Miscellaneous System APIs
Software Reset
To perform software reset of the chip, the esp_restart()
function is provided. When the function is called, execution of the program stops, both CPUs are reset, the application is loaded by the bootloader and starts execution again.
Additionally, the esp_register_shutdown_handler()
function can register a routine that will be automatically called before a restart (that is triggered by esp_restart()
) occurs. This is similar to the functionality of atexit
POSIX function.
Reset Reason
ESP-IDF applications can be started or restarted due to a variety of reasons. To get the last reset reason, call esp_reset_reason()
function. See description of esp_reset_reason_t
for the list of possible reset reasons.
Heap Memory
Two heap-memory-related functions are provided:
esp_get_free_heap_size()
returns the current size of free heap memory.esp_get_minimum_free_heap_size()
returns the minimum size of free heap memory that has ever been available (i.e., the smallest size of free heap memory in the application’s lifetime).
Note that ESP-IDF supports multiple heaps with different capabilities. The functions mentioned in this section return the size of heap memory that can be allocated using the malloc
family of functions. For further information about heap memory, see Heap Memory Allocation.
MAC Address
These APIs allow querying and customizing MAC addresses for different supported network interfaces (e.g., Wi-Fi, Bluetooth, Ethernet).
To fetch the MAC address for a specific network interface (e.g., Wi-Fi, Bluetooth, Ethernet), call the function esp_read_mac()
.
In ESP-IDF, the MAC addresses for the various network interfaces are calculated from a single base MAC address. By default, the Espressif base MAC address is used. This base MAC address is pre-programmed into the ESP32-S3 eFuse in the factory during production.
Interface |
MAC Address (4 universally administered, default) |
MAC Address (2 universally administered) |
---|---|---|
Wi-Fi Station |
base_mac |
base_mac |
Wi-Fi SoftAP |
base_mac, +1 to the last octet |
Local MAC (derived from Wi-Fi Station MAC) |
Bluetooth |
base_mac, +2 to the last octet |
base_mac, +1 to the last octet |
Ethernet |
base_mac, +3 to the last octet |
Local MAC (derived from Bluetooth MAC) |
Note
The configuration configures the number of universally administered MAC addresses that are provided by Espressif.
Note
Although ESP32-S3 has no integrated Ethernet MAC, it is still possible to calculate an Ethernet MAC address. However, this MAC address can only be used with an external ethernet interface such as an SPI-Ethernet device. See Ethernet.
Custom Interface MAC
Sometimes you may need to define custom MAC addresses that are not generated from the base MAC address. To set a custom interface MAC address, use the esp_iface_mac_addr_set()
function. This function allows you to overwrite the MAC addresses of interfaces set (or not yet set) by the base MAC address. Once a MAC address has been set for a particular interface, it will not be affected when the base MAC address is changed.
Custom Base MAC
The default base MAC is pre-programmed by Espressif in eFuse BLK1. To set a custom base MAC instead, call the function esp_iface_mac_addr_set()
with the ESP_MAC_BASE
argument (or esp_base_mac_addr_set()
) before initializing any network interfaces or calling the esp_read_mac()
function. The custom MAC address can be stored in any supported storage device (e.g., flash, NVS).
The custom base MAC addresses should be allocated such that derived MAC addresses will not overlap. Based on the table above, users can configure the option CONFIG_ESP32S3_UNIVERSAL_MAC_ADDRESSES to set the number of valid universal MAC addresses that can be derived from the custom base MAC.
Note
It is also possible to call the function esp_netif_set_mac()
to set the specific MAC used by a network interface after network initialization. But it is recommended to use the base MAC approach documented here to avoid the possibility of the original MAC address briefly appearing on the network before being changed.
Custom MAC Address in eFuse
When reading custom MAC addresses from eFuse, ESP-IDF provides a helper function esp__mac_get_custom()
. Users can also use esp_read_mac()
with the ESP_MAC_EFUSE_CUSTOM
argument. This loads the MAC address from eFuse BLK3. The esp__mac_get_custom()
function assumes that the custom base MAC address is stored in the following format:
Field |
# of bits |
Range of bits |
---|---|---|
MAC address |
48 |
200:248 |
Note
The eFuse BLK3 uses RS-coding during burning, which means that all eFuse fields in this block must be burnt at the same time.
