Ethernet
Overview
ESP-IDF provides a set of consistent and flexible APIs to support both internal Ethernet MAC (EMAC) controller and external SPI-Ethernet modules.
This programming guide is split into the following sections:
Basic Ethernet Concepts
Ethernet is an asynchronous Carrier Sense Multiple Access with Collision Detect (CSMA/CD) protocol/interface. It is generally not well suited for low power applications. However, with ubiquitous deployment, internet connectivity, high data rates and limitless rage expandability, Ethernet can accommodate nearly all wired communications.
Normal IEEE 802.3 compliant Ethernet frames are between 64 and 1518 bytes in length. They are made up of five or six different fields: a destination MAC address (DA), a source MAC address (SA), a type/length field, data payload, an optional padding field and a Cyclic Redundancy Check (CRC). Additionally, when transmitted on the Ethernet medium, a 7-byte preamble field and Start-of-Frame (SOF) delimiter byte are appended to the beginning of the Ethernet packet.
Thus the traffic on the twist-pair cabling will appear as shown blow:
Preamble and Start-of-Frame Delimiter
The preamble contains seven bytes of 55H
, it allows the receiver to lock onto the stream of data before the actual frame arrives.
The Start-of-Frame Delimiter (SFD) is a binary sequence 10101011
(as seen on the physical medium). It is sometimes considered to be part of the preamble.
When transmitting and receiving data, the preamble and SFD bytes will automatically be generated or stripped from the packets.
Destination Address
The destination address field contains a 6-byte length MAC address of the device that the packet is directed to. If the Least Significant bit in the first byte of the MAC address is set, the address is a multi-cast destination. For example, 01-00-00-00-F0-00 and 33-45-67-89-AB-CD are multi-cast addresses, while 00-00-00-00-F0-00 and 32-45-67-89-AB-CD are not. Packets with multi-cast destination addresses are designed to arrive and be important to a selected group of Ethernet nodes. If the destination address field is the reserved multi-cast address, i.e. FF-FF-FF-FF-FF-FF, the packet is a broadcast packet and it will be directed to everyone sharing the network. If the Least Significant bit in the first byte of the MAC address is clear, the address is a uni-cast address and will be designed for usage by only the addressed node.
Normally the EMAC controller incorporates receive filters which can be used to discard or accept packets with multi-cast, broadcast and/or uni-cast destination addresses. When transmitting packets, the host controller is responsible for writing the desired destination address into the transmit buffer.
Source Address
The source address field contains a 6-byte length MAC address of the node which created the Ethernet packet. Users of Ethernet must generate a unique MAC address for each controller used. MAC addresses consist of two portions. The first three bytes are known as the Organizationally Unique Identifier (OUI). OUIs are distributed by the IEEE. The last three bytes are address bytes at the discretion of the company that purchased the OUI. More information about MAC Address used in ESP-IDF, please see MAC Address Allocation.
When transmitting packets, the assigned source MAC address must be written into the transmit buffer by the host controller.
Type / Length
The type/length field is a 2-byte field, if the value in this field is <= 1500 (decimal), it is considered a length field and it specifies the amount of non-padding data which follows in the data field. If the value is >= 1536, it represents the protocol the following packet data belongs to. The following are the most common type values:
IPv4 = 0800H
IPv6 = 86DDH
ARP = 0806H
Users implementing proprietary networks may choose to treat this field as a length field, while applications implementing protocols such as the Internet Protocol (IP) or Address Resolution Protocol (ARP), should program this field with the appropriate type defined by the protocol’s specification when transmitting packets.
Payload
The payload field is a variable length field, anywhere from 0 to 1500 bytes. Larger data packets will violate Ethernet standards and will be dropped by most Ethernet nodes. This field contains the client data, such as an IP datagram.
Padding and FCS
The padding field is a variable length field added to meet IEEE 802.3 specification requirements when small data payloads are used. The DA, SA, type, payload and padding of an Ethernet packet must be no smaller than 60 bytes. Adding the required 4-byte FCS field, packets must be no smaller than 64 bytes. If the data field is less than 46 bytes long, a padding field is required.
The FCS field is a 4-byte field which contains an industry standard 32-bit CRC calculated with the data from the DA, SA, type, payload and padding fields. Given the complexity of calculating a CRC, the hardware normally will automatically generate a valid CRC and transmit it. Otherwise, the host controller must generate the CRC and place it in the transmit buffer.
Normally, the host controller does not need to concern itself with padding and the CRC which the hardware EMAC will also be able to automatically generate when transmitting and verify when receiving. However, the padding and CRC fields will be written into the receive buffer when packets arrive, so they may be evaluated by the host controller if needed.
Note
Besides the basic data frame described above, there’re two other common frame types in 10/100 Mbps Ethernet: control frames and VLAN tagged frames. They’re not supported in ESP-IDF.
Configure MAC and PHY
Ethernet driver is composed of two parts: MAC and PHY.
The communication between MAC and PHY can have diverse choices: MII (Media Independent Interface), RMII (Reduced Media Independent Interface) and etc.
One of the obvious difference between MII and RMII is the signal consumption. For MII, it usually costs up to 18 signals. Instead, RMII interface can reduce the consumption to 9.
In RMII mode, both the receiver and transmitter signals are referenced to the REF_CLK
. REF_CLK must be stable during any access to PHY and MAC.
Generally there’re three ways to generate the REF_CLK
depending on the PHY device in your design:
Some PHY chip can derive the
REF_CLK
from its external connected 25MHz crystal oscillator (as seen the option a in the picture). In this case, you should selectCONFIG_ETH_RMII_CLK_INPUT
in CONFIG_ETH_RMII_CLK_MODE.Some PHY chip uses an external connected 50MHz crystal oscillator or other clock source, which can also be used as the
REF_CLK
for MAC side (as seen the option b in the picture). In this case, you still need to selectCONFIG_ETH_RMII_CLK_INPUT
in CONFIG_ETH_RMII_CLK_MODE.Some EMAC controller can generate the
REF_CLK
using its internal high precision PLL (as seen the option c in the picture). In this case, you should selectCONFIG_ETH_RMII_CLK_OUTPUT
in CONFIG_ETH_RMII_CLK_MODE.
Note
REF_CLK
is configured via Project Configuration as described above by default. However, it can be overwritten from user application code by appropriately setting interface
and clock_config
members of eth_mac_config_t
structure. See emac_rmii_clock_mode_t
and emac_rmii_clock_gpio_t
for more details.
Warning
If the RMII clock mode is selected to CONFIG_ETH_RMII_CLK_OUTPUT
, then GPIO0
can be used to output the REF_CLK
signal. See CONFIG_ETH_RMII_CLK_OUTPUT_GPIO0 for more information.
What’s more, if you’re not using PSRAM in your design, GPIO16 and GPIO17 are also available to output the reference clock. See CONFIG_ETH_RMII_CLK_OUT_GPIO for more information.
If the RMII clock mode is selected to CONFIG_ETH_RMII_CLK_INPUT
, then GPIO0
is the only choice to input the REF_CLK
signal.
Please note that, GPIO0
is also an important strapping GPIO on ESP32.
If GPIO0 samples a low level during power up, ESP32 will go into download mode. The system will get halted until a manually reset.
The workaround of this issue is disabling the REF_CLK
in hardware by default, so that the strapping pin won’t be interfered by other signals in boot stage. Then re-enable the REF_CLK
in Ethernet driver installation stage.
