-C6 using Windows, Linux and macOS operating systems.

2639

https://github.com/espressif/esp-idf

Chapter 11. About

Espressif Systems 2640
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Chapter 12

Switch Between Languages

The ESP-IDF Programming Guide is now available in two languages. Please refer to the English version if there is
any discrepancy.

• English
• Chinese

You can easily change from one language to another by clicking the language link you can find at the top of every
document that has a translation.

2641

Chapter 12. Switch Between Languages

Espressif Systems 2642
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

Symbols
_ESP_LOG_EARLY_ENABLED (C macro), 2044
_ip_addr (C++ struct), 840
_ip_addr::ip4 (C++ member), 840
_ip_addr::ip6 (C++ member), 840
_ip_addr::type (C++ member), 840
_ip_addr::u_addr (C++ member), 840
[anonymous] (C++ enum), 415, 1184, 2104
[anonymous]::ESP_BLE_MESH_SERVER_FLAG_MAX

(C++ enumerator), 415
[anonymous]::ESP_BLE_MESH_SERVER_TRANS_TIMER_START

(C++ enumerator), 415
[anonymous]::ESP_ERR_FLASH_NO_RESPONSE

(C++ enumerator), 1184
[anonymous]::ESP_ERR_FLASH_SIZE_NOT_MATCH

(C++ enumerator), 1184
[anonymous]::ESP_ERR_SLEEP_REJECT

(C++ enumerator), 2104
[anonymous]::ESP_ERR_SLEEP_TOO_SHORT_SLEEP_DURATION

(C++ enumerator), 2104

A
adc_atten_t (C++ enum), 853
adc_atten_t::ADC_ATTEN_DB_0 (C++ enumer-

ator), 853
adc_atten_t::ADC_ATTEN_DB_11 (C++ enu-

merator), 853
adc_atten_t::ADC_ATTEN_DB_12 (C++ enu-

merator), 853
adc_atten_t::ADC_ATTEN_DB_2_5 (C++ enu-

merator), 853
adc_atten_t::ADC_ATTEN_DB_6 (C++ enumer-

ator), 853
adc_bitwidth_t (C++ enum), 853
adc_bitwidth_t::ADC_BITWIDTH_10 (C++

enumerator), 854
adc_bitwidth_t::ADC_BITWIDTH_11 (C++

enumerator), 854
adc_bitwidth_t::ADC_BITWIDTH_12 (C++

enumerator), 854
adc_bitwidth_t::ADC_BITWIDTH_13 (C++

enumerator), 854
adc_bitwidth_t::ADC_BITWIDTH_9 (C++

enumerator), 853
adc_bitwidth_t::ADC_BITWIDTH_DEFAULT

(C++ enumerator), 853
adc_cali_check_scheme (C++ function), 868

adc_cali_handle_t (C++ type), 868
adc_cali_raw_to_voltage (C++ function), 868
adc_cali_scheme_ver_t (C++ enum), 868
adc_cali_scheme_ver_t::ADC_CALI_SCHEME_VER_CURVE_FITTING

(C++ enumerator), 868
adc_cali_scheme_ver_t::ADC_CALI_SCHEME_VER_LINE_FITTING

(C++ enumerator), 868
adc_channel_t (C++ enum), 852
adc_channel_t::ADC_CHANNEL_0 (C++ enu-

merator), 852
adc_channel_t::ADC_CHANNEL_1 (C++ enu-

merator), 852
adc_channel_t::ADC_CHANNEL_2 (C++ enu-

merator), 852
adc_channel_t::ADC_CHANNEL_3 (C++ enu-

merator), 853
adc_channel_t::ADC_CHANNEL_4 (C++ enu-

merator), 853
adc_channel_t::ADC_CHANNEL_5 (C++ enu-

merator), 853
adc_channel_t::ADC_CHANNEL_6 (C++ enu-

merator), 853
adc_channel_t::ADC_CHANNEL_7 (C++ enu-

merator), 853
adc_channel_t::ADC_CHANNEL_8 (C++ enu-

merator), 853
adc_channel_t::ADC_CHANNEL_9 (C++ enu-

merator), 853
adc_continuous_callback_t (C++ type), 866
adc_continuous_channel_to_io (C++ func-

tion), 864
adc_continuous_clk_src_t (C++ type), 852
adc_continuous_config (C++ function), 862
adc_continuous_config_t (C++ struct), 864
adc_continuous_config_t::adc_pattern

(C++ member), 864
adc_continuous_config_t::conv_mode

(C++ member), 865
adc_continuous_config_t::format (C++

member), 865
adc_continuous_config_t::pattern_num

(C++ member), 864
adc_continuous_config_t::sample_freq_hz

(C++ member), 864
adc_continuous_deinit (C++ function), 863
adc_continuous_evt_cbs_t (C++ struct), 865
adc_continuous_evt_cbs_t::on_conv_done

2643

Index

(C++ member), 865
adc_continuous_evt_cbs_t::on_pool_ovf

(C++ member), 865
adc_continuous_evt_data_t (C++ struct), 865
adc_continuous_evt_data_t::conv_frame_buffer

(C++ member), 865
adc_continuous_evt_data_t::size (C++

member), 865
adc_continuous_handle_cfg_t (C++ struct),

864
adc_continuous_handle_cfg_t::conv_frame_size

(C++ member), 864
adc_continuous_handle_cfg_t::max_store_buf_size

(C++ member), 864
adc_continuous_handle_t (C++ type), 866
adc_continuous_io_to_channel (C++ func-

tion), 864
adc_continuous_new_handle (C++ function),

862
adc_continuous_read (C++ function), 863
adc_continuous_register_event_callbacks

(C++ function), 862
adc_continuous_start (C++ function), 863
adc_continuous_stop (C++ function), 863
adc_digi_convert_mode_t (C++ enum), 854
adc_digi_convert_mode_t::ADC_CONV_ALTER_UNIT

(C++ enumerator), 854
adc_digi_convert_mode_t::ADC_CONV_BOTH_UNIT

(C++ enumerator), 854
adc_digi_convert_mode_t::ADC_CONV_SINGLE_UNIT_1

(C++ enumerator), 854
adc_digi_convert_mode_t::ADC_CONV_SINGLE_UNIT_2

(C++ enumerator), 854
adc_digi_iir_filter_coeff_t (C++ enum),

855
adc_digi_iir_filter_coeff_t::ADC_DIGI_IIR_FILTER_COEFF_16

(C++ enumerator), 855
adc_digi_iir_filter_coeff_t::ADC_DIGI_IIR_FILTER_COEFF_2

(C++ enumerator), 855
adc_digi_iir_filter_coeff_t::ADC_DIGI_IIR_FILTER_COEFF_4

(C++ enumerator), 855
adc_digi_iir_filter_coeff_t::ADC_DIGI_IIR_FILTER_COEFF_64

(C++ enumerator), 855
adc_digi_iir_filter_coeff_t::ADC_DIGI_IIR_FILTER_COEFF_8

(C++ enumerator), 855
adc_digi_iir_filter_t (C++ enum), 855
adc_digi_iir_filter_t::ADC_DIGI_IIR_FILTER_0

(C++ enumerator), 855
adc_digi_iir_filter_t::ADC_DIGI_IIR_FILTER_1

(C++ enumerator), 855
adc_digi_output_data_t (C++ struct), 851
adc_digi_output_data_t::channel (C++

member), 852
adc_digi_output_data_t::data (C++ mem-

ber), 852
adc_digi_output_data_t::reserved12

(C++ member), 852
adc_digi_output_data_t::reserved17_31

(C++ member), 852
adc_digi_output_data_t::type2 (C++

member), 852
adc_digi_output_data_t::val (C++ mem-

ber), 852
adc_digi_output_format_t (C++ enum), 854
adc_digi_output_format_t::ADC_DIGI_OUTPUT_FORMAT_TYPE1

(C++ enumerator), 854
adc_digi_output_format_t::ADC_DIGI_OUTPUT_FORMAT_TYPE2

(C++ enumerator), 855
adc_digi_pattern_config_t (C++ struct), 851
adc_digi_pattern_config_t::atten (C++

member), 851
adc_digi_pattern_config_t::bit_width

(C++ member), 851
adc_digi_pattern_config_t::channel

(C++ member), 851
adc_digi_pattern_config_t::unit (C++

member), 851
ADC_MAX_DELAY (C macro), 865
adc_oneshot_chan_cfg_t (C++ struct), 857
adc_oneshot_chan_cfg_t::atten (C++

member), 858
adc_oneshot_chan_cfg_t::bitwidth (C++

member), 858
adc_oneshot_channel_to_io (C++ function),

857
adc_oneshot_clk_src_t (C++ type), 852
adc_oneshot_config_channel (C++ function),

856
adc_oneshot_del_unit (C++ function), 856
adc_oneshot_get_calibrated_result

(C++ function), 857
adc_oneshot_io_to_channel (C++ function),

856
adc_oneshot_new_unit (C++ function), 855
adc_oneshot_read (C++ function), 856
adc_oneshot_unit_handle_t (C++ type), 858
adc_oneshot_unit_init_cfg_t (C++ struct),

857
adc_oneshot_unit_init_cfg_t::clk_src

(C++ member), 857
adc_oneshot_unit_init_cfg_t::ulp_mode

(C++ member), 857
adc_oneshot_unit_init_cfg_t::unit_id

(C++ member), 857
adc_ulp_mode_t (C++ enum), 854
adc_ulp_mode_t::ADC_ULP_MODE_DISABLE

(C++ enumerator), 854
adc_ulp_mode_t::ADC_ULP_MODE_FSM (C++

enumerator), 854
adc_ulp_mode_t::ADC_ULP_MODE_RISCV

(C++ enumerator), 854
adc_unit_t (C++ enum), 852
adc_unit_t::ADC_UNIT_1 (C++ enumerator),

852
adc_unit_t::ADC_UNIT_2 (C++ enumerator),

852

Espressif Systems 2644
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ADD_DEV_FLUSHABLE_DEV_FLAG (C macro), 388
ADD_DEV_RM_AFTER_PROV_FLAG (C macro), 387
ADD_DEV_START_PROV_NOW_FLAG (C macro),

387
async_memcpy_config_t (C++ struct), 2130
async_memcpy_config_t::backlog (C++

member), 2131
async_memcpy_config_t::flags (C++ mem-

ber), 2131
async_memcpy_config_t::psram_trans_align

(C++ member), 2131
async_memcpy_config_t::sram_trans_align

(C++ member), 2131
ASYNC_MEMCPY_DEFAULT_CONFIG (C macro),

2131
async_memcpy_etm_event_t (C++ enum), 2131
async_memcpy_etm_event_t::ASYNC_MEMCPY_ETM_EVENT_COPY_DONE

(C++ enumerator), 2131
async_memcpy_event_t (C++ struct), 2130
async_memcpy_event_t::data (C++ member),

2130
async_memcpy_isr_cb_t (C++ type), 2131
async_memcpy_t (C++ type), 2131

B
BD_ADDR (C++ type), 406
BD_ADDR_LEN (C macro), 387
BLE_ADDR_LEN (C macro), 1655
BLE_BIT (C macro), 232
BLE_DTM_PKT_PAYLOAD_0x00 (C macro), 231
BLE_DTM_PKT_PAYLOAD_0x01 (C macro), 231
BLE_DTM_PKT_PAYLOAD_0x02 (C macro), 231
BLE_DTM_PKT_PAYLOAD_0x03 (C macro), 232
BLE_DTM_PKT_PAYLOAD_0x04 (C macro), 232
BLE_DTM_PKT_PAYLOAD_0x05 (C macro), 232
BLE_DTM_PKT_PAYLOAD_0x06 (C macro), 232
BLE_DTM_PKT_PAYLOAD_0x07 (C macro), 232
BLE_DTM_PKT_PAYLOAD_MAX (C macro), 232
BLE_HCI_UART_H4_ACL (C macro), 625
BLE_HCI_UART_H4_CMD (C macro), 625
BLE_HCI_UART_H4_EVT (C macro), 625
BLE_HCI_UART_H4_NONE (C macro), 625
BLE_HCI_UART_H4_SCO (C macro), 625
BLE_UUID128_VAL_LENGTH (C macro), 1655
bootloader_fill_random (C++ function), 2088
bootloader_random_disable (C++ function),

2088
bootloader_random_enable (C++ function),

2087
bridgeif_config (C++ struct), 833
bridgeif_config::max_fdb_dyn_entries

(C++ member), 833
bridgeif_config::max_fdb_sta_entries

(C++ member), 833
bridgeif_config::max_ports (C++ member),

833
bridgeif_config_t (C++ type), 836

BT_CONTROLLER_INIT_CONFIG_DEFAULT (C
macro), 336

BT_OCTET32 (C++ type), 406
BT_OCTET32_LEN (C macro), 387
btm_query_reason (C++ enum), 759
btm_query_reason::REASON_BANDWIDTH

(C++ enumerator), 760
btm_query_reason::REASON_DELAY (C++

enumerator), 760
btm_query_reason::REASON_FRAME_LOSS

(C++ enumerator), 760
btm_query_reason::REASON_GRAY_ZONE

(C++ enumerator), 760
btm_query_reason::REASON_INTERFERENCE

(C++ enumerator), 760
btm_query_reason::REASON_LOAD_BALANCE

(C++ enumerator), 760
btm_query_reason::REASON_PREMIUM_AP

(C++ enumerator), 760
btm_query_reason::REASON_RETRANSMISSIONS

(C++ enumerator), 760
btm_query_reason::REASON_RSSI (C++ enu-

merator), 760
btm_query_reason::REASON_UNSPECIFIED

(C++ enumerator), 760

C
CHIP_FEATURE_BLE (C macro), 2055
CHIP_FEATURE_BT (C macro), 2055
CHIP_FEATURE_EMB_FLASH (C macro), 2055
CHIP_FEATURE_EMB_PSRAM (C macro), 2055
CHIP_FEATURE_IEEE802154 (C macro), 2055
CHIP_FEATURE_WIFI_BGN (C macro), 2055
CONFIG_ESPTOOLPY_FLASHSIZE, 1163
CONFIG_FEATURE_11R_BIT (C macro), 707
CONFIG_FEATURE_CACHE_TX_BUF_BIT (C

macro), 707
CONFIG_FEATURE_FTM_INITIATOR_BIT (C

macro), 707
CONFIG_FEATURE_FTM_RESPONDER_BIT (C

macro), 707
CONFIG_FEATURE_GCMP_BIT (C macro), 707
CONFIG_FEATURE_GMAC_BIT (C macro), 707
CONFIG_FEATURE_WIFI_ENT_BIT (C macro),

707
CONFIG_FEATURE_WPA3_SAE_BIT (C macro),

707
CONFIG_HEAP_TRACING_STACK_DEPTH (C

macro), 2024

D
dedic_gpio_bundle_config_t (C++ struct),

931
dedic_gpio_bundle_config_t::array_size

(C++ member), 932
dedic_gpio_bundle_config_t::flags

(C++ member), 932

Espressif Systems 2645
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

dedic_gpio_bundle_config_t::gpio_array
(C++ member), 931

dedic_gpio_bundle_config_t::in_en
(C++ member), 932

dedic_gpio_bundle_config_t::in_invert
(C++ member), 932

dedic_gpio_bundle_config_t::out_en
(C++ member), 932

dedic_gpio_bundle_config_t::out_invert
(C++ member), 932

dedic_gpio_bundle_handle_t (C++ type), 932
dedic_gpio_bundle_read_in (C++ function),

931
dedic_gpio_bundle_read_out (C++ function),

931
dedic_gpio_bundle_write (C++ function), 931
dedic_gpio_del_bundle (C++ function), 930
dedic_gpio_get_in_mask (C++ function), 930
dedic_gpio_get_in_offset (C++ function),

930
dedic_gpio_get_out_mask (C++ function), 930
dedic_gpio_get_out_offset (C++ function),

930
dedic_gpio_new_bundle (C++ function), 930
DEFAULT_HTTP_BUF_SIZE (C macro), 88
DEL_DEV_ADDR_FLAG (C macro), 388
DEL_DEV_UUID_FLAG (C macro), 388
dpp_bootstrap_type (C++ enum), 764
dpp_bootstrap_type::DPP_BOOTSTRAP_NFC_URI

(C++ enumerator), 764
dpp_bootstrap_type::DPP_BOOTSTRAP_PKEX

(C++ enumerator), 764
dpp_bootstrap_type::DPP_BOOTSTRAP_QR_CODE

(C++ enumerator), 764

E
EFD_SUPPORT_ISR (C macro), 1765
efuse_hal_blk_version (C++ function), 1783
efuse_hal_chip_revision (C++ function),

1783
efuse_hal_flash_encryption_enabled

(C++ function), 1783
efuse_hal_get_disable_blk_version_major

(C++ function), 1783
efuse_hal_get_disable_wafer_version_major

(C++ function), 1783
efuse_hal_get_mac (C++ function), 1783
efuse_hal_get_major_chip_version (C++

function), 1783
efuse_hal_get_minor_chip_version (C++

function), 1783
emac_rmii_clock_gpio_t (C++ enum), 787
emac_rmii_clock_gpio_t::EMAC_APPL_CLK_OUT_GPIO

(C++ enumerator), 787
emac_rmii_clock_gpio_t::EMAC_CLK_IN_GPIO

(C++ enumerator), 787
emac_rmii_clock_gpio_t::EMAC_CLK_OUT_180_GPIO

(C++ enumerator), 787

emac_rmii_clock_gpio_t::EMAC_CLK_OUT_GPIO
(C++ enumerator), 787

emac_rmii_clock_mode_t (C++ enum), 786
emac_rmii_clock_mode_t::EMAC_CLK_DEFAULT

(C++ enumerator), 786
emac_rmii_clock_mode_t::EMAC_CLK_EXT_IN

(C++ enumerator), 786
emac_rmii_clock_mode_t::EMAC_CLK_OUT

(C++ enumerator), 787
eNotifyAction (C++ enum), 1891
eNotifyAction::eIncrement (C++ enumera-

tor), 1891
eNotifyAction::eNoAction (C++ enumerator),

1891
eNotifyAction::eSetBits (C++ enumerator),

1891
eNotifyAction::eSetValueWithoutOverwrite

(C++ enumerator), 1891
eNotifyAction::eSetValueWithOverwrite

(C++ enumerator), 1891
environment variable

CONFIG_ESPTOOLPY_FLASHSIZE, 1163
eSleepModeStatus (C++ enum), 1892
eSleepModeStatus::eAbortSleep (C++ enu-

merator), 1892
eSleepModeStatus::eNoTasksWaitingTimeout

(C++ enumerator), 1892
eSleepModeStatus::eStandardSleep (C++

enumerator), 1892
esp_alloc_failed_hook_t (C++ type), 2002
ESP_APP_DESC_MAGIC_WORD (C macro), 2062
esp_app_desc_t (C++ struct), 2062
esp_app_desc_t::app_elf_sha256 (C++

member), 2062
esp_app_desc_t::date (C++ member), 2062
esp_app_desc_t::idf_ver (C++ member),

2062
esp_app_desc_t::magic_word (C++ member),

2062
esp_app_desc_t::max_efuse_blk_rev_full

(C++ member), 2062
esp_app_desc_t::min_efuse_blk_rev_full

(C++ member), 2062
esp_app_desc_t::project_name (C++ mem-

ber), 2062
esp_app_desc_t::reserv1 (C++ member),

2062
esp_app_desc_t::reserv2 (C++ member),

2062
esp_app_desc_t::secure_version (C++

member), 2062
esp_app_desc_t::time (C++ member), 2062
esp_app_desc_t::version (C++ member),

2062
esp_app_get_description (C++ function),

2061
esp_app_get_elf_sha256 (C++ function), 2061
ESP_APP_ID_MAX (C macro), 162

Espressif Systems 2646
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_APP_ID_MIN (C macro), 162
esp_apptrace_buffer_get (C++ function),

1774
esp_apptrace_buffer_put (C++ function),

1774
esp_apptrace_dest_t (C++ enum), 1777
esp_apptrace_dest_t::ESP_APPTRACE_DEST_JTAG

(C++ enumerator), 1777
esp_apptrace_dest_t::ESP_APPTRACE_DEST_MAX

(C++ enumerator), 1777
esp_apptrace_dest_t::ESP_APPTRACE_DEST_NUM

(C++ enumerator), 1778
esp_apptrace_dest_t::ESP_APPTRACE_DEST_TRAX

(C++ enumerator), 1777
esp_apptrace_dest_t::ESP_APPTRACE_DEST_UART

(C++ enumerator), 1777
esp_apptrace_down_buffer_config (C++

function), 1774
esp_apptrace_down_buffer_get (C++ func-

tion), 1776
esp_apptrace_down_buffer_put (C++ func-

tion), 1776
esp_apptrace_fclose (C++ function), 1776
esp_apptrace_flush (C++ function), 1775
esp_apptrace_flush_nolock (C++ function),

1775
esp_apptrace_fopen (C++ function), 1776
esp_apptrace_fread (C++ function), 1777
esp_apptrace_fseek (C++ function), 1777
esp_apptrace_fstop (C++ function), 1777
esp_apptrace_ftell (C++ function), 1777
esp_apptrace_fwrite (C++ function), 1776
esp_apptrace_host_is_connected (C++

function), 1776
esp_apptrace_init (C++ function), 1774
esp_apptrace_read (C++ function), 1775
esp_apptrace_vprintf (C++ function), 1775
esp_apptrace_vprintf_to (C++ function),

1775
esp_apptrace_write (C++ function), 1775
esp_async_memcpy (C++ function), 2130
esp_async_memcpy_install (C++ function),

2129
esp_async_memcpy_new_etm_event (C++

function), 2130
esp_async_memcpy_uninstall (C++ function),

2129
esp_attr_control_t (C++ struct), 254
esp_attr_control_t::auto_rsp (C++ mem-

ber), 254
esp_attr_desc_t (C++ struct), 253
esp_attr_desc_t::length (C++ member), 253
esp_attr_desc_t::max_length (C++ mem-

ber), 253
esp_attr_desc_t::perm (C++ member), 253
esp_attr_desc_t::uuid_length (C++ mem-

ber), 253
esp_attr_desc_t::uuid_p (C++ member), 253

esp_attr_desc_t::value (C++ member), 254
esp_attr_value_t (C++ struct), 254
esp_attr_value_t::attr_len (C++ member),

254
esp_attr_value_t::attr_max_len (C++

member), 254
esp_attr_value_t::attr_value (C++ mem-

ber), 254
esp_base_mac_addr_get (C++ function), 2052
esp_base_mac_addr_set (C++ function), 2052
ESP_BD_ADDR_HEX (C macro), 162
ESP_BD_ADDR_LEN (C macro), 161
ESP_BD_ADDR_STR (C macro), 162
esp_bd_addr_t (C++ type), 162
esp_ble_addr_type_t (C++ enum), 167
esp_ble_addr_type_t::BLE_ADDR_TYPE_PUBLIC

(C++ enumerator), 167
esp_ble_addr_type_t::BLE_ADDR_TYPE_RANDOM

(C++ enumerator), 167
esp_ble_addr_type_t::BLE_ADDR_TYPE_RPA_PUBLIC

(C++ enumerator), 167
esp_ble_addr_type_t::BLE_ADDR_TYPE_RPA_RANDOM

(C++ enumerator), 167
esp_ble_adv_channel_t (C++ enum), 244
esp_ble_adv_channel_t::ADV_CHNL_37

(C++ enumerator), 244
esp_ble_adv_channel_t::ADV_CHNL_38

(C++ enumerator), 244
esp_ble_adv_channel_t::ADV_CHNL_39

(C++ enumerator), 245
esp_ble_adv_channel_t::ADV_CHNL_ALL

(C++ enumerator), 245
ESP_BLE_ADV_DATA_LEN_MAX (C macro), 232
esp_ble_adv_data_t (C++ struct), 212
esp_ble_adv_data_t::appearance (C++

member), 212
esp_ble_adv_data_t::flag (C++ member),

213
esp_ble_adv_data_t::include_name (C++

member), 212
esp_ble_adv_data_t::include_txpower

(C++ member), 212
esp_ble_adv_data_t::manufacturer_len

(C++ member), 212
esp_ble_adv_data_t::max_interval (C++

member), 212
esp_ble_adv_data_t::min_interval (C++

member), 212
esp_ble_adv_data_t::p_manufacturer_data

(C++ member), 212
esp_ble_adv_data_t::p_service_data

(C++ member), 213
esp_ble_adv_data_t::p_service_uuid

(C++ member), 213
esp_ble_adv_data_t::service_data_len

(C++ member), 213
esp_ble_adv_data_t::service_uuid_len

(C++ member), 213

Espressif Systems 2647
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_adv_data_t::set_scan_rsp (C++
member), 212

esp_ble_adv_data_type (C++ enum), 242
esp_ble_adv_data_type::ESP_BLE_AD_MANUFACTURER_SPECIFIC_TYPE

(C++ enumerator), 244
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_128SERVICE_DATA

(C++ enumerator), 244
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_128SOL_SRV_UUID

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_128SRV_CMPL

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_128SRV_PART

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_16SRV_CMPL

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_16SRV_PART

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_32SERVICE_DATA

(C++ enumerator), 244
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_32SOL_SRV_UUID

(C++ enumerator), 244
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_32SRV_CMPL

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_32SRV_PART

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_ADV_INT

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_APPEARANCE

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_CHAN_MAP_UPDATE

(C++ enumerator), 244
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_DEV_CLASS

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_FLAG

(C++ enumerator), 242
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_INDOOR_POSITION

(C++ enumerator), 244
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_INT_RANGE

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_LE_DEV_ADDR

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_LE_ROLE

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_LE_SECURE_CONFIRM

(C++ enumerator), 244
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_LE_SECURE_RANDOM

(C++ enumerator), 244
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_LE_SUPPORT_FEATURE

(C++ enumerator), 244
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_NAME_CMPL

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_NAME_SHORT

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_PUBLIC_TARGET

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_RANDOM_TARGET

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_SERVICE_DATA

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_SM_OOB_FLAG

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_SM_TK

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_SOL_SRV_UUID

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_SPAIR_C256

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_SPAIR_R256

(C++ enumerator), 244
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_TRANS_DISC_DATA

(C++ enumerator), 244
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_TX_PWR

(C++ enumerator), 243
esp_ble_adv_data_type::ESP_BLE_AD_TYPE_URI

(C++ enumerator), 244
esp_ble_adv_filter_t (C++ enum), 245
esp_ble_adv_filter_t::ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY

(C++ enumerator), 245
esp_ble_adv_filter_t::ADV_FILTER_ALLOW_SCAN_ANY_CON_WLST

(C++ enumerator), 245
esp_ble_adv_filter_t::ADV_FILTER_ALLOW_SCAN_WLST_CON_ANY

(C++ enumerator), 245
esp_ble_adv_filter_t::ADV_FILTER_ALLOW_SCAN_WLST_CON_WLST

(C++ enumerator), 245
ESP_BLE_ADV_FLAG_BREDR_NOT_SPT (C

macro), 226
ESP_BLE_ADV_FLAG_DMT_CONTROLLER_SPT (C

macro), 226
ESP_BLE_ADV_FLAG_DMT_HOST_SPT (C macro),

226
ESP_BLE_ADV_FLAG_GEN_DISC (C macro), 226
ESP_BLE_ADV_FLAG_LIMIT_DISC (C macro),

226
ESP_BLE_ADV_FLAG_NON_LIMIT_DISC (C

macro), 226
ESP_BLE_ADV_NAME_LEN_MAX (C macro), 162
esp_ble_adv_params_t (C++ struct), 211
esp_ble_adv_params_t::adv_filter_policy

(C++ member), 212
esp_ble_adv_params_t::adv_int_max

(C++ member), 211
esp_ble_adv_params_t::adv_int_min

(C++ member), 211
esp_ble_adv_params_t::adv_type (C++

member), 211
esp_ble_adv_params_t::channel_map

(C++ member), 212
esp_ble_adv_params_t::own_addr_type

(C++ member), 212
esp_ble_adv_params_t::peer_addr (C++

member), 212
esp_ble_adv_params_t::peer_addr_type

(C++ member), 212
ESP_BLE_ADV_REPORT_EXT_ADV_IND (C

macro), 234
ESP_BLE_ADV_REPORT_EXT_DIRECT_ADV (C

Espressif Systems 2648
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

macro), 235
ESP_BLE_ADV_REPORT_EXT_SCAN_IND (C

macro), 234
ESP_BLE_ADV_REPORT_EXT_SCAN_RSP (C

macro), 235
esp_ble_adv_type_t (C++ enum), 244
esp_ble_adv_type_t::ADV_TYPE_DIRECT_IND_HIGH

(C++ enumerator), 244
esp_ble_adv_type_t::ADV_TYPE_DIRECT_IND_LOW

(C++ enumerator), 244
esp_ble_adv_type_t::ADV_TYPE_IND (C++

enumerator), 244
esp_ble_adv_type_t::ADV_TYPE_NONCONN_IND

(C++ enumerator), 244
esp_ble_adv_type_t::ADV_TYPE_SCAN_IND

(C++ enumerator), 244
ESP_BLE_APPEARANCE_BLOOD_PRESSURE_ARM

(C macro), 229
ESP_BLE_APPEARANCE_BLOOD_PRESSURE_WRIST

(C macro), 229
ESP_BLE_APPEARANCE_CYCLING_CADENCE (C

macro), 230
ESP_BLE_APPEARANCE_CYCLING_COMPUTER (C

macro), 230
ESP_BLE_APPEARANCE_CYCLING_POWER (C

macro), 230
ESP_BLE_APPEARANCE_CYCLING_SPEED (C

macro), 230
ESP_BLE_APPEARANCE_CYCLING_SPEED_CADENCE

(C macro), 230
ESP_BLE_APPEARANCE_GENERIC_BARCODE_SCANNER

(C macro), 228
ESP_BLE_APPEARANCE_GENERIC_BLOOD_PRESSURE

(C macro), 229
ESP_BLE_APPEARANCE_GENERIC_CLOCK (C

macro), 228
ESP_BLE_APPEARANCE_GENERIC_COMPUTER (C

macro), 228
ESP_BLE_APPEARANCE_GENERIC_CONTINUOUS_GLUCOSE_MONITOR

(C macro), 231
ESP_BLE_APPEARANCE_GENERIC_CYCLING (C

macro), 230
ESP_BLE_APPEARANCE_GENERIC_DISPLAY (C

macro), 228
ESP_BLE_APPEARANCE_GENERIC_EYEGLASSES

(C macro), 228
ESP_BLE_APPEARANCE_GENERIC_GLUCOSE (C

macro), 229
ESP_BLE_APPEARANCE_GENERIC_HEART_RATE

(C macro), 229
ESP_BLE_APPEARANCE_GENERIC_HID (C

macro), 229
ESP_BLE_APPEARANCE_GENERIC_INSULIN_PUMP

(C macro), 231
ESP_BLE_APPEARANCE_GENERIC_KEYRING (C

macro), 228
ESP_BLE_APPEARANCE_GENERIC_MEDIA_PLAYER

(C macro), 228

ESP_BLE_APPEARANCE_GENERIC_MEDICATION_DELIVERY
(C macro), 231

ESP_BLE_APPEARANCE_GENERIC_OUTDOOR_SPORTS
(C macro), 231

ESP_BLE_APPEARANCE_GENERIC_PERSONAL_MOBILITY_DEVICE
(C macro), 230

ESP_BLE_APPEARANCE_GENERIC_PHONE (C
macro), 228

ESP_BLE_APPEARANCE_GENERIC_PULSE_OXIMETER
(C macro), 230

ESP_BLE_APPEARANCE_GENERIC_REMOTE (C
macro), 228

ESP_BLE_APPEARANCE_GENERIC_TAG (C
macro), 228

ESP_BLE_APPEARANCE_GENERIC_THERMOMETER
(C macro), 228

ESP_BLE_APPEARANCE_GENERIC_WALKING (C
macro), 229

ESP_BLE_APPEARANCE_GENERIC_WATCH (C
macro), 228

ESP_BLE_APPEARANCE_GENERIC_WEIGHT (C
macro), 230

ESP_BLE_APPEARANCE_HEART_RATE_BELT (C
macro), 229

ESP_BLE_APPEARANCE_HID_BARCODE_SCANNER
(C macro), 229

ESP_BLE_APPEARANCE_HID_CARD_READER (C
macro), 229

ESP_BLE_APPEARANCE_HID_DIGITAL_PEN (C
macro), 229

ESP_BLE_APPEARANCE_HID_DIGITIZER_TABLET
(C macro), 229

ESP_BLE_APPEARANCE_HID_GAMEPAD (C
macro), 229

ESP_BLE_APPEARANCE_HID_JOYSTICK (C
macro), 229

ESP_BLE_APPEARANCE_HID_KEYBOARD (C
macro), 229

ESP_BLE_APPEARANCE_HID_MOUSE (C macro),
229

ESP_BLE_APPEARANCE_INSULIN_PEN (C
macro), 231

ESP_BLE_APPEARANCE_INSULIN_PUMP_DURABLE_PUMP
(C macro), 231

ESP_BLE_APPEARANCE_INSULIN_PUMP_PATCH_PUMP
(C macro), 231

ESP_BLE_APPEARANCE_MOBILITY_SCOOTER (C
macro), 231

ESP_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION
(C macro), 231

ESP_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION_AND_NAV
(C macro), 231

ESP_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION_POD
(C macro), 231

ESP_BLE_APPEARANCE_OUTDOOR_SPORTS_LOCATION_POD_AND_NAV
(C macro), 231

ESP_BLE_APPEARANCE_POWERED_WHEELCHAIR
(C macro), 230

Espressif Systems 2649
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_BLE_APPEARANCE_PULSE_OXIMETER_FINGERTIP
(C macro), 230

ESP_BLE_APPEARANCE_PULSE_OXIMETER_WRIST
(C macro), 230

ESP_BLE_APPEARANCE_SPORTS_WATCH (C
macro), 228

ESP_BLE_APPEARANCE_STANDALONE_SPEAKER
(C macro), 230

ESP_BLE_APPEARANCE_THERMOMETER_EAR (C
macro), 228

ESP_BLE_APPEARANCE_UNKNOWN (C macro), 228
ESP_BLE_APPEARANCE_WALKING_IN_SHOE (C

macro), 230
ESP_BLE_APPEARANCE_WALKING_ON_HIP (C

macro), 230
ESP_BLE_APPEARANCE_WALKING_ON_SHOE (C

macro), 230
esp_ble_auth_cmpl_t (C++ struct), 218
esp_ble_auth_cmpl_t::addr_type (C++

member), 219
esp_ble_auth_cmpl_t::auth_mode (C++

member), 219
esp_ble_auth_cmpl_t::bd_addr (C++ mem-

ber), 218
esp_ble_auth_cmpl_t::dev_type (C++

member), 219
esp_ble_auth_cmpl_t::fail_reason (C++

member), 219
esp_ble_auth_cmpl_t::key (C++ member),

218
esp_ble_auth_cmpl_t::key_present (C++

member), 218
esp_ble_auth_cmpl_t::key_type (C++

member), 218
esp_ble_auth_cmpl_t::success (C++ mem-

ber), 218
esp_ble_auth_fail_rsn_t (C++ enum), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_BR_PARING_IN_PROGR

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_BUSY

(C++ enumerator), 249
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_CONFIRM_FAIL

(C++ enumerator), 249
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_CONFIRM_VALUE_FAIL

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_CONN_TOUT

(C++ enumerator), 249
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_DHKEY_CHK_FAIL

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_DIV_NOT_AVAIL

(C++ enumerator), 249
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_ENC_FAIL

(C++ enumerator), 249
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_ENC_KEY_SIZE

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_INIT_FAIL

(C++ enumerator), 249
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_INTERNAL_ERR

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_INVALID_CMD

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_INVALID_PARAMETERS

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_NUM_COMP_FAIL

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_OOB_FAIL

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_PAIR_AUTH_FAIL

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_PAIR_NOT_SUPPORT

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_PASSKEY_FAIL

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_REPEATED_ATTEMPT

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_RSP_TIMEOUT

(C++ enumerator), 249
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_STARTED

(C++ enumerator), 249
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_UNKNOWN_ERR

(C++ enumerator), 248
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_UNKNOWN_IO

(C++ enumerator), 249
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_UNSPEC_ERR

(C++ enumerator), 249
esp_ble_auth_fail_rsn_t::ESP_AUTH_SMP_XTRANS_DERIVE_NOT_ALLOW

(C++ enumerator), 248
esp_ble_auth_req_t (C++ type), 236
esp_ble_bond_dev_t (C++ struct), 217
esp_ble_bond_dev_t::bd_addr (C++ mem-

ber), 217
esp_ble_bond_dev_t::bd_addr_type (C++

member), 217
esp_ble_bond_dev_t::bond_key (C++ mem-

ber), 217
esp_ble_bond_key_info_t (C++ struct), 217
esp_ble_bond_key_info_t::key_mask

(C++ member), 217
esp_ble_bond_key_info_t::pcsrk_key

(C++ member), 217
esp_ble_bond_key_info_t::penc_key

(C++ member), 217
esp_ble_bond_key_info_t::pid_key (C++

member), 217
esp_ble_confirm_reply (C++ function), 176
ESP_BLE_CONN_INT_MAX (C macro), 161
ESP_BLE_CONN_INT_MIN (C macro), 161
ESP_BLE_CONN_LATENCY_MAX (C macro), 161
esp_ble_conn_params_t (C++ struct), 159
esp_ble_conn_params_t::interval_max

(C++ member), 160
esp_ble_conn_params_t::interval_min

(C++ member), 160
esp_ble_conn_params_t::latency (C++

member), 160
esp_ble_conn_params_t::max_ce_len

Espressif Systems 2650
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 160
esp_ble_conn_params_t::min_ce_len

(C++ member), 160
esp_ble_conn_params_t::scan_interval

(C++ member), 159
esp_ble_conn_params_t::scan_window

(C++ member), 159
esp_ble_conn_params_t::supervision_timeout

(C++ member), 160
ESP_BLE_CONN_SUP_TOUT_MAX (C macro), 161
ESP_BLE_CONN_SUP_TOUT_MIN (C macro), 161
esp_ble_conn_update_params_t (C++ struct),

214
esp_ble_conn_update_params_t::bda

(C++ member), 214
esp_ble_conn_update_params_t::latency

(C++ member), 214
esp_ble_conn_update_params_t::max_int

(C++ member), 214
esp_ble_conn_update_params_t::min_int

(C++ member), 214
esp_ble_conn_update_params_t::timeout

(C++ member), 214
esp_ble_create_sc_oob_data (C++ function),

177
ESP_BLE_CSR_KEY_MASK (C macro), 162
esp_ble_dtm_enh_rx_start (C++ function),

184
esp_ble_dtm_enh_rx_t (C++ struct), 225
esp_ble_dtm_enh_rx_t::modulation_idx

(C++ member), 225
esp_ble_dtm_enh_rx_t::phy (C++ member),

225
esp_ble_dtm_enh_rx_t::rx_channel (C++

member), 225
esp_ble_dtm_enh_tx_start (C++ function),

183
esp_ble_dtm_enh_tx_t (C++ struct), 224
esp_ble_dtm_enh_tx_t::len_of_data

(C++ member), 225
esp_ble_dtm_enh_tx_t::phy (C++ member),

225
esp_ble_dtm_enh_tx_t::pkt_payload

(C++ member), 225
esp_ble_dtm_enh_tx_t::tx_channel (C++

member), 225
esp_ble_dtm_pkt_payload_t (C++ type), 236
esp_ble_dtm_rx_start (C++ function), 183
esp_ble_dtm_rx_t (C++ struct), 211
esp_ble_dtm_rx_t::rx_channel (C++ mem-

ber), 211
esp_ble_dtm_stop (C++ function), 184
esp_ble_dtm_tx_start (C++ function), 183
esp_ble_dtm_tx_t (C++ struct), 211
esp_ble_dtm_tx_t::len_of_data (C++

member), 211
esp_ble_dtm_tx_t::pkt_payload (C++

member), 211

esp_ble_dtm_tx_t::tx_channel (C++ mem-
ber), 211

esp_ble_dtm_update_evt_t (C++ enum), 246
esp_ble_dtm_update_evt_t::DTM_RX_START_EVT

(C++ enumerator), 246
esp_ble_dtm_update_evt_t::DTM_TEST_STOP_EVT

(C++ enumerator), 246
esp_ble_dtm_update_evt_t::DTM_TX_START_EVT

(C++ enumerator), 246
esp_ble_duplicate_exceptional_info_type_t

(C++ enum), 251
esp_ble_duplicate_exceptional_info_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_ADV_ADDR

(C++ enumerator), 251
esp_ble_duplicate_exceptional_info_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_BEACON_TYPE

(C++ enumerator), 251
esp_ble_duplicate_exceptional_info_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_LINK_ID

(C++ enumerator), 251
esp_ble_duplicate_exceptional_info_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_PROV_SRV_ADV

(C++ enumerator), 251
esp_ble_duplicate_exceptional_info_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_PROXY_SOLIC_ADV

(C++ enumerator), 251
esp_ble_duplicate_exceptional_info_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_PROXY_SRV_ADV

(C++ enumerator), 251
esp_ble_duplicate_exceptional_info_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_INFO_MESH_URI_ADV

(C++ enumerator), 251
ESP_BLE_ENC_KEY_MASK (C macro), 161
esp_ble_evt_type_t (C++ enum), 250
esp_ble_evt_type_t::ESP_BLE_EVT_CONN_ADV

(C++ enumerator), 250
esp_ble_evt_type_t::ESP_BLE_EVT_CONN_DIR_ADV

(C++ enumerator), 250
esp_ble_evt_type_t::ESP_BLE_EVT_DISC_ADV

(C++ enumerator), 250
esp_ble_evt_type_t::ESP_BLE_EVT_NON_CONN_ADV

(C++ enumerator), 250
esp_ble_evt_type_t::ESP_BLE_EVT_SCAN_RSP

(C++ enumerator), 250
esp_ble_ext_adv_type_mask_t (C++ type),

236
esp_ble_ext_scan_cfg_mask_t (C++ type),

237
esp_ble_ext_scan_cfg_t (C++ struct), 220
esp_ble_ext_scan_cfg_t::scan_interval

(C++ member), 220
esp_ble_ext_scan_cfg_t::scan_type

(C++ member), 220
esp_ble_ext_scan_cfg_t::scan_window

(C++ member), 220
esp_ble_ext_scan_params_t (C++ struct), 220
esp_ble_ext_scan_params_t::cfg_mask

(C++ member), 220
esp_ble_ext_scan_params_t::coded_cfg

(C++ member), 221
esp_ble_ext_scan_params_t::filter_policy

(C++ member), 220
esp_ble_ext_scan_params_t::own_addr_type

(C++ member), 220
esp_ble_ext_scan_params_t::scan_duplicate

Espressif Systems 2651
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 220
esp_ble_ext_scan_params_t::uncoded_cfg

(C++ member), 220
esp_ble_gap_add_device_to_resolving_list

(C++ function), 172
esp_ble_gap_add_duplicate_scan_exceptional_device

(C++ function), 175
esp_ble_gap_addr_create_nrpa (C++ func-

tion), 171
esp_ble_gap_addr_create_static (C++

function), 171
esp_ble_gap_adv_type_t (C++ type), 237
esp_ble_gap_all_phys_t (C++ type), 236
esp_ble_gap_cb_param_t (C++ union), 188
esp_ble_gap_cb_param_t::add_dev_to_resolving_list_cmpl

(C++ member), 189
esp_ble_gap_cb_param_t::adv_clear_cmpl

(C++ member), 189
esp_ble_gap_cb_param_t::adv_data_cmpl

(C++ member), 188
esp_ble_gap_cb_param_t::adv_data_raw_cmpl

(C++ member), 188
esp_ble_gap_cb_param_t::adv_start_cmpl

(C++ member), 188
esp_ble_gap_cb_param_t::adv_stop_cmpl

(C++ member), 188
esp_ble_gap_cb_param_t::adv_terminate

(C++ member), 191
esp_ble_gap_cb_param_t::ble_add_dev_to_resolving_list_cmpl_evt_param

(C++ struct), 192
esp_ble_gap_cb_param_t::ble_add_dev_to_resolving_list_cmpl_evt_param::status

(C++ member), 193
esp_ble_gap_cb_param_t::ble_adv_clear_cmpl_evt_param

(C++ struct), 193
esp_ble_gap_cb_param_t::ble_adv_clear_cmpl_evt_param::status

(C++ member), 193
esp_ble_gap_cb_param_t::ble_adv_data_cmpl_evt_param

(C++ struct), 193
esp_ble_gap_cb_param_t::ble_adv_data_cmpl_evt_param::status

(C++ member), 193
esp_ble_gap_cb_param_t::ble_adv_data_raw_cmpl_evt_param

(C++ struct), 193
esp_ble_gap_cb_param_t::ble_adv_data_raw_cmpl_evt_param::status

(C++ member), 193
esp_ble_gap_cb_param_t::ble_adv_start_cmpl_evt_param

(C++ struct), 193
esp_ble_gap_cb_param_t::ble_adv_start_cmpl_evt_param::status

(C++ member), 193
esp_ble_gap_cb_param_t::ble_adv_stop_cmpl_evt_param

(C++ struct), 193
esp_ble_gap_cb_param_t::ble_adv_stop_cmpl_evt_param::status

(C++ member), 193
esp_ble_gap_cb_param_t::ble_adv_terminate_param

(C++ struct), 193
esp_ble_gap_cb_param_t::ble_adv_terminate_param::adv_instance

(C++ member), 194
esp_ble_gap_cb_param_t::ble_adv_terminate_param::completed_event

(C++ member), 194

esp_ble_gap_cb_param_t::ble_adv_terminate_param::conn_idx
(C++ member), 194

esp_ble_gap_cb_param_t::ble_adv_terminate_param::status
(C++ member), 194

esp_ble_gap_cb_param_t::ble_channel_sel_alg_param
(C++ struct), 194

esp_ble_gap_cb_param_t::ble_channel_sel_alg_param::channel_sel_alg
(C++ member), 194

esp_ble_gap_cb_param_t::ble_channel_sel_alg_param::conn_handle
(C++ member), 194

esp_ble_gap_cb_param_t::ble_clear_bond_dev_cmpl_evt_param
(C++ struct), 194

esp_ble_gap_cb_param_t::ble_clear_bond_dev_cmpl_evt_param::status
(C++ member), 194

esp_ble_gap_cb_param_t::ble_dtm_state_update_evt_param
(C++ struct), 194

esp_ble_gap_cb_param_t::ble_dtm_state_update_evt_param::num_of_pkt
(C++ member), 194

esp_ble_gap_cb_param_t::ble_dtm_state_update_evt_param::status
(C++ member), 194

esp_ble_gap_cb_param_t::ble_dtm_state_update_evt_param::update_evt
(C++ member), 194

esp_ble_gap_cb_param_t::ble_ext_adv_data_set_cmpl_evt_param
(C++ struct), 195

esp_ble_gap_cb_param_t::ble_ext_adv_data_set_cmpl_evt_param::instance
(C++ member), 195

esp_ble_gap_cb_param_t::ble_ext_adv_data_set_cmpl_evt_param::status
(C++ member), 195

esp_ble_gap_cb_param_t::ble_ext_adv_report_param
(C++ struct), 195

esp_ble_gap_cb_param_t::ble_ext_adv_report_param::params
(C++ member), 195

esp_ble_gap_cb_param_t::ble_ext_adv_scan_rsp_set_cmpl_evt_param
(C++ struct), 195

esp_ble_gap_cb_param_t::ble_ext_adv_scan_rsp_set_cmpl_evt_param::instance
(C++ member), 195

esp_ble_gap_cb_param_t::ble_ext_adv_scan_rsp_set_cmpl_evt_param::status
(C++ member), 195

esp_ble_gap_cb_param_t::ble_ext_adv_set_clear_cmpl_evt_param
(C++ struct), 195

esp_ble_gap_cb_param_t::ble_ext_adv_set_clear_cmpl_evt_param::instance
(C++ member), 195

esp_ble_gap_cb_param_t::ble_ext_adv_set_clear_cmpl_evt_param::status
(C++ member), 195

esp_ble_gap_cb_param_t::ble_ext_adv_set_params_cmpl_evt_param
(C++ struct), 195

esp_ble_gap_cb_param_t::ble_ext_adv_set_params_cmpl_evt_param::instance
(C++ member), 196

esp_ble_gap_cb_param_t::ble_ext_adv_set_params_cmpl_evt_param::status
(C++ member), 196

esp_ble_gap_cb_param_t::ble_ext_adv_set_rand_addr_cmpl_evt_param
(C++ struct), 196

esp_ble_gap_cb_param_t::ble_ext_adv_set_rand_addr_cmpl_evt_param::instance
(C++ member), 196

esp_ble_gap_cb_param_t::ble_ext_adv_set_rand_addr_cmpl_evt_param::status
(C++ member), 196

esp_ble_gap_cb_param_t::ble_ext_adv_set_remove_cmpl_evt_param
(C++ struct), 196

Espressif Systems 2652
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_gap_cb_param_t::ble_ext_adv_set_remove_cmpl_evt_param::instance
(C++ member), 196

esp_ble_gap_cb_param_t::ble_ext_adv_set_remove_cmpl_evt_param::status
(C++ member), 196

esp_ble_gap_cb_param_t::ble_ext_adv_start_cmpl_evt_param
(C++ struct), 196

esp_ble_gap_cb_param_t::ble_ext_adv_start_cmpl_evt_param::instance
(C++ member), 196

esp_ble_gap_cb_param_t::ble_ext_adv_start_cmpl_evt_param::instance_num
(C++ member), 196

esp_ble_gap_cb_param_t::ble_ext_adv_start_cmpl_evt_param::status
(C++ member), 196

esp_ble_gap_cb_param_t::ble_ext_adv_stop_cmpl_evt_param
(C++ struct), 196

esp_ble_gap_cb_param_t::ble_ext_adv_stop_cmpl_evt_param::instance
(C++ member), 197

esp_ble_gap_cb_param_t::ble_ext_adv_stop_cmpl_evt_param::instance_num
(C++ member), 197

esp_ble_gap_cb_param_t::ble_ext_adv_stop_cmpl_evt_param::status
(C++ member), 197

esp_ble_gap_cb_param_t::ble_ext_conn_params_set_cmpl_param
(C++ struct), 197

esp_ble_gap_cb_param_t::ble_ext_conn_params_set_cmpl_param::status
(C++ member), 197

esp_ble_gap_cb_param_t::ble_ext_scan_start_cmpl_param
(C++ struct), 197

esp_ble_gap_cb_param_t::ble_ext_scan_start_cmpl_param::status
(C++ member), 197

esp_ble_gap_cb_param_t::ble_ext_scan_stop_cmpl_param
(C++ struct), 197

esp_ble_gap_cb_param_t::ble_ext_scan_stop_cmpl_param::status
(C++ member), 197

esp_ble_gap_cb_param_t::ble_get_bond_dev_cmpl_evt_param
(C++ struct), 197

esp_ble_gap_cb_param_t::ble_get_bond_dev_cmpl_evt_param::bond_dev
(C++ member), 197

esp_ble_gap_cb_param_t::ble_get_bond_dev_cmpl_evt_param::dev_num
(C++ member), 197

esp_ble_gap_cb_param_t::ble_get_bond_dev_cmpl_evt_param::status
(C++ member), 197

esp_ble_gap_cb_param_t::ble_get_dev_name_cmpl_evt_param
(C++ struct), 198

esp_ble_gap_cb_param_t::ble_get_dev_name_cmpl_evt_param::name
(C++ member), 198

esp_ble_gap_cb_param_t::ble_get_dev_name_cmpl_evt_param::status
(C++ member), 198

esp_ble_gap_cb_param_t::ble_local_privacy_cmpl_evt_param
(C++ struct), 198

esp_ble_gap_cb_param_t::ble_local_privacy_cmpl_evt_param::status
(C++ member), 198

esp_ble_gap_cb_param_t::ble_period_adv_add_dev_cmpl_param
(C++ struct), 198

esp_ble_gap_cb_param_t::ble_period_adv_add_dev_cmpl_param::status
(C++ member), 198

esp_ble_gap_cb_param_t::ble_period_adv_clear_dev_cmpl_param
(C++ struct), 198

esp_ble_gap_cb_param_t::ble_period_adv_clear_dev_cmpl_param::status
(C++ member), 198

esp_ble_gap_cb_param_t::ble_period_adv_create_sync_cmpl_param
(C++ struct), 198

esp_ble_gap_cb_param_t::ble_period_adv_create_sync_cmpl_param::status
(C++ member), 198

esp_ble_gap_cb_param_t::ble_period_adv_remove_dev_cmpl_param
(C++ struct), 198

esp_ble_gap_cb_param_t::ble_period_adv_remove_dev_cmpl_param::status
(C++ member), 199

esp_ble_gap_cb_param_t::ble_period_adv_sync_cancel_cmpl_param
(C++ struct), 199

esp_ble_gap_cb_param_t::ble_period_adv_sync_cancel_cmpl_param::status
(C++ member), 199

esp_ble_gap_cb_param_t::ble_period_adv_sync_terminate_cmpl_param
(C++ struct), 199

esp_ble_gap_cb_param_t::ble_period_adv_sync_terminate_cmpl_param::status
(C++ member), 199

esp_ble_gap_cb_param_t::ble_periodic_adv_data_set_cmpl_param
(C++ struct), 199

esp_ble_gap_cb_param_t::ble_periodic_adv_data_set_cmpl_param::instance
(C++ member), 199

esp_ble_gap_cb_param_t::ble_periodic_adv_data_set_cmpl_param::status
(C++ member), 199

esp_ble_gap_cb_param_t::ble_periodic_adv_recv_enable_cmpl_param
(C++ struct), 199

esp_ble_gap_cb_param_t::ble_periodic_adv_recv_enable_cmpl_param::status
(C++ member), 199

esp_ble_gap_cb_param_t::ble_periodic_adv_report_param
(C++ struct), 199

esp_ble_gap_cb_param_t::ble_periodic_adv_report_param::params
(C++ member), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_set_info_trans_cmpl_param
(C++ struct), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_set_info_trans_cmpl_param::bda
(C++ member), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_set_info_trans_cmpl_param::status
(C++ member), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_set_params_cmpl_param
(C++ struct), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_set_params_cmpl_param::instance
(C++ member), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_set_params_cmpl_param::status
(C++ member), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_start_cmpl_param
(C++ struct), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_start_cmpl_param::instance
(C++ member), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_start_cmpl_param::status
(C++ member), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_stop_cmpl_param
(C++ struct), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_stop_cmpl_param::instance
(C++ member), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_stop_cmpl_param::status
(C++ member), 200

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_estab_param
(C++ struct), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_estab_param::adv_addr
(C++ member), 201

Espressif Systems 2653
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_estab_param::adv_addr_type
(C++ member), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_estab_param::adv_clk_accuracy
(C++ member), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_estab_param::adv_phy
(C++ member), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_estab_param::period_adv_interval
(C++ member), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_estab_param::sid
(C++ member), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_estab_param::status
(C++ member), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_estab_param::sync_handle
(C++ member), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_lost_param
(C++ struct), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_lost_param::sync_handle
(C++ member), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_cmpl_param
(C++ struct), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_cmpl_param::bda
(C++ member), 202

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_cmpl_param::status
(C++ member), 201

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param
(C++ struct), 202

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param::adv_addr
(C++ member), 202

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param::adv_addr_type
(C++ member), 202

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param::adv_clk_accuracy
(C++ member), 202

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param::adv_interval
(C++ member), 202

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param::adv_phy
(C++ member), 202

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param::adv_sid
(C++ member), 202

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param::bda
(C++ member), 202

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param::service_data
(C++ member), 202

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param::status
(C++ member), 202

esp_ble_gap_cb_param_t::ble_periodic_adv_sync_trans_recv_param::sync_handle
(C++ member), 202

esp_ble_gap_cb_param_t::ble_phy_update_cmpl_param
(C++ struct), 202

esp_ble_gap_cb_param_t::ble_phy_update_cmpl_param::bda
(C++ member), 203

esp_ble_gap_cb_param_t::ble_phy_update_cmpl_param::rx_phy
(C++ member), 203

esp_ble_gap_cb_param_t::ble_phy_update_cmpl_param::status
(C++ member), 202

esp_ble_gap_cb_param_t::ble_phy_update_cmpl_param::tx_phy
(C++ member), 203

esp_ble_gap_cb_param_t::ble_pkt_data_length_cmpl_evt_param
(C++ struct), 203

esp_ble_gap_cb_param_t::ble_pkt_data_length_cmpl_evt_param::params
(C++ member), 203

esp_ble_gap_cb_param_t::ble_pkt_data_length_cmpl_evt_param::status
(C++ member), 203

esp_ble_gap_cb_param_t::ble_read_phy_cmpl_evt_param
(C++ struct), 203

esp_ble_gap_cb_param_t::ble_read_phy_cmpl_evt_param::bda
(C++ member), 203

esp_ble_gap_cb_param_t::ble_read_phy_cmpl_evt_param::rx_phy
(C++ member), 203

esp_ble_gap_cb_param_t::ble_read_phy_cmpl_evt_param::status
(C++ member), 203

esp_ble_gap_cb_param_t::ble_read_phy_cmpl_evt_param::tx_phy
(C++ member), 203

esp_ble_gap_cb_param_t::ble_read_rssi_cmpl_evt_param
(C++ struct), 203

esp_ble_gap_cb_param_t::ble_read_rssi_cmpl_evt_param::remote_addr
(C++ member), 204

esp_ble_gap_cb_param_t::ble_read_rssi_cmpl_evt_param::rssi
(C++ member), 204

esp_ble_gap_cb_param_t::ble_read_rssi_cmpl_evt_param::status
(C++ member), 203

esp_ble_gap_cb_param_t::ble_remove_bond_dev_cmpl_evt_param
(C++ struct), 204

esp_ble_gap_cb_param_t::ble_remove_bond_dev_cmpl_evt_param::bd_addr
(C++ member), 204

esp_ble_gap_cb_param_t::ble_remove_bond_dev_cmpl_evt_param::status
(C++ member), 204

esp_ble_gap_cb_param_t::ble_rpa_timeout_cmpl_evt_param
(C++ struct), 204

esp_ble_gap_cb_param_t::ble_rpa_timeout_cmpl_evt_param::status
(C++ member), 204

esp_ble_gap_cb_param_t::ble_scan_param_cmpl_evt_param
(C++ struct), 204

esp_ble_gap_cb_param_t::ble_scan_param_cmpl_evt_param::status
(C++ member), 204

esp_ble_gap_cb_param_t::ble_scan_req_received_param
(C++ struct), 204

esp_ble_gap_cb_param_t::ble_scan_req_received_param::adv_instance
(C++ member), 204

esp_ble_gap_cb_param_t::ble_scan_req_received_param::scan_addr
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_req_received_param::scan_addr_type
(C++ member), 204

esp_ble_gap_cb_param_t::ble_scan_result_evt_param
(C++ struct), 205

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::adv_data_len
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::bda
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::ble_addr_type
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::ble_adv
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::ble_evt_type
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::dev_type
(C++ member), 205

Espressif Systems 2654
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::flag
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::num_dis
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::num_resps
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::rssi
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::scan_rsp_len
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_result_evt_param::search_evt
(C++ member), 205

esp_ble_gap_cb_param_t::ble_scan_rsp_data_cmpl_evt_param
(C++ struct), 205

esp_ble_gap_cb_param_t::ble_scan_rsp_data_cmpl_evt_param::status
(C++ member), 206

esp_ble_gap_cb_param_t::ble_scan_rsp_data_raw_cmpl_evt_param
(C++ struct), 206

esp_ble_gap_cb_param_t::ble_scan_rsp_data_raw_cmpl_evt_param::status
(C++ member), 206

esp_ble_gap_cb_param_t::ble_scan_start_cmpl_evt_param
(C++ struct), 206

esp_ble_gap_cb_param_t::ble_scan_start_cmpl_evt_param::status
(C++ member), 206

esp_ble_gap_cb_param_t::ble_scan_stop_cmpl_evt_param
(C++ struct), 206

esp_ble_gap_cb_param_t::ble_scan_stop_cmpl_evt_param::status
(C++ member), 206

esp_ble_gap_cb_param_t::ble_security
(C++ member), 188

esp_ble_gap_cb_param_t::ble_set_channels
(C++ member), 189

esp_ble_gap_cb_param_t::ble_set_channels_evt_param
(C++ struct), 206

esp_ble_gap_cb_param_t::ble_set_channels_evt_param::stat
(C++ member), 206

esp_ble_gap_cb_param_t::ble_set_common_factor_cmpl_evt_param
(C++ struct), 206

esp_ble_gap_cb_param_t::ble_set_common_factor_cmpl_evt_param::status
(C++ member), 207

esp_ble_gap_cb_param_t::ble_set_csa_support_cmpl_evt_param
(C++ struct), 207

esp_ble_gap_cb_param_t::ble_set_csa_support_cmpl_evt_param::status
(C++ member), 207

esp_ble_gap_cb_param_t::ble_set_ext_scan_params_cmpl_param
(C++ struct), 207

esp_ble_gap_cb_param_t::ble_set_ext_scan_params_cmpl_param::status
(C++ member), 207

esp_ble_gap_cb_param_t::ble_set_past_params_cmpl_param
(C++ struct), 207

esp_ble_gap_cb_param_t::ble_set_past_params_cmpl_param::bda
(C++ member), 207

esp_ble_gap_cb_param_t::ble_set_past_params_cmpl_param::status
(C++ member), 207

esp_ble_gap_cb_param_t::ble_set_perf_def_phy_cmpl_evt_param
(C++ struct), 207

esp_ble_gap_cb_param_t::ble_set_perf_def_phy_cmpl_evt_param::status
(C++ member), 207

esp_ble_gap_cb_param_t::ble_set_perf_phy_cmpl_evt_param
(C++ struct), 207

esp_ble_gap_cb_param_t::ble_set_perf_phy_cmpl_evt_param::status
(C++ member), 208

esp_ble_gap_cb_param_t::ble_set_privacy_mode_cmpl_evt_param
(C++ struct), 208

esp_ble_gap_cb_param_t::ble_set_privacy_mode_cmpl_evt_param::status
(C++ member), 208

esp_ble_gap_cb_param_t::ble_set_rand_cmpl_evt_param
(C++ struct), 208

esp_ble_gap_cb_param_t::ble_set_rand_cmpl_evt_param::status
(C++ member), 208

esp_ble_gap_cb_param_t::ble_set_scan_chan_map_cmpl_evt_param
(C++ struct), 208

esp_ble_gap_cb_param_t::ble_set_scan_chan_map_cmpl_evt_param::status
(C++ member), 208

esp_ble_gap_cb_param_t::ble_set_sch_len_cmpl_evt_param
(C++ struct), 208

esp_ble_gap_cb_param_t::ble_set_sch_len_cmpl_evt_param::status
(C++ member), 208

esp_ble_gap_cb_param_t::ble_set_vendor_evt_mask_cmpl_evt_param
(C++ struct), 208

esp_ble_gap_cb_param_t::ble_set_vendor_evt_mask_cmpl_evt_param::status
(C++ member), 208

esp_ble_gap_cb_param_t::ble_update_conn_params_evt_param
(C++ struct), 208

esp_ble_gap_cb_param_t::ble_update_conn_params_evt_param::bda
(C++ member), 209

esp_ble_gap_cb_param_t::ble_update_conn_params_evt_param::conn_int
(C++ member), 209

esp_ble_gap_cb_param_t::ble_update_conn_params_evt_param::latency
(C++ member), 209

esp_ble_gap_cb_param_t::ble_update_conn_params_evt_param::max_int
(C++ member), 209

esp_ble_gap_cb_param_t::ble_update_conn_params_evt_param::min_int
(C++ member), 209

esp_ble_gap_cb_param_t::ble_update_conn_params_evt_param::status
(C++ member), 209

esp_ble_gap_cb_param_t::ble_update_conn_params_evt_param::timeout
(C++ member), 209

esp_ble_gap_cb_param_t::ble_update_duplicate_exceptional_list_cmpl_evt_param
(C++ struct), 209

esp_ble_gap_cb_param_t::ble_update_duplicate_exceptional_list_cmpl_evt_param::device_info
(C++ member), 209

esp_ble_gap_cb_param_t::ble_update_duplicate_exceptional_list_cmpl_evt_param::length
(C++ member), 209

esp_ble_gap_cb_param_t::ble_update_duplicate_exceptional_list_cmpl_evt_param::status
(C++ member), 209

esp_ble_gap_cb_param_t::ble_update_duplicate_exceptional_list_cmpl_evt_param::subcode
(C++ member), 209

esp_ble_gap_cb_param_t::ble_update_whitelist_cmpl_evt_param
(C++ struct), 209

esp_ble_gap_cb_param_t::ble_update_whitelist_cmpl_evt_param::status
(C++ member), 210

esp_ble_gap_cb_param_t::ble_update_whitelist_cmpl_evt_param::wl_operation
(C++ member), 210

esp_ble_gap_cb_param_t::ble_vendor_hci_event_evt_param
(C++ struct), 210

Espressif Systems 2655
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_gap_cb_param_t::ble_vendor_hci_event_evt_param::param
(C++ member), 210

esp_ble_gap_cb_param_t::ble_vendor_hci_event_evt_param::param_buf
(C++ member), 210

esp_ble_gap_cb_param_t::ble_vendor_hci_event_evt_param::param_len
(C++ member), 210

esp_ble_gap_cb_param_t::ble_vendor_hci_event_evt_param::subevt_code
(C++ member), 210

esp_ble_gap_cb_param_t::channel_sel_alg
(C++ member), 191

esp_ble_gap_cb_param_t::clear_bond_dev_cmpl
(C++ member), 189

esp_ble_gap_cb_param_t::dtm_state_update
(C++ member), 192

esp_ble_gap_cb_param_t::ext_adv_clear
(C++ member), 190

esp_ble_gap_cb_param_t::ext_adv_data_set
(C++ member), 190

esp_ble_gap_cb_param_t::ext_adv_remove
(C++ member), 190

esp_ble_gap_cb_param_t::ext_adv_report
(C++ member), 191

esp_ble_gap_cb_param_t::ext_adv_set_params
(C++ member), 190

esp_ble_gap_cb_param_t::ext_adv_set_rand_addr
(C++ member), 190

esp_ble_gap_cb_param_t::ext_adv_start
(C++ member), 190

esp_ble_gap_cb_param_t::ext_adv_stop
(C++ member), 190

esp_ble_gap_cb_param_t::ext_conn_params_set
(C++ member), 191

esp_ble_gap_cb_param_t::ext_scan_start
(C++ member), 191

esp_ble_gap_cb_param_t::ext_scan_stop
(C++ member), 191

esp_ble_gap_cb_param_t::get_bond_dev_cmpl
(C++ member), 189

esp_ble_gap_cb_param_t::get_dev_name_cmpl
(C++ member), 188

esp_ble_gap_cb_param_t::local_privacy_cmpl
(C++ member), 189

esp_ble_gap_cb_param_t::past_received
(C++ member), 192

esp_ble_gap_cb_param_t::period_adv_add_dev
(C++ member), 191

esp_ble_gap_cb_param_t::period_adv_clear_dev
(C++ member), 191

esp_ble_gap_cb_param_t::period_adv_create_sync
(C++ member), 190

esp_ble_gap_cb_param_t::period_adv_data_set
(C++ member), 190

esp_ble_gap_cb_param_t::period_adv_recv_enable
(C++ member), 191

esp_ble_gap_cb_param_t::period_adv_remove_dev
(C++ member), 191

esp_ble_gap_cb_param_t::period_adv_report
(C++ member), 191

esp_ble_gap_cb_param_t::period_adv_set_info_trans
(C++ member), 192

esp_ble_gap_cb_param_t::period_adv_start
(C++ member), 190

esp_ble_gap_cb_param_t::period_adv_stop
(C++ member), 190

esp_ble_gap_cb_param_t::period_adv_sync_cancel
(C++ member), 190

esp_ble_gap_cb_param_t::period_adv_sync_term
(C++ member), 190

esp_ble_gap_cb_param_t::period_adv_sync_trans
(C++ member), 192

esp_ble_gap_cb_param_t::periodic_adv_sync_estab
(C++ member), 191

esp_ble_gap_cb_param_t::periodic_adv_sync_lost
(C++ member), 191

esp_ble_gap_cb_param_t::peroid_adv_set_params
(C++ member), 190

esp_ble_gap_cb_param_t::phy_update
(C++ member), 191

esp_ble_gap_cb_param_t::pkt_data_length_cmpl
(C++ member), 189

esp_ble_gap_cb_param_t::read_phy (C++
member), 189

esp_ble_gap_cb_param_t::read_rssi_cmpl
(C++ member), 189

esp_ble_gap_cb_param_t::remove_bond_dev_cmpl
(C++ member), 189

esp_ble_gap_cb_param_t::scan_param_cmpl
(C++ member), 188

esp_ble_gap_cb_param_t::scan_req_received
(C++ member), 191

esp_ble_gap_cb_param_t::scan_rsp_data_cmpl
(C++ member), 188

esp_ble_gap_cb_param_t::scan_rsp_data_raw_cmpl
(C++ member), 188

esp_ble_gap_cb_param_t::scan_rsp_set
(C++ member), 190

esp_ble_gap_cb_param_t::scan_rst (C++
member), 188

esp_ble_gap_cb_param_t::scan_start_cmpl
(C++ member), 188

esp_ble_gap_cb_param_t::scan_stop_cmpl
(C++ member), 188

esp_ble_gap_cb_param_t::set_common_factor_cmpl
(C++ member), 192

esp_ble_gap_cb_param_t::set_csa_support_cmpl
(C++ member), 192

esp_ble_gap_cb_param_t::set_ext_scan_params
(C++ member), 191

esp_ble_gap_cb_param_t::set_past_params
(C++ member), 192

esp_ble_gap_cb_param_t::set_perf_def_phy
(C++ member), 189

esp_ble_gap_cb_param_t::set_perf_phy
(C++ member), 190

esp_ble_gap_cb_param_t::set_privacy_mode_cmpl
(C++ member), 192

Espressif Systems 2656
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_gap_cb_param_t::set_rand_addr_cmpl
(C++ member), 189

esp_ble_gap_cb_param_t::set_rpa_timeout_cmpl
(C++ member), 189

esp_ble_gap_cb_param_t::set_scan_chan_map_cmpl
(C++ member), 192

esp_ble_gap_cb_param_t::set_sch_len_cmpl
(C++ member), 192

esp_ble_gap_cb_param_t::set_vendor_evt_mask_cmpl
(C++ member), 192

esp_ble_gap_cb_param_t::update_conn_params
(C++ member), 189

esp_ble_gap_cb_param_t::update_duplicate_exceptional_list_cmpl
(C++ member), 189

esp_ble_gap_cb_param_t::update_whitelist_cmpl
(C++ member), 189

esp_ble_gap_cb_param_t::vendor_cmd_cmpl
(C++ member), 192

esp_ble_gap_cb_param_t::vendor_cmd_cmpl_evt_param
(C++ struct), 210

esp_ble_gap_cb_param_t::vendor_cmd_cmpl_evt_param::opcode
(C++ member), 210

esp_ble_gap_cb_param_t::vendor_cmd_cmpl_evt_param::p_param_buf
(C++ member), 210

esp_ble_gap_cb_param_t::vendor_cmd_cmpl_evt_param::param_len
(C++ member), 210

esp_ble_gap_cb_param_t::vendor_hci_evt
(C++ member), 192

esp_ble_gap_clean_duplicate_scan_exceptional_list
(C++ function), 175

esp_ble_gap_clear_advertising (C++ func-
tion), 184

esp_ble_gap_clear_rand_addr (C++ func-
tion), 172

esp_ble_gap_clear_whitelist (C++ func-
tion), 173

esp_ble_gap_config_adv_data (C++ func-
tion), 170

esp_ble_gap_config_adv_data_raw (C++
function), 174

esp_ble_gap_config_ext_adv_data_raw
(C++ function), 179

esp_ble_gap_config_ext_scan_rsp_data_raw
(C++ function), 179

esp_ble_gap_config_local_icon (C++ func-
tion), 172

esp_ble_gap_config_local_privacy (C++
function), 172

esp_ble_gap_config_periodic_adv_data_raw
(C++ function), 180

esp_ble_gap_config_scan_rsp_data_raw
(C++ function), 174

esp_ble_gap_conn_params_t (C++ struct), 221
esp_ble_gap_conn_params_t::interval_max

(C++ member), 221
esp_ble_gap_conn_params_t::interval_min

(C++ member), 221
esp_ble_gap_conn_params_t::latency

(C++ member), 221
esp_ble_gap_conn_params_t::max_ce_len

(C++ member), 221
esp_ble_gap_conn_params_t::min_ce_len

(C++ member), 221
esp_ble_gap_conn_params_t::scan_interval

(C++ member), 221
esp_ble_gap_conn_params_t::scan_window

(C++ member), 221
esp_ble_gap_conn_params_t::supervision_timeout

(C++ member), 221
esp_ble_gap_disconnect (C++ function), 178
ESP_BLE_GAP_EXT_ADV_DATA_COMPLETE (C

macro), 234
ESP_BLE_GAP_EXT_ADV_DATA_INCOMPLETE (C

macro), 234
esp_ble_gap_ext_adv_data_status_t

(C++ type), 237
ESP_BLE_GAP_EXT_ADV_DATA_TRUNCATED (C

macro), 234
esp_ble_gap_ext_adv_params_t (C++ struct),

219
esp_ble_gap_ext_adv_params_t::channel_map

(C++ member), 219
esp_ble_gap_ext_adv_params_t::filter_policy

(C++ member), 219
esp_ble_gap_ext_adv_params_t::interval_max

(C++ member), 219
esp_ble_gap_ext_adv_params_t::interval_min

(C++ member), 219
esp_ble_gap_ext_adv_params_t::max_skip

(C++ member), 220
esp_ble_gap_ext_adv_params_t::own_addr_type

(C++ member), 219
esp_ble_gap_ext_adv_params_t::peer_addr

(C++ member), 219
esp_ble_gap_ext_adv_params_t::peer_addr_type

(C++ member), 219
esp_ble_gap_ext_adv_params_t::primary_phy

(C++ member), 219
esp_ble_gap_ext_adv_params_t::scan_req_notif

(C++ member), 220
esp_ble_gap_ext_adv_params_t::secondary_phy

(C++ member), 220
esp_ble_gap_ext_adv_params_t::sid

(C++ member), 220
esp_ble_gap_ext_adv_params_t::tx_power

(C++ member), 219
esp_ble_gap_ext_adv_params_t::type

(C++ member), 219
esp_ble_gap_ext_adv_report_t (C++ struct),

222
esp_ble_gap_ext_adv_report_t::addr

(C++ member), 223
esp_ble_gap_ext_adv_report_t::addr_type

(C++ member), 223
esp_ble_gap_ext_adv_report_t::adv_data

(C++ member), 223

Espressif Systems 2657
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_gap_ext_adv_report_t::adv_data_len
(C++ member), 223

esp_ble_gap_ext_adv_report_t::data_status
(C++ member), 223

esp_ble_gap_ext_adv_report_t::dir_addr
(C++ member), 223

esp_ble_gap_ext_adv_report_t::dir_addr_type
(C++ member), 223

esp_ble_gap_ext_adv_report_t::event_type
(C++ member), 223

esp_ble_gap_ext_adv_report_t::per_adv_interval
(C++ member), 223

esp_ble_gap_ext_adv_report_t::primary_phy
(C++ member), 223

esp_ble_gap_ext_adv_report_t::rssi
(C++ member), 223

esp_ble_gap_ext_adv_report_t::secondly_phy
(C++ member), 223

esp_ble_gap_ext_adv_report_t::sid
(C++ member), 223

esp_ble_gap_ext_adv_report_t::tx_power
(C++ member), 223

esp_ble_gap_ext_adv_set_clear (C++ func-
tion), 180

esp_ble_gap_ext_adv_set_params (C++
function), 179

esp_ble_gap_ext_adv_set_rand_addr
(C++ function), 179

esp_ble_gap_ext_adv_set_remove (C++
function), 180

esp_ble_gap_ext_adv_start (C++ function),
180

esp_ble_gap_ext_adv_stop (C++ function),
180

esp_ble_gap_ext_adv_t (C++ struct), 221
esp_ble_gap_ext_adv_t::duration (C++

member), 221
esp_ble_gap_ext_adv_t::instance (C++

member), 221
esp_ble_gap_ext_adv_t::max_events

(C++ member), 221
ESP_BLE_GAP_EXT_SCAN_CFG_CODE_MASK (C

macro), 234
ESP_BLE_GAP_EXT_SCAN_CFG_UNCODE_MASK

(C macro), 234
esp_ble_gap_get_callback (C++ function),

170
esp_ble_gap_get_device_name (C++ func-

tion), 173
esp_ble_gap_get_local_irk (C++ function),

177
esp_ble_gap_get_local_used_addr (C++

function), 173
esp_ble_gap_get_periodic_list_size

(C++ function), 182
esp_ble_gap_get_whitelist_size (C++

function), 173
ESP_BLE_GAP_NO_PREFER_RECEIVE_PHY (C

macro), 233
ESP_BLE_GAP_NO_PREFER_TRANSMIT_PHY (C

macro), 233
ESP_BLE_GAP_PAST_MODE_DUP_FILTER_DISABLED

(C macro), 235
ESP_BLE_GAP_PAST_MODE_DUP_FILTER_ENABLED

(C macro), 235
ESP_BLE_GAP_PAST_MODE_NO_REPORT_EVT (C

macro), 235
ESP_BLE_GAP_PAST_MODE_NO_SYNC_EVT (C

macro), 235
esp_ble_gap_past_mode_t (C++ type), 237
esp_ble_gap_past_params_t (C++ struct), 225
esp_ble_gap_past_params_t::cte_type

(C++ member), 225
esp_ble_gap_past_params_t::mode (C++

member), 225
esp_ble_gap_past_params_t::skip (C++

member), 225
esp_ble_gap_past_params_t::sync_timeout

(C++ member), 225
esp_ble_gap_periodic_adv_add_dev_to_list

(C++ function), 181
esp_ble_gap_periodic_adv_clear_dev

(C++ function), 182
esp_ble_gap_periodic_adv_create_sync

(C++ function), 181
esp_ble_gap_periodic_adv_params_t

(C++ struct), 222
esp_ble_gap_periodic_adv_params_t::interval_max

(C++ member), 222
esp_ble_gap_periodic_adv_params_t::interval_min

(C++ member), 222
esp_ble_gap_periodic_adv_params_t::properties

(C++ member), 222
esp_ble_gap_periodic_adv_recv_enable

(C++ function), 183
esp_ble_gap_periodic_adv_remove_dev_from_list

(C++ function), 182
esp_ble_gap_periodic_adv_report_t

(C++ struct), 223
esp_ble_gap_periodic_adv_report_t::data

(C++ member), 224
esp_ble_gap_periodic_adv_report_t::data_length

(C++ member), 224
esp_ble_gap_periodic_adv_report_t::data_status

(C++ member), 224
esp_ble_gap_periodic_adv_report_t::rssi

(C++ member), 224
esp_ble_gap_periodic_adv_report_t::sync_handle

(C++ member), 224
esp_ble_gap_periodic_adv_report_t::tx_power

(C++ member), 224
esp_ble_gap_periodic_adv_set_info_trans

(C++ function), 183
esp_ble_gap_periodic_adv_set_params

(C++ function), 180
esp_ble_gap_periodic_adv_start (C++

Espressif Systems 2658
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

function), 180
esp_ble_gap_periodic_adv_stop (C++ func-

tion), 181
esp_ble_gap_periodic_adv_sync_cancel

(C++ function), 181
esp_ble_gap_periodic_adv_sync_estab_t

(C++ struct), 224
esp_ble_gap_periodic_adv_sync_estab_t::addr_type

(C++ member), 224
esp_ble_gap_periodic_adv_sync_estab_t::adv_addr

(C++ member), 224
esp_ble_gap_periodic_adv_sync_estab_t::adv_clk_accuracy

(C++ member), 224
esp_ble_gap_periodic_adv_sync_estab_t::adv_phy

(C++ member), 224
esp_ble_gap_periodic_adv_sync_estab_t::period_adv_interval

(C++ member), 224
esp_ble_gap_periodic_adv_sync_estab_t::sid

(C++ member), 224
esp_ble_gap_periodic_adv_sync_estab_t::status

(C++ member), 224
esp_ble_gap_periodic_adv_sync_estab_t::sync_handle

(C++ member), 224
esp_ble_gap_periodic_adv_sync_params_t

(C++ struct), 222
esp_ble_gap_periodic_adv_sync_params_t::addr

(C++ member), 222
esp_ble_gap_periodic_adv_sync_params_t::addr_type

(C++ member), 222
esp_ble_gap_periodic_adv_sync_params_t::filter_policy

(C++ member), 222
esp_ble_gap_periodic_adv_sync_params_t::sid

(C++ member), 222
esp_ble_gap_periodic_adv_sync_params_t::skip

(C++ member), 222
esp_ble_gap_periodic_adv_sync_params_t::sync_timeout

(C++ member), 222
esp_ble_gap_periodic_adv_sync_terminate

(C++ function), 181
esp_ble_gap_periodic_adv_sync_trans

(C++ function), 183
ESP_BLE_GAP_PHY_1M (C macro), 233
ESP_BLE_GAP_PHY_1M_PREF_MASK (C macro),

234
ESP_BLE_GAP_PHY_2M (C macro), 233
ESP_BLE_GAP_PHY_2M_PREF_MASK (C macro),

234
ESP_BLE_GAP_PHY_CODED (C macro), 233
ESP_BLE_GAP_PHY_CODED_PREF_MASK (C

macro), 234
esp_ble_gap_phy_mask_t (C++ type), 236
ESP_BLE_GAP_PHY_OPTIONS_NO_PREF (C

macro), 234
ESP_BLE_GAP_PHY_OPTIONS_PREF_S2_CODING

(C macro), 234
ESP_BLE_GAP_PHY_OPTIONS_PREF_S8_CODING

(C macro), 234
esp_ble_gap_phy_t (C++ type), 236

esp_ble_gap_prefer_ext_connect_params_set
(C++ function), 182

esp_ble_gap_prefer_phy_options_t (C++
type), 237

ESP_BLE_GAP_PRI_PHY_1M (C macro), 233
ESP_BLE_GAP_PRI_PHY_CODED (C macro), 233
esp_ble_gap_pri_phy_t (C++ type), 236
esp_ble_gap_read_phy (C++ function), 178
esp_ble_gap_read_rssi (C++ function), 174
esp_ble_gap_register_callback (C++ func-

tion), 169
esp_ble_gap_remove_duplicate_scan_exceptional_device

(C++ function), 175
esp_ble_gap_security_rsp (C++ function),

176
esp_ble_gap_set_common_factor (C++ func-

tion), 185
esp_ble_gap_set_csa_support (C++ func-

tion), 184
esp_ble_gap_set_device_name (C++ func-

tion), 173
ESP_BLE_GAP_SET_EXT_ADV_PROP_ANON_ADV

(C macro), 233
ESP_BLE_GAP_SET_EXT_ADV_PROP_CONNECTABLE

(C macro), 232
ESP_BLE_GAP_SET_EXT_ADV_PROP_DIRECTED

(C macro), 232
ESP_BLE_GAP_SET_EXT_ADV_PROP_HD_DIRECTED

(C macro), 232
ESP_BLE_GAP_SET_EXT_ADV_PROP_INCLUDE_TX_PWR

(C macro), 233
ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY (C

macro), 233
ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY_HD_DIR

(C macro), 233
ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY_IND

(C macro), 233
ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY_LD_DIR

(C macro), 233
ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY_NONCONN

(C macro), 233
ESP_BLE_GAP_SET_EXT_ADV_PROP_LEGACY_SCAN

(C macro), 233
ESP_BLE_GAP_SET_EXT_ADV_PROP_MASK (C

macro), 233
ESP_BLE_GAP_SET_EXT_ADV_PROP_NONCONN_NONSCANNABLE_UNDIRECTED

(C macro), 232
ESP_BLE_GAP_SET_EXT_ADV_PROP_SCANNABLE

(C macro), 232
esp_ble_gap_set_ext_scan_params (C++

function), 181
esp_ble_gap_set_periodic_adv_sync_trans_params

(C++ function), 183
esp_ble_gap_set_pkt_data_len (C++ func-

tion), 171
esp_ble_gap_set_prefer_conn_params

(C++ function), 173
esp_ble_gap_set_preferred_default_phy

Espressif Systems 2659
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ function), 178
esp_ble_gap_set_preferred_phy (C++ func-

tion), 179
esp_ble_gap_set_privacy_mode (C++ func-

tion), 184
esp_ble_gap_set_rand_addr (C++ function),

171
esp_ble_gap_set_resolvable_private_address_timeout

(C++ function), 171
esp_ble_gap_set_scan_chan_map (C++ func-

tion), 185
esp_ble_gap_set_scan_params (C++ func-

tion), 170
esp_ble_gap_set_sch_len (C++ function), 185
esp_ble_gap_set_security_param (C++

function), 175
esp_ble_gap_set_vendor_event_mask

(C++ function), 185
esp_ble_gap_start_advertising (C++ func-

tion), 170
esp_ble_gap_start_ext_scan (C++ function),

181
esp_ble_gap_start_scanning (C++ function),

170
esp_ble_gap_stop_advertising (C++ func-

tion), 170
esp_ble_gap_stop_ext_scan (C++ function),

181
esp_ble_gap_stop_scanning (C++ function),

170
ESP_BLE_GAP_SYNC_POLICY_BY_ADV_INFO (C

macro), 234
ESP_BLE_GAP_SYNC_POLICY_BY_PERIODIC_LIST

(C macro), 234
esp_ble_gap_sync_t (C++ type), 237
esp_ble_gap_update_conn_params (C++

function), 170
esp_ble_gap_update_whitelist (C++ func-

tion), 172
esp_ble_gap_vendor_command_send (C++

function), 184
esp_ble_gatt_creat_conn_params_t (C++

struct), 258
esp_ble_gatt_creat_conn_params_t::is_aux

(C++ member), 258
esp_ble_gatt_creat_conn_params_t::is_direct

(C++ member), 258
esp_ble_gatt_creat_conn_params_t::own_addr_type

(C++ member), 258
esp_ble_gatt_creat_conn_params_t::phy_1m_conn_params

(C++ member), 258
esp_ble_gatt_creat_conn_params_t::phy_2m_conn_params

(C++ member), 258
esp_ble_gatt_creat_conn_params_t::phy_coded_conn_params

(C++ member), 258
esp_ble_gatt_creat_conn_params_t::phy_mask

(C++ member), 258
esp_ble_gatt_creat_conn_params_t::remote_addr_type

(C++ member), 258
esp_ble_gatt_creat_conn_params_t::remote_bda

(C++ member), 258
esp_ble_gattc_app_register (C++ function),

290
esp_ble_gattc_app_unregister (C++ func-

tion), 290
esp_ble_gattc_aux_open (C++ function), 291
esp_ble_gattc_cache_assoc (C++ function),

302
esp_ble_gattc_cache_clean (C++ function),

303
esp_ble_gattc_cache_get_addr_list

(C++ function), 303
esp_ble_gattc_cache_refresh (C++ func-

tion), 302
esp_ble_gattc_cb_param_t (C++ union), 303
esp_ble_gattc_cb_param_t::cfg_mtu

(C++ member), 303
esp_ble_gattc_cb_param_t::close (C++

member), 303
esp_ble_gattc_cb_param_t::congest

(C++ member), 304
esp_ble_gattc_cb_param_t::connect

(C++ member), 304
esp_ble_gattc_cb_param_t::dis_srvc_cmpl

(C++ member), 304
esp_ble_gattc_cb_param_t::disconnect

(C++ member), 304
esp_ble_gattc_cb_param_t::exec_cmpl

(C++ member), 304
esp_ble_gattc_cb_param_t::gattc_cfg_mtu_evt_param

(C++ struct), 304
esp_ble_gattc_cb_param_t::gattc_cfg_mtu_evt_param::conn_id

(C++ member), 305
esp_ble_gattc_cb_param_t::gattc_cfg_mtu_evt_param::mtu

(C++ member), 305
esp_ble_gattc_cb_param_t::gattc_cfg_mtu_evt_param::status

(C++ member), 305
esp_ble_gattc_cb_param_t::gattc_close_evt_param

(C++ struct), 305
esp_ble_gattc_cb_param_t::gattc_close_evt_param::conn_id

(C++ member), 305
esp_ble_gattc_cb_param_t::gattc_close_evt_param::reason

(C++ member), 305
esp_ble_gattc_cb_param_t::gattc_close_evt_param::remote_bda

(C++ member), 305
esp_ble_gattc_cb_param_t::gattc_close_evt_param::status

(C++ member), 305
esp_ble_gattc_cb_param_t::gattc_congest_evt_param

(C++ struct), 305
esp_ble_gattc_cb_param_t::gattc_congest_evt_param::congested

(C++ member), 305
esp_ble_gattc_cb_param_t::gattc_congest_evt_param::conn_id

(C++ member), 305
esp_ble_gattc_cb_param_t::gattc_connect_evt_param

(C++ struct), 305
esp_ble_gattc_cb_param_t::gattc_connect_evt_param::ble_addr_type

Espressif Systems 2660
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 306
esp_ble_gattc_cb_param_t::gattc_connect_evt_param::conn_handle

(C++ member), 306
esp_ble_gattc_cb_param_t::gattc_connect_evt_param::conn_id

(C++ member), 305
esp_ble_gattc_cb_param_t::gattc_connect_evt_param::conn_params

(C++ member), 306
esp_ble_gattc_cb_param_t::gattc_connect_evt_param::link_role

(C++ member), 305
esp_ble_gattc_cb_param_t::gattc_connect_evt_param::remote_bda

(C++ member), 306
esp_ble_gattc_cb_param_t::gattc_dis_srvc_cmpl_evt_param

(C++ struct), 306
esp_ble_gattc_cb_param_t::gattc_dis_srvc_cmpl_evt_param::conn_id

(C++ member), 306
esp_ble_gattc_cb_param_t::gattc_dis_srvc_cmpl_evt_param::status

(C++ member), 306
esp_ble_gattc_cb_param_t::gattc_disconnect_evt_param

(C++ struct), 306
esp_ble_gattc_cb_param_t::gattc_disconnect_evt_param::conn_id

(C++ member), 306
esp_ble_gattc_cb_param_t::gattc_disconnect_evt_param::reason

(C++ member), 306
esp_ble_gattc_cb_param_t::gattc_disconnect_evt_param::remote_bda

(C++ member), 306
esp_ble_gattc_cb_param_t::gattc_exec_cmpl_evt_param

(C++ struct), 306
esp_ble_gattc_cb_param_t::gattc_exec_cmpl_evt_param::conn_id

(C++ member), 307
esp_ble_gattc_cb_param_t::gattc_exec_cmpl_evt_param::status

(C++ member), 306
esp_ble_gattc_cb_param_t::gattc_get_addr_list_evt_param

(C++ struct), 307
esp_ble_gattc_cb_param_t::gattc_get_addr_list_evt_param::addr_list

(C++ member), 307
esp_ble_gattc_cb_param_t::gattc_get_addr_list_evt_param::num_addr

(C++ member), 307
esp_ble_gattc_cb_param_t::gattc_get_addr_list_evt_param::status

(C++ member), 307
esp_ble_gattc_cb_param_t::gattc_notify_evt_param

(C++ struct), 307
esp_ble_gattc_cb_param_t::gattc_notify_evt_param::conn_id

(C++ member), 307
esp_ble_gattc_cb_param_t::gattc_notify_evt_param::handle

(C++ member), 307
esp_ble_gattc_cb_param_t::gattc_notify_evt_param::is_notify

(C++ member), 307
esp_ble_gattc_cb_param_t::gattc_notify_evt_param::remote_bda

(C++ member), 307
esp_ble_gattc_cb_param_t::gattc_notify_evt_param::value

(C++ member), 307
esp_ble_gattc_cb_param_t::gattc_notify_evt_param::value_len

(C++ member), 307
esp_ble_gattc_cb_param_t::gattc_open_evt_param

(C++ struct), 307
esp_ble_gattc_cb_param_t::gattc_open_evt_param::conn_id

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_open_evt_param::mtu

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_open_evt_param::remote_bda

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_open_evt_param::status

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_queue_full_evt_param

(C++ struct), 308
esp_ble_gattc_cb_param_t::gattc_queue_full_evt_param::conn_id

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_queue_full_evt_param::is_full

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_queue_full_evt_param::status

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_read_char_evt_param

(C++ struct), 308
esp_ble_gattc_cb_param_t::gattc_read_char_evt_param::conn_id

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_read_char_evt_param::handle

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_read_char_evt_param::status

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_read_char_evt_param::value

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_read_char_evt_param::value_len

(C++ member), 308
esp_ble_gattc_cb_param_t::gattc_reg_evt_param

(C++ struct), 309
esp_ble_gattc_cb_param_t::gattc_reg_evt_param::app_id

(C++ member), 309
esp_ble_gattc_cb_param_t::gattc_reg_evt_param::status

(C++ member), 309
esp_ble_gattc_cb_param_t::gattc_reg_for_notify_evt_param

(C++ struct), 309
esp_ble_gattc_cb_param_t::gattc_reg_for_notify_evt_param::handle

(C++ member), 309
esp_ble_gattc_cb_param_t::gattc_reg_for_notify_evt_param::status

(C++ member), 309
esp_ble_gattc_cb_param_t::gattc_search_cmpl_evt_param

(C++ struct), 309
esp_ble_gattc_cb_param_t::gattc_search_cmpl_evt_param::conn_id

(C++ member), 309
esp_ble_gattc_cb_param_t::gattc_search_cmpl_evt_param::searched_service_source

(C++ member), 309
esp_ble_gattc_cb_param_t::gattc_search_cmpl_evt_param::status

(C++ member), 309
esp_ble_gattc_cb_param_t::gattc_search_res_evt_param

(C++ struct), 309
esp_ble_gattc_cb_param_t::gattc_search_res_evt_param::conn_id

(C++ member), 309
esp_ble_gattc_cb_param_t::gattc_search_res_evt_param::end_handle

(C++ member), 310
esp_ble_gattc_cb_param_t::gattc_search_res_evt_param::is_primary

(C++ member), 310
esp_ble_gattc_cb_param_t::gattc_search_res_evt_param::srvc_id

(C++ member), 310
esp_ble_gattc_cb_param_t::gattc_search_res_evt_param::start_handle

(C++ member), 309
esp_ble_gattc_cb_param_t::gattc_set_assoc_addr_cmp_evt_param

Espressif Systems 2661
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ struct), 310
esp_ble_gattc_cb_param_t::gattc_set_assoc_addr_cmp_evt_param::status

(C++ member), 310
esp_ble_gattc_cb_param_t::gattc_srvc_chg_evt_param

(C++ struct), 310
esp_ble_gattc_cb_param_t::gattc_srvc_chg_evt_param::remote_bda

(C++ member), 310
esp_ble_gattc_cb_param_t::gattc_unreg_for_notify_evt_param

(C++ struct), 310
esp_ble_gattc_cb_param_t::gattc_unreg_for_notify_evt_param::handle

(C++ member), 310
esp_ble_gattc_cb_param_t::gattc_unreg_for_notify_evt_param::status

(C++ member), 310
esp_ble_gattc_cb_param_t::gattc_write_evt_param

(C++ struct), 310
esp_ble_gattc_cb_param_t::gattc_write_evt_param::conn_id

(C++ member), 311
esp_ble_gattc_cb_param_t::gattc_write_evt_param::handle

(C++ member), 311
esp_ble_gattc_cb_param_t::gattc_write_evt_param::offset

(C++ member), 311
esp_ble_gattc_cb_param_t::gattc_write_evt_param::status

(C++ member), 311
esp_ble_gattc_cb_param_t::get_addr_list

(C++ member), 304
esp_ble_gattc_cb_param_t::notify (C++

member), 304
esp_ble_gattc_cb_param_t::open (C++

member), 303
esp_ble_gattc_cb_param_t::queue_full

(C++ member), 304
esp_ble_gattc_cb_param_t::read (C++

member), 304
esp_ble_gattc_cb_param_t::reg (C++

member), 303
esp_ble_gattc_cb_param_t::reg_for_notify

(C++ member), 304
esp_ble_gattc_cb_param_t::search_cmpl

(C++ member), 303
esp_ble_gattc_cb_param_t::search_res

(C++ member), 303
esp_ble_gattc_cb_param_t::set_assoc_cmp

(C++ member), 304
esp_ble_gattc_cb_param_t::srvc_chg

(C++ member), 304
esp_ble_gattc_cb_param_t::unreg_for_notify

(C++ member), 304
esp_ble_gattc_cb_param_t::write (C++

member), 304
esp_ble_gattc_close (C++ function), 292
esp_ble_gattc_enh_open (C++ function), 290
esp_ble_gattc_execute_write (C++ func-

tion), 301
esp_ble_gattc_get_all_char (C++ function),

293
esp_ble_gattc_get_all_descr (C++ func-

tion), 294
esp_ble_gattc_get_attr_count (C++ func-

tion), 296
esp_ble_gattc_get_callback (C++ function),

290
esp_ble_gattc_get_char_by_uuid (C++

function), 294
esp_ble_gattc_get_db (C++ function), 297
esp_ble_gattc_get_descr_by_char_handle

(C++ function), 295
esp_ble_gattc_get_descr_by_uuid (C++

function), 295
esp_ble_gattc_get_include_service

(C++ function), 296
esp_ble_gattc_get_service (C++ function),

293
esp_ble_gattc_open (C++ function), 291
esp_ble_gattc_prepare_write (C++ func-

tion), 300
esp_ble_gattc_prepare_write_char_descr

(C++ function), 300
esp_ble_gattc_read_by_type (C++ function),

297
esp_ble_gattc_read_char (C++ function), 297
esp_ble_gattc_read_char_descr (C++ func-

tion), 299
esp_ble_gattc_read_multiple (C++ func-

tion), 298
esp_ble_gattc_read_multiple_variable

(C++ function), 298
esp_ble_gattc_register_callback (C++

function), 290
esp_ble_gattc_register_for_notify

(C++ function), 301
esp_ble_gattc_search_service (C++ func-

tion), 292
esp_ble_gattc_send_mtu_req (C++ function),

292
esp_ble_gattc_unregister_for_notify

(C++ function), 302
esp_ble_gattc_write_char (C++ function),

299
esp_ble_gattc_write_char_descr (C++

function), 299
esp_ble_gatts_add_char (C++ function), 274
esp_ble_gatts_add_char_descr (C++ func-

tion), 274
esp_ble_gatts_add_included_service

(C++ function), 274
esp_ble_gatts_app_register (C++ function),

272
esp_ble_gatts_app_unregister (C++ func-

tion), 273
esp_ble_gatts_cb_param_t (C++ union), 278
esp_ble_gatts_cb_param_t::add_attr_tab

(C++ member), 279
esp_ble_gatts_cb_param_t::add_char

(C++ member), 279
esp_ble_gatts_cb_param_t::add_char_descr

(C++ member), 279

Espressif Systems 2662
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_gatts_cb_param_t::add_incl_srvc
(C++ member), 279

esp_ble_gatts_cb_param_t::cancel_open
(C++ member), 279

esp_ble_gatts_cb_param_t::close (C++
member), 279

esp_ble_gatts_cb_param_t::conf (C++
member), 279

esp_ble_gatts_cb_param_t::congest
(C++ member), 279

esp_ble_gatts_cb_param_t::connect
(C++ member), 279

esp_ble_gatts_cb_param_t::create (C++
member), 279

esp_ble_gatts_cb_param_t::del (C++
member), 279

esp_ble_gatts_cb_param_t::disconnect
(C++ member), 279

esp_ble_gatts_cb_param_t::exec_write
(C++ member), 278

esp_ble_gatts_cb_param_t::gatts_add_attr_tab_evt_param
(C++ struct), 280

esp_ble_gatts_cb_param_t::gatts_add_attr_tab_evt_param::handles
(C++ member), 280

esp_ble_gatts_cb_param_t::gatts_add_attr_tab_evt_param::num_handle
(C++ member), 280

esp_ble_gatts_cb_param_t::gatts_add_attr_tab_evt_param::status
(C++ member), 280

esp_ble_gatts_cb_param_t::gatts_add_attr_tab_evt_param::svc_inst_id
(C++ member), 280

esp_ble_gatts_cb_param_t::gatts_add_attr_tab_evt_param::svc_uuid
(C++ member), 280

esp_ble_gatts_cb_param_t::gatts_add_char_descr_evt_param
(C++ struct), 280

esp_ble_gatts_cb_param_t::gatts_add_char_descr_evt_param::attr_handle
(C++ member), 280

esp_ble_gatts_cb_param_t::gatts_add_char_descr_evt_param::descr_uuid
(C++ member), 280

esp_ble_gatts_cb_param_t::gatts_add_char_descr_evt_param::service_handle
(C++ member), 280

esp_ble_gatts_cb_param_t::gatts_add_char_descr_evt_param::status
(C++ member), 280

esp_ble_gatts_cb_param_t::gatts_add_char_evt_param
(C++ struct), 280

esp_ble_gatts_cb_param_t::gatts_add_char_evt_param::attr_handle
(C++ member), 281

esp_ble_gatts_cb_param_t::gatts_add_char_evt_param::char_uuid
(C++ member), 281

esp_ble_gatts_cb_param_t::gatts_add_char_evt_param::service_handle
(C++ member), 281

esp_ble_gatts_cb_param_t::gatts_add_char_evt_param::status
(C++ member), 281

esp_ble_gatts_cb_param_t::gatts_add_incl_srvc_evt_param
(C++ struct), 281

esp_ble_gatts_cb_param_t::gatts_add_incl_srvc_evt_param::attr_handle
(C++ member), 281

esp_ble_gatts_cb_param_t::gatts_add_incl_srvc_evt_param::service_handle
(C++ member), 281

esp_ble_gatts_cb_param_t::gatts_add_incl_srvc_evt_param::status
(C++ member), 281

esp_ble_gatts_cb_param_t::gatts_cancel_open_evt_param
(C++ struct), 281

esp_ble_gatts_cb_param_t::gatts_cancel_open_evt_param::status
(C++ member), 281

esp_ble_gatts_cb_param_t::gatts_close_evt_param
(C++ struct), 281

esp_ble_gatts_cb_param_t::gatts_close_evt_param::conn_id
(C++ member), 281

esp_ble_gatts_cb_param_t::gatts_close_evt_param::status
(C++ member), 281

esp_ble_gatts_cb_param_t::gatts_conf_evt_param
(C++ struct), 281

esp_ble_gatts_cb_param_t::gatts_conf_evt_param::conn_id
(C++ member), 282

esp_ble_gatts_cb_param_t::gatts_conf_evt_param::handle
(C++ member), 282

esp_ble_gatts_cb_param_t::gatts_conf_evt_param::len
(C++ member), 282

esp_ble_gatts_cb_param_t::gatts_conf_evt_param::status
(C++ member), 282

esp_ble_gatts_cb_param_t::gatts_conf_evt_param::value
(C++ member), 282

esp_ble_gatts_cb_param_t::gatts_congest_evt_param
(C++ struct), 282

esp_ble_gatts_cb_param_t::gatts_congest_evt_param::congested
(C++ member), 282

esp_ble_gatts_cb_param_t::gatts_congest_evt_param::conn_id
(C++ member), 282

esp_ble_gatts_cb_param_t::gatts_connect_evt_param
(C++ struct), 282

esp_ble_gatts_cb_param_t::gatts_connect_evt_param::ble_addr_type
(C++ member), 283

esp_ble_gatts_cb_param_t::gatts_connect_evt_param::conn_handle
(C++ member), 283

esp_ble_gatts_cb_param_t::gatts_connect_evt_param::conn_id
(C++ member), 282

esp_ble_gatts_cb_param_t::gatts_connect_evt_param::conn_params
(C++ member), 282

esp_ble_gatts_cb_param_t::gatts_connect_evt_param::link_role
(C++ member), 282

esp_ble_gatts_cb_param_t::gatts_connect_evt_param::remote_bda
(C++ member), 282

esp_ble_gatts_cb_param_t::gatts_create_evt_param
(C++ struct), 283

esp_ble_gatts_cb_param_t::gatts_create_evt_param::service_handle
(C++ member), 283

esp_ble_gatts_cb_param_t::gatts_create_evt_param::service_id
(C++ member), 283

esp_ble_gatts_cb_param_t::gatts_create_evt_param::status
(C++ member), 283

esp_ble_gatts_cb_param_t::gatts_delete_evt_param
(C++ struct), 283

esp_ble_gatts_cb_param_t::gatts_delete_evt_param::service_handle
(C++ member), 283

esp_ble_gatts_cb_param_t::gatts_delete_evt_param::status
(C++ member), 283

Espressif Systems 2663
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_gatts_cb_param_t::gatts_disconnect_evt_param
(C++ struct), 283

esp_ble_gatts_cb_param_t::gatts_disconnect_evt_param::conn_id
(C++ member), 283

esp_ble_gatts_cb_param_t::gatts_disconnect_evt_param::reason
(C++ member), 283

esp_ble_gatts_cb_param_t::gatts_disconnect_evt_param::remote_bda
(C++ member), 283

esp_ble_gatts_cb_param_t::gatts_exec_write_evt_param
(C++ struct), 284

esp_ble_gatts_cb_param_t::gatts_exec_write_evt_param::bda
(C++ member), 284

esp_ble_gatts_cb_param_t::gatts_exec_write_evt_param::conn_id
(C++ member), 284

esp_ble_gatts_cb_param_t::gatts_exec_write_evt_param::exec_write_flag
(C++ member), 284

esp_ble_gatts_cb_param_t::gatts_exec_write_evt_param::trans_id
(C++ member), 284

esp_ble_gatts_cb_param_t::gatts_mtu_evt_param
(C++ struct), 284

esp_ble_gatts_cb_param_t::gatts_mtu_evt_param::conn_id
(C++ member), 284

esp_ble_gatts_cb_param_t::gatts_mtu_evt_param::mtu
(C++ member), 284

esp_ble_gatts_cb_param_t::gatts_open_evt_param
(C++ struct), 284

esp_ble_gatts_cb_param_t::gatts_open_evt_param::status
(C++ member), 284

esp_ble_gatts_cb_param_t::gatts_read_evt_param
(C++ struct), 284

esp_ble_gatts_cb_param_t::gatts_read_evt_param::bda
(C++ member), 285

esp_ble_gatts_cb_param_t::gatts_read_evt_param::conn_id
(C++ member), 284

esp_ble_gatts_cb_param_t::gatts_read_evt_param::handle
(C++ member), 285

esp_ble_gatts_cb_param_t::gatts_read_evt_param::is_long
(C++ member), 285

esp_ble_gatts_cb_param_t::gatts_read_evt_param::need_rsp
(C++ member), 285

esp_ble_gatts_cb_param_t::gatts_read_evt_param::offset
(C++ member), 285

esp_ble_gatts_cb_param_t::gatts_read_evt_param::trans_id
(C++ member), 284

esp_ble_gatts_cb_param_t::gatts_reg_evt_param
(C++ struct), 285

esp_ble_gatts_cb_param_t::gatts_reg_evt_param::app_id
(C++ member), 285

esp_ble_gatts_cb_param_t::gatts_reg_evt_param::status
(C++ member), 285

esp_ble_gatts_cb_param_t::gatts_rsp_evt_param
(C++ struct), 285

esp_ble_gatts_cb_param_t::gatts_rsp_evt_param::conn_id
(C++ member), 285

esp_ble_gatts_cb_param_t::gatts_rsp_evt_param::handle
(C++ member), 285

esp_ble_gatts_cb_param_t::gatts_rsp_evt_param::status
(C++ member), 285

esp_ble_gatts_cb_param_t::gatts_send_service_change_evt_param
(C++ struct), 285

esp_ble_gatts_cb_param_t::gatts_send_service_change_evt_param::status
(C++ member), 286

esp_ble_gatts_cb_param_t::gatts_set_attr_val_evt_param
(C++ struct), 286

esp_ble_gatts_cb_param_t::gatts_set_attr_val_evt_param::attr_handle
(C++ member), 286

esp_ble_gatts_cb_param_t::gatts_set_attr_val_evt_param::srvc_handle
(C++ member), 286

esp_ble_gatts_cb_param_t::gatts_set_attr_val_evt_param::status
(C++ member), 286

esp_ble_gatts_cb_param_t::gatts_start_evt_param
(C++ struct), 286

esp_ble_gatts_cb_param_t::gatts_start_evt_param::service_handle
(C++ member), 286

esp_ble_gatts_cb_param_t::gatts_start_evt_param::status
(C++ member), 286

esp_ble_gatts_cb_param_t::gatts_stop_evt_param
(C++ struct), 286

esp_ble_gatts_cb_param_t::gatts_stop_evt_param::service_handle
(C++ member), 286

esp_ble_gatts_cb_param_t::gatts_stop_evt_param::status
(C++ member), 286

esp_ble_gatts_cb_param_t::gatts_write_evt_param
(C++ struct), 286

esp_ble_gatts_cb_param_t::gatts_write_evt_param::bda
(C++ member), 287

esp_ble_gatts_cb_param_t::gatts_write_evt_param::conn_id
(C++ member), 287

esp_ble_gatts_cb_param_t::gatts_write_evt_param::handle
(C++ member), 287

esp_ble_gatts_cb_param_t::gatts_write_evt_param::is_prep
(C++ member), 287

esp_ble_gatts_cb_param_t::gatts_write_evt_param::len
(C++ member), 287

esp_ble_gatts_cb_param_t::gatts_write_evt_param::need_rsp
(C++ member), 287

esp_ble_gatts_cb_param_t::gatts_write_evt_param::offset
(C++ member), 287

esp_ble_gatts_cb_param_t::gatts_write_evt_param::trans_id
(C++ member), 287

esp_ble_gatts_cb_param_t::gatts_write_evt_param::value
(C++ member), 287

esp_ble_gatts_cb_param_t::mtu (C++
member), 278

esp_ble_gatts_cb_param_t::open (C++
member), 279

esp_ble_gatts_cb_param_t::read (C++
member), 278

esp_ble_gatts_cb_param_t::reg (C++
member), 278

esp_ble_gatts_cb_param_t::rsp (C++
member), 279

esp_ble_gatts_cb_param_t::service_change
(C++ member), 280

esp_ble_gatts_cb_param_t::set_attr_val
(C++ member), 280

Espressif Systems 2664
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_gatts_cb_param_t::start (C++
member), 279

esp_ble_gatts_cb_param_t::stop (C++
member), 279

esp_ble_gatts_cb_param_t::write (C++
member), 278

esp_ble_gatts_close (C++ function), 277
esp_ble_gatts_create_attr_tab (C++ func-

tion), 273
esp_ble_gatts_create_service (C++ func-

tion), 273
esp_ble_gatts_delete_service (C++ func-

tion), 275
esp_ble_gatts_get_attr_value (C++ func-

tion), 276
esp_ble_gatts_get_callback (C++ function),

272
esp_ble_gatts_open (C++ function), 277
esp_ble_gatts_register_callback (C++

function), 272
esp_ble_gatts_send_indicate (C++ func-

tion), 275
esp_ble_gatts_send_response (C++ func-

tion), 276
esp_ble_gatts_send_service_change_indication

(C++ function), 278
esp_ble_gatts_set_attr_value (C++ func-

tion), 276
esp_ble_gatts_show_local_database

(C++ function), 278
esp_ble_gatts_start_service (C++ func-

tion), 275
esp_ble_gatts_stop_service (C++ function),

275
esp_ble_get_bond_device_list (C++ func-

tion), 177
esp_ble_get_bond_device_num (C++ func-

tion), 176
esp_ble_get_current_conn_params (C++

function), 178
ESP_BLE_ID_KEY_MASK (C macro), 162
esp_ble_io_cap_t (C++ type), 236
ESP_BLE_IS_VALID_PARAM (C macro), 161
esp_ble_key_mask_t (C++ type), 162
esp_ble_key_t (C++ struct), 217
esp_ble_key_t::bd_addr (C++ member), 217
esp_ble_key_t::key_type (C++ member), 217
esp_ble_key_t::p_key_value (C++ member),

217
esp_ble_key_type_t (C++ type), 236
esp_ble_key_value_t (C++ union), 186
esp_ble_key_value_t::lcsrk_key (C++

member), 186
esp_ble_key_value_t::lenc_key (C++

member), 186
esp_ble_key_value_t::pcsrk_key (C++

member), 186
esp_ble_key_value_t::penc_key (C++

member), 186
esp_ble_key_value_t::pid_key (C++ mem-

ber), 186
esp_ble_lcsrk_keys (C++ struct), 216
esp_ble_lcsrk_keys::counter (C++ mem-

ber), 216
esp_ble_lcsrk_keys::csrk (C++ member),

216
esp_ble_lcsrk_keys::div (C++ member), 216
esp_ble_lcsrk_keys::sec_level (C++

member), 216
ESP_BLE_LEGACY_ADV_TYPE_DIRECT_IND (C

macro), 235
ESP_BLE_LEGACY_ADV_TYPE_IND (C macro),

235
ESP_BLE_LEGACY_ADV_TYPE_NONCON_IND (C

macro), 235
ESP_BLE_LEGACY_ADV_TYPE_SCAN_IND (C

macro), 235
ESP_BLE_LEGACY_ADV_TYPE_SCAN_RSP_TO_ADV_IND

(C macro), 235
ESP_BLE_LEGACY_ADV_TYPE_SCAN_RSP_TO_ADV_SCAN_IND

(C macro), 235
esp_ble_lenc_keys_t (C++ struct), 215
esp_ble_lenc_keys_t::div (C++ member),

216
esp_ble_lenc_keys_t::key_size (C++

member), 216
esp_ble_lenc_keys_t::ltk (C++ member),

216
esp_ble_lenc_keys_t::sec_level (C++

member), 216
ESP_BLE_LINK_KEY_MASK (C macro), 162
esp_ble_local_id_keys_t (C++ struct), 218
esp_ble_local_id_keys_t::dhk (C++ mem-

ber), 218
esp_ble_local_id_keys_t::ir (C++ mem-

ber), 218
esp_ble_local_id_keys_t::irk (C++ mem-

ber), 218
esp_ble_local_oob_data_t (C++ struct), 218
esp_ble_local_oob_data_t::oob_c (C++

member), 218
esp_ble_local_oob_data_t::oob_r (C++

member), 218
ESP_BLE_MESH_ACTUATOR_BLOCKED_ERROR (C

macro), 477
ESP_BLE_MESH_ACTUATOR_BLOCKED_WARNING

(C macro), 477
ESP_BLE_MESH_ADDR_ALL_NODES (C macro),

384
ESP_BLE_MESH_ADDR_FRIENDS (C macro), 384
ESP_BLE_MESH_ADDR_IS_GROUP (C macro), 385
ESP_BLE_MESH_ADDR_IS_RFU (C macro), 385
ESP_BLE_MESH_ADDR_IS_UNICAST (C macro),

385
ESP_BLE_MESH_ADDR_IS_VIRTUAL (C macro),

385

Espressif Systems 2665
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_BLE_MESH_ADDR_PROXIES (C macro), 384
ESP_BLE_MESH_ADDR_RELAYS (C macro), 384
ESP_BLE_MESH_ADDR_TYPE_PUBLIC (C macro),

387
ESP_BLE_MESH_ADDR_TYPE_RANDOM (C macro),

387
ESP_BLE_MESH_ADDR_TYPE_RPA_PUBLIC (C

macro), 387
ESP_BLE_MESH_ADDR_TYPE_RPA_RANDOM (C

macro), 387
esp_ble_mesh_addr_type_t (C++ type), 406
ESP_BLE_MESH_ADDR_UNASSIGNED (C macro),

383
ESP_BLE_MESH_ADDR_UNASSIGNED_ELT_ (C

macro), 384
ESP_BLE_MESH_BATTERY_LOW_ERROR (C

macro), 476
ESP_BLE_MESH_BATTERY_LOW_WARNING (C

macro), 476
esp_ble_mesh_bd_addr_t (C++ type), 406
ESP_BLE_MESH_BEACON_DISABLED (C macro),

384
ESP_BLE_MESH_BEACON_ENABLED (C macro),

384
esp_ble_mesh_cb_t (C++ type), 405
esp_ble_mesh_cb_type_t (C++ enum), 407
esp_ble_mesh_cb_type_t::ESP_BLE_MESH_TYPE_COMPLETE_CB

(C++ enumerator), 408
esp_ble_mesh_cb_type_t::ESP_BLE_MESH_TYPE_INTPUT_CB

(C++ enumerator), 407
esp_ble_mesh_cb_type_t::ESP_BLE_MESH_TYPE_LINK_CLOSE_CB

(C++ enumerator), 408
esp_ble_mesh_cb_type_t::ESP_BLE_MESH_TYPE_LINK_OPEN_CB

(C++ enumerator), 407
esp_ble_mesh_cb_type_t::ESP_BLE_MESH_TYPE_OUTPUT_NUM_CB

(C++ enumerator), 407
esp_ble_mesh_cb_type_t::ESP_BLE_MESH_TYPE_OUTPUT_STR_CB

(C++ enumerator), 407
esp_ble_mesh_cb_type_t::ESP_BLE_MESH_TYPE_PROV_CB

(C++ enumerator), 407
esp_ble_mesh_cb_type_t::ESP_BLE_MESH_TYPE_RESET_CB

(C++ enumerator), 408
esp_ble_mesh_cfg_app_key_add_t (C++

struct), 447
esp_ble_mesh_cfg_app_key_add_t::app_idx

(C++ member), 448
esp_ble_mesh_cfg_app_key_add_t::app_key

(C++ member), 448
esp_ble_mesh_cfg_app_key_add_t::net_idx

(C++ member), 448
esp_ble_mesh_cfg_app_key_delete_t

(C++ struct), 453
esp_ble_mesh_cfg_app_key_delete_t::app_idx

(C++ member), 453
esp_ble_mesh_cfg_app_key_delete_t::net_idx

(C++ member), 453
esp_ble_mesh_cfg_app_key_get_t (C++

struct), 445

esp_ble_mesh_cfg_app_key_get_t::net_idx
(C++ member), 445

esp_ble_mesh_cfg_app_key_list_cb_t
(C++ struct), 460

esp_ble_mesh_cfg_app_key_list_cb_t::app_idx
(C++ member), 460

esp_ble_mesh_cfg_app_key_list_cb_t::net_idx
(C++ member), 460

esp_ble_mesh_cfg_app_key_list_cb_t::status
(C++ member), 460

esp_ble_mesh_cfg_app_key_status_cb_t
(C++ struct), 457

esp_ble_mesh_cfg_app_key_status_cb_t::app_idx
(C++ member), 458

esp_ble_mesh_cfg_app_key_status_cb_t::net_idx
(C++ member), 458

esp_ble_mesh_cfg_app_key_status_cb_t::status
(C++ member), 457

esp_ble_mesh_cfg_app_key_update_t
(C++ struct), 453

esp_ble_mesh_cfg_app_key_update_t::app_idx
(C++ member), 453

esp_ble_mesh_cfg_app_key_update_t::app_key
(C++ member), 453

esp_ble_mesh_cfg_app_key_update_t::net_idx
(C++ member), 453

esp_ble_mesh_cfg_beacon_set_t (C++
struct), 446

esp_ble_mesh_cfg_beacon_set_t::beacon
(C++ member), 446

esp_ble_mesh_cfg_beacon_status_cb_t
(C++ struct), 455

esp_ble_mesh_cfg_beacon_status_cb_t::beacon
(C++ member), 455

esp_ble_mesh_cfg_client_cb_event_t
(C++ enum), 467

esp_ble_mesh_cfg_client_cb_event_t::ESP_BLE_MESH_CFG_CLIENT_EVT_MAX
(C++ enumerator), 467

esp_ble_mesh_cfg_client_cb_event_t::ESP_BLE_MESH_CFG_CLIENT_GET_STATE_EVT
(C++ enumerator), 467

esp_ble_mesh_cfg_client_cb_event_t::ESP_BLE_MESH_CFG_CLIENT_PUBLISH_EVT
(C++ enumerator), 467

esp_ble_mesh_cfg_client_cb_event_t::ESP_BLE_MESH_CFG_CLIENT_SET_STATE_EVT
(C++ enumerator), 467

esp_ble_mesh_cfg_client_cb_event_t::ESP_BLE_MESH_CFG_CLIENT_TIMEOUT_EVT
(C++ enumerator), 467

esp_ble_mesh_cfg_client_cb_param_t
(C++ struct), 462

esp_ble_mesh_cfg_client_cb_param_t::error_code
(C++ member), 462

esp_ble_mesh_cfg_client_cb_param_t::params
(C++ member), 462

esp_ble_mesh_cfg_client_cb_param_t::status_cb
(C++ member), 462

esp_ble_mesh_cfg_client_cb_t (C++ type),
467

esp_ble_mesh_cfg_client_common_cb_param_t
(C++ union), 440

Espressif Systems 2666
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_cfg_client_common_cb_param_t::appkey_list
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::appkey_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::beacon_status
(C++ member), 440

esp_ble_mesh_cfg_client_common_cb_param_t::comp_data_status
(C++ member), 440

esp_ble_mesh_cfg_client_common_cb_param_t::default_ttl_status
(C++ member), 440

esp_ble_mesh_cfg_client_common_cb_param_t::friend_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::gatt_proxy_status
(C++ member), 440

esp_ble_mesh_cfg_client_common_cb_param_t::heartbeat_pub_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::heartbeat_sub_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::kr_phase_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::lpn_timeout_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::model_app_list
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::model_app_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::model_pub_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::model_sub_list
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::model_sub_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::net_transmit_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::netkey_list
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::netkey_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::node_identity_status
(C++ member), 441

esp_ble_mesh_cfg_client_common_cb_param_t::relay_status
(C++ member), 440

esp_ble_mesh_cfg_client_get_state_t
(C++ union), 437

esp_ble_mesh_cfg_client_get_state_t::app_key_get
(C++ member), 438

esp_ble_mesh_cfg_client_get_state_t::comp_data_get
(C++ member), 438

esp_ble_mesh_cfg_client_get_state_t::kr_phase_get
(C++ member), 438

esp_ble_mesh_cfg_client_get_state_t::lpn_pollto_get
(C++ member), 438

esp_ble_mesh_cfg_client_get_state_t::model_pub_get
(C++ member), 438

esp_ble_mesh_cfg_client_get_state_t::node_identity_get
(C++ member), 438

esp_ble_mesh_cfg_client_get_state_t::sig_model_app_get
(C++ member), 438

esp_ble_mesh_cfg_client_get_state_t::sig_model_sub_get
(C++ member), 438

esp_ble_mesh_cfg_client_get_state_t::vnd_model_app_get
(C++ member), 438

esp_ble_mesh_cfg_client_get_state_t::vnd_model_sub_get
(C++ member), 438

esp_ble_mesh_cfg_client_set_state_t
(C++ union), 438

esp_ble_mesh_cfg_client_set_state_t::app_key_add
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::app_key_delete
(C++ member), 440

esp_ble_mesh_cfg_client_set_state_t::app_key_update
(C++ member), 440

esp_ble_mesh_cfg_client_set_state_t::beacon_set
(C++ member), 438

esp_ble_mesh_cfg_client_set_state_t::default_ttl_set
(C++ member), 438

esp_ble_mesh_cfg_client_set_state_t::friend_set
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::gatt_proxy_set
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::heartbeat_pub_set
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::heartbeat_sub_set
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::kr_phase_set
(C++ member), 440

esp_ble_mesh_cfg_client_set_state_t::model_app_bind
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::model_app_unbind
(C++ member), 440

esp_ble_mesh_cfg_client_set_state_t::model_pub_set
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::model_pub_va_set
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::model_sub_add
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::model_sub_delete
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::model_sub_delete_all
(C++ member), 440

esp_ble_mesh_cfg_client_set_state_t::model_sub_overwrite
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::model_sub_va_add
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::model_sub_va_delete
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::model_sub_va_overwrite
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::net_key_add
(C++ member), 439

esp_ble_mesh_cfg_client_set_state_t::net_key_delete
(C++ member), 440

esp_ble_mesh_cfg_client_set_state_t::net_key_update
(C++ member), 440

esp_ble_mesh_cfg_client_set_state_t::net_transmit_set
(C++ member), 440

Espressif Systems 2667
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_cfg_client_set_state_t::node_identity_set
(C++ member), 440

esp_ble_mesh_cfg_client_set_state_t::relay_set
(C++ member), 439

esp_ble_mesh_cfg_comp_data_status_cb_t
(C++ struct), 455

esp_ble_mesh_cfg_comp_data_status_cb_t::composition_data
(C++ member), 455

esp_ble_mesh_cfg_comp_data_status_cb_t::page
(C++ member), 455

esp_ble_mesh_cfg_composition_data_get_t
(C++ struct), 444

esp_ble_mesh_cfg_composition_data_get_t::page
(C++ member), 444

esp_ble_mesh_cfg_default_ttl_set_t
(C++ struct), 446

esp_ble_mesh_cfg_default_ttl_set_t::ttl
(C++ member), 447

esp_ble_mesh_cfg_default_ttl_status_cb_t
(C++ struct), 455

esp_ble_mesh_cfg_default_ttl_status_cb_t::default_ttl
(C++ member), 455

esp_ble_mesh_cfg_friend_set_t (C++
struct), 447

esp_ble_mesh_cfg_friend_set_t::friend_state
(C++ member), 447

esp_ble_mesh_cfg_friend_status_cb_t
(C++ struct), 458

esp_ble_mesh_cfg_friend_status_cb_t::friend_state
(C++ member), 458

esp_ble_mesh_cfg_gatt_proxy_set_t
(C++ struct), 447

esp_ble_mesh_cfg_gatt_proxy_set_t::gatt_proxy
(C++ member), 447

esp_ble_mesh_cfg_gatt_proxy_status_cb_t
(C++ struct), 455

esp_ble_mesh_cfg_gatt_proxy_status_cb_t::gatt_proxy
(C++ member), 456

esp_ble_mesh_cfg_hb_pub_status_cb_t
(C++ struct), 458

esp_ble_mesh_cfg_hb_pub_status_cb_t::count
(C++ member), 459

esp_ble_mesh_cfg_hb_pub_status_cb_t::dst
(C++ member), 458

esp_ble_mesh_cfg_hb_pub_status_cb_t::features
(C++ member), 459

esp_ble_mesh_cfg_hb_pub_status_cb_t::net_idx
(C++ member), 459

esp_ble_mesh_cfg_hb_pub_status_cb_t::period
(C++ member), 459

esp_ble_mesh_cfg_hb_pub_status_cb_t::status
(C++ member), 458

esp_ble_mesh_cfg_hb_pub_status_cb_t::ttl
(C++ member), 459

esp_ble_mesh_cfg_hb_sub_status_cb_t
(C++ struct), 459

esp_ble_mesh_cfg_hb_sub_status_cb_t::count
(C++ member), 459

esp_ble_mesh_cfg_hb_sub_status_cb_t::dst
(C++ member), 459

esp_ble_mesh_cfg_hb_sub_status_cb_t::max_hops
(C++ member), 459

esp_ble_mesh_cfg_hb_sub_status_cb_t::min_hops
(C++ member), 459

esp_ble_mesh_cfg_hb_sub_status_cb_t::period
(C++ member), 459

esp_ble_mesh_cfg_hb_sub_status_cb_t::src
(C++ member), 459

esp_ble_mesh_cfg_hb_sub_status_cb_t::status
(C++ member), 459

esp_ble_mesh_cfg_heartbeat_pub_set_t
(C++ struct), 454

esp_ble_mesh_cfg_heartbeat_pub_set_t::count
(C++ member), 454

esp_ble_mesh_cfg_heartbeat_pub_set_t::dst
(C++ member), 454

esp_ble_mesh_cfg_heartbeat_pub_set_t::feature
(C++ member), 454

esp_ble_mesh_cfg_heartbeat_pub_set_t::net_idx
(C++ member), 455

esp_ble_mesh_cfg_heartbeat_pub_set_t::period
(C++ member), 454

esp_ble_mesh_cfg_heartbeat_pub_set_t::ttl
(C++ member), 454

esp_ble_mesh_cfg_heartbeat_sub_set_t
(C++ struct), 455

esp_ble_mesh_cfg_heartbeat_sub_set_t::dst
(C++ member), 455

esp_ble_mesh_cfg_heartbeat_sub_set_t::period
(C++ member), 455

esp_ble_mesh_cfg_heartbeat_sub_set_t::src
(C++ member), 455

esp_ble_mesh_cfg_kr_phase_get_t (C++
struct), 446

esp_ble_mesh_cfg_kr_phase_get_t::net_idx
(C++ member), 446

esp_ble_mesh_cfg_kr_phase_set_t (C++
struct), 454

esp_ble_mesh_cfg_kr_phase_set_t::net_idx
(C++ member), 454

esp_ble_mesh_cfg_kr_phase_set_t::transition
(C++ member), 454

esp_ble_mesh_cfg_kr_phase_status_cb_t
(C++ struct), 461

esp_ble_mesh_cfg_kr_phase_status_cb_t::net_idx
(C++ member), 461

esp_ble_mesh_cfg_kr_phase_status_cb_t::phase
(C++ member), 462

esp_ble_mesh_cfg_kr_phase_status_cb_t::status
(C++ member), 461

esp_ble_mesh_cfg_lpn_polltimeout_get_t
(C++ struct), 446

esp_ble_mesh_cfg_lpn_polltimeout_get_t::lpn_addr
(C++ member), 446

esp_ble_mesh_cfg_lpn_pollto_status_cb_t
(C++ struct), 462

Espressif Systems 2668
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_cfg_lpn_pollto_status_cb_t::lpn_addr
(C++ member), 462

esp_ble_mesh_cfg_lpn_pollto_status_cb_t::poll_timeout
(C++ member), 462

esp_ble_mesh_cfg_mod_app_status_cb_t
(C++ struct), 458

esp_ble_mesh_cfg_mod_app_status_cb_t::app_idx
(C++ member), 458

esp_ble_mesh_cfg_mod_app_status_cb_t::company_id
(C++ member), 458

esp_ble_mesh_cfg_mod_app_status_cb_t::element_addr
(C++ member), 458

esp_ble_mesh_cfg_mod_app_status_cb_t::model_id
(C++ member), 458

esp_ble_mesh_cfg_mod_app_status_cb_t::status
(C++ member), 458

esp_ble_mesh_cfg_model_app_bind_t
(C++ struct), 448

esp_ble_mesh_cfg_model_app_bind_t::company_id
(C++ member), 448

esp_ble_mesh_cfg_model_app_bind_t::element_addr
(C++ member), 448

esp_ble_mesh_cfg_model_app_bind_t::model_app_idx
(C++ member), 448

esp_ble_mesh_cfg_model_app_bind_t::model_id
(C++ member), 448

esp_ble_mesh_cfg_model_app_list_cb_t
(C++ struct), 461

esp_ble_mesh_cfg_model_app_list_cb_t::app_idx
(C++ member), 461

esp_ble_mesh_cfg_model_app_list_cb_t::company_id
(C++ member), 461

esp_ble_mesh_cfg_model_app_list_cb_t::element_addr
(C++ member), 461

esp_ble_mesh_cfg_model_app_list_cb_t::model_id
(C++ member), 461

esp_ble_mesh_cfg_model_app_list_cb_t::status
(C++ member), 461

esp_ble_mesh_cfg_model_app_unbind_t
(C++ struct), 453

esp_ble_mesh_cfg_model_app_unbind_t::company_id
(C++ member), 454

esp_ble_mesh_cfg_model_app_unbind_t::element_addr
(C++ member), 453

esp_ble_mesh_cfg_model_app_unbind_t::model_app_idx
(C++ member), 453

esp_ble_mesh_cfg_model_app_unbind_t::model_id
(C++ member), 454

esp_ble_mesh_cfg_model_pub_get_t (C++
struct), 444

esp_ble_mesh_cfg_model_pub_get_t::company_id
(C++ member), 444

esp_ble_mesh_cfg_model_pub_get_t::element_addr
(C++ member), 444

esp_ble_mesh_cfg_model_pub_get_t::model_id
(C++ member), 444

esp_ble_mesh_cfg_model_pub_set_t (C++
struct), 448

esp_ble_mesh_cfg_model_pub_set_t::company_id
(C++ member), 449

esp_ble_mesh_cfg_model_pub_set_t::cred_flag
(C++ member), 448

esp_ble_mesh_cfg_model_pub_set_t::element_addr
(C++ member), 448

esp_ble_mesh_cfg_model_pub_set_t::model_id
(C++ member), 449

esp_ble_mesh_cfg_model_pub_set_t::publish_addr
(C++ member), 448

esp_ble_mesh_cfg_model_pub_set_t::publish_app_idx
(C++ member), 448

esp_ble_mesh_cfg_model_pub_set_t::publish_period
(C++ member), 449

esp_ble_mesh_cfg_model_pub_set_t::publish_retransmit
(C++ member), 449

esp_ble_mesh_cfg_model_pub_set_t::publish_ttl
(C++ member), 449

esp_ble_mesh_cfg_model_pub_status_cb_t
(C++ struct), 456

esp_ble_mesh_cfg_model_pub_status_cb_t::app_idx
(C++ member), 456

esp_ble_mesh_cfg_model_pub_status_cb_t::company_id
(C++ member), 457

esp_ble_mesh_cfg_model_pub_status_cb_t::cred_flag
(C++ member), 456

esp_ble_mesh_cfg_model_pub_status_cb_t::element_addr
(C++ member), 456

esp_ble_mesh_cfg_model_pub_status_cb_t::model_id
(C++ member), 457

esp_ble_mesh_cfg_model_pub_status_cb_t::period
(C++ member), 456

esp_ble_mesh_cfg_model_pub_status_cb_t::publish_addr
(C++ member), 456

esp_ble_mesh_cfg_model_pub_status_cb_t::status
(C++ member), 456

esp_ble_mesh_cfg_model_pub_status_cb_t::transmit
(C++ member), 456

esp_ble_mesh_cfg_model_pub_status_cb_t::ttl
(C++ member), 456

esp_ble_mesh_cfg_model_pub_va_set_t
(C++ struct), 451

esp_ble_mesh_cfg_model_pub_va_set_t::company_id
(C++ member), 452

esp_ble_mesh_cfg_model_pub_va_set_t::cred_flag
(C++ member), 451

esp_ble_mesh_cfg_model_pub_va_set_t::element_addr
(C++ member), 451

esp_ble_mesh_cfg_model_pub_va_set_t::label_uuid
(C++ member), 451

esp_ble_mesh_cfg_model_pub_va_set_t::model_id
(C++ member), 452

esp_ble_mesh_cfg_model_pub_va_set_t::publish_app_idx
(C++ member), 451

esp_ble_mesh_cfg_model_pub_va_set_t::publish_period
(C++ member), 452

esp_ble_mesh_cfg_model_pub_va_set_t::publish_retransmit
(C++ member), 452

Espressif Systems 2669
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_cfg_model_pub_va_set_t::publish_ttl
(C++ member), 451

esp_ble_mesh_cfg_model_sub_add_t (C++
struct), 449

esp_ble_mesh_cfg_model_sub_add_t::company_id
(C++ member), 449

esp_ble_mesh_cfg_model_sub_add_t::element_addr
(C++ member), 449

esp_ble_mesh_cfg_model_sub_add_t::model_id
(C++ member), 449

esp_ble_mesh_cfg_model_sub_add_t::sub_addr
(C++ member), 449

esp_ble_mesh_cfg_model_sub_delete_all_t
(C++ struct), 452

esp_ble_mesh_cfg_model_sub_delete_all_t::company_id
(C++ member), 452

esp_ble_mesh_cfg_model_sub_delete_all_t::element_addr
(C++ member), 452

esp_ble_mesh_cfg_model_sub_delete_all_t::model_id
(C++ member), 452

esp_ble_mesh_cfg_model_sub_delete_t
(C++ struct), 449

esp_ble_mesh_cfg_model_sub_delete_t::company_id
(C++ member), 450

esp_ble_mesh_cfg_model_sub_delete_t::element_addr
(C++ member), 449

esp_ble_mesh_cfg_model_sub_delete_t::model_id
(C++ member), 449

esp_ble_mesh_cfg_model_sub_delete_t::sub_addr
(C++ member), 449

esp_ble_mesh_cfg_model_sub_list_cb_t
(C++ struct), 460

esp_ble_mesh_cfg_model_sub_list_cb_t::company_id
(C++ member), 460

esp_ble_mesh_cfg_model_sub_list_cb_t::element_addr
(C++ member), 460

esp_ble_mesh_cfg_model_sub_list_cb_t::model_id
(C++ member), 460

esp_ble_mesh_cfg_model_sub_list_cb_t::status
(C++ member), 460

esp_ble_mesh_cfg_model_sub_list_cb_t::sub_addr
(C++ member), 460

esp_ble_mesh_cfg_model_sub_overwrite_t
(C++ struct), 450

esp_ble_mesh_cfg_model_sub_overwrite_t::company_id
(C++ member), 450

esp_ble_mesh_cfg_model_sub_overwrite_t::element_addr
(C++ member), 450

esp_ble_mesh_cfg_model_sub_overwrite_t::model_id
(C++ member), 450

esp_ble_mesh_cfg_model_sub_overwrite_t::sub_addr
(C++ member), 450

esp_ble_mesh_cfg_model_sub_status_cb_t
(C++ struct), 457

esp_ble_mesh_cfg_model_sub_status_cb_t::company_id
(C++ member), 457

esp_ble_mesh_cfg_model_sub_status_cb_t::element_addr
(C++ member), 457

esp_ble_mesh_cfg_model_sub_status_cb_t::model_id
(C++ member), 457

esp_ble_mesh_cfg_model_sub_status_cb_t::status
(C++ member), 457

esp_ble_mesh_cfg_model_sub_status_cb_t::sub_addr
(C++ member), 457

esp_ble_mesh_cfg_model_sub_va_add_t
(C++ struct), 450

esp_ble_mesh_cfg_model_sub_va_add_t::company_id
(C++ member), 450

esp_ble_mesh_cfg_model_sub_va_add_t::element_addr
(C++ member), 450

esp_ble_mesh_cfg_model_sub_va_add_t::label_uuid
(C++ member), 450

esp_ble_mesh_cfg_model_sub_va_add_t::model_id
(C++ member), 450

esp_ble_mesh_cfg_model_sub_va_delete_t
(C++ struct), 450

esp_ble_mesh_cfg_model_sub_va_delete_t::company_id
(C++ member), 451

esp_ble_mesh_cfg_model_sub_va_delete_t::element_addr
(C++ member), 450

esp_ble_mesh_cfg_model_sub_va_delete_t::label_uuid
(C++ member), 451

esp_ble_mesh_cfg_model_sub_va_delete_t::model_id
(C++ member), 451

esp_ble_mesh_cfg_model_sub_va_overwrite_t
(C++ struct), 451

esp_ble_mesh_cfg_model_sub_va_overwrite_t::company_id
(C++ member), 451

esp_ble_mesh_cfg_model_sub_va_overwrite_t::element_addr
(C++ member), 451

esp_ble_mesh_cfg_model_sub_va_overwrite_t::label_uuid
(C++ member), 451

esp_ble_mesh_cfg_model_sub_va_overwrite_t::model_id
(C++ member), 451

esp_ble_mesh_cfg_net_key_add_t (C++
struct), 447

esp_ble_mesh_cfg_net_key_add_t::net_idx
(C++ member), 447

esp_ble_mesh_cfg_net_key_add_t::net_key
(C++ member), 447

esp_ble_mesh_cfg_net_key_delete_t
(C++ struct), 452

esp_ble_mesh_cfg_net_key_delete_t::net_idx
(C++ member), 452

esp_ble_mesh_cfg_net_key_list_cb_t
(C++ struct), 460

esp_ble_mesh_cfg_net_key_list_cb_t::net_idx
(C++ member), 460

esp_ble_mesh_cfg_net_key_status_cb_t
(C++ struct), 457

esp_ble_mesh_cfg_net_key_status_cb_t::net_idx
(C++ member), 457

esp_ble_mesh_cfg_net_key_status_cb_t::status
(C++ member), 457

esp_ble_mesh_cfg_net_key_update_t
(C++ struct), 452

Espressif Systems 2670
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_cfg_net_key_update_t::net_idx
(C++ member), 452

esp_ble_mesh_cfg_net_key_update_t::net_key
(C++ member), 452

esp_ble_mesh_cfg_net_trans_status_cb_t
(C++ struct), 459

esp_ble_mesh_cfg_net_trans_status_cb_t::net_trans_count
(C++ member), 460

esp_ble_mesh_cfg_net_trans_status_cb_t::net_trans_step
(C++ member), 460

esp_ble_mesh_cfg_net_transmit_set_t
(C++ struct), 454

esp_ble_mesh_cfg_net_transmit_set_t::net_transmit
(C++ member), 454

esp_ble_mesh_cfg_node_id_status_cb_t
(C++ struct), 461

esp_ble_mesh_cfg_node_id_status_cb_t::identity
(C++ member), 461

esp_ble_mesh_cfg_node_id_status_cb_t::net_idx
(C++ member), 461

esp_ble_mesh_cfg_node_id_status_cb_t::status
(C++ member), 461

esp_ble_mesh_cfg_node_identity_get_t
(C++ struct), 445

esp_ble_mesh_cfg_node_identity_get_t::net_idx
(C++ member), 445

esp_ble_mesh_cfg_node_identity_set_t
(C++ struct), 453

esp_ble_mesh_cfg_node_identity_set_t::identity
(C++ member), 453

esp_ble_mesh_cfg_node_identity_set_t::net_idx
(C++ member), 453

esp_ble_mesh_cfg_relay_set_t (C++ struct),
447

esp_ble_mesh_cfg_relay_set_t::relay
(C++ member), 447

esp_ble_mesh_cfg_relay_set_t::relay_retransmit
(C++ member), 447

esp_ble_mesh_cfg_relay_status_cb_t
(C++ struct), 456

esp_ble_mesh_cfg_relay_status_cb_t::relay
(C++ member), 456

esp_ble_mesh_cfg_relay_status_cb_t::retransmit
(C++ member), 456

esp_ble_mesh_cfg_server_cb_event_t
(C++ enum), 467

esp_ble_mesh_cfg_server_cb_event_t::ESP_BLE_MESH_CFG_SERVER_EVT_MAX
(C++ enumerator), 468

esp_ble_mesh_cfg_server_cb_event_t::ESP_BLE_MESH_CFG_SERVER_STATE_CHANGE_EVT
(C++ enumerator), 467

esp_ble_mesh_cfg_server_cb_param_t
(C++ struct), 466

esp_ble_mesh_cfg_server_cb_param_t::ctx
(C++ member), 466

esp_ble_mesh_cfg_server_cb_param_t::model
(C++ member), 466

esp_ble_mesh_cfg_server_cb_param_t::value
(C++ member), 466

esp_ble_mesh_cfg_server_cb_t (C++ type),
467

esp_ble_mesh_cfg_server_cb_value_t
(C++ union), 442

esp_ble_mesh_cfg_server_cb_value_t::state_change
(C++ member), 443

esp_ble_mesh_cfg_server_state_change_t
(C++ union), 442

esp_ble_mesh_cfg_server_state_change_t::appkey_add
(C++ member), 442

esp_ble_mesh_cfg_server_state_change_t::appkey_delete
(C++ member), 442

esp_ble_mesh_cfg_server_state_change_t::appkey_update
(C++ member), 442

esp_ble_mesh_cfg_server_state_change_t::kr_phase_set
(C++ member), 442

esp_ble_mesh_cfg_server_state_change_t::mod_app_bind
(C++ member), 442

esp_ble_mesh_cfg_server_state_change_t::mod_app_unbind
(C++ member), 442

esp_ble_mesh_cfg_server_state_change_t::mod_pub_set
(C++ member), 442

esp_ble_mesh_cfg_server_state_change_t::mod_sub_add
(C++ member), 442

esp_ble_mesh_cfg_server_state_change_t::mod_sub_delete
(C++ member), 442

esp_ble_mesh_cfg_server_state_change_t::netkey_add
(C++ member), 442

esp_ble_mesh_cfg_server_state_change_t::netkey_delete
(C++ member), 442

esp_ble_mesh_cfg_server_state_change_t::netkey_update
(C++ member), 442

esp_ble_mesh_cfg_sig_model_app_get_t
(C++ struct), 445

esp_ble_mesh_cfg_sig_model_app_get_t::element_addr
(C++ member), 446

esp_ble_mesh_cfg_sig_model_app_get_t::model_id
(C++ member), 446

esp_ble_mesh_cfg_sig_model_sub_get_t
(C++ struct), 445

esp_ble_mesh_cfg_sig_model_sub_get_t::element_addr
(C++ member), 445

esp_ble_mesh_cfg_sig_model_sub_get_t::model_id
(C++ member), 445

esp_ble_mesh_cfg_srv (C++ struct), 443
esp_ble_mesh_cfg_srv::beacon (C++ mem-

ber), 443
esp_ble_mesh_cfg_srv::count (C++ mem-

ber), 443
esp_ble_mesh_cfg_srv::default_ttl

(C++ member), 443
esp_ble_mesh_cfg_srv::dst (C++ member),

443
esp_ble_mesh_cfg_srv::expiry (C++ mem-

ber), 444
esp_ble_mesh_cfg_srv::feature (C++

member), 444
esp_ble_mesh_cfg_srv::friend_state

Espressif Systems 2671
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 443
esp_ble_mesh_cfg_srv::gatt_proxy (C++

member), 443
esp_ble_mesh_cfg_srv::heartbeat_pub

(C++ member), 444
esp_ble_mesh_cfg_srv::heartbeat_recv_cb

(C++ member), 444
esp_ble_mesh_cfg_srv::heartbeat_sub

(C++ member), 444
esp_ble_mesh_cfg_srv::max_hops (C++

member), 444
esp_ble_mesh_cfg_srv::min_hops (C++

member), 444
esp_ble_mesh_cfg_srv::model (C++ mem-

ber), 443
esp_ble_mesh_cfg_srv::net_idx (C++

member), 444
esp_ble_mesh_cfg_srv::net_transmit

(C++ member), 443
esp_ble_mesh_cfg_srv::period (C++ mem-

ber), 443
esp_ble_mesh_cfg_srv::relay (C++ mem-

ber), 443
esp_ble_mesh_cfg_srv::relay_retransmit

(C++ member), 443
esp_ble_mesh_cfg_srv::src (C++ member),

444
esp_ble_mesh_cfg_srv::timer (C++ mem-

ber), 443
esp_ble_mesh_cfg_srv::ttl (C++ member),

443
esp_ble_mesh_cfg_srv_t (C++ type), 467
ESP_BLE_MESH_CFG_STATUS_CANNOT_BIND (C

macro), 395
ESP_BLE_MESH_CFG_STATUS_CANNOT_REMOVE

(C macro), 395
ESP_BLE_MESH_CFG_STATUS_CANNOT_SET (C

macro), 395
ESP_BLE_MESH_CFG_STATUS_CANNOT_UPDATE

(C macro), 395
ESP_BLE_MESH_CFG_STATUS_FEATURE_NOT_SUPPORTED

(C macro), 395
ESP_BLE_MESH_CFG_STATUS_INSUFFICIENT_RESOURCES

(C macro), 395
ESP_BLE_MESH_CFG_STATUS_INVALID_ADDRESS

(C macro), 394
ESP_BLE_MESH_CFG_STATUS_INVALID_APPKEY

(C macro), 395
ESP_BLE_MESH_CFG_STATUS_INVALID_BINDING

(C macro), 395
ESP_BLE_MESH_CFG_STATUS_INVALID_MODEL

(C macro), 395
ESP_BLE_MESH_CFG_STATUS_INVALID_NETKEY

(C macro), 395
ESP_BLE_MESH_CFG_STATUS_INVALID_PUBLISH_PARAMETERS

(C macro), 395
ESP_BLE_MESH_CFG_STATUS_KEY_INDEX_ALREADY_STORED

(C macro), 395

ESP_BLE_MESH_CFG_STATUS_NOT_A_SUBSCRIBE_MODEL
(C macro), 395

ESP_BLE_MESH_CFG_STATUS_STORAGE_FAILURE
(C macro), 395

ESP_BLE_MESH_CFG_STATUS_SUCCESS (C
macro), 394

esp_ble_mesh_cfg_status_t (C++ type), 406
ESP_BLE_MESH_CFG_STATUS_TEMP_UNABLE_TO_CHANGE_STATE