Once custom eFuse MAC address has been obtained (using esp_efuse_mac_get_custom()
or esp_read_mac()
), you need to set it as the base MAC address. There are two ways to do it:
Use an old API: call
esp_base_mac_addr_set()
.Use a new API: call
esp_iface_mac_addr_set()
with theESP_MAC_BASE
argument.
Local Versus Universal MAC Addresses
ESP32-S3 comes pre-programmed with enough valid Espressif universally administered MAC addresses for all internal interfaces. The table above shows how to calculate and derive the MAC address for a specific interface according to the base MAC address.
When using a custom MAC address scheme, it is possible that not all interfaces can be assigned with a universally administered MAC address. In these cases, a locally administered MAC address is assigned. Note that these addresses are intended for use on a single local network only.
See this article for the definition of locally and universally administered MAC addresses.
Function esp_derive_local_mac()
is called internally to derive a local MAC address from a universal MAC address. The process is as follows:
The U/L bit (bit value 0x2) is set in the first octet of the universal MAC address, creating a local MAC address.
If this bit is already set in the supplied universal MAC address (i.e., the supplied “universal” MAC address was in fact already a local MAC address), then the first octet of the local MAC address is XORed with 0x4.
Chip Version
esp_chip_info()
function fills esp_chip_info_t
structure with information about the chip. This includes the chip revision, number of CPU cores, and a bit mask of features enabled in the chip.
SDK Version
esp_get_idf_version()
returns a string describing the ESP-IDF version which is used to compile the application. This is the same value as the one available through IDF_VER
variable of the build system. The version string generally has the format of git describe
output.
To get the version at build time, additional version macros are provided. They can be used to enable or disable parts of the program depending on the ESP-IDF version.
ESP_IDF_VERSION_MAJOR
,ESP_IDF_VERSION_MINOR
,ESP_IDF_VERSION_PATCH
are defined to integers representing major, minor, and patch version.ESP_IDF_VERSION_VAL
andESP_IDF_VERSION
can be used when implementing version checks:#include "esp_idf_version.h" #if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0) // enable functionality present in ESP-IDF v4.0 #endif
App Version
The application version is stored in esp_app_desc_t
structure. It is located in DROM sector and has a fixed offset from the beginning of the binary file. The structure is located after esp_image_header_t
and esp_image_segment_header_t
structures. The type of the field version is string and it has a maximum length of 32 chars.
To set the version in your project manually, you need to set the PROJECT_VER
variable in the CMakeLists.txt
of your project. In application CMakeLists.txt
, put set(PROJECT_VER "0.1.0.1")
before including project.cmake
.
If the CONFIG_APP_PROJECT_VER_FROM_CONFIG option is set, the value of CONFIG_APP_PROJECT_VER will be used. Otherwise, if the PROJECT_VER
variable is not set in the project, it will be retrieved either from the $(PROJECT_PATH)/version.txt
file (if present) or using git command git describe
. If neither is available, PROJECT_VER
will be set to “1”. Application can make use of this by calling esp_app_get_description()
or esp_ota_get_partition_description()
functions.
API Reference
Header File
Functions
-
esp_err_t esp_register_shutdown_handler(shutdown_handler_t handle)
Register shutdown handler.
This function allows you to register a handler that gets invoked before the application is restarted using esp_restart function.
- Parameters
handle – function to execute on restart
- Returns
ESP_OK on success
ESP_ERR_INVALID_STATE if the handler has already been registered
ESP_ERR_NO_MEM if no more shutdown handler slots are available
-
esp_err_t esp_unregister_shutdown_handler(shutdown_handler_t handle)
Unregister shutdown handler.
This function allows you to unregister a handler which was previously registered using esp_register_shutdown_handler function.
ESP_OK on success
ESP_ERR_INVALID_STATE if the given handler hasn’t been registered before
-
void esp_restart(void)
Restart PRO and APP CPUs.