The ways to disable the REF_CLK
signal can be:
Disable or power down the crystal oscillator (as the case b in the picture).
Force the PHY device in reset status (as the case a in the picture). This could fail for some PHY device (i.e. it still outputs signal to GPIO0 even in reset state).
No matter which RMII clock mode you select, you really need to take care of the signal integrity of REF_CLK in your hardware design! Keep the trace as short as possible. Keep it away from RF devices. Keep it away from inductor elements.
Note
ESP-IDF only supports the RMII interface (i.e. always select CONFIG_ETH_PHY_INTERFACE_RMII
in Kconfig option CONFIG_ETH_PHY_INTERFACE).
Signals used in data plane are fixed to specific GPIOs via MUX, they can’t be modified to other GPIOs. Signals used in control plane can be routed to any free GPIOs via Matrix. Please refer to ESP32-Ethernet-Kit for hardware design example.
We need to setup necessary parameters for MAC and PHY respectively based on your Ethernet board design and then combine the two together, completing the driver installation.
Configuration for MAC is described in eth_mac_config_t
, including:
sw_reset_timeout_ms
: software reset timeout value, in milliseconds, typically MAC reset should be finished within 100ms.rx_task_stack_size
andrx_task_prio
: the MAC driver creates a dedicated task to process incoming packets, these two parameters are used to set the stack size and priority of the task.flags
: specifying extra features that the MAC driver should have, it could be useful in some special situations. The value of this field can be OR’d with macros prefixed withETH_MAC_FLAG_
. For example, if the MAC driver should work when cache is disabled, then you should configure this field withETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE
.smi_mdc_gpio_num
andsmi_mdio_gpio_num
: the GPIO number used to connect the SMI signals.interface
: configuration of MAC Data interface to PHY (MII/RMII).clock_config
: configuration of EMAC Interface clock (REF_CLK
mode and GPIO number in case of RMII).
Configuration for PHY is described in eth_phy_config_t
, including:
phy_addr
: multiple PHY device can share the same SMI bus, so each PHY needs a unique address. Usually this address is configured during hardware design by pulling up/down some PHY strapping pins. You can set the value from 0 to 15 based on your Ethernet board. Especially, if the SMI bus is shared by only one PHY device, setting this value to -1 can enable the driver to detect the PHY address automatically.reset_timeout_ms
: reset timeout value, in milliseconds, typically PHY reset should be finished within 100ms.autonego_timeout_ms
: auto-negotiation timeout value, in milliseconds. Ethernet driver will start negotiation with the peer Ethernet node automatically, to determine to duplex and speed mode. This value usually depends on the ability of the PHY device on your board.reset_gpio_num
: if your board also connect the PHY reset pin to one of the GPIO, then set it here. Otherwise, set this field to -1.
ESP-IDF provides a default configuration for MAC and PHY in macro ETH_MAC_DEFAULT_CONFIG
and ETH_PHY_DEFAULT_CONFIG
.
Create MAC and PHY Instance
Ethernet driver is implemented in an Object-Oriented style. Any operation on MAC and PHY should be based on the instance of them two.
Internal EMAC + External PHY
eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG(); // apply default MAC configuration
mac_config.smi_mdc_gpio_num = CONFIG_EXAMPLE_ETH_MDC_GPIO; // alter the GPIO used for MDC signal
mac_config.smi_mdio_gpio_num = CONFIG_EXAMPLE_ETH_MDIO_GPIO; // alter the GPIO used for MDIO signal
esp_eth_mac_t *mac = esp_eth_mac_new_esp32(&mac_config); // create MAC instance
eth_phy_config_t phy_config = ETH_PHY_DEFAULT_CONFIG(); // apply default PHY configuration
phy_config.phy_addr = CONFIG_EXAMPLE_ETH_PHY_ADDR; // alter the PHY address according to your board design
phy_config.reset_gpio_num = CONFIG_EXAMPLE_ETH_PHY_RST_GPIO; // alter the GPIO used for PHY reset
esp_eth_phy_t *phy = esp_eth_phy_new_ip101(&phy_config); // create PHY instance
// ESP-IDF officially supports several different Ethernet PHY chip driver
// esp_eth_phy_t *phy = esp_eth_phy_new_rtl8201(&phy_config);
// esp_eth_phy_t *phy = esp_eth_phy_new_lan8720(&phy_config);
// esp_eth_phy_t *phy = esp_eth_phy_new_dp83848(&phy_config);
Optional Runtime MAC Clock Configuration
EMAC REF_CLK
can be optionally configured from user application code.
eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG(); // apply default MAC configuration
// ...
mac_config.interface = EMAC_DATA_INTERFACE_RMII; // alter EMAC Data Interface
mac_config.clock_config.rmii.clock_mode = EMAC_CLK_OUT; // select EMAC REF_CLK mode
mac_config.clock_config.rmii.clock_gpio = EMAC_CLK_OUT_GPIO; // select GPIO number used to input/output EMAC REF_CLK
esp_eth_mac_t *mac = esp_eth_mac_new_esp32(&mac_config); // create MAC instance
SPI-Ethernet Module
eth_mac_config_t mac_config = ETH_MAC_DEFAULT_CONFIG(); // apply default MAC configuration
eth_phy_config_t phy_config = ETH_PHY_DEFAULT_CONFIG(); // apply default PHY configuration
phy_config.phy_addr = CONFIG_EXAMPLE_ETH_PHY_ADDR; // alter the PHY address according to your board design
phy_config.reset_gpio_num = CONFIG_EXAMPLE_ETH_PHY_RST_GPIO; // alter the GPIO used for PHY reset
// Install GPIO interrupt service (as the SPI-Ethernet module is interrupt driven)
gpio_install_isr_service(0);
// SPI bus configuration
spi_device_handle_t spi_handle = NULL;
spi_bus_config_t buscfg = {
.miso_io_num = CONFIG_EXAMPLE_ETH_SPI_MISO_GPIO,
.mosi_io_num = CONFIG_EXAMPLE_ETH_SPI_MOSI_GPIO,
.sclk_io_num = CONFIG_EXAMPLE_ETH_SPI_SCLK_GPIO,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
};
ESP_ERROR_CHECK(spi_bus_initialize(CONFIG_EXAMPLE_ETH_SPI_HOST, &buscfg, 1));
// Allocate SPI device from the bus
spi_device_interface_config_t devcfg = {
.command_bits = 1,
.address_bits = 7,
.mode = 0,
.clock_speed_hz = CONFIG_EXAMPLE_ETH_SPI_CLOCK_MHZ * 1000 * 1000,
.spics_io_num = CONFIG_EXAMPLE_ETH_SPI_CS_GPIO,
.queue_size = 20
};
ESP_ERROR_CHECK(spi_bus_add_device(CONFIG_EXAMPLE_ETH_SPI_HOST, &devcfg, &spi_handle));
/* dm9051 ethernet driver is based on spi driver */
eth_dm9051_config_t dm9051_config = ETH_DM9051_DEFAULT_CONFIG(spi_handle);
dm9051_config.int_gpio_num = CONFIG_EXAMPLE_ETH_SPI_INT_GPIO;
esp_eth_mac_t *mac = esp_eth_mac_new_dm9051(&dm9051_config, &mac_config);
esp_eth_phy_t *phy = esp_eth_phy_new_dm9051(&phy_config);
Note
When creating MAC and PHY instance for SPI-Ethernet modules (e.g. DM9051), the constructor function must have the same suffix (e.g. esp_eth_mac_new_dm9051 and esp_eth_phy_new_dm9051). This is because we don’t have other choices but the integrated PHY.