(C macro), 395
ESP_BLE_MESH_CFG_STATUS_UNSPECIFIED_ERROR

(C macro), 395
esp_ble_mesh_cfg_vnd_model_app_get_t

(C++ struct), 446
esp_ble_mesh_cfg_vnd_model_app_get_t::company_id

(C++ member), 446
esp_ble_mesh_cfg_vnd_model_app_get_t::element_addr

(C++ member), 446
esp_ble_mesh_cfg_vnd_model_app_get_t::model_id

(C++ member), 446
esp_ble_mesh_cfg_vnd_model_sub_get_t

(C++ struct), 445
esp_ble_mesh_cfg_vnd_model_sub_get_t::company_id

(C++ member), 445
esp_ble_mesh_cfg_vnd_model_sub_get_t::element_addr

(C++ member), 445
esp_ble_mesh_cfg_vnd_model_sub_get_t::model_id

(C++ member), 445
ESP_BLE_MESH_CID_NVAL (C macro), 383
esp_ble_mesh_client_common_param_t

(C++ struct), 381
esp_ble_mesh_client_common_param_t::ctx

(C++ member), 381
esp_ble_mesh_client_common_param_t::model

(C++ member), 381
esp_ble_mesh_client_common_param_t::msg_role

(C++ member), 381
esp_ble_mesh_client_common_param_t::msg_timeout

(C++ member), 381
esp_ble_mesh_client_common_param_t::opcode

(C++ member), 381
esp_ble_mesh_client_model_deinit (C++

function), 422
esp_ble_mesh_client_model_init (C++

function), 421
esp_ble_mesh_client_model_send_msg

(C++ function), 422
esp_ble_mesh_client_op_pair_t (C++

struct), 380
esp_ble_mesh_client_op_pair_t::cli_op

(C++ member), 380
esp_ble_mesh_client_op_pair_t::status_op

(C++ member), 380
esp_ble_mesh_client_t (C++ struct), 380
esp_ble_mesh_client_t::internal_data

(C++ member), 380
esp_ble_mesh_client_t::model (C++ mem-

ber), 380
esp_ble_mesh_client_t::msg_role (C++

Espressif Systems 2672
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

member), 380
esp_ble_mesh_client_t::op_pair (C++

member), 380
esp_ble_mesh_client_t::op_pair_size

(C++ member), 380
esp_ble_mesh_client_t::publish_status

(C++ member), 380
esp_ble_mesh_comp_t (C++ struct), 376
esp_ble_mesh_comp_t::cid (C++ member),

377
esp_ble_mesh_comp_t::element_count

(C++ member), 377
esp_ble_mesh_comp_t::elements (C++

member), 377
esp_ble_mesh_comp_t::pid (C++ member),

377
esp_ble_mesh_comp_t::vid (C++ member),

377
ESP_BLE_MESH_CONDENSATION_ERROR (C

macro), 476
ESP_BLE_MESH_CONDENSATION_WARNING (C

macro), 476
esp_ble_mesh_config_client_get_state

(C++ function), 437
esp_ble_mesh_config_client_set_state

(C++ function), 437
ESP_BLE_MESH_CONFIGURATION_ERROR (C

macro), 476
ESP_BLE_MESH_CONFIGURATION_WARNING (C

macro), 476
esp_ble_mesh_deinit (C++ function), 417
esp_ble_mesh_deinit_param_t (C++ struct),

372
esp_ble_mesh_deinit_param_t::erase_flash

(C++ member), 372
esp_ble_mesh_dev_add_flag_t (C++ type),

406
esp_ble_mesh_dev_role_t (C++ enum), 409
esp_ble_mesh_dev_role_t::ROLE_FAST_PROV

(C++ enumerator), 409
esp_ble_mesh_dev_role_t::ROLE_NODE

(C++ enumerator), 409
esp_ble_mesh_dev_role_t::ROLE_PROVISIONER

(C++ enumerator), 409
esp_ble_mesh_device_delete_t (C++ struct),

377
esp_ble_mesh_device_delete_t::addr

(C++ member), 377
esp_ble_mesh_device_delete_t::addr_type

(C++ member), 377
esp_ble_mesh_device_delete_t::flag

(C++ member), 378
esp_ble_mesh_device_delete_t::uuid

(C++ member), 377
ESP_BLE_MESH_DEVICE_DROPPED_ERROR (C

macro), 477
ESP_BLE_MESH_DEVICE_DROPPED_WARNING (C

macro), 477

ESP_BLE_MESH_DEVICE_MOVED_ERROR (C
macro), 477

ESP_BLE_MESH_DEVICE_MOVED_WARNING (C
macro), 477

ESP_BLE_MESH_DEVICE_NAME_MAX_LEN (C
macro), 383

esp_ble_mesh_elem_t (C++ struct), 372
esp_ble_mesh_elem_t::element_addr

(C++ member), 372
esp_ble_mesh_elem_t::location (C++

member), 372
esp_ble_mesh_elem_t::sig_model_count

(C++ member), 373
esp_ble_mesh_elem_t::sig_models (C++

member), 373
esp_ble_mesh_elem_t::vnd_model_count

(C++ member), 373
esp_ble_mesh_elem_t::vnd_models (C++

member), 373
ESP_BLE_MESH_ELEMENT (C macro), 386
ESP_BLE_MESH_ELEMENT_NOT_CALIBRATED_ERROR

(C macro), 477
ESP_BLE_MESH_ELEMENT_NOT_CALIBRATED_WARNING

(C macro), 476
ESP_BLE_MESH_EMPTY_ERROR (C macro), 478
ESP_BLE_MESH_EMPTY_WARNING (C macro), 478
esp_ble_mesh_fast_prov_action_t (C++

enum), 409
esp_ble_mesh_fast_prov_action_t::FAST_PROV_ACT_ENTER

(C++ enumerator), 410
esp_ble_mesh_fast_prov_action_t::FAST_PROV_ACT_EXIT

(C++ enumerator), 410
esp_ble_mesh_fast_prov_action_t::FAST_PROV_ACT_MAX

(C++ enumerator), 410
esp_ble_mesh_fast_prov_action_t::FAST_PROV_ACT_NONE

(C++ enumerator), 409
esp_ble_mesh_fast_prov_action_t::FAST_PROV_ACT_SUSPEND

(C++ enumerator), 410
esp_ble_mesh_fast_prov_info_t (C++

struct), 379
esp_ble_mesh_fast_prov_info_t::flags

(C++ member), 379
esp_ble_mesh_fast_prov_info_t::iv_index

(C++ member), 379
esp_ble_mesh_fast_prov_info_t::match_len

(C++ member), 379
esp_ble_mesh_fast_prov_info_t::match_val

(C++ member), 379
esp_ble_mesh_fast_prov_info_t::net_idx

(C++ member), 379
esp_ble_mesh_fast_prov_info_t::offset

(C++ member), 379
esp_ble_mesh_fast_prov_info_t::unicast_max

(C++ member), 379
esp_ble_mesh_fast_prov_info_t::unicast_min

(C++ member), 379
ESP_BLE_MESH_FEATURE_ALL_SUPPORTED (C

macro), 385

Espressif Systems 2673
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_BLE_MESH_FEATURE_FRIEND (C macro),
385

ESP_BLE_MESH_FEATURE_LOW_POWER (C
macro), 385

ESP_BLE_MESH_FEATURE_PROXY (C macro), 385
ESP_BLE_MESH_FEATURE_RELAY (C macro), 385
esp_ble_mesh_find_element (C++ function),

418
esp_ble_mesh_find_sig_model (C++ func-

tion), 418
esp_ble_mesh_find_vendor_model (C++

function), 418
ESP_BLE_MESH_FRIEND_DISABLED (C macro),

385
ESP_BLE_MESH_FRIEND_ENABLED (C macro),

385
ESP_BLE_MESH_FRIEND_NOT_SUPPORTED (C

macro), 385
ESP_BLE_MESH_GATT_PROXY_DISABLED (C

macro), 384
ESP_BLE_MESH_GATT_PROXY_ENABLED (C

macro), 384
ESP_BLE_MESH_GATT_PROXY_NOT_SUPPORTED

(C macro), 384
esp_ble_mesh_gen_admin_prop_access_t

(C++ enum), 518
esp_ble_mesh_gen_admin_prop_access_t::ESP_BLE_MESH_GEN_ADMIN_ACCESS_READ

(C++ enumerator), 518
esp_ble_mesh_gen_admin_prop_access_t::ESP_BLE_MESH_GEN_ADMIN_ACCESS_READ_WRITE

(C++ enumerator), 519
esp_ble_mesh_gen_admin_prop_access_t::ESP_BLE_MESH_GEN_ADMIN_ACCESS_WRITE

(C++ enumerator), 519
esp_ble_mesh_gen_admin_prop_access_t::ESP_BLE_MESH_GEN_ADMIN_NOT_USER_PROP

(C++ enumerator), 518
esp_ble_mesh_gen_admin_prop_srv_t

(C++ struct), 502
esp_ble_mesh_gen_admin_prop_srv_t::model

(C++ member), 503
esp_ble_mesh_gen_admin_prop_srv_t::properties

(C++ member), 503
esp_ble_mesh_gen_admin_prop_srv_t::property_count

(C++ member), 503
esp_ble_mesh_gen_admin_prop_srv_t::rsp_ctrl

(C++ member), 503
esp_ble_mesh_gen_admin_properties_status_cb_t

(C++ struct), 494
esp_ble_mesh_gen_admin_properties_status_cb_t::property_ids

(C++ member), 494
esp_ble_mesh_gen_admin_property_get_t

(C++ struct), 489
esp_ble_mesh_gen_admin_property_get_t::property_id

(C++ member), 489
esp_ble_mesh_gen_admin_property_set_t

(C++ struct), 489
esp_ble_mesh_gen_admin_property_set_t::property_id

(C++ member), 490
esp_ble_mesh_gen_admin_property_set_t::property_value

(C++ member), 490

esp_ble_mesh_gen_admin_property_set_t::user_access
(C++ member), 490

esp_ble_mesh_gen_admin_property_status_cb_t
(C++ struct), 494

esp_ble_mesh_gen_admin_property_status_cb_t::op_en
(C++ member), 494

esp_ble_mesh_gen_admin_property_status_cb_t::property_id
(C++ member), 494

esp_ble_mesh_gen_admin_property_status_cb_t::property_value
(C++ member), 494

esp_ble_mesh_gen_admin_property_status_cb_t::user_access
(C++ member), 494

esp_ble_mesh_gen_battery_srv_t (C++
struct), 500

esp_ble_mesh_gen_battery_srv_t::model
(C++ member), 500

esp_ble_mesh_gen_battery_srv_t::rsp_ctrl
(C++ member), 500

esp_ble_mesh_gen_battery_srv_t::state
(C++ member), 500

esp_ble_mesh_gen_battery_state_t (C++
struct), 500

esp_ble_mesh_gen_battery_state_t::battery_flags
(C++ member), 500

esp_ble_mesh_gen_battery_state_t::battery_level
(C++ member), 500

esp_ble_mesh_gen_battery_state_t::time_to_charge
(C++ member), 500

esp_ble_mesh_gen_battery_state_t::time_to_discharge
(C++ member), 500

esp_ble_mesh_gen_battery_status_cb_t
(C++ struct), 492

esp_ble_mesh_gen_battery_status_cb_t::battery_level
(C++ member), 493

esp_ble_mesh_gen_battery_status_cb_t::flags
(C++ member), 493

esp_ble_mesh_gen_battery_status_cb_t::time_to_charge
(C++ member), 493

esp_ble_mesh_gen_battery_status_cb_t::time_to_discharge
(C++ member), 493

esp_ble_mesh_gen_client_prop_srv_t
(C++ struct), 503

esp_ble_mesh_gen_client_prop_srv_t::id_count
(C++ member), 503

esp_ble_mesh_gen_client_prop_srv_t::model
(C++ member), 503

esp_ble_mesh_gen_client_prop_srv_t::property_ids
(C++ member), 504

esp_ble_mesh_gen_client_prop_srv_t::rsp_ctrl
(C++ member), 503

esp_ble_mesh_gen_client_properties_get_t
(C++ struct), 490

esp_ble_mesh_gen_client_properties_get_t::property_id
(C++ member), 490

esp_ble_mesh_gen_client_properties_status_cb_t
(C++ struct), 495

esp_ble_mesh_gen_client_properties_status_cb_t::property_ids
(C++ member), 495

Espressif Systems 2674
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_gen_client_status_cb_t
(C++ union), 481

esp_ble_mesh_gen_client_status_cb_t::admin_properties_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::admin_property_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::battery_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::client_properties_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::def_trans_time_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::level_status
(C++ member), 481

esp_ble_mesh_gen_client_status_cb_t::location_global_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::location_local_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::manufacturer_properties_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::manufacturer_property_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::onoff_status
(C++ member), 481

esp_ble_mesh_gen_client_status_cb_t::onpowerup_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::power_default_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::power_last_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::power_level_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::power_range_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::user_properties_status
(C++ member), 482

esp_ble_mesh_gen_client_status_cb_t::user_property_status
(C++ member), 482

esp_ble_mesh_gen_def_trans_time_set_t
(C++ struct), 487

esp_ble_mesh_gen_def_trans_time_set_t::trans_time
(C++ member), 487

esp_ble_mesh_gen_def_trans_time_srv_t
(C++ struct), 497

esp_ble_mesh_gen_def_trans_time_srv_t::model
(C++ member), 498

esp_ble_mesh_gen_def_trans_time_srv_t::rsp_ctrl
(C++ member), 498

esp_ble_mesh_gen_def_trans_time_srv_t::state
(C++ member), 498

esp_ble_mesh_gen_def_trans_time_state_t
(C++ struct), 497

esp_ble_mesh_gen_def_trans_time_state_t::trans_time
(C++ member), 497

esp_ble_mesh_gen_def_trans_time_status_cb_t
(C++ struct), 491

esp_ble_mesh_gen_def_trans_time_status_cb_t::trans_time
(C++ member), 491

esp_ble_mesh_gen_delta_set_t (C++ struct),
486

esp_ble_mesh_gen_delta_set_t::delay
(C++ member), 486

esp_ble_mesh_gen_delta_set_t::level
(C++ member), 486

esp_ble_mesh_gen_delta_set_t::op_en
(C++ member), 486

esp_ble_mesh_gen_delta_set_t::tid
(C++ member), 486

esp_ble_mesh_gen_delta_set_t::trans_time
(C++ member), 486

esp_ble_mesh_gen_level_set_t (C++ struct),
486

esp_ble_mesh_gen_level_set_t::delay
(C++ member), 486

esp_ble_mesh_gen_level_set_t::level
(C++ member), 486

esp_ble_mesh_gen_level_set_t::op_en
(C++ member), 486

esp_ble_mesh_gen_level_set_t::tid
(C++ member), 486

esp_ble_mesh_gen_level_set_t::trans_time
(C++ member), 486

esp_ble_mesh_gen_level_srv_t (C++ struct),
497

esp_ble_mesh_gen_level_srv_t::last
(C++ member), 497

esp_ble_mesh_gen_level_srv_t::model
(C++ member), 497

esp_ble_mesh_gen_level_srv_t::rsp_ctrl
(C++ member), 497

esp_ble_mesh_gen_level_srv_t::state
(C++ member), 497

esp_ble_mesh_gen_level_srv_t::transition
(C++ member), 497

esp_ble_mesh_gen_level_srv_t::tt_delta_level
(C++ member), 497

esp_ble_mesh_gen_level_state_t (C++
struct), 496

esp_ble_mesh_gen_level_state_t::last_delta
(C++ member), 497

esp_ble_mesh_gen_level_state_t::last_level
(C++ member), 496

esp_ble_mesh_gen_level_state_t::level
(C++ member), 496

esp_ble_mesh_gen_level_state_t::move_start
(C++ member), 497

esp_ble_mesh_gen_level_state_t::positive
(C++ member), 497

esp_ble_mesh_gen_level_state_t::target_level
(C++ member), 496

esp_ble_mesh_gen_level_status_cb_t
(C++ struct), 491

esp_ble_mesh_gen_level_status_cb_t::op_en
(C++ member), 491

esp_ble_mesh_gen_level_status_cb_t::present_level
(C++ member), 491

Espressif Systems 2675
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_gen_level_status_cb_t::remain_time
(C++ member), 491

esp_ble_mesh_gen_level_status_cb_t::target_level
(C++ member), 491

esp_ble_mesh_gen_loc_global_set_t
(C++ struct), 488

esp_ble_mesh_gen_loc_global_set_t::global_altitude
(C++ member), 488

esp_ble_mesh_gen_loc_global_set_t::global_latitude
(C++ member), 488

esp_ble_mesh_gen_loc_global_set_t::global_longitude
(C++ member), 488

esp_ble_mesh_gen_loc_global_status_cb_t
(C++ struct), 493

esp_ble_mesh_gen_loc_global_status_cb_t::global_altitude
(C++ member), 493

esp_ble_mesh_gen_loc_global_status_cb_t::global_latitude
(C++ member), 493

esp_ble_mesh_gen_loc_global_status_cb_t::global_longitude
(C++ member), 493

esp_ble_mesh_gen_loc_local_set_t (C++
struct), 488

esp_ble_mesh_gen_loc_local_set_t::floor_number
(C++ member), 489

esp_ble_mesh_gen_loc_local_set_t::local_altitude
(C++ member), 489

esp_ble_mesh_gen_loc_local_set_t::local_east
(C++ member), 489

esp_ble_mesh_gen_loc_local_set_t::local_north
(C++ member), 489

esp_ble_mesh_gen_loc_local_set_t::uncertainty
(C++ member), 489

esp_ble_mesh_gen_loc_local_status_cb_t
(C++ struct), 493

esp_ble_mesh_gen_loc_local_status_cb_t::floor_number
(C++ member), 493

esp_ble_mesh_gen_loc_local_status_cb_t::local_altitude
(C++ member), 493

esp_ble_mesh_gen_loc_local_status_cb_t::local_east
(C++ member), 493

esp_ble_mesh_gen_loc_local_status_cb_t::local_north
(C++ member), 493

esp_ble_mesh_gen_loc_local_status_cb_t::uncertainty
(C++ member), 493

esp_ble_mesh_gen_location_setup_srv_t
(C++ struct), 501

esp_ble_mesh_gen_location_setup_srv_t::model
(C++ member), 502

esp_ble_mesh_gen_location_setup_srv_t::rsp_ctrl
(C++ member), 502

esp_ble_mesh_gen_location_setup_srv_t::state
(C++ member), 502

esp_ble_mesh_gen_location_srv_t (C++
struct), 501

esp_ble_mesh_gen_location_srv_t::model
(C++ member), 501

esp_ble_mesh_gen_location_srv_t::rsp_ctrl
(C++ member), 501

esp_ble_mesh_gen_location_srv_t::state
(C++ member), 501

esp_ble_mesh_gen_location_state_t
(C++ struct), 501

esp_ble_mesh_gen_location_state_t::floor_number
(C++ member), 501

esp_ble_mesh_gen_location_state_t::global_altitude
(C++ member), 501

esp_ble_mesh_gen_location_state_t::global_latitude
(C++ member), 501

esp_ble_mesh_gen_location_state_t::global_longitude
(C++ member), 501

esp_ble_mesh_gen_location_state_t::local_altitude
(C++ member), 501

esp_ble_mesh_gen_location_state_t::local_east
(C++ member), 501

esp_ble_mesh_gen_location_state_t::local_north
(C++ member), 501

esp_ble_mesh_gen_location_state_t::uncertainty
(C++ member), 501

esp_ble_mesh_gen_manu_prop_access_t
(C++ enum), 519

esp_ble_mesh_gen_manu_prop_access_t::ESP_BLE_MESH_GEN_MANU_ACCESS_READ
(C++ enumerator), 519

esp_ble_mesh_gen_manu_prop_access_t::ESP_BLE_MESH_GEN_MANU_NOT_USER_PROP
(C++ enumerator), 519

esp_ble_mesh_gen_manu_prop_srv_t (C++
struct), 503

esp_ble_mesh_gen_manu_prop_srv_t::model
(C++ member), 503

esp_ble_mesh_gen_manu_prop_srv_t::properties
(C++ member), 503

esp_ble_mesh_gen_manu_prop_srv_t::property_count
(C++ member), 503

esp_ble_mesh_gen_manu_prop_srv_t::rsp_ctrl
(C++ member), 503

esp_ble_mesh_gen_manufacturer_properties_status_cb_t
(C++ struct), 495

esp_ble_mesh_gen_manufacturer_properties_status_cb_t::property_ids
(C++ member), 495

esp_ble_mesh_gen_manufacturer_property_get_t
(C++ struct), 490

esp_ble_mesh_gen_manufacturer_property_get_t::property_id
(C++ member), 490

esp_ble_mesh_gen_manufacturer_property_set_t
(C++ struct), 490

esp_ble_mesh_gen_manufacturer_property_set_t::property_id
(C++ member), 490

esp_ble_mesh_gen_manufacturer_property_set_t::user_access
(C++ member), 490

esp_ble_mesh_gen_manufacturer_property_status_cb_t
(C++ struct), 495

esp_ble_mesh_gen_manufacturer_property_status_cb_t::op_en
(C++ member), 495

esp_ble_mesh_gen_manufacturer_property_status_cb_t::property_id
(C++ member), 495

esp_ble_mesh_gen_manufacturer_property_status_cb_t::property_value
(C++ member), 495

Espressif Systems 2676
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_gen_manufacturer_property_status_cb_t::user_access
(C++ member), 495

esp_ble_mesh_gen_move_set_t (C++ struct),
487

esp_ble_mesh_gen_move_set_t::delay
(C++ member), 487

esp_ble_mesh_gen_move_set_t::delta_level
(C++ member), 487

esp_ble_mesh_gen_move_set_t::op_en
(C++ member), 487

esp_ble_mesh_gen_move_set_t::tid (C++
member), 487

esp_ble_mesh_gen_move_set_t::trans_time
(C++ member), 487

esp_ble_mesh_gen_onoff_set_t (C++ struct),
485

esp_ble_mesh_gen_onoff_set_t::delay
(C++ member), 486

esp_ble_mesh_gen_onoff_set_t::onoff
(C++ member), 485

esp_ble_mesh_gen_onoff_set_t::op_en
(C++ member), 485

esp_ble_mesh_gen_onoff_set_t::tid
(C++ member), 486

esp_ble_mesh_gen_onoff_set_t::trans_time
(C++ member), 486

esp_ble_mesh_gen_onoff_srv_t (C++ struct),
496

esp_ble_mesh_gen_onoff_srv_t::last
(C++ member), 496

esp_ble_mesh_gen_onoff_srv_t::model
(C++ member), 496

esp_ble_mesh_gen_onoff_srv_t::rsp_ctrl
(C++ member), 496

esp_ble_mesh_gen_onoff_srv_t::state
(C++ member), 496

esp_ble_mesh_gen_onoff_srv_t::transition
(C++ member), 496

esp_ble_mesh_gen_onoff_state_t (C++
struct), 496

esp_ble_mesh_gen_onoff_state_t::onoff
(C++ member), 496

esp_ble_mesh_gen_onoff_state_t::target_onoff
(C++ member), 496

esp_ble_mesh_gen_onoff_status_cb_t
(C++ struct), 490

esp_ble_mesh_gen_onoff_status_cb_t::op_en
(C++ member), 490

esp_ble_mesh_gen_onoff_status_cb_t::present_onoff
(C++ member), 491

esp_ble_mesh_gen_onoff_status_cb_t::remain_time
(C++ member), 491

esp_ble_mesh_gen_onoff_status_cb_t::target_onoff
(C++ member), 491

esp_ble_mesh_gen_onpowerup_set_t (C++
struct), 487

esp_ble_mesh_gen_onpowerup_set_t::onpowerup
(C++ member), 487

esp_ble_mesh_gen_onpowerup_state_t
(C++ struct), 498

esp_ble_mesh_gen_onpowerup_state_t::onpowerup
(C++ member), 498

esp_ble_mesh_gen_onpowerup_status_cb_t
(C++ struct), 491

esp_ble_mesh_gen_onpowerup_status_cb_t::onpowerup
(C++ member), 491

esp_ble_mesh_gen_power_default_set_t
(C++ struct), 488

esp_ble_mesh_gen_power_default_set_t::power
(C++ member), 488

esp_ble_mesh_gen_power_default_status_cb_t
(C++ struct), 492

esp_ble_mesh_gen_power_default_status_cb_t::power
(C++ member), 492

esp_ble_mesh_gen_power_last_status_cb_t
(C++ struct), 492

esp_ble_mesh_gen_power_last_status_cb_t::power
(C++ member), 492

esp_ble_mesh_gen_power_level_set_t
(C++ struct), 487

esp_ble_mesh_gen_power_level_set_t::delay
(C++ member), 488

esp_ble_mesh_gen_power_level_set_t::op_en
(C++ member), 487

esp_ble_mesh_gen_power_level_set_t::power
(C++ member), 487

esp_ble_mesh_gen_power_level_set_t::tid
(C++ member), 488

esp_ble_mesh_gen_power_level_set_t::trans_time
(C++ member), 488

esp_ble_mesh_gen_power_level_setup_srv_t
(C++ struct), 500

esp_ble_mesh_gen_power_level_setup_srv_t::model
(C++ member), 500

esp_ble_mesh_gen_power_level_setup_srv_t::rsp_ctrl
(C++ member), 500

esp_ble_mesh_gen_power_level_setup_srv_t::state
(C++ member), 500

esp_ble_mesh_gen_power_level_srv_t
(C++ struct), 499

esp_ble_mesh_gen_power_level_srv_t::last
(C++ member), 499

esp_ble_mesh_gen_power_level_srv_t::model
(C++ member), 499

esp_ble_mesh_gen_power_level_srv_t::rsp_ctrl
(C++ member), 499

esp_ble_mesh_gen_power_level_srv_t::state
(C++ member), 499

esp_ble_mesh_gen_power_level_srv_t::transition
(C++ member), 499

esp_ble_mesh_gen_power_level_srv_t::tt_delta_level
(C++ member), 499

esp_ble_mesh_gen_power_level_state_t
(C++ struct), 498

esp_ble_mesh_gen_power_level_state_t::power_actual
(C++ member), 499

Espressif Systems 2677
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_gen_power_level_state_t::power_default
(C++ member), 499

esp_ble_mesh_gen_power_level_state_t::power_last
(C++ member), 499

esp_ble_mesh_gen_power_level_state_t::power_range_max
(C++ member), 499

esp_ble_mesh_gen_power_level_state_t::power_range_min
(C++ member), 499

esp_ble_mesh_gen_power_level_state_t::status_code
(C++ member), 499

esp_ble_mesh_gen_power_level_state_t::target_power_actual
(C++ member), 499

esp_ble_mesh_gen_power_level_status_cb_t
(C++ struct), 491

esp_ble_mesh_gen_power_level_status_cb_t::op_en
(C++ member), 492

esp_ble_mesh_gen_power_level_status_cb_t::present_power
(C++ member), 492

esp_ble_mesh_gen_power_level_status_cb_t::remain_time
(C++ member), 492

esp_ble_mesh_gen_power_level_status_cb_t::target_power
(C++ member), 492

esp_ble_mesh_gen_power_onoff_setup_srv_t
(C++ struct), 498

esp_ble_mesh_gen_power_onoff_setup_srv_t::model
(C++ member), 498

esp_ble_mesh_gen_power_onoff_setup_srv_t::rsp_ctrl
(C++ member), 498

esp_ble_mesh_gen_power_onoff_setup_srv_t::state
(C++ member), 498

esp_ble_mesh_gen_power_onoff_srv_t
(C++ struct), 498

esp_ble_mesh_gen_power_onoff_srv_t::model
(C++ member), 498

esp_ble_mesh_gen_power_onoff_srv_t::rsp_ctrl
(C++ member), 498

esp_ble_mesh_gen_power_onoff_srv_t::state
(C++ member), 498

esp_ble_mesh_gen_power_range_set_t
(C++ struct), 488

esp_ble_mesh_gen_power_range_set_t::range_max
(C++ member), 488

esp_ble_mesh_gen_power_range_set_t::range_min
(C++ member), 488

esp_ble_mesh_gen_power_range_status_cb_t
(C++ struct), 492

esp_ble_mesh_gen_power_range_status_cb_t::range_max
(C++ member), 492

esp_ble_mesh_gen_power_range_status_cb_t::range_min
(C++ member), 492

esp_ble_mesh_gen_power_range_status_cb_t::status_code
(C++ member), 492

esp_ble_mesh_gen_user_prop_access_t
(C++ enum), 518

esp_ble_mesh_gen_user_prop_access_t::ESP_BLE_MESH_GEN_USER_ACCESS_PROHIBIT
(C++ enumerator), 518

esp_ble_mesh_gen_user_prop_access_t::ESP_BLE_MESH_GEN_USER_ACCESS_READ
(C++ enumerator), 518

esp_ble_mesh_gen_user_prop_access_t::ESP_BLE_MESH_GEN_USER_ACCESS_READ_WRITE
(C++ enumerator), 518

esp_ble_mesh_gen_user_prop_access_t::ESP_BLE_MESH_GEN_USER_ACCESS_WRITE
(C++ enumerator), 518

esp_ble_mesh_gen_user_prop_srv_t (C++
struct), 502

esp_ble_mesh_gen_user_prop_srv_t::model
(C++ member), 502

esp_ble_mesh_gen_user_prop_srv_t::properties
(C++ member), 502

esp_ble_mesh_gen_user_prop_srv_t::property_count
(C++ member), 502

esp_ble_mesh_gen_user_prop_srv_t::rsp_ctrl
(C++ member), 502

esp_ble_mesh_gen_user_properties_status_cb_t
(C++ struct), 493

esp_ble_mesh_gen_user_properties_status_cb_t::property_ids
(C++ member), 494

esp_ble_mesh_gen_user_property_get_t
(C++ struct), 489

esp_ble_mesh_gen_user_property_get_t::property_id
(C++ member), 489

esp_ble_mesh_gen_user_property_set_t
(C++ struct), 489

esp_ble_mesh_gen_user_property_set_t::property_id
(C++ member), 489

esp_ble_mesh_gen_user_property_set_t::property_value
(C++ member), 489

esp_ble_mesh_gen_user_property_status_cb_t
(C++ struct), 494

esp_ble_mesh_gen_user_property_status_cb_t::op_en
(C++ member), 494

esp_ble_mesh_gen_user_property_status_cb_t::property_id
(C++ member), 494

esp_ble_mesh_gen_user_property_status_cb_t::property_value
(C++ member), 494

esp_ble_mesh_gen_user_property_status_cb_t::user_access
(C++ member), 494

esp_ble_mesh_generic_client_cb_event_t
(C++ enum), 518

esp_ble_mesh_generic_client_cb_event_t::ESP_BLE_MESH_GENERIC_CLIENT_EVT_MAX
(C++ enumerator), 518

esp_ble_mesh_generic_client_cb_event_t::ESP_BLE_MESH_GENERIC_CLIENT_GET_STATE_EVT
(C++ enumerator), 518

esp_ble_mesh_generic_client_cb_event_t::ESP_BLE_MESH_GENERIC_CLIENT_PUBLISH_EVT
(C++ enumerator), 518

esp_ble_mesh_generic_client_cb_event_t::ESP_BLE_MESH_GENERIC_CLIENT_SET_STATE_EVT
(C++ enumerator), 518

esp_ble_mesh_generic_client_cb_event_t::ESP_BLE_MESH_GENERIC_CLIENT_TIMEOUT_EVT
(C++ enumerator), 518

esp_ble_mesh_generic_client_cb_param_t
(C++ struct), 495

esp_ble_mesh_generic_client_cb_param_t::error_code
(C++ member), 495

esp_ble_mesh_generic_client_cb_param_t::params
(C++ member), 495

esp_ble_mesh_generic_client_cb_param_t::status_cb
(C++ member), 495

Espressif Systems 2678
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_generic_client_cb_t (C++
type), 517

esp_ble_mesh_generic_client_get_state
(C++ function), 479

esp_ble_mesh_generic_client_get_state_t
(C++ union), 480

esp_ble_mesh_generic_client_get_state_t::admin_property_get
(C++ member), 480

esp_ble_mesh_generic_client_get_state_t::client_properties_get
(C++ member), 480

esp_ble_mesh_generic_client_get_state_t::manufacturer_property_get
(C++ member), 480

esp_ble_mesh_generic_client_get_state_t::user_property_get
(C++ member), 480

esp_ble_mesh_generic_client_set_state
(C++ function), 479

esp_ble_mesh_generic_client_set_state_t
(C++ union), 480

esp_ble_mesh_generic_client_set_state_t::admin_property_set
(C++ member), 481

esp_ble_mesh_generic_client_set_state_t::def_trans_time_set
(C++ member), 481

esp_ble_mesh_generic_client_set_state_t::delta_set
(C++ member), 480

esp_ble_mesh_generic_client_set_state_t::level_set
(C++ member), 480

esp_ble_mesh_generic_client_set_state_t::loc_global_set
(C++ member), 481

esp_ble_mesh_generic_client_set_state_t::loc_local_set
(C++ member), 481

esp_ble_mesh_generic_client_set_state_t::manufacturer_property_set
(C++ member), 481

esp_ble_mesh_generic_client_set_state_t::move_set
(C++ member), 480

esp_ble_mesh_generic_client_set_state_t::onoff_set
(C++ member), 480

esp_ble_mesh_generic_client_set_state_t::power_default_set
(C++ member), 481

esp_ble_mesh_generic_client_set_state_t::power_level_set
(C++ member), 481

esp_ble_mesh_generic_client_set_state_t::power_range_set
(C++ member), 481

esp_ble_mesh_generic_client_set_state_t::power_set
(C++ member), 481

esp_ble_mesh_generic_client_set_state_t::user_property_set
(C++ member), 481

esp_ble_mesh_generic_message_opcode_t
(C++ type), 407

esp_ble_mesh_generic_property_t (C++
struct), 502

esp_ble_mesh_generic_property_t::admin_access
(C++ member), 502

esp_ble_mesh_generic_property_t::id
(C++ member), 502

esp_ble_mesh_generic_property_t::manu_access
(C++ member), 502

esp_ble_mesh_generic_property_t::user_access
(C++ member), 502

esp_ble_mesh_generic_property_t::val
(C++ member), 502

esp_ble_mesh_generic_server_cb_event_t
(C++ enum), 519

esp_ble_mesh_generic_server_cb_event_t::ESP_BLE_MESH_GENERIC_SERVER_EVT_MAX
(C++ enumerator), 519

esp_ble_mesh_generic_server_cb_event_t::ESP_BLE_MESH_GENERIC_SERVER_RECV_GET_MSG_EVT
(C++ enumerator), 519

esp_ble_mesh_generic_server_cb_event_t::ESP_BLE_MESH_GENERIC_SERVER_RECV_SET_MSG_EVT
(C++ enumerator), 519

esp_ble_mesh_generic_server_cb_event_t::ESP_BLE_MESH_GENERIC_SERVER_STATE_CHANGE_EVT
(C++ enumerator), 519

esp_ble_mesh_generic_server_cb_param_t
(C++ struct), 512

esp_ble_mesh_generic_server_cb_param_t::ctx
(C++ member), 512

esp_ble_mesh_generic_server_cb_param_t::model
(C++ member), 512

esp_ble_mesh_generic_server_cb_param_t::value
(C++ member), 512

esp_ble_mesh_generic_server_cb_t (C++
type), 518

esp_ble_mesh_generic_server_cb_value_t
(C++ union), 485

esp_ble_mesh_generic_server_cb_value_t::get
(C++ member), 485

esp_ble_mesh_generic_server_cb_value_t::set
(C++ member), 485

esp_ble_mesh_generic_server_cb_value_t::state_change
(C++ member), 485

esp_ble_mesh_generic_server_recv_get_msg_t
(C++ union), 484

esp_ble_mesh_generic_server_recv_get_msg_t::admin_property
(C++ member), 484

esp_ble_mesh_generic_server_recv_get_msg_t::client_properties
(C++ member), 484

esp_ble_mesh_generic_server_recv_get_msg_t::manu_property
(C++ member), 484

esp_ble_mesh_generic_server_recv_get_msg_t::user_property
(C++ member), 484

esp_ble_mesh_generic_server_recv_set_msg_t
(C++ union), 484

esp_ble_mesh_generic_server_recv_set_msg_t::admin_property
(C++ member), 485

esp_ble_mesh_generic_server_recv_set_msg_t::def_trans_time
(C++ member), 484

esp_ble_mesh_generic_server_recv_set_msg_t::delta
(C++ member), 484

esp_ble_mesh_generic_server_recv_set_msg_t::level
(C++ member), 484

esp_ble_mesh_generic_server_recv_set_msg_t::location_global
(C++ member), 485

esp_ble_mesh_generic_server_recv_set_msg_t::location_local
(C++ member), 485

esp_ble_mesh_generic_server_recv_set_msg_t::manu_property
(C++ member), 485

esp_ble_mesh_generic_server_recv_set_msg_t::move
(C++ member), 484

Espressif Systems 2679
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_generic_server_recv_set_msg_t::onoff
(C++ member), 484

esp_ble_mesh_generic_server_recv_set_msg_t::onpowerup
(C++ member), 484

esp_ble_mesh_generic_server_recv_set_msg_t::power_default
(C++ member), 484

esp_ble_mesh_generic_server_recv_set_msg_t::power_level
(C++ member), 484

esp_ble_mesh_generic_server_recv_set_msg_t::power_range
(C++ member), 485

esp_ble_mesh_generic_server_recv_set_msg_t::user_property
(C++ member), 485

esp_ble_mesh_generic_server_state_change_t
(C++ union), 483

esp_ble_mesh_generic_server_state_change_t::admin_property_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::def_trans_time_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::delta_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::level_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::loc_global_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::loc_local_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::manu_property_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::move_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::onoff_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::onpowerup_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::power_default_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::power_level_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::power_range_set
(C++ member), 483

esp_ble_mesh_generic_server_state_change_t::user_property_set
(C++ member), 483

esp_ble_mesh_get_composition_data
(C++ function), 419

esp_ble_mesh_get_element_count (C++
function), 418

esp_ble_mesh_get_fast_prov_app_key
(C++ function), 429

esp_ble_mesh_get_model_publish_period
(C++ function), 418

esp_ble_mesh_get_primary_element_address
(C++ function), 418

ESP_BLE_MESH_GET_PUBLISH_TRANSMIT_COUNT
(C macro), 386

ESP_BLE_MESH_GET_PUBLISH_TRANSMIT_INTERVAL
(C macro), 386

ESP_BLE_MESH_GET_SENSOR_DATA_FORMAT (C
macro), 536

ESP_BLE_MESH_GET_SENSOR_DATA_LENGTH (C
macro), 537

ESP_BLE_MESH_GET_SENSOR_DATA_PROPERTY_ID
(C macro), 537

ESP_BLE_MESH_GET_TRANSMIT_COUNT (C
macro), 385

ESP_BLE_MESH_GET_TRANSMIT_INTERVAL (C
macro), 386

esp_ble_mesh_health_attention_off_cb_t
(C++ struct), 475

esp_ble_mesh_health_attention_off_cb_t::model
(C++ member), 475

esp_ble_mesh_health_attention_on_cb_t
(C++ struct), 474

esp_ble_mesh_health_attention_on_cb_t::model
(C++ member), 475

esp_ble_mesh_health_attention_on_cb_t::time
(C++ member), 475

esp_ble_mesh_health_attention_set_t
(C++ struct), 472

esp_ble_mesh_health_attention_set_t::attention
(C++ member), 472

esp_ble_mesh_health_attention_status_cb_t
(C++ struct), 473

esp_ble_mesh_health_attention_status_cb_t::attention
(C++ member), 473

esp_ble_mesh_health_client_cb_event_t
(C++ enum), 478

esp_ble_mesh_health_client_cb_event_t::ESP_BLE_MESH_HEALTH_CLIENT_EVT_MAX
(C++ enumerator), 478

esp_ble_mesh_health_client_cb_event_t::ESP_BLE_MESH_HEALTH_CLIENT_GET_STATE_EVT
(C++ enumerator), 478

esp_ble_mesh_health_client_cb_event_t::ESP_BLE_MESH_HEALTH_CLIENT_PUBLISH_EVT
(C++ enumerator), 478

esp_ble_mesh_health_client_cb_event_t::ESP_BLE_MESH_HEALTH_CLIENT_SET_STATE_EVT
(C++ enumerator), 478

esp_ble_mesh_health_client_cb_event_t::ESP_BLE_MESH_HEALTH_CLIENT_TIMEOUT_EVT
(C++ enumerator), 478

esp_ble_mesh_health_client_cb_param_t
(C++ struct), 473

esp_ble_mesh_health_client_cb_param_t::error_code
(C++ member), 474

esp_ble_mesh_health_client_cb_param_t::params
(C++ member), 474

esp_ble_mesh_health_client_cb_param_t::status_cb
(C++ member), 474

esp_ble_mesh_health_client_cb_t (C++
type), 478

esp_ble_mesh_health_client_common_cb_param_t
(C++ union), 469

esp_ble_mesh_health_client_common_cb_param_t::attention_status
(C++ member), 470

esp_ble_mesh_health_client_common_cb_param_t::current_status
(C++ member), 469

esp_ble_mesh_health_client_common_cb_param_t::fault_status
(C++ member), 469

esp_ble_mesh_health_client_common_cb_param_t::period_status
(C++ member), 470

Espressif Systems 2680
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_health_client_get_state
(C++ function), 468

esp_ble_mesh_health_client_get_state_t
(C++ union), 469

esp_ble_mesh_health_client_get_state_t::fault_get
(C++ member), 469

esp_ble_mesh_health_client_set_state
(C++ function), 468

esp_ble_mesh_health_client_set_state_t
(C++ union), 469

esp_ble_mesh_health_client_set_state_t::attention_set
(C++ member), 469

esp_ble_mesh_health_client_set_state_t::fault_clear
(C++ member), 469

esp_ble_mesh_health_client_set_state_t::fault_test
(C++ member), 469

esp_ble_mesh_health_client_set_state_t::period_set
(C++ member), 469

esp_ble_mesh_health_current_status_cb_t
(C++ struct), 472

esp_ble_mesh_health_current_status_cb_t::company_id
(C++ member), 473

esp_ble_mesh_health_current_status_cb_t::fault_array
(C++ member), 473

esp_ble_mesh_health_current_status_cb_t::test_id
(C++ member), 473

ESP_BLE_MESH_HEALTH_FAULT_ARRAY_SIZE
(C macro), 478

esp_ble_mesh_health_fault_clear_cb_t
(C++ struct), 474

esp_ble_mesh_health_fault_clear_cb_t::company_id
(C++ member), 474

esp_ble_mesh_health_fault_clear_cb_t::model
(C++ member), 474

esp_ble_mesh_health_fault_clear_t
(C++ struct), 472

esp_ble_mesh_health_fault_clear_t::company_id
(C++ member), 472

esp_ble_mesh_health_fault_get_t (C++
struct), 471

esp_ble_mesh_health_fault_get_t::company_id
(C++ member), 472

esp_ble_mesh_health_fault_status_cb_t
(C++ struct), 473

esp_ble_mesh_health_fault_status_cb_t::company_id
(C++ member), 473

esp_ble_mesh_health_fault_status_cb_t::fault_array
(C++ member), 473

esp_ble_mesh_health_fault_status_cb_t::test_id
(C++ member), 473

esp_ble_mesh_health_fault_test_cb_t
(C++ struct), 474

esp_ble_mesh_health_fault_test_cb_t::company_id
(C++ member), 474

esp_ble_mesh_health_fault_test_cb_t::model
(C++ member), 474

esp_ble_mesh_health_fault_test_cb_t::test_id
(C++ member), 474

esp_ble_mesh_health_fault_test_t (C++
struct), 472

esp_ble_mesh_health_fault_test_t::company_id
(C++ member), 472

esp_ble_mesh_health_fault_test_t::test_id
(C++ member), 472

esp_ble_mesh_health_fault_update_comp_cb_t
(C++ struct), 474

esp_ble_mesh_health_fault_update_comp_cb_t::element
(C++ member), 474

esp_ble_mesh_health_fault_update_comp_cb_t::error_code
(C++ member), 474

esp_ble_mesh_health_model_status_t
(C++ type), 407

esp_ble_mesh_health_period_set_t (C++
struct), 472

esp_ble_mesh_health_period_set_t::fast_period_divisor
(C++ member), 472

esp_ble_mesh_health_period_status_cb_t
(C++ struct), 473

esp_ble_mesh_health_period_status_cb_t::fast_period_divisor
(C++ member), 473

ESP_BLE_MESH_HEALTH_PUB_DEFINE (C
macro), 475

esp_ble_mesh_health_server_cb_event_t
(C++ enum), 478

esp_ble_mesh_health_server_cb_event_t::ESP_BLE_MESH_HEALTH_SERVER_ATTENTION_OFF_EVT
(C++ enumerator), 479

esp_ble_mesh_health_server_cb_event_t::ESP_BLE_MESH_HEALTH_SERVER_ATTENTION_ON_EVT
(C++ enumerator), 479

esp_ble_mesh_health_server_cb_event_t::ESP_BLE_MESH_HEALTH_SERVER_EVT_MAX
(C++ enumerator), 479

esp_ble_mesh_health_server_cb_event_t::ESP_BLE_MESH_HEALTH_SERVER_FAULT_CLEAR_EVT
(C++ enumerator), 479

esp_ble_mesh_health_server_cb_event_t::ESP_BLE_MESH_HEALTH_SERVER_FAULT_TEST_EVT
(C++ enumerator), 479

esp_ble_mesh_health_server_cb_event_t::ESP_BLE_MESH_HEALTH_SERVER_FAULT_UPDATE_COMP_EVT
(C++ enumerator), 479

esp_ble_mesh_health_server_cb_param_t
(C++ union), 470

esp_ble_mesh_health_server_cb_param_t::attention_off
(C++ member), 470

esp_ble_mesh_health_server_cb_param_t::attention_on
(C++ member), 470

esp_ble_mesh_health_server_cb_param_t::fault_clear
(C++ member), 470

esp_ble_mesh_health_server_cb_param_t::fault_test
(C++ member), 470

esp_ble_mesh_health_server_cb_param_t::fault_update_comp
(C++ member), 470

esp_ble_mesh_health_server_cb_t (C++
type), 478

esp_ble_mesh_health_server_fault_update
(C++ function), 468

esp_ble_mesh_health_srv_cb_t (C++ struct),
470

esp_ble_mesh_health_srv_cb_t::attention_off
(C++ member), 470

Espressif Systems 2681
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_health_srv_cb_t::attention_on
(C++ member), 470

esp_ble_mesh_health_srv_cb_t::fault_clear
(C++ member), 470

esp_ble_mesh_health_srv_cb_t::fault_test
(C++ member), 470

esp_ble_mesh_health_srv_t (C++ struct), 471
esp_ble_mesh_health_srv_t::attention_timer

(C++ member), 471
esp_ble_mesh_health_srv_t::attention_timer_start

(C++ member), 471
esp_ble_mesh_health_srv_t::health_cb

(C++ member), 471
esp_ble_mesh_health_srv_t::health_test

(C++ member), 471
esp_ble_mesh_health_srv_t::model (C++

member), 471
ESP_BLE_MESH_HEALTH_STANDARD_TEST (C

macro), 475
esp_ble_mesh_health_test_t (C++ struct),

470
esp_ble_mesh_health_test_t::company_id

(C++ member), 471
esp_ble_mesh_health_test_t::current_faults

(C++ member), 471
esp_ble_mesh_health_test_t::id_count

(C++ member), 471
esp_ble_mesh_health_test_t::prev_test_id

(C++ member), 471
esp_ble_mesh_health_test_t::registered_faults

(C++ member), 471
esp_ble_mesh_health_test_t::test_ids

(C++ member), 471
ESP_BLE_MESH_HEARTBEAT_FILTER_ACCEPTLIST

(C macro), 388
ESP_BLE_MESH_HEARTBEAT_FILTER_ADD (C

macro), 388
esp_ble_mesh_heartbeat_filter_info_t

(C++ struct), 380
esp_ble_mesh_heartbeat_filter_info_t::hb_dst

(C++ member), 380
esp_ble_mesh_heartbeat_filter_info_t::hb_src

(C++ member), 380
ESP_BLE_MESH_HEARTBEAT_FILTER_REJECTLIST

(C macro), 388
ESP_BLE_MESH_HEARTBEAT_FILTER_REMOVE

(C macro), 388
ESP_BLE_MESH_HOUSING_OPENED_ERROR (C

macro), 477
ESP_BLE_MESH_HOUSING_OPENED_WARNING (C

macro), 477
esp_ble_mesh_init (C++ function), 417
esp_ble_mesh_input_action_t (C++ enum),

408
esp_ble_mesh_input_action_t::ESP_BLE_MESH_ENTER_NUMBER

(C++ enumerator), 408
esp_ble_mesh_input_action_t::ESP_BLE_MESH_ENTER_STRING

(C++ enumerator), 408

esp_ble_mesh_input_action_t::ESP_BLE_MESH_NO_INPUT
(C++ enumerator), 408

esp_ble_mesh_input_action_t::ESP_BLE_MESH_PUSH
(C++ enumerator), 408

esp_ble_mesh_input_action_t::ESP_BLE_MESH_TWIST
(C++ enumerator), 408

ESP_BLE_MESH_INPUT_NO_CHANGE_ERROR (C
macro), 477

ESP_BLE_MESH_INPUT_NO_CHANGE_WARNING
(C macro), 477

ESP_BLE_MESH_INPUT_TOO_HIGH_ERROR (C
macro), 477

ESP_BLE_MESH_INPUT_TOO_HIGH_WARNING (C
macro), 477

ESP_BLE_MESH_INPUT_TOO_LOW_ERROR (C
macro), 477

ESP_BLE_MESH_INPUT_TOO_LOW_WARNING (C
macro), 477

ESP_BLE_MESH_INTERNAL_BUS_ERROR (C
macro), 478

ESP_BLE_MESH_INTERNAL_BUS_WARNING (C
macro), 478

ESP_BLE_MESH_INVALID_NODE_INDEX (C
macro), 385

ESP_BLE_MESH_INVALID_SCENE_NUMBER (C
macro), 565

ESP_BLE_MESH_INVALID_SENSOR_PROPERTY_ID
(C macro), 535

ESP_BLE_MESH_INVALID_SENSOR_SETTING_PROPERTY_ID
(C macro), 535

ESP_BLE_MESH_INVALID_SETTINGS_IDX (C
macro), 383

esp_ble_mesh_is_model_subscribed_to_group
(C++ function), 418

ESP_BLE_MESH_KEY_ANY (C macro), 384
ESP_BLE_MESH_KEY_DEV (C macro), 384
ESP_BLE_MESH_KEY_PRIMARY (C macro), 384
ESP_BLE_MESH_KEY_UNUSED (C macro), 384
ESP_BLE_MESH_KEY_UNUSED_ELT_ (C macro),

384
esp_ble_mesh_last_msg_info_t (C++ struct),

382
esp_ble_mesh_last_msg_info_t::dst

(C++ member), 382
esp_ble_mesh_last_msg_info_t::src

(C++ member), 382
esp_ble_mesh_last_msg_info_t::tid

(C++ member), 382
esp_ble_mesh_last_msg_info_t::timestamp

(C++ member), 382
esp_ble_mesh_lc_state_t (C++ enum), 622
esp_ble_mesh_lc_state_t::ESP_BLE_MESH_LC_FADE

(C++ enumerator), 623
esp_ble_mesh_lc_state_t::ESP_BLE_MESH_LC_FADE_ON

(C++ enumerator), 623
esp_ble_mesh_lc_state_t::ESP_BLE_MESH_LC_FADE_STANDBY_AUTO

(C++ enumerator), 623
esp_ble_mesh_lc_state_t::ESP_BLE_MESH_LC_FADE_STANDBY_MANUAL

Espressif Systems 2682
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 623
esp_ble_mesh_lc_state_t::ESP_BLE_MESH_LC_OFF

(C++ enumerator), 622
esp_ble_mesh_lc_state_t::ESP_BLE_MESH_LC_PROLONG

(C++ enumerator), 623
esp_ble_mesh_lc_state_t::ESP_BLE_MESH_LC_RUN

(C++ enumerator), 623
esp_ble_mesh_lc_state_t::ESP_BLE_MESH_LC_STANDBY

(C++ enumerator), 623
esp_ble_mesh_light_client_cb_event_t

(C++ enum), 622
esp_ble_mesh_light_client_cb_event_t::ESP_BLE_MESH_LIGHT_CLIENT_EVT_MAX

(C++ enumerator), 622
esp_ble_mesh_light_client_cb_event_t::ESP_BLE_MESH_LIGHT_CLIENT_GET_STATE_EVT

(C++ enumerator), 622
esp_ble_mesh_light_client_cb_event_t::ESP_BLE_MESH_LIGHT_CLIENT_PUBLISH_EVT

(C++ enumerator), 622
esp_ble_mesh_light_client_cb_event_t::ESP_BLE_MESH_LIGHT_CLIENT_SET_STATE_EVT

(C++ enumerator), 622
esp_ble_mesh_light_client_cb_event_t::ESP_BLE_MESH_LIGHT_CLIENT_TIMEOUT_EVT

(C++ enumerator), 622
esp_ble_mesh_light_client_cb_param_t

(C++ struct), 591
esp_ble_mesh_light_client_cb_param_t::error_code

(C++ member), 591
esp_ble_mesh_light_client_cb_param_t::params

(C++ member), 591
esp_ble_mesh_light_client_cb_param_t::status_cb

(C++ member), 591
esp_ble_mesh_light_client_cb_t (C++

type), 622
esp_ble_mesh_light_client_get_state

(C++ function), 568
esp_ble_mesh_light_client_get_state_t

(C++ union), 569
esp_ble_mesh_light_client_get_state_t::lc_property_get

(C++ member), 569
esp_ble_mesh_light_client_set_state

(C++ function), 568
esp_ble_mesh_light_client_set_state_t

(C++ union), 569
esp_ble_mesh_light_client_set_state_t::ctl_default_set

(C++ member), 569
esp_ble_mesh_light_client_set_state_t::ctl_set

(C++ member), 569
esp_ble_mesh_light_client_set_state_t::ctl_temperature_range_set

(C++ member), 569
esp_ble_mesh_light_client_set_state_t::ctl_temperature_set

(C++ member), 569
esp_ble_mesh_light_client_set_state_t::hsl_default_set

(C++ member), 570
esp_ble_mesh_light_client_set_state_t::hsl_hue_set

(C++ member), 569
esp_ble_mesh_light_client_set_state_t::hsl_range_set

(C++ member), 570
esp_ble_mesh_light_client_set_state_t::hsl_saturation_set

(C++ member), 570
esp_ble_mesh_light_client_set_state_t::hsl_set

(C++ member), 569
esp_ble_mesh_light_client_set_state_t::lc_light_onoff_set

(C++ member), 570
esp_ble_mesh_light_client_set_state_t::lc_mode_set

(C++ member), 570
esp_ble_mesh_light_client_set_state_t::lc_om_set

(C++ member), 570
esp_ble_mesh_light_client_set_state_t::lc_property_set

(C++ member), 570
esp_ble_mesh_light_client_set_state_t::lightness_default_set

(C++ member), 569
esp_ble_mesh_light_client_set_state_t::lightness_linear_set

(C++ member), 569
esp_ble_mesh_light_client_set_state_t::lightness_range_set

(C++ member), 569
esp_ble_mesh_light_client_set_state_t::lightness_set

(C++ member), 569
esp_ble_mesh_light_client_set_state_t::xyl_default_set

(C++ member), 570
esp_ble_mesh_light_client_set_state_t::xyl_range_set

(C++ member), 570
esp_ble_mesh_light_client_set_state_t::xyl_set

(C++ member), 570
esp_ble_mesh_light_client_status_cb_t

(C++ union), 570
esp_ble_mesh_light_client_status_cb_t::ctl_default_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::ctl_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::ctl_temperature_range_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::ctl_temperature_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::hsl_default_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::hsl_hue_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::hsl_range_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::hsl_saturation_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::hsl_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::hsl_target_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::lc_light_onoff_status

(C++ member), 572
esp_ble_mesh_light_client_status_cb_t::lc_mode_status

(C++ member), 572
esp_ble_mesh_light_client_status_cb_t::lc_om_status

(C++ member), 572
esp_ble_mesh_light_client_status_cb_t::lc_property_status

(C++ member), 572
esp_ble_mesh_light_client_status_cb_t::lightness_default_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::lightness_last_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::lightness_linear_status

Espressif Systems 2683
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 570
esp_ble_mesh_light_client_status_cb_t::lightness_range_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::lightness_status

(C++ member), 570
esp_ble_mesh_light_client_status_cb_t::xyl_default_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::xyl_range_status

(C++ member), 572
esp_ble_mesh_light_client_status_cb_t::xyl_status

(C++ member), 571
esp_ble_mesh_light_client_status_cb_t::xyl_target_status

(C++ member), 571
esp_ble_mesh_light_control_t (C++ struct),

603
esp_ble_mesh_light_control_t::prop_state

(C++ member), 603
esp_ble_mesh_light_control_t::state

(C++ member), 603
esp_ble_mesh_light_control_t::state_machine

(C++ member), 603
esp_ble_mesh_light_ctl_default_set_t

(C++ struct), 578
esp_ble_mesh_light_ctl_default_set_t::delta_uv

(C++ member), 578
esp_ble_mesh_light_ctl_default_set_t::lightness

(C++ member), 578
esp_ble_mesh_light_ctl_default_set_t::temperature

(C++ member), 578
esp_ble_mesh_light_ctl_default_status_cb_t

(C++ struct), 586
esp_ble_mesh_light_ctl_default_status_cb_t::delta_uv

(C++ member), 586
esp_ble_mesh_light_ctl_default_status_cb_t::lightness

(C++ member), 586
esp_ble_mesh_light_ctl_default_status_cb_t::temperature

(C++ member), 586
esp_ble_mesh_light_ctl_set_t (C++ struct),

577
esp_ble_mesh_light_ctl_set_t::ctl_delta_uv

(C++ member), 577
esp_ble_mesh_light_ctl_set_t::ctl_lightness

(C++ member), 577
esp_ble_mesh_light_ctl_set_t::ctl_temperatrue

(C++ member), 577
esp_ble_mesh_light_ctl_set_t::delay

(C++ member), 577
esp_ble_mesh_light_ctl_set_t::op_en

(C++ member), 577
esp_ble_mesh_light_ctl_set_t::tid

(C++ member), 577
esp_ble_mesh_light_ctl_set_t::trans_time

(C++ member), 577
esp_ble_mesh_light_ctl_setup_srv_t

(C++ struct), 594
esp_ble_mesh_light_ctl_setup_srv_t::model

(C++ member), 594
esp_ble_mesh_light_ctl_setup_srv_t::rsp_ctrl

(C++ member), 594
esp_ble_mesh_light_ctl_setup_srv_t::state

(C++ member), 594
esp_ble_mesh_light_ctl_srv_t (C++ struct),

593
esp_ble_mesh_light_ctl_srv_t::last

(C++ member), 594
esp_ble_mesh_light_ctl_srv_t::model

(C++ member), 594
esp_ble_mesh_light_ctl_srv_t::rsp_ctrl

(C++ member), 594
esp_ble_mesh_light_ctl_srv_t::state

(C++ member), 594
esp_ble_mesh_light_ctl_srv_t::transition

(C++ member), 594
esp_ble_mesh_light_ctl_srv_t::tt_delta_delta_uv

(C++ member), 594
esp_ble_mesh_light_ctl_srv_t::tt_delta_lightness

(C++ member), 594
esp_ble_mesh_light_ctl_srv_t::tt_delta_temperature

(C++ member), 594
esp_ble_mesh_light_ctl_state_t (C++

struct), 593
esp_ble_mesh_light_ctl_state_t::delta_uv

(C++ member), 593
esp_ble_mesh_light_ctl_state_t::delta_uv_default

(C++ member), 593
esp_ble_mesh_light_ctl_state_t::lightness

(C++ member), 593
esp_ble_mesh_light_ctl_state_t::lightness_default

(C++ member), 593
esp_ble_mesh_light_ctl_state_t::status_code

(C++ member), 593
esp_ble_mesh_light_ctl_state_t::target_delta_uv

(C++ member), 593
esp_ble_mesh_light_ctl_state_t::target_lightness

(C++ member), 593
esp_ble_mesh_light_ctl_state_t::target_temperature

(C++ member), 593
esp_ble_mesh_light_ctl_state_t::temperature

(C++ member), 593
esp_ble_mesh_light_ctl_state_t::temperature_default

(C++ member), 593
esp_ble_mesh_light_ctl_state_t::temperature_range_max

(C++ member), 593
esp_ble_mesh_light_ctl_state_t::temperature_range_min

(C++ member), 593
esp_ble_mesh_light_ctl_status_cb_t

(C++ struct), 584
esp_ble_mesh_light_ctl_status_cb_t::op_en

(C++ member), 584
esp_ble_mesh_light_ctl_status_cb_t::present_ctl_lightness

(C++ member), 584
esp_ble_mesh_light_ctl_status_cb_t::present_ctl_temperature

(C++ member), 584
esp_ble_mesh_light_ctl_status_cb_t::remain_time

(C++ member), 585
esp_ble_mesh_light_ctl_status_cb_t::target_ctl_lightness

Espressif Systems 2684
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 585
esp_ble_mesh_light_ctl_status_cb_t::target_ctl_temperature

(C++ member), 585
esp_ble_mesh_light_ctl_temp_srv_t

(C++ struct), 594
esp_ble_mesh_light_ctl_temp_srv_t::last

(C++ member), 595
esp_ble_mesh_light_ctl_temp_srv_t::model

(C++ member), 594
esp_ble_mesh_light_ctl_temp_srv_t::rsp_ctrl

(C++ member), 594
esp_ble_mesh_light_ctl_temp_srv_t::state

(C++ member), 595
esp_ble_mesh_light_ctl_temp_srv_t::transition

(C++ member), 595
esp_ble_mesh_light_ctl_temp_srv_t::tt_delta_delta_uv

(C++ member), 595
esp_ble_mesh_light_ctl_temp_srv_t::tt_delta_temperature

(C++ member), 595
esp_ble_mesh_light_ctl_temperature_range_set_t

(C++ struct), 578
esp_ble_mesh_light_ctl_temperature_range_set_t::range_max

(C++ member), 578
esp_ble_mesh_light_ctl_temperature_range_set_t::range_min

(C++ member), 578
esp_ble_mesh_light_ctl_temperature_range_status_cb_t

(C++ struct), 585
esp_ble_mesh_light_ctl_temperature_range_status_cb_t::range_max

(C++ member), 585
esp_ble_mesh_light_ctl_temperature_range_status_cb_t::range_min

(C++ member), 585
esp_ble_mesh_light_ctl_temperature_range_status_cb_t::status_code

(C++ member), 585
esp_ble_mesh_light_ctl_temperature_set_t

(C++ struct), 577
esp_ble_mesh_light_ctl_temperature_set_t::ctl_delta_uv

(C++ member), 577
esp_ble_mesh_light_ctl_temperature_set_t::ctl_temperatrue

(C++ member), 577
esp_ble_mesh_light_ctl_temperature_set_t::delay

(C++ member), 578
esp_ble_mesh_light_ctl_temperature_set_t::op_en

(C++ member), 577
esp_ble_mesh_light_ctl_temperature_set_t::tid

(C++ member), 577
esp_ble_mesh_light_ctl_temperature_set_t::trans_time

(C++ member), 578
esp_ble_mesh_light_ctl_temperature_status_cb_t

(C++ struct), 585
esp_ble_mesh_light_ctl_temperature_status_cb_t::op_en

(C++ member), 585
esp_ble_mesh_light_ctl_temperature_status_cb_t::present_ctl_delta_uv

(C++ member), 585
esp_ble_mesh_light_ctl_temperature_status_cb_t::present_ctl_temperature

(C++ member), 585
esp_ble_mesh_light_ctl_temperature_status_cb_t::remain_time

(C++ member), 585
esp_ble_mesh_light_ctl_temperature_status_cb_t::target_ctl_delta_uv

(C++ member), 585
esp_ble_mesh_light_ctl_temperature_status_cb_t::target_ctl_temperature

(C++ member), 585
esp_ble_mesh_light_hsl_default_set_t

(C++ struct), 580
esp_ble_mesh_light_hsl_default_set_t::hue

(C++ member), 580
esp_ble_mesh_light_hsl_default_set_t::lightness

(C++ member), 580
esp_ble_mesh_light_hsl_default_set_t::saturation

(C++ member), 580
esp_ble_mesh_light_hsl_default_status_cb_t

(C++ struct), 587
esp_ble_mesh_light_hsl_default_status_cb_t::hue

(C++ member), 588
esp_ble_mesh_light_hsl_default_status_cb_t::lightness

(C++ member), 588
esp_ble_mesh_light_hsl_default_status_cb_t::saturation

(C++ member), 588
esp_ble_mesh_light_hsl_hue_set_t (C++

struct), 579
esp_ble_mesh_light_hsl_hue_set_t::delay

(C++ member), 579
esp_ble_mesh_light_hsl_hue_set_t::hue

(C++ member), 579
esp_ble_mesh_light_hsl_hue_set_t::op_en

(C++ member), 579
esp_ble_mesh_light_hsl_hue_set_t::tid

(C++ member), 579
esp_ble_mesh_light_hsl_hue_set_t::trans_time

(C++ member), 579
esp_ble_mesh_light_hsl_hue_srv_t (C++

struct), 597
esp_ble_mesh_light_hsl_hue_srv_t::last

(C++ member), 597
esp_ble_mesh_light_hsl_hue_srv_t::model

(C++ member), 597
esp_ble_mesh_light_hsl_hue_srv_t::rsp_ctrl

(C++ member), 597
esp_ble_mesh_light_hsl_hue_srv_t::state

(C++ member), 597
esp_ble_mesh_light_hsl_hue_srv_t::transition

(C++ member), 597
esp_ble_mesh_light_hsl_hue_srv_t::tt_delta_hue

(C++ member), 597
esp_ble_mesh_light_hsl_hue_status_cb_t

(C++ struct), 587
esp_ble_mesh_light_hsl_hue_status_cb_t::op_en

(C++ member), 587
esp_ble_mesh_light_hsl_hue_status_cb_t::present_hue

(C++ member), 587
esp_ble_mesh_light_hsl_hue_status_cb_t::remain_time

(C++ member), 587
esp_ble_mesh_light_hsl_hue_status_cb_t::target_hue

(C++ member), 587
esp_ble_mesh_light_hsl_range_set_t

(C++ struct), 580
esp_ble_mesh_light_hsl_range_set_t::hue_range_max

Espressif Systems 2685
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 580
esp_ble_mesh_light_hsl_range_set_t::hue_range_min

(C++ member), 580
esp_ble_mesh_light_hsl_range_set_t::saturation_range_max

(C++ member), 580
esp_ble_mesh_light_hsl_range_set_t::saturation_range_min

(C++ member), 580
esp_ble_mesh_light_hsl_range_status_cb_t

(C++ struct), 588
esp_ble_mesh_light_hsl_range_status_cb_t::hue_range_max

(C++ member), 588
esp_ble_mesh_light_hsl_range_status_cb_t::hue_range_min

(C++ member), 588
esp_ble_mesh_light_hsl_range_status_cb_t::saturation_range_max

(C++ member), 588
esp_ble_mesh_light_hsl_range_status_cb_t::saturation_range_min

(C++ member), 588
esp_ble_mesh_light_hsl_range_status_cb_t::status_code

(C++ member), 588
esp_ble_mesh_light_hsl_sat_srv_t (C++

struct), 597
esp_ble_mesh_light_hsl_sat_srv_t::last

(C++ member), 597
esp_ble_mesh_light_hsl_sat_srv_t::model

(C++ member), 597
esp_ble_mesh_light_hsl_sat_srv_t::rsp_ctrl

(C++ member), 597
esp_ble_mesh_light_hsl_sat_srv_t::state

(C++ member), 597
esp_ble_mesh_light_hsl_sat_srv_t::transition

(C++ member), 598
esp_ble_mesh_light_hsl_sat_srv_t::tt_delta_saturation

(C++ member), 598
esp_ble_mesh_light_hsl_saturation_set_t

(C++ struct), 579
esp_ble_mesh_light_hsl_saturation_set_t::delay

(C++ member), 580
esp_ble_mesh_light_hsl_saturation_set_t::op_en

(C++ member), 579
esp_ble_mesh_light_hsl_saturation_set_t::saturation

(C++ member), 579
esp_ble_mesh_light_hsl_saturation_set_t::tid

(C++ member), 579
esp_ble_mesh_light_hsl_saturation_set_t::trans_time

(C++ member), 580
esp_ble_mesh_light_hsl_saturation_status_cb_t

(C++ struct), 587
esp_ble_mesh_light_hsl_saturation_status_cb_t::op_en

(C++ member), 587
esp_ble_mesh_light_hsl_saturation_status_cb_t::present_saturation

(C++ member), 587
esp_ble_mesh_light_hsl_saturation_status_cb_t::remain_time

(C++ member), 587
esp_ble_mesh_light_hsl_saturation_status_cb_t::target_saturation

(C++ member), 587
esp_ble_mesh_light_hsl_set_t (C++ struct),

578
esp_ble_mesh_light_hsl_set_t::delay

(C++ member), 579
esp_ble_mesh_light_hsl_set_t::hsl_hue

(C++ member), 578
esp_ble_mesh_light_hsl_set_t::hsl_lightness

(C++ member), 578
esp_ble_mesh_light_hsl_set_t::hsl_saturation

(C++ member), 579
esp_ble_mesh_light_hsl_set_t::op_en

(C++ member), 578
esp_ble_mesh_light_hsl_set_t::tid

(C++ member), 579
esp_ble_mesh_light_hsl_set_t::trans_time

(C++ member), 579
esp_ble_mesh_light_hsl_setup_srv_t

(C++ struct), 596
esp_ble_mesh_light_hsl_setup_srv_t::model

(C++ member), 597
esp_ble_mesh_light_hsl_setup_srv_t::rsp_ctrl

(C++ member), 597
esp_ble_mesh_light_hsl_setup_srv_t::state

(C++ member), 597
esp_ble_mesh_light_hsl_srv_t (C++ struct),

596
esp_ble_mesh_light_hsl_srv_t::last

(C++ member), 596
esp_ble_mesh_light_hsl_srv_t::model

(C++ member), 596
esp_ble_mesh_light_hsl_srv_t::rsp_ctrl

(C++ member), 596
esp_ble_mesh_light_hsl_srv_t::state

(C++ member), 596
esp_ble_mesh_light_hsl_srv_t::transition

(C++ member), 596
esp_ble_mesh_light_hsl_srv_t::tt_delta_hue

(C++ member), 596
esp_ble_mesh_light_hsl_srv_t::tt_delta_lightness

(C++ member), 596
esp_ble_mesh_light_hsl_srv_t::tt_delta_saturation

(C++ member), 596
esp_ble_mesh_light_hsl_state_t (C++

struct), 595
esp_ble_mesh_light_hsl_state_t::hue

(C++ member), 595
esp_ble_mesh_light_hsl_state_t::hue_default

(C++ member), 595
esp_ble_mesh_light_hsl_state_t::hue_range_max

(C++ member), 596
esp_ble_mesh_light_hsl_state_t::hue_range_min

(C++ member), 596
esp_ble_mesh_light_hsl_state_t::lightness

(C++ member), 595
esp_ble_mesh_light_hsl_state_t::lightness_default

(C++ member), 595
esp_ble_mesh_light_hsl_state_t::saturation

(C++ member), 595
esp_ble_mesh_light_hsl_state_t::saturation_default

(C++ member), 595
esp_ble_mesh_light_hsl_state_t::saturation_range_max

Espressif Systems 2686
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 596
esp_ble_mesh_light_hsl_state_t::saturation_range_min

(C++ member), 596
esp_ble_mesh_light_hsl_state_t::status_code

(C++ member), 596
esp_ble_mesh_light_hsl_state_t::target_hue

(C++ member), 595
esp_ble_mesh_light_hsl_state_t::target_lightness

(C++ member), 595
esp_ble_mesh_light_hsl_state_t::target_saturation

(C++ member), 595
esp_ble_mesh_light_hsl_status_cb_t

(C++ struct), 586
esp_ble_mesh_light_hsl_status_cb_t::hsl_hue

(C++ member), 586
esp_ble_mesh_light_hsl_status_cb_t::hsl_lightness

(C++ member), 586
esp_ble_mesh_light_hsl_status_cb_t::hsl_saturation

(C++ member), 586
esp_ble_mesh_light_hsl_status_cb_t::op_en

(C++ member), 586
esp_ble_mesh_light_hsl_status_cb_t::remain_time

(C++ member), 586
esp_ble_mesh_light_hsl_target_status_cb_t

(C++ struct), 586
esp_ble_mesh_light_hsl_target_status_cb_t::hsl_hue_target

(C++ member), 587
esp_ble_mesh_light_hsl_target_status_cb_t::hsl_lightness_target

(C++ member), 586
esp_ble_mesh_light_hsl_target_status_cb_t::hsl_saturation_target

(C++ member), 587
esp_ble_mesh_light_hsl_target_status_cb_t::op_en

(C++ member), 586
esp_ble_mesh_light_hsl_target_status_cb_t::remain_time

(C++ member), 587
esp_ble_mesh_light_lc_light_onoff_set_t

(C++ struct), 582
esp_ble_mesh_light_lc_light_onoff_set_t::delay

(C++ member), 582
esp_ble_mesh_light_lc_light_onoff_set_t::light_onoff

(C++ member), 582
esp_ble_mesh_light_lc_light_onoff_set_t::op_en

(C++ member), 582
esp_ble_mesh_light_lc_light_onoff_set_t::tid

(C++ member), 582
esp_ble_mesh_light_lc_light_onoff_set_t::trans_time

(C++ member), 582
esp_ble_mesh_light_lc_light_onoff_status_cb_t

(C++ struct), 590
esp_ble_mesh_light_lc_light_onoff_status_cb_t::op_en

(C++ member), 590
esp_ble_mesh_light_lc_light_onoff_status_cb_t::present_light_onoff

(C++ member), 590
esp_ble_mesh_light_lc_light_onoff_status_cb_t::remain_time

(C++ member), 590
esp_ble_mesh_light_lc_light_onoff_status_cb_t::target_light_onoff

(C++ member), 590
esp_ble_mesh_light_lc_mode_set_t (C++

struct), 582
esp_ble_mesh_light_lc_mode_set_t::mode

(C++ member), 582
esp_ble_mesh_light_lc_mode_status_cb_t

(C++ struct), 590
esp_ble_mesh_light_lc_mode_status_cb_t::mode

(C++ member), 590
esp_ble_mesh_light_lc_om_set_t (C++

struct), 582
esp_ble_mesh_light_lc_om_set_t::mode

(C++ member), 582
esp_ble_mesh_light_lc_om_status_cb_t

(C++ struct), 590
esp_ble_mesh_light_lc_om_status_cb_t::mode

(C++ member), 590
esp_ble_mesh_light_lc_property_get_t

(C++ struct), 582
esp_ble_mesh_light_lc_property_get_t::property_id

(C++ member), 583
esp_ble_mesh_light_lc_property_set_t

(C++ struct), 583
esp_ble_mesh_light_lc_property_set_t::property_id

(C++ member), 583
esp_ble_mesh_light_lc_property_set_t::property_value

(C++ member), 583
esp_ble_mesh_light_lc_property_state_t

(C++ struct), 600
esp_ble_mesh_light_lc_property_state_t::ambient_luxlevel_on

(C++ member), 601
esp_ble_mesh_light_lc_property_state_t::ambient_luxlevel_prolong

(C++ member), 601
esp_ble_mesh_light_lc_property_state_t::ambient_luxlevel_standby

(C++ member), 601
esp_ble_mesh_light_lc_property_state_t::lightness_on

(C++ member), 601
esp_ble_mesh_light_lc_property_state_t::lightness_prolong

(C++ member), 601
esp_ble_mesh_light_lc_property_state_t::lightness_standby

(C++ member), 601
esp_ble_mesh_light_lc_property_state_t::regulator_accuracy

(C++ member), 602
esp_ble_mesh_light_lc_property_state_t::regulator_kid

(C++ member), 602
esp_ble_mesh_light_lc_property_state_t::regulator_kiu

(C++ member), 602
esp_ble_mesh_light_lc_property_state_t::regulator_kpd

(C++ member), 602
esp_ble_mesh_light_lc_property_state_t::regulator_kpu

(C++ member), 602
esp_ble_mesh_light_lc_property_state_t::set_occupancy_to_1_delay

(C++ member), 602
esp_ble_mesh_light_lc_property_state_t::time_fade

(C++ member), 601
esp_ble_mesh_light_lc_property_state_t::time_fade_on

(C++ member), 601
esp_ble_mesh_light_lc_property_state_t::time_fade_standby_auto

(C++ member), 601
esp_ble_mesh_light_lc_property_state_t::time_fade_standby_manual

Espressif Systems 2687
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 601
esp_ble_mesh_light_lc_property_state_t::time_occupancy_delay

(C++ member), 600
esp_ble_mesh_light_lc_property_state_t::time_prolong

(C++ member), 601
esp_ble_mesh_light_lc_property_state_t::time_run_on

(C++ member), 601
esp_ble_mesh_light_lc_property_status_cb_t

(C++ struct), 590
esp_ble_mesh_light_lc_property_status_cb_t::property_id

(C++ member), 591
esp_ble_mesh_light_lc_property_status_cb_t::property_value

(C++ member), 591
esp_ble_mesh_light_lc_setup_srv_t

(C++ struct), 604
esp_ble_mesh_light_lc_setup_srv_t::lc

(C++ member), 604
esp_ble_mesh_light_lc_setup_srv_t::model

(C++ member), 604
esp_ble_mesh_light_lc_setup_srv_t::rsp_ctrl

(C++ member), 604
esp_ble_mesh_light_lc_srv_t (C++ struct),

603
esp_ble_mesh_light_lc_srv_t::last

(C++ member), 603
esp_ble_mesh_light_lc_srv_t::lc (C++

member), 603
esp_ble_mesh_light_lc_srv_t::model

(C++ member), 603
esp_ble_mesh_light_lc_srv_t::rsp_ctrl

(C++ member), 603
esp_ble_mesh_light_lc_srv_t::transition

(C++ member), 603
esp_ble_mesh_light_lc_state_machine_t

(C++ struct), 602
esp_ble_mesh_light_lc_state_machine_t::fade

(C++ member), 602
esp_ble_mesh_light_lc_state_machine_t::fade_on

(C++ member), 602
esp_ble_mesh_light_lc_state_machine_t::fade_standby_auto

(C++ member), 602
esp_ble_mesh_light_lc_state_machine_t::fade_standby_manual

(C++ member), 603
esp_ble_mesh_light_lc_state_machine_t::state

(C++ member), 603
esp_ble_mesh_light_lc_state_machine_t::timer

(C++ member), 603
esp_ble_mesh_light_lc_state_machine_t::trans_time

(C++ member), 603
esp_ble_mesh_light_lc_state_t (C++

struct), 600
esp_ble_mesh_light_lc_state_t::ambient_luxlevel

(C++ member), 600
esp_ble_mesh_light_lc_state_t::light_onoff

(C++ member), 600
esp_ble_mesh_light_lc_state_t::linear_output

(C++ member), 600
esp_ble_mesh_light_lc_state_t::mode

(C++ member), 600
esp_ble_mesh_light_lc_state_t::occupancy

(C++ member), 600
esp_ble_mesh_light_lc_state_t::occupancy_mode

(C++ member), 600
esp_ble_mesh_light_lc_state_t::target_light_onoff

(C++ member), 600
esp_ble_mesh_light_lightness_default_set_t

(C++ struct), 576
esp_ble_mesh_light_lightness_default_set_t::lightness

(C++ member), 576
esp_ble_mesh_light_lightness_default_status_cb_t

(C++ struct), 584
esp_ble_mesh_light_lightness_default_status_cb_t::lightness

(C++ member), 584
esp_ble_mesh_light_lightness_last_status_cb_t

(C++ struct), 584
esp_ble_mesh_light_lightness_last_status_cb_t::lightness

(C++ member), 584
esp_ble_mesh_light_lightness_linear_set_t

(C++ struct), 576
esp_ble_mesh_light_lightness_linear_set_t::delay

(C++ member), 576
esp_ble_mesh_light_lightness_linear_set_t::lightness

(C++ member), 576
esp_ble_mesh_light_lightness_linear_set_t::op_en

(C++ member), 576
esp_ble_mesh_light_lightness_linear_set_t::tid

(C++ member), 576
esp_ble_mesh_light_lightness_linear_set_t::trans_time

(C++ member), 576
esp_ble_mesh_light_lightness_linear_status_cb_t

(C++ struct), 583
esp_ble_mesh_light_lightness_linear_status_cb_t::op_en

(C++ member), 583
esp_ble_mesh_light_lightness_linear_status_cb_t::present_lightness

(C++ member), 583
esp_ble_mesh_light_lightness_linear_status_cb_t::remain_time

(C++ member), 584
esp_ble_mesh_light_lightness_linear_status_cb_t::target_lightness

(C++ member), 583
esp_ble_mesh_light_lightness_range_set_t

(C++ struct), 576
esp_ble_mesh_light_lightness_range_set_t::range_max

(C++ member), 577
esp_ble_mesh_light_lightness_range_set_t::range_min

(C++ member), 577
esp_ble_mesh_light_lightness_range_status_cb_t

(C++ struct), 584
esp_ble_mesh_light_lightness_range_status_cb_t::range_max

(C++ member), 584
esp_ble_mesh_light_lightness_range_status_cb_t::range_min

(C++ member), 584
esp_ble_mesh_light_lightness_range_status_cb_t::status_code

(C++ member), 584
esp_ble_mesh_light_lightness_set_t

(C++ struct), 575
esp_ble_mesh_light_lightness_set_t::delay

Espressif Systems 2688
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 576
esp_ble_mesh_light_lightness_set_t::lightness

(C++ member), 576
esp_ble_mesh_light_lightness_set_t::op_en

(C++ member), 575
esp_ble_mesh_light_lightness_set_t::tid

(C++ member), 576
esp_ble_mesh_light_lightness_set_t::trans_time

(C++ member), 576
esp_ble_mesh_light_lightness_setup_srv_t

(C++ struct), 592
esp_ble_mesh_light_lightness_setup_srv_t::model

(C++ member), 592
esp_ble_mesh_light_lightness_setup_srv_t::rsp_ctrl

(C++ member), 592
esp_ble_mesh_light_lightness_setup_srv_t::state

(C++ member), 592
esp_ble_mesh_light_lightness_srv_t

(C++ struct), 592
esp_ble_mesh_light_lightness_srv_t::actual_transition

(C++ member), 592
esp_ble_mesh_light_lightness_srv_t::last

(C++ member), 592
esp_ble_mesh_light_lightness_srv_t::linear_transition

(C++ member), 592
esp_ble_mesh_light_lightness_srv_t::model

(C++ member), 592
esp_ble_mesh_light_lightness_srv_t::rsp_ctrl

(C++ member), 592
esp_ble_mesh_light_lightness_srv_t::state

(C++ member), 592
esp_ble_mesh_light_lightness_srv_t::tt_delta_lightness_actual

(C++ member), 592
esp_ble_mesh_light_lightness_srv_t::tt_delta_lightness_linear

(C++ member), 592
esp_ble_mesh_light_lightness_state_t

(C++ struct), 591
esp_ble_mesh_light_lightness_state_t::lightness_actual

(C++ member), 591
esp_ble_mesh_light_lightness_state_t::lightness_default

(C++ member), 591
esp_ble_mesh_light_lightness_state_t::lightness_last

(C++ member), 591
esp_ble_mesh_light_lightness_state_t::lightness_linear

(C++ member), 591
esp_ble_mesh_light_lightness_state_t::lightness_range_max

(C++ member), 592
esp_ble_mesh_light_lightness_state_t::lightness_range_min

(C++ member), 591
esp_ble_mesh_light_lightness_state_t::status_code

(C++ member), 591
esp_ble_mesh_light_lightness_state_t::target_lightness_actual

(C++ member), 591
esp_ble_mesh_light_lightness_state_t::target_lightness_linear

(C++ member), 591
esp_ble_mesh_light_lightness_status_cb_t

(C++ struct), 583
esp_ble_mesh_light_lightness_status_cb_t::op_en

(C++ member), 583
esp_ble_mesh_light_lightness_status_cb_t::present_lightness

(C++ member), 583
esp_ble_mesh_light_lightness_status_cb_t::remain_time

(C++ member), 583
esp_ble_mesh_light_lightness_status_cb_t::target_lightness

(C++ member), 583
esp_ble_mesh_light_message_opcode_t

(C++ type), 407
esp_ble_mesh_light_xyl_default_set_t

(C++ struct), 581
esp_ble_mesh_light_xyl_default_set_t::lightness

(C++ member), 581
esp_ble_mesh_light_xyl_default_set_t::xyl_x

(C++ member), 581
esp_ble_mesh_light_xyl_default_set_t::xyl_y

(C++ member), 581
esp_ble_mesh_light_xyl_default_status_cb_t

(C++ struct), 589
esp_ble_mesh_light_xyl_default_status_cb_t::lightness

(C++ member), 589
esp_ble_mesh_light_xyl_default_status_cb_t::xyl_x

(C++ member), 589
esp_ble_mesh_light_xyl_default_status_cb_t::xyl_y

(C++ member), 589
esp_ble_mesh_light_xyl_range_set_t

(C++ struct), 581
esp_ble_mesh_light_xyl_range_set_t::xyl_x_range_max

(C++ member), 581
esp_ble_mesh_light_xyl_range_set_t::xyl_x_range_min

(C++ member), 581
esp_ble_mesh_light_xyl_range_set_t::xyl_y_range_max

(C++ member), 582
esp_ble_mesh_light_xyl_range_set_t::xyl_y_range_min

(C++ member), 581
esp_ble_mesh_light_xyl_range_status_cb_t

(C++ struct), 589
esp_ble_mesh_light_xyl_range_status_cb_t::status_code

(C++ member), 589
esp_ble_mesh_light_xyl_range_status_cb_t::xyl_x_range_max

(C++ member), 590
esp_ble_mesh_light_xyl_range_status_cb_t::xyl_x_range_min

(C++ member), 589
esp_ble_mesh_light_xyl_range_status_cb_t::xyl_y_range_max

(C++ member), 590
esp_ble_mesh_light_xyl_range_status_cb_t::xyl_y_range_min

(C++ member), 590
esp_ble_mesh_light_xyl_set_t (C++ struct),

580
esp_ble_mesh_light_xyl_set_t::delay

(C++ member), 581
esp_ble_mesh_light_xyl_set_t::op_en

(C++ member), 580
esp_ble_mesh_light_xyl_set_t::tid

(C++ member), 581
esp_ble_mesh_light_xyl_set_t::trans_time

(C++ member), 581
esp_ble_mesh_light_xyl_set_t::xyl_lightness

Espressif Systems 2689
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 581
esp_ble_mesh_light_xyl_set_t::xyl_x

(C++ member), 581
esp_ble_mesh_light_xyl_set_t::xyl_y

(C++ member), 581
esp_ble_mesh_light_xyl_setup_srv_t

(C++ struct), 599
esp_ble_mesh_light_xyl_setup_srv_t::model

(C++ member), 599
esp_ble_mesh_light_xyl_setup_srv_t::rsp_ctrl

(C++ member), 599
esp_ble_mesh_light_xyl_setup_srv_t::state

(C++ member), 600
esp_ble_mesh_light_xyl_srv_t (C++ struct),

599
esp_ble_mesh_light_xyl_srv_t::last

(C++ member), 599
esp_ble_mesh_light_xyl_srv_t::model

(C++ member), 599
esp_ble_mesh_light_xyl_srv_t::rsp_ctrl

(C++ member), 599
esp_ble_mesh_light_xyl_srv_t::state

(C++ member), 599
esp_ble_mesh_light_xyl_srv_t::transition

(C++ member), 599
esp_ble_mesh_light_xyl_srv_t::tt_delta_lightness

(C++ member), 599
esp_ble_mesh_light_xyl_srv_t::tt_delta_x

(C++ member), 599
esp_ble_mesh_light_xyl_srv_t::tt_delta_y

(C++ member), 599
esp_ble_mesh_light_xyl_state_t (C++

struct), 598
esp_ble_mesh_light_xyl_state_t::lightness

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::lightness_default

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::status_code

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::target_lightness

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::target_x

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::target_y

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::x

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::x_default

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::x_range_max

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::x_range_min

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::y

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::y_default

(C++ member), 598
esp_ble_mesh_light_xyl_state_t::y_range_max

(C++ member), 599
esp_ble_mesh_light_xyl_state_t::y_range_min

(C++ member), 599
esp_ble_mesh_light_xyl_status_cb_t

(C++ struct), 588
esp_ble_mesh_light_xyl_status_cb_t::op_en

(C++ member), 588
esp_ble_mesh_light_xyl_status_cb_t::remain_time

(C++ member), 588
esp_ble_mesh_light_xyl_status_cb_t::xyl_lightness

(C++ member), 588
esp_ble_mesh_light_xyl_status_cb_t::xyl_x

(C++ member), 588
esp_ble_mesh_light_xyl_status_cb_t::xyl_y

(C++ member), 588
esp_ble_mesh_light_xyl_target_status_cb_t

(C++ struct), 589
esp_ble_mesh_light_xyl_target_status_cb_t::op_en

(C++ member), 589
esp_ble_mesh_light_xyl_target_status_cb_t::remain_time

(C++ member), 589
esp_ble_mesh_light_xyl_target_status_cb_t::target_xyl_lightness

(C++ member), 589
esp_ble_mesh_light_xyl_target_status_cb_t::target_xyl_x

(C++ member), 589
esp_ble_mesh_light_xyl_target_status_cb_t::target_xyl_y

(C++ member), 589
esp_ble_mesh_lighting_server_cb_event_t

(C++ enum), 623
esp_ble_mesh_lighting_server_cb_event_t::ESP_BLE_MESH_LIGHTING_SERVER_EVT_MAX

(C++ enumerator), 623
esp_ble_mesh_lighting_server_cb_event_t::ESP_BLE_MESH_LIGHTING_SERVER_RECV_GET_MSG_EVT

(C++ enumerator), 623
esp_ble_mesh_lighting_server_cb_event_t::ESP_BLE_MESH_LIGHTING_SERVER_RECV_SET_MSG_EVT

(C++ enumerator), 623
esp_ble_mesh_lighting_server_cb_event_t::ESP_BLE_MESH_LIGHTING_SERVER_RECV_STATUS_MSG_EVT

(C++ enumerator), 623
esp_ble_mesh_lighting_server_cb_event_t::ESP_BLE_MESH_LIGHTING_SERVER_STATE_CHANGE_EVT

(C++ enumerator), 623
esp_ble_mesh_lighting_server_cb_param_t

(C++ struct), 617
esp_ble_mesh_lighting_server_cb_param_t::ctx

(C++ member), 617
esp_ble_mesh_lighting_server_cb_param_t::model

(C++ member), 617
esp_ble_mesh_lighting_server_cb_param_t::value

(C++ member), 617
esp_ble_mesh_lighting_server_cb_t

(C++ type), 622
esp_ble_mesh_lighting_server_cb_value_t

(C++ union), 575
esp_ble_mesh_lighting_server_cb_value_t::get

(C++ member), 575
esp_ble_mesh_lighting_server_cb_value_t::set

(C++ member), 575
esp_ble_mesh_lighting_server_cb_value_t::state_change

(C++ member), 575
esp_ble_mesh_lighting_server_cb_value_t::status

Espressif Systems 2690
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 575
esp_ble_mesh_lighting_server_recv_get_msg_t

(C++ union), 573
esp_ble_mesh_lighting_server_recv_get_msg_t::lc_property

(C++ member), 573
esp_ble_mesh_lighting_server_recv_set_msg_t

(C++ union), 573
esp_ble_mesh_lighting_server_recv_set_msg_t::ctl

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::ctl_default

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::ctl_temp

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::ctl_temp_range

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::hsl

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::hsl_default

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::hsl_hue

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::hsl_range

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::hsl_saturation

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::lc_light_onoff

(C++ member), 575
esp_ble_mesh_lighting_server_recv_set_msg_t::lc_mode

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::lc_om

(C++ member), 575
esp_ble_mesh_lighting_server_recv_set_msg_t::lc_property

(C++ member), 575
esp_ble_mesh_lighting_server_recv_set_msg_t::lightness

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::lightness_default

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::lightness_linear

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::lightness_range

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::xyl

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::xyl_default

(C++ member), 574
esp_ble_mesh_lighting_server_recv_set_msg_t::xyl_range

(C++ member), 574
esp_ble_mesh_lighting_server_recv_status_msg_t

(C++ union), 575
esp_ble_mesh_lighting_server_recv_status_msg_t::sensor_status

(C++ member), 575
esp_ble_mesh_lighting_server_state_change_t

(C++ union), 572
esp_ble_mesh_lighting_server_state_change_t::ctl_default_set

(C++ member), 572
esp_ble_mesh_lighting_server_state_change_t::ctl_set

(C++ member), 572
esp_ble_mesh_lighting_server_state_change_t::ctl_temp_range_set

(C++ member), 572
esp_ble_mesh_lighting_server_state_change_t::ctl_temp_set

(C++ member), 572
esp_ble_mesh_lighting_server_state_change_t::hsl_default_set

(C++ member), 573
esp_ble_mesh_lighting_server_state_change_t::hsl_hue_set

(C++ member), 573
esp_ble_mesh_lighting_server_state_change_t::hsl_range_set

(C++ member), 573
esp_ble_mesh_lighting_server_state_change_t::hsl_saturation_set

(C++ member), 573
esp_ble_mesh_lighting_server_state_change_t::hsl_set

(C++ member), 572
esp_ble_mesh_lighting_server_state_change_t::lc_light_onoff_set

(C++ member), 573
esp_ble_mesh_lighting_server_state_change_t::lc_mode_set

(C++ member), 573
esp_ble_mesh_lighting_server_state_change_t::lc_om_set

(C++ member), 573
esp_ble_mesh_lighting_server_state_change_t::lc_property_set

(C++ member), 573
esp_ble_mesh_lighting_server_state_change_t::lightness_default_set

(C++ member), 572
esp_ble_mesh_lighting_server_state_change_t::lightness_linear_set

(C++ member), 572
esp_ble_mesh_lighting_server_state_change_t::lightness_range_set

(C++ member), 572
esp_ble_mesh_lighting_server_state_change_t::lightness_set

(C++ member), 572
esp_ble_mesh_lighting_server_state_change_t::sensor_status

(C++ member), 573
esp_ble_mesh_lighting_server_state_change_t::xyl_default_set

(C++ member), 573
esp_ble_mesh_lighting_server_state_change_t::xyl_range_set

(C++ member), 573
esp_ble_mesh_lighting_server_state_change_t::xyl_set

(C++ member), 573
esp_ble_mesh_lpn_disable (C++ function),

420
esp_ble_mesh_lpn_enable (C++ function), 420
esp_ble_mesh_lpn_poll (C++ function), 420
ESP_BLE_MESH_MECHANISM_JAMMED_ERROR (C

macro), 478
ESP_BLE_MESH_MECHANISM_JAMMED_WARNING

(C macro), 478
ESP_BLE_MESH_MEMORY_ERROR (C macro), 477
ESP_BLE_MESH_MEMORY_WARNING (C macro),

477
ESP_BLE_MESH_MIC_LONG (C macro), 383
ESP_BLE_MESH_MIC_SHORT (C macro), 383
esp_ble_mesh_model (C++ struct), 374
esp_ble_mesh_model::cb (C++ member), 375
esp_ble_mesh_model::company_id (C++

member), 375
esp_ble_mesh_model::element (C++ mem-

ber), 375
esp_ble_mesh_model::element_idx (C++

member), 375

Espressif Systems 2691
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_model::flags (C++ member),
375

esp_ble_mesh_model::groups (C++ member),
375

esp_ble_mesh_model::keys (C++ member),
375

esp_ble_mesh_model::model_id (C++ mem-
ber), 375

esp_ble_mesh_model::model_idx (C++
member), 375

esp_ble_mesh_model::op (C++ member), 375
esp_ble_mesh_model::pub (C++ member), 375
esp_ble_mesh_model::user_data (C++

member), 375
esp_ble_mesh_model::vnd (C++ member), 375
esp_ble_mesh_model::[anonymous] (C++

member), 375
esp_ble_mesh_model_cb_event_t (C++

enum), 416
esp_ble_mesh_model_cb_event_t::ESP_BLE_MESH_CLIENT_MODEL_RECV_PUBLISH_MSG_EVT

(C++ enumerator), 416
esp_ble_mesh_model_cb_event_t::ESP_BLE_MESH_CLIENT_MODEL_SEND_TIMEOUT_EVT

(C++ enumerator), 416
esp_ble_mesh_model_cb_event_t::ESP_BLE_MESH_MODEL_EVT_MAX

(C++ enumerator), 417
esp_ble_mesh_model_cb_event_t::ESP_BLE_MESH_MODEL_OPERATION_EVT

(C++ enumerator), 416
esp_ble_mesh_model_cb_event_t::ESP_BLE_MESH_MODEL_PUBLISH_COMP_EVT

(C++ enumerator), 416
esp_ble_mesh_model_cb_event_t::ESP_BLE_MESH_MODEL_PUBLISH_UPDATE_EVT

(C++ enumerator), 416
esp_ble_mesh_model_cb_event_t::ESP_BLE_MESH_MODEL_SEND_COMP_EVT

(C++ enumerator), 416
esp_ble_mesh_model_cb_event_t::ESP_BLE_MESH_SERVER_MODEL_UPDATE_STATE_COMP_EVT

(C++ enumerator), 417
esp_ble_mesh_model_cb_param_t (C++

union), 369
esp_ble_mesh_model_cb_param_t::ble_mesh_client_model_send_timeout_param

(C++ struct), 370
esp_ble_mesh_model_cb_param_t::ble_mesh_client_model_send_timeout_param::ctx

(C++ member), 370
esp_ble_mesh_model_cb_param_t::ble_mesh_client_model_send_timeout_param::model

(C++ member), 370
esp_ble_mesh_model_cb_param_t::ble_mesh_client_model_send_timeout_param::opcode

(C++ member), 370
esp_ble_mesh_model_cb_param_t::ble_mesh_mod_recv_publish_msg_param

(C++ struct), 370
esp_ble_mesh_model_cb_param_t::ble_mesh_mod_recv_publish_msg_param::ctx

(C++ member), 370
esp_ble_mesh_model_cb_param_t::ble_mesh_mod_recv_publish_msg_param::length

(C++ member), 370
esp_ble_mesh_model_cb_param_t::ble_mesh_mod_recv_publish_msg_param::model

(C++ member), 370
esp_ble_mesh_model_cb_param_t::ble_mesh_mod_recv_publish_msg_param::msg

(C++ member), 370
esp_ble_mesh_model_cb_param_t::ble_mesh_mod_recv_publish_msg_param::opcode

(C++ member), 370
esp_ble_mesh_model_cb_param_t::ble_mesh_model_operation_evt_param

(C++ struct), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_operation_evt_param::ctx

(C++ member), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_operation_evt_param::length

(C++ member), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_operation_evt_param::model

(C++ member), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_operation_evt_param::msg

(C++ member), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_operation_evt_param::opcode

(C++ member), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_publish_comp_param

(C++ struct), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_publish_comp_param::err_code

(C++ member), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_publish_comp_param::model

(C++ member), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_publish_update_evt_param

(C++ struct), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_publish_update_evt_param::model

(C++ member), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_send_comp_param

(C++ struct), 371
esp_ble_mesh_model_cb_param_t::ble_mesh_model_send_comp_param::ctx

(C++ member), 372
esp_ble_mesh_model_cb_param_t::ble_mesh_model_send_comp_param::err_code

(C++ member), 372
esp_ble_mesh_model_cb_param_t::ble_mesh_model_send_comp_param::model

(C++ member), 372
esp_ble_mesh_model_cb_param_t::ble_mesh_model_send_comp_param::opcode

(C++ member), 372
esp_ble_mesh_model_cb_param_t::ble_mesh_server_model_update_state_comp_param

(C++ struct), 372
esp_ble_mesh_model_cb_param_t::ble_mesh_server_model_update_state_comp_param::err_code

(C++ member), 372
esp_ble_mesh_model_cb_param_t::ble_mesh_server_model_update_state_comp_param::model

(C++ member), 372
esp_ble_mesh_model_cb_param_t::ble_mesh_server_model_update_state_comp_param::type

(C++ member), 372
esp_ble_mesh_model_cb_param_t::client_recv_publish_msg

(C++ member), 369
esp_ble_mesh_model_cb_param_t::client_send_timeout

(C++ member), 370
esp_ble_mesh_model_cb_param_t::model_operation

(C++ member), 369
esp_ble_mesh_model_cb_param_t::model_publish_comp

(C++ member), 369
esp_ble_mesh_model_cb_param_t::model_publish_update

(C++ member), 370
esp_ble_mesh_model_cb_param_t::model_send_comp

(C++ member), 369
esp_ble_mesh_model_cb_param_t::server_model_update_state

(C++ member), 370
esp_ble_mesh_model_cb_t (C++ type), 429
esp_ble_mesh_model_cbs_t (C++ struct), 374
esp_ble_mesh_model_cbs_t::init_cb

(C++ member), 374
ESP_BLE_MESH_MODEL_CFG_CLI (C macro), 467

Espressif Systems 2692
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_BLE_MESH_MODEL_CFG_SRV (C macro), 466
ESP_BLE_MESH_MODEL_GEN_ADMIN_PROP_SRV

(C macro), 517
ESP_BLE_MESH_MODEL_GEN_BATTERY_CLI (C

macro), 513
ESP_BLE_MESH_MODEL_GEN_BATTERY_SRV (C

macro), 516
ESP_BLE_MESH_MODEL_GEN_CLIENT_PROP_SRV

(C macro), 517
ESP_BLE_MESH_MODEL_GEN_DEF_TRANS_TIME_CLI

(C macro), 513
ESP_BLE_MESH_MODEL_GEN_DEF_TRANS_TIME_SRV

(C macro), 514
ESP_BLE_MESH_MODEL_GEN_LEVEL_CLI (C

macro), 512
ESP_BLE_MESH_MODEL_GEN_LEVEL_SRV (C

macro), 514
ESP_BLE_MESH_MODEL_GEN_LOCATION_CLI (C

macro), 514
ESP_BLE_MESH_MODEL_GEN_LOCATION_SETUP_SRV

(C macro), 516
ESP_BLE_MESH_MODEL_GEN_LOCATION_SRV (C

macro), 516
ESP_BLE_MESH_MODEL_GEN_MANUFACTURER_PROP_SRV

(C macro), 517
ESP_BLE_MESH_MODEL_GEN_ONOFF_CLI (C

macro), 512
ESP_BLE_MESH_MODEL_GEN_ONOFF_SRV (C

macro), 514
ESP_BLE_MESH_MODEL_GEN_POWER_LEVEL_CLI

(C macro), 513
ESP_BLE_MESH_MODEL_GEN_POWER_LEVEL_SETUP_SRV

(C macro), 515
ESP_BLE_MESH_MODEL_GEN_POWER_LEVEL_SRV

(C macro), 515
ESP_BLE_MESH_MODEL_GEN_POWER_ONOFF_CLI

(C macro), 513
ESP_BLE_MESH_MODEL_GEN_POWER_ONOFF_SETUP_SRV

(C macro), 515
ESP_BLE_MESH_MODEL_GEN_POWER_ONOFF_SRV

(C macro), 515
ESP_BLE_MESH_MODEL_GEN_PROPERTY_CLI (C

macro), 514
ESP_BLE_MESH_MODEL_GEN_USER_PROP_SRV

(C macro), 516
ESP_BLE_MESH_MODEL_GROUPS_UNASSIGNED

(C macro), 384
ESP_BLE_MESH_MODEL_HEALTH_CLI (C macro),

475
ESP_BLE_MESH_MODEL_HEALTH_SRV (C macro),

475
ESP_BLE_MESH_MODEL_ID_CONFIG_CLI (C

macro), 388
ESP_BLE_MESH_MODEL_ID_CONFIG_SRV (C

macro), 388
ESP_BLE_MESH_MODEL_ID_GEN_ADMIN_PROP_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_BATTERY_CLI

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_BATTERY_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_CLIENT_PROP_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_DEF_TRANS_TIME_CLI

(C macro), 388
ESP_BLE_MESH_MODEL_ID_GEN_DEF_TRANS_TIME_SRV

(C macro), 388
ESP_BLE_MESH_MODEL_ID_GEN_LEVEL_CLI (C

macro), 388
ESP_BLE_MESH_MODEL_ID_GEN_LEVEL_SRV (C

macro), 388
ESP_BLE_MESH_MODEL_ID_GEN_LOCATION_CLI

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_LOCATION_SETUP_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_LOCATION_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_MANUFACTURER_PROP_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_ONOFF_CLI (C

macro), 388
ESP_BLE_MESH_MODEL_ID_GEN_ONOFF_SRV (C

macro), 388
ESP_BLE_MESH_MODEL_ID_GEN_POWER_LEVEL_CLI

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_POWER_LEVEL_SETUP_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_POWER_LEVEL_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_POWER_ONOFF_CLI

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_POWER_ONOFF_SETUP_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_POWER_ONOFF_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_PROP_CLI (C

macro), 389
ESP_BLE_MESH_MODEL_ID_GEN_USER_PROP_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_HEALTH_CLI (C

macro), 388
ESP_BLE_MESH_MODEL_ID_HEALTH_SRV (C

macro), 388
ESP_BLE_MESH_MODEL_ID_LIGHT_CTL_CLI (C

macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_CTL_SETUP_SRV

(C macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_CTL_SRV (C

macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_CTL_TEMP_SRV

(C macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_HSL_CLI (C

macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_HSL_HUE_SRV

(C macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_HSL_SAT_SRV

Espressif Systems 2693
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_HSL_SETUP_SRV

(C macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_HSL_SRV (C

macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_LC_CLI (C

macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_LC_SETUP_SRV

(C macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_LC_SRV (C

macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_LIGHTNESS_CLI

(C macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_LIGHTNESS_SETUP_SRV

(C macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_LIGHTNESS_SRV

(C macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_XYL_CLI (C

macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_XYL_SETUP_SRV

(C macro), 390
ESP_BLE_MESH_MODEL_ID_LIGHT_XYL_SRV (C

macro), 390
ESP_BLE_MESH_MODEL_ID_SCENE_CLI (C

macro), 390
ESP_BLE_MESH_MODEL_ID_SCENE_SETUP_SRV

(C macro), 390
ESP_BLE_MESH_MODEL_ID_SCENE_SRV (C

macro), 389
ESP_BLE_MESH_MODEL_ID_SCHEDULER_CLI (C

macro), 390
ESP_BLE_MESH_MODEL_ID_SCHEDULER_SETUP_SRV

(C macro), 390
ESP_BLE_MESH_MODEL_ID_SCHEDULER_SRV (C

macro), 390
ESP_BLE_MESH_MODEL_ID_SENSOR_CLI (C

macro), 389
ESP_BLE_MESH_MODEL_ID_SENSOR_SETUP_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_SENSOR_SRV (C

macro), 389
ESP_BLE_MESH_MODEL_ID_TIME_CLI (C

macro), 389
ESP_BLE_MESH_MODEL_ID_TIME_SETUP_SRV

(C macro), 389
ESP_BLE_MESH_MODEL_ID_TIME_SRV (C

macro), 389
ESP_BLE_MESH_MODEL_KEYS_UNUSED (C

macro), 384
ESP_BLE_MESH_MODEL_LIGHT_CTL_CLI (C

macro), 617
ESP_BLE_MESH_MODEL_LIGHT_CTL_SETUP_SRV

(C macro), 619
ESP_BLE_MESH_MODEL_LIGHT_CTL_SRV (C

macro), 619
ESP_BLE_MESH_MODEL_LIGHT_CTL_TEMP_SRV

(C macro), 619
ESP_BLE_MESH_MODEL_LIGHT_HSL_CLI (C

macro), 618
ESP_BLE_MESH_MODEL_LIGHT_HSL_HUE_SRV

(C macro), 620
ESP_BLE_MESH_MODEL_LIGHT_HSL_SAT_SRV

(C macro), 620
ESP_BLE_MESH_MODEL_LIGHT_HSL_SETUP_SRV

(C macro), 620
ESP_BLE_MESH_MODEL_LIGHT_HSL_SRV (C

macro), 620
ESP_BLE_MESH_MODEL_LIGHT_LC_CLI (C

macro), 618
ESP_BLE_MESH_MODEL_LIGHT_LC_SETUP_SRV

(C macro), 622
ESP_BLE_MESH_MODEL_LIGHT_LC_SRV (C

macro), 621
ESP_BLE_MESH_MODEL_LIGHT_LIGHTNESS_CLI

(C macro), 617
ESP_BLE_MESH_MODEL_LIGHT_LIGHTNESS_SETUP_SRV

(C macro), 619
ESP_BLE_MESH_MODEL_LIGHT_LIGHTNESS_SRV

(C macro), 618
ESP_BLE_MESH_MODEL_LIGHT_XYL_CLI (C

macro), 618
ESP_BLE_MESH_MODEL_LIGHT_XYL_SETUP_SRV

(C macro), 621
ESP_BLE_MESH_MODEL_LIGHT_XYL_SRV (C

macro), 621
esp_ble_mesh_model_msg_opcode_init

(C++ function), 421
ESP_BLE_MESH_MODEL_NONE (C macro), 387
ESP_BLE_MESH_MODEL_OP (C macro), 387
ESP_BLE_MESH_MODEL_OP_1 (C macro), 386
ESP_BLE_MESH_MODEL_OP_2 (C macro), 386
ESP_BLE_MESH_MODEL_OP_3 (C macro), 386
ESP_BLE_MESH_MODEL_OP_APP_KEY_ADD (C

macro), 392
ESP_BLE_MESH_MODEL_OP_APP_KEY_DELETE

(C macro), 393
ESP_BLE_MESH_MODEL_OP_APP_KEY_GET (C

macro), 391
ESP_BLE_MESH_MODEL_OP_APP_KEY_LIST (C

macro), 394
ESP_BLE_MESH_MODEL_OP_APP_KEY_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_APP_KEY_UPDATE

(C macro), 393
ESP_BLE_MESH_MODEL_OP_ATTENTION_GET (C

macro), 395
ESP_BLE_MESH_MODEL_OP_ATTENTION_SET (C

macro), 396
ESP_BLE_MESH_MODEL_OP_ATTENTION_SET_UNACK

(C macro), 396
ESP_BLE_MESH_MODEL_OP_ATTENTION_STATUS

(C macro), 396
ESP_BLE_MESH_MODEL_OP_BEACON_GET (C

macro), 391
ESP_BLE_MESH_MODEL_OP_BEACON_SET (C

macro), 392

Espressif Systems 2694
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_BLE_MESH_MODEL_OP_BEACON_STATUS (C
macro), 393

ESP_BLE_MESH_MODEL_OP_COMPOSITION_DATA_GET
(C macro), 391

ESP_BLE_MESH_MODEL_OP_COMPOSITION_DATA_STATUS
(C macro), 393

ESP_BLE_MESH_MODEL_OP_DEFAULT_TTL_GET
(C macro), 391

ESP_BLE_MESH_MODEL_OP_DEFAULT_TTL_SET
(C macro), 392

ESP_BLE_MESH_MODEL_OP_DEFAULT_TTL_STATUS
(C macro), 393

ESP_BLE_MESH_MODEL_OP_END (C macro), 387
ESP_BLE_MESH_MODEL_OP_FRIEND_GET (C

macro), 391
ESP_BLE_MESH_MODEL_OP_FRIEND_SET (C

macro), 393
ESP_BLE_MESH_MODEL_OP_FRIEND_STATUS (C

macro), 394
ESP_BLE_MESH_MODEL_OP_GATT_PROXY_GET

(C macro), 391
ESP_BLE_MESH_MODEL_OP_GATT_PROXY_SET

(C macro), 392
ESP_BLE_MESH_MODEL_OP_GATT_PROXY_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTIES_GET

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTIES_STATUS

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_GET

(C macro), 399
ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_SET

(C macro), 399
ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_SET_UNACK

(C macro), 399
ESP_BLE_MESH_MODEL_OP_GEN_ADMIN_PROPERTY_STATUS

(C macro), 399
ESP_BLE_MESH_MODEL_OP_GEN_BATTERY_GET

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_BATTERY_STATUS

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_CLIENT_PROPERTIES_GET

(C macro), 399
ESP_BLE_MESH_MODEL_OP_GEN_CLIENT_PROPERTIES_STATUS

(C macro), 399
ESP_BLE_MESH_MODEL_OP_GEN_DEF_TRANS_TIME_GET

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_DEF_TRANS_TIME_SET

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_DEF_TRANS_TIME_SET_UNACK

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_DEF_TRANS_TIME_STATUS

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_DELTA_SET (C

macro), 396
ESP_BLE_MESH_MODEL_OP_GEN_DELTA_SET_UNACK

(C macro), 396
ESP_BLE_MESH_MODEL_OP_GEN_LEVEL_GET (C

macro), 396
ESP_BLE_MESH_MODEL_OP_GEN_LEVEL_SET (C

macro), 396
ESP_BLE_MESH_MODEL_OP_GEN_LEVEL_SET_UNACK

(C macro), 396
ESP_BLE_MESH_MODEL_OP_GEN_LEVEL_STATUS

(C macro), 396
ESP_BLE_MESH_MODEL_OP_GEN_LOC_GLOBAL_GET

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_LOC_GLOBAL_SET

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_LOC_GLOBAL_SET_UNACK

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_LOC_GLOBAL_STATUS

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_LOC_LOCAL_GET

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_LOC_LOCAL_SET

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_LOC_LOCAL_SET_UNACK

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_LOC_LOCAL_STATUS

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTIES_GET

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTIES_STATUS

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_GET

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_SET

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_SET_UNACK

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_MANUFACTURER_PROPERTY_STATUS

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_MOVE_SET (C

macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_MOVE_SET_UNACK

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_ONOFF_GET (C

macro), 396
ESP_BLE_MESH_MODEL_OP_GEN_ONOFF_SET (C

macro), 396
ESP_BLE_MESH_MODEL_OP_GEN_ONOFF_SET_UNACK

(C macro), 396
ESP_BLE_MESH_MODEL_OP_GEN_ONOFF_STATUS

(C macro), 396
ESP_BLE_MESH_MODEL_OP_GEN_ONPOWERUP_GET

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_ONPOWERUP_SET

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_ONPOWERUP_SET_UNACK

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_ONPOWERUP_STATUS

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_POWER_DEFAULT_GET

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_POWER_DEFAULT_SET

Espressif Systems 2695
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_POWER_DEFAULT_SET_UNACK

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_POWER_DEFAULT_STATUS

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_POWER_LAST_GET

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_POWER_LAST_STATUS

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_POWER_LEVEL_GET

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_POWER_LEVEL_SET

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_POWER_LEVEL_SET_UNACK

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_POWER_LEVEL_STATUS

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_POWER_RANGE_GET

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_POWER_RANGE_SET

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_POWER_RANGE_SET_UNACK

(C macro), 398
ESP_BLE_MESH_MODEL_OP_GEN_POWER_RANGE_STATUS

(C macro), 397
ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTIES_GET

(C macro), 399
ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTIES_STATUS

(C macro), 399
ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_GET

(C macro), 399
ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_SET

(C macro), 399
ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_SET_UNACK

(C macro), 399
ESP_BLE_MESH_MODEL_OP_GEN_USER_PROPERTY_STATUS

(C macro), 399
ESP_BLE_MESH_MODEL_OP_HEALTH_CURRENT_STATUS

(C macro), 396
ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_CLEAR

(C macro), 395
ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_CLEAR_UNACK

(C macro), 395
ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_GET

(C macro), 395
ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_STATUS

(C macro), 396
ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_TEST

(C macro), 396
ESP_BLE_MESH_MODEL_OP_HEALTH_FAULT_TEST_UNACK

(C macro), 396
ESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_GET

(C macro), 395
ESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_SET

(C macro), 396
ESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_SET_UNACK

(C macro), 396
ESP_BLE_MESH_MODEL_OP_HEALTH_PERIOD_STATUS

(C macro), 396
ESP_BLE_MESH_MODEL_OP_HEARTBEAT_PUB_GET

(C macro), 391
ESP_BLE_MESH_MODEL_OP_HEARTBEAT_PUB_SET

(C macro), 393
ESP_BLE_MESH_MODEL_OP_HEARTBEAT_PUB_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_HEARTBEAT_SUB_GET

(C macro), 391
ESP_BLE_MESH_MODEL_OP_HEARTBEAT_SUB_SET

(C macro), 393
ESP_BLE_MESH_MODEL_OP_HEARTBEAT_SUB_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_KEY_REFRESH_PHASE_GET

(C macro), 391
ESP_BLE_MESH_MODEL_OP_KEY_REFRESH_PHASE_SET

(C macro), 393
ESP_BLE_MESH_MODEL_OP_KEY_REFRESH_PHASE_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_DEFAULT_GET

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_DEFAULT_SET

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_DEFAULT_SET_UNACK

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_DEFAULT_STATUS

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_GET (C

macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_SET (C

macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_SET_UNACK

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_STATUS

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_GET

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_RANGE_GET

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_RANGE_SET

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_RANGE_SET_UNACK

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_RANGE_STATUS

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_SET

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_SET_UNACK

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_CTL_TEMPERATURE_STATUS

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_DEFAULT_GET

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_DEFAULT_SET

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_DEFAULT_SET_UNACK

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_DEFAULT_STATUS

Espressif Systems 2696
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_GET (C

macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_HUE_GET

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_HUE_SET

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_HUE_SET_UNACK

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_HUE_STATUS

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_RANGE_GET

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_RANGE_SET

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_RANGE_SET_UNACK

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_RANGE_STATUS

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SATURATION_GET

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SATURATION_SET

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SATURATION_SET_UNACK

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SATURATION_STATUS

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SET (C

macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_SET_UNACK

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_STATUS

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_TARGET_GET

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_HSL_TARGET_STATUS

(C macro), 403
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_LIGHT_ONOFF_GET

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_LIGHT_ONOFF_SET

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_LIGHT_ONOFF_SET_UNACK

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_LIGHT_ONOFF_STATUS

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_MODE_GET

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_MODE_SET

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_MODE_SET_UNACK

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_MODE_STATUS

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_OM_GET

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_OM_SET

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_OM_SET_UNACK

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_OM_STATUS

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_GET

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_SET

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_SET_UNACK

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LC_PROPERTY_STATUS

(C macro), 405
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_DEFAULT_GET

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_DEFAULT_SET

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_DEFAULT_SET_UNACK

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_DEFAULT_STATUS

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_GET

(C macro), 401
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LAST_GET

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LAST_STATUS

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LINEAR_GET

(C macro), 401
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LINEAR_SET

(C macro), 401
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LINEAR_SET_UNACK

(C macro), 401
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_LINEAR_STATUS

(C macro), 401
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_RANGE_GET

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_RANGE_SET

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_RANGE_SET_UNACK

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_RANGE_STATUS

(C macro), 402
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_SET

(C macro), 401
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_SET_UNACK

(C macro), 401
ESP_BLE_MESH_MODEL_OP_LIGHT_LIGHTNESS_STATUS

(C macro), 401
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_DEFAULT_GET

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_DEFAULT_SET

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_DEFAULT_SET_UNACK

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_DEFAULT_STATUS

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_GET (C

macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_RANGE_GET

Espressif Systems 2697
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_RANGE_SET

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_RANGE_SET_UNACK

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_RANGE_STATUS

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_SET (C

macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_SET_UNACK

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_STATUS

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_TARGET_GET

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LIGHT_XYL_TARGET_STATUS

(C macro), 404
ESP_BLE_MESH_MODEL_OP_LPN_POLLTIMEOUT_GET

(C macro), 392
ESP_BLE_MESH_MODEL_OP_LPN_POLLTIMEOUT_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_MODEL_APP_BIND

(C macro), 392
ESP_BLE_MESH_MODEL_OP_MODEL_APP_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_MODEL_APP_UNBIND

(C macro), 393
ESP_BLE_MESH_MODEL_OP_MODEL_PUB_GET (C

macro), 391
ESP_BLE_MESH_MODEL_OP_MODEL_PUB_SET (C

macro), 392
ESP_BLE_MESH_MODEL_OP_MODEL_PUB_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_MODEL_PUB_VIRTUAL_ADDR_SET

(C macro), 393
ESP_BLE_MESH_MODEL_OP_MODEL_SUB_ADD (C

macro), 392
ESP_BLE_MESH_MODEL_OP_MODEL_SUB_DELETE

(C macro), 392
ESP_BLE_MESH_MODEL_OP_MODEL_SUB_DELETE_ALL

(C macro), 393
ESP_BLE_MESH_MODEL_OP_MODEL_SUB_OVERWRITE

(C macro), 392
ESP_BLE_MESH_MODEL_OP_MODEL_SUB_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_ADD

(C macro), 392
ESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_DELETE

(C macro), 392
ESP_BLE_MESH_MODEL_OP_MODEL_SUB_VIRTUAL_ADDR_OVERWRITE

(C macro), 392
ESP_BLE_MESH_MODEL_OP_NET_KEY_ADD (C

macro), 392
ESP_BLE_MESH_MODEL_OP_NET_KEY_DELETE

(C macro), 393
ESP_BLE_MESH_MODEL_OP_NET_KEY_GET (C

macro), 391
ESP_BLE_MESH_MODEL_OP_NET_KEY_LIST (C

macro), 394
ESP_BLE_MESH_MODEL_OP_NET_KEY_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_NET_KEY_UPDATE

(C macro), 393
ESP_BLE_MESH_MODEL_OP_NETWORK_TRANSMIT_GET

(C macro), 392
ESP_BLE_MESH_MODEL_OP_NETWORK_TRANSMIT_SET

(C macro), 393
ESP_BLE_MESH_MODEL_OP_NETWORK_TRANSMIT_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_NODE_IDENTITY_GET

(C macro), 391
ESP_BLE_MESH_MODEL_OP_NODE_IDENTITY_SET

(C macro), 393
ESP_BLE_MESH_MODEL_OP_NODE_IDENTITY_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_NODE_RESET (C

macro), 393
ESP_BLE_MESH_MODEL_OP_NODE_RESET_STATUS

(C macro), 394
ESP_BLE_MESH_MODEL_OP_RELAY_GET (C

macro), 391
ESP_BLE_MESH_MODEL_OP_RELAY_SET (C

macro), 392
ESP_BLE_MESH_MODEL_OP_RELAY_STATUS (C

macro), 394
ESP_BLE_MESH_MODEL_OP_SCENE_DELETE (C

macro), 401
ESP_BLE_MESH_MODEL_OP_SCENE_DELETE_UNACK

(C macro), 401
ESP_BLE_MESH_MODEL_OP_SCENE_GET (C

macro), 400
ESP_BLE_MESH_MODEL_OP_SCENE_RECALL (C

macro), 400
ESP_BLE_MESH_MODEL_OP_SCENE_RECALL_UNACK

(C macro), 401
ESP_BLE_MESH_MODEL_OP_SCENE_REGISTER_GET

(C macro), 401
ESP_BLE_MESH_MODEL_OP_SCENE_REGISTER_STATUS

(C macro), 401
ESP_BLE_MESH_MODEL_OP_SCENE_STATUS (C

macro), 401
ESP_BLE_MESH_MODEL_OP_SCENE_STORE (C

macro), 401
ESP_BLE_MESH_MODEL_OP_SCENE_STORE_UNACK

(C macro), 401
ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_GET

(C macro), 401
ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_SET

(C macro), 401
ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_SET_UNACK

(C macro), 401
ESP_BLE_MESH_MODEL_OP_SCHEDULER_ACT_STATUS

(C macro), 401
ESP_BLE_MESH_MODEL_OP_SCHEDULER_GET (C

macro), 401
ESP_BLE_MESH_MODEL_OP_SCHEDULER_STATUS

Espressif Systems 2698
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C macro), 401
ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_GET

(C macro), 399
ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_SET

(C macro), 399
ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_SET_UNACK

(C macro), 400
ESP_BLE_MESH_MODEL_OP_SENSOR_CADENCE_STATUS

(C macro), 400
ESP_BLE_MESH_MODEL_OP_SENSOR_COLUMN_GET

(C macro), 399
ESP_BLE_MESH_MODEL_OP_SENSOR_COLUMN_STATUS

(C macro), 399
ESP_BLE_MESH_MODEL_OP_SENSOR_DESCRIPTOR_GET

(C macro), 399
ESP_BLE_MESH_MODEL_OP_SENSOR_DESCRIPTOR_STATUS

(C macro), 399
ESP_BLE_MESH_MODEL_OP_SENSOR_GET (C

macro), 399
ESP_BLE_MESH_MODEL_OP_SENSOR_SERIES_GET

(C macro), 399
ESP_BLE_MESH_MODEL_OP_SENSOR_SERIES_STATUS

(C macro), 399
ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_GET

(C macro), 400
ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_SET

(C macro), 400
ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_SET_UNACK

(C macro), 400
ESP_BLE_MESH_MODEL_OP_SENSOR_SETTING_STATUS

(C macro), 400
ESP_BLE_MESH_MODEL_OP_SENSOR_SETTINGS_GET

(C macro), 400
ESP_BLE_MESH_MODEL_OP_SENSOR_SETTINGS_STATUS

(C macro), 400
ESP_BLE_MESH_MODEL_OP_SENSOR_STATUS (C

macro), 399
ESP_BLE_MESH_MODEL_OP_SIG_MODEL_APP_GET

(C macro), 391
ESP_BLE_MESH_MODEL_OP_SIG_MODEL_APP_LIST

(C macro), 394
ESP_BLE_MESH_MODEL_OP_SIG_MODEL_SUB_GET

(C macro), 391
ESP_BLE_MESH_MODEL_OP_SIG_MODEL_SUB_LIST

(C macro), 394
esp_ble_mesh_model_op_t (C++ struct), 374
esp_ble_mesh_model_op_t::min_len (C++

member), 374
esp_ble_mesh_model_op_t::opcode (C++

member), 374
esp_ble_mesh_model_op_t::param_cb

(C++ member), 374
ESP_BLE_MESH_MODEL_OP_TAI_UTC_DELTA_GET

(C macro), 400
ESP_BLE_MESH_MODEL_OP_TAI_UTC_DELTA_SET

(C macro), 400
ESP_BLE_MESH_MODEL_OP_TAI_UTC_DELTA_STATUS

(C macro), 400

ESP_BLE_MESH_MODEL_OP_TIME_GET (C
macro), 400

ESP_BLE_MESH_MODEL_OP_TIME_ROLE_GET (C
macro), 400

ESP_BLE_MESH_MODEL_OP_TIME_ROLE_SET (C
macro), 400

ESP_BLE_MESH_MODEL_OP_TIME_ROLE_STATUS
(C macro), 400

ESP_BLE_MESH_MODEL_OP_TIME_SET (C
macro), 400

ESP_BLE_MESH_MODEL_OP_TIME_STATUS (C
macro), 400

ESP_BLE_MESH_MODEL_OP_TIME_ZONE_GET (C
macro), 400

ESP_BLE_MESH_MODEL_OP_TIME_ZONE_SET (C
macro), 400

ESP_BLE_MESH_MODEL_OP_TIME_ZONE_STATUS
(C macro), 400

ESP_BLE_MESH_MODEL_OP_VENDOR_MODEL_APP_GET
(C macro), 391

ESP_BLE_MESH_MODEL_OP_VENDOR_MODEL_APP_LIST
(C macro), 394

ESP_BLE_MESH_MODEL_OP_VENDOR_MODEL_SUB_GET
(C macro), 391

ESP_BLE_MESH_MODEL_OP_VENDOR_MODEL_SUB_LIST
(C macro), 394

ESP_BLE_MESH_MODEL_PUB_DEFINE (C macro),
387

esp_ble_mesh_model_pub_t (C++ struct), 373
esp_ble_mesh_model_pub_t::app_idx

(C++ member), 373
esp_ble_mesh_model_pub_t::count (C++

member), 374
esp_ble_mesh_model_pub_t::cred (C++

member), 373
esp_ble_mesh_model_pub_t::dev_role

(C++ member), 374
esp_ble_mesh_model_pub_t::fast_period

(C++ member), 373
esp_ble_mesh_model_pub_t::model (C++

member), 373
esp_ble_mesh_model_pub_t::msg (C++

member), 374
esp_ble_mesh_model_pub_t::period (C++

member), 373
esp_ble_mesh_model_pub_t::period_div

(C++ member), 373
esp_ble_mesh_model_pub_t::period_start

(C++ member), 374
esp_ble_mesh_model_pub_t::publish_addr

(C++ member), 373
esp_ble_mesh_model_pub_t::retransmit

(C++ member), 373
esp_ble_mesh_model_pub_t::send_rel

(C++ member), 373
esp_ble_mesh_model_pub_t::timer (C++

member), 374
esp_ble_mesh_model_pub_t::ttl (C++

Espressif Systems 2699
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

member), 373
esp_ble_mesh_model_pub_t::update (C++

member), 374
esp_ble_mesh_model_publish (C++ function),

422
ESP_BLE_MESH_MODEL_SCENE_CLI (C macro),

562
ESP_BLE_MESH_MODEL_SCENE_SETUP_SRV (C

macro), 564
ESP_BLE_MESH_MODEL_SCENE_SRV (C macro),

563
ESP_BLE_MESH_MODEL_SCHEDULER_CLI (C

macro), 562
ESP_BLE_MESH_MODEL_SCHEDULER_SETUP_SRV

(C macro), 564
ESP_BLE_MESH_MODEL_SCHEDULER_SRV (C

macro), 564
ESP_BLE_MESH_MODEL_SENSOR_CLI (C macro),

534
ESP_BLE_MESH_MODEL_SENSOR_SETUP_SRV (C

macro), 535
ESP_BLE_MESH_MODEL_SENSOR_SRV (C macro),

535
ESP_BLE_MESH_MODEL_STATUS_CANNOT_SET_RANGE_MAX

(C macro), 405
ESP_BLE_MESH_MODEL_STATUS_CANNOT_SET_RANGE_MIN

(C macro), 405
ESP_BLE_MESH_MODEL_STATUS_SUCCESS (C

macro), 405
esp_ble_mesh_model_status_t (C++ type),

407
esp_ble_mesh_model_subscribe_group_addr

(C++ function), 419
esp_ble_mesh_model_t (C++ type), 406
ESP_BLE_MESH_MODEL_TIME_CLI (C macro),

562
ESP_BLE_MESH_MODEL_TIME_SETUP_SRV (C

macro), 563
ESP_BLE_MESH_MODEL_TIME_SRV (C macro),

563
esp_ble_mesh_model_unsubscribe_group_addr

(C++ function), 419
esp_ble_mesh_msg_ctx_t (C++ struct), 376
esp_ble_mesh_msg_ctx_t::addr (C++ mem-

ber), 376
esp_ble_mesh_msg_ctx_t::app_idx (C++

member), 376
esp_ble_mesh_msg_ctx_t::model (C++

member), 376
esp_ble_mesh_msg_ctx_t::net_idx (C++

member), 376
esp_ble_mesh_msg_ctx_t::recv_dst (C++

member), 376
esp_ble_mesh_msg_ctx_t::recv_op (C++

member), 376
esp_ble_mesh_msg_ctx_t::recv_rssi

(C++ member), 376
esp_ble_mesh_msg_ctx_t::recv_ttl (C++

member), 376
esp_ble_mesh_msg_ctx_t::send_rel (C++

member), 376
esp_ble_mesh_msg_ctx_t::send_ttl (C++

member), 376
esp_ble_mesh_msg_ctx_t::srv_send (C++

member), 376
ESP_BLE_MESH_NET_PRIMARY (C macro), 384
ESP_BLE_MESH_NO_FAULT (C macro), 476
ESP_BLE_MESH_NO_LOAD_ERROR (C macro), 476
ESP_BLE_MESH_NO_LOAD_WARNING (C macro),

476
esp_ble_mesh_node_add_local_app_key

(C++ function), 420
esp_ble_mesh_node_add_local_net_key

(C++ function), 419
esp_ble_mesh_node_bind_app_key_to_local_model

(C++ function), 420
esp_ble_mesh_node_get_local_app_key

(C++ function), 419
esp_ble_mesh_node_get_local_net_key

(C++ function), 419
ESP_BLE_MESH_NODE_IDENTITY_NOT_SUPPORTED

(C macro), 385
ESP_BLE_MESH_NODE_IDENTITY_RUNNING (C

macro), 385
ESP_BLE_MESH_NODE_IDENTITY_STOPPED (C

macro), 385
esp_ble_mesh_node_input_number (C++

function), 430
esp_ble_mesh_node_input_string (C++

function), 430
esp_ble_mesh_node_is_provisioned (C++

function), 429
esp_ble_mesh_node_local_reset (C++ func-

tion), 423
ESP_BLE_MESH_NODE_NAME_MAX_LEN (C

macro), 383
esp_ble_mesh_node_prov_disable (C++

function), 429
esp_ble_mesh_node_prov_enable (C++ func-

tion), 429
esp_ble_mesh_node_set_oob_pub_key

(C++ function), 430
esp_ble_mesh_node_t (C++ struct), 378
esp_ble_mesh_node_t::addr (C++ member),

378
esp_ble_mesh_node_t::addr_type (C++

member), 378
esp_ble_mesh_node_t::comp_data (C++

member), 379
esp_ble_mesh_node_t::comp_length (C++

member), 379
esp_ble_mesh_node_t::dev_key (C++ mem-

ber), 379
esp_ble_mesh_node_t::dev_uuid (C++

member), 378
esp_ble_mesh_node_t::element_num (C++

Espressif Systems 2700
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

member), 378
esp_ble_mesh_node_t::flags (C++ member),

379
esp_ble_mesh_node_t::iv_index (C++

member), 379
esp_ble_mesh_node_t::name (C++ member),

379
esp_ble_mesh_node_t::net_idx (C++ mem-

ber), 378
esp_ble_mesh_node_t::oob_info (C++

member), 378
esp_ble_mesh_node_t::unicast_addr

(C++ member), 378
ESP_BLE_MESH_OCTET16_LEN (C macro), 383
esp_ble_mesh_octet16_t (C++ type), 405
ESP_BLE_MESH_OCTET8_LEN (C macro), 383
esp_ble_mesh_octet8_t (C++ type), 405
esp_ble_mesh_oob_method_t (C++ enum), 408
esp_ble_mesh_oob_method_t::ESP_BLE_MESH_INPUT_OOB

(C++ enumerator), 408
esp_ble_mesh_oob_method_t::ESP_BLE_MESH_NO_OOB

(C++ enumerator), 408
esp_ble_mesh_oob_method_t::ESP_BLE_MESH_OUTPUT_OOB

(C++ enumerator), 408
esp_ble_mesh_oob_method_t::ESP_BLE_MESH_STATIC_OOB

(C++ enumerator), 408
esp_ble_mesh_opcode_config_client_get_t

(C++ type), 406
esp_ble_mesh_opcode_config_client_set_t

(C++ type), 406
esp_ble_mesh_opcode_config_status_t

(C++ type), 406
esp_ble_mesh_opcode_health_client_get_t

(C++ type), 406
esp_ble_mesh_opcode_health_client_set_t

(C++ type), 406
esp_ble_mesh_opcode_t (C++ type), 407
esp_ble_mesh_output_action_t (C++ enum),

408
esp_ble_mesh_output_action_t::ESP_BLE_MESH_BEEP

(C++ enumerator), 408
esp_ble_mesh_output_action_t::ESP_BLE_MESH_BLINK

(C++ enumerator), 408
esp_ble_mesh_output_action_t::ESP_BLE_MESH_DISPLAY_NUMBER

(C++ enumerator), 408
esp_ble_mesh_output_action_t::ESP_BLE_MESH_DISPLAY_STRING

(C++ enumerator), 408
esp_ble_mesh_output_action_t::ESP_BLE_MESH_NO_OUTPUT

(C++ enumerator), 408
esp_ble_mesh_output_action_t::ESP_BLE_MESH_VIBRATE

(C++ enumerator), 408
ESP_BLE_MESH_OVERFLOW_ERROR (C macro),

477
ESP_BLE_MESH_OVERFLOW_WARNING (C macro),

477
ESP_BLE_MESH_OVERHEAT_ERROR (C macro),

476
ESP_BLE_MESH_OVERHEAT_WARNING (C macro),

476
ESP_BLE_MESH_OVERLOAD_ERROR (C macro),

476
ESP_BLE_MESH_OVERLOAD_WARNING (C macro),

476
ESP_BLE_MESH_POWER_SUPPLY_INTERRUPTED_ERROR

(C macro), 476
ESP_BLE_MESH_POWER_SUPPLY_INTERRUPTED_WARNING

(C macro), 476
ESP_BLE_MESH_PROV (C macro), 387
esp_ble_mesh_prov_adv_cb_t (C++ type), 434
esp_ble_mesh_prov_bearer_t (C++ enum),

408
esp_ble_mesh_prov_bearer_t::ESP_BLE_MESH_PROV_ADV

(C++ enumerator), 409
esp_ble_mesh_prov_bearer_t::ESP_BLE_MESH_PROV_GATT

(C++ enumerator), 409
esp_ble_mesh_prov_cb_event_t (C++ enum),

410
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_DEINIT_MESH_COMP_EVT

(C++ enumerator), 415
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_FRIEND_FRIENDSHIP_ESTABLISH_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_FRIEND_FRIENDSHIP_TERMINATE_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_HEARTBEAT_MESSAGE_RECV_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_LPN_DISABLE_COMP_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_LPN_ENABLE_COMP_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_LPN_FRIENDSHIP_ESTABLISH_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_LPN_FRIENDSHIP_TERMINATE_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_LPN_POLL_COMP_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_MODEL_SUBSCRIBE_GROUP_ADDR_COMP_EVT

(C++ enumerator), 415
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_MODEL_UNSUBSCRIBE_GROUP_ADDR_COMP_EVT

(C++ enumerator), 415
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_ADD_LOCAL_APP_KEY_COMP_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_ADD_LOCAL_NET_KEY_COMP_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_BIND_APP_KEY_TO_MODEL_COMP_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_COMPLETE_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_DISABLE_COMP_EVT

(C++ enumerator), 410
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_ENABLE_COMP_EVT

(C++ enumerator), 410
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_INPUT_EVT

(C++ enumerator), 410
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_INPUT_NUMBER_COMP_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_INPUT_STRING_COMP_EVT

Espressif Systems 2701
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_LINK_CLOSE_EVT

(C++ enumerator), 410
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_LINK_OPEN_EVT

(C++ enumerator), 410
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_OOB_PUB_KEY_EVT

(C++ enumerator), 410
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_OUTPUT_NUMBER_EVT

(C++ enumerator), 410
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_OUTPUT_STRING_EVT

(C++ enumerator), 410
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_RESET_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROV_SET_OOB_PUB_KEY_COMP_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROXY_GATT_DISABLE_COMP_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROXY_GATT_ENABLE_COMP_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_PROXY_IDENTITY_ENABLE_COMP_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_NODE_SET_UNPROV_DEV_NAME_COMP_EVT

(C++ enumerator), 410
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROV_EVT_MAX

(C++ enumerator), 415
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROV_REGISTER_COMP_EVT

(C++ enumerator), 410
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_ADD_LOCAL_APP_KEY_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_ADD_LOCAL_NET_KEY_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_ADD_UNPROV_DEV_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_BIND_APP_KEY_TO_MODEL_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_CLOSE_SETTINGS_WITH_INDEX_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_CLOSE_SETTINGS_WITH_UID_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_DELETE_DEV_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_DELETE_NODE_WITH_ADDR_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_DELETE_NODE_WITH_UUID_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_DELETE_SETTINGS_WITH_INDEX_COMP_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_DELETE_SETTINGS_WITH_UID_COMP_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_DIRECT_ERASE_SETTINGS_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_ENABLE_HEARTBEAT_RECV_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_OPEN_SETTINGS_WITH_INDEX_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_OPEN_SETTINGS_WITH_UID_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_COMPLETE_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_DEV_WITH_ADDR_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_DISABLE_COMP_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_ENABLE_COMP_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_INPUT_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_INPUT_NUMBER_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_INPUT_STRING_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_LINK_CLOSE_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_LINK_OPEN_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_OUTPUT_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_READ_OOB_PUB_KEY_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_PROV_READ_OOB_PUB_KEY_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_RECV_HEARTBEAT_MESSAGE_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_RECV_UNPROV_ADV_PKT_EVT

(C++ enumerator), 411
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_SET_DEV_UUID_MATCH_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_SET_HEARTBEAT_FILTER_INFO_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_SET_HEARTBEAT_FILTER_TYPE_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_SET_NODE_NAME_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_SET_PRIMARY_ELEM_ADDR_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_SET_PROV_DATA_INFO_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_SET_STATIC_OOB_VALUE_COMP_EVT

(C++ enumerator), 412
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_STORE_NODE_COMP_DATA_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_UPDATE_LOCAL_APP_KEY_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROVISIONER_UPDATE_LOCAL_NET_KEY_COMP_EVT

(C++ enumerator), 413
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROXY_CLIENT_ADD_FILTER_ADDR_COMP_EVT

(C++ enumerator), 415
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROXY_CLIENT_CONNECT_COMP_EVT

(C++ enumerator), 415
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROXY_CLIENT_CONNECTED_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROXY_CLIENT_DISCONNECT_COMP_EVT

(C++ enumerator), 415
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROXY_CLIENT_DISCONNECTED_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROXY_CLIENT_RECV_ADV_PKT_EVT

Espressif Systems 2702
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROXY_CLIENT_RECV_FILTER_STATUS_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROXY_CLIENT_REMOVE_FILTER_ADDR_COMP_EVT

(C++ enumerator), 415
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROXY_CLIENT_SET_FILTER_TYPE_COMP_EVT

(C++ enumerator), 415
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROXY_SERVER_CONNECTED_EVT

(C++ enumerator), 415
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_PROXY_SERVER_DISCONNECTED_EVT

(C++ enumerator), 415
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_SET_FAST_PROV_ACTION_COMP_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_event_t::ESP_BLE_MESH_SET_FAST_PROV_INFO_COMP_EVT

(C++ enumerator), 414
esp_ble_mesh_prov_cb_param_t (C++

union), 341
esp_ble_mesh_prov_cb_param_t::ble_mesh_deinit_mesh_comp_param

(C++ struct), 349
esp_ble_mesh_prov_cb_param_t::ble_mesh_deinit_mesh_comp_param::err_code

(C++ member), 349
esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_establish_param

(C++ struct), 349
esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_establish_param::lpn_addr

(C++ member), 349
esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_terminate_param

(C++ struct), 349
esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_terminate_param::lpn_addr

(C++ member), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_terminate_param::reason

(C++ member), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_terminate_param::[anonymous]

(C++ enum), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_terminate_param::[anonymous]::ESP_BLE_MESH_FRND_FRIENDSHIP_TERMINATE_DISABLE

(C++ enumerator), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_terminate_param::[anonymous]::ESP_BLE_MESH_FRND_FRIENDSHIP_TERMINATE_ESTABLISH_FAIL

(C++ enumerator), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_terminate_param::[anonymous]::ESP_BLE_MESH_FRND_FRIENDSHIP_TERMINATE_POLL_TIMEOUT