This function can be called both from PRO and APP CPUs. After successful restart, CPU reset reason will be SW_CPU_RESET. Peripherals (except for Wi-Fi, BT, UART0, SPI1, and legacy timers) are not reset. This function does not return.
-
esp_reset_reason_t esp_reset_reason(void)
Get reason of last reset.
- Returns
See description of esp_reset_reason_t for explanation of each value.
-
uint32_t esp_get_free_heap_size(void)
Get the size of available heap.
Note
Note that the returned value may be larger than the maximum contiguous block which can be allocated.
- Returns
Available heap size, in bytes.
-
uint32_t esp_get_free_internal_heap_size(void)
Get the size of available internal heap.
Note
Note that the returned value may be larger than the maximum contiguous block which can be allocated.
- Returns
Available internal heap size, in bytes.
-
uint32_t esp_get_minimum_free_heap_size(void)
Get the minimum heap that has ever been available.
- Returns
Minimum free heap ever available
-
void esp_system_abort(const char *details)
Trigger a software abort.
- Parameters
details – Details that will be displayed during panic handling.
Type Definitions
-
typedef void (*shutdown_handler_t)(void)
Shutdown handler type
Enumerations
-
enum esp_reset_reason_t
Reset reasons.
Values:
-
enumerator ESP_RST_UNKNOWN
Reset reason can not be determined.
-
enumerator ESP_RST_POWERON
Reset due to power-on event.
-
enumerator ESP_RST_EXT
Reset by external pin (not applicable for ESP32)
-
enumerator ESP_RST_SW
Software reset via esp_restart.
-
enumerator ESP_RST_PANIC
Software reset due to exception/panic.
-
enumerator ESP_RST_INT_WDT
Reset (software or hardware) due to interrupt watchdog.
-
enumerator ESP_RST_TASK_WDT
Reset due to task watchdog.
-
enumerator ESP_RST_WDT
Reset due to other watchdogs.
-
enumerator ESP_RST_DEEPSLEEP
Reset after exiting deep sleep mode.
-
enumerator ESP_RST_BROWNOUT
Brownout reset (software or hardware)
-
enumerator ESP_RST_SDIO
Reset over SDIO.
-
enumerator ESP_RST_UNKNOWN
Header File
Functions
-
const char *esp_get_idf_version(void)
Return full IDF version string, same as ‘git describe’ output.
Note
If you are printing the ESP-IDF version in a log file or other information, this function provides more information than using the numerical version macros. For example, numerical version macros don’t differentiate between development, pre-release and release versions, but the output of this function does.
- Returns
constant string from IDF_VER
Macros
-
ESP_IDF_VERSION_MAJOR
Major version number (X.x.x)
-
ESP_IDF_VERSION_MINOR
Minor version number (x.X.x)
-
ESP_IDF_VERSION_PATCH
Patch version number (x.x.X)
-
ESP_IDF_VERSION_VAL(major, minor, patch)
Macro to convert IDF version number into an integer
To be used in comparisons, such as ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
-
ESP_IDF_VERSION
Current IDF version, as an integer
To be used in comparisons, such as ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
Header File
Functions
-
esp_err_t esp_base_mac_addr_set(const uint8_t *mac)
Set base MAC address with the MAC address which is stored in BLK3 of EFUSE or external storage e.g. flash and EEPROM.
Base MAC address is used to generate the MAC addresses used by network interfaces.
If using a custom base MAC address, call this API before initializing any network interfaces. Refer to the ESP-IDF Programming Guide for details about how the Base MAC is used.
Note
Base MAC must be a unicast MAC (least significant bit of first byte must be zero).
Note
If not using a valid OUI, set the “locally administered” bit (bit value 0x02 in the first byte) to avoid collisions.
- Parameters
mac – base MAC address, length: 6 bytes/8 bytes. length: 6 bytes for MAC-48 8 bytes for EUI-64(used for IEEE 802.15.4)
- Returns
ESP_OK on success ESP_ERR_INVALID_ARG If mac is NULL or is not a unicast MAC
-
esp_err_t esp_base_mac_addr_get(uint8_t *mac)
Return base MAC address which is set using esp_base_mac_addr_set.