We have to create an SPI device handle firstly and then pass it to the MAC constructor function. More instructions on creating SPI device handle, please refer to SPI Master.
The SPI device configuration (i.e. spi_device_interface_config_t) can be different for other Ethernet modules. Please check out your module’s spec and the examples in esp-idf.
Install Driver
To install the Ethernet driver, we need to combine the instance of MAC and PHY and set some additional high-level configurations (i.e. not specific to either MAC or PHY) in esp_eth_config_t
:
mac
: instance that created from MAC generator (e.g.esp_eth_mac_new_esp32()
).phy
: instance that created from PHY generator (e.g.esp_eth_phy_new_ip101()
).check_link_period_ms
: Ethernet driver starts an OS timer to check the link status periodically, this field is used to set the interval, in milliseconds.stack_input
: In most of Ethernet IoT applications, any Ethernet frame that received by driver should be passed to upper layer (e.g. TCP/IP stack). This field is set to a function which is responsible to deal with the incoming frames. You can even update this field at runtime via functionesp_eth_update_input_path()
after driver installation.on_lowlevel_init_done
andon_lowlevel_deinit_done
: These two fields are used to specify the hooks which get invoked when low level hardware has been initialized or de-initialized.
ESP-IDF provides a default configuration for driver installation in macro ETH_DEFAULT_CONFIG
.
esp_eth_config_t config = ETH_DEFAULT_CONFIG(mac, phy); // apply default driver configuration
esp_eth_handle_t eth_handle = NULL; // after driver installed, we will get the handle of the driver
esp_eth_driver_install(&config, ð_handle); // install driver
Ethernet driver also includes event-driven model, which will send useful and important event to user space. We need to initialize the event loop before installing the Ethernet driver. For more information about event-driven programming, please refer to ESP Event.
/** Event handler for Ethernet events */
static void eth_event_handler(void *arg, esp_event_base_t event_base,
int32_t event_id, void *event_data)
{
uint8_t mac_addr[6] = {0};
/* we can get the ethernet driver handle from event data */
esp_eth_handle_t eth_handle = *(esp_eth_handle_t *)event_data;
switch (event_id) {
case ETHERNET_EVENT_CONNECTED:
esp_eth_ioctl(eth_handle, ETH_CMD_G_MAC_ADDR, mac_addr);
ESP_LOGI(TAG, "Ethernet Link Up");
ESP_LOGI(TAG, "Ethernet HW Addr %02x:%02x:%02x:%02x:%02x:%02x",
mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
break;
case ETHERNET_EVENT_DISCONNECTED:
ESP_LOGI(TAG, "Ethernet Link Down");
break;
case ETHERNET_EVENT_START:
ESP_LOGI(TAG, "Ethernet Started");
break;
case ETHERNET_EVENT_STOP:
ESP_LOGI(TAG, "Ethernet Stopped");
break;
default:
break;
}
}
esp_event_loop_create_default(); // create a default event loop that running in background
esp_event_handler_register(ETH_EVENT, ESP_EVENT_ANY_ID, ð_event_handler, NULL); // register Ethernet event handler (to deal with user specific stuffs when event like link up/down happened)
Start Ethernet Driver
After driver installation, we can start Ethernet immediately.
esp_eth_start(eth_handle); // start Ethernet driver state machine
Connect Driver to TCP/IP Stack
Up until now, we have installed the Ethernet driver. From the view of OSI (Open System Interconnection), we’re still on level 2 (i.e. Data Link Layer). We can detect link up and down event, we can gain MAC address in user space, but we can’t obtain IP address, let alone send HTTP request. The TCP/IP stack used in ESP-IDF is called LwIP, for more information about it, please refer to LwIP.
To connect Ethernet driver to TCP/IP stack, these three steps need to follow:
Create network interface for Ethernet driver
Attach the network interface to Ethernet driver
Register IP event handlers
More information about network interface, please refer to Network Interface.
/** Event handler for IP_EVENT_ETH_GOT_IP */
static void got_ip_event_handler(void *arg, esp_event_base_t event_base,
int32_t event_id, void *event_data)
{
ip_event_got_ip_t *event = (ip_event_got_ip_t *) event_data;
const esp_netif_ip_info_t *ip_info = &event->ip_info;
ESP_LOGI(TAG, "Ethernet Got IP Address");
ESP_LOGI(TAG, "~~~~~~~~~~~");
ESP_LOGI(TAG, "ETHIP:" IPSTR, IP2STR(&ip_info->ip));
ESP_LOGI(TAG, "ETHMASK:" IPSTR, IP2STR(&ip_info->netmask));
ESP_LOGI(TAG, "ETHGW:" IPSTR, IP2STR(&ip_info->gw));
ESP_LOGI(TAG, "~~~~~~~~~~~");
}
esp_netif_init()); // Initialize TCP/IP network interface (should be called only once in application)
esp_netif_config_t cfg = ESP_NETIF_DEFAULT_ETH(); // apply default network interface configuration for Ethernet
esp_netif_t *eth_netif = esp_netif_new(&cfg); // create network interface for Ethernet driver
esp_netif_attach(eth_netif, esp_eth_new_netif_glue(eth_handle)); // attach Ethernet driver to TCP/IP stack
esp_event_handler_register(IP_EVENT, IP_EVENT_ETH_GOT_IP, &got_ip_event_handler, NULL); // register user defined IP event handlers
esp_eth_start(eth_handle); // start Ethernet driver state machine
Warning
It is recommended to fully initialize the Ethernet driver and network interface prior registering user’s Ethernet/IP event handlers, i.e. register the event handlers as the last thing prior starting the Ethernet driver. Such approach ensures that Ethernet/IP events get executed first by the Ethernet driver or network interface and so the system is in expected state when executing user’s handlers.
Misc control of Ethernet driver
The following functions should only be invoked after the Ethernet driver has been installed.
Stop Ethernet driver:
esp_eth_stop()
Update Ethernet data input path:
esp_eth_update_input_path()
Misc get/set of Ethernet driver attributes:
esp_eth_ioctl()
/* get MAC address */
uint8_t mac_addr[6];
memset(mac_addr, 0, sizeof(mac_addr));
esp_eth_ioctl(eth_handle, ETH_CMD_G_MAC_ADDR, mac_addr);
ESP_LOGI(TAG, "Ethernet MAC Address: %02x:%02x:%02x:%02x:%02x:%02x",
mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3], mac_addr[4], mac_addr[5]);
/* get PHY address */
int phy_addr = -1;
esp_eth_ioctl(eth_handle, ETH_CMD_G_PHY_ADDR, &phy_addr);
ESP_LOGI(TAG, "Ethernet PHY Address: %d", phy_addr);
Flow control
Ethernet on MCU usually has a limitation in the number of frames it can handle during network congestion, because of the limitation in RAM size. A sending station might be transmitting data faster than the peer end can accept it. Ethernet flow control mechanism allows the receiving node to signal the sender requesting suspension of transmissions until the receiver catches up. The magic behind that is the pause frame, which was defined in IEEE 802.3x.
Pause frame is a special Ethernet frame used to carry the pause command, whose EtherType field is 0x8808, with the Control opcode set to 0x0001. Only stations configured for full-duplex operation may send pause frames. When a station wishes to pause the other end of a link, it sends a pause frame to the 48-bit reserved multicast address of 01-80-C2-00-00-01. The pause frame also includes the period of pause time being requested, in the form of a two-byte integer, ranging from 0 to 65535.
