ESP-NETIF

The purpose of ESP-NETIF library is twofold:

  • It provides an abstraction layer for the application on top of the TCP/IP stack. This will allow applications to choose between IP stacks in the future.

  • The APIs it provides are thread safe, even if the underlying TCP/IP stack APIs are not.

ESP-IDF currently implements ESP-NETIF for the lwIP TCP/IP stack only. However, the adapter itself is TCP/IP implementation agnostic and different implementations are possible.

It is also possible to use a custom TCP/IP stack with ESP-IDF, provided it implements BSD API. For more information on building ESP-IDF without lwIP, please refer to components/esp_netif_stack/README.md.

Some ESP-NETIF API functions are intended to be called by application code, for example to get/set interface IP addresses, configure DHCP. Other functions are intended for internal ESP-IDF use by the network driver layer.

In many cases, applications do not need to call ESP-NETIF APIs directly as they are called from the default network event handlers.

ESP-NETIF architecture

                       |          (A) USER CODE                 |
                       |                 Apps                   |
      .................| init          settings      events     |
      .                +----------------------------------------+
      .                   .                |           *
      .                   .                |           *
  --------+            +===========================+   *     +-----------------------+
          |            | new/config   get/set/apps |   *     | init                  |
          |            |                           |...*.....| Apps (DHCP, SNTP)     |
          |            |---------------------------|   *     |                       |
    init  |            |                           |****     |                       |
    start |************|  event handler            |*********|  DHCP                 |
    stop  |            |                           |         |                       |
          |            |---------------------------|         |                       |
          |            |                           |         |    NETIF              |
    +-----|            |                           |         +-----------------+     |
    | glue|---<----|---|  esp_netif_transmit       |--<------| netif_output    |     |
    |     |        |   |                           |         |                 |     |
    |     |--->----|---|  esp_netif_receive        |-->------| netif_input     |     |
    |     |        |   |                           |         + ----------------+     |
    |     |...<....|...|  esp_netif_free_rx_buffer |...<.....| packet buffer         |
    +-----|     |  |   |                           |         |                       |
          |     |  |   |                           |         |         (D)           |
    (B)   |     |  |   |          (C)              |         +-----------------------+
  --------+     |  |   +===========================+
communication   |  |                                               NETWORK STACK
DRIVER          |  |           ESP-NETIF
                |  |                                         +------------------+
                |  |   +---------------------------+.........| open/close       |
                |  |   |                           |         |                  |
                |  -<--|  l2tap_write              |-----<---|  write           |
                |      |                           |         |                  |
                ---->--|  esp_vfs_l2tap_eth_filter |----->---|  read            |
                       |                           |         |                  |
                       |            (E)            |         +------------------+
                       +---------------------------+
                                                                   USER CODE
                             ESP-NETIF L2 TAP

Data and event flow in the diagram

  • ........ Initialization line from user code to ESP-NETIF and communication driver

  • --<--->-- Data packets going from communication media to TCP/IP stack and back

  • ******** Events aggregated in ESP-NETIF propagates to driver, user code and network stack

  • | User settings and runtime configuration

ESP-NETIF interaction

A) User code, boiler plate

Overall application interaction with a specific IO driver for communication media and configured TCP/IP network stack is abstracted using ESP-NETIF APIs and outlined as below:

  1. Initialization code

  1. Initializes IO driver

  2. Creates a new instance of ESP-NETIF and configure with

  • ESP-NETIF specific options (flags, behaviour, name)

  • Network stack options (netif init and input functions, not publicly available)

  • IO driver specific options (transmit, free rx buffer functions, IO driver handle)

  1. Attaches the IO driver handle to the ESP-NETIF instance created in the above steps

  2. Configures event handlers

  • use default handlers for common interfaces defined in IO drivers; or define a specific handlers for customised behaviour/new interfaces

  • register handlers for app related events (such as IP lost/acquired)

  1. Interaction with network interfaces using ESP-NETIF API

  • Getting and setting TCP/IP related parameters (DHCP, IP, etc)

  • Receiving IP events (connect/disconnect)

  • Controlling application lifecycle (set interface up/down)

B) Communication driver, IO driver, media driver

Communication driver plays these two important roles in relation with ESP-NETIF:

  1. Event handlers: Define behaviour patterns of interaction with ESP-NETIF (for example: ethernet link-up -> turn netif on)

  2. Glue IO layer: Adapts the input/output functions to use ESP-NETIF transmit, receive and free receive buffer

  • Installs driver_transmit to appropriate ESP-NETIF object, so that outgoing packets from network stack are passed to the IO driver

  • Calls esp_netif_receive() to pass incoming data to network stack

C) ESP-NETIF

ESP-NETIF is an intermediary between an IO driver and a network stack, connecting packet data path between these two. As that it provides a set of interfaces for attaching a driver to ESP-NETIF object (runtime) and configuring a network stack (compile time). In addition to that a set of API is provided to control network interface lifecycle and its TCP/IP properties. As an overview, the ESP-NETIF public interface could be divided into these 6 groups:

  1. Initialization APIs (to create and configure ESP-NETIF instance)

  2. Input/Output API (for passing data between IO driver and network stack)

  3. Event or Action API

  • Used for network interface lifecycle management

  • ESP-NETIF provides building blocks for designing event handlers

  1. Setters and Getters for basic network interface properties

  2. Network stack abstraction: enabling user interaction with TCP/IP stack

  • Set interface up or down

  • DHCP server and client API

  • DNS API

  • SNTP API

  1. Driver conversion utilities

D) Network stack

Network stack has no public interaction with application code with regard to public interfaces and shall be fully abstracted by ESP-NETIF API.