Note
If no custom Base MAC has been set, this returns the pre-programmed Espressif base MAC address.
- Parameters
mac – base MAC address, length: 6 bytes/8 bytes. length: 6 bytes for MAC-48 8 bytes for EUI-64(used for IEEE 802.15.4)
- Returns
ESP_OK on success ESP_ERR_INVALID_ARG mac is NULL ESP_ERR_INVALID_MAC base MAC address has not been set
-
esp_err_t esp_efuse_mac_get_custom(uint8_t *mac)
Return base MAC address which was previously written to BLK3 of EFUSE.
Base MAC address is used to generate the MAC addresses used by the networking interfaces. This API returns the custom base MAC address which was previously written to EFUSE BLK3 in a specified format.
Writing this EFUSE allows setting of a different (non-Espressif) base MAC address. It is also possible to store a custom base MAC address elsewhere, see esp_base_mac_addr_set() for details.
Note
This function is currently only supported on ESP32.
- Parameters
mac – base MAC address, length: 6 bytes/8 bytes. length: 6 bytes for MAC-48 8 bytes for EUI-64(used for IEEE 802.15.4)
- Returns
ESP_OK on success ESP_ERR_INVALID_ARG mac is NULL ESP_ERR_INVALID_MAC CUSTOM_MAC address has not been set, all zeros (for esp32-xx) ESP_ERR_INVALID_VERSION An invalid MAC version field was read from BLK3 of EFUSE (for esp32) ESP_ERR_INVALID_CRC An invalid MAC CRC was read from BLK3 of EFUSE (for esp32)
-
esp_err_t esp_efuse_mac_get_default(uint8_t *mac)
Return base MAC address which is factory-programmed by Espressif in EFUSE.
- Parameters
mac – base MAC address, length: 6 bytes/8 bytes. length: 6 bytes for MAC-48 8 bytes for EUI-64(used for IEEE 802.15.4)
- Returns
ESP_OK on success ESP_ERR_INVALID_ARG mac is NULL
-
esp_err_t esp_read_mac(uint8_t *mac, esp_mac_type_t type)
Read base MAC address and set MAC address of the interface.
This function first get base MAC address using esp_base_mac_addr_get(). Then calculates the MAC address of the specific interface requested, refer to ESP-IDF Programming Guide for the algorithm.
The MAC address set by the esp_iface_mac_addr_set() function will not depend on the base MAC address.
- Parameters
mac – base MAC address, length: 6 bytes/8 bytes. length: 6 bytes for MAC-48 8 bytes for EUI-64(used for IEEE 802.15.4)
type – Type of MAC address to return
- Returns
ESP_OK on success
-
esp_err_t esp_derive_local_mac(uint8_t *local_mac, const uint8_t *universal_mac)
Derive local MAC address from universal MAC address.
This function copies a universal MAC address and then sets the “locally
administered” bit (bit 0x2) in the first octet, creating a locally administered MAC address.
If the universal MAC address argument is already a locally administered MAC address, then the first octet is XORed with 0x4 in order to create a different locally administered MAC address.
- Parameters
local_mac – base MAC address, length: 6 bytes/8 bytes. length: 6 bytes for MAC-48 8 bytes for EUI-64(used for IEEE 802.15.4)
universal_mac – Source universal MAC address, length: 6 bytes.
- Returns
ESP_OK on success
-
esp_err_t esp_iface_mac_addr_set(const uint8_t *mac, esp_mac_type_t type)
Set custom MAC address of the interface. This function allows you to overwrite the MAC addresses of the interfaces set by the base MAC address.
- Parameters
mac – MAC address, length: 6 bytes/8 bytes. length: 6 bytes for MAC-48 8 bytes for EUI-64(used for ESP_MAC_IEEE802154 type)
type – Type of MAC address
- Returns
ESP_OK on success
-
size_t esp_mac_addr_len_get(esp_mac_type_t type)
Return the size of the MAC type in bytes.