After Ethernet driver installation, the flow control feature is disabled by default. You can enable it by invoking esp_eth_ioctl(eth_handle, ETH_CMD_S_FLOW_CTRL, true);. One thing should be kept in mind, is that the pause frame ability will be advertised to peer end by PHY during auto negotiation. Ethernet driver sends pause frame only when both sides of the link support it.
Application Example
Ethernet basic example: ethernet/basic.
Ethernet iperf example: ethernet/iperf.
Ethernet to Wi-Fi AP “router”: ethernet/eth2ap.
Most of protocol examples should also work for Ethernet: protocols.
API Reference
Header File
Functions
-
esp_err_t esp_eth_driver_install(const esp_eth_config_t *config, esp_eth_handle_t *out_hdl)
Install Ethernet driver.
- Parameters
config – [in] configuration of the Ethernet driver
out_hdl – [out] handle of Ethernet driver
- Returns
ESP_OK: install esp_eth driver successfully
ESP_ERR_INVALID_ARG: install esp_eth driver failed because of some invalid argument
ESP_ERR_NO_MEM: install esp_eth driver failed because there’s no memory for driver
ESP_FAIL: install esp_eth driver failed because some other error occurred
-
esp_err_t esp_eth_driver_uninstall(esp_eth_handle_t hdl)
Uninstall Ethernet driver.
Note
It’s not recommended to uninstall Ethernet driver unless it won’t get used any more in application code. To uninstall Ethernet driver, you have to make sure, all references to the driver are released. Ethernet driver can only be uninstalled successfully when reference counter equals to one.
- Parameters
hdl – [in] handle of Ethernet driver
- Returns
ESP_OK: uninstall esp_eth driver successfully
ESP_ERR_INVALID_ARG: uninstall esp_eth driver failed because of some invalid argument
ESP_ERR_INVALID_STATE: uninstall esp_eth driver failed because it has more than one reference
ESP_FAIL: uninstall esp_eth driver failed because some other error occurred
-
esp_err_t esp_eth_start(esp_eth_handle_t hdl)
Start Ethernet driver ONLY in standalone mode (i.e. without TCP/IP stack)
Note
This API will start driver state machine and internal software timer (for checking link status).
- Parameters
hdl – [in] handle of Ethernet driver
- Returns
ESP_OK: start esp_eth driver successfully
ESP_ERR_INVALID_ARG: start esp_eth driver failed because of some invalid argument
ESP_ERR_INVALID_STATE: start esp_eth driver failed because driver has started already
ESP_FAIL: start esp_eth driver failed because some other error occurred
-
esp_err_t esp_eth_stop(esp_eth_handle_t hdl)
Stop Ethernet driver.
Note
This function does the oppsite operation of
esp_eth_start
.- Parameters
hdl – [in] handle of Ethernet driver
- Returns
ESP_OK: stop esp_eth driver successfully
ESP_ERR_INVALID_ARG: stop esp_eth driver failed because of some invalid argument
ESP_ERR_INVALID_STATE: stop esp_eth driver failed because driver has not started yet
ESP_FAIL: stop esp_eth driver failed because some other error occurred
-
esp_err_t esp_eth_update_input_path(esp_eth_handle_t hdl, esp_err_t (*stack_input)(esp_eth_handle_t hdl, uint8_t *buffer, uint32_t length, void *priv), void *priv)
Update Ethernet data input path (i.e. specify where to pass the input buffer)
Note
After install driver, Ethernet still don’t know where to deliver the input buffer. In fact, this API registers a callback function which get invoked when Ethernet received new packets.
- Parameters
hdl – [in] handle of Ethernet driver
stack_input – [in] function pointer, which does the actual process on incoming packets
priv – [in] private resource, which gets passed to
stack_input
callback without any modification
- Returns
ESP_OK: update input path successfully
ESP_ERR_INVALID_ARG: update input path failed because of some invalid argument
ESP_FAIL: update input path failed because some other error occurred
-
esp_err_t esp_eth_transmit(esp_eth_handle_t hdl, void *buf, size_t length)
General Transmit.
- Parameters
hdl – [in] handle of Ethernet driver
buf – [in] buffer of the packet to transfer
length – [in] length of the buffer to transfer
- Returns
ESP_OK: transmit frame buffer successfully
ESP_ERR_INVALID_ARG: transmit frame buffer failed because of some invalid argument
ESP_FAIL: transmit frame buffer failed because some other error occurred
-
esp_err_t esp_eth_receive(esp_eth_handle_t hdl, uint8_t *buf, uint32_t *length)
General Receive is deprecated and shall not be accessed from app code, as polling is not supported by Ethernet.
Note
Before this function got invoked, the value of “length” should set by user, equals the size of buffer. After the function returned, the value of “length” means the real length of received data.
Note
This API was exposed by accident, users should not use this API in their applications. Ethernet driver is interrupt driven, and doesn’t support polling mode. Instead, users should register input callback with
esp_eth_update_input_path
.- Parameters
hdl – [in] handle of Ethernet driver
buf – [out] buffer to preserve the received packet
length – [out] length of the received packet
- Returns
ESP_OK: receive frame buffer successfully
ESP_ERR_INVALID_ARG: receive frame buffer failed because of some invalid argument
ESP_ERR_INVALID_SIZE: input buffer size is not enough to hold the incoming data. in this case, value of returned “length” indicates the real size of incoming data.
ESP_FAIL: receive frame buffer failed because some other error occurred
-
esp_err_t esp_eth_ioctl(esp_eth_handle_t hdl, esp_eth_io_cmd_t cmd, void *data)
Misc IO function of Etherent driver.
The following IO control commands are supported:
ETH_CMD_S_MAC_ADDR
sets Ethernet interface MAC address.data
argument is pointer to MAC address buffer with expected size of 6 bytes.ETH_CMD_G_MAC_ADDR
gets Ethernet interface MAC address.data
argument is pointer to a buffer to which MAC address is to be copied. The buffer size must be at least 6 bytes.ETH_CMD_S_PHY_ADDR
sets PHY address in range of <0-31>.data
argument is pointer to memory of uint32_t datatype from where the configuration option is read.ETH_CMD_G_PHY_ADDR
gets PHY address.data
argument is pointer to memory of uint32_t datatype to which the PHY address is to be stored.ETH_CMD_G_SPEED
gets current Ethernet link speed.data
argument is pointer to memory of eth_speed_t datatype to which the speed is to be stored.ETH_CMD_S_PROMISCUOUS
sets/resets Ethernet interface promiscuous mode.data
argument is pointer to memory of bool datatype from which the configuration option is read.ETH_CMD_S_FLOW_CTRL
sets/resets Ethernet interface flow control.data
argument is pointer to memory of bool datatype from which the configuration option is read.ETH_CMD_G_DUPLEX_MODE
gets current Ethernet link duplex mode.data
argument is pointer to memory of eth_duplex_t datatype to which the duplex mode is to be stored.ETH_CMD_S_PHY_LOOPBACK
sets/resets PHY to/from loopback mode.data
argument is pointer to memory of bool datatype from which the configuration option is read.
- Parameters
hdl – [in] handle of Ethernet driver
cmd – [in] IO control command
data – [inout] address of data for
set
command or address where to store the data when used withget
command
- Returns
ESP_OK: process io command successfully
ESP_ERR_INVALID_ARG: process io command failed because of some invalid argument
ESP_FAIL: process io command failed because some other error occurred
-
esp_err_t esp_eth_increase_reference(esp_eth_handle_t hdl)
Increase Ethernet driver reference.