(C++ enumerator), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_terminate_param::[anonymous]::ESP_BLE_MESH_FRND_FRIENDSHIP_TERMINATE_RECV_FRND_CLEAR

(C++ enumerator), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_friend_friendship_terminate_param::[anonymous]::ESP_BLE_MESH_FRND_FRIENDSHIP_TERMINATE_RECV_FRND_REQ

(C++ enumerator), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_heartbeat_msg_recv_param

(C++ struct), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_heartbeat_msg_recv_param::feature

(C++ member), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_heartbeat_msg_recv_param::hops

(C++ member), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_input_evt_param

(C++ struct), 350
esp_ble_mesh_prov_cb_param_t::ble_mesh_input_evt_param::action

(C++ member), 351
esp_ble_mesh_prov_cb_param_t::ble_mesh_input_evt_param::size

(C++ member), 351
esp_ble_mesh_prov_cb_param_t::ble_mesh_input_number_comp_param

(C++ struct), 351
esp_ble_mesh_prov_cb_param_t::ble_mesh_input_number_comp_param::err_code

(C++ member), 351
esp_ble_mesh_prov_cb_param_t::ble_mesh_input_string_comp_param

(C++ struct), 351
esp_ble_mesh_prov_cb_param_t::ble_mesh_input_string_comp_param::err_code

(C++ member), 351
esp_ble_mesh_prov_cb_param_t::ble_mesh_link_close_evt_param

(C++ struct), 351
esp_ble_mesh_prov_cb_param_t::ble_mesh_link_close_evt_param::bearer

(C++ member), 351
esp_ble_mesh_prov_cb_param_t::ble_mesh_link_open_evt_param

(C++ struct), 351
esp_ble_mesh_prov_cb_param_t::ble_mesh_link_open_evt_param::bearer

(C++ member), 351
esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_disable_comp_param

(C++ struct), 351
esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_disable_comp_param::err_code

(C++ member), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_enable_comp_param

(C++ struct), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_enable_comp_param::err_code

(C++ member), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_friendship_establish_param

(C++ struct), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_friendship_establish_param::friend_addr

(C++ member), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_friendship_terminate_param

(C++ struct), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_friendship_terminate_param::friend_addr

(C++ member), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_poll_comp_param

(C++ struct), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_lpn_poll_comp_param::err_code

(C++ member), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_sub_group_addr_comp_param

(C++ struct), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_sub_group_addr_comp_param::company_id

(C++ member), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_sub_group_addr_comp_param::element_addr

(C++ member), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_sub_group_addr_comp_param::err_code

(C++ member), 352
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_sub_group_addr_comp_param::group_addr

(C++ member), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_sub_group_addr_comp_param::model_id

(C++ member), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_unsub_group_addr_comp_param

(C++ struct), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_unsub_group_addr_comp_param::company_id

(C++ member), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_unsub_group_addr_comp_param::element_addr

(C++ member), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_unsub_group_addr_comp_param::err_code

(C++ member), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_unsub_group_addr_comp_param::group_addr

(C++ member), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_model_unsub_group_addr_comp_param::model_id

(C++ member), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_add_local_app_key_comp_param

Espressif Systems 2703
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ struct), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_add_local_app_key_comp_param::app_idx

(C++ member), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_add_local_app_key_comp_param::err_code

(C++ member), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_add_local_app_key_comp_param::net_idx

(C++ member), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_add_local_net_key_comp_param

(C++ struct), 353
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_add_local_net_key_comp_param::err_code

(C++ member), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_add_local_net_key_comp_param::net_idx

(C++ member), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_bind_local_mod_app_comp_param

(C++ struct), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_bind_local_mod_app_comp_param::app_idx

(C++ member), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_bind_local_mod_app_comp_param::company_id

(C++ member), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_bind_local_mod_app_comp_param::element_addr

(C++ member), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_bind_local_mod_app_comp_param::err_code

(C++ member), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_node_bind_local_mod_app_comp_param::model_id

(C++ member), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_output_num_evt_param

(C++ struct), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_output_num_evt_param::action

(C++ member), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_output_num_evt_param::number

(C++ member), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_output_str_evt_param

(C++ struct), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_output_str_evt_param::string

(C++ member), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_prov_disable_comp_param

(C++ struct), 354
esp_ble_mesh_prov_cb_param_t::ble_mesh_prov_disable_comp_param::err_code

(C++ member), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_prov_enable_comp_param

(C++ struct), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_prov_enable_comp_param::err_code

(C++ member), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_prov_register_comp_param

(C++ struct), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_prov_register_comp_param::err_code

(C++ member), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_provision_complete_evt_param

(C++ struct), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_provision_complete_evt_param::addr

(C++ member), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_provision_complete_evt_param::flags

(C++ member), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_provision_complete_evt_param::iv_index

(C++ member), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_provision_complete_evt_param::net_idx

(C++ member), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_provision_complete_evt_param::net_key

(C++ member), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_provision_reset_param

(C++ struct), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_local_app_key_comp_param

(C++ struct), 355
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_local_app_key_comp_param::app_idx

(C++ member), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_local_app_key_comp_param::err_code

(C++ member), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_local_app_key_comp_param::net_idx

(C++ member), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_local_net_key_comp_param

(C++ struct), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_local_net_key_comp_param::err_code

(C++ member), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_local_net_key_comp_param::net_idx

(C++ member), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_unprov_dev_comp_param

(C++ struct), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_add_unprov_dev_comp_param::err_code

(C++ member), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_bind_local_mod_app_comp_param

(C++ struct), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_bind_local_mod_app_comp_param::app_idx

(C++ member), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_bind_local_mod_app_comp_param::company_id

(C++ member), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_bind_local_mod_app_comp_param::element_addr

(C++ member), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_bind_local_mod_app_comp_param::err_code

(C++ member), 356
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_bind_local_mod_app_comp_param::model_id

(C++ member), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_delete_dev_comp_param

(C++ struct), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_delete_dev_comp_param::err_code

(C++ member), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_delete_node_with_addr_comp_param

(C++ struct), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_delete_node_with_addr_comp_param::err_code

(C++ member), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_delete_node_with_addr_comp_param::unicast_addr

(C++ member), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_delete_node_with_uuid_comp_param

(C++ struct), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_delete_node_with_uuid_comp_param::err_code

(C++ member), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_delete_node_with_uuid_comp_param::uuid

(C++ member), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_link_close_evt_param

(C++ struct), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_link_close_evt_param::bearer

(C++ member), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_link_close_evt_param::reason

(C++ member), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_link_open_evt_param

(C++ struct), 357
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_link_open_evt_param::bearer

Espressif Systems 2704
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_comp_param

(C++ struct), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_comp_param::device_uuid

(C++ member), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_comp_param::element_num

(C++ member), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_comp_param::netkey_idx

(C++ member), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_comp_param::node_idx

(C++ member), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_comp_param::unicast_addr

(C++ member), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_dev_with_addr_comp_param

(C++ struct), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_dev_with_addr_comp_param::err_code

(C++ member), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_disable_comp_param

(C++ struct), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_disable_comp_param::err_code

(C++ member), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_enable_comp_param

(C++ struct), 358
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_enable_comp_param::err_code

(C++ member), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_evt_param

(C++ struct), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_evt_param::action

(C++ member), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_evt_param::link_idx

(C++ member), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_evt_param::method

(C++ member), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_evt_param::size

(C++ member), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_num_comp_param

(C++ struct), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_num_comp_param::err_code

(C++ member), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_str_comp_param

(C++ struct), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_input_str_comp_param::err_code

(C++ member), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_output_evt_param

(C++ struct), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_output_evt_param::action

(C++ member), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_output_evt_param::link_idx

(C++ member), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_output_evt_param::method

(C++ member), 359
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_output_evt_param::number

(C++ member), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_output_evt_param::size

(C++ member), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_output_evt_param::string

(C++ member), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_output_evt_param::[anonymous]

(C++ member), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_read_oob_pub_key_comp_param

(C++ struct), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_read_oob_pub_key_comp_param::err_code

(C++ member), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_read_oob_pub_key_evt_param

(C++ struct), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_prov_read_oob_pub_key_evt_param::link_idx

(C++ member), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_recv_unprov_adv_pkt_param

(C++ struct), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_recv_unprov_adv_pkt_param::addr

(C++ member), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_recv_unprov_adv_pkt_param::addr_type

(C++ member), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_recv_unprov_adv_pkt_param::adv_type

(C++ member), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_recv_unprov_adv_pkt_param::bearer

(C++ member), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_recv_unprov_adv_pkt_param::dev_uuid

(C++ member), 360
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_recv_unprov_adv_pkt_param::oob_info

(C++ member), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_recv_unprov_adv_pkt_param::rssi

(C++ member), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_dev_uuid_match_comp_param

(C++ struct), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_dev_uuid_match_comp_param::err_code

(C++ member), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_node_name_comp_param

(C++ struct), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_node_name_comp_param::err_code

(C++ member), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_node_name_comp_param::node_index

(C++ member), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_primary_elem_addr_comp_param

(C++ struct), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_primary_elem_addr_comp_param::err_code

(C++ member), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_prov_data_info_comp_param

(C++ struct), 361
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_prov_data_info_comp_param::err_code

(C++ member), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_static_oob_val_comp_param

(C++ struct), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_set_static_oob_val_comp_param::err_code

(C++ member), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_store_node_comp_data_comp_param

(C++ struct), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_store_node_comp_data_comp_param::addr

(C++ member), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_store_node_comp_data_comp_param::err_code

(C++ member), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_update_local_app_key_comp_param

(C++ struct), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_update_local_app_key_comp_param::app_idx

(C++ member), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_update_local_app_key_comp_param::err_code

Espressif Systems 2705
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_update_local_app_key_comp_param::net_idx

(C++ member), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_update_local_net_key_comp_param

(C++ struct), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_update_local_net_key_comp_param::err_code

(C++ member), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_provisioner_update_local_net_key_comp_param::net_idx

(C++ member), 362
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_add_filter_addr_comp_param

(C++ struct), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_add_filter_addr_comp_param::conn_handle

(C++ member), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_add_filter_addr_comp_param::err_code

(C++ member), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_add_filter_addr_comp_param::net_idx

(C++ member), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connect_comp_param

(C++ struct), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connect_comp_param::addr

(C++ member), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connect_comp_param::addr_type

(C++ member), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connect_comp_param::err_code

(C++ member), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connect_comp_param::net_idx

(C++ member), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connected_param

(C++ struct), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connected_param::addr

(C++ member), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connected_param::addr_type

(C++ member), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connected_param::conn_handle

(C++ member), 363
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_connected_param::net_idx

(C++ member), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_disconnect_comp_param

(C++ struct), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_disconnect_comp_param::conn_handle

(C++ member), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_disconnect_comp_param::err_code

(C++ member), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_disconnected_param

(C++ struct), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_disconnected_param::addr

(C++ member), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_disconnected_param::addr_type

(C++ member), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_disconnected_param::conn_handle

(C++ member), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_disconnected_param::net_idx

(C++ member), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_disconnected_param::reason

(C++ member), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_adv_pkt_param

(C++ struct), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_adv_pkt_param::addr

(C++ member), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_adv_pkt_param::addr_type

(C++ member), 364
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_adv_pkt_param::net_id

(C++ member), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_adv_pkt_param::net_idx

(C++ member), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_adv_pkt_param::rssi

(C++ member), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_filter_status_param

(C++ struct), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_filter_status_param::conn_handle

(C++ member), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_filter_status_param::filter_type

(C++ member), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_filter_status_param::list_size

(C++ member), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_filter_status_param::net_idx

(C++ member), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_recv_filter_status_param::server_addr

(C++ member), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_remove_filter_addr_comp_param

(C++ struct), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_remove_filter_addr_comp_param::conn_handle

(C++ member), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_remove_filter_addr_comp_param::err_code

(C++ member), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_remove_filter_addr_comp_param::net_idx

(C++ member), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_set_filter_type_comp_param

(C++ struct), 365
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_set_filter_type_comp_param::conn_handle

(C++ member), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_set_filter_type_comp_param::err_code

(C++ member), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_client_set_filter_type_comp_param::net_idx

(C++ member), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_gatt_disable_comp_param

(C++ struct), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_gatt_disable_comp_param::err_code

(C++ member), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_gatt_enable_comp_param

(C++ struct), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_gatt_enable_comp_param::err_code

(C++ member), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_identity_enable_comp_param

(C++ struct), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_identity_enable_comp_param::err_code

(C++ member), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_server_connected_param

(C++ struct), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_server_connected_param::conn_handle

(C++ member), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_server_disconnected_param

(C++ struct), 366
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_server_disconnected_param::conn_handle

(C++ member), 367
esp_ble_mesh_prov_cb_param_t::ble_mesh_proxy_server_disconnected_param::reason

Espressif Systems 2706
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 367
esp_ble_mesh_prov_cb_param_t::ble_mesh_set_fast_prov_action_comp_param

(C++ struct), 367
esp_ble_mesh_prov_cb_param_t::ble_mesh_set_fast_prov_action_comp_param::status_action

(C++ member), 367
esp_ble_mesh_prov_cb_param_t::ble_mesh_set_fast_prov_info_comp_param

(C++ struct), 367
esp_ble_mesh_prov_cb_param_t::ble_mesh_set_fast_prov_info_comp_param::status_match

(C++ member), 367
esp_ble_mesh_prov_cb_param_t::ble_mesh_set_fast_prov_info_comp_param::status_net_idx

(C++ member), 367
esp_ble_mesh_prov_cb_param_t::ble_mesh_set_fast_prov_info_comp_param::status_unicast

(C++ member), 367
esp_ble_mesh_prov_cb_param_t::ble_mesh_set_oob_pub_key_comp_param

(C++ struct), 367
esp_ble_mesh_prov_cb_param_t::ble_mesh_set_oob_pub_key_comp_param::err_code

(C++ member), 367
esp_ble_mesh_prov_cb_param_t::ble_mesh_set_unprov_dev_name_comp_param

(C++ struct), 367
esp_ble_mesh_prov_cb_param_t::ble_mesh_set_unprov_dev_name_comp_param::err_code

(C++ member), 367
esp_ble_mesh_prov_cb_param_t::deinit_mesh_comp

(C++ member), 349
esp_ble_mesh_prov_cb_param_t::enable

(C++ member), 345
esp_ble_mesh_prov_cb_param_t::err_code

(C++ member), 345
esp_ble_mesh_prov_cb_param_t::feature

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::frnd_friendship_establish

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::frnd_friendship_terminate

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::hb_dst

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::hb_src

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::heartbeat_msg_recv

(C++ member), 347
esp_ble_mesh_prov_cb_param_t::hops

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::index

(C++ member), 347
esp_ble_mesh_prov_cb_param_t::init_ttl

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::lpn_disable_comp

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::lpn_enable_comp

(C++ member), 347
esp_ble_mesh_prov_cb_param_t::lpn_friendship_establish

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::lpn_friendship_terminate

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::lpn_poll_comp

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::model_sub_group_addr_comp

(C++ member), 349
esp_ble_mesh_prov_cb_param_t::model_unsub_group_addr_comp

(C++ member), 349
esp_ble_mesh_prov_cb_param_t::node_add_app_key_comp

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::node_add_net_key_comp

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::node_bind_app_key_to_model_comp

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::node_prov_complete

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_prov_disable_comp

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_prov_enable_comp

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_prov_input

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_prov_input_num_comp

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_prov_input_str_comp

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_prov_link_close

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_prov_link_open

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_prov_output_num

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_prov_output_str

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_prov_reset

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_prov_set_oob_pub_key_comp

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_proxy_gatt_disable_comp

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::node_proxy_gatt_enable_comp

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::node_proxy_identity_enable_comp

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::node_set_unprov_dev_name_comp

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::op (C++

member), 346
esp_ble_mesh_prov_cb_param_t::prov_register_comp

(C++ member), 342
esp_ble_mesh_prov_cb_param_t::provisioner_add_app_key_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_add_net_key_comp

(C++ member), 345
esp_ble_mesh_prov_cb_param_t::provisioner_add_unprov_dev_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_bind_app_key_to_model_comp

(C++ member), 345
esp_ble_mesh_prov_cb_param_t::provisioner_close_settings_with_index_comp

(C++ member), 347
esp_ble_mesh_prov_cb_param_t::provisioner_close_settings_with_uid_comp

(C++ member), 347
esp_ble_mesh_prov_cb_param_t::provisioner_delete_dev_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_delete_node_with_addr_comp

Espressif Systems 2707
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 345
esp_ble_mesh_prov_cb_param_t::provisioner_delete_node_with_uuid_comp

(C++ member), 345
esp_ble_mesh_prov_cb_param_t::provisioner_delete_settings_with_index_comp

(C++ member), 347
esp_ble_mesh_prov_cb_param_t::provisioner_delete_settings_with_uid_comp

(C++ member), 347
esp_ble_mesh_prov_cb_param_t::provisioner_direct_erase_settings_comp

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::provisioner_enable_heartbeat_recv_comp

(C++ member), 345
esp_ble_mesh_prov_cb_param_t::provisioner_open_settings_with_index_comp

(C++ member), 347
esp_ble_mesh_prov_cb_param_t::provisioner_open_settings_with_uid_comp

(C++ member), 347
esp_ble_mesh_prov_cb_param_t::provisioner_prov_complete

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_prov_dev_with_addr_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_prov_disable_comp

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::provisioner_prov_enable_comp

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::provisioner_prov_input

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::provisioner_prov_input_num_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_prov_input_str_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_prov_link_close

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::provisioner_prov_link_open

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::provisioner_prov_output

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::provisioner_prov_read_oob_pub_key

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::provisioner_prov_read_oob_pub_key_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_recv_heartbeat

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::provisioner_recv_unprov_adv_pkt

(C++ member), 343
esp_ble_mesh_prov_cb_param_t::provisioner_set_dev_uuid_match_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_set_heartbeat_filter_info_comp

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::provisioner_set_heartbeat_filter_type_comp

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::provisioner_set_node_name_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_set_primary_elem_addr_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_set_prov_data_info_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_set_static_oob_val_comp

(C++ member), 344
esp_ble_mesh_prov_cb_param_t::provisioner_store_node_comp_data_comp

(C++ member), 345
esp_ble_mesh_prov_cb_param_t::provisioner_update_app_key_comp

(C++ member), 345
esp_ble_mesh_prov_cb_param_t::provisioner_update_net_key_comp

(C++ member), 345
esp_ble_mesh_prov_cb_param_t::proxy_client_add_filter_addr_comp

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::proxy_client_connect_comp

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::proxy_client_connected

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::proxy_client_disconnect_comp

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::proxy_client_disconnected

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::proxy_client_recv_adv_pkt

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::proxy_client_recv_filter_status

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::proxy_client_remove_filter_addr_comp

(C++ member), 349
esp_ble_mesh_prov_cb_param_t::proxy_client_set_filter_type_comp

(C++ member), 348
esp_ble_mesh_prov_cb_param_t::proxy_server_connected

(C++ member), 349
esp_ble_mesh_prov_cb_param_t::proxy_server_disconnected

(C++ member), 349
esp_ble_mesh_prov_cb_param_t::rssi

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::rx_ttl

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::set_fast_prov_action_comp

(C++ member), 347
esp_ble_mesh_prov_cb_param_t::set_fast_prov_info_comp

(C++ member), 347
esp_ble_mesh_prov_cb_param_t::type

(C++ member), 346
esp_ble_mesh_prov_cb_param_t::uid

(C++ member), 347
esp_ble_mesh_prov_cb_t (C++ type), 434
esp_ble_mesh_prov_data_info_t (C++

struct), 378
esp_ble_mesh_prov_data_info_t::flag

(C++ member), 378
esp_ble_mesh_prov_data_info_t::flags

(C++ member), 378
esp_ble_mesh_prov_data_info_t::iv_index

(C++ member), 378
esp_ble_mesh_prov_data_info_t::net_idx

(C++ member), 378
ESP_BLE_MESH_PROV_INPUT_OOB_MAX_LEN (C

macro), 386
esp_ble_mesh_prov_oob_info_t (C++ enum),

409
esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_2D_CODE

(C++ enumerator), 409
esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_BAR_CODE

(C++ enumerator), 409

Espressif Systems 2708
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_IN_BOX
(C++ enumerator), 409

esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_IN_MANUAL
(C++ enumerator), 409

esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_NFC
(C++ enumerator), 409

esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_NUMBER
(C++ enumerator), 409

esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_ON_BOX
(C++ enumerator), 409

esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_ON_DEV
(C++ enumerator), 409

esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_ON_PAPER
(C++ enumerator), 409

esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_OTHER
(C++ enumerator), 409

esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_STRING
(C++ enumerator), 409

esp_ble_mesh_prov_oob_info_t::ESP_BLE_MESH_PROV_OOB_URI
(C++ enumerator), 409

ESP_BLE_MESH_PROV_OUTPUT_OOB_MAX_LEN
(C macro), 386

ESP_BLE_MESH_PROV_STATIC_OOB_MAX_LEN
(C macro), 386

esp_ble_mesh_prov_t (C++ struct), 376
esp_ble_mesh_provisioner_add_local_app_key

(C++ function), 425
esp_ble_mesh_provisioner_add_local_net_key

(C++ function), 425
esp_ble_mesh_provisioner_add_unprov_dev

(C++ function), 432
esp_ble_mesh_provisioner_bind_app_key_to_local_model

(C++ function), 425
esp_ble_mesh_provisioner_close_settings_with_index

(C++ function), 427
esp_ble_mesh_provisioner_close_settings_with_uid

(C++ function), 428
esp_ble_mesh_provisioner_delete_dev

(C++ function), 433
esp_ble_mesh_provisioner_delete_node_with_addr

(C++ function), 424
esp_ble_mesh_provisioner_delete_node_with_uuid

(C++ function), 424
esp_ble_mesh_provisioner_delete_settings_with_index

(C++ function), 428
esp_ble_mesh_provisioner_delete_settings_with_uid

(C++ function), 428
esp_ble_mesh_provisioner_direct_erase_settings

(C++ function), 427
esp_ble_mesh_provisioner_get_free_settings_count

(C++ function), 429
esp_ble_mesh_provisioner_get_local_app_key

(C++ function), 425
esp_ble_mesh_provisioner_get_local_net_key

(C++ function), 426
esp_ble_mesh_provisioner_get_node_index

(C++ function), 423
esp_ble_mesh_provisioner_get_node_name

(C++ function), 423
esp_ble_mesh_provisioner_get_node_table_entry

(C++ function), 424
esp_ble_mesh_provisioner_get_node_with_addr

(C++ function), 424
esp_ble_mesh_provisioner_get_node_with_name

(C++ function), 424
esp_ble_mesh_provisioner_get_node_with_uuid

(C++ function), 424
esp_ble_mesh_provisioner_get_prov_node_count

(C++ function), 424
esp_ble_mesh_provisioner_get_settings_index

(C++ function), 429
esp_ble_mesh_provisioner_get_settings_uid

(C++ function), 428
esp_ble_mesh_provisioner_input_number

(C++ function), 431
esp_ble_mesh_provisioner_input_string

(C++ function), 431
esp_ble_mesh_provisioner_open_settings_with_index

(C++ function), 427
esp_ble_mesh_provisioner_open_settings_with_uid

(C++ function), 427
esp_ble_mesh_provisioner_prov_device_with_addr

(C++ function), 432
esp_ble_mesh_provisioner_prov_disable

(C++ function), 431
esp_ble_mesh_provisioner_prov_enable

(C++ function), 431
esp_ble_mesh_provisioner_read_oob_pub_key

(C++ function), 430
esp_ble_mesh_provisioner_recv_heartbeat

(C++ function), 426
esp_ble_mesh_provisioner_set_dev_uuid_match

(C++ function), 433
esp_ble_mesh_provisioner_set_heartbeat_filter_info

(C++ function), 426
esp_ble_mesh_provisioner_set_heartbeat_filter_type

(C++ function), 426
esp_ble_mesh_provisioner_set_node_name

(C++ function), 423
esp_ble_mesh_provisioner_set_primary_elem_addr

(C++ function), 434
esp_ble_mesh_provisioner_set_prov_data_info

(C++ function), 433
esp_ble_mesh_provisioner_set_static_oob_value

(C++ function), 434
esp_ble_mesh_provisioner_store_node_comp_data

(C++ function), 424
esp_ble_mesh_provisioner_update_local_app_key

(C++ function), 425
esp_ble_mesh_provisioner_update_local_net_key

(C++ function), 426
esp_ble_mesh_proxy_client_add_filter_addr

(C++ function), 436
esp_ble_mesh_proxy_client_connect

(C++ function), 435
esp_ble_mesh_proxy_client_disconnect

Espressif Systems 2709
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ function), 435
esp_ble_mesh_proxy_client_remove_filter_addr

(C++ function), 436
esp_ble_mesh_proxy_client_set_filter_type

(C++ function), 436
esp_ble_mesh_proxy_filter_type_t (C++

enum), 410
esp_ble_mesh_proxy_filter_type_t::PROXY_FILTER_BLACKLIST

(C++ enumerator), 410
esp_ble_mesh_proxy_filter_type_t::PROXY_FILTER_WHITELIST

(C++ enumerator), 410
esp_ble_mesh_proxy_gatt_disable (C++

function), 435
esp_ble_mesh_proxy_gatt_enable (C++

function), 435
esp_ble_mesh_proxy_identity_enable

(C++ function), 435
ESP_BLE_MESH_PUBLISH_TRANSMIT (C macro),

386
esp_ble_mesh_register_config_client_callback

(C++ function), 437
esp_ble_mesh_register_config_server_callback

(C++ function), 437
esp_ble_mesh_register_custom_model_callback

(C++ function), 421
esp_ble_mesh_register_generic_client_callback

(C++ function), 479
esp_ble_mesh_register_generic_server_callback

(C++ function), 480
esp_ble_mesh_register_health_client_callback

(C++ function), 468
esp_ble_mesh_register_health_server_callback

(C++ function), 468
esp_ble_mesh_register_light_client_callback

(C++ function), 568
esp_ble_mesh_register_lighting_server_callback

(C++ function), 568
esp_ble_mesh_register_prov_callback

(C++ function), 429
esp_ble_mesh_register_sensor_client_callback

(C++ function), 519
esp_ble_mesh_register_sensor_server_callback

(C++ function), 520
esp_ble_mesh_register_time_scene_client_callback

(C++ function), 539
esp_ble_mesh_register_time_scene_server_callback

(C++ function), 540
ESP_BLE_MESH_RELAY_DISABLED (C macro),

384
ESP_BLE_MESH_RELAY_ENABLED (C macro), 384
ESP_BLE_MESH_RELAY_NOT_SUPPORTED (C

macro), 384
esp_ble_mesh_scene_delete_t (C++ struct),

545
esp_ble_mesh_scene_delete_t::scene_number

(C++ member), 546
ESP_BLE_MESH_SCENE_NOT_FOUND (C macro),

566

ESP_BLE_MESH_SCENE_NUMBER_LEN (C macro),
565

esp_ble_mesh_scene_recall_t (C++ struct),
545

esp_ble_mesh_scene_recall_t::delay
(C++ member), 545

esp_ble_mesh_scene_recall_t::op_en
(C++ member), 545

esp_ble_mesh_scene_recall_t::scene_number
(C++ member), 545

esp_ble_mesh_scene_recall_t::tid (C++
member), 545

esp_ble_mesh_scene_recall_t::trans_time
(C++ member), 545

ESP_BLE_MESH_SCENE_REG_FULL (C macro),
566

esp_ble_mesh_scene_register_status_cb_t
(C++ struct), 548

esp_ble_mesh_scene_register_status_cb_t::current_scene
(C++ member), 549

esp_ble_mesh_scene_register_status_cb_t::scenes
(C++ member), 549

esp_ble_mesh_scene_register_status_cb_t::status_code
(C++ member), 549

esp_ble_mesh_scene_register_t (C++
struct), 551

esp_ble_mesh_scene_register_t::scene_number
(C++ member), 552

esp_ble_mesh_scene_register_t::scene_type
(C++ member), 552

esp_ble_mesh_scene_register_t::scene_value
(C++ member), 552

esp_ble_mesh_scene_setup_srv_t (C++
struct), 553

esp_ble_mesh_scene_setup_srv_t::model
(C++ member), 554

esp_ble_mesh_scene_setup_srv_t::rsp_ctrl
(C++ member), 554

esp_ble_mesh_scene_setup_srv_t::state
(C++ member), 554

esp_ble_mesh_scene_srv_t (C++ struct), 553
esp_ble_mesh_scene_srv_t::last (C++

member), 553
esp_ble_mesh_scene_srv_t::model (C++

member), 553
esp_ble_mesh_scene_srv_t::rsp_ctrl

(C++ member), 553
esp_ble_mesh_scene_srv_t::state (C++

member), 553
esp_ble_mesh_scene_srv_t::transition

(C++ member), 553
esp_ble_mesh_scene_status_cb_t (C++

struct), 548
esp_ble_mesh_scene_status_cb_t::current_scene

(C++ member), 548
esp_ble_mesh_scene_status_cb_t::op_en

(C++ member), 548
esp_ble_mesh_scene_status_cb_t::remain_time

Espressif Systems 2710
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 548
esp_ble_mesh_scene_status_cb_t::status_code

(C++ member), 548
esp_ble_mesh_scene_status_cb_t::target_scene

(C++ member), 548
esp_ble_mesh_scene_store_t (C++ struct),

545
esp_ble_mesh_scene_store_t::scene_number

(C++ member), 545
ESP_BLE_MESH_SCENE_SUCCESS (C macro), 566
esp_ble_mesh_scenes_state_t (C++ struct),

552
esp_ble_mesh_scenes_state_t::current_scene

(C++ member), 552
esp_ble_mesh_scenes_state_t::in_progress

(C++ member), 553
esp_ble_mesh_scenes_state_t::scene_count

(C++ member), 552
esp_ble_mesh_scenes_state_t::scenes

(C++ member), 552
esp_ble_mesh_scenes_state_t::status_code

(C++ member), 553
esp_ble_mesh_scenes_state_t::target_scene

(C++ member), 553
ESP_BLE_MESH_SCHEDULE_ACT_NO_ACTION (C

macro), 566
ESP_BLE_MESH_SCHEDULE_ACT_SCENE_RECALL

(C macro), 566
ESP_BLE_MESH_SCHEDULE_ACT_TURN_OFF (C

macro), 566
ESP_BLE_MESH_SCHEDULE_ACT_TURN_ON (C

macro), 566
ESP_BLE_MESH_SCHEDULE_DAY_ANY_DAY (C

macro), 565
ESP_BLE_MESH_SCHEDULE_ENTRY_MAX_INDEX

(C macro), 566
ESP_BLE_MESH_SCHEDULE_HOUR_ANY_HOUR (C

macro), 565
ESP_BLE_MESH_SCHEDULE_HOUR_ONCE_A_DAY

(C macro), 565
esp_ble_mesh_schedule_register_t (C++

struct), 554
esp_ble_mesh_schedule_register_t::action

(C++ member), 554
esp_ble_mesh_schedule_register_t::day

(C++ member), 554
esp_ble_mesh_schedule_register_t::day_of_week

(C++ member), 554
esp_ble_mesh_schedule_register_t::hour

(C++ member), 554
esp_ble_mesh_schedule_register_t::in_use

(C++ member), 554
esp_ble_mesh_schedule_register_t::minute

(C++ member), 554
esp_ble_mesh_schedule_register_t::month

(C++ member), 554
esp_ble_mesh_schedule_register_t::scene_number

(C++ member), 554

esp_ble_mesh_schedule_register_t::second
(C++ member), 554

esp_ble_mesh_schedule_register_t::trans_time
(C++ member), 554

esp_ble_mesh_schedule_register_t::year
(C++ member), 554

ESP_BLE_MESH_SCHEDULE_SCENE_NO_SCENE
(C macro), 566

ESP_BLE_MESH_SCHEDULE_SEC_ANY_OF_HOUR
(C macro), 565

ESP_BLE_MESH_SCHEDULE_SEC_ANY_OF_MIN
(C macro), 565

ESP_BLE_MESH_SCHEDULE_SEC_EVERY_15_MIN
(C macro), 565

ESP_BLE_MESH_SCHEDULE_SEC_EVERY_15_SEC
(C macro), 565

ESP_BLE_MESH_SCHEDULE_SEC_EVERY_20_MIN
(C macro), 565

ESP_BLE_MESH_SCHEDULE_SEC_EVERY_20_SEC
(C macro), 565

ESP_BLE_MESH_SCHEDULE_SEC_ONCE_AN_HOUR
(C macro), 565

ESP_BLE_MESH_SCHEDULE_SEC_ONCE_AN_MIN
(C macro), 566

ESP_BLE_MESH_SCHEDULE_YEAR_ANY_YEAR (C
macro), 565

esp_ble_mesh_scheduler_act_get_t (C++
struct), 546

esp_ble_mesh_scheduler_act_get_t::index
(C++ member), 546

esp_ble_mesh_scheduler_act_set_t (C++
struct), 546

esp_ble_mesh_scheduler_act_set_t::action
(C++ member), 546

esp_ble_mesh_scheduler_act_set_t::day
(C++ member), 546

esp_ble_mesh_scheduler_act_set_t::day_of_week
(C++ member), 546

esp_ble_mesh_scheduler_act_set_t::hour
(C++ member), 546

esp_ble_mesh_scheduler_act_set_t::index
(C++ member), 546

esp_ble_mesh_scheduler_act_set_t::minute
(C++ member), 546

esp_ble_mesh_scheduler_act_set_t::month
(C++ member), 546

esp_ble_mesh_scheduler_act_set_t::scene_number
(C++ member), 546

esp_ble_mesh_scheduler_act_set_t::second
(C++ member), 546

esp_ble_mesh_scheduler_act_set_t::trans_time
(C++ member), 546

esp_ble_mesh_scheduler_act_set_t::year
(C++ member), 546

esp_ble_mesh_scheduler_act_status_cb_t
(C++ struct), 549

esp_ble_mesh_scheduler_act_status_cb_t::action
(C++ member), 549

Espressif Systems 2711
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_scheduler_act_status_cb_t::day
(C++ member), 549

esp_ble_mesh_scheduler_act_status_cb_t::day_of_week
(C++ member), 549

esp_ble_mesh_scheduler_act_status_cb_t::hour
(C++ member), 549

esp_ble_mesh_scheduler_act_status_cb_t::index
(C++ member), 549

esp_ble_mesh_scheduler_act_status_cb_t::minute
(C++ member), 549

esp_ble_mesh_scheduler_act_status_cb_t::month
(C++ member), 549

esp_ble_mesh_scheduler_act_status_cb_t::scene_number
(C++ member), 550

esp_ble_mesh_scheduler_act_status_cb_t::second
(C++ member), 549

esp_ble_mesh_scheduler_act_status_cb_t::trans_time
(C++ member), 550

esp_ble_mesh_scheduler_act_status_cb_t::year
(C++ member), 549

esp_ble_mesh_scheduler_setup_srv_t
(C++ struct), 555

esp_ble_mesh_scheduler_setup_srv_t::model
(C++ member), 555

esp_ble_mesh_scheduler_setup_srv_t::rsp_ctrl
(C++ member), 555

esp_ble_mesh_scheduler_setup_srv_t::state
(C++ member), 555

esp_ble_mesh_scheduler_srv_t (C++ struct),
555

esp_ble_mesh_scheduler_srv_t::model
(C++ member), 555

esp_ble_mesh_scheduler_srv_t::rsp_ctrl
(C++ member), 555

esp_ble_mesh_scheduler_srv_t::state
(C++ member), 555

esp_ble_mesh_scheduler_state_t (C++
struct), 554

esp_ble_mesh_scheduler_state_t::schedule_count
(C++ member), 555

esp_ble_mesh_scheduler_state_t::schedules
(C++ member), 555

esp_ble_mesh_scheduler_status_cb_t
(C++ struct), 549

esp_ble_mesh_scheduler_status_cb_t::schedules
(C++ member), 549

ESP_BLE_MESH_SDU_MAX_LEN (C macro), 383
ESP_BLE_MESH_SELF_TEST_ERROR (C macro),

477
ESP_BLE_MESH_SELF_TEST_WARNING (C

macro), 477
esp_ble_mesh_sensor_cadence_get_t

(C++ struct), 523
esp_ble_mesh_sensor_cadence_get_t::property_id

(C++ member), 523
esp_ble_mesh_sensor_cadence_set_t

(C++ struct), 523
esp_ble_mesh_sensor_cadence_set_t::fast_cadence_high

(C++ member), 524
esp_ble_mesh_sensor_cadence_set_t::fast_cadence_low

(C++ member), 524
esp_ble_mesh_sensor_cadence_set_t::fast_cadence_period_divisor

(C++ member), 524
esp_ble_mesh_sensor_cadence_set_t::property_id

(C++ member), 524
esp_ble_mesh_sensor_cadence_set_t::status_min_interval

(C++ member), 524
esp_ble_mesh_sensor_cadence_set_t::status_trigger_delta_down

(C++ member), 524
esp_ble_mesh_sensor_cadence_set_t::status_trigger_delta_up

(C++ member), 524
esp_ble_mesh_sensor_cadence_set_t::status_trigger_type

(C++ member), 524
esp_ble_mesh_sensor_cadence_status_cb_t

(C++ struct), 526
esp_ble_mesh_sensor_cadence_status_cb_t::property_id

(C++ member), 526
esp_ble_mesh_sensor_cadence_status_cb_t::sensor_cadence_value

(C++ member), 526
esp_ble_mesh_sensor_cadence_t (C++

struct), 528
esp_ble_mesh_sensor_cadence_t::fast_cadence_high

(C++ member), 529
esp_ble_mesh_sensor_cadence_t::fast_cadence_low

(C++ member), 529
esp_ble_mesh_sensor_cadence_t::min_interval

(C++ member), 529
esp_ble_mesh_sensor_cadence_t::period_divisor

(C++ member), 529
esp_ble_mesh_sensor_cadence_t::trigger_delta_down

(C++ member), 529
esp_ble_mesh_sensor_cadence_t::trigger_delta_up

(C++ member), 529
esp_ble_mesh_sensor_cadence_t::trigger_type

(C++ member), 529
esp_ble_mesh_sensor_client_cb_event_t

(C++ enum), 538
esp_ble_mesh_sensor_client_cb_event_t::ESP_BLE_MESH_SENSOR_CLIENT_EVT_MAX

(C++ enumerator), 538
esp_ble_mesh_sensor_client_cb_event_t::ESP_BLE_MESH_SENSOR_CLIENT_GET_STATE_EVT

(C++ enumerator), 538
esp_ble_mesh_sensor_client_cb_event_t::ESP_BLE_MESH_SENSOR_CLIENT_PUBLISH_EVT

(C++ enumerator), 538
esp_ble_mesh_sensor_client_cb_event_t::ESP_BLE_MESH_SENSOR_CLIENT_SET_STATE_EVT

(C++ enumerator), 538
esp_ble_mesh_sensor_client_cb_event_t::ESP_BLE_MESH_SENSOR_CLIENT_TIMEOUT_EVT

(C++ enumerator), 538
esp_ble_mesh_sensor_client_cb_param_t

(C++ struct), 527
esp_ble_mesh_sensor_client_cb_param_t::error_code

(C++ member), 527
esp_ble_mesh_sensor_client_cb_param_t::params

(C++ member), 528
esp_ble_mesh_sensor_client_cb_param_t::status_cb

(C++ member), 528
esp_ble_mesh_sensor_client_cb_t (C++

Espressif Systems 2712
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

type), 538
esp_ble_mesh_sensor_client_get_state

(C++ function), 519
esp_ble_mesh_sensor_client_get_state_t

(C++ union), 520
esp_ble_mesh_sensor_client_get_state_t::cadence_get

(C++ member), 520
esp_ble_mesh_sensor_client_get_state_t::column_get

(C++ member), 521
esp_ble_mesh_sensor_client_get_state_t::descriptor_get

(C++ member), 520
esp_ble_mesh_sensor_client_get_state_t::sensor_get

(C++ member), 521
esp_ble_mesh_sensor_client_get_state_t::series_get

(C++ member), 521
esp_ble_mesh_sensor_client_get_state_t::setting_get

(C++ member), 520
esp_ble_mesh_sensor_client_get_state_t::settings_get

(C++ member), 520
esp_ble_mesh_sensor_client_set_state

(C++ function), 520
esp_ble_mesh_sensor_client_set_state_t

(C++ union), 521
esp_ble_mesh_sensor_client_set_state_t::cadence_set

(C++ member), 521
esp_ble_mesh_sensor_client_set_state_t::setting_set

(C++ member), 521
esp_ble_mesh_sensor_client_status_cb_t

(C++ union), 521
esp_ble_mesh_sensor_client_status_cb_t::cadence_status

(C++ member), 521
esp_ble_mesh_sensor_client_status_cb_t::column_status

(C++ member), 521
esp_ble_mesh_sensor_client_status_cb_t::descriptor_status

(C++ member), 521
esp_ble_mesh_sensor_client_status_cb_t::sensor_status

(C++ member), 521
esp_ble_mesh_sensor_client_status_cb_t::series_status

(C++ member), 521
esp_ble_mesh_sensor_client_status_cb_t::setting_status

(C++ member), 521
esp_ble_mesh_sensor_client_status_cb_t::settings_status

(C++ member), 521
esp_ble_mesh_sensor_column_get_t (C++

struct), 525
esp_ble_mesh_sensor_column_get_t::property_id

(C++ member), 525
esp_ble_mesh_sensor_column_get_t::raw_value_x

(C++ member), 525
esp_ble_mesh_sensor_column_status_cb_t

(C++ struct), 527
esp_ble_mesh_sensor_column_status_cb_t::property_id

(C++ member), 527
esp_ble_mesh_sensor_column_status_cb_t::sensor_column_value

(C++ member), 527
ESP_BLE_MESH_SENSOR_DATA_FORMAT_A (C

macro), 536
ESP_BLE_MESH_SENSOR_DATA_FORMAT_A_MPID

(C macro), 537
ESP_BLE_MESH_SENSOR_DATA_FORMAT_A_MPID_LEN

(C macro), 536
ESP_BLE_MESH_SENSOR_DATA_FORMAT_B (C

macro), 536
ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID

(C macro), 537
ESP_BLE_MESH_SENSOR_DATA_FORMAT_B_MPID_LEN

(C macro), 536
esp_ble_mesh_sensor_data_t (C++ struct),

529
esp_ble_mesh_sensor_data_t::format

(C++ member), 529
esp_ble_mesh_sensor_data_t::length

(C++ member), 529
esp_ble_mesh_sensor_data_t::raw_value

(C++ member), 529
ESP_BLE_MESH_SENSOR_DATA_ZERO_LEN (C

macro), 536
esp_ble_mesh_sensor_descriptor_get_t

(C++ struct), 523
esp_ble_mesh_sensor_descriptor_get_t::op_en

(C++ member), 523
esp_ble_mesh_sensor_descriptor_get_t::property_id

(C++ member), 523
ESP_BLE_MESH_SENSOR_DESCRIPTOR_LEN (C

macro), 535
esp_ble_mesh_sensor_descriptor_status_cb_t

(C++ struct), 526
esp_ble_mesh_sensor_descriptor_status_cb_t::descriptor

(C++ member), 526
esp_ble_mesh_sensor_descriptor_t (C++

struct), 528
esp_ble_mesh_sensor_descriptor_t::measure_period

(C++ member), 528
esp_ble_mesh_sensor_descriptor_t::negative_tolerance

(C++ member), 528
esp_ble_mesh_sensor_descriptor_t::positive_tolerance

(C++ member), 528
esp_ble_mesh_sensor_descriptor_t::sampling_function

(C++ member), 528
esp_ble_mesh_sensor_descriptor_t::update_interval

(C++ member), 528
ESP_BLE_MESH_SENSOR_DIVISOR_TRIGGER_TYPE_LEN

(C macro), 536
esp_ble_mesh_sensor_get_t (C++ struct), 525
esp_ble_mesh_sensor_get_t::op_en (C++

member), 525
esp_ble_mesh_sensor_get_t::property_id

(C++ member), 525
esp_ble_mesh_sensor_message_opcode_t

(C++ type), 407
ESP_BLE_MESH_SENSOR_NOT_APPL_MEASURE_PERIOD

(C macro), 535
ESP_BLE_MESH_SENSOR_NOT_APPL_UPDATE_INTERVAL

(C macro), 535
ESP_BLE_MESH_SENSOR_PERIOD_DIVISOR_MAX_VALUE

(C macro), 536

Espressif Systems 2713
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_BLE_MESH_SENSOR_PROPERTY_ID_LEN (C
macro), 535

esp_ble_mesh_sensor_sample_func (C++
enum), 538

esp_ble_mesh_sensor_sample_func::ESP_BLE_MESH_SAMPLE_FUNC_ACCUMULATED
(C++ enumerator), 539

esp_ble_mesh_sensor_sample_func::ESP_BLE_MESH_SAMPLE_FUNC_ARITHMETIC_MEAN
(C++ enumerator), 539

esp_ble_mesh_sensor_sample_func::ESP_BLE_MESH_SAMPLE_FUNC_COUNT
(C++ enumerator), 539

esp_ble_mesh_sensor_sample_func::ESP_BLE_MESH_SAMPLE_FUNC_INSTANTANEOUS
(C++ enumerator), 538

esp_ble_mesh_sensor_sample_func::ESP_BLE_MESH_SAMPLE_FUNC_MAXIMUM
(C++ enumerator), 539

esp_ble_mesh_sensor_sample_func::ESP_BLE_MESH_SAMPLE_FUNC_MINIMUM
(C++ enumerator), 539

esp_ble_mesh_sensor_sample_func::ESP_BLE_MESH_SAMPLE_FUNC_RMS
(C++ enumerator), 539

esp_ble_mesh_sensor_sample_func::ESP_BLE_MESH_SAMPLE_FUNC_UNSPECIFIED
(C++ enumerator), 538

esp_ble_mesh_sensor_series_column_t
(C++ struct), 529

esp_ble_mesh_sensor_series_column_t::column_width
(C++ member), 530

esp_ble_mesh_sensor_series_column_t::raw_value_x
(C++ member), 529

esp_ble_mesh_sensor_series_column_t::raw_value_y
(C++ member), 530

esp_ble_mesh_sensor_series_get_t (C++
struct), 525

esp_ble_mesh_sensor_series_get_t::op_en
(C++ member), 525

esp_ble_mesh_sensor_series_get_t::property_id
(C++ member), 525

esp_ble_mesh_sensor_series_get_t::raw_value_x1
(C++ member), 525

esp_ble_mesh_sensor_series_get_t::raw_value_x2
(C++ member), 525

esp_ble_mesh_sensor_series_status_cb_t
(C++ struct), 527

esp_ble_mesh_sensor_series_status_cb_t::property_id
(C++ member), 527

esp_ble_mesh_sensor_series_status_cb_t::sensor_series_value
(C++ member), 527

esp_ble_mesh_sensor_server_cb_event_t
(C++ enum), 539

esp_ble_mesh_sensor_server_cb_event_t::ESP_BLE_MESH_SENSOR_SERVER_EVT_MAX
(C++ enumerator), 539

esp_ble_mesh_sensor_server_cb_event_t::ESP_BLE_MESH_SENSOR_SERVER_RECV_GET_MSG_EVT
(C++ enumerator), 539

esp_ble_mesh_sensor_server_cb_event_t::ESP_BLE_MESH_SENSOR_SERVER_RECV_SET_MSG_EVT
(C++ enumerator), 539

esp_ble_mesh_sensor_server_cb_event_t::ESP_BLE_MESH_SENSOR_SERVER_STATE_CHANGE_EVT
(C++ enumerator), 539

esp_ble_mesh_sensor_server_cb_param_t
(C++ struct), 534

esp_ble_mesh_sensor_server_cb_param_t::ctx
(C++ member), 534

esp_ble_mesh_sensor_server_cb_param_t::model
(C++ member), 534

esp_ble_mesh_sensor_server_cb_param_t::value
(C++ member), 534

esp_ble_mesh_sensor_server_cb_t (C++
type), 538

esp_ble_mesh_sensor_server_cb_value_t
(C++ union), 523

esp_ble_mesh_sensor_server_cb_value_t::get
(C++ member), 523

esp_ble_mesh_sensor_server_cb_value_t::set
(C++ member), 523

esp_ble_mesh_sensor_server_cb_value_t::state_change
(C++ member), 523

esp_ble_mesh_sensor_server_recv_get_msg_t
(C++ union), 522

esp_ble_mesh_sensor_server_recv_get_msg_t::sensor_cadence
(C++ member), 522

esp_ble_mesh_sensor_server_recv_get_msg_t::sensor_column
(C++ member), 522

esp_ble_mesh_sensor_server_recv_get_msg_t::sensor_data
(C++ member), 522

esp_ble_mesh_sensor_server_recv_get_msg_t::sensor_descriptor
(C++ member), 522

esp_ble_mesh_sensor_server_recv_get_msg_t::sensor_series
(C++ member), 522

esp_ble_mesh_sensor_server_recv_get_msg_t::sensor_setting
(C++ member), 522

esp_ble_mesh_sensor_server_recv_get_msg_t::sensor_settings
(C++ member), 522

esp_ble_mesh_sensor_server_recv_set_msg_t
(C++ union), 522

esp_ble_mesh_sensor_server_recv_set_msg_t::sensor_cadence
(C++ member), 522

esp_ble_mesh_sensor_server_recv_set_msg_t::sensor_setting
(C++ member), 523

esp_ble_mesh_sensor_server_state_change_t
(C++ union), 522

esp_ble_mesh_sensor_server_state_change_t::sensor_cadence_set
(C++ member), 522

esp_ble_mesh_sensor_server_state_change_t::sensor_setting_set
(C++ member), 522

ESP_BLE_MESH_SENSOR_SETTING_ACCESS_LEN
(C macro), 536

ESP_BLE_MESH_SENSOR_SETTING_ACCESS_READ
(C macro), 536

ESP_BLE_MESH_SENSOR_SETTING_ACCESS_READ_WRITE
(C macro), 536

esp_ble_mesh_sensor_setting_get_t
(C++ struct), 524

esp_ble_mesh_sensor_setting_get_t::sensor_property_id
(C++ member), 524

esp_ble_mesh_sensor_setting_get_t::sensor_setting_property_id
(C++ member), 524

ESP_BLE_MESH_SENSOR_SETTING_PROPERTY_ID_LEN
(C macro), 536

esp_ble_mesh_sensor_setting_set_t
(C++ struct), 524

Espressif Systems 2714
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_sensor_setting_set_t::sensor_property_id
(C++ member), 525

esp_ble_mesh_sensor_setting_set_t::sensor_setting_property_id
(C++ member), 525

esp_ble_mesh_sensor_setting_set_t::sensor_setting_raw
(C++ member), 525

esp_ble_mesh_sensor_setting_status_cb_t
(C++ struct), 526

esp_ble_mesh_sensor_setting_status_cb_t::op_en
(C++ member), 526

esp_ble_mesh_sensor_setting_status_cb_t::sensor_property_id
(C++ member), 526

esp_ble_mesh_sensor_setting_status_cb_t::sensor_setting_access
(C++ member), 527

esp_ble_mesh_sensor_setting_status_cb_t::sensor_setting_property_id
(C++ member), 526

esp_ble_mesh_sensor_setting_status_cb_t::sensor_setting_raw
(C++ member), 527

esp_ble_mesh_sensor_setting_t (C++
struct), 528

esp_ble_mesh_sensor_setting_t::access
(C++ member), 528

esp_ble_mesh_sensor_setting_t::property_id
(C++ member), 528

esp_ble_mesh_sensor_setting_t::raw
(C++ member), 528

esp_ble_mesh_sensor_settings_get_t
(C++ struct), 524

esp_ble_mesh_sensor_settings_get_t::sensor_property_id
(C++ member), 524

esp_ble_mesh_sensor_settings_status_cb_t
(C++ struct), 526

esp_ble_mesh_sensor_settings_status_cb_t::sensor_property_id
(C++ member), 526

esp_ble_mesh_sensor_settings_status_cb_t::sensor_setting_property_ids
(C++ member), 526

esp_ble_mesh_sensor_setup_srv_t (C++
struct), 531

esp_ble_mesh_sensor_setup_srv_t::model
(C++ member), 531

esp_ble_mesh_sensor_setup_srv_t::rsp_ctrl
(C++ member), 531

esp_ble_mesh_sensor_setup_srv_t::state_count
(C++ member), 531

esp_ble_mesh_sensor_setup_srv_t::states
(C++ member), 531

esp_ble_mesh_sensor_srv_t (C++ struct), 530
esp_ble_mesh_sensor_srv_t::model (C++

member), 530
esp_ble_mesh_sensor_srv_t::rsp_ctrl

(C++ member), 530
esp_ble_mesh_sensor_srv_t::state_count

(C++ member), 530
esp_ble_mesh_sensor_srv_t::states

(C++ member), 531
esp_ble_mesh_sensor_state_t (C++ struct),

530
esp_ble_mesh_sensor_state_t::cadence

(C++ member), 530
esp_ble_mesh_sensor_state_t::descriptor

(C++ member), 530
esp_ble_mesh_sensor_state_t::sensor_data

(C++ member), 530
esp_ble_mesh_sensor_state_t::sensor_property_id

(C++ member), 530
esp_ble_mesh_sensor_state_t::series_column

(C++ member), 530
esp_ble_mesh_sensor_state_t::setting_count

(C++ member), 530
esp_ble_mesh_sensor_state_t::settings

(C++ member), 530
esp_ble_mesh_sensor_status_cb_t (C++

struct), 527
esp_ble_mesh_sensor_status_cb_t::marshalled_sensor_data

(C++ member), 527
ESP_BLE_MESH_SENSOR_STATUS_MIN_INTERVAL_LEN

(C macro), 536
ESP_BLE_MESH_SENSOR_STATUS_MIN_INTERVAL_MAX

(C macro), 536
ESP_BLE_MESH_SENSOR_STATUS_TRIGGER_TYPE_CHAR

(C macro), 536
ESP_BLE_MESH_SENSOR_STATUS_TRIGGER_TYPE_UINT16

(C macro), 536
ESP_BLE_MESH_SENSOR_UNSPECIFIED_NEG_TOLERANCE

(C macro), 535
ESP_BLE_MESH_SENSOR_UNSPECIFIED_POS_TOLERANCE

(C macro), 535
ESP_BLE_MESH_SERVER_AUTO_RSP (C macro),

405
esp_ble_mesh_server_model_send_msg

(C++ function), 422
esp_ble_mesh_server_model_update_state

(C++ function), 423
esp_ble_mesh_server_recv_gen_admin_property_get_t

(C++ struct), 507
esp_ble_mesh_server_recv_gen_admin_property_get_t::property_id

(C++ member), 507
esp_ble_mesh_server_recv_gen_admin_property_set_t

(C++ struct), 511
esp_ble_mesh_server_recv_gen_admin_property_set_t::property_id

(C++ member), 512
esp_ble_mesh_server_recv_gen_admin_property_set_t::property_value

(C++ member), 512
esp_ble_mesh_server_recv_gen_admin_property_set_t::user_access

(C++ member), 512
esp_ble_mesh_server_recv_gen_client_properties_get_t

(C++ struct), 507
esp_ble_mesh_server_recv_gen_client_properties_get_t::property_id

(C++ member), 507
esp_ble_mesh_server_recv_gen_def_trans_time_set_t

(C++ struct), 509
esp_ble_mesh_server_recv_gen_def_trans_time_set_t::trans_time

(C++ member), 509
esp_ble_mesh_server_recv_gen_delta_set_t

(C++ struct), 508
esp_ble_mesh_server_recv_gen_delta_set_t::delay

Espressif Systems 2715
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 509
esp_ble_mesh_server_recv_gen_delta_set_t::delta_level

(C++ member), 509
esp_ble_mesh_server_recv_gen_delta_set_t::op_en

(C++ member), 508
esp_ble_mesh_server_recv_gen_delta_set_t::tid

(C++ member), 509
esp_ble_mesh_server_recv_gen_delta_set_t::trans_time

(C++ member), 509
esp_ble_mesh_server_recv_gen_level_set_t

(C++ struct), 508
esp_ble_mesh_server_recv_gen_level_set_t::delay

(C++ member), 508
esp_ble_mesh_server_recv_gen_level_set_t::level

(C++ member), 508
esp_ble_mesh_server_recv_gen_level_set_t::op_en

(C++ member), 508
esp_ble_mesh_server_recv_gen_level_set_t::tid

(C++ member), 508
esp_ble_mesh_server_recv_gen_level_set_t::trans_time

(C++ member), 508
esp_ble_mesh_server_recv_gen_loc_global_set_t

(C++ struct), 510
esp_ble_mesh_server_recv_gen_loc_global_set_t::global_altitude

(C++ member), 511
esp_ble_mesh_server_recv_gen_loc_global_set_t::global_latitude

(C++ member), 511
esp_ble_mesh_server_recv_gen_loc_global_set_t::global_longitude

(C++ member), 511
esp_ble_mesh_server_recv_gen_loc_local_set_t

(C++ struct), 511
esp_ble_mesh_server_recv_gen_loc_local_set_t::floor_number

(C++ member), 511
esp_ble_mesh_server_recv_gen_loc_local_set_t::local_altitude

(C++ member), 511
esp_ble_mesh_server_recv_gen_loc_local_set_t::local_east

(C++ member), 511
esp_ble_mesh_server_recv_gen_loc_local_set_t::local_north

(C++ member), 511
esp_ble_mesh_server_recv_gen_loc_local_set_t::uncertainty

(C++ member), 511
esp_ble_mesh_server_recv_gen_manufacturer_property_get_t

(C++ struct), 507
esp_ble_mesh_server_recv_gen_manufacturer_property_get_t::property_id

(C++ member), 507
esp_ble_mesh_server_recv_gen_manufacturer_property_set_t

(C++ struct), 512
esp_ble_mesh_server_recv_gen_manufacturer_property_set_t::property_id

(C++ member), 512
esp_ble_mesh_server_recv_gen_manufacturer_property_set_t::user_access

(C++ member), 512
esp_ble_mesh_server_recv_gen_move_set_t

(C++ struct), 509
esp_ble_mesh_server_recv_gen_move_set_t::delay

(C++ member), 509
esp_ble_mesh_server_recv_gen_move_set_t::delta_level

(C++ member), 509
esp_ble_mesh_server_recv_gen_move_set_t::op_en

(C++ member), 509
esp_ble_mesh_server_recv_gen_move_set_t::tid

(C++ member), 509
esp_ble_mesh_server_recv_gen_move_set_t::trans_time

(C++ member), 509
esp_ble_mesh_server_recv_gen_onoff_set_t

(C++ struct), 507
esp_ble_mesh_server_recv_gen_onoff_set_t::delay

(C++ member), 508
esp_ble_mesh_server_recv_gen_onoff_set_t::onoff

(C++ member), 508
esp_ble_mesh_server_recv_gen_onoff_set_t::op_en

(C++ member), 508
esp_ble_mesh_server_recv_gen_onoff_set_t::tid

(C++ member), 508
esp_ble_mesh_server_recv_gen_onoff_set_t::trans_time

(C++ member), 508
esp_ble_mesh_server_recv_gen_onpowerup_set_t

(C++ struct), 509
esp_ble_mesh_server_recv_gen_onpowerup_set_t::onpowerup

(C++ member), 510
esp_ble_mesh_server_recv_gen_power_default_set_t

(C++ struct), 510
esp_ble_mesh_server_recv_gen_power_default_set_t::power

(C++ member), 510
esp_ble_mesh_server_recv_gen_power_level_set_t

(C++ struct), 510
esp_ble_mesh_server_recv_gen_power_level_set_t::delay

(C++ member), 510
esp_ble_mesh_server_recv_gen_power_level_set_t::op_en

(C++ member), 510
esp_ble_mesh_server_recv_gen_power_level_set_t::power

(C++ member), 510
esp_ble_mesh_server_recv_gen_power_level_set_t::tid

(C++ member), 510
esp_ble_mesh_server_recv_gen_power_level_set_t::trans_time

(C++ member), 510
esp_ble_mesh_server_recv_gen_power_range_set_t

(C++ struct), 510
esp_ble_mesh_server_recv_gen_power_range_set_t::range_max

(C++ member), 510
esp_ble_mesh_server_recv_gen_power_range_set_t::range_min

(C++ member), 510
esp_ble_mesh_server_recv_gen_user_property_get_t

(C++ struct), 507
esp_ble_mesh_server_recv_gen_user_property_get_t::property_id

(C++ member), 507
esp_ble_mesh_server_recv_gen_user_property_set_t

(C++ struct), 511
esp_ble_mesh_server_recv_gen_user_property_set_t::property_id

(C++ member), 511
esp_ble_mesh_server_recv_gen_user_property_set_t::property_value

(C++ member), 511
esp_ble_mesh_server_recv_light_ctl_default_set_t

(C++ struct), 612
esp_ble_mesh_server_recv_light_ctl_default_set_t::delta_uv

(C++ member), 612
esp_ble_mesh_server_recv_light_ctl_default_set_t::lightness

Espressif Systems 2716
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 612
esp_ble_mesh_server_recv_light_ctl_default_set_t::temperature

(C++ member), 612
esp_ble_mesh_server_recv_light_ctl_set_t

(C++ struct), 611
esp_ble_mesh_server_recv_light_ctl_set_t::delay

(C++ member), 611
esp_ble_mesh_server_recv_light_ctl_set_t::delta_uv

(C++ member), 611
esp_ble_mesh_server_recv_light_ctl_set_t::lightness

(C++ member), 611
esp_ble_mesh_server_recv_light_ctl_set_t::op_en

(C++ member), 611
esp_ble_mesh_server_recv_light_ctl_set_t::temperature

(C++ member), 611
esp_ble_mesh_server_recv_light_ctl_set_t::tid

(C++ member), 611
esp_ble_mesh_server_recv_light_ctl_set_t::trans_time

(C++ member), 611
esp_ble_mesh_server_recv_light_ctl_temperature_range_set_t

(C++ struct), 612
esp_ble_mesh_server_recv_light_ctl_temperature_range_set_t::range_max

(C++ member), 612
esp_ble_mesh_server_recv_light_ctl_temperature_range_set_t::range_min

(C++ member), 612
esp_ble_mesh_server_recv_light_ctl_temperature_set_t

(C++ struct), 611
esp_ble_mesh_server_recv_light_ctl_temperature_set_t::delay

(C++ member), 612
esp_ble_mesh_server_recv_light_ctl_temperature_set_t::delta_uv

(C++ member), 611
esp_ble_mesh_server_recv_light_ctl_temperature_set_t::op_en

(C++ member), 611
esp_ble_mesh_server_recv_light_ctl_temperature_set_t::temperature

(C++ member), 611
esp_ble_mesh_server_recv_light_ctl_temperature_set_t::tid

(C++ member), 611
esp_ble_mesh_server_recv_light_ctl_temperature_set_t::trans_time

(C++ member), 612
esp_ble_mesh_server_recv_light_hsl_default_set_t

(C++ struct), 614
esp_ble_mesh_server_recv_light_hsl_default_set_t::hue

(C++ member), 614
esp_ble_mesh_server_recv_light_hsl_default_set_t::lightness

(C++ member), 614
esp_ble_mesh_server_recv_light_hsl_default_set_t::saturation

(C++ member), 614
esp_ble_mesh_server_recv_light_hsl_hue_set_t

(C++ struct), 613
esp_ble_mesh_server_recv_light_hsl_hue_set_t::delay

(C++ member), 613
esp_ble_mesh_server_recv_light_hsl_hue_set_t::hue

(C++ member), 613
esp_ble_mesh_server_recv_light_hsl_hue_set_t::op_en

(C++ member), 613
esp_ble_mesh_server_recv_light_hsl_hue_set_t::tid

(C++ member), 613
esp_ble_mesh_server_recv_light_hsl_hue_set_t::trans_time

(C++ member), 613
esp_ble_mesh_server_recv_light_hsl_range_set_t

(C++ struct), 614
esp_ble_mesh_server_recv_light_hsl_range_set_t::hue_range_max

(C++ member), 614
esp_ble_mesh_server_recv_light_hsl_range_set_t::hue_range_min

(C++ member), 614
esp_ble_mesh_server_recv_light_hsl_range_set_t::saturation_range_max

(C++ member), 614
esp_ble_mesh_server_recv_light_hsl_range_set_t::saturation_range_min

(C++ member), 614
esp_ble_mesh_server_recv_light_hsl_saturation_set_t

(C++ struct), 613
esp_ble_mesh_server_recv_light_hsl_saturation_set_t::delay

(C++ member), 614
esp_ble_mesh_server_recv_light_hsl_saturation_set_t::op_en

(C++ member), 613
esp_ble_mesh_server_recv_light_hsl_saturation_set_t::saturation

(C++ member), 613
esp_ble_mesh_server_recv_light_hsl_saturation_set_t::tid

(C++ member), 613
esp_ble_mesh_server_recv_light_hsl_saturation_set_t::trans_time

(C++ member), 614
esp_ble_mesh_server_recv_light_hsl_set_t

(C++ struct), 612
esp_ble_mesh_server_recv_light_hsl_set_t::delay

(C++ member), 613
esp_ble_mesh_server_recv_light_hsl_set_t::hue

(C++ member), 612
esp_ble_mesh_server_recv_light_hsl_set_t::lightness

(C++ member), 612
esp_ble_mesh_server_recv_light_hsl_set_t::op_en

(C++ member), 612
esp_ble_mesh_server_recv_light_hsl_set_t::saturation

(C++ member), 613
esp_ble_mesh_server_recv_light_hsl_set_t::tid

(C++ member), 613
esp_ble_mesh_server_recv_light_hsl_set_t::trans_time

(C++ member), 613
esp_ble_mesh_server_recv_light_lc_light_onoff_set_t

(C++ struct), 616
esp_ble_mesh_server_recv_light_lc_light_onoff_set_t::delay

(C++ member), 616
esp_ble_mesh_server_recv_light_lc_light_onoff_set_t::light_onoff

(C++ member), 616
esp_ble_mesh_server_recv_light_lc_light_onoff_set_t::op_en

(C++ member), 616
esp_ble_mesh_server_recv_light_lc_light_onoff_set_t::tid

(C++ member), 616
esp_ble_mesh_server_recv_light_lc_light_onoff_set_t::trans_time

(C++ member), 616
esp_ble_mesh_server_recv_light_lc_mode_set_t

(C++ struct), 616
esp_ble_mesh_server_recv_light_lc_mode_set_t::mode

(C++ member), 616
esp_ble_mesh_server_recv_light_lc_om_set_t

(C++ struct), 616
esp_ble_mesh_server_recv_light_lc_om_set_t::mode

Espressif Systems 2717
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 616
esp_ble_mesh_server_recv_light_lc_property_get_t

(C++ struct), 609
esp_ble_mesh_server_recv_light_lc_property_get_t::property_id

(C++ member), 609
esp_ble_mesh_server_recv_light_lc_property_set_t

(C++ struct), 616
esp_ble_mesh_server_recv_light_lc_property_set_t::property_id

(C++ member), 617
esp_ble_mesh_server_recv_light_lc_property_set_t::property_value

(C++ member), 617
esp_ble_mesh_server_recv_light_lightness_default_set_t

(C++ struct), 610
esp_ble_mesh_server_recv_light_lightness_default_set_t::lightness

(C++ member), 610
esp_ble_mesh_server_recv_light_lightness_linear_set_t

(C++ struct), 610
esp_ble_mesh_server_recv_light_lightness_linear_set_t::delay

(C++ member), 610
esp_ble_mesh_server_recv_light_lightness_linear_set_t::lightness

(C++ member), 610
esp_ble_mesh_server_recv_light_lightness_linear_set_t::op_en

(C++ member), 610
esp_ble_mesh_server_recv_light_lightness_linear_set_t::tid

(C++ member), 610
esp_ble_mesh_server_recv_light_lightness_linear_set_t::trans_time

(C++ member), 610
esp_ble_mesh_server_recv_light_lightness_range_set_t

(C++ struct), 610
esp_ble_mesh_server_recv_light_lightness_range_set_t::range_max

(C++ member), 611
esp_ble_mesh_server_recv_light_lightness_range_set_t::range_min

(C++ member), 611
esp_ble_mesh_server_recv_light_lightness_set_t

(C++ struct), 609
esp_ble_mesh_server_recv_light_lightness_set_t::delay

(C++ member), 610
esp_ble_mesh_server_recv_light_lightness_set_t::lightness

(C++ member), 610
esp_ble_mesh_server_recv_light_lightness_set_t::op_en

(C++ member), 610
esp_ble_mesh_server_recv_light_lightness_set_t::tid

(C++ member), 610
esp_ble_mesh_server_recv_light_lightness_set_t::trans_time

(C++ member), 610
esp_ble_mesh_server_recv_light_xyl_default_set_t

(C++ struct), 615
esp_ble_mesh_server_recv_light_xyl_default_set_t::lightness

(C++ member), 615
esp_ble_mesh_server_recv_light_xyl_default_set_t::x

(C++ member), 615
esp_ble_mesh_server_recv_light_xyl_default_set_t::y

(C++ member), 615
esp_ble_mesh_server_recv_light_xyl_range_set_t

(C++ struct), 615
esp_ble_mesh_server_recv_light_xyl_range_set_t::x_range_max

(C++ member), 615
esp_ble_mesh_server_recv_light_xyl_range_set_t::x_range_min

(C++ member), 615
esp_ble_mesh_server_recv_light_xyl_range_set_t::y_range_max

(C++ member), 616
esp_ble_mesh_server_recv_light_xyl_range_set_t::y_range_min

(C++ member), 615
esp_ble_mesh_server_recv_light_xyl_set_t

(C++ struct), 614
esp_ble_mesh_server_recv_light_xyl_set_t::delay

(C++ member), 615
esp_ble_mesh_server_recv_light_xyl_set_t::lightness

(C++ member), 615
esp_ble_mesh_server_recv_light_xyl_set_t::op_en

(C++ member), 614
esp_ble_mesh_server_recv_light_xyl_set_t::tid

(C++ member), 615
esp_ble_mesh_server_recv_light_xyl_set_t::trans_time

(C++ member), 615
esp_ble_mesh_server_recv_light_xyl_set_t::x

(C++ member), 615
esp_ble_mesh_server_recv_light_xyl_set_t::y

(C++ member), 615
esp_ble_mesh_server_recv_scene_delete_t

(C++ struct), 560
esp_ble_mesh_server_recv_scene_delete_t::scene_number

(C++ member), 560
esp_ble_mesh_server_recv_scene_recall_t

(C++ struct), 560
esp_ble_mesh_server_recv_scene_recall_t::delay

(C++ member), 560
esp_ble_mesh_server_recv_scene_recall_t::op_en

(C++ member), 560
esp_ble_mesh_server_recv_scene_recall_t::scene_number

(C++ member), 560
esp_ble_mesh_server_recv_scene_recall_t::tid

(C++ member), 560
esp_ble_mesh_server_recv_scene_recall_t::trans_time

(C++ member), 560
esp_ble_mesh_server_recv_scene_store_t

(C++ struct), 560
esp_ble_mesh_server_recv_scene_store_t::scene_number

(C++ member), 560
esp_ble_mesh_server_recv_scheduler_act_get_t

(C++ struct), 558
esp_ble_mesh_server_recv_scheduler_act_get_t::index

(C++ member), 558
esp_ble_mesh_server_recv_scheduler_act_set_t

(C++ struct), 560
esp_ble_mesh_server_recv_scheduler_act_set_t::action

(C++ member), 561
esp_ble_mesh_server_recv_scheduler_act_set_t::day

(C++ member), 561
esp_ble_mesh_server_recv_scheduler_act_set_t::day_of_week

(C++ member), 561
esp_ble_mesh_server_recv_scheduler_act_set_t::hour

(C++ member), 561
esp_ble_mesh_server_recv_scheduler_act_set_t::index

(C++ member), 561
esp_ble_mesh_server_recv_scheduler_act_set_t::minute

Espressif Systems 2718
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 561
esp_ble_mesh_server_recv_scheduler_act_set_t::month

(C++ member), 561
esp_ble_mesh_server_recv_scheduler_act_set_t::scene_number

(C++ member), 561
esp_ble_mesh_server_recv_scheduler_act_set_t::second

(C++ member), 561
esp_ble_mesh_server_recv_scheduler_act_set_t::trans_time

(C++ member), 561
esp_ble_mesh_server_recv_scheduler_act_set_t::year

(C++ member), 561
esp_ble_mesh_server_recv_sensor_cadence_get_t

(C++ struct), 532
esp_ble_mesh_server_recv_sensor_cadence_get_t::property_id

(C++ member), 532
esp_ble_mesh_server_recv_sensor_cadence_set_t

(C++ struct), 533
esp_ble_mesh_server_recv_sensor_cadence_set_t::cadence

(C++ member), 534
esp_ble_mesh_server_recv_sensor_cadence_set_t::property_id

(C++ member), 534
esp_ble_mesh_server_recv_sensor_column_get_t

(C++ struct), 533
esp_ble_mesh_server_recv_sensor_column_get_t::property_id

(C++ member), 533
esp_ble_mesh_server_recv_sensor_column_get_t::raw_value_x

(C++ member), 533
esp_ble_mesh_server_recv_sensor_descriptor_get_t

(C++ struct), 532
esp_ble_mesh_server_recv_sensor_descriptor_get_t::op_en

(C++ member), 532
esp_ble_mesh_server_recv_sensor_descriptor_get_t::property_id

(C++ member), 532
esp_ble_mesh_server_recv_sensor_get_t

(C++ struct), 533
esp_ble_mesh_server_recv_sensor_get_t::op_en

(C++ member), 533
esp_ble_mesh_server_recv_sensor_get_t::property_id

(C++ member), 533
esp_ble_mesh_server_recv_sensor_series_get_t

(C++ struct), 533
esp_ble_mesh_server_recv_sensor_series_get_t::op_en

(C++ member), 533
esp_ble_mesh_server_recv_sensor_series_get_t::property_id

(C++ member), 533
esp_ble_mesh_server_recv_sensor_series_get_t::raw_value

(C++ member), 533
esp_ble_mesh_server_recv_sensor_setting_get_t

(C++ struct), 532
esp_ble_mesh_server_recv_sensor_setting_get_t::property_id

(C++ member), 533
esp_ble_mesh_server_recv_sensor_setting_get_t::setting_property_id

(C++ member), 533
esp_ble_mesh_server_recv_sensor_setting_set_t

(C++ struct), 534
esp_ble_mesh_server_recv_sensor_setting_set_t::property_id

(C++ member), 534
esp_ble_mesh_server_recv_sensor_setting_set_t::setting_property_id

(C++ member), 534
esp_ble_mesh_server_recv_sensor_setting_set_t::setting_raw

(C++ member), 534
esp_ble_mesh_server_recv_sensor_settings_get_t

(C++ struct), 532
esp_ble_mesh_server_recv_sensor_settings_get_t::property_id

(C++ member), 532
esp_ble_mesh_server_recv_sensor_status_t

(C++ struct), 617
esp_ble_mesh_server_recv_sensor_status_t::data

(C++ member), 617
esp_ble_mesh_server_recv_tai_utc_delta_set_t

(C++ struct), 559
esp_ble_mesh_server_recv_tai_utc_delta_set_t::padding

(C++ member), 559
esp_ble_mesh_server_recv_tai_utc_delta_set_t::tai_delta_change

(C++ member), 559
esp_ble_mesh_server_recv_tai_utc_delta_set_t::tai_utc_delta_new

(C++ member), 559
esp_ble_mesh_server_recv_time_role_set_t

(C++ struct), 559
esp_ble_mesh_server_recv_time_role_set_t::time_role

(C++ member), 560
esp_ble_mesh_server_recv_time_set_t

(C++ struct), 558
esp_ble_mesh_server_recv_time_set_t::subsecond

(C++ member), 559
esp_ble_mesh_server_recv_time_set_t::tai_seconds

(C++ member), 559
esp_ble_mesh_server_recv_time_set_t::tai_utc_delta

(C++ member), 559
esp_ble_mesh_server_recv_time_set_t::time_authority

(C++ member), 559
esp_ble_mesh_server_recv_time_set_t::time_zone_offset

(C++ member), 559
esp_ble_mesh_server_recv_time_set_t::uncertainty

(C++ member), 559
esp_ble_mesh_server_recv_time_status_t

(C++ struct), 561
esp_ble_mesh_server_recv_time_status_t::subsecond

(C++ member), 561
esp_ble_mesh_server_recv_time_status_t::tai_seconds

(C++ member), 561
esp_ble_mesh_server_recv_time_status_t::tai_utc_delta

(C++ member), 562
esp_ble_mesh_server_recv_time_status_t::time_authority

(C++ member), 561
esp_ble_mesh_server_recv_time_status_t::time_zone_offset

(C++ member), 562
esp_ble_mesh_server_recv_time_status_t::uncertainty

(C++ member), 561
esp_ble_mesh_server_recv_time_zone_set_t

(C++ struct), 559
esp_ble_mesh_server_recv_time_zone_set_t::tai_zone_change

(C++ member), 559
esp_ble_mesh_server_recv_time_zone_set_t::time_zone_offset_new

(C++ member), 559
ESP_BLE_MESH_SERVER_RSP_BY_APP (C

Espressif Systems 2719
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

macro), 405
esp_ble_mesh_server_rsp_ctrl_t (C++

struct), 382
esp_ble_mesh_server_rsp_ctrl_t::get_auto_rsp

(C++ member), 382
esp_ble_mesh_server_rsp_ctrl_t::set_auto_rsp

(C++ member), 383
esp_ble_mesh_server_rsp_ctrl_t::status_auto_rsp

(C++ member), 383
esp_ble_mesh_server_state_type_t (C++

enum), 415
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_GENERIC_LEVEL_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_GENERIC_ONOFF_STATE

(C++ enumerator), 415
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_GENERIC_ONPOWERUP_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_GENERIC_POWER_ACTUAL_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_LIGHT_CTL_LIGHTNESS_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_LIGHT_CTL_TEMP_DELTA_UV_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_LIGHT_HSL_HUE_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_LIGHT_HSL_LIGHTNESS_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_LIGHT_HSL_SATURATION_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_LIGHT_HSL_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_LIGHT_LC_LIGHT_ONOFF_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_LIGHT_LIGHTNESS_ACTUAL_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_LIGHT_LIGHTNESS_LINEAR_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_LIGHT_XYL_LIGHTNESS_STATE

(C++ enumerator), 416
esp_ble_mesh_server_state_type_t::ESP_BLE_MESH_SERVER_MODEL_STATE_MAX

(C++ enumerator), 416
esp_ble_mesh_server_state_value_t

(C++ union), 367
esp_ble_mesh_server_state_value_t::delta_uv

(C++ member), 369
esp_ble_mesh_server_state_value_t::gen_level

(C++ member), 368
esp_ble_mesh_server_state_value_t::gen_onoff

(C++ member), 368
esp_ble_mesh_server_state_value_t::gen_onpowerup

(C++ member), 368
esp_ble_mesh_server_state_value_t::gen_power_actual

(C++ member), 368
esp_ble_mesh_server_state_value_t::hue

(C++ member), 369
esp_ble_mesh_server_state_value_t::level

(C++ member), 368
esp_ble_mesh_server_state_value_t::light_ctl_lightness

(C++ member), 368
esp_ble_mesh_server_state_value_t::light_ctl_temp_delta_uv

(C++ member), 369
esp_ble_mesh_server_state_value_t::light_hsl

(C++ member), 369
esp_ble_mesh_server_state_value_t::light_hsl_hue

(C++ member), 369
esp_ble_mesh_server_state_value_t::light_hsl_lightness

(C++ member), 369
esp_ble_mesh_server_state_value_t::light_hsl_saturation

(C++ member), 369
esp_ble_mesh_server_state_value_t::light_lc_light_onoff

(C++ member), 369
esp_ble_mesh_server_state_value_t::light_lightness_actual

(C++ member), 368
esp_ble_mesh_server_state_value_t::light_lightness_linear

(C++ member), 368
esp_ble_mesh_server_state_value_t::light_xyl_lightness

(C++ member), 369
esp_ble_mesh_server_state_value_t::lightness

(C++ member), 368
esp_ble_mesh_server_state_value_t::onoff

(C++ member), 368
esp_ble_mesh_server_state_value_t::onpowerup

(C++ member), 368
esp_ble_mesh_server_state_value_t::power

(C++ member), 368
esp_ble_mesh_server_state_value_t::saturation

(C++ member), 369
esp_ble_mesh_server_state_value_t::temperature

(C++ member), 368
esp_ble_mesh_set_fast_prov_action

(C++ function), 434
esp_ble_mesh_set_fast_prov_info (C++

function), 434
esp_ble_mesh_set_unprovisioned_device_name

(C++ function), 430
ESP_BLE_MESH_SETTINGS_UID_SIZE (C

macro), 383
ESP_BLE_MESH_SIG_MODEL (C macro), 386
esp_ble_mesh_state_change_cfg_appkey_add_t

(C++ struct), 464
esp_ble_mesh_state_change_cfg_appkey_add_t::app_idx

(C++ member), 464
esp_ble_mesh_state_change_cfg_appkey_add_t::app_key

(C++ member), 464
esp_ble_mesh_state_change_cfg_appkey_add_t::net_idx

(C++ member), 464
esp_ble_mesh_state_change_cfg_appkey_delete_t

(C++ struct), 465
esp_ble_mesh_state_change_cfg_appkey_delete_t::app_idx

(C++ member), 465
esp_ble_mesh_state_change_cfg_appkey_delete_t::net_idx

(C++ member), 465
esp_ble_mesh_state_change_cfg_appkey_update_t

(C++ struct), 465
esp_ble_mesh_state_change_cfg_appkey_update_t::app_idx

(C++ member), 465

Espressif Systems 2720
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_state_change_cfg_appkey_update_t::app_key
(C++ member), 465

esp_ble_mesh_state_change_cfg_appkey_update_t::net_idx
(C++ member), 465

esp_ble_mesh_state_change_cfg_kr_phase_set_t
(C++ struct), 466

esp_ble_mesh_state_change_cfg_kr_phase_set_t::kr_phase
(C++ member), 466

esp_ble_mesh_state_change_cfg_kr_phase_set_t::net_idx
(C++ member), 466

esp_ble_mesh_state_change_cfg_mod_pub_set_t
(C++ struct), 462

esp_ble_mesh_state_change_cfg_mod_pub_set_t::app_idx
(C++ member), 462

esp_ble_mesh_state_change_cfg_mod_pub_set_t::company_id
(C++ member), 463

esp_ble_mesh_state_change_cfg_mod_pub_set_t::cred_flag
(C++ member), 462

esp_ble_mesh_state_change_cfg_mod_pub_set_t::element_addr
(C++ member), 462

esp_ble_mesh_state_change_cfg_mod_pub_set_t::model_id
(C++ member), 463

esp_ble_mesh_state_change_cfg_mod_pub_set_t::pub_addr
(C++ member), 462

esp_ble_mesh_state_change_cfg_mod_pub_set_t::pub_period
(C++ member), 463

esp_ble_mesh_state_change_cfg_mod_pub_set_t::pub_retransmit
(C++ member), 463

esp_ble_mesh_state_change_cfg_mod_pub_set_t::pub_ttl
(C++ member), 463

esp_ble_mesh_state_change_cfg_model_app_bind_t
(C++ struct), 465

esp_ble_mesh_state_change_cfg_model_app_bind_t::app_idx
(C++ member), 465

esp_ble_mesh_state_change_cfg_model_app_bind_t::company_id
(C++ member), 465

esp_ble_mesh_state_change_cfg_model_app_bind_t::element_addr
(C++ member), 465

esp_ble_mesh_state_change_cfg_model_app_bind_t::model_id
(C++ member), 465

esp_ble_mesh_state_change_cfg_model_app_unbind_t
(C++ struct), 465

esp_ble_mesh_state_change_cfg_model_app_unbind_t::app_idx
(C++ member), 466

esp_ble_mesh_state_change_cfg_model_app_unbind_t::company_id
(C++ member), 466

esp_ble_mesh_state_change_cfg_model_app_unbind_t::element_addr
(C++ member), 466

esp_ble_mesh_state_change_cfg_model_app_unbind_t::model_id
(C++ member), 466

esp_ble_mesh_state_change_cfg_model_sub_add_t
(C++ struct), 463

esp_ble_mesh_state_change_cfg_model_sub_add_t::company_id
(C++ member), 463

esp_ble_mesh_state_change_cfg_model_sub_add_t::element_addr
(C++ member), 463

esp_ble_mesh_state_change_cfg_model_sub_add_t::model_id
(C++ member), 463

esp_ble_mesh_state_change_cfg_model_sub_add_t::sub_addr
(C++ member), 463

esp_ble_mesh_state_change_cfg_model_sub_delete_t
(C++ struct), 463

esp_ble_mesh_state_change_cfg_model_sub_delete_t::company_id
(C++ member), 463

esp_ble_mesh_state_change_cfg_model_sub_delete_t::element_addr
(C++ member), 463

esp_ble_mesh_state_change_cfg_model_sub_delete_t::model_id
(C++ member), 464

esp_ble_mesh_state_change_cfg_model_sub_delete_t::sub_addr
(C++ member), 463

esp_ble_mesh_state_change_cfg_netkey_add_t
(C++ struct), 464

esp_ble_mesh_state_change_cfg_netkey_add_t::net_idx
(C++ member), 464

esp_ble_mesh_state_change_cfg_netkey_add_t::net_key
(C++ member), 464

esp_ble_mesh_state_change_cfg_netkey_delete_t
(C++ struct), 464

esp_ble_mesh_state_change_cfg_netkey_delete_t::net_idx
(C++ member), 464

esp_ble_mesh_state_change_cfg_netkey_update_t
(C++ struct), 464

esp_ble_mesh_state_change_cfg_netkey_update_t::net_idx
(C++ member), 464

esp_ble_mesh_state_change_cfg_netkey_update_t::net_key
(C++ member), 464

esp_ble_mesh_state_change_gen_admin_property_set_t
(C++ struct), 506

esp_ble_mesh_state_change_gen_admin_property_set_t::access
(C++ member), 506

esp_ble_mesh_state_change_gen_admin_property_set_t::id
(C++ member), 506

esp_ble_mesh_state_change_gen_admin_property_set_t::value
(C++ member), 506

esp_ble_mesh_state_change_gen_def_trans_time_set_t
(C++ struct), 504

esp_ble_mesh_state_change_gen_def_trans_time_set_t::trans_time
(C++ member), 504

esp_ble_mesh_state_change_gen_delta_set_t
(C++ struct), 504

esp_ble_mesh_state_change_gen_delta_set_t::level
(C++ member), 504

esp_ble_mesh_state_change_gen_level_set_t
(C++ struct), 504

esp_ble_mesh_state_change_gen_level_set_t::level
(C++ member), 504

esp_ble_mesh_state_change_gen_loc_global_set_t
(C++ struct), 505

esp_ble_mesh_state_change_gen_loc_global_set_t::altitude
(C++ member), 505

esp_ble_mesh_state_change_gen_loc_global_set_t::latitude
(C++ member), 505

esp_ble_mesh_state_change_gen_loc_global_set_t::longitude
(C++ member), 505

esp_ble_mesh_state_change_gen_loc_local_set_t
(C++ struct), 506

Espressif Systems 2721
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_state_change_gen_loc_local_set_t::altitude
(C++ member), 506

esp_ble_mesh_state_change_gen_loc_local_set_t::east
(C++ member), 506

esp_ble_mesh_state_change_gen_loc_local_set_t::floor_number
(C++ member), 506

esp_ble_mesh_state_change_gen_loc_local_set_t::north
(C++ member), 506

esp_ble_mesh_state_change_gen_loc_local_set_t::uncertainty
(C++ member), 506

esp_ble_mesh_state_change_gen_manu_property_set_t
(C++ struct), 507

esp_ble_mesh_state_change_gen_manu_property_set_t::access
(C++ member), 507

esp_ble_mesh_state_change_gen_manu_property_set_t::id
(C++ member), 507

esp_ble_mesh_state_change_gen_move_set_t
(C++ struct), 504

esp_ble_mesh_state_change_gen_move_set_t::level
(C++ member), 504

esp_ble_mesh_state_change_gen_onoff_set_t
(C++ struct), 504

esp_ble_mesh_state_change_gen_onoff_set_t::onoff
(C++ member), 504

esp_ble_mesh_state_change_gen_onpowerup_set_t
(C++ struct), 504

esp_ble_mesh_state_change_gen_onpowerup_set_t::onpowerup
(C++ member), 505

esp_ble_mesh_state_change_gen_power_default_set_t
(C++ struct), 505

esp_ble_mesh_state_change_gen_power_default_set_t::power
(C++ member), 505

esp_ble_mesh_state_change_gen_power_level_set_t
(C++ struct), 505

esp_ble_mesh_state_change_gen_power_level_set_t::power
(C++ member), 505

esp_ble_mesh_state_change_gen_power_range_set_t
(C++ struct), 505

esp_ble_mesh_state_change_gen_power_range_set_t::range_max
(C++ member), 505

esp_ble_mesh_state_change_gen_power_range_set_t::range_min
(C++ member), 505

esp_ble_mesh_state_change_gen_user_property_set_t
(C++ struct), 506

esp_ble_mesh_state_change_gen_user_property_set_t::id
(C++ member), 506

esp_ble_mesh_state_change_gen_user_property_set_t::value
(C++ member), 506

esp_ble_mesh_state_change_light_ctl_default_set_t
(C++ struct), 605

esp_ble_mesh_state_change_light_ctl_default_set_t::delta_uv
(C++ member), 606

esp_ble_mesh_state_change_light_ctl_default_set_t::lightness
(C++ member), 606

esp_ble_mesh_state_change_light_ctl_default_set_t::temperature
(C++ member), 606

esp_ble_mesh_state_change_light_ctl_set_t
(C++ struct), 605

esp_ble_mesh_state_change_light_ctl_set_t::delta_uv
(C++ member), 605

esp_ble_mesh_state_change_light_ctl_set_t::lightness
(C++ member), 605

esp_ble_mesh_state_change_light_ctl_set_t::temperature
(C++ member), 605

esp_ble_mesh_state_change_light_ctl_temperature_range_set_t
(C++ struct), 605

esp_ble_mesh_state_change_light_ctl_temperature_range_set_t::range_max
(C++ member), 605

esp_ble_mesh_state_change_light_ctl_temperature_range_set_t::range_min
(C++ member), 605

esp_ble_mesh_state_change_light_ctl_temperature_set_t
(C++ struct), 605

esp_ble_mesh_state_change_light_ctl_temperature_set_t::delta_uv
(C++ member), 605

esp_ble_mesh_state_change_light_ctl_temperature_set_t::temperature
(C++ member), 605

esp_ble_mesh_state_change_light_hsl_default_set_t
(C++ struct), 606

esp_ble_mesh_state_change_light_hsl_default_set_t::hue
(C++ member), 607

esp_ble_mesh_state_change_light_hsl_default_set_t::lightness
(C++ member), 607

esp_ble_mesh_state_change_light_hsl_default_set_t::saturation
(C++ member), 607

esp_ble_mesh_state_change_light_hsl_hue_set_t
(C++ struct), 606

esp_ble_mesh_state_change_light_hsl_hue_set_t::hue
(C++ member), 606

esp_ble_mesh_state_change_light_hsl_range_set_t
(C++ struct), 607

esp_ble_mesh_state_change_light_hsl_range_set_t::hue_range_max
(C++ member), 607

esp_ble_mesh_state_change_light_hsl_range_set_t::hue_range_min
(C++ member), 607

esp_ble_mesh_state_change_light_hsl_range_set_t::saturation_range_max
(C++ member), 607

esp_ble_mesh_state_change_light_hsl_range_set_t::saturation_range_min
(C++ member), 607

esp_ble_mesh_state_change_light_hsl_saturation_set_t
(C++ struct), 606

esp_ble_mesh_state_change_light_hsl_saturation_set_t::saturation
(C++ member), 606

esp_ble_mesh_state_change_light_hsl_set_t
(C++ struct), 606

esp_ble_mesh_state_change_light_hsl_set_t::hue
(C++ member), 606

esp_ble_mesh_state_change_light_hsl_set_t::lightness
(C++ member), 606

esp_ble_mesh_state_change_light_hsl_set_t::saturation
(C++ member), 606

esp_ble_mesh_state_change_light_lc_light_onoff_set_t
(C++ struct), 608

esp_ble_mesh_state_change_light_lc_light_onoff_set_t::onoff
(C++ member), 609

esp_ble_mesh_state_change_light_lc_mode_set_t
(C++ struct), 608

Espressif Systems 2722
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_state_change_light_lc_mode_set_t::mode
(C++ member), 608

esp_ble_mesh_state_change_light_lc_om_set_t
(C++ struct), 608

esp_ble_mesh_state_change_light_lc_om_set_t::mode
(C++ member), 608

esp_ble_mesh_state_change_light_lc_property_set_t
(C++ struct), 609

esp_ble_mesh_state_change_light_lc_property_set_t::property_id
(C++ member), 609

esp_ble_mesh_state_change_light_lc_property_set_t::property_value
(C++ member), 609

esp_ble_mesh_state_change_light_lightness_default_set_t
(C++ struct), 604

esp_ble_mesh_state_change_light_lightness_default_set_t::lightness
(C++ member), 604

esp_ble_mesh_state_change_light_lightness_linear_set_t
(C++ struct), 604

esp_ble_mesh_state_change_light_lightness_linear_set_t::lightness
(C++ member), 604

esp_ble_mesh_state_change_light_lightness_range_set_t
(C++ struct), 604

esp_ble_mesh_state_change_light_lightness_range_set_t::range_max
(C++ member), 605

esp_ble_mesh_state_change_light_lightness_range_set_t::range_min
(C++ member), 605

esp_ble_mesh_state_change_light_lightness_set_t
(C++ struct), 604

esp_ble_mesh_state_change_light_lightness_set_t::lightness
(C++ member), 604

esp_ble_mesh_state_change_light_xyl_default_set_t
(C++ struct), 607

esp_ble_mesh_state_change_light_xyl_default_set_t::lightness
(C++ member), 608

esp_ble_mesh_state_change_light_xyl_default_set_t::x
(C++ member), 608

esp_ble_mesh_state_change_light_xyl_default_set_t::y
(C++ member), 608

esp_ble_mesh_state_change_light_xyl_range_set_t
(C++ struct), 608

esp_ble_mesh_state_change_light_xyl_range_set_t::x_range_max
(C++ member), 608

esp_ble_mesh_state_change_light_xyl_range_set_t::x_range_min
(C++ member), 608

esp_ble_mesh_state_change_light_xyl_range_set_t::y_range_max
(C++ member), 608

esp_ble_mesh_state_change_light_xyl_range_set_t::y_range_min
(C++ member), 608

esp_ble_mesh_state_change_light_xyl_set_t
(C++ struct), 607

esp_ble_mesh_state_change_light_xyl_set_t::lightness
(C++ member), 607

esp_ble_mesh_state_change_light_xyl_set_t::x
(C++ member), 607

esp_ble_mesh_state_change_light_xyl_set_t::y
(C++ member), 607

esp_ble_mesh_state_change_scene_delete_t
(C++ struct), 557

esp_ble_mesh_state_change_scene_delete_t::scene_number
(C++ member), 557

esp_ble_mesh_state_change_scene_recall_t
(C++ struct), 557

esp_ble_mesh_state_change_scene_recall_t::scene_number
(C++ member), 557

esp_ble_mesh_state_change_scene_store_t
(C++ struct), 557

esp_ble_mesh_state_change_scene_store_t::scene_number
(C++ member), 557

esp_ble_mesh_state_change_scheduler_act_set_t
(C++ struct), 557

esp_ble_mesh_state_change_scheduler_act_set_t::action
(C++ member), 558

esp_ble_mesh_state_change_scheduler_act_set_t::day
(C++ member), 558

esp_ble_mesh_state_change_scheduler_act_set_t::day_of_week
(C++ member), 558

esp_ble_mesh_state_change_scheduler_act_set_t::hour
(C++ member), 558

esp_ble_mesh_state_change_scheduler_act_set_t::index
(C++ member), 558

esp_ble_mesh_state_change_scheduler_act_set_t::minute
(C++ member), 558

esp_ble_mesh_state_change_scheduler_act_set_t::month
(C++ member), 558

esp_ble_mesh_state_change_scheduler_act_set_t::scene_number
(C++ member), 558

esp_ble_mesh_state_change_scheduler_act_set_t::second
(C++ member), 558

esp_ble_mesh_state_change_scheduler_act_set_t::trans_time
(C++ member), 558

esp_ble_mesh_state_change_scheduler_act_set_t::year
(C++ member), 558

esp_ble_mesh_state_change_sensor_cadence_set_t
(C++ struct), 531

esp_ble_mesh_state_change_sensor_cadence_set_t::fast_cadence_high
(C++ member), 532

esp_ble_mesh_state_change_sensor_cadence_set_t::fast_cadence_low
(C++ member), 531

esp_ble_mesh_state_change_sensor_cadence_set_t::min_interval
(C++ member), 531

esp_ble_mesh_state_change_sensor_cadence_set_t::period_divisor
(C++ member), 531

esp_ble_mesh_state_change_sensor_cadence_set_t::property_id
(C++ member), 531

esp_ble_mesh_state_change_sensor_cadence_set_t::trigger_delta_down
(C++ member), 531

esp_ble_mesh_state_change_sensor_cadence_set_t::trigger_delta_up
(C++ member), 531

esp_ble_mesh_state_change_sensor_cadence_set_t::trigger_type
(C++ member), 531

esp_ble_mesh_state_change_sensor_setting_set_t
(C++ struct), 532

esp_ble_mesh_state_change_sensor_setting_set_t::property_id
(C++ member), 532

esp_ble_mesh_state_change_sensor_setting_set_t::setting_property_id
(C++ member), 532

Espressif Systems 2723
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_state_change_sensor_setting_set_t::setting_value
(C++ member), 532

esp_ble_mesh_state_change_sensor_status_t
(C++ struct), 609

esp_ble_mesh_state_change_sensor_status_t::ambient_luxlevel
(C++ member), 609

esp_ble_mesh_state_change_sensor_status_t::occupancy
(C++ member), 609

esp_ble_mesh_state_change_sensor_status_t::property_id
(C++ member), 609

esp_ble_mesh_state_change_sensor_status_t::set_occupancy_to_1_delay
(C++ member), 609

esp_ble_mesh_state_change_sensor_status_t::state
(C++ member), 609

esp_ble_mesh_state_change_tai_utc_delta_set_t
(C++ struct), 557

esp_ble_mesh_state_change_tai_utc_delta_set_t::tai_delta_change
(C++ member), 557

esp_ble_mesh_state_change_tai_utc_delta_set_t::tai_utc_delta_new
(C++ member), 557

esp_ble_mesh_state_change_time_role_set_t
(C++ struct), 557

esp_ble_mesh_state_change_time_role_set_t::time_role
(C++ member), 557

esp_ble_mesh_state_change_time_set_t
(C++ struct), 555

esp_ble_mesh_state_change_time_set_t::subsecond
(C++ member), 555

esp_ble_mesh_state_change_time_set_t::tai_seconds
(C++ member), 555

esp_ble_mesh_state_change_time_set_t::tai_utc_delta_curr
(C++ member), 556

esp_ble_mesh_state_change_time_set_t::time_authority
(C++ member), 556

esp_ble_mesh_state_change_time_set_t::time_zone_offset_curr
(C++ member), 556

esp_ble_mesh_state_change_time_set_t::uncertainty
(C++ member), 556

esp_ble_mesh_state_change_time_status_t
(C++ struct), 556

esp_ble_mesh_state_change_time_status_t::subsecond
(C++ member), 556

esp_ble_mesh_state_change_time_status_t::tai_seconds
(C++ member), 556

esp_ble_mesh_state_change_time_status_t::tai_utc_delta_curr
(C++ member), 556

esp_ble_mesh_state_change_time_status_t::time_authority
(C++ member), 556

esp_ble_mesh_state_change_time_status_t::time_zone_offset_curr
(C++ member), 556

esp_ble_mesh_state_change_time_status_t::uncertainty
(C++ member), 556

esp_ble_mesh_state_change_time_zone_set_t
(C++ struct), 556

esp_ble_mesh_state_change_time_zone_set_t::tai_zone_change
(C++ member), 556

esp_ble_mesh_state_change_time_zone_set_t::time_zone_offset_new
(C++ member), 556

esp_ble_mesh_state_transition_t (C++
struct), 381

esp_ble_mesh_state_transition_t::BLE_MESH_ATOMIC_DEFINE
(C++ function), 381

esp_ble_mesh_state_transition_t::counter
(C++ member), 382

esp_ble_mesh_state_transition_t::delay
(C++ member), 381

esp_ble_mesh_state_transition_t::just_started
(C++ member), 381

esp_ble_mesh_state_transition_t::quo_tt
(C++ member), 382

esp_ble_mesh_state_transition_t::remain_time
(C++ member), 381

esp_ble_mesh_state_transition_t::start_timestamp
(C++ member), 382

esp_ble_mesh_state_transition_t::timer
(C++ member), 382

esp_ble_mesh_state_transition_t::total_duration
(C++ member), 382

esp_ble_mesh_state_transition_t::trans_time
(C++ member), 381

ESP_BLE_MESH_SUPPLY_VOLTAGE_TOO_HIGH_ERROR
(C macro), 476

ESP_BLE_MESH_SUPPLY_VOLTAGE_TOO_HIGH_WARNING
(C macro), 476

ESP_BLE_MESH_SUPPLY_VOLTAGE_TOO_LOW_ERROR
(C macro), 476

ESP_BLE_MESH_SUPPLY_VOLTAGE_TOO_LOW_WARNING
(C macro), 476

ESP_BLE_MESH_TAI_OF_DELTA_CHANGE_LEN
(C macro), 565

ESP_BLE_MESH_TAI_OF_ZONE_CHANGE_LEN (C
macro), 565

ESP_BLE_MESH_TAI_SECONDS_LEN (C macro),
565

ESP_BLE_MESH_TAI_UTC_DELTA_MAX_VALUE
(C macro), 564

esp_ble_mesh_tai_utc_delta_set_t (C++
struct), 544

esp_ble_mesh_tai_utc_delta_set_t::padding
(C++ member), 544

esp_ble_mesh_tai_utc_delta_set_t::tai_delta_change
(C++ member), 545

esp_ble_mesh_tai_utc_delta_set_t::tai_utc_delta_new
(C++ member), 544

esp_ble_mesh_tai_utc_delta_status_cb_t
(C++ struct), 547

esp_ble_mesh_tai_utc_delta_status_cb_t::padding_1
(C++ member), 548

esp_ble_mesh_tai_utc_delta_status_cb_t::padding_2
(C++ member), 548

esp_ble_mesh_tai_utc_delta_status_cb_t::tai_delta_change
(C++ member), 548

esp_ble_mesh_tai_utc_delta_status_cb_t::tai_utc_delta_curr
(C++ member), 548

esp_ble_mesh_tai_utc_delta_status_cb_t::tai_utc_delta_new
(C++ member), 548

Espressif Systems 2724
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_BLE_MESH_TAMPER_ERROR (C macro), 477
ESP_BLE_MESH_TAMPER_WARNING (C macro),

477
ESP_BLE_MESH_TIME_AUTHORITY (C macro),

566
ESP_BLE_MESH_TIME_CLINET (C macro), 566
ESP_BLE_MESH_TIME_NONE (C macro), 566
ESP_BLE_MESH_TIME_RELAY (C macro), 566
esp_ble_mesh_time_role_set_t (C++ struct),

545
esp_ble_mesh_time_role_set_t::time_role

(C++ member), 545
esp_ble_mesh_time_role_status_cb_t

(C++ struct), 548
esp_ble_mesh_time_role_status_cb_t::time_role

(C++ member), 548
esp_ble_mesh_time_scene_client_cb_event_t

(C++ enum), 567
esp_ble_mesh_time_scene_client_cb_event_t::ESP_BLE_MESH_TIME_SCENE_CLIENT_EVT_MAX

(C++ enumerator), 567
esp_ble_mesh_time_scene_client_cb_event_t::ESP_BLE_MESH_TIME_SCENE_CLIENT_GET_STATE_EVT

(C++ enumerator), 567
esp_ble_mesh_time_scene_client_cb_event_t::ESP_BLE_MESH_TIME_SCENE_CLIENT_PUBLISH_EVT

(C++ enumerator), 567
esp_ble_mesh_time_scene_client_cb_event_t::ESP_BLE_MESH_TIME_SCENE_CLIENT_SET_STATE_EVT

(C++ enumerator), 567
esp_ble_mesh_time_scene_client_cb_event_t::ESP_BLE_MESH_TIME_SCENE_CLIENT_TIMEOUT_EVT

(C++ enumerator), 567
esp_ble_mesh_time_scene_client_cb_param_t

(C++ struct), 550
esp_ble_mesh_time_scene_client_cb_param_t::error_code

(C++ member), 550
esp_ble_mesh_time_scene_client_cb_param_t::params

(C++ member), 550
esp_ble_mesh_time_scene_client_cb_param_t::status_cb

(C++ member), 550
esp_ble_mesh_time_scene_client_cb_t

(C++ type), 566
esp_ble_mesh_time_scene_client_get_state

(C++ function), 539
esp_ble_mesh_time_scene_client_get_state_t

(C++ union), 540
esp_ble_mesh_time_scene_client_get_state_t::scheduler_act_get

(C++ member), 540
esp_ble_mesh_time_scene_client_set_state

(C++ function), 540
esp_ble_mesh_time_scene_client_set_state_t

(C++ union), 540
esp_ble_mesh_time_scene_client_set_state_t::scene_delete

(C++ member), 541
esp_ble_mesh_time_scene_client_set_state_t::scene_recall

(C++ member), 541
esp_ble_mesh_time_scene_client_set_state_t::scene_store

(C++ member), 541
esp_ble_mesh_time_scene_client_set_state_t::scheduler_act_set

(C++ member), 541
esp_ble_mesh_time_scene_client_set_state_t::tai_utc_delta_set

(C++ member), 541

esp_ble_mesh_time_scene_client_set_state_t::time_role_set
(C++ member), 541

esp_ble_mesh_time_scene_client_set_state_t::time_set
(C++ member), 540

esp_ble_mesh_time_scene_client_set_state_t::time_zone_set
(C++ member), 541

esp_ble_mesh_time_scene_client_status_cb_t
(C++ union), 541

esp_ble_mesh_time_scene_client_status_cb_t::scene_register_status
(C++ member), 541

esp_ble_mesh_time_scene_client_status_cb_t::scene_status
(C++ member), 541

esp_ble_mesh_time_scene_client_status_cb_t::scheduler_act_status
(C++ member), 542

esp_ble_mesh_time_scene_client_status_cb_t::scheduler_status
(C++ member), 541

esp_ble_mesh_time_scene_client_status_cb_t::tai_utc_delta_status
(C++ member), 541

esp_ble_mesh_time_scene_client_status_cb_t::time_role_status
(C++ member), 541

esp_ble_mesh_time_scene_client_status_cb_t::time_status
(C++ member), 541

esp_ble_mesh_time_scene_client_status_cb_t::time_zone_status
(C++ member), 541

esp_ble_mesh_time_scene_message_opcode_t
(C++ type), 407

esp_ble_mesh_time_scene_server_cb_event_t
(C++ enum), 567

esp_ble_mesh_time_scene_server_cb_event_t::ESP_BLE_MESH_TIME_SCENE_SERVER_EVT_MAX
(C++ enumerator), 568

esp_ble_mesh_time_scene_server_cb_event_t::ESP_BLE_MESH_TIME_SCENE_SERVER_RECV_GET_MSG_EVT
(C++ enumerator), 567

esp_ble_mesh_time_scene_server_cb_event_t::ESP_BLE_MESH_TIME_SCENE_SERVER_RECV_SET_MSG_EVT
(C++ enumerator), 567

esp_ble_mesh_time_scene_server_cb_event_t::ESP_BLE_MESH_TIME_SCENE_SERVER_RECV_STATUS_MSG_EVT
(C++ enumerator), 567

esp_ble_mesh_time_scene_server_cb_event_t::ESP_BLE_MESH_TIME_SCENE_SERVER_STATE_CHANGE_EVT
(C++ enumerator), 567

esp_ble_mesh_time_scene_server_cb_param_t
(C++ struct), 562

esp_ble_mesh_time_scene_server_cb_param_t::ctx
(C++ member), 562

esp_ble_mesh_time_scene_server_cb_param_t::model
(C++ member), 562

esp_ble_mesh_time_scene_server_cb_param_t::value
(C++ member), 562

esp_ble_mesh_time_scene_server_cb_t
(C++ type), 567

esp_ble_mesh_time_scene_server_cb_value_t
(C++ union), 543

esp_ble_mesh_time_scene_server_cb_value_t::get
(C++ member), 543

esp_ble_mesh_time_scene_server_cb_value_t::set
(C++ member), 543

esp_ble_mesh_time_scene_server_cb_value_t::state_change
(C++ member), 543

esp_ble_mesh_time_scene_server_cb_value_t::status
(C++ member), 543

Espressif Systems 2725
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_mesh_time_scene_server_recv_get_msg_t
(C++ union), 542

esp_ble_mesh_time_scene_server_recv_get_msg_t::scheduler_act
(C++ member), 542

esp_ble_mesh_time_scene_server_recv_set_msg_t
(C++ union), 542

esp_ble_mesh_time_scene_server_recv_set_msg_t::scene_delete
(C++ member), 543

esp_ble_mesh_time_scene_server_recv_set_msg_t::scene_recall
(C++ member), 543

esp_ble_mesh_time_scene_server_recv_set_msg_t::scene_store
(C++ member), 543

esp_ble_mesh_time_scene_server_recv_set_msg_t::scheduler_act
(C++ member), 543

esp_ble_mesh_time_scene_server_recv_set_msg_t::tai_utc_delta
(C++ member), 543

esp_ble_mesh_time_scene_server_recv_set_msg_t::time
(C++ member), 543

esp_ble_mesh_time_scene_server_recv_set_msg_t::time_role
(C++ member), 543

esp_ble_mesh_time_scene_server_recv_set_msg_t::time_zone
(C++ member), 543

esp_ble_mesh_time_scene_server_recv_status_msg_t
(C++ union), 543

esp_ble_mesh_time_scene_server_recv_status_msg_t::time_status
(C++ member), 543

esp_ble_mesh_time_scene_server_state_change_t
(C++ union), 542

esp_ble_mesh_time_scene_server_state_change_t::scene_delete
(C++ member), 542

esp_ble_mesh_time_scene_server_state_change_t::scene_recall
(C++ member), 542

esp_ble_mesh_time_scene_server_state_change_t::scene_store
(C++ member), 542

esp_ble_mesh_time_scene_server_state_change_t::scheduler_act_set
(C++ member), 542

esp_ble_mesh_time_scene_server_state_change_t::tai_utc_delta_set
(C++ member), 542

esp_ble_mesh_time_scene_server_state_change_t::time_role_set
(C++ member), 542

esp_ble_mesh_time_scene_server_state_change_t::time_set
(C++ member), 542

esp_ble_mesh_time_scene_server_state_change_t::time_status
(C++ member), 542

esp_ble_mesh_time_scene_server_state_change_t::time_zone_set
(C++ member), 542

esp_ble_mesh_time_set_t (C++ struct), 544
esp_ble_mesh_time_set_t::sub_second

(C++ member), 544
esp_ble_mesh_time_set_t::tai_seconds

(C++ member), 544
esp_ble_mesh_time_set_t::tai_utc_delta

(C++ member), 544
esp_ble_mesh_time_set_t::time_authority

(C++ member), 544
esp_ble_mesh_time_set_t::time_zone_offset

(C++ member), 544
esp_ble_mesh_time_set_t::uncertainty

(C++ member), 544
esp_ble_mesh_time_setup_srv_t (C++

struct), 551
esp_ble_mesh_time_setup_srv_t::model

(C++ member), 551
esp_ble_mesh_time_setup_srv_t::rsp_ctrl

(C++ member), 551
esp_ble_mesh_time_setup_srv_t::state

(C++ member), 551
esp_ble_mesh_time_srv_t (C++ struct), 551
esp_ble_mesh_time_srv_t::model (C++

member), 551
esp_ble_mesh_time_srv_t::rsp_ctrl

(C++ member), 551
esp_ble_mesh_time_srv_t::state (C++

member), 551
esp_ble_mesh_time_state_t (C++ struct), 550
esp_ble_mesh_time_state_t::subsecond

(C++ member), 550
esp_ble_mesh_time_state_t::tai_delta_change

(C++ member), 551
esp_ble_mesh_time_state_t::tai_seconds

(C++ member), 550
esp_ble_mesh_time_state_t::tai_utc_delta_curr

(C++ member), 551
esp_ble_mesh_time_state_t::tai_utc_delta_new

(C++ member), 551
esp_ble_mesh_time_state_t::tai_zone_change

(C++ member), 550
esp_ble_mesh_time_state_t::time (C++

member), 551
esp_ble_mesh_time_state_t::time_authority

(C++ member), 550
esp_ble_mesh_time_state_t::time_role

(C++ member), 551
esp_ble_mesh_time_state_t::time_zone_offset_curr

(C++ member), 550
esp_ble_mesh_time_state_t::time_zone_offset_new

(C++ member), 550
esp_ble_mesh_time_state_t::uncertainty

(C++ member), 550
esp_ble_mesh_time_status_cb_t (C++

struct), 547
esp_ble_mesh_time_status_cb_t::sub_second

(C++ member), 547
esp_ble_mesh_time_status_cb_t::tai_seconds

(C++ member), 547
esp_ble_mesh_time_status_cb_t::tai_utc_delta

(C++ member), 547
esp_ble_mesh_time_status_cb_t::time_authority

(C++ member), 547
esp_ble_mesh_time_status_cb_t::time_zone_offset

(C++ member), 547
esp_ble_mesh_time_status_cb_t::uncertainty

(C++ member), 547
esp_ble_mesh_time_zone_set_t (C++ struct),

544
esp_ble_mesh_time_zone_set_t::tai_zone_change

Espressif Systems 2726
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 544
esp_ble_mesh_time_zone_set_t::time_zone_offset_new

(C++ member), 544
esp_ble_mesh_time_zone_status_cb_t

(C++ struct), 547
esp_ble_mesh_time_zone_status_cb_t::tai_zone_change

(C++ member), 547
esp_ble_mesh_time_zone_status_cb_t::time_zone_offset_curr

(C++ member), 547
esp_ble_mesh_time_zone_status_cb_t::time_zone_offset_new

(C++ member), 547
ESP_BLE_MESH_TRANSMIT (C macro), 385
ESP_BLE_MESH_TTL_DEFAULT (C macro), 383
ESP_BLE_MESH_TTL_MAX (C macro), 383
ESP_BLE_MESH_UNKNOWN_TAI_DELTA_CHANGE

(C macro), 564
ESP_BLE_MESH_UNKNOWN_TAI_SECONDS (C

macro), 564
ESP_BLE_MESH_UNKNOWN_TAI_ZONE_CHANGE

(C macro), 564
esp_ble_mesh_unprov_dev_add_t (C++

struct), 377
esp_ble_mesh_unprov_dev_add_t::addr

(C++ member), 377
esp_ble_mesh_unprov_dev_add_t::addr_type

(C++ member), 377
esp_ble_mesh_unprov_dev_add_t::bearer

(C++ member), 377
esp_ble_mesh_unprov_dev_add_t::oob_info

(C++ member), 377
esp_ble_mesh_unprov_dev_add_t::uuid

(C++ member), 377
ESP_BLE_MESH_VENDOR_MODEL (C macro), 386
ESP_BLE_MESH_VIBRATION_ERROR (C macro),

476
ESP_BLE_MESH_VIBRATION_WARNING (C

macro), 476
ESP_BLE_ONLY_ACCEPT_SPECIFIED_AUTH_DISABLE

(C macro), 227
ESP_BLE_ONLY_ACCEPT_SPECIFIED_AUTH_ENABLE

(C macro), 227
ESP_BLE_OOB_DISABLE (C macro), 227
ESP_BLE_OOB_ENABLE (C macro), 227
esp_ble_oob_req_reply (C++ function), 177
esp_ble_passkey_reply (C++ function), 176
esp_ble_pcsrk_keys_t (C++ struct), 215
esp_ble_pcsrk_keys_t::counter (C++

member), 215
esp_ble_pcsrk_keys_t::csrk (C++ member),

215
esp_ble_pcsrk_keys_t::sec_level (C++

member), 215
esp_ble_penc_keys_t (C++ struct), 214
esp_ble_penc_keys_t::ediv (C++ member),

215
esp_ble_penc_keys_t::key_size (C++

member), 215
esp_ble_penc_keys_t::ltk (C++ member),

215
esp_ble_penc_keys_t::rand (C++ member),

215
esp_ble_penc_keys_t::sec_level (C++

member), 215
ESP_BLE_PHY_1M_PREF_MASK (C macro), 161
ESP_BLE_PHY_2M_PREF_MASK (C macro), 161
ESP_BLE_PHY_CODED_PREF_MASK (C macro),

161
esp_ble_phy_mask_t (C++ type), 162
esp_ble_pid_keys_t (C++ struct), 215
esp_ble_pid_keys_t::addr_type (C++

member), 215
esp_ble_pid_keys_t::irk (C++ member), 215
esp_ble_pid_keys_t::static_addr (C++

member), 215
esp_ble_pkt_data_length_params_t (C++

struct), 214
esp_ble_pkt_data_length_params_t::rx_len

(C++ member), 214
esp_ble_pkt_data_length_params_t::tx_len

(C++ member), 214
esp_ble_power_type_t (C++ enum), 338
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_ADV

(C++ enumerator), 339
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_CONN_HDL0

(C++ enumerator), 338
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_CONN_HDL1

(C++ enumerator), 338
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_CONN_HDL2

(C++ enumerator), 338
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_CONN_HDL3

(C++ enumerator), 338
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_CONN_HDL4

(C++ enumerator), 338
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_CONN_HDL5

(C++ enumerator), 338
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_CONN_HDL6

(C++ enumerator), 339
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_CONN_HDL7

(C++ enumerator), 339
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_CONN_HDL8

(C++ enumerator), 339
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_DEFAULT

(C++ enumerator), 339
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_NUM

(C++ enumerator), 339
esp_ble_power_type_t::ESP_BLE_PWR_TYPE_SCAN

(C++ enumerator), 339
ESP_BLE_PRIM_ADV_INT_MAX (C macro), 161
ESP_BLE_PRIM_ADV_INT_MIN (C macro), 161
esp_ble_privacy_mode_t (C++ enum), 252
esp_ble_privacy_mode_t::ESP_BLE_DEVICE_PRIVACY_MODE

(C++ enumerator), 252
esp_ble_privacy_mode_t::ESP_BLE_NETWORK_PRIVACY_MODE

(C++ enumerator), 252
esp_ble_remove_bond_device (C++ function),

176

Espressif Systems 2727
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_resolve_adv_data (C++ function),
174

esp_ble_resolve_adv_data_by_type (C++
function), 174

esp_ble_sc_oob_req_reply (C++ function),
177

esp_ble_sca_t (C++ enum), 337
esp_ble_sca_t::ESP_BLE_SCA_100PPM

(C++ enumerator), 337
esp_ble_sca_t::ESP_BLE_SCA_150PPM

(C++ enumerator), 337
esp_ble_sca_t::ESP_BLE_SCA_20PPM (C++

enumerator), 338
esp_ble_sca_t::ESP_BLE_SCA_250PPM

(C++ enumerator), 337
esp_ble_sca_t::ESP_BLE_SCA_30PPM (C++

enumerator), 337
esp_ble_sca_t::ESP_BLE_SCA_500PPM

(C++ enumerator), 337
esp_ble_sca_t::ESP_BLE_SCA_50PPM (C++

enumerator), 337
esp_ble_sca_t::ESP_BLE_SCA_75PPM (C++

enumerator), 337
esp_ble_scan_dupilcate_list_flush

(C++ function), 331
esp_ble_scan_duplicate_list_flush

(C++ function), 331
esp_ble_scan_duplicate_t (C++ enum), 247
esp_ble_scan_duplicate_t::BLE_SCAN_DUPLICATE_DISABLE

(C++ enumerator), 247
esp_ble_scan_duplicate_t::BLE_SCAN_DUPLICATE_ENABLE

(C++ enumerator), 247
esp_ble_scan_duplicate_t::BLE_SCAN_DUPLICATE_ENABLE_RESET

(C++ enumerator), 247
esp_ble_scan_duplicate_t::BLE_SCAN_DUPLICATE_MAX

(C++ enumerator), 247
esp_ble_scan_filter_t (C++ enum), 247
esp_ble_scan_filter_t::BLE_SCAN_FILTER_ALLOW_ALL

(C++ enumerator), 247
esp_ble_scan_filter_t::BLE_SCAN_FILTER_ALLOW_ONLY_WLST

(C++ enumerator), 247
esp_ble_scan_filter_t::BLE_SCAN_FILTER_ALLOW_UND_RPA_DIR

(C++ enumerator), 247
esp_ble_scan_filter_t::BLE_SCAN_FILTER_ALLOW_WLIST_RPA_DIR

(C++ enumerator), 247
esp_ble_scan_params_t (C++ struct), 213
esp_ble_scan_params_t::own_addr_type

(C++ member), 213
esp_ble_scan_params_t::scan_duplicate

(C++ member), 213
esp_ble_scan_params_t::scan_filter_policy

(C++ member), 213
esp_ble_scan_params_t::scan_interval

(C++ member), 213
esp_ble_scan_params_t::scan_type (C++

member), 213
esp_ble_scan_params_t::scan_window

(C++ member), 213

ESP_BLE_SCAN_RSP_DATA_LEN_MAX (C macro),
232

esp_ble_scan_type_t (C++ enum), 246
esp_ble_scan_type_t::BLE_SCAN_TYPE_ACTIVE

(C++ enumerator), 247
esp_ble_scan_type_t::BLE_SCAN_TYPE_PASSIVE

(C++ enumerator), 247
esp_ble_sec_act_t (C++ enum), 245
esp_ble_sec_act_t::ESP_BLE_SEC_ENCRYPT

(C++ enumerator), 245
esp_ble_sec_act_t::ESP_BLE_SEC_ENCRYPT_MITM

(C++ enumerator), 245
esp_ble_sec_act_t::ESP_BLE_SEC_ENCRYPT_NO_MITM

(C++ enumerator), 245
esp_ble_sec_key_notif_t (C++ struct), 216
esp_ble_sec_key_notif_t::bd_addr (C++

member), 216
esp_ble_sec_key_notif_t::passkey (C++

member), 216
esp_ble_sec_req_t (C++ struct), 216
esp_ble_sec_req_t::bd_addr (C++ member),

217
esp_ble_sec_t (C++ union), 186
esp_ble_sec_t::auth_cmpl (C++ member),

187
esp_ble_sec_t::ble_id_keys (C++ member),

186
esp_ble_sec_t::ble_key (C++ member), 186
esp_ble_sec_t::ble_req (C++ member), 186
esp_ble_sec_t::key_notif (C++ member),

186
esp_ble_sec_t::oob_data (C++ member), 186
esp_ble_set_encryption (C++ function), 176
esp_ble_sm_param_t (C++ enum), 245
esp_ble_sm_param_t::ESP_BLE_APP_ENC_KEY_SIZE

(C++ enumerator), 246
esp_ble_sm_param_t::ESP_BLE_SM_AUTHEN_REQ_MODE

(C++ enumerator), 245
esp_ble_sm_param_t::ESP_BLE_SM_CLEAR_STATIC_PASSKEY

(C++ enumerator), 246
esp_ble_sm_param_t::ESP_BLE_SM_IOCAP_MODE

(C++ enumerator), 246
esp_ble_sm_param_t::ESP_BLE_SM_MAX_KEY_SIZE

(C++ enumerator), 246
esp_ble_sm_param_t::ESP_BLE_SM_MAX_PARAM

(C++ enumerator), 246
esp_ble_sm_param_t::ESP_BLE_SM_MIN_KEY_SIZE

(C++ enumerator), 246
esp_ble_sm_param_t::ESP_BLE_SM_ONLY_ACCEPT_SPECIFIED_SEC_AUTH

(C++ enumerator), 246
esp_ble_sm_param_t::ESP_BLE_SM_OOB_SUPPORT

(C++ enumerator), 246
esp_ble_sm_param_t::ESP_BLE_SM_PASSKEY

(C++ enumerator), 245
esp_ble_sm_param_t::ESP_BLE_SM_SET_INIT_KEY

(C++ enumerator), 246
esp_ble_sm_param_t::ESP_BLE_SM_SET_RSP_KEY

(C++ enumerator), 246

Espressif Systems 2728
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_ble_sm_param_t::ESP_BLE_SM_SET_STATIC_PASSKEY
(C++ enumerator), 246

esp_ble_tx_power_get (C++ function), 331
esp_ble_tx_power_set (C++ function), 330
ESP_BLE_VENDOR_CHAN_MAP_UPDATE_EVT (C

macro), 236
ESP_BLE_VENDOR_CHMAP_UPDATE_EVT_MASK

(C macro), 236
esp_ble_vendor_cmd_params_t (C++ struct),

210
esp_ble_vendor_cmd_params_t::opcode

(C++ member), 211
esp_ble_vendor_cmd_params_t::p_param_buf

(C++ member), 211
esp_ble_vendor_cmd_params_t::param_len

(C++ member), 211
ESP_BLE_VENDOR_CONN_REQ_RECV_EVT_MASK

(C macro), 236
ESP_BLE_VENDOR_CONN_RSP_RECV_EVT_MASK

(C macro), 236
esp_ble_vendor_evt_mask_t (C++ type), 237
esp_ble_vendor_evt_param_t (C++ union),

187
esp_ble_vendor_evt_param_t::ble_chan_map_update_evt_param

(C++ struct), 187
esp_ble_vendor_evt_param_t::ble_chan_map_update_evt_param::ch_map

(C++ member), 187
esp_ble_vendor_evt_param_t::ble_chan_map_update_evt_param::conn_handle

(C++ member), 187
esp_ble_vendor_evt_param_t::ble_chan_map_update_evt_param::status

(C++ member), 187
esp_ble_vendor_evt_param_t::ble_pdu_recv_evt_param

(C++ struct), 187
esp_ble_vendor_evt_param_t::ble_pdu_recv_evt_param::addr_type

(C++ member), 187
esp_ble_vendor_evt_param_t::ble_pdu_recv_evt_param::handle

(C++ member), 187
esp_ble_vendor_evt_param_t::ble_pdu_recv_evt_param::peer_addr

(C++ member), 188
esp_ble_vendor_evt_param_t::ble_pdu_recv_evt_param::type

(C++ member), 187
esp_ble_vendor_evt_param_t::ble_sleep_wakeup_evt_param

(C++ struct), 188
esp_ble_vendor_evt_param_t::chan_map_update

(C++ member), 187
esp_ble_vendor_evt_param_t::pdu_recv

(C++ member), 187
esp_ble_vendor_evt_param_t::sleep_wakeup

(C++ member), 187
esp_ble_vendor_evt_t (C++ type), 237
ESP_BLE_VENDOR_PDU_RECV_EVT (C macro),

236
esp_ble_vendor_pdu_t (C++ enum), 252
esp_ble_vendor_pdu_t::ESP_BLE_VENDOR_PDU_CONN_REQ

(C++ enumerator), 252
esp_ble_vendor_pdu_t::ESP_BLE_VENDOR_PDU_CONN_RSP

(C++ enumerator), 252
esp_ble_vendor_pdu_t::ESP_BLE_VENDOR_PDU_SCAN_REQ

(C++ enumerator), 252
ESP_BLE_VENDOR_SCAN_REQ_RECV_EVT_MASK

(C macro), 235
ESP_BLE_VENDOR_SLEEP_WAKEUP_EVT (C

macro), 236
ESP_BLE_VENDOR_SLEEP_WAKEUP_EVT_MASK

(C macro), 236
esp_ble_wl_addr_type_t (C++ enum), 167
esp_ble_wl_addr_type_t::BLE_WL_ADDR_TYPE_PUBLIC

(C++ enumerator), 167
esp_ble_wl_addr_type_t::BLE_WL_ADDR_TYPE_RANDOM

(C++ enumerator), 167
esp_ble_wl_operation_t (C++ enum), 250
esp_ble_wl_operation_t::ESP_BLE_WHITELIST_ADD

(C++ enumerator), 250
esp_ble_wl_operation_t::ESP_BLE_WHITELIST_CLEAR

(C++ enumerator), 250
esp_ble_wl_operation_t::ESP_BLE_WHITELIST_REMOVE

(C++ enumerator), 250
esp_bluedroid_deinit (C++ function), 168
esp_bluedroid_disable (C++ function), 168
esp_bluedroid_enable (C++ function), 168
esp_bluedroid_get_status (C++ function),

168
esp_bluedroid_init (C++ function), 168
ESP_BLUEDROID_STATUS_CHECK (C macro), 160
esp_bluedroid_status_t (C++ enum), 168
esp_bluedroid_status_t::ESP_BLUEDROID_STATUS_ENABLED

(C++ enumerator), 168
esp_bluedroid_status_t::ESP_BLUEDROID_STATUS_INITIALIZED

(C++ enumerator), 168
esp_bluedroid_status_t::ESP_BLUEDROID_STATUS_UNINITIALIZED

(C++ enumerator), 168
esp_blufi_ap_record_t (C++ struct), 323
esp_blufi_ap_record_t::rssi (C++ mem-

ber), 323
esp_blufi_ap_record_t::ssid (C++ mem-

ber), 323
ESP_BLUFI_BD_ADDR_LEN (C macro), 324
esp_blufi_bd_addr_t (C++ type), 324
esp_blufi_callbacks_t (C++ struct), 323
esp_blufi_callbacks_t::checksum_func

(C++ member), 323
esp_blufi_callbacks_t::decrypt_func

(C++ member), 323
esp_blufi_callbacks_t::encrypt_func

(C++ member), 323
esp_blufi_callbacks_t::event_cb (C++

member), 323
esp_blufi_callbacks_t::negotiate_data_handler

(C++ member), 323
esp_blufi_cb_event_t (C++ enum), 324
esp_blufi_cb_event_t::ESP_BLUFI_EVENT_BLE_CONNECT

(C++ enumerator), 325
esp_blufi_cb_event_t::ESP_BLUFI_EVENT_BLE_DISCONNECT

(C++ enumerator), 325
esp_blufi_cb_event_t::ESP_BLUFI_EVENT_DEAUTHENTICATE_STA

(C++ enumerator), 325

Espressif Systems 2729
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_DEINIT_FINISH
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_GET_WIFI_LIST
(C++ enumerator), 326

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_GET_WIFI_STATUS
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_INIT_FINISH
(C++ enumerator), 324

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_CA_CERT
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_CLIENT_CERT
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_CLIENT_PRIV_KEY
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_CUSTOM_DATA
(C++ enumerator), 326

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_SERVER_CERT
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_SERVER_PRIV_KEY
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_SLAVE_DISCONNECT_BLE
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_SOFTAP_AUTH_MODE
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_SOFTAP_CHANNEL
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_SOFTAP_MAX_CONN_NUM
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_SOFTAP_PASSWD
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_SOFTAP_SSID
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_STA_BSSID
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_STA_PASSWD
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_STA_SSID
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_RECV_USERNAME
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_REPORT_ERROR
(C++ enumerator), 326

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_REQ_CONNECT_TO_AP
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_REQ_DISCONNECT_FROM_AP
(C++ enumerator), 325

esp_blufi_cb_event_t::ESP_BLUFI_EVENT_SET_WIFI_OPMODE
(C++ enumerator), 325

esp_blufi_cb_param_t (C++ union), 315
esp_blufi_cb_param_t::blufi_connect_evt_param

(C++ struct), 317
esp_blufi_cb_param_t::blufi_connect_evt_param::conn_id

(C++ member), 317
esp_blufi_cb_param_t::blufi_connect_evt_param::remote_bda

(C++ member), 317
esp_blufi_cb_param_t::blufi_connect_evt_param::server_if

(C++ member), 317
esp_blufi_cb_param_t::blufi_deinit_finish_evt_param

(C++ struct), 317
esp_blufi_cb_param_t::blufi_deinit_finish_evt_param::state

(C++ member), 317
esp_blufi_cb_param_t::blufi_disconnect_evt_param

(C++ struct), 317
esp_blufi_cb_param_t::blufi_disconnect_evt_param::remote_bda

(C++ member), 317
esp_blufi_cb_param_t::blufi_get_error_evt_param

(C++ struct), 317
esp_blufi_cb_param_t::blufi_get_error_evt_param::state

(C++ member), 318
esp_blufi_cb_param_t::blufi_init_finish_evt_param

(C++ struct), 318
esp_blufi_cb_param_t::blufi_init_finish_evt_param::state

(C++ member), 318
esp_blufi_cb_param_t::blufi_recv_ca_evt_param

(C++ struct), 318
esp_blufi_cb_param_t::blufi_recv_ca_evt_param::cert

(C++ member), 318
esp_blufi_cb_param_t::blufi_recv_ca_evt_param::cert_len

(C++ member), 318
esp_blufi_cb_param_t::blufi_recv_client_cert_evt_param

(C++ struct), 318
esp_blufi_cb_param_t::blufi_recv_client_cert_evt_param::cert

(C++ member), 318
esp_blufi_cb_param_t::blufi_recv_client_cert_evt_param::cert_len

(C++ member), 318
esp_blufi_cb_param_t::blufi_recv_client_pkey_evt_param

(C++ struct), 318
esp_blufi_cb_param_t::blufi_recv_client_pkey_evt_param::pkey

(C++ member), 318
esp_blufi_cb_param_t::blufi_recv_client_pkey_evt_param::pkey_len

(C++ member), 318
esp_blufi_cb_param_t::blufi_recv_custom_data_evt_param

(C++ struct), 318
esp_blufi_cb_param_t::blufi_recv_custom_data_evt_param::data

(C++ member), 319
esp_blufi_cb_param_t::blufi_recv_custom_data_evt_param::data_len

(C++ member), 319
esp_blufi_cb_param_t::blufi_recv_server_cert_evt_param

(C++ struct), 319
esp_blufi_cb_param_t::blufi_recv_server_cert_evt_param::cert

(C++ member), 319
esp_blufi_cb_param_t::blufi_recv_server_cert_evt_param::cert_len

(C++ member), 319
esp_blufi_cb_param_t::blufi_recv_server_pkey_evt_param

(C++ struct), 319
esp_blufi_cb_param_t::blufi_recv_server_pkey_evt_param::pkey

(C++ member), 319
esp_blufi_cb_param_t::blufi_recv_server_pkey_evt_param::pkey_len

(C++ member), 319
esp_blufi_cb_param_t::blufi_recv_softap_auth_mode_evt_param

(C++ struct), 319
esp_blufi_cb_param_t::blufi_recv_softap_auth_mode_evt_param::auth_mode

(C++ member), 319
esp_blufi_cb_param_t::blufi_recv_softap_channel_evt_param

(C++ struct), 319
esp_blufi_cb_param_t::blufi_recv_softap_channel_evt_param::channel

Espressif Systems 2730
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 320
esp_blufi_cb_param_t::blufi_recv_softap_max_conn_num_evt_param

(C++ struct), 320
esp_blufi_cb_param_t::blufi_recv_softap_max_conn_num_evt_param::max_conn_num

(C++ member), 320
esp_blufi_cb_param_t::blufi_recv_softap_passwd_evt_param

(C++ struct), 320
esp_blufi_cb_param_t::blufi_recv_softap_passwd_evt_param::passwd

(C++ member), 320
esp_blufi_cb_param_t::blufi_recv_softap_passwd_evt_param::passwd_len

(C++ member), 320
esp_blufi_cb_param_t::blufi_recv_softap_ssid_evt_param

(C++ struct), 320
esp_blufi_cb_param_t::blufi_recv_softap_ssid_evt_param::ssid

(C++ member), 320
esp_blufi_cb_param_t::blufi_recv_softap_ssid_evt_param::ssid_len

(C++ member), 320
esp_blufi_cb_param_t::blufi_recv_sta_bssid_evt_param

(C++ struct), 320
esp_blufi_cb_param_t::blufi_recv_sta_bssid_evt_param::bssid

(C++ member), 320
esp_blufi_cb_param_t::blufi_recv_sta_passwd_evt_param

(C++ struct), 320
esp_blufi_cb_param_t::blufi_recv_sta_passwd_evt_param::passwd

(C++ member), 321
esp_blufi_cb_param_t::blufi_recv_sta_passwd_evt_param::passwd_len

(C++ member), 321
esp_blufi_cb_param_t::blufi_recv_sta_ssid_evt_param

(C++ struct), 321
esp_blufi_cb_param_t::blufi_recv_sta_ssid_evt_param::ssid

(C++ member), 321
esp_blufi_cb_param_t::blufi_recv_sta_ssid_evt_param::ssid_len

(C++ member), 321
esp_blufi_cb_param_t::blufi_recv_username_evt_param

(C++ struct), 321
esp_blufi_cb_param_t::blufi_recv_username_evt_param::name

(C++ member), 321
esp_blufi_cb_param_t::blufi_recv_username_evt_param::name_len

(C++ member), 321
esp_blufi_cb_param_t::blufi_set_wifi_mode_evt_param

(C++ struct), 321
esp_blufi_cb_param_t::blufi_set_wifi_mode_evt_param::op_mode

(C++ member), 321
esp_blufi_cb_param_t::ca (C++ member),

316
esp_blufi_cb_param_t::client_cert

(C++ member), 316
esp_blufi_cb_param_t::client_pkey

(C++ member), 317
esp_blufi_cb_param_t::connect (C++

member), 316
esp_blufi_cb_param_t::custom_data

(C++ member), 317
esp_blufi_cb_param_t::deinit_finish

(C++ member), 316
esp_blufi_cb_param_t::disconnect (C++

member), 316
esp_blufi_cb_param_t::init_finish

(C++ member), 316
esp_blufi_cb_param_t::report_error

(C++ member), 317
esp_blufi_cb_param_t::server_cert

(C++ member), 316
esp_blufi_cb_param_t::server_pkey

(C++ member), 317
esp_blufi_cb_param_t::softap_auth_mode

(C++ member), 316
esp_blufi_cb_param_t::softap_channel

(C++ member), 316
esp_blufi_cb_param_t::softap_max_conn_num

(C++ member), 316
esp_blufi_cb_param_t::softap_passwd

(C++ member), 316
esp_blufi_cb_param_t::softap_ssid

(C++ member), 316
esp_blufi_cb_param_t::sta_bssid (C++

member), 316
esp_blufi_cb_param_t::sta_passwd (C++

member), 316
esp_blufi_cb_param_t::sta_ssid (C++

member), 316
esp_blufi_cb_param_t::username (C++

member), 316
esp_blufi_cb_param_t::wifi_mode (C++

member), 316
esp_blufi_checksum_func_t (C++ type), 324
esp_blufi_decrypt_func_t (C++ type), 324
esp_blufi_deinit_state_t (C++ enum), 326
esp_blufi_deinit_state_t::ESP_BLUFI_DEINIT_FAILED

(C++ enumerator), 326
esp_blufi_deinit_state_t::ESP_BLUFI_DEINIT_OK

(C++ enumerator), 326
esp_blufi_encrypt_func_t (C++ type), 324
esp_blufi_error_state_t (C++ enum), 326
esp_blufi_error_state_t::ESP_BLUFI_CALC_MD5_ERROR

(C++ enumerator), 327
esp_blufi_error_state_t::ESP_BLUFI_CHECKSUM_ERROR

(C++ enumerator), 326
esp_blufi_error_state_t::ESP_BLUFI_DATA_FORMAT_ERROR

(C++ enumerator), 327
esp_blufi_error_state_t::ESP_BLUFI_DECRYPT_ERROR

(C++ enumerator), 326
esp_blufi_error_state_t::ESP_BLUFI_DH_MALLOC_ERROR

(C++ enumerator), 327
esp_blufi_error_state_t::ESP_BLUFI_DH_PARAM_ERROR

(C++ enumerator), 327
esp_blufi_error_state_t::ESP_BLUFI_ENCRYPT_ERROR

(C++ enumerator), 326
esp_blufi_error_state_t::ESP_BLUFI_INIT_SECURITY_ERROR

(C++ enumerator), 326
esp_blufi_error_state_t::ESP_BLUFI_MAKE_PUBLIC_ERROR

(C++ enumerator), 327
esp_blufi_error_state_t::ESP_BLUFI_MSG_STATE_ERROR

(C++ enumerator), 327
esp_blufi_error_state_t::ESP_BLUFI_READ_PARAM_ERROR

(C++ enumerator), 327

Espressif Systems 2731
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_blufi_error_state_t::ESP_BLUFI_SEQUENCE_ERROR
(C++ enumerator), 326

esp_blufi_error_state_t::ESP_BLUFI_WIFI_SCAN_FAIL
(C++ enumerator), 327

esp_blufi_event_cb_t (C++ type), 324
esp_blufi_extra_info_t (C++ struct), 321
esp_blufi_extra_info_t::softap_authmode

(C++ member), 322
esp_blufi_extra_info_t::softap_authmode_set

(C++ member), 322
esp_blufi_extra_info_t::softap_channel

(C++ member), 322
esp_blufi_extra_info_t::softap_channel_set

(C++ member), 322
esp_blufi_extra_info_t::softap_max_conn_num

(C++ member), 322
esp_blufi_extra_info_t::softap_max_conn_num_set

(C++ member), 322
esp_blufi_extra_info_t::softap_passwd

(C++ member), 322
esp_blufi_extra_info_t::softap_passwd_len

(C++ member), 322
esp_blufi_extra_info_t::softap_ssid

(C++ member), 322
esp_blufi_extra_info_t::softap_ssid_len

(C++ member), 322
esp_blufi_extra_info_t::sta_bssid

(C++ member), 322
esp_blufi_extra_info_t::sta_bssid_set

(C++ member), 322
esp_blufi_extra_info_t::sta_conn_end_reason

(C++ member), 323
esp_blufi_extra_info_t::sta_conn_end_reason_set

(C++ member), 323
esp_blufi_extra_info_t::sta_conn_rssi

(C++ member), 323
esp_blufi_extra_info_t::sta_conn_rssi_set

(C++ member), 323
esp_blufi_extra_info_t::sta_max_conn_retry

(C++ member), 322
esp_blufi_extra_info_t::sta_max_conn_retry_set

(C++ member), 323
esp_blufi_extra_info_t::sta_passwd

(C++ member), 322
esp_blufi_extra_info_t::sta_passwd_len

(C++ member), 322
esp_blufi_extra_info_t::sta_ssid (C++

member), 322
esp_blufi_extra_info_t::sta_ssid_len

(C++ member), 322
esp_blufi_get_version (C++ function), 315
esp_blufi_init_state_t (C++ enum), 326
esp_blufi_init_state_t::ESP_BLUFI_INIT_FAILED

(C++ enumerator), 326
esp_blufi_init_state_t::ESP_BLUFI_INIT_OK

(C++ enumerator), 326
esp_blufi_negotiate_data_handler_t

(C++ type), 324

esp_blufi_profile_deinit (C++ function),
315

esp_blufi_profile_init (C++ function), 315
esp_blufi_register_callbacks (C++ func-

tion), 315
esp_blufi_send_custom_data (C++ function),

315
esp_blufi_send_error_info (C++ function),

315
esp_blufi_send_wifi_conn_report (C++

function), 315
esp_blufi_send_wifi_list (C++ function),

315
esp_blufi_sta_conn_state_t (C++ enum),

326
esp_blufi_sta_conn_state_t::ESP_BLUFI_STA_CONN_FAIL

(C++ enumerator), 326
esp_blufi_sta_conn_state_t::ESP_BLUFI_STA_CONN_SUCCESS

(C++ enumerator), 326
esp_blufi_sta_conn_state_t::ESP_BLUFI_STA_CONNECTING

(C++ enumerator), 326
esp_blufi_sta_conn_state_t::ESP_BLUFI_STA_NO_IP

(C++ enumerator), 326
esp_bredr_sco_datapath_set (C++ function),

332
esp_bredr_tx_power_get (C++ function), 332
esp_bredr_tx_power_set (C++ function), 331
ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL (C

macro), 336
esp_bt_controller_config_t (C++ struct),

333
esp_bt_controller_config_t::auto_latency

(C++ member), 335
esp_bt_controller_config_t::ble_aa_check

(C++ member), 336
esp_bt_controller_config_t::ble_chan_ass_en

(C++ member), 336
esp_bt_controller_config_t::ble_llcp_disc_flag

(C++ member), 336
esp_bt_controller_config_t::ble_max_conn

(C++ member), 334
esp_bt_controller_config_t::ble_ping_en

(C++ member), 336
esp_bt_controller_config_t::ble_sca

(C++ member), 335
esp_bt_controller_config_t::ble_scan_backoff

(C++ member), 336
esp_bt_controller_config_t::bt_legacy_auth_vs_evt

(C++ member), 335
esp_bt_controller_config_t::bt_max_acl_conn

(C++ member), 335
esp_bt_controller_config_t::bt_max_sync_conn

(C++ member), 335
esp_bt_controller_config_t::bt_sco_datapath

(C++ member), 335
esp_bt_controller_config_t::controller_debug_flag

(C++ member), 334
esp_bt_controller_config_t::controller_task_prio

Espressif Systems 2732
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 333
esp_bt_controller_config_t::controller_task_stack_size