If CONFIG_IEEE802154_ENABLED is set then for these types: ESP_MAC_IEEE802154, ESP_MAC_BASE, ESP_MAC_EFUSE_FACTORY and ESP_MAC_EFUSE_CUSTOM the MAC size is 8 bytes. If CONFIG_IEEE802154_ENABLED is not set then for all types it returns 6 bytes.
- Parameters
type – Type of MAC address
- Returns
0 MAC type not found (not supported) 6 bytes for MAC-48. 8 bytes for EUI-64.
Macros
-
MAC2STR(a)
-
MACSTR
Enumerations
Header File
Functions
-
void esp_chip_info(esp_chip_info_t *out_info)
Fill an esp_chip_info_t structure with information about the chip.
- Parameters
out_info – [out] structure to be filled
Structures
-
struct esp_chip_info_t
The structure represents information about the chip.
Public Members
-
esp_chip_model_t model
chip model, one of esp_chip_model_t
-
uint32_t features
bit mask of CHIP_FEATURE_x feature flags
-
uint16_t revision
chip revision number (in format MXX; where M - wafer major version, XX - wafer minor version)
-
uint8_t cores
number of CPU cores
-
esp_chip_model_t model
Macros
-
CHIP_FEATURE_EMB_FLASH
Chip has embedded flash memory.
-
CHIP_FEATURE_WIFI_BGN
Chip has 2.4GHz WiFi.
-
CHIP_FEATURE_BLE
Chip has Bluetooth LE.
-
CHIP_FEATURE_BT
Chip has Bluetooth Classic.
-
CHIP_FEATURE_IEEE802154
Chip has IEEE 802.15.4.
-
CHIP_FEATURE_EMB_PSRAM
Chip has embedded psram.
Enumerations
-
enum esp_chip_model_t
Chip models.
Values:
-
enumerator CHIP_ESP32
ESP32.
-
enumerator CHIP_ESP32S2
ESP32-S2.
-
enumerator CHIP_ESP32S3
ESP32-S3.
-
enumerator CHIP_ESP32C3
ESP32-C3.
-
enumerator CHIP_ESP32H4
ESP32-H4.
-
enumerator CHIP_ESP32C2
ESP32-C2.
-
enumerator CHIP_ESP32C6
ESP32-C6.
-
enumerator CHIP_ESP32H2
ESP32-H2.
-
enumerator CHIP_POSIX_LINUX
The code is running on POSIX/Linux simulator.
-
enumerator CHIP_ESP32
Header File
Functions
-
void esp_cpu_stall(int core_id)
Stall a CPU core.
- Parameters
core_id – The core’s ID
-
void esp_cpu_unstall(int core_id)
Resume a previously stalled CPU core.
- Parameters
core_id – The core’s ID
-
void esp_cpu_reset(int core_id)
Reset a CPU core.
- Parameters
core_id – The core’s ID
-
void esp_cpu_wait_for_intr(void)
Wait for Interrupt.
This function causes the current CPU core to execute its Wait For Interrupt (WFI or equivalent) instruction. After executing this function, the CPU core will stop execution until an interrupt occurs.
-
int esp_cpu_get_core_id(void)
Get the current core’s ID.
This function will return the ID of the current CPU (i.e., the CPU that calls this function).
- Returns
The current core’s ID [0..SOC_CPU_CORES_NUM - 1]
-
void *esp_cpu_get_sp(void)
Read the current stack pointer address.
- Returns
Stack pointer address
-
esp_cpu_cycle_count_t esp_cpu_get_cycle_count(void)
Get the current CPU core’s cycle count.
Each CPU core maintains an internal counter (i.e., cycle count) that increments every CPU clock cycle.
- Returns
Current CPU’s cycle count, 0 if not supported.
-
void esp_cpu_set_cycle_count(esp_cpu_cycle_count_t cycle_count)
Set the current CPU core’s cycle count.
Set the given value into the internal counter that increments every CPU clock cycle.
- Parameters
cycle_count – CPU cycle count
-
void *esp_cpu_pc_to_addr(uint32_t pc)
Convert a program counter (PC) value to address.
If the architecture does not store the true virtual address in the CPU’s PC or return addresses, this function will convert the PC value to a virtual address. Otherwise, the PC is just returned
- Parameters
pc – PC value
- Returns
Virtual address
-
void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret)
Get a CPU interrupt’s descriptor.