Note
Ethernet driver handle can be obtained by os timer, netif, etc. It’s dangerous when thread A is using Ethernet but thread B uninstall the driver. Using reference counter can prevent such risk, but care should be taken, when you obtain Ethernet driver, this API must be invoked so that the driver won’t be uninstalled during your using time.
- Parameters
hdl – [in] handle of Ethernet driver
- Returns
ESP_OK: increase reference successfully
ESP_ERR_INVALID_ARG: increase reference failed because of some invalid argument
-
esp_err_t esp_eth_decrease_reference(esp_eth_handle_t hdl)
Decrease Ethernet driver reference.
- Parameters
hdl – [in] handle of Ethernet driver
- Returns
ESP_OK: increase reference successfully
ESP_ERR_INVALID_ARG: increase reference failed because of some invalid argument
Structures
-
struct esp_eth_config_t
Configuration of Ethernet driver.
Public Members
-
esp_eth_mac_t *mac
Ethernet MAC object.
-
esp_eth_phy_t *phy
Ethernet PHY object.
-
uint32_t check_link_period_ms
Period time of checking Ethernet link status.
-
esp_err_t (*stack_input)(esp_eth_handle_t eth_handle, uint8_t *buffer, uint32_t length, void *priv)
Input frame buffer to user’s stack.
- Param eth_handle
[in] handle of Ethernet driver
- Param buffer
[in] frame buffer that will get input to upper stack
- Param length
[in] length of the frame buffer
- Return
ESP_OK: input frame buffer to upper stack successfully
ESP_FAIL: error occurred when inputting buffer to upper stack
-
esp_err_t (*on_lowlevel_init_done)(esp_eth_handle_t eth_handle)
Callback function invoked when lowlevel initialization is finished.
- Param eth_handle
[in] handle of Ethernet driver
- Return
ESP_OK: process extra lowlevel initialization successfully
ESP_FAIL: error occurred when processing extra lowlevel initialization
-
esp_err_t (*on_lowlevel_deinit_done)(esp_eth_handle_t eth_handle)
Callback function invoked when lowlevel deinitialization is finished.
- Param eth_handle
[in] handle of Ethernet driver
- Return
ESP_OK: process extra lowlevel deinitialization successfully
ESP_FAIL: error occurred when processing extra lowlevel deinitialization
-
esp_err_t (*read_phy_reg)(esp_eth_handle_t eth_handle, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value)
Read PHY register.
Note
Usually the PHY register read/write function is provided by MAC (SMI interface), but if the PHY device is managed by other interface (e.g. I2C), then user needs to implement the corresponding read/write. Setting this to NULL means your PHY device is managed by MAC’s SMI interface.
- Param eth_handle
[in] handle of Ethernet driver
- Param phy_addr
[in] PHY chip address (0~31)
- Param phy_reg
[in] PHY register index code
- Param reg_value
[out] PHY register value
- Return
ESP_OK: read PHY register successfully
ESP_ERR_INVALID_ARG: read PHY register failed because of invalid argument
ESP_ERR_TIMEOUT: read PHY register failed because of timeout
ESP_FAIL: read PHY register failed because some other error occurred
-
esp_err_t (*write_phy_reg)(esp_eth_handle_t eth_handle, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value)
Write PHY register.
Note
Usually the PHY register read/write function is provided by MAC (SMI interface), but if the PHY device is managed by other interface (e.g. I2C), then user needs to implement the corresponding read/write. Setting this to NULL means your PHY device is managed by MAC’s SMI interface.
- Param eth_handle
[in] handle of Ethernet driver
- Param phy_addr
[in] PHY chip address (0~31)
- Param phy_reg
[in] PHY register index code
- Param reg_value
[in] PHY register value
- Return
ESP_OK: write PHY register successfully
ESP_ERR_INVALID_ARG: read PHY register failed because of invalid argument
ESP_ERR_TIMEOUT: write PHY register failed because of timeout
ESP_FAIL: write PHY register failed because some other error occurred
-
esp_eth_mac_t *mac
Header File
Functions
-
esp_err_t esp_eth_detect_phy_addr(esp_eth_mediator_t *eth, int *detected_addr)
Detect PHY address.
- Parameters
eth – [in] mediator of Ethernet driver
detected_addr – [out] a valid address after detection
- Returns
ESP_OK: detect phy address successfully
ESP_ERR_INVALID_ARG: invalid parameter
ESP_ERR_NOT_FOUND: can’t detect any PHY device
ESP_FAIL: detect phy address failed because some error occurred
Structures
-
struct esp_eth_mediator_s
Ethernet mediator.
Public Members
-
esp_err_t (*phy_reg_read)(esp_eth_mediator_t *eth, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value)
Read PHY register.
- Param eth
[in] mediator of Ethernet driver
- Param phy_addr
[in] PHY Chip address (0~31)
- Param phy_reg
[in] PHY register index code
- Param reg_value
[out] PHY register value
- Return
ESP_OK: read PHY register successfully
ESP_FAIL: read PHY register failed because some error occurred
-
esp_err_t (*phy_reg_write)(esp_eth_mediator_t *eth, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value)
Write PHY register.
- Param eth
[in] mediator of Ethernet driver
- Param phy_addr
[in] PHY Chip address (0~31)
- Param phy_reg
[in] PHY register index code
- Param reg_value
[in] PHY register value
- Return
ESP_OK: write PHY register successfully
ESP_FAIL: write PHY register failed because some error occurred
-
esp_err_t (*stack_input)(esp_eth_mediator_t *eth, uint8_t *buffer, uint32_t length)
Deliver packet to upper stack.
- Param eth
[in] mediator of Ethernet driver
- Param buffer
[in] packet buffer
- Param length
[in] length of the packet
- Return
ESP_OK: deliver packet to upper stack successfully
ESP_FAIL: deliver packet failed because some error occurred
-
esp_err_t (*on_state_changed)(esp_eth_mediator_t *eth, esp_eth_state_t state, void *args)
Callback on Ethernet state changed.
- Param eth
[in] mediator of Ethernet driver
- Param state
[in] new state
- Param args
[in] optional argument for the new state
- Return
ESP_OK: process the new state successfully
ESP_FAIL: process the new state failed because some error occurred
-
esp_err_t (*phy_reg_read)(esp_eth_mediator_t *eth, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value)
Macros
-
ETH_MAX_PAYLOAD_LEN
Maximum Ethernet payload size.
-
ETH_MIN_PAYLOAD_LEN
Minimum Ethernet payload size.
-
ETH_HEADER_LEN
Ethernet frame header size: Dest addr(6 Bytes) + Src addr(6 Bytes) + length/type(2 Bytes)
-
ETH_VLAN_TAG_LEN
Optional 802.1q VLAN Tag length.
-
ETH_JUMBO_FRAME_PAYLOAD_LEN
Jumbo frame payload size.
-
ETH_MAX_PACKET_SIZE
Maximum frame size (1522 Bytes)
-
ETH_MIN_PACKET_SIZE
Minimum frame size (64 Bytes)
Type Definitions
-
typedef struct esp_eth_mediator_s esp_eth_mediator_t
Ethernet mediator.
Enumerations
-
enum esp_eth_state_t
Ethernet driver state.