(C++ member), 333
esp_bt_controller_config_t::dup_list_refresh_period

(C++ member), 336
esp_bt_controller_config_t::enc_key_sz_min

(C++ member), 335
esp_bt_controller_config_t::hci_uart_baudrate

(C++ member), 334
esp_bt_controller_config_t::hci_uart_no

(C++ member), 333
esp_bt_controller_config_t::hli (C++

member), 335
esp_bt_controller_config_t::magic

(C++ member), 336
esp_bt_controller_config_t::mesh_adv_size

(C++ member), 334
esp_bt_controller_config_t::mode (C++

member), 334
esp_bt_controller_config_t::normal_adv_size

(C++ member), 334
esp_bt_controller_config_t::pcm_fsyncshp

(C++ member), 335
esp_bt_controller_config_t::pcm_polar

(C++ member), 335
esp_bt_controller_config_t::pcm_role

(C++ member), 335
esp_bt_controller_config_t::scan_duplicate_mode

(C++ member), 334
esp_bt_controller_config_t::scan_duplicate_type

(C++ member), 334
esp_bt_controller_config_t::send_adv_reserved_size

(C++ member), 334
esp_bt_controller_deinit (C++ function),

327
esp_bt_controller_disable (C++ function),

328
esp_bt_controller_enable (C++ function),

328
esp_bt_controller_get_status (C++ func-

tion), 328
esp_bt_controller_init (C++ function), 327
esp_bt_controller_mem_release (C++ func-

tion), 328
esp_bt_controller_status_t (C++ enum),

338
esp_bt_controller_status_t::ESP_BT_CONTROLLER_STATUS_ENABLED

(C++ enumerator), 338
esp_bt_controller_status_t::ESP_BT_CONTROLLER_STATUS_IDLE

(C++ enumerator), 338
esp_bt_controller_status_t::ESP_BT_CONTROLLER_STATUS_INITED

(C++ enumerator), 338
esp_bt_controller_status_t::ESP_BT_CONTROLLER_STATUS_NUM

(C++ enumerator), 338
esp_bt_dev_get_address (C++ function), 169
esp_bt_dev_set_device_name (C++ function),

169
esp_bt_dev_type_t (C++ enum), 167

esp_bt_dev_type_t::ESP_BT_DEVICE_TYPE_BLE
(C++ enumerator), 167

esp_bt_dev_type_t::ESP_BT_DEVICE_TYPE_BREDR
(C++ enumerator), 167

esp_bt_dev_type_t::ESP_BT_DEVICE_TYPE_DUMO
(C++ enumerator), 167

esp_bt_duplicate_exceptional_subcode_type_t
(C++ enum), 250

esp_bt_duplicate_exceptional_subcode_type_t::ESP_BLE_DUPLICATE_EXCEPTIONAL_LIST_ADD
(C++ enumerator), 250

esp_bt_duplicate_exceptional_subcode_type_t::ESP_BLE_DUPLICATE_EXCEPTIONAL_LIST_CLEAN
(C++ enumerator), 251

esp_bt_duplicate_exceptional_subcode_type_t::ESP_BLE_DUPLICATE_EXCEPTIONAL_LIST_REMOVE
(C++ enumerator), 250

esp_bt_get_lpclk_src (C++ function), 333
esp_bt_mem_release (C++ function), 329
esp_bt_mode_t (C++ enum), 337
esp_bt_mode_t::ESP_BT_MODE_BLE (C++

enumerator), 337
esp_bt_mode_t::ESP_BT_MODE_BTDM (C++

enumerator), 337
esp_bt_mode_t::ESP_BT_MODE_CLASSIC_BT

(C++ enumerator), 337
esp_bt_mode_t::ESP_BT_MODE_IDLE (C++

enumerator), 337
ESP_BT_OCTET16_LEN (C macro), 160
esp_bt_octet16_t (C++ type), 162
ESP_BT_OCTET8_LEN (C macro), 160
esp_bt_octet8_t (C++ type), 162
esp_bt_set_lpclk_src (C++ function), 333
esp_bt_sleep_clock_t (C++ enum), 340
esp_bt_sleep_clock_t::ESP_BT_SLEEP_CLOCK_EXT_32K_XTAL

(C++ enumerator), 340
esp_bt_sleep_clock_t::ESP_BT_SLEEP_CLOCK_MAIN_XTAL

(C++ enumerator), 340
esp_bt_sleep_clock_t::ESP_BT_SLEEP_CLOCK_NONE

(C++ enumerator), 340
esp_bt_sleep_disable (C++ function), 330
esp_bt_sleep_enable (C++ function), 330
ESP_BT_STATUS_BASE_FOR_HCI_ERR (C

macro), 160
esp_bt_status_t (C++ enum), 162
esp_bt_status_t::ESP_BT_STATUS_AUTH_FAILURE

(C++ enumerator), 163
esp_bt_status_t::ESP_BT_STATUS_AUTH_REJECTED

(C++ enumerator), 163
esp_bt_status_t::ESP_BT_STATUS_BUSY

(C++ enumerator), 163
esp_bt_status_t::ESP_BT_STATUS_CONTROL_LE_DATA_LEN_UNSUPPORTED

(C++ enumerator), 163
esp_bt_status_t::ESP_BT_STATUS_DONE

(C++ enumerator), 163
esp_bt_status_t::ESP_BT_STATUS_EIR_TOO_LARGE

(C++ enumerator), 163
esp_bt_status_t::ESP_BT_STATUS_ERR_ILLEGAL_PARAMETER_FMT

(C++ enumerator), 163
esp_bt_status_t::ESP_BT_STATUS_FAIL

(C++ enumerator), 163

Espressif Systems 2733
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_bt_status_t::ESP_BT_STATUS_HCI_AUTH_FAILURE
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_CCA_REJECTED
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_CHAN_CLASSIF_NOT_SUPPORTED
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_COMMAND_DISALLOWED
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_CONN_CAUSE_LOCAL_HOST
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_CONN_FAILED_ESTABLISHMENT
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_CONN_TOUT_DUE_TO_MIC_FAILURE
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_CONNECTION_EXISTS
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_CONNECTION_TOUT
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_CONTROLLER_BUSY
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_DIFF_TRANSACTION_COLLISION
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_DIRECTED_ADVERTISING_TIMEOUT
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_ENCRY_MODE_NOT_ACCEPTABLE
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_HOST_BUSY_PAIRING
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_HOST_REJECT_DEVICE
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_HOST_REJECT_RESOURCES
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_HOST_REJECT_SECURITY
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_HOST_TIMEOUT
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_HW_FAILURE
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_ILLEGAL_COMMAND
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_HCI_ILLEGAL_PARAMETER_FMT
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_INQ_RSP_DATA_TOO_LARGE
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_INSTANT_PASSED
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_INSUFFCIENT_SECURITY
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_INVALID_LMP_PARAM
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_KEY_MISSING
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_LIMIT_REACHED
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_LMP_ERR_TRANS_COLLISION
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_LMP_PDU_NOT_ALLOWED
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_LMP_RESPONSE_TIMEOUT
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_MAC_CONNECTION_FAILED
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_MAX_NUM_OF_CONNECTIONS
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_MAX_NUM_OF_SCOS
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_MEMORY_FULL
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_NO_CONNECTION
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_OPT_CANCEL_BY_HOST
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_PAGE_TIMEOUT
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_PAIRING_NOT_ALLOWED
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_PAIRING_WITH_UNIT_KEY_NOT_SUPPORTED
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_PARAM_OUT_OF_RANGE
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_PEER_LOW_RESOURCES
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_PEER_POWER_OFF
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_PEER_USER
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_PKT_TOO_LONG
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_QOS_NOT_SUPPORTED
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_QOS_REJECTED
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_QOS_UNACCEPTABLE_PARAM
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_REJ_NO_SUITABLE_CHANNEL
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_REPEATED_ATTEMPTS
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_HCI_RESERVED_SLOT_VIOLATION
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_ROLE_CHANGE_NOT_ALLOWED
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_ROLE_SWITCH_FAILED
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_ROLE_SWITCH_PENDING
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_SCO_AIR_MODE
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_SCO_INTERVAL_REJECTED
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_SCO_OFFSET_REJECTED
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_SIMPLE_PAIRING_NOT_SUPPORTED
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_SUCCESS
(C++ enumerator), 163

Espressif Systems 2734
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_bt_status_t::ESP_BT_STATUS_HCI_TOO_EARLY
(C++ enumerator), 167

esp_bt_status_t::ESP_BT_STATUS_HCI_TOO_LATE
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_TYPE0_SUBMAP_NOT_DEFINED
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_UNACCEPT_CONN_INTERVAL
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_UNDEFINED_0x2B
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_UNDEFINED_0x31
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_UNDEFINED_0x33
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_UNIT_KEY_USED
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_UNKNOWN_ADV_ID
(C++ enumerator), 166

esp_bt_status_t::ESP_BT_STATUS_HCI_UNKNOWN_LMP_PDU
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_UNSPECIFIED
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_UNSUPPORTED_LMP_PARAMETERS
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_UNSUPPORTED_REM_FEATURE
(C++ enumerator), 165

esp_bt_status_t::ESP_BT_STATUS_HCI_UNSUPPORTED_VALUE
(C++ enumerator), 164

esp_bt_status_t::ESP_BT_STATUS_INVALID_STATIC_RAND_ADDR
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_MEMORY_FULL
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_NOMEM
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_NOT_READY
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_PARAM_OUT_OF_RANGE
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_PARM_INVALID
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_PEER_LE_DATA_LEN_UNSUPPORTED
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_PENDING
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_RMT_DEV_DOWN
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_SUCCESS
(C++ enumerator), 162

esp_bt_status_t::ESP_BT_STATUS_TIMEOUT
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_UNACCEPT_CONN_INTERVAL
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_UNHANDLED
(C++ enumerator), 163

esp_bt_status_t::ESP_BT_STATUS_UNSUPPORTED
(C++ enumerator), 163

esp_bt_uuid_t (C++ struct), 160
esp_bt_uuid_t::len (C++ member), 160

esp_bt_uuid_t::uuid (C++ member), 160
esp_bt_uuid_t::uuid128 (C++ member), 160
esp_bt_uuid_t::uuid16 (C++ member), 160
esp_bt_uuid_t::uuid32 (C++ member), 160
esp_btbb_disable (C++ function), 2442
esp_btbb_enable (C++ function), 2442
esp_cache_msync (C++ function), 2012
ESP_CACHE_MSYNC_FLAG_INVALIDATE (C

macro), 2012
ESP_CACHE_MSYNC_FLAG_UNALIGNED (C

macro), 2012
esp_chip_id_t (C++ enum), 1772
esp_chip_id_t::ESP_CHIP_ID_ESP32 (C++

enumerator), 1772
esp_chip_id_t::ESP_CHIP_ID_ESP32C2

(C++ enumerator), 1772
esp_chip_id_t::ESP_CHIP_ID_ESP32C3

(C++ enumerator), 1772
esp_chip_id_t::ESP_CHIP_ID_ESP32C6

(C++ enumerator), 1772
esp_chip_id_t::ESP_CHIP_ID_ESP32H2

(C++ enumerator), 1772
esp_chip_id_t::ESP_CHIP_ID_ESP32S2

(C++ enumerator), 1772
esp_chip_id_t::ESP_CHIP_ID_ESP32S3

(C++ enumerator), 1772
esp_chip_id_t::ESP_CHIP_ID_INVALID

(C++ enumerator), 1772
esp_chip_info (C++ function), 2055
esp_chip_info_t (C++ struct), 2055
esp_chip_info_t::cores (C++ member), 2055
esp_chip_info_t::features (C++ member),

2055
esp_chip_info_t::model (C++ member), 2055
esp_chip_info_t::revision (C++ member),

2055
esp_chip_model_t (C++ enum), 2055
esp_chip_model_t::CHIP_ESP32 (C++ enu-

merator), 2055
esp_chip_model_t::CHIP_ESP32C2 (C++

enumerator), 2056
esp_chip_model_t::CHIP_ESP32C3 (C++

enumerator), 2056
esp_chip_model_t::CHIP_ESP32C6 (C++

enumerator), 2056
esp_chip_model_t::CHIP_ESP32H2 (C++

enumerator), 2056
esp_chip_model_t::CHIP_ESP32S2 (C++

enumerator), 2056
esp_chip_model_t::CHIP_ESP32S3 (C++

enumerator), 2056
esp_chip_model_t::CHIP_POSIX_LINUX

(C++ enumerator), 2056
esp_clk_tree_src_freq_precision_t

(C++ enum), 880
esp_clk_tree_src_freq_precision_t::ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX

(C++ enumerator), 880
esp_clk_tree_src_freq_precision_t::ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED

Espressif Systems 2735
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 880
esp_clk_tree_src_freq_precision_t::ESP_CLK_TREE_SRC_FREQ_PRECISION_EXACT

(C++ enumerator), 880
esp_clk_tree_src_freq_precision_t::ESP_CLK_TREE_SRC_FREQ_PRECISION_INVALID

(C++ enumerator), 880
esp_clk_tree_src_get_freq_hz (C++ func-

tion), 880
esp_console_cmd_func_t (C++ type), 1792
esp_console_cmd_register (C++ function),

1787
esp_console_cmd_t (C++ struct), 1791
esp_console_cmd_t::argtable (C++ mem-

ber), 1792
esp_console_cmd_t::command (C++ member),

1791
esp_console_cmd_t::func (C++ member),

1791
esp_console_cmd_t::help (C++ member),

1791
esp_console_cmd_t::hint (C++ member),

1791
ESP_CONSOLE_CONFIG_DEFAULT (Cmacro), 1792
esp_console_config_t (C++ struct), 1790
esp_console_config_t::hint_bold (C++

member), 1790
esp_console_config_t::hint_color (C++

member), 1790
esp_console_config_t::max_cmdline_args

(C++ member), 1790
esp_console_config_t::max_cmdline_length

(C++ member), 1790
esp_console_deinit (C++ function), 1787
ESP_CONSOLE_DEV_UART_CONFIG_DEFAULT (C

macro), 1792
esp_console_dev_uart_config_t (C++

struct), 1791
esp_console_dev_uart_config_t::baud_rate

(C++ member), 1791
esp_console_dev_uart_config_t::channel

(C++ member), 1791
esp_console_dev_uart_config_t::rx_gpio_num

(C++ member), 1791
esp_console_dev_uart_config_t::tx_gpio_num

(C++ member), 1791
ESP_CONSOLE_DEV_USB_SERIAL_JTAG_CONFIG_DEFAULT

(C macro), 1792
esp_console_dev_usb_serial_jtag_config_t

(C++ struct), 1791
esp_console_get_completion (C++ function),

1788
esp_console_get_hint (C++ function), 1788
esp_console_init (C++ function), 1787
esp_console_new_repl_uart (C++ function),

1789
esp_console_new_repl_usb_serial_jtag

(C++ function), 1789
esp_console_register_help_command

(C++ function), 1789

ESP_CONSOLE_REPL_CONFIG_DEFAULT (C
macro), 1792

esp_console_repl_config_t (C++ struct),
1790

esp_console_repl_config_t::history_save_path
(C++ member), 1790

esp_console_repl_config_t::max_cmdline_length
(C++ member), 1791

esp_console_repl_config_t::max_history_len
(C++ member), 1790

esp_console_repl_config_t::prompt
(C++ member), 1791

esp_console_repl_config_t::task_priority
(C++ member), 1790

esp_console_repl_config_t::task_stack_size
(C++ member), 1790

esp_console_repl_s (C++ struct), 1792
esp_console_repl_s::del (C++ member),

1792
esp_console_repl_t (C++ type), 1792
esp_console_run (C++ function), 1787
esp_console_split_argv (C++ function), 1788
esp_console_start_repl (C++ function), 1790
esp_cpu_clear_breakpoint (C++ function),

2059
esp_cpu_clear_watchpoint (C++ function),

2059
esp_cpu_compare_and_set (C++ function),

2060
esp_cpu_configure_region_protection

(C++ function), 2058
esp_cpu_cycle_count_t (C++ type), 2061
esp_cpu_dbgr_break (C++ function), 2060
esp_cpu_dbgr_is_attached (C++ function),

2060
esp_cpu_get_call_addr (C++ function), 2060
esp_cpu_get_core_id (C++ function), 2056
esp_cpu_get_cycle_count (C++ function),

2057
esp_cpu_get_sp (C++ function), 2056
ESP_CPU_INTR_DESC_FLAG_RESVD (C macro),

2060
ESP_CPU_INTR_DESC_FLAG_SPECIAL (C

macro), 2060
esp_cpu_intr_desc_t (C++ struct), 2060
esp_cpu_intr_desc_t::flags (C++ member),

2060
esp_cpu_intr_desc_t::priority (C++

member), 2060
esp_cpu_intr_desc_t::type (C++ member),

2060
esp_cpu_intr_disable (C++ function), 2058
esp_cpu_intr_edge_ack (C++ function), 2058
esp_cpu_intr_enable (C++ function), 2058
esp_cpu_intr_get_desc (C++ function), 2057
esp_cpu_intr_get_enabled_mask (C++ func-

tion), 2058
esp_cpu_intr_get_handler_arg (C++ func-

Espressif Systems 2736
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

tion), 2058
esp_cpu_intr_get_priority (C++ function),

2058
esp_cpu_intr_get_type (C++ function), 2057
esp_cpu_intr_handler_t (C++ type), 2061
esp_cpu_intr_has_handler (C++ function),

2058
esp_cpu_intr_set_handler (C++ function),

2058
esp_cpu_intr_set_ivt_addr (C++ function),

2057
esp_cpu_intr_set_priority (C++ function),

2057
esp_cpu_intr_set_type (C++ function), 2057
esp_cpu_intr_type_t (C++ enum), 2061
esp_cpu_intr_type_t::ESP_CPU_INTR_TYPE_EDGE

(C++ enumerator), 2061
esp_cpu_intr_type_t::ESP_CPU_INTR_TYPE_LEVEL

(C++ enumerator), 2061
esp_cpu_intr_type_t::ESP_CPU_INTR_TYPE_NA

(C++ enumerator), 2061
esp_cpu_pc_to_addr (C++ function), 2057
esp_cpu_reset (C++ function), 2056
esp_cpu_set_breakpoint (C++ function), 2059
esp_cpu_set_cycle_count (C++ function),

2057
esp_cpu_set_watchpoint (C++ function), 2059
esp_cpu_stall (C++ function), 2056
esp_cpu_unstall (C++ function), 2056
esp_cpu_wait_for_intr (C++ function), 2056
esp_cpu_watchpoint_trigger_t (C++ enum),

2061
esp_cpu_watchpoint_trigger_t::ESP_CPU_WATCHPOINT_ACCESS

(C++ enumerator), 2061
esp_cpu_watchpoint_trigger_t::ESP_CPU_WATCHPOINT_LOAD

(C++ enumerator), 2061
esp_cpu_watchpoint_trigger_t::ESP_CPU_WATCHPOINT_STORE

(C++ enumerator), 2061
esp_crt_bundle_attach (C++ function), 120
esp_crt_bundle_detach (C++ function), 120
esp_crt_bundle_in_use (C++ function), 120
esp_crt_bundle_set (C++ function), 120
esp_deep_sleep (C++ function), 2100
esp_deep_sleep_cb_t (C++ type), 2101
esp_deep_sleep_deregister_hook (C++

function), 2100
esp_deep_sleep_disable_rom_logging

(C++ function), 2101
esp_deep_sleep_enable_gpio_wakeup

(C++ function), 2096
esp_deep_sleep_register_hook (C++ func-

tion), 2100
esp_deep_sleep_start (C++ function), 2099
esp_deep_sleep_try (C++ function), 2099
esp_deep_sleep_try_to_start (C++ func-

tion), 2099
esp_deep_sleep_wake_stub_fn_t (C++

type), 2101

esp_deepsleep_gpio_wake_up_mode_t
(C++ enum), 2102

esp_deepsleep_gpio_wake_up_mode_t::ESP_GPIO_WAKEUP_GPIO_HIGH
(C++ enumerator), 2102

esp_deepsleep_gpio_wake_up_mode_t::ESP_GPIO_WAKEUP_GPIO_LOW
(C++ enumerator), 2102

ESP_DEFAULT_GATT_IF (C macro), 161
esp_default_wake_deep_sleep (C++ func-

tion), 2101
esp_deregister_freertos_idle_hook

(C++ function), 1989
esp_deregister_freertos_idle_hook_for_cpu

(C++ function), 1989
esp_deregister_freertos_tick_hook

(C++ function), 1989
esp_deregister_freertos_tick_hook_for_cpu

(C++ function), 1989
esp_derive_local_mac (C++ function), 2053
esp_digital_signature_data (C++ struct),

940
esp_digital_signature_data::c (C++

member), 940
esp_digital_signature_data::iv (C++

member), 940
esp_digital_signature_data::rsa_length

(C++ member), 940
esp_digital_signature_length_t (C++

enum), 942
esp_digital_signature_length_t::ESP_DS_RSA_1024

(C++ enumerator), 942
esp_digital_signature_length_t::ESP_DS_RSA_2048

(C++ enumerator), 942
esp_digital_signature_length_t::ESP_DS_RSA_3072

(C++ enumerator), 942
esp_digital_signature_length_t::ESP_DS_RSA_4096

(C++ enumerator), 942
ESP_DPP_AUTH_TIMEOUT_SECS (C macro), 763
ESP_DRAM_LOGD (C macro), 2045
ESP_DRAM_LOGE (C macro), 2044
ESP_DRAM_LOGI (C macro), 2045
ESP_DRAM_LOGV (C macro), 2045
ESP_DRAM_LOGW (C macro), 2045
ESP_DS_C_LEN (C macro), 941
esp_ds_context_t (C++ type), 941
esp_ds_data_t (C++ type), 941
esp_ds_encrypt_params (C++ function), 939
esp_ds_finish_sign (C++ function), 939
esp_ds_is_busy (C++ function), 939
ESP_DS_IV_BIT_LEN (C macro), 941
ESP_DS_IV_LEN (C macro), 941
esp_ds_p_data_t (C++ struct), 940
esp_ds_p_data_t::length (C++ member), 941
esp_ds_p_data_t::M (C++ member), 941
esp_ds_p_data_t::M_prime (C++ member),

941
esp_ds_p_data_t::Rb (C++ member), 941
esp_ds_p_data_t::Y (C++ member), 941
esp_ds_sign (C++ function), 938

Espressif Systems 2737
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_DS_SIGNATURE_L_BIT_LEN (C macro), 941
ESP_DS_SIGNATURE_M_PRIME_BIT_LEN (C

macro), 941
ESP_DS_SIGNATURE_MAX_BIT_LEN (C macro),

941
ESP_DS_SIGNATURE_MD_BIT_LEN (C macro),

941
ESP_DS_SIGNATURE_PADDING_BIT_LEN (C

macro), 941
esp_ds_start_sign (C++ function), 938
esp_duplicate_info_t (C++ type), 236
esp_duplicate_scan_exceptional_list_type_t

(C++ enum), 251
esp_duplicate_scan_exceptional_list_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_ADDR_LIST

(C++ enumerator), 251
esp_duplicate_scan_exceptional_list_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_ALL_LIST

(C++ enumerator), 252
esp_duplicate_scan_exceptional_list_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_BEACON_TYPE_LIST

(C++ enumerator), 251
esp_duplicate_scan_exceptional_list_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_LINK_ID_LIST

(C++ enumerator), 251
esp_duplicate_scan_exceptional_list_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_PROV_SRV_ADV_LIST

(C++ enumerator), 251
esp_duplicate_scan_exceptional_list_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_PROXY_SOLIC_ADV_LIST

(C++ enumerator), 251
esp_duplicate_scan_exceptional_list_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_PROXY_SRV_ADV_LIST

(C++ enumerator), 251
esp_duplicate_scan_exceptional_list_type_t::ESP_BLE_DUPLICATE_SCAN_EXCEPTIONAL_MESH_URI_ADV_LIST

(C++ enumerator), 252
esp_eap_client_clear_ca_cert (C++ func-

tion), 752
esp_eap_client_clear_certificate_and_key

(C++ function), 753
esp_eap_client_clear_identity (C++ func-

tion), 751
esp_eap_client_clear_new_password

(C++ function), 752
esp_eap_client_clear_password (C++ func-

tion), 751
esp_eap_client_clear_username (C++ func-

tion), 751
esp_eap_client_get_disable_time_check

(C++ function), 753
esp_eap_client_set_ca_cert (C++ function),

752
esp_eap_client_set_certificate_and_key

(C++ function), 752
esp_eap_client_set_disable_time_check

(C++ function), 753
esp_eap_client_set_domain_name (C++

function), 754
esp_eap_client_set_fast_params (C++

function), 754
esp_eap_client_set_identity (C++ func-

tion), 751
esp_eap_client_set_new_password (C++

function), 751
esp_eap_client_set_pac_file (C++ func-

tion), 753
esp_eap_client_set_password (C++ func-

tion), 751
esp_eap_client_set_suiteb_192bit_certification

(C++ function), 753
esp_eap_client_set_ttls_phase2_method

(C++ function), 753
esp_eap_client_set_username (C++ func-

tion), 751
esp_eap_client_use_default_cert_bundle

(C++ function), 754
esp_eap_fast_config (C++ struct), 754
esp_eap_fast_config::fast_max_pac_list_len

(C++ member), 754
esp_eap_fast_config::fast_pac_format_binary

(C++ member), 754
esp_eap_fast_config::fast_provisioning

(C++ member), 754
esp_eap_ttls_phase2_types (C++ enum), 755
esp_eap_ttls_phase2_types::ESP_EAP_TTLS_PHASE2_CHAP

(C++ enumerator), 755
esp_eap_ttls_phase2_types::ESP_EAP_TTLS_PHASE2_EAP

(C++ enumerator), 755
esp_eap_ttls_phase2_types::ESP_EAP_TTLS_PHASE2_MSCHAP

(C++ enumerator), 755
esp_eap_ttls_phase2_types::ESP_EAP_TTLS_PHASE2_MSCHAPV2

(C++ enumerator), 755
esp_eap_ttls_phase2_types::ESP_EAP_TTLS_PHASE2_PAP

(C++ enumerator), 755
ESP_EARLY_LOGD (C macro), 2043
ESP_EARLY_LOGE (C macro), 2043
ESP_EARLY_LOGI (C macro), 2043
ESP_EARLY_LOGV (C macro), 2044
ESP_EARLY_LOGW (C macro), 2043
esp_efuse_batch_write_begin (C++ func-

tion), 1817
esp_efuse_batch_write_cancel (C++ func-

tion), 1817
esp_efuse_batch_write_commit (C++ func-

tion), 1818
esp_efuse_block_is_empty (C++ function),

1818
esp_efuse_block_t (C++ enum), 1809
esp_efuse_block_t::EFUSE_BLK0 (C++ enu-

merator), 1809
esp_efuse_block_t::EFUSE_BLK1 (C++ enu-

merator), 1809
esp_efuse_block_t::EFUSE_BLK10 (C++

enumerator), 1810
esp_efuse_block_t::EFUSE_BLK2 (C++ enu-

merator), 1809
esp_efuse_block_t::EFUSE_BLK3 (C++ enu-

merator), 1809
esp_efuse_block_t::EFUSE_BLK4 (C++ enu-

merator), 1810
esp_efuse_block_t::EFUSE_BLK5 (C++ enu-

merator), 1810
esp_efuse_block_t::EFUSE_BLK6 (C++ enu-

Espressif Systems 2738
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

merator), 1810
esp_efuse_block_t::EFUSE_BLK7 (C++ enu-

merator), 1810
esp_efuse_block_t::EFUSE_BLK8 (C++ enu-

merator), 1810
esp_efuse_block_t::EFUSE_BLK9 (C++ enu-

merator), 1810
esp_efuse_block_t::EFUSE_BLK_KEY0

(C++ enumerator), 1810
esp_efuse_block_t::EFUSE_BLK_KEY1

(C++ enumerator), 1810
esp_efuse_block_t::EFUSE_BLK_KEY2

(C++ enumerator), 1810
esp_efuse_block_t::EFUSE_BLK_KEY3

(C++ enumerator), 1810
esp_efuse_block_t::EFUSE_BLK_KEY4

(C++ enumerator), 1810
esp_efuse_block_t::EFUSE_BLK_KEY5

(C++ enumerator), 1810
esp_efuse_block_t::EFUSE_BLK_KEY_MAX

(C++ enumerator), 1810
esp_efuse_block_t::EFUSE_BLK_MAX (C++

enumerator), 1810
esp_efuse_block_t::EFUSE_BLK_SYS_DATA_PART1

(C++ enumerator), 1809
esp_efuse_block_t::EFUSE_BLK_SYS_DATA_PART2

(C++ enumerator), 1810
esp_efuse_block_t::EFUSE_BLK_USER_DATA

(C++ enumerator), 1810
esp_efuse_check_errors (C++ function), 1822
esp_efuse_check_secure_version (C++

function), 1816
esp_efuse_coding_scheme_t (C++ enum),

1811
esp_efuse_coding_scheme_t::EFUSE_CODING_SCHEME_NONE

(C++ enumerator), 1811
esp_efuse_coding_scheme_t::EFUSE_CODING_SCHEME_RS

(C++ enumerator), 1811
esp_efuse_count_unused_key_blocks

(C++ function), 1820
esp_efuse_desc_t (C++ struct), 1822
esp_efuse_desc_t::bit_count (C++ mem-

ber), 1822
esp_efuse_desc_t::bit_start (C++ mem-

ber), 1822
esp_efuse_desc_t::efuse_block (C++

member), 1822
esp_efuse_disable_rom_download_mode

(C++ function), 1815
esp_efuse_enable_rom_secure_download_mode

(C++ function), 1816
esp_efuse_find_purpose (C++ function), 1818
esp_efuse_find_unused_key_block (C++

function), 1820
esp_efuse_get_coding_scheme (C++ func-

tion), 1814
esp_efuse_get_digest_revoke (C++ func-

tion), 1820

esp_efuse_get_field_size (C++ function),
1814

esp_efuse_get_key (C++ function), 1819
esp_efuse_get_key_dis_read (C++ function),

1818
esp_efuse_get_key_dis_write (C++ func-

tion), 1818
esp_efuse_get_key_purpose (C++ function),

1819
esp_efuse_get_keypurpose_dis_write

(C++ function), 1819
esp_efuse_get_pkg_ver (C++ function), 1815
esp_efuse_get_purpose_field (C++ func-

tion), 1819
esp_efuse_get_write_protect_of_digest_revoke

(C++ function), 1820
esp_efuse_key_block_unused (C++ function),

1818
esp_efuse_mac_get_custom (C++ function),

2052
esp_efuse_mac_get_default (C++ function),

2053
esp_efuse_purpose_t (C++ enum), 1811
esp_efuse_purpose_t::ESP_EFUSE_KEY_PURPOSE_HMAC_DOWN_ALL

(C++ enumerator), 1811
esp_efuse_purpose_t::ESP_EFUSE_KEY_PURPOSE_HMAC_DOWN_DIGITAL_SIGNATURE

(C++ enumerator), 1811
esp_efuse_purpose_t::ESP_EFUSE_KEY_PURPOSE_HMAC_DOWN_JTAG

(C++ enumerator), 1811
esp_efuse_purpose_t::ESP_EFUSE_KEY_PURPOSE_HMAC_UP

(C++ enumerator), 1811
esp_efuse_purpose_t::ESP_EFUSE_KEY_PURPOSE_MAX

(C++ enumerator), 1811
esp_efuse_purpose_t::ESP_EFUSE_KEY_PURPOSE_RESERVED

(C++ enumerator), 1811
esp_efuse_purpose_t::ESP_EFUSE_KEY_PURPOSE_SECURE_BOOT_DIGEST0

(C++ enumerator), 1811
esp_efuse_purpose_t::ESP_EFUSE_KEY_PURPOSE_SECURE_BOOT_DIGEST1

(C++ enumerator), 1811
esp_efuse_purpose_t::ESP_EFUSE_KEY_PURPOSE_SECURE_BOOT_DIGEST2

(C++ enumerator), 1811
esp_efuse_purpose_t::ESP_EFUSE_KEY_PURPOSE_USER

(C++ enumerator), 1811
esp_efuse_purpose_t::ESP_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY

(C++ enumerator), 1811
esp_efuse_read_block (C++ function), 1814
esp_efuse_read_field_bit (C++ function),

1812
esp_efuse_read_field_blob (C++ function),

1812
esp_efuse_read_field_cnt (C++ function),

1812
esp_efuse_read_reg (C++ function), 1814
esp_efuse_read_secure_version (C++ func-

tion), 1816
esp_efuse_reset (C++ function), 1815
esp_efuse_rom_log_scheme_t (C++ enum),

1823

Espressif Systems 2739
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_efuse_rom_log_scheme_t::ESP_EFUSE_ROM_LOG_ALWAYS_OFF
(C++ enumerator), 1823

esp_efuse_rom_log_scheme_t::ESP_EFUSE_ROM_LOG_ALWAYS_ON
(C++ enumerator), 1823

esp_efuse_rom_log_scheme_t::ESP_EFUSE_ROM_LOG_ON_GPIO_HIGH
(C++ enumerator), 1823

esp_efuse_rom_log_scheme_t::ESP_EFUSE_ROM_LOG_ON_GPIO_LOW
(C++ enumerator), 1823

esp_efuse_set_digest_revoke (C++ func-
tion), 1820

esp_efuse_set_key_dis_read (C++ function),
1818

esp_efuse_set_key_dis_write (C++ func-
tion), 1818

esp_efuse_set_key_purpose (C++ function),
1819

esp_efuse_set_keypurpose_dis_write
(C++ function), 1819

esp_efuse_set_read_protect (C++ function),
1813

esp_efuse_set_rom_log_scheme (C++ func-
tion), 1816

esp_efuse_set_write_protect (C++ func-
tion), 1813

esp_efuse_set_write_protect_of_digest_revoke
(C++ function), 1820

esp_efuse_update_secure_version (C++
function), 1816

esp_efuse_write_block (C++ function), 1815
esp_efuse_write_field_bit (C++ function),

1813
esp_efuse_write_field_blob (C++ function),

1812
esp_efuse_write_field_cnt (C++ function),

1813
esp_efuse_write_key (C++ function), 1820
esp_efuse_write_keys (C++ function), 1821
esp_efuse_write_reg (C++ function), 1814
ESP_ERR_CODING (C macro), 1823
ESP_ERR_DAMAGED_READING (C macro), 1823
ESP_ERR_DPP_AUTH_TIMEOUT (C macro), 763
ESP_ERR_DPP_FAILURE (C macro), 763
ESP_ERR_DPP_INVALID_ATTR (C macro), 763
ESP_ERR_DPP_TX_FAILURE (C macro), 763
ESP_ERR_EFUSE (C macro), 1822
ESP_ERR_EFUSE_CNT_IS_FULL (C macro), 1822
ESP_ERR_EFUSE_REPEATED_PROG (C macro),

1822
ESP_ERR_ESP_NETIF_BASE (C macro), 835
ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED

(C macro), 835
ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED

(C macro), 835
ESP_ERR_ESP_NETIF_DHCP_NOT_STOPPED (C

macro), 835
ESP_ERR_ESP_NETIF_DHCPC_START_FAILED

(C macro), 835
ESP_ERR_ESP_NETIF_DHCPS_START_FAILED

(C macro), 836
ESP_ERR_ESP_NETIF_DNS_NOT_CONFIGURED

(C macro), 836
ESP_ERR_ESP_NETIF_DRIVER_ATTACH_FAILED

(C macro), 835
ESP_ERR_ESP_NETIF_IF_NOT_READY (C

macro), 835
ESP_ERR_ESP_NETIF_INIT_FAILED (C macro),

836
ESP_ERR_ESP_NETIF_INVALID_PARAMS (C

macro), 835
ESP_ERR_ESP_NETIF_IP6_ADDR_FAILED (C

macro), 836
ESP_ERR_ESP_NETIF_MLD6_FAILED (C macro),

836
ESP_ERR_ESP_NETIF_NO_MEM (C macro), 835
ESP_ERR_ESP_TLS_BASE (C macro), 72
ESP_ERR_ESP_TLS_CANNOT_CREATE_SOCKET

(C macro), 72
ESP_ERR_ESP_TLS_CANNOT_RESOLVE_HOSTNAME

(C macro), 72
ESP_ERR_ESP_TLS_CONNECTION_TIMEOUT (C

macro), 72
ESP_ERR_ESP_TLS_FAILED_CONNECT_TO_HOST

(C macro), 72
ESP_ERR_ESP_TLS_SE_FAILED (C macro), 73
ESP_ERR_ESP_TLS_SOCKET_SETOPT_FAILED

(C macro), 72
ESP_ERR_ESP_TLS_TCP_CLOSED_FIN (C

macro), 73
ESP_ERR_ESP_TLS_UNSUPPORTED_PROTOCOL_FAMILY

(C macro), 72
ESP_ERR_ESPNOW_ARG (C macro), 639
ESP_ERR_ESPNOW_BASE (C macro), 639
ESP_ERR_ESPNOW_EXIST (C macro), 639
ESP_ERR_ESPNOW_FULL (C macro), 639
ESP_ERR_ESPNOW_IF (C macro), 640
ESP_ERR_ESPNOW_INTERNAL (C macro), 639
ESP_ERR_ESPNOW_NO_MEM (C macro), 639
ESP_ERR_ESPNOW_NOT_FOUND (C macro), 639
ESP_ERR_ESPNOW_NOT_INIT (C macro), 639
ESP_ERR_FLASH_BASE (C macro), 1826
ESP_ERR_FLASH_NOT_INITIALISED (C macro),

1184
ESP_ERR_FLASH_OP_FAIL (C macro), 1177
ESP_ERR_FLASH_OP_TIMEOUT (C macro), 1177
ESP_ERR_FLASH_PROTECTED (C macro), 1184
ESP_ERR_FLASH_UNSUPPORTED_CHIP (C

macro), 1184
ESP_ERR_FLASH_UNSUPPORTED_HOST (C

macro), 1184
ESP_ERR_HTTP_BASE (C macro), 88
ESP_ERR_HTTP_CONNECT (C macro), 88
ESP_ERR_HTTP_CONNECTING (C macro), 88
ESP_ERR_HTTP_CONNECTION_CLOSED (C

macro), 88
ESP_ERR_HTTP_EAGAIN (C macro), 88
ESP_ERR_HTTP_FETCH_HEADER (C macro), 88

Espressif Systems 2740
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_ERR_HTTP_INVALID_TRANSPORT (C
macro), 88

ESP_ERR_HTTP_MAX_REDIRECT (C macro), 88
ESP_ERR_HTTP_WRITE_DATA (C macro), 88
ESP_ERR_HTTPD_ALLOC_MEM (C macro), 144
ESP_ERR_HTTPD_BASE (C macro), 143
ESP_ERR_HTTPD_HANDLER_EXISTS (C macro),

144
ESP_ERR_HTTPD_HANDLERS_FULL (C macro),

143
ESP_ERR_HTTPD_INVALID_REQ (C macro), 144
ESP_ERR_HTTPD_RESP_HDR (C macro), 144
ESP_ERR_HTTPD_RESP_SEND (C macro), 144
ESP_ERR_HTTPD_RESULT_TRUNC (C macro), 144
ESP_ERR_HTTPD_TASK (C macro), 144
ESP_ERR_HTTPS_OTA_BASE (C macro), 1832
ESP_ERR_HTTPS_OTA_IN_PROGRESS (C macro),

1832
ESP_ERR_HW_CRYPTO_BASE (C macro), 1826
ESP_ERR_INVALID_ARG (C macro), 1825
ESP_ERR_INVALID_CRC (C macro), 1825
ESP_ERR_INVALID_MAC (C macro), 1825
ESP_ERR_INVALID_RESPONSE (C macro), 1825
ESP_ERR_INVALID_SIZE (C macro), 1825
ESP_ERR_INVALID_STATE (C macro), 1825
ESP_ERR_INVALID_VERSION (C macro), 1825
ESP_ERR_MBEDTLS_CERT_PARTLY_OK (C

macro), 73
ESP_ERR_MBEDTLS_CTR_DRBG_SEED_FAILED

(C macro), 73
ESP_ERR_MBEDTLS_PK_PARSE_KEY_FAILED (C

macro), 73
ESP_ERR_MBEDTLS_SSL_CONF_ALPN_PROTOCOLS_FAILED

(C macro), 73
ESP_ERR_MBEDTLS_SSL_CONF_OWN_CERT_FAILED

(C macro), 73
ESP_ERR_MBEDTLS_SSL_CONF_PSK_FAILED (C

macro), 73
ESP_ERR_MBEDTLS_SSL_CONFIG_DEFAULTS_FAILED

(C macro), 73
ESP_ERR_MBEDTLS_SSL_HANDSHAKE_FAILED

(C macro), 73
ESP_ERR_MBEDTLS_SSL_SET_HOSTNAME_FAILED

(C macro), 73
ESP_ERR_MBEDTLS_SSL_SETUP_FAILED (C

macro), 73
ESP_ERR_MBEDTLS_SSL_TICKET_SETUP_FAILED

(C macro), 73
ESP_ERR_MBEDTLS_SSL_WRITE_FAILED (C

macro), 73
ESP_ERR_MBEDTLS_X509_CRT_PARSE_FAILED

(C macro), 73
ESP_ERR_MEMPROT_BASE (C macro), 1826
ESP_ERR_MESH_ARGUMENT (C macro), 673
ESP_ERR_MESH_BASE (C macro), 1826
ESP_ERR_MESH_DISCARD (C macro), 673
ESP_ERR_MESH_DISCARD_DUPLICATE (C

macro), 673

ESP_ERR_MESH_DISCONNECTED (C macro), 673
ESP_ERR_MESH_EXCEED_MTU (C macro), 673
ESP_ERR_MESH_INTERFACE (C macro), 673
ESP_ERR_MESH_NO_MEMORY (C macro), 672
ESP_ERR_MESH_NO_PARENT_FOUND (C macro),

673
ESP_ERR_MESH_NO_ROUTE_FOUND (C macro),

673
ESP_ERR_MESH_NOT_ALLOWED (C macro), 672
ESP_ERR_MESH_NOT_CONFIG (C macro), 672
ESP_ERR_MESH_NOT_INIT (C macro), 672
ESP_ERR_MESH_NOT_START (C macro), 672
ESP_ERR_MESH_NOT_SUPPORT (C macro), 672
ESP_ERR_MESH_OPTION_NULL (C macro), 673
ESP_ERR_MESH_OPTION_UNKNOWN (C macro),

673
ESP_ERR_MESH_PS (C macro), 674
ESP_ERR_MESH_QUEUE_FAIL (C macro), 673
ESP_ERR_MESH_QUEUE_FULL (C macro), 673
ESP_ERR_MESH_QUEUE_READ (C macro), 674
ESP_ERR_MESH_RECV_RELEASE (C macro), 674
ESP_ERR_MESH_TIMEOUT (C macro), 673
ESP_ERR_MESH_VOTING (C macro), 673
ESP_ERR_MESH_WIFI_NOT_START (C macro),

672
ESP_ERR_MESH_XMIT (C macro), 673
ESP_ERR_MESH_XON_NO_WINDOW (C macro), 673
ESP_ERR_NO_MEM (C macro), 1825
ESP_ERR_NOT_ALLOWED (C macro), 1825
ESP_ERR_NOT_ENOUGH_UNUSED_KEY_BLOCKS

(C macro), 1823
ESP_ERR_NOT_FINISHED (C macro), 1825
ESP_ERR_NOT_FOUND (C macro), 1825
ESP_ERR_NOT_SUPPORTED (C macro), 1825
ESP_ERR_NVS_BASE (C macro), 1715
ESP_ERR_NVS_CONTENT_DIFFERS (C macro),

1716
ESP_ERR_NVS_CORRUPT_KEY_PART (C macro),

1716
ESP_ERR_NVS_ENCR_NOT_SUPPORTED (C

macro), 1716
ESP_ERR_NVS_INVALID_HANDLE (Cmacro), 1715
ESP_ERR_NVS_INVALID_LENGTH (Cmacro), 1715
ESP_ERR_NVS_INVALID_NAME (C macro), 1715
ESP_ERR_NVS_INVALID_STATE (C macro), 1715
ESP_ERR_NVS_KEY_TOO_LONG (C macro), 1715
ESP_ERR_NVS_KEYS_NOT_INITIALIZED (C

macro), 1716
ESP_ERR_NVS_NEW_VERSION_FOUND (C macro),

1715
ESP_ERR_NVS_NO_FREE_PAGES (C macro), 1715
ESP_ERR_NVS_NOT_ENOUGH_SPACE (C macro),

1715
ESP_ERR_NVS_NOT_FOUND (C macro), 1715
ESP_ERR_NVS_NOT_INITIALIZED (C macro),

1715
ESP_ERR_NVS_PAGE_FULL (C macro), 1715
ESP_ERR_NVS_PART_NOT_FOUND (Cmacro), 1715

Espressif Systems 2741
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_ERR_NVS_READ_ONLY (C macro), 1715
ESP_ERR_NVS_REMOVE_FAILED (C macro), 1715
ESP_ERR_NVS_TYPE_MISMATCH (C macro), 1715
ESP_ERR_NVS_VALUE_TOO_LONG (Cmacro), 1715
ESP_ERR_NVS_WRONG_ENCRYPTION (C macro),

1716
ESP_ERR_NVS_XTS_CFG_FAILED (Cmacro), 1716
ESP_ERR_NVS_XTS_CFG_NOT_FOUND (C macro),

1716
ESP_ERR_NVS_XTS_DECR_FAILED (C macro),

1716
ESP_ERR_NVS_XTS_ENCR_FAILED (C macro),

1716
ESP_ERR_OTA_BASE (C macro), 2073
ESP_ERR_OTA_PARTITION_CONFLICT (C

macro), 2073
ESP_ERR_OTA_ROLLBACK_FAILED (C macro),

2073
ESP_ERR_OTA_ROLLBACK_INVALID_STATE (C

macro), 2073
ESP_ERR_OTA_SELECT_INFO_INVALID (C

macro), 2073
ESP_ERR_OTA_SMALL_SEC_VER (C macro), 2073
ESP_ERR_OTA_VALIDATE_FAILED (C macro),

2073
ESP_ERR_ROC_IN_PROGRESS (C macro), 1825
esp_err_t (C++ type), 1826
ESP_ERR_TIMEOUT (C macro), 1825
esp_err_to_name (C++ function), 1824
esp_err_to_name_r (C++ function), 1824
ESP_ERR_WIFI_BASE (C macro), 1825
ESP_ERR_WIFI_CONN (C macro), 704
ESP_ERR_WIFI_DISCARD (C macro), 705
ESP_ERR_WIFI_IF (C macro), 704
ESP_ERR_WIFI_INIT_STATE (C macro), 705
ESP_ERR_WIFI_MAC (C macro), 704
ESP_ERR_WIFI_MODE (C macro), 704
ESP_ERR_WIFI_NOT_ASSOC (C macro), 705
ESP_ERR_WIFI_NOT_CONNECT (C macro), 705
ESP_ERR_WIFI_NOT_INIT (C macro), 704
ESP_ERR_WIFI_NOT_STARTED (C macro), 704
ESP_ERR_WIFI_NOT_STOPPED (C macro), 704
ESP_ERR_WIFI_NVS (C macro), 704
ESP_ERR_WIFI_PASSWORD (C macro), 705
ESP_ERR_WIFI_POST (C macro), 705
ESP_ERR_WIFI_REGISTRAR (C macro), 757
ESP_ERR_WIFI_SSID (C macro), 705
ESP_ERR_WIFI_STATE (C macro), 704
ESP_ERR_WIFI_STOP_STATE (C macro), 705
ESP_ERR_WIFI_TIMEOUT (C macro), 705
ESP_ERR_WIFI_TWT_FULL (C macro), 705
ESP_ERR_WIFI_TWT_SETUP_REJECT (C macro),

705
ESP_ERR_WIFI_TWT_SETUP_TIMEOUT (C

macro), 705
ESP_ERR_WIFI_TWT_SETUP_TXFAIL (C macro),

705
ESP_ERR_WIFI_TX_DISALLOW (C macro), 705

ESP_ERR_WIFI_WAKE_FAIL (C macro), 705
ESP_ERR_WIFI_WOULD_BLOCK (C macro), 705
ESP_ERR_WIFI_WPS_SM (C macro), 757
ESP_ERR_WIFI_WPS_TYPE (C macro), 757
ESP_ERR_WOLFSSL_CERT_VERIFY_SETUP_FAILED

(C macro), 74
ESP_ERR_WOLFSSL_CTX_SETUP_FAILED (C

macro), 74
ESP_ERR_WOLFSSL_KEY_VERIFY_SETUP_FAILED

(C macro), 74
ESP_ERR_WOLFSSL_SSL_CONF_ALPN_PROTOCOLS_FAILED

(C macro), 73
ESP_ERR_WOLFSSL_SSL_HANDSHAKE_FAILED

(C macro), 74
ESP_ERR_WOLFSSL_SSL_SET_HOSTNAME_FAILED

(C macro), 73
ESP_ERR_WOLFSSL_SSL_SETUP_FAILED (C

macro), 74
ESP_ERR_WOLFSSL_SSL_WRITE_FAILED (C

macro), 74
ESP_ERROR_CHECK (C macro), 1826
ESP_ERROR_CHECK_WITHOUT_ABORT (C macro),

1826
esp_esptouch_set_timeout (C++ function),

681
esp_eth_config_t (C++ struct), 775
esp_eth_config_t::check_link_period_ms

(C++ member), 775
esp_eth_config_t::mac (C++ member), 775
esp_eth_config_t::on_lowlevel_deinit_done

(C++ member), 775
esp_eth_config_t::on_lowlevel_init_done

(C++ member), 775
esp_eth_config_t::phy (C++ member), 775
esp_eth_config_t::read_phy_reg (C++

member), 775
esp_eth_config_t::stack_input (C++

member), 775
esp_eth_config_t::write_phy_reg (C++

member), 776
esp_eth_decrease_reference (C++ function),

775
esp_eth_del_netif_glue (C++ function), 799
esp_eth_driver_install (C++ function), 772
esp_eth_driver_uninstall (C++ function),

772
esp_eth_handle_t (C++ type), 777
esp_eth_increase_reference (C++ function),

774
esp_eth_io_cmd_t (C++ enum), 777
esp_eth_io_cmd_t::ETH_CMD_CUSTOM_MAC_CMDS

(C++ enumerator), 778
esp_eth_io_cmd_t::ETH_CMD_CUSTOM_PHY_CMDS

(C++ enumerator), 778
esp_eth_io_cmd_t::ETH_CMD_G_AUTONEGO

(C++ enumerator), 777
esp_eth_io_cmd_t::ETH_CMD_G_DUPLEX_MODE

(C++ enumerator), 777

Espressif Systems 2742
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_eth_io_cmd_t::ETH_CMD_G_MAC_ADDR
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_G_PHY_ADDR
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_G_SPEED
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_READ_PHY_REG
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_S_AUTONEGO
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_S_DUPLEX_MODE
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_S_FLOW_CTRL
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_S_MAC_ADDR
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_S_PHY_ADDR
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_S_PHY_LOOPBACK
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_S_PROMISCUOUS
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_S_SPEED
(C++ enumerator), 777

esp_eth_io_cmd_t::ETH_CMD_WRITE_PHY_REG
(C++ enumerator), 778

esp_eth_ioctl (C++ function), 773
esp_eth_mac_s (C++ struct), 780
esp_eth_mac_s::custom_ioctl (C++ mem-

ber), 784
esp_eth_mac_s::deinit (C++ member), 781
esp_eth_mac_s::del (C++ member), 784
esp_eth_mac_s::enable_flow_ctrl (C++

member), 784
esp_eth_mac_s::get_addr (C++ member), 783
esp_eth_mac_s::init (C++ member), 780
esp_eth_mac_s::read_phy_reg (C++ mem-

ber), 782
esp_eth_mac_s::receive (C++ member), 782
esp_eth_mac_s::set_addr (C++ member), 782
esp_eth_mac_s::set_duplex (C++ member),

783
esp_eth_mac_s::set_link (C++ member), 783
esp_eth_mac_s::set_mediator (C++ mem-

ber), 780
esp_eth_mac_s::set_peer_pause_ability

(C++ member), 784
esp_eth_mac_s::set_promiscuous (C++

member), 783
esp_eth_mac_s::set_speed (C++ member),

783
esp_eth_mac_s::start (C++ member), 781
esp_eth_mac_s::stop (C++ member), 781
esp_eth_mac_s::transmit (C++ member), 781
esp_eth_mac_s::transmit_vargs (C++

member), 781
esp_eth_mac_s::write_phy_reg (C++ mem-

ber), 782

esp_eth_mac_t (C++ type), 786
esp_eth_mediator_s (C++ struct), 778
esp_eth_mediator_s::on_state_changed

(C++ member), 779
esp_eth_mediator_s::phy_reg_read (C++

member), 778
esp_eth_mediator_s::phy_reg_write

(C++ member), 778
esp_eth_mediator_s::stack_input (C++

member), 778
esp_eth_mediator_t (C++ type), 779
esp_eth_netif_glue_handle_t (C++ type),

799
esp_eth_new_netif_glue (C++ function), 799
esp_eth_phy_802_3_advertise_pause_ability

(C++ function), 793
esp_eth_phy_802_3_autonego_ctrl (C++

function), 793
esp_eth_phy_802_3_basic_phy_deinit

(C++ function), 795
esp_eth_phy_802_3_basic_phy_init (C++

function), 795
esp_eth_phy_802_3_deinit (C++ function),

794
esp_eth_phy_802_3_del (C++ function), 794
esp_eth_phy_802_3_detect_phy_addr

(C++ function), 795
esp_eth_phy_802_3_get_addr (C++ function),

793
esp_eth_phy_802_3_get_mmd_addr (C++

function), 796
esp_eth_phy_802_3_init (C++ function), 794
esp_eth_phy_802_3_loopback (C++ function),

793
esp_eth_phy_802_3_mmd_func_t (C++ enum),

798
esp_eth_phy_802_3_mmd_func_t::MMD_FUNC_ADDRESS

(C++ enumerator), 798
esp_eth_phy_802_3_mmd_func_t::MMD_FUNC_DATA_NOINCR

(C++ enumerator), 798
esp_eth_phy_802_3_mmd_func_t::MMD_FUNC_DATA_RWINCR

(C++ enumerator), 798
esp_eth_phy_802_3_mmd_func_t::MMD_FUNC_DATA_WINCR

(C++ enumerator), 798
esp_eth_phy_802_3_obj_config_init

(C++ function), 797
esp_eth_phy_802_3_pwrctl (C++ function),

793
esp_eth_phy_802_3_read_manufac_info

(C++ function), 795
esp_eth_phy_802_3_read_mmd_data (C++

function), 796
esp_eth_phy_802_3_read_mmd_register

(C++ function), 797
esp_eth_phy_802_3_read_oui (C++ function),

795
esp_eth_phy_802_3_reset (C++ function), 792
esp_eth_phy_802_3_reset_hw (C++ function),

Espressif Systems 2743
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

794
esp_eth_phy_802_3_set_addr (C++ function),

793
esp_eth_phy_802_3_set_duplex (C++ func-

tion), 794
esp_eth_phy_802_3_set_link (C++ function),

794
esp_eth_phy_802_3_set_mediator (C++

function), 792
esp_eth_phy_802_3_set_mmd_addr (C++

function), 796
esp_eth_phy_802_3_set_speed (C++ func-

tion), 794
esp_eth_phy_802_3_write_mmd_data (C++

function), 796
esp_eth_phy_802_3_write_mmd_register

(C++ function), 797
ESP_ETH_PHY_ADDR_AUTO (C macro), 792
esp_eth_phy_into_phy_802_3 (C++ function),

797
esp_eth_phy_new_dp83848 (C++ function), 788
esp_eth_phy_new_ip101 (C++ function), 787
esp_eth_phy_new_ksz80xx (C++ function), 788
esp_eth_phy_new_lan87xx (C++ function), 788
esp_eth_phy_new_rtl8201 (C++ function), 788
esp_eth_phy_reg_rw_data_t (C++ struct), 776
esp_eth_phy_reg_rw_data_t::reg_addr

(C++ member), 776
esp_eth_phy_reg_rw_data_t::reg_value_p

(C++ member), 776
esp_eth_phy_s (C++ struct), 788
esp_eth_phy_s::advertise_pause_ability

(C++ member), 790
esp_eth_phy_s::autonego_ctrl (C++ mem-

ber), 789
esp_eth_phy_s::custom_ioctl (C++ mem-

ber), 791
esp_eth_phy_s::deinit (C++ member), 789
esp_eth_phy_s::del (C++ member), 791
esp_eth_phy_s::get_addr (C++ member), 790
esp_eth_phy_s::get_link (C++ member), 789
esp_eth_phy_s::init (C++ member), 789
esp_eth_phy_s::loopback (C++ member), 790
esp_eth_phy_s::pwrctl (C++ member), 790
esp_eth_phy_s::reset (C++ member), 788
esp_eth_phy_s::reset_hw (C++ member), 789
esp_eth_phy_s::set_addr (C++ member), 790
esp_eth_phy_s::set_duplex (C++ member),

791
esp_eth_phy_s::set_link (C++ member), 789
esp_eth_phy_s::set_mediator (C++ mem-

ber), 788
esp_eth_phy_s::set_speed (C++ member),

790
esp_eth_phy_t (C++ type), 792
esp_eth_start (C++ function), 772
esp_eth_state_t (C++ enum), 779
esp_eth_state_t::ETH_STATE_DEINIT

(C++ enumerator), 779
esp_eth_state_t::ETH_STATE_DUPLEX

(C++ enumerator), 779
esp_eth_state_t::ETH_STATE_LINK (C++

enumerator), 779
esp_eth_state_t::ETH_STATE_LLINIT

(C++ enumerator), 779
esp_eth_state_t::ETH_STATE_PAUSE (C++

enumerator), 779
esp_eth_state_t::ETH_STATE_SPEED (C++

enumerator), 779
esp_eth_stop (C++ function), 772
esp_eth_transmit (C++ function), 773
esp_eth_transmit_vargs (C++ function), 773
esp_eth_update_input_path (C++ function),

773
esp_etm_channel_config_t (C++ struct), 886
esp_etm_channel_connect (C++ function), 885
esp_etm_channel_disable (C++ function), 884
esp_etm_channel_enable (C++ function), 884
esp_etm_channel_handle_t (C++ type), 886
esp_etm_del_channel (C++ function), 884
esp_etm_del_event (C++ function), 885
esp_etm_del_task (C++ function), 885
esp_etm_dump (C++ function), 885
esp_etm_event_handle_t (C++ type), 886
esp_etm_new_channel (C++ function), 884
esp_etm_task_handle_t (C++ type), 886
ESP_EVENT_ANY_BASE (C macro), 1845
ESP_EVENT_ANY_ID (C macro), 1845
ESP_EVENT_DECLARE_BASE (C macro), 1845
ESP_EVENT_DEFINE_BASE (C macro), 1845
esp_event_dump (C++ function), 1844
esp_event_handler_instance_register

(C++ function), 1840
esp_event_handler_instance_register_with

(C++ function), 1839
esp_event_handler_instance_t (C++ type),

1846
esp_event_handler_instance_unregister

(C++ function), 1842
esp_event_handler_instance_unregister_with

(C++ function), 1841
esp_event_handler_register (C++ function),

1838
esp_event_handler_register_with (C++

function), 1839
esp_event_handler_t (C++ type), 1846
esp_event_handler_unregister (C++ func-

tion), 1841
esp_event_handler_unregister_with

(C++ function), 1841
esp_event_isr_post (C++ function), 1843
esp_event_isr_post_to (C++ function), 1843
esp_event_loop_args_t (C++ struct), 1845
esp_event_loop_args_t::queue_size

(C++ member), 1845
esp_event_loop_args_t::task_core_id

Espressif Systems 2744
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 1845
esp_event_loop_args_t::task_name (C++

member), 1845
esp_event_loop_args_t::task_priority

(C++ member), 1845
esp_event_loop_args_t::task_stack_size

(C++ member), 1845
esp_event_loop_create (C++ function), 1837
esp_event_loop_create_default (C++ func-

tion), 1838
esp_event_loop_delete (C++ function), 1837
esp_event_loop_delete_default (C++ func-

tion), 1838
esp_event_loop_handle_t (C++ type), 1846
esp_event_loop_run (C++ function), 1838
esp_event_post (C++ function), 1842
esp_event_post_to (C++ function), 1843
ESP_EXECUTE_EXPRESSION_WITH_STACK (C

macro), 1780
esp_execute_shared_stack_function

(C++ function), 1779
ESP_FAIL (C macro), 1825
esp_fill_random (C++ function), 2087
esp_flash_chip_driver_initialized

(C++ function), 1168
esp_flash_enc_mode_t (C++ enum), 1187
esp_flash_enc_mode_t::ESP_FLASH_ENC_MODE_DEVELOPMENT

(C++ enumerator), 1187
esp_flash_enc_mode_t::ESP_FLASH_ENC_MODE_DISABLED

(C++ enumerator), 1187
esp_flash_enc_mode_t::ESP_FLASH_ENC_MODE_RELEASE

(C++ enumerator), 1187
esp_flash_encrypt_check_and_update

(C++ function), 1185
esp_flash_encrypt_contents (C++ function),

1185
esp_flash_encrypt_enable (C++ function),

1185
esp_flash_encrypt_init (C++ function), 1185
esp_flash_encrypt_initialized_once

(C++ function), 1185
esp_flash_encrypt_is_write_protected

(C++ function), 1185
esp_flash_encrypt_region (C++ function),

1185
esp_flash_encrypt_state (C++ function),

1185
esp_flash_encryption_cfg_verify_release_mode

(C++ function), 1186
esp_flash_encryption_enable_secure_features

(C++ function), 1186
esp_flash_encryption_enabled (C++ func-

tion), 1185
esp_flash_encryption_init_checks (C++

function), 1186
esp_flash_encryption_set_release_mode

(C++ function), 1186
esp_flash_erase_chip (C++ function), 1170

esp_flash_erase_region (C++ function), 1170
esp_flash_get_chip_write_protect (C++

function), 1170
esp_flash_get_physical_size (C++ func-

tion), 1169
esp_flash_get_protectable_regions

(C++ function), 1171
esp_flash_get_protected_region (C++

function), 1171
esp_flash_get_size (C++ function), 1169
esp_flash_init (C++ function), 1168
esp_flash_io_mode_t (C++ enum), 1183
esp_flash_io_mode_t::SPI_FLASH_DIO

(C++ enumerator), 1184
esp_flash_io_mode_t::SPI_FLASH_DOUT

(C++ enumerator), 1184
esp_flash_io_mode_t::SPI_FLASH_FASTRD

(C++ enumerator), 1183
esp_flash_io_mode_t::SPI_FLASH_OPI_DTR

(C++ enumerator), 1184
esp_flash_io_mode_t::SPI_FLASH_OPI_STR

(C++ enumerator), 1184
esp_flash_io_mode_t::SPI_FLASH_QIO

(C++ enumerator), 1184
esp_flash_io_mode_t::SPI_FLASH_QOUT

(C++ enumerator), 1184
esp_flash_io_mode_t::SPI_FLASH_READ_MODE_MAX

(C++ enumerator), 1184
esp_flash_io_mode_t::SPI_FLASH_SLOWRD

(C++ enumerator), 1183
esp_flash_is_quad_mode (C++ function), 1173
esp_flash_os_functions_t (C++ struct), 1174
esp_flash_os_functions_t::check_yield

(C++ member), 1174
esp_flash_os_functions_t::delay_us

(C++ member), 1174
esp_flash_os_functions_t::end (C++

member), 1174
esp_flash_os_functions_t::get_system_time

(C++ member), 1174
esp_flash_os_functions_t::get_temp_buffer

(C++ member), 1174
esp_flash_os_functions_t::region_protected

(C++ member), 1174
esp_flash_os_functions_t::release_temp_buffer

(C++ member), 1174
esp_flash_os_functions_t::set_flash_op_status

(C++ member), 1174
esp_flash_os_functions_t::start (C++

member), 1174
esp_flash_os_functions_t::yield (C++

member), 1174
esp_flash_read (C++ function), 1172
esp_flash_read_encrypted (C++ function),

1173
esp_flash_read_id (C++ function), 1168
esp_flash_read_unique_chip_id (C++ func-

tion), 1169

Espressif Systems 2745
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_flash_region_t (C++ struct), 1173
esp_flash_region_t::offset (C++ member),

1173
esp_flash_region_t::size (C++ member),

1173
esp_flash_set_chip_write_protect (C++

function), 1170
esp_flash_set_protected_region (C++

function), 1171
esp_flash_speed_s (C++ enum), 1183
esp_flash_speed_s::ESP_FLASH_10MHZ

(C++ enumerator), 1183
esp_flash_speed_s::ESP_FLASH_120MHZ

(C++ enumerator), 1183
esp_flash_speed_s::ESP_FLASH_20MHZ

(C++ enumerator), 1183
esp_flash_speed_s::ESP_FLASH_26MHZ

(C++ enumerator), 1183
esp_flash_speed_s::ESP_FLASH_40MHZ

(C++ enumerator), 1183
esp_flash_speed_s::ESP_FLASH_5MHZ

(C++ enumerator), 1183
esp_flash_speed_s::ESP_FLASH_80MHZ

(C++ enumerator), 1183
esp_flash_speed_s::ESP_FLASH_SPEED_MAX

(C++ enumerator), 1183
esp_flash_speed_t (C++ type), 1183
esp_flash_spi_device_config_t (C++

struct), 1167
esp_flash_spi_device_config_t::cs_id

(C++ member), 1168
esp_flash_spi_device_config_t::cs_io_num

(C++ member), 1168
esp_flash_spi_device_config_t::freq_mhz

(C++ member), 1168
esp_flash_spi_device_config_t::host_id

(C++ member), 1168
esp_flash_spi_device_config_t::input_delay_ns

(C++ member), 1168
esp_flash_spi_device_config_t::io_mode

(C++ member), 1168
esp_flash_spi_device_config_t::speed

(C++ member), 1168
esp_flash_t (C++ struct), 1174
esp_flash_t::busy (C++ member), 1175
esp_flash_t::chip_drv (C++ member), 1175
esp_flash_t::chip_id (C++ member), 1175
esp_flash_t::host (C++ member), 1175
esp_flash_t::hpm_dummy_ena (C++ member),

1175
esp_flash_t::os_func (C++ member), 1175
esp_flash_t::os_func_data (C++ member),

1175
esp_flash_t::read_mode (C++ member), 1175
esp_flash_t::reserved_flags (C++ mem-

ber), 1175
esp_flash_t::size (C++ member), 1175
esp_flash_write (C++ function), 1172

esp_flash_write_encrypted (C++ function),
1173

esp_flash_write_protect_crypt_cnt
(C++ function), 1186

esp_freertos_idle_cb_t (C++ type), 1989
esp_freertos_tick_cb_t (C++ type), 1989
ESP_GAP_BLE_ADD_WHITELIST_COMPLETE_EVT

(C macro), 232
esp_gap_ble_cb_event_t (C++ enum), 237
esp_gap_ble_cb_event_t::ESP_GAP_BLE_ADD_DEV_TO_RESOLVING_LIST_COMPLETE_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_ADV_CLEAR_COMPLETE_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_ADV_DATA_RAW_SET_COMPLETE_EVT

(C++ enumerator), 237
esp_gap_ble_cb_event_t::ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT

(C++ enumerator), 237
esp_gap_ble_cb_event_t::ESP_GAP_BLE_ADV_START_COMPLETE_EVT

(C++ enumerator), 237
esp_gap_ble_cb_event_t::ESP_GAP_BLE_ADV_STOP_COMPLETE_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_ADV_TERMINATED_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_AUTH_CMPL_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_CHANNEL_SELECT_ALGORITHM_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_CLEAR_BOND_DEV_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_DTM_TEST_UPDATE_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EVT_MAX

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EXT_ADV_DATA_SET_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EXT_ADV_REPORT_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EXT_ADV_SET_CLEAR_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EXT_ADV_SET_PARAMS_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EXT_ADV_SET_RAND_ADDR_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EXT_ADV_SET_REMOVE_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EXT_ADV_START_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EXT_ADV_STOP_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EXT_SCAN_RSP_DATA_SET_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EXT_SCAN_START_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_EXT_SCAN_STOP_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_GET_BOND_DEV_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_GET_DEV_NAME_COMPLETE_EVT

Espressif Systems 2746
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_KEY_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_LOCAL_ER_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_LOCAL_IR_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_NC_REQ_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_OOB_REQ_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PASSKEY_NOTIF_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PASSKEY_REQ_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_ADD_DEV_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_CLEAR_DEV_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_CREATE_SYNC_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_DATA_SET_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_RECV_ENABLE_COMPLETE_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_REMOVE_DEV_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_REPORT_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_SET_INFO_TRANS_COMPLETE_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_SET_PARAMS_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_START_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_STOP_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_SYNC_CANCEL_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_SYNC_ESTAB_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_SYNC_LOST_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_SYNC_TERMINATE_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_SYNC_TRANS_COMPLETE_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PERIODIC_ADV_SYNC_TRANS_RECV_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PHY_UPDATE_COMPLETE_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_PREFER_EXT_CONN_PARAMS_SET_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_READ_PHY_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_READ_RSSI_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_REMOVE_BOND_DEV_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SC_CR_LOC_OOB_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SC_OOB_REQ_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SCAN_PARAM_SET_COMPLETE_EVT

(C++ enumerator), 237
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SCAN_REQ_RECEIVED_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SCAN_RESULT_EVT

(C++ enumerator), 237
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SCAN_RSP_DATA_RAW_SET_COMPLETE_EVT

(C++ enumerator), 237
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT

(C++ enumerator), 237
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SCAN_START_COMPLETE_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SCAN_STOP_COMPLETE_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SCAN_TIMEOUT_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SEC_REQ_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_CHANNELS_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_COMMON_FACTOR_CMPL_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_CSA_SUPPORT_COMPLETE_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_EXT_SCAN_PARAMS_COMPLETE_EVT

(C++ enumerator), 240
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_LOCAL_PRIVACY_COMPLETE_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_PAST_PARAMS_COMPLETE_EVT

(C++ enumerator), 241
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_PKT_LENGTH_COMPLETE_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_PREFERRED_DEFAULT_PHY_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_PREFERRED_PHY_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_PRIVACY_MODE_COMPLETE_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_RPA_TIMEOUT_COMPLETE_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_SCAN_CHAN_MAP_CMPL_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_SCH_LEN_CMPL_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_STATIC_RAND_ADDR_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_SET_VENDOR_EVT_MASK_COMPLETE_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_UPDATE_CONN_PARAMS_EVT

(C++ enumerator), 238
esp_gap_ble_cb_event_t::ESP_GAP_BLE_UPDATE_DUPLICATE_EXCEPTIONAL_LIST_COMPLETE_EVT

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_UPDATE_WHITELIST_COMPLETE_EVT

Espressif Systems 2747
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 239
esp_gap_ble_cb_event_t::ESP_GAP_BLE_VENDOR_CMD_COMPLETE_EVT

(C++ enumerator), 242
esp_gap_ble_cb_event_t::ESP_GAP_BLE_VENDOR_HCI_EVT

(C++ enumerator), 242
esp_gap_ble_cb_t (C++ type), 237
esp_gap_ble_channels (C++ type), 236
ESP_GAP_BLE_CHANNELS_LEN (C macro), 232
esp_gap_ble_set_authorization (C++ func-

tion), 178
esp_gap_ble_set_channels (C++ function),

178
esp_gap_conn_params_t (C++ struct), 213
esp_gap_conn_params_t::interval (C++

member), 214
esp_gap_conn_params_t::latency (C++

member), 214
esp_gap_conn_params_t::timeout (C++

member), 214
esp_gap_search_evt_t (C++ enum), 249
esp_gap_search_evt_t::ESP_GAP_SEARCH_DI_DISC_CMPL_EVT

(C++ enumerator), 250
esp_gap_search_evt_t::ESP_GAP_SEARCH_DISC_BLE_RES_EVT

(C++ enumerator), 249
esp_gap_search_evt_t::ESP_GAP_SEARCH_DISC_CMPL_EVT

(C++ enumerator), 249
esp_gap_search_evt_t::ESP_GAP_SEARCH_DISC_RES_EVT

(C++ enumerator), 249
esp_gap_search_evt_t::ESP_GAP_SEARCH_INQ_CMPL_EVT

(C++ enumerator), 249
esp_gap_search_evt_t::ESP_GAP_SEARCH_INQ_DISCARD_NUM_EVT

(C++ enumerator), 250
esp_gap_search_evt_t::ESP_GAP_SEARCH_INQ_RES_EVT

(C++ enumerator), 249
esp_gap_search_evt_t::ESP_GAP_SEARCH_SEARCH_CANCEL_CMPL_EVT

(C++ enumerator), 250
ESP_GATT_ATTR_HANDLE_MAX (C macro), 258
esp_gatt_auth_req_t (C++ enum), 270
esp_gatt_auth_req_t::ESP_GATT_AUTH_REQ_MITM

(C++ enumerator), 270
esp_gatt_auth_req_t::ESP_GATT_AUTH_REQ_NO_MITM

(C++ enumerator), 270
esp_gatt_auth_req_t::ESP_GATT_AUTH_REQ_NONE

(C++ enumerator), 270
esp_gatt_auth_req_t::ESP_GATT_AUTH_REQ_SIGNED_MITM

(C++ enumerator), 271
esp_gatt_auth_req_t::ESP_GATT_AUTH_REQ_SIGNED_NO_MITM

(C++ enumerator), 271
ESP_GATT_AUTO_RSP (C macro), 266
ESP_GATT_BODY_SENSOR_LOCATION (C macro),

264
ESP_GATT_CHAR_PROP_BIT_AUTH (C macro),

266
ESP_GATT_CHAR_PROP_BIT_BROADCAST (C

macro), 265
ESP_GATT_CHAR_PROP_BIT_EXT_PROP (C

macro), 266
ESP_GATT_CHAR_PROP_BIT_INDICATE (C

macro), 266
ESP_GATT_CHAR_PROP_BIT_NOTIFY (C macro),

266
ESP_GATT_CHAR_PROP_BIT_READ (C macro),

265
ESP_GATT_CHAR_PROP_BIT_WRITE (C macro),

265
ESP_GATT_CHAR_PROP_BIT_WRITE_NR (C

macro), 265
esp_gatt_char_prop_t (C++ type), 266
esp_gatt_conn_params_t (C++ struct), 255
esp_gatt_conn_params_t::interval (C++

member), 256
esp_gatt_conn_params_t::latency (C++

member), 256
esp_gatt_conn_params_t::timeout (C++

member), 256
esp_gatt_conn_reason_t (C++ enum), 269
esp_gatt_conn_reason_t::ESP_GATT_CONN_CONN_CANCEL

(C++ enumerator), 270
esp_gatt_conn_reason_t::ESP_GATT_CONN_FAIL_ESTABLISH

(C++ enumerator), 270
esp_gatt_conn_reason_t::ESP_GATT_CONN_L2C_FAILURE

(C++ enumerator), 270
esp_gatt_conn_reason_t::ESP_GATT_CONN_LMP_TIMEOUT

(C++ enumerator), 270
esp_gatt_conn_reason_t::ESP_GATT_CONN_NONE

(C++ enumerator), 270
esp_gatt_conn_reason_t::ESP_GATT_CONN_TERMINATE_LOCAL_HOST

(C++ enumerator), 270
esp_gatt_conn_reason_t::ESP_GATT_CONN_TERMINATE_PEER_USER

(C++ enumerator), 270
esp_gatt_conn_reason_t::ESP_GATT_CONN_TIMEOUT

(C++ enumerator), 270
esp_gatt_conn_reason_t::ESP_GATT_CONN_UNKNOWN

(C++ enumerator), 270
esp_gatt_db_attr_type_t (C++ enum), 271
esp_gatt_db_attr_type_t::ESP_GATT_DB_ALL

(C++ enumerator), 272
esp_gatt_db_attr_type_t::ESP_GATT_DB_CHARACTERISTIC

(C++ enumerator), 271
esp_gatt_db_attr_type_t::ESP_GATT_DB_DESCRIPTOR

(C++ enumerator), 271
esp_gatt_db_attr_type_t::ESP_GATT_DB_INCLUDED_SERVICE

(C++ enumerator), 272
esp_gatt_db_attr_type_t::ESP_GATT_DB_PRIMARY_SERVICE

(C++ enumerator), 271
esp_gatt_db_attr_type_t::ESP_GATT_DB_SECONDARY_SERVICE

(C++ enumerator), 271
ESP_GATT_HEART_RATE_CNTL_POINT (C

macro), 264
ESP_GATT_HEART_RATE_MEAS (C macro), 264
esp_gatt_id_t (C++ struct), 253
esp_gatt_id_t::inst_id (C++ member), 253
esp_gatt_id_t::uuid (C++ member), 253
ESP_GATT_IF_NONE (C macro), 266
esp_gatt_if_t (C++ type), 266
ESP_GATT_ILLEGAL_HANDLE (C macro), 258

Espressif Systems 2748
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_GATT_ILLEGAL_UUID (C macro), 258
ESP_GATT_MAX_ATTR_LEN (C macro), 266
ESP_GATT_MAX_READ_MULTI_HANDLES (C

macro), 259
ESP_GATT_PERM_ENCRYPT_KEY_SIZE (C

macro), 265
ESP_GATT_PERM_READ (C macro), 264
ESP_GATT_PERM_READ_AUTHORIZATION (C

macro), 265
ESP_GATT_PERM_READ_ENC_MITM (C macro),

265
ESP_GATT_PERM_READ_ENCRYPTED (C macro),

265
esp_gatt_perm_t (C++ type), 266
ESP_GATT_PERM_WRITE (C macro), 265
ESP_GATT_PERM_WRITE_AUTHORIZATION (C

macro), 265
ESP_GATT_PERM_WRITE_ENC_MITM (C macro),

265
ESP_GATT_PERM_WRITE_ENCRYPTED (C macro),

265
ESP_GATT_PERM_WRITE_SIGNED (C macro), 265
ESP_GATT_PERM_WRITE_SIGNED_MITM (C

macro), 265
ESP_GATT_PREP_WRITE_CANCEL (C macro), 287
ESP_GATT_PREP_WRITE_EXEC (C macro), 287
esp_gatt_prep_write_type (C++ enum), 266
esp_gatt_prep_write_type::ESP_GATT_PREP_WRITE_CANCEL

(C++ enumerator), 267
esp_gatt_prep_write_type::ESP_GATT_PREP_WRITE_EXEC

(C++ enumerator), 267
ESP_GATT_RSP_BY_APP (C macro), 266
esp_gatt_rsp_t (C++ union), 252
esp_gatt_rsp_t::attr_value (C++ member),

252
esp_gatt_rsp_t::handle (C++ member), 252
esp_gatt_srvc_id_t (C++ struct), 253
esp_gatt_srvc_id_t::id (C++ member), 253
esp_gatt_srvc_id_t::is_primary (C++

member), 253
esp_gatt_status_t (C++ enum), 267
esp_gatt_status_t::ESP_GATT_ALREADY_OPEN

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_APP_RSP

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_AUTH_FAIL

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_BUSY (C++

enumerator), 268
esp_gatt_status_t::ESP_GATT_CANCEL

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_CCC_CFG_ERR

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_CMD_STARTED

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_CONGESTED

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_DB_FULL

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_DUP_REG

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_ENCRYPTED_MITM

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_ENCRYPTED_NO_MITM

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_ERR_UNLIKELY

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_ERROR

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_ILLEGAL_PARAMETER

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_INSUF_AUTHENTICATION

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_INSUF_AUTHORIZATION

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_INSUF_ENCRYPTION

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_INSUF_KEY_SIZE

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_INSUF_RESOURCE

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_INTERNAL_ERROR

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_INVALID_ATTR_LEN

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_INVALID_CFG

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_INVALID_HANDLE

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_INVALID_OFFSET

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_INVALID_PDU

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_MORE (C++

enumerator), 268
esp_gatt_status_t::ESP_GATT_NO_RESOURCES

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_NOT_ENCRYPTED

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_NOT_FOUND

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_NOT_LONG

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_OK (C++

enumerator), 267
esp_gatt_status_t::ESP_GATT_OUT_OF_RANGE

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_PENDING

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_PRC_IN_PROGRESS

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_PREPARE_Q_FULL

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_READ_NOT_PERMIT

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_REQ_NOT_SUPPORTED

Espressif Systems 2749
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_SERVICE_STARTED

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_STACK_RSP

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_UNKNOWN_ERROR

(C++ enumerator), 269
esp_gatt_status_t::ESP_GATT_UNSUPPORT_GRP_TYPE

(C++ enumerator), 268
esp_gatt_status_t::ESP_GATT_WRITE_NOT_PERMIT

(C++ enumerator), 267
esp_gatt_status_t::ESP_GATT_WRONG_STATE

(C++ enumerator), 268
ESP_GATT_UUID_ALERT_LEVEL (C macro), 262
ESP_GATT_UUID_ALERT_NTF_SVC (C macro),

259
ESP_GATT_UUID_ALERT_STATUS (C macro), 262
ESP_GATT_UUID_Automation_IO_SVC (C

macro), 260
ESP_GATT_UUID_BATTERY_LEVEL (C macro),

264
ESP_GATT_UUID_BATTERY_SERVICE_SVC (C

macro), 259
ESP_GATT_UUID_BLOOD_PRESSURE_SVC (C

macro), 259
ESP_GATT_UUID_BODY_COMPOSITION (C

macro), 260
ESP_GATT_UUID_BOND_MANAGEMENT_SVC (C

macro), 260
ESP_GATT_UUID_CHAR_AGG_FORMAT (C macro),

261
ESP_GATT_UUID_CHAR_CLIENT_CONFIG (C

macro), 261
ESP_GATT_UUID_CHAR_DECLARE (C macro), 260
ESP_GATT_UUID_CHAR_DESCRIPTION (C

macro), 261
ESP_GATT_UUID_CHAR_EXT_PROP (C macro),

261
ESP_GATT_UUID_CHAR_PRESENT_FORMAT (C

macro), 261
ESP_GATT_UUID_CHAR_SRVR_CONFIG (C

macro), 261
ESP_GATT_UUID_CHAR_VALID_RANGE (C

macro), 261
ESP_GATT_UUID_CONT_GLUCOSE_MONITOR_SVC

(C macro), 260
ESP_GATT_UUID_CSC_FEATURE (C macro), 264
ESP_GATT_UUID_CSC_MEASUREMENT (C macro),

264
ESP_GATT_UUID_CURRENT_TIME (C macro), 262
ESP_GATT_UUID_CURRENT_TIME_SVC (C

macro), 259
ESP_GATT_UUID_CYCLING_POWER_SVC (C

macro), 260
ESP_GATT_UUID_CYCLING_SPEED_CADENCE_SVC

(C macro), 260
ESP_GATT_UUID_DEVICE_INFO_SVC (C macro),

259

ESP_GATT_UUID_ENV_SENSING_CONFIG_DESCR
(C macro), 261

ESP_GATT_UUID_ENV_SENSING_MEASUREMENT_DESCR
(C macro), 261

ESP_GATT_UUID_ENV_SENSING_TRIGGER_DESCR
(C macro), 261

ESP_GATT_UUID_ENVIRONMENTAL_SENSING_SVC
(C macro), 260

ESP_GATT_UUID_EXT_RPT_REF_DESCR (C
macro), 261

ESP_GATT_UUID_FW_VERSION_STR (C macro),
263

ESP_GATT_UUID_GAP_CENTRAL_ADDR_RESOL
(C macro), 262

ESP_GATT_UUID_GAP_DEVICE_NAME (C macro),
261

ESP_GATT_UUID_GAP_ICON (C macro), 262
ESP_GATT_UUID_GAP_PREF_CONN_PARAM (C

macro), 262
ESP_GATT_UUID_GATT_SRV_CHGD (C macro),

262
ESP_GATT_UUID_GLUCOSE_SVC (C macro), 259
ESP_GATT_UUID_GM_CONTEXT (C macro), 262
ESP_GATT_UUID_GM_CONTROL_POINT (C

macro), 263
ESP_GATT_UUID_GM_FEATURE (C macro), 263
ESP_GATT_UUID_GM_MEASUREMENT (C macro),

262
ESP_GATT_UUID_HEALTH_THERMOM_SVC (C

macro), 259
ESP_GATT_UUID_HEART_RATE_SVC (C macro),

259
ESP_GATT_UUID_HID_BT_KB_INPUT (C macro),

264
ESP_GATT_UUID_HID_BT_KB_OUTPUT (C

macro), 264
ESP_GATT_UUID_HID_BT_MOUSE_INPUT (C

macro), 264
ESP_GATT_UUID_HID_CONTROL_POINT (C

macro), 263
ESP_GATT_UUID_HID_INFORMATION (C macro),

263
ESP_GATT_UUID_HID_PROTO_MODE (C macro),

263
ESP_GATT_UUID_HID_REPORT (C macro), 263
ESP_GATT_UUID_HID_REPORT_MAP (C macro),

263
ESP_GATT_UUID_HID_SVC (C macro), 259
ESP_GATT_UUID_HW_VERSION_STR (C macro),

263
ESP_GATT_UUID_IEEE_DATA (C macro), 263
ESP_GATT_UUID_IMMEDIATE_ALERT_SVC (C

macro), 259
ESP_GATT_UUID_INCLUDE_SERVICE (C macro),

260
ESP_GATT_UUID_LINK_LOSS_SVC (C macro),

259
ESP_GATT_UUID_LOCAL_TIME_INFO (C macro),

Espressif Systems 2750
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

262
ESP_GATT_UUID_LOCATION_AND_NAVIGATION_SVC

(C macro), 260
ESP_GATT_UUID_MANU_NAME (C macro), 263
ESP_GATT_UUID_MODEL_NUMBER_STR (C

macro), 263
ESP_GATT_UUID_NEXT_DST_CHANGE_SVC (C

macro), 259
ESP_GATT_UUID_NUM_DIGITALS_DESCR (C

macro), 261
ESP_GATT_UUID_NW_STATUS (C macro), 262
ESP_GATT_UUID_NW_TRIGGER (C macro), 262
ESP_GATT_UUID_PHONE_ALERT_STATUS_SVC

(C macro), 259
ESP_GATT_UUID_PNP_ID (C macro), 263
ESP_GATT_UUID_PRI_SERVICE (C macro), 260
ESP_GATT_UUID_REF_TIME_INFO (C macro),

262
ESP_GATT_UUID_REF_TIME_UPDATE_SVC (C

macro), 259
ESP_GATT_UUID_RINGER_CP (C macro), 262
ESP_GATT_UUID_RINGER_SETTING (C macro),

262
ESP_GATT_UUID_RPT_REF_DESCR (C macro),

261
ESP_GATT_UUID_RSC_FEATURE (C macro), 264
ESP_GATT_UUID_RSC_MEASUREMENT (C macro),

264
ESP_GATT_UUID_RUNNING_SPEED_CADENCE_SVC

(C macro), 260
ESP_GATT_UUID_SC_CONTROL_POINT (C

macro), 264
ESP_GATT_UUID_SCAN_INT_WINDOW (C macro),

264
ESP_GATT_UUID_SCAN_PARAMETERS_SVC (C

macro), 260
ESP_GATT_UUID_SCAN_REFRESH (C macro), 264
ESP_GATT_UUID_SEC_SERVICE (C macro), 260
ESP_GATT_UUID_SENSOR_LOCATION (C macro),

264
ESP_GATT_UUID_SERIAL_NUMBER_STR (C

macro), 263
ESP_GATT_UUID_SW_VERSION_STR (C macro),

263
ESP_GATT_UUID_SYSTEM_ID (C macro), 263
ESP_GATT_UUID_TIME_TRIGGER_DESCR (C

macro), 261
ESP_GATT_UUID_TX_POWER_LEVEL (C macro),

262
ESP_GATT_UUID_TX_POWER_SVC (C macro), 259
ESP_GATT_UUID_USER_DATA_SVC (C macro),

260
ESP_GATT_UUID_VALUE_TRIGGER_DESCR (C

macro), 261
ESP_GATT_UUID_WEIGHT_SCALE_SVC (C

macro), 260
esp_gatt_value_t (C++ struct), 255
esp_gatt_value_t::auth_req (C++ member),

255
esp_gatt_value_t::handle (C++ member),

255
esp_gatt_value_t::len (C++ member), 255
esp_gatt_value_t::offset (C++ member),

255
esp_gatt_value_t::value (C++ member), 255
esp_gatt_write_type_t (C++ enum), 271
esp_gatt_write_type_t::ESP_GATT_WRITE_TYPE_NO_RSP

(C++ enumerator), 271
esp_gatt_write_type_t::ESP_GATT_WRITE_TYPE_RSP

(C++ enumerator), 271
esp_gattc_cb_event_t (C++ enum), 311
esp_gattc_cb_event_t::ESP_GATTC_ACL_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_ADV_DATA_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_ADV_VSC_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_BTH_SCAN_CFG_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_BTH_SCAN_DIS_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_BTH_SCAN_ENB_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_BTH_SCAN_PARAM_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_BTH_SCAN_RD_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_BTH_SCAN_THR_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_CANCEL_OPEN_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_CFG_MTU_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_CLOSE_EVT

(C++ enumerator), 311
esp_gattc_cb_event_t::ESP_GATTC_CONGEST_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_CONNECT_EVT

(C++ enumerator), 314
esp_gattc_cb_event_t::ESP_GATTC_DIS_SRVC_CMPL_EVT

(C++ enumerator), 314
esp_gattc_cb_event_t::ESP_GATTC_DISCONNECT_EVT

(C++ enumerator), 314
esp_gattc_cb_event_t::ESP_GATTC_ENC_CMPL_CB_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_EXEC_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_GET_ADDR_LIST_EVT

(C++ enumerator), 314
esp_gattc_cb_event_t::ESP_GATTC_MULT_ADV_DATA_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_MULT_ADV_DIS_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_MULT_ADV_ENB_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_MULT_ADV_UPD_EVT

Espressif Systems 2751
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_NOTIFY_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_OPEN_EVT

(C++ enumerator), 311
esp_gattc_cb_event_t::ESP_GATTC_PREP_WRITE_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_QUEUE_FULL_EVT

(C++ enumerator), 314
esp_gattc_cb_event_t::ESP_GATTC_READ_CHAR_EVT

(C++ enumerator), 311
esp_gattc_cb_event_t::ESP_GATTC_READ_DESCR_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_READ_MULTI_VAR_EVT

(C++ enumerator), 314
esp_gattc_cb_event_t::ESP_GATTC_READ_MULTIPLE_EVT

(C++ enumerator), 314
esp_gattc_cb_event_t::ESP_GATTC_REG_EVT

(C++ enumerator), 311
esp_gattc_cb_event_t::ESP_GATTC_REG_FOR_NOTIFY_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_SCAN_FLT_CFG_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_SCAN_FLT_PARAM_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_SCAN_FLT_STATUS_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_SEARCH_CMPL_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_SEARCH_RES_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_SET_ASSOC_EVT

(C++ enumerator), 314
esp_gattc_cb_event_t::ESP_GATTC_SRVC_CHG_EVT

(C++ enumerator), 312
esp_gattc_cb_event_t::ESP_GATTC_UNREG_EVT

(C++ enumerator), 311
esp_gattc_cb_event_t::ESP_GATTC_UNREG_FOR_NOTIFY_EVT

(C++ enumerator), 313
esp_gattc_cb_event_t::ESP_GATTC_WRITE_CHAR_EVT

(C++ enumerator), 311
esp_gattc_cb_event_t::ESP_GATTC_WRITE_DESCR_EVT

(C++ enumerator), 312
esp_gattc_cb_t (C++ type), 311
esp_gattc_char_elem_t (C++ struct), 257
esp_gattc_char_elem_t::char_handle

(C++ member), 257
esp_gattc_char_elem_t::properties

(C++ member), 257
esp_gattc_char_elem_t::uuid (C++ mem-

ber), 257
esp_gattc_db_elem_t (C++ struct), 256
esp_gattc_db_elem_t::attribute_handle

(C++ member), 256
esp_gattc_db_elem_t::end_handle (C++

member), 256
esp_gattc_db_elem_t::properties (C++

member), 256

esp_gattc_db_elem_t::start_handle
(C++ member), 256

esp_gattc_db_elem_t::type (C++ member),
256

esp_gattc_db_elem_t::uuid (C++ member),
256

esp_gattc_descr_elem_t (C++ struct), 257
esp_gattc_descr_elem_t::handle (C++

member), 257
esp_gattc_descr_elem_t::uuid (C++ mem-

ber), 257
esp_gattc_incl_svc_elem_t (C++ struct), 257
esp_gattc_incl_svc_elem_t::handle

(C++ member), 257
esp_gattc_incl_svc_elem_t::incl_srvc_e_handle

(C++ member), 258
esp_gattc_incl_svc_elem_t::incl_srvc_s_handle

(C++ member), 257
esp_gattc_incl_svc_elem_t::uuid (C++

member), 258
esp_gattc_multi_t (C++ struct), 256
esp_gattc_multi_t::handles (C++ member),

256
esp_gattc_multi_t::num_attr (C++ mem-

ber), 256
esp_gattc_service_elem_t (C++ struct), 256
esp_gattc_service_elem_t::end_handle

(C++ member), 257
esp_gattc_service_elem_t::is_primary

(C++ member), 257
esp_gattc_service_elem_t::start_handle

(C++ member), 257
esp_gattc_service_elem_t::uuid (C++

member), 257
esp_gatts_attr_db_t (C++ struct), 254
esp_gatts_attr_db_t::att_desc (C++

member), 254
esp_gatts_attr_db_t::attr_control

(C++ member), 254
esp_gatts_cb_event_t (C++ enum), 288
esp_gatts_cb_event_t::ESP_GATTS_ADD_CHAR_DESCR_EVT

(C++ enumerator), 288
esp_gatts_cb_event_t::ESP_GATTS_ADD_CHAR_EVT

(C++ enumerator), 288
esp_gatts_cb_event_t::ESP_GATTS_ADD_INCL_SRVC_EVT

(C++ enumerator), 288
esp_gatts_cb_event_t::ESP_GATTS_CANCEL_OPEN_EVT

(C++ enumerator), 289
esp_gatts_cb_event_t::ESP_GATTS_CLOSE_EVT

(C++ enumerator), 289
esp_gatts_cb_event_t::ESP_GATTS_CONF_EVT

(C++ enumerator), 288
esp_gatts_cb_event_t::ESP_GATTS_CONGEST_EVT

(C++ enumerator), 289
esp_gatts_cb_event_t::ESP_GATTS_CONNECT_EVT

(C++ enumerator), 289
esp_gatts_cb_event_t::ESP_GATTS_CREAT_ATTR_TAB_EVT

(C++ enumerator), 289

Espressif Systems 2752
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_gatts_cb_event_t::ESP_GATTS_CREATE_EVT
(C++ enumerator), 288

esp_gatts_cb_event_t::ESP_GATTS_DELETE_EVT
(C++ enumerator), 288

esp_gatts_cb_event_t::ESP_GATTS_DISCONNECT_EVT
(C++ enumerator), 289

esp_gatts_cb_event_t::ESP_GATTS_EXEC_WRITE_EVT
(C++ enumerator), 288

esp_gatts_cb_event_t::ESP_GATTS_LISTEN_EVT
(C++ enumerator), 289

esp_gatts_cb_event_t::ESP_GATTS_MTU_EVT
(C++ enumerator), 288

esp_gatts_cb_event_t::ESP_GATTS_OPEN_EVT
(C++ enumerator), 289

esp_gatts_cb_event_t::ESP_GATTS_READ_EVT
(C++ enumerator), 288

esp_gatts_cb_event_t::ESP_GATTS_REG_EVT
(C++ enumerator), 288

esp_gatts_cb_event_t::ESP_GATTS_RESPONSE_EVT
(C++ enumerator), 289

esp_gatts_cb_event_t::ESP_GATTS_SEND_SERVICE_CHANGE_EVT
(C++ enumerator), 289

esp_gatts_cb_event_t::ESP_GATTS_SET_ATTR_VAL_EVT
(C++ enumerator), 289

esp_gatts_cb_event_t::ESP_GATTS_START_EVT
(C++ enumerator), 288

esp_gatts_cb_event_t::ESP_GATTS_STOP_EVT
(C++ enumerator), 288

esp_gatts_cb_event_t::ESP_GATTS_UNREG_EVT
(C++ enumerator), 288

esp_gatts_cb_event_t::ESP_GATTS_WRITE_EVT
(C++ enumerator), 288

esp_gatts_cb_t (C++ type), 287
esp_gatts_incl128_svc_desc_t (C++ struct),

255
esp_gatts_incl128_svc_desc_t::end_hdl

(C++ member), 255
esp_gatts_incl128_svc_desc_t::start_hdl

(C++ member), 255
esp_gatts_incl_svc_desc_t (C++ struct), 254
esp_gatts_incl_svc_desc_t::end_hdl

(C++ member), 255
esp_gatts_incl_svc_desc_t::start_hdl

(C++ member), 255
esp_gatts_incl_svc_desc_t::uuid (C++

member), 255
esp_gcov_dump (C++ function), 1777
esp_get_deep_sleep_wake_stub (C++ func-

tion), 2101
esp_get_flash_encryption_mode (C++ func-

tion), 1186
esp_get_free_heap_size (C++ function), 2049
esp_get_free_internal_heap_size (C++

function), 2049
esp_get_idf_version (C++ function), 2051
esp_get_minimum_free_heap_size (C++

function), 2050
ESP_GOTO_ON_ERROR (C macro), 1824

ESP_GOTO_ON_ERROR_ISR (C macro), 1824
ESP_GOTO_ON_FALSE (C macro), 1824
ESP_GOTO_ON_FALSE_ISR (C macro), 1824
esp_hmac_calculate (C++ function), 935
esp_hmac_jtag_disable (C++ function), 935
esp_hmac_jtag_enable (C++ function), 935
esp_http_client_add_auth (C++ function), 83
esp_http_client_auth_type_t (C++ enum),

91
esp_http_client_auth_type_t::HTTP_AUTH_TYPE_BASIC

(C++ enumerator), 91
esp_http_client_auth_type_t::HTTP_AUTH_TYPE_DIGEST

(C++ enumerator), 91
esp_http_client_auth_type_t::HTTP_AUTH_TYPE_NONE

(C++ enumerator), 91
esp_http_client_cancel_request (C++

function), 78
esp_http_client_cleanup (C++ function), 82
esp_http_client_close (C++ function), 82
esp_http_client_config_t (C++ struct), 85
esp_http_client_config_t::auth_type

(C++ member), 86
esp_http_client_config_t::buffer_size

(C++ member), 87
esp_http_client_config_t::buffer_size_tx

(C++ member), 87
esp_http_client_config_t::cert_len

(C++ member), 86
esp_http_client_config_t::cert_pem

(C++ member), 86
esp_http_client_config_t::client_cert_len

(C++ member), 86
esp_http_client_config_t::client_cert_pem

(C++ member), 86
esp_http_client_config_t::client_key_len

(C++ member), 86
esp_http_client_config_t::client_key_password

(C++ member), 86
esp_http_client_config_t::client_key_password_len

(C++ member), 86
esp_http_client_config_t::client_key_pem

(C++ member), 86
esp_http_client_config_t::common_name

(C++ member), 87
esp_http_client_config_t::crt_bundle_attach

(C++ member), 87
esp_http_client_config_t::disable_auto_redirect

(C++ member), 86
esp_http_client_config_t::ds_data

(C++ member), 88
esp_http_client_config_t::event_handler

(C++ member), 87
esp_http_client_config_t::host (C++

member), 85
esp_http_client_config_t::if_name

(C++ member), 88
esp_http_client_config_t::is_async

(C++ member), 87

Espressif Systems 2753
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_http_client_config_t::keep_alive_count
(C++ member), 88

esp_http_client_config_t::keep_alive_enable
(C++ member), 87

esp_http_client_config_t::keep_alive_idle
(C++ member), 87

esp_http_client_config_t::keep_alive_interval
(C++ member), 87

esp_http_client_config_t::max_authorization_retries
(C++ member), 87

esp_http_client_config_t::max_redirection_count
(C++ member), 87

esp_http_client_config_t::method (C++
member), 86

esp_http_client_config_t::password
(C++ member), 85

esp_http_client_config_t::path (C++
member), 86

esp_http_client_config_t::port (C++
member), 85

esp_http_client_config_t::query (C++
member), 86

esp_http_client_config_t::skip_cert_common_name_check
(C++ member), 87

esp_http_client_config_t::timeout_ms
(C++ member), 86

esp_http_client_config_t::tls_version
(C++ member), 86

esp_http_client_config_t::transport_type
(C++ member), 87

esp_http_client_config_t::url (C++
member), 85

esp_http_client_config_t::use_global_ca_store
(C++ member), 87

esp_http_client_config_t::user_agent
(C++ member), 86

esp_http_client_config_t::user_data
(C++ member), 87

esp_http_client_config_t::username
(C++ member), 85

esp_http_client_delete_header (C++ func-
tion), 81

esp_http_client_event (C++ struct), 84
esp_http_client_event::client (C++

member), 84
esp_http_client_event::data (C++ mem-

ber), 84
esp_http_client_event::data_len (C++

member), 84
esp_http_client_event::event_id (C++

member), 84
esp_http_client_event::header_key

(C++ member), 85
esp_http_client_event::header_value

(C++ member), 85
esp_http_client_event::user_data (C++

member), 84
esp_http_client_event_handle_t (C++

type), 88
esp_http_client_event_id_t (C++ enum), 89
esp_http_client_event_id_t::HTTP_EVENT_DISCONNECTED

(C++ enumerator), 89
esp_http_client_event_id_t::HTTP_EVENT_ERROR

(C++ enumerator), 89
esp_http_client_event_id_t::HTTP_EVENT_HEADER_SENT

(C++ enumerator), 89
esp_http_client_event_id_t::HTTP_EVENT_HEADERS_SENT

(C++ enumerator), 89
esp_http_client_event_id_t::HTTP_EVENT_ON_CONNECTED

(C++ enumerator), 89
esp_http_client_event_id_t::HTTP_EVENT_ON_DATA

(C++ enumerator), 89
esp_http_client_event_id_t::HTTP_EVENT_ON_FINISH

(C++ enumerator), 89
esp_http_client_event_id_t::HTTP_EVENT_ON_HEADER

(C++ enumerator), 89
esp_http_client_event_id_t::HTTP_EVENT_REDIRECT

(C++ enumerator), 89
esp_http_client_event_t (C++ type), 88
esp_http_client_fetch_headers (C++ func-

tion), 82
esp_http_client_flush_response (C++

function), 83
esp_http_client_get_chunk_length (C++

function), 84
esp_http_client_get_content_length

(C++ function), 82
esp_http_client_get_errno (C++ function),

81
esp_http_client_get_header (C++ function),

79
esp_http_client_get_password (C++ func-

tion), 80
esp_http_client_get_post_field (C++

function), 79
esp_http_client_get_status_code (C++

function), 82
esp_http_client_get_transport_type

(C++ function), 83
esp_http_client_get_url (C++ function), 84
esp_http_client_get_user_data (C++ func-

tion), 80
esp_http_client_get_username (C++ func-

tion), 79
esp_http_client_handle_t (C++ type), 88
esp_http_client_init (C++ function), 78
esp_http_client_is_chunked_response

(C++ function), 82
esp_http_client_is_complete_data_received

(C++ function), 83
esp_http_client_method_t (C++ enum), 90
esp_http_client_method_t::HTTP_METHOD_COPY

(C++ enumerator), 91
esp_http_client_method_t::HTTP_METHOD_DELETE

(C++ enumerator), 90
esp_http_client_method_t::HTTP_METHOD_GET

Espressif Systems 2754
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 90
esp_http_client_method_t::HTTP_METHOD_HEAD

(C++ enumerator), 90
esp_http_client_method_t::HTTP_METHOD_LOCK

(C++ enumerator), 91
esp_http_client_method_t::HTTP_METHOD_MAX

(C++ enumerator), 91
esp_http_client_method_t::HTTP_METHOD_MKCOL

(C++ enumerator), 91
esp_http_client_method_t::HTTP_METHOD_MOVE

(C++ enumerator), 91
esp_http_client_method_t::HTTP_METHOD_NOTIFY

(C++ enumerator), 90
esp_http_client_method_t::HTTP_METHOD_OPTIONS

(C++ enumerator), 91
esp_http_client_method_t::HTTP_METHOD_PATCH

(C++ enumerator), 90
esp_http_client_method_t::HTTP_METHOD_POST

(C++ enumerator), 90
esp_http_client_method_t::HTTP_METHOD_PROPFIND

(C++ enumerator), 91
esp_http_client_method_t::HTTP_METHOD_PROPPATCH

(C++ enumerator), 91
esp_http_client_method_t::HTTP_METHOD_PUT

(C++ enumerator), 90
esp_http_client_method_t::HTTP_METHOD_SUBSCRIBE

(C++ enumerator), 90
esp_http_client_method_t::HTTP_METHOD_UNLOCK

(C++ enumerator), 91
esp_http_client_method_t::HTTP_METHOD_UNSUBSCRIBE

(C++ enumerator), 90
esp_http_client_on_data (C++ struct), 85
esp_http_client_on_data::client (C++

member), 85
esp_http_client_on_data::data_process

(C++ member), 85
esp_http_client_on_data_t (C++ type), 89
esp_http_client_open (C++ function), 81
esp_http_client_perform (C++ function), 78
esp_http_client_proto_ver_t (C++ enum),

90
esp_http_client_proto_ver_t::ESP_HTTP_CLIENT_TLS_VER_ANY

(C++ enumerator), 90
esp_http_client_proto_ver_t::ESP_HTTP_CLIENT_TLS_VER_MAX

(C++ enumerator), 90
esp_http_client_proto_ver_t::ESP_HTTP_CLIENT_TLS_VER_TLS_1_2

(C++ enumerator), 90
esp_http_client_proto_ver_t::ESP_HTTP_CLIENT_TLS_VER_TLS_1_3

(C++ enumerator), 90
esp_http_client_read (C++ function), 82
esp_http_client_read_response (C++ func-

tion), 83
esp_http_client_redirect_event_data

(C++ struct), 85
esp_http_client_redirect_event_data::client

(C++ member), 85
esp_http_client_redirect_event_data::status_code

(C++ member), 85

esp_http_client_redirect_event_data_t
(C++ type), 89

esp_http_client_reset_redirect_counter
(C++ function), 83

esp_http_client_set_authtype (C++ func-
tion), 80

esp_http_client_set_header (C++ function),
79

esp_http_client_set_method (C++ function),
81

esp_http_client_set_password (C++ func-
tion), 80

esp_http_client_set_post_field (C++
function), 79

esp_http_client_set_redirection (C++
function), 83

esp_http_client_set_timeout_ms (C++
function), 81

esp_http_client_set_url (C++ function), 78
esp_http_client_set_user_data (C++ func-

tion), 80
esp_http_client_set_username (C++ func-

tion), 79
esp_http_client_transport_t (C++ enum),

89
esp_http_client_transport_t::HTTP_TRANSPORT_OVER_SSL

(C++ enumerator), 90
esp_http_client_transport_t::HTTP_TRANSPORT_OVER_TCP

(C++ enumerator), 90
esp_http_client_transport_t::HTTP_TRANSPORT_UNKNOWN

(C++ enumerator), 89
esp_http_client_write (C++ function), 81
esp_http_server_event_data (C++ struct),

139
esp_http_server_event_data::data_len

(C++ member), 139
esp_http_server_event_data::fd (C++

member), 139
esp_http_server_event_id_t (C++ enum),

147
esp_http_server_event_id_t::HTTP_SERVER_EVENT_DISCONNECTED

(C++ enumerator), 148
esp_http_server_event_id_t::HTTP_SERVER_EVENT_ERROR

(C++ enumerator), 147
esp_http_server_event_id_t::HTTP_SERVER_EVENT_HEADERS_SENT

(C++ enumerator), 148
esp_http_server_event_id_t::HTTP_SERVER_EVENT_ON_CONNECTED

(C++ enumerator), 148
esp_http_server_event_id_t::HTTP_SERVER_EVENT_ON_DATA

(C++ enumerator), 148
esp_http_server_event_id_t::HTTP_SERVER_EVENT_ON_HEADER

(C++ enumerator), 148
esp_http_server_event_id_t::HTTP_SERVER_EVENT_SENT_DATA

(C++ enumerator), 148
esp_http_server_event_id_t::HTTP_SERVER_EVENT_START

(C++ enumerator), 147
esp_http_server_event_id_t::HTTP_SERVER_EVENT_STOP

(C++ enumerator), 148

Espressif Systems 2755
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ESP_HTTPD_DEF_CTRL_PORT (C macro), 143
esp_https_ota (C++ function), 1829
esp_https_ota_abort (C++ function), 1830
esp_https_ota_begin (C++ function), 1829
esp_https_ota_config_t (C++ struct), 1832
esp_https_ota_config_t::bulk_flash_erase

(C++ member), 1832
esp_https_ota_config_t::http_client_init_cb

(C++ member), 1832
esp_https_ota_config_t::http_config

(C++ member), 1832
esp_https_ota_config_t::max_http_request_size

(C++ member), 1832
esp_https_ota_config_t::partial_http_download

(C++ member), 1832
esp_https_ota_event_t (C++ enum), 1832
esp_https_ota_event_t::ESP_HTTPS_OTA_ABORT

(C++ enumerator), 1833
esp_https_ota_event_t::ESP_HTTPS_OTA_CONNECTED

(C++ enumerator), 1833
esp_https_ota_event_t::ESP_HTTPS_OTA_DECRYPT_CB

(C++ enumerator), 1833
esp_https_ota_event_t::ESP_HTTPS_OTA_FINISH

(C++ enumerator), 1833
esp_https_ota_event_t::ESP_HTTPS_OTA_GET_IMG_DESC

(C++ enumerator), 1833
esp_https_ota_event_t::ESP_HTTPS_OTA_START

(C++ enumerator), 1832
esp_https_ota_event_t::ESP_HTTPS_OTA_UPDATE_BOOT_PARTITION

(C++ enumerator), 1833
esp_https_ota_event_t::ESP_HTTPS_OTA_VERIFY_CHIP_ID

(C++ enumerator), 1833
esp_https_ota_event_t::ESP_HTTPS_OTA_WRITE_FLASH

(C++ enumerator), 1833
esp_https_ota_finish (C++ function), 1830
esp_https_ota_get_image_len_read (C++

function), 1831
esp_https_ota_get_image_size (C++ func-

tion), 1831
esp_https_ota_get_img_desc (C++ function),

1831
esp_https_ota_get_status_code (C++ func-

tion), 1831
esp_https_ota_handle_t (C++ type), 1832
esp_https_ota_is_complete_data_received

(C++ function), 1830
esp_https_ota_perform (C++ function), 1829
esp_https_server_user_cb (C++ type), 151
esp_https_server_user_cb_arg (C++ struct),

149
esp_https_server_user_cb_arg::tls

(C++ member), 149
esp_https_server_user_cb_arg::user_cb_state

(C++ member), 149
esp_https_server_user_cb_arg_t (C++

type), 151
ESP_IDF_VERSION (C macro), 2052
ESP_IDF_VERSION_MAJOR (C macro), 2051

ESP_IDF_VERSION_MINOR (C macro), 2051
ESP_IDF_VERSION_PATCH (C macro), 2051
ESP_IDF_VERSION_VAL (C macro), 2051
esp_iface_mac_addr_set (C++ function), 2053
esp_image_flash_size_t (C++ enum), 1773
esp_image_flash_size_t::ESP_IMAGE_FLASH_SIZE_128MB

(C++ enumerator), 1773
esp_image_flash_size_t::ESP_IMAGE_FLASH_SIZE_16MB

(C++ enumerator), 1773
esp_image_flash_size_t::ESP_IMAGE_FLASH_SIZE_1MB

(C++ enumerator), 1773
esp_image_flash_size_t::ESP_IMAGE_FLASH_SIZE_2MB

(C++ enumerator), 1773
esp_image_flash_size_t::ESP_IMAGE_FLASH_SIZE_32MB

(C++ enumerator), 1773
esp_image_flash_size_t::ESP_IMAGE_FLASH_SIZE_4MB

(C++ enumerator), 1773
esp_image_flash_size_t::ESP_IMAGE_FLASH_SIZE_64MB

(C++ enumerator), 1773
esp_image_flash_size_t::ESP_IMAGE_FLASH_SIZE_8MB

(C++ enumerator), 1773
esp_image_flash_size_t::ESP_IMAGE_FLASH_SIZE_MAX

(C++ enumerator), 1773
ESP_IMAGE_HEADER_MAGIC (C macro), 1771
esp_image_header_t (C++ struct), 1770
esp_image_header_t::chip_id (C++ mem-

ber), 1771
esp_image_header_t::entry_addr (C++

member), 1770
esp_image_header_t::hash_appended

(C++ member), 1771
esp_image_header_t::magic (C++ member),

1770
esp_image_header_t::max_chip_rev_full

(C++ member), 1771
esp_image_header_t::min_chip_rev (C++

member), 1771
esp_image_header_t::min_chip_rev_full

(C++ member), 1771
esp_image_header_t::reserved (C++ mem-

ber), 1771
esp_image_header_t::segment_count

(C++ member), 1770
esp_image_header_t::spi_mode (C++ mem-

ber), 1770
esp_image_header_t::spi_pin_drv (C++

member), 1771
esp_image_header_t::spi_size (C++ mem-

ber), 1770
esp_image_header_t::spi_speed (C++

member), 1770
esp_image_header_t::wp_pin (C++ member),

1770
ESP_IMAGE_MAX_SEGMENTS (C macro), 1771
esp_image_segment_header_t (C++ struct),

1771
esp_image_segment_header_t::data_len

(C++ member), 1771

Espressif Systems 2756
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_image_segment_header_t::load_addr
(C++ member), 1771

esp_image_spi_freq_t (C++ enum), 1773
esp_image_spi_freq_t::ESP_IMAGE_SPI_SPEED_DIV_1

(C++ enumerator), 1773
esp_image_spi_freq_t::ESP_IMAGE_SPI_SPEED_DIV_2

(C++ enumerator), 1773
esp_image_spi_freq_t::ESP_IMAGE_SPI_SPEED_DIV_3

(C++ enumerator), 1773
esp_image_spi_freq_t::ESP_IMAGE_SPI_SPEED_DIV_4

(C++ enumerator), 1773
esp_image_spi_mode_t (C++ enum), 1772
esp_image_spi_mode_t::ESP_IMAGE_SPI_MODE_DIO

(C++ enumerator), 1772
esp_image_spi_mode_t::ESP_IMAGE_SPI_MODE_DOUT

(C++ enumerator), 1772
esp_image_spi_mode_t::ESP_IMAGE_SPI_MODE_FAST_READ

(C++ enumerator), 1772
esp_image_spi_mode_t::ESP_IMAGE_SPI_MODE_QIO

(C++ enumerator), 1772
esp_image_spi_mode_t::ESP_IMAGE_SPI_MODE_QOUT

(C++ enumerator), 1772
esp_image_spi_mode_t::ESP_IMAGE_SPI_MODE_SLOW_READ

(C++ enumerator), 1772
esp_intr_alloc (C++ function), 2034
esp_intr_alloc_intrstatus (C++ function),

2035
ESP_INTR_DISABLE (C macro), 2038
esp_intr_disable (C++ function), 2036
esp_intr_disable_source (C++ function),

2037
ESP_INTR_ENABLE (C macro), 2038
esp_intr_enable (C++ function), 2036
esp_intr_enable_source (C++ function), 2037
ESP_INTR_FLAG_EDGE (C macro), 2037
ESP_INTR_FLAG_HIGH (C macro), 2038
ESP_INTR_FLAG_INTRDISABLED (Cmacro), 2038
ESP_INTR_FLAG_IRAM (C macro), 2038
ESP_INTR_FLAG_LEVEL1 (C macro), 2037
ESP_INTR_FLAG_LEVEL2 (C macro), 2037
ESP_INTR_FLAG_LEVEL3 (C macro), 2037
ESP_INTR_FLAG_LEVEL4 (C macro), 2037
ESP_INTR_FLAG_LEVEL5 (C macro), 2037
ESP_INTR_FLAG_LEVEL6 (C macro), 2037
ESP_INTR_FLAG_LEVELMASK (C macro), 2038
ESP_INTR_FLAG_LOWMED (C macro), 2038
ESP_INTR_FLAG_NMI (C macro), 2037
ESP_INTR_FLAG_SHARED (C macro), 2037
esp_intr_flags_to_level (C++ function),

2037
esp_intr_free (C++ function), 2035
esp_intr_get_cpu (C++ function), 2036
esp_intr_get_intno (C++ function), 2036
esp_intr_mark_shared (C++ function), 2034
esp_intr_noniram_disable (C++ function),

2037
esp_intr_noniram_enable (C++ function),

2037

esp_intr_reserve (C++ function), 2034
esp_intr_set_in_iram (C++ function), 2036
ESP_INVALID_CONN_HANDLE (C macro), 162
ESP_IO_CAP_IN (C macro), 227
ESP_IO_CAP_IO (C macro), 227
ESP_IO_CAP_KBDISP (C macro), 228
ESP_IO_CAP_NONE (C macro), 227
ESP_IO_CAP_OUT (C macro), 227
esp_ip4_addr (C++ struct), 840
esp_ip4_addr1 (C macro), 841
esp_ip4_addr1_16 (C macro), 841
esp_ip4_addr2 (C macro), 841
esp_ip4_addr2_16 (C macro), 841
esp_ip4_addr3 (C macro), 841
esp_ip4_addr3_16 (C macro), 841
esp_ip4_addr4 (C macro), 841
esp_ip4_addr4_16 (C macro), 841
esp_ip4_addr::addr (C++ member), 840
esp_ip4_addr_get_byte (C macro), 841
esp_ip4_addr_t (C++ type), 841
esp_ip4addr_aton (C++ function), 827
ESP_IP4ADDR_INIT (C macro), 841
esp_ip4addr_ntoa (C++ function), 827
ESP_IP4TOADDR (C macro), 841
ESP_IP4TOUINT32 (C macro), 841
esp_ip6_addr (C++ struct), 839
esp_ip6_addr::addr (C++ member), 840
esp_ip6_addr::zone (C++ member), 840
ESP_IP6_ADDR_BLOCK1 (C macro), 840
ESP_IP6_ADDR_BLOCK2 (C macro), 840
ESP_IP6_ADDR_BLOCK3 (C macro), 840
ESP_IP6_ADDR_BLOCK4 (C macro), 840
ESP_IP6_ADDR_BLOCK5 (C macro), 840
ESP_IP6_ADDR_BLOCK6 (C macro), 840
ESP_IP6_ADDR_BLOCK7 (C macro), 840
ESP_IP6_ADDR_BLOCK8 (C macro), 840
esp_ip6_addr_t (C++ type), 841
esp_ip6_addr_type_t (C++ enum), 842
esp_ip6_addr_type_t::ESP_IP6_ADDR_IS_GLOBAL

(C++ enumerator), 842
esp_ip6_addr_type_t::ESP_IP6_ADDR_IS_IPV4_MAPPED_IPV6

(C++ enumerator), 842
esp_ip6_addr_type_t::ESP_IP6_ADDR_IS_LINK_LOCAL

(C++ enumerator), 842
esp_ip6_addr_type_t::ESP_IP6_ADDR_IS_SITE_LOCAL

(C++ enumerator), 842
esp_ip6_addr_type_t::ESP_IP6_ADDR_IS_UNIQUE_LOCAL

(C++ enumerator), 842
esp_ip6_addr_type_t::ESP_IP6_ADDR_IS_UNKNOWN

(C++ enumerator), 842
ESP_IP6ADDR_INIT (C macro), 841
esp_ip_addr_t (C++ type), 841
ESP_IP_IS_ANY (C macro), 841
ESP_IPADDR_TYPE_ANY (C macro), 841
ESP_IPADDR_TYPE_V4 (C macro), 841
ESP_IPADDR_TYPE_V6 (C macro), 841
esp_lcd_i2c_bus_handle_t (C++ type), 1010
esp_lcd_i80_bus_handle_t (C++ type), 1010

Espressif Systems 2757
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_lcd_new_panel_io_i2c (C++ function),
1007

esp_lcd_new_panel_io_spi (C++ function),
1007

esp_lcd_new_panel_nt35510 (C++ function),
1013

esp_lcd_new_panel_ssd1306 (C++ function),
1013

esp_lcd_new_panel_st7789 (C++ function),
1013

esp_lcd_panel_del (C++ function), 1011
esp_lcd_panel_dev_config_t (C++ struct),

1014
esp_lcd_panel_dev_config_t::bits_per_pixel

(C++ member), 1014
esp_lcd_panel_dev_config_t::color_space

(C++ member), 1014
esp_lcd_panel_dev_config_t::data_endian

(C++ member), 1014
esp_lcd_panel_dev_config_t::flags

(C++ member), 1014
esp_lcd_panel_dev_config_t::reset_active_high

(C++ member), 1014
esp_lcd_panel_dev_config_t::reset_gpio_num

(C++ member), 1014
esp_lcd_panel_dev_config_t::rgb_ele_order

(C++ member), 1014
esp_lcd_panel_dev_config_t::rgb_endian

(C++ member), 1014
esp_lcd_panel_dev_config_t::vendor_config

(C++ member), 1014
esp_lcd_panel_disp_off (C++ function), 1012
esp_lcd_panel_disp_on_off (C++ function),

1012
esp_lcd_panel_draw_bitmap (C++ function),

1011
esp_lcd_panel_handle_t (C++ type), 1006
esp_lcd_panel_init (C++ function), 1011
esp_lcd_panel_invert_color (C++ function),

1012
esp_lcd_panel_io_callbacks_t (C++ struct),

1008
esp_lcd_panel_io_callbacks_t::on_color_trans_done

(C++ member), 1008
esp_lcd_panel_io_color_trans_done_cb_t

(C++ type), 1010
esp_lcd_panel_io_del (C++ function), 1007
esp_lcd_panel_io_event_data_t (C++

struct), 1008
esp_lcd_panel_io_handle_t (C++ type), 1006
esp_lcd_panel_io_i2c_config_t (C++

struct), 1009
esp_lcd_panel_io_i2c_config_t::control_phase_bytes

(C++ member), 1010
esp_lcd_panel_io_i2c_config_t::dc_bit_offset

(C++ member), 1010
esp_lcd_panel_io_i2c_config_t::dc_low_on_data

(C++ member), 1010

esp_lcd_panel_io_i2c_config_t::dev_addr
(C++ member), 1009

esp_lcd_panel_io_i2c_config_t::disable_control_phase
(C++ member), 1010

esp_lcd_panel_io_i2c_config_t::flags
(C++ member), 1010

esp_lcd_panel_io_i2c_config_t::lcd_cmd_bits
(C++ member), 1010

esp_lcd_panel_io_i2c_config_t::lcd_param_bits
(C++ member), 1010

esp_lcd_panel_io_i2c_config_t::on_color_trans_done
(C++ member), 1009

esp_lcd_panel_io_i2c_config_t::user_ctx
(C++ member), 1009

esp_lcd_panel_io_register_event_callbacks
(C++ function), 1007

esp_lcd_panel_io_rx_param (C++ function),
1006

esp_lcd_panel_io_spi_config_t (C++
struct), 1008

esp_lcd_panel_io_spi_config_t::cs_gpio_num
(C++ member), 1008

esp_lcd_panel_io_spi_config_t::cs_high_active
(C++ member), 1009

esp_lcd_panel_io_spi_config_t::dc_gpio_num
(C++ member), 1008

esp_lcd_panel_io_spi_config_t::dc_high_on_cmd
(C++ member), 1009

esp_lcd_panel_io_spi_config_t::dc_low_on_data
(C++ member), 1009

esp_lcd_panel_io_spi_config_t::dc_low_on_param
(C++ member), 1009

esp_lcd_panel_io_spi_config_t::flags
(C++ member), 1009

esp_lcd_panel_io_spi_config_t::lcd_cmd_bits
(C++ member), 1009

esp_lcd_panel_io_spi_config_t::lcd_param_bits
(C++ member), 1009

esp_lcd_panel_io_spi_config_t::lsb_first
(C++ member), 1009

esp_lcd_panel_io_spi_config_t::octal_mode
(C++ member), 1009

esp_lcd_panel_io_spi_config_t::on_color_trans_done
(C++ member), 1008

esp_lcd_panel_io_spi_config_t::pclk_hz
(C++ member), 1008

esp_lcd_panel_io_spi_config_t::quad_mode
(C++ member), 1009

esp_lcd_panel_io_spi_config_t::sio_mode
(C++ member), 1009

esp_lcd_panel_io_spi_config_t::spi_mode
(C++ member), 1008

esp_lcd_panel_io_spi_config_t::trans_queue_depth
(C++ member), 1008

esp_lcd_panel_io_spi_config_t::user_ctx
(C++ member), 1008

esp_lcd_panel_io_tx_color (C++ function),
1007

Espressif Systems 2758
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_lcd_panel_io_tx_param (C++ function),
1006

esp_lcd_panel_mirror (C++ function), 1011
esp_lcd_panel_reset (C++ function), 1011
esp_lcd_panel_set_gap (C++ function), 1012
esp_lcd_panel_swap_xy (C++ function), 1012
esp_lcd_spi_bus_handle_t (C++ type), 1010
ESP_LE_AUTH_BOND (C macro), 227
ESP_LE_AUTH_NO_BOND (C macro), 226
ESP_LE_AUTH_REQ_BOND_MITM (C macro), 227
ESP_LE_AUTH_REQ_MITM (C macro), 227
ESP_LE_AUTH_REQ_SC_BOND (C macro), 227
ESP_LE_AUTH_REQ_SC_MITM (C macro), 227
ESP_LE_AUTH_REQ_SC_MITM_BOND (C macro),

227
ESP_LE_AUTH_REQ_SC_ONLY (C macro), 227
ESP_LE_KEY_LCSRK (C macro), 226
ESP_LE_KEY_LENC (C macro), 226
ESP_LE_KEY_LID (C macro), 226
ESP_LE_KEY_LLK (C macro), 226
ESP_LE_KEY_NONE (C macro), 226
ESP_LE_KEY_PCSRK (C macro), 226
ESP_LE_KEY_PENC (C macro), 226
ESP_LE_KEY_PID (C macro), 226
ESP_LE_KEY_PLK (C macro), 226
esp_light_sleep_start (C++ function), 2099
esp_link_key (C++ type), 162
esp_local_ctrl_add_property (C++ func-

tion), 96
esp_local_ctrl_config (C++ struct), 100
esp_local_ctrl_config::handlers (C++

member), 100
esp_local_ctrl_config::max_properties

(C++ member), 100
esp_local_ctrl_config::proto_sec (C++

member), 100
esp_local_ctrl_config::transport (C++

member), 100
esp_local_ctrl_config::transport_config

(C++ member), 100
esp_local_ctrl_config_t (C++ type), 101
esp_local_ctrl_get_property (C++ func-

tion), 96
esp_local_ctrl_get_transport_ble (C++

function), 96
esp_local_ctrl_get_transport_httpd

(C++ function), 96
esp_local_ctrl_handlers (C++ struct), 98
esp_local_ctrl_handlers::get_prop_values

(C++ member), 98
esp_local_ctrl_handlers::set_prop_values

(C++ member), 99
esp_local_ctrl_handlers::usr_ctx (C++

member), 99
esp_local_ctrl_handlers::usr_ctx_free_fn

(C++ member), 99
esp_local_ctrl_handlers_t (C++ type), 101
esp_local_ctrl_prop (C++ struct), 97

esp_local_ctrl_prop::ctx (C++ member), 98
esp_local_ctrl_prop::ctx_free_fn (C++

member), 98
esp_local_ctrl_prop::flags (C++ member),

98
esp_local_ctrl_prop::name (C++ member),

97
esp_local_ctrl_prop::size (C++ member),

98
esp_local_ctrl_prop::type (C++ member),

97
esp_local_ctrl_prop_t (C++ type), 100
esp_local_ctrl_prop_val (C++ struct), 98
esp_local_ctrl_prop_val::data (C++

member), 98
esp_local_ctrl_prop_val::free_fn (C++

member), 98
esp_local_ctrl_prop_val::size (C++

member), 98
esp_local_ctrl_prop_val_t (C++ type), 100
esp_local_ctrl_proto_sec (C++ enum), 101
esp_local_ctrl_proto_sec::PROTOCOM_SEC0

(C++ enumerator), 101
esp_local_ctrl_proto_sec::PROTOCOM_SEC1

(C++ enumerator), 101
esp_local_ctrl_proto_sec::PROTOCOM_SEC2

(C++ enumerator), 101
esp_local_ctrl_proto_sec::PROTOCOM_SEC_CUSTOM

(C++ enumerator), 101
esp_local_ctrl_proto_sec_cfg (C++ struct),

99
esp_local_ctrl_proto_sec_cfg::custom_handle

(C++ member), 100
esp_local_ctrl_proto_sec_cfg::pop

(C++ member), 100
esp_local_ctrl_proto_sec_cfg::sec_params

(C++ member), 100
esp_local_ctrl_proto_sec_cfg::version

(C++ member), 99
esp_local_ctrl_proto_sec_cfg_t (C++

type), 101
esp_local_ctrl_proto_sec_t (C++ type), 101
esp_local_ctrl_remove_property (C++

function), 96
esp_local_ctrl_security1_params_t

(C++ type), 101
esp_local_ctrl_security2_params_t

(C++ type), 101
esp_local_ctrl_set_handler (C++ function),

97
esp_local_ctrl_start (C++ function), 96
esp_local_ctrl_stop (C++ function), 96
ESP_LOCAL_CTRL_TRANSPORT_BLE (C macro),

100
esp_local_ctrl_transport_config_ble_t

(C++ type), 101
esp_local_ctrl_transport_config_httpd_t

(C++ type), 101

Espressif Systems 2759
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_local_ctrl_transport_config_t
(C++ union), 97

esp_local_ctrl_transport_config_t::ble
(C++ member), 97

esp_local_ctrl_transport_config_t::httpd
(C++ member), 97

ESP_LOCAL_CTRL_TRANSPORT_HTTPD (C
macro), 100

esp_local_ctrl_transport_t (C++ type), 101
ESP_LOG_BUFFER_CHAR (C macro), 2043
ESP_LOG_BUFFER_CHAR_LEVEL (C macro), 2042
ESP_LOG_BUFFER_HEX (C macro), 2043
ESP_LOG_BUFFER_HEX_LEVEL (C macro), 2042
ESP_LOG_BUFFER_HEXDUMP (C macro), 2042
ESP_LOG_EARLY_IMPL (C macro), 2044
esp_log_early_timestamp (C++ function),

2041
ESP_LOG_LEVEL (C macro), 2044
esp_log_level_get (C++ function), 2041
ESP_LOG_LEVEL_LOCAL (C macro), 2044
esp_log_level_set (C++ function), 2041
esp_log_level_t (C++ enum), 2045
esp_log_level_t::ESP_LOG_DEBUG (C++

enumerator), 2046
esp_log_level_t::ESP_LOG_ERROR (C++

enumerator), 2045
esp_log_level_t::ESP_LOG_INFO (C++ enu-

merator), 2046
esp_log_level_t::ESP_LOG_NONE (C++ enu-

merator), 2045
esp_log_level_t::ESP_LOG_VERBOSE (C++

enumerator), 2046
esp_log_level_t::ESP_LOG_WARN (C++ enu-

merator), 2046
esp_log_set_vprintf (C++ function), 2041
esp_log_system_timestamp (C++ function),

2041
esp_log_timestamp (C++ function), 2041
esp_log_write (C++ function), 2042
esp_log_writev (C++ function), 2042
ESP_LOGD (C macro), 2044
ESP_LOGE (C macro), 2044
ESP_LOGI (C macro), 2044
ESP_LOGV (C macro), 2044
ESP_LOGW (C macro), 2044
esp_mac_addr_len_get (C++ function), 2053
esp_mac_type_t (C++ enum), 2054
esp_mac_type_t::ESP_MAC_BASE (C++ enu-

merator), 2054
esp_mac_type_t::ESP_MAC_BT (C++ enumera-

tor), 2054
esp_mac_type_t::ESP_MAC_EFUSE_CUSTOM

(C++ enumerator), 2054
esp_mac_type_t::ESP_MAC_EFUSE_EXT

(C++ enumerator), 2054
esp_mac_type_t::ESP_MAC_EFUSE_FACTORY

(C++ enumerator), 2054

esp_mac_type_t::ESP_MAC_ETH (C++ enumer-
ator), 2054

esp_mac_type_t::ESP_MAC_IEEE802154
(C++ enumerator), 2054

esp_mac_type_t::ESP_MAC_WIFI_SOFTAP
(C++ enumerator), 2054

esp_mac_type_t::ESP_MAC_WIFI_STA (C++
enumerator), 2054

esp_mbo_update_non_pref_chan (C++ func-
tion), 760

esp_mesh_allow_root_conflicts (C++ func-
tion), 656

esp_mesh_available_txupQ_num (C++ func-
tion), 656

esp_mesh_connect (C++ function), 660
esp_mesh_deinit (C++ function), 646
esp_mesh_delete_group_id (C++ function),

657
esp_mesh_disable_ps (C++ function), 661
esp_mesh_disconnect (C++ function), 660
esp_mesh_enable_ps (C++ function), 661
esp_mesh_fix_root (C++ function), 658
esp_mesh_flush_scan_result (C++ function),

660
esp_mesh_flush_upstream_packets (C++

function), 660
esp_mesh_get_active_duty_cycle (C++

function), 662
esp_mesh_get_ap_assoc_expire (C++ func-

tion), 655
esp_mesh_get_ap_authmode (C++ function),

653
esp_mesh_get_ap_connections (C++ func-

tion), 653
esp_mesh_get_capacity_num (C++ function),

657
esp_mesh_get_config (C++ function), 651
esp_mesh_get_group_list (C++ function), 657
esp_mesh_get_group_num (C++ function), 657
esp_mesh_get_id (C++ function), 651
esp_mesh_get_ie_crypto_key (C++ function),

658
esp_mesh_get_layer (C++ function), 653
esp_mesh_get_max_layer (C++ function), 652
esp_mesh_get_network_duty_cycle (C++

function), 663
esp_mesh_get_non_mesh_connections

(C++ function), 653
esp_mesh_get_parent_bssid (C++ function),

653
esp_mesh_get_root_healing_delay (C++

function), 658
esp_mesh_get_router (C++ function), 651
esp_mesh_get_router_bssid (C++ function),

661
esp_mesh_get_routing_table (C++ function),

655
esp_mesh_get_routing_table_size (C++

Espressif Systems 2760
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

function), 655
esp_mesh_get_running_active_duty_cycle

(C++ function), 663
esp_mesh_get_rx_pending (C++ function), 656
esp_mesh_get_self_organized (C++ func-

tion), 654
esp_mesh_get_subnet_nodes_list (C++

function), 660
esp_mesh_get_subnet_nodes_num (C++ func-

tion), 660
esp_mesh_get_topology (C++ function), 661
esp_mesh_get_total_node_num (C++ func-

tion), 655
esp_mesh_get_tsf_time (C++ function), 661
esp_mesh_get_tx_pending (C++ function), 656
esp_mesh_get_type (C++ function), 652
esp_mesh_get_vote_percentage (C++ func-

tion), 655
esp_mesh_get_xon_qsize (C++ function), 656
esp_mesh_init (C++ function), 646
esp_mesh_is_device_active (C++ function),

662
esp_mesh_is_my_group (C++ function), 657
esp_mesh_is_ps_enabled (C++ function), 662
esp_mesh_is_root (C++ function), 653
esp_mesh_is_root_conflicts_allowed

(C++ function), 657
esp_mesh_is_root_fixed (C++ function), 659
esp_mesh_post_toDS_state (C++ function),

655
esp_mesh_ps_duty_signaling (C++ function),

664
esp_mesh_recv (C++ function), 649
esp_mesh_recv_toDS (C++ function), 649
esp_mesh_scan_get_ap_ie_len (C++ func-

tion), 659
esp_mesh_scan_get_ap_record (C++ func-

tion), 659
esp_mesh_send (C++ function), 647
esp_mesh_send_block_time (C++ function),

649
esp_mesh_set_active_duty_cycle (C++

function), 662
esp_mesh_set_ap_assoc_expire (C++ func-

tion), 655
esp_mesh_set_ap_authmode (C++ function),

652
esp_mesh_set_ap_connections (C++ func-

tion), 653
esp_mesh_set_ap_password (C++ function),

652
esp_mesh_set_capacity_num (C++ function),

657
esp_mesh_set_config (C++ function), 650
esp_mesh_set_group_id (C++ function), 657
esp_mesh_set_id (C++ function), 651
esp_mesh_set_ie_crypto_funcs (C++ func-

tion), 658

esp_mesh_set_ie_crypto_key (C++ function),
658

esp_mesh_set_max_layer (C++ function), 652
esp_mesh_set_network_duty_cycle (C++

function), 662
esp_mesh_set_parent (C++ function), 659
esp_mesh_set_root_healing_delay (C++

function), 658
esp_mesh_set_router (C++ function), 651
esp_mesh_set_self_organized (C++ func-

tion), 653
esp_mesh_set_topology (C++ function), 661
esp_mesh_set_type (C++ function), 651
esp_mesh_set_vote_percentage (C++ func-

tion), 654
esp_mesh_set_xon_qsize (C++ function), 656
esp_mesh_start (C++ function), 647
esp_mesh_stop (C++ function), 647
esp_mesh_switch_channel (C++ function), 660
esp_mesh_topology_t (C++ enum), 680
esp_mesh_topology_t::MESH_TOPO_CHAIN

(C++ enumerator), 680
esp_mesh_topology_t::MESH_TOPO_TREE

(C++ enumerator), 680
esp_mesh_waive_root (C++ function), 654
esp_mmu_map (C++ function), 2010
esp_mmu_map_dump_mapped_blocks (C++

function), 2010
esp_mmu_map_get_max_consecutive_free_block_size

(C++ function), 2010
ESP_MMU_MMAP_FLAG_PADDR_SHARED (C

macro), 2011
esp_mmu_paddr_find_caps (C++ function),

2011
esp_mmu_paddr_to_vaddr (C++ function), 2011
esp_mmu_unmap (C++ function), 2010
esp_mmu_vaddr_to_paddr (C++ function), 2011
esp_mqtt_client_config_t (C++ struct), 49
esp_mqtt_client_config_t (C++ type), 56
esp_mqtt_client_config_t::broker (C++

member), 49
esp_mqtt_client_config_t::broker_t

(C++ struct), 50
esp_mqtt_client_config_t::broker_t::address

(C++ member), 50
esp_mqtt_client_config_t::broker_t::address_t

(C++ struct), 50
esp_mqtt_client_config_t::broker_t::address_t::hostname

(C++ member), 50
esp_mqtt_client_config_t::broker_t::address_t::path

(C++ member), 50
esp_mqtt_client_config_t::broker_t::address_t::port

(C++ member), 50
esp_mqtt_client_config_t::broker_t::address_t::transport

(C++ member), 50
esp_mqtt_client_config_t::broker_t::address_t::uri

(C++ member), 50
esp_mqtt_client_config_t::broker_t::verification

Espressif Systems 2761
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 50
esp_mqtt_client_config_t::broker_t::verification_t

(C++ struct), 51
esp_mqtt_client_config_t::broker_t::verification_t::alpn_protos

(C++ member), 51
esp_mqtt_client_config_t::broker_t::verification_t::certificate

(C++ member), 51
esp_mqtt_client_config_t::broker_t::verification_t::certificate_len

(C++ member), 51
esp_mqtt_client_config_t::broker_t::verification_t::common_name

(C++ member), 51
esp_mqtt_client_config_t::broker_t::verification_t::crt_bundle_attach

(C++ member), 51
esp_mqtt_client_config_t::broker_t::verification_t::psk_hint_key

(C++ member), 51
esp_mqtt_client_config_t::broker_t::verification_t::skip_cert_common_name_check

(C++ member), 51
esp_mqtt_client_config_t::broker_t::verification_t::use_global_ca_store

(C++ member), 51
esp_mqtt_client_config_t::buffer (C++

member), 50
esp_mqtt_client_config_t::buffer_t

(C++ struct), 51
esp_mqtt_client_config_t::buffer_t::out_size

(C++ member), 52
esp_mqtt_client_config_t::buffer_t::size

(C++ member), 51
esp_mqtt_client_config_t::credentials

(C++ member), 49
esp_mqtt_client_config_t::credentials_t

(C++ struct), 52
esp_mqtt_client_config_t::credentials_t::authentication

(C++ member), 52
esp_mqtt_client_config_t::credentials_t::authentication_t

(C++ struct), 52
esp_mqtt_client_config_t::credentials_t::authentication_t::certificate

(C++ member), 52
esp_mqtt_client_config_t::credentials_t::authentication_t::certificate_len

(C++ member), 52
esp_mqtt_client_config_t::credentials_t::authentication_t::ds_data

(C++ member), 53
esp_mqtt_client_config_t::credentials_t::authentication_t::key

(C++ member), 52
esp_mqtt_client_config_t::credentials_t::authentication_t::key_len

(C++ member), 52
esp_mqtt_client_config_t::credentials_t::authentication_t::key_password

(C++ member), 53
esp_mqtt_client_config_t::credentials_t::authentication_t::key_password_len

(C++ member), 53
esp_mqtt_client_config_t::credentials_t::authentication_t::password

(C++ member), 52
esp_mqtt_client_config_t::credentials_t::authentication_t::use_secure_element

(C++ member), 53
esp_mqtt_client_config_t::credentials_t::client_id

(C++ member), 52
esp_mqtt_client_config_t::credentials_t::set_null_client_id

(C++ member), 52
esp_mqtt_client_config_t::credentials_t::username

(C++ member), 52
esp_mqtt_client_config_t::network

(C++ member), 50
esp_mqtt_client_config_t::network_t

(C++ struct), 53
esp_mqtt_client_config_t::network_t::disable_auto_reconnect

(C++ member), 53
esp_mqtt_client_config_t::network_t::if_name

(C++ member), 53
esp_mqtt_client_config_t::network_t::reconnect_timeout_ms

(C++ member), 53
esp_mqtt_client_config_t::network_t::refresh_connection_after_ms

(C++ member), 53
esp_mqtt_client_config_t::network_t::timeout_ms

(C++ member), 53
esp_mqtt_client_config_t::network_t::transport

(C++ member), 53
esp_mqtt_client_config_t::outbox (C++

member), 50
esp_mqtt_client_config_t::outbox_config_t

(C++ struct), 53
esp_mqtt_client_config_t::outbox_config_t::limit

(C++ member), 53
esp_mqtt_client_config_t::session

(C++ member), 49
esp_mqtt_client_config_t::session_t

(C++ struct), 54
esp_mqtt_client_config_t::session_t::disable_clean_session

(C++ member), 54
esp_mqtt_client_config_t::session_t::disable_keepalive

(C++ member), 54
esp_mqtt_client_config_t::session_t::keepalive

(C++ member), 54
esp_mqtt_client_config_t::session_t::last_will

(C++ member), 54
esp_mqtt_client_config_t::session_t::last_will_t

(C++ struct), 54
esp_mqtt_client_config_t::session_t::last_will_t::msg

(C++ member), 54
esp_mqtt_client_config_t::session_t::last_will_t::msg_len

(C++ member), 54
esp_mqtt_client_config_t::session_t::last_will_t::qos

(C++ member), 54
esp_mqtt_client_config_t::session_t::last_will_t::retain

(C++ member), 54
esp_mqtt_client_config_t::session_t::last_will_t::topic

(C++ member), 54
esp_mqtt_client_config_t::session_t::message_retransmit_timeout

(C++ member), 54
esp_mqtt_client_config_t::session_t::protocol_ver

(C++ member), 54
esp_mqtt_client_config_t::task (C++

member), 50
esp_mqtt_client_config_t::task_t (C++

struct), 55
esp_mqtt_client_config_t::task_t::priority

(C++ member), 55
esp_mqtt_client_config_t::task_t::stack_size

Espressif Systems 2762
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 55
esp_mqtt_client_destroy (C++ function), 46
esp_mqtt_client_disconnect (C++ function),

45
esp_mqtt_client_enqueue (C++ function), 46
esp_mqtt_client_get_outbox_size (C++

function), 47
esp_mqtt_client_handle_t (C++ type), 55
esp_mqtt_client_init (C++ function), 44
esp_mqtt_client_publish (C++ function), 46
esp_mqtt_client_reconnect (C++ function),

45
esp_mqtt_client_register_event (C++

function), 47
esp_mqtt_client_set_uri (C++ function), 44
esp_mqtt_client_start (C++ function), 44
esp_mqtt_client_stop (C++ function), 45
esp_mqtt_client_subscribe (C macro), 55
esp_mqtt_client_subscribe_multiple

(C++ function), 45
esp_mqtt_client_subscribe_single (C++

function), 45
esp_mqtt_client_unregister_event (C++

function), 47
esp_mqtt_client_unsubscribe (C++ func-

tion), 45
esp_mqtt_connect_return_code_t (C++

enum), 58
esp_mqtt_connect_return_code_t (C++

type), 56
esp_mqtt_connect_return_code_t::MQTT_CONNECTION_ACCEPTED

(C++ enumerator), 58
esp_mqtt_connect_return_code_t::MQTT_CONNECTION_REFUSE_BAD_USERNAME

(C++ enumerator), 58
esp_mqtt_connect_return_code_t::MQTT_CONNECTION_REFUSE_ID_REJECTED

(C++ enumerator), 58
esp_mqtt_connect_return_code_t::MQTT_CONNECTION_REFUSE_NOT_AUTHORIZED

(C++ enumerator), 58
esp_mqtt_connect_return_code_t::MQTT_CONNECTION_REFUSE_PROTOCOL

(C++ enumerator), 58
esp_mqtt_connect_return_code_t::MQTT_CONNECTION_REFUSE_SERVER_UNAVAILABLE

(C++ enumerator), 58
esp_mqtt_dispatch_custom_event (C++

function), 47
esp_mqtt_error_codes (C++ struct), 47
esp_mqtt_error_codes::connect_return_code

(C++ member), 48
esp_mqtt_error_codes::error_type (C++

member), 48
esp_mqtt_error_codes::esp_tls_cert_verify_flags

(C++ member), 48
esp_mqtt_error_codes::esp_tls_last_esp_err

(C++ member), 48
esp_mqtt_error_codes::esp_tls_stack_err

(C++ member), 48
esp_mqtt_error_codes::esp_transport_sock_errno

(C++ member), 48
esp_mqtt_error_codes_t (C++ type), 56

esp_mqtt_error_type_t (C++ enum), 58
esp_mqtt_error_type_t (C++ type), 56
esp_mqtt_error_type_t::MQTT_ERROR_TYPE_CONNECTION_REFUSED