Each CPU interrupt has a descriptor describing the interrupt’s capabilities and restrictions. This function gets the descriptor of a particular interrupt on a particular CPU.
- Parameters
core_id – [in] The core’s ID
intr_num – [in] Interrupt number
intr_desc_ret – [out] The interrupt’s descriptor
-
void esp_cpu_intr_set_ivt_addr(const void *ivt_addr)
Set the base address of the current CPU’s Interrupt Vector Table (IVT)
- Parameters
ivt_addr – Interrupt Vector Table’s base address
-
bool esp_cpu_intr_has_handler(int intr_num)
Check if a particular interrupt already has a handler function.
Check if a particular interrupt on the current CPU already has a handler function assigned.
Note
This function simply checks if the IVT of the current CPU already has a handler assigned.
- Parameters
intr_num – Interrupt number (from 0 to 31)
- Returns
True if the interrupt has a handler function, false otherwise.
-
void esp_cpu_intr_set_handler(int intr_num, esp_cpu_intr_handler_t handler, void *handler_arg)
Set the handler function of a particular interrupt.
Assign a handler function (i.e., ISR) to a particular interrupt on the current CPU.
Note
This function simply sets the handler function (in the IVT) and does not actually enable the interrupt.
- Parameters
intr_num – Interrupt number (from 0 to 31)
handler – Handler function
handler_arg – Argument passed to the handler function
-
void *esp_cpu_intr_get_handler_arg(int intr_num)
Get a handler function’s argument of.
Get the argument of a previously assigned handler function on the current CPU.
- Parameters
intr_num – Interrupt number (from 0 to 31)
- Returns
The the argument passed to the handler function
-
void esp_cpu_intr_enable(uint32_t intr_mask)
Enable particular interrupts on the current CPU.
- Parameters
intr_mask – Bit mask of the interrupts to enable
-
void esp_cpu_intr_disable(uint32_t intr_mask)
Disable particular interrupts on the current CPU.
- Parameters
intr_mask – Bit mask of the interrupts to disable
-
uint32_t esp_cpu_intr_get_enabled_mask(void)
Get the enabled interrupts on the current CPU.
- Returns
Bit mask of the enabled interrupts
-
void esp_cpu_intr_edge_ack(int intr_num)
Acknowledge an edge interrupt.
- Parameters
intr_num – Interrupt number (from 0 to 31)
-
void esp_cpu_configure_region_protection(void)
Configure the CPU to disable access to invalid memory regions.
-
esp_err_t esp_cpu_set_breakpoint(int bp_num, const void *bp_addr)
Set and enable a hardware breakpoint on the current CPU.
Note
This function is meant to be called by the panic handler to set a breakpoint for an attached debugger during a panic.
Note
Overwrites previously set breakpoint with same breakpoint number.
- Parameters
bp_num – Hardware breakpoint number [0..SOC_CPU_BREAKPOINTS_NUM - 1]
bp_addr – Address to set a breakpoint on
- Returns
ESP_OK if breakpoint is set. Failure otherwise
-
esp_err_t esp_cpu_clear_breakpoint(int bp_num)
Clear a hardware breakpoint on the current CPU.
Note
Clears a breakpoint regardless of whether it was previously set
- Parameters
bp_num – Hardware breakpoint number [0..SOC_CPU_BREAKPOINTS_NUM - 1]
- Returns
ESP_OK if breakpoint is cleared. Failure otherwise
-
esp_err_t esp_cpu_set_watchpoint(int wp_num, const void *wp_addr, size_t size, esp_cpu_watchpoint_trigger_t trigger)
Set and enable a hardware watchpoint on the current CPU.
Set and enable a hardware watchpoint on the current CPU, specifying the memory range and trigger operation. Watchpoints will break/panic the CPU when the CPU accesses (according to the trigger type) on a certain memory range.
Note
Overwrites previously set watchpoint with same watchpoint number.