Values:
-
enumerator ETH_STATE_LLINIT
Lowlevel init done
-
enumerator ETH_STATE_DEINIT
Deinit done
-
enumerator ETH_STATE_LINK
Link status changed
-
enumerator ETH_STATE_SPEED
Speed updated
-
enumerator ETH_STATE_DUPLEX
Duplex updated
-
enumerator ETH_STATE_PAUSE
Pause ability updated
-
enumerator ETH_STATE_LLINIT
-
enum esp_eth_io_cmd_t
Command list for ioctl API.
Values:
-
enumerator ETH_CMD_G_MAC_ADDR
Get MAC address
-
enumerator ETH_CMD_S_MAC_ADDR
Set MAC address
-
enumerator ETH_CMD_G_PHY_ADDR
Get PHY address
-
enumerator ETH_CMD_S_PHY_ADDR
Set PHY address
-
enumerator ETH_CMD_G_SPEED
Get Speed
-
enumerator ETH_CMD_S_PROMISCUOUS
Set promiscuous mode
-
enumerator ETH_CMD_S_FLOW_CTRL
Set flow control
-
enumerator ETH_CMD_G_DUPLEX_MODE
Get Duplex mode
-
enumerator ETH_CMD_S_PHY_LOOPBACK
Set PHY loopback
-
enumerator ETH_CMD_G_MAC_ADDR
Header File
Functions
-
esp_eth_mac_t *esp_eth_mac_new_esp32(const eth_mac_config_t *config)
Create ESP32 Ethernet MAC instance.
- Parameters
config – Ethernet MAC configuration
- Returns
instance: create MAC instance successfully
NULL: create MAC instance failed because some error occurred
Unions
-
union eth_mac_clock_config_t
- #include <esp_eth_mac.h>
Ethernet MAC Clock Configuration.
Public Members
-
struct eth_mac_clock_config_t::[anonymous] mii
EMAC MII Clock Configuration
-
emac_rmii_clock_mode_t clock_mode
RMII Clock Mode Configuration
-
emac_rmii_clock_gpio_t clock_gpio
RMII Clock GPIO Configuration
-
struct eth_mac_clock_config_t::[anonymous] rmii
EMAC RMII Clock Configuration
-
struct eth_mac_clock_config_t::[anonymous] mii
Structures
-
struct esp_eth_mac_s
Ethernet MAC.
Public Members
-
esp_err_t (*set_mediator)(esp_eth_mac_t *mac, esp_eth_mediator_t *eth)
Set mediator for Ethernet MAC.
- Param mac
[in] Ethernet MAC instance
- Param eth
[in] Ethernet mediator
- Return
ESP_OK: set mediator for Ethernet MAC successfully
ESP_ERR_INVALID_ARG: set mediator for Ethernet MAC failed because of invalid argument
-
esp_err_t (*init)(esp_eth_mac_t *mac)
Initialize Ethernet MAC.
- Param mac
[in] Ethernet MAC instance
- Return
ESP_OK: initialize Ethernet MAC successfully
ESP_ERR_TIMEOUT: initialize Ethernet MAC failed because of timeout
ESP_FAIL: initialize Ethernet MAC failed because some other error occurred
-
esp_err_t (*deinit)(esp_eth_mac_t *mac)
Deinitialize Ethernet MAC.
- Param mac
[in] Ethernet MAC instance
- Return
ESP_OK: deinitialize Ethernet MAC successfully
ESP_FAIL: deinitialize Ethernet MAC failed because some error occurred
-
esp_err_t (*start)(esp_eth_mac_t *mac)
Start Ethernet MAC.
- Param mac
[in] Ethernet MAC instance
- Return
ESP_OK: start Ethernet MAC successfully
ESP_FAIL: start Ethernet MAC failed because some other error occurred
-
esp_err_t (*stop)(esp_eth_mac_t *mac)
Stop Ethernet MAC.
- Param mac
[in] Ethernet MAC instance
- Return
ESP_OK: stop Ethernet MAC successfully
ESP_FAIL: stop Ethernet MAC failed because some error occurred
-
esp_err_t (*transmit)(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length)
Transmit packet from Ethernet MAC.
- Param mac
[in] Ethernet MAC instance
- Param buf
[in] packet buffer to transmit
- Param length
[in] length of packet
- Return
ESP_OK: transmit packet successfully
ESP_ERR_INVALID_ARG: transmit packet failed because of invalid argument
ESP_ERR_INVALID_STATE: transmit packet failed because of wrong state of MAC
ESP_FAIL: transmit packet failed because some other error occurred
-
esp_err_t (*receive)(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length)
Receive packet from Ethernet MAC.
Note
Memory of buf is allocated in the Layer2, make sure it get free after process.
Note
Before this function got invoked, the value of “length” should set by user, equals the size of buffer. After the function returned, the value of “length” means the real length of received data.
- Param mac
[in] Ethernet MAC instance
- Param buf
[out] packet buffer which will preserve the received frame
- Param length
[out] length of the received packet
- Return
ESP_OK: receive packet successfully
ESP_ERR_INVALID_ARG: receive packet failed because of invalid argument
ESP_ERR_INVALID_SIZE: input buffer size is not enough to hold the incoming data. in this case, value of returned “length” indicates the real size of incoming data.
ESP_FAIL: receive packet failed because some other error occurred
-
esp_err_t (*read_phy_reg)(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value)
Read PHY register.
- Param mac
[in] Ethernet MAC instance
- Param phy_addr
[in] PHY chip address (0~31)
- Param phy_reg
[in] PHY register index code
- Param reg_value
[out] PHY register value
- Return
ESP_OK: read PHY register successfully
ESP_ERR_INVALID_ARG: read PHY register failed because of invalid argument
ESP_ERR_INVALID_STATE: read PHY register failed because of wrong state of MAC
ESP_ERR_TIMEOUT: read PHY register failed because of timeout
ESP_FAIL: read PHY register failed because some other error occurred
-
esp_err_t (*write_phy_reg)(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value)
Write PHY register.
- Param mac
[in] Ethernet MAC instance
- Param phy_addr
[in] PHY chip address (0~31)
- Param phy_reg
[in] PHY register index code
- Param reg_value
[in] PHY register value
- Return
ESP_OK: write PHY register successfully
ESP_ERR_INVALID_STATE: write PHY register failed because of wrong state of MAC
ESP_ERR_TIMEOUT: write PHY register failed because of timeout
ESP_FAIL: write PHY register failed because some other error occurred
-
esp_err_t (*set_addr)(esp_eth_mac_t *mac, uint8_t *addr)
Set MAC address.
- Param mac
[in] Ethernet MAC instance
- Param addr
[in] MAC address
- Return
ESP_OK: set MAC address successfully
ESP_ERR_INVALID_ARG: set MAC address failed because of invalid argument
ESP_FAIL: set MAC address failed because some other error occurred
-
esp_err_t (*get_addr)(esp_eth_mac_t *mac, uint8_t *addr)
Get MAC address.
- Param mac
[in] Ethernet MAC instance
- Param addr
[out] MAC address
- Return
ESP_OK: get MAC address successfully
ESP_ERR_INVALID_ARG: get MAC address failed because of invalid argument
ESP_FAIL: get MAC address failed because some other error occurred
-
esp_err_t (*set_speed)(esp_eth_mac_t *mac, eth_speed_t speed)
Set speed of MAC.
- Param ma:c
[in] Ethernet MAC instance
- Param speed
[in] MAC speed
- Return
ESP_OK: set MAC speed successfully
ESP_ERR_INVALID_ARG: set MAC speed failed because of invalid argument
ESP_FAIL: set MAC speed failed because some other error occurred
-
esp_err_t (*set_duplex)(esp_eth_mac_t *mac, eth_duplex_t duplex)
Set duplex mode of MAC.