(C++ enumerator), 58
esp_mqtt_error_type_t::MQTT_ERROR_TYPE_NONE

(C++ enumerator), 58
esp_mqtt_error_type_t::MQTT_ERROR_TYPE_SUBSCRIBE_FAILED

(C++ enumerator), 58
esp_mqtt_error_type_t::MQTT_ERROR_TYPE_TCP_TRANSPORT

(C++ enumerator), 58
esp_mqtt_event_handle_t (C++ type), 56
esp_mqtt_event_id_t (C++ enum), 56
esp_mqtt_event_id_t (C++ type), 55
esp_mqtt_event_id_t::MQTT_EVENT_ANY

(C++ enumerator), 57
esp_mqtt_event_id_t::MQTT_EVENT_BEFORE_CONNECT

(C++ enumerator), 57
esp_mqtt_event_id_t::MQTT_EVENT_CONNECTED

(C++ enumerator), 57
esp_mqtt_event_id_t::MQTT_EVENT_DATA

(C++ enumerator), 57
esp_mqtt_event_id_t::MQTT_EVENT_DELETED

(C++ enumerator), 57
esp_mqtt_event_id_t::MQTT_EVENT_DISCONNECTED

(C++ enumerator), 57
esp_mqtt_event_id_t::MQTT_EVENT_ERROR

(C++ enumerator), 57
esp_mqtt_event_id_t::MQTT_EVENT_PUBLISHED

(C++ enumerator), 57
esp_mqtt_event_id_t::MQTT_EVENT_SUBSCRIBED

(C++ enumerator), 57
esp_mqtt_event_id_t::MQTT_EVENT_UNSUBSCRIBED

(C++ enumerator), 57
esp_mqtt_event_id_t::MQTT_USER_EVENT

(C++ enumerator), 58
esp_mqtt_event_t (C++ struct), 48
esp_mqtt_event_t (C++ type), 56
esp_mqtt_event_t::client (C++ member), 48
esp_mqtt_event_t::current_data_offset

(C++ member), 49
esp_mqtt_event_t::data (C++ member), 48
esp_mqtt_event_t::data_len (C++ member),

48
esp_mqtt_event_t::dup (C++ member), 49
esp_mqtt_event_t::error_handle (C++

member), 49
esp_mqtt_event_t::event_id (C++ member),

48
esp_mqtt_event_t::msg_id (C++ member), 49
esp_mqtt_event_t::protocol_ver (C++

member), 49
esp_mqtt_event_t::qos (C++ member), 49
esp_mqtt_event_t::retain (C++ member), 49
esp_mqtt_event_t::session_present

(C++ member), 49
esp_mqtt_event_t::topic (C++ member), 49
esp_mqtt_event_t::topic_len (C++ mem-

ber), 49

Espressif Systems 2763
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_mqtt_event_t::total_data_len (C++
member), 48

esp_mqtt_protocol_ver_t (C++ enum), 59
esp_mqtt_protocol_ver_t (C++ type), 56
esp_mqtt_protocol_ver_t::MQTT_PROTOCOL_UNDEFINED

(C++ enumerator), 59
esp_mqtt_protocol_ver_t::MQTT_PROTOCOL_V_3_1

(C++ enumerator), 59
esp_mqtt_protocol_ver_t::MQTT_PROTOCOL_V_3_1_1

(C++ enumerator), 59
esp_mqtt_protocol_ver_t::MQTT_PROTOCOL_V_5

(C++ enumerator), 59
esp_mqtt_set_config (C++ function), 47
esp_mqtt_topic_t (C++ type), 56
esp_mqtt_transport_t (C++ enum), 58
esp_mqtt_transport_t (C++ type), 56
esp_mqtt_transport_t::MQTT_TRANSPORT_OVER_SSL

(C++ enumerator), 59
esp_mqtt_transport_t::MQTT_TRANSPORT_OVER_TCP

(C++ enumerator), 59
esp_mqtt_transport_t::MQTT_TRANSPORT_OVER_WS

(C++ enumerator), 59
esp_mqtt_transport_t::MQTT_TRANSPORT_OVER_WSS

(C++ enumerator), 59
esp_mqtt_transport_t::MQTT_TRANSPORT_UNKNOWN

(C++ enumerator), 58
esp_netif_action_add_ip6_address (C++

function), 819
esp_netif_action_connected (C++ function),

818
esp_netif_action_disconnected (C++ func-

tion), 818
esp_netif_action_got_ip (C++ function), 818
esp_netif_action_join_ip6_multicast_group

(C++ function), 819
esp_netif_action_leave_ip6_multicast_group

(C++ function), 819
esp_netif_action_remove_ip6_address

(C++ function), 819
esp_netif_action_start (C++ function), 818
esp_netif_action_stop (C++ function), 818
esp_netif_attach (C++ function), 817
esp_netif_attach_wifi_ap (C++ function),

843
esp_netif_attach_wifi_station (C++ func-

tion), 843
ESP_NETIF_BR_DROP (C macro), 836
ESP_NETIF_BR_FDW_CPU (C macro), 836
ESP_NETIF_BR_FLOOD (C macro), 836
esp_netif_callback_fn (C++ type), 829
esp_netif_config (C++ struct), 835
esp_netif_config::base (C++ member), 835
esp_netif_config::driver (C++ member),

835
esp_netif_config::stack (C++ member), 835
esp_netif_config_t (C++ type), 836
esp_netif_create_default_wifi_ap (C++

function), 844

esp_netif_create_default_wifi_mesh_netifs
(C++ function), 845

esp_netif_create_default_wifi_nan
(C++ function), 844

esp_netif_create_default_wifi_sta
(C++ function), 844

esp_netif_create_ip6_linklocal (C++
function), 826

esp_netif_create_wifi (C++ function), 845
ESP_NETIF_DEFAULT_OPENTHREAD (C macro),

808
esp_netif_deinit (C++ function), 817
esp_netif_destroy (C++ function), 817
esp_netif_destroy_default_wifi (C++

function), 844
esp_netif_dhcp_option_id_t (C++ enum),

837
esp_netif_dhcp_option_id_t::ESP_NETIF_DOMAIN_NAME_SERVER

(C++ enumerator), 838
esp_netif_dhcp_option_id_t::ESP_NETIF_IP_ADDRESS_LEASE_TIME

(C++ enumerator), 838
esp_netif_dhcp_option_id_t::ESP_NETIF_IP_REQUEST_RETRY_TIME

(C++ enumerator), 838
esp_netif_dhcp_option_id_t::ESP_NETIF_REQUESTED_IP_ADDRESS

(C++ enumerator), 838
esp_netif_dhcp_option_id_t::ESP_NETIF_ROUTER_SOLICITATION_ADDRESS

(C++ enumerator), 838
esp_netif_dhcp_option_id_t::ESP_NETIF_SUBNET_MASK

(C++ enumerator), 837
esp_netif_dhcp_option_id_t::ESP_NETIF_VENDOR_CLASS_IDENTIFIER

(C++ enumerator), 838
esp_netif_dhcp_option_id_t::ESP_NETIF_VENDOR_SPECIFIC_INFO

(C++ enumerator), 838
esp_netif_dhcp_option_mode_t (C++ enum),

837
esp_netif_dhcp_option_mode_t::ESP_NETIF_OP_GET

(C++ enumerator), 837
esp_netif_dhcp_option_mode_t::ESP_NETIF_OP_MAX

(C++ enumerator), 837
esp_netif_dhcp_option_mode_t::ESP_NETIF_OP_SET

(C++ enumerator), 837
esp_netif_dhcp_option_mode_t::ESP_NETIF_OP_START

(C++ enumerator), 837
esp_netif_dhcp_status_t (C++ enum), 837
esp_netif_dhcp_status_t::ESP_NETIF_DHCP_INIT

(C++ enumerator), 837
esp_netif_dhcp_status_t::ESP_NETIF_DHCP_STARTED

(C++ enumerator), 837
esp_netif_dhcp_status_t::ESP_NETIF_DHCP_STATUS_MAX

(C++ enumerator), 837
esp_netif_dhcp_status_t::ESP_NETIF_DHCP_STOPPED

(C++ enumerator), 837
esp_netif_dhcpc_get_status (C++ function),

824
esp_netif_dhcpc_option (C++ function), 824
esp_netif_dhcpc_start (C++ function), 824
esp_netif_dhcpc_stop (C++ function), 824
esp_netif_dhcps_get_clients_by_mac

Espressif Systems 2764
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ function), 825
esp_netif_dhcps_get_status (C++ function),

824
esp_netif_dhcps_option (C++ function), 823
esp_netif_dhcps_start (C++ function), 825
esp_netif_dhcps_stop (C++ function), 825
esp_netif_dns_info_t (C++ struct), 831
esp_netif_dns_info_t::ip (C++ member),

831
esp_netif_dns_type_t (C++ enum), 837
esp_netif_dns_type_t::ESP_NETIF_DNS_BACKUP

(C++ enumerator), 837
esp_netif_dns_type_t::ESP_NETIF_DNS_FALLBACK

(C++ enumerator), 837
esp_netif_dns_type_t::ESP_NETIF_DNS_MAIN

(C++ enumerator), 837
esp_netif_dns_type_t::ESP_NETIF_DNS_MAX

(C++ enumerator), 837
esp_netif_driver_base_s (C++ struct), 834
esp_netif_driver_base_s::netif (C++

member), 834
esp_netif_driver_base_s::post_attach

(C++ member), 834
esp_netif_driver_base_t (C++ type), 836
esp_netif_driver_ifconfig (C++ struct), 834
esp_netif_driver_ifconfig::driver_free_rx_buffer

(C++ member), 834
esp_netif_driver_ifconfig::handle

(C++ member), 834
esp_netif_driver_ifconfig::transmit

(C++ member), 834
esp_netif_driver_ifconfig::transmit_wrap

(C++ member), 834
esp_netif_driver_ifconfig_t (C++ type),

836
esp_netif_find_if (C++ function), 829
esp_netif_find_predicate_t (C++ type), 829
esp_netif_flags (C++ enum), 839
esp_netif_flags::ESP_NETIF_DHCP_CLIENT

(C++ enumerator), 839
esp_netif_flags::ESP_NETIF_DHCP_SERVER

(C++ enumerator), 839
esp_netif_flags::ESP_NETIF_FLAG_AUTOUP

(C++ enumerator), 839
esp_netif_flags::ESP_NETIF_FLAG_EVENT_IP_MODIFIED

(C++ enumerator), 839
esp_netif_flags::ESP_NETIF_FLAG_GARP

(C++ enumerator), 839
esp_netif_flags::ESP_NETIF_FLAG_IS_BRIDGE

(C++ enumerator), 839
esp_netif_flags::ESP_NETIF_FLAG_IS_PPP

(C++ enumerator), 839
esp_netif_flags::ESP_NETIF_FLAG_MLDV6_REPORT

(C++ enumerator), 839
esp_netif_flags_t (C++ type), 836
esp_netif_free_rx_buffer (C++ function),

847
esp_netif_get_all_ip6 (C++ function), 827

esp_netif_get_all_preferred_ip6 (C++
function), 827

esp_netif_get_default_netif (C++ func-
tion), 820

esp_netif_get_desc (C++ function), 828
esp_netif_get_dns_info (C++ function), 826
esp_netif_get_event_id (C++ function), 828
esp_netif_get_flags (C++ function), 828
esp_netif_get_handle_from_ifkey (C++

function), 828
esp_netif_get_handle_from_netif_impl

(C++ function), 847
esp_netif_get_hostname (C++ function), 821
esp_netif_get_ifkey (C++ function), 828
esp_netif_get_io_driver (C++ function), 828
esp_netif_get_ip6_global (C++ function),

826
esp_netif_get_ip6_linklocal (C++ func-

tion), 826
esp_netif_get_ip_info (C++ function), 821
esp_netif_get_mac (C++ function), 821
esp_netif_get_netif_impl (C++ function),

847
esp_netif_get_netif_impl_index (C++

function), 822
esp_netif_get_netif_impl_name (C++ func-

tion), 823
esp_netif_get_nr_of_ifs (C++ function), 829
esp_netif_get_old_ip_info (C++ function),

821
esp_netif_get_route_prio (C++ function),

828
esp_netif_htonl (C macro), 840
esp_netif_inherent_config (C++ struct), 833
esp_netif_inherent_config::bridge_info

(C++ member), 834
esp_netif_inherent_config::flags (C++

member), 833
esp_netif_inherent_config::get_ip_event

(C++ member), 834
esp_netif_inherent_config::if_desc

(C++ member), 834
esp_netif_inherent_config::if_key

(C++ member), 834
esp_netif_inherent_config::ip_info

(C++ member), 833
esp_netif_inherent_config::lost_ip_event

(C++ member), 834
esp_netif_inherent_config::mac (C++

member), 833
esp_netif_inherent_config::route_prio

(C++ member), 834
esp_netif_inherent_config_t (C++ type),

836
ESP_NETIF_INHERENT_DEFAULT_OPENTHREAD

(C macro), 808
esp_netif_init (C++ function), 816
esp_netif_iodriver_handle (C++ type), 836

Espressif Systems 2765
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_netif_ip4_makeu32 (C macro), 840
esp_netif_ip6_get_addr_type (C++ func-

tion), 839
esp_netif_ip6_info_t (C++ struct), 832
esp_netif_ip6_info_t::ip (C++ member),

832
esp_netif_ip_addr_copy (C++ function), 839
esp_netif_ip_event_type (C++ enum), 839
esp_netif_ip_event_type::ESP_NETIF_IP_EVENT_GOT_IP

(C++ enumerator), 839
esp_netif_ip_event_type::ESP_NETIF_IP_EVENT_LOST_IP

(C++ enumerator), 839
esp_netif_ip_event_type_t (C++ type), 836
esp_netif_ip_info_t (C++ struct), 831
esp_netif_ip_info_t::gw (C++ member), 832
esp_netif_ip_info_t::ip (C++ member), 831
esp_netif_ip_info_t::netmask (C++ mem-

ber), 832
esp_netif_is_netif_up (C++ function), 821
esp_netif_join_ip6_multicast_group

(C++ function), 820
esp_netif_leave_ip6_multicast_group

(C++ function), 820
esp_netif_napt_disable (C++ function), 823
esp_netif_napt_enable (C++ function), 823
esp_netif_netstack_buf_free (C++ func-

tion), 829
esp_netif_netstack_buf_ref (C++ function),

829
esp_netif_netstack_config_t (C++ type),

836
esp_netif_new (C++ function), 817
esp_netif_next (C++ function), 828
esp_netif_next_unsafe (C++ function), 829
esp_netif_pair_mac_ip_t (C++ struct), 835
esp_netif_pair_mac_ip_t::ip (C++ mem-

ber), 835
esp_netif_pair_mac_ip_t::mac (C++ mem-

ber), 835
esp_netif_receive (C++ function), 817
esp_netif_receive_t (C++ type), 836
esp_netif_set_default_netif (C++ func-

tion), 820
esp_netif_set_dns_info (C++ function), 825
esp_netif_set_driver_config (C++ func-

tion), 817
esp_netif_set_hostname (C++ function), 821
esp_netif_set_ip4_addr (C++ function), 827
esp_netif_set_ip_info (C++ function), 822
esp_netif_set_link_speed (C++ function),

847
esp_netif_set_mac (C++ function), 820
esp_netif_set_old_ip_info (C++ function),

822
ESP_NETIF_SNTP_DEFAULT_CONFIG (C macro),

831
ESP_NETIF_SNTP_DEFAULT_CONFIG_MULTIPLE

(C macro), 831

esp_netif_sntp_deinit (C++ function), 830
esp_netif_sntp_init (C++ function), 829
esp_netif_sntp_reachability (C++ func-

tion), 830
esp_netif_sntp_start (C++ function), 829
esp_netif_sntp_sync_wait (C++ function),

830
esp_netif_str_to_ip4 (C++ function), 827
esp_netif_str_to_ip6 (C++ function), 827
esp_netif_t (C++ type), 836
esp_netif_tcpip_exec (C++ function), 829
esp_netif_transmit (C++ function), 847
esp_netif_transmit_wrap (C++ function), 847
esp_ng_type_t (C++ enum), 1651
esp_ng_type_t::ESP_NG_3072 (C++ enumera-

tor), 1651
esp_nimble_hci_deinit (C++ function), 625
esp_nimble_hci_init (C++ function), 624
esp_now_add_peer (C++ function), 636
esp_now_deinit (C++ function), 635
esp_now_del_peer (C++ function), 636
ESP_NOW_ETH_ALEN (C macro), 640
esp_now_fetch_peer (C++ function), 637
esp_now_get_peer (C++ function), 637
esp_now_get_peer_num (C++ function), 637
esp_now_get_version (C++ function), 635
esp_now_init (C++ function), 634
esp_now_is_peer_exist (C++ function), 637
ESP_NOW_KEY_LEN (C macro), 640
ESP_NOW_MAX_DATA_LEN (C macro), 640
ESP_NOW_MAX_ENCRYPT_PEER_NUM (C macro),

640
ESP_NOW_MAX_IE_DATA_LEN (C macro), 640
ESP_NOW_MAX_TOTAL_PEER_NUM (C macro), 640
esp_now_mod_peer (C++ function), 636
esp_now_peer_info (C++ struct), 638
esp_now_peer_info::channel (C++ member),

638
esp_now_peer_info::encrypt (C++ member),

638
esp_now_peer_info::ifidx (C++ member),

638
esp_now_peer_info::lmk (C++ member), 638
esp_now_peer_info::peer_addr (C++ mem-

ber), 638
esp_now_peer_info::priv (C++ member), 638
esp_now_peer_info_t (C++ type), 640
esp_now_peer_num (C++ struct), 638
esp_now_peer_num::encrypt_num (C++

member), 639
esp_now_peer_num::total_num (C++ mem-

ber), 639
esp_now_peer_num_t (C++ type), 640
esp_now_rate_config_t (C++ type), 640
esp_now_recv_cb_t (C++ type), 640
esp_now_recv_info (C++ struct), 639
esp_now_recv_info::des_addr (C++ mem-

ber), 639

Espressif Systems 2766
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_now_recv_info::rx_ctrl (C++ member),
639

esp_now_recv_info::src_addr (C++ mem-
ber), 639

esp_now_recv_info_t (C++ type), 640
esp_now_register_recv_cb (C++ function),

635
esp_now_register_send_cb (C++ function),

635
esp_now_send (C++ function), 635
esp_now_send_cb_t (C++ type), 640
esp_now_send_status_t (C++ enum), 641
esp_now_send_status_t::ESP_NOW_SEND_FAIL

(C++ enumerator), 641
esp_now_send_status_t::ESP_NOW_SEND_SUCCESS

(C++ enumerator), 641
esp_now_set_peer_rate_config (C++ func-

tion), 637
esp_now_set_pmk (C++ function), 637
esp_now_set_wake_window (C++ function), 638
esp_now_unregister_recv_cb (C++ function),

635
esp_now_unregister_send_cb (C++ function),

635
ESP_OK (C macro), 1825
ESP_OK_EFUSE_CNT (C macro), 1822
esp_openthread_auto_start (C++ function),

800
esp_openthread_border_router_deinit

(C++ function), 809
esp_openthread_border_router_init

(C++ function), 809
esp_openthread_compatibility_error_callback

(C++ type), 804
esp_openthread_config_t (C++ struct), 804
esp_openthread_config_t::netif_config

(C++ member), 804
esp_openthread_config_t::platform_config

(C++ member), 804
esp_openthread_coprocessor_reset_failure_callback

(C++ type), 804
esp_openthread_dataset_changed_event_t

(C++ struct), 801
esp_openthread_dataset_changed_event_t::new_dataset

(C++ member), 801
esp_openthread_dataset_changed_event_t::type

(C++ member), 801
esp_openthread_dataset_type_t (C++

enum), 806
esp_openthread_dataset_type_t::OPENTHREAD_ACTIVE_DATASET

(C++ enumerator), 806
esp_openthread_dataset_type_t::OPENTHREAD_PENDING_DATASET

(C++ enumerator), 806
esp_openthread_deinit (C++ function), 800
esp_openthread_event_t (C++ enum), 805
esp_openthread_event_t::OPENTHREAD_EVENT_ATTACHED

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_DATASET_CHANGED

(C++ enumerator), 806
esp_openthread_event_t::OPENTHREAD_EVENT_DETACHED

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_GOT_IP6

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_IF_DOWN

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_IF_UP

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_LOST_IP6

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_MULTICAST_GROUP_JOIN

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_MULTICAST_GROUP_LEAVE

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_PUBLISH_MESHCOP_E

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_REMOVE_MESHCOP_E

(C++ enumerator), 806
esp_openthread_event_t::OPENTHREAD_EVENT_ROLE_CHANGED

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_SET_DNS_SERVER

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_START

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_STOP

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_TREL_ADD_IP6

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_TREL_MULTICAST_GROUP_JOIN

(C++ enumerator), 805
esp_openthread_event_t::OPENTHREAD_EVENT_TREL_REMOVE_IP6

(C++ enumerator), 805
esp_openthread_get_backbone_netif

(C++ function), 809
esp_openthread_get_instance (C++ func-

tion), 800
esp_openthread_get_meshcop_instance_name

(C++ function), 809
esp_openthread_get_netif (C++ function),

808
esp_openthread_host_connection_config_t

(C++ struct), 803
esp_openthread_host_connection_config_t::host_connection_mode

(C++ member), 803
esp_openthread_host_connection_config_t::host_uart_config

(C++ member), 803
esp_openthread_host_connection_config_t::host_usb_config

(C++ member), 803
esp_openthread_host_connection_config_t::spi_slave_config

(C++ member), 803
esp_openthread_host_connection_mode_t

(C++ enum), 806
esp_openthread_host_connection_mode_t::HOST_CONNECTION_MODE_CLI_UART

(C++ enumerator), 806
esp_openthread_host_connection_mode_t::HOST_CONNECTION_MODE_CLI_USB

(C++ enumerator), 806
esp_openthread_host_connection_mode_t::HOST_CONNECTION_MODE_MAX

Espressif Systems 2767
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 807
esp_openthread_host_connection_mode_t::HOST_CONNECTION_MODE_NONE

(C++ enumerator), 806
esp_openthread_host_connection_mode_t::HOST_CONNECTION_MODE_RCP_SPI

(C++ enumerator), 807
esp_openthread_host_connection_mode_t::HOST_CONNECTION_MODE_RCP_UART

(C++ enumerator), 807
esp_openthread_init (C++ function), 799
esp_openthread_launch_mainloop (C++

function), 800
esp_openthread_lock_acquire (C++ func-

tion), 807
esp_openthread_lock_deinit (C++ function),

807
esp_openthread_lock_init (C++ function),

807
esp_openthread_lock_release (C++ func-

tion), 807
esp_openthread_mainloop_context_t

(C++ struct), 801
esp_openthread_mainloop_context_t::error_fds

(C++ member), 801
esp_openthread_mainloop_context_t::max_fd

(C++ member), 801
esp_openthread_mainloop_context_t::read_fds

(C++ member), 801
esp_openthread_mainloop_context_t::timeout

(C++ member), 802
esp_openthread_mainloop_context_t::write_fds

(C++ member), 801
esp_openthread_mainloop_exit (C++ func-

tion), 800
esp_openthread_netif_glue_deinit (C++

function), 808
esp_openthread_netif_glue_init (C++

function), 808
esp_openthread_platform_config_t (C++

struct), 804
esp_openthread_platform_config_t::host_config

(C++ member), 804
esp_openthread_platform_config_t::port_config

(C++ member), 804
esp_openthread_platform_config_t::radio_config

(C++ member), 804
esp_openthread_port_config_t (C++ struct),

803
esp_openthread_port_config_t::netif_queue_size

(C++ member), 804
esp_openthread_port_config_t::storage_partition_name

(C++ member), 804
esp_openthread_port_config_t::task_queue_size

(C++ member), 804
esp_openthread_radio_config_t (C++

struct), 803
esp_openthread_radio_config_t::radio_mode

(C++ member), 803
esp_openthread_radio_config_t::radio_spi_config

(C++ member), 803

esp_openthread_radio_config_t::radio_uart_config
(C++ member), 803

esp_openthread_radio_mode_t (C++ enum),
806

esp_openthread_radio_mode_t::RADIO_MODE_MAX
(C++ enumerator), 806

esp_openthread_radio_mode_t::RADIO_MODE_NATIVE
(C++ enumerator), 806

esp_openthread_radio_mode_t::RADIO_MODE_SPI_RCP
(C++ enumerator), 806

esp_openthread_radio_mode_t::RADIO_MODE_TREL
(C++ enumerator), 806

esp_openthread_radio_mode_t::RADIO_MODE_UART_RCP
(C++ enumerator), 806

esp_openthread_rcp_failure_handler
(C++ type), 804

esp_openthread_register_meshcop_e_handler
(C++ function), 808

esp_openthread_role_changed_event_t
(C++ struct), 801

esp_openthread_role_changed_event_t::current_role
(C++ member), 801

esp_openthread_role_changed_event_t::previous_role
(C++ member), 801

esp_openthread_set_backbone_netif
(C++ function), 809

esp_openthread_set_meshcop_instance_name
(C++ function), 809

esp_openthread_spi_host_config_t (C++
struct), 802

esp_openthread_spi_host_config_t::dma_channel
(C++ member), 802

esp_openthread_spi_host_config_t::host_device
(C++ member), 802

esp_openthread_spi_host_config_t::intr_pin
(C++ member), 802

esp_openthread_spi_host_config_t::spi_device
(C++ member), 802

esp_openthread_spi_host_config_t::spi_interface
(C++ member), 802

esp_openthread_spi_slave_config_t
(C++ struct), 802

esp_openthread_spi_slave_config_t::bus_config
(C++ member), 803

esp_openthread_spi_slave_config_t::host_device
(C++ member), 803

esp_openthread_spi_slave_config_t::intr_pin
(C++ member), 803

esp_openthread_spi_slave_config_t::slave_config
(C++ member), 803

esp_openthread_start (C++ function), 800
esp_openthread_stop (C++ function), 801
esp_openthread_task_switching_lock_acquire

(C++ function), 807
esp_openthread_task_switching_lock_release

(C++ function), 808
esp_openthread_uart_config_t (C++ struct),

802

Espressif Systems 2768
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_openthread_uart_config_t::port
(C++ member), 802

esp_openthread_uart_config_t::rx_pin
(C++ member), 802

esp_openthread_uart_config_t::tx_pin
(C++ member), 802

esp_openthread_uart_config_t::uart_config
(C++ member), 802

esp_ota_abort (C++ function), 2070
esp_ota_begin (C++ function), 2069
esp_ota_check_rollback_is_possible

(C++ function), 2072
esp_ota_end (C++ function), 2070
esp_ota_erase_last_boot_app_partition

(C++ function), 2072
esp_ota_get_app_description (C++ func-

tion), 2068
esp_ota_get_app_elf_sha256 (C++ function),

2068
esp_ota_get_app_partition_count (C++

function), 2072
esp_ota_get_boot_partition (C++ function),

2071
esp_ota_get_last_invalid_partition

(C++ function), 2072
esp_ota_get_next_update_partition

(C++ function), 2071
esp_ota_get_partition_description

(C++ function), 2071
esp_ota_get_running_partition (C++ func-

tion), 2071
esp_ota_get_state_partition (C++ func-

tion), 2072
esp_ota_handle_t (C++ type), 2074
esp_ota_mark_app_invalid_rollback_and_reboot

(C++ function), 2072
esp_ota_mark_app_valid_cancel_rollback

(C++ function), 2072
esp_ota_revoke_secure_boot_public_key

(C++ function), 2073
esp_ota_secure_boot_public_key_index_t

(C++ enum), 2074
esp_ota_secure_boot_public_key_index_t::SECURE_BOOT_PUBLIC_KEY_INDEX_0

(C++ enumerator), 2074
esp_ota_secure_boot_public_key_index_t::SECURE_BOOT_PUBLIC_KEY_INDEX_1

(C++ enumerator), 2074
esp_ota_secure_boot_public_key_index_t::SECURE_BOOT_PUBLIC_KEY_INDEX_2

(C++ enumerator), 2074
esp_ota_set_boot_partition (C++ function),

2070
esp_ota_write (C++ function), 2069
esp_ota_write_with_offset (C++ function),

2069
esp_paddr_t (C++ type), 2012
esp_partition_check_identity (C++ func-

tion), 1740
esp_partition_deregister_external

(C++ function), 1741

esp_partition_erase_range (C++ function),
1739

esp_partition_find (C++ function), 1737
esp_partition_find_first (C++ function),

1737
esp_partition_get (C++ function), 1737
esp_partition_get_sha256 (C++ function),

1740
esp_partition_iterator_release (C++

function), 1737
esp_partition_iterator_t (C++ type), 1742
esp_partition_mmap (C++ function), 1739
esp_partition_mmap_handle_t (C++ type),

1742
esp_partition_mmap_memory_t (C++ enum),

1742
esp_partition_mmap_memory_t::ESP_PARTITION_MMAP_DATA

(C++ enumerator), 1742
esp_partition_mmap_memory_t::ESP_PARTITION_MMAP_INST

(C++ enumerator), 1742
esp_partition_munmap (C++ function), 1740
esp_partition_next (C++ function), 1737
esp_partition_read (C++ function), 1738
esp_partition_read_raw (C++ function), 1738
esp_partition_register_external (C++

function), 1741
ESP_PARTITION_SUBTYPE_OTA (C macro), 1742
esp_partition_subtype_t (C++ enum), 1743
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_ANY

(C++ enumerator), 1745
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_FACTORY

(C++ enumerator), 1743
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_0

(C++ enumerator), 1743
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_1

(C++ enumerator), 1743
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_10

(C++ enumerator), 1744
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_11

(C++ enumerator), 1744
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_12

(C++ enumerator), 1744
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_13

(C++ enumerator), 1744
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_14

(C++ enumerator), 1744
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_15

(C++ enumerator), 1744
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_2

(C++ enumerator), 1743
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_3

(C++ enumerator), 1743
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_4

(C++ enumerator), 1743
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_5

(C++ enumerator), 1743
esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_6

(C++ enumerator), 1744

Espressif Systems 2769
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_7
(C++ enumerator), 1744

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_8
(C++ enumerator), 1744

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_9
(C++ enumerator), 1744

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_MAX
(C++ enumerator), 1744

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_OTA_MIN
(C++ enumerator), 1743

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_APP_TEST
(C++ enumerator), 1744

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_DATA_COREDUMP
(C++ enumerator), 1744

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_DATA_EFUSE_EM
(C++ enumerator), 1745

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_DATA_ESPHTTPD
(C++ enumerator), 1745

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_DATA_FAT
(C++ enumerator), 1745

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_DATA_LITTLEFS
(C++ enumerator), 1745

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_DATA_NVS
(C++ enumerator), 1744

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_DATA_NVS_KEYS
(C++ enumerator), 1745

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_DATA_OTA
(C++ enumerator), 1744

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_DATA_PHY
(C++ enumerator), 1744

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_DATA_SPIFFS
(C++ enumerator), 1745

esp_partition_subtype_t::ESP_PARTITION_SUBTYPE_DATA_UNDEFINED
(C++ enumerator), 1745

esp_partition_t (C++ struct), 1741
esp_partition_t::address (C++ member),

1742
esp_partition_t::encrypted (C++ member),

1742
esp_partition_t::erase_size (C++ mem-

ber), 1742
esp_partition_t::flash_chip (C++ mem-

ber), 1741
esp_partition_t::label (C++ member), 1742
esp_partition_t::size (C++ member), 1742
esp_partition_t::subtype (C++ member),

1742
esp_partition_t::type (C++ member), 1742
esp_partition_type_t (C++ enum), 1742
esp_partition_type_t::ESP_PARTITION_TYPE_ANY

(C++ enumerator), 1743
esp_partition_type_t::ESP_PARTITION_TYPE_APP

(C++ enumerator), 1743
esp_partition_type_t::ESP_PARTITION_TYPE_DATA

(C++ enumerator), 1743
esp_partition_unload_all (C++ function),

1741
esp_partition_verify (C++ function), 1737

esp_partition_write (C++ function), 1738
esp_partition_write_raw (C++ function),

1739
ESP_PD_DOMAIN_RTC8M (C macro), 2101
ESP_PEER_IRK_LEN (C macro), 161
esp_phy_11ax_tx_set (C++ function), 2446
esp_phy_ble_rate_t (C++ enum), 2448
esp_phy_ble_rate_t::PHY_BLE_RATE_125K

(C++ enumerator), 2448
esp_phy_ble_rate_t::PHY_BLE_RATE_1M

(C++ enumerator), 2448
esp_phy_ble_rate_t::PHY_BLE_RATE_2M

(C++ enumerator), 2448
esp_phy_ble_rate_t::PHY_BLE_RATE_500k

(C++ enumerator), 2448
esp_phy_ble_rate_t::PHY_BLE_RATE_MAX

(C++ enumerator), 2448
esp_phy_ble_rx (C++ function), 2446
esp_phy_ble_tx (C++ function), 2445
esp_phy_ble_type_t (C++ enum), 2448
esp_phy_ble_type_t::PHY_BLE_TYPE_00001111

(C++ enumerator), 2448
esp_phy_ble_type_t::PHY_BLE_TYPE_00111100

(C++ enumerator), 2449
esp_phy_ble_type_t::PHY_BLE_TYPE_1010

(C++ enumerator), 2448
esp_phy_ble_type_t::PHY_BLE_TYPE_MAX

(C++ enumerator), 2449
esp_phy_ble_type_t::PHY_BLE_TYPE_prbs9

(C++ enumerator), 2449
esp_phy_bt_tx_tone (C++ function), 2446
esp_phy_calibration_data_t (C++ struct),

2443
esp_phy_calibration_data_t::mac (C++

member), 2444
esp_phy_calibration_data_t::opaque

(C++ member), 2444
esp_phy_calibration_data_t::version

(C++ member), 2444
esp_phy_calibration_mode_t (C++ enum),

2444
esp_phy_calibration_mode_t::PHY_RF_CAL_FULL

(C++ enumerator), 2444
esp_phy_calibration_mode_t::PHY_RF_CAL_NONE

(C++ enumerator), 2444
esp_phy_calibration_mode_t::PHY_RF_CAL_PARTIAL

(C++ enumerator), 2444
esp_phy_cbw40m_en (C++ function), 2445
esp_phy_common_clock_disable (C++ func-

tion), 2443
esp_phy_common_clock_enable (C++ func-

tion), 2443
esp_phy_disable (C++ function), 2442
esp_phy_enable (C++ function), 2442
esp_phy_erase_cal_data_in_nvs (C++ func-

tion), 2442
esp_phy_get_init_data (C++ function), 2441
esp_phy_get_rx_result (C++ function), 2446

Espressif Systems 2770
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_phy_init_data_t (C++ struct), 2443
esp_phy_init_data_t::params (C++ mem-

ber), 2443
esp_phy_load_cal_and_init (C++ function),

2442
esp_phy_load_cal_data_from_nvs (C++

function), 2442
esp_phy_modem_deinit (C++ function), 2443
esp_phy_modem_init (C++ function), 2443
esp_phy_modem_t (C++ enum), 2444
esp_phy_modem_t::PHY_MODEM_BT (C++ enu-

merator), 2444
esp_phy_modem_t::PHY_MODEM_IEEE802154

(C++ enumerator), 2444
esp_phy_modem_t::PHY_MODEM_MAX (C++

enumerator), 2444
esp_phy_modem_t::PHY_MODEM_WIFI (C++

enumerator), 2444
esp_phy_release_init_data (C++ function),

2442
esp_phy_rf_get_on_ts (C++ function), 2443
esp_phy_rftest_config (C++ function), 2445
esp_phy_rftest_init (C++ function), 2445
esp_phy_rx_result_t (C++ struct), 2446
esp_phy_rx_result_t::phy_rx_correct_count

(C++ member), 2446
esp_phy_rx_result_t::phy_rx_result_flag

(C++ member), 2447
esp_phy_rx_result_t::phy_rx_rssi (C++

member), 2446
esp_phy_rx_result_t::phy_rx_total_count

(C++ member), 2446
esp_phy_store_cal_data_to_nvs (C++ func-

tion), 2442
esp_phy_test_start_stop (C++ function),

2445
esp_phy_tx_contin_en (C++ function), 2445
esp_phy_update_country_info (C++ func-

tion), 2443
esp_phy_wifi_rate_t (C++ enum), 2447
esp_phy_wifi_rate_t::PHY_RATE_11AX_MCS0

(C++ enumerator), 2448
esp_phy_wifi_rate_t::PHY_RATE_11AX_MCS1

(C++ enumerator), 2448
esp_phy_wifi_rate_t::PHY_RATE_11AX_MCS2

(C++ enumerator), 2448
esp_phy_wifi_rate_t::PHY_RATE_11AX_MCS3

(C++ enumerator), 2448
esp_phy_wifi_rate_t::PHY_RATE_11AX_MCS4

(C++ enumerator), 2448
esp_phy_wifi_rate_t::PHY_RATE_11AX_MCS5

(C++ enumerator), 2448
esp_phy_wifi_rate_t::PHY_RATE_11AX_MCS6

(C++ enumerator), 2448
esp_phy_wifi_rate_t::PHY_RATE_11AX_MCS7

(C++ enumerator), 2448
esp_phy_wifi_rate_t::PHY_RATE_11AX_MCS8

(C++ enumerator), 2448

esp_phy_wifi_rate_t::PHY_RATE_11AX_MCS9
(C++ enumerator), 2448

esp_phy_wifi_rate_t::PHY_RATE_11M
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_12M
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_18M
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_1M (C++
enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_24M
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_2M (C++
enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_36M
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_48M
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_54M
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_5M5
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_6M (C++
enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_9M (C++
enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_MCS0
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_MCS1
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_MCS2
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_MCS3
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_MCS4
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_MCS5
(C++ enumerator), 2447

esp_phy_wifi_rate_t::PHY_RATE_MCS6
(C++ enumerator), 2448

esp_phy_wifi_rate_t::PHY_RATE_MCS7
(C++ enumerator), 2448

esp_phy_wifi_rate_t::PHY_WIFI_RATE_MAX
(C++ enumerator), 2448

esp_phy_wifi_rx (C++ function), 2445
esp_phy_wifi_tx (C++ function), 2445
esp_phy_wifi_tx_tone (C++ function), 2445
esp_ping_callbacks_t (C++ struct), 155
esp_ping_callbacks_t::cb_args (C++

member), 155
esp_ping_callbacks_t::on_ping_end

(C++ member), 155
esp_ping_callbacks_t::on_ping_success

(C++ member), 155
esp_ping_callbacks_t::on_ping_timeout

(C++ member), 155
esp_ping_config_t (C++ struct), 155
esp_ping_config_t::count (C++ member),

Espressif Systems 2771
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

155
esp_ping_config_t::data_size (C++ mem-

ber), 155
esp_ping_config_t::interface (C++ mem-

ber), 156
esp_ping_config_t::interval_ms (C++

member), 155
esp_ping_config_t::target_addr (C++

member), 155
esp_ping_config_t::task_prio (C++ mem-

ber), 156
esp_ping_config_t::task_stack_size

(C++ member), 155
esp_ping_config_t::timeout_ms (C++

member), 155
esp_ping_config_t::tos (C++ member), 155
esp_ping_config_t::ttl (C++ member), 155
ESP_PING_COUNT_INFINITE (C macro), 156
ESP_PING_DEFAULT_CONFIG (C macro), 156
esp_ping_delete_session (C++ function), 154
esp_ping_get_profile (C++ function), 154
esp_ping_handle_t (C++ type), 156
esp_ping_new_session (C++ function), 154
esp_ping_profile_t (C++ enum), 156
esp_ping_profile_t::ESP_PING_PROF_DURATION

(C++ enumerator), 157
esp_ping_profile_t::ESP_PING_PROF_IPADDR

(C++ enumerator), 156
esp_ping_profile_t::ESP_PING_PROF_REPLY

(C++ enumerator), 156
esp_ping_profile_t::ESP_PING_PROF_REQUEST

(C++ enumerator), 156
esp_ping_profile_t::ESP_PING_PROF_SEQNO

(C++ enumerator), 156
esp_ping_profile_t::ESP_PING_PROF_SIZE

(C++ enumerator), 156
esp_ping_profile_t::ESP_PING_PROF_TIMEGAP

(C++ enumerator), 156
esp_ping_profile_t::ESP_PING_PROF_TOS

(C++ enumerator), 156
esp_ping_profile_t::ESP_PING_PROF_TTL

(C++ enumerator), 156
esp_ping_start (C++ function), 154
esp_ping_stop (C++ function), 154
esp_pm_config_esp32_t (C++ type), 2081
esp_pm_config_esp32c2_t (C++ type), 2081
esp_pm_config_esp32c3_t (C++ type), 2081
esp_pm_config_esp32c6_t (C++ type), 2081
esp_pm_config_esp32s2_t (C++ type), 2081
esp_pm_config_esp32s3_t (C++ type), 2081
esp_pm_config_t (C++ struct), 2080
esp_pm_config_t::light_sleep_enable

(C++ member), 2080
esp_pm_config_t::max_freq_mhz (C++

member), 2080
esp_pm_config_t::min_freq_mhz (C++

member), 2080
esp_pm_configure (C++ function), 2078

esp_pm_dump_locks (C++ function), 2080
esp_pm_get_configuration (C++ function),

2079
esp_pm_lock_acquire (C++ function), 2079
esp_pm_lock_create (C++ function), 2079
esp_pm_lock_delete (C++ function), 2080
esp_pm_lock_handle_t (C++ type), 2081
esp_pm_lock_release (C++ function), 2079
esp_pm_lock_type_t (C++ enum), 2081
esp_pm_lock_type_t::ESP_PM_APB_FREQ_MAX

(C++ enumerator), 2081
esp_pm_lock_type_t::ESP_PM_CPU_FREQ_MAX

(C++ enumerator), 2081
esp_pm_lock_type_t::ESP_PM_NO_LIGHT_SLEEP

(C++ enumerator), 2081
esp_power_level_t (C++ enum), 339
esp_power_level_t::ESP_PWR_LVL_N0

(C++ enumerator), 339
esp_power_level_t::ESP_PWR_LVL_N11

(C++ enumerator), 340
esp_power_level_t::ESP_PWR_LVL_N12

(C++ enumerator), 339
esp_power_level_t::ESP_PWR_LVL_N14

(C++ enumerator), 340
esp_power_level_t::ESP_PWR_LVL_N2

(C++ enumerator), 340
esp_power_level_t::ESP_PWR_LVL_N3

(C++ enumerator), 339
esp_power_level_t::ESP_PWR_LVL_N5

(C++ enumerator), 340
esp_power_level_t::ESP_PWR_LVL_N6

(C++ enumerator), 339
esp_power_level_t::ESP_PWR_LVL_N8

(C++ enumerator), 340
esp_power_level_t::ESP_PWR_LVL_N9

(C++ enumerator), 339
esp_power_level_t::ESP_PWR_LVL_P1

(C++ enumerator), 340
esp_power_level_t::ESP_PWR_LVL_P3

(C++ enumerator), 339
esp_power_level_t::ESP_PWR_LVL_P4

(C++ enumerator), 340
esp_power_level_t::ESP_PWR_LVL_P6

(C++ enumerator), 339
esp_power_level_t::ESP_PWR_LVL_P7

(C++ enumerator), 340
esp_power_level_t::ESP_PWR_LVL_P9

(C++ enumerator), 339
esp_pthread_cfg_t (C++ struct), 2085
esp_pthread_cfg_t::inherit_cfg (C++

member), 2085
esp_pthread_cfg_t::pin_to_core (C++

member), 2086
esp_pthread_cfg_t::prio (C++ member),

2085
esp_pthread_cfg_t::stack_size (C++

member), 2085
esp_pthread_cfg_t::thread_name (C++

Espressif Systems 2772
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

member), 2086
esp_pthread_get_cfg (C++ function), 2085
esp_pthread_get_default_config (C++

function), 2085
esp_pthread_init (C++ function), 2085
esp_pthread_set_cfg (C++ function), 2085
esp_random (C++ function), 2087
esp_read_mac (C++ function), 2053
esp_register_freertos_idle_hook (C++

function), 1988
esp_register_freertos_idle_hook_for_cpu

(C++ function), 1988
esp_register_freertos_tick_hook (C++

function), 1989
esp_register_freertos_tick_hook_for_cpu

(C++ function), 1988
esp_register_shutdown_handler (C++ func-

tion), 2049
esp_reset_reason (C++ function), 2049
esp_reset_reason_t (C++ enum), 2050
esp_reset_reason_t::ESP_RST_BROWNOUT

(C++ enumerator), 2051
esp_reset_reason_t::ESP_RST_CPU_LOCKUP

(C++ enumerator), 2051
esp_reset_reason_t::ESP_RST_DEEPSLEEP

(C++ enumerator), 2050
esp_reset_reason_t::ESP_RST_EFUSE

(C++ enumerator), 2051
esp_reset_reason_t::ESP_RST_EXT (C++

enumerator), 2050
esp_reset_reason_t::ESP_RST_INT_WDT

(C++ enumerator), 2050
esp_reset_reason_t::ESP_RST_JTAG (C++

enumerator), 2051
esp_reset_reason_t::ESP_RST_PANIC

(C++ enumerator), 2050
esp_reset_reason_t::ESP_RST_POWERON

(C++ enumerator), 2050
esp_reset_reason_t::ESP_RST_PWR_GLITCH

(C++ enumerator), 2051
esp_reset_reason_t::ESP_RST_SDIO (C++

enumerator), 2051
esp_reset_reason_t::ESP_RST_SW (C++

enumerator), 2050
esp_reset_reason_t::ESP_RST_TASK_WDT

(C++ enumerator), 2050
esp_reset_reason_t::ESP_RST_UNKNOWN

(C++ enumerator), 2050
esp_reset_reason_t::ESP_RST_USB (C++

enumerator), 2051
esp_reset_reason_t::ESP_RST_WDT (C++

enumerator), 2050
esp_restart (C++ function), 2049
ESP_RETURN_ON_ERROR (C macro), 1823
ESP_RETURN_ON_ERROR_ISR (C macro), 1824
ESP_RETURN_ON_FALSE (C macro), 1824
ESP_RETURN_ON_FALSE_ISR (C macro), 1824
esp_rom_delay_us (C++ function), 2032

esp_rom_get_cpu_ticks_per_us (C++ func-
tion), 2033

esp_rom_get_reset_reason (C++ function),
2032

esp_rom_install_channel_putc (C++ func-
tion), 2032

esp_rom_install_uart_printf (C++ func-
tion), 2032

esp_rom_printf (C++ function), 2032
esp_rom_route_intr_matrix (C++ function),

2032
esp_rom_set_cpu_ticks_per_us (C++ func-

tion), 2033
esp_rom_software_reset_cpu (C++ function),

2032
esp_rom_software_reset_system (C++ func-

tion), 2032
esp_rrm_is_rrm_supported_connection

(C++ function), 759
esp_rrm_send_neighbor_rep_request

(C++ function), 758
esp_sco_data_path_t (C++ enum), 340
esp_sco_data_path_t::ESP_SCO_DATA_PATH_HCI

(C++ enumerator), 340
esp_sco_data_path_t::ESP_SCO_DATA_PATH_PCM

(C++ enumerator), 340
esp_secure_boot_key_digests_t (C++

struct), 1822
esp_secure_boot_key_digests_t::key_digests

(C++ member), 1822
esp_secure_boot_read_key_digests (C++

function), 1821
esp_service_source_t (C++ enum), 271
esp_service_source_t::ESP_GATT_SERVICE_FROM_NVS_FLASH

(C++ enumerator), 271
esp_service_source_t::ESP_GATT_SERVICE_FROM_REMOTE_DEVICE

(C++ enumerator), 271
esp_service_source_t::ESP_GATT_SERVICE_FROM_UNKNOWN

(C++ enumerator), 271
esp_set_deep_sleep_wake_stub (C++ func-

tion), 2101
esp_set_deep_sleep_wake_stub_default_entry

(C++ function), 2101
esp_sleep_config_gpio_isolate (C++ func-

tion), 2101
esp_sleep_cpu_retention_deinit (C++

function), 2101
esp_sleep_cpu_retention_init (C++ func-

tion), 2101
esp_sleep_disable_bt_wakeup (C++ func-

tion), 2098
esp_sleep_disable_ext1_wakeup_io (C++

function), 2096
esp_sleep_disable_wakeup_source (C++

function), 2093
esp_sleep_disable_wifi_beacon_wakeup

(C++ function), 2098
esp_sleep_disable_wifi_wakeup (C++ func-

Espressif Systems 2773
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

tion), 2098
esp_sleep_enable_bt_wakeup (C++ function),

2098
esp_sleep_enable_ext1_wakeup (C++ func-

tion), 2094
esp_sleep_enable_ext1_wakeup_io (C++

function), 2095
esp_sleep_enable_ext1_wakeup_with_level_mask

(C++ function), 2096
esp_sleep_enable_gpio_switch (C++ func-

tion), 2101
esp_sleep_enable_gpio_wakeup (C++ func-

tion), 2097
esp_sleep_enable_timer_wakeup (C++ func-

tion), 2093
esp_sleep_enable_uart_wakeup (C++ func-

tion), 2097
esp_sleep_enable_ulp_wakeup (C++ func-

tion), 2093
esp_sleep_enable_wifi_beacon_wakeup

(C++ function), 2098
esp_sleep_enable_wifi_wakeup (C++ func-

tion), 2098
esp_sleep_ext1_wakeup_mode_t (C++ enum),

2102
esp_sleep_ext1_wakeup_mode_t::ESP_EXT1_WAKEUP_ALL_LOW

(C++ enumerator), 2102
esp_sleep_ext1_wakeup_mode_t::ESP_EXT1_WAKEUP_ANY_HIGH

(C++ enumerator), 2102
esp_sleep_ext1_wakeup_mode_t::ESP_EXT1_WAKEUP_ANY_LOW

(C++ enumerator), 2102
esp_sleep_get_ext1_wakeup_status (C++

function), 2098
esp_sleep_get_gpio_wakeup_status (C++

function), 2098
esp_sleep_get_wakeup_cause (C++ function),

2100
esp_sleep_get_wakeup_causes (C++ func-

tion), 2100
esp_sleep_is_valid_wakeup_gpio (C++

function), 2094
esp_sleep_mode_t (C++ enum), 2104
esp_sleep_mode_t::ESP_SLEEP_MODE_DEEP_SLEEP

(C++ enumerator), 2104
esp_sleep_mode_t::ESP_SLEEP_MODE_LIGHT_SLEEP

(C++ enumerator), 2104
esp_sleep_pd_config (C++ function), 2099
esp_sleep_pd_domain_t (C++ enum), 2102
esp_sleep_pd_domain_t::ESP_PD_DOMAIN_CPU

(C++ enumerator), 2102
esp_sleep_pd_domain_t::ESP_PD_DOMAIN_MAX

(C++ enumerator), 2103
esp_sleep_pd_domain_t::ESP_PD_DOMAIN_MODEM

(C++ enumerator), 2102
esp_sleep_pd_domain_t::ESP_PD_DOMAIN_RC32K

(C++ enumerator), 2102
esp_sleep_pd_domain_t::ESP_PD_DOMAIN_RC_FAST

(C++ enumerator), 2102

esp_sleep_pd_domain_t::ESP_PD_DOMAIN_RTC_PERIPH
(C++ enumerator), 2102

esp_sleep_pd_domain_t::ESP_PD_DOMAIN_TOP
(C++ enumerator), 2103

esp_sleep_pd_domain_t::ESP_PD_DOMAIN_VDDSDIO
(C++ enumerator), 2102

esp_sleep_pd_domain_t::ESP_PD_DOMAIN_XTAL
(C++ enumerator), 2102

esp_sleep_pd_domain_t::ESP_PD_DOMAIN_XTAL32K
(C++ enumerator), 2102

esp_sleep_pd_option_t (C++ enum), 2103
esp_sleep_pd_option_t::ESP_PD_OPTION_AUTO

(C++ enumerator), 2103
esp_sleep_pd_option_t::ESP_PD_OPTION_OFF

(C++ enumerator), 2103
esp_sleep_pd_option_t::ESP_PD_OPTION_ON

(C++ enumerator), 2103
esp_sleep_source_t (C++ enum), 2103
esp_sleep_source_t::ESP_SLEEP_WAKEUP_ALL

(C++ enumerator), 2103
esp_sleep_source_t::ESP_SLEEP_WAKEUP_BT

(C++ enumerator), 2104
esp_sleep_source_t::ESP_SLEEP_WAKEUP_COCPU

(C++ enumerator), 2104
esp_sleep_source_t::ESP_SLEEP_WAKEUP_COCPU_TRAP_TRIG

(C++ enumerator), 2104
esp_sleep_source_t::ESP_SLEEP_WAKEUP_EXT0

(C++ enumerator), 2103
esp_sleep_source_t::ESP_SLEEP_WAKEUP_EXT1

(C++ enumerator), 2103
esp_sleep_source_t::ESP_SLEEP_WAKEUP_GPIO

(C++ enumerator), 2103
esp_sleep_source_t::ESP_SLEEP_WAKEUP_TIMER

(C++ enumerator), 2103
esp_sleep_source_t::ESP_SLEEP_WAKEUP_TOUCHPAD

(C++ enumerator), 2103
esp_sleep_source_t::ESP_SLEEP_WAKEUP_UART

(C++ enumerator), 2104
esp_sleep_source_t::ESP_SLEEP_WAKEUP_UART1

(C++ enumerator), 2104
esp_sleep_source_t::ESP_SLEEP_WAKEUP_UART2

(C++ enumerator), 2104
esp_sleep_source_t::ESP_SLEEP_WAKEUP_ULP

(C++ enumerator), 2103
esp_sleep_source_t::ESP_SLEEP_WAKEUP_UNDEFINED

(C++ enumerator), 2103
esp_sleep_source_t::ESP_SLEEP_WAKEUP_WIFI

(C++ enumerator), 2104
esp_sleep_wakeup_cause_t (C++ type), 2101
esp_smartconfig_fast_mode (C++ function),

682
esp_smartconfig_get_rvd_data (C++ func-

tion), 682
esp_smartconfig_get_version (C++ func-

tion), 681
esp_smartconfig_set_type (C++ function),

681
esp_smartconfig_start (C++ function), 681

Espressif Systems 2774
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_smartconfig_stop (C++ function), 681
esp_sntp_config (C++ struct), 830
esp_sntp_config::index_of_first_server

(C++ member), 830
esp_sntp_config::ip_event_to_renew

(C++ member), 830
esp_sntp_config::num_of_servers (C++

member), 831
esp_sntp_config::renew_servers_after_new_IP

(C++ member), 830
esp_sntp_config::server_from_dhcp

(C++ member), 830
esp_sntp_config::servers (C++ member),

831
esp_sntp_config::smooth_sync (C++ mem-

ber), 830
esp_sntp_config::start (C++ member), 830
esp_sntp_config::sync_cb (C++ member),

830
esp_sntp_config::wait_for_sync (C++

member), 830
esp_sntp_config_t (C++ type), 831
esp_sntp_enabled (C++ function), 2126
esp_sntp_get_sync_interval (Cmacro), 2127
esp_sntp_get_sync_mode (C macro), 2126
esp_sntp_get_sync_status (C macro), 2126
esp_sntp_getoperatingmode (C++ function),

2126
esp_sntp_getreachability (C++ function),

2126
esp_sntp_getserver (C++ function), 2126
esp_sntp_getservername (C++ function), 2125
esp_sntp_init (C++ function), 2125
esp_sntp_operatingmode_t (C++ enum), 2127
esp_sntp_operatingmode_t::ESP_SNTP_OPMODE_LISTENONLY

(C++ enumerator), 2127
esp_sntp_operatingmode_t::ESP_SNTP_OPMODE_POLL

(C++ enumerator), 2127
esp_sntp_restart (C macro), 2127
ESP_SNTP_SERVER_LIST (C macro), 831
esp_sntp_set_sync_interval (Cmacro), 2126
esp_sntp_set_sync_mode (C macro), 2126
esp_sntp_set_sync_status (C macro), 2126
esp_sntp_set_time_sync_notification_cb

(C macro), 2126
esp_sntp_setoperatingmode (C++ function),

2125
esp_sntp_setserver (C++ function), 2125
esp_sntp_setservername (C++ function), 2125
esp_sntp_stop (C++ function), 2125
esp_sntp_sync_time (C macro), 2126
esp_sntp_time_cb_t (C++ type), 831
esp_spiffs_check (C++ function), 1748
esp_spiffs_format (C++ function), 1748
esp_spiffs_gc (C++ function), 1748
esp_spiffs_info (C++ function), 1748
esp_spiffs_mounted (C++ function), 1748
esp_srp_exchange_proofs (C++ function),

1651
esp_srp_free (C++ function), 1649
esp_srp_gen_salt_verifier (C++ function),

1649
esp_srp_get_session_key (C++ function),

1650
esp_srp_handle_t (C++ type), 1651
esp_srp_init (C++ function), 1649
esp_srp_set_salt_verifier (C++ function),

1650
esp_srp_srv_pubkey (C++ function), 1649
esp_srp_srv_pubkey_from_salt_verifier

(C++ function), 1650
esp_supp_dpp_bootstrap_gen (C++ function),

762
esp_supp_dpp_bootstrap_t (C++ type), 763
esp_supp_dpp_deinit (C++ function), 762
esp_supp_dpp_event_cb_t (C++ type), 763
esp_supp_dpp_event_t (C++ enum), 764
esp_supp_dpp_event_t::ESP_SUPP_DPP_CFG_RECVD

(C++ enumerator), 764
esp_supp_dpp_event_t::ESP_SUPP_DPP_FAIL

(C++ enumerator), 764
esp_supp_dpp_event_t::ESP_SUPP_DPP_URI_READY

(C++ enumerator), 764
esp_supp_dpp_init (C++ function), 762
esp_supp_dpp_start_listen (C++ function),

763
esp_supp_dpp_stop_listen (C++ function),

763
esp_system_abort (C++ function), 2050
esp_systick_new_etm_alarm_event (C++

function), 890
esp_sysview_flush (C++ function), 1778
esp_sysview_heap_trace_alloc (C++ func-

tion), 1778
esp_sysview_heap_trace_free (C++ func-

tion), 1778
esp_sysview_heap_trace_start (C++ func-

tion), 1778
esp_sysview_heap_trace_stop (C++ func-

tion), 1778
esp_sysview_vprintf (C++ function), 1778
esp_task_wdt_add (C++ function), 2135
esp_task_wdt_add_user (C++ function), 2135
esp_task_wdt_config_t (C++ struct), 2137
esp_task_wdt_config_t::idle_core_mask

(C++ member), 2137
esp_task_wdt_config_t::timeout_ms

(C++ member), 2137
esp_task_wdt_config_t::trigger_panic

(C++ member), 2137
esp_task_wdt_deinit (C++ function), 2134
esp_task_wdt_delete (C++ function), 2135
esp_task_wdt_delete_user (C++ function),

2136
esp_task_wdt_init (C++ function), 2134
esp_task_wdt_isr_user_handler (C++ func-

Espressif Systems 2775
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

tion), 2136
esp_task_wdt_print_triggered_tasks

(C++ function), 2136
esp_task_wdt_reconfigure (C++ function),

2134
esp_task_wdt_reset (C++ function), 2135
esp_task_wdt_reset_user (C++ function),

2135
esp_task_wdt_status (C++ function), 2136
esp_task_wdt_user_handle_t (C++ type),

2137
esp_timer_cb_t (C++ type), 2031
esp_timer_create (C++ function), 2027
esp_timer_create_args_t (C++ struct), 2031
esp_timer_create_args_t::arg (C++ mem-

ber), 2031
esp_timer_create_args_t::callback

(C++ member), 2031
esp_timer_create_args_t::dispatch_method

(C++ member), 2031
esp_timer_create_args_t::name (C++

member), 2031
esp_timer_create_args_t::skip_unhandled_events

(C++ member), 2031
esp_timer_deinit (C++ function), 2027
esp_timer_delete (C++ function), 2029
esp_timer_dispatch_t (C++ enum), 2031
esp_timer_dispatch_t::ESP_TIMER_MAX

(C++ enumerator), 2031
esp_timer_dispatch_t::ESP_TIMER_TASK

(C++ enumerator), 2031
esp_timer_dump (C++ function), 2030
esp_timer_early_init (C++ function), 2027
esp_timer_get_expiry_time (C++ function),

2029
esp_timer_get_next_alarm (C++ function),

2029
esp_timer_get_next_alarm_for_wake_up

(C++ function), 2029
esp_timer_get_period (C++ function), 2029
esp_timer_get_time (C++ function), 2029
esp_timer_handle_t (C++ type), 2031
esp_timer_init (C++ function), 2027
esp_timer_is_active (C++ function), 2030
esp_timer_isr_dispatch_need_yield

(C++ function), 2030
esp_timer_new_etm_alarm_event (C++ func-

tion), 2030
esp_timer_restart (C++ function), 2028
esp_timer_start_once (C++ function), 2028
esp_timer_start_periodic (C++ function),

2028
esp_timer_stop (C++ function), 2028
esp_tls_addr_family (C++ enum), 71
esp_tls_addr_family::ESP_TLS_AF_INET

(C++ enumerator), 71
esp_tls_addr_family::ESP_TLS_AF_INET6

(C++ enumerator), 71

esp_tls_addr_family::ESP_TLS_AF_UNSPEC
(C++ enumerator), 71

esp_tls_addr_family_t (C++ type), 70
esp_tls_cfg (C++ struct), 68
esp_tls_cfg::addr_family (C++ member), 70
esp_tls_cfg::alpn_protos (C++ member), 68
esp_tls_cfg::cacert_buf (C++ member), 68
esp_tls_cfg::cacert_bytes (C++ member),

68
esp_tls_cfg::cacert_pem_buf (C++ mem-

ber), 68
esp_tls_cfg::cacert_pem_bytes (C++

member), 68
esp_tls_cfg::clientcert_buf (C++ mem-

ber), 68
esp_tls_cfg::clientcert_bytes (C++

member), 68
esp_tls_cfg::clientcert_pem_buf (C++

member), 68
esp_tls_cfg::clientcert_pem_bytes

(C++ member), 68
esp_tls_cfg::clientkey_buf (C++ member),

69
esp_tls_cfg::clientkey_bytes (C++ mem-

ber), 69
esp_tls_cfg::clientkey_password (C++

member), 69
esp_tls_cfg::clientkey_password_len

(C++ member), 69
esp_tls_cfg::clientkey_pem_buf (C++

member), 69
esp_tls_cfg::clientkey_pem_bytes (C++

member), 69
esp_tls_cfg::common_name (C++ member), 69
esp_tls_cfg::crt_bundle_attach (C++

member), 70
esp_tls_cfg::ds_data (C++ member), 70
esp_tls_cfg::ecdsa_key_efuse_blk (C++

member), 69
esp_tls_cfg::if_name (C++ member), 70
esp_tls_cfg::is_plain_tcp (C++ member),

70
esp_tls_cfg::keep_alive_cfg (C++ mem-

ber), 69
esp_tls_cfg::non_block (C++ member), 69
esp_tls_cfg::psk_hint_key (C++ member),

70
esp_tls_cfg::skip_common_name (C++

member), 69
esp_tls_cfg::timeout_ms (C++ member), 69
esp_tls_cfg::tls_version (C++ member), 70
esp_tls_cfg::use_ecdsa_peripheral

(C++ member), 69
esp_tls_cfg::use_global_ca_store (C++

member), 69
esp_tls_cfg::use_secure_element (C++

member), 69
esp_tls_cfg_t (C++ type), 70

Espressif Systems 2776
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_tls_conn_destroy (C++ function), 64
esp_tls_conn_http_new (C++ function), 62
esp_tls_conn_http_new_async (C++ func-

tion), 63
esp_tls_conn_http_new_sync (C++ function),

63
esp_tls_conn_new_async (C++ function), 63
esp_tls_conn_new_sync (C++ function), 63
esp_tls_conn_read (C++ function), 64
esp_tls_conn_state (C++ enum), 71
esp_tls_conn_state::ESP_TLS_CONNECTING

(C++ enumerator), 71
esp_tls_conn_state::ESP_TLS_DONE (C++

enumerator), 71
esp_tls_conn_state::ESP_TLS_FAIL (C++

enumerator), 71
esp_tls_conn_state::ESP_TLS_HANDSHAKE

(C++ enumerator), 71
esp_tls_conn_state::ESP_TLS_INIT (C++

enumerator), 71
esp_tls_conn_state_t (C++ type), 70
esp_tls_conn_write (C++ function), 64
ESP_TLS_ERR_SSL_TIMEOUT (C macro), 74
ESP_TLS_ERR_SSL_WANT_READ (C macro), 74
ESP_TLS_ERR_SSL_WANT_WRITE (C macro), 74
esp_tls_error_handle_t (C++ type), 74
esp_tls_error_type_t (C++ enum), 74
esp_tls_error_type_t::ESP_TLS_ERR_TYPE_ESP

(C++ enumerator), 75
esp_tls_error_type_t::ESP_TLS_ERR_TYPE_MAX

(C++ enumerator), 75
esp_tls_error_type_t::ESP_TLS_ERR_TYPE_MBEDTLS

(C++ enumerator), 74
esp_tls_error_type_t::ESP_TLS_ERR_TYPE_MBEDTLS_CERT_FLAGS

(C++ enumerator), 75
esp_tls_error_type_t::ESP_TLS_ERR_TYPE_SYSTEM

(C++ enumerator), 74
esp_tls_error_type_t::ESP_TLS_ERR_TYPE_UNKNOWN

(C++ enumerator), 74
esp_tls_error_type_t::ESP_TLS_ERR_TYPE_WOLFSSL

(C++ enumerator), 75
esp_tls_error_type_t::ESP_TLS_ERR_TYPE_WOLFSSL_CERT_FLAGS

(C++ enumerator), 75
esp_tls_free_global_ca_store (C++ func-

tion), 66
esp_tls_get_and_clear_error_type (C++

function), 66
esp_tls_get_and_clear_last_error (C++

function), 66
esp_tls_get_bytes_avail (C++ function), 64
esp_tls_get_conn_sockfd (C++ function), 64
esp_tls_get_conn_state (C++ function), 65
esp_tls_get_error_handle (C++ function), 66
esp_tls_get_global_ca_store (C++ func-

tion), 66
esp_tls_get_ssl_context (C++ function), 65
esp_tls_init (C++ function), 62
esp_tls_init_global_ca_store (C++ func-

tion), 65
esp_tls_last_error (C++ struct), 72
esp_tls_last_error::esp_tls_error_code

(C++ member), 72
esp_tls_last_error::esp_tls_flags

(C++ member), 72
esp_tls_last_error::last_error (C++

member), 72
esp_tls_last_error_t (C++ type), 74
esp_tls_plain_tcp_connect (C++ function),

67
esp_tls_proto_ver_t (C++ enum), 71
esp_tls_proto_ver_t::ESP_TLS_VER_ANY

(C++ enumerator), 71
esp_tls_proto_ver_t::ESP_TLS_VER_TLS_1_2

(C++ enumerator), 72
esp_tls_proto_ver_t::ESP_TLS_VER_TLS_1_3

(C++ enumerator), 72
esp_tls_proto_ver_t::ESP_TLS_VER_TLS_MAX

(C++ enumerator), 72
esp_tls_role (C++ enum), 71
esp_tls_role::ESP_TLS_CLIENT (C++ enu-

merator), 71
esp_tls_role::ESP_TLS_SERVER (C++ enu-

merator), 71
esp_tls_role_t (C++ type), 70
esp_tls_set_conn_sockfd (C++ function), 65
esp_tls_set_conn_state (C++ function), 65
esp_tls_set_global_ca_store (C++ func-

tion), 65
esp_tls_t (C++ type), 71
esp_unregister_shutdown_handler (C++

function), 2049
ESP_UUID_LEN_128 (C macro), 161
ESP_UUID_LEN_16 (C macro), 161
ESP_UUID_LEN_32 (C macro), 161
esp_vendor_ie_cb_t (C++ type), 707
esp_vfs_close (C++ function), 1754
esp_vfs_dev_uart_port_set_rx_line_endings

(C++ function), 1763
esp_vfs_dev_uart_port_set_tx_line_endings

(C++ function), 1763
esp_vfs_dev_uart_register (C++ function),

1762
esp_vfs_dev_uart_set_rx_line_endings

(C++ function), 1762
esp_vfs_dev_uart_set_tx_line_endings

(C++ function), 1762
esp_vfs_dev_uart_use_driver (C++ func-

tion), 1764
esp_vfs_dev_uart_use_nonblocking (C++

function), 1764
ESP_VFS_EVENTD_CONFIG_DEFAULT (C macro),

1765
esp_vfs_eventfd_config_t (C++ struct), 1764
esp_vfs_eventfd_config_t::max_fds

(C++ member), 1764
esp_vfs_eventfd_register (C++ function),

Espressif Systems 2777
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

1764
esp_vfs_eventfd_unregister (C++ function),

1764
esp_vfs_fat_info (C++ function), 1690
esp_vfs_fat_mount_config_t (C++ struct),

1690
esp_vfs_fat_mount_config_t::allocation_unit_size

(C++ member), 1691
esp_vfs_fat_mount_config_t::disk_status_check_enable

(C++ member), 1691
esp_vfs_fat_mount_config_t::format_if_mount_failed

(C++ member), 1690
esp_vfs_fat_mount_config_t::max_files

(C++ member), 1690
esp_vfs_fat_register (C++ function), 1686
esp_vfs_fat_sdcard_format (C++ function),

1688
esp_vfs_fat_sdcard_unmount (C++ function),

1688
esp_vfs_fat_sdmmc_mount (C++ function),

1686
esp_vfs_fat_sdmmc_mount_config_t (C++

type), 1691
esp_vfs_fat_sdmmc_unmount (C++ function),

1688
esp_vfs_fat_sdspi_mount (C++ function),

1687
esp_vfs_fat_spiflash_format_rw_wl

(C++ function), 1689
esp_vfs_fat_spiflash_mount_ro (C++ func-

tion), 1689
esp_vfs_fat_spiflash_mount_rw_wl (C++

function), 1688
esp_vfs_fat_spiflash_unmount_ro (C++

function), 1690
esp_vfs_fat_spiflash_unmount_rw_wl

(C++ function), 1689
esp_vfs_fat_unregister_path (C++ func-

tion), 1686
ESP_VFS_FLAG_CONTEXT_PTR (C macro), 1762
ESP_VFS_FLAG_DEFAULT (C macro), 1762
esp_vfs_fstat (C++ function), 1754
esp_vfs_id_t (C++ type), 1762
esp_vfs_l2tap_eth_filter (C++ function),

842
esp_vfs_l2tap_intf_register (C++ func-

tion), 842
esp_vfs_l2tap_intf_unregister (C++ func-

tion), 842
esp_vfs_link (C++ function), 1754
esp_vfs_lseek (C++ function), 1753
esp_vfs_open (C++ function), 1754
ESP_VFS_PATH_MAX (C macro), 1762
esp_vfs_pread (C++ function), 1756
esp_vfs_pwrite (C++ function), 1756
esp_vfs_read (C++ function), 1754
esp_vfs_register (C++ function), 1754
esp_vfs_register_fd (C++ function), 1755

esp_vfs_register_fd_range (C++ function),
1754

esp_vfs_register_fd_with_local_fd
(C++ function), 1755

esp_vfs_register_with_id (C++ function),
1754

esp_vfs_rename (C++ function), 1754
esp_vfs_select (C++ function), 1755
esp_vfs_select_sem_t (C++ struct), 1756
esp_vfs_select_sem_t::is_sem_local

(C++ member), 1756
esp_vfs_select_sem_t::sem (C++ member),

1756
esp_vfs_select_triggered (C++ function),

1756
esp_vfs_select_triggered_isr (C++ func-

tion), 1756
esp_vfs_spiffs_conf_t (C++ struct), 1749
esp_vfs_spiffs_conf_t::base_path (C++

member), 1749
esp_vfs_spiffs_conf_t::format_if_mount_failed

(C++ member), 1749
esp_vfs_spiffs_conf_t::max_files (C++

member), 1749
esp_vfs_spiffs_conf_t::partition_label

(C++ member), 1749
esp_vfs_spiffs_register (C++ function),

1748
esp_vfs_spiffs_unregister (C++ function),

1748
esp_vfs_stat (C++ function), 1754
esp_vfs_t (C++ struct), 1757
esp_vfs_t::access (C++ member), 1760
esp_vfs_t::access_p (C++ member), 1760
esp_vfs_t::close (C++ member), 1758
esp_vfs_t::close_p (C++ member), 1758
esp_vfs_t::closedir (C++ member), 1759
esp_vfs_t::closedir_p (C++ member), 1759
esp_vfs_t::end_select (C++ member), 1762
esp_vfs_t::fcntl (C++ member), 1759
esp_vfs_t::fcntl_p (C++ member), 1759
esp_vfs_t::flags (C++ member), 1757
esp_vfs_t::fstat (C++ member), 1758
esp_vfs_t::fstat_p (C++ member), 1758
esp_vfs_t::fsync (C++ member), 1760
esp_vfs_t::fsync_p (C++ member), 1760
esp_vfs_t::ftruncate (C++ member), 1760
esp_vfs_t::ftruncate_p (C++ member), 1760
esp_vfs_t::get_socket_select_semaphore

(C++ member), 1761
esp_vfs_t::ioctl (C++ member), 1760
esp_vfs_t::ioctl_p (C++ member), 1760
esp_vfs_t::link (C++ member), 1758
esp_vfs_t::link_p (C++ member), 1758
esp_vfs_t::lseek (C++ member), 1757
esp_vfs_t::lseek_p (C++ member), 1757
esp_vfs_t::mkdir (C++ member), 1759
esp_vfs_t::mkdir_p (C++ member), 1759

Espressif Systems 2778
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

esp_vfs_t::open (C++ member), 1758
esp_vfs_t::open_p (C++ member), 1758
esp_vfs_t::opendir (C++ member), 1758
esp_vfs_t::opendir_p (C++ member), 1758
esp_vfs_t::pread (C++ member), 1757
esp_vfs_t::pread_p (C++ member), 1757
esp_vfs_t::pwrite (C++ member), 1757
esp_vfs_t::pwrite_p (C++ member), 1757
esp_vfs_t::read (C++ member), 1757
esp_vfs_t::read_p (C++ member), 1757
esp_vfs_t::readdir (C++ member), 1759
esp_vfs_t::readdir_p (C++ member), 1759
esp_vfs_t::readdir_r (C++ member), 1759
esp_vfs_t::readdir_r_p (C++ member), 1759
esp_vfs_t::rename (C++ member), 1758
esp_vfs_t::rename_p (C++ member), 1758
esp_vfs_t::rmdir (C++ member), 1759
esp_vfs_t::rmdir_p (C++ member), 1759
esp_vfs_t::seekdir (C++ member), 1759
esp_vfs_t::seekdir_p (C++ member), 1759
esp_vfs_t::socket_select (C++ member),

1761
esp_vfs_t::start_select (C++ member),

1761
esp_vfs_t::stat (C++ member), 1758
esp_vfs_t::stat_p (C++ member), 1758
esp_vfs_t::stop_socket_select (C++

member), 1761
esp_vfs_t::stop_socket_select_isr

(C++ member), 1761
esp_vfs_t::tcdrain (C++ member), 1761
esp_vfs_t::tcdrain_p (C++ member), 1761
esp_vfs_t::tcflow (C++ member), 1761
esp_vfs_t::tcflow_p (C++ member), 1761
esp_vfs_t::tcflush (C++ member), 1761
esp_vfs_t::tcflush_p (C++ member), 1761
esp_vfs_t::tcgetattr (C++ member), 1760
esp_vfs_t::tcgetattr_p (C++ member), 1760
esp_vfs_t::tcgetsid (C++ member), 1761
esp_vfs_t::tcgetsid_p (C++ member), 1761
esp_vfs_t::tcsendbreak (C++ member), 1761
esp_vfs_t::tcsendbreak_p (C++ member),

1761
esp_vfs_t::tcsetattr (C++ member), 1760
esp_vfs_t::tcsetattr_p (C++ member), 1760
esp_vfs_t::telldir (C++ member), 1759
esp_vfs_t::telldir_p (C++ member), 1759
esp_vfs_t::truncate (C++ member), 1760
esp_vfs_t::truncate_p (C++ member), 1760
esp_vfs_t::unlink (C++ member), 1758
esp_vfs_t::unlink_p (C++ member), 1758
esp_vfs_t::utime (C++ member), 1760
esp_vfs_t::utime_p (C++ member), 1760
esp_vfs_t::write (C++ member), 1757
esp_vfs_t::write_p (C++ member), 1757
esp_vfs_unlink (C++ function), 1754
esp_vfs_unregister (C++ function), 1755
esp_vfs_unregister_fd (C++ function), 1755

esp_vfs_unregister_with_id (C++ function),
1755

esp_vfs_usb_serial_jtag_use_driver
(C++ function), 1764

esp_vfs_usb_serial_jtag_use_nonblocking
(C++ function), 1764

esp_vfs_utime (C++ function), 1754
esp_vfs_write (C++ function), 1753
esp_vhci_host_callback (C++ struct), 336
esp_vhci_host_callback::notify_host_recv

(C++ member), 336
esp_vhci_host_callback::notify_host_send_available

(C++ member), 336
esp_vhci_host_callback_t (C++ type), 337
esp_vhci_host_check_send_available

(C++ function), 332
esp_vhci_host_register_callback (C++

function), 332
esp_vhci_host_send_packet (C++ function),

332
esp_wake_deep_sleep (C++ function), 2100
esp_wifi_80211_tx (C++ function), 696
esp_wifi_ap_get_sta_aid (C++ function), 694
esp_wifi_ap_get_sta_list (C++ function),

693
esp_wifi_ap_wps_disable (C++ function), 756
esp_wifi_ap_wps_enable (C++ function), 756
esp_wifi_ap_wps_start (C++ function), 756
esp_wifi_bt_power_domain_off (C++ func-

tion), 333
esp_wifi_bt_power_domain_on (C++ func-

tion), 332
esp_wifi_clear_ap_list (C++ function), 688
esp_wifi_clear_default_wifi_driver_and_handlers

(C++ function), 844
esp_wifi_clear_fast_connect (C++ func-

tion), 686
esp_wifi_config_11b_rate (C++ function),

699
esp_wifi_config_80211_tx (C++ function),

701
esp_wifi_config_80211_tx_rate (C++ func-

tion), 701
esp_wifi_config_espnow_rate (C++ func-

tion), 636
esp_wifi_connect (C++ function), 686
ESP_WIFI_CONNECTIONLESS_INTERVAL_DEFAULT_MODE

(C macro), 707
esp_wifi_connectionless_module_set_wake_interval

(C++ function), 700
esp_wifi_deauth_sta (C++ function), 686
esp_wifi_deinit (C++ function), 684
esp_wifi_disable_pmf_config (C++ func-

tion), 701
esp_wifi_disconnect (C++ function), 686
esp_wifi_force_wakeup_acquire (C++ func-

tion), 700
esp_wifi_force_wakeup_release (C++ func-

Espressif Systems 2779
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

tion), 700
esp_wifi_ftm_end_session (C++ function),

699
esp_wifi_ftm_get_report (C++ function), 699
esp_wifi_ftm_initiate_session (C++ func-

tion), 698
esp_wifi_ftm_resp_set_offset (C++ func-

tion), 699
esp_wifi_get_ant (C++ function), 697
esp_wifi_get_ant_gpio (C++ function), 697
esp_wifi_get_bandwidth (C++ function), 689
esp_wifi_get_channel (C++ function), 690
esp_wifi_get_config (C++ function), 693
esp_wifi_get_country (C++ function), 691
esp_wifi_get_country_code (C++ function),

701
esp_wifi_get_event_mask (C++ function), 695
esp_wifi_get_inactive_time (C++ function),

698
esp_wifi_get_mac (C++ function), 691
esp_wifi_get_max_tx_power (C++ function),

695
esp_wifi_get_mode (C++ function), 685
esp_wifi_get_promiscuous (C++ function),

692
esp_wifi_get_promiscuous_ctrl_filter

(C++ function), 693
esp_wifi_get_promiscuous_filter (C++

function), 692
esp_wifi_get_protocol (C++ function), 689
esp_wifi_get_ps (C++ function), 688
esp_wifi_get_tsf_time (C++ function), 697
esp_wifi_init (C++ function), 684
ESP_WIFI_MAX_CONN_NUM (C macro), 732
ESP_WIFI_MAX_FILTER_LEN (C macro), 733
ESP_WIFI_MAX_SVC_INFO_LEN (C macro), 733
ESP_WIFI_MAX_SVC_NAME_LEN (C macro), 733
ESP_WIFI_NAN_DATAPATH_MAX_PEERS (C

macro), 733
ESP_WIFI_NAN_MAX_SVC_SUPPORTED (C

macro), 733
ESP_WIFI_NDP_ROLE_INITIATOR (C macro),

733
ESP_WIFI_NDP_ROLE_RESPONDER (C macro),

733
esp_wifi_power_domain_off (C++ function),

2445
esp_wifi_power_domain_on (C++ function),

2445
esp_wifi_restore (C++ function), 685
esp_wifi_scan_get_ap_num (C++ function),

687
esp_wifi_scan_get_ap_record (C++ func-

tion), 687
esp_wifi_scan_get_ap_records (C++ func-

tion), 687
esp_wifi_scan_start (C++ function), 686
esp_wifi_scan_stop (C++ function), 687

esp_wifi_set_ant (C++ function), 697
esp_wifi_set_ant_gpio (C++ function), 697
esp_wifi_set_bandwidth (C++ function), 689
esp_wifi_set_channel (C++ function), 690
esp_wifi_set_config (C++ function), 693
esp_wifi_set_country (C++ function), 690
esp_wifi_set_country_code (C++ function),

700
esp_wifi_set_csi (C++ function), 697
esp_wifi_set_csi_config (C++ function), 696
esp_wifi_set_csi_rx_cb (C++ function), 696
esp_wifi_set_default_wifi_ap_handlers

(C++ function), 844
esp_wifi_set_default_wifi_nan_handlers

(C++ function), 844
esp_wifi_set_default_wifi_sta_handlers

(C++ function), 844
esp_wifi_set_dynamic_cs (C++ function), 702
esp_wifi_set_event_mask (C++ function), 695
esp_wifi_set_inactive_time (C++ function),

697
esp_wifi_set_mac (C++ function), 691
esp_wifi_set_max_tx_power (C++ function),

695
esp_wifi_set_mode (C++ function), 684
esp_wifi_set_promiscuous (C++ function),

692
esp_wifi_set_promiscuous_ctrl_filter

(C++ function), 692
esp_wifi_set_promiscuous_filter (C++

function), 692
esp_wifi_set_promiscuous_rx_cb (C++

function), 692
esp_wifi_set_protocol (C++ function), 689
esp_wifi_set_ps (C++ function), 688
esp_wifi_set_rssi_threshold (C++ func-

tion), 698
esp_wifi_set_storage (C++ function), 694
esp_wifi_set_vendor_ie (C++ function), 694
esp_wifi_set_vendor_ie_cb (C++ function),

694
esp_wifi_sta_enterprise_disable (C++

function), 750
esp_wifi_sta_enterprise_enable (C++

function), 750
esp_wifi_sta_get_aid (C++ function), 702
esp_wifi_sta_get_ap_info (C++ function),

688
esp_wifi_sta_get_negotiated_phymode

(C++ function), 702
esp_wifi_sta_get_rssi (C++ function), 702
esp_wifi_start (C++ function), 685
esp_wifi_statis_dump (C++ function), 698
esp_wifi_stop (C++ function), 685
esp_wifi_wps_disable (C++ function), 755
esp_wifi_wps_enable (C++ function), 755
esp_wifi_wps_start (C++ function), 755
esp_wnm_is_btm_supported_connection

Espressif Systems 2780
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ function), 759
esp_wnm_send_bss_transition_mgmt_query

(C++ function), 759
esp_wps_config_t (C++ struct), 757
esp_wps_config_t::factory_info (C++

member), 757
esp_wps_config_t::pin (C++ member), 757
esp_wps_config_t::wps_type (C++ member),

757
essl_clear_intr (C++ function), 111
essl_get_intr (C++ function), 111
essl_get_intr_ena (C++ function), 111
essl_get_packet (C++ function), 110
essl_get_rx_data_size (C++ function), 109
essl_get_tx_buffer_num (C++ function), 109
essl_handle_t (C++ type), 112
essl_init (C++ function), 109
essl_read_reg (C++ function), 110
essl_reset_cnt (C++ function), 109
essl_sdio_config_t (C++ struct), 112
essl_sdio_config_t::card (C++ member),

113
essl_sdio_config_t::recv_buffer_size

(C++ member), 113
essl_sdio_deinit_dev (C++ function), 112
essl_sdio_init_dev (C++ function), 112
essl_send_packet (C++ function), 109
essl_send_slave_intr (C++ function), 112
essl_set_intr_ena (C++ function), 111
essl_spi_config_t (C++ struct), 118
essl_spi_config_t::rx_sync_reg (C++

member), 118
essl_spi_config_t::spi (C++ member), 118
essl_spi_config_t::tx_buf_size (C++

member), 118
essl_spi_config_t::tx_sync_reg (C++

member), 118
essl_spi_deinit_dev (C++ function), 113
essl_spi_get_packet (C++ function), 113
essl_spi_init_dev (C++ function), 113
essl_spi_rdbuf (C++ function), 115
essl_spi_rdbuf_polling (C++ function), 115
essl_spi_rddma (C++ function), 116
essl_spi_rddma_done (C++ function), 117
essl_spi_rddma_seg (C++ function), 116
essl_spi_read_reg (C++ function), 113
essl_spi_reset_cnt (C++ function), 114
essl_spi_send_packet (C++ function), 114
essl_spi_wrbuf (C++ function), 115
essl_spi_wrbuf_polling (C++ function), 116
essl_spi_wrdma (C++ function), 117
essl_spi_wrdma_done (C++ function), 118
essl_spi_wrdma_seg (C++ function), 117
essl_spi_write_reg (C++ function), 114
essl_wait_for_ready (C++ function), 109
essl_wait_int (C++ function), 111
essl_write_reg (C++ function), 110
eTaskGetState (C++ function), 1868

eTaskState (C++ enum), 1891
eTaskState::eBlocked (C++ enumerator), 1891
eTaskState::eDeleted (C++ enumerator), 1891
eTaskState::eInvalid (C++ enumerator), 1891
eTaskState::eReady (C++ enumerator), 1891
eTaskState::eRunning (C++ enumerator), 1891
eTaskState::eSuspended (C++ enumerator),

1891
ETH_DEFAULT_CONFIG (C macro), 776
ETH_DEFAULT_SPI (C macro), 786
eth_event_t (C++ enum), 779
eth_event_t::ETHERNET_EVENT_CONNECTED

(C++ enumerator), 779
eth_event_t::ETHERNET_EVENT_DISCONNECTED

(C++ enumerator), 780
eth_event_t::ETHERNET_EVENT_START

(C++ enumerator), 779
eth_event_t::ETHERNET_EVENT_STOP (C++

enumerator), 779
eth_mac_clock_config_t (C++ union), 780
eth_mac_clock_config_t::clock_gpio

(C++ member), 780
eth_mac_clock_config_t::clock_mode

(C++ member), 780
eth_mac_clock_config_t::mii (C++ mem-

ber), 780
eth_mac_clock_config_t::rmii (C++ mem-

ber), 780
eth_mac_config_t (C++ struct), 784
eth_mac_config_t::flags (C++ member), 785
eth_mac_config_t::rx_task_prio (C++

member), 785
eth_mac_config_t::rx_task_stack_size

(C++ member), 784
eth_mac_config_t::sw_reset_timeout_ms

(C++ member), 784
ETH_MAC_DEFAULT_CONFIG (C macro), 786
ETH_MAC_FLAG_PIN_TO_CORE (C macro), 786
ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE

(C macro), 786
eth_phy_autoneg_cmd_t (C++ enum), 792
eth_phy_autoneg_cmd_t::ESP_ETH_PHY_AUTONEGO_DIS

(C++ enumerator), 792
eth_phy_autoneg_cmd_t::ESP_ETH_PHY_AUTONEGO_EN

(C++ enumerator), 792
eth_phy_autoneg_cmd_t::ESP_ETH_PHY_AUTONEGO_G_STAT

(C++ enumerator), 792
eth_phy_autoneg_cmd_t::ESP_ETH_PHY_AUTONEGO_RESTART

(C++ enumerator), 792
eth_phy_config_t (C++ struct), 791
eth_phy_config_t::autonego_timeout_ms

(C++ member), 792
eth_phy_config_t::phy_addr (C++ member),

791
eth_phy_config_t::reset_gpio_num (C++

member), 792
eth_phy_config_t::reset_timeout_ms

(C++ member), 792

Espressif Systems 2781
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ETH_PHY_DEFAULT_CONFIG (C macro), 792
eth_spi_custom_driver_config_t (C++

struct), 785
eth_spi_custom_driver_config_t::config

(C++ member), 785
eth_spi_custom_driver_config_t::deinit

(C++ member), 785
eth_spi_custom_driver_config_t::init

(C++ member), 785
eth_spi_custom_driver_config_t::read

(C++ member), 785
eth_spi_custom_driver_config_t::write

(C++ member), 786
ETS_INTERNAL_INTR_SOURCE_OFF (C macro),

2038
ETS_INTERNAL_PROFILING_INTR_SOURCE (C

macro), 2038
ETS_INTERNAL_SW0_INTR_SOURCE (C macro),

2038
ETS_INTERNAL_SW1_INTR_SOURCE (C macro),

2038
ETS_INTERNAL_TIMER0_INTR_SOURCE (C

macro), 2038
ETS_INTERNAL_TIMER1_INTR_SOURCE (C

macro), 2038
ETS_INTERNAL_TIMER2_INTR_SOURCE (C

macro), 2038
ETS_INTERNAL_UNUSED_INTR_SOURCE (C

macro), 2038
EventBits_t (C++ type), 1952
eventfd (C++ function), 1764
EventGroupHandle_t (C++ type), 1952
EXT_ADV_NUM_SETS_MAX (C macro), 235
EXT_ADV_TX_PWR_NO_PREFERENCE (C macro),

235

F
ff_diskio_impl_t (C++ struct), 1684
ff_diskio_impl_t::init (C++ member), 1684
ff_diskio_impl_t::ioctl (C++ member),

1684
ff_diskio_impl_t::read (C++ member), 1684
ff_diskio_impl_t::status (C++ member),

1684
ff_diskio_impl_t::write (C++ member),

1684
ff_diskio_register (C++ function), 1684
ff_diskio_register_raw_partition (C++

function), 1684
ff_diskio_register_sdmmc (C++ function),

1684
ff_diskio_register_wl_partition (C++

function), 1684

G
get_phy_version_str (C++ function), 2443
gpio_config (C++ function), 892
gpio_config_t (C++ struct), 899

gpio_config_t::intr_type (C++ member),
899

gpio_config_t::mode (C++ member), 899
gpio_config_t::pin_bit_mask (C++ mem-

ber), 899
gpio_config_t::pull_down_en (C++ mem-

ber), 899
gpio_config_t::pull_up_en (C++ member),

899
gpio_deep_sleep_wakeup_disable (C++

function), 899
gpio_deep_sleep_wakeup_enable (C++ func-

tion), 899
gpio_del_glitch_filter (C++ function), 911
gpio_drive_cap_t (C++ enum), 906
gpio_drive_cap_t::GPIO_DRIVE_CAP_0

(C++ enumerator), 906
gpio_drive_cap_t::GPIO_DRIVE_CAP_1

(C++ enumerator), 906
gpio_drive_cap_t::GPIO_DRIVE_CAP_2

(C++ enumerator), 906
gpio_drive_cap_t::GPIO_DRIVE_CAP_3

(C++ enumerator), 906
gpio_drive_cap_t::GPIO_DRIVE_CAP_DEFAULT

(C++ enumerator), 906
gpio_drive_cap_t::GPIO_DRIVE_CAP_MAX

(C++ enumerator), 906
gpio_dump_io_configuration (C++ function),

899
gpio_etm_event_bind_gpio (C++ function),

886
gpio_etm_event_config_t (C++ struct), 888
gpio_etm_event_config_t::edge (C++

member), 888
gpio_etm_event_config_t::edges (C++

member), 888
gpio_etm_event_edge_t (C++ enum), 889
gpio_etm_event_edge_t::GPIO_ETM_EVENT_EDGE_ANY

(C++ enumerator), 889
gpio_etm_event_edge_t::GPIO_ETM_EVENT_EDGE_NEG

(C++ enumerator), 889
gpio_etm_event_edge_t::GPIO_ETM_EVENT_EDGE_POS

(C++ enumerator), 889
GPIO_ETM_EVENT_EDGE_TYPES (C macro), 889
gpio_etm_task_action_t (C++ enum), 889
gpio_etm_task_action_t::GPIO_ETM_TASK_ACTION_CLR

(C++ enumerator), 889
gpio_etm_task_action_t::GPIO_ETM_TASK_ACTION_SET

(C++ enumerator), 889
gpio_etm_task_action_t::GPIO_ETM_TASK_ACTION_TOG

(C++ enumerator), 889
GPIO_ETM_TASK_ACTION_TYPES (C macro), 889
gpio_etm_task_add_gpio (C++ function), 887
gpio_etm_task_config_t (C++ struct), 888
gpio_etm_task_config_t::action (C++

member), 889
gpio_etm_task_config_t::actions (C++

member), 889

Espressif Systems 2782
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

gpio_etm_task_rm_gpio (C++ function), 888
gpio_flex_glitch_filter_config_t (C++

struct), 912
gpio_flex_glitch_filter_config_t::clk_src

(C++ member), 912
gpio_flex_glitch_filter_config_t::gpio_num

(C++ member), 912
gpio_flex_glitch_filter_config_t::window_thres_ns

(C++ member), 913
gpio_flex_glitch_filter_config_t::window_width_ns

(C++ member), 912
gpio_force_hold_all (C++ function), 897
gpio_force_unhold_all (C++ function), 898
gpio_get_drive_capability (C++ function),

896
gpio_get_level (C++ function), 894
gpio_glitch_filter_disable (C++ function),

912
gpio_glitch_filter_enable (C++ function),

912
gpio_glitch_filter_handle_t (C++ type),

913
gpio_hold_dis (C++ function), 897
gpio_hold_en (C++ function), 897
gpio_hys_ctrl_mode_t (C++ enum), 906
gpio_hys_ctrl_mode_t::GPIO_HYS_CTRL_EFUSE

(C++ enumerator), 906
gpio_hys_ctrl_mode_t::GPIO_HYS_SOFT_DISABLE

(C++ enumerator), 907
gpio_hys_ctrl_mode_t::GPIO_HYS_SOFT_ENABLE

(C++ enumerator), 907
gpio_install_isr_service (C++ function),

895
gpio_int_type_t (C++ enum), 904
gpio_int_type_t::GPIO_INTR_ANYEDGE

(C++ enumerator), 905
gpio_int_type_t::GPIO_INTR_DISABLE

(C++ enumerator), 904
gpio_int_type_t::GPIO_INTR_HIGH_LEVEL

(C++ enumerator), 905
gpio_int_type_t::GPIO_INTR_LOW_LEVEL

(C++ enumerator), 905
gpio_int_type_t::GPIO_INTR_MAX (C++

enumerator), 905
gpio_int_type_t::GPIO_INTR_NEGEDGE

(C++ enumerator), 905
gpio_int_type_t::GPIO_INTR_POSEDGE

(C++ enumerator), 905
gpio_intr_disable (C++ function), 893
gpio_intr_enable (C++ function), 893
gpio_iomux_in (C++ function), 897
gpio_iomux_out (C++ function), 897
GPIO_IS_DEEP_SLEEP_WAKEUP_VALID_GPIO

(C macro), 900
GPIO_IS_VALID_DIGITAL_IO_PAD (C macro),

900
GPIO_IS_VALID_GPIO (C macro), 900
GPIO_IS_VALID_OUTPUT_GPIO (C macro), 900

gpio_isr_handle_t (C++ type), 900
gpio_isr_handler_add (C++ function), 896
gpio_isr_handler_remove (C++ function), 896
gpio_isr_register (C++ function), 895
gpio_isr_t (C++ type), 900
gpio_mode_t (C++ enum), 905
gpio_mode_t::GPIO_MODE_DISABLE (C++

enumerator), 905
gpio_mode_t::GPIO_MODE_INPUT (C++ enu-

merator), 905
gpio_mode_t::GPIO_MODE_INPUT_OUTPUT

(C++ enumerator), 905
gpio_mode_t::GPIO_MODE_INPUT_OUTPUT_OD

(C++ enumerator), 905
gpio_mode_t::GPIO_MODE_OUTPUT (C++ enu-

merator), 905
gpio_mode_t::GPIO_MODE_OUTPUT_OD (C++

enumerator), 905
gpio_new_etm_event (C++ function), 886
gpio_new_etm_task (C++ function), 887
gpio_new_flex_glitch_filter (C++ func-

tion), 911
gpio_new_pin_glitch_filter (C++ function),

911
gpio_num_t (C++ enum), 902
gpio_num_t::GPIO_NUM_0 (C++ enumerator),

902
gpio_num_t::GPIO_NUM_1 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_10 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_11 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_12 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_13 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_14 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_15 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_16 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_17 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_18 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_19 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_2 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_20 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_21 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_22 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_23 (C++ enumerator),

Espressif Systems 2783
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

904
gpio_num_t::GPIO_NUM_24 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_25 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_26 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_27 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_28 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_29 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_3 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_30 (C++ enumerator),

904
gpio_num_t::GPIO_NUM_4 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_5 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_6 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_7 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_8 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_9 (C++ enumerator),

903
gpio_num_t::GPIO_NUM_MAX (C++ enumerator),

904
gpio_num_t::GPIO_NUM_NC (C++ enumerator),

902
GPIO_PIN_COUNT (C macro), 900
gpio_pin_glitch_filter_config_t (C++

struct), 912
gpio_pin_glitch_filter_config_t::clk_src

(C++ member), 912
gpio_pin_glitch_filter_config_t::gpio_num

(C++ member), 912
GPIO_PIN_REG_0 (C macro), 900
GPIO_PIN_REG_1 (C macro), 900
GPIO_PIN_REG_10 (C macro), 900
GPIO_PIN_REG_11 (C macro), 901
GPIO_PIN_REG_12 (C macro), 901
GPIO_PIN_REG_13 (C macro), 901
GPIO_PIN_REG_14 (C macro), 901
GPIO_PIN_REG_15 (C macro), 901
GPIO_PIN_REG_16 (C macro), 901
GPIO_PIN_REG_17 (C macro), 901
GPIO_PIN_REG_18 (C macro), 901
GPIO_PIN_REG_19 (C macro), 901
GPIO_PIN_REG_2 (C macro), 900
GPIO_PIN_REG_20 (C macro), 901
GPIO_PIN_REG_21 (C macro), 901
GPIO_PIN_REG_22 (C macro), 901
GPIO_PIN_REG_23 (C macro), 901
GPIO_PIN_REG_24 (C macro), 901

GPIO_PIN_REG_25 (C macro), 901
GPIO_PIN_REG_26 (C macro), 901
GPIO_PIN_REG_27 (C macro), 901
GPIO_PIN_REG_28 (C macro), 901
GPIO_PIN_REG_29 (C macro), 901
GPIO_PIN_REG_3 (C macro), 900
GPIO_PIN_REG_30 (C macro), 901
GPIO_PIN_REG_31 (C macro), 901
GPIO_PIN_REG_32 (C macro), 901
GPIO_PIN_REG_33 (C macro), 901
GPIO_PIN_REG_34 (C macro), 902
GPIO_PIN_REG_35 (C macro), 902
GPIO_PIN_REG_36 (C macro), 902
GPIO_PIN_REG_37 (C macro), 902
GPIO_PIN_REG_38 (C macro), 902
GPIO_PIN_REG_39 (C macro), 902
GPIO_PIN_REG_4 (C macro), 900
GPIO_PIN_REG_40 (C macro), 902
GPIO_PIN_REG_41 (C macro), 902
GPIO_PIN_REG_42 (C macro), 902
GPIO_PIN_REG_43 (C macro), 902
GPIO_PIN_REG_44 (C macro), 902
GPIO_PIN_REG_45 (C macro), 902
GPIO_PIN_REG_46 (C macro), 902
GPIO_PIN_REG_47 (C macro), 902
GPIO_PIN_REG_48 (C macro), 902
GPIO_PIN_REG_5 (C macro), 900
GPIO_PIN_REG_6 (C macro), 900
GPIO_PIN_REG_7 (C macro), 900
GPIO_PIN_REG_8 (C macro), 900
GPIO_PIN_REG_9 (C macro), 900
gpio_port_t (C++ enum), 902
gpio_port_t::GPIO_PORT_0 (C++ enumerator),

902
gpio_port_t::GPIO_PORT_MAX (C++ enumera-

tor), 902
gpio_pull_mode_t (C++ enum), 906
gpio_pull_mode_t::GPIO_FLOATING (C++

enumerator), 906
gpio_pull_mode_t::GPIO_PULLDOWN_ONLY

(C++ enumerator), 906
gpio_pull_mode_t::GPIO_PULLUP_ONLY

(C++ enumerator), 906
gpio_pull_mode_t::GPIO_PULLUP_PULLDOWN

(C++ enumerator), 906
gpio_pulldown_dis (C++ function), 895
gpio_pulldown_en (C++ function), 895
gpio_pulldown_t (C++ enum), 905
gpio_pulldown_t::GPIO_PULLDOWN_DISABLE

(C++ enumerator), 906
gpio_pulldown_t::GPIO_PULLDOWN_ENABLE

(C++ enumerator), 906
gpio_pullup_dis (C++ function), 895
gpio_pullup_en (C++ function), 895
gpio_pullup_t (C++ enum), 905
gpio_pullup_t::GPIO_PULLUP_DISABLE

(C++ enumerator), 905

Espressif Systems 2784
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

gpio_pullup_t::GPIO_PULLUP_ENABLE
(C++ enumerator), 905

gpio_reset_pin (C++ function), 893
gpio_set_direction (C++ function), 894
gpio_set_drive_capability (C++ function),

896
gpio_set_intr_type (C++ function), 893
gpio_set_level (C++ function), 893
gpio_set_pull_mode (C++ function), 894
gpio_sleep_sel_dis (C++ function), 898
gpio_sleep_sel_en (C++ function), 898
gpio_sleep_set_direction (C++ function),

898
gpio_sleep_set_pull_mode (C++ function),

898
gpio_uninstall_isr_service (C++ function),

896
gpio_wakeup_disable (C++ function), 894
gpio_wakeup_enable (C++ function), 894
gptimer_alarm_cb_t (C++ type), 926
gptimer_alarm_config_t (C++ struct), 924
gptimer_alarm_config_t::alarm_count

(C++ member), 924
gptimer_alarm_config_t::auto_reload_on_alarm

(C++ member), 925
gptimer_alarm_config_t::flags (C++

member), 925
gptimer_alarm_config_t::reload_count

(C++ member), 925
gptimer_alarm_event_data_t (C++ struct),

926
gptimer_alarm_event_data_t::alarm_value

(C++ member), 926
gptimer_alarm_event_data_t::count_value

(C++ member), 926
gptimer_clock_source_t (C++ type), 927
gptimer_config_t (C++ struct), 924
gptimer_config_t::clk_src (C++ member),

924
gptimer_config_t::direction (C++ mem-

ber), 924
gptimer_config_t::flags (C++ member), 924
gptimer_config_t::intr_priority (C++

member), 924
gptimer_config_t::intr_shared (C++

member), 924
gptimer_config_t::resolution_hz (C++

member), 924
gptimer_count_direction_t (C++ enum), 927
gptimer_count_direction_t::GPTIMER_COUNT_DOWN

(C++ enumerator), 927
gptimer_count_direction_t::GPTIMER_COUNT_UP

(C++ enumerator), 927
gptimer_del_timer (C++ function), 919
gptimer_disable (C++ function), 922
gptimer_enable (C++ function), 922
gptimer_etm_event_config_t (C++ struct),

925

gptimer_etm_event_config_t::event_type
(C++ member), 926

gptimer_etm_event_type_t (C++ enum), 927
gptimer_etm_event_type_t::GPTIMER_ETM_EVENT_ALARM_MATCH

(C++ enumerator), 927
gptimer_etm_event_type_t::GPTIMER_ETM_EVENT_MAX

(C++ enumerator), 927
gptimer_etm_task_config_t (C++ struct), 926
gptimer_etm_task_config_t::task_type

(C++ member), 926
gptimer_etm_task_type_t (C++ enum), 927
gptimer_etm_task_type_t::GPTIMER_ETM_TASK_CAPTURE

(C++ enumerator), 927
gptimer_etm_task_type_t::GPTIMER_ETM_TASK_EN_ALARM

(C++ enumerator), 927
gptimer_etm_task_type_t::GPTIMER_ETM_TASK_MAX

(C++ enumerator), 927
gptimer_etm_task_type_t::GPTIMER_ETM_TASK_RELOAD

(C++ enumerator), 927
gptimer_etm_task_type_t::GPTIMER_ETM_TASK_START_COUNT

(C++ enumerator), 927
gptimer_etm_task_type_t::GPTIMER_ETM_TASK_STOP_COUNT

(C++ enumerator), 927
gptimer_event_callbacks_t (C++ struct), 924
gptimer_event_callbacks_t::on_alarm

(C++ member), 924
gptimer_get_captured_count (C++ function),

921
gptimer_get_raw_count (C++ function), 920
gptimer_get_resolution (C++ function), 920
gptimer_handle_t (C++ type), 926
gptimer_new_etm_event (C++ function), 925
gptimer_new_etm_task (C++ function), 925
gptimer_new_timer (C++ function), 919
gptimer_register_event_callbacks (C++

function), 921
gptimer_set_alarm_action (C++ function),

921
gptimer_set_raw_count (C++ function), 919
gptimer_start (C++ function), 923
gptimer_stop (C++ function), 923

H
heap_caps_add_region (C++ function), 2002
heap_caps_add_region_with_caps (C++

function), 2003
heap_caps_aligned_alloc (C++ function),

1996
heap_caps_aligned_calloc (C++ function),

1997
heap_caps_aligned_free (C++ function), 1997
heap_caps_calloc (C++ function), 1997
heap_caps_calloc_prefer (C++ function),

2000
heap_caps_check_integrity (C++ function),

1999
heap_caps_check_integrity_addr (C++

function), 1999

Espressif Systems 2785
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

heap_caps_check_integrity_all (C++ func-
tion), 1998

heap_caps_dump (C++ function), 2000
heap_caps_dump_all (C++ function), 2000
heap_caps_enable_nonos_stack_heaps

(C++ function), 2002
heap_caps_free (C++ function), 1996
heap_caps_get_allocated_size (C++ func-

tion), 2000
heap_caps_get_free_size (C++ function),

1997
heap_caps_get_info (C++ function), 1998
heap_caps_get_largest_free_block (C++

function), 1998
heap_caps_get_minimum_free_size (C++

function), 1998
heap_caps_get_total_size (C++ function),

1997
heap_caps_init (C++ function), 2002
heap_caps_malloc (C++ function), 1996
heap_caps_malloc_extmem_enable (C++

function), 1999
heap_caps_malloc_prefer (C++ function),

1999
heap_caps_print_heap_info (C++ function),

1998
heap_caps_realloc (C++ function), 1996
heap_caps_realloc_prefer (C++ function),

2000
heap_caps_register_failed_alloc_callback

(C++ function), 1996
HEAP_IRAM_ATTR (C macro), 2000
heap_trace_dump (C++ function), 2023
heap_trace_dump_caps (C++ function), 2023
heap_trace_get (C++ function), 2022
heap_trace_get_count (C++ function), 2022
heap_trace_init_standalone (C++ function),

2021
heap_trace_init_tohost (C++ function), 2021
heap_trace_mode_t (C++ enum), 2024
heap_trace_mode_t::HEAP_TRACE_ALL

(C++ enumerator), 2024
heap_trace_mode_t::HEAP_TRACE_LEAKS

(C++ enumerator), 2024
heap_trace_record_t (C++ struct), 2023
heap_trace_record_t (C++ type), 2024
heap_trace_record_t::address (C++ mem-

ber), 2023
heap_trace_record_t::alloced_by (C++

member), 2023
heap_trace_record_t::ccount (C++ mem-

ber), 2023
heap_trace_record_t::freed_by (C++

member), 2023
heap_trace_record_t::size (C++ member),

2023
heap_trace_resume (C++ function), 2022
heap_trace_start (C++ function), 2021

heap_trace_stop (C++ function), 2022
heap_trace_summary (C++ function), 2023
heap_trace_summary_t (C++ struct), 2023
heap_trace_summary_t::capacity (C++

member), 2024
heap_trace_summary_t::count (C++ mem-

ber), 2024
heap_trace_summary_t::has_overflowed

(C++ member), 2024
heap_trace_summary_t::high_water_mark

(C++ member), 2024
heap_trace_summary_t::mode (C++ member),

2024
heap_trace_summary_t::total_allocations

(C++ member), 2024
heap_trace_summary_t::total_frees

(C++ member), 2024
hmac_key_id_t (C++ enum), 936
hmac_key_id_t::HMAC_KEY0 (C++ enumerator),

936
hmac_key_id_t::HMAC_KEY1 (C++ enumerator),

936
hmac_key_id_t::HMAC_KEY2 (C++ enumerator),

936
hmac_key_id_t::HMAC_KEY3 (C++ enumerator),

936
hmac_key_id_t::HMAC_KEY4 (C++ enumerator),

936
hmac_key_id_t::HMAC_KEY5 (C++ enumerator),

936
hmac_key_id_t::HMAC_KEY_MAX (C++ enumer-

ator), 936
http_client_init_cb_t (C++ type), 1832
http_event_handle_cb (C++ type), 89
HTTPD_200 (C macro), 143
HTTPD_204 (C macro), 143
HTTPD_207 (C macro), 143
HTTPD_400 (C macro), 143
HTTPD_404 (C macro), 143
HTTPD_408 (C macro), 143
HTTPD_500 (C macro), 143
httpd_close_func_t (C++ type), 146
httpd_config (C++ struct), 139
httpd_config::backlog_conn (C++ member),

139
httpd_config::close_fn (C++ member), 141
httpd_config::core_id (C++ member), 139
httpd_config::ctrl_port (C++ member), 139
httpd_config::enable_so_linger (C++

member), 140
httpd_config::global_transport_ctx

(C++ member), 140
httpd_config::global_transport_ctx_free_fn

(C++ member), 140
httpd_config::global_user_ctx (C++

member), 140
httpd_config::global_user_ctx_free_fn

(C++ member), 140

Espressif Systems 2786
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

httpd_config::keep_alive_count (C++
member), 140

httpd_config::keep_alive_enable (C++
member), 140

httpd_config::keep_alive_idle (C++
member), 140

httpd_config::keep_alive_interval
(C++ member), 140

httpd_config::linger_timeout (C++ mem-
ber), 140

httpd_config::lru_purge_enable (C++
member), 140

httpd_config::max_open_sockets (C++
member), 139

httpd_config::max_resp_headers (C++
member), 139

httpd_config::max_uri_handlers (C++
member), 139

httpd_config::open_fn (C++ member), 140
httpd_config::recv_wait_timeout (C++

member), 140
httpd_config::send_wait_timeout (C++

member), 140
httpd_config::server_port (C++ member),

139
httpd_config::stack_size (C++ member),

139
httpd_config::task_priority (C++ mem-

ber), 139
httpd_config::uri_match_fn (C++ member),

141
httpd_config_t (C++ type), 146
HTTPD_DEFAULT_CONFIG (C macro), 143
httpd_err_code_t (C++ enum), 147
httpd_err_code_t::HTTPD_400_BAD_REQUEST

(C++ enumerator), 147
httpd_err_code_t::HTTPD_401_UNAUTHORIZED

(C++ enumerator), 147
httpd_err_code_t::HTTPD_403_FORBIDDEN

(C++ enumerator), 147
httpd_err_code_t::HTTPD_404_NOT_FOUND

(C++ enumerator), 147
httpd_err_code_t::HTTPD_405_METHOD_NOT_ALLOWED

(C++ enumerator), 147
httpd_err_code_t::HTTPD_408_REQ_TIMEOUT

(C++ enumerator), 147
httpd_err_code_t::HTTPD_411_LENGTH_REQUIRED

(C++ enumerator), 147
httpd_err_code_t::HTTPD_414_URI_TOO_LONG

(C++ enumerator), 147
httpd_err_code_t::HTTPD_431_REQ_HDR_FIELDS_TOO_LARGE

(C++ enumerator), 147
httpd_err_code_t::HTTPD_500_INTERNAL_SERVER_ERROR

(C++ enumerator), 147
httpd_err_code_t::HTTPD_501_METHOD_NOT_IMPLEMENTED

(C++ enumerator), 147
httpd_err_code_t::HTTPD_505_VERSION_NOT_SUPPORTED

(C++ enumerator), 147

httpd_err_code_t::HTTPD_ERR_CODE_MAX
(C++ enumerator), 147

httpd_err_handler_func_t (C++ type), 145
httpd_free_ctx_fn_t (C++ type), 146
httpd_get_client_list (C++ function), 138
httpd_get_global_transport_ctx (C++

function), 137
httpd_get_global_user_ctx (C++ function),

137
httpd_handle_t (C++ type), 146
HTTPD_MAX_REQ_HDR_LEN (C macro), 143
HTTPD_MAX_URI_LEN (C macro), 143
httpd_method_t (C++ type), 146
httpd_open_func_t (C++ type), 146
httpd_pending_func_t (C++ type), 145
httpd_query_key_value (C++ function), 128
httpd_queue_work (C++ function), 136
httpd_recv_func_t (C++ type), 145
httpd_register_err_handler (C++ function),

135
httpd_register_uri_handler (C++ function),

124
httpd_req (C++ struct), 141
httpd_req::aux (C++ member), 141
httpd_req::content_len (C++ member), 141
httpd_req::free_ctx (C++ member), 142
httpd_req::handle (C++ member), 141
httpd_req::ignore_sess_ctx_changes

(C++ member), 142
httpd_req::method (C++ member), 141
httpd_req::sess_ctx (C++ member), 142
httpd_req::uri (C++ member), 141
httpd_req::user_ctx (C++ member), 142
httpd_req_get_cookie_val (C++ function),

129
httpd_req_get_hdr_value_len (C++ func-

tion), 127
httpd_req_get_hdr_value_str (C++ func-

tion), 127
httpd_req_get_url_query_len (C++ func-

tion), 127
httpd_req_get_url_query_str (C++ func-

tion), 128
httpd_req_recv (C++ function), 126
httpd_req_t (C++ type), 144
httpd_req_to_sockfd (C++ function), 126
httpd_resp_send (C++ function), 129
httpd_resp_send_404 (C++ function), 132
httpd_resp_send_408 (C++ function), 133
httpd_resp_send_500 (C++ function), 133
httpd_resp_send_chunk (C++ function), 130
httpd_resp_send_err (C++ function), 132
httpd_resp_sendstr (C++ function), 130
httpd_resp_sendstr_chunk (C++ function),

131
httpd_resp_set_hdr (C++ function), 132
httpd_resp_set_status (C++ function), 131
httpd_resp_set_type (C++ function), 131

Espressif Systems 2787
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

HTTPD_RESP_USE_STRLEN (C macro), 144
httpd_send (C++ function), 134
httpd_send_func_t (C++ type), 144
httpd_sess_get_ctx (C++ function), 136
httpd_sess_get_transport_ctx (C++ func-

tion), 137
httpd_sess_set_ctx (C++ function), 137
httpd_sess_set_pending_override (C++

function), 126
httpd_sess_set_recv_override (C++ func-

tion), 125
httpd_sess_set_send_override (C++ func-

tion), 125
httpd_sess_set_transport_ctx (C++ func-

tion), 137
httpd_sess_trigger_close (C++ function),

137
httpd_sess_update_lru_counter (C++ func-

tion), 138
HTTPD_SOCK_ERR_FAIL (C macro), 143
HTTPD_SOCK_ERR_INVALID (C macro), 143
HTTPD_SOCK_ERR_TIMEOUT (C macro), 143
httpd_socket_recv (C++ function), 134
httpd_socket_send (C++ function), 134
httpd_ssl_config (C++ struct), 149
httpd_ssl_config::alpn_protos (C++

member), 151
httpd_ssl_config::cacert_len (C++ mem-

ber), 150
httpd_ssl_config::cacert_pem (C++ mem-

ber), 150
httpd_ssl_config::cert_select_cb (C++

member), 151
httpd_ssl_config::ecdsa_key_efuse_blk

(C++ member), 150
httpd_ssl_config::httpd (C++ member), 150
httpd_ssl_config::port_insecure (C++

member), 150
httpd_ssl_config::port_secure (C++

member), 150
httpd_ssl_config::prvtkey_len (C++

member), 150
httpd_ssl_config::prvtkey_pem (C++

member), 150
httpd_ssl_config::servercert (C++ mem-

ber), 150
httpd_ssl_config::servercert_len (C++

member), 150
httpd_ssl_config::session_tickets

(C++ member), 150
httpd_ssl_config::ssl_userdata (C++

member), 151
httpd_ssl_config::transport_mode (C++

member), 150
httpd_ssl_config::use_ecdsa_peripheral

(C++ member), 150
httpd_ssl_config::use_secure_element

(C++ member), 150

httpd_ssl_config::user_cb (C++ member),
150

HTTPD_SSL_CONFIG_DEFAULT (C macro), 151
httpd_ssl_config_t (C++ type), 151
httpd_ssl_start (C++ function), 149
httpd_ssl_stop (C++ function), 149
httpd_ssl_transport_mode_t (C++ enum),

151
httpd_ssl_transport_mode_t::HTTPD_SSL_TRANSPORT_INSECURE

(C++ enumerator), 151
httpd_ssl_transport_mode_t::HTTPD_SSL_TRANSPORT_SECURE

(C++ enumerator), 151
httpd_ssl_user_cb_state_t (C++ enum), 151
httpd_ssl_user_cb_state_t::HTTPD_SSL_USER_CB_SESS_CLOSE

(C++ enumerator), 152
httpd_ssl_user_cb_state_t::HTTPD_SSL_USER_CB_SESS_CREATE

(C++ enumerator), 151
httpd_start (C++ function), 135
httpd_stop (C++ function), 136
HTTPD_TYPE_JSON (C macro), 143
HTTPD_TYPE_OCTET (C macro), 143
HTTPD_TYPE_TEXT (C macro), 143
httpd_unregister_uri (C++ function), 125
httpd_unregister_uri_handler (C++ func-

tion), 125
httpd_uri (C++ struct), 142
httpd_uri::handler (C++ member), 142
httpd_uri::method (C++ member), 142
httpd_uri::uri (C++ member), 142
httpd_uri::user_ctx (C++ member), 142
httpd_uri_match_func_t (C++ type), 146
httpd_uri_match_wildcard (C++ function),

129
httpd_uri_t (C++ type), 144
httpd_work_fn_t (C++ type), 147
HttpStatus_Code (C++ enum), 91
HttpStatus_Code::HttpStatus_BadRequest

(C++ enumerator), 92
HttpStatus_Code::HttpStatus_Forbidden

(C++ enumerator), 92
HttpStatus_Code::HttpStatus_Found

(C++ enumerator), 92
HttpStatus_Code::HttpStatus_InternalError

(C++ enumerator), 92
HttpStatus_Code::HttpStatus_MovedPermanently

(C++ enumerator), 92
HttpStatus_Code::HttpStatus_MultipleChoices

(C++ enumerator), 91
HttpStatus_Code::HttpStatus_NotFound

(C++ enumerator), 92
HttpStatus_Code::HttpStatus_Ok (C++

enumerator), 91
HttpStatus_Code::HttpStatus_PermanentRedirect

(C++ enumerator), 92
HttpStatus_Code::HttpStatus_SeeOther

(C++ enumerator), 92
HttpStatus_Code::HttpStatus_TemporaryRedirect

(C++ enumerator), 92

Espressif Systems 2788
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

HttpStatus_Code::HttpStatus_Unauthorized
(C++ enumerator), 92

I
i2c_ack_type_t (C++ enum), 960
i2c_ack_type_t::I2C_MASTER_ACK (C++

enumerator), 960
i2c_ack_type_t::I2C_MASTER_ACK_MAX

(C++ enumerator), 960
i2c_ack_type_t::I2C_MASTER_LAST_NACK

(C++ enumerator), 960
i2c_ack_type_t::I2C_MASTER_NACK (C++

enumerator), 960
i2c_addr_mode_t (C++ enum), 959
i2c_addr_mode_t::I2C_ADDR_BIT_10 (C++

enumerator), 960
i2c_addr_mode_t::I2C_ADDR_BIT_7 (C++

enumerator), 960
i2c_addr_mode_t::I2C_ADDR_BIT_MAX

(C++ enumerator), 960
i2c_clock_source_t (C++ type), 959
i2c_cmd_handle_t (C++ type), 957
i2c_cmd_link_create (C++ function), 950
i2c_cmd_link_create_static (C++ function),

950
i2c_cmd_link_delete (C++ function), 950
i2c_cmd_link_delete_static (C++ function),

950
i2c_config_t (C++ struct), 956
i2c_config_t::addr_10bit_en (C++ mem-

ber), 956
i2c_config_t::clk_flags (C++ member), 956
i2c_config_t::clk_speed (C++ member), 956
i2c_config_t::master (C++ member), 956
i2c_config_t::maximum_speed (C++ mem-

ber), 956
i2c_config_t::mode (C++ member), 956
i2c_config_t::scl_io_num (C++ member),

956
i2c_config_t::scl_pullup_en (C++ mem-

ber), 956
i2c_config_t::sda_io_num (C++ member),

956
i2c_config_t::sda_pullup_en (C++ mem-

ber), 956
i2c_config_t::slave (C++ member), 956
i2c_config_t::slave_addr (C++ member),

956
i2c_driver_delete (C++ function), 948
i2c_driver_install (C++ function), 948
i2c_filter_disable (C++ function), 954
i2c_filter_enable (C++ function), 953
i2c_get_data_mode (C++ function), 955
i2c_get_data_timing (C++ function), 955
i2c_get_period (C++ function), 953
i2c_get_start_timing (C++ function), 954
i2c_get_stop_timing (C++ function), 954
i2c_get_timeout (C++ function), 955

i2c_hal_clk_config_t (C++ struct), 957
i2c_hal_clk_config_t::clkm_div (C++

member), 957
i2c_hal_clk_config_t::hold (C++ member),

958
i2c_hal_clk_config_t::scl_high (C++

member), 957
i2c_hal_clk_config_t::scl_low (C++

member), 957
i2c_hal_clk_config_t::scl_wait_high

(C++ member), 957
i2c_hal_clk_config_t::sda_hold (C++

member), 957
i2c_hal_clk_config_t::sda_sample (C++

member), 957
i2c_hal_clk_config_t::setup (C++ mem-

ber), 958
i2c_hal_clk_config_t::tout (C++ member),

958
i2c_hal_timing_config_t (C++ struct), 958
i2c_hal_timing_config_t::high_period

(C++ member), 958
i2c_hal_timing_config_t::low_period

(C++ member), 958
i2c_hal_timing_config_t::rstart_setup

(C++ member), 958
i2c_hal_timing_config_t::sda_hold

(C++ member), 958
i2c_hal_timing_config_t::sda_sample

(C++ member), 958
i2c_hal_timing_config_t::start_hold

(C++ member), 958
i2c_hal_timing_config_t::stop_hold

(C++ member), 958
i2c_hal_timing_config_t::stop_setup

(C++ member), 958
i2c_hal_timing_config_t::timeout (C++

member), 958
i2c_hal_timing_config_t::wait_high_period

(C++ member), 958
I2C_INTERNAL_STRUCT_SIZE (C macro), 957
I2C_LINK_RECOMMENDED_SIZE (C macro), 957
i2c_master_cmd_begin (C++ function), 952
i2c_master_read (C++ function), 951
i2c_master_read_byte (C++ function), 951
i2c_master_read_from_device (C++ func-

tion), 949
i2c_master_start (C++ function), 950
i2c_master_stop (C++ function), 952
i2c_master_write (C++ function), 951
i2c_master_write_byte (C++ function), 951
i2c_master_write_read_device (C++ func-

tion), 949
i2c_master_write_to_device (C++ function),

949
i2c_mode_t (C++ enum), 959
i2c_mode_t::I2C_MODE_MASTER (C++ enumer-

ator), 959

Espressif Systems 2789
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

i2c_mode_t::I2C_MODE_MAX (C++ enumerator),
959

i2c_mode_t::I2C_MODE_SLAVE (C++ enumera-
tor), 959

i2c_param_config (C++ function), 948
i2c_port_t (C++ enum), 959
i2c_port_t::I2C_NUM_0 (C++ enumerator), 959
i2c_port_t::I2C_NUM_MAX (C++ enumerator),

959
i2c_port_t::LP_I2C_NUM_0 (C++ enumerator),

959
i2c_reset_rx_fifo (C++ function), 948
i2c_reset_tx_fifo (C++ function), 948
i2c_rw_t (C++ enum), 959
i2c_rw_t::I2C_MASTER_READ (C++ enumera-

tor), 959
i2c_rw_t::I2C_MASTER_WRITE (C++ enumera-

tor), 959
I2C_SCLK_SRC_FLAG_AWARE_DFS (C macro),

956
I2C_SCLK_SRC_FLAG_FOR_NOMAL (C macro),

956
I2C_SCLK_SRC_FLAG_LIGHT_SLEEP (C macro),

956
i2c_set_data_mode (C++ function), 955
i2c_set_data_timing (C++ function), 954
i2c_set_period (C++ function), 953
i2c_set_pin (C++ function), 949
i2c_set_start_timing (C++ function), 954
i2c_set_stop_timing (C++ function), 954
i2c_set_timeout (C++ function), 955
i2c_slave_read_buffer (C++ function), 952
i2c_slave_write_buffer (C++ function), 952
i2c_trans_mode_t (C++ enum), 959
i2c_trans_mode_t::I2C_DATA_MODE_LSB_FIRST

(C++ enumerator), 959
i2c_trans_mode_t::I2C_DATA_MODE_MAX

(C++ enumerator), 959
i2c_trans_mode_t::I2C_DATA_MODE_MSB_FIRST

(C++ enumerator), 959
i2s_chan_config_t (C++ struct), 994
i2s_chan_config_t::auto_clear (C++

member), 994
i2s_chan_config_t::dma_desc_num (C++

member), 994
i2s_chan_config_t::dma_frame_num (C++

member), 994
i2s_chan_config_t::id (C++ member), 994
i2s_chan_config_t::role (C++ member), 994
i2s_chan_handle_t (C++ type), 995
i2s_chan_info_t (C++ struct), 994
i2s_chan_info_t::dir (C++ member), 994
i2s_chan_info_t::id (C++ member), 994
i2s_chan_info_t::mode (C++ member), 994
i2s_chan_info_t::pair_chan (C++ member),

995
i2s_chan_info_t::role (C++ member), 994
I2S_CHANNEL_DEFAULT_CONFIG (C macro), 995

i2s_channel_disable (C++ function), 991
i2s_channel_enable (C++ function), 991
i2s_channel_get_info (C++ function), 991
i2s_channel_init_pdm_tx_mode (C++ func-

tion), 980
i2s_channel_init_std_mode (C++ function),

976
i2s_channel_init_tdm_mode (C++ function),

985
i2s_channel_preload_data (C++ function),

991
i2s_channel_read (C++ function), 992
i2s_channel_reconfig_pdm_tx_clock

(C++ function), 981
i2s_channel_reconfig_pdm_tx_gpio (C++

function), 981
i2s_channel_reconfig_pdm_tx_slot (C++

function), 981
i2s_channel_reconfig_std_clock (C++

function), 976
i2s_channel_reconfig_std_gpio (C++ func-

tion), 977
i2s_channel_reconfig_std_slot (C++ func-

tion), 976
i2s_channel_reconfig_tdm_clock (C++

function), 985
i2s_channel_reconfig_tdm_gpio (C++ func-

tion), 986
i2s_channel_reconfig_tdm_slot (C++ func-

tion), 985
i2s_channel_register_event_callback

(C++ function), 993
i2s_channel_write (C++ function), 992
i2s_clock_src_t (C++ type), 997
i2s_comm_mode_t (C++ enum), 996
i2s_comm_mode_t::I2S_COMM_MODE_NONE

(C++ enumerator), 996
i2s_comm_mode_t::I2S_COMM_MODE_PDM

(C++ enumerator), 996
i2s_comm_mode_t::I2S_COMM_MODE_STD

(C++ enumerator), 996
i2s_comm_mode_t::I2S_COMM_MODE_TDM

(C++ enumerator), 996
i2s_data_bit_width_t (C++ enum), 997
i2s_data_bit_width_t::I2S_DATA_BIT_WIDTH_16BIT

(C++ enumerator), 997
i2s_data_bit_width_t::I2S_DATA_BIT_WIDTH_24BIT

(C++ enumerator), 997
i2s_data_bit_width_t::I2S_DATA_BIT_WIDTH_32BIT

(C++ enumerator), 998
i2s_data_bit_width_t::I2S_DATA_BIT_WIDTH_8BIT

(C++ enumerator), 997
i2s_del_channel (C++ function), 990
i2s_dir_t (C++ enum), 997
i2s_dir_t::I2S_DIR_RX (C++ enumerator), 997
i2s_dir_t::I2S_DIR_TX (C++ enumerator), 997
i2s_event_callbacks_t (C++ struct), 993
i2s_event_callbacks_t::on_recv (C++

Espressif Systems 2790
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

member), 993
i2s_event_callbacks_t::on_recv_q_ovf

(C++ member), 993
i2s_event_callbacks_t::on_send_q_ovf

(C++ member), 994
i2s_event_callbacks_t::on_sent (C++

member), 994
i2s_event_data_t (C++ struct), 995
i2s_event_data_t::data (C++ member), 995
i2s_event_data_t::size (C++ member), 995
I2S_GPIO_UNUSED (C macro), 995
i2s_isr_callback_t (C++ type), 995
i2s_mclk_multiple_t (C++ enum), 996
i2s_mclk_multiple_t::I2S_MCLK_MULTIPLE_128

(C++ enumerator), 996
i2s_mclk_multiple_t::I2S_MCLK_MULTIPLE_256

(C++ enumerator), 996
i2s_mclk_multiple_t::I2S_MCLK_MULTIPLE_384

(C++ enumerator), 996
i2s_mclk_multiple_t::I2S_MCLK_MULTIPLE_512

(C++ enumerator), 996
i2s_new_channel (C++ function), 990
i2s_pcm_compress_t (C++ enum), 998
i2s_pcm_compress_t::I2S_PCM_A_COMPRESS

(C++ enumerator), 998
i2s_pcm_compress_t::I2S_PCM_A_DECOMPRESS

(C++ enumerator), 998
i2s_pcm_compress_t::I2S_PCM_DISABLE

(C++ enumerator), 998
i2s_pcm_compress_t::I2S_PCM_U_COMPRESS

(C++ enumerator), 998
i2s_pcm_compress_t::I2S_PCM_U_DECOMPRESS

(C++ enumerator), 998
i2s_pdm_sig_scale_t (C++ enum), 998
i2s_pdm_sig_scale_t::I2S_PDM_SIG_SCALING_DIV_2

(C++ enumerator), 998
i2s_pdm_sig_scale_t::I2S_PDM_SIG_SCALING_MUL_1

(C++ enumerator), 999
i2s_pdm_sig_scale_t::I2S_PDM_SIG_SCALING_MUL_2

(C++ enumerator), 999
i2s_pdm_sig_scale_t::I2S_PDM_SIG_SCALING_MUL_4

(C++ enumerator), 999
i2s_pdm_slot_mask_t (C++ enum), 999
i2s_pdm_slot_mask_t::I2S_PDM_SLOT_BOTH

(C++ enumerator), 1000
i2s_pdm_slot_mask_t::I2S_PDM_SLOT_LEFT

(C++ enumerator), 1000
i2s_pdm_slot_mask_t::I2S_PDM_SLOT_RIGHT

(C++ enumerator), 1000
i2s_pdm_tx_clk_config_t (C++ struct), 983
i2s_pdm_tx_clk_config_t::clk_src (C++

member), 983
i2s_pdm_tx_clk_config_t::mclk_multiple

(C++ member), 983
i2s_pdm_tx_clk_config_t::sample_rate_hz

(C++ member), 983
i2s_pdm_tx_clk_config_t::up_sample_fp

(C++ member), 983

i2s_pdm_tx_clk_config_t::up_sample_fs
(C++ member), 983

I2S_PDM_TX_CLK_DEFAULT_CONFIG (C macro),
984

i2s_pdm_tx_config_t (C++ struct), 984
i2s_pdm_tx_config_t::clk_cfg (C++ mem-

ber), 984
i2s_pdm_tx_config_t::gpio_cfg (C++

member), 984
i2s_pdm_tx_config_t::slot_cfg (C++

member), 984
i2s_pdm_tx_gpio_config_t (C++ struct), 983
i2s_pdm_tx_gpio_config_t::clk (C++

member), 983
i2s_pdm_tx_gpio_config_t::clk_inv

(C++ member), 984
i2s_pdm_tx_gpio_config_t::dout (C++

member), 983
i2s_pdm_tx_gpio_config_t::dout2 (C++

member), 983
i2s_pdm_tx_gpio_config_t::invert_flags

(C++ member), 984
i2s_pdm_tx_line_mode_t (C++ enum), 999
i2s_pdm_tx_line_mode_t::I2S_PDM_TX_ONE_LINE_CODEC

(C++ enumerator), 999
i2s_pdm_tx_line_mode_t::I2S_PDM_TX_ONE_LINE_DAC

(C++ enumerator), 999
i2s_pdm_tx_line_mode_t::I2S_PDM_TX_TWO_LINE_DAC

(C++ enumerator), 999
i2s_pdm_tx_slot_config_t (C++ struct), 982
i2s_pdm_tx_slot_config_t::data_bit_width

(C++ member), 982
i2s_pdm_tx_slot_config_t::hp_cut_off_freq_hz

(C++ member), 983
i2s_pdm_tx_slot_config_t::hp_en (C++

member), 983
i2s_pdm_tx_slot_config_t::hp_scale

(C++ member), 982
i2s_pdm_tx_slot_config_t::line_mode

(C++ member), 982
i2s_pdm_tx_slot_config_t::lp_scale

(C++ member), 982
i2s_pdm_tx_slot_config_t::sd_dither

(C++ member), 983
i2s_pdm_tx_slot_config_t::sd_dither2

(C++ member), 983
i2s_pdm_tx_slot_config_t::sd_prescale

(C++ member), 982
i2s_pdm_tx_slot_config_t::sd_scale

(C++ member), 982
i2s_pdm_tx_slot_config_t::sinc_scale

(C++ member), 982
i2s_pdm_tx_slot_config_t::slot_bit_width

(C++ member), 982
i2s_pdm_tx_slot_config_t::slot_mode

(C++ member), 982
I2S_PDM_TX_SLOT_DEFAULT_CONFIG (C

macro), 984

Espressif Systems 2791
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

i2s_port_t (C++ enum), 996
i2s_port_t::I2S_NUM_0 (C++ enumerator), 996
i2s_port_t::I2S_NUM_AUTO (C++ enumerator),

996
i2s_role_t (C++ enum), 997
i2s_role_t::I2S_ROLE_MASTER (C++ enumer-

ator), 997
i2s_role_t::I2S_ROLE_SLAVE (C++ enumera-

tor), 997
i2s_slot_bit_width_t (C++ enum), 998
i2s_slot_bit_width_t::I2S_SLOT_BIT_WIDTH_16BIT

(C++ enumerator), 998
i2s_slot_bit_width_t::I2S_SLOT_BIT_WIDTH_24BIT

(C++ enumerator), 998
i2s_slot_bit_width_t::I2S_SLOT_BIT_WIDTH_32BIT

(C++ enumerator), 998
i2s_slot_bit_width_t::I2S_SLOT_BIT_WIDTH_8BIT

(C++ enumerator), 998
i2s_slot_bit_width_t::I2S_SLOT_BIT_WIDTH_AUTO

(C++ enumerator), 998
i2s_slot_mode_t (C++ enum), 997
i2s_slot_mode_t::I2S_SLOT_MODE_MONO

(C++ enumerator), 997
i2s_slot_mode_t::I2S_SLOT_MODE_STEREO

(C++ enumerator), 997
i2s_std_clk_config_t (C++ struct), 978
i2s_std_clk_config_t::clk_src (C++

member), 978
i2s_std_clk_config_t::mclk_multiple

(C++ member), 978
i2s_std_clk_config_t::sample_rate_hz

(C++ member), 978
I2S_STD_CLK_DEFAULT_CONFIG (C macro), 980
i2s_std_config_t (C++ struct), 979
i2s_std_config_t::clk_cfg (C++ member),

979
i2s_std_config_t::gpio_cfg (C++ member),

979
i2s_std_config_t::slot_cfg (C++ member),

979
i2s_std_gpio_config_t (C++ struct), 978
i2s_std_gpio_config_t::bclk (C++ mem-

ber), 979
i2s_std_gpio_config_t::bclk_inv (C++

member), 979
i2s_std_gpio_config_t::din (C++ member),

979
i2s_std_gpio_config_t::dout (C++ mem-

ber), 979
i2s_std_gpio_config_t::invert_flags

(C++ member), 979
i2s_std_gpio_config_t::mclk (C++ mem-

ber), 979
i2s_std_gpio_config_t::mclk_inv (C++

member), 979
i2s_std_gpio_config_t::ws (C++ member),

979
i2s_std_gpio_config_t::ws_inv (C++

member), 979
I2S_STD_MSB_SLOT_DEFAULT_CONFIG (C

macro), 980
I2S_STD_PCM_SLOT_DEFAULT_CONFIG (C

macro), 980
I2S_STD_PHILIPS_SLOT_DEFAULT_CONFIG (C

macro), 979
i2s_std_slot_config_t (C++ struct), 977
i2s_std_slot_config_t::big_endian

(C++ member), 978
i2s_std_slot_config_t::bit_order_lsb

(C++ member), 978
i2s_std_slot_config_t::bit_shift (C++

member), 978
i2s_std_slot_config_t::data_bit_width

(C++ member), 977
i2s_std_slot_config_t::left_align

(C++ member), 978
i2s_std_slot_config_t::slot_bit_width

(C++ member), 977
i2s_std_slot_config_t::slot_mask (C++

member), 978
i2s_std_slot_config_t::slot_mode (C++

member), 978
i2s_std_slot_config_t::ws_pol (C++

member), 978
i2s_std_slot_config_t::ws_width (C++

member), 978
i2s_std_slot_mask_t (C++ enum), 999
i2s_std_slot_mask_t::I2S_STD_SLOT_BOTH

(C++ enumerator), 999
i2s_std_slot_mask_t::I2S_STD_SLOT_LEFT

(C++ enumerator), 999
i2s_std_slot_mask_t::I2S_STD_SLOT_RIGHT

(C++ enumerator), 999
I2S_TDM_AUTO_SLOT_NUM (C macro), 989
I2S_TDM_AUTO_WS_WIDTH (C macro), 989
i2s_tdm_clk_config_t (C++ struct), 987
i2s_tdm_clk_config_t::bclk_div (C++

member), 988
i2s_tdm_clk_config_t::clk_src (C++

member), 987
i2s_tdm_clk_config_t::mclk_multiple

(C++ member), 987
i2s_tdm_clk_config_t::sample_rate_hz

(C++ member), 987
I2S_TDM_CLK_DEFAULT_CONFIG (C macro), 989
i2s_tdm_config_t (C++ struct), 988
i2s_tdm_config_t::clk_cfg (C++ member),

988
i2s_tdm_config_t::gpio_cfg (C++ member),

989
i2s_tdm_config_t::slot_cfg (C++ member),

988
i2s_tdm_gpio_config_t (C++ struct), 988
i2s_tdm_gpio_config_t::bclk (C++ mem-

ber), 988
i2s_tdm_gpio_config_t::bclk_inv (C++

Espressif Systems 2792
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

member), 988
i2s_tdm_gpio_config_t::din (C++ member),

988
i2s_tdm_gpio_config_t::dout (C++ mem-

ber), 988
i2s_tdm_gpio_config_t::invert_flags

(C++ member), 988
i2s_tdm_gpio_config_t::mclk (C++ mem-

ber), 988
i2s_tdm_gpio_config_t::mclk_inv (C++

member), 988
i2s_tdm_gpio_config_t::ws (C++ member),

988
i2s_tdm_gpio_config_t::ws_inv (C++

member), 988
I2S_TDM_MSB_SLOT_DEFAULT_CONFIG (C

macro), 989
I2S_TDM_PCM_LONG_SLOT_DEFAULT_CONFIG

(C macro), 989
I2S_TDM_PCM_SHORT_SLOT_DEFAULT_CONFIG

(C macro), 989
I2S_TDM_PHILIPS_SLOT_DEFAULT_CONFIG (C

macro), 989
i2s_tdm_slot_config_t (C++ struct), 986
i2s_tdm_slot_config_t::big_endian

(C++ member), 987
i2s_tdm_slot_config_t::bit_order_lsb

(C++ member), 987
i2s_tdm_slot_config_t::bit_shift (C++

member), 987
i2s_tdm_slot_config_t::data_bit_width

(C++ member), 986
i2s_tdm_slot_config_t::left_align

(C++ member), 987
i2s_tdm_slot_config_t::skip_mask (C++

member), 987
i2s_tdm_slot_config_t::slot_bit_width

(C++ member), 987
i2s_tdm_slot_config_t::slot_mask (C++

member), 987
i2s_tdm_slot_config_t::slot_mode (C++

member), 987
i2s_tdm_slot_config_t::total_slot

(C++ member), 987
i2s_tdm_slot_config_t::ws_pol (C++

member), 987
i2s_tdm_slot_config_t::ws_width (C++

member), 987
i2s_tdm_slot_mask_t (C++ enum), 1000
i2s_tdm_slot_mask_t::I2S_TDM_SLOT0

(C++ enumerator), 1000
i2s_tdm_slot_mask_t::I2S_TDM_SLOT1

(C++ enumerator), 1000
i2s_tdm_slot_mask_t::I2S_TDM_SLOT10

(C++ enumerator), 1001
i2s_tdm_slot_mask_t::I2S_TDM_SLOT11

(C++ enumerator), 1001
i2s_tdm_slot_mask_t::I2S_TDM_SLOT12

(C++ enumerator), 1001
i2s_tdm_slot_mask_t::I2S_TDM_SLOT13

(C++ enumerator), 1001
i2s_tdm_slot_mask_t::I2S_TDM_SLOT14

(C++ enumerator), 1001
i2s_tdm_slot_mask_t::I2S_TDM_SLOT15

(C++ enumerator), 1001
i2s_tdm_slot_mask_t::I2S_TDM_SLOT2

(C++ enumerator), 1000
i2s_tdm_slot_mask_t::I2S_TDM_SLOT3

(C++ enumerator), 1000
i2s_tdm_slot_mask_t::I2S_TDM_SLOT4

(C++ enumerator), 1000
i2s_tdm_slot_mask_t::I2S_TDM_SLOT5

(C++ enumerator), 1000
i2s_tdm_slot_mask_t::I2S_TDM_SLOT6

(C++ enumerator), 1000
i2s_tdm_slot_mask_t::I2S_TDM_SLOT7

(C++ enumerator), 1000
i2s_tdm_slot_mask_t::I2S_TDM_SLOT8

(C++ enumerator), 1000
i2s_tdm_slot_mask_t::I2S_TDM_SLOT9

(C++ enumerator), 1001
intr_handle_data_t (C++ type), 2039
intr_handle_t (C++ type), 2039
intr_handler_t (C++ type), 2039
IP2STR (C macro), 841
IP4ADDR_STRLEN_MAX (C macro), 841
ip_event_add_ip6_t (C++ struct), 832
ip_event_add_ip6_t::addr (C++ member),

833
ip_event_add_ip6_t::preferred (C++

member), 833
ip_event_ap_staipassigned_t (C++ struct),

833
ip_event_ap_staipassigned_t::esp_netif

(C++ member), 833
ip_event_ap_staipassigned_t::ip (C++

member), 833
ip_event_ap_staipassigned_t::mac (C++

member), 833
ip_event_got_ip6_t (C++ struct), 832
ip_event_got_ip6_t::esp_netif (C++

member), 832
ip_event_got_ip6_t::ip6_info (C++ mem-

ber), 832
ip_event_got_ip6_t::ip_index (C++ mem-

ber), 832
ip_event_got_ip_t (C++ struct), 832
ip_event_got_ip_t::esp_netif (C++ mem-

ber), 832
ip_event_got_ip_t::ip_changed (C++

member), 832
ip_event_got_ip_t::ip_info (C++ member),

832
ip_event_t (C++ enum), 838
ip_event_t::IP_EVENT_AP_STAIPASSIGNED

(C++ enumerator), 838

Espressif Systems 2793
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

ip_event_t::IP_EVENT_ETH_GOT_IP (C++
enumerator), 838

ip_event_t::IP_EVENT_ETH_LOST_IP (C++
enumerator), 838

ip_event_t::IP_EVENT_GOT_IP6 (C++ enu-
merator), 838

ip_event_t::IP_EVENT_PPP_GOT_IP (C++
enumerator), 838

ip_event_t::IP_EVENT_PPP_LOST_IP (C++
enumerator), 838

ip_event_t::IP_EVENT_STA_GOT_IP (C++
enumerator), 838

ip_event_t::IP_EVENT_STA_LOST_IP (C++
enumerator), 838

IPSTR (C macro), 841
IPV62STR (C macro), 841
IPV6STR (C macro), 841
is_openthread_internal_mesh_local_addr