- Parameters
wp_num – Hardware watchpoint number [0..SOC_CPU_WATCHPOINTS_NUM - 1]
wp_addr – Watchpoint’s base address
size – Size of the region to watch. Must be one of 2^n, with n in [0..6].
trigger – Trigger type
- Returns
ESP_ERR_INVALID_ARG on invalid arg, ESP_OK otherwise
-
esp_err_t esp_cpu_clear_watchpoint(int wp_num)
Clear a hardware watchpoint on the current CPU.
Note
Clears a watchpoint regardless of whether it was previously set
- Parameters
wp_num – Hardware watchpoint number [0..SOC_CPU_WATCHPOINTS_NUM - 1]
- Returns
ESP_OK if watchpoint was cleared. Failure otherwise.
-
bool esp_cpu_dbgr_is_attached(void)
Check if the current CPU has a debugger attached.
- Returns
True if debugger is attached, false otherwise
-
void esp_cpu_dbgr_break(void)
Trigger a call to the current CPU’s attached debugger.
-
intptr_t esp_cpu_get_call_addr(intptr_t return_address)
Given the return address, calculate the address of the preceding call instruction This is typically used to answer the question “where was the function called from?”.
- Parameters
return_address – The value of the return address register. Typically set to the value of __builtin_return_address(0).
- Returns
Address of the call instruction preceding the return address.
-
bool esp_cpu_compare_and_set(volatile uint32_t *addr, uint32_t compare_value, uint32_t new_value)
Atomic compare-and-set operation.
- Parameters
addr – Address of atomic variable
compare_value – Value to compare the atomic variable to
new_value – New value to set the atomic variable to
- Returns
Whether the atomic variable was set or not
Structures
-
struct esp_cpu_intr_desc_t
CPU interrupt descriptor.
Each particular CPU interrupt has an associated descriptor describing that particular interrupt’s characteristics. Call esp_cpu_intr_get_desc() to get the descriptors of a particular interrupt.
Public Members
-
int priority
Priority of the interrupt if it has a fixed priority, (-1) if the priority is configurable.
-
esp_cpu_intr_type_t type
Whether the interrupt is an edge or level type interrupt, ESP_CPU_INTR_TYPE_NA if the type is configurable.
-
uint32_t flags
Flags indicating extra details.
-
int priority
Macros
-
ESP_CPU_INTR_DESC_FLAG_SPECIAL
Interrupt descriptor flags of esp_cpu_intr_desc_t.
The interrupt is a special interrupt (e.g., a CPU timer interrupt)
-
ESP_CPU_INTR_DESC_FLAG_RESVD
The interrupt is reserved for internal use
Type Definitions
-
typedef uint32_t esp_cpu_cycle_count_t
CPU cycle count type.
This data type represents the CPU’s clock cycle count
-
typedef void (*esp_cpu_intr_handler_t)(void *arg)
CPU interrupt handler type.
Enumerations
Header File
Functions
-
const esp_app_desc_t *esp_app_get_description(void)
Return esp_app_desc structure. This structure includes app version.
Return description for running app.
- Returns
Pointer to esp_app_desc structure.
-
int esp_app_get_elf_sha256(char *dst, size_t size)
Fill the provided buffer with SHA256 of the ELF file, formatted as hexadecimal, null-terminated. If the buffer size is not sufficient to fit the entire SHA256 in hex plus a null terminator, the largest possible number of bytes will be written followed by a null.
- Parameters
dst – Destination buffer
size – Size of the buffer
- Returns
Number of bytes written to dst (including null terminator)
Structures
-
struct esp_app_desc_t
Description about application.
Public Members
-
uint32_t magic_word
Magic word ESP_APP_DESC_MAGIC_WORD
-
uint32_t secure_version
Secure version
-
uint32_t reserv1[2]
reserv1
-
char version[32]
Application version
-
char project_name[32]
Project name
-
char time[16]
Compile time
-
char date[16]
Compile date
-
char idf_ver[32]
Version IDF
-
uint8_t app_elf_sha256[32]
sha256 of elf file
-
uint32_t reserv2[20]
reserv2
-
uint32_t magic_word
Macros
-
ESP_APP_DESC_MAGIC_WORD
The magic word for the esp_app_desc structure that is in DROM.