- Param mac
[in] Ethernet MAC instance
- Param duplex
[in] MAC duplex
- Return
ESP_OK: set MAC duplex mode successfully
ESP_ERR_INVALID_ARG: set MAC duplex failed because of invalid argument
ESP_FAIL: set MAC duplex failed because some other error occurred
-
esp_err_t (*set_link)(esp_eth_mac_t *mac, eth_link_t link)
Set link status of MAC.
- Param mac
[in] Ethernet MAC instance
- Param link
[in] Link status
- Return
ESP_OK: set link status successfully
ESP_ERR_INVALID_ARG: set link status failed because of invalid argument
ESP_FAIL: set link status failed because some other error occurred
-
esp_err_t (*set_promiscuous)(esp_eth_mac_t *mac, bool enable)
Set promiscuous of MAC.
- Param mac
[in] Ethernet MAC instance
- Param enable
[in] set true to enable promiscuous mode; set false to disable promiscuous mode
- Return
ESP_OK: set promiscuous mode successfully
ESP_FAIL: set promiscuous mode failed because some error occurred
-
esp_err_t (*enable_flow_ctrl)(esp_eth_mac_t *mac, bool enable)
Enable flow control on MAC layer or not.
- Param mac
[in] Ethernet MAC instance
- Param enable
[in] set true to enable flow control; set false to disable flow control
- Return
ESP_OK: set flow control successfully
ESP_FAIL: set flow control failed because some error occurred
-
esp_err_t (*set_peer_pause_ability)(esp_eth_mac_t *mac, uint32_t ability)
Set the PAUSE ability of peer node.
- Param mac
[in] Ethernet MAC instance
- Param ability
[in] zero indicates that pause function is supported by link partner; non-zero indicates that pause function is not supported by link partner
- Return
ESP_OK: set peer pause ability successfully
ESP_FAIL: set peer pause ability failed because some error occurred
-
esp_err_t (*del)(esp_eth_mac_t *mac)
Free memory of Ethernet MAC.
- Param mac
[in] Ethernet MAC instance
- Return
ESP_OK: free Ethernet MAC instance successfully
ESP_FAIL: free Ethernet MAC instance failed because some error occurred
-
esp_err_t (*set_mediator)(esp_eth_mac_t *mac, esp_eth_mediator_t *eth)
-
struct eth_mac_config_t
Configuration of Ethernet MAC object.
Public Members
-
uint32_t sw_reset_timeout_ms
Software reset timeout value (Unit: ms)
-
uint32_t rx_task_stack_size
Stack size of the receive task
-
uint32_t rx_task_prio
Priority of the receive task
-
int smi_mdc_gpio_num
SMI MDC GPIO number, set to -1 could bypass the SMI GPIO configuration
-
int smi_mdio_gpio_num
SMI MDIO GPIO number, set to -1 could bypass the SMI GPIO configuration
-
uint32_t flags
Flags that specify extra capability for mac driver
-
eth_data_interface_t interface
EMAC Data interface to PHY (MII/RMII)
-
eth_mac_clock_config_t clock_config
EMAC Interface clock configuration
-
uint32_t sw_reset_timeout_ms
Macros
-
ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE
MAC driver can work when cache is disabled
-
ETH_MAC_FLAG_PIN_TO_CORE
Pin MAC task to the CPU core where driver installation happened
-
ETH_MAC_DEFAULT_CONFIG()
Default configuration for Ethernet MAC object.
Type Definitions
-
typedef struct esp_eth_mac_s esp_eth_mac_t
Ethernet MAC.
Enumerations
-
enum emac_rmii_clock_mode_t
RMII Clock Mode Options.
Values:
-
enumerator EMAC_CLK_DEFAULT
Default values configured using Kconfig are going to be used when “Default” selected.
-
enumerator EMAC_CLK_EXT_IN
Input RMII Clock from external. EMAC Clock GPIO number needs to be configured when this option is selected.
Note
MAC will get RMII clock from outside. Note that ESP32 only supports GPIO0 to input the RMII clock.
-
enumerator EMAC_CLK_OUT
Output RMII Clock from internal APLL Clock. EMAC Clock GPIO number needs to be configured when this option is selected.
-
enumerator EMAC_CLK_DEFAULT
-
enum emac_rmii_clock_gpio_t
RMII Clock GPIO number Options.
Values:
-
enumerator EMAC_CLK_IN_GPIO
MAC will get RMII clock from outside at this GPIO.
Note
ESP32 only supports GPIO0 to input the RMII clock.
-
enumerator EMAC_APPL_CLK_OUT_GPIO
Output RMII Clock from internal APLL Clock available at GPIO0.
Note
GPIO0 can be set to output a pre-divided PLL clock (test only!). Enabling this option will configure GPIO0 to output a 50MHz clock. In fact this clock doesn’t have directly relationship with EMAC peripheral. Sometimes this clock won’t work well with your PHY chip. You might need to add some extra devices after GPIO0 (e.g. inverter). Note that outputting RMII clock on GPIO0 is an experimental practice. If you want the Ethernet to work with WiFi, don’t select GPIO0 output mode for stability.
-
enumerator EMAC_CLK_OUT_GPIO
Output RMII Clock from internal APLL Clock available at GPIO16.
-
enumerator EMAC_CLK_OUT_180_GPIO
Inverted Output RMII Clock from internal APLL Clock available at GPIO17.
-
enumerator EMAC_CLK_IN_GPIO
Header File
Functions
-
esp_eth_phy_t *esp_eth_phy_new_ip101(const eth_phy_config_t *config)
Create a PHY instance of IP101.
- Parameters
config – [in] configuration of PHY
- Returns
instance: create PHY instance successfully
NULL: create PHY instance failed because some error occurred
-
esp_eth_phy_t *esp_eth_phy_new_rtl8201(const eth_phy_config_t *config)
Create a PHY instance of RTL8201.
- Parameters
config – [in] configuration of PHY
- Returns
instance: create PHY instance successfully
NULL: create PHY instance failed because some error occurred
-
esp_eth_phy_t *esp_eth_phy_new_lan87xx(const eth_phy_config_t *config)
Create a PHY instance of LAN87xx.
- Parameters
config – [in] configuration of PHY
- Returns
instance: create PHY instance successfully
NULL: create PHY instance failed because some error occurred
-
static inline esp_eth_phy_t *esp_eth_phy_new_lan8720(const eth_phy_config_t *config)
Create a PHY instance of LAN8720.
Note
For ESP-IDF backwards compatibility reasons. In all other cases, use esp_eth_phy_new_lan87xx instead.
- Parameters
config – [in] configuration of PHY
- Returns
instance: create PHY instance successfully
NULL: create PHY instance failed because some error occurred
-
esp_eth_phy_t *esp_eth_phy_new_dp83848(const eth_phy_config_t *config)
Create a PHY instance of DP83848.
- Parameters
config – [in] configuration of PHY
- Returns
instance: create PHY instance successfully
NULL: create PHY instance failed because some error occurred
-
esp_eth_phy_t *esp_eth_phy_new_ksz8041(const eth_phy_config_t *config)
Create a PHY instance of KSZ8041.
- Parameters
config – [in] configuration of PHY
- Returns
instance: create PHY instance successfully
NULL: create PHY instance failed because some error occurred
-
esp_eth_phy_t *esp_eth_phy_new_ksz8081(const eth_phy_config_t *config)
Create a PHY instance of KSZ8081.