(C++ function), 808

L
l2tap_ioctl_opt_t (C++ enum), 843
l2tap_ioctl_opt_t::L2TAP_G_DEVICE_DRV_HNDL

(C++ enumerator), 843
l2tap_ioctl_opt_t::L2TAP_G_INTF_DEVICE

(C++ enumerator), 843
l2tap_ioctl_opt_t::L2TAP_G_RCV_FILTER

(C++ enumerator), 843
l2tap_ioctl_opt_t::L2TAP_S_DEVICE_DRV_HNDL

(C++ enumerator), 843
l2tap_ioctl_opt_t::L2TAP_S_INTF_DEVICE

(C++ enumerator), 843
l2tap_ioctl_opt_t::L2TAP_S_RCV_FILTER

(C++ enumerator), 843
l2tap_iodriver_handle (C++ type), 843
L2TAP_VFS_CONFIG_DEFAULT (C macro), 843
l2tap_vfs_config_t (C++ struct), 842
l2tap_vfs_config_t::base_path (C++

member), 843
L2TAP_VFS_DEFAULT_PATH (C macro), 843
lcd_color_range_t (C++ enum), 1005
lcd_color_range_t::LCD_COLOR_RANGE_FULL

(C++ enumerator), 1005
lcd_color_range_t::LCD_COLOR_RANGE_LIMIT

(C++ enumerator), 1005
lcd_color_space_t (C++ enum), 1005
lcd_color_space_t::LCD_COLOR_SPACE_RGB

(C++ enumerator), 1005
lcd_color_space_t::LCD_COLOR_SPACE_YUV

(C++ enumerator), 1005
lcd_rgb_data_endian_t (C++ enum), 1004
lcd_rgb_data_endian_t::LCD_RGB_DATA_ENDIAN_BIG

(C++ enumerator), 1004
lcd_rgb_data_endian_t::LCD_RGB_DATA_ENDIAN_LITTLE

(C++ enumerator), 1005
lcd_rgb_element_order_t (C++ enum), 1004
lcd_rgb_element_order_t::LCD_RGB_ELEMENT_ORDER_BGR

(C++ enumerator), 1004

lcd_rgb_element_order_t::LCD_RGB_ELEMENT_ORDER_RGB
(C++ enumerator), 1004

lcd_yuv_conv_std_t (C++ enum), 1005
lcd_yuv_conv_std_t::LCD_YUV_CONV_STD_BT601

(C++ enumerator), 1005
lcd_yuv_conv_std_t::LCD_YUV_CONV_STD_BT709

(C++ enumerator), 1005
lcd_yuv_sample_t (C++ enum), 1005
lcd_yuv_sample_t::LCD_YUV_SAMPLE_411

(C++ enumerator), 1005
lcd_yuv_sample_t::LCD_YUV_SAMPLE_420

(C++ enumerator), 1005
lcd_yuv_sample_t::LCD_YUV_SAMPLE_422

(C++ enumerator), 1005
ledc_bind_channel_timer (C++ function),

1023
ledc_cb_event_t (C++ enum), 1033
ledc_cb_event_t::LEDC_FADE_END_EVT

(C++ enumerator), 1033
ledc_cb_param_t (C++ struct), 1031
ledc_cb_param_t::channel (C++ member),

1031
ledc_cb_param_t::duty (C++ member), 1031
ledc_cb_param_t::event (C++ member), 1031
ledc_cb_param_t::speed_mode (C++ mem-

ber), 1031
ledc_cb_register (C++ function), 1027
ledc_cb_t (C++ type), 1033
ledc_cbs_t (C++ struct), 1031
ledc_cbs_t::fade_cb (C++ member), 1031
ledc_channel_config (C++ function), 1018
ledc_channel_config_t (C++ struct), 1030
ledc_channel_config_t::channel (C++

member), 1030
ledc_channel_config_t::duty (C++ mem-

ber), 1030
ledc_channel_config_t::flags (C++ mem-

ber), 1030
ledc_channel_config_t::gpio_num (C++

member), 1030
ledc_channel_config_t::hpoint (C++

member), 1030
ledc_channel_config_t::intr_type (C++

member), 1030
ledc_channel_config_t::output_invert

(C++ member), 1030
ledc_channel_config_t::speed_mode

(C++ member), 1030
ledc_channel_config_t::timer_sel (C++

member), 1030
ledc_channel_t (C++ enum), 1035
ledc_channel_t::LEDC_CHANNEL_0 (C++

enumerator), 1035
ledc_channel_t::LEDC_CHANNEL_1 (C++

enumerator), 1035
ledc_channel_t::LEDC_CHANNEL_2 (C++

enumerator), 1035
ledc_channel_t::LEDC_CHANNEL_3 (C++

Espressif Systems 2794
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

enumerator), 1036
ledc_channel_t::LEDC_CHANNEL_4 (C++

enumerator), 1036
ledc_channel_t::LEDC_CHANNEL_5 (C++

enumerator), 1036
ledc_channel_t::LEDC_CHANNEL_MAX (C++

enumerator), 1036
ledc_clk_cfg_t (C++ type), 1034
ledc_clk_src_t (C++ enum), 1035
ledc_clk_src_t::LEDC_SCLK (C++ enumera-

tor), 1035
ledc_duty_direction_t (C++ enum), 1034
ledc_duty_direction_t::LEDC_DUTY_DIR_DECREASE

(C++ enumerator), 1034
ledc_duty_direction_t::LEDC_DUTY_DIR_INCREASE

(C++ enumerator), 1034
ledc_duty_direction_t::LEDC_DUTY_DIR_MAX

(C++ enumerator), 1034
LEDC_ERR_DUTY (C macro), 1033
LEDC_ERR_VAL (C macro), 1033
ledc_fade_func_install (C++ function), 1024
ledc_fade_func_uninstall (C++ function),

1024
ledc_fade_mode_t (C++ enum), 1037
ledc_fade_mode_t::LEDC_FADE_MAX (C++

enumerator), 1037
ledc_fade_mode_t::LEDC_FADE_NO_WAIT

(C++ enumerator), 1037
ledc_fade_mode_t::LEDC_FADE_WAIT_DONE

(C++ enumerator), 1037
ledc_fade_param_config_t (C++ struct), 1031
ledc_fade_param_config_t::cycle_num

(C++ member), 1033
ledc_fade_param_config_t::dir (C++

member), 1033
ledc_fade_param_config_t::scale (C++

member), 1033
ledc_fade_param_config_t::step_num

(C++ member), 1033
ledc_fade_start (C++ function), 1024
ledc_fade_stop (C++ function), 1025
ledc_fill_multi_fade_param_list (C++

function), 1029
ledc_get_duty (C++ function), 1021
ledc_get_freq (C++ function), 1020
ledc_get_hpoint (C++ function), 1020
ledc_intr_type_t (C++ enum), 1034
ledc_intr_type_t::LEDC_INTR_DISABLE

(C++ enumerator), 1034
ledc_intr_type_t::LEDC_INTR_FADE_END

(C++ enumerator), 1034
ledc_intr_type_t::LEDC_INTR_MAX (C++

enumerator), 1034
ledc_isr_handle_t (C++ type), 1033
ledc_isr_register (C++ function), 1022
ledc_mode_t (C++ enum), 1034
ledc_mode_t::LEDC_LOW_SPEED_MODE (C++

enumerator), 1034

ledc_mode_t::LEDC_SPEED_MODE_MAX (C++
enumerator), 1034

ledc_read_fade_param (C++ function), 1029
ledc_set_duty (C++ function), 1021
ledc_set_duty_and_update (C++ function),

1025
ledc_set_duty_with_hpoint (C++ function),

1020
ledc_set_fade (C++ function), 1021
ledc_set_fade_step_and_start (C++ func-

tion), 1026
ledc_set_fade_time_and_start (C++ func-

tion), 1026
ledc_set_fade_with_step (C++ function),

1023
ledc_set_fade_with_time (C++ function),

1023
ledc_set_freq (C++ function), 1019
ledc_set_multi_fade (C++ function), 1027
ledc_set_multi_fade_and_start (C++ func-

tion), 1028
ledc_set_pin (C++ function), 1019
ledc_slow_clk_sel_t (C++ enum), 1034
ledc_slow_clk_sel_t::LEDC_SLOW_CLK_PLL_DIV

(C++ enumerator), 1035
ledc_slow_clk_sel_t::LEDC_SLOW_CLK_RC_FAST

(C++ enumerator), 1034
ledc_slow_clk_sel_t::LEDC_SLOW_CLK_RTC8M

(C++ enumerator), 1035
ledc_slow_clk_sel_t::LEDC_SLOW_CLK_XTAL

(C++ enumerator), 1035
ledc_stop (C++ function), 1019
ledc_timer_bit_t (C++ enum), 1036
ledc_timer_bit_t::LEDC_TIMER_10_BIT

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_11_BIT

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_12_BIT

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_13_BIT

(C++ enumerator), 1037
ledc_timer_bit_t::LEDC_TIMER_14_BIT

(C++ enumerator), 1037
ledc_timer_bit_t::LEDC_TIMER_15_BIT

(C++ enumerator), 1037
ledc_timer_bit_t::LEDC_TIMER_16_BIT

(C++ enumerator), 1037
ledc_timer_bit_t::LEDC_TIMER_17_BIT

(C++ enumerator), 1037
ledc_timer_bit_t::LEDC_TIMER_18_BIT

(C++ enumerator), 1037
ledc_timer_bit_t::LEDC_TIMER_19_BIT

(C++ enumerator), 1037
ledc_timer_bit_t::LEDC_TIMER_1_BIT

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_20_BIT

(C++ enumerator), 1037
ledc_timer_bit_t::LEDC_TIMER_2_BIT

Espressif Systems 2795
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_3_BIT

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_4_BIT

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_5_BIT

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_6_BIT

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_7_BIT

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_8_BIT

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_9_BIT

(C++ enumerator), 1036
ledc_timer_bit_t::LEDC_TIMER_BIT_MAX

(C++ enumerator), 1037
ledc_timer_config (C++ function), 1018
ledc_timer_config_t (C++ struct), 1030
ledc_timer_config_t::clk_cfg (C++ mem-

ber), 1031
ledc_timer_config_t::duty_resolution

(C++ member), 1031
ledc_timer_config_t::freq_hz (C++ mem-

ber), 1031
ledc_timer_config_t::speed_mode (C++

member), 1031
ledc_timer_config_t::timer_num (C++

member), 1031
ledc_timer_pause (C++ function), 1022
ledc_timer_resume (C++ function), 1023
ledc_timer_rst (C++ function), 1022
ledc_timer_set (C++ function), 1022
ledc_timer_t (C++ enum), 1035
ledc_timer_t::LEDC_TIMER_0 (C++ enumera-

tor), 1035
ledc_timer_t::LEDC_TIMER_1 (C++ enumera-

tor), 1035
ledc_timer_t::LEDC_TIMER_2 (C++ enumera-

tor), 1035
ledc_timer_t::LEDC_TIMER_3 (C++ enumera-

tor), 1035
ledc_timer_t::LEDC_TIMER_MAX (C++ enu-

merator), 1035
ledc_update_duty (C++ function), 1019
linenoiseCompletions (C++ type), 1792

M
MAC2STR (C macro), 2054
MAC_SUPPORT_PMU_MODEM_STATE (C macro),

2119
MACSTR (C macro), 2054
MALLOC_CAP_32BIT (C macro), 2001
MALLOC_CAP_8BIT (C macro), 2001
MALLOC_CAP_DEFAULT (C macro), 2001
MALLOC_CAP_DMA (C macro), 2001
MALLOC_CAP_EXEC (C macro), 2000
MALLOC_CAP_INTERNAL (C macro), 2001

MALLOC_CAP_INVALID (C macro), 2001
MALLOC_CAP_IRAM_8BIT (C macro), 2001
MALLOC_CAP_PID2 (C macro), 2001
MALLOC_CAP_PID3 (C macro), 2001
MALLOC_CAP_PID4 (C macro), 2001
MALLOC_CAP_PID5 (C macro), 2001
MALLOC_CAP_PID6 (C macro), 2001
MALLOC_CAP_PID7 (C macro), 2001
MALLOC_CAP_RETENTION (C macro), 2001
MALLOC_CAP_RTCRAM (C macro), 2001
MALLOC_CAP_SPIRAM (C macro), 2001
MAX_BLE_DEVNAME_LEN (C macro), 1655
MAX_BLE_MANUFACTURER_DATA_LEN (C macro),

1655
MAX_FDS (C macro), 1762
MAX_PASSPHRASE_LEN (C macro), 733
MAX_SSID_LEN (C macro), 733
MAX_WPS_AP_CRED (C macro), 733
mcpwm_brake_config_t (C++ struct), 1065
mcpwm_brake_config_t::brake_mode (C++

member), 1065
mcpwm_brake_config_t::cbc_recover_on_tep

(C++ member), 1066
mcpwm_brake_config_t::cbc_recover_on_tez

(C++ member), 1066
mcpwm_brake_config_t::fault (C++ mem-

ber), 1065
mcpwm_brake_config_t::flags (C++ mem-

ber), 1066
mcpwm_brake_event_cb_t (C++ type), 1087
mcpwm_brake_event_data_t (C++ struct), 1085
mcpwm_cap_channel_handle_t (C++ type),

1086
mcpwm_cap_timer_handle_t (C++ type), 1086
mcpwm_capture_channel_config_t (C++

struct), 1084
mcpwm_capture_channel_config_t::flags

(C++ member), 1085
mcpwm_capture_channel_config_t::gpio_num

(C++ member), 1084
mcpwm_capture_channel_config_t::intr_priority

(C++ member), 1084
mcpwm_capture_channel_config_t::invert_cap_signal

(C++ member), 1084
mcpwm_capture_channel_config_t::io_loop_back

(C++ member), 1085
mcpwm_capture_channel_config_t::keep_io_conf_at_exit

(C++ member), 1085
mcpwm_capture_channel_config_t::neg_edge

(C++ member), 1084
mcpwm_capture_channel_config_t::pos_edge

(C++ member), 1084
mcpwm_capture_channel_config_t::prescale

(C++ member), 1084
mcpwm_capture_channel_config_t::pull_down

(C++ member), 1084
mcpwm_capture_channel_config_t::pull_up

(C++ member), 1084

Espressif Systems 2796
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

mcpwm_capture_channel_disable (C++ func-
tion), 1082

mcpwm_capture_channel_enable (C++ func-
tion), 1082

mcpwm_capture_channel_register_event_callbacks
(C++ function), 1083

mcpwm_capture_channel_trigger_soft_catch
(C++ function), 1083

mcpwm_capture_clock_source_t (C++ type),
1087

mcpwm_capture_edge_t (C++ enum), 1089
mcpwm_capture_edge_t::MCPWM_CAP_EDGE_NEG

(C++ enumerator), 1089
mcpwm_capture_edge_t::MCPWM_CAP_EDGE_POS

(C++ enumerator), 1089
mcpwm_capture_event_callbacks_t (C++

struct), 1085
mcpwm_capture_event_callbacks_t::on_cap

(C++ member), 1085
mcpwm_capture_event_cb_t (C++ type), 1087
mcpwm_capture_event_data_t (C++ struct),

1086
mcpwm_capture_event_data_t::cap_edge

(C++ member), 1086
mcpwm_capture_event_data_t::cap_value

(C++ member), 1086
mcpwm_capture_timer_config_t (C++ struct),

1083
mcpwm_capture_timer_config_t::clk_src

(C++ member), 1083
mcpwm_capture_timer_config_t::group_id

(C++ member), 1083
mcpwm_capture_timer_config_t::resolution_hz

(C++ member), 1084
mcpwm_capture_timer_disable (C++ func-

tion), 1080
mcpwm_capture_timer_enable (C++ function),

1080
mcpwm_capture_timer_get_resolution

(C++ function), 1081
mcpwm_capture_timer_set_phase_on_sync

(C++ function), 1081
mcpwm_capture_timer_start (C++ function),

1081
mcpwm_capture_timer_stop (C++ function),

1081
mcpwm_capture_timer_sync_phase_config_t

(C++ struct), 1084
mcpwm_capture_timer_sync_phase_config_t::count_value

(C++ member), 1084
mcpwm_capture_timer_sync_phase_config_t::direction

(C++ member), 1084
mcpwm_capture_timer_sync_phase_config_t::sync_src

(C++ member), 1084
mcpwm_carrier_clock_source_t (C++ type),

1087
mcpwm_carrier_config_t (C++ struct), 1066
mcpwm_carrier_config_t::clk_src (C++

member), 1066
mcpwm_carrier_config_t::duty_cycle

(C++ member), 1066
mcpwm_carrier_config_t::first_pulse_duration_us

(C++ member), 1066
mcpwm_carrier_config_t::flags (C++

member), 1067
mcpwm_carrier_config_t::frequency_hz

(C++ member), 1066
mcpwm_carrier_config_t::invert_after_modulate

(C++ member), 1066
mcpwm_carrier_config_t::invert_before_modulate

(C++ member), 1066
mcpwm_cmpr_handle_t (C++ type), 1086
mcpwm_comparator_config_t (C++ struct),

1068
mcpwm_comparator_config_t::flags (C++

member), 1068
mcpwm_comparator_config_t::intr_priority

(C++ member), 1068
mcpwm_comparator_config_t::update_cmp_on_sync

(C++ member), 1068
mcpwm_comparator_config_t::update_cmp_on_tep

(C++ member), 1068
mcpwm_comparator_config_t::update_cmp_on_tez

(C++ member), 1068
mcpwm_comparator_event_callbacks_t

(C++ struct), 1068
mcpwm_comparator_event_callbacks_t::on_reach

(C++ member), 1068
mcpwm_comparator_register_event_callbacks

(C++ function), 1067
mcpwm_comparator_set_compare_value

(C++ function), 1068
mcpwm_compare_event_cb_t (C++ type), 1087
mcpwm_compare_event_data_t (C++ struct),

1085
mcpwm_compare_event_data_t::compare_ticks

(C++ member), 1086
mcpwm_compare_event_data_t::direction

(C++ member), 1086
mcpwm_dead_time_config_t (C++ struct), 1074
mcpwm_dead_time_config_t::flags (C++

member), 1075
mcpwm_dead_time_config_t::invert_output

(C++ member), 1075
mcpwm_dead_time_config_t::negedge_delay_ticks

(C++ member), 1075
mcpwm_dead_time_config_t::posedge_delay_ticks

(C++ member), 1075
mcpwm_del_capture_channel (C++ function),

1082
mcpwm_del_capture_timer (C++ function),

1080
mcpwm_del_comparator (C++ function), 1067
mcpwm_del_fault (C++ function), 1076
mcpwm_del_generator (C++ function), 1069
mcpwm_del_operator (C++ function), 1063

Espressif Systems 2797
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

mcpwm_del_sync_src (C++ function), 1078
mcpwm_del_timer (C++ function), 1060
mcpwm_fault_event_callbacks_t (C++

struct), 1077
mcpwm_fault_event_callbacks_t::on_fault_enter

(C++ member), 1077
mcpwm_fault_event_callbacks_t::on_fault_exit

(C++ member), 1077
mcpwm_fault_event_cb_t (C++ type), 1087
mcpwm_fault_event_data_t (C++ struct), 1085
mcpwm_fault_handle_t (C++ type), 1086
mcpwm_fault_register_event_callbacks

(C++ function), 1076
MCPWM_GEN_BRAKE_EVENT_ACTION (C macro),

1075
MCPWM_GEN_BRAKE_EVENT_ACTION_END (C

macro), 1075
mcpwm_gen_brake_event_action_t (C++

struct), 1073
mcpwm_gen_brake_event_action_t::action

(C++ member), 1074
mcpwm_gen_brake_event_action_t::brake_mode

(C++ member), 1074
mcpwm_gen_brake_event_action_t::direction

(C++ member), 1074
MCPWM_GEN_COMPARE_EVENT_ACTION (C

macro), 1075
MCPWM_GEN_COMPARE_EVENT_ACTION_END (C

macro), 1075
mcpwm_gen_compare_event_action_t (C++

struct), 1073
mcpwm_gen_compare_event_action_t::action

(C++ member), 1073
mcpwm_gen_compare_event_action_t::comparator

(C++ member), 1073
mcpwm_gen_compare_event_action_t::direction

(C++ member), 1073
MCPWM_GEN_FAULT_EVENT_ACTION (C macro),

1075
mcpwm_gen_fault_event_action_t (C++

struct), 1074
mcpwm_gen_fault_event_action_t::action

(C++ member), 1074
mcpwm_gen_fault_event_action_t::direction

(C++ member), 1074
mcpwm_gen_fault_event_action_t::fault

(C++ member), 1074
mcpwm_gen_handle_t (C++ type), 1086
MCPWM_GEN_SYNC_EVENT_ACTION (C macro),

1075
mcpwm_gen_sync_event_action_t (C++

struct), 1074
mcpwm_gen_sync_event_action_t::action

(C++ member), 1074
mcpwm_gen_sync_event_action_t::direction

(C++ member), 1074
mcpwm_gen_sync_event_action_t::sync

(C++ member), 1074

MCPWM_GEN_TIMER_EVENT_ACTION (C macro),
1075

MCPWM_GEN_TIMER_EVENT_ACTION_END (C
macro), 1075

mcpwm_gen_timer_event_action_t (C++
struct), 1073

mcpwm_gen_timer_event_action_t::action
(C++ member), 1073

mcpwm_gen_timer_event_action_t::direction
(C++ member), 1073

mcpwm_gen_timer_event_action_t::event
(C++ member), 1073

mcpwm_generator_action_t (C++ enum), 1089
mcpwm_generator_action_t::MCPWM_GEN_ACTION_HIGH

(C++ enumerator), 1089
mcpwm_generator_action_t::MCPWM_GEN_ACTION_KEEP

(C++ enumerator), 1089
mcpwm_generator_action_t::MCPWM_GEN_ACTION_LOW

(C++ enumerator), 1089
mcpwm_generator_action_t::MCPWM_GEN_ACTION_TOGGLE

(C++ enumerator), 1089
mcpwm_generator_config_t (C++ struct), 1072
mcpwm_generator_config_t::flags (C++

member), 1073
mcpwm_generator_config_t::gen_gpio_num

(C++ member), 1072
mcpwm_generator_config_t::invert_pwm

(C++ member), 1073
mcpwm_generator_config_t::io_loop_back

(C++ member), 1073
mcpwm_generator_config_t::io_od_mode

(C++ member), 1073
mcpwm_generator_config_t::pull_down

(C++ member), 1073
mcpwm_generator_config_t::pull_up

(C++ member), 1073
mcpwm_generator_set_action_on_brake_event

(C++ function), 1071
mcpwm_generator_set_action_on_compare_event

(C++ function), 1070
mcpwm_generator_set_action_on_fault_event

(C++ function), 1071
mcpwm_generator_set_action_on_sync_event

(C++ function), 1072
mcpwm_generator_set_action_on_timer_event

(C++ function), 1070
mcpwm_generator_set_actions_on_brake_event

(C++ function), 1071
mcpwm_generator_set_actions_on_compare_event

(C++ function), 1070
mcpwm_generator_set_actions_on_timer_event

(C++ function), 1070
mcpwm_generator_set_dead_time (C++ func-

tion), 1072
mcpwm_generator_set_force_level (C++

function), 1069
mcpwm_gpio_fault_config_t (C++ struct),

1076

Espressif Systems 2798
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

mcpwm_gpio_fault_config_t::active_level
(C++ member), 1077

mcpwm_gpio_fault_config_t::flags (C++
member), 1077

mcpwm_gpio_fault_config_t::gpio_num
(C++ member), 1077

mcpwm_gpio_fault_config_t::group_id
(C++ member), 1077

mcpwm_gpio_fault_config_t::intr_priority
(C++ member), 1077

mcpwm_gpio_fault_config_t::io_loop_back
(C++ member), 1077

mcpwm_gpio_fault_config_t::pull_down
(C++ member), 1077

mcpwm_gpio_fault_config_t::pull_up
(C++ member), 1077

mcpwm_gpio_sync_src_config_t (C++ struct),
1079

mcpwm_gpio_sync_src_config_t::active_neg
(C++ member), 1079

mcpwm_gpio_sync_src_config_t::flags
(C++ member), 1079

mcpwm_gpio_sync_src_config_t::gpio_num
(C++ member), 1079

mcpwm_gpio_sync_src_config_t::group_id
(C++ member), 1079

mcpwm_gpio_sync_src_config_t::io_loop_back
(C++ member), 1079

mcpwm_gpio_sync_src_config_t::pull_down
(C++ member), 1079

mcpwm_gpio_sync_src_config_t::pull_up
(C++ member), 1079

mcpwm_new_capture_channel (C++ function),
1081

mcpwm_new_capture_timer (C++ function),
1080

mcpwm_new_comparator (C++ function), 1067
mcpwm_new_generator (C++ function), 1069
mcpwm_new_gpio_fault (C++ function), 1075
mcpwm_new_gpio_sync_src (C++ function),

1078
mcpwm_new_operator (C++ function), 1063
mcpwm_new_soft_fault (C++ function), 1075
mcpwm_new_soft_sync_src (C++ function),

1078
mcpwm_new_timer (C++ function), 1060
mcpwm_new_timer_sync_src (C++ function),

1078
mcpwm_oper_handle_t (C++ type), 1086
mcpwm_operator_apply_carrier (C++ func-

tion), 1064
mcpwm_operator_brake_mode_t (C++ enum),

1089
mcpwm_operator_brake_mode_t::MCPWM_OPER_BRAKE_MODE_CBC

(C++ enumerator), 1089
mcpwm_operator_brake_mode_t::MCPWM_OPER_BRAKE_MODE_INVALID

(C++ enumerator), 1089
mcpwm_operator_brake_mode_t::MCPWM_OPER_BRAKE_MODE_OST

(C++ enumerator), 1089
mcpwm_operator_config_t (C++ struct), 1065
mcpwm_operator_config_t::flags (C++

member), 1065
mcpwm_operator_config_t::group_id

(C++ member), 1065
mcpwm_operator_config_t::intr_priority

(C++ member), 1065
mcpwm_operator_config_t::update_dead_time_on_sync

(C++ member), 1065
mcpwm_operator_config_t::update_dead_time_on_tep

(C++ member), 1065
mcpwm_operator_config_t::update_dead_time_on_tez

(C++ member), 1065
mcpwm_operator_config_t::update_gen_action_on_sync

(C++ member), 1065
mcpwm_operator_config_t::update_gen_action_on_tep

(C++ member), 1065
mcpwm_operator_config_t::update_gen_action_on_tez

(C++ member), 1065
mcpwm_operator_connect_timer (C++ func-

tion), 1063
mcpwm_operator_event_callbacks_t (C++

struct), 1066
mcpwm_operator_event_callbacks_t::on_brake_cbc

(C++ member), 1066
mcpwm_operator_event_callbacks_t::on_brake_ost

(C++ member), 1066
mcpwm_operator_recover_from_fault

(C++ function), 1064
mcpwm_operator_register_event_callbacks

(C++ function), 1064
mcpwm_operator_set_brake_on_fault

(C++ function), 1064
mcpwm_soft_fault_activate (C++ function),

1076
mcpwm_soft_fault_config_t (C++ struct),

1077
mcpwm_soft_sync_activate (C++ function),

1078
mcpwm_soft_sync_config_t (C++ struct), 1080
mcpwm_sync_handle_t (C++ type), 1086
mcpwm_timer_clock_source_t (C++ type),

1087
mcpwm_timer_config_t (C++ struct), 1062
mcpwm_timer_config_t::clk_src (C++

member), 1062
mcpwm_timer_config_t::count_mode (C++

member), 1062
mcpwm_timer_config_t::flags (C++ mem-

ber), 1062
mcpwm_timer_config_t::group_id (C++

member), 1062
mcpwm_timer_config_t::intr_priority

(C++ member), 1062
mcpwm_timer_config_t::period_ticks

(C++ member), 1062
mcpwm_timer_config_t::resolution_hz

Espressif Systems 2799
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 1062
mcpwm_timer_config_t::update_period_on_empty

(C++ member), 1062
mcpwm_timer_config_t::update_period_on_sync

(C++ member), 1062
mcpwm_timer_count_mode_t (C++ enum), 1088
mcpwm_timer_count_mode_t::MCPWM_TIMER_COUNT_MODE_DOWN

(C++ enumerator), 1088
mcpwm_timer_count_mode_t::MCPWM_TIMER_COUNT_MODE_PAUSE

(C++ enumerator), 1088
mcpwm_timer_count_mode_t::MCPWM_TIMER_COUNT_MODE_UP

(C++ enumerator), 1088
mcpwm_timer_count_mode_t::MCPWM_TIMER_COUNT_MODE_UP_DOWN

(C++ enumerator), 1088
mcpwm_timer_direction_t (C++ enum), 1088
mcpwm_timer_direction_t::MCPWM_TIMER_DIRECTION_DOWN

(C++ enumerator), 1088
mcpwm_timer_direction_t::MCPWM_TIMER_DIRECTION_UP

(C++ enumerator), 1088
mcpwm_timer_disable (C++ function), 1060
mcpwm_timer_enable (C++ function), 1060
mcpwm_timer_event_callbacks_t (C++

struct), 1062
mcpwm_timer_event_callbacks_t::on_empty

(C++ member), 1062
mcpwm_timer_event_callbacks_t::on_full

(C++ member), 1062
mcpwm_timer_event_callbacks_t::on_stop

(C++ member), 1062
mcpwm_timer_event_cb_t (C++ type), 1086
mcpwm_timer_event_data_t (C++ struct), 1085
mcpwm_timer_event_data_t::count_value

(C++ member), 1085
mcpwm_timer_event_data_t::direction

(C++ member), 1085
mcpwm_timer_event_t (C++ enum), 1088
mcpwm_timer_event_t::MCPWM_TIMER_EVENT_EMPTY

(C++ enumerator), 1088
mcpwm_timer_event_t::MCPWM_TIMER_EVENT_FULL

(C++ enumerator), 1088
mcpwm_timer_event_t::MCPWM_TIMER_EVENT_INVALID

(C++ enumerator), 1088
mcpwm_timer_handle_t (C++ type), 1086
mcpwm_timer_register_event_callbacks

(C++ function), 1061
mcpwm_timer_set_period (C++ function), 1060
mcpwm_timer_set_phase_on_sync (C++ func-

tion), 1061
mcpwm_timer_start_stop (C++ function), 1061
mcpwm_timer_start_stop_cmd_t (C++ enum),

1088
mcpwm_timer_start_stop_cmd_t::MCPWM_TIMER_START_NO_STOP

(C++ enumerator), 1089
mcpwm_timer_start_stop_cmd_t::MCPWM_TIMER_START_STOP_EMPTY

(C++ enumerator), 1089
mcpwm_timer_start_stop_cmd_t::MCPWM_TIMER_START_STOP_FULL

(C++ enumerator), 1089
mcpwm_timer_start_stop_cmd_t::MCPWM_TIMER_STOP_EMPTY

(C++ enumerator), 1088
mcpwm_timer_start_stop_cmd_t::MCPWM_TIMER_STOP_FULL

(C++ enumerator), 1088
mcpwm_timer_sync_phase_config_t (C++

struct), 1063
mcpwm_timer_sync_phase_config_t::count_value

(C++ member), 1063
mcpwm_timer_sync_phase_config_t::direction

(C++ member), 1063
mcpwm_timer_sync_phase_config_t::sync_src

(C++ member), 1063
mcpwm_timer_sync_src_config_t (C++

struct), 1079
mcpwm_timer_sync_src_config_t::flags

(C++ member), 1079
mcpwm_timer_sync_src_config_t::propagate_input_sync

(C++ member), 1079
mcpwm_timer_sync_src_config_t::timer_event

(C++ member), 1079
mesh_addr_t (C++ union), 664
mesh_addr_t::addr (C++ member), 664
mesh_addr_t::mip (C++ member), 664
mesh_ap_cfg_t (C++ struct), 670
mesh_ap_cfg_t::max_connection (C++

member), 670
mesh_ap_cfg_t::nonmesh_max_connection

(C++ member), 670
mesh_ap_cfg_t::password (C++ member), 670
MESH_ASSOC_FLAG_MAP_ASSOC (C macro), 674
MESH_ASSOC_FLAG_NETWORK_FREE (C macro),

675
MESH_ASSOC_FLAG_ROOT_FIXED (C macro), 675
MESH_ASSOC_FLAG_ROOTS_FOUND (C macro),

675
MESH_ASSOC_FLAG_STA_VOTE_EXPIRE (C

macro), 675
MESH_ASSOC_FLAG_STA_VOTED (C macro), 674
MESH_ASSOC_FLAG_VOTE_IN_PROGRESS (C

macro), 674
mesh_cfg_t (C++ struct), 670
mesh_cfg_t::allow_channel_switch (C++

member), 670
mesh_cfg_t::channel (C++ member), 670
mesh_cfg_t::crypto_funcs (C++ member),

671
mesh_cfg_t::mesh_ap (C++ member), 671
mesh_cfg_t::mesh_id (C++ member), 671
mesh_cfg_t::router (C++ member), 671
MESH_DATA_DROP (C macro), 674
MESH_DATA_ENC (C macro), 674
MESH_DATA_FROMDS (C macro), 674
MESH_DATA_GROUP (C macro), 674
MESH_DATA_NONBLOCK (C macro), 674
MESH_DATA_P2P (C macro), 674
mesh_data_t (C++ struct), 669
mesh_data_t::data (C++ member), 669
mesh_data_t::proto (C++ member), 669
mesh_data_t::size (C++ member), 669

Espressif Systems 2800
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

mesh_data_t::tos (C++ member), 669
MESH_DATA_TODS (C macro), 674
mesh_disconnect_reason_t (C++ enum), 679
mesh_disconnect_reason_t::MESH_REASON_CYCLIC

(C++ enumerator), 679
mesh_disconnect_reason_t::MESH_REASON_DIFF_ID

(C++ enumerator), 679
mesh_disconnect_reason_t::MESH_REASON_EMPTY_PASSWORD

(C++ enumerator), 679
mesh_disconnect_reason_t::MESH_REASON_IE_UNKNOWN

(C++ enumerator), 679
mesh_disconnect_reason_t::MESH_REASON_LEAF

(C++ enumerator), 679
mesh_disconnect_reason_t::MESH_REASON_PARENT_IDLE

(C++ enumerator), 679
mesh_disconnect_reason_t::MESH_REASON_PARENT_STOPPED

(C++ enumerator), 679
mesh_disconnect_reason_t::MESH_REASON_PARENT_UNENCRYPTED

(C++ enumerator), 680
mesh_disconnect_reason_t::MESH_REASON_PARENT_WORSE

(C++ enumerator), 679
mesh_disconnect_reason_t::MESH_REASON_ROOTS

(C++ enumerator), 679
mesh_disconnect_reason_t::MESH_REASON_SCAN_FAIL

(C++ enumerator), 679
mesh_disconnect_reason_t::MESH_REASON_WAIVE_ROOT

(C++ enumerator), 679
mesh_event_channel_switch_t (C++ struct),

666
mesh_event_channel_switch_t::channel

(C++ member), 666
mesh_event_child_connected_t (C++ type),

675
mesh_event_child_disconnected_t (C++

type), 675
mesh_event_connected_t (C++ struct), 666
mesh_event_connected_t::connected

(C++ member), 666
mesh_event_connected_t::duty (C++ mem-

ber), 666
mesh_event_connected_t::self_layer

(C++ member), 666
mesh_event_disconnected_t (C++ type), 675
mesh_event_find_network_t (C++ struct), 667
mesh_event_find_network_t::channel

(C++ member), 667
mesh_event_find_network_t::router_bssid

(C++ member), 667
mesh_event_id_t (C++ enum), 676
mesh_event_id_t::MESH_EVENT_CHANNEL_SWITCH

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_CHILD_CONNECTED

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_CHILD_DISCONNECTED

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_FIND_NETWORK

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_LAYER_CHANGE

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_MAX (C++

enumerator), 677
mesh_event_id_t::MESH_EVENT_NETWORK_STATE

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_NO_PARENT_FOUND

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_PARENT_CONNECTED

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_PARENT_DISCONNECTED

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_PS_CHILD_DUTY

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_PS_DEVICE_DUTY

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_PS_PARENT_DUTY

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_ROOT_ADDRESS

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_ROOT_ASKED_YIELD

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_ROOT_FIXED

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_ROOT_SWITCH_ACK

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_ROOT_SWITCH_REQ

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_ROUTER_SWITCH

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_ROUTING_TABLE_ADD

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_ROUTING_TABLE_REMOVE

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_SCAN_DONE

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_STARTED

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_STOP_RECONNECTION

(C++ enumerator), 677
mesh_event_id_t::MESH_EVENT_STOPPED

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_TODS_STATE

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_VOTE_STARTED

(C++ enumerator), 676
mesh_event_id_t::MESH_EVENT_VOTE_STOPPED

(C++ enumerator), 676
mesh_event_info_t (C++ union), 664
mesh_event_info_t::channel_switch

(C++ member), 664
mesh_event_info_t::child_connected

(C++ member), 664
mesh_event_info_t::child_disconnected

(C++ member), 664
mesh_event_info_t::connected (C++ mem-

ber), 664
mesh_event_info_t::disconnected (C++

member), 665

Espressif Systems 2801
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

mesh_event_info_t::find_network (C++
member), 665

mesh_event_info_t::layer_change (C++
member), 665

mesh_event_info_t::network_state (C++
member), 665

mesh_event_info_t::no_parent (C++ mem-
ber), 665

mesh_event_info_t::ps_duty (C++ member),
665

mesh_event_info_t::root_addr (C++ mem-
ber), 665

mesh_event_info_t::root_conflict (C++
member), 665

mesh_event_info_t::root_fixed (C++
member), 665

mesh_event_info_t::router_switch (C++
member), 665

mesh_event_info_t::routing_table (C++
member), 664

mesh_event_info_t::scan_done (C++ mem-
ber), 665

mesh_event_info_t::switch_req (C++
member), 665

mesh_event_info_t::toDS_state (C++
member), 665

mesh_event_info_t::vote_started (C++
member), 665

mesh_event_layer_change_t (C++ struct), 667
mesh_event_layer_change_t::new_layer

(C++ member), 667
mesh_event_network_state_t (C++ struct),

668
mesh_event_network_state_t::is_rootless

(C++ member), 669
mesh_event_no_parent_found_t (C++ struct),

666
mesh_event_no_parent_found_t::scan_times

(C++ member), 667
mesh_event_ps_duty_t (C++ struct), 669
mesh_event_ps_duty_t::child_connected

(C++ member), 669
mesh_event_ps_duty_t::duty (C++ member),

669
mesh_event_root_address_t (C++ type), 675
mesh_event_root_conflict_t (C++ struct),

668
mesh_event_root_conflict_t::addr (C++

member), 668
mesh_event_root_conflict_t::capacity

(C++ member), 668
mesh_event_root_conflict_t::rssi (C++

member), 668
mesh_event_root_fixed_t (C++ struct), 668
mesh_event_root_fixed_t::is_fixed

(C++ member), 668
mesh_event_root_switch_req_t (C++ struct),

667

mesh_event_root_switch_req_t::rc_addr
(C++ member), 667

mesh_event_root_switch_req_t::reason
(C++ member), 667

mesh_event_router_switch_t (C++ type), 675
mesh_event_routing_table_change_t

(C++ struct), 668
mesh_event_routing_table_change_t::rt_size_change

(C++ member), 668
mesh_event_routing_table_change_t::rt_size_new

(C++ member), 668
mesh_event_scan_done_t (C++ struct), 668
mesh_event_scan_done_t::number (C++

member), 668
mesh_event_toDS_state_t (C++ enum), 680
mesh_event_toDS_state_t::MESH_TODS_REACHABLE

(C++ enumerator), 680
mesh_event_toDS_state_t::MESH_TODS_UNREACHABLE

(C++ enumerator), 680
mesh_event_vote_started_t (C++ struct), 667
mesh_event_vote_started_t::attempts

(C++ member), 667
mesh_event_vote_started_t::rc_addr

(C++ member), 667
mesh_event_vote_started_t::reason

(C++ member), 667
MESH_INIT_CONFIG_DEFAULT (C macro), 675
MESH_MPS (C macro), 672
MESH_MTU (C macro), 672
MESH_OPT_RECV_DS_ADDR (C macro), 674
MESH_OPT_SEND_GROUP (C macro), 674
mesh_opt_t (C++ struct), 669
mesh_opt_t::len (C++ member), 669
mesh_opt_t::type (C++ member), 669
mesh_opt_t::val (C++ member), 669
mesh_proto_t (C++ enum), 678
mesh_proto_t::MESH_PROTO_AP (C++ enumer-

ator), 678
mesh_proto_t::MESH_PROTO_BIN (C++ enu-

merator), 678
mesh_proto_t::MESH_PROTO_HTTP (C++ enu-

merator), 678
mesh_proto_t::MESH_PROTO_JSON (C++ enu-

merator), 678
mesh_proto_t::MESH_PROTO_MQTT (C++ enu-

merator), 678
mesh_proto_t::MESH_PROTO_STA (C++ enu-

merator), 678
MESH_PS_DEVICE_DUTY_DEMAND (C macro), 675
MESH_PS_DEVICE_DUTY_REQUEST (C macro),

675
MESH_PS_NETWORK_DUTY_APPLIED_ENTIRE (C

macro), 675
MESH_PS_NETWORK_DUTY_APPLIED_UPLINK (C

macro), 675
MESH_PS_NETWORK_DUTY_MASTER (C macro),

675
mesh_rc_config_t (C++ union), 665

Espressif Systems 2802
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

mesh_rc_config_t::attempts (C++ member),
666

mesh_rc_config_t::rc_addr (C++ member),
666

MESH_ROOT_LAYER (C macro), 672
mesh_router_t (C++ struct), 669
mesh_router_t::allow_router_switch

(C++ member), 670
mesh_router_t::bssid (C++ member), 670
mesh_router_t::password (C++ member), 670
mesh_router_t::ssid (C++ member), 670
mesh_router_t::ssid_len (C++ member), 670
mesh_rx_pending_t (C++ struct), 672
mesh_rx_pending_t::toDS (C++ member), 672
mesh_rx_pending_t::toSelf (C++ member),

672
mesh_tos_t (C++ enum), 678
mesh_tos_t::MESH_TOS_DEF (C++ enumerator),

678
mesh_tos_t::MESH_TOS_E2E (C++ enumerator),

678
mesh_tos_t::MESH_TOS_P2P (C++ enumerator),

678
mesh_tx_pending_t (C++ struct), 671
mesh_tx_pending_t::broadcast (C++ mem-

ber), 672
mesh_tx_pending_t::mgmt (C++ member), 671
mesh_tx_pending_t::to_child (C++ mem-

ber), 671
mesh_tx_pending_t::to_child_p2p (C++

member), 671
mesh_tx_pending_t::to_parent (C++ mem-

ber), 671
mesh_tx_pending_t::to_parent_p2p (C++

member), 671
mesh_type_t (C++ enum), 677
mesh_type_t::MESH_IDLE (C++ enumerator),

677
mesh_type_t::MESH_LEAF (C++ enumerator),

678
mesh_type_t::MESH_NODE (C++ enumerator),

678
mesh_type_t::MESH_ROOT (C++ enumerator),

678
mesh_type_t::MESH_STA (C++ enumerator), 678
mesh_vote_reason_t (C++ enum), 679
mesh_vote_reason_t::MESH_VOTE_REASON_CHILD_INITIATED

(C++ enumerator), 679
mesh_vote_reason_t::MESH_VOTE_REASON_ROOT_INITIATED

(C++ enumerator), 679
mesh_vote_t (C++ struct), 671
mesh_vote_t::config (C++ member), 671
mesh_vote_t::is_rc_specified (C++ mem-

ber), 671
mesh_vote_t::percentage (C++ member), 671
MessageBufferHandle_t (C++ type), 1969
mip_t (C++ struct), 666
mip_t::ip4 (C++ member), 666

mip_t::port (C++ member), 666
MQTT_ERROR_TYPE_ESP_TLS (C macro), 55
multi_heap_aligned_alloc (C++ function),

2003
multi_heap_aligned_free (C++ function),

2004
multi_heap_check (C++ function), 2005
multi_heap_dump (C++ function), 2005
multi_heap_free (C++ function), 2004
multi_heap_free_size (C++ function), 2005
multi_heap_get_allocated_size (C++ func-

tion), 2004
multi_heap_get_info (C++ function), 2006
multi_heap_handle_t (C++ type), 2006
multi_heap_info_t (C++ struct), 2006
multi_heap_info_t::allocated_blocks

(C++ member), 2006
multi_heap_info_t::free_blocks (C++

member), 2006
multi_heap_info_t::largest_free_block

(C++ member), 2006
multi_heap_info_t::minimum_free_bytes

(C++ member), 2006
multi_heap_info_t::total_allocated_bytes

(C++ member), 2006
multi_heap_info_t::total_blocks (C++

member), 2006
multi_heap_info_t::total_free_bytes

(C++ member), 2006
multi_heap_malloc (C++ function), 2004
multi_heap_minimum_free_size (C++ func-

tion), 2005
multi_heap_realloc (C++ function), 2004
multi_heap_register (C++ function), 2004
multi_heap_set_lock (C++ function), 2005

N
name_uuid (C++ struct), 1653
name_uuid::name (C++ member), 1654
name_uuid::uuid (C++ member), 1654
neighbor_rep_request_cb (C++ type), 759
non_pref_chan (C++ struct), 760
non_pref_chan::chan (C++ member), 761
non_pref_chan::oper_class (C++ member),

760
non_pref_chan::preference (C++ member),

761
non_pref_chan::reason (C++ member), 760
non_pref_chan_reason (C++ enum), 761
non_pref_chan_reason::NON_PREF_CHAN_REASON_EXT_INTERFERENCE

(C++ enumerator), 761
non_pref_chan_reason::NON_PREF_CHAN_REASON_INT_INTERFERENCE

(C++ enumerator), 761
non_pref_chan_reason::NON_PREF_CHAN_REASON_RSSI

(C++ enumerator), 761
non_pref_chan_reason::NON_PREF_CHAN_REASON_UNSPECIFIED

(C++ enumerator), 761
non_pref_chan_s (C++ struct), 761

Espressif Systems 2803
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

non_pref_chan_s::chan (C++ member), 761
non_pref_chan_s::non_pref_chan_num

(C++ member), 761
nvs_close (C++ function), 1711
nvs_commit (C++ function), 1711
NVS_DEFAULT_PART_NAME (C macro), 1716
nvs_entry_find (C++ function), 1713
nvs_entry_info (C++ function), 1714
nvs_entry_info_t (C++ struct), 1714
nvs_entry_info_t::key (C++ member), 1714
nvs_entry_info_t::namespace_name (C++

member), 1714
nvs_entry_info_t::type (C++ member), 1714
nvs_entry_next (C++ function), 1713
nvs_erase_all (C++ function), 1711
nvs_erase_key (C++ function), 1711
nvs_find_key (C++ function), 1710
nvs_flash_deinit (C++ function), 1703
nvs_flash_deinit_partition (C++ function),

1703
nvs_flash_erase (C++ function), 1703
nvs_flash_erase_partition (C++ function),

1704
nvs_flash_erase_partition_ptr (C++ func-

tion), 1704
nvs_flash_generate_keys (C++ function),

1705
nvs_flash_init (C++ function), 1702
nvs_flash_init_partition (C++ function),

1703
nvs_flash_init_partition_ptr (C++ func-

tion), 1703
nvs_flash_read_security_cfg (C++ func-

tion), 1705
nvs_flash_secure_init (C++ function), 1704
nvs_flash_secure_init_partition (C++

function), 1704
nvs_get_blob (C++ function), 1709
nvs_get_i16 (C++ function), 1708
nvs_get_i32 (C++ function), 1708
nvs_get_i64 (C++ function), 1708
nvs_get_i8 (C++ function), 1707
nvs_get_stats (C++ function), 1711
nvs_get_str (C++ function), 1708
nvs_get_u16 (C++ function), 1708
nvs_get_u32 (C++ function), 1708
nvs_get_u64 (C++ function), 1708
nvs_get_u8 (C++ function), 1707
nvs_get_used_entry_count (C++ function),

1712
nvs_handle (C++ type), 1716
nvs_handle_t (C++ type), 1716
nvs_iterator_t (C++ type), 1717
NVS_KEY_NAME_MAX_SIZE (C macro), 1716
NVS_KEY_SIZE (C macro), 1705
NVS_NS_NAME_MAX_SIZE (C macro), 1716
nvs_open (C++ function), 1709

nvs_open_from_partition (C++ function),
1709

nvs_open_mode (C++ type), 1716
nvs_open_mode_t (C++ enum), 1717
nvs_open_mode_t::NVS_READONLY (C++ enu-

merator), 1717
nvs_open_mode_t::NVS_READWRITE (C++

enumerator), 1717
NVS_PART_NAME_MAX_SIZE (C macro), 1716
nvs_release_iterator (C++ function), 1714
nvs_sec_cfg_t (C++ struct), 1705
nvs_sec_cfg_t::eky (C++ member), 1705
nvs_sec_cfg_t::tky (C++ member), 1705
nvs_set_blob (C++ function), 1710
nvs_set_i16 (C++ function), 1706
nvs_set_i32 (C++ function), 1706
nvs_set_i64 (C++ function), 1706
nvs_set_i8 (C++ function), 1706
nvs_set_str (C++ function), 1706
nvs_set_u16 (C++ function), 1706
nvs_set_u32 (C++ function), 1706
nvs_set_u64 (C++ function), 1706
nvs_set_u8 (C++ function), 1706
nvs_stats_t (C++ struct), 1714
nvs_stats_t::free_entries (C++ member),

1714
nvs_stats_t::namespace_count (C++ mem-

ber), 1714
nvs_stats_t::total_entries (C++ member),

1714
nvs_stats_t::used_entries (C++ member),

1714
nvs_type_t (C++ enum), 1717
nvs_type_t::NVS_TYPE_ANY (C++ enumerator),

1718
nvs_type_t::NVS_TYPE_BLOB (C++ enumera-

tor), 1717
nvs_type_t::NVS_TYPE_I16 (C++ enumerator),

1717
nvs_type_t::NVS_TYPE_I32 (C++ enumerator),

1717
nvs_type_t::NVS_TYPE_I64 (C++ enumerator),

1717
nvs_type_t::NVS_TYPE_I8 (C++ enumerator),

1717
nvs_type_t::NVS_TYPE_STR (C++ enumerator),

1717
nvs_type_t::NVS_TYPE_U16 (C++ enumerator),

1717
nvs_type_t::NVS_TYPE_U32 (C++ enumerator),

1717
nvs_type_t::NVS_TYPE_U64 (C++ enumerator),

1717
nvs_type_t::NVS_TYPE_U8 (C++ enumerator),

1717

O
OTA_SIZE_UNKNOWN (C macro), 2073

Espressif Systems 2804
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

OTA_WITH_SEQUENTIAL_WRITES (Cmacro), 2073

P
parlio_bit_pack_order_t (C++ enum), 1095
parlio_bit_pack_order_t::PARLIO_BIT_PACK_ORDER_LSB

(C++ enumerator), 1095
parlio_bit_pack_order_t::PARLIO_BIT_PACK_ORDER_MSB

(C++ enumerator), 1095
parlio_clock_source_t (C++ type), 1095
parlio_del_tx_unit (C++ function), 1090
parlio_new_tx_unit (C++ function), 1090
parlio_sample_edge_t (C++ enum), 1095
parlio_sample_edge_t::PARLIO_SAMPLE_EDGE_NEG

(C++ enumerator), 1095
parlio_sample_edge_t::PARLIO_SAMPLE_EDGE_POS

(C++ enumerator), 1095
parlio_transmit_config_t (C++ struct), 1094
parlio_transmit_config_t::flags (C++

member), 1094
parlio_transmit_config_t::idle_value

(C++ member), 1094
parlio_transmit_config_t::queue_nonblocking

(C++ member), 1094
parlio_tx_done_callback_t (C++ type), 1094
parlio_tx_done_event_data_t (C++ struct),

1093
parlio_tx_event_callbacks_t (C++ struct),

1094
parlio_tx_event_callbacks_t::on_trans_done

(C++ member), 1094
parlio_tx_unit_config_t (C++ struct), 1092
parlio_tx_unit_config_t::bit_pack_order

(C++ member), 1093
parlio_tx_unit_config_t::clk_gate_en

(C++ member), 1093
parlio_tx_unit_config_t::clk_in_gpio_num

(C++ member), 1093
parlio_tx_unit_config_t::clk_out_gpio_num

(C++ member), 1093
parlio_tx_unit_config_t::clk_src (C++

member), 1092
parlio_tx_unit_config_t::data_gpio_nums

(C++ member), 1093
parlio_tx_unit_config_t::data_width

(C++ member), 1093
parlio_tx_unit_config_t::flags (C++

member), 1093
parlio_tx_unit_config_t::input_clk_src_freq_hz

(C++ member), 1093
parlio_tx_unit_config_t::io_loop_back

(C++ member), 1093
parlio_tx_unit_config_t::max_transfer_size

(C++ member), 1093
parlio_tx_unit_config_t::output_clk_freq_hz

(C++ member), 1093
parlio_tx_unit_config_t::sample_edge

(C++ member), 1093

parlio_tx_unit_config_t::trans_queue_depth
(C++ member), 1093

parlio_tx_unit_config_t::valid_gpio_num
(C++ member), 1093

parlio_tx_unit_disable (C++ function), 1091
parlio_tx_unit_enable (C++ function), 1091
parlio_tx_unit_handle_t (C++ type), 1095
PARLIO_TX_UNIT_MAX_DATA_WIDTH (C macro),

1095
parlio_tx_unit_register_event_callbacks

(C++ function), 1091
parlio_tx_unit_transmit (C++ function),

1092
parlio_tx_unit_wait_all_done (C++ func-

tion), 1092
pcnt_chan_config_t (C++ struct), 1108
pcnt_chan_config_t::edge_gpio_num

(C++ member), 1108
pcnt_chan_config_t::flags (C++ member),

1109
pcnt_chan_config_t::invert_edge_input

(C++ member), 1108
pcnt_chan_config_t::invert_level_input

(C++ member), 1108
pcnt_chan_config_t::io_loop_back (C++

member), 1109
pcnt_chan_config_t::level_gpio_num

(C++ member), 1108
pcnt_chan_config_t::virt_edge_io_level

(C++ member), 1108
pcnt_chan_config_t::virt_level_io_level

(C++ member), 1109
pcnt_channel_edge_action_t (C++ enum),

1110
pcnt_channel_edge_action_t::PCNT_CHANNEL_EDGE_ACTION_DECREASE

(C++ enumerator), 1110
pcnt_channel_edge_action_t::PCNT_CHANNEL_EDGE_ACTION_HOLD

(C++ enumerator), 1110
pcnt_channel_edge_action_t::PCNT_CHANNEL_EDGE_ACTION_INCREASE

(C++ enumerator), 1110
pcnt_channel_handle_t (C++ type), 1109
pcnt_channel_level_action_t (C++ enum),

1109
pcnt_channel_level_action_t::PCNT_CHANNEL_LEVEL_ACTION_HOLD

(C++ enumerator), 1110
pcnt_channel_level_action_t::PCNT_CHANNEL_LEVEL_ACTION_INVERSE

(C++ enumerator), 1110
pcnt_channel_level_action_t::PCNT_CHANNEL_LEVEL_ACTION_KEEP

(C++ enumerator), 1109
pcnt_channel_set_edge_action (C++ func-

tion), 1107
pcnt_channel_set_level_action (C++ func-

tion), 1107
pcnt_del_channel (C++ function), 1106
pcnt_del_unit (C++ function), 1102
pcnt_event_callbacks_t (C++ struct), 1107
pcnt_event_callbacks_t::on_reach (C++

member), 1108

Espressif Systems 2805
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

pcnt_glitch_filter_config_t (C++ struct),
1109

pcnt_glitch_filter_config_t::max_glitch_ns
(C++ member), 1109

pcnt_new_channel (C++ function), 1106
pcnt_new_unit (C++ function), 1102
pcnt_unit_add_watch_point (C++ function),

1106
pcnt_unit_clear_count (C++ function), 1104
pcnt_unit_config_t (C++ struct), 1108
pcnt_unit_config_t::accum_count (C++

member), 1108
pcnt_unit_config_t::flags (C++ member),

1108
pcnt_unit_config_t::high_limit (C++

member), 1108
pcnt_unit_config_t::intr_priority

(C++ member), 1108
pcnt_unit_config_t::low_limit (C++

member), 1108
pcnt_unit_disable (C++ function), 1103
pcnt_unit_enable (C++ function), 1103
pcnt_unit_get_count (C++ function), 1105
pcnt_unit_handle_t (C++ type), 1109
pcnt_unit_register_event_callbacks

(C++ function), 1105
pcnt_unit_remove_watch_point (C++ func-

tion), 1106
pcnt_unit_set_glitch_filter (C++ func-

tion), 1102
pcnt_unit_start (C++ function), 1103
pcnt_unit_stop (C++ function), 1104
pcnt_unit_zero_cross_mode_t (C++ enum),

1110
pcnt_unit_zero_cross_mode_t::PCNT_UNIT_ZERO_CROSS_NEG_POS

(C++ enumerator), 1110
pcnt_unit_zero_cross_mode_t::PCNT_UNIT_ZERO_CROSS_NEG_ZERO

(C++ enumerator), 1110
pcnt_unit_zero_cross_mode_t::PCNT_UNIT_ZERO_CROSS_POS_NEG

(C++ enumerator), 1110
pcnt_unit_zero_cross_mode_t::PCNT_UNIT_ZERO_CROSS_POS_ZERO

(C++ enumerator), 1110
pcnt_watch_cb_t (C++ type), 1109
pcnt_watch_event_data_t (C++ struct), 1107
pcnt_watch_event_data_t::watch_point_value

(C++ member), 1107
pcnt_watch_event_data_t::zero_cross_mode

(C++ member), 1107
pcQueueGetName (C++ function), 1899
pcTaskGetName (C++ function), 1874
pcTimerGetName (C++ function), 1933
PendedFunction_t (C++ type), 1944
phy_802_3_t (C++ struct), 798
phy_802_3_t::addr (C++ member), 798
phy_802_3_t::autonego_timeout_ms (C++

member), 798
phy_802_3_t::eth (C++ member), 798
phy_802_3_t::link_status (C++ member),

798
phy_802_3_t::parent (C++ member), 798
phy_802_3_t::reset_gpio_num (C++ mem-

ber), 798
phy_802_3_t::reset_timeout_ms (C++

member), 798
phy_init_param_set (C++ function), 2443
phy_wifi_enable_set (C++ function), 2443
PIN_LEN (C macro), 758
protocomm_add_endpoint (C++ function), 1643
protocomm_ble_config (C++ struct), 1654
protocomm_ble_config::ble_addr (C++

member), 1655
protocomm_ble_config::ble_bonding

(C++ member), 1654
protocomm_ble_config::ble_link_encryption

(C++ member), 1655
protocomm_ble_config::ble_sm_sc (C++

member), 1655
protocomm_ble_config::device_name

(C++ member), 1654
protocomm_ble_config::keep_ble_on

(C++ member), 1655
protocomm_ble_config::manufacturer_data

(C++ member), 1654
protocomm_ble_config::manufacturer_data_len

(C++ member), 1654
protocomm_ble_config::nu_lookup (C++

member), 1654
protocomm_ble_config::nu_lookup_count

(C++ member), 1654
protocomm_ble_config::service_uuid

(C++ member), 1654
protocomm_ble_config_t (C++ type), 1655
protocomm_ble_event_t (C++ struct), 1654
protocomm_ble_event_t::conn_handle

(C++ member), 1654
protocomm_ble_event_t::conn_status

(C++ member), 1654
protocomm_ble_event_t::disconnect_reason

(C++ member), 1654
protocomm_ble_event_t::evt_type (C++

member), 1654
protocomm_ble_name_uuid_t (C++ type), 1655
protocomm_ble_start (C++ function), 1653
protocomm_ble_stop (C++ function), 1653
protocomm_close_session (C++ function),

1644
protocomm_delete (C++ function), 1643
protocomm_get_sec_version (C++ function),

1646
protocomm_http_server_config_t (C++

struct), 1652
protocomm_http_server_config_t::port

(C++ member), 1652
protocomm_http_server_config_t::stack_size

(C++ member), 1652
protocomm_http_server_config_t::task_priority

Espressif Systems 2806
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 1652
protocomm_httpd_config_data_t (C++

union), 1652
protocomm_httpd_config_data_t::config

(C++ member), 1652
protocomm_httpd_config_data_t::handle

(C++ member), 1652
protocomm_httpd_config_t (C++ struct), 1652
protocomm_httpd_config_t::data (C++

member), 1653
protocomm_httpd_config_t::ext_handle_provided

(C++ member), 1652
PROTOCOMM_HTTPD_DEFAULT_CONFIG (C

macro), 1653
protocomm_httpd_start (C++ function), 1651
protocomm_httpd_stop (C++ function), 1652
protocomm_new (C++ function), 1642
protocomm_open_session (C++ function), 1643
protocomm_remove_endpoint (C++ function),

1643
protocomm_req_handle (C++ function), 1644
protocomm_req_handler_t (C++ type), 1646
protocomm_security (C++ struct), 1647
protocomm_security1_params (C++ struct),

1646
protocomm_security1_params::data (C++

member), 1646
protocomm_security1_params::len (C++

member), 1646
protocomm_security1_params_t (C++ type),

1648
protocomm_security2_params (C++ struct),

1646
protocomm_security2_params::salt (C++

member), 1647
protocomm_security2_params::salt_len

(C++ member), 1647
protocomm_security2_params::verifier

(C++ member), 1647
protocomm_security2_params::verifier_len

(C++ member), 1647
protocomm_security2_params_t (C++ type),

1648
protocomm_security::cleanup (C++ mem-

ber), 1647
protocomm_security::close_transport_session

(C++ member), 1647
protocomm_security::decrypt (C++ mem-

ber), 1648
protocomm_security::encrypt (C++ mem-

ber), 1647
protocomm_security::init (C++ member),

1647
protocomm_security::new_transport_session

(C++ member), 1647
protocomm_security::patch_ver (C++

member), 1647
protocomm_security::security_req_handler

(C++ member), 1647
protocomm_security::ver (C++ member),

1647
protocomm_security_handle_t (C++ type),

1648
protocomm_security_pop_t (C++ type), 1648
protocomm_security_session_event_t

(C++ enum), 1648
protocomm_security_session_event_t::PROTOCOMM_SECURITY_SESSION_CREDENTIALS_MISMATCH

(C++ enumerator), 1648
protocomm_security_session_event_t::PROTOCOMM_SECURITY_SESSION_INVALID_SECURITY_PARAMS

(C++ enumerator), 1648
protocomm_security_session_event_t::PROTOCOMM_SECURITY_SESSION_SETUP_OK

(C++ enumerator), 1648
protocomm_security_t (C++ type), 1648
protocomm_set_security (C++ function), 1644
protocomm_set_version (C++ function), 1645
protocomm_t (C++ type), 1646
protocomm_transport_ble_event_t (C++

enum), 1655
protocomm_transport_ble_event_t::PROTOCOMM_TRANSPORT_BLE_CONNECTED

(C++ enumerator), 1655
protocomm_transport_ble_event_t::PROTOCOMM_TRANSPORT_BLE_DISCONNECTED

(C++ enumerator), 1655
protocomm_unset_security (C++ function),

1645
protocomm_unset_version (C++ function),

1646
PROV_DATA_FLAGS_FLAG (C macro), 388
PROV_DATA_IV_INDEX_FLAG (C macro), 388
PROV_DATA_NET_IDX_FLAG (C macro), 388
psk_hint_key_t (C++ type), 70
psk_key_hint (C++ struct), 67
psk_key_hint::hint (C++ member), 67
psk_key_hint::key (C++ member), 67
psk_key_hint::key_size (C++ member), 67
PTHREAD_STACK_MIN (C macro), 2086
pvTaskGetThreadLocalStoragePointer

(C++ function), 1875
pvTimerGetTimerID (C++ function), 1930
pxTaskGetStackStart (C++ function), 1875

Q
QueueHandle_t (C++ type), 1911
QueueSetHandle_t (C++ type), 1911
QueueSetMemberHandle_t (C++ type), 1911

R
RingbufferType_t (C++ enum), 1987
RingbufferType_t::RINGBUF_TYPE_ALLOWSPLIT

(C++ enumerator), 1987
RingbufferType_t::RINGBUF_TYPE_BYTEBUF

(C++ enumerator), 1987
RingbufferType_t::RINGBUF_TYPE_MAX

(C++ enumerator), 1988
RingbufferType_t::RINGBUF_TYPE_NOSPLIT

(C++ enumerator), 1987
RingbufHandle_t (C++ type), 1987

Espressif Systems 2807
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

rmt_alloc_encoder_mem (C++ function), 1133
rmt_apply_carrier (C++ function), 1131
rmt_bytes_encoder_config_t (C++ struct),

1134
rmt_bytes_encoder_config_t::bit0 (C++

member), 1134
rmt_bytes_encoder_config_t::bit1 (C++

member), 1134
rmt_bytes_encoder_config_t::flags

(C++ member), 1134
rmt_bytes_encoder_config_t::msb_first

(C++ member), 1134
rmt_bytes_encoder_update_config (C++

function), 1132
rmt_carrier_config_t (C++ struct), 1132
rmt_carrier_config_t::always_on (C++

member), 1132
rmt_carrier_config_t::duty_cycle (C++

member), 1132
rmt_carrier_config_t::flags (C++ mem-

ber), 1132
rmt_carrier_config_t::frequency_hz

(C++ member), 1132
rmt_carrier_config_t::polarity_active_low

(C++ member), 1132
rmt_channel_handle_t (C++ type), 1135
rmt_clock_source_t (C++ type), 1137
rmt_copy_encoder_config_t (C++ struct),

1134
rmt_del_channel (C++ function), 1131
rmt_del_encoder (C++ function), 1133
rmt_del_sync_manager (C++ function), 1126
rmt_disable (C++ function), 1131
rmt_enable (C++ function), 1131
rmt_encode_state_t (C++ enum), 1135
rmt_encode_state_t::RMT_ENCODING_COMPLETE

(C++ enumerator), 1135
rmt_encode_state_t::RMT_ENCODING_MEM_FULL

(C++ enumerator), 1135
rmt_encode_state_t::RMT_ENCODING_RESET

(C++ enumerator), 1135
rmt_encoder_handle_t (C++ type), 1135
rmt_encoder_reset (C++ function), 1133
rmt_encoder_t (C++ struct), 1133
rmt_encoder_t::del (C++ member), 1134
rmt_encoder_t::encode (C++ member), 1133
rmt_encoder_t::reset (C++ member), 1134
rmt_new_bytes_encoder (C++ function), 1132
rmt_new_copy_encoder (C++ function), 1133
rmt_new_rx_channel (C++ function), 1128
rmt_new_sync_manager (C++ function), 1125
rmt_new_tx_channel (C++ function), 1124
rmt_receive (C++ function), 1128
rmt_receive_config_t (C++ struct), 1130
rmt_receive_config_t::signal_range_max_ns

(C++ member), 1130
rmt_receive_config_t::signal_range_min_ns

(C++ member), 1130

rmt_rx_channel_config_t (C++ struct), 1130
rmt_rx_channel_config_t::clk_src (C++

member), 1130
rmt_rx_channel_config_t::flags (C++

member), 1130
rmt_rx_channel_config_t::gpio_num

(C++ member), 1130
rmt_rx_channel_config_t::intr_priority

(C++ member), 1130
rmt_rx_channel_config_t::invert_in

(C++ member), 1130
rmt_rx_channel_config_t::io_loop_back

(C++ member), 1130
rmt_rx_channel_config_t::mem_block_symbols

(C++ member), 1130
rmt_rx_channel_config_t::resolution_hz

(C++ member), 1130
rmt_rx_channel_config_t::with_dma

(C++ member), 1130
rmt_rx_done_callback_t (C++ type), 1136
rmt_rx_done_event_data_t (C++ struct), 1135
rmt_rx_done_event_data_t::num_symbols

(C++ member), 1135
rmt_rx_done_event_data_t::received_symbols

(C++ member), 1135
rmt_rx_event_callbacks_t (C++ struct), 1129
rmt_rx_event_callbacks_t::on_recv_done

(C++ member), 1129
rmt_rx_register_event_callbacks (C++

function), 1129
rmt_symbol_word_t (C++ union), 1136
rmt_symbol_word_t::duration0 (C++ mem-

ber), 1136
rmt_symbol_word_t::duration1 (C++ mem-

ber), 1136
rmt_symbol_word_t::level0 (C++ member),

1136
rmt_symbol_word_t::level1 (C++ member),

1136
rmt_symbol_word_t::val (C++ member), 1136
rmt_symbol_word_t::[anonymous] (C++

member), 1136
rmt_sync_manager_config_t (C++ struct),

1128
rmt_sync_manager_config_t::array_size

(C++ member), 1128
rmt_sync_manager_config_t::tx_channel_array

(C++ member), 1128
rmt_sync_manager_handle_t (C++ type), 1135
rmt_sync_reset (C++ function), 1126
rmt_transmit (C++ function), 1124
rmt_transmit_config_t (C++ struct), 1127
rmt_transmit_config_t::eot_level (C++

member), 1127
rmt_transmit_config_t::flags (C++ mem-

ber), 1128
rmt_transmit_config_t::loop_count

(C++ member), 1127

Espressif Systems 2808
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

rmt_transmit_config_t::queue_nonblocking
(C++ member), 1128

rmt_tx_channel_config_t (C++ struct), 1126
rmt_tx_channel_config_t::clk_src (C++

member), 1127
rmt_tx_channel_config_t::flags (C++

member), 1127
rmt_tx_channel_config_t::gpio_num

(C++ member), 1127
rmt_tx_channel_config_t::init_level

(C++ member), 1127
rmt_tx_channel_config_t::intr_priority

(C++ member), 1127
rmt_tx_channel_config_t::invert_out

(C++ member), 1127
rmt_tx_channel_config_t::io_loop_back

(C++ member), 1127
rmt_tx_channel_config_t::io_od_mode

(C++ member), 1127
rmt_tx_channel_config_t::mem_block_symbols

(C++ member), 1127
rmt_tx_channel_config_t::resolution_hz

(C++ member), 1127
rmt_tx_channel_config_t::trans_queue_depth

(C++ member), 1127
rmt_tx_channel_config_t::with_dma

(C++ member), 1127
rmt_tx_done_callback_t (C++ type), 1136
rmt_tx_done_event_data_t (C++ struct), 1135
rmt_tx_done_event_data_t::num_symbols

(C++ member), 1135
rmt_tx_event_callbacks_t (C++ struct), 1126
rmt_tx_event_callbacks_t::on_trans_done

(C++ member), 1126
rmt_tx_register_event_callbacks (C++

function), 1125
rmt_tx_wait_all_done (C++ function), 1125
rtc_gpio_deinit (C++ function), 907
rtc_gpio_force_hold_dis_all (C++ func-

tion), 909
rtc_gpio_force_hold_en_all (C++ function),

909
rtc_gpio_get_drive_capability (C++ func-

tion), 909
rtc_gpio_get_level (C++ function), 907
rtc_gpio_hold_dis (C++ function), 909
rtc_gpio_hold_en (C++ function), 909
rtc_gpio_init (C++ function), 907
RTC_GPIO_IS_VALID_GPIO (C macro), 910
rtc_gpio_is_valid_gpio (C++ function), 907
rtc_gpio_mode_t (C++ enum), 910
rtc_gpio_mode_t::RTC_GPIO_MODE_DISABLED

(C++ enumerator), 910
rtc_gpio_mode_t::RTC_GPIO_MODE_INPUT_ONLY

(C++ enumerator), 910
rtc_gpio_mode_t::RTC_GPIO_MODE_INPUT_OUTPUT

(C++ enumerator), 910
rtc_gpio_mode_t::RTC_GPIO_MODE_INPUT_OUTPUT_OD

(C++ enumerator), 910
rtc_gpio_mode_t::RTC_GPIO_MODE_OUTPUT_OD

(C++ enumerator), 910
rtc_gpio_mode_t::RTC_GPIO_MODE_OUTPUT_ONLY

(C++ enumerator), 910
rtc_gpio_pulldown_dis (C++ function), 908
rtc_gpio_pulldown_en (C++ function), 908
rtc_gpio_pullup_dis (C++ function), 908
rtc_gpio_pullup_en (C++ function), 908
rtc_gpio_set_direction (C++ function), 908
rtc_gpio_set_direction_in_sleep (C++

function), 908
rtc_gpio_set_drive_capability (C++ func-

tion), 909
rtc_gpio_set_level (C++ function), 907
rtc_gpio_wakeup_disable (C++ function), 910
rtc_gpio_wakeup_enable (C++ function), 909
rtc_io_number_get (C++ function), 907

S
SAE_H2E_IDENTIFIER_LEN (C macro), 732
sdio_event_cb_t (C++ type), 1153
sdio_slave_buf_handle_t (C++ type), 1153
sdio_slave_clear_host_int (C++ function),

1151
sdio_slave_config_t (C++ struct), 1152
sdio_slave_config_t::event_cb (C++

member), 1152
sdio_slave_config_t::flags (C++ member),

1152
sdio_slave_config_t::recv_buffer_size

(C++ member), 1152
sdio_slave_config_t::send_queue_size

(C++ member), 1152
sdio_slave_config_t::sending_mode

(C++ member), 1152
sdio_slave_config_t::timing (C++ mem-

ber), 1152
sdio_slave_deinit (C++ function), 1148
SDIO_SLAVE_FLAG_DAT2_DISABLED (C macro),

1152
SDIO_SLAVE_FLAG_DEFAULT_SPEED (C macro),

1153
SDIO_SLAVE_FLAG_HIGH_SPEED (Cmacro), 1153
SDIO_SLAVE_FLAG_HOST_INTR_DISABLED (C

macro), 1152
SDIO_SLAVE_FLAG_INTERNAL_PULLUP (C

macro), 1153
sdio_slave_get_host_intena (C++ function),

1151
sdio_slave_hostint_t (C++ enum), 1147
sdio_slave_hostint_t::SDIO_SLAVE_HOSTINT_BIT0

(C++ enumerator), 1147
sdio_slave_hostint_t::SDIO_SLAVE_HOSTINT_BIT1

(C++ enumerator), 1147
sdio_slave_hostint_t::SDIO_SLAVE_HOSTINT_BIT2

(C++ enumerator), 1147

Espressif Systems 2809
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

sdio_slave_hostint_t::SDIO_SLAVE_HOSTINT_BIT3
(C++ enumerator), 1147

sdio_slave_hostint_t::SDIO_SLAVE_HOSTINT_BIT4
(C++ enumerator), 1147

sdio_slave_hostint_t::SDIO_SLAVE_HOSTINT_BIT5
(C++ enumerator), 1147

sdio_slave_hostint_t::SDIO_SLAVE_HOSTINT_BIT6
(C++ enumerator), 1147

sdio_slave_hostint_t::SDIO_SLAVE_HOSTINT_BIT7
(C++ enumerator), 1147

sdio_slave_hostint_t::SDIO_SLAVE_HOSTINT_SEND_NEW_PACKET
(C++ enumerator), 1147

sdio_slave_initialize (C++ function), 1148
sdio_slave_read_reg (C++ function), 1151
sdio_slave_recv (C++ function), 1150
sdio_slave_recv_get_buf (C++ function),

1150
sdio_slave_recv_load_buf (C++ function),

1149
SDIO_SLAVE_RECV_MAX_BUFFER (Cmacro), 1152
sdio_slave_recv_packet (C++ function), 1149
sdio_slave_recv_register_buf (C++ func-

tion), 1149
sdio_slave_recv_unregister_buf (C++

function), 1149
sdio_slave_reset (C++ function), 1149
sdio_slave_send_get_finished (C++ func-

tion), 1150
sdio_slave_send_host_int (C++ function),

1151
sdio_slave_send_queue (C++ function), 1150
sdio_slave_sending_mode_t (C++ enum),

1148
sdio_slave_sending_mode_t::SDIO_SLAVE_SEND_PACKET

(C++ enumerator), 1148
sdio_slave_sending_mode_t::SDIO_SLAVE_SEND_STREAM

(C++ enumerator), 1148
sdio_slave_set_host_intena (C++ function),

1151
sdio_slave_start (C++ function), 1148
sdio_slave_stop (C++ function), 1149
sdio_slave_timing_t (C++ enum), 1147
sdio_slave_timing_t::SDIO_SLAVE_TIMING_NSEND_NSAMPLE

(C++ enumerator), 1148
sdio_slave_timing_t::SDIO_SLAVE_TIMING_NSEND_PSAMPLE

(C++ enumerator), 1148
sdio_slave_timing_t::SDIO_SLAVE_TIMING_PSEND_NSAMPLE

(C++ enumerator), 1148
sdio_slave_timing_t::SDIO_SLAVE_TIMING_PSEND_PSAMPLE

(C++ enumerator), 1147
sdio_slave_transmit (C++ function), 1151
sdio_slave_wait_int (C++ function), 1151
sdio_slave_write_reg (C++ function), 1151
sdm_channel_disable (C++ function), 1157
sdm_channel_enable (C++ function), 1156
sdm_channel_handle_t (C++ type), 1158
sdm_channel_set_duty (C++ function), 1157
sdm_channel_set_pulse_density (C++ func-

tion), 1157
sdm_clock_source_t (C++ type), 1159
sdm_config_t (C++ struct), 1158
sdm_config_t::clk_src (C++ member), 1158
sdm_config_t::flags (C++ member), 1158
sdm_config_t::gpio_num (C++ member), 1158
sdm_config_t::invert_out (C++ member),

1158
sdm_config_t::io_loop_back (C++ member),

1158
sdm_config_t::sample_rate_hz (C++ mem-

ber), 1158
sdm_del_channel (C++ function), 1156
sdm_new_channel (C++ function), 1156
sdmmc_can_discard (C++ function), 1725
sdmmc_can_trim (C++ function), 1725
sdmmc_card_init (C++ function), 1724
sdmmc_card_print_info (C++ function), 1724
sdmmc_card_t (C++ struct), 1733
sdmmc_card_t::cid (C++ member), 1734
sdmmc_card_t::csd (C++ member), 1734
sdmmc_card_t::ext_csd (C++ member), 1734
sdmmc_card_t::host (C++ member), 1734
sdmmc_card_t::is_ddr (C++ member), 1734
sdmmc_card_t::is_mem (C++ member), 1734
sdmmc_card_t::is_mmc (C++ member), 1734
sdmmc_card_t::is_sdio (C++ member), 1734
sdmmc_card_t::log_bus_width (C++ mem-

ber), 1734
sdmmc_card_t::max_freq_khz (C++ member),

1734
sdmmc_card_t::num_io_functions (C++

member), 1734
sdmmc_card_t::ocr (C++ member), 1734
sdmmc_card_t::raw_cid (C++ member), 1734
sdmmc_card_t::rca (C++ member), 1734
sdmmc_card_t::real_freq_khz (C++ mem-

ber), 1734
sdmmc_card_t::reserved (C++ member), 1735
sdmmc_card_t::scr (C++ member), 1734
sdmmc_card_t::ssr (C++ member), 1734
sdmmc_cid_t (C++ struct), 1730
sdmmc_cid_t::date (C++ member), 1730
sdmmc_cid_t::mfg_id (C++ member), 1730
sdmmc_cid_t::name (C++ member), 1730
sdmmc_cid_t::oem_id (C++ member), 1730
sdmmc_cid_t::revision (C++ member), 1730
sdmmc_cid_t::serial (C++ member), 1730
sdmmc_command_t (C++ struct), 1732
sdmmc_command_t::arg (C++ member), 1732
sdmmc_command_t::blklen (C++ member),

1732
sdmmc_command_t::data (C++ member), 1732
sdmmc_command_t::datalen (C++ member),

1732
sdmmc_command_t::error (C++ member), 1732
sdmmc_command_t::flags (C++ member), 1732

Espressif Systems 2810
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

sdmmc_command_t::opcode (C++ member),
1732

sdmmc_command_t::response (C++ member),
1732

sdmmc_command_t::timeout_ms (C++ mem-
ber), 1732

sdmmc_csd_t (C++ struct), 1729
sdmmc_csd_t::capacity (C++ member), 1729
sdmmc_csd_t::card_command_class (C++

member), 1729
sdmmc_csd_t::csd_ver (C++ member), 1729
sdmmc_csd_t::mmc_ver (C++ member), 1729
sdmmc_csd_t::read_block_len (C++ mem-

ber), 1729
sdmmc_csd_t::sector_size (C++ member),

1729
sdmmc_csd_t::tr_speed (C++ member), 1729
sdmmc_erase_arg_t (C++ enum), 1735
sdmmc_erase_arg_t::SDMMC_DISCARD_ARG

(C++ enumerator), 1736
sdmmc_erase_arg_t::SDMMC_ERASE_ARG

(C++ enumerator), 1736
sdmmc_erase_sectors (C++ function), 1725
sdmmc_ext_csd_t (C++ struct), 1731
sdmmc_ext_csd_t::erase_mem_state (C++

member), 1731
sdmmc_ext_csd_t::power_class (C++ mem-

ber), 1731
sdmmc_ext_csd_t::rev (C++ member), 1731
sdmmc_ext_csd_t::sec_feature (C++ mem-

ber), 1731
SDMMC_FREQ_26M (C macro), 1735
SDMMC_FREQ_52M (C macro), 1735
SDMMC_FREQ_DEFAULT (C macro), 1735
SDMMC_FREQ_HIGHSPEED (C macro), 1735
SDMMC_FREQ_PROBING (C macro), 1735
sdmmc_full_erase (C++ function), 1726
sdmmc_get_status (C++ function), 1724
SDMMC_HOST_FLAG_1BIT (C macro), 1735
SDMMC_HOST_FLAG_4BIT (C macro), 1735
SDMMC_HOST_FLAG_8BIT (C macro), 1735
SDMMC_HOST_FLAG_DDR (C macro), 1735
SDMMC_HOST_FLAG_DEINIT_ARG (Cmacro), 1735
SDMMC_HOST_FLAG_SPI (C macro), 1735
sdmmc_host_t (C++ struct), 1732
sdmmc_host_t::command_timeout_ms (C++

member), 1733
sdmmc_host_t::deinit (C++ member), 1733
sdmmc_host_t::deinit_p (C++ member), 1733
sdmmc_host_t::do_transaction (C++ mem-

ber), 1733
sdmmc_host_t::flags (C++ member), 1732
sdmmc_host_t::get_bus_width (C++ mem-

ber), 1733
sdmmc_host_t::get_real_freq (C++ mem-

ber), 1733
sdmmc_host_t::init (C++ member), 1733

sdmmc_host_t::io_int_enable (C++ mem-
ber), 1733

sdmmc_host_t::io_int_wait (C++ member),
1733

sdmmc_host_t::io_voltage (C++ member),
1733

sdmmc_host_t::max_freq_khz (C++ member),
1733

sdmmc_host_t::set_bus_ddr_mode (C++
member), 1733

sdmmc_host_t::set_bus_width (C++ mem-
ber), 1733

sdmmc_host_t::set_card_clk (C++ member),
1733

sdmmc_host_t::set_cclk_always_on (C++
member), 1733

sdmmc_host_t::slot (C++ member), 1732
sdmmc_io_enable_int (C++ function), 1728
sdmmc_io_get_cis_data (C++ function), 1728
sdmmc_io_print_cis_info (C++ function),

1729
sdmmc_io_read_blocks (C++ function), 1727
sdmmc_io_read_byte (C++ function), 1726
sdmmc_io_read_bytes (C++ function), 1726
sdmmc_io_wait_int (C++ function), 1728
sdmmc_io_write_blocks (C++ function), 1727
sdmmc_io_write_byte (C++ function), 1726
sdmmc_io_write_bytes (C++ function), 1727
sdmmc_mmc_can_sanitize (C++ function), 1725
sdmmc_mmc_sanitize (C++ function), 1726
sdmmc_read_sectors (C++ function), 1725
sdmmc_response_t (C++ type), 1735
sdmmc_scr_t (C++ struct), 1730
sdmmc_scr_t::bus_width (C++ member), 1730
sdmmc_scr_t::erase_mem_state (C++ mem-

ber), 1730
sdmmc_scr_t::reserved (C++ member), 1730
sdmmc_scr_t::rsvd_mnf (C++ member), 1730
sdmmc_scr_t::sd_spec (C++ member), 1730
sdmmc_ssr_t (C++ struct), 1730
sdmmc_ssr_t::alloc_unit_kb (C++ member),

1731
sdmmc_ssr_t::cur_bus_width (C++ member),

1731
sdmmc_ssr_t::discard_support (C++ mem-

ber), 1731
sdmmc_ssr_t::erase_offset (C++ member),

1731
sdmmc_ssr_t::erase_size_au (C++ member),

1731
sdmmc_ssr_t::erase_timeout (C++ member),

1731
sdmmc_ssr_t::fule_support (C++ member),

1731
sdmmc_ssr_t::reserved (C++ member), 1731
sdmmc_switch_func_rsp_t (C++ struct), 1731
sdmmc_switch_func_rsp_t::data (C++

member), 1732

Espressif Systems 2811
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

sdmmc_write_sectors (C++ function), 1724
SDSPI_DEFAULT_DMA (C macro), 1142
SDSPI_DEFAULT_HOST (C macro), 1142
sdspi_dev_handle_t (C++ type), 1143
SDSPI_DEVICE_CONFIG_DEFAULT (C macro),

1143
sdspi_device_config_t (C++ struct), 1142
sdspi_device_config_t::gpio_cd (C++

member), 1142
sdspi_device_config_t::gpio_cs (C++

member), 1142
sdspi_device_config_t::gpio_int (C++

member), 1142
sdspi_device_config_t::gpio_wp (C++

member), 1142
sdspi_device_config_t::host_id (C++

member), 1142
SDSPI_HOST_DEFAULT (C macro), 1142
sdspi_host_deinit (C++ function), 1141
sdspi_host_do_transaction (C++ function),

1141
sdspi_host_get_real_freq (C++ function),

1141
sdspi_host_init (C++ function), 1140
sdspi_host_init_device (C++ function), 1140
sdspi_host_io_int_enable (C++ function),

1141
sdspi_host_io_int_wait (C++ function), 1142
sdspi_host_remove_device (C++ function),

1140
sdspi_host_set_card_clk (C++ function),

1141
SDSPI_SLOT_NO_CD (C macro), 1142
SDSPI_SLOT_NO_CS (C macro), 1142
SDSPI_SLOT_NO_INT (C macro), 1143
SDSPI_SLOT_NO_WP (C macro), 1143
SemaphoreHandle_t (C++ type), 1925
semBINARY_SEMAPHORE_QUEUE_LENGTH (C

macro), 1911
semGIVE_BLOCK_TIME (C macro), 1911
semSEMAPHORE_QUEUE_ITEM_LENGTH (C

macro), 1911
shared_stack_function (C++ type), 1780
shutdown_handler_t (C++ type), 2050
slave_cb_t (C++ type), 1224
slave_transaction_cb_t (C++ type), 1216
smartconfig_event_got_ssid_pswd_t

(C++ struct), 682
smartconfig_event_got_ssid_pswd_t::bssid

(C++ member), 682
smartconfig_event_got_ssid_pswd_t::bssid_set

(C++ member), 682
smartconfig_event_got_ssid_pswd_t::cellphone_ip

(C++ member), 682
smartconfig_event_got_ssid_pswd_t::password

(C++ member), 682
smartconfig_event_got_ssid_pswd_t::ssid

(C++ member), 682

smartconfig_event_got_ssid_pswd_t::token
(C++ member), 682

smartconfig_event_got_ssid_pswd_t::type
(C++ member), 682

smartconfig_event_t (C++ enum), 683
smartconfig_event_t::SC_EVENT_FOUND_CHANNEL

(C++ enumerator), 683
smartconfig_event_t::SC_EVENT_GOT_SSID_PSWD

(C++ enumerator), 683
smartconfig_event_t::SC_EVENT_SCAN_DONE

(C++ enumerator), 683
smartconfig_event_t::SC_EVENT_SEND_ACK_DONE

(C++ enumerator), 683
SMARTCONFIG_START_CONFIG_DEFAULT (C

macro), 683
smartconfig_start_config_t (C++ struct),

682
smartconfig_start_config_t::enable_log

(C++ member), 683
smartconfig_start_config_t::esp_touch_v2_enable_crypt

(C++ member), 683
smartconfig_start_config_t::esp_touch_v2_key

(C++ member), 683
smartconfig_type_t (C++ enum), 683
smartconfig_type_t::SC_TYPE_AIRKISS

(C++ enumerator), 683
smartconfig_type_t::SC_TYPE_ESPTOUCH

(C++ enumerator), 683
smartconfig_type_t::SC_TYPE_ESPTOUCH_AIRKISS

(C++ enumerator), 683
smartconfig_type_t::SC_TYPE_ESPTOUCH_V2

(C++ enumerator), 683
sntp_get_sync_interval (C++ function), 2125
sntp_get_sync_mode (C++ function), 2124
sntp_get_sync_status (C++ function), 2125
sntp_getoperatingmode (C++ function), 2126
sntp_getreachability (C++ function), 2126
sntp_getserver (C++ function), 2126
sntp_getservername (C++ function), 2126
sntp_init (C++ function), 2126
SNTP_OPMODE_POLL (C macro), 2127
sntp_restart (C++ function), 2125
sntp_servermode_dhcp (C++ function), 2126
sntp_set_sync_interval (C++ function), 2125
sntp_set_sync_mode (C++ function), 2124
sntp_set_sync_status (C++ function), 2125
sntp_set_time_sync_notification_cb

(C++ function), 2125
sntp_setoperatingmode (C++ function), 2126
sntp_setservername (C++ function), 2126
sntp_sync_mode_t (C++ enum), 2127
sntp_sync_mode_t::SNTP_SYNC_MODE_IMMED

(C++ enumerator), 2127
sntp_sync_mode_t::SNTP_SYNC_MODE_SMOOTH

(C++ enumerator), 2127
sntp_sync_status_t (C++ enum), 2127
sntp_sync_status_t::SNTP_SYNC_STATUS_COMPLETED

(C++ enumerator), 2127

Espressif Systems 2812
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

sntp_sync_status_t::SNTP_SYNC_STATUS_IN_PROGRESS
(C++ enumerator), 2127

sntp_sync_status_t::SNTP_SYNC_STATUS_RESET
(C++ enumerator), 2127

sntp_sync_time (C++ function), 2124
sntp_sync_time_cb_t (C++ type), 2127
SOC_ADC_ATTEN_NUM (C macro), 2107
SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED

(C macro), 2108
SOC_ADC_CALIBRATION_V1_SUPPORTED (C

macro), 2108
SOC_ADC_CHANNEL_NUM (C macro), 2107
SOC_ADC_DIG_CTRL_SUPPORTED (Cmacro), 2107
SOC_ADC_DIG_IIR_FILTER_SUPPORTED (C

macro), 2107
SOC_ADC_DIG_SUPPORTED_UNIT (Cmacro), 2107
SOC_ADC_DIGI_CLKS (C macro), 871
SOC_ADC_DIGI_CONTROLLER_NUM (C macro),

2107
SOC_ADC_DIGI_DATA_BYTES_PER_CONV (C

macro), 2108
SOC_ADC_DIGI_IIR_FILTER_NUM (C macro),

2107
SOC_ADC_DIGI_MAX_BITWIDTH (C macro), 2107
SOC_ADC_DIGI_MIN_BITWIDTH (C macro), 2107
SOC_ADC_DIGI_MONITOR_NUM (C macro), 2108
SOC_ADC_DIGI_RESULT_BYTES (C macro), 2108
SOC_ADC_DMA_SUPPORTED (C macro), 2107
SOC_ADC_MAX_CHANNEL_NUM (C macro), 2107
SOC_ADC_MONITOR_SUPPORTED (C macro), 2107
SOC_ADC_PATT_LEN_MAX (C macro), 2107
SOC_ADC_PERIPH_NUM (C macro), 2107
SOC_ADC_RTC_MAX_BITWIDTH (C macro), 2108
SOC_ADC_RTC_MIN_BITWIDTH (C macro), 2108
SOC_ADC_SAMPLE_FREQ_THRES_HIGH (C

macro), 2108
SOC_ADC_SAMPLE_FREQ_THRES_LOW (C macro),

2108
SOC_ADC_SELF_HW_CALI_SUPPORTED (C

macro), 2108
SOC_ADC_SUPPORTED (C macro), 2105
SOC_ADC_TEMPERATURE_SHARE_INTR (C

macro), 2108
SOC_AES_GDMA (C macro), 2107
SOC_AES_SUPPORT_AES_128 (C macro), 2107
SOC_AES_SUPPORT_AES_256 (C macro), 2107
SOC_AES_SUPPORT_DMA (C macro), 2107
SOC_AES_SUPPORTED (C macro), 2106
SOC_APB_BACKUP_DMA (C macro), 2108
SOC_APM_SUPPORTED (C macro), 2106
SOC_ASYNC_MEMCPY_SUPPORTED (Cmacro), 2105
SOC_BLE_50_SUPPORTED (C macro), 2120
SOC_BLE_DEVICE_PRIVACY_SUPPORTED (C

macro), 2120
SOC_BLE_MESH_SUPPORTED (C macro), 2120
SOC_BLE_MULTI_CONN_OPTIMIZATION (C

macro), 2121
SOC_BLE_PERIODIC_ADV_ENH_SUPPORTED (C

macro), 2121
SOC_BLE_PERIODIC_ADV_WITH_RESPONSE (C

macro), 2121
SOC_BLE_POWER_CONTROL_SUPPORTED (C

macro), 2121
SOC_BLE_SUPPORTED (C macro), 2120
SOC_BLE_USE_WIFI_PWR_CLK_WORKAROUND (C

macro), 2121
SOC_BLUFI_SUPPORTED (C macro), 2121
SOC_BOD_SUPPORTED (C macro), 2106
SOC_BROWNOUT_RESET_SUPPORTED (C macro),

2108
SOC_BT_SUPPORTED (C macro), 2105
SOC_CACHE_FREEZE_SUPPORTED (Cmacro), 2108
SOC_CAPS_NO_RESET_BY_ANA_BOD (C macro),

2121
SOC_CLK_OSC_SLOW_FREQ_APPROX (C macro),

870
SOC_CLK_OSC_SLOW_SUPPORTED (Cmacro), 2119
SOC_CLK_RC32K_FREQ_APPROX (C macro), 870
SOC_CLK_RC32K_SUPPORTED (C macro), 2120
SOC_CLK_RC_FAST_FREQ_APPROX (C macro),

870
SOC_CLK_RC_FAST_SUPPORT_CALIBRATION (C

macro), 2119
SOC_CLK_RC_SLOW_FREQ_APPROX (C macro),

870
SOC_CLK_XTAL32K_FREQ_APPROX (C macro),

870
SOC_CLK_XTAL32K_SUPPORTED (C macro), 2119
SOC_COEX_HW_PTI (C macro), 2118
SOC_CPU_BREAKPOINTS_NUM (C macro), 2108
soc_cpu_clk_src_t (C++ enum), 871
soc_cpu_clk_src_t::SOC_CPU_CLK_SRC_INVALID

(C++ enumerator), 872
soc_cpu_clk_src_t::SOC_CPU_CLK_SRC_PLL

(C++ enumerator), 872
soc_cpu_clk_src_t::SOC_CPU_CLK_SRC_RC_FAST

(C++ enumerator), 872
soc_cpu_clk_src_t::SOC_CPU_CLK_SRC_XTAL

(C++ enumerator), 872
SOC_CPU_CORES_NUM (C macro), 2108
SOC_CPU_HAS_FLEXIBLE_INTC (C macro), 2108
SOC_CPU_HAS_PMA (C macro), 2109
SOC_CPU_IDRAM_SPLIT_USING_PMP (C macro),

2109
SOC_CPU_INTR_NUM (C macro), 2108
SOC_CPU_WATCHPOINT_MAX_REGION_SIZE (C

macro), 2109
SOC_CPU_WATCHPOINTS_NUM (C macro), 2109
SOC_CRYPTO_DPA_PROTECTION_SUPPORTED (C

macro), 2117
SOC_DEDIC_GPIO_IN_CHANNELS_NUM (C

macro), 2110
SOC_DEDIC_GPIO_OUT_CHANNELS_NUM (C

macro), 2110
SOC_DEDIC_PERIPH_ALWAYS_ENABLE (C

macro), 2110

Espressif Systems 2813
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

SOC_DEDICATED_GPIO_SUPPORTED (C macro),
2105

SOC_DIG_SIGN_SUPPORTED (C macro), 2106
SOC_DS_KEY_CHECK_MAX_WAIT_US (C macro),

2109
SOC_DS_KEY_PARAM_MD_IV_LENGTH (C macro),

2109
SOC_DS_SIGNATURE_MAX_BIT_LEN (C macro),

2109
SOC_ECC_SUPPORTED (C macro), 2106
SOC_EFUSE_BLOCK9_KEY_PURPOSE_QUIRK (C

macro), 2117
SOC_EFUSE_DIS_DIRECT_BOOT (C macro), 2117
SOC_EFUSE_DIS_DOWNLOAD_ICACHE (C macro),

2117
SOC_EFUSE_DIS_ICACHE (C macro), 2117
SOC_EFUSE_DIS_PAD_JTAG (C macro), 2117
SOC_EFUSE_DIS_USB_JTAG (C macro), 2117
SOC_EFUSE_KEY_PURPOSE_FIELD (C macro),

2105
SOC_EFUSE_REVOKE_BOOT_KEY_DIGESTS (C

macro), 2117
SOC_EFUSE_SECURE_BOOT_KEY_DIGESTS (C

macro), 2117
SOC_EFUSE_SOFT_DIS_JTAG (C macro), 2117
SOC_ESP_NIMBLE_CONTROLLER (C macro), 2120
SOC_ETM_CHANNELS_PER_GROUP (Cmacro), 2109
SOC_ETM_GROUPS (C macro), 2109
SOC_ETM_SUPPORTED (C macro), 2105
SOC_EXTERNAL_COEX_ADVANCE (C macro), 2118
SOC_EXTERNAL_COEX_LEADER_TX_LINE (C

macro), 2118
SOC_FLASH_ENC_SUPPORTED (C macro), 2106
SOC_FLASH_ENCRYPTED_XTS_AES_BLOCK_MAX

(C macro), 2117
SOC_FLASH_ENCRYPTION_XTS_AES (C macro),

2117
SOC_FLASH_ENCRYPTION_XTS_AES_128 (C

macro), 2117
SOC_GDMA_GROUPS (C macro), 2109
SOC_GDMA_PAIRS_PER_GROUP (C macro), 2109
SOC_GDMA_SUPPORT_ETM (C macro), 2109
SOC_GDMA_SUPPORTED (C macro), 2105
SOC_GLITCH_FILTER_CLKS (C macro), 871
SOC_GPIO_DEEP_SLEEP_WAKE_VALID_GPIO_MASK

(C macro), 2110
SOC_GPIO_FLEX_GLITCH_FILTER_NUM (C

macro), 2109
SOC_GPIO_IN_RANGE_MAX (C macro), 2110
SOC_GPIO_OUT_RANGE_MAX (C macro), 2110
SOC_GPIO_PIN_COUNT (C macro), 2109
SOC_GPIO_PORT (C macro), 2109
SOC_GPIO_SUPPORT_DEEPSLEEP_WAKEUP (C

macro), 2109
SOC_GPIO_SUPPORT_ETM (C macro), 2109
SOC_GPIO_SUPPORT_FORCE_HOLD (C macro),

2110
SOC_GPIO_SUPPORT_HOLD_SINGLE_IO_IN_DSLP

(C macro), 2110
SOC_GPIO_SUPPORT_PIN_GLITCH_FILTER (C

macro), 2109
SOC_GPIO_SUPPORT_RTC_INDEPENDENT (C

macro), 2109
SOC_GPIO_VALID_DIGITAL_IO_PAD_MASK (C

macro), 2110
SOC_GPIO_VALID_GPIO_MASK (C macro), 2109
SOC_GPIO_VALID_OUTPUT_GPIO_MASK (C

macro), 2109
SOC_GPSPI_SUPPORTED (C macro), 2106
SOC_GPTIMER_CLKS (C macro), 870
SOC_GPTIMER_SUPPORTED (C macro), 2105
SOC_HMAC_SUPPORTED (C macro), 2106
SOC_I2C_CLKS (C macro), 870
SOC_I2C_CMD_REG_NUM (C macro), 2110
SOC_I2C_FIFO_LEN (C macro), 2110
SOC_I2C_NUM (C macro), 2110
SOC_I2C_SUPPORT_HW_CLR_BUS (Cmacro), 2110
SOC_I2C_SUPPORT_RTC (C macro), 2110
SOC_I2C_SUPPORT_SLAVE (C macro), 2110
SOC_I2C_SUPPORT_XTAL (C macro), 2110
SOC_I2C_SUPPORTED (C macro), 2106
SOC_I2S_CLKS (C macro), 870
SOC_I2S_HW_VERSION_2 (C macro), 2111
SOC_I2S_NUM (C macro), 2111
SOC_I2S_PDM_MAX_TX_LINES (C macro), 2111
SOC_I2S_SUPPORTED (C macro), 2106
SOC_I2S_SUPPORTS_PCM (C macro), 2111
SOC_I2S_SUPPORTS_PDM (C macro), 2111
SOC_I2S_SUPPORTS_PDM_TX (C macro), 2111
SOC_I2S_SUPPORTS_PLL_F160M (Cmacro), 2111
SOC_I2S_SUPPORTS_TDM (C macro), 2111
SOC_I2S_SUPPORTS_XTAL (C macro), 2111
SOC_IEEE802154_SUPPORTED (C macro), 2105
SOC_INT_PLIC_SUPPORTED (C macro), 2108
SOC_LEDC_CHANNEL_NUM (C macro), 2111
SOC_LEDC_CLKS (C macro), 871
SOC_LEDC_FADE_PARAMS_BIT_WIDTH (C

macro), 2111
SOC_LEDC_GAMMA_CURVE_FADE_RANGE_MAX (C

macro), 2111
SOC_LEDC_GAMMA_CURVE_FADE_SUPPORTED (C

macro), 2111
SOC_LEDC_SUPPORT_FADE_STOP (Cmacro), 2111
SOC_LEDC_SUPPORT_PLL_DIV_CLOCK (C

macro), 2111
SOC_LEDC_SUPPORT_XTAL_CLOCK (C macro),

2111
SOC_LEDC_SUPPORTED (C macro), 2106
SOC_LEDC_TIMER_BIT_WIDTH (C macro), 2111
SOC_LP_AON_SUPPORTED (C macro), 2107
SOC_LP_CORE_SUPPORTED (C macro), 2105
SOC_LP_I2C_CLKS (C macro), 870
SOC_LP_I2C_FIFO_LEN (C macro), 2111
SOC_LP_I2C_NUM (C macro), 2111
SOC_LP_I2C_SUPPORTED (C macro), 2107
SOC_LP_TIMER_BIT_WIDTH_HI (C macro), 2116

Espressif Systems 2814
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

SOC_LP_TIMER_BIT_WIDTH_LO (C macro), 2116
SOC_LP_TIMER_SUPPORTED (C macro), 2107
SOC_MCPWM_CAPTURE_CHANNELS_PER_TIMER

(C macro), 2113
SOC_MCPWM_CAPTURE_CLK_FROM_GROUP (C

macro), 2114
SOC_MCPWM_CAPTURE_CLKS (C macro), 870
SOC_MCPWM_CAPTURE_TIMERS_PER_GROUP (C

macro), 2113
SOC_MCPWM_CARRIER_CLKS (C macro), 870
SOC_MCPWM_COMPARATORS_PER_OPERATOR (C

macro), 2113
SOC_MCPWM_GENERATORS_PER_OPERATOR (C

macro), 2113
SOC_MCPWM_GPIO_FAULTS_PER_GROUP (C

macro), 2113
SOC_MCPWM_GPIO_SYNCHROS_PER_GROUP (C

macro), 2113
SOC_MCPWM_GROUPS (C macro), 2113
SOC_MCPWM_OPERATORS_PER_GROUP (C macro),

2113
SOC_MCPWM_SUPPORT_ETM (C macro), 2114
SOC_MCPWM_SUPPORTED (C macro), 2105
SOC_MCPWM_SWSYNC_CAN_PROPAGATE (C

macro), 2114
SOC_MCPWM_TIMER_CLKS (C macro), 870
SOC_MCPWM_TIMERS_PER_GROUP (Cmacro), 2113
SOC_MCPWM_TRIGGERS_PER_OPERATOR (C

macro), 2113
SOC_MEMSPI_IS_INDEPENDENT (C macro), 2115
SOC_MEMSPI_SRC_FREQ_20M_SUPPORTED (C

macro), 2116
SOC_MEMSPI_SRC_FREQ_40M_SUPPORTED (C

macro), 2116
SOC_MEMSPI_SRC_FREQ_80M_SUPPORTED (C

macro), 2116
SOC_MMU_DI_VADDR_SHARED (C macro), 2112
SOC_MMU_LINEAR_ADDRESS_REGION_NUM (C

macro), 2111
SOC_MMU_PAGE_SIZE_CONFIGURABLE (C

macro), 2111
SOC_MMU_PERIPH_NUM (C macro), 2111
SOC_MODEM_CLOCK_IS_INDEPENDENT (C

macro), 2119
soc_module_clk_t (C++ enum), 873
soc_module_clk_t::SOC_MOD_CLK_CPU

(C++ enumerator), 873
soc_module_clk_t::SOC_MOD_CLK_INVALID

(C++ enumerator), 874
soc_module_clk_t::SOC_MOD_CLK_PLL_F160M

(C++ enumerator), 873
soc_module_clk_t::SOC_MOD_CLK_PLL_F240M

(C++ enumerator), 873
soc_module_clk_t::SOC_MOD_CLK_PLL_F80M

(C++ enumerator), 873
soc_module_clk_t::SOC_MOD_CLK_RC_FAST

(C++ enumerator), 873
soc_module_clk_t::SOC_MOD_CLK_RTC_FAST

(C++ enumerator), 873
soc_module_clk_t::SOC_MOD_CLK_RTC_SLOW

(C++ enumerator), 873
soc_module_clk_t::SOC_MOD_CLK_XTAL

(C++ enumerator), 873
soc_module_clk_t::SOC_MOD_CLK_XTAL32K

(C++ enumerator), 873
soc_module_clk_t::SOC_MOD_CLK_XTAL_D2

(C++ enumerator), 873
SOC_MPI_SUPPORTED (C macro), 2106
SOC_MPU_CONFIGURABLE_REGIONS_SUPPORTED

(C macro), 2112
SOC_MPU_MIN_REGION_SIZE (C macro), 2112
SOC_MPU_REGION_RO_SUPPORTED (C macro),

2112
SOC_MPU_REGION_WO_SUPPORTED (C macro),

2112
SOC_MPU_REGIONS_MAX_NUM (C macro), 2112
SOC_MWDT_CLKS (C macro), 871
SOC_MWDT_SUPPORT_XTAL (C macro), 2116
SOC_PARLIO_CLKS (C macro), 871
SOC_PARLIO_GROUPS (C macro), 2114
SOC_PARLIO_RX_UNIT_MAX_DATA_WIDTH (C

macro), 2114
SOC_PARLIO_RX_UNITS_PER_GROUP (C macro),

2114
SOC_PARLIO_SUPPORTED (C macro), 2105
SOC_PARLIO_TX_RX_SHARE_INTERRUPT (C

macro), 2114
SOC_PARLIO_TX_UNIT_MAX_DATA_WIDTH (C

macro), 2114
SOC_PARLIO_TX_UNITS_PER_GROUP (C macro),

2114
SOC_PAU_SUPPORTED (C macro), 2106
SOC_PCNT_CHANNELS_PER_UNIT (Cmacro), 2112
SOC_PCNT_GROUPS (C macro), 2112
SOC_PCNT_SUPPORT_RUNTIME_THRES_UPDATE

(C macro), 2112
SOC_PCNT_SUPPORTED (C macro), 2105
SOC_PCNT_THRES_POINT_PER_UNIT (C macro),

2112
SOC_PCNT_UNITS_PER_GROUP (C macro), 2112
soc_periph_adc_digi_clk_src_t (C++

enum), 878
soc_periph_adc_digi_clk_src_t::ADC_DIGI_CLK_SRC_DEFAULT

(C++ enumerator), 879
soc_periph_adc_digi_clk_src_t::ADC_DIGI_CLK_SRC_PLL_F80M

(C++ enumerator), 879
soc_periph_adc_digi_clk_src_t::ADC_DIGI_CLK_SRC_RC_FAST

(C++ enumerator), 879
soc_periph_adc_digi_clk_src_t::ADC_DIGI_CLK_SRC_XTAL

(C++ enumerator), 878
soc_periph_glitch_filter_clk_src_t

(C++ enum), 878
soc_periph_glitch_filter_clk_src_t::GLITCH_FILTER_CLK_SRC_DEFAULT

(C++ enumerator), 878
soc_periph_glitch_filter_clk_src_t::GLITCH_FILTER_CLK_SRC_PLL_F80M

(C++ enumerator), 878

Espressif Systems 2815
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

soc_periph_glitch_filter_clk_src_t::GLITCH_FILTER_CLK_SRC_XTAL
(C++ enumerator), 878

soc_periph_gptimer_clk_src_t (C++ enum),
874

soc_periph_gptimer_clk_src_t::GPTIMER_CLK_SRC_DEFAULT
(C++ enumerator), 874

soc_periph_gptimer_clk_src_t::GPTIMER_CLK_SRC_PLL_F80M
(C++ enumerator), 874

soc_periph_gptimer_clk_src_t::GPTIMER_CLK_SRC_RC_FAST
(C++ enumerator), 874

soc_periph_gptimer_clk_src_t::GPTIMER_CLK_SRC_XTAL
(C++ enumerator), 874

soc_periph_i2c_clk_src_t (C++ enum), 877
soc_periph_i2c_clk_src_t::I2C_CLK_SRC_DEFAULT

(C++ enumerator), 877
soc_periph_i2c_clk_src_t::I2C_CLK_SRC_RC_FAST

(C++ enumerator), 877
soc_periph_i2c_clk_src_t::I2C_CLK_SRC_XTAL

(C++ enumerator), 877
soc_periph_i2s_clk_src_t (C++ enum), 876
soc_periph_i2s_clk_src_t::I2S_CLK_SRC_DEFAULT

(C++ enumerator), 877
soc_periph_i2s_clk_src_t::I2S_CLK_SRC_PLL_160M

(C++ enumerator), 877
soc_periph_i2s_clk_src_t::I2S_CLK_SRC_PLL_240M

(C++ enumerator), 877
soc_periph_i2s_clk_src_t::I2S_CLK_SRC_XTAL

(C++ enumerator), 877
soc_periph_ledc_clk_src_legacy_t (C++

enum), 879
soc_periph_ledc_clk_src_legacy_t::LEDC_AUTO_CLK

(C++ enumerator), 879
soc_periph_ledc_clk_src_legacy_t::LEDC_USE_PLL_DIV_CLK

(C++ enumerator), 879
soc_periph_ledc_clk_src_legacy_t::LEDC_USE_RC_FAST_CLK

(C++ enumerator), 879
soc_periph_ledc_clk_src_legacy_t::LEDC_USE_RTC8M_CLK

(C++ enumerator), 879
soc_periph_ledc_clk_src_legacy_t::LEDC_USE_XTAL_CLK

(C++ enumerator), 879
soc_periph_lp_i2c_clk_src_t (C++ enum),

877
soc_periph_lp_i2c_clk_src_t::LP_I2C_SCLK_DEFAULT

(C++ enumerator), 877
soc_periph_lp_i2c_clk_src_t::LP_I2C_SCLK_LP_FAST

(C++ enumerator), 877
soc_periph_lp_i2c_clk_src_t::LP_I2C_SCLK_XTAL_D2

(C++ enumerator), 877
soc_periph_mcpwm_capture_clk_src_t

(C++ enum), 876
soc_periph_mcpwm_capture_clk_src_t::MCPWM_CAPTURE_CLK_SRC_DEFAULT

(C++ enumerator), 876
soc_periph_mcpwm_capture_clk_src_t::MCPWM_CAPTURE_CLK_SRC_PLL160M

(C++ enumerator), 876
soc_periph_mcpwm_capture_clk_src_t::MCPWM_CAPTURE_CLK_SRC_XTAL

(C++ enumerator), 876
soc_periph_mcpwm_carrier_clk_src_t

(C++ enum), 876

soc_periph_mcpwm_carrier_clk_src_t::MCPWM_CARRIER_CLK_SRC_DEFAULT
(C++ enumerator), 876

soc_periph_mcpwm_carrier_clk_src_t::MCPWM_CARRIER_CLK_SRC_PLL160M
(C++ enumerator), 876

soc_periph_mcpwm_carrier_clk_src_t::MCPWM_CARRIER_CLK_SRC_XTAL
(C++ enumerator), 876

soc_periph_mcpwm_timer_clk_src_t (C++
enum), 876

soc_periph_mcpwm_timer_clk_src_t::MCPWM_TIMER_CLK_SRC_DEFAULT
(C++ enumerator), 876

soc_periph_mcpwm_timer_clk_src_t::MCPWM_TIMER_CLK_SRC_PLL160M
(C++ enumerator), 876

soc_periph_mcpwm_timer_clk_src_t::MCPWM_TIMER_CLK_SRC_XTAL
(C++ enumerator), 876

soc_periph_mwdt_clk_src_t (C++ enum), 879
soc_periph_mwdt_clk_src_t::MWDT_CLK_SRC_DEFAULT

(C++ enumerator), 879
soc_periph_mwdt_clk_src_t::MWDT_CLK_SRC_PLL_F80M

(C++ enumerator), 879
soc_periph_mwdt_clk_src_t::MWDT_CLK_SRC_RC_FAST

(C++ enumerator), 879
soc_periph_mwdt_clk_src_t::MWDT_CLK_SRC_XTAL

(C++ enumerator), 879
soc_periph_parlio_clk_src_t (C++ enum),

879
soc_periph_parlio_clk_src_t::PARLIO_CLK_SRC_DEFAULT

(C++ enumerator), 880
soc_periph_parlio_clk_src_t::PARLIO_CLK_SRC_PLL_F240M

(C++ enumerator), 880
soc_periph_parlio_clk_src_t::PARLIO_CLK_SRC_XTAL

(C++ enumerator), 880
soc_periph_rmt_clk_src_legacy_t (C++

enum), 875
soc_periph_rmt_clk_src_legacy_t::RMT_BASECLK_DEFAULT

(C++ enumerator), 875
soc_periph_rmt_clk_src_legacy_t::RMT_BASECLK_PLL_F80M

(C++ enumerator), 875
soc_periph_rmt_clk_src_legacy_t::RMT_BASECLK_XTAL

(C++ enumerator), 875
soc_periph_rmt_clk_src_t (C++ enum), 874
soc_periph_rmt_clk_src_t::RMT_CLK_SRC_DEFAULT

(C++ enumerator), 875
soc_periph_rmt_clk_src_t::RMT_CLK_SRC_PLL_F80M

(C++ enumerator), 875
soc_periph_rmt_clk_src_t::RMT_CLK_SRC_RC_FAST

(C++ enumerator), 875
soc_periph_rmt_clk_src_t::RMT_CLK_SRC_XTAL

(C++ enumerator), 875
soc_periph_sdm_clk_src_t (C++ enum), 878
soc_periph_sdm_clk_src_t::SDM_CLK_SRC_DEFAULT

(C++ enumerator), 878
soc_periph_sdm_clk_src_t::SDM_CLK_SRC_PLL_F80M

(C++ enumerator), 878
soc_periph_sdm_clk_src_t::SDM_CLK_SRC_XTAL

(C++ enumerator), 878
soc_periph_spi_clk_src_t (C++ enum), 877
soc_periph_spi_clk_src_t::SPI_CLK_SRC_DEFAULT

(C++ enumerator), 877

Espressif Systems 2816
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

soc_periph_spi_clk_src_t::SPI_CLK_SRC_PLL_F80M
(C++ enumerator), 877

soc_periph_spi_clk_src_t::SPI_CLK_SRC_RC_FAST
(C++ enumerator), 878

soc_periph_spi_clk_src_t::SPI_CLK_SRC_XTAL
(C++ enumerator), 878

soc_periph_systimer_clk_src_t (C++
enum), 874

soc_periph_systimer_clk_src_t::SYSTIMER_CLK_SRC_DEFAULT
(C++ enumerator), 874

soc_periph_systimer_clk_src_t::SYSTIMER_CLK_SRC_RC_FAST
(C++ enumerator), 874

soc_periph_systimer_clk_src_t::SYSTIMER_CLK_SRC_XTAL
(C++ enumerator), 874

soc_periph_temperature_sensor_clk_src_t
(C++ enum), 875

soc_periph_temperature_sensor_clk_src_t::TEMPERATURE_SENSOR_CLK_SRC_DEFAULT
(C++ enumerator), 875

soc_periph_temperature_sensor_clk_src_t::TEMPERATURE_SENSOR_CLK_SRC_RC_FAST
(C++ enumerator), 875

soc_periph_temperature_sensor_clk_src_t::TEMPERATURE_SENSOR_CLK_SRC_XTAL
(C++ enumerator), 875

soc_periph_tg_clk_src_legacy_t (C++
enum), 874

soc_periph_tg_clk_src_legacy_t::TIMER_SRC_CLK_DEFAULT
(C++ enumerator), 874

soc_periph_tg_clk_src_legacy_t::TIMER_SRC_CLK_PLL_F80M
(C++ enumerator), 874

soc_periph_tg_clk_src_legacy_t::TIMER_SRC_CLK_XTAL
(C++ enumerator), 874

soc_periph_twai_clk_src_t (C++ enum), 878
soc_periph_twai_clk_src_t::TWAI_CLK_SRC_DEFAULT

(C++ enumerator), 878
soc_periph_twai_clk_src_t::TWAI_CLK_SRC_XTAL

(C++ enumerator), 878
soc_periph_uart_clk_src_legacy_t (C++

enum), 875
soc_periph_uart_clk_src_legacy_t::UART_SCLK_DEFAULT

(C++ enumerator), 876
soc_periph_uart_clk_src_legacy_t::UART_SCLK_PLL_F80M

(C++ enumerator), 875
soc_periph_uart_clk_src_legacy_t::UART_SCLK_RTC

(C++ enumerator), 875
soc_periph_uart_clk_src_legacy_t::UART_SCLK_XTAL

(C++ enumerator), 876
SOC_PHY_COMBO_MODULE (C macro), 2121
SOC_PHY_DIG_REGS_MEM_SIZE (C macro), 2118
SOC_PM_CPU_RETENTION_BY_SW (Cmacro), 2119
SOC_PM_MODEM_RETENTION_BY_REGDMA (C

macro), 2119
SOC_PM_MODEM_RF_FLAG_UPDATE_WORKAROUND

(C macro), 2119
SOC_PM_PAU_LINK_NUM (C macro), 2119
SOC_PM_PAU_REGDMA_UPDATE_CACHE_BEFORE_WAIT_COMPARE

(C macro), 2119
SOC_PM_PMU_MIN_SLP_SLOW_CLK_CYCLE_FIXED

(C macro), 2119
SOC_PM_RETENTION_HAS_CLOCK_BUG (C

macro), 2119
SOC_PM_SUPPORT_BEACON_WAKEUP (C macro),

2118
SOC_PM_SUPPORT_BT_WAKEUP (C macro), 2118
SOC_PM_SUPPORT_CPU_PD (C macro), 2118
SOC_PM_SUPPORT_DEEPSLEEP_CHECK_STUB_ONLY

(C macro), 2119
SOC_PM_SUPPORT_EXT1_WAKEUP (Cmacro), 2118
SOC_PM_SUPPORT_EXT1_WAKEUP_MODE_PER_PIN

(C macro), 2118
SOC_PM_SUPPORT_HP_AON_PD (C macro), 2119
SOC_PM_SUPPORT_MAC_BB_PD (C macro), 2119
SOC_PM_SUPPORT_MODEM_PD (C macro), 2118
SOC_PM_SUPPORT_PMU_MODEM_STATE (C

macro), 2119
SOC_PM_SUPPORT_RC32K_PD (C macro), 2119
SOC_PM_SUPPORT_RC_FAST_PD (C macro), 2119
SOC_PM_SUPPORT_RTC_PERIPH_PD (C macro),

2119
SOC_PM_SUPPORT_TOP_PD (C macro), 2119
SOC_PM_SUPPORT_VDDSDIO_PD (C macro), 2119
SOC_PM_SUPPORT_WIFI_WAKEUP (Cmacro), 2118
SOC_PM_SUPPORT_XTAL32K_PD (C macro), 2119
SOC_PMU_SUPPORTED (C macro), 2106
SOC_RMT_CHANNELS_PER_GROUP (Cmacro), 2112
SOC_RMT_CLKS (C macro), 870
SOC_RMT_GROUPS (C macro), 2112
SOC_RMT_MEM_WORDS_PER_CHANNEL (C macro),

2112
SOC_RMT_RX_CANDIDATES_PER_GROUP (C

macro), 2112
SOC_RMT_SUPPORT_ASYNC_STOP (Cmacro), 2112
SOC_RMT_SUPPORT_RC_FAST (C macro), 2113
SOC_RMT_SUPPORT_RX_DEMODULATION (C

macro), 2112
SOC_RMT_SUPPORT_RX_PINGPONG (C macro),

2112
SOC_RMT_SUPPORT_TX_CARRIER_DATA_ONLY

(C macro), 2113
SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP (C

macro), 2113
SOC_RMT_SUPPORT_TX_LOOP_COUNT (C macro),

2113
SOC_RMT_SUPPORT_TX_SYNCHRO (Cmacro), 2113
SOC_RMT_SUPPORT_XTAL (C macro), 2113
SOC_RMT_SUPPORTED (C macro), 2106
SOC_RMT_TX_CANDIDATES_PER_GROUP (C

macro), 2112
soc_root_clk_t (C++ enum), 871
soc_root_clk_t::SOC_ROOT_CLK_EXT_OSC_SLOW

(C++ enumerator), 871
soc_root_clk_t::SOC_ROOT_CLK_EXT_XTAL

(C++ enumerator), 871
soc_root_clk_t::SOC_ROOT_CLK_EXT_XTAL32K

(C++ enumerator), 871
soc_root_clk_t::SOC_ROOT_CLK_INT_RC32K

(C++ enumerator), 871
soc_root_clk_t::SOC_ROOT_CLK_INT_RC_FAST

Espressif Systems 2817
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 871
soc_root_clk_t::SOC_ROOT_CLK_INT_RC_SLOW

(C++ enumerator), 871
SOC_RSA_MAX_BIT_LEN (C macro), 2114
soc_rtc_fast_clk_src_t (C++ enum), 872
soc_rtc_fast_clk_src_t::SOC_RTC_FAST_CLK_SRC_INVALID

(C++ enumerator), 873
soc_rtc_fast_clk_src_t::SOC_RTC_FAST_CLK_SRC_RC_FAST

(C++ enumerator), 872
soc_rtc_fast_clk_src_t::SOC_RTC_FAST_CLK_SRC_XTAL_D2

(C++ enumerator), 873
soc_rtc_fast_clk_src_t::SOC_RTC_FAST_CLK_SRC_XTAL_DIV

(C++ enumerator), 873
SOC_RTC_FAST_MEM_SUPPORTED (Cmacro), 2106
SOC_RTC_MEM_SUPPORTED (C macro), 2106
soc_rtc_slow_clk_src_t (C++ enum), 872
soc_rtc_slow_clk_src_t::SOC_RTC_SLOW_CLK_SRC_INVALID

(C++ enumerator), 872
soc_rtc_slow_clk_src_t::SOC_RTC_SLOW_CLK_SRC_OSC_SLOW

(C++ enumerator), 872
soc_rtc_slow_clk_src_t::SOC_RTC_SLOW_CLK_SRC_RC32K

(C++ enumerator), 872
soc_rtc_slow_clk_src_t::SOC_RTC_SLOW_CLK_SRC_RC_SLOW

(C++ enumerator), 872
soc_rtc_slow_clk_src_t::SOC_RTC_SLOW_CLK_SRC_XTAL32K

(C++ enumerator), 872
SOC_RTCIO_HOLD_SUPPORTED (C macro), 2110
SOC_RTCIO_INPUT_OUTPUT_SUPPORTED (C

macro), 2110
SOC_RTCIO_PIN_COUNT (C macro), 2110
SOC_RTCIO_WAKE_SUPPORTED (C macro), 2110
SOC_SDIO_SLAVE_SUPPORTED (C macro), 2106
SOC_SDM_CHANNELS_PER_GROUP (Cmacro), 2114
SOC_SDM_CLK_SUPPORT_PLL_F80M (C macro),

2115
SOC_SDM_CLK_SUPPORT_XTAL (C macro), 2115
SOC_SDM_CLKS (C macro), 871
SOC_SDM_GROUPS (C macro), 2114
SOC_SDM_SUPPORTED (C macro), 2106
SOC_SECURE_BOOT_SUPPORTED (C macro), 2106
SOC_SECURE_BOOT_V2_ECC (C macro), 2117
SOC_SECURE_BOOT_V2_RSA (C macro), 2117
SOC_SHA_DMA_MAX_BUFFER_SIZE (C macro),

2114
SOC_SHA_GDMA (C macro), 2114
SOC_SHA_SUPPORT_DMA (C macro), 2114
SOC_SHA_SUPPORT_RESUME (C macro), 2114
SOC_SHA_SUPPORT_SHA1 (C macro), 2114
SOC_SHA_SUPPORT_SHA224 (C macro), 2114
SOC_SHA_SUPPORT_SHA256 (C macro), 2114
SOC_SHA_SUPPORTED (C macro), 2106
SOC_SHARED_IDCACHE_SUPPORTED (C macro),

2108
SOC_SPI_CLKS (C macro), 870
SOC_SPI_MAX_CS_NUM (C macro), 2115
SOC_SPI_MAX_PRE_DIVIDER (C macro), 2115
SOC_SPI_MAXIMUM_BUFFER_SIZE (C macro),

2115

SOC_SPI_MEM_SUPPORT_AUTO_RESUME (C
macro), 2115

SOC_SPI_MEM_SUPPORT_AUTO_SUSPEND (C
macro), 2115

SOC_SPI_MEM_SUPPORT_AUTO_WAIT_IDLE (C
macro), 2115

SOC_SPI_MEM_SUPPORT_CHECK_SUS (C macro),
2115

SOC_SPI_MEM_SUPPORT_IDLE_INTR (C macro),
2115

SOC_SPI_MEM_SUPPORT_SW_SUSPEND (C
macro), 2115

SOC_SPI_MEM_SUPPORT_WRAP (C macro), 2116
SOC_SPI_PERIPH_CS_NUM (C macro), 2115
SOC_SPI_PERIPH_NUM (C macro), 2115
SOC_SPI_PERIPH_SUPPORT_MULTILINE_MODE

(C macro), 2115
SOC_SPI_SLAVE_SUPPORT_SEG_TRANS (C

macro), 2115
SOC_SPI_SUPPORT_CD_SIG (C macro), 2115
SOC_SPI_SUPPORT_CLK_PLL_F80M (C macro),

2115
SOC_SPI_SUPPORT_CLK_RC_FAST (C macro),

2115
SOC_SPI_SUPPORT_CLK_XTAL (C macro), 2115
SOC_SPI_SUPPORT_CONTINUOUS_TRANS (C

macro), 2115
SOC_SPI_SUPPORT_DDRCLK (C macro), 2115
SOC_SPI_SUPPORT_SLAVE_HD_VER2 (C macro),

2115
SOC_SUPPORT_COEXISTENCE (C macro), 2106
SOC_SUPPORT_SECURE_BOOT_REVOKE_KEY (C

macro), 2117
SOC_SUPPORTS_SECURE_DL_MODE (C macro),

2105
SOC_SYSTIMER_ALARM_MISS_COMPENSATE (C

macro), 2116
SOC_SYSTIMER_ALARM_NUM (C macro), 2116
SOC_SYSTIMER_BIT_WIDTH_HI (C macro), 2116
SOC_SYSTIMER_BIT_WIDTH_LO (C macro), 2116
SOC_SYSTIMER_COUNTER_NUM (C macro), 2116
SOC_SYSTIMER_FIXED_DIVIDER (Cmacro), 2116
SOC_SYSTIMER_INT_LEVEL (C macro), 2116
SOC_SYSTIMER_SUPPORT_ETM (C macro), 2116
SOC_SYSTIMER_SUPPORT_RC_FAST (C macro),

2116
SOC_SYSTIMER_SUPPORTED (C macro), 2106
SOC_TEMP_SENSOR_CLKS (C macro), 870
SOC_TEMP_SENSOR_SUPPORTED (C macro), 2105
SOC_TEMPERATURE_SENSOR_INTR_SUPPORT (C

macro), 2120
SOC_TEMPERATURE_SENSOR_SUPPORT_FAST_RC

(C macro), 2120
SOC_TEMPERATURE_SENSOR_SUPPORT_XTAL (C

macro), 2120
SOC_TIMER_GROUP_COUNTER_BIT_WIDTH (C

macro), 2116
SOC_TIMER_GROUP_SUPPORT_RC_FAST (C

Espressif Systems 2818
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

macro), 2116
SOC_TIMER_GROUP_SUPPORT_XTAL (C macro),

2116
SOC_TIMER_GROUP_TIMERS_PER_GROUP (C

macro), 2116
SOC_TIMER_GROUP_TOTAL_TIMERS (C macro),

2116
SOC_TIMER_GROUPS (C macro), 2116
SOC_TIMER_SUPPORT_ETM (C macro), 2116
SOC_TWAI_BRP_MAX (C macro), 2117
SOC_TWAI_BRP_MIN (C macro), 2117
SOC_TWAI_CLK_SUPPORT_XTAL (C macro), 2117
SOC_TWAI_CLKS (C macro), 871
SOC_TWAI_CONTROLLER_NUM (C macro), 2117
SOC_TWAI_SUPPORTED (C macro), 2105
SOC_TWAI_SUPPORTS_RX_STATUS (C macro),

2117
SOC_UART_BITRATE_MAX (C macro), 2118
SOC_UART_FIFO_LEN (C macro), 2117
SOC_UART_NUM (C macro), 2117
SOC_UART_SUPPORT_FSM_TX_WAIT_SEND (C

macro), 2118
SOC_UART_SUPPORT_PLL_F80M_CLK (C macro),

2118
SOC_UART_SUPPORT_RTC_CLK (C macro), 2118
SOC_UART_SUPPORT_WAKEUP_INT (C macro),

2118
SOC_UART_SUPPORT_XTAL_CLK (C macro), 2118
SOC_UART_SUPPORTED (C macro), 2105
SOC_UHCI_NUM (C macro), 2118
SOC_UHCI_SUPPORTED (C macro), 2105
SOC_ULP_SUPPORTED (C macro), 2105
SOC_USB_SERIAL_JTAG_SUPPORTED (C macro),

2105
SOC_WIFI_CSI_SUPPORT (C macro), 2120
SOC_WIFI_FTM_SUPPORT (C macro), 2120
SOC_WIFI_GCMP_SUPPORT (C macro), 2120
SOC_WIFI_HE_SUPPORT (C macro), 2120
SOC_WIFI_HW_TSF (C macro), 2120
SOC_WIFI_LIGHT_SLEEP_CLK_WIDTH (C

macro), 2118
SOC_WIFI_MESH_SUPPORT (C macro), 2120
SOC_WIFI_SUPPORTED (C macro), 2105
SOC_WIFI_TXOP_SUPPORT (C macro), 2120
SOC_WIFI_WAPI_SUPPORT (C macro), 2120
SOC_XTAL_SUPPORT_40M (C macro), 2107
spi_bus_add_device (C++ function), 1201
spi_bus_add_flash_device (C++ function),

1167
spi_bus_config_t (C++ struct), 1197
spi_bus_config_t::data0_io_num (C++

member), 1198
spi_bus_config_t::data1_io_num (C++

member), 1198
spi_bus_config_t::data2_io_num (C++

member), 1198
spi_bus_config_t::data3_io_num (C++

member), 1198

spi_bus_config_t::data4_io_num (C++
member), 1198

spi_bus_config_t::data5_io_num (C++
member), 1198

spi_bus_config_t::data6_io_num (C++
member), 1198

spi_bus_config_t::data7_io_num (C++
member), 1198

spi_bus_config_t::flags (C++ member),
1199

spi_bus_config_t::intr_flags (C++ mem-
ber), 1199

spi_bus_config_t::isr_cpu_id (C++ mem-
ber), 1199

spi_bus_config_t::max_transfer_sz
(C++ member), 1198

spi_bus_config_t::miso_io_num (C++
member), 1198

spi_bus_config_t::mosi_io_num (C++
member), 1198

spi_bus_config_t::quadhd_io_num (C++
member), 1198

spi_bus_config_t::quadwp_io_num (C++
member), 1198

spi_bus_config_t::sclk_io_num (C++
member), 1198

spi_bus_free (C++ function), 1197
spi_bus_get_max_transaction_len (C++

function), 1204
spi_bus_initialize (C++ function), 1197
spi_bus_remove_device (C++ function), 1201
spi_bus_remove_flash_device (C++ func-

tion), 1167
spi_clock_source_t (C++ type), 1195
spi_command_t (C++ enum), 1196
spi_command_t::SPI_CMD_HD_EN_QPI (C++

enumerator), 1196
spi_command_t::SPI_CMD_HD_INT0 (C++

enumerator), 1196
spi_command_t::SPI_CMD_HD_INT1 (C++

enumerator), 1196
spi_command_t::SPI_CMD_HD_INT2 (C++

enumerator), 1196
spi_command_t::SPI_CMD_HD_RDBUF (C++

enumerator), 1196
spi_command_t::SPI_CMD_HD_RDDMA (C++

enumerator), 1196
spi_command_t::SPI_CMD_HD_SEG_END

(C++ enumerator), 1196
spi_command_t::SPI_CMD_HD_WR_END (C++

enumerator), 1196
spi_command_t::SPI_CMD_HD_WRBUF (C++

enumerator), 1196
spi_command_t::SPI_CMD_HD_WRDMA (C++

enumerator), 1196
spi_common_dma_t (C++ enum), 1200
spi_common_dma_t::SPI_DMA_CH_AUTO

(C++ enumerator), 1200

Espressif Systems 2819
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

spi_common_dma_t::SPI_DMA_DISABLED
(C++ enumerator), 1200

SPI_DEVICE_3WIRE (C macro), 1208
spi_device_acquire_bus (C++ function), 1203
SPI_DEVICE_BIT_LSBFIRST (C macro), 1208
SPI_DEVICE_CLK_AS_CS (C macro), 1208
SPI_DEVICE_DDRCLK (C macro), 1209
spi_device_get_actual_freq (C++ function),

1204
spi_device_get_trans_result (C++ func-

tion), 1202
SPI_DEVICE_HALFDUPLEX (C macro), 1208
spi_device_handle_t (C++ type), 1210
spi_device_interface_config_t (C++

struct), 1205
spi_device_interface_config_t::address_bits

(C++ member), 1205
spi_device_interface_config_t::clock_source

(C++ member), 1205
spi_device_interface_config_t::clock_speed_hz

(C++ member), 1205
spi_device_interface_config_t::command_bits

(C++ member), 1205
spi_device_interface_config_t::cs_ena_posttrans

(C++ member), 1205
spi_device_interface_config_t::cs_ena_pretrans

(C++ member), 1205
spi_device_interface_config_t::dummy_bits

(C++ member), 1205
spi_device_interface_config_t::duty_cycle_pos

(C++ member), 1205
spi_device_interface_config_t::flags

(C++ member), 1206
spi_device_interface_config_t::input_delay_ns

(C++ member), 1205
spi_device_interface_config_t::mode

(C++ member), 1205
spi_device_interface_config_t::post_cb

(C++ member), 1206
spi_device_interface_config_t::pre_cb

(C++ member), 1206
spi_device_interface_config_t::queue_size

(C++ member), 1206
spi_device_interface_config_t::sample_point

(C++ member), 1206
spi_device_interface_config_t::spics_io_num

(C++ member), 1206
SPI_DEVICE_NO_DUMMY (C macro), 1208
SPI_DEVICE_NO_RETURN_RESULT (C macro),

1209
spi_device_polling_end (C++ function), 1203
spi_device_polling_start (C++ function),

1202
spi_device_polling_transmit (C++ func-

tion), 1203
SPI_DEVICE_POSITIVE_CS (C macro), 1208
spi_device_queue_trans (C++ function), 1201
spi_device_release_bus (C++ function), 1204

SPI_DEVICE_RXBIT_LSBFIRST (C macro), 1208
spi_device_transmit (C++ function), 1202
SPI_DEVICE_TXBIT_LSBFIRST (C macro), 1208
spi_dma_chan_t (C++ type), 1200
spi_event_t (C++ enum), 1195
spi_event_t::SPI_EV_BUF_RX (C++ enumera-

tor), 1195
spi_event_t::SPI_EV_BUF_TX (C++ enumera-

tor), 1195
spi_event_t::SPI_EV_CMD9 (C++ enumerator),

1196
spi_event_t::SPI_EV_CMDA (C++ enumerator),

1196
spi_event_t::SPI_EV_RECV (C++ enumerator),

1195
spi_event_t::SPI_EV_RECV_DMA_READY

(C++ enumerator), 1195
spi_event_t::SPI_EV_SEND (C++ enumerator),

1195
spi_event_t::SPI_EV_SEND_DMA_READY

(C++ enumerator), 1195
spi_event_t::SPI_EV_TRANS (C++ enumera-

tor), 1196
spi_flash_cache2phys (C++ function), 1177
SPI_FLASH_CACHE2PHYS_FAIL (C macro), 1178
spi_flash_chip_t (C++ type), 1176
SPI_FLASH_CONFIG_CONF_BITS (Cmacro), 1182
spi_flash_encryption_t (C++ struct), 1179
spi_flash_encryption_t::flash_encryption_check

(C++ member), 1180
spi_flash_encryption_t::flash_encryption_data_prepare

(C++ member), 1180
spi_flash_encryption_t::flash_encryption_destroy

(C++ member), 1180
spi_flash_encryption_t::flash_encryption_disable

(C++ member), 1180
spi_flash_encryption_t::flash_encryption_done

(C++ member), 1180
spi_flash_encryption_t::flash_encryption_enable

(C++ member), 1180
spi_flash_host_driver_s (C++ struct), 1180
spi_flash_host_driver_s::check_suspend

(C++ member), 1182
spi_flash_host_driver_s::common_command

(C++ member), 1180
spi_flash_host_driver_s::configure_host_io_mode

(C++ member), 1182
spi_flash_host_driver_s::dev_config

(C++ member), 1180
spi_flash_host_driver_s::erase_block

(C++ member), 1181
spi_flash_host_driver_s::erase_chip

(C++ member), 1181
spi_flash_host_driver_s::erase_sector

(C++ member), 1181
spi_flash_host_driver_s::flush_cache

(C++ member), 1182
spi_flash_host_driver_s::host_status

Espressif Systems 2820
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 1181
spi_flash_host_driver_s::poll_cmd_done

(C++ member), 1182
spi_flash_host_driver_s::program_page

(C++ member), 1181
spi_flash_host_driver_s::read (C++

member), 1181
spi_flash_host_driver_s::read_data_slicer

(C++ member), 1181
spi_flash_host_driver_s::read_id (C++

member), 1180
spi_flash_host_driver_s::read_status

(C++ member), 1181
spi_flash_host_driver_s::resume (C++

member), 1182
spi_flash_host_driver_s::set_write_protect

(C++ member), 1181
spi_flash_host_driver_s::supports_direct_read

(C++ member), 1181
spi_flash_host_driver_s::supports_direct_write

(C++ member), 1181
spi_flash_host_driver_s::sus_setup

(C++ member), 1182
spi_flash_host_driver_s::suspend (C++

member), 1182
spi_flash_host_driver_s::write_data_slicer

(C++ member), 1181
spi_flash_host_driver_t (C++ type), 1183
spi_flash_host_inst_t (C++ struct), 1180
spi_flash_host_inst_t::driver (C++

member), 1180
spi_flash_mmap (C++ function), 1176
spi_flash_mmap_dump (C++ function), 1176
spi_flash_mmap_get_free_pages (C++ func-

tion), 1177
spi_flash_mmap_handle_t (C++ type), 1178
spi_flash_mmap_memory_t (C++ enum), 1178
spi_flash_mmap_memory_t::SPI_FLASH_MMAP_DATA

(C++ enumerator), 1178
spi_flash_mmap_memory_t::SPI_FLASH_MMAP_INST

(C++ enumerator), 1178
spi_flash_mmap_pages (C++ function), 1176
SPI_FLASH_MMU_PAGE_SIZE (C macro), 1178
spi_flash_munmap (C++ function), 1176
SPI_FLASH_OPI_FLAG (C macro), 1182
SPI_FLASH_OS_IS_ERASING_STATUS_FLAG (C

macro), 1175
spi_flash_phys2cache (C++ function), 1177
SPI_FLASH_READ_MODE_MIN (C macro), 1182
SPI_FLASH_SEC_SIZE (C macro), 1178
spi_flash_sus_cmd_conf (C++ struct), 1179
spi_flash_sus_cmd_conf::cmd_rdsr (C++

member), 1179
spi_flash_sus_cmd_conf::res_cmd (C++

member), 1179
spi_flash_sus_cmd_conf::reserved (C++

member), 1179
spi_flash_sus_cmd_conf::sus_cmd (C++

member), 1179
spi_flash_sus_cmd_conf::sus_mask (C++

member), 1179
SPI_FLASH_TRANS_FLAG_BYTE_SWAP (C

macro), 1182
SPI_FLASH_TRANS_FLAG_CMD16 (Cmacro), 1182
SPI_FLASH_TRANS_FLAG_IGNORE_BASEIO (C

macro), 1182
spi_flash_trans_t (C++ struct), 1178
spi_flash_trans_t::address (C++ member),

1179
spi_flash_trans_t::address_bitlen

(C++ member), 1178
spi_flash_trans_t::command (C++ member),

1179
spi_flash_trans_t::dummy_bitlen (C++

member), 1179
spi_flash_trans_t::flags (C++ member),

1179
spi_flash_trans_t::io_mode (C++ member),

1179
spi_flash_trans_t::miso_data (C++ mem-

ber), 1179
spi_flash_trans_t::miso_len (C++ mem-

ber), 1178
spi_flash_trans_t::mosi_data (C++ mem-

ber), 1179
spi_flash_trans_t::mosi_len (C++ mem-

ber), 1178
spi_flash_trans_t::reserved (C++ mem-

ber), 1178
SPI_FLASH_YIELD_REQ_SUSPEND (C macro),

1175
SPI_FLASH_YIELD_REQ_YIELD (C macro), 1175
SPI_FLASH_YIELD_STA_RESUME (Cmacro), 1175
spi_get_actual_clock (C++ function), 1204
spi_get_freq_limit (C++ function), 1204
spi_get_timing (C++ function), 1204
spi_host_device_t (C++ enum), 1195
spi_host_device_t::SPI1_HOST (C++ enu-

merator), 1195
spi_host_device_t::SPI2_HOST (C++ enu-

merator), 1195
spi_host_device_t::SPI_HOST_MAX (C++

enumerator), 1195
spi_line_mode_t (C++ struct), 1194
spi_line_mode_t::addr_lines (C++ mem-

ber), 1195
spi_line_mode_t::cmd_lines (C++ member),

1195
spi_line_mode_t::data_lines (C++ mem-

ber), 1195
SPI_MASTER_FREQ_10M (C macro), 1208
SPI_MASTER_FREQ_11M (C macro), 1208
SPI_MASTER_FREQ_13M (C macro), 1208
SPI_MASTER_FREQ_16M (C macro), 1208
SPI_MASTER_FREQ_20M (C macro), 1208
SPI_MASTER_FREQ_26M (C macro), 1208

Espressif Systems 2821
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

SPI_MASTER_FREQ_40M (C macro), 1208
SPI_MASTER_FREQ_80M (C macro), 1208
SPI_MASTER_FREQ_8M (C macro), 1207
SPI_MASTER_FREQ_9M (C macro), 1207
SPI_MAX_DMA_LEN (C macro), 1199
spi_sampling_point_t (C++ enum), 1196
spi_sampling_point_t::SPI_SAMPLING_POINT_PHASE_0

(C++ enumerator), 1196
spi_sampling_point_t::SPI_SAMPLING_POINT_PHASE_1

(C++ enumerator), 1196
SPI_SLAVE_BIT_LSBFIRST (C macro), 1216
spi_slave_chan_t (C++ enum), 1224
spi_slave_chan_t::SPI_SLAVE_CHAN_RX

(C++ enumerator), 1224
spi_slave_chan_t::SPI_SLAVE_CHAN_TX

(C++ enumerator), 1224
spi_slave_free (C++ function), 1214
spi_slave_get_trans_result (C++ function),

1214
SPI_SLAVE_HD_APPEND_MODE (C macro), 1224
spi_slave_hd_append_trans (C++ function),

1221
SPI_SLAVE_HD_BIT_LSBFIRST (C macro), 1224
spi_slave_hd_callback_config_t (C++

struct), 1222
spi_slave_hd_callback_config_t::arg

(C++ member), 1223
spi_slave_hd_callback_config_t::cb_buffer_rx

(C++ member), 1222
spi_slave_hd_callback_config_t::cb_buffer_tx

(C++ member), 1222
spi_slave_hd_callback_config_t::cb_cmd9

(C++ member), 1223
spi_slave_hd_callback_config_t::cb_cmdA

(C++ member), 1223
spi_slave_hd_callback_config_t::cb_recv

(C++ member), 1223
spi_slave_hd_callback_config_t::cb_recv_dma_ready

(C++ member), 1222
spi_slave_hd_callback_config_t::cb_send_dma_ready

(C++ member), 1222
spi_slave_hd_callback_config_t::cb_sent

(C++ member), 1222
spi_slave_hd_data_t (C++ struct), 1221
spi_slave_hd_data_t::arg (C++ member),