- Parameters
config – [in] configuration of PHY
- Returns
instance: create PHY instance successfully
NULL: create PHY instance failed because some error occurred
Structures
-
struct esp_eth_phy_s
Ethernet PHY.
Public Members
-
esp_err_t (*set_mediator)(esp_eth_phy_t *phy, esp_eth_mediator_t *mediator)
Set mediator for PHY.
- Param phy
[in] Ethernet PHY instance
- Param mediator
[in] mediator of Ethernet driver
- Return
ESP_OK: set mediator for Ethernet PHY instance successfully
ESP_ERR_INVALID_ARG: set mediator for Ethernet PHY instance failed because of some invalid arguments
-
esp_err_t (*reset)(esp_eth_phy_t *phy)
Software Reset Ethernet PHY.
- Param phy
[in] Ethernet PHY instance
- Return
ESP_OK: reset Ethernet PHY successfully
ESP_FAIL: reset Ethernet PHY failed because some error occurred
-
esp_err_t (*reset_hw)(esp_eth_phy_t *phy)
Hardware Reset Ethernet PHY.
Note
Hardware reset is mostly done by pull down and up PHY’s nRST pin
- Param phy
[in] Ethernet PHY instance
- Return
ESP_OK: reset Ethernet PHY successfully
ESP_FAIL: reset Ethernet PHY failed because some error occurred
-
esp_err_t (*init)(esp_eth_phy_t *phy)
Initialize Ethernet PHY.
- Param phy
[in] Ethernet PHY instance
- Return
ESP_OK: initialize Ethernet PHY successfully
ESP_FAIL: initialize Ethernet PHY failed because some error occurred
-
esp_err_t (*deinit)(esp_eth_phy_t *phy)
Deinitialize Ethernet PHY.
- Param phyL
[in] Ethernet PHY instance
- Return
ESP_OK: deinitialize Ethernet PHY successfully
ESP_FAIL: deinitialize Ethernet PHY failed because some error occurred
-
esp_err_t (*negotiate)(esp_eth_phy_t *phy)
Start auto negotiation.
- Param phy
[in] Ethernet PHY instance
- Return
ESP_OK: restart auto negotiation successfully
ESP_FAIL: restart auto negotiation failed because some error occurred
-
esp_err_t (*get_link)(esp_eth_phy_t *phy)
Get Ethernet PHY link status.
- Param phy
[in] Ethernet PHY instance
- Return
ESP_OK: get Ethernet PHY link status successfully
ESP_FAIL: get Ethernet PHY link status failed because some error occurred
-
esp_err_t (*pwrctl)(esp_eth_phy_t *phy, bool enable)
Power control of Ethernet PHY.
- Param phy
[in] Ethernet PHY instance
- Param enable
[in] set true to power on Ethernet PHY; ser false to power off Ethernet PHY
- Return
ESP_OK: control Ethernet PHY power successfully
ESP_FAIL: control Ethernet PHY power failed because some error occurred
-
esp_err_t (*set_addr)(esp_eth_phy_t *phy, uint32_t addr)
Set PHY chip address.
- Param phy
[in] Ethernet PHY instance
- Param addr
[in] PHY chip address
- Return
ESP_OK: set Ethernet PHY address successfully
ESP_FAIL: set Ethernet PHY address failed because some error occurred
-
esp_err_t (*get_addr)(esp_eth_phy_t *phy, uint32_t *addr)
Get PHY chip address.
- Param phy
[in] Ethernet PHY instance
- Param addr
[out] PHY chip address
- Return
ESP_OK: get Ethernet PHY address successfully
ESP_ERR_INVALID_ARG: get Ethernet PHY address failed because of invalid argument
-
esp_err_t (*advertise_pause_ability)(esp_eth_phy_t *phy, uint32_t ability)
Advertise pause function supported by MAC layer.
- Param phy
[in] Ethernet PHY instance
- Param addr
[out] Pause ability
- Return
ESP_OK: Advertise pause ability successfully
ESP_ERR_INVALID_ARG: Advertise pause ability failed because of invalid argument
-
esp_err_t (*loopback)(esp_eth_phy_t *phy, bool enable)
- Param phy
[in] Ethernet PHY instance
- Param enable
[in] enables or disables PHY loopback
- Return
ESP_OK: configures PHY instance loopback function successfully
ESP_FAIL: PHY instance loopback configuration failed because some error occurred
-
esp_err_t (*del)(esp_eth_phy_t *phy)
Free memory of Ethernet PHY instance.
- Param phy
[in] Ethernet PHY instance
- Return
ESP_OK: free PHY instance successfully
ESP_FAIL: free PHY instance failed because some error occurred
-
esp_err_t (*set_mediator)(esp_eth_phy_t *phy, esp_eth_mediator_t *mediator)
-
struct eth_phy_config_t
Ethernet PHY configuration.
Public Members
-
int32_t phy_addr
PHY address, set -1 to enable PHY address detection at initialization stage
-
uint32_t reset_timeout_ms
Reset timeout value (Unit: ms)
-
uint32_t autonego_timeout_ms
Auto-negotiation timeout value (Unit: ms)
-
int reset_gpio_num
Reset GPIO number, -1 means no hardware reset
-
int32_t phy_addr
Macros
-
ESP_ETH_PHY_ADDR_AUTO
-
ETH_PHY_DEFAULT_CONFIG()
Default configuration for Ethernet PHY object.
Type Definitions
-
typedef struct esp_eth_phy_s esp_eth_phy_t
Ethernet PHY.
Header File
Functions
-
esp_eth_netif_glue_handle_t esp_eth_new_netif_glue(esp_eth_handle_t eth_hdl)
Create a netif glue for Ethernet driver.
Note
netif glue is used to attach io driver to TCP/IP netif
- Parameters
eth_hdl – Ethernet driver handle
- Returns
glue object, which inherits esp_netif_driver_base_t
-
esp_err_t esp_eth_del_netif_glue(esp_eth_netif_glue_handle_t eth_netif_glue)
Delete netif glue of Ethernet driver.
- Parameters
eth_netif_glue – netif glue
- Returns
-ESP_OK: delete netif glue successfully
-
esp_err_t esp_eth_set_default_handlers(void *esp_netif)
Register default IP layer handlers for Ethernet.
Note
: Ethernet handle might not yet properly initialized when setting up these default handlers
Warning
: This function is deprecated and is kept here only for compatibility reasons. Registration of default IP layer handlers for Ethernet is now handled automatically. Do not call this function if you want to use multiple Ethernet instances at a time.
- Parameters
esp_netif – [in] esp network interface handle created for Ethernet driver
- Returns
ESP_ERR_INVALID_ARG: invalid parameter (esp_netif is NULL)
ESP_OK: set default IP layer handlers successfully
others: other failure occurred during register esp_event handler
-
esp_err_t esp_eth_clear_default_handlers(void *esp_netif)
Unregister default IP layer handlers for Ethernet.
Warning
: This function is deprecated and is kept here only for compatibility reasons. Unregistration of default IP layer handlers for Ethernet is now handled automatically if not registered by calling esp_eth_set_default_handlers.
- Parameters
esp_netif – [in] esp network interface handle created for Ethernet driver
- Returns
ESP_ERR_INVALID_ARG: invalid parameter (esp_netif is NULL)
ESP_OK: clear default IP layer handlers successfully
others: other failure occurred during unregister esp_event handler