1222
spi_slave_hd_data_t::data (C++ member),

1222
spi_slave_hd_data_t::len (C++ member),

1222
spi_slave_hd_data_t::trans_len (C++

member), 1222
spi_slave_hd_deinit (C++ function), 1219
spi_slave_hd_event_t (C++ struct), 1222
spi_slave_hd_event_t::event (C++ mem-

ber), 1222
spi_slave_hd_event_t::trans (C++ mem-

ber), 1222

spi_slave_hd_get_append_trans_res
(C++ function), 1221

spi_slave_hd_get_trans_res (C++ function),
1220

spi_slave_hd_init (C++ function), 1219
spi_slave_hd_queue_trans (C++ function),

1220
spi_slave_hd_read_buffer (C++ function),

1220
SPI_SLAVE_HD_RXBIT_LSBFIRST (C macro),

1224
spi_slave_hd_slot_config_t (C++ struct),

1223
spi_slave_hd_slot_config_t::address_bits

(C++ member), 1223
spi_slave_hd_slot_config_t::cb_config

(C++ member), 1223
spi_slave_hd_slot_config_t::command_bits

(C++ member), 1223
spi_slave_hd_slot_config_t::dma_chan

(C++ member), 1223
spi_slave_hd_slot_config_t::dummy_bits

(C++ member), 1223
spi_slave_hd_slot_config_t::flags

(C++ member), 1223
spi_slave_hd_slot_config_t::mode (C++

member), 1223
spi_slave_hd_slot_config_t::queue_size

(C++ member), 1223
spi_slave_hd_slot_config_t::spics_io_num

(C++ member), 1223
SPI_SLAVE_HD_TXBIT_LSBFIRST (C macro),

1224
spi_slave_hd_write_buffer (C++ function),

1220
spi_slave_initialize (C++ function), 1213
spi_slave_interface_config_t (C++ struct),

1215
spi_slave_interface_config_t::flags

(C++ member), 1215
spi_slave_interface_config_t::mode

(C++ member), 1215
spi_slave_interface_config_t::post_setup_cb

(C++ member), 1215
spi_slave_interface_config_t::post_trans_cb

(C++ member), 1215
spi_slave_interface_config_t::queue_size

(C++ member), 1215
spi_slave_interface_config_t::spics_io_num

(C++ member), 1215
SPI_SLAVE_NO_RETURN_RESULT (Cmacro), 1216
spi_slave_queue_trans (C++ function), 1214
SPI_SLAVE_RXBIT_LSBFIRST (C macro), 1216
spi_slave_transaction_t (C++ struct), 1215
spi_slave_transaction_t::length (C++

member), 1216
spi_slave_transaction_t::rx_buffer

(C++ member), 1216

Espressif Systems 2822
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

spi_slave_transaction_t::trans_len
(C++ member), 1216

spi_slave_transaction_t::tx_buffer
(C++ member), 1216

spi_slave_transaction_t::user (C++
member), 1216

spi_slave_transmit (C++ function), 1214
SPI_SLAVE_TXBIT_LSBFIRST (C macro), 1216
SPI_SWAP_DATA_RX (C macro), 1199
SPI_SWAP_DATA_TX (C macro), 1199
SPI_TRANS_CS_KEEP_ACTIVE (C macro), 1209
SPI_TRANS_MODE_DIO (C macro), 1209
SPI_TRANS_MODE_DIOQIO_ADDR (Cmacro), 1209
SPI_TRANS_MODE_OCT (C macro), 1209
SPI_TRANS_MODE_QIO (C macro), 1209
SPI_TRANS_MULTILINE_ADDR (C macro), 1210
SPI_TRANS_MULTILINE_CMD (C macro), 1209
SPI_TRANS_USE_RXDATA (C macro), 1209
SPI_TRANS_USE_TXDATA (C macro), 1209
SPI_TRANS_VARIABLE_ADDR (C macro), 1209
SPI_TRANS_VARIABLE_CMD (C macro), 1209
SPI_TRANS_VARIABLE_DUMMY (C macro), 1209
spi_transaction_ext_t (C++ struct), 1207
spi_transaction_ext_t::address_bits

(C++ member), 1207
spi_transaction_ext_t::base (C++ mem-

ber), 1207
spi_transaction_ext_t::command_bits

(C++ member), 1207
spi_transaction_ext_t::dummy_bits

(C++ member), 1207
spi_transaction_t (C++ struct), 1206
spi_transaction_t::addr (C++ member),

1206
spi_transaction_t::cmd (C++ member), 1206
spi_transaction_t::flags (C++ member),

1206
spi_transaction_t::length (C++ member),

1206
spi_transaction_t::rx_buffer (C++ mem-

ber), 1207
spi_transaction_t::rx_data (C++ member),

1207
spi_transaction_t::rxlength (C++ mem-

ber), 1207
spi_transaction_t::tx_buffer (C++ mem-

ber), 1207
spi_transaction_t::tx_data (C++ member),

1207
spi_transaction_t::user (C++ member),

1207
SPICOMMON_BUSFLAG_DUAL (C macro), 1200
SPICOMMON_BUSFLAG_GPIO_PINS (C macro),

1199
SPICOMMON_BUSFLAG_IO4_IO7 (C macro), 1200
SPICOMMON_BUSFLAG_IOMUX_PINS (C macro),

1199
SPICOMMON_BUSFLAG_MASTER (C macro), 1199

SPICOMMON_BUSFLAG_MISO (C macro), 1200
SPICOMMON_BUSFLAG_MOSI (C macro), 1200
SPICOMMON_BUSFLAG_NATIVE_PINS (C macro),

1200
SPICOMMON_BUSFLAG_OCTAL (C macro), 1200
SPICOMMON_BUSFLAG_QUAD (C macro), 1200
SPICOMMON_BUSFLAG_SCLK (C macro), 1200
SPICOMMON_BUSFLAG_SLAVE (C macro), 1199
SPICOMMON_BUSFLAG_WPHD (C macro), 1200
StaticRingbuffer_t (C++ type), 1987
StreamBufferHandle_t (C++ type), 1961

T
task_wdt_msg_handler (C++ type), 2137
taskDISABLE_INTERRUPTS (C macro), 1889
taskENABLE_INTERRUPTS (C macro), 1889
taskENTER_CRITICAL (C macro), 1888
taskENTER_CRITICAL_FROM_ISR (C macro),

1888
taskENTER_CRITICAL_ISR (C macro), 1888
taskEXIT_CRITICAL (C macro), 1888
taskEXIT_CRITICAL_FROM_ISR (Cmacro), 1889
taskEXIT_CRITICAL_ISR (C macro), 1889
TaskHandle_t (C++ type), 1891
TaskHookFunction_t (C++ type), 1891
taskSCHEDULER_NOT_STARTED (C macro), 1889
taskSCHEDULER_RUNNING (C macro), 1889
taskSCHEDULER_SUSPENDED (C macro), 1889
taskYIELD (C macro), 1888
temperature_sensor_abs_threshold_config_t

(C++ struct), 1230
temperature_sensor_abs_threshold_config_t::high_threshold

(C++ member), 1230
temperature_sensor_abs_threshold_config_t::low_threshold

(C++ member), 1230
TEMPERATURE_SENSOR_CONFIG_DEFAULT (C

macro), 1230
temperature_sensor_config_t (C++ struct),

1229
temperature_sensor_config_t::clk_src

(C++ member), 1229
temperature_sensor_config_t::range_max

(C++ member), 1229
temperature_sensor_config_t::range_min

(C++ member), 1229
temperature_sensor_delta_threshold_config_t

(C++ struct), 1230
temperature_sensor_delta_threshold_config_t::decrease_delta

(C++ member), 1230
temperature_sensor_delta_threshold_config_t::increase_delta

(C++ member), 1230
temperature_sensor_disable (C++ function),

1228
temperature_sensor_enable (C++ function),

1228
temperature_sensor_event_callbacks_t

(C++ struct), 1229

Espressif Systems 2823
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

temperature_sensor_event_callbacks_t::on_threshold
(C++ member), 1230

temperature_sensor_get_celsius (C++
function), 1228

temperature_sensor_handle_t (C++ type),
1230

temperature_sensor_install (C++ function),
1227

temperature_sensor_register_callbacks
(C++ function), 1229

temperature_sensor_set_absolute_threshold
(C++ function), 1228

temperature_sensor_set_delta_threshold
(C++ function), 1228

temperature_sensor_threshold_event_data_t
(C++ struct), 1229

temperature_sensor_threshold_event_data_t::celsius_value
(C++ member), 1229

temperature_sensor_uninstall (C++ func-
tion), 1227

temperature_thres_cb_t (C++ type), 1230
TimerCallbackFunction_t (C++ type), 1944
TimerHandle_t (C++ type), 1944
tls_keep_alive_cfg (C++ struct), 67
tls_keep_alive_cfg::keep_alive_count

(C++ member), 67
tls_keep_alive_cfg::keep_alive_enable

(C++ member), 67
tls_keep_alive_cfg::keep_alive_idle

(C++ member), 67
tls_keep_alive_cfg::keep_alive_interval

(C++ member), 67
tls_keep_alive_cfg_t (C++ type), 70
TlsDeleteCallbackFunction_t (C++ type),

1891
tmrCOMMAND_CHANGE_PERIOD (C macro), 1934
tmrCOMMAND_CHANGE_PERIOD_FROM_ISR (C

macro), 1934
tmrCOMMAND_DELETE (C macro), 1934
tmrCOMMAND_EXECUTE_CALLBACK (C macro),

1934
tmrCOMMAND_EXECUTE_CALLBACK_FROM_ISR

(C macro), 1934
tmrCOMMAND_RESET (C macro), 1934
tmrCOMMAND_RESET_FROM_ISR (C macro), 1934
tmrCOMMAND_START (C macro), 1934
tmrCOMMAND_START_DONT_TRACE (C macro),

1934
tmrCOMMAND_START_FROM_ISR (C macro), 1934
tmrCOMMAND_STOP (C macro), 1934
tmrCOMMAND_STOP_FROM_ISR (C macro), 1934
tmrFIRST_FROM_ISR_COMMAND (C macro), 1934
topic_t (C++ struct), 55
topic_t::filter (C++ member), 55
topic_t::qos (C++ member), 55
transaction_cb_t (C++ type), 1210
tskDEFAULT_INDEX_TO_NOTIFY (Cmacro), 1888
tskIDLE_PRIORITY (C macro), 1888

tskKERNEL_VERSION_BUILD (C macro), 1888
tskKERNEL_VERSION_MAJOR (C macro), 1888
tskKERNEL_VERSION_MINOR (C macro), 1888
tskKERNEL_VERSION_NUMBER (C macro), 1888
tskMPU_REGION_DEVICE_MEMORY (C macro),

1888
tskMPU_REGION_EXECUTE_NEVER (C macro),

1888
tskMPU_REGION_NORMAL_MEMORY (C macro),

1888
tskMPU_REGION_READ_ONLY (C macro), 1888
tskMPU_REGION_READ_WRITE (C macro), 1888
tskNO_AFFINITY (C macro), 1888
twai_clear_receive_queue (C++ function),

1246
twai_clear_transmit_queue (C++ function),

1246
twai_clock_source_t (C++ type), 1242
twai_driver_install (C++ function), 1243
twai_driver_uninstall (C++ function), 1243
TWAI_ERR_PASS_THRESH (C macro), 1242
TWAI_EXTD_ID_MASK (C macro), 1242
twai_filter_config_t (C++ struct), 1241
twai_filter_config_t::acceptance_code

(C++ member), 1241
twai_filter_config_t::acceptance_mask

(C++ member), 1242
twai_filter_config_t::single_filter

(C++ member), 1242
TWAI_FRAME_EXTD_ID_LEN_BYTES (C macro),

1242
TWAI_FRAME_MAX_DLC (C macro), 1242
TWAI_FRAME_STD_ID_LEN_BYTES (C macro),

1242
twai_general_config_t (C++ struct), 1246
twai_general_config_t::alerts_enabled

(C++ member), 1247
twai_general_config_t::bus_off_io

(C++ member), 1246
twai_general_config_t::clkout_divider

(C++ member), 1247
twai_general_config_t::clkout_io (C++

member), 1246
twai_general_config_t::intr_flags

(C++ member), 1247
twai_general_config_t::mode (C++ mem-

ber), 1246
twai_general_config_t::rx_io (C++ mem-

ber), 1246
twai_general_config_t::rx_queue_len

(C++ member), 1247
twai_general_config_t::tx_io (C++ mem-

ber), 1246
twai_general_config_t::tx_queue_len

(C++ member), 1247
twai_get_status_info (C++ function), 1245
twai_initiate_recovery (C++ function), 1245
TWAI_IO_UNUSED (C macro), 1248

Espressif Systems 2824
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

twai_message_t (C++ struct), 1240
twai_message_t::data (C++ member), 1241
twai_message_t::data_length_code (C++

member), 1241
twai_message_t::dlc_non_comp (C++ mem-

ber), 1240
twai_message_t::extd (C++ member), 1240
twai_message_t::flags (C++ member), 1240
twai_message_t::identifier (C++ member),

1240
twai_message_t::reserved (C++ member),

1240
twai_message_t::rtr (C++ member), 1240
twai_message_t::self (C++ member), 1240
twai_message_t::ss (C++ member), 1240
twai_mode_t (C++ enum), 1242
twai_mode_t::TWAI_MODE_LISTEN_ONLY

(C++ enumerator), 1242
twai_mode_t::TWAI_MODE_NO_ACK (C++ enu-

merator), 1242
twai_mode_t::TWAI_MODE_NORMAL (C++ enu-

merator), 1242
twai_read_alerts (C++ function), 1245
twai_receive (C++ function), 1244
twai_reconfigure_alerts (C++ function),

1245
twai_start (C++ function), 1243
twai_state_t (C++ enum), 1248
twai_state_t::TWAI_STATE_BUS_OFF (C++

enumerator), 1248
twai_state_t::TWAI_STATE_RECOVERING

(C++ enumerator), 1248
twai_state_t::TWAI_STATE_RUNNING (C++

enumerator), 1248
twai_state_t::TWAI_STATE_STOPPED (C++

enumerator), 1248
twai_status_info_t (C++ struct), 1247
twai_status_info_t::arb_lost_count

(C++ member), 1247
twai_status_info_t::bus_error_count

(C++ member), 1248
twai_status_info_t::msgs_to_rx (C++

member), 1247
twai_status_info_t::msgs_to_tx (C++

member), 1247
twai_status_info_t::rx_error_counter

(C++ member), 1247
twai_status_info_t::rx_missed_count

(C++ member), 1247
twai_status_info_t::rx_overrun_count

(C++ member), 1247
twai_status_info_t::state (C++ member),

1247
twai_status_info_t::tx_error_counter

(C++ member), 1247
twai_status_info_t::tx_failed_count

(C++ member), 1247
TWAI_STD_ID_MASK (C macro), 1242

twai_stop (C++ function), 1244
twai_timing_config_t (C++ struct), 1241
twai_timing_config_t::brp (C++ member),

1241
twai_timing_config_t::clk_src (C++

member), 1241
twai_timing_config_t::quanta_resolution_hz

(C++ member), 1241
twai_timing_config_t::sjw (C++ member),

1241
twai_timing_config_t::triple_sampling

(C++ member), 1241
twai_timing_config_t::tseg_1 (C++ mem-

ber), 1241
twai_timing_config_t::tseg_2 (C++ mem-

ber), 1241
twai_transmit (C++ function), 1244

U
uart_at_cmd_t (C++ struct), 1268
uart_at_cmd_t::char_num (C++ member),

1268
uart_at_cmd_t::cmd_char (C++ member),

1268
uart_at_cmd_t::gap_tout (C++ member),

1268
uart_at_cmd_t::post_idle (C++ member),

1268
uart_at_cmd_t::pre_idle (C++ member),

1268
UART_BITRATE_MAX (C macro), 1267
uart_clear_intr_status (C++ function), 1257
uart_config_t (C++ struct), 1269
uart_config_t::baud_rate (C++ member),

1269
uart_config_t::data_bits (C++ member),

1269
uart_config_t::flow_ctrl (C++ member),

1269
uart_config_t::parity (C++ member), 1269
uart_config_t::rx_flow_ctrl_thresh

(C++ member), 1269
uart_config_t::source_clk (C++ member),

1269
uart_config_t::stop_bits (C++ member),

1269
uart_disable_intr_mask (C++ function), 1258
uart_disable_pattern_det_intr (C++ func-

tion), 1262
uart_disable_rx_intr (C++ function), 1258
uart_disable_tx_intr (C++ function), 1258
uart_driver_delete (C++ function), 1255
uart_driver_install (C++ function), 1254
uart_enable_intr_mask (C++ function), 1257
uart_enable_pattern_det_baud_intr

(C++ function), 1262
uart_enable_rx_intr (C++ function), 1258
uart_enable_tx_intr (C++ function), 1258

Espressif Systems 2825
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

uart_event_t (C++ struct), 1266
uart_event_t::size (C++ member), 1266
uart_event_t::timeout_flag (C++ member),

1266
uart_event_t::type (C++ member), 1266
uart_event_type_t (C++ enum), 1267
uart_event_type_t::UART_BREAK (C++ enu-

merator), 1267
uart_event_type_t::UART_BUFFER_FULL

(C++ enumerator), 1267
uart_event_type_t::UART_DATA (C++ enu-

merator), 1267
uart_event_type_t::UART_DATA_BREAK

(C++ enumerator), 1267
uart_event_type_t::UART_EVENT_MAX

(C++ enumerator), 1268
uart_event_type_t::UART_FIFO_OVF (C++

enumerator), 1267
uart_event_type_t::UART_FRAME_ERR

(C++ enumerator), 1267
uart_event_type_t::UART_PARITY_ERR

(C++ enumerator), 1267
uart_event_type_t::UART_PATTERN_DET

(C++ enumerator), 1267
uart_event_type_t::UART_WAKEUP (C++

enumerator), 1268
UART_FIFO_LEN (C macro), 1267
uart_flush (C++ function), 1261
uart_flush_input (C++ function), 1261
uart_get_baudrate (C++ function), 1256
uart_get_buffered_data_len (C++ function),

1261
uart_get_collision_flag (C++ function),

1264
uart_get_hw_flow_ctrl (C++ function), 1257
uart_get_parity (C++ function), 1256
uart_get_sclk_freq (C++ function), 1256
uart_get_stop_bits (C++ function), 1255
uart_get_tx_buffer_free_size (C++ func-

tion), 1262
uart_get_wakeup_threshold (C++ function),

1265
uart_get_word_length (C++ function), 1255
UART_GPIO16_DIRECT_CHANNEL (Cmacro), 1272
UART_GPIO17_DIRECT_CHANNEL (Cmacro), 1272
uart_hw_flowcontrol_t (C++ enum), 1271
uart_hw_flowcontrol_t::UART_HW_FLOWCTRL_CTS

(C++ enumerator), 1271
uart_hw_flowcontrol_t::UART_HW_FLOWCTRL_CTS_RTS

(C++ enumerator), 1271
uart_hw_flowcontrol_t::UART_HW_FLOWCTRL_DISABLE

(C++ enumerator), 1271
uart_hw_flowcontrol_t::UART_HW_FLOWCTRL_MAX

(C++ enumerator), 1271
uart_hw_flowcontrol_t::UART_HW_FLOWCTRL_RTS

(C++ enumerator), 1271
uart_intr_config (C++ function), 1259
uart_intr_config_t (C++ struct), 1266

uart_intr_config_t::intr_enable_mask
(C++ member), 1266

uart_intr_config_t::rx_timeout_thresh
(C++ member), 1266

uart_intr_config_t::rxfifo_full_thresh
(C++ member), 1266

uart_intr_config_t::txfifo_empty_intr_thresh
(C++ member), 1266

uart_is_driver_installed (C++ function),
1255

uart_isr_handle_t (C++ type), 1267
uart_mode_t (C++ enum), 1269
uart_mode_t::UART_MODE_IRDA (C++ enumer-

ator), 1270
uart_mode_t::UART_MODE_RS485_APP_CTRL

(C++ enumerator), 1270
uart_mode_t::UART_MODE_RS485_COLLISION_DETECT

(C++ enumerator), 1270
uart_mode_t::UART_MODE_RS485_HALF_DUPLEX

(C++ enumerator), 1270
uart_mode_t::UART_MODE_UART (C++ enumer-

ator), 1269
UART_NUM_0 (C macro), 1267
UART_NUM_0_RXD_DIRECT_GPIO_NUM (C

macro), 1272
UART_NUM_0_TXD_DIRECT_GPIO_NUM (C

macro), 1272
UART_NUM_1 (C macro), 1267
UART_NUM_MAX (C macro), 1267
uart_param_config (C++ function), 1259
uart_parity_t (C++ enum), 1270
uart_parity_t::UART_PARITY_DISABLE

(C++ enumerator), 1271
uart_parity_t::UART_PARITY_EVEN (C++

enumerator), 1271
uart_parity_t::UART_PARITY_ODD (C++

enumerator), 1271
uart_pattern_get_pos (C++ function), 1263
uart_pattern_pop_pos (C++ function), 1262
uart_pattern_queue_reset (C++ function),

1263
UART_PIN_NO_CHANGE (C macro), 1267
uart_port_t (C++ type), 1269
uart_read_bytes (C++ function), 1261
UART_RXD_GPIO17_DIRECT_CHANNEL (C

macro), 1272
uart_sclk_t (C++ type), 1269
uart_set_always_rx_timeout (C++ function),

1265
uart_set_baudrate (C++ function), 1256
uart_set_dtr (C++ function), 1259
uart_set_hw_flow_ctrl (C++ function), 1257
uart_set_line_inverse (C++ function), 1256
uart_set_loop_back (C++ function), 1265
uart_set_mode (C++ function), 1263
uart_set_parity (C++ function), 1256
uart_set_pin (C++ function), 1258
uart_set_rts (C++ function), 1259

Espressif Systems 2826
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

uart_set_rx_full_threshold (C++ function),
1263

uart_set_rx_timeout (C++ function), 1264
uart_set_stop_bits (C++ function), 1255
uart_set_sw_flow_ctrl (C++ function), 1257
uart_set_tx_empty_threshold (C++ func-

tion), 1264
uart_set_tx_idle_num (C++ function), 1259
uart_set_wakeup_threshold (C++ function),

1264
uart_set_word_length (C++ function), 1255
uart_signal_inv_t (C++ enum), 1271
uart_signal_inv_t::UART_SIGNAL_CTS_INV

(C++ enumerator), 1271
uart_signal_inv_t::UART_SIGNAL_DSR_INV

(C++ enumerator), 1272
uart_signal_inv_t::UART_SIGNAL_DTR_INV

(C++ enumerator), 1272
uart_signal_inv_t::UART_SIGNAL_INV_DISABLE

(C++ enumerator), 1271
uart_signal_inv_t::UART_SIGNAL_IRDA_RX_INV

(C++ enumerator), 1271
uart_signal_inv_t::UART_SIGNAL_IRDA_TX_INV

(C++ enumerator), 1271
uart_signal_inv_t::UART_SIGNAL_RTS_INV

(C++ enumerator), 1272
uart_signal_inv_t::UART_SIGNAL_RXD_INV

(C++ enumerator), 1271
uart_signal_inv_t::UART_SIGNAL_TXD_INV

(C++ enumerator), 1272
uart_stop_bits_t (C++ enum), 1270
uart_stop_bits_t::UART_STOP_BITS_1

(C++ enumerator), 1270
uart_stop_bits_t::UART_STOP_BITS_1_5

(C++ enumerator), 1270
uart_stop_bits_t::UART_STOP_BITS_2

(C++ enumerator), 1270
uart_stop_bits_t::UART_STOP_BITS_MAX

(C++ enumerator), 1270
uart_sw_flowctrl_t (C++ struct), 1268
uart_sw_flowctrl_t::xoff_char (C++

member), 1268
uart_sw_flowctrl_t::xoff_thrd (C++

member), 1269
uart_sw_flowctrl_t::xon_char (C++ mem-

ber), 1268
uart_sw_flowctrl_t::xon_thrd (C++ mem-

ber), 1268
uart_tx_chars (C++ function), 1260
UART_TXD_GPIO16_DIRECT_CHANNEL (C

macro), 1272
uart_wait_tx_done (C++ function), 1260
uart_wait_tx_idle_polling (C++ function),

1265
uart_word_length_t (C++ enum), 1270
uart_word_length_t::UART_DATA_5_BITS

(C++ enumerator), 1270
uart_word_length_t::UART_DATA_6_BITS

(C++ enumerator), 1270
uart_word_length_t::UART_DATA_7_BITS

(C++ enumerator), 1270
uart_word_length_t::UART_DATA_8_BITS

(C++ enumerator), 1270
uart_word_length_t::UART_DATA_BITS_MAX

(C++ enumerator), 1270
uart_write_bytes (C++ function), 1260
uart_write_bytes_with_break (C++ func-

tion), 1260
UINT16 (C++ type), 406
UINT32 (C++ type), 406
UINT64 (C++ type), 406
UINT8 (C++ type), 406
ulTaskGenericNotifyTake (C++ function),

1884
ulTaskGenericNotifyValueClear (C++ func-

tion), 1886
ulTaskGetIdleRunTimeCounter (C++ func-

tion), 1879
ulTaskNotifyTake (C macro), 1890
ulTaskNotifyTakeIndexed (C macro), 1891
ulTaskNotifyValueClear (C macro), 1891
ulTaskNotifyValueClearIndexed (C macro),

1891
uxQueueMessagesWaiting (C++ function), 1896
uxQueueMessagesWaitingFromISR (C++ func-

tion), 1898
uxQueueSpacesAvailable (C++ function), 1896
uxSemaphoreGetCount (C macro), 1925
uxTaskGetNumberOfTasks (C++ function), 1874
uxTaskGetStackHighWaterMark (C++ func-

tion), 1874
uxTaskGetStackHighWaterMark2 (C++ func-

tion), 1875
uxTaskGetSystemState (C++ function), 1877
uxTaskPriorityGet (C++ function), 1867
uxTaskPriorityGetFromISR (C++ function),

1868
uxTimerGetReloadMode (C++ function), 1933

V
vApplicationGetIdleTaskMemory (C++ func-

tion), 1876
vApplicationGetTimerTaskMemory (C++

function), 1934
VENDOR_HCI_CMD_MASK (C macro), 232
vendor_ie_data_t (C++ struct), 717
vendor_ie_data_t::element_id (C++ mem-

ber), 717
vendor_ie_data_t::length (C++ member),

717
vendor_ie_data_t::payload (C++ member),

717
vendor_ie_data_t::vendor_oui (C++ mem-

ber), 717
vendor_ie_data_t::vendor_oui_type

(C++ member), 717

Espressif Systems 2827
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

vEventGroupDelete (C++ function), 1950
vEventGroupDeleteWithCaps (C++ function),

1993
vMessageBufferDelete (C macro), 1967
vMessageBufferDeleteWithCaps (C++ func-

tion), 1993
vprintf_like_t (C++ type), 2045
vQueueAddToRegistry (C++ function), 1898
vQueueDelete (C++ function), 1896
vQueueDeleteWithCaps (C++ function), 1991
vQueueUnregisterQueue (C++ function), 1899
vRingbufferDelete (C++ function), 1985
vRingbufferGetInfo (C++ function), 1986
vRingbufferReturnItem (C++ function), 1985
vRingbufferReturnItemFromISR (C++ func-

tion), 1985
vSemaphoreCreateBinary (C macro), 1911
vSemaphoreDelete (C macro), 1925
vSemaphoreDeleteWithCaps (C++ function),

1992
vStreamBufferDelete (C++ function), 1957
vStreamBufferDeleteWithCaps (C++ func-

tion), 1992
vTaskAllocateMPURegions (C++ function),

1862
vTaskDelay (C++ function), 1865
vTaskDelayUntil (C macro), 1889
vTaskDelete (C++ function), 1865
vTaskDeleteWithCaps (C++ function), 1990
vTaskEndScheduler (C++ function), 1872
vTaskGenericNotifyGiveFromISR (C++ func-

tion), 1883
vTaskGetInfo (C++ function), 1868
vTaskGetRunTimeStats (C++ function), 1879
vTaskList (C++ function), 1878
vTaskNotifyGiveFromISR (C macro), 1890
vTaskNotifyGiveIndexedFromISR (C macro),

1890
vTaskPrioritySet (C++ function), 1869
vTaskResume (C++ function), 1870
vTaskSetApplicationTaskTag (C++ function),

1875
vTaskSetThreadLocalStoragePointer

(C++ function), 1875
vTaskSetThreadLocalStoragePointerAndDelCallback

(C++ function), 1876
vTaskSetTimeOutState (C++ function), 1886
vTaskStartScheduler (C++ function), 1871
vTaskSuspend (C++ function), 1870
vTaskSuspendAll (C++ function), 1872
vTimerSetReloadMode (C++ function), 1933
vTimerSetTimerID (C++ function), 1930

W
wifi_action_rx_cb_t (C++ type), 734
wifi_action_tx_req_t (C++ struct), 719
wifi_action_tx_req_t::data (C++ member),

720

wifi_action_tx_req_t::data_len (C++
member), 720

wifi_action_tx_req_t::dest_mac (C++
member), 719

wifi_action_tx_req_t::ifx (C++ member),
719

wifi_action_tx_req_t::no_ack (C++ mem-
ber), 719

wifi_action_tx_req_t::rx_cb (C++ mem-
ber), 719

wifi_active_scan_time_t (C++ struct), 709
wifi_active_scan_time_t::max (C++ mem-

ber), 709
wifi_active_scan_time_t::min (C++ mem-

ber), 709
WIFI_AMPDU_RX_ENABLED (C macro), 706
WIFI_AMPDU_TX_ENABLED (C macro), 706
WIFI_AMSDU_TX_ENABLED (C macro), 706
wifi_ant_config_t (C++ struct), 719
wifi_ant_config_t::enabled_ant0 (C++

member), 719
wifi_ant_config_t::enabled_ant1 (C++

member), 719
wifi_ant_config_t::rx_ant_default

(C++ member), 719
wifi_ant_config_t::rx_ant_mode (C++

member), 719
wifi_ant_config_t::tx_ant_mode (C++

member), 719
wifi_ant_gpio_config_t (C++ struct), 719
wifi_ant_gpio_config_t::gpio_cfg (C++

member), 719
wifi_ant_gpio_t (C++ struct), 718
wifi_ant_gpio_t::gpio_num (C++ member),

718
wifi_ant_gpio_t::gpio_select (C++ mem-

ber), 718
wifi_ant_mode_t (C++ enum), 743
wifi_ant_mode_t::WIFI_ANT_MODE_ANT0

(C++ enumerator), 743
wifi_ant_mode_t::WIFI_ANT_MODE_ANT1

(C++ enumerator), 743
wifi_ant_mode_t::WIFI_ANT_MODE_AUTO

(C++ enumerator), 743
wifi_ant_mode_t::WIFI_ANT_MODE_MAX

(C++ enumerator), 743
wifi_ant_t (C++ enum), 740
wifi_ant_t::WIFI_ANT_ANT0 (C++ enumera-

tor), 740
wifi_ant_t::WIFI_ANT_ANT1 (C++ enumera-

tor), 740
wifi_ant_t::WIFI_ANT_MAX (C++ enumerator),

740
wifi_ap_config_t (C++ struct), 712
wifi_ap_config_t::authmode (C++ member),

712
wifi_ap_config_t::beacon_interval

(C++ member), 713

Espressif Systems 2828
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

wifi_ap_config_t::channel (C++ member),
712

wifi_ap_config_t::csa_count (C++ mem-
ber), 713

wifi_ap_config_t::dtim_period (C++
member), 713

wifi_ap_config_t::ftm_responder (C++
member), 713

wifi_ap_config_t::max_connection (C++
member), 712

wifi_ap_config_t::pairwise_cipher
(C++ member), 713

wifi_ap_config_t::password (C++ member),
712

wifi_ap_config_t::pmf_cfg (C++ member),
713

wifi_ap_config_t::sae_pwe_h2e (C++
member), 713

wifi_ap_config_t::ssid (C++ member), 712
wifi_ap_config_t::ssid_hidden (C++

member), 712
wifi_ap_config_t::ssid_len (C++ member),

712
wifi_ap_config_t::transition_disable

(C++ member), 713
wifi_ap_record_t (C++ struct), 710
wifi_ap_record_t::ant (C++ member), 711
wifi_ap_record_t::authmode (C++ member),

710
wifi_ap_record_t::bssid (C++ member), 710
wifi_ap_record_t::country (C++ member),

711
wifi_ap_record_t::ftm_initiator (C++

member), 711
wifi_ap_record_t::ftm_responder (C++

member), 711
wifi_ap_record_t::group_cipher (C++

member), 711
wifi_ap_record_t::he_ap (C++ member), 711
wifi_ap_record_t::pairwise_cipher

(C++ member), 711
wifi_ap_record_t::phy_11ax (C++ member),

711
wifi_ap_record_t::phy_11b (C++ member),

711
wifi_ap_record_t::phy_11g (C++ member),

711
wifi_ap_record_t::phy_11n (C++ member),

711
wifi_ap_record_t::phy_lr (C++ member),

711
wifi_ap_record_t::primary (C++ member),

710
wifi_ap_record_t::reserved (C++ member),

711
wifi_ap_record_t::rssi (C++ member), 710
wifi_ap_record_t::second (C++ member),

710

wifi_ap_record_t::ssid (C++ member), 710
wifi_ap_record_t::wps (C++ member), 711
wifi_auth_mode_t (C++ enum), 735
wifi_auth_mode_t::WIFI_AUTH_DUMMY1

(C++ enumerator), 736
wifi_auth_mode_t::WIFI_AUTH_DUMMY2

(C++ enumerator), 736
wifi_auth_mode_t::WIFI_AUTH_DUMMY3

(C++ enumerator), 736
wifi_auth_mode_t::WIFI_AUTH_DUMMY4

(C++ enumerator), 736
wifi_auth_mode_t::WIFI_AUTH_DUMMY5

(C++ enumerator), 736
wifi_auth_mode_t::WIFI_AUTH_ENTERPRISE

(C++ enumerator), 735
wifi_auth_mode_t::WIFI_AUTH_MAX (C++

enumerator), 736
wifi_auth_mode_t::WIFI_AUTH_OPEN (C++

enumerator), 735
wifi_auth_mode_t::WIFI_AUTH_OWE (C++

enumerator), 736
wifi_auth_mode_t::WIFI_AUTH_WAPI_PSK

(C++ enumerator), 736
wifi_auth_mode_t::WIFI_AUTH_WEP (C++

enumerator), 735
wifi_auth_mode_t::WIFI_AUTH_WPA2_ENTERPRISE

(C++ enumerator), 735
wifi_auth_mode_t::WIFI_AUTH_WPA2_PSK

(C++ enumerator), 735
wifi_auth_mode_t::WIFI_AUTH_WPA2_WPA3_PSK

(C++ enumerator), 735
wifi_auth_mode_t::WIFI_AUTH_WPA3_ENT_192

(C++ enumerator), 736
wifi_auth_mode_t::WIFI_AUTH_WPA3_PSK

(C++ enumerator), 735
wifi_auth_mode_t::WIFI_AUTH_WPA_ENTERPRISE

(C++ enumerator), 736
wifi_auth_mode_t::WIFI_AUTH_WPA_PSK

(C++ enumerator), 735
wifi_auth_mode_t::WIFI_AUTH_WPA_WPA2_PSK

(C++ enumerator), 735
wifi_bandwidth_t (C++ enum), 741
wifi_bandwidth_t::WIFI_BW_HT20 (C++

enumerator), 741
wifi_bandwidth_t::WIFI_BW_HT40 (C++

enumerator), 741
wifi_beacon_monitor_config_t (C++ struct),

720
wifi_beacon_monitor_config_t::beacon_abort

(C++ member), 721
wifi_beacon_monitor_config_t::broadcast_wakeup

(C++ member), 721
wifi_beacon_monitor_config_t::delta_intr_early

(C++ member), 720
wifi_beacon_monitor_config_t::delta_loss_timeout

(C++ member), 720
wifi_beacon_monitor_config_t::enable

(C++ member), 720

Espressif Systems 2829
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

wifi_beacon_monitor_config_t::loss_threshold
(C++ member), 720

wifi_beacon_monitor_config_t::loss_timeout
(C++ member), 720

wifi_beacon_monitor_config_t::modem_state_consecutive
(C++ member), 721

wifi_beacon_monitor_config_t::reserved
(C++ member), 721

wifi_beacon_monitor_config_t::rf_ctrl_wait_cycle
(C++ member), 721

wifi_beacon_monitor_config_t::tsf_time_sync_deviation
(C++ member), 721

WIFI_CACHE_TX_BUFFER_NUM (C macro), 706
wifi_cipher_type_t (C++ enum), 739
wifi_cipher_type_t::WIFI_CIPHER_TYPE_AES_CMAC128

(C++ enumerator), 740
wifi_cipher_type_t::WIFI_CIPHER_TYPE_AES_GMAC128

(C++ enumerator), 740
wifi_cipher_type_t::WIFI_CIPHER_TYPE_AES_GMAC256

(C++ enumerator), 740
wifi_cipher_type_t::WIFI_CIPHER_TYPE_CCMP

(C++ enumerator), 739
wifi_cipher_type_t::WIFI_CIPHER_TYPE_GCMP

(C++ enumerator), 740
wifi_cipher_type_t::WIFI_CIPHER_TYPE_GCMP256

(C++ enumerator), 740
wifi_cipher_type_t::WIFI_CIPHER_TYPE_NONE

(C++ enumerator), 739
wifi_cipher_type_t::WIFI_CIPHER_TYPE_SMS4

(C++ enumerator), 740
wifi_cipher_type_t::WIFI_CIPHER_TYPE_TKIP

(C++ enumerator), 739
wifi_cipher_type_t::WIFI_CIPHER_TYPE_TKIP_CCMP

(C++ enumerator), 740
wifi_cipher_type_t::WIFI_CIPHER_TYPE_UNKNOWN

(C++ enumerator), 740
wifi_cipher_type_t::WIFI_CIPHER_TYPE_WEP104

(C++ enumerator), 739
wifi_cipher_type_t::WIFI_CIPHER_TYPE_WEP40

(C++ enumerator), 739
wifi_config_t (C++ union), 708
wifi_config_t::ap (C++ member), 708
wifi_config_t::nan (C++ member), 708
wifi_config_t::sta (C++ member), 708
wifi_country_policy_t (C++ enum), 735
wifi_country_policy_t::WIFI_COUNTRY_POLICY_AUTO

(C++ enumerator), 735
wifi_country_policy_t::WIFI_COUNTRY_POLICY_MANUAL

(C++ enumerator), 735
wifi_country_t (C++ struct), 708
wifi_country_t::cc (C++ member), 708
wifi_country_t::max_tx_power (C++ mem-

ber), 708
wifi_country_t::nchan (C++ member), 708
wifi_country_t::policy (C++ member), 709
wifi_country_t::schan (C++ member), 708
wifi_csi_cb_t (C++ type), 707
wifi_csi_config_t (C++ type), 734

WIFI_CSI_ENABLED (C macro), 706
wifi_csi_info_t (C++ struct), 718
wifi_csi_info_t::buf (C++ member), 718
wifi_csi_info_t::dmac (C++ member), 718
wifi_csi_info_t::first_word_invalid

(C++ member), 718
wifi_csi_info_t::hdr (C++ member), 718
wifi_csi_info_t::len (C++ member), 718
wifi_csi_info_t::mac (C++ member), 718
wifi_csi_info_t::payload (C++ member),

718
wifi_csi_info_t::payload_len (C++ mem-

ber), 718
wifi_csi_info_t::rx_ctrl (C++ member),

718
wifi_csi_info_t::rx_seq (C++ member), 718
WIFI_DEFAULT_RX_BA_WIN (C macro), 706
WIFI_DYNAMIC_TX_BUFFER_NUM (C macro), 706
WIFI_ENABLE_11R (C macro), 707
WIFI_ENABLE_CACHE_TX_BUFFER (C macro),

706
WIFI_ENABLE_ENTERPRISE (C macro), 707
WIFI_ENABLE_GCMP (C macro), 706
WIFI_ENABLE_GMAC (C macro), 706
WIFI_ENABLE_WPA3_SAE (C macro), 706
wifi_err_reason_t (C++ enum), 736
wifi_err_reason_t::WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT

(C++ enumerator), 737
wifi_err_reason_t::WIFI_REASON_802_1X_AUTH_FAILED

(C++ enumerator), 737
wifi_err_reason_t::WIFI_REASON_AKMP_INVALID

(C++ enumerator), 737
wifi_err_reason_t::WIFI_REASON_ALTERATIVE_CHANNEL_OCCUPIED

(C++ enumerator), 738
wifi_err_reason_t::WIFI_REASON_AP_INITIATED

(C++ enumerator), 738
wifi_err_reason_t::WIFI_REASON_AP_TSF_RESET

(C++ enumerator), 739
wifi_err_reason_t::WIFI_REASON_ASSOC_COMEBACK_TIME_TOO_LONG

(C++ enumerator), 739
wifi_err_reason_t::WIFI_REASON_ASSOC_EXPIRE

(C++ enumerator), 736
wifi_err_reason_t::WIFI_REASON_ASSOC_FAIL

(C++ enumerator), 738
wifi_err_reason_t::WIFI_REASON_ASSOC_LEAVE

(C++ enumerator), 737
wifi_err_reason_t::WIFI_REASON_ASSOC_NOT_AUTHED

(C++ enumerator), 737
wifi_err_reason_t::WIFI_REASON_ASSOC_TOOMANY

(C++ enumerator), 736
wifi_err_reason_t::WIFI_REASON_AUTH_EXPIRE

(C++ enumerator), 736
wifi_err_reason_t::WIFI_REASON_AUTH_FAIL

(C++ enumerator), 738
wifi_err_reason_t::WIFI_REASON_AUTH_LEAVE

(C++ enumerator), 736
wifi_err_reason_t::WIFI_REASON_BAD_CIPHER_OR_AKM

(C++ enumerator), 737

Espressif Systems 2830
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

wifi_err_reason_t::WIFI_REASON_BEACON_TIMEOUT
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_BSS_TRANSITION_DISASSOC
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_CIPHER_SUITE_REJECTED
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_CLASS2_FRAME_FROM_NONAUTH_STA
(C++ enumerator), 736

wifi_err_reason_t::WIFI_REASON_CLASS3_FRAME_FROM_NONASSOC_STA
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_CONNECTION_FAIL
(C++ enumerator), 739

wifi_err_reason_t::WIFI_REASON_DISASSOC_DUE_TO_INACTIVITY
(C++ enumerator), 736

wifi_err_reason_t::WIFI_REASON_DISASSOC_PWRCAP_BAD
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_DISASSOC_SUPCHAN_BAD
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_END_BA
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_EXCEEDED_TXOP
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_GROUP_CIPHER_INVALID
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_GROUP_KEY_UPDATE_TIMEOUT
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_HANDSHAKE_TIMEOUT
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_IE_IN_4WAY_DIFFERS
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_IE_INVALID
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_INVALID_FT_ACTION_FRAME_COUNT
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_INVALID_FTE
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_INVALID_MDE
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_INVALID_PMKID
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_INVALID_RSN_IE_CAP
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_MIC_FAILURE
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_MISSING_ACKS
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_NO_AP_FOUND
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_NO_SSP_ROAMING_AGREEMENT
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_NOT_ASSOCED
(C++ enumerator), 736

wifi_err_reason_t::WIFI_REASON_NOT_AUTHED
(C++ enumerator), 736

wifi_err_reason_t::WIFI_REASON_NOT_AUTHORIZED_THIS_LOCATION
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_NOT_ENOUGH_BANDWIDTH
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_PAIRWISE_CIPHER_INVALID
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_PEER_INITIATED
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_ROAMING
(C++ enumerator), 739

wifi_err_reason_t::WIFI_REASON_SA_QUERY_TIMEOUT
(C++ enumerator), 739

wifi_err_reason_t::WIFI_REASON_SERVICE_CHANGE_PERCLUDES_TS
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_SSP_REQUESTED_DISASSOC
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_STA_LEAVING
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_TDLS_PEER_UNREACHABLE
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_TDLS_UNSPECIFIED
(C++ enumerator), 737

wifi_err_reason_t::WIFI_REASON_TIMEOUT
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_TRANSMISSION_LINK_ESTABLISH_FAILED
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_UNKNOWN_BA
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_UNSPECIFIED
(C++ enumerator), 736

wifi_err_reason_t::WIFI_REASON_UNSPECIFIED_QOS
(C++ enumerator), 738

wifi_err_reason_t::WIFI_REASON_UNSUPP_RSN_IE_VERSION
(C++ enumerator), 737

wifi_event_action_tx_status_t (C++
struct), 727

wifi_event_action_tx_status_t::context
(C++ member), 727

wifi_event_action_tx_status_t::da
(C++ member), 728

wifi_event_action_tx_status_t::ifx
(C++ member), 727

wifi_event_action_tx_status_t::status
(C++ member), 728

wifi_event_ap_probe_req_rx_t (C++ struct),
726

wifi_event_ap_probe_req_rx_t::mac
(C++ member), 726

wifi_event_ap_probe_req_rx_t::rssi
(C++ member), 726

wifi_event_ap_staconnected_t (C++ struct),
725

wifi_event_ap_staconnected_t::aid
(C++ member), 725

wifi_event_ap_staconnected_t::is_mesh_child
(C++ member), 725

wifi_event_ap_staconnected_t::mac
(C++ member), 725

wifi_event_ap_stadisconnected_t (C++
struct), 725

wifi_event_ap_stadisconnected_t::aid
(C++ member), 726

Espressif Systems 2831
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

wifi_event_ap_stadisconnected_t::is_mesh_child
(C++ member), 726

wifi_event_ap_stadisconnected_t::mac
(C++ member), 726

wifi_event_ap_stadisconnected_t::reason
(C++ member), 726

wifi_event_ap_wps_rg_fail_reason_t
(C++ struct), 728

wifi_event_ap_wps_rg_fail_reason_t::peer_macaddr
(C++ member), 728

wifi_event_ap_wps_rg_fail_reason_t::reason
(C++ member), 728

wifi_event_ap_wps_rg_pin_t (C++ struct),
728

wifi_event_ap_wps_rg_pin_t::pin_code
(C++ member), 728

wifi_event_ap_wps_rg_success_t (C++
struct), 728

wifi_event_ap_wps_rg_success_t::peer_macaddr
(C++ member), 728

wifi_event_ap_wrong_password_t (C++
struct), 731

wifi_event_ap_wrong_password_t::mac
(C++ member), 731

wifi_event_bss_rssi_low_t (C++ struct), 726
wifi_event_bss_rssi_low_t::rssi (C++

member), 726
wifi_event_ftm_report_t (C++ struct), 727
wifi_event_ftm_report_t::dist_est

(C++ member), 727
wifi_event_ftm_report_t::ftm_report_data

(C++ member), 727
wifi_event_ftm_report_t::ftm_report_num_entries

(C++ member), 727
wifi_event_ftm_report_t::peer_mac

(C++ member), 727
wifi_event_ftm_report_t::rtt_est (C++

member), 727
wifi_event_ftm_report_t::rtt_raw (C++

member), 727
wifi_event_ftm_report_t::status (C++

member), 727
WIFI_EVENT_MASK_ALL (C macro), 733
WIFI_EVENT_MASK_AP_PROBEREQRECVED (C

macro), 733
WIFI_EVENT_MASK_NONE (C macro), 733
wifi_event_nan_receive_t (C++ struct), 729
wifi_event_nan_receive_t::inst_id

(C++ member), 729
wifi_event_nan_receive_t::peer_if_mac

(C++ member), 729
wifi_event_nan_receive_t::peer_inst_id

(C++ member), 729
wifi_event_nan_receive_t::peer_svc_info

(C++ member), 729
wifi_event_nan_replied_t (C++ struct), 729
wifi_event_nan_replied_t::publish_id

(C++ member), 729

wifi_event_nan_replied_t::sub_if_mac
(C++ member), 729

wifi_event_nan_replied_t::subscribe_id
(C++ member), 729

wifi_event_nan_svc_match_t (C++ struct),
728

wifi_event_nan_svc_match_t::pub_if_mac
(C++ member), 729

wifi_event_nan_svc_match_t::publish_id
(C++ member), 729

wifi_event_nan_svc_match_t::subscribe_id
(C++ member), 729

wifi_event_nan_svc_match_t::update_pub_id
(C++ member), 729

wifi_event_ndp_confirm_t (C++ struct), 730
wifi_event_ndp_confirm_t::ndp_id (C++

member), 730
wifi_event_ndp_confirm_t::own_ndi

(C++ member), 730
wifi_event_ndp_confirm_t::peer_ndi

(C++ member), 730
wifi_event_ndp_confirm_t::peer_nmi

(C++ member), 730
wifi_event_ndp_confirm_t::status (C++

member), 730
wifi_event_ndp_confirm_t::svc_info

(C++ member), 730
wifi_event_ndp_indication_t (C++ struct),

729
wifi_event_ndp_indication_t::ndp_id

(C++ member), 730
wifi_event_ndp_indication_t::peer_ndi

(C++ member), 730
wifi_event_ndp_indication_t::peer_nmi

(C++ member), 730
wifi_event_ndp_indication_t::publish_id

(C++ member), 730
wifi_event_ndp_indication_t::svc_info

(C++ member), 730
wifi_event_ndp_terminated_t (C++ struct),

730
wifi_event_ndp_terminated_t::init_ndi

(C++ member), 731
wifi_event_ndp_terminated_t::ndp_id

(C++ member), 730
wifi_event_ndp_terminated_t::reason

(C++ member), 730
wifi_event_roc_done_t (C++ struct), 728
wifi_event_roc_done_t::context (C++

member), 728
wifi_event_sta_authmode_change_t (C++

struct), 724
wifi_event_sta_authmode_change_t::new_mode

(C++ member), 724
wifi_event_sta_authmode_change_t::old_mode

(C++ member), 724
wifi_event_sta_connected_t (C++ struct),

723

Espressif Systems 2832
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

wifi_event_sta_connected_t::aid (C++
member), 724

wifi_event_sta_connected_t::authmode
(C++ member), 724

wifi_event_sta_connected_t::bssid
(C++ member), 724

wifi_event_sta_connected_t::channel
(C++ member), 724

wifi_event_sta_connected_t::ssid (C++
member), 724

wifi_event_sta_connected_t::ssid_len
(C++ member), 724

wifi_event_sta_disconnected_t (C++
struct), 724

wifi_event_sta_disconnected_t::bssid
(C++ member), 724

wifi_event_sta_disconnected_t::reason
(C++ member), 724

wifi_event_sta_disconnected_t::rssi
(C++ member), 724

wifi_event_sta_disconnected_t::ssid
(C++ member), 724

wifi_event_sta_disconnected_t::ssid_len
(C++ member), 724

wifi_event_sta_scan_done_t (C++ struct),
723

wifi_event_sta_scan_done_t::number
(C++ member), 723

wifi_event_sta_scan_done_t::scan_id
(C++ member), 723

wifi_event_sta_scan_done_t::status
(C++ member), 723

wifi_event_sta_wps_er_pin_t (C++ struct),
725

wifi_event_sta_wps_er_pin_t::pin_code
(C++ member), 725

wifi_event_sta_wps_er_success_t (C++
struct), 725

wifi_event_sta_wps_er_success_t::ap_cred
(C++ member), 725

wifi_event_sta_wps_er_success_t::ap_cred_cnt
(C++ member), 725

wifi_event_sta_wps_er_success_t::passphrase
(C++ member), 725

wifi_event_sta_wps_er_success_t::ssid
(C++ member), 725

wifi_event_sta_wps_fail_reason_t (C++
enum), 749

wifi_event_sta_wps_fail_reason_t::WPS_FAIL_REASON_MAX
(C++ enumerator), 749

wifi_event_sta_wps_fail_reason_t::WPS_FAIL_REASON_NORMAL
(C++ enumerator), 749

wifi_event_sta_wps_fail_reason_t::WPS_FAIL_REASON_RECV_DEAUTH
(C++ enumerator), 749

wifi_event_sta_wps_fail_reason_t::WPS_FAIL_REASON_RECV_M2D
(C++ enumerator), 749

wifi_event_t (C++ enum), 746
wifi_event_t::WIFI_EVENT_ACTION_TX_STATUS

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_AP_PROBEREQRECVED

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_AP_STACONNECTED

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_AP_STADISCONNECTED

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_AP_START

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_AP_STOP (C++

enumerator), 747
wifi_event_t::WIFI_EVENT_AP_WPS_RG_FAILED

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_AP_WPS_RG_PBC_OVERLAP

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_AP_WPS_RG_PIN

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_AP_WPS_RG_SUCCESS

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_AP_WPS_RG_TIMEOUT

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_AP_WRONG_PASSWORD

(C++ enumerator), 749
wifi_event_t::WIFI_EVENT_CONNECTIONLESS_MODULE_WAKE_INTERVAL_START

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_FTM_REPORT

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_ITWT_PROBE

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_ITWT_SETUP

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_ITWT_SUSPEND

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_ITWT_TEARDOWN

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_MAX (C++ enu-

merator), 749
wifi_event_t::WIFI_EVENT_NAN_RECEIVE

(C++ enumerator), 749
wifi_event_t::WIFI_EVENT_NAN_REPLIED

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_NAN_STARTED

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_NAN_STOPPED

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_NAN_SVC_MATCH

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_NDP_CONFIRM

(C++ enumerator), 749
wifi_event_t::WIFI_EVENT_NDP_INDICATION

(C++ enumerator), 749
wifi_event_t::WIFI_EVENT_NDP_TERMINATED

(C++ enumerator), 749
wifi_event_t::WIFI_EVENT_ROC_DONE

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_SCAN_DONE

(C++ enumerator), 746
wifi_event_t::WIFI_EVENT_STA_AUTHMODE_CHANGE

Espressif Systems 2833
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_STA_BEACON_TIMEOUT

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_STA_BSS_RSSI_LOW

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_STA_CONNECTED

(C++ enumerator), 746
wifi_event_t::WIFI_EVENT_STA_DISCONNECTED

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_STA_START

(C++ enumerator), 746
wifi_event_t::WIFI_EVENT_STA_STOP

(C++ enumerator), 746
wifi_event_t::WIFI_EVENT_STA_WPS_ER_FAILED

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_STA_WPS_ER_PBC_OVERLAP

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_STA_WPS_ER_PIN

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_STA_WPS_ER_SUCCESS

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_STA_WPS_ER_TIMEOUT

(C++ enumerator), 747
wifi_event_t::WIFI_EVENT_TWT_WAKEUP

(C++ enumerator), 748
wifi_event_t::WIFI_EVENT_WIFI_READY

(C++ enumerator), 746
WIFI_FEATURE_CAPS (C macro), 707
WIFI_FTM_INITIATOR (C macro), 706
wifi_ftm_initiator_cfg_t (C++ struct), 720
wifi_ftm_initiator_cfg_t::burst_period

(C++ member), 720
wifi_ftm_initiator_cfg_t::channel

(C++ member), 720
wifi_ftm_initiator_cfg_t::frm_count

(C++ member), 720
wifi_ftm_initiator_cfg_t::resp_mac

(C++ member), 720
wifi_ftm_initiator_cfg_t::use_get_report_api

(C++ member), 720
wifi_ftm_report_entry_t (C++ struct), 726
wifi_ftm_report_entry_t::dlog_token

(C++ member), 726
wifi_ftm_report_entry_t::rssi (C++

member), 726
wifi_ftm_report_entry_t::rtt (C++ mem-

ber), 726
wifi_ftm_report_entry_t::t1 (C++ mem-

ber), 726
wifi_ftm_report_entry_t::t2 (C++ mem-

ber), 727
wifi_ftm_report_entry_t::t3 (C++ mem-

ber), 727
wifi_ftm_report_entry_t::t4 (C++ mem-

ber), 727
WIFI_FTM_RESPONDER (C macro), 706
wifi_ftm_status_t (C++ enum), 749
wifi_ftm_status_t::FTM_STATUS_CONF_REJECTED

(C++ enumerator), 749
wifi_ftm_status_t::FTM_STATUS_FAIL

(C++ enumerator), 750
wifi_ftm_status_t::FTM_STATUS_NO_RESPONSE

(C++ enumerator), 749
wifi_ftm_status_t::FTM_STATUS_NO_VALID_MSMT

(C++ enumerator), 750
wifi_ftm_status_t::FTM_STATUS_SUCCESS

(C++ enumerator), 749
wifi_ftm_status_t::FTM_STATUS_UNSUPPORTED

(C++ enumerator), 749
wifi_ftm_status_t::FTM_STATUS_USER_TERM

(C++ enumerator), 750
wifi_he_ap_info_t (C++ struct), 710
wifi_he_ap_info_t::bss_color (C++ mem-

ber), 710
wifi_he_ap_info_t::bss_color_disabled

(C++ member), 710
wifi_he_ap_info_t::bssid_index (C++

member), 710
wifi_he_ap_info_t::partial_bss_color

(C++ member), 710
WIFI_INIT_CONFIG_DEFAULT (C macro), 707
WIFI_INIT_CONFIG_MAGIC (C macro), 706
wifi_init_config_t (C++ struct), 702
wifi_init_config_t::ampdu_rx_enable

(C++ member), 703
wifi_init_config_t::ampdu_tx_enable

(C++ member), 703
wifi_init_config_t::amsdu_tx_enable

(C++ member), 703
wifi_init_config_t::beacon_max_len

(C++ member), 704
wifi_init_config_t::cache_tx_buf_num

(C++ member), 703
wifi_init_config_t::csi_enable (C++

member), 703
wifi_init_config_t::dynamic_rx_buf_num

(C++ member), 703
wifi_init_config_t::dynamic_tx_buf_num

(C++ member), 703
wifi_init_config_t::espnow_max_encrypt_num

(C++ member), 704
wifi_init_config_t::feature_caps (C++

member), 704
wifi_init_config_t::magic (C++ member),

704
wifi_init_config_t::mgmt_sbuf_num

(C++ member), 704
wifi_init_config_t::nano_enable (C++

member), 703
wifi_init_config_t::nvs_enable (C++

member), 703
wifi_init_config_t::osi_funcs (C++

member), 703
wifi_init_config_t::rx_ba_win (C++

member), 703
wifi_init_config_t::rx_mgmt_buf_num

Espressif Systems 2834
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ member), 703
wifi_init_config_t::rx_mgmt_buf_type

(C++ member), 703
wifi_init_config_t::sta_disconnected_pm

(C++ member), 704
wifi_init_config_t::static_rx_buf_num

(C++ member), 703
wifi_init_config_t::static_tx_buf_num

(C++ member), 703
wifi_init_config_t::tx_buf_type (C++

member), 703
wifi_init_config_t::wifi_task_core_id

(C++ member), 704
wifi_init_config_t::wpa_crypto_funcs

(C++ member), 703
wifi_interface_t (C++ enum), 734
wifi_interface_t::WIFI_IF_AP (C++ enu-

merator), 735
wifi_interface_t::WIFI_IF_MAX (C++ enu-

merator), 735
wifi_interface_t::WIFI_IF_STA (C++ enu-

merator), 735
WIFI_MGMT_SBUF_NUM (C macro), 706
wifi_mode_t (C++ enum), 734
wifi_mode_t::WIFI_MODE_AP (C++ enumera-

tor), 734
wifi_mode_t::WIFI_MODE_APSTA (C++ enu-

merator), 734
wifi_mode_t::WIFI_MODE_MAX (C++ enumera-

tor), 734
wifi_mode_t::WIFI_MODE_NAN (C++ enumera-

tor), 734
wifi_mode_t::WIFI_MODE_NULL (C++ enumer-

ator), 734
wifi_mode_t::WIFI_MODE_STA (C++ enumera-

tor), 734
wifi_nan_config_t (C++ struct), 715
wifi_nan_config_t::master_pref (C++

member), 716
wifi_nan_config_t::op_channel (C++

member), 715
wifi_nan_config_t::scan_time (C++ mem-

ber), 716
wifi_nan_config_t::warm_up_sec (C++

member), 716
wifi_nan_datapath_end_req_t (C++ struct),

723
wifi_nan_datapath_end_req_t::ndp_id

(C++ member), 723
wifi_nan_datapath_end_req_t::peer_mac

(C++ member), 723
wifi_nan_datapath_req_t (C++ struct), 722
wifi_nan_datapath_req_t::confirm_required

(C++ member), 722
wifi_nan_datapath_req_t::peer_mac

(C++ member), 722
wifi_nan_datapath_req_t::pub_id (C++

member), 722

wifi_nan_datapath_resp_t (C++ struct), 723
wifi_nan_datapath_resp_t::accept (C++

member), 723
wifi_nan_datapath_resp_t::ndp_id (C++

member), 723
wifi_nan_datapath_resp_t::peer_mac

(C++ member), 723
wifi_nan_followup_params_t (C++ struct),

722
wifi_nan_followup_params_t::inst_id

(C++ member), 722
wifi_nan_followup_params_t::peer_inst_id

(C++ member), 722
wifi_nan_followup_params_t::peer_mac

(C++ member), 722
wifi_nan_followup_params_t::svc_info

(C++ member), 722
wifi_nan_publish_cfg_t (C++ struct), 721
wifi_nan_publish_cfg_t::datapath_reqd

(C++ member), 721
wifi_nan_publish_cfg_t::matching_filter

(C++ member), 721
wifi_nan_publish_cfg_t::reserved (C++

member), 721
wifi_nan_publish_cfg_t::service_name

(C++ member), 721
wifi_nan_publish_cfg_t::single_replied_event

(C++ member), 721
wifi_nan_publish_cfg_t::svc_info (C++

member), 721
wifi_nan_publish_cfg_t::type (C++ mem-

ber), 721
wifi_nan_service_type_t (C++ enum), 743
wifi_nan_service_type_t::NAN_PUBLISH_SOLICITED

(C++ enumerator), 743
wifi_nan_service_type_t::NAN_PUBLISH_UNSOLICITED

(C++ enumerator), 744
wifi_nan_service_type_t::NAN_SUBSCRIBE_ACTIVE

(C++ enumerator), 744
wifi_nan_service_type_t::NAN_SUBSCRIBE_PASSIVE

(C++ enumerator), 744
wifi_nan_subscribe_cfg_t (C++ struct), 721
wifi_nan_subscribe_cfg_t::matching_filter

(C++ member), 722
wifi_nan_subscribe_cfg_t::reserved

(C++ member), 722
wifi_nan_subscribe_cfg_t::service_name

(C++ member), 722
wifi_nan_subscribe_cfg_t::single_match_event

(C++ member), 722
wifi_nan_subscribe_cfg_t::svc_info

(C++ member), 722
wifi_nan_subscribe_cfg_t::type (C++

member), 722
WIFI_NANO_FORMAT_ENABLED (C macro), 706
WIFI_NVS_ENABLED (C macro), 706
WIFI_OFFCHAN_TX_CANCEL (C macro), 731
WIFI_OFFCHAN_TX_REQ (C macro), 731

Espressif Systems 2835
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

wifi_phy_mode_t (C++ enum), 742
wifi_phy_mode_t::WIFI_PHY_MODE_11B

(C++ enumerator), 742
wifi_phy_mode_t::WIFI_PHY_MODE_11G

(C++ enumerator), 742
wifi_phy_mode_t::WIFI_PHY_MODE_HE20

(C++ enumerator), 743
wifi_phy_mode_t::WIFI_PHY_MODE_HT20

(C++ enumerator), 743
wifi_phy_mode_t::WIFI_PHY_MODE_HT40

(C++ enumerator), 743
wifi_phy_mode_t::WIFI_PHY_MODE_LR

(C++ enumerator), 742
wifi_phy_rate_t (C++ enum), 744
wifi_phy_rate_t::WIFI_PHY_RATE_11M_L

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_11M_S

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_12M

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_18M

(C++ enumerator), 745
wifi_phy_rate_t::WIFI_PHY_RATE_1M_L

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_24M

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_2M_L

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_2M_S

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_36M

(C++ enumerator), 745
wifi_phy_rate_t::WIFI_PHY_RATE_48M

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_54M

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_5M_L

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_5M_S

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_6M

(C++ enumerator), 744
wifi_phy_rate_t::WIFI_PHY_RATE_9M

(C++ enumerator), 745
wifi_phy_rate_t::WIFI_PHY_RATE_LORA_250K

(C++ enumerator), 746
wifi_phy_rate_t::WIFI_PHY_RATE_LORA_500K

(C++ enumerator), 746
wifi_phy_rate_t::WIFI_PHY_RATE_MAX

(C++ enumerator), 746
wifi_phy_rate_t::WIFI_PHY_RATE_MCS0_LGI

(C++ enumerator), 745
wifi_phy_rate_t::WIFI_PHY_RATE_MCS0_SGI

(C++ enumerator), 745
wifi_phy_rate_t::WIFI_PHY_RATE_MCS1_LGI

(C++ enumerator), 745
wifi_phy_rate_t::WIFI_PHY_RATE_MCS1_SGI

(C++ enumerator), 745

wifi_phy_rate_t::WIFI_PHY_RATE_MCS2_LGI
(C++ enumerator), 745

wifi_phy_rate_t::WIFI_PHY_RATE_MCS2_SGI
(C++ enumerator), 745

wifi_phy_rate_t::WIFI_PHY_RATE_MCS3_LGI
(C++ enumerator), 745

wifi_phy_rate_t::WIFI_PHY_RATE_MCS3_SGI
(C++ enumerator), 746

wifi_phy_rate_t::WIFI_PHY_RATE_MCS4_LGI
(C++ enumerator), 745

wifi_phy_rate_t::WIFI_PHY_RATE_MCS4_SGI
(C++ enumerator), 746

wifi_phy_rate_t::WIFI_PHY_RATE_MCS5_LGI
(C++ enumerator), 745

wifi_phy_rate_t::WIFI_PHY_RATE_MCS5_SGI
(C++ enumerator), 746

wifi_phy_rate_t::WIFI_PHY_RATE_MCS6_LGI
(C++ enumerator), 745

wifi_phy_rate_t::WIFI_PHY_RATE_MCS6_SGI
(C++ enumerator), 746

wifi_phy_rate_t::WIFI_PHY_RATE_MCS7_LGI
(C++ enumerator), 745

wifi_phy_rate_t::WIFI_PHY_RATE_MCS7_SGI
(C++ enumerator), 746

wifi_phy_rate_t::WIFI_PHY_RATE_MCS8_LGI
(C++ enumerator), 745

wifi_phy_rate_t::WIFI_PHY_RATE_MCS8_SGI
(C++ enumerator), 746

wifi_phy_rate_t::WIFI_PHY_RATE_MCS9_LGI
(C++ enumerator), 745

wifi_phy_rate_t::WIFI_PHY_RATE_MCS9_SGI
(C++ enumerator), 746

wifi_pkt_rx_ctrl_t (C++ type), 734
wifi_pmf_config_t (C++ struct), 712
wifi_pmf_config_t::capable (C++ member),

712
wifi_pmf_config_t::required (C++ mem-

ber), 712
WIFI_PROMIS_CTRL_FILTER_MASK_ACK (C

macro), 733
WIFI_PROMIS_CTRL_FILTER_MASK_ALL (C

macro), 732
WIFI_PROMIS_CTRL_FILTER_MASK_BA (C

macro), 732
WIFI_PROMIS_CTRL_FILTER_MASK_BAR (C

macro), 732
WIFI_PROMIS_CTRL_FILTER_MASK_CFEND (C

macro), 733
WIFI_PROMIS_CTRL_FILTER_MASK_CFENDACK

(C macro), 733
WIFI_PROMIS_CTRL_FILTER_MASK_CTS (C

macro), 733
WIFI_PROMIS_CTRL_FILTER_MASK_PSPOLL (C

macro), 732
WIFI_PROMIS_CTRL_FILTER_MASK_RTS (C

macro), 733
WIFI_PROMIS_CTRL_FILTER_MASK_WRAPPER

(C macro), 732

Espressif Systems 2836
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

WIFI_PROMIS_FILTER_MASK_ALL (C macro),
732

WIFI_PROMIS_FILTER_MASK_CTRL (C macro),
732

WIFI_PROMIS_FILTER_MASK_DATA (C macro),
732

WIFI_PROMIS_FILTER_MASK_DATA_AMPDU (C
macro), 732

WIFI_PROMIS_FILTER_MASK_DATA_MPDU (C
macro), 732

WIFI_PROMIS_FILTER_MASK_FCSFAIL (C
macro), 732

WIFI_PROMIS_FILTER_MASK_MGMT (C macro),
732

WIFI_PROMIS_FILTER_MASK_MISC (C macro),
732

wifi_promiscuous_cb_t (C++ type), 707
wifi_promiscuous_filter_t (C++ struct), 717
wifi_promiscuous_filter_t::filter_mask

(C++ member), 718
wifi_promiscuous_pkt_t (C++ struct), 717
wifi_promiscuous_pkt_t::payload (C++

member), 717
wifi_promiscuous_pkt_t::rx_ctrl (C++

member), 717
wifi_promiscuous_pkt_type_t (C++ enum),

743
wifi_promiscuous_pkt_type_t::WIFI_PKT_CTRL

(C++ enumerator), 743
wifi_promiscuous_pkt_type_t::WIFI_PKT_DATA

(C++ enumerator), 743
wifi_promiscuous_pkt_type_t::WIFI_PKT_MGMT

(C++ enumerator), 743
wifi_promiscuous_pkt_type_t::WIFI_PKT_MISC

(C++ enumerator), 743
WIFI_PROTOCOL_11AX (C macro), 732
WIFI_PROTOCOL_11B (C macro), 731
WIFI_PROTOCOL_11G (C macro), 731
WIFI_PROTOCOL_11N (C macro), 731
WIFI_PROTOCOL_LR (C macro), 731
wifi_prov_cb_event_t (C++ enum), 1676
wifi_prov_cb_event_t::WIFI_PROV_CRED_FAIL

(C++ enumerator), 1677
wifi_prov_cb_event_t::WIFI_PROV_CRED_RECV

(C++ enumerator), 1677
wifi_prov_cb_event_t::WIFI_PROV_CRED_SUCCESS

(C++ enumerator), 1677
wifi_prov_cb_event_t::WIFI_PROV_DEINIT

(C++ enumerator), 1677
wifi_prov_cb_event_t::WIFI_PROV_END

(C++ enumerator), 1677
wifi_prov_cb_event_t::WIFI_PROV_INIT

(C++ enumerator), 1677
wifi_prov_cb_event_t::WIFI_PROV_START

(C++ enumerator), 1677
wifi_prov_cb_func_t (C++ type), 1676
wifi_prov_config_data_handler (C++ func-

tion), 1679

wifi_prov_config_get_data_t (C++ struct),
1680

wifi_prov_config_get_data_t::conn_info
(C++ member), 1680

wifi_prov_config_get_data_t::fail_reason
(C++ member), 1680

wifi_prov_config_get_data_t::wifi_state
(C++ member), 1680

wifi_prov_config_handlers (C++ struct),
1681

wifi_prov_config_handlers::apply_config_handler
(C++ member), 1681

wifi_prov_config_handlers::ctx (C++
member), 1681

wifi_prov_config_handlers::get_status_handler
(C++ member), 1681

wifi_prov_config_handlers::set_config_handler
(C++ member), 1681

wifi_prov_config_handlers_t (C++ type),
1681

wifi_prov_config_set_data_t (C++ struct),
1680

wifi_prov_config_set_data_t::bssid
(C++ member), 1680

wifi_prov_config_set_data_t::channel
(C++ member), 1681

wifi_prov_config_set_data_t::password
(C++ member), 1680

wifi_prov_config_set_data_t::ssid
(C++ member), 1680

wifi_prov_ctx_t (C++ type), 1681
WIFI_PROV_EVENT_HANDLER_NONE (C macro),

1676
wifi_prov_event_handler_t (C++ struct),

1674
wifi_prov_event_handler_t::event_cb

(C++ member), 1675
wifi_prov_event_handler_t::user_data

(C++ member), 1675
wifi_prov_mgr_config_t (C++ struct), 1675
wifi_prov_mgr_config_t::app_event_handler

(C++ member), 1676
wifi_prov_mgr_config_t::scheme (C++

member), 1676
wifi_prov_mgr_config_t::scheme_event_handler

(C++ member), 1676
wifi_prov_mgr_configure_sta (C++ func-

tion), 1674
wifi_prov_mgr_deinit (C++ function), 1670
wifi_prov_mgr_disable_auto_stop (C++

function), 1671
wifi_prov_mgr_endpoint_create (C++ func-

tion), 1672
wifi_prov_mgr_endpoint_register (C++

function), 1673
wifi_prov_mgr_endpoint_unregister

(C++ function), 1673
wifi_prov_mgr_get_wifi_disconnect_reason

Espressif Systems 2837
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

(C++ function), 1673
wifi_prov_mgr_get_wifi_state (C++ func-

tion), 1673
wifi_prov_mgr_init (C++ function), 1670
wifi_prov_mgr_is_provisioned (C++ func-

tion), 1670
wifi_prov_mgr_reset_provisioning (C++

function), 1674
wifi_prov_mgr_reset_sm_state_for_reprovision

(C++ function), 1674
wifi_prov_mgr_reset_sm_state_on_failure

(C++ function), 1674
wifi_prov_mgr_set_app_info (C++ function),

1672
wifi_prov_mgr_start_provisioning (C++

function), 1670
wifi_prov_mgr_stop_provisioning (C++

function), 1671
wifi_prov_mgr_wait (C++ function), 1671
wifi_prov_scheme (C++ struct), 1675
wifi_prov_scheme::delete_config (C++

member), 1675
wifi_prov_scheme::new_config (C++ mem-

ber), 1675
wifi_prov_scheme::prov_start (C++ mem-

ber), 1675
wifi_prov_scheme::prov_stop (C++ mem-

ber), 1675
wifi_prov_scheme::set_config_endpoint

(C++ member), 1675
wifi_prov_scheme::set_config_service

(C++ member), 1675
wifi_prov_scheme::wifi_mode (C++ mem-

ber), 1675
wifi_prov_scheme_ble_event_cb_free_ble

(C++ function), 1678
wifi_prov_scheme_ble_event_cb_free_bt

(C++ function), 1678
wifi_prov_scheme_ble_event_cb_free_btdm

(C++ function), 1678
WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BLE

(C macro), 1679
WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BT

(C macro), 1679
WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BTDM

(C macro), 1679
wifi_prov_scheme_ble_set_mfg_data

(C++ function), 1678
wifi_prov_scheme_ble_set_random_addr

(C++ function), 1678
wifi_prov_scheme_ble_set_service_uuid

(C++ function), 1678
wifi_prov_scheme_softap_set_httpd_handle

(C++ function), 1679
wifi_prov_scheme_t (C++ type), 1676
wifi_prov_security (C++ enum), 1677
wifi_prov_security2_params_t (C++ type),

1676

wifi_prov_security::WIFI_PROV_SECURITY_0
(C++ enumerator), 1677

wifi_prov_security::WIFI_PROV_SECURITY_1
(C++ enumerator), 1677

wifi_prov_security::WIFI_PROV_SECURITY_2
(C++ enumerator), 1677

wifi_prov_security_t (C++ type), 1676
wifi_prov_sta_conn_info_t (C++ struct),

1680
wifi_prov_sta_conn_info_t::auth_mode

(C++ member), 1680
wifi_prov_sta_conn_info_t::bssid (C++

member), 1680
wifi_prov_sta_conn_info_t::channel

(C++ member), 1680
wifi_prov_sta_conn_info_t::ip_addr

(C++ member), 1680
wifi_prov_sta_conn_info_t::ssid (C++

member), 1680
wifi_prov_sta_fail_reason_t (C++ enum),

1682
wifi_prov_sta_fail_reason_t::WIFI_PROV_STA_AP_NOT_FOUND

(C++ enumerator), 1682
wifi_prov_sta_fail_reason_t::WIFI_PROV_STA_AUTH_ERROR

(C++ enumerator), 1682
wifi_prov_sta_state_t (C++ enum), 1681
wifi_prov_sta_state_t::WIFI_PROV_STA_CONNECTED

(C++ enumerator), 1681
wifi_prov_sta_state_t::WIFI_PROV_STA_CONNECTING

(C++ enumerator), 1681
wifi_prov_sta_state_t::WIFI_PROV_STA_DISCONNECTED

(C++ enumerator), 1682
wifi_ps_type_t (C++ enum), 741
wifi_ps_type_t::WIFI_PS_MAX_MODEM

(C++ enumerator), 741
wifi_ps_type_t::WIFI_PS_MIN_MODEM

(C++ enumerator), 741
wifi_ps_type_t::WIFI_PS_NONE (C++ enu-

merator), 741
WIFI_ROC_CANCEL (C macro), 731
WIFI_ROC_REQ (C macro), 731
WIFI_RX_MGMT_BUF_NUM_DEF (C macro), 706
wifi_sae_pk_mode_t (C++ enum), 741
wifi_sae_pk_mode_t::WPA3_SAE_PK_MODE_AUTOMATIC

(C++ enumerator), 741
wifi_sae_pk_mode_t::WPA3_SAE_PK_MODE_DISABLED

(C++ enumerator), 742
wifi_sae_pk_mode_t::WPA3_SAE_PK_MODE_ONLY

(C++ enumerator), 741
wifi_sae_pwe_method_t (C++ enum), 741
wifi_sae_pwe_method_t::WPA3_SAE_PWE_BOTH

(C++ enumerator), 741
wifi_sae_pwe_method_t::WPA3_SAE_PWE_HASH_TO_ELEMENT

(C++ enumerator), 741
wifi_sae_pwe_method_t::WPA3_SAE_PWE_HUNT_AND_PECK

(C++ enumerator), 741
wifi_sae_pwe_method_t::WPA3_SAE_PWE_UNSPECIFIED

(C++ enumerator), 741

Espressif Systems 2838
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

wifi_scan_config_t (C++ struct), 709
wifi_scan_config_t::bssid (C++ member),

709
wifi_scan_config_t::channel (C++ mem-

ber), 709
wifi_scan_config_t::home_chan_dwell_time

(C++ member), 710
wifi_scan_config_t::scan_time (C++

member), 710
wifi_scan_config_t::scan_type (C++

member), 709
wifi_scan_config_t::show_hidden (C++

member), 709
wifi_scan_config_t::ssid (C++ member),

709
wifi_scan_method_t (C++ enum), 740
wifi_scan_method_t::WIFI_ALL_CHANNEL_SCAN

(C++ enumerator), 740
wifi_scan_method_t::WIFI_FAST_SCAN

(C++ enumerator), 740
wifi_scan_threshold_t (C++ struct), 711
wifi_scan_threshold_t::authmode (C++

member), 712
wifi_scan_threshold_t::rssi (C++ mem-

ber), 712
wifi_scan_time_t (C++ struct), 709
wifi_scan_time_t::active (C++ member),

709
wifi_scan_time_t::passive (C++ member),

709
wifi_scan_type_t (C++ enum), 739
wifi_scan_type_t::WIFI_SCAN_TYPE_ACTIVE

(C++ enumerator), 739
wifi_scan_type_t::WIFI_SCAN_TYPE_PASSIVE

(C++ enumerator), 739
wifi_second_chan_t (C++ enum), 739
wifi_second_chan_t::WIFI_SECOND_CHAN_ABOVE

(C++ enumerator), 739
wifi_second_chan_t::WIFI_SECOND_CHAN_BELOW

(C++ enumerator), 739
wifi_second_chan_t::WIFI_SECOND_CHAN_NONE

(C++ enumerator), 739
WIFI_SOFTAP_BEACON_MAX_LEN (C macro), 706
wifi_sort_method_t (C++ enum), 740
wifi_sort_method_t::WIFI_CONNECT_AP_BY_SECURITY

(C++ enumerator), 741
wifi_sort_method_t::WIFI_CONNECT_AP_BY_SIGNAL

(C++ enumerator), 741
wifi_sta_config_t (C++ struct), 713
wifi_sta_config_t::bssid (C++ member),

714
wifi_sta_config_t::bssid_set (C++ mem-

ber), 713
wifi_sta_config_t::btm_enabled (C++

member), 714
wifi_sta_config_t::channel (C++ member),

714
wifi_sta_config_t::failure_retry_cnt

(C++ member), 715
wifi_sta_config_t::ft_enabled (C++

member), 714
wifi_sta_config_t::he_dcm_max_constellation_rx

(C++ member), 715
wifi_sta_config_t::he_dcm_max_constellation_tx

(C++ member), 715
wifi_sta_config_t::he_dcm_set (C++

member), 715
wifi_sta_config_t::he_mcs9_enabled

(C++ member), 715
wifi_sta_config_t::he_reserved (C++

member), 715
wifi_sta_config_t::he_su_beamformee_disabled

(C++ member), 715
wifi_sta_config_t::he_trig_cqi_feedback_disabled

(C++ member), 715
wifi_sta_config_t::he_trig_mu_bmforming_partial_feedback_disabled

(C++ member), 715
wifi_sta_config_t::he_trig_su_bmforming_feedback_disabled

(C++ member), 715
wifi_sta_config_t::listen_interval

(C++ member), 714
wifi_sta_config_t::mbo_enabled (C++

member), 714
wifi_sta_config_t::owe_enabled (C++

member), 714
wifi_sta_config_t::password (C++ mem-

ber), 713
wifi_sta_config_t::pmf_cfg (C++ member),

714
wifi_sta_config_t::reserved (C++ mem-

ber), 714
wifi_sta_config_t::rm_enabled (C++

member), 714
wifi_sta_config_t::sae_h2e_identifier

(C++ member), 715
wifi_sta_config_t::sae_pk_mode (C++

member), 714
wifi_sta_config_t::sae_pwe_h2e (C++

member), 714
wifi_sta_config_t::scan_method (C++

member), 713
wifi_sta_config_t::sort_method (C++

member), 714
wifi_sta_config_t::ssid (C++ member), 713
wifi_sta_config_t::threshold (C++ mem-

ber), 714
wifi_sta_config_t::transition_disable

(C++ member), 714
WIFI_STA_DISCONNECTED_PM_ENABLED (C

macro), 706
wifi_sta_info_t (C++ struct), 716
wifi_sta_info_t::is_mesh_child (C++

member), 716
wifi_sta_info_t::mac (C++ member), 716
wifi_sta_info_t::phy_11ax (C++ member),

716

Espressif Systems 2839
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

wifi_sta_info_t::phy_11b (C++ member),
716

wifi_sta_info_t::phy_11g (C++ member),
716

wifi_sta_info_t::phy_11n (C++ member),
716

wifi_sta_info_t::phy_lr (C++ member), 716
wifi_sta_info_t::reserved (C++ member),

716
wifi_sta_info_t::rssi (C++ member), 716
wifi_sta_list_t (C++ struct), 716
wifi_sta_list_t::num (C++ member), 717
wifi_sta_list_t::sta (C++ member), 717
WIFI_STATIC_TX_BUFFER_NUM (C macro), 706
WIFI_STATIS_ALL (C macro), 734
WIFI_STATIS_BUFFER (C macro), 733
WIFI_STATIS_DIAG (C macro), 734
WIFI_STATIS_HW (C macro), 734
WIFI_STATIS_PS (C macro), 734
WIFI_STATIS_RXTX (C macro), 734
wifi_storage_t (C++ enum), 742
wifi_storage_t::WIFI_STORAGE_FLASH

(C++ enumerator), 742
wifi_storage_t::WIFI_STORAGE_RAM (C++

enumerator), 742
WIFI_TASK_CORE_ID (C macro), 706
wifi_tx_rate_config_t (C++ struct), 731
wifi_tx_rate_config_t::dcm (C++ member),

731
wifi_tx_rate_config_t::ersu (C++ mem-

ber), 731
wifi_tx_rate_config_t::phymode (C++

member), 731
wifi_tx_rate_config_t::rate (C++ mem-

ber), 731
WIFI_VENDOR_IE_ELEMENT_ID (C macro), 732
wifi_vendor_ie_id_t (C++ enum), 742
wifi_vendor_ie_id_t::WIFI_VND_IE_ID_0

(C++ enumerator), 742
wifi_vendor_ie_id_t::WIFI_VND_IE_ID_1

(C++ enumerator), 742
wifi_vendor_ie_type_t (C++ enum), 742
wifi_vendor_ie_type_t::WIFI_VND_IE_TYPE_ASSOC_REQ

(C++ enumerator), 742
wifi_vendor_ie_type_t::WIFI_VND_IE_TYPE_ASSOC_RESP

(C++ enumerator), 742
wifi_vendor_ie_type_t::WIFI_VND_IE_TYPE_BEACON

(C++ enumerator), 742
wifi_vendor_ie_type_t::WIFI_VND_IE_TYPE_PROBE_REQ

(C++ enumerator), 742
wifi_vendor_ie_type_t::WIFI_VND_IE_TYPE_PROBE_RESP

(C++ enumerator), 742
wl_erase_range (C++ function), 1766
wl_handle_t (C++ type), 1767
WL_INVALID_HANDLE (C macro), 1767
wl_mount (C++ function), 1766
wl_read (C++ function), 1767
wl_sector_size (C++ function), 1767

wl_size (C++ function), 1767
wl_unmount (C++ function), 1766
wl_write (C++ function), 1767
WPS_CONFIG_INIT_DEFAULT (C macro), 758
wps_factory_information_t (C++ struct), 756
wps_factory_information_t::device_name

(C++ member), 757
wps_factory_information_t::manufacturer

(C++ member), 757
wps_factory_information_t::model_name

(C++ member), 757
wps_factory_information_t::model_number

(C++ member), 757
wps_fail_reason_t (C++ enum), 750
wps_fail_reason_t::WPS_AP_FAIL_REASON_AUTH

(C++ enumerator), 750
wps_fail_reason_t::WPS_AP_FAIL_REASON_CONFIG

(C++ enumerator), 750
wps_fail_reason_t::WPS_AP_FAIL_REASON_MAX

(C++ enumerator), 750
wps_fail_reason_t::WPS_AP_FAIL_REASON_NORMAL

(C++ enumerator), 750
WPS_MAX_DEVICE_NAME_LEN (C macro), 758
WPS_MAX_MANUFACTURER_LEN (C macro), 757
WPS_MAX_MODEL_NAME_LEN (C macro), 757
WPS_MAX_MODEL_NUMBER_LEN (C macro), 757
wps_type (C++ enum), 758
wps_type::WPS_TYPE_DISABLE (C++ enumera-

tor), 758
wps_type::WPS_TYPE_MAX (C++ enumerator),

758
wps_type::WPS_TYPE_PBC (C++ enumerator),

758
wps_type::WPS_TYPE_PIN (C++ enumerator),

758
wps_type_t (C++ type), 758

X
xEventGroupClearBits (C++ function), 1947
xEventGroupClearBitsFromISR (C macro),

1950
xEventGroupCreate (C++ function), 1944
xEventGroupCreateStatic (C++ function),

1945
xEventGroupCreateWithCaps (C++ function),

1993
xEventGroupGetBits (C macro), 1952
xEventGroupGetBitsFromISR (C++ function),

1950
xEventGroupGetStaticBuffer (C++ function),

1950
xEventGroupSetBits (C++ function), 1947
xEventGroupSetBitsFromISR (C macro), 1951
xEventGroupSync (C++ function), 1948
xEventGroupWaitBits (C++ function), 1945
xMessageBufferCreate (C macro), 1961
xMessageBufferCreateStatic (Cmacro), 1962

Espressif Systems 2840
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

xMessageBufferCreateWithCaps (C++ func-
tion), 1993

xMessageBufferGetStaticBuffers (C
macro), 1963

xMessageBufferIsEmpty (C macro), 1968
xMessageBufferIsFull (C macro), 1968
xMessageBufferNextLengthBytes (C macro),

1968
xMessageBufferReceive (C macro), 1965
xMessageBufferReceiveCompletedFromISR

(C macro), 1969
xMessageBufferReceiveFromISR (C macro),

1966
xMessageBufferReset (C macro), 1968
xMessageBufferSend (C macro), 1963
xMessageBufferSendCompletedFromISR (C

macro), 1968
xMessageBufferSendFromISR (C macro), 1964
xMessageBufferSpaceAvailable (C macro),

1968
xMessageBufferSpacesAvailable (C macro),

1968
xQueueAddToSet (C++ function), 1900
xQueueCreate (C macro), 1901
xQueueCreateSet (C++ function), 1899
xQueueCreateStatic (C macro), 1902
xQueueCreateWithCaps (C++ function), 1991
xQueueGenericCreate (C++ function), 1899
xQueueGenericCreateStatic (C++ function),

1899
xQueueGenericGetStaticBuffers (C++ func-

tion), 1899
xQueueGenericSend (C++ function), 1892
xQueueGenericSendFromISR (C++ function),

1896
xQueueGetStaticBuffers (C macro), 1903
xQueueGiveFromISR (C++ function), 1897
xQueueIsQueueEmptyFromISR (C++ function),

1898
xQueueIsQueueFullFromISR (C++ function),

1898
xQueueOverwrite (C macro), 1906
xQueueOverwriteFromISR (C macro), 1909
xQueuePeek (C++ function), 1893
xQueuePeekFromISR (C++ function), 1894
xQueueReceive (C++ function), 1895
xQueueReceiveFromISR (C++ function), 1897
xQueueRemoveFromSet (C++ function), 1900
xQueueReset (C macro), 1911
xQueueSelectFromSet (C++ function), 1900
xQueueSelectFromSetFromISR (C++ function),

1901
xQueueSend (C macro), 1905
xQueueSendFromISR (C macro), 1910
xQueueSendToBack (C macro), 1904
xQueueSendToBackFromISR (C macro), 1908
xQueueSendToFront (C macro), 1903
xQueueSendToFrontFromISR (C macro), 1907

xRingbufferAddToQueueSetRead (C++ func-
tion), 1986

xRingbufferCanRead (C++ function), 1986
xRingbufferCreate (C++ function), 1979
xRingbufferCreateNoSplit (C++ function),

1979
xRingbufferCreateStatic (C++ function),

1980
xRingbufferGetCurFreeSize (C++ function),

1986
xRingbufferGetMaxItemSize (C++ function),

1985
xRingbufferPrintInfo (C++ function), 1987
xRingbufferReceive (C++ function), 1982
xRingbufferReceiveFromISR (C++ function),

1982
xRingbufferReceiveSplit (C++ function),

1983
xRingbufferReceiveSplitFromISR (C++

function), 1983
xRingbufferReceiveUpTo (C++ function), 1984
xRingbufferReceiveUpToFromISR (C++ func-

tion), 1984
xRingbufferRemoveFromQueueSetRead

(C++ function), 1986
xRingbufferSend (C++ function), 1980
xRingbufferSendAcquire (C++ function), 1981
xRingbufferSendComplete (C++ function),

1981
xRingbufferSendFromISR (C++ function), 1980
xSemaphoreCreateBinary (C macro), 1912
xSemaphoreCreateBinaryStatic (C macro),

1913
xSemaphoreCreateBinaryWithCaps (C++

function), 1991
xSemaphoreCreateCounting (C macro), 1921
xSemaphoreCreateCountingStatic (C

macro), 1924
xSemaphoreCreateCountingWithCaps (C++

function), 1991
xSemaphoreCreateMutex (C macro), 1920
xSemaphoreCreateMutexStatic (C macro),

1920
xSemaphoreCreateMutexWithCaps (C++ func-

tion), 1992
xSemaphoreCreateRecursiveMutexWithCaps

(C++ function), 1992
xSemaphoreGetMutexHolder (C macro), 1925
xSemaphoreGetMutexHolderFromISR (C

macro), 1925
xSemaphoreGetStaticBuffer (C macro), 1925
xSemaphoreGive (C macro), 1916
xSemaphoreGiveFromISR (C macro), 1918
xSemaphoreGiveRecursive (C macro), 1917
xSemaphoreTake (C macro), 1914
xSemaphoreTakeFromISR (C macro), 1919
xSemaphoreTakeRecursive (C macro), 1914
xSTATIC_RINGBUFFER (C++ struct), 1987

Espressif Systems 2841
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

Index

xStreamBufferBytesAvailable (C++ func-
tion), 1958

xStreamBufferCreate (C macro), 1959
xStreamBufferCreateStatic (C macro), 1960
xStreamBufferCreateWithCaps (C++ func-

tion), 1992
xStreamBufferGetStaticBuffers (C++ func-

tion), 1953
xStreamBufferIsEmpty (C++ function), 1957
xStreamBufferIsFull (C++ function), 1957
xStreamBufferReceive (C++ function), 1955
xStreamBufferReceiveCompletedFromISR

(C++ function), 1959
xStreamBufferReceiveFromISR (C++ func-

tion), 1956
xStreamBufferReset (C++ function), 1957
xStreamBufferSend (C++ function), 1953
xStreamBufferSendCompletedFromISR

(C++ function), 1958
xStreamBufferSendFromISR (C++ function),

1954
xStreamBufferSetTriggerLevel (C++ func-

tion), 1958
xStreamBufferSpacesAvailable (C++ func-

tion), 1958
xTaskAbortDelay (C++ function), 1867
xTaskCallApplicationTaskHook (C++ func-

tion), 1876
xTaskCatchUpTicks (C++ function), 1888
xTaskCheckForTimeOut (C++ function), 1886
xTaskCreate (C++ function), 1859
xTaskCreatePinnedToCore (C++ function),

1857
xTaskCreatePinnedToCoreWithCaps (C++

function), 1989
xTaskCreateStatic (C++ function), 1861
xTaskCreateStaticPinnedToCore (C++ func-

tion), 1858
xTaskCreateWithCaps (C++ function), 1990
xTaskDelayUntil (C++ function), 1866
xTaskGenericNotify (C++ function), 1880
xTaskGenericNotifyFromISR (C++ function),

1881
xTaskGenericNotifyStateClear (C++ func-

tion), 1885
xTaskGenericNotifyWait (C++ function), 1882
xTaskGetApplicationTaskTag (C++ function),

1875
xTaskGetApplicationTaskTagFromISR

(C++ function), 1875
xTaskGetHandle (C++ function), 1874
xTaskGetIdleTaskHandle (C++ function), 1876
xTaskGetStaticBuffers (C++ function), 1874
xTaskGetTickCount (C++ function), 1874
xTaskGetTickCountFromISR (C++ function),

1874
xTaskNotify (C macro), 1889
xTaskNotifyAndQuery (C macro), 1889

xTaskNotifyAndQueryFromISR (Cmacro), 1889
xTaskNotifyAndQueryIndexed (Cmacro), 1889
xTaskNotifyAndQueryIndexedFromISR (C

macro), 1889
xTaskNotifyFromISR (C macro), 1889
xTaskNotifyGive (C macro), 1890
xTaskNotifyGiveIndexed (C macro), 1890
xTaskNotifyIndexed (C macro), 1889
xTaskNotifyIndexedFromISR (C macro), 1889
xTaskNotifyStateClear (C macro), 1891
xTaskNotifyStateClearIndexed (C macro),

1891
xTaskNotifyWait (C macro), 1890
xTaskNotifyWaitIndexed (C macro), 1890
xTaskResumeAll (C++ function), 1873
xTaskResumeFromISR (C++ function), 1871
xTimerChangePeriod (C macro), 1935
xTimerChangePeriodFromISR (C macro), 1941
xTimerCreate (C++ function), 1925
xTimerCreateStatic (C++ function), 1928
xTimerDelete (C macro), 1937
xTimerGetExpiryTime (C++ function), 1933
xTimerGetPeriod (C++ function), 1933
xTimerGetStaticBuffer (C++ function), 1933
xTimerGetTimerDaemonTaskHandle (C++

function), 1931
xTimerIsTimerActive (C++ function), 1930
xTimerPendFunctionCall (C++ function), 1932
xTimerPendFunctionCallFromISR (C++ func-

tion), 1931
xTimerReset (C macro), 1937
xTimerResetFromISR (C macro), 1942
xTimerStart (C macro), 1934
xTimerStartFromISR (C macro), 1939
xTimerStop (C macro), 1935
xTimerStopFromISR (C macro), 1940

Espressif Systems 2842
Submit Document Feedback

Release v5.1.6-1594-gb0f5707906

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release v5.1.6-1594-gb0f5707906

	Table of contents
	Get Started
	Introduction
	What You Need
	Hardware
	Software

	Installation
	IDE
	Manual Installation
	Standard Setup of Toolchain for Windows
	Introduction
	ESP-IDF Tools Installer
	What is the usecase for Online and Offline Installer
	Components of the installation
	Launching ESP-IDF Environment

	Using the Command Prompt
	First Steps on ESP-IDF
	Start a Project
	Connect Your Device
	Configure Your Project
	Windows

	Build the Project
	Flash onto the Device
	Normal Operation

	Monitor the Output
	Additional Tips
	Permission issues /dev/ttyUSB0
	Python compatibility
	Flash Erase

	Related Documents
	Updating ESP-IDF tools on Windows
	Install ESP-IDF tools using a script
	Add ESP-IDF tools to PATH using an export script
	Establish Serial Connection with ESP32-C6
	Supported USB Peripheral
	USB-to-UART Bridge on Development Board
	External USB-to-UART Bridge
	Flash using USB
	Flash using UART
	Connect ESP32-C6 to PC
	Check port on Windows
	Check port on Linux and macOS
	Adding user to dialout on Linux
	Verify serial connection
	Windows and Linux
	macOS
	Example Output
	Flashing Troubleshooting
	Failed to Connect
	IDF Monitor
	Keyboard Shortcuts
	IDF-specific features
	Automatic Address Decoding
	Target Reset on Connection
	Launching GDB with GDBStub
	Output Filtering
	Examples of Filtering Rules:
	A More Complex Filtering Example
	Known Issues with IDF Monitor
	Issues Observed on Windows

	Standard Toolchain Setup for Linux and macOS
	Installation Step by Step
	Setting up Development Environment

	Step 1. Install Prerequisites
	For Linux Users
	For macOS Users
	Apple M1 Users
	Installing Python 3

	Step 2. Get ESP-IDF
	Step 3. Set up the tools
	Alternative File Downloads
	Customizing the tools installation path

	Step 4. Set up the environment variables
	Step 5. First Steps on ESP-IDF
	Start a Project
	Connect Your Device
	Configure Your Project
	Build the Project
	Flash onto the Device
	Normal Operation

	Monitor the Output
	Additional Tips
	Permission issues /dev/ttyUSB0
	Python compatibility
	Flash Erase

	Tip: Updating ESP-IDF
	Related Documents

	Build Your First Project
	Uninstall ESP-IDF

	API Reference
	API Conventions
	Error Handling
	Configuration Structures
	Default Initializers

	Private APIs
	Components in Example Projects
	API Stability
	Source-level Compatibility
	Lack of Binary Compatibility
	Other Exceptions from Compatibility

	Application Protocols
	ASIO port
	Hosted Documentation

	ESP-Modbus
	Hosted Documentation
	Application Example
	Protocol References

	ESP-MQTT
	Overview
	Features
	Application Examples
	MQTT Message Retransmission
	Configuration
	Broker
	Address
	Verification

	Client Credentials
	Authentication

	Session
	Last Will and Testament

	Change Settings in Project Configuration Menu

	Events
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	ESP-TLS
	Overview
	Application Example
	Tree structure for ESP-TLS component
	TLS Server verification
	ESP-TLS Server cert selection hook
	Underlying SSL/TLS Library Options
	How to use wolfssl with ESP-IDF
	Comparison between mbedtls and wolfssl
	Digital Signature with ESP-TLS
	API Reference
	Header File
	Functions
	Structures
	Type Definitions
	Enumerations
	Header File
	Structures
	Macros
	Type Definitions
	Enumerations

	ESP HTTP Client
	Overview
	Application Example
	Basic HTTP Request
	Persistent Connections
	HTTPS Request
	HTTP Stream
	HTTP Authentication
	Examples of Authentication Configuration

	Event Handling
	ESP HTTP Client Diagnostic Information
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	ESP Local Control
	Overview
	Creating a property
	Client Side Implementation
	API Reference
	Header File
	Functions
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations

	ESP Serial Slave Link
	Overview
	Espressif Device protocols
	Communication with ESP SDIO Slave
	SDIO Slave Capabilities of Espressif chips
	ESP SDIO Slave Initialization
	ESP SDIO Slave Protocol
	Slave register table
	32-bit
	8-bit
	FIFO (sending and receiving)
	Interrupts
	Receiving FIFO
	Sending FIFO

	ESP SPI Slave HD (Half Duplex) Mode Protocol
	SPI Slave Capabilities of Espressif chips
	Introduction
	Data IO Modes
	QPI Mode
	Supported Commands
	Segment Transaction Mode

	Terminology
	Services provided by ESP slave
	Initialization of ESP Serial Slave Link
	ESP SDIO Slave
	ESP SPI Slave

	APIs
	Tohost Interrupts (optional)
	Frhost Interrupts
	TX FIFO
	RX FIFO
	Reset counters (Optional)

	Application Example
	API Reference
	Header File
	Functions
	Type Definitions
	Header File
	Functions
	Structures
	Header File
	Functions
	Structures

	ESP x509 Certificate Bundle
	Overview
	Configuration
	Generating the List of Root Certificates
	Updating the Certificate Bundle
	Application Example
	API Reference
	Header File
	Functions

	HTTP Server
	Overview
	Application Example
	Simple HTTP Server Example

	Persistent Connections
	Persistent Connections Example

	Websocket Server
	Event Handling
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	HTTPS Server
	Overview
	Used APIs
	Usage
	Performance
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	ICMP Echo
	Overview
	Create a new ping session
	Start and Stop ping session
	Delete a ping session
	Get runtime statistics

	Application Example
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	mDNS Service
	Hosted Documentation

	Mbed TLS
	Mbed TLS Support in ESP-IDF
	Application Examples
	Alternatives
	Important Config Options
	Performance and Memory Tweaks
	Reducing Heap Usage
	Reducing Binary Size

	IP Network Layer

	Bluetooth API
	Bluetooth® Common
	BT GENERIC DEFINES
	API Reference
	Header File
	Structures
	Macros
	Type Definitions
	Enumerations

	BT MAIN API
	API Reference
	Header File
	Functions
	Enumerations

	BT DEVICE APIs
	Overview
	API Reference
	Header File
	Functions

	Bluetooth® Low Energy
	GAP API
	Application Example
	API Reference
	Header File
	Functions
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations

	GATT DEFINES
	API Reference
	Header File
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations

	GATT SERVER API
	Application Example
	API Reference
	Header File
	Functions
	Unions
	Macros
	Type Definitions
	Enumerations

	GATT CLIENT API
	Application Example
	API Reference
	Header File
	Functions
	Unions
	Type Definitions
	Enumerations

	BLUFI API
	Overview
	Application Example
	API Reference
	Header File
	Functions
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations

	Controller & HCI
	Application Example
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	HCI Vendor-specific (VS) Commands

	ESP-BLE-MESH
	Application Examples and Demos
	API Reference
	ESP-BLE-MESH Definitions
	Header File
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations

	ESP-BLE-MESH Core API Reference
	ESP-BLE-MESH Stack Initialization
	Header File
	Functions
	Reading of Local Data Information
	Header File
	Functions
	Low Power Operation (Updating)
	Header File
	Functions
	Send/Publish Messages, add Local AppKey, etc.
	Header File
	Functions
	Type Definitions
	ESP-BLE-MESH Node/Provisioner Provisioning
	Header File
	Functions
	Type Definitions
	ESP-BLE-MESH GATT Proxy Server
	Header File
	Functions

	ESP-BLE-MESH Models API Reference
	Configuration Client/Server Models
	Header File
	Functions
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations
	Health Client/Server Models
	Header File
	Functions
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations
	Generic Client/Server Models
	Header File
	Functions
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations
	Sensor Client/Server Models
	Header File
	Functions
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations
	Time and Scenes Client/Server Models
	Header File
	Functions
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations
	Lighting Client/Server Models
	Header File
	Functions
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations

	NimBLE-based host APIs
	Overview
	Architecture
	Threading Model
	Programming Sequence
	API Reference
	Header File
	Functions
	Macros

	Error Codes Reference
	Networking APIs
	Wi-Fi
	ESP-NOW
	Overview
	Frame Format
	Security
	Initialization and De-initialization
	Add Paired Device
	Send ESP-NOW Data
	Receiving ESP-NOW Data
	Config ESP-NOW Rate
	Config ESP-NOW Power-saving Parameter
	Application Examples
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	ESP-WIFI-MESH Programming Guide
	ESP-WIFI-MESH Programming Model
	Software Stack
	System Events
	LwIP & ESP-WIFI-MESH

	Writing an ESP-WIFI-MESH Application
	Initialize Mesh
	Configuring an ESP-WIFI-MESH Network
	Start Mesh

	Self Organized Networking
	Toggling Self Organized Networking
	Disabling Self Organized Networking
	Enabling Self Organized Networking
	Calling Wi-Fi API

	Application Examples
	API Reference
	Header File
	Functions
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations

	SmartConfig
	Introduction
	Application Example
	API Reference
	Header File
	Functions
	Structures
	Macros
	Enumerations

	Wi-Fi
	Introduction
	Application Examples
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Header File
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Functions
	Structures
	Enumerations
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Functions
	Type Definitions
	Header File
	Functions
	Enumerations
	Header File
	Functions
	Structures
	Enumerations

	Wi-Fi Easy ConnectTM (DPP)
	Application Example
	API Reference
	Header File
	Functions
	Macros
	Type Definitions
	Enumerations

	Ethernet
	Ethernet
	Overview
	Basic Ethernet Concepts
	Preamble and Start-of-Frame Delimiter
	Destination Address
	Source Address
	Type/Length
	Payload
	Padding and FCS

	Configure MAC and PHY
	Create MAC and PHY Instance
	SPI-Ethernet Module

	Install Driver
	Start Ethernet Driver
	Connect Driver to TCP/IP Stack
	Misc Control of Ethernet Driver
	Flow Control
	Application Examples
	Advanced Topics
	Custom PHY Driver

	API Reference
	Header File
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Structures
	Type Definitions
	Enumerations
	Header File
	Unions
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Functions
	Structures
	Enumerations
	Header File
	Functions
	Type Definitions

	Thread
	Thread
	Introduction
	Application Examples
	API Reference
	Header File
	Functions
	Header File
	Structures
	Type Definitions
	Enumerations
	Header File
	Functions
	Header File
	Functions
	Macros
	Header File
	Functions

	ESP-NETIF
	ESP-NETIF
	ESP-NETIF architecture
	Data and event flow in the diagram
	ESP-NETIF interaction
	A) User code, boiler plate
	B) Communication driver, IO driver, media driver
	C) ESP-NETIF
	D) Network stack
	E) ESP-NETIF L2 TAP Interface

	ESP-NETIF L2 TAP Interface Usage Manual
	Initialization
	open()
	ioctl()
	fcntl()
	read()
	write()
	close()
	select()

	SNTP API
	Basic mode with statically defined server(s)
	Use DHCP obtained SNTP server(s)
	Use both static and dynamic servers

	ESP-NETIF programmer's manual
	WiFi default initialization

	API Reference
	Header File
	Functions
	Type Definitions
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Header File
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations
	WiFi default API reference
	Header File
	Functions

	IP Network Layer
	ESP-NETIF Custom I/O Driver
	Packet input/output
	Post attach callback
	Default handlers
	Network stack connection

	Header File
	Functions

	Application Layer

	Peripherals API
	Analog to Digital Converter (ADC) Oneshot Mode Driver
	Introduction
	Functional Overview
	Resource Allocation
	Create an ADC Unit Handle Under Normal Oneshot Mode
	Recycle the ADC Unit

	Unit Configuration
	Configure Two ADC Channels

	Read Conversion Result
	Read Raw Result

	Hardware Limitations
	Power Management
	IRAM Safe
	Thread Safety
	Kconfig Options

	Application Examples
	API Reference
	Header File
	Structures
	Type Definitions
	Enumerations
	Header File
	Functions
	Structures
	Type Definitions

	Analog to Digital Converter (ADC) Continuous Mode Driver
	Introduction
	Driver Concepts

	Functional Overview
	Resource Allocation
	Initialize the ADC Continuous Mode Driver
	Recycle the ADC Unit

	ADC Configurations
	ADC Control
	Start and Stop

	Register Event Callbacks
	Conversion Done Event
	Pool Overflow Event

	Read Conversion Result
	Hardware Limitations
	Power Management
	IRAM Safe
	Thread Safety

	Application Examples
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions

	Analog to Digital Converter (ADC) Calibration Driver
	Introduction
	Functional Overview
	Calibration Scheme Creation
	ADC Calibration Curve Fitting Scheme
	Create Curve Fitting Scheme
	Delete Curve Fitting Scheme

	Result Conversion
	Get Voltage

	Thread Safety
	Minimize Noise

	API Reference
	Header File
	Functions
	Type Definitions
	Enumerations
	Header File

	Clock Tree
	Introduction
	Root Clocks
	Module Clocks

	API Usage
	API Reference
	Header File
	Macros
	Enumerations
	Header File
	Functions
	Enumerations

	Event Task Matrix (ETM)
	Introduction
	Functional Overview
	ETM Channel Allocation
	ETM Event
	GPIO Events
	Other Peripheral Events

	ETM Task
	GPIO Tasks
	Other Peripheral Tasks

	ETM Channel Control
	Connect Event and Task
	Enable and Disable Channel
	ETM Channel Profiling

	Thread Safety
	Kconfig Options

	API Reference
	Header File
	Functions
	Structures
	Type Definitions
	Header File
	Functions
	Structures
	Macros
	Enumerations
	Header File
	Functions

	GPIO & RTC GPIO
	GPIO Summary
	GPIO Glitch Filter
	Application Example
	API Reference - Normal GPIO
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Header File
	Macros
	Enumerations

	API Reference - RTC GPIO
	Header File
	Functions
	Macros
	Header File
	Enumerations

	API Reference - GPIO Glitch Filter
	Header File
	Functions
	Structures
	Type Definitions

	General Purpose Timer (GPTimer)
	Introduction
	Functional Overview
	Resource Allocation
	Creating a GPTimer Handle with Resolution of 1 MHz

	Set and Get Count Value
	Set up Alarm Action
	Register Event Callbacks
	Enable and Disable Timer
	Start and Stop Timer
	Start Timer as a Wall Clock
	Trigger Period Events
	Trigger One-Shot Event
	Dynamic Alarm Update

	ETM Event and Task
	Power Management
	IRAM Safe
	Thread Safety
	Kconfig Options

	Application Examples
	API Reference
	Header File
	Functions
	Structures
	Header File
	Functions
	Structures
	Header File
	Structures
	Type Definitions
	Header File
	Type Definitions
	Enumerations

	Dedicated GPIO
	Overview
	Create/Destroy GPIO Bundle
	GPIO Bundle Operations
	Manipulate GPIOs by Writing Assembly Code
	API Reference
	Header File
	Functions
	Structures
	Type Definitions

	Hash-based Message Authentication Code (HMAC)
	Generalized Application Scheme
	HMAC on the ESP32-C6
	eFuse Keys for HMAC
	HMAC Generation for Software
	HMAC for Digital Signature
	HMAC for Enabling JTAG

	Application Outline
	API Reference
	Header File
	Functions
	Enumerations

	Digital Signature (DS)
	Private Key Parameters
	Key Generation
	Signature Calculation with IDF
	Configure the DS peripheral for a TLS connection
	Example for SSL Mutual Authentication using DS
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	Inter-Integrated Circuit (I2C)
	Overview
	Driver Features
	Driver Usage
	Configuration
	Source Clock Configuration
	Install Driver
	Communication as Master
	Master Write
	Master Read
	Indicating Write or Read

	Communication as Slave
	Interrupt Handling
	Customized Configuration
	Error Handling
	Delete Driver

	Application Example
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Header File
	Structures
	Type Definitions
	Enumerations

	Inter-IC Sound (I2S)
	Introduction
	I2S File Structure
	I2S Clock
	Clock Source
	Clock Terminology

	I2S Communication Mode
	Overview of All Modes
	Standard Mode
	PDM Mode (TX)
	TDM Mode

	Functional Overview
	Resource Management
	Power Management
	Finite State Machine
	Data Transport
	Configuration
	IRAM Safe
	Thread Safety
	Kconfig Options

	Application Example
	Standard TX/RX Usage
	STD TX Mode
	STD RX Mode

	PDM TX Usage
	TDM TX/RX Usage
	TDM TX Mode
	TDM RX Mode

	Full-duplex
	Simplex Mode

	Application Notes
	How to Prevent Data Lost

	API Reference
	Standard Mode
	Header File
	Functions
	Structures
	Macros
	PDM Mode
	Header File
	Functions
	Structures
	Macros
	TDM Mode
	Header File
	Functions
	Structures
	Macros
	I2S Driver
	Header File
	Functions
	Structures
	Macros
	I2S Types
	Header File
	Structures
	Type Definitions
	Enumerations
	Header File
	Type Definitions
	Enumerations

	LCD
	Introduction
	Functional Overview
	SPI Interfaced LCD
	I2C Interfaced LCD
	More Controller Based LCD Drivers
	LCD Panel IO Operations
	Application Example
	API Reference
	Header File
	Enumerations
	Header File
	Type Definitions
	Header File
	Functions
	Structures
	Type Definitions
	Header File
	Functions
	Header File
	Header File
	Functions
	Structures

	LED Control (LEDC)
	Introduction
	Functionality Overview
	Timer Configuration
	Channel Configuration
	Change PWM Signal
	Change PWM Duty Cycle Using Software
	Change PWM Duty Cycle using Hardware
	Change PWM Frequency
	More Control Over PWM

	Use Interrupts

	Supported Range of Frequency and Duty Resolutions
	Application Example
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Type Definitions
	Enumerations

	Motor Control Pulse Width Modulator (MCPWM)
	Functional Overview
	Resource Allocation and Initialization
	MCPWM Timers
	MCPWM Operators
	MCPWM Comparators
	MCPWM Generators
	MCPWM Faults
	MCPWM Sync Sources
	MCPWM Capture Timer and Channels
	MCPWM interrupt priority

	Timer Operations and Events
	Update Period
	Register Timer Event Callbacks
	Enable and Disable Timer
	Start and Stop Timer
	Connect Timer with Operator

	Comparator Operations and Events
	Register Event Callbacks
	Set Compare Value

	Generator Actions on Events
	Set Generator Action on Timer Event
	Set Generator Action on Compare Event
	Set Generator Action on Fault Event
	Set Generator Action on Sync Event

	Classical PWM Waveforms and Generator Configurations
	Asymmetric Single Edge Active High
	Asymmetric Single Edge Active Low
	Asymmetric Pulse Placement
	Asymmetric Dual Edge Active Low
	Symmetric Dual Edge Active Low
	Symmetric Dual Edge Complementary

	Dead Time
	Classical PWM Waveforms and Dead Time Configurations
	Active High Complementary
	Active Low Complementary
	Active High
	Active Low
	Rising Delay on PWMA, Bypass deadtime for PWMB
	Falling Delay on PWMB, Bypass deadtime for PWMA
	Rising and Falling Delay on PWMB, Bypass deadtime for PWMA

	Carrier Modulation
	Faults and Brake Actions
	Set Operator Brake Mode on Fault
	Set Generator Action on Brake Event
	Register Fault Event Callbacks
	Register Brake Event Callbacks

	Generator Force Actions
	Synchronization
	Sync Timers by GPIO

	Capture
	Register Event Callbacks
	Enable and Disable Capture Channel
	Enable and Disable Capture Timer
	Start and Stop Capture Timer
	Trigger a Software Capture Event

	Power Management
	IRAM Safe
	Thread Safety
	Kconfig Options

	Application Examples
	API Reference
	Header File
	Functions
	Structures
	Header File
	Functions
	Structures
	Header File
	Functions
	Structures
	Header File
	Functions
	Structures
	Macros
	Header File
	Functions
	Structures
	Header File
	Functions
	Structures
	Header File
	Functions
	Structures
	Header File
	Structures
	Type Definitions
	Header File
	Type Definitions
	Enumerations

	Parallel IO
	Introduction
	Application Examples
	API Reference
	Header File
	Functions
	Structures
	Type Definitions
	Header File
	Type Definitions
	Header File
	Macros
	Type Definitions
	Enumerations

	Pulse Counter (PCNT)
	Introduction
	Functional Overview
	Resource Allocation
	Install PCNT Unit
	Install PCNT Channel

	Set Up Channel Actions
	Watch Points
	Register Event Callbacks
	Set Glitch Filter
	Enable and Disable Unit
	Unit IO Control
	Start/Stop and Clear
	Get Count Value
	Compensate Overflow Loss

	Power Management
	IRAM Safe
	Thread Safety
	Kconfig Options

	Application Examples
	API Reference
	Header File
	Functions
	Structures
	Type Definitions
	Header File
	Enumerations

	Remote Control Transceiver (RMT)
	Introduction
	Layout of RMT Symbols
	RMT Transmitter Overview
	RMT Receiver Overview

	Functional Overview
	Resource Allocation
	Install RMT TX Channel
	Install RMT RX Channel
	Uninstall RMT Channel

	Carrier Modulation and Demodulation
	Register Event Callbacks
	Enable and Disable Channel
	Initiate TX Transaction
	Multiple Channels Simultaneous Transmission
	Install RMT Sync Manager
	Start Transmission Simultaneously

	Initiate RX Transaction
	RMT Encoder
	Copy Encoder
	Bytes Encoder
	Customize RMT Encoder for NEC Protocol

	Power Management
	IRAM Safe
	Thread Safety
	Kconfig Options

	Application Examples
	FAQ
	API Reference
	Header File
	Functions
	Structures
	Header File
	Functions
	Structures
	Header File
	Functions
	Structures
	Header File
	Functions
	Structures
	Enumerations
	Header File
	Structures
	Type Definitions
	Header File
	Unions
	Type Definitions

	SD Pull-up Requirements
	Overview of Compatibility
	Systems on a Chip (SoCs)
	Systems in Packages (SIP)
	Modules
	Development Boards
	Non-Espressif Hosts

	Solutions
	No Pull-ups

	Related Information

	SD SPI Host Driver
	Overview
	How to Use
	Other Details
	Related Docs
	Sharing the SPI bus among SD card and other SPI devices
	Pin loading of other devices
	AC loading
	DC loading
	Initialization sequence

	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions

	SDIO Card Slave Driver
	Overview
	Connections
	Terminology
	Communication with ESP SDIO Slave
	Interrupts
	Slave Interrupts
	Host Interrupts

	Shared Registers
	Receiving FIFO
	Sending FIFO

	Application Example
	API Reference
	Header File
	Enumerations
	Header File
	Functions
	Structures
	Macros
	Type Definitions

	Sigma-Delta Modulation (SDM)
	Introduction
	Functional Overview
	Resource Allocation
	Creating a SDM Channel with Sample Rate of 1MHz

	Enable and Disable Channel
	Set Pulse Density
	Power Management
	IRAM Safe
	Thread Safety
	Kconfig Options

	Convert to analog signal (Optional)
	Application Example
	API Reference
	Header File
	Functions
	Structures
	Type Definitions
	Header File
	Type Definitions

	SPI Flash API
	Overview
	Support for Features of Flash Chips
	Quad/Dual Mode Chips
	Optional Features
	Optional features for flash
	Auto Suspend & Resume
	Flash unique ID
	High performance mode
	OPI flash support
	32-bit Address Flash Chips
	Overriding Default Chip Drivers
	Steps For Creating Custom Chip Drivers and Overriding the IDF Default Driver List
	Example

	Initializing a Flash Device
	SPI Flash Access API
	SPI Flash Size
	Concurrency Constraints for Flash on SPI1
	Concurrency Constraints for Flash on SPI1
	When the Caches Are Disabled
	IRAM-Safe Interrupt Handlers
	Non-IRAM-Safe Interrupt Handlers

	SPI Flash Encryption
	Memory Mapping API
	SPI Flash Implementation
	Host Driver
	Chip Driver
	OS Functions

	Implementation Details
	SPI Flash API ESP-IDF version vs Chip-ROM version
	Feature Supported by ESP-IDF but not in Chip-ROM
	Bugfixes Introduced in ESP-IDF but not in Chip-ROM

	ESP-IDF vs Chip-ROM SPI Flash Driver
	API Reference - SPI Flash
	Header File
	Functions
	Structures
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Header File
	Functions
	Macros
	Type Definitions
	Enumerations
	Header File
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Macros
	Enumerations

	API Reference - Flash Encrypt
	Header File
	Functions
	Enumerations

	SPI Master Driver
	Overview of ESP32-C6's SPI peripherals
	Terminology
	Driver Features
	SPI Features
	SPI Master
	SPI Bus Lock

	SPI Transactions
	Interrupt Transactions
	Polling Transactions
	Transaction Line Mode
	Command and Address Phases
	Write and Read Phases
	Bus Acquiring

	Driver Usage
	Transactions with Data Not Exceeding 32 Bits
	Transactions with Integers Other Than uint8_t
	Notes on Sending Mixed Transactions to the Same Device
	GPIO Matrix and IO_MUX

	Transfer Speed Considerations
	Transaction Duration
	SPI Clock Frequency
	Cache Miss

	Application Example
	API Reference - SPI Common
	Header File
	Structures
	Type Definitions
	Enumerations
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	API Reference - SPI Master
	Header File
	Functions
	Structures
	Macros
	Type Definitions

	SPI Slave Driver
	Overview of ESP32-C6's SPI peripherals
	Terminology
	Driver Features
	SPI Transactions
	Driver Usage
	Transaction Data and Master/Slave Length Mismatches
	GPIO Matrix and IO_MUX

	Speed and Timing Considerations
	Transaction Interval
	SCLK Frequency Requirements

	Restrictions and Known Issues
	Application Example
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions

	SPI Slave Half Duplex
	Introduction
	Protocol

	Terminology
	Driver Feature
	Driver Usage
	Slave Initialization
	Deinitialization (Optional)
	Send/Receive Data by DMA Channels
	Using Data Descriptor with Customized User Arguments
	Using Callbacks
	Writing/Reading Shared Registers
	Receiving General Purpose Interrupts from the Master

	Application Example
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	Temperature Sensor
	Introduction
	Functional Overview
	Resource Allocation
	Creating a Temperature Sensor Handle

	Enable and Disable Temperature Sensor
	Get Temperature Value
	Install Temperature Threshold Callback
	Power Management
	IRAM Safe
	Thread Safety

	Unexpected Behaviors
	Application Example
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions

	Two-Wire Automotive Interface (TWAI)
	Overview
	TWAI Protocol Summary
	TWAI Messages
	Error States and Counters

	Signals Lines and Transceiver
	Driver Configuration
	Operating Modes
	Alerts
	Bit Timing
	Acceptance Filter
	Disabling TX Queue
	Placing ISR into IRAM

	Driver Operation
	Driver States
	Message Fields and Flags

	Examples
	Configuration & Installation
	Message Transmission
	Message Reception
	Reconfiguring and Reading Alerts
	Stop and Uninstall
	Multiple ID Filter Configuration
	Application Examples

	API Reference
	Header File
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Functions
	Structures
	Macros
	Enumerations

	Universal Asynchronous Receiver/Transmitter (UART)
	Introduction
	Functional Overview
	Set Communication Parameters
	Single Step
	Multiple Steps

	Set Communication Pins
	Install Drivers
	Run UART Communication
	Transmit Data
	Receive Data
	Software Flow Control
	Communication Mode Selection

	Use Interrupts
	Macros
	Deleting a Driver

	Overview of RS485 Specific Communication 0ptions
	Interface Connection Options
	Circuit A: Collision Detection Circuit
	Circuit B: Manual Switching Transmitter/Receiver Without Collision Detection
	Circuit C: Auto Switching Transmitter/Receiver

	Application Examples
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Structures
	Type Definitions
	Enumerations
	GPIO Lookup Macros
	Header File
	Macros

	Project Configuration
	Introduction
	Project Configuration Menu
	Using sdkconfig.defaults
	Kconfig Format Rules
	Format Checker

	Backward Compatibility of Kconfig Options
	Configuration Options Reference
	Build type
	CONFIG_APP_BUILD_TYPE
	CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
	CONFIG_APP_REPRODUCIBLE_BUILD
	CONFIG_APP_NO_BLOBS

	Bootloader config
	CONFIG_BOOTLOADER_COMPILER_OPTIMIZATION
	CONFIG_BOOTLOADER_LOG_LEVEL
	Serial Flash Configurations
	CONFIG_BOOTLOADER_FLASH_DC_AWARE
	CONFIG_BOOTLOADER_FLASH_XMC_SUPPORT

	CONFIG_BOOTLOADER_VDDSDIO_BOOST
	CONFIG_BOOTLOADER_FACTORY_RESET
	CONFIG_BOOTLOADER_NUM_PIN_FACTORY_RESET
	CONFIG_BOOTLOADER_FACTORY_RESET_PIN_LEVEL
	CONFIG_BOOTLOADER_OTA_DATA_ERASE
	CONFIG_BOOTLOADER_DATA_FACTORY_RESET

	CONFIG_BOOTLOADER_APP_TEST
	CONFIG_BOOTLOADER_NUM_PIN_APP_TEST
	CONFIG_BOOTLOADER_APP_TEST_PIN_LEVEL

	CONFIG_BOOTLOADER_HOLD_TIME_GPIO
	CONFIG_BOOTLOADER_REGION_PROTECTION_ENABLE
	CONFIG_BOOTLOADER_WDT_ENABLE
	CONFIG_BOOTLOADER_WDT_DISABLE_IN_USER_CODE
	CONFIG_BOOTLOADER_WDT_TIME_MS

	CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
	CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
	CONFIG_BOOTLOADER_APP_SECURE_VERSION
	CONFIG_BOOTLOADER_APP_SEC_VER_SIZE_EFUSE_FIELD
	CONFIG_BOOTLOADER_EFUSE_SECURE_VERSION_EMULATE

	CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP
	CONFIG_BOOTLOADER_SKIP_VALIDATE_ON_POWER_ON
	CONFIG_BOOTLOADER_SKIP_VALIDATE_ALWAYS
	CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC
	CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC_IN_CRC
	CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC_SIZE

	Security features
	CONFIG_SECURE_SIGNED_APPS_NO_SECURE_BOOT
	CONFIG_SECURE_SIGNED_APPS_SCHEME
	CONFIG_SECURE_BOOT_ECDSA_KEY_LEN_SIZE
	CONFIG_SECURE_SIGNED_ON_BOOT_NO_SECURE_BOOT
	CONFIG_SECURE_SIGNED_ON_UPDATE_NO_SECURE_BOOT
	CONFIG_SECURE_BOOT
	CONFIG_SECURE_BOOT_VERSION

	CONFIG_SECURE_BOOTLOADER_MODE
	CONFIG_SECURE_BOOT_BUILD_SIGNED_BINARIES
	CONFIG_SECURE_BOOT_SIGNING_KEY

	CONFIG_SECURE_BOOT_VERIFICATION_KEY
	CONFIG_SECURE_BOOT_ENABLE_AGGRESSIVE_KEY_REVOKE
	CONFIG_SECURE_BOOT_V2_ALLOW_EFUSE_RD_DIS
	CONFIG_SECURE_BOOTLOADER_KEY_ENCODING
	CONFIG_SECURE_BOOT_INSECURE
	CONFIG_SECURE_FLASH_ENC_ENABLED
	CONFIG_SECURE_FLASH_ENCRYPTION_KEYSIZE
	CONFIG_SECURE_FLASH_ENCRYPTION_MODE

	Potentially insecure options
	CONFIG_SECURE_BOOT_ALLOW_JTAG
	CONFIG_SECURE_BOOT_ALLOW_SHORT_APP_PARTITION
	CONFIG_SECURE_BOOT_ALLOW_UNUSED_DIGEST_SLOTS
	CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_ENC
	CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE
	CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
	CONFIG_SECURE_FLASH_SKIP_WRITE_PROTECTION_CACHE

	CONFIG_SECURE_FLASH_ENCRYPT_ONLY_IMAGE_LEN_IN_APP_PART
	CONFIG_SECURE_FLASH_CHECK_ENC_EN_IN_APP
	CONFIG_SECURE_FLASH_PSEUDO_ROUND_FUNC
	CONFIG_SECURE_FLASH_PSEUDO_ROUND_FUNC_STRENGTH

	CONFIG_SECURE_UART_ROM_DL_MODE

	Application manager
	CONFIG_APP_COMPILE_TIME_DATE
	CONFIG_APP_EXCLUDE_PROJECT_VER_VAR
	CONFIG_APP_EXCLUDE_PROJECT_NAME_VAR
	CONFIG_APP_PROJECT_VER_FROM_CONFIG
	CONFIG_APP_PROJECT_VER

	CONFIG_APP_RETRIEVE_LEN_ELF_SHA

	Boot ROM Behavior
	CONFIG_BOOT_ROM_LOG_SCHEME

	Serial flasher config
	CONFIG_ESPTOOLPY_NO_STUB
	CONFIG_ESPTOOLPY_FLASHMODE
	CONFIG_ESPTOOLPY_FLASH_SAMPLE_MODE
	CONFIG_ESPTOOLPY_FLASHFREQ
	CONFIG_ESPTOOLPY_FLASHSIZE
	CONFIG_ESPTOOLPY_HEADER_FLASHSIZE_UPDATE
	CONFIG_ESPTOOLPY_BEFORE
	CONFIG_ESPTOOLPY_AFTER

	Partition Table
	CONFIG_PARTITION_TABLE_TYPE
	CONFIG_PARTITION_TABLE_CUSTOM_FILENAME
	CONFIG_PARTITION_TABLE_OFFSET
	CONFIG_PARTITION_TABLE_MD5

	Compiler options
	CONFIG_COMPILER_OPTIMIZATION
	CONFIG_COMPILER_OPTIMIZATION_ASSERTION_LEVEL
	CONFIG_COMPILER_FLOAT_LIB_FROM
	CONFIG_COMPILER_OPTIMIZATION_CHECKS_SILENT
	CONFIG_COMPILER_HIDE_PATHS_MACROS
	CONFIG_COMPILER_CXX_EXCEPTIONS
	CONFIG_COMPILER_CXX_EXCEPTIONS_EMG_POOL_SIZE

	CONFIG_COMPILER_CXX_RTTI
	CONFIG_COMPILER_STACK_CHECK_MODE
	CONFIG_COMPILER_WARN_WRITE_STRINGS
	CONFIG_COMPILER_SAVE_RESTORE_LIBCALLS
	CONFIG_COMPILER_DISABLE_GCC12_WARNINGS
	CONFIG_COMPILER_DUMP_RTL_FILES

	Component config
	Application Level Tracing
	CONFIG_APPTRACE_DESTINATION1
	CONFIG_APPTRACE_DESTINATION2
	CONFIG_APPTRACE_UART_TX_GPIO
	CONFIG_APPTRACE_UART_RX_GPIO
	CONFIG_APPTRACE_UART_BAUDRATE
	CONFIG_APPTRACE_UART_RX_BUFF_SIZE
	CONFIG_APPTRACE_UART_TX_BUFF_SIZE
	CONFIG_APPTRACE_UART_TX_MSG_SIZE
	CONFIG_APPTRACE_UART_TASK_PRIO
	CONFIG_APPTRACE_ONPANIC_HOST_FLUSH_TMO
	CONFIG_APPTRACE_POSTMORTEM_FLUSH_THRESH
	CONFIG_APPTRACE_BUF_SIZE
	CONFIG_APPTRACE_PENDING_DATA_SIZE_MAX
	FreeRTOS SystemView Tracing
	CONFIG_APPTRACE_SV_ENABLE
	CONFIG_APPTRACE_SV_DEST
	CONFIG_APPTRACE_SV_CPU
	CONFIG_APPTRACE_SV_TS_SOURCE
	CONFIG_APPTRACE_SV_MAX_TASKS
	CONFIG_APPTRACE_SV_BUF_WAIT_TMO
	CONFIG_APPTRACE_SV_EVT_OVERFLOW_ENABLE
	CONFIG_APPTRACE_SV_EVT_ISR_ENTER_ENABLE
	CONFIG_APPTRACE_SV_EVT_ISR_EXIT_ENABLE
	CONFIG_APPTRACE_SV_EVT_ISR_TO_SCHED_ENABLE
	CONFIG_APPTRACE_SV_EVT_TASK_START_EXEC_ENABLE
	CONFIG_APPTRACE_SV_EVT_TASK_STOP_EXEC_ENABLE
	CONFIG_APPTRACE_SV_EVT_TASK_START_READY_ENABLE
	CONFIG_APPTRACE_SV_EVT_TASK_STOP_READY_ENABLE
	CONFIG_APPTRACE_SV_EVT_TASK_CREATE_ENABLE
	CONFIG_APPTRACE_SV_EVT_TASK_TERMINATE_ENABLE
	CONFIG_APPTRACE_SV_EVT_IDLE_ENABLE
	CONFIG_APPTRACE_SV_EVT_TIMER_ENTER_ENABLE
	CONFIG_APPTRACE_SV_EVT_TIMER_EXIT_ENABLE
	CONFIG_APPTRACE_GCOV_ENABLE
	CONFIG_APPTRACE_GCOV_DUMP_TASK_STACK_SIZE

	Bluetooth
	CONFIG_BT_ENABLED
	CONFIG_BT_HOST
	CONFIG_BT_CONTROLLER
	Bluedroid Options
	CONFIG_BT_BTC_TASK_STACK_SIZE
	CONFIG_BT_BLUEDROID_PINNED_TO_CORE_CHOICE
	CONFIG_BT_BTU_TASK_STACK_SIZE
	CONFIG_BT_BLE_ENABLED
	CONFIG_BT_GATTS_ENABLE
	CONFIG_BT_GATTS_PPCP_CHAR_GAP
	CONFIG_BT_BLE_BLUFI_ENABLE
	CONFIG_BT_GATT_MAX_SR_PROFILES
	CONFIG_BT_GATT_MAX_SR_ATTRIBUTES
	CONFIG_BT_GATTS_SEND_SERVICE_CHANGE_MODE
	CONFIG_BT_GATTS_ROBUST_CACHING_ENABLED
	CONFIG_BT_GATTS_DEVICE_NAME_WRITABLE
	CONFIG_BT_GATTS_APPEARANCE_WRITABLE
	CONFIG_BT_GATTC_ENABLE
	CONFIG_BT_GATTC_MAX_CACHE_CHAR
	CONFIG_BT_GATTC_NOTIF_REG_MAX
	CONFIG_BT_GATTC_CACHE_NVS_FLASH
	CONFIG_BT_GATTC_CONNECT_RETRY_COUNT
	CONFIG_BT_BLE_SMP_ENABLE
	CONFIG_BT_SMP_SLAVE_CON_PARAMS_UPD_ENABLE
	CONFIG_BT_BLE_SMP_ID_RESET_ENABLE
	CONFIG_BT_BLE_SMP_BOND_NVS_FLASH
	Bluedroid debug option
	CONFIG_BT_BLUEDROID_MEM_DEBUG
	CONFIG_BT_BLUEDROID_THREAD_DEBUG
	CONFIG_BT_BLUEDROID_THREAD_BLOCK_TIME
	CONFIG_BT_BLUEDROID_THREAD_BLOCK_MSG
	CONFIG_BT_STACK_NO_LOG
	BT DEBUG LOG LEVEL
	CONFIG_BT_LOG_HCI_TRACE_LEVEL
	CONFIG_BT_LOG_BTM_TRACE_LEVEL
	CONFIG_BT_LOG_L2CAP_TRACE_LEVEL
	CONFIG_BT_LOG_RFCOMM_TRACE_LEVEL
	CONFIG_BT_LOG_SDP_TRACE_LEVEL
	CONFIG_BT_LOG_GAP_TRACE_LEVEL
	CONFIG_BT_LOG_BNEP_TRACE_LEVEL
	CONFIG_BT_LOG_PAN_TRACE_LEVEL
	CONFIG_BT_LOG_A2D_TRACE_LEVEL
	CONFIG_BT_LOG_AVDT_TRACE_LEVEL
	CONFIG_BT_LOG_AVCT_TRACE_LEVEL
	CONFIG_BT_LOG_AVRC_TRACE_LEVEL
	CONFIG_BT_LOG_MCA_TRACE_LEVEL
	CONFIG_BT_LOG_HID_TRACE_LEVEL
	CONFIG_BT_LOG_APPL_TRACE_LEVEL
	CONFIG_BT_LOG_GATT_TRACE_LEVEL
	CONFIG_BT_LOG_SMP_TRACE_LEVEL
	CONFIG_BT_LOG_BTIF_TRACE_LEVEL
	CONFIG_BT_LOG_BTC_TRACE_LEVEL
	CONFIG_BT_LOG_OSI_TRACE_LEVEL
	CONFIG_BT_LOG_BLUFI_TRACE_LEVEL
	CONFIG_BT_ACL_CONNECTIONS
	CONFIG_BT_MULTI_CONNECTION_ENBALE
	CONFIG_BT_ALLOCATION_FROM_SPIRAM_FIRST
	CONFIG_BT_BLE_DYNAMIC_ENV_MEMORY
	CONFIG_BT_BLE_HOST_QUEUE_CONG_CHECK
	CONFIG_BT_SMP_MAX_BONDS
	CONFIG_BT_BLE_ACT_SCAN_REP_ADV_SCAN
	CONFIG_BT_BLE_ESTAB_LINK_CONN_TOUT
	CONFIG_BT_MAX_DEVICE_NAME_LEN
	CONFIG_BT_BLE_RPA_SUPPORTED
	CONFIG_BT_BLE_RPA_TIMEOUT
	CONFIG_BT_BLE_50_FEATURES_SUPPORTED
	CONFIG_BT_BLE_42_FEATURES_SUPPORTED
	CONFIG_BT_BLE_FEAT_PERIODIC_ADV_SYNC_TRANSFER
	CONFIG_BT_BLE_FEAT_PERIODIC_ADV_ENH
	CONFIG_BT_BLE_FEAT_CREATE_SYNC_ENH
	CONFIG_BT_BLE_HIGH_DUTY_ADV_INTERVAL
	CONFIG_BT_ABORT_WHEN_ALLOCATION_FAILS
	NimBLE Options
	General
	CONFIG_BT_NIMBLE_MEM_ALLOC_MODE
	CONFIG_BT_NIMBLE_PINNED_TO_CORE_CHOICE
	CONFIG_BT_NIMBLE_HOST_TASK_STACK_SIZE
	Roles and Profiles
	CONFIG_BT_NIMBLE_ROLE_CENTRAL
	CONFIG_BT_NIMBLE_ROLE_PERIPHERAL
	CONFIG_BT_NIMBLE_ROLE_BROADCASTER
	CONFIG_BT_NIMBLE_ROLE_OBSERVER
	CONFIG_BT_NIMBLE_GATT_CLIENT
	CONFIG_BT_NIMBLE_GATT_SERVER
	Security (SMP)
	CONFIG_BT_NIMBLE_SECURITY_ENABLE
	CONFIG_BT_NIMBLE_SM_LEGACY
	CONFIG_BT_NIMBLE_SM_SC
	CONFIG_BT_NIMBLE_SM_SC_DEBUG_KEYS
	CONFIG_BT_NIMBLE_LL_CFG_FEAT_LE_ENCRYPTION
	CONFIG_BT_NIMBLE_SM_SC_LVL
	CONFIG_BT_NIMBLE_SM_SC_ONLY
	GAP / GATT / Device Settings
	CONFIG_BT_NIMBLE_RPA_TIMEOUT
	CONFIG_BT_NIMBLE_WHITELIST_SIZE
	CONFIG_BT_NIMBLE_ENABLE_CONN_REATTEMPT
	CONFIG_BT_NIMBLE_MAX_CONN_REATTEMPT
	CONFIG_BT_NIMBLE_HANDLE_REPEAT_PAIRING_DELETION
	CONFIG_BT_NIMBLE_HOST_ALLOW_CONNECT_WITH_SCAN
	CONFIG_BT_NIMBLE_HOST_QUEUE_CONG_CHECK
	CONFIG_BT_NIMBLE_MAX_CONNECTIONS
	CONFIG_BT_NIMBLE_MAX_BONDS
	CONFIG_BT_NIMBLE_MAX_CCCDS
	CONFIG_BT_NIMBLE_NVS_PERSIST
	CONFIG_BT_NIMBLE_SMP_ID_RESET
	CONFIG_BT_NIMBLE_ATT_PREFERRED_MTU
	CONFIG_BT_NIMBLE_ATT_MAX_PREP_ENTRIES
	CONFIG_BT_NIMBLE_GATT_MAX_PROCS
	CONFIG_BT_NIMBLE_CRYPTO_STACK_MBEDTLS
	CONFIG_BT_NIMBLE_HS_STOP_TIMEOUT_MS
	CONFIG_BT_NIMBLE_USE_ESP_TIMER
	CONFIG_BT_NIMBLE_BLE_GATT_BLOB_TRANSFER
	CONFIG_BT_NIMBLE_HS_FLOW_CTRL
	CONFIG_BT_NIMBLE_HS_FLOW_CTRL_ITVL
	CONFIG_BT_NIMBLE_HS_FLOW_CTRL_THRESH
	CONFIG_BT_NIMBLE_HS_FLOW_CTRL_TX_ON_DISCONNECT
	L2CAP
	CONFIG_BT_NIMBLE_L2CAP_COC_MAX_NUM
	CONFIG_BT_NIMBLE_L2CAP_ENHANCED_COC
	Memory Settings
	CONFIG_BT_NIMBLE_MSYS_1_BLOCK_COUNT
	CONFIG_BT_NIMBLE_MSYS_1_BLOCK_SIZE
	CONFIG_BT_NIMBLE_MSYS_2_BLOCK_COUNT
	CONFIG_BT_NIMBLE_MSYS_2_BLOCK_SIZE
	CONFIG_BT_NIMBLE_MSYS_BUF_FROM_HEAP
	CONFIG_BT_NIMBLE_TRANSPORT_ACL_FROM_LL_COUNT
	CONFIG_BT_NIMBLE_TRANSPORT_ACL_SIZE
	CONFIG_BT_NIMBLE_TRANSPORT_EVT_SIZE
	CONFIG_BT_NIMBLE_TRANSPORT_EVT_COUNT
	CONFIG_BT_NIMBLE_TRANSPORT_EVT_DISCARD_COUNT
	BLE 5.x Features
	CONFIG_BT_NIMBLE_50_FEATURE_SUPPORT
	CONFIG_BT_NIMBLE_LL_CFG_FEAT_LE_2M_PHY
	CONFIG_BT_NIMBLE_LL_CFG_FEAT_LE_CODED_PHY
	CONFIG_BT_NIMBLE_EXT_ADV
	CONFIG_BT_NIMBLE_MAX_EXT_ADV_INSTANCES
	CONFIG_BT_NIMBLE_EXT_ADV_MAX_SIZE
	CONFIG_BT_NIMBLE_ENABLE_PERIODIC_ADV
	CONFIG_BT_NIMBLE_PERIODIC_ADV_ENH
	CONFIG_BT_NIMBLE_PERIODIC_ADV_SYNC_TRANSFER
	CONFIG_BT_NIMBLE_PERIODIC_ADV_WITH_RESPONSES
	CONFIG_BT_NIMBLE_EXT_SCAN
	CONFIG_BT_NIMBLE_ENABLE_PERIODIC_SYNC
	CONFIG_BT_NIMBLE_MAX_PERIODIC_SYNCS
	CONFIG_BT_NIMBLE_MAX_PERIODIC_ADVERTISER_LIST
	CONFIG_BT_NIMBLE_BLE_POWER_CONTROL
	CONFIG_BT_NIMBLE_AOA_AOD
	BLE 6.x Features
	CONFIG_BT_NIMBLE_60_FEATURE_SUPPORT
	CONFIG_BT_NIMBLE_CHANNEL_SOUNDING
	CONFIG_BT_NIMBLE_MONITOR_ADV
	Services
	CONFIG_BT_NIMBLE_PROX_SERVICE
	CONFIG_BT_NIMBLE_ANS_SERVICE
	CONFIG_BT_NIMBLE_CTS_SERVICE
	CONFIG_BT_NIMBLE_HTP_SERVICE
	CONFIG_BT_NIMBLE_IPSS_SERVICE
	CONFIG_BT_NIMBLE_TPS_SERVICE
	CONFIG_BT_NIMBLE_IAS_SERVICE
	CONFIG_BT_NIMBLE_LLS_SERVICE
	CONFIG_BT_NIMBLE_SPS_SERVICE
	CONFIG_BT_NIMBLE_HR_SERVICE
	CONFIG_BT_NIMBLE_HID_SERVICE
	CONFIG_BT_NIMBLE_SVC_HID_MAX_INSTANCES
	CONFIG_BT_NIMBLE_SVC_HID_MAX_RPTS
	CONFIG_BT_NIMBLE_BAS_SERVICE
	CONFIG_BT_NIMBLE_SVC_BAS_BATTERY_LEVEL_NOTIFY
	CONFIG_BT_NIMBLE_DIS_SERVICE
	CONFIG_BT_NIMBLE_SVC_DIS_MANUFACTURER_NAME
	CONFIG_BT_NIMBLE_SVC_DIS_SERIAL_NUMBER
	CONFIG_BT_NIMBLE_SVC_DIS_HARDWARE_REVISION
	CONFIG_BT_NIMBLE_SVC_DIS_FIRMWARE_REVISION
	CONFIG_BT_NIMBLE_SVC_DIS_SOFTWARE_REVISION
	CONFIG_BT_NIMBLE_SVC_DIS_SYSTEM_ID
	CONFIG_BT_NIMBLE_SVC_DIS_PNP_ID
	CONFIG_BT_NIMBLE_SVC_DIS_INCLUDED
	CONFIG_BT_NIMBLE_GAP_SERVICE
	CONFIG_BT_NIMBLE_SVC_GAP_DEVICE_NAME
	CONFIG_BT_NIMBLE_GAP_DEVICE_NAME_MAX_LEN
	CONFIG_BT_NIMBLE_SVC_GAP_APPEARANCE
	CONFIG_BT_NIMBLE_SVC_GAP_GATT_SECURITY_LEVEL
	CONFIG_BT_NIMBLE_SVC_GAP_RPA_ONLY
	CONFIG_BT_NIMBLE_SVC_GAP_CENT_ADDR_RESOLUTION
	GAP Appearance write permissions
	CONFIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE
	CONFIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE_ENC
	CONFIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE_AUTHEN
	CONFIG_BT_NIMBLE_SVC_GAP_APPEAR_WRITE_AUTHOR
	GAP device name write permissions
	CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE
	CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE_ENC
	CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE_AUTHEN
	CONFIG_BT_NIMBLE_SVC_GAP_NAME_WRITE_AUTHOR
	Peripheral Preferred Connection Parameters (PPCP) settings
	CONFIG_BT_NIMBLE_SVC_GAP_PPCP_MAX_CONN_INTERVAL
	CONFIG_BT_NIMBLE_SVC_GAP_PPCP_MIN_CONN_INTERVAL
	CONFIG_BT_NIMBLE_SVC_GAP_PPCP_SLAVE_LATENCY
	CONFIG_BT_NIMBLE_SVC_GAP_PPCP_SUPERVISION_TMO
	Extra Features
	CONFIG_BT_NIMBLE_DYNAMIC_SERVICE
	CONFIG_BT_NIMBLE_GATT_CACHING
	CONFIG_BT_NIMBLE_GATT_CACHING_INCLUDE_SERVICES
	CONFIG_BT_NIMBLE_INCL_SVC_DISCOVERY
	CONFIG_BT_NIMBLE_GATT_CACHING_MAX_CONNS
	CONFIG_BT_NIMBLE_GATT_CACHING_MAX_SVCS
	CONFIG_BT_NIMBLE_GATT_CACHING_MAX_INCL_SVCS
	CONFIG_BT_NIMBLE_GATT_CACHING_MAX_CHRS
	CONFIG_BT_NIMBLE_GATT_CACHING_MAX_DSCS
	CONFIG_BT_NIMBLE_GATT_CACHING_DISABLE_AUTO
	CONFIG_BT_NIMBLE_GATT_CACHING_ASSOC_ENABLE
	CONFIG_BT_NIMBLE_BLUFI_ENABLE
	CONFIG_BT_NIMBLE_ENC_ADV_DATA
	CONFIG_BT_NIMBLE_MAX_EADS
	CONFIG_BT_NIMBLE_GATTC_PROC_PREEMPTION_PROTECT
	CONFIG_BT_NIMBLE_GATTC_AUTO_PAIR
	CONFIG_BT_NIMBLE_EATT_CHAN_NUM
	CONFIG_BT_NIMBLE_SUBRATE
	NimBLE Mesh
	CONFIG_BT_NIMBLE_MESH
	CONFIG_BT_NIMBLE_MESH_PROXY
	CONFIG_BT_NIMBLE_MESH_PROV
	CONFIG_BT_NIMBLE_MESH_PB_ADV
	CONFIG_BT_NIMBLE_MESH_PB_GATT
	CONFIG_BT_NIMBLE_MESH_GATT_PROXY
	CONFIG_BT_NIMBLE_MESH_RELAY
	CONFIG_BT_NIMBLE_MESH_LOW_POWER
	CONFIG_BT_NIMBLE_MESH_FRIEND
	CONFIG_BT_NIMBLE_MESH_DEVICE_NAME
	CONFIG_BT_NIMBLE_MESH_NODE_COUNT
	CONFIG_BT_NIMBLE_MESH_PROVISIONER
	Host-controller Transport
	CONFIG_BT_NIMBLE_TRANSPORT_UART
	CONFIG_BT_NIMBLE_TRANSPORT_UART_PORT
	CONFIG_BT_NIMBLE_HCI_USE_UART_BAUDRATE
	CONFIG_BT_NIMBLE_USE_HCI_UART_PARITY
	CONFIG_BT_NIMBLE_UART_RX_PIN
	CONFIG_BT_NIMBLE_UART_TX_PIN
	CONFIG_BT_NIMBLE_USE_HCI_UART_FLOW_CTRL
	CONFIG_BT_NIMBLE_HCI_UART_RTS_PIN
	CONFIG_BT_NIMBLE_HCI_UART_CTS_PIN
	Debugging/Testing
	CONFIG_BT_NIMBLE_LOG_LEVEL
	CONFIG_BT_NIMBLE_PRINT_ERR_NAME
	CONFIG_BT_NIMBLE_DEBUG
	CONFIG_BT_NIMBLE_TEST_THROUGHPUT_TEST
	Vendor / Optimization
	CONFIG_BT_NIMBLE_VS_SUPPORT
	CONFIG_BT_NIMBLE_OPTIMIZE_MULTI_CONN
	CONFIG_BT_NIMBLE_HIGH_DUTY_ADV_ITVL
	Controller Options
	HCI Config
	CONFIG_BT_LE_HCI_INTERFACE
	CONFIG_BT_LE_UART_HCI_MODE_CHOICE
	CONFIG_BT_LE_HCI_UART_PORT
	CONFIG_BT_LE_HCI_UART_FLOWCTRL
	CONFIG_BT_LE_HCI_UART_TX_PIN
	CONFIG_BT_LE_HCI_UART_RX_PIN
	CONFIG_BT_LE_HCI_UART_RTS_PIN
	CONFIG_BT_LE_HCI_UART_CTS_PIN
	CONFIG_BT_LE_HCI_UART_BAUD
	CONFIG_BT_LE_HCI_UART_PARITY
	CONFIG_BT_LE_HCI_UART_RX_BUFFER_SIZE
	CONFIG_BT_LE_HCI_UART_TX_BUFFER_SIZE
	CONFIG_BT_LE_HCI_TRANS_TASK_STACK_SIZE
	CONFIG_BT_LE_HCI_TRANS_RX_MEM_NUM
	CONFIG_BT_LE_HCI_LLDESCS_POOL_NUM
	CONFIG_BT_LE_50_FEATURE_SUPPORT
	CONFIG_BT_LE_LL_CFG_FEAT_LE_2M_PHY
	CONFIG_BT_LE_LL_CFG_FEAT_LE_CODED_PHY
	CONFIG_BT_LE_EXT_ADV
	CONFIG_BT_LE_MAX_EXT_ADV_INSTANCES
	CONFIG_BT_LE_EXT_ADV_MAX_SIZE
	CONFIG_BT_LE_ENABLE_PERIODIC_ADV
	CONFIG_BT_LE_PERIODIC_ADV_SYNC_TRANSFER
	CONFIG_BT_LE_MAX_PERIODIC_SYNCS
	CONFIG_BT_LE_MAX_PERIODIC_ADVERTISER_LIST
	CONFIG_BT_LE_POWER_CONTROL_ENABLED
	CONFIG_BT_LE_CTE_FEATURE_ENABLED
	CONFIG_BT_LE_PERIODIC_ADV_WITH_RESPONSE_ENABLED
	Memory Settings
	CONFIG_BT_LE_MSYS_1_BLOCK_COUNT
	CONFIG_BT_LE_MSYS_1_BLOCK_SIZE
	CONFIG_BT_LE_MSYS_2_BLOCK_COUNT
	CONFIG_BT_LE_MSYS_2_BLOCK_SIZE
	CONFIG_BT_LE_MSYS_BUF_FROM_HEAP
	CONFIG_BT_LE_ACL_BUF_COUNT
	CONFIG_BT_LE_ACL_BUF_SIZE
	CONFIG_BT_LE_HCI_EVT_BUF_SIZE
	CONFIG_BT_LE_HCI_EVT_HI_BUF_COUNT
	CONFIG_BT_LE_HCI_EVT_LO_BUF_COUNT
	CONFIG_BT_LE_CONTROLLER_TASK_STACK_SIZE
	Controller debug features
	CONFIG_BT_LE_CONTROLLER_LOG_ENABLED
	CONFIG_BT_LE_CONTROLLER_LOG_MODE_BLE_LOG_V2
	CONFIG_BT_LE_CONTROLLER_LOG_CTRL_ENABLED
	CONFIG_BT_LE_CONTROLLER_LOG_HCI_ENABLED
	CONFIG_BT_LE_CONTROLLER_LOG_DUMP_ONLY
	CONFIG_BT_LE_CONTROLLER_LOG_SPI_OUT_ENABLED
	CONFIG_BT_LE_CONTROLLER_LOG_UHCI_OUT_ENABLED
	CONFIG_BT_LE_CONTROLLER_LOG_STORAGE_ENABLE
	CONFIG_BT_LE_CONTROLLER_LOG_PARTITION_SIZE
	CONFIG_BT_LE_LOG_CTRL_BUF1_SIZE
	CONFIG_BT_LE_LOG_CTRL_BUF2_SIZE
	CONFIG_BT_LE_LOG_HCI_BUF_SIZE
	CONFIG_BT_LE_CONTROLLER_LOG_WRAP_PANIC_HANDLER_ENABLE
	CONFIG_BT_LE_CONTROLLER_LOG_TASK_WDT_USER_HANDLER_ENABLE
	CONFIG_BT_LE_CONTROLLER_LOG_OUTPUT_LEVEL
	CONFIG_BT_LE_CONTROLLER_LOG_MOD_OUTPUT_SWITCH
	CONFIG_BT_LE_ERROR_SIM_ENABLED
	CONFIG_BT_LE_ASSERT_WHEN_ABNORMAL_DISCONN_ENABLED
	CONFIG_BT_LE_DEBUG_REMAIN_SCENE_ENABLED
	CONFIG_BT_LE_PTR_CHECK_ENABLED
	CONFIG_BT_LE_MEM_CHECK_ENABLED
	CONFIG_BT_LE_LL_RESOLV_LIST_SIZE
	CONFIG_BT_LE_SECURITY_ENABLE
	CONFIG_BT_LE_SM_LEGACY
	CONFIG_BT_LE_SM_SC
	CONFIG_BT_LE_SM_SC_DEBUG_KEYS
	CONFIG_BT_LE_LL_CFG_FEAT_LE_ENCRYPTION
	CONFIG_BT_LE_CRYPTO_STACK_MBEDTLS
	CONFIG_BT_LE_WHITELIST_SIZE
	CONFIG_BT_LE_LL_DUP_SCAN_LIST_COUNT
	CONFIG_BT_LE_LL_SCA
	CONFIG_BT_LE_LL_PEER_SCA_SET_ENABLE
	CONFIG_BT_LE_LL_PEER_SCA
	CONFIG_BT_LE_MAX_CONNECTIONS
	CONFIG_BT_LE_COEX_PHY_CODED_TX_RX_TLIM
	CONFIG_BT_LE_SLEEP_ENABLE
	CONFIG_BT_LE_LP_CLK_SRC
	CONFIG_BT_LE_USE_ESP_TIMER
	CONFIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_SUPP
	CONFIG_BT_CTRL_BLE_ADV_REPORT_FLOW_CTRL_NUM
	CONFIG_BT_CTRL_BLE_ADV_REPORT_DISCARD_THRSHOLD
	CONFIG_BT_LE_SCAN_DUPL
	CONFIG_BT_LE_SCAN_DUPL_TYPE
	CONFIG_BT_LE_SCAN_DUPL_CACHE_REFRESH_PERIOD
	CONFIG_BT_LE_MSYS_INIT_IN_CONTROLLER
	CONFIG_BT_LE_TX_CCA_ENABLED
	CONFIG_BT_LE_CCA_RSSI_THRESH
	CONFIG_BT_LE_DFT_TX_POWER_LEVEL_DBM
	CONFIG_BT_LE_CTRL_CHECK_CONNECT_IND_ACCESS_ADDRESS
	CONFIG_BT_CTRL_RUN_IN_FLASH_ONLY
	BLE disconnects when Instant Passed (0x28) occurs
	CONFIG_BT_LE_CTRL_LLCP_CONN_UPDATE
	CONFIG_BT_LE_CTRL_LLCP_CHAN_MAP_UPDATE
	CONFIG_BT_LE_CTRL_LLCP_PHY_UPDATE
	CONFIG_BT_CTRL_SCAN_BACKOFF_UPPERLIMITMAX
	CONFIG_BT_LE_CTRL_CHAN_ASS_EN
	CONFIG_BT_LE_CTRL_ADV_DATA_LENGTH_ZERO_AUX
	CONFIG_BT_LE_RXBUF_OPT_ENABLED
	CONFIG_BT_LE_CTRL_FAST_CONN_DATA_TX_EN
	Reserved Memory Config
	CONFIG_BT_LE_EXT_ADV_RESERVED_MEMORY_COUNT
	CONFIG_BT_LE_CONN_RESERVED_MEMORY_COUNT
	CONFIG_BT_LE_DTM_ENABLED
	Scheduling Priority Level Config
	CONFIG_BT_LE_ADV_SCHED_PRIO_LEVEL
	CONFIG_BT_LE_PERIODIC_ADV_SCHED_PRIO_LEVEL
	CONFIG_BT_LE_SYNC_SCHED_PRIO_LEVEL
	CONFIG_BT_LE_CTRL_SLV_FAST_RX_CONN_DATA_EN
	CONFIG_BT_RELEASE_IRAM
	Common Options
	CONFIG_BT_ALARM_MAX_NUM
	BLE Log
	CONFIG_BLE_LOG_ENABLED
	CONFIG_BLE_LOG_TASK_STACK_SIZE
	CONFIG_BLE_LOG_LBM_TRANS_SIZE
	CONFIG_BLE_LOG_LBM_ATOMIC_LOCK_TASK_CNT
	CONFIG_BLE_LOG_LBM_ATOMIC_LOCK_ISR_CNT
	CONFIG_BLE_LOG_IS_ESP_CONTROLLER
	CONFIG_BLE_LOG_IS_ESP_LEGACY_CONTROLLER
	CONFIG_BLE_LOG_LL_ENABLED
	CONFIG_BLE_LOG_LBM_LL_TRANS_SIZE
	CONFIG_BLE_LOG_PAYLOAD_CHECKSUM_ENABLED
	CONFIG_BLE_LOG_ENH_STAT_ENABLED
	CONFIG_BLE_LOG_TS_ENABLED
	CONFIG_BLE_LOG_SYNC_IO_NUM
	CONFIG_BLE_LOG_PRPH_CHOICE
	CONFIG_BLE_LOG_PRPH_SPI_MASTER_DMA_MOSI_IO_NUM
	CONFIG_BLE_LOG_PRPH_SPI_MASTER_DMA_SCLK_IO_NUM
	CONFIG_BLE_LOG_PRPH_SPI_MASTER_DMA_CS_IO_NUM
	CONFIG_BLE_LOG_PRPH_UART_DMA_PORT
	CONFIG_BLE_LOG_PRPH_UART_DMA_BAUD_RATE
	CONFIG_BLE_LOG_PRPH_UART_DMA_TX_IO_NUM
	CONFIG_BT_BLE_LOG_SPI_OUT_ENABLED
	CONFIG_BT_BLE_LOG_SPI_OUT_UL_TASK_BUF_SIZE
	CONFIG_BT_BLE_LOG_SPI_OUT_HCI_ENABLED
	CONFIG_BT_BLE_LOG_SPI_OUT_HCI_BUF_SIZE
	CONFIG_BT_BLE_LOG_SPI_OUT_HCI_TASK_CNT
	CONFIG_BT_BLE_LOG_SPI_OUT_HOST_ENABLED
	CONFIG_BT_BLE_LOG_SPI_OUT_HOST_BUF_SIZE
	CONFIG_BT_BLE_LOG_SPI_OUT_HOST_TASK_CNT
	CONFIG_BT_BLE_LOG_SPI_OUT_LL_ENABLED
	CONFIG_BT_BLE_LOG_SPI_OUT_LL_TASK_BUF_SIZE
	CONFIG_BT_BLE_LOG_SPI_OUT_LL_ISR_BUF_SIZE
	CONFIG_BT_BLE_LOG_SPI_OUT_LL_HCI_BUF_SIZE
	CONFIG_BT_BLE_LOG_SPI_OUT_MOSI_IO_NUM
	CONFIG_BT_BLE_LOG_SPI_OUT_SCLK_IO_NUM
	CONFIG_BT_BLE_LOG_SPI_OUT_CS_IO_NUM
	CONFIG_BT_BLE_LOG_SPI_OUT_TS_SYNC_ENABLED
	CONFIG_BT_BLE_LOG_SPI_OUT_SYNC_IO_NUM
	CONFIG_BT_BLE_LOG_SPI_OUT_FLUSH_TIMER_ENABLED
	CONFIG_BT_BLE_LOG_SPI_OUT_FLUSH_TIMEOUT
	CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_ENABLED
	CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_BUF_SIZE
	CONFIG_BT_BLE_LOG_SPI_OUT_LE_AUDIO_TASK_CNT
	CONFIG_BT_BLE_LOG_SPI_OUT_MESH_ENABLED
	CONFIG_BT_BLE_LOG_SPI_OUT_MESH_BUF_SIZE
	CONFIG_BT_BLE_LOG_SPI_OUT_MESH_TASK_CNT
	CONFIG_BT_BLE_LOG_UHCI_OUT_ENABLED
	CONFIG_BT_BLE_LOG_UHCI_OUT_UART_PORT
	CONFIG_BT_BLE_LOG_UHCI_OUT_LL_TASK_BUF_SIZE
	CONFIG_BT_BLE_LOG_UHCI_OUT_LL_ISR_BUF_SIZE
	CONFIG_BT_BLE_LOG_UHCI_OUT_LL_HCI_BUF_SIZE
	CONFIG_BT_BLE_LOG_UHCI_OUT_UART_NEED_INIT
	CONFIG_BT_BLE_LOG_UHCI_OUT_UART_BAUD_RATE
	CONFIG_BT_BLE_LOG_UHCI_OUT_UART_IO_NUM_TX
	CONFIG_BT_LE_USED_MEM_STATISTICS_ENABLED
	CONFIG_BT_HCI_LOG_DEBUG_EN
	CONFIG_BT_HCI_LOG_DATA_BUFFER_SIZE
	CONFIG_BT_HCI_LOG_ADV_BUFFER_SIZE

	CONFIG_BLE_MESH
	CONFIG_BLE_MESH_HCI_5_0
	CONFIG_BLE_MESH_RANDOM_ADV_INTERVAL
	CONFIG_BLE_MESH_USE_DUPLICATE_SCAN
	CONFIG_BLE_MESH_MEM_ALLOC_MODE
	CONFIG_BLE_MESH_FREERTOS_STATIC_ALLOC
	CONFIG_BLE_MESH_FREERTOS_STATIC_ALLOC_MODE
	CONFIG_BLE_MESH_DEINIT
	BLE Mesh and BLE coexistence support
	CONFIG_BLE_MESH_SUPPORT_BLE_ADV
	CONFIG_BLE_MESH_BLE_ADV_BUF_COUNT
	CONFIG_BLE_MESH_SUPPORT_BLE_SCAN
	CONFIG_BLE_MESH_FAST_PROV
	CONFIG_BLE_MESH_NODE
	CONFIG_BLE_MESH_PROVISIONER
	CONFIG_BLE_MESH_WAIT_FOR_PROV_MAX_DEV_NUM
	CONFIG_BLE_MESH_MAX_PROV_NODES
	CONFIG_BLE_MESH_PBA_SAME_TIME
	CONFIG_BLE_MESH_PBG_SAME_TIME
	CONFIG_BLE_MESH_PROVISIONER_SUBNET_COUNT
	CONFIG_BLE_MESH_PROVISIONER_APP_KEY_COUNT
	CONFIG_BLE_MESH_PROVISIONER_RECV_HB
	CONFIG_BLE_MESH_PROVISIONER_RECV_HB_FILTER_SIZE
	CONFIG_BLE_MESH_PROV
	CONFIG_BLE_MESH_PB_ADV
	CONFIG_BLE_MESH_UNPROVISIONED_BEACON_INTERVAL
	CONFIG_BLE_MESH_PB_GATT
	CONFIG_BLE_MESH_PROXY
	CONFIG_BLE_MESH_GATT_PROXY_SERVER
	CONFIG_BLE_MESH_NODE_ID_TIMEOUT
	CONFIG_BLE_MESH_PROXY_FILTER_SIZE
	CONFIG_BLE_MESH_GATT_PROXY_CLIENT
	CONFIG_BLE_MESH_SETTINGS
	CONFIG_BLE_MESH_STORE_TIMEOUT
	CONFIG_BLE_MESH_SEQ_STORE_RATE
	CONFIG_BLE_MESH_RPL_STORE_TIMEOUT
	CONFIG_BLE_MESH_SETTINGS_BACKWARD_COMPATIBILITY
	CONFIG_BLE_MESH_SPECIFIC_PARTITION
	CONFIG_BLE_MESH_PARTITION_NAME
	CONFIG_BLE_MESH_USE_MULTIPLE_NAMESPACE
	CONFIG_BLE_MESH_MAX_NVS_NAMESPACE
	CONFIG_BLE_MESH_SUBNET_COUNT
	CONFIG_BLE_MESH_APP_KEY_COUNT
	CONFIG_BLE_MESH_MODEL_KEY_COUNT
	CONFIG_BLE_MESH_MODEL_GROUP_COUNT
	CONFIG_BLE_MESH_LABEL_COUNT
	CONFIG_BLE_MESH_CRPL
	CONFIG_BLE_MESH_NOT_RELAY_REPLAY_MSG
	CONFIG_BLE_MESH_MSG_CACHE_SIZE
	CONFIG_BLE_MESH_ADV_BUF_COUNT
	CONFIG_BLE_MESH_IVU_DIVIDER
	CONFIG_BLE_MESH_IVU_RECOVERY_IVI
	CONFIG_BLE_MESH_TX_SEG_MSG_COUNT
	CONFIG_BLE_MESH_RX_SEG_MSG_COUNT
	CONFIG_BLE_MESH_RX_SDU_MAX
	CONFIG_BLE_MESH_TX_SEG_MAX
	CONFIG_BLE_MESH_RELAY
	CONFIG_BLE_MESH_RELAY_ADV_BUF
	CONFIG_BLE_MESH_RELAY_ADV_BUF_COUNT
	CONFIG_BLE_MESH_LOW_POWER
	CONFIG_BLE_MESH_LPN_ESTABLISHMENT
	CONFIG_BLE_MESH_LPN_AUTO
	CONFIG_BLE_MESH_LPN_AUTO_TIMEOUT
	CONFIG_BLE_MESH_LPN_RETRY_TIMEOUT
	CONFIG_BLE_MESH_LPN_RSSI_FACTOR
	CONFIG_BLE_MESH_LPN_RECV_WIN_FACTOR
	CONFIG_BLE_MESH_LPN_MIN_QUEUE_SIZE
	CONFIG_BLE_MESH_LPN_RECV_DELAY
	CONFIG_BLE_MESH_LPN_POLL_TIMEOUT
	CONFIG_BLE_MESH_LPN_INIT_POLL_TIMEOUT
	CONFIG_BLE_MESH_LPN_SCAN_LATENCY
	CONFIG_BLE_MESH_LPN_GROUPS
	CONFIG_BLE_MESH_LPN_SUB_ALL_NODES_ADDR
	CONFIG_BLE_MESH_FRIEND
	CONFIG_BLE_MESH_FRIEND_RECV_WIN
	CONFIG_BLE_MESH_FRIEND_QUEUE_SIZE
	CONFIG_BLE_MESH_FRIEND_SUB_LIST_SIZE
	CONFIG_BLE_MESH_FRIEND_LPN_COUNT
	CONFIG_BLE_MESH_FRIEND_SEG_RX
	CONFIG_BLE_MESH_NO_LOG
	BLE Mesh STACK DEBUG LOG LEVEL
	CONFIG_BLE_MESH_STACK_TRACE_LEVEL
	BLE Mesh NET BUF DEBUG LOG LEVEL
	CONFIG_BLE_MESH_NET_BUF_TRACE_LEVEL
	CONFIG_BLE_MESH_CLIENT_MSG_TIMEOUT
	Support for BLE Mesh Foundation models
	CONFIG_BLE_MESH_CFG_CLI
	CONFIG_BLE_MESH_HEALTH_CLI
	CONFIG_BLE_MESH_HEALTH_SRV
	Support for BLE Mesh Client/Server models
	CONFIG_BLE_MESH_GENERIC_ONOFF_CLI
	CONFIG_BLE_MESH_GENERIC_LEVEL_CLI
	CONFIG_BLE_MESH_GENERIC_DEF_TRANS_TIME_CLI
	CONFIG_BLE_MESH_GENERIC_POWER_ONOFF_CLI
	CONFIG_BLE_MESH_GENERIC_POWER_LEVEL_CLI
	CONFIG_BLE_MESH_GENERIC_BATTERY_CLI
	CONFIG_BLE_MESH_GENERIC_LOCATION_CLI
	CONFIG_BLE_MESH_GENERIC_PROPERTY_CLI
	CONFIG_BLE_MESH_SENSOR_CLI
	CONFIG_BLE_MESH_TIME_CLI
	CONFIG_BLE_MESH_SCENE_CLI
	CONFIG_BLE_MESH_SCHEDULER_CLI
	CONFIG_BLE_MESH_LIGHT_LIGHTNESS_CLI
	CONFIG_BLE_MESH_LIGHT_CTL_CLI
	CONFIG_BLE_MESH_LIGHT_HSL_CLI
	CONFIG_BLE_MESH_LIGHT_XYL_CLI
	CONFIG_BLE_MESH_LIGHT_LC_CLI
	CONFIG_BLE_MESH_GENERIC_SERVER
	CONFIG_BLE_MESH_SENSOR_SERVER
	CONFIG_BLE_MESH_TIME_SCENE_SERVER
	CONFIG_BLE_MESH_LIGHTING_SERVER
	CONFIG_BLE_MESH_IV_UPDATE_TEST
	BLE Mesh specific test option
	CONFIG_BLE_MESH_SELF_TEST
	CONFIG_BLE_MESH_BQB_TEST
	CONFIG_BLE_MESH_TEST_AUTO_ENTER_NETWORK
	CONFIG_BLE_MESH_TEST_USE_WHITE_LIST
	CONFIG_BLE_MESH_SHELL
	CONFIG_BLE_MESH_DEBUG
	CONFIG_BLE_MESH_DEBUG_NET
	CONFIG_BLE_MESH_DEBUG_TRANS
	CONFIG_BLE_MESH_DEBUG_BEACON
	CONFIG_BLE_MESH_DEBUG_CRYPTO
	CONFIG_BLE_MESH_DEBUG_PROV
	CONFIG_BLE_MESH_DEBUG_ACCESS
	CONFIG_BLE_MESH_DEBUG_MODEL
	CONFIG_BLE_MESH_DEBUG_ADV
	CONFIG_BLE_MESH_DEBUG_LOW_POWER
	CONFIG_BLE_MESH_DEBUG_FRIEND
	CONFIG_BLE_MESH_DEBUG_PROXY
	CONFIG_BLE_MESH_EXPERIMENTAL

	Driver Configurations
	Legacy ADC Configuration
	CONFIG_ADC_DISABLE_DAC
	CONFIG_ADC_SUPPRESS_DEPRECATE_WARN
	Legacy ADC Calibration Configuration
	CONFIG_ADC_CALI_SUPPRESS_DEPRECATE_WARN
	SPI Configuration
	CONFIG_SPI_MASTER_IN_IRAM
	CONFIG_SPI_MASTER_ISR_IN_IRAM
	CONFIG_SPI_SLAVE_IN_IRAM
	CONFIG_SPI_SLAVE_ISR_IN_IRAM
	TWAI Configuration
	CONFIG_TWAI_ISR_IN_IRAM
	Temperature sensor Configuration
	CONFIG_TEMP_SENSOR_SUPPRESS_DEPRECATE_WARN
	CONFIG_TEMP_SENSOR_ENABLE_DEBUG_LOG
	CONFIG_TEMP_SENSOR_ISR_IRAM_SAFE
	UART Configuration
	CONFIG_UART_ISR_IN_IRAM
	GPIO Configuration
	CONFIG_GPIO_CTRL_FUNC_IN_IRAM
	Sigma Delta Modulator Configuration
	CONFIG_SDM_CTRL_FUNC_IN_IRAM
	CONFIG_SDM_SUPPRESS_DEPRECATE_WARN
	CONFIG_SDM_ENABLE_DEBUG_LOG
	Analog Comparator Configuration
	CONFIG_ANA_CMPR_ISR_IRAM_SAFE
	CONFIG_ANA_CMPR_CTRL_FUNC_IN_IRAM
	CONFIG_ANA_CMPR_ENABLE_DEBUG_LOG
	GPTimer Configuration
	CONFIG_GPTIMER_ISR_HANDLER_IN_IRAM
	CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM
	CONFIG_GPTIMER_ISR_IRAM_SAFE
	CONFIG_GPTIMER_SUPPRESS_DEPRECATE_WARN
	CONFIG_GPTIMER_ENABLE_DEBUG_LOG
	PCNT Configuration
	CONFIG_PCNT_CTRL_FUNC_IN_IRAM
	CONFIG_PCNT_ISR_IRAM_SAFE
	CONFIG_PCNT_SUPPRESS_DEPRECATE_WARN
	CONFIG_PCNT_ENABLE_DEBUG_LOG
	RMT Configuration
	CONFIG_RMT_ISR_IRAM_SAFE
	CONFIG_RMT_RECV_FUNC_IN_IRAM
	CONFIG_RMT_SUPPRESS_DEPRECATE_WARN
	CONFIG_RMT_ENABLE_DEBUG_LOG
	MCPWM Configuration
	CONFIG_MCPWM_ISR_IRAM_SAFE
	CONFIG_MCPWM_CTRL_FUNC_IN_IRAM
	CONFIG_MCPWM_SUPPRESS_DEPRECATE_WARN
	CONFIG_MCPWM_ENABLE_DEBUG_LOG
	I2S Configuration
	CONFIG_I2S_ISR_IRAM_SAFE
	CONFIG_I2S_SUPPRESS_DEPRECATE_WARN
	CONFIG_I2S_ENABLE_DEBUG_LOG
	DAC Configuration
	CONFIG_DAC_CTRL_FUNC_IN_IRAM
	CONFIG_DAC_ISR_IRAM_SAFE
	CONFIG_DAC_SUPPRESS_DEPRECATE_WARN
	CONFIG_DAC_ENABLE_DEBUG_LOG
	CONFIG_DAC_DMA_AUTO_16BIT_ALIGN
	USB Serial/JTAG Configuration
	CONFIG_USJ_NO_AUTO_LS_ON_CONNECTION
	Parallel IO Configuration
	CONFIG_PARLIO_ENABLE_DEBUG_LOG
	CONFIG_PARLIO_ISR_IRAM_SAFE

	eFuse Bit Manager
	CONFIG_EFUSE_CUSTOM_TABLE
	CONFIG_EFUSE_CUSTOM_TABLE_FILENAME
	CONFIG_EFUSE_VIRTUAL
	CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
	CONFIG_EFUSE_VIRTUAL_LOG_ALL_WRITES

	ESP-TLS
	CONFIG_ESP_TLS_LIBRARY_CHOOSE
	CONFIG_ESP_TLS_USE_DS_PERIPHERAL
	CONFIG_ESP_TLS_CLIENT_SESSION_TICKETS
	CONFIG_ESP_TLS_SERVER
	CONFIG_ESP_TLS_SERVER_SESSION_TICKETS
	CONFIG_ESP_TLS_SERVER_SESSION_TICKET_TIMEOUT
	CONFIG_ESP_TLS_SERVER_CERT_SELECT_HOOK
	CONFIG_ESP_TLS_SERVER_MIN_AUTH_MODE_OPTIONAL
	CONFIG_ESP_TLS_PSK_VERIFICATION
	CONFIG_ESP_TLS_INSECURE
	CONFIG_ESP_TLS_SKIP_SERVER_CERT_VERIFY
	CONFIG_ESP_WOLFSSL_SMALL_CERT_VERIFY
	CONFIG_ESP_DEBUG_WOLFSSL

	ADC and ADC Calibration
	CONFIG_ADC_ONESHOT_CTRL_FUNC_IN_IRAM
	CONFIG_ADC_CONTINUOUS_ISR_IRAM_SAFE
	ADC Calibration Configurations
	CONFIG_ADC_DISABLE_DAC_OUTPUT

	Wireless Coexistence
	CONFIG_ESP_COEX_SW_COEXIST_ENABLE
	CONFIG_ESP_COEX_EXTERNAL_COEXIST_ENABLE
	CONFIG_ESP_COEX_POWER_MANAGEMENT
	CONFIG_ESP_COEX_GPIO_DEBUG
	CONFIG_ESP_COEX_GPIO_DEBUG_DIAG
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_COUNT
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX0
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX1
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX2
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX3
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX4
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX5
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX6
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX7
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX8
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX9
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX10
	CONFIG_ESP_COEX_GPIO_DEBUG_IO_IDX11

	Common ESP-related
	CONFIG_ESP_ERR_TO_NAME_LOOKUP

	Ethernet
	CONFIG_ETH_USE_SPI_ETHERNET
	CONFIG_ETH_SPI_ETHERNET_DM9051
	CONFIG_ETH_SPI_ETHERNET_W5500
	CONFIG_ETH_SPI_ETHERNET_KSZ8851SNL
	CONFIG_ETH_USE_OPENETH
	CONFIG_ETH_OPENETH_DMA_RX_BUFFER_NUM
	CONFIG_ETH_OPENETH_DMA_TX_BUFFER_NUM
	CONFIG_ETH_TRANSMIT_MUTEX

	Event Loop Library
	CONFIG_ESP_EVENT_LOOP_PROFILING
	CONFIG_ESP_EVENT_POST_FROM_ISR
	CONFIG_ESP_EVENT_POST_FROM_IRAM_ISR

	GDB Stub
	CONFIG_ESP_GDBSTUB_SUPPORT_TASKS
	CONFIG_ESP_GDBSTUB_MAX_TASKS

	ESP HID
	CONFIG_ESPHID_TASK_SIZE_BT
	CONFIG_ESPHID_TASK_SIZE_BLE

	ESP HTTP client
	CONFIG_ESP_HTTP_CLIENT_ENABLE_HTTPS
	CONFIG_ESP_HTTP_CLIENT_ENABLE_BASIC_AUTH
	CONFIG_ESP_HTTP_CLIENT_ENABLE_DIGEST_AUTH

	HTTP Server
	CONFIG_HTTPD_MAX_REQ_HDR_LEN
	CONFIG_HTTPD_MAX_URI_LEN
	CONFIG_HTTPD_ERR_RESP_NO_DELAY
	CONFIG_HTTPD_PURGE_BUF_LEN
	CONFIG_HTTPD_LOG_PURGE_DATA
	CONFIG_HTTPD_WS_SUPPORT
	CONFIG_HTTPD_QUEUE_WORK_BLOCKING

	ESP HTTPS OTA
	CONFIG_ESP_HTTPS_OTA_DECRYPT_CB
	CONFIG_ESP_HTTPS_OTA_ALLOW_HTTP

	ESP HTTPS server
	CONFIG_ESP_HTTPS_SERVER_ENABLE

	Hardware Settings
	Chip revision
	CONFIG_ESP32C6_REV_MIN
	CONFIG_ESP_EFUSE_BLOCK_REV_MIN_FULL
	CONFIG_ESP_REV_NEW_CHIP_TEST
	MAC Config
	CONFIG_ESP32C6_UNIVERSAL_MAC_ADDRESSES
	CONFIG_ESP_MAC_USE_CUSTOM_MAC_AS_BASE_MAC
	Sleep Config
	CONFIG_ESP_SLEEP_POWER_DOWN_FLASH
	CONFIG_ESP_SLEEP_FLASH_LEAKAGE_WORKAROUND
	CONFIG_ESP_SLEEP_PSRAM_LEAKAGE_WORKAROUND
	CONFIG_ESP_SLEEP_MSPI_NEED_ALL_IO_PU
	CONFIG_ESP_SLEEP_GPIO_RESET_WORKAROUND
	CONFIG_ESP_SLEEP_WAIT_FLASH_READY_EXTRA_DELAY
	CONFIG_ESP_SLEEP_DEBUG
	CONFIG_ESP_SLEEP_GPIO_ENABLE_INTERNAL_RESISTORS
	CONFIG_ESP_SLEEP_EVENT_CALLBACKS
	CONFIG_ESP_SLEEP_CACHE_SAFE_ASSERTION
	RTC Clock Config
	CONFIG_RTC_CLK_SRC
	CONFIG_RTC_CLK_SRC_USE_DANGEROUS_RC32K_ALLOWED
	CONFIG_RTC_CLK_CAL_CYCLES
	Peripheral Control
	CONFIG_PERIPH_CTRL_FUNC_IN_IRAM
	ETM Configuration
	CONFIG_ETM_ENABLE_DEBUG_LOG
	GDMA Configuration
	CONFIG_GDMA_CTRL_FUNC_IN_IRAM
	CONFIG_GDMA_ISR_IRAM_SAFE
	Main XTAL Config
	CONFIG_XTAL_FREQ_SEL
	Crypto DPA Protection
	CONFIG_ESP_CRYPTO_DPA_PROTECTION_AT_STARTUP
	CONFIG_ESP_CRYPTO_DPA_PROTECTION_LEVEL
	CONFIG_ESP_CRYPTO_FORCE_ECC_CONSTANT_TIME_POINT_MUL
	CONFIG_ESP_ECDSA_ENABLE_P192_CURVE

	LCD and Touch Panel
	LCD Peripheral Configuration
	CONFIG_LCD_PANEL_IO_FORMAT_BUF_SIZE
	CONFIG_LCD_ENABLE_DEBUG_LOG
	CONFIG_LCD_RGB_ISR_IRAM_SAFE
	CONFIG_LCD_RGB_RESTART_IN_VSYNC

	ESP NETIF Adapter
	CONFIG_ESP_NETIF_IP_LOST_TIMER_INTERVAL
	CONFIG_ESP_NETIF_USE_TCPIP_STACK_LIB
	CONFIG_ESP_NETIF_RECEIVE_REPORT_ERRORS
	CONFIG_ESP_NETIF_L2_TAP
	CONFIG_ESP_NETIF_L2_TAP_MAX_FDS
	CONFIG_ESP_NETIF_L2_TAP_RX_QUEUE_SIZE
	CONFIG_ESP_NETIF_BRIDGE_EN

	Partition API Configuration
	PHY
	CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE
	CONFIG_ESP_PHY_INIT_DATA_IN_PARTITION
	CONFIG_ESP_PHY_DEFAULT_INIT_IF_INVALID
	CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN
	CONFIG_ESP_PHY_MULTIPLE_INIT_DATA_BIN_EMBED
	CONFIG_ESP_PHY_INIT_DATA_ERROR
	CONFIG_ESP_PHY_RECORD_USED_TIME
	CONFIG_ESP_PHY_MAX_WIFI_TX_POWER
	CONFIG_ESP_PHY_MAC_BB_PD
	CONFIG_ESP_PHY_REDUCE_TX_POWER
	CONFIG_ESP_PHY_ENABLE_USB
	CONFIG_ESP_PHY_ENABLE_CERT_TEST
	CONFIG_ESP_PHY_CALIBRATION_MODE
	CONFIG_ESP_PHY_IMPROVE_RX_11B
	CONFIG_ESP_PHY_PLL_TRACK_PERIOD_MS
	CONFIG_ESP_PHY_PLL_TRACK_DEBUG
	CONFIG_ESP_PHY_DEBUG
	CONFIG_ESP_PHY_DISABLE_PLL_TRACK

	Power Management
	CONFIG_PM_ENABLE
	CONFIG_PM_DFS_INIT_AUTO
	CONFIG_PM_PROFILING
	CONFIG_PM_TRACE
	CONFIG_PM_SLP_IRAM_OPT
	CONFIG_PM_RTOS_IDLE_OPT
	CONFIG_PM_SLP_DISABLE_GPIO
	CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP
	CONFIG_PM_POWER_DOWN_PERIPHERAL_IN_LIGHT_SLEEP
	CONFIG_PM_LIGHT_SLEEP_CALLBACKS

	ESP PSRAM
	ESP Ringbuf
	CONFIG_RINGBUF_PLACE_FUNCTIONS_INTO_FLASH
	CONFIG_RINGBUF_PLACE_ISR_FUNCTIONS_INTO_FLASH

	ESP System Settings
	CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ
	CONFIG_ESP_SYSTEM_PANIC
	CONFIG_ESP_SYSTEM_PANIC_REBOOT_DELAY_SECONDS
	CONFIG_ESP_SYSTEM_RTC_EXT_XTAL_BOOTSTRAP_CYCLES
	CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
	CONFIG_ESP_SYSTEM_USE_EH_FRAME
	Memory protection
	CONFIG_ESP_SYSTEM_PMP_IDRAM_SPLIT
	CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
	CONFIG_ESP_SYSTEM_MEMPROT_FEATURE_LOCK
	CONFIG_ESP_SYSTEM_EVENT_QUEUE_SIZE
	CONFIG_ESP_SYSTEM_EVENT_TASK_STACK_SIZE
	CONFIG_ESP_MAIN_TASK_STACK_SIZE
	CONFIG_ESP_MAIN_TASK_AFFINITY
	CONFIG_ESP_MINIMAL_SHARED_STACK_SIZE
	CONFIG_ESP_CONSOLE_UART
	CONFIG_ESP_CONSOLE_SECONDARY
	CONFIG_ESP_CONSOLE_UART_NUM
	CONFIG_ESP_CONSOLE_UART_TX_GPIO
	CONFIG_ESP_CONSOLE_UART_RX_GPIO
	CONFIG_ESP_CONSOLE_UART_BAUDRATE
	CONFIG_ESP_INT_WDT
	CONFIG_ESP_INT_WDT_TIMEOUT_MS
	CONFIG_ESP_INT_WDT_CHECK_CPU1
	CONFIG_ESP_TASK_WDT_EN
	CONFIG_ESP_TASK_WDT_INIT
	CONFIG_ESP_TASK_WDT_PANIC
	CONFIG_ESP_TASK_WDT_TIMEOUT_S
	CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU0
	CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU1
	CONFIG_ESP_XT_WDT
	CONFIG_ESP_XT_WDT_TIMEOUT
	CONFIG_ESP_XT_WDT_BACKUP_CLK_ENABLE
	CONFIG_ESP_PANIC_HANDLER_IRAM
	CONFIG_ESP_DEBUG_STUBS_ENABLE
	CONFIG_ESP_DEBUG_OCDAWARE
	CONFIG_ESP_SYSTEM_CHECK_INT_LEVEL
	Brownout Detector
	CONFIG_ESP_BROWNOUT_DET
	CONFIG_ESP_BROWNOUT_DET_LVL_SEL
	CONFIG_ESP_SYSTEM_BBPLL_RECALIB

	IPC (Inter-Processor Call)
	CONFIG_ESP_IPC_TASK_STACK_SIZE
	CONFIG_ESP_IPC_USES_CALLERS_PRIORITY

	High resolution timer (esp_timer)
	CONFIG_ESP_TIMER_PROFILING
	CONFIG_ESP_TIMER_TASK_STACK_SIZE
	CONFIG_ESP_TIMER_INTERRUPT_LEVEL
	CONFIG_ESP_TIMER_SHOW_EXPERIMENTAL
	CONFIG_ESP_TIMER_TASK_AFFINITY
	CONFIG_ESP_TIMER_ISR_AFFINITY
	CONFIG_ESP_TIMER_SUPPORTS_ISR_DISPATCH_METHOD

	Wi-Fi
	CONFIG_ESP_WIFI_STATIC_RX_BUFFER_NUM
	CONFIG_ESP_WIFI_DYNAMIC_RX_BUFFER_NUM
	CONFIG_ESP_WIFI_TX_BUFFER
	CONFIG_ESP_WIFI_STATIC_TX_BUFFER_NUM
	CONFIG_ESP_WIFI_CACHE_TX_BUFFER_NUM
	CONFIG_ESP_WIFI_DYNAMIC_TX_BUFFER_NUM
	CONFIG_ESP_WIFI_MGMT_RX_BUFFER
	CONFIG_ESP_WIFI_RX_MGMT_BUF_NUM_DEF
	CONFIG_ESP_WIFI_CSI_ENABLED
	CONFIG_ESP_WIFI_AMPDU_TX_ENABLED
	CONFIG_ESP_WIFI_TX_BA_WIN
	CONFIG_ESP_WIFI_AMPDU_RX_ENABLED
	CONFIG_ESP_WIFI_RX_BA_WIN
	CONFIG_ESP_WIFI_AMSDU_TX_ENABLED
	CONFIG_ESP_WIFI_NVS_ENABLED
	CONFIG_ESP_WIFI_TASK_CORE_ID
	CONFIG_ESP_WIFI_SOFTAP_BEACON_MAX_LEN
	CONFIG_ESP_WIFI_MGMT_SBUF_NUM
	CONFIG_ESP_WIFI_IRAM_OPT
	CONFIG_ESP_WIFI_EXTRA_IRAM_OPT
	CONFIG_ESP_WIFI_RX_IRAM_OPT
	CONFIG_ESP_WIFI_ENABLE_WPA3_SAE
	CONFIG_ESP_WIFI_ENABLE_SAE_PK
	CONFIG_ESP_WIFI_SOFTAP_SAE_SUPPORT
	CONFIG_ESP_WIFI_ENABLE_WPA3_OWE_STA
	CONFIG_ESP_WIFI_SLP_IRAM_OPT
	CONFIG_ESP_WIFI_SLP_DEFAULT_MIN_ACTIVE_TIME
	CONFIG_ESP_WIFI_SLP_DEFAULT_MAX_ACTIVE_TIME
	CONFIG_ESP_WIFI_SLP_DEFAULT_WAIT_BROADCAST_DATA_TIME
	CONFIG_ESP_WIFI_FTM_ENABLE
	CONFIG_ESP_WIFI_FTM_INITIATOR_SUPPORT
	CONFIG_ESP_WIFI_FTM_RESPONDER_SUPPORT
	CONFIG_ESP_WIFI_STA_DISCONNECTED_PM_ENABLE
	CONFIG_ESP_WIFI_GCMP_SUPPORT
	CONFIG_ESP_WIFI_GMAC_SUPPORT
	CONFIG_ESP_WIFI_SOFTAP_SUPPORT
	CONFIG_ESP_WIFI_ENHANCED_LIGHT_SLEEP
	CONFIG_ESP_WIFI_SLP_BEACON_LOST_OPT
	CONFIG_ESP_WIFI_SLP_BEACON_LOST_TIMEOUT
	CONFIG_ESP_WIFI_SLP_BEACON_LOST_THRESHOLD
	CONFIG_ESP_WIFI_SLP_PHY_ON_DELTA_EARLY_TIME
	CONFIG_ESP_WIFI_SLP_PHY_OFF_DELTA_TIMEOUT_TIME
	CONFIG_ESP_WIFI_ESPNOW_MAX_ENCRYPT_NUM
	CONFIG_ESP_WIFI_NAN_ENABLE
	CONFIG_ESP_WIFI_ENABLE_WIFI_TX_STATS
	CONFIG_ESP_WIFI_MBEDTLS_CRYPTO
	CONFIG_ESP_WIFI_MBEDTLS_TLS_CLIENT
	CONFIG_ESP_WIFI_WAPI_PSK
	CONFIG_ESP_WIFI_SUITE_B_192
	CONFIG_ESP_WIFI_11KV_SUPPORT
	CONFIG_ESP_WIFI_RRM_SUPPORT
	CONFIG_ESP_WIFI_WNM_SUPPORT
	CONFIG_ESP_WIFI_SCAN_CACHE
	CONFIG_ESP_WIFI_MBO_SUPPORT
	CONFIG_ESP_WIFI_DPP_SUPPORT
	CONFIG_ESP_WIFI_11R_SUPPORT
	CONFIG_ESP_WIFI_WPS_SOFTAP_REGISTRAR
	CONFIG_ESP_WIFI_ENABLE_WIFI_RX_STATS
	CONFIG_ESP_WIFI_ENABLE_WIFI_RX_MU_STATS
	WPS Configuration Options
	CONFIG_ESP_WIFI_WPS_STRICT
	CONFIG_ESP_WIFI_WPS_PASSPHRASE
	CONFIG_ESP_WIFI_DEBUG_PRINT
	CONFIG_ESP_WIFI_TESTING_OPTIONS
	CONFIG_ESP_WIFI_ENTERPRISE_SUPPORT
	CONFIG_ESP_WIFI_ENT_FREE_DYNAMIC_BUFFER
	CONFIG_ESP_WIFI_MODEM_RF_FLAG_UPDATE_DEBUG

	Core dump
	CONFIG_ESP_COREDUMP_TO_FLASH_OR_UART
	CONFIG_ESP_COREDUMP_DATA_FORMAT
	CONFIG_ESP_COREDUMP_CHECKSUM
	CONFIG_ESP_COREDUMP_CHECK_BOOT
	CONFIG_ESP_COREDUMP_LOGS
	CONFIG_ESP_COREDUMP_MAX_TASKS_NUM
	CONFIG_ESP_COREDUMP_UART_DELAY
	CONFIG_ESP_COREDUMP_STACK_SIZE
	CONFIG_ESP_COREDUMP_SUMMARY_STACKDUMP_SIZE
	CONFIG_ESP_COREDUMP_DECODE

	FAT Filesystem support
	CONFIG_FATFS_VOLUME_COUNT
	CONFIG_FATFS_LONG_FILENAMES
	CONFIG_FATFS_SECTOR_SIZE
	CONFIG_FATFS_CHOOSE_CODEPAGE
	CONFIG_FATFS_MAX_LFN
	CONFIG_FATFS_API_ENCODING
	CONFIG_FATFS_FS_LOCK
	CONFIG_FATFS_TIMEOUT_MS
	CONFIG_FATFS_PER_FILE_CACHE
	CONFIG_FATFS_ALLOC_PREFER_EXTRAM
	CONFIG_FATFS_USE_FASTSEEK
	CONFIG_FATFS_FAST_SEEK_BUFFER_SIZE
	CONFIG_FATFS_VFS_FSTAT_BLKSIZE

	FreeRTOS
	Kernel
	CONFIG_FREERTOS_SMP
	CONFIG_FREERTOS_UNICORE
	CONFIG_FREERTOS_HZ
	CONFIG_FREERTOS_OPTIMIZED_SCHEDULER
	CONFIG_FREERTOS_CHECK_STACKOVERFLOW
	CONFIG_FREERTOS_THREAD_LOCAL_STORAGE_POINTERS
	CONFIG_FREERTOS_IDLE_TASK_STACKSIZE
	CONFIG_FREERTOS_USE_IDLE_HOOK
	CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK
	CONFIG_FREERTOS_USE_TICK_HOOK
	CONFIG_FREERTOS_MAX_TASK_NAME_LEN
	CONFIG_FREERTOS_ENABLE_BACKWARD_COMPATIBILITY
	CONFIG_FREERTOS_TIMER_TASK_PRIORITY
	CONFIG_FREERTOS_TIMER_TASK_STACK_DEPTH
	CONFIG_FREERTOS_TIMER_QUEUE_LENGTH
	CONFIG_FREERTOS_QUEUE_REGISTRY_SIZE
	CONFIG_FREERTOS_TASK_NOTIFICATION_ARRAY_ENTRIES
	CONFIG_FREERTOS_USE_TRACE_FACILITY
	CONFIG_FREERTOS_USE_STATS_FORMATTING_FUNCTIONS
	CONFIG_FREERTOS_VTASKLIST_INCLUDE_COREID
	CONFIG_FREERTOS_GENERATE_RUN_TIME_STATS
	CONFIG_FREERTOS_USE_TICKLESS_IDLE
	CONFIG_FREERTOS_IDLE_TIME_BEFORE_SLEEP
	Port
	CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
	CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK
	CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS
	CONFIG_FREERTOS_ENABLE_STATIC_TASK_CLEAN_UP
	CONFIG_FREERTOS_CHECK_MUTEX_GIVEN_BY_OWNER
	CONFIG_FREERTOS_ISR_STACKSIZE
	CONFIG_FREERTOS_INTERRUPT_BACKTRACE
	CONFIG_FREERTOS_CORETIMER
	CONFIG_FREERTOS_RUN_TIME_STATS_CLK
	CONFIG_FREERTOS_PLACE_FUNCTIONS_INTO_FLASH
	CONFIG_FREERTOS_PLACE_SNAPSHOT_FUNS_INTO_FLASH
	CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
	CONFIG_FREERTOS_ENABLE_TASK_SNAPSHOT

	Hardware Abstraction Layer (HAL) and Low Level (LL)
	CONFIG_HAL_DEFAULT_ASSERTION_LEVEL
	CONFIG_HAL_LOG_LEVEL
	CONFIG_HAL_SYSTIMER_USE_ROM_IMPL
	CONFIG_HAL_WDT_USE_ROM_IMPL

	Heap memory debugging
	CONFIG_HEAP_CORRUPTION_DETECTION
	CONFIG_HEAP_TRACING_DEST
	CONFIG_HEAP_TRACING_STACK_DEPTH
	CONFIG_HEAP_USE_HOOKS
	CONFIG_HEAP_TASK_TRACKING
	CONFIG_HEAP_TRACE_HASH_MAP
	CONFIG_HEAP_TRACE_HASH_MAP_SIZE
	CONFIG_HEAP_ABORT_WHEN_ALLOCATION_FAILS
	CONFIG_HEAP_TLSF_USE_ROM_IMPL
	CONFIG_HEAP_PLACE_FUNCTION_INTO_FLASH

	IEEE 802.15.4
	CONFIG_IEEE802154_ENABLED
	CONFIG_IEEE802154_RX_BUFFER_SIZE
	CONFIG_IEEE802154_CCA_MODE
	CONFIG_IEEE802154_CCA_THRESHOLD
	CONFIG_IEEE802154_PENDING_TABLE_SIZE
	CONFIG_IEEE802154_MULTI_PAN_ENABLE
	CONFIG_IEEE802154_TIMING_OPTIMIZATION
	CONFIG_IEEE802154_SLEEP_ENABLE
	CONFIG_IEEE802154_DEBUG
	CONFIG_IEEE802154_DEBUG_ASSERT_MONITOR
	CONFIG_IEEE802154_RX_BUFFER_STATISTIC
	CONFIG_IEEE802154_ASSERT
	CONFIG_IEEE802154_RECORD
	CONFIG_IEEE802154_RECORD_EVENT
	CONFIG_IEEE802154_RECORD_EVENT_SIZE
	CONFIG_IEEE802154_RECORD_STATE
	CONFIG_IEEE802154_RECORD_STATE_SIZE
	CONFIG_IEEE802154_RECORD_CMD
	CONFIG_IEEE802154_RECORD_CMD_SIZE
	CONFIG_IEEE802154_RECORD_ABORT
	CONFIG_IEEE802154_RECORD_ABORT_SIZE
	CONFIG_IEEE802154_RECORD_TXRX_FRAME
	CONFIG_IEEE802154_RECORD_TXRX_FRAME_SIZE
	CONFIG_IEEE802154_TXRX_STATISTIC

	Log output
	CONFIG_LOG_DEFAULT_LEVEL
	CONFIG_LOG_MAXIMUM_LEVEL
	CONFIG_LOG_COLORS
	CONFIG_LOG_TIMESTAMP_SOURCE

	LWIP
	CONFIG_LWIP_LOCAL_HOSTNAME
	CONFIG_LWIP_NETIF_API
	CONFIG_LWIP_TCPIP_TASK_PRIO
	CONFIG_LWIP_TCPIP_CORE_LOCKING
	CONFIG_LWIP_TCPIP_CORE_LOCKING_INPUT
	CONFIG_LWIP_CHECK_THREAD_SAFETY
	CONFIG_LWIP_DNS_SUPPORT_MDNS_QUERIES
	CONFIG_LWIP_L2_TO_L3_COPY
	CONFIG_LWIP_IRAM_OPTIMIZATION
	CONFIG_LWIP_EXTRA_IRAM_OPTIMIZATION
	CONFIG_LWIP_TIMERS_ONDEMAND
	CONFIG_LWIP_ND6
	CONFIG_LWIP_FORCE_ROUTER_FORWARDING
	CONFIG_LWIP_MAX_SOCKETS
	CONFIG_LWIP_USE_ONLY_LWIP_SELECT
	CONFIG_LWIP_SO_LINGER
	CONFIG_LWIP_SO_REUSE
	CONFIG_LWIP_SO_REUSE_RXTOALL
	CONFIG_LWIP_SO_RCVBUF
	CONFIG_LWIP_NETBUF_RECVINFO
	CONFIG_LWIP_IP_DEFAULT_TTL
	CONFIG_LWIP_IP4_FRAG
	CONFIG_LWIP_IP6_FRAG
	CONFIG_LWIP_IP4_REASSEMBLY
	CONFIG_LWIP_IP6_REASSEMBLY
	CONFIG_LWIP_IP_REASS_MAX_PBUFS
	CONFIG_LWIP_IP_FORWARD
	CONFIG_LWIP_IPV4_NAPT
	CONFIG_LWIP_STATS
	CONFIG_LWIP_ESP_GRATUITOUS_ARP
	CONFIG_LWIP_GARP_TMR_INTERVAL
	CONFIG_LWIP_ESP_MLDV6_REPORT
	CONFIG_LWIP_MLDV6_TMR_INTERVAL
	CONFIG_LWIP_TCPIP_RECVMBOX_SIZE
	CONFIG_LWIP_DHCP_DOES_ARP_CHECK
	CONFIG_LWIP_DHCP_DISABLE_CLIENT_ID
	CONFIG_LWIP_DHCP_DISABLE_VENDOR_CLASS_ID
	CONFIG_LWIP_DHCP_RESTORE_LAST_IP
	CONFIG_LWIP_DHCP_OPTIONS_LEN
	CONFIG_LWIP_NUM_NETIF_CLIENT_DATA
	CONFIG_LWIP_DHCP_COARSE_TIMER_SECS
	DHCP server
	CONFIG_LWIP_DHCPS
	CONFIG_LWIP_DHCPS_LEASE_UNIT
	CONFIG_LWIP_DHCPS_MAX_STATION_NUM
	CONFIG_LWIP_DHCPS_ADD_DNS
	CONFIG_LWIP_AUTOIP
	CONFIG_LWIP_AUTOIP_TRIES
	CONFIG_LWIP_AUTOIP_MAX_CONFLICTS
	CONFIG_LWIP_AUTOIP_RATE_LIMIT_INTERVAL
	CONFIG_LWIP_IPV4
	CONFIG_LWIP_IPV6
	CONFIG_LWIP_IPV6_AUTOCONFIG
	CONFIG_LWIP_IPV6_NUM_ADDRESSES
	CONFIG_LWIP_IPV6_FORWARD
	CONFIG_LWIP_IPV6_RDNSS_MAX_DNS_SERVERS
	CONFIG_LWIP_IPV6_DHCP6
	CONFIG_LWIP_NETIF_STATUS_CALLBACK
	CONFIG_LWIP_NETIF_LOOPBACK
	CONFIG_LWIP_LOOPBACK_MAX_PBUFS
	TCP
	CONFIG_LWIP_MAX_ACTIVE_TCP
	CONFIG_LWIP_MAX_LISTENING_TCP
	CONFIG_LWIP_TCP_HIGH_SPEED_RETRANSMISSION
	CONFIG_LWIP_TCP_MAXRTX
	CONFIG_LWIP_TCP_SYNMAXRTX
	CONFIG_LWIP_TCP_MSS
	CONFIG_LWIP_TCP_TMR_INTERVAL
	CONFIG_LWIP_TCP_MSL
	CONFIG_LWIP_TCP_FIN_WAIT_TIMEOUT
	CONFIG_LWIP_TCP_SND_BUF_DEFAULT
	CONFIG_LWIP_TCP_WND_DEFAULT
	CONFIG_LWIP_TCP_RECVMBOX_SIZE
	CONFIG_LWIP_TCP_QUEUE_OOSEQ
	CONFIG_LWIP_TCP_OOSEQ_TIMEOUT
	CONFIG_LWIP_TCP_OOSEQ_MAX_PBUFS
	CONFIG_LWIP_TCP_SACK_OUT
	CONFIG_LWIP_TCP_OVERSIZE
	CONFIG_LWIP_WND_SCALE
	CONFIG_LWIP_TCP_RCV_SCALE
	CONFIG_LWIP_TCP_RTO_TIME
	UDP
	CONFIG_LWIP_MAX_UDP_PCBS
	CONFIG_LWIP_UDP_RECVMBOX_SIZE
	Checksums
	CONFIG_LWIP_CHECKSUM_CHECK_IP
	CONFIG_LWIP_CHECKSUM_CHECK_UDP
	CONFIG_LWIP_CHECKSUM_CHECK_ICMP
	CONFIG_LWIP_TCPIP_TASK_STACK_SIZE
	CONFIG_LWIP_TCPIP_TASK_AFFINITY
	CONFIG_LWIP_IPV6_ND6_NUM_PREFIXES
	CONFIG_LWIP_IPV6_ND6_NUM_ROUTERS
	CONFIG_LWIP_IPV6_ND6_NUM_DESTINATIONS
	CONFIG_LWIP_PPP_SUPPORT
	CONFIG_LWIP_PPP_ENABLE_IPV6
	CONFIG_LWIP_IPV6_MEMP_NUM_ND6_QUEUE
	CONFIG_LWIP_IPV6_ND6_NUM_NEIGHBORS
	CONFIG_LWIP_PPP_NOTIFY_PHASE_SUPPORT
	CONFIG_LWIP_PPP_PAP_SUPPORT
	CONFIG_LWIP_PPP_CHAP_SUPPORT
	CONFIG_LWIP_PPP_MSCHAP_SUPPORT
	CONFIG_LWIP_PPP_MPPE_SUPPORT
	CONFIG_LWIP_ENABLE_LCP_ECHO
	CONFIG_LWIP_LCP_ECHOINTERVAL
	CONFIG_LWIP_LCP_MAXECHOFAILS
	CONFIG_LWIP_PPP_DEBUG_ON
	CONFIG_LWIP_SLIP_SUPPORT
	CONFIG_LWIP_SLIP_DEBUG_ON
	ICMP
	CONFIG_LWIP_ICMP
	CONFIG_LWIP_MULTICAST_PING
	CONFIG_LWIP_BROADCAST_PING
	LWIP RAW API
	CONFIG_LWIP_MAX_RAW_PCBS
	SNTP
	CONFIG_LWIP_SNTP_MAX_SERVERS
	CONFIG_LWIP_DHCP_GET_NTP_SRV
	CONFIG_LWIP_DHCP_MAX_NTP_SERVERS
	CONFIG_LWIP_SNTP_UPDATE_DELAY
	DNS
	CONFIG_LWIP_DNS_MAX_SERVERS
	CONFIG_LWIP_FALLBACK_DNS_SERVER_SUPPORT
	CONFIG_LWIP_FALLBACK_DNS_SERVER_ADDRESS
	CONFIG_LWIP_BRIDGEIF_MAX_PORTS
	CONFIG_LWIP_ESP_LWIP_ASSERT
	Hooks
	CONFIG_LWIP_HOOK_TCP_ISN
	CONFIG_LWIP_HOOK_IP6_ROUTE
	CONFIG_LWIP_HOOK_ND6_GET_GW
	CONFIG_LWIP_HOOK_IP6_SELECT_SRC_ADDR
	CONFIG_LWIP_HOOK_NETCONN_EXTERNAL_RESOLVE
	CONFIG_LWIP_HOOK_DNS_EXTERNAL_RESOLVE
	CONFIG_LWIP_HOOK_IP6_INPUT
	CONFIG_LWIP_DEBUG
	CONFIG_LWIP_DEBUG_ESP_LOG
	CONFIG_LWIP_NETIF_DEBUG
	CONFIG_LWIP_PBUF_DEBUG
	CONFIG_LWIP_ETHARP_DEBUG
	CONFIG_LWIP_API_LIB_DEBUG
	CONFIG_LWIP_SOCKETS_DEBUG
	CONFIG_LWIP_IP_DEBUG
	CONFIG_LWIP_ICMP_DEBUG
	CONFIG_LWIP_DHCP_STATE_DEBUG
	CONFIG_LWIP_DHCP_DEBUG
	CONFIG_LWIP_IP6_DEBUG
	CONFIG_LWIP_ICMP6_DEBUG
	CONFIG_LWIP_TCP_DEBUG
	CONFIG_LWIP_UDP_DEBUG
	CONFIG_LWIP_SNTP_DEBUG
	CONFIG_LWIP_DNS_DEBUG
	CONFIG_LWIP_NAPT_DEBUG
	CONFIG_LWIP_BRIDGEIF_DEBUG
	CONFIG_LWIP_BRIDGEIF_FDB_DEBUG
	CONFIG_LWIP_BRIDGEIF_FW_DEBUG

	mbedTLS
	CONFIG_MBEDTLS_MEM_ALLOC_MODE
	CONFIG_MBEDTLS_SSL_MAX_CONTENT_LEN
	CONFIG_MBEDTLS_ASYMMETRIC_CONTENT_LEN
	CONFIG_MBEDTLS_SSL_IN_CONTENT_LEN
	CONFIG_MBEDTLS_SSL_OUT_CONTENT_LEN
	CONFIG_MBEDTLS_DYNAMIC_BUFFER
	CONFIG_MBEDTLS_DYNAMIC_FREE_CONFIG_DATA
	CONFIG_MBEDTLS_DYNAMIC_FREE_CA_CERT
	CONFIG_MBEDTLS_DEBUG
	CONFIG_MBEDTLS_DEBUG_LEVEL
	mbedTLS v3.x related
	CONFIG_MBEDTLS_SSL_PROTO_TLS1_3
	TLS 1.3 related configurations
	CONFIG_MBEDTLS_SSL_TLS1_3_COMPATIBILITY_MODE
	CONFIG_MBEDTLS_SSL_TLS1_3_KEXM_PSK
	CONFIG_MBEDTLS_SSL_TLS1_3_KEXM_EPHEMERAL
	CONFIG_MBEDTLS_SSL_TLS1_3_KEXM_PSK_EPHEMERAL
	CONFIG_MBEDTLS_SSL_VARIABLE_BUFFER_LENGTH
	CONFIG_MBEDTLS_ECDH_LEGACY_CONTEXT
	CONFIG_MBEDTLS_X509_TRUSTED_CERT_CALLBACK
	CONFIG_MBEDTLS_SSL_CONTEXT_SERIALIZATION
	CONFIG_MBEDTLS_SSL_KEEP_PEER_CERTIFICATE
	CONFIG_MBEDTLS_SSL_KEYING_MATERIAL_EXPORT
	CONFIG_MBEDTLS_PKCS7_C
	CONFIG_MBEDTLS_SSL_CID_PADDING_GRANULARITY
	DTLS-based configurations
	CONFIG_MBEDTLS_SSL_DTLS_CONNECTION_ID
	CONFIG_MBEDTLS_SSL_CID_IN_LEN_MAX
	CONFIG_MBEDTLS_SSL_CID_OUT_LEN_MAX
	CONFIG_MBEDTLS_SSL_DTLS_SRTP
	Certificate Bundle
	CONFIG_MBEDTLS_CERTIFICATE_BUNDLE
	CONFIG_MBEDTLS_DEFAULT_CERTIFICATE_BUNDLE
	CONFIG_MBEDTLS_CUSTOM_CERTIFICATE_BUNDLE
	CONFIG_MBEDTLS_CUSTOM_CERTIFICATE_BUNDLE_PATH
	CONFIG_MBEDTLS_CERTIFICATE_BUNDLE_MAX_CERTS
	CONFIG_MBEDTLS_ECP_RESTARTABLE
	CONFIG_MBEDTLS_CMAC_C
	CONFIG_MBEDTLS_HARDWARE_AES
	CONFIG_MBEDTLS_AES_USE_INTERRUPT
	CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
	CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH
	CONFIG_MBEDTLS_HARDWARE_GCM
	CONFIG_MBEDTLS_GCM_SUPPORT_NON_AES_CIPHER
	CONFIG_MBEDTLS_HARDWARE_MPI
	CONFIG_MBEDTLS_LARGE_KEY_SOFTWARE_MPI
	CONFIG_MBEDTLS_MPI_USE_INTERRUPT
	CONFIG_MBEDTLS_HARDWARE_SHA
	CONFIG_MBEDTLS_HARDWARE_ECC
	CONFIG_MBEDTLS_ECC_OTHER_CURVES_SOFT_FALLBACK
	CONFIG_MBEDTLS_ROM_MD5
	CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN
	Enable Software Countermeasure for ECDSA signing using on-chip ECDSA peripheral
	CONFIG_MBEDTLS_HARDWARE_ECDSA_VERIFY
	CONFIG_MBEDTLS_ATCA_HW_ECDSA_SIGN
	CONFIG_MBEDTLS_ATCA_HW_ECDSA_VERIFY
	CONFIG_MBEDTLS_HAVE_TIME
	CONFIG_MBEDTLS_PLATFORM_TIME_ALT
	CONFIG_MBEDTLS_HAVE_TIME_DATE
	CONFIG_MBEDTLS_ECDSA_DETERMINISTIC
	CONFIG_MBEDTLS_SHA512_C
	CONFIG_MBEDTLS_SHA3_C
	CONFIG_MBEDTLS_TLS_MODE
	TLS Key Exchange Methods
	CONFIG_MBEDTLS_PSK_MODES
	CONFIG_MBEDTLS_KEY_EXCHANGE_PSK
	CONFIG_MBEDTLS_KEY_EXCHANGE_DHE_PSK
	CONFIG_MBEDTLS_KEY_EXCHANGE_ECDHE_PSK
	CONFIG_MBEDTLS_KEY_EXCHANGE_RSA_PSK
	CONFIG_MBEDTLS_KEY_EXCHANGE_RSA
	CONFIG_MBEDTLS_KEY_EXCHANGE_DHE_RSA
	CONFIG_MBEDTLS_KEY_EXCHANGE_ELLIPTIC_CURVE
	CONFIG_MBEDTLS_KEY_EXCHANGE_ECDHE_RSA
	CONFIG_MBEDTLS_KEY_EXCHANGE_ECDHE_ECDSA
	CONFIG_MBEDTLS_KEY_EXCHANGE_ECDH_ECDSA
	CONFIG_MBEDTLS_KEY_EXCHANGE_ECDH_RSA
	CONFIG_MBEDTLS_KEY_EXCHANGE_ECJPAKE
	CONFIG_MBEDTLS_SSL_RENEGOTIATION
	CONFIG_MBEDTLS_SSL_PROTO_TLS1_2
	CONFIG_MBEDTLS_SSL_PROTO_GMTSSL1_1
	CONFIG_MBEDTLS_SSL_PROTO_DTLS
	CONFIG_MBEDTLS_SSL_ALPN
	CONFIG_MBEDTLS_CLIENT_SSL_SESSION_TICKETS
	CONFIG_MBEDTLS_SERVER_SSL_SESSION_TICKETS
	Symmetric Ciphers
	CONFIG_MBEDTLS_AES_C
	CONFIG_MBEDTLS_CAMELLIA_C
	CONFIG_MBEDTLS_DES_C
	CONFIG_MBEDTLS_BLOWFISH_C
	CONFIG_MBEDTLS_XTEA_C
	CONFIG_MBEDTLS_CCM_C
	CONFIG_MBEDTLS_GCM_C
	CONFIG_MBEDTLS_NIST_KW_C
	CONFIG_MBEDTLS_RIPEMD160_C
	Certificates
	CONFIG_MBEDTLS_PEM_PARSE_C
	CONFIG_MBEDTLS_PEM_WRITE_C
	CONFIG_MBEDTLS_X509_CRL_PARSE_C
	CONFIG_MBEDTLS_X509_CSR_PARSE_C
	CONFIG_MBEDTLS_ECP_C
	CONFIG_MBEDTLS_DHM_C
	CONFIG_MBEDTLS_ECDH_C
	CONFIG_MBEDTLS_ECDSA_C
	CONFIG_MBEDTLS_ECJPAKE_C
	CONFIG_MBEDTLS_ECP_DP_SECP192R1_ENABLED
	CONFIG_MBEDTLS_ECP_DP_SECP224R1_ENABLED
	CONFIG_MBEDTLS_ECP_DP_SECP256R1_ENABLED
	CONFIG_MBEDTLS_ECP_DP_SECP384R1_ENABLED
	CONFIG_MBEDTLS_ECP_DP_SECP521R1_ENABLED
	CONFIG_MBEDTLS_ECP_DP_SECP192K1_ENABLED
	CONFIG_MBEDTLS_ECP_DP_SECP224K1_ENABLED
	CONFIG_MBEDTLS_ECP_DP_SECP256K1_ENABLED
	CONFIG_MBEDTLS_ECP_DP_BP256R1_ENABLED
	CONFIG_MBEDTLS_ECP_DP_BP384R1_ENABLED
	CONFIG_MBEDTLS_ECP_DP_BP512R1_ENABLED
	CONFIG_MBEDTLS_ECP_DP_CURVE25519_ENABLED
	CONFIG_MBEDTLS_ECP_NIST_OPTIM
	CONFIG_MBEDTLS_ECP_FIXED_POINT_OPTIM
	CONFIG_MBEDTLS_POLY1305_C
	CONFIG_MBEDTLS_CHACHA20_C
	CONFIG_MBEDTLS_CHACHAPOLY_C
	CONFIG_MBEDTLS_HKDF_C
	CONFIG_MBEDTLS_THREADING_C
	CONFIG_MBEDTLS_THREADING_ALT
	CONFIG_MBEDTLS_THREADING_PTHREAD
	CONFIG_MBEDTLS_ERROR_STRINGS
	CONFIG_MBEDTLS_USE_CRYPTO_ROM_IMPL
	CONFIG_MBEDTLS_ALLOW_WEAK_CERTIFICATE_VERIFICATION

	ESP-MQTT Configurations
	CONFIG_MQTT_PROTOCOL_311
	CONFIG_MQTT_PROTOCOL_5
	CONFIG_MQTT_TRANSPORT_SSL
	CONFIG_MQTT_TRANSPORT_WEBSOCKET
	CONFIG_MQTT_TRANSPORT_WEBSOCKET_SECURE
	CONFIG_MQTT_MSG_ID_INCREMENTAL
	CONFIG_MQTT_SKIP_PUBLISH_IF_DISCONNECTED
	CONFIG_MQTT_REPORT_DELETED_MESSAGES
	CONFIG_MQTT_USE_CUSTOM_CONFIG
	CONFIG_MQTT_TCP_DEFAULT_PORT
	CONFIG_MQTT_SSL_DEFAULT_PORT
	CONFIG_MQTT_WS_DEFAULT_PORT
	CONFIG_MQTT_WSS_DEFAULT_PORT
	CONFIG_MQTT_BUFFER_SIZE
	CONFIG_MQTT_TASK_STACK_SIZE
	CONFIG_MQTT_DISABLE_API_LOCKS
	CONFIG_MQTT_TASK_PRIORITY
	CONFIG_MQTT_POLL_READ_TIMEOUT_MS
	CONFIG_MQTT_EVENT_QUEUE_SIZE
	CONFIG_MQTT_TASK_CORE_SELECTION_ENABLED
	CONFIG_MQTT_TASK_CORE_SELECTION
	CONFIG_MQTT_OUTBOX_DATA_ON_EXTERNAL_MEMORY
	CONFIG_MQTT_CUSTOM_OUTBOX
	CONFIG_MQTT_OUTBOX_EXPIRED_TIMEOUT_MS

	Newlib
	CONFIG_NEWLIB_STDOUT_LINE_ENDING
	CONFIG_NEWLIB_STDIN_LINE_ENDING
	CONFIG_NEWLIB_NANO_FORMAT
	CONFIG_NEWLIB_TIME_SYSCALL

	NVS
	CONFIG_NVS_ENCRYPTION
	CONFIG_NVS_COMPATIBLE_PRE_V4_3_ENCRYPTION_FLAG
	CONFIG_NVS_ASSERT_ERROR_CHECK
	CONFIG_NVS_LEGACY_DUP_KEYS_COMPATIBILITY

	OpenThread
	CONFIG_OPENTHREAD_ENABLED
	Thread Task Parameters
	CONFIG_OPENTHREAD_TASK_NAME
	CONFIG_OPENTHREAD_TASK_SIZE
	CONFIG_OPENTHREAD_TASK_PRIORITY
	Thread Version Message
	CONFIG_OPENTHREAD_PACKAGE_NAME
	CONFIG_OPENTHREAD_PLATFORM_INFO
	Thread Console
	CONFIG_OPENTHREAD_CONSOLE_ENABLE
	CONFIG_OPENTHREAD_CONSOLE_TYPE
	CONFIG_OPENTHREAD_CLI
	CONFIG_OPENTHREAD_CONSOLE_COMMAND_PREFIX
	Thread Core Features
	Thread Operational Dataset
	CONFIG_OPENTHREAD_NETWORK_NAME
	CONFIG_OPENTHREAD_MESH_LOCAL_PREFIX
	CONFIG_OPENTHREAD_NETWORK_CHANNEL
	CONFIG_OPENTHREAD_NETWORK_PANID
	CONFIG_OPENTHREAD_NETWORK_EXTPANID
	CONFIG_OPENTHREAD_NETWORK_MASTERKEY
	CONFIG_OPENTHREAD_NETWORK_PSKC
	CONFIG_OPENTHREAD_DEVICE_TYPE
	Thread Trel Radio Link
	CONFIG_OPENTHREAD_RADIO_TREL
	CONFIG_OPENTHREAD_TREL_PORT
	CONFIG_OPENTHREAD_TREL_BUFFER_SIZE
	Thread 15.4 Radio Link
	CONFIG_OPENTHREAD_RADIO_TYPE
	Thread Radio Co-Processor Feature
	CONFIG_OPENTHREAD_RCP_TRANSPORT
	CONFIG_OPENTHREAD_NCP_VENDOR_HOOK
	CONFIG_OPENTHREAD_BORDER_ROUTER
	CONFIG_OPENTHREAD_COMMISSIONER
	Commissioner Configurations
	CONFIG_OPENTHREAD_COMM_MAX_JOINER_ENTRIES
	CONFIG_OPENTHREAD_JOINER
	CONFIG_OPENTHREAD_SRP_CLIENT
	SRP Client Configurations
	CONFIG_OPENTHREAD_SRP_CLIENT_MAX_SERVICES
	CONFIG_OPENTHREAD_DNS_CLIENT
	CONFIG_OPENTHREAD_DNS64_CLIENT
	DNS64 Client Configurations
	CONFIG_OPENTHREAD_DNS_SERVER_ADDR
	CONFIG_OPENTHREAD_TIMING_OPTIMIZATION
	CONFIG_OPENTHREAD_LINK_METRICS
	CONFIG_OPENTHREAD_BORDER_AGENT_ENABLE
	CONFIG_OPENTHREAD_MACFILTER_ENABLE
	CONFIG_OPENTHREAD_CSL_ENABLE
	CSL Configurations
	CONFIG_OPENTHREAD_CSL_ACCURACY
	CONFIG_OPENTHREAD_CSL_UNCERTAIN
	CONFIG_OPENTHREAD_CSL_DEBUG_ENABLE
	CONFIG_OPENTHREAD_TIME_SYNC
	CONFIG_OPENTHREAD_RADIO_STATS_ENABLE
	CONFIG_OPENTHREAD_RX_ON_WHEN_IDLE
	CONFIG_OPENTHREAD_DIAG
	CONFIG_OPENTHREAD_PARENT_SEARCH_MTD
	Parent Search Configurations
	CONFIG_OPENTHREAD_PARENT_SEARCH_CHECK_INTERVAL_MINS
	CONFIG_OPENTHREAD_PARENT_SEARCH_BACKOFF_INTERVAL_MINS
	CONFIG_OPENTHREAD_PARENT_SEARCH_RSS_THRESHOLD
	CONFIG_OPENTHREAD_PARENT_SEARCH_RESELECT_TIMEOUT_MINS
	CONFIG_OPENTHREAD_PARENT_SEARCH_RSS_MARGIN
	Thread Memory Allocation
	CONFIG_OPENTHREAD_PLATFORM_MALLOC_CAP_SPIRAM
	CONFIG_OPENTHREAD_PLATFORM_MSGPOOL_MANAGEMENT
	OpenThread Stack Parameters
	Thread Address Query Config
	CONFIG_OPENTHREAD_ADDRESS_QUERY_TIMEOUT
	CONFIG_OPENTHREAD_ADDRESS_QUERY_RETRY_DELAY
	CONFIG_OPENTHREAD_ADDRESS_QUERY_MAX_RETRY_DELAY
	CONFIG_OPENTHREAD_PREFERRED_CHANNEL_MASK
	CONFIG_OPENTHREAD_SUPPORTED_CHANNEL_MASK
	CONFIG_OPENTHREAD_NUM_MESSAGE_BUFFERS
	CONFIG_OPENTHREAD_XTAL_ACCURACY
	CONFIG_OPENTHREAD_BUS_LATENCY
	CONFIG_OPENTHREAD_MLE_MAX_CHILDREN
	CONFIG_OPENTHREAD_TMF_ADDR_CACHE_ENTRIES
	CONFIG_OPENTHREAD_UART_BUFFER_SIZE
	CONFIG_OPENTHREAD_MAC_MAX_CSMA_BACKOFFS_DIRECT
	Thread Log
	CONFIG_OPENTHREAD_LOG_LEVEL_DYNAMIC
	CONFIG_OPENTHREAD_LOG_LEVEL
	Thread Extensioned Features
	CONFIG_OPENTHREAD_HEADER_CUSTOM
	OpenThread Custom Header Config
	CONFIG_OPENTHREAD_CUSTOM_HEADER_PATH
	CONFIG_OPENTHREAD_CUSTOM_HEADER_FILE_NAME
	OpenThread Spinel
	CONFIG_OPENTHREAD_SPINEL_ONLY
	CONFIG_OPENTHREAD_SPINEL_RX_FRAME_BUFFER_SIZE
	CONFIG_OPENTHREAD_SPINEL_MAC_MAX_CSMA_BACKOFFS_DIRECT
	CONFIG_OPENTHREAD_DEBUG
	CONFIG_OPENTHREAD_DUMP_MAC_ON_ASSERT

	Protocomm
	CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_0
	CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_1
	CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_2

	PThreads
	CONFIG_PTHREAD_TASK_PRIO_DEFAULT
	CONFIG_PTHREAD_TASK_STACK_SIZE_DEFAULT
	CONFIG_PTHREAD_STACK_MIN
	CONFIG_PTHREAD_TASK_CORE_DEFAULT
	CONFIG_PTHREAD_TASK_NAME_DEFAULT

	SoC Settings
	MMU Config

	Main Flash configuration
	SPI Flash behavior when brownout
	CONFIG_SPI_FLASH_BROWNOUT_RESET_XMC
	Optional and Experimental Features (READ DOCS FIRST)
	CONFIG_SPI_FLASH_HPM_DC
	CONFIG_SPI_FLASH_FORCE_ENABLE_XMC_C_SUSPEND

	SPI Flash driver
	CONFIG_SPI_FLASH_VERIFY_WRITE
	CONFIG_SPI_FLASH_LOG_FAILED_WRITE
	CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
	CONFIG_SPI_FLASH_ENABLE_COUNTERS
	CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
	CONFIG_SPI_FLASH_ROM_IMPL
	CONFIG_SPI_FLASH_DANGEROUS_WRITE
	CONFIG_SPI_FLASH_BYPASS_BLOCK_ERASE
	CONFIG_SPI_FLASH_YIELD_DURING_ERASE
	CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS
	CONFIG_SPI_FLASH_ERASE_YIELD_TICKS
	CONFIG_SPI_FLASH_WRITE_CHUNK_SIZE
	CONFIG_SPI_FLASH_SIZE_OVERRIDE
	CONFIG_SPI_FLASH_CHECK_ERASE_TIMEOUT_DISABLED
	CONFIG_SPI_FLASH_OVERRIDE_CHIP_DRIVER_LIST
	Auto-detect flash chips
	CONFIG_SPI_FLASH_SUPPORT_ISSI_CHIP
	CONFIG_SPI_FLASH_SUPPORT_MXIC_CHIP
	CONFIG_SPI_FLASH_SUPPORT_GD_CHIP
	CONFIG_SPI_FLASH_SUPPORT_WINBOND_CHIP
	CONFIG_SPI_FLASH_SUPPORT_BOYA_CHIP
	CONFIG_SPI_FLASH_SUPPORT_TH_CHIP
	CONFIG_SPI_FLASH_ENABLE_ENCRYPTED_READ_WRITE

	SPIFFS Configuration
	CONFIG_SPIFFS_MAX_PARTITIONS
	SPIFFS Cache Configuration
	CONFIG_SPIFFS_CACHE
	CONFIG_SPIFFS_CACHE_WR
	CONFIG_SPIFFS_CACHE_STATS
	CONFIG_SPIFFS_PAGE_CHECK
	CONFIG_SPIFFS_GC_MAX_RUNS
	CONFIG_SPIFFS_GC_STATS
	CONFIG_SPIFFS_PAGE_SIZE
	CONFIG_SPIFFS_OBJ_NAME_LEN
	CONFIG_SPIFFS_FOLLOW_SYMLINKS
	CONFIG_SPIFFS_USE_MAGIC
	CONFIG_SPIFFS_USE_MAGIC_LENGTH
	CONFIG_SPIFFS_META_LENGTH
	CONFIG_SPIFFS_USE_MTIME
	CONFIG_SPIFFS_MTIME_WIDE_64_BITS
	Debug Configuration
	CONFIG_SPIFFS_DBG
	CONFIG_SPIFFS_API_DBG
	CONFIG_SPIFFS_GC_DBG
	CONFIG_SPIFFS_CACHE_DBG
	CONFIG_SPIFFS_CHECK_DBG
	CONFIG_SPIFFS_TEST_VISUALISATION

	TCP Transport
	Websocket
	CONFIG_WS_TRANSPORT
	CONFIG_WS_BUFFER_SIZE
	CONFIG_WS_DYNAMIC_BUFFER

	Ultra Low Power (ULP) Co-processor
	CONFIG_ULP_COPROC_ENABLED
	CONFIG_ULP_COPROC_TYPE
	CONFIG_ULP_COPROC_RESERVE_MEM
	ULP RISC-V Settings
	CONFIG_ULP_RISCV_UART_BAUDRATE
	CONFIG_ULP_RISCV_I2C_RW_TIMEOUT

	Unity unit testing library
	CONFIG_UNITY_ENABLE_FLOAT
	CONFIG_UNITY_ENABLE_DOUBLE
	CONFIG_UNITY_ENABLE_64BIT
	CONFIG_UNITY_ENABLE_COLOR
	CONFIG_UNITY_ENABLE_IDF_TEST_RUNNER
	CONFIG_UNITY_ENABLE_FIXTURE
	CONFIG_UNITY_ENABLE_BACKTRACE_ON_FAIL

	USB-OTG
	CONFIG_USB_HOST_CONTROL_TRANSFER_MAX_SIZE
	CONFIG_USB_HOST_HW_BUFFER_BIAS
	Root Hub configuration
	CONFIG_USB_HOST_DEBOUNCE_DELAY_MS
	CONFIG_USB_HOST_RESET_HOLD_MS
	CONFIG_USB_HOST_RESET_RECOVERY_MS
	CONFIG_USB_HOST_SET_ADDR_RECOVERY_MS
	CONFIG_USB_HOST_ENABLE_ENUM_FILTER_CALLBACK
	CONFIG_USB_HOST_EXT_HUB_SUPPORT

	Virtual file system
	CONFIG_VFS_SUPPORT_IO
	CONFIG_VFS_SUPPORT_DIR
	CONFIG_VFS_SUPPORT_SELECT
	CONFIG_VFS_SUPPRESS_SELECT_DEBUG_OUTPUT
	CONFIG_VFS_SELECT_IN_RAM
	CONFIG_VFS_SUPPORT_TERMIOS
	CONFIG_VFS_MAX_COUNT
	Host File System I/O (Semihosting)
	CONFIG_VFS_SEMIHOSTFS_MAX_MOUNT_POINTS

	Wear Levelling
	CONFIG_WL_SECTOR_SIZE
	CONFIG_WL_SECTOR_MODE

	Wi-Fi Provisioning Manager
	CONFIG_WIFI_PROV_SCAN_MAX_ENTRIES
	CONFIG_WIFI_PROV_AUTOSTOP_TIMEOUT
	CONFIG_WIFI_PROV_BLE_BONDING
	CONFIG_WIFI_PROV_BLE_SEC_CONN
	CONFIG_WIFI_PROV_BLE_FORCE_ENCRYPTION
	CONFIG_WIFI_PROV_KEEP_BLE_ON_AFTER_PROV
	CONFIG_WIFI_PROV_DISCONNECT_AFTER_PROV
	CONFIG_WIFI_PROV_STA_SCAN_METHOD

	CONFIG_IDF_EXPERIMENTAL_FEATURES
	Deprecated options and their replacements

	Provisioning API
	Protocol Communication
	Overview
	Enabling Protocomm Security Version
	SoftAP + HTTP Transport Example with Security 2
	SoftAP + HTTP Transport Example with Security 1
	Bluetooth LE Transport Example with Security 0
	API Reference
	Header File
	Functions
	Type Definitions
	Header File
	Structures
	Type Definitions
	Enumerations
	Header File
	Header File
	Header File
	Header File
	Functions
	Type Definitions
	Enumerations
	Header File
	Functions
	Unions
	Structures
	Macros
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	Unified Provisioning
	Overview
	Typical Provisioning Process
	Deciding on Transport
	Deciding on Security
	Device Discovery
	Architecture
	Security Schemes
	Security 1 Scheme
	Security 2 Scheme
	Security 2 AES-GCM IV Handling

	Sample Code
	Provisioning Tools

	Wi-Fi Provisioning
	Overview
	Initialization
	Check the Provisioning State
	Start the Provisioning Service
	Waiting for Completion
	User Side Implementation
	Additional Endpoints
	When/How to Stop the Provisioning Service?

	Application Examples
	Provisioning Tools
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Functions
	Macros
	Header File
	Functions
	Header File
	Header File
	Functions
	Structures
	Type Definitions
	Enumerations

	Storage API
	FAT Filesystem Support
	Using FatFs with VFS
	Using FatFs with VFS and SD Cards
	Using FatFs with VFS in Read-Only Mode
	FatFS Disk IO Layer
	FatFs Partition Generator
	Build System Integration with FatFs Partition Generator

	FatFs Partition Analyzer
	High-level API Reference
	Header File
	Functions
	Structures
	Type Definitions

	Manufacturing Utility
	Introduction
	Prerequisites
	Workflow
	CSV Configuration File
	Master Value CSV File
	Running the utility

	Non-volatile Storage Library
	Introduction
	Underlying Storage
	Keys and Values
	Namespaces
	NVS Iterators
	Security, Tampering, and Robustness

	NVS Encryption
	NVS Key Partition
	Encrypted Read/Write

	NVS Partition Generator Utility
	Application Example
	Internals
	Log of Key-Value Pairs
	Pages and Entries
	Structure of a Page
	Entry and Entry State Bitmap
	Structure of Entry
	Namespaces
	Item Hash List

	API Reference
	Header File
	Functions
	Structures
	Macros
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	NVS Partition Generator Utility
	Introduction
	Prerequisites
	CSV File Format
	NVS Entry and Namespace Association
	Multipage Blob Support
	Encryption Support
	Decryption Support
	Running the Utility
	To Generate NVS Partition (Default):
	To Generate Only Encryption Key Partition:
	To Generate Encrypted NVS Partition:
	To Decrypt Encrypted NVS Partition:
	Multipage Blob Support Disabled (Version 1):
	Multipage Blob Support Enabled (Version 2):

	Caveats

	NVS Partition Parser Utility
	Introduction
	Encrypted Partitions
	Usage

	SD/SDIO/MMC Driver
	Overview
	Application Example
	Combo (memory + IO) cards
	Thread safety

	API Reference
	Header File
	Functions
	Header File
	Structures
	Macros
	Type Definitions
	Enumerations

	Partitions API
	Overview
	Partition Table API
	See Also
	API Reference - Partition Table
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	SPIFFS Filesystem
	Overview
	Notes
	Tools
	spiffsgen.py
	mkspiffs
	Notes on which SPIFFS tool to use

	See also
	Application Example
	High-level API Reference
	Header File
	Functions
	Structures

	Virtual filesystem component
	Overview
	FS registration
	Synchronous input/output multiplexing
	Non-socket VFS drivers
	Socket VFS drivers

	Paths
	File descriptors
	Standard IO streams (stdin, stdout, stderr)
	Standard streams and FreeRTOS tasks

	Event fds
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Header File
	Functions
	Header File
	Functions
	Structures
	Macros

	Wear Levelling API
	Overview
	Wear Levelling access API functions
	Memory Size
	See also
	Application Example
	High-level API Reference
	Header Files

	Mid-level API Reference
	Header File
	Functions
	Macros
	Type Definitions

	System API
	App Image Format
	Application Description
	Adding a Custom Structure to an Application
	API Reference
	Header File
	Structures
	Macros
	Enumerations

	Application Level Tracing
	Overview
	API Reference
	Header File
	Functions
	Enumerations
	Header File
	Functions

	Call function with external stack
	Overview
	Usage
	API Reference
	Header File
	Functions
	Macros
	Type Definitions

	Chip Revision
	Overview
	Revisions
	Representing Revision Requirement Of A Binary Image
	Chip Revision APIs
	EFuse Block Revision APIs
	Maximal And Minimal Revision Restrictions
	Compatibility Checks of ESP-IDF
	Backward Compatible With Bootloaders Built By Older ESP-IDF Versions
	API Reference
	Header File
	Functions

	Console
	Line editing
	Configuration
	Main loop
	Hints and completions
	History

	Splitting of command line into arguments
	Argument parsing
	Command registration and dispatching
	Initialize console REPL environment
	Application Example
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions

	eFuse Manager
	Introduction
	Hardware description
	eFuse Manager component
	Description CSV file
	Structured efuse fields
	efuse_table_gen.py tool
	Supported coding scheme
	eFuse API
	eFuse API for keys
	How to add a new field
	Bit Order
	Get eFuses During Build
	Debug eFuse & Unit tests
	Virtual eFuses
	Flash Encryption Testing

	espefuse.py
	Header File
	Enumerations
	Header File
	Functions
	Structures
	Macros
	Enumerations

	Error Codes and Helper Functions
	API Reference
	Header File
	Macros
	Header File
	Functions
	Macros
	Type Definitions

	ESP HTTPS OTA
	Overview
	Application Example
	Server Verification
	Partial Image Download over HTTPS
	Signature Verification
	Advanced APIs
	OTA Upgrades with Pre-Encrypted Firmware
	OTA System Events
	Event Handler Example

	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	Event Loop Library
	Overview
	Using esp_event APIs
	Declaring and defining events
	Default Event Loop
	Notes on Handler Registration
	Handler Un-registering Itself
	Handler Registration and Handler Dispatch Order

	Event loop profiling
	Application Example
	API Reference
	Header File
	Functions
	Structures
	Header File
	Macros
	Type Definitions

	Related Documents

	FreeRTOS (Overview)
	Overview
	Implementations
	ESP-IDF FreeRTOS
	Amazon SMP FreeRTOS

	Configuration
	Kernel Configuration
	Port Configuration

	Using FreeRTOS
	Application Entry Point
	Background Tasks

	FreeRTOS Additions
	FreeRTOS Heap

	FreeRTOS (ESP-IDF)
	Overview
	Symmetric Multiprocessing
	Basic Concepts
	SMP on an ESP Target

	Tasks
	Creation
	Execution
	Deletion

	SMP Scheduler
	Fixed Priority
	Preemption
	Time Slicing
	Tick Interrupts
	Idle Tasks
	Scheduler Suspension
	Disabling Interrupts

	Critical Sections
	API Changes
	Implementation
	Restrictions and Considerations

	Misc
	Floating Point Usage
	ESP-IDF FreeRTOS Single Core

	API Reference
	Task API
	Header File
	Functions
	Macros
	Type Definitions
	Enumerations
	Queue API
	Header File
	Functions
	Macros
	Type Definitions
	Semaphore API
	Header File
	Macros
	Type Definitions
	Timer API
	Header File
	Functions
	Macros
	Type Definitions
	Event Group API
	Header File
	Functions
	Macros
	Type Definitions
	Stream Buffer API
	Header File
	Functions
	Macros
	Type Definitions
	Message Buffer API
	Header File
	Macros
	Type Definitions

	FreeRTOS (Supplemental Features)
	Overview
	Ring Buffers
	Usage
	Sending to Ring Buffer
	Using SendAcquire and SendComplete
	Wrap around
	Retrieving/Returning
	Ring Buffers with Queue Sets
	Ring Buffers with Static Allocation

	ESP-IDF Tick and Idle Hooks
	TLSP Deletion Callbacks
	IDF Additional API
	Component Specific Properties
	API Reference
	Ring Buffer API
	Header File
	Functions
	Structures
	Type Definitions
	Enumerations
	Hooks API
	Header File
	Functions
	Type Definitions
	Additional API
	Header File
	Functions

	Heap Memory Allocation
	Stack and Heap
	Memory Capabilities
	Available Heap
	DRAM
	IRAM
	D/IRAM
	Heap Sizes
	Finding available heap

	Special Capabilities
	DMA-Capable Memory
	32-Bit Accessible Memory

	Thread Safety
	Calling heap related functions from ISR
	Heap Tracing & Debugging
	Implementation Notes
	API Reference - Heap Allocation
	Header File
	Functions
	Macros
	Type Definitions

	API Reference - Initialisation
	Header File
	Functions

	API Reference - Multi Heap API
	Header File
	Functions
	Structures
	Type Definitions

	Memory Management for MMU Supported Memory
	Introduction
	Physical Memory Types
	Virtual Memory Capabilities
	Memory Management Drivers
	Driver Concept
	Terminology
	Relation between Memory Blocks

	Driver Behaviour
	Memory Map
	Memory Unmap
	Memory Address Conversion
	Memory Synchronisation

	Thread Safety
	API Reference
	API Reference - ESP MMAP Driver
	Header File
	Functions
	Macros
	Type Definitions

	API Reference - ESP MSYNC Driver
	Header File
	Functions
	Macros

	Heap Memory Debugging
	Overview
	Heap Information
	Heap allocation and free function hooks
	Heap Corruption Detection
	Assertions
	Memory Allocation Failed Hook
	Finding Heap Corruption
	Configuration
	Basic (no poisoning)
	Light Impact
	Comprehensive
	Crashes in Comprehensive Mode
	Manual Heap Checks in Comprehensive Mode

	Heap Task Tracking
	Heap Tracing
	How To Diagnose Memory Leaks
	Standalone Mode
	Host-Based Mode

	Heap Tracing To Find Heap Corruption
	Performance Impact
	False-Positive Memory Leaks

	API Reference - Heap Tracing
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	High Resolution Timer (ESP Timer)
	Overview
	Using esp_timer APIs
	Callback Functions
	ETM Event
	esp_timer During Light-sleep
	Handling Callbacks
	Obtaining Current Time
	Application Example
	API Reference
	Header File
	Functions
	Structures
	Type Definitions
	Enumerations

	Internal and Unstable APIs
	API Reference
	Header File
	Functions

	Interrupt allocation
	Overview
	IRAM-Safe Interrupt Handlers
	Multiple Handlers Sharing A Source
	API Reference
	Header File
	Functions
	Macros
	Type Definitions

	Logging library
	Overview
	How to use this library
	Logging to Host via JTAG

	Application Example
	API Reference
	Header File
	Functions
	Macros
	Type Definitions
	Enumerations

	Miscellaneous System APIs
	Software Reset
	Reset Reason
	Heap Memory
	MAC Address
	Custom Interface MAC
	Custom Base MAC
	Custom MAC Address in eFuse

	Local Versus Universal MAC Addresses

	Chip Version
	SDK Version
	App Version
	API Reference
	Header File
	Functions
	Type Definitions
	Enumerations
	Header File
	Functions
	Macros
	Header File
	Functions
	Macros
	Enumerations
	Header File
	Functions
	Structures
	Macros
	Enumerations
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations
	Header File
	Functions
	Structures
	Macros

	Over The Air Updates (OTA)
	OTA Process Overview
	OTA Data Partition
	App rollback
	App OTA State
	Rollback Process
	Unexpected Reset
	Booting invalid/aborted apps
	Where the states are set

	Anti-rollback
	A typical anti-rollback scheme is

	Secure OTA Updates Without Secure boot
	OTA Tool (otatool.py)
	Python API
	Command-line Interface

	See also
	Application Example
	API Reference
	Header File
	Functions
	Macros
	Type Definitions
	Enumerations

	Debugging OTA Failure

	Power Management
	Overview
	Configuration
	Power Management Locks
	ESP32-C6 Power Management Algorithm
	Dynamic Frequency Scaling and Peripheral Drivers
	Light-sleep Peripheral Power Down
	API Reference
	Header File
	Functions
	Structures
	Type Definitions
	Enumerations

	POSIX Threads Support
	Overview
	RTOS Integration
	Standard features
	Thread APIs
	Thread Attributes
	Once
	Mutexes
	Condition Variables
	Semaphores
	Read/Write Locks
	Thread-Specific Data

	Not Implemented
	ESP-IDF Extensions
	Examples
	API Reference
	Header File
	Functions
	Structures
	Macros

	Random Number Generation
	Startup
	Secondary Entropy
	API Reference
	Header File
	Functions
	Header File
	Functions

	getrandom

	Sleep Modes
	Overview
	Wi-Fi/Bluetooth and Sleep Modes
	Wakeup Sources
	Timer
	External Wakeup (ext1)
	ULP Coprocessor Wakeup
	GPIO Wakeup (Light-sleep Only)
	UART Wakeup (Light-sleep Only)

	Power-down of RTC Peripherals and Memories
	Power-down of Flash
	Entering Light-sleep
	Entering Deep-sleep
	Configuring IOs
	UART Output Handling
	Checking Sleep Wakeup Cause
	Disable Sleep Wakeup Source
	Application Example
	API Reference
	Header File
	Functions
	Macros
	Type Definitions
	Enumerations

	SoC Capabilities
	API Reference
	Header File
	Macros

	System Time
	Overview
	RTC Timer Clock Sources
	Get Current Time
	SNTP Time Synchronization
	Timezones
	Year 2036 and 2038 Overflow Issues
	SNTP/NTP 2036 Overflow
	Unix Time 2038 Overflow

	API Reference
	Header File
	Functions
	Macros
	Type Definitions
	Enumerations

	The Async memcpy API
	Overview
	Configure and Install driver
	Send memory copy request
	Uninstall driver (optional)
	ETM Event
	API Reference
	Header File
	Functions
	Structures
	Macros
	Type Definitions
	Enumerations

	Watchdogs
	Overview
	Interrupt Watchdog Timer (IWDT)
	Configuration
	Tuning

	Task Watchdog Timer (TWDT)
	Usage
	Configuration

	JTAG & Watchdogs
	API Reference
	Task Watchdog
	Header File
	Functions
	Structures
	Type Definitions

	Hardware Reference
	API Guides
	Application Level Tracing library
	Overview
	Modes of Operation
	Configuration Options and Dependencies
	How to Use This Library
	Application Specific Tracing
	OpenOCD Application Level Tracing Commands

	Logging to Host
	Limitations
	How To Use It
	Log Trace Processor Command Options

	System Behavior Analysis with SEGGER SystemView
	How To Use It
	OpenOCD SystemView Tracing Command Options
	Data Visualization

	Gcov (Source Code Coverage)
	Basics of Gcov and Gcovr
	Gcov and Gcovr in ESP-IDF
	Setting Up a Project for Gcov
	Compiler Option
	Project Configuration

	Dumping Code Coverage Data
	Instant Run-Time Dump
	Hard-coded Dump

	Generating Coverage Report
	Adding Gcovr Build Target to Project

	Application Startup Flow
	First stage bootloader
	Second stage bootloader
	Application startup
	Port Initialization
	System Initialization
	Running the main task

	Bluetooth® Low Energy
	Overview
	Introduction
	ESP Bluetooth Controller
	Hosts
	ESP-Bluedroid
	ESP-NimBLE

	Profiles
	ESP-BLE-MESH
	BluFi

	Applications

	Major Feature Support Status
	Bluetooth® SIG Qualification
	Controller
	Host

	Introduction to Low Power Mode in Bluetooth® Low Energy Scenarios
	Clock Source Selection in Low Power Mode
	Selecting Main XTAL
	Selecting 32 kHz External Crystal
	Selecting 136 kHz RC Oscillator
	How to Check the Current Clock Source Used by Bluetooth LE

	FAQ
	1. Bluetooth LE ACL Connection Fails or Disconnects in Low Power Mode
	2. Measured light-sleep Current Higher Than Expected
	3. Unable to Enter light-sleep Mode

	Multi-Connection Guide
	Introduction
	Host SDKconfig
	Controller SDKconfig

	Note

	Get Started
	Introduction
	Learning Objectives
	Preface
	Layered Architecture of Bluetooth LE
	GAP Layer - Defining Device Connections
	GAP States and Roles
	Bluetooth LE Network Topology
	Learn More
	GATT/ATT Layer - Data Representation and Exchange
	ATT Layer
	GATT Layer
	Learn More

	Hands-On Practice
	Prerequisites
	Try It Out
	Building and Flashing
	Connecting to the Development Board
	Let’s Light Up the LED!
	Receiving Heart Rate Data

	Summary

	Device Discovery
	Learning Objectives
	Basic Concepts of Advertising
	Where to Send Advertising Packets?
	Bluetooth Radio Frequency Band
	Bluetooth Channels
	Extended Advertising Features
	How long should the advertising interval be?
	Advertising Interval
	What information is included in the advertising packet?
	Advertising Packet Structure
	PDU
	PDU Header
	PDU Payload
	Basic Concepts of Scanning
	Scan Window and Scan Interval
	Scan Request and Scan Response

	Hands-On Practice
	Prerequisites
	Try It Out
	Building and Flashing
	Viewing Beacon Device Information

	Code Explanation
	Project Structure Overview
	Program Behavior Overview
	Entry Function
	Start Advertising

	Summary

	Connection
	Learning Objectives
	Basic Concepts
	Initiating a Connection
	Connection Interval and Connection Event

	Connection Parameters
	Supervision Timeout
	Peripheral Latency
	Maximum Transmission Unit

	Hands-On Practice
	Prerequisites
	Try It Out
	Building and Flashing
	Connect and Disconnect
	Viewing Log Output

	Code Details
	Project Structure Overview
	Program Behavior Overview
	Entry Function
	Starting Advertising
	GAP Event Handling

	Summary

	Data Exchange
	Learning Objectives
	GATT Data Characteristics and Services
	Attributes
	Characteristic Data
	Relationship between Characteristic Declaration and Characteristic Value
	Characteristic Descriptors
	Services
	Attribute Example

	GATT Data Operations
	Client-initiated Operations
	Server-Initiated Operations

	Hands-On Practice
	Prerequisites
	Try It Out

	Code Explanation
	Project Structure Overview
	Program Behavior Overview
	Entry Function
	GATT Service Initialization
	GATT Service Table
	Characteristic Data Access Management
	LED Access Management
	Heart Rate Measurement Read Access Management
	Heart Rate Measurement Indication

	Summary

	Profile
	ESP-BLE-MESH
	Getting Started
	What You Need
	Installation Step by Step
	Step 1. Check Hardware
	Step 2. Configure Software
	Step 3. Upload Application to Nodes
	Step 4. Provision Nodes
	4.1 Scanner
	4.2 Identify
	4.3 Provision
	4.4 Configuration
	Step 5. Operate Network

	Examples
	Demo Videos
	FAQ
	Related Documents
	Feature List
	Supported Features
	Mesh Core
	Mesh Models
	Mesh Examples
	Architecture
	1. ESP-BLE-MESH Architecture Overview
	1.1 Mesh Protocol Stack
	1.1.1 Mesh Networking
	1.1.2 Mesh Provisioning
	1.1.3 Mesh Models
	1.2 Mesh Network Management
	1.3 Mesh Features
	1.4 Mesh Bearer Layer
	1.5 Mesh Applications
	2. ESP-BLE-MESH Architecture Implementation
	2.1 Mesh Protocol Stack Implementation
	2.1.1 Mesh Networking Implementation
	2.1.2 Mesh Provisioning Implementation
	2.1.3 Mesh Models Implementation
	2.2 Mesh Bearers Implementation
	2.3 Mesh Applications Implementation
	3. Auxiliary Routine
	3.1 Features
	3.2 Network Management
	3.3 Auxiliary Routine Implementation
	FAQ
	1. Provisioner Development
	1.1 What Is the Flow for an Unprovisioned Device to Join ESP-BLE-MESH Network?
	1.2 If a Provisioner Wants to Change States of a Node, What Requirements Should Be Met for a Provisioner?
	1.3 How Can NetKey and AppKey Be Used?
	1.4 How to Generate a NetKey or AppKey for Provisioner? Can We Use a Fixed NetKey or AppKey?
	1.5 Is the Unicast Address of Provisioner Fixed?
	1.6 Can the Address of Provisioner Serve as Destination Address of the Node-reporting-status Message?
	1.7 Is the Unicast Address of the Node That Is Firstly Provisioned by ProvIsioner to ESP-BLE-MESH Network Fixed?
	1.8 Is the Unicast Address of the Node That Mobile App Firstly Provisioned Fixed?
	1.9 How to Know Which Unprovisioned Device Is the ProvIsioner That Is Provisioning Currently?
	1.10 How Many Ways to Authenticate the Devices During Provisioning? Which Way Was Used in the provided examples ?
	1.11 What Information Can Be Carried by the Advertising Packets of the Unprovisioned Device Before Provisioning into the Network?
	1.12 Can Such Information Be Used for Device Identification?
	1.13 How Is the Unicast Address Assigned When the Node Provisioned by ProvIsioner Contains Multiple Elements?
	1.14 How Can Provisioner Get and Parse the Composition Data of Nodes Through Configuration Client Model?
	1.15 How Can Provisioner Further Configure Nodes Through Obtained Composition Data?
	1.16 Can Nodes Add Corresponding Configurations for Themselves?
	1.17 How Does Provisioner Control Nodes by Grouping?
	1.18 How Does Provisioner Add Nodes to Multiple Subnets?
	1.19 How Does ProvIsioner Know If a Node in the Mesh Network Is Offline?
	1.20 What Operations Should Be Performed When Provisioner Removes Nodes from the Network?
	1.21 In the Key Refresh Procedure, How Does Provisioner Update the Netkey Owned by Nodes?
	1.22 How Does Provisioner Manage Nodes in the Mesh Network?
	1.23 What Does Provisioner Need When Trying to Control the Server Model of Nodes?
	1.24 How Does Provisioner Control the Server Model of Nodes?
	2. Node Development
	2.1 What Kind of Models Are Included by Nodes?
	2.2 Is the Format of Messages Corresponding to Each Model Fixed?
	2.3 Which Functions Can Be Used to Send Messages with the Models of Nodes?
	2.4 How to Achieve the Transmission of Messages Without Packet Loss?
	2.5 How to Send Unacknowledged Messages?
	2.6 How to Add Subscription Address to Models?
	2.7 What Is the Difference Between Messages Sent and Published by Models?
	2.8 How Many Bytes Can Be Carried When Sending Unsegmented Messages?
	2.9 When Should the Relay Feature of Nodes Be Enabled?
	2.10 When Should the Proxy Feature of Node Be Enabled?
	2.11 How to Use the Proxy Filter?
	2.12 When a Message Can Be Relayed by a Relay Node?
	2.13 If a Message Is Segmented into Several Segments, Should the Other Relay Nodes Just Relay When One of These Segments Is Received or Wait Until the Message Is Received Completely?
	2.14 What Is the Principle of Reducing Power Consumption Using Low Power Feature?
	2.15 How to Continue the Communication on the Network After Powering-down and Powering-up Again?
	2.16 How to Send out the Self-test Results of Nodes?
	2.17 How to Transmit Information Between Nodes?
	2.18 Is Gateway a Must for Nodes Communication?
	2.19 When Will the IV Update Procedure Be Performed?
	2.20 How to Perform IV Update Procedure?
	3. ESP-BLE-MESH and Wi-Fi Coexistence
	3.1 Which Modes Does Wi-Fi Support When it Coexists with ESP-BLE-MESH?
	3.2 Why Is the Wi-Fi Throughput So Low When Wi-Fi and ESP-BLE-MESH Coexist?
	4. Fast Provisioning
	4.1 Why Is Fast Provisioning Needed?
	4.2 Why EspBleMesh App Would Wait for a Long Time During Fast Provisioning?
	4.3 Why Is the Number of Node Addresses Displayed in the App Is More than That of Existing Node Addresses?
	4.4 What Is the Usage of the count Value Which Was Input in EspBleMesh App?
	4.5 When will Configuration Client Model of the node running fast_prov_server example start to work?
	4.6 Will the Temporary Provisioner Functionality Be Enabled All the Time?
	5. Log Help
	5.1 What Is the Meaning of Warning ran out of retransmit attempts?
	5.2 What Is the Meaning of Warning Duplicate found in Network Message Cache?
	5.3 What Is the Meaning of Warning Incomplete timer expired?
	5.4 What Is the Meaning of Warning No matching TX context for ack?
	5.5 What Is the Meaning of Warning No free slots for new incoming segmented messages?
	5.6 What Is the Meaning of Error Model not bound to Appkey 0x0000?
	5.7 What Is the Meaning of Error Busy sending message to DST xxxx?
	6. Example Help
	6.1 How Are the ESP-BLE-MESH Callback Functions Classified?
	7. Others
	7.1 How to Print the Message Context?
	7.2 Which API Can Be Used to Restart ESP32-C6?
	7.3 How to Monitor the Remaining Space of the Stack of a Task?
	7.4 How to Change the Level of Log Without Changing the Menuconfig Output Level?
	Terminology
	Bluetooth SIG Documentation

	BluFi
	Overview
	The BluFi Flow
	The Flow Chart of BluFi
	The Frame Formats Defined in BluFi
	The Security Implementation of ESP32-C6
	GATT Related Instructions
	UUID

	Bootloader
	Bootloader Compatibility
	SPI Flash Configuration

	Log Level
	Factory Reset
	Boot from Test Firmware
	Rollback
	Watchdog
	Bootloader Size
	Fast Boot from Deep-Sleep
	Custom Bootloader

	Build System
	Overview
	Concepts

	Using the Build System
	idf.py
	Using CMake Directly
	Flashing with Ninja or Make

	Using CMake in an IDE
	Setting up the Python Interpreter

	Example Project
	Project CMakeLists File
	Minimal Example CMakeLists
	Mandatory Parts
	Optional Project Variables
	Renaming main Component
	Overriding Default Build Specifications

	Component CMakeLists Files
	Searching for Components
	Multiple Components with the Same Name
	Minimal Component CMakeLists
	Preset Component Variables
	Build/Project Variables
	Controlling Component Compilation

	Component Configuration
	Preprocessor Definitions
	Component Requirements
	When Writing a Component
	Example of Component Requirements
	Car Component
	Engine Component
	Spark Plug Component

	Source File Include Directories
	Main Component Requirements
	Common Component Requirements
	Including Components in the Build
	Circular Dependencies
	Advanced Workaround: Undefined Symbols

	Requirements in the Build System Implementation
	Component Dependency Order
	Adding Link-Time Dependencies

	Overriding Parts of the Project
	project_include.cmake
	KConfig.projbuild
	Wrappers to Redefine or Extend Existing Functions

	Configuration-Only Components
	Debugging CMake
	Warning On Undefined Variables

	Example Component CMakeLists
	Adding Conditional Configuration
	Conditions Which Depend on the Target
	Source Code Generation
	Embedding Binary Data
	Code and Data Placements
	Fully Overriding the Component Build Process
	ExternalProject Dependencies and Clean Builds

	Custom Sdkconfig Defaults
	Target-dependent Sdkconfig Defaults

	Flash Arguments
	Building the Bootloader
	Writing Pure CMake Components
	Using Third-Party CMake Projects with Components
	Using ESP-IDF Components from External Libraries

	Using Prebuilt Libraries with Components
	Using ESP-IDF in Custom CMake Projects
	ESP-IDF CMake Build System API
	idf-build-commands
	idf-build-properties
	idf-component-commands
	idf-component-properties

	File Globbing & Incremental Builds
	Build System Metadata
	JSON Configuration Server

	Build System Internals
	Build Scripts
	Build Process
	Initialization
	Enumeration
	Processing
	Finalization

	Migrating from ESP-IDF GNU Make System
	Automatic Conversion Tool
	No Longer Available in CMake
	No Default Values
	No Longer Necessary
	Flashing from Make

	RF Coexistence
	Overview
	Supported Coexistence Scenario for ESP32-C6
	Coexistence Mechanism and Policy
	Coexistence Mechanism
	Coexistence Policy
	Coexistence Period and Time Slice
	Dynamic Priority
	Wi-Fi Connectionless Modules Coexistence

	How to Use the Coexistence Feature
	Coexistence API
	BLE MESH Coexistence Status

	Coexistence API Error Codes
	Setting Coexistence Compile-time Options

	Core Dump
	Overview
	Configurations
	Destination
	Format & Size
	Reserved Stack Size

	Core Dump to Flash
	Core Dump to UART
	Automatic Decoding
	Manual Decoding

	Core Dump Commands
	ROM Functions in Backtraces
	Dumping Variables on Demand
	Supported Notations and RAM Regions
	Example

	Running idf.py coredump-info and idf.py coredump-debug
	Related Documents
	Anatomy of Core Dump Image
	Overview of Implementation

	C++ Support
	esp-idf-cxx Component
	C++ language standard
	Multithreading
	Exception Handling
	C++ Exception Handling and Resource Usage

	Runtime Type Information (RTTI)
	Developing in C++
	Combining C and C++ Code
	Defining app_main in C++
	Designated Initializers
	iostream

	Limitations
	What to Avoid

	Deep Sleep Wake Stubs
	Rules for Wake Stubs
	Implementing A Stub
	Loading Code Into RTC Memory
	Loading Data Into RTC Memory
	CRC Check For Wake Stubs
	Example

	Error Handling
	Overview
	Error codes
	Converting error codes to error messages
	ESP_ERROR_CHECK macro
	ESP_ERROR_CHECK_WITHOUT_ABORT macro
	ESP_RETURN_ON_ERROR macro
	ESP_GOTO_ON_ERROR macro
	ESP_RETURN_ON_FALSE macro
	ESP_GOTO_ON_FALSE macro
	CHECK MACROS Examples
	Error handling patterns
	C++ Exceptions

	ESP-WIFI-MESH
	Overview
	Introduction
	ESP-WIFI-MESH Concepts
	Terminology
	Tree Topology
	Node Types
	Beacon Frames & RSSI Thresholding
	Preferred Parent Node
	Routing Tables

	Building a Network
	General Process
	1. Root Node Selection
	2. Second Layer Formation
	3. Formation of remaining layers
	4. Limiting Tree Depth

	Automatic Root Node Selection
	User Designated Root Node
	Parent Node Selection
	Asynchronous Power-on Reset
	Loop-back Avoidance, Detection, and Handling

	Managing a Network
	Root Node Failure
	Intermediate Parent Node Failure
	Root Node Switching
	Parent Node Switching

	Data Transmission
	ESP-WIFI-MESH Packet
	Group Control & Multicasting
	Broadcasting
	Upstream Flow Control
	Bi-Directional Data Stream

	Channel Switching
	Background
	ESP-WIFI-MESH Network Channel Switching
	Root Node Triggered
	Router Triggered

	Impact of Network Channel Switching
	Channel and Router Switching Configuration

	Performance
	Further Notes

	Fatal Errors
	Overview
	Panic Handler
	Register Dump and Backtrace
	GDB Stub
	RTC Watchdog Timeout
	Guru Meditation Errors
	Illegal instruction
	Instruction address misaligned
	Instruction access fault, Load access fault, Store access fault
	Breakpoint
	Load address misaligned, Store address misaligned
	Interrupt Watchdog Timeout on CPU0/CPU1
	Cache error

	Other Fatal Errors
	Brownout
	Corrupt Heap
	Stack Smashing
	Undefined Behavior Sanitizer (UBSAN) Checks
	Enabling UBSAN
	UBSAN Output

	Flash Encryption
	Introduction
	Encrypted Partitions
	Relevant eFuses
	Flash Encryption Process
	Flash Encryption Configuration
	Development Mode
	Using ESP32-C6 Generated Key
	Using Host Generated Key
	Re-flashing Updated Partitions

	Release Mode
	Best Practices

	Possible Failures
	ESP32-C6 Flash Encryption Status
	Reading and Writing Data in Encrypted Flash
	Scope of Flash Encryption
	Reading from Encrypted Flash
	Writing to Encrypted Flash

	Updating Encrypted Flash
	OTA Updates
	Updating Encrypted Flash via Serial

	Disabling Flash Encryption
	Key Points About Flash Encryption
	Limitations of Flash Encryption
	Flash Encryption and Secure Boot
	Advanced Features
	Encrypted Partition Flag
	Enabling UART Bootloader Encryption/Decryption
	JTAG Debugging
	Manually Encrypting Files

	Technical Details
	Flash Encryption Algorithm

	Hardware Abstraction
	Architecture
	LL (Low Level) Layer
	HAL (Hardware Abstraction Layer)

	JTAG Debugging
	Introduction
	How it Works?
	Selecting JTAG Adapter
	Setup of OpenOCD
	Configuring ESP32-C6 Target
	Configure and connect JTAG interface
	Configure ESP32-C6 built-in JTAG Interface
	Configure Hardware
	Configure USB Drivers

	Configure Other JTAG Interfaces
	Configure eFuses
	Configure Hardware
	Configure Drivers
	Connect

	Run OpenOCD
	Upload application for debugging

	Launching Debugger
	Debugging Examples
	Building OpenOCD from Sources
	Building OpenOCD from Sources for Windows
	Install Dependencies
	Download Sources of OpenOCD
	Downloading libusb
	Build OpenOCD
	Full Listing
	Next Steps

	Building OpenOCD from Sources for Linux
	Download Sources of OpenOCD
	Install Dependencies
	Build OpenOCD
	Next Steps

	Building OpenOCD from Sources for MacOS
	Download Sources of OpenOCD
	Install Dependencies
	Build OpenOCD
	Next Steps

	Tips and Quirks
	Tips and Quirks
	Breakpoints and Watchpoints Available
	What Else Should I Know About Breakpoints?
	Flash Mappings vs SW Flash Breakpoints
	Why Stepping with "next" Does Not Bypass Subroutine Calls?
	Support Options for OpenOCD at Compile Time
	FreeRTOS Support
	Optimize JTAG Speed
	What is the Meaning of Debugger's Startup Commands?
	Configuration of OpenOCD for Specific Target
	Custom Configuration Files
	OpenOCD Configuration Variables

	How Debugger Resets ESP32-C6?
	Can JTAG Pins be Used for Other Purposes?
	JTAG with Flash Encryption or Secure Boot
	Reporting Issues with OpenOCD/GDB

	Related Documents
	Using Debugger
	Eclipse
	Command Line
	idf.py debug targets

	Debugging Examples
	Eclipse
	Examples in this section
	Navigating through the code, call stack and threads
	Setting and clearing breakpoints
	Halting the target manually
	Stepping through the code
	Checking and setting memory
	Watching and setting program variables
	Setting conditional breakpoints

	Command Line
	Examples in this section
	Navigating through the code, call stack and threads
	Setting and clearing breakpoints
	Halting and resuming the application
	Stepping through the code
	Checking and setting memory
	Watching and setting program variables
	Setting conditional breakpoints
	Debugging FreeRTOS Objects
	Obtaining help on commands
	Ending debugger session

	Linker Script Generation
	Overview
	Quick Start
	Creating and Specifying a Linker Fragment File
	Specifying placements
	Placing object files
	Placing symbols
	Placing entire archive
	Configuration-dependent placements

	The 'default' placements

	Linker Script Generation Internals
	Linker Fragment Files
	Grammar
	Types
	On Symbol-Granularity Placements

	Linker Script Template
	Migrate to ESP-IDF v5.0 Linker Script Fragment Files Grammar

	lwIP
	Supported APIs
	Adapted APIs

	BSD Sockets API
	References
	Examples
	Supported functions
	Socket Error Handling
	Socket API Errors
	select() Errors
	Socket Error Reason Code

	Socket Options
	Common options
	IP options
	TCP options
	IPv6 options

	fcntl
	ioctls

	Netconn API
	lwIP FreeRTOS Task
	IPv6 Support
	Stateless Autoconfiguration Process
	DHCPv6
	DNS servers in IPv6 autoconfiguration

	esp-lwip custom modifications
	Additions
	Thread-safe sockets
	On demand timers
	Lwip timers API
	Additional Socket Options
	IP layer features
	Customized lwIP hooks
	Customized lwIP Options From ESP-IDF Build System

	Limitations

	Performance Optimization
	Maximum throughput
	Minimum latency
	Minimum RAM usage
	Peak Buffer Usage

	Memory Types
	DRAM (Data RAM)
	"noinit" DRAM

	IRAM (Instruction RAM)
	When to Place Code in IRAM
	How to Place Code in IRAM

	IROM (code executed from flash)
	DROM (data stored in flash)
	RTC FAST memory
	DMA Capable Requirement
	DMA Buffer in the Stack

	OpenThread
	Modes of the OpenThread stack
	Standalone Node
	Radio Co-Processor (RCP)
	OpenThread Host

	How to Write an OpenThread Application
	Before OpenThread Initialization
	OpenThread Stack Initialization
	OpenThread Network Interface Initialization
	The OpenThread Main Loop
	Calling OpenThread APIs
	Deinitialization

	OpenThread Macro Definitions
	The OpenThread Border Router

	Partition Tables
	Overview
	Built-in Partition Tables
	Creating Custom Tables
	Name Field
	Type Field
	SubType
	Extra Partition SubTypes
	Offset & Size
	Flags

	Generating Binary Partition Table
	Partition Size Checks
	MD5 Checksum

	Flashing the Partition Table
	Partition Tool (parttool.py)
	Python API
	Command-line Interface

	Performance
	How to Optimize Performance
	Guides
	Speed Optimization
	Overview
	Choose What to Optimize
	Measuring Performance
	Basic Performance Measurements
	External Tracing
	Tasks

	Improving Overall Speed
	Reduce Logging Overhead
	Not Recommended

	Targeted Optimizations
	Improving Startup Time
	Task Priorities
	Built-in Task Priorities
	Choosing Task Priorities of the Application

	Improving Interrupt Performance
	Improving Network Speed
	Improving I/O Performance

	Minimizing Binary Size
	Measuring Static Sizes
	Size Summary (idf.py size)
	Component Usage Summary (idf.py size-components)
	Source File Usage Summary (idf.py size-files)
	Comparing Two Binaries
	Showing Size When Linker Fails
	Linker Map File

	Reducing Overall Size
	Targeted Optimizations
	Wi-Fi
	Bluetooth NimBLE
	lwIP IPv6
	lwIP IPv4
	Newlib nano formatting
	mbedTLS features
	VFS
	HAL
	Heap

	Bootloader Size
	IRAM Binary Size

	Minimizing RAM Usage
	Background
	Measuring Static Memory Usage
	Measuring Dynamic Memory Usage
	Reducing Static Memory Usage
	Reducing Stack Sizes
	Internal Task Stack Sizes

	Reducing Heap Usage
	Optimizing IRAM Usage

	Reproducible Builds
	Introduction
	Reasons for non-reproducible builds
	Enabling reproducible builds in ESP-IDF
	How reproducible builds are achieved
	Reproducible builds and debugging
	Factors which still affect reproducible builds

	RF Calibration
	Partial Calibration
	Full Calibration
	No Calibration
	PHY Initialization Data
	API Reference
	Header File
	Functions
	Structures
	Enumerations
	Header File
	Functions
	Structures
	Enumerations

	Security
	Goals
	Platform Security
	Secure Boot
	Secure Boot Best Practices

	Flash Encryption
	Flash Encryption Best Practices

	Device Identity
	Memory Protection
	Protection Against Side-Channel Attacks
	DPA (Differential Power Analysis) Protection

	Debug Interfaces
	JTAG
	UART DL Mode

	Network Security
	Wi-Fi
	TLS (Transport Layer Security)
	ESP-TLS Abstraction
	ESP Certificate Bundle

	Product Security
	Secure Provisioning
	Secure OTA (Over-the-air) Updates
	Anti-Rollback Protection
	Encrypted Firmware Distribution

	Secure Storage
	Secure Device Control

	Security Policy
	Advisories
	Software Updates

	Secure Boot V2
	Background
	Advantages
	Secure Boot V2 Process
	Signature Block Format
	Secure Padding
	Verifying a Signature Block
	Verifying an Image
	Bootloader Size
	eFuse usage
	How To Enable Secure Boot V2
	Restrictions after Secure Boot is enabled
	Burning read-protected keys

	Generating Secure Boot Signing Key
	Remote Signing of Images
	Signing using espsecure.py
	Signing using Pre-calculated Signatures
	Signing using an External Hardware Security Module (HSM)

	Secure Boot Best Practices
	Key Management
	Multiple Keys
	Key Revocation
	Conservative approach:
	Aggressive approach:

	Technical Details
	Manual Commands

	Secure Boot & Flash Encryption
	Signed App Verification Without Hardware Secure Boot
	How To Enable Signed App Verification

	Advanced Features
	JTAG Debugging

	Thread Local Storage
	Overview
	FreeRTOS Native APIs
	Pthread APIs
	C11 Standard

	Tools
	IDF Frontend - idf.py
	Commands
	Start a New Project: create-project
	Create a New Component: create-component
	Select the Target Chip: set-target
	Start the Graphical Configuration Tool: menuconfig
	Build the Project: build
	Remove the Build Output: clean
	Delete the Entire Build Contents: fullclean
	Flash the Project: flash

	Hints on How to Resolve Errors
	Important Notes
	Advanced Commands
	Open the Documentation: docs
	Show Size: size
	Options

	Reconfigure the Project: reconfigure
	Clean the Python Byte Code: python-clean
	Generate a UF2 binary: uf2

	Global Options

	IDF Docker Image
	Tags
	Usage
	Setting up Docker
	Building a project with CMake
	Using the image interactively
	Using remote serial port

	Building custom images

	IDF Windows Installer
	Command-line parameters
	Unattended installation
	Custom Python and custom location of Python wheels

	IDF Component Manager
	Using with a project
	Defining dependencies in the manifest
	Disabling the Component Manager

	IDF Clang Tidy
	Prerequisites
	Extra Commands
	clang-check
	clang-html-report

	Bug Report

	Downloadable Tools
	Tools metadata file
	Tools installation directory
	GitHub Assets Mirror
	idf_tools.py script
	Install scripts
	Export scripts
	Other installation methods
	Custom installation
	Uninstall ESP-IDF
	List of IDF Tools
	xtensa-esp-elf-gdb
	riscv32-esp-elf-gdb
	xtensa-esp32-elf
	xtensa-esp32s2-elf
	xtensa-esp32s3-elf
	esp-clang
	riscv32-esp-elf
	esp32ulp-elf
	cmake
	openocd-esp32
	ninja
	idf-exe
	ccache
	dfu-util
	esp-rom-elfs
	qemu-xtensa
	qemu-riscv32

	Unit Testing in ESP32-C6
	Normal Test Cases
	Multi-device Test Cases
	Multi-stage Test Cases
	Tests For Different Targets
	Building Unit Test App
	Running Unit Tests
	Timing Code with Cache Compensated Timer
	Mocks
	Requirements
	Mock a Component
	Adjustments in Unit Test

	Running Applications on Host
	Introduction
	CMock-Based Approach
	POSIX/Linux Simulator Approach

	Requirements
	Build and Run
	Component Linux/Mock Support Overview

	USB Serial/JTAG Controller Console
	Hardware Requirements
	Software Configuration
	Uploading the Application
	Limitations

	Wi-Fi Driver
	ESP32-C6 Wi-Fi Feature List
	How To Write a Wi-Fi Application
	Preparation
	Setting Wi-Fi Compile-time Options
	Init Wi-Fi
	Start/Connect Wi-Fi
	Event-Handling
	Write Error-Recovery Routines Correctly at All Times

	ESP32-C6 Wi-Fi API Error Code
	ESP32-C6 Wi-Fi API Parameter Initialization
	ESP32-C6 Wi-Fi Programming Model
	ESP32-C6 Wi-Fi Event Description
	WIFI_EVENT_WIFI_READY
	WIFI_EVENT_SCAN_DONE
	WIFI_EVENT_STA_START
	WIFI_EVENT_STA_STOP
	WIFI_EVENT_STA_CONNECTED
	WIFI_EVENT_STA_DISCONNECTED
	IP_EVENT_STA_GOT_IP
	IP_EVENT_GOT_IP6
	IP_EVENT_STA_LOST_IP
	WIFI_EVENT_AP_START
	WIFI_EVENT_AP_STOP
	WIFI_EVENT_AP_STACONNECTED
	WIFI_EVENT_AP_STADISCONNECTED
	WIFI_EVENT_AP_PROBEREQRECVED
	WIFI_EVENT_STA_BEACON_TIMEOUT
	WIFI_EVENT_CONNECTIONLESS_MODULE_WAKE_INTERVAL_START

	ESP32-C6 Wi-Fi Station General Scenario
	1. Wi-Fi/LwIP Init Phase
	2. Wi-Fi Configuration Phase
	3. Wi-Fi Start Phase
	4. Wi-Fi Connect Phase
	5. Wi-Fi 'Got IP' Phase
	6. Wi-Fi Disconnect Phase
	7. Wi-Fi IP Change Phase
	8. Wi-Fi Deinit Phase

	ESP32-C6 Wi-Fi AP General Scenario
	ESP32-C6 Wi-Fi Scan
	Scan Type
	Scan Configuration
	Scan All APs on All Channels (Foreground)
	Scan Configuration Phase
	Wi-Fi Driver's Internal Scan Phase
	Scan-Done Event Handling Phase

	Scan All APs on All Channels (Background)
	Scan for Specific AP on All Channels
	Scan in Wi-Fi Connect
	Scan in Blocked Mode
	Parallel Scan
	Scan When Wi-Fi Is Connecting

	ESP32-C6 Wi-Fi Station Connecting Scenario
	Scan Phase
	Auth Phase
	Association Phase
	Four-way Handshake Phase
	Wi-Fi Reason Code
	Wi-Fi Reason code related to wrong password
	Wi-Fi Reason code related to low RSSI

	ESP32-C6 Wi-Fi Station Connecting When Multiple APs Are Found
	Wi-Fi Reconnect
	Wi-Fi Beacon Timeout
	ESP32-C6 Wi-Fi Configuration
	Wi-Fi Mode
	Station Basic Configuration
	AP Basic Configuration
	Wi-Fi Protocol Mode
	Long Range (LR)
	LR Compatibility
	LR Impacts to Traditional Wi-Fi Device
	LR Transmission Distance
	LR Throughput
	When to Use LR

	Wi-Fi Country Code
	Home Channel

	Wi-Fi Vendor IE Configuration

	Wi-Fi Easy Connect™ (DPP)
	WPA2-Enterprise

	Wireless Network Management
	Radio Resource Measurement
	Fast BSS Transition
	Wi-Fi Location
	Fine Timing Measurement (FTM)

	ESP32-C6 Wi-Fi Power-saving Mode
	Station Sleep
	AP Sleep
	Disconnected State Sleep
	Connectionless Modules Power-saving
	Connectionless Modules TX
	Connectionless Modules RX
	Default mode

	ESP32-C6 Wi-Fi Throughput
	Wi-Fi 80211 Packet Send
	Preconditions of Using esp_wifi_80211_tx()
	Data Rate
	Side-Effects to Avoid in Different Scenarios

	Wi-Fi Sniffer Mode
	Wi-Fi Multiple Antennas
	Wi-Fi Multiple Antennas Configuration

	Wi-Fi Channel State Information
	Wi-Fi Channel State Information Configure
	Wi-Fi HT20/40
	Wi-Fi QoS
	Wi-Fi AMSDU
	Wi-Fi Fragment
	WPS Enrollee
	Wi-Fi Buffer Usage
	Why Buffer Configuration Is Important
	Dynamic vs. Static Buffer
	Peak Wi-Fi Dynamic Buffer

	How to Improve Wi-Fi Performance
	Protocol Stack Operation Mode
	Parameters
	How to Configure Parameters

	Wi-Fi Menuconfig
	Wi-Fi Buffer Configure
	Wi-Fi NVS Flash
	Wi-Fi Aggregate MAC Protocol Data Unit (AMPDU)

	Troubleshooting
	Espressif Wireshark User Guide
	1. Overview
	1.1 What is Wireshark?
	1.2 Some Intended Purposes
	1.3 Features
	1.4 Wireshark Can or Can't Do

	2. Where to Get Wireshark
	3. Step-by-step Guide

	Wi-Fi Security
	ESP32-C6 Wi-Fi Security Features
	Protected Management Frames (PMF)
	Introduction
	API & Usage

	WiFi Enterprise
	Introduction

	WPA3-Personal
	Introduction
	Setting up WPA3 Personal with ESP32-C6

	Wi-Fi Enhanced Open™
	Introduction
	Setting up OWE with ESP32-C6

	Low Power Mode User Guide

	Migration Guides
	ESP-IDF 5.x Migration Guide
	Migration from 4.4 to 5.0
	Bluetooth Low Energy
	Bluedroid
	Nimble
	ESP-BLE-MESH

	Build System
	Migrating from GNU Make Build System
	Update Fragment File Grammar
	Specify Component Requirements Explicitly
	Setting COMPONENT_DIRS and EXTRA_COMPONENT_DIRS Variables
	Update Usage of target_link_libraries with project_elf
	Update CMake Version
	Reorder the Applying of the Target-Specific Config Files

	GCC
	GCC Version
	Warnings
	-Wstringop-overflow, -Wstringop-overread, -Wstringop-truncation, and -Warray-bounds
	-Waddress-of-packed-member
	llabs() for 64-bit Integers

	Espressif Toolchain Changes
	int32_t and uint32_t for Xtensa Compiler
	Removing CONFIG_COMPILER_DISABLE_GCC8_WARNINGS Build Option

	Networking
	Wi-Fi
	Callback function type esp_now_recv_cb_t

	Ethernet
	esp_eth_ioctl() API
	KSZ8041/81 and LAN8720 Driver Update
	ESP NETIF Glue Event Handlers
	PHY Address Auto-detect
	SPI-Ethernet Module Initialization

	TCP/IP Adapter
	Updating Network Connection Code
	Network Stack Initialization
	Network Interface Creation
	Other tcpip_adapter API Replacement
	Default Event Handlers
	IP Addresses

	Peripherals
	Peripheral Clock Gating
	RTC Subsystem Control
	ADC
	ADC Oneshot & Continuous Mode drivers
	ADC Calibration Driver
	API Changes

	GPIO
	Sigma-Delta Modulator
	Breaking Changes in Concepts
	Breaking Changes in Usage

	Timer Group Driver
	Breaking Changes in Concepts
	Breaking Changes in Usage

	UART
	I2C
	SPI
	LEDC
	Pulse Counter Driver
	Breaking Changes in Concepts
	Breaking Changes in Usage

	Temperature Sensor Driver
	RMT Driver
	Breaking Changes in Concepts
	Breaking Changes in Usage

	LCD
	MCPWM
	Breaking Changes in Concepts
	Breaking Changes in Usage

	Dedicated GPIO Driver
	I2S driver
	Breaking changes in Concepts
	Independent TX/RX channels
	I2S Mode Categorization
	Independent Slot and Clock Configuration
	Misc
	Breaking Changes in Usage

	TWAI Driver
	Register Access Macros

	Protocols
	Mbed TLS
	Breaking Changes (Summary)
	Most structure fields are now private
	SSL
	Deprecated Functions Were Removed from Cryptography Modules
	Deprecated Config Options

	Miscellaneous
	Disabled Diffie-Hellman Key Exchange Modes
	Remove certs Module from X509 Library
	Breaking Change for esp_crt_bundle_set API
	Breaking Change for esp_ds_rsa_sign API

	HTTPS Server
	Breaking Changes (Summary)

	ESP HTTPS OTA
	Breaking Changes (Summary)

	ESP-TLS
	Breaking Changes (Summary)
	esp_tls_t Structure is Now Private
	Function Deprecations And Recommended Alternatives

	HTTP Server
	Breaking Changes (Summary)

	ESP HTTP Client
	Breaking Changes (Summary)

	TCP Transport
	Breaking Changes (Summary)

	MQTT Client
	Breaking Changes (Summary)

	ESP-Modbus
	Breaking Changes (Summary)

	Provisioning
	Protocomm
	Wi-Fi Provisioning
	ESP Local Control

	Removed or Deprecated Components
	Components Moved to IDF Component Registry
	Deprecated Components

	Storage
	New Component for the Partition APIs
	SDMMC/SDSPI
	FatFs
	Partition Table
	VFS
	Function Signature Changes
	Iterator Validity

	Removed SDSPI Deprecated API
	ROM SPI Flash
	SPI Flash Driver
	Legacy SPI Flash Driver

	System
	Inter-Processor Call
	ESP Clock
	Cache Error Interrupt
	bootloader_support
	Brownout
	Trax
	ROM
	esp_hw_support
	PSRAM

	eFuse
	esp_common
	esp_system
	SOC Dependency
	APP Trace
	esp_timer
	ESP Image
	Task Watchdog Timers
	FreeRTOS
	Legacy API and Data Types
	Tasks Snapshot
	FreeRTOS Asserts
	Port Macro API

	App Update
	Bootloader Support
	Chip Revision

	Tools
	IDF Monitor
	Deprecated Commands
	Esptool
	Windows Environment

	Migration from 5.0 to 5.1
	GCC
	GCC Version
	Warnings
	-Wuse-after-free
	-Waddress

	RISC-V Builds Outside of IDF

	IEEE 802.15.4
	Receive Handle Done

	Peripherals
	GPSPI
	LEDC

	Storage
	FatFs
	SPI_FLASH
	SPI Flash Driver

	Networking
	SNTP

	System
	FreeRTOS
	Power Management

	WiFi
	WiFi Enterprise security

	Libraries and Frameworks
	Cloud Frameworks
	ESP RainMaker
	AWS IoT
	Azure IoT
	Google IoT Core
	Aliyun IoT
	Joylink IoT
	Tencent IoT
	Tencentyun IoT
	Baidu IoT

	Espressif's Frameworks
	Espressif Audio Development Framework
	ESP-CSI
	Espressif DSP Library
	ESP-WIFI-MESH Development Framework
	ESP-WHO
	ESP RainMaker
	ESP-IoT-Solution
	ESP-Protocols
	ESP-BSP
	ESP-IDF-CXX

	Contributions Guide
	How to Contribute
	Before Contributing
	Pull Request Process
	Legal Part
	Related Documents
	Espressif IoT Development Framework Style Guide
	About This Guide
	C Code Formatting
	Naming
	Indentation
	Vertical Space
	Horizontal Space
	Braces
	Comments
	Line Endings
	Formatting Your Code
	Type Definitions
	Enum
	Assertions

	Header file guards
	Include statements
	C++ Code Formatting
	File Naming
	Naming
	Member Order in Classes
	Spacing
	Simple Example

	CMake Code Style
	Configuring the Code Style for a Project Using EditorConfig
	Third Party Component Code Styles
	FreeRTOS

	Documenting Code
	Structure
	Language Features

	Install pre-commit Hook for ESP-IDF Project
	Required Dependency
	Install pre-commit
	Install pre-commit hook
	Uninstall pre-commit
	What's More?
	Common Problems For Windows Users

	Documenting Code
	Introduction
	Why we need it?
	Go for it!
	Go one extra mile
	Standardize Document Format
	Building Documentation
	Wrap up
	Related Documents

	Creating Examples
	Structure
	General Guidelines
	Checklist

	API Documentation Template
	Overview
	Application Example
	API Reference

	Contributor Agreement
	Individual Contributor Non-Exclusive License Agreement including the Traditional Patent License OPTION
	1. DEFINITIONS
	2. LICENSE GRANT
	3. PATENTS
	4. DISCLAIMER
	5. Consequential Damage Waiver
	6. Approximation of Disclaimer and Damage Waiver
	7. Term
	8. Miscellaneous

	Copyright Header Guide
	How to Check the Copyright Headers
	What if the Checker's Suggestion is Incorrect?
	Common Examples of Copyright Headers
	Less restrictive parts of ESP-IDF
	Third party licenses

	ESP-IDF Tests with Pytest Guide
	Disclaimer
	Installation
	Common Issues During Installation
	No Package 'dbus-1' found
	Invalid command 'bdist_wheel'

	Basic Concepts
	Component-based Unit Tests
	Example Tests
	Custom Tests

	Pytest in ESP-IDF
	Pytest Execution Process
	Getting Started Example
	Use Markers to Specify the Supported Targets
	Use Params to Specify the sdkconfig Files
	Expect From the Serial output

	Advanced Examples
	Multi Dut Tests with the Same App
	Multi Dut Tests with Different Apps
	Multi Dut Tests with Different Apps, and Targets
	Support different targets with different sdkconfig files
	Use Custom Class
	Mark Flaky Tests
	Mark Known Failure Cases
	Mark Nightly Run Test Cases
	Mark Temp Disabled in CI
	Run Unity Test Cases

	Run the Tests in CI
	Build Jobs
	Build Job Names
	Build Job Commands

	Target Test Jobs
	Target Test Job Names
	Target Test Job Commands

	Run the Tests Locally
	Tips and Tricks
	Filter the Test Cases
	Add New Markers
	Generate JUnit Report
	Skip Auto Flash Binary
	Record Statistics
	Logging System
	Useful Logging Functions (as Fixture)
	log_performance
	check_performance

	Further Readings

	ESP-IDF Versions
	Releases
	Which Version Should I Start With?
	Versioning Scheme
	Support Periods
	Checking the Current Version
	Git Workflow
	Updating ESP-IDF
	Updating to Stable Release
	Updating to a Pre-Release Version
	Updating to Master Branch
	Updating to a Release Branch

	Resources
	PlatformIO
	What is PlatformIO?
	Installation
	Configuration
	Tutorials
	Project Examples
	Next Steps

	Useful Links

	Copyrights and Licenses
	Software Copyrights
	Firmware Components
	Documentation

	ROM Source Code Copyrights
	Xtensa libhal MIT License
	TinyBasic Plus MIT License
	TJpgDec License

	About
	Switch Between Languages
	Index
	Index