E) ESP-NETIF L2 TAP Interface

The ESP-NETIF L2 TAP interface is ESP-IDF mechanism utilized to access Data Link Layer (L2 per OSI/ISO) for frame reception and transmission from user application. Its typical usage in embedded world might be implementation of non-IP related protocols such as PTP, Wake on LAN and others. Note that only Ethernet (IEEE 802.3) is currently supported.

From user perspective, the ESP-NETIF L2 TAP interface is accessed using file descriptors of VFS which provides a file-like interfacing (using functions like open(), read(), write(), etc). Refer to Virtual filesystem component to learn more.

There is only one ESP-NETIF L2 TAP interface device (path name) available. However multiple file descriptors with different configuration can be opened at a time since the ESP-NETIF L2 TAP interface can be understood as generic entry point to Layer 2 infrastructure. Important is then specific configuration of particular file descriptor. It can be configured to give an access to specific Network Interface identified by if_key (e.g. ETH_DEF) and to filter only specific frames based on their type (e.g. Ethernet type in case of IEEE 802.3). Filtering only specific frames is crucial since the ESP-NETIF L2 TAP needs to exist along with IP stack and so the IP related traffic (IP, ARP, etc.) should not be passed directly to the user application. Even though such option is still configurable, it is not recommended in standard use cases. Filtering is also advantageous from a perspective the user’s application gets access only to frame types it is interested in and the remaining traffic is either passed to other L2 TAP file descriptors or to IP stack.

ESP-NETIF L2 TAP Interface Usage Manual

Initialization

To be able to use the ESP-NETIF L2 TAP interface, it needs to be enabled in Kconfig by CONFIG_ESP_NETIF_L2_TAP first and then registered by esp_vfs_l2tap_intf_register() prior usage of any VFS function.

open()

Once the ESP-NETIF L2 TAP is registered, it can be opened at path name “/dev/net/tap”. The same path name can be opened multiple times up to CONFIG_ESP_NETIF_L2_TAP_MAX_FDS and multiple file descriptors with with different configuration may access the Data Link Layer frames.

The ESP-NETIF L2 TAP can be opened with O_NONBLOCK file status flag to the read() does not block. Note that the write() may block in current implementation when accessing a Network interface since it is a shared resource among multiple ESP-NETIF L2 TAP file descriptors and IP stack, and there is currently no queuing mechanism deployed. The file status flag can be retrieved and modified using fcntl().

On success, open() returns the new file descriptor (a nonnegative integer). On error, -1 is returned and errno is set to indicate the error.

ioctl()

The newly opened ESP-NETIF L2 TAP file descriptor needs to be configured prior its usage since it is not bounded to any specific Network Interface and no frame type filter is configured. The following configuration options are available to do so:

  • L2TAP_S_INTF_DEVICE - bounds the file descriptor to specific Network Interface which is identified by its if_key. ESP-NETIF Network Interface if_key is passed to ioctl() as the third parameter. Note that default Network Interfaces if_key's used in ESP-IDF can be found in esp_netif/include/esp_netif_defaults.h.

  • L2TAP_S_DEVICE_DRV_HNDL - is other way how to bound the file descriptor to specific Network Interface. In this case the Network interface is identified directly by IO Driver handle (e.g. esp_eth_handle_t in case of Ethernet). The IO Driver handle is passed to ioctl() as the third parameter.

  • L2TAP_S_RCV_FILTER - sets the filter to frames with this type to be passed to the file descriptor. In case of Ethernet frames, the frames are to be filtered based on Length/Ethernet type field. In case the filter value is set less than or equal to 0x05DC, the Ethernet type field is considered to represent IEEE802.3 Length Field and all frames with values in interval <0, 0x05DC> at that field are to be passed to the file descriptor. The IEEE802.2 logical link control (LLC) resolution is then expected to be performed by user’s application. In case the filter value is set greater than 0x05DC, the Ethernet type field is considered to represent protocol identification and only frames which are equal to the set value are to be passed to the file descriptor.

All above set configuration options have getter counterpart option to read the current settings.

Warning

The file descriptor needs to be firstly bounded to specific Network Interface by L2TAP_S_INTF_DEVICE or L2TAP_S_DEVICE_DRV_HNDL to be L2TAP_S_RCV_FILTER option available.

Note

VLAN tagged frames are currently not recognized. If user needs to process VLAN tagged frames, they need set filter to be equal to VLAN tag (i.e. 0x8100 or 0x88A8) and process the VLAN tagged frames in user application.

Note

L2TAP_S_DEVICE_DRV_HNDL is particularly useful when user's application does not require usage of IP stack and so ESP-NETIF is not required to be initialized too. As a result, Network Interface cannot be identified by its if_key and hence it needs to be identified directly by its IO Driver handle.

On success, ioctl() returns 0. On error, -1 is returned, and errno is set to indicate the error.
EBADF - not a valid file descriptor.
EACCES - option change is denied in this state (e.g. file descriptor has not be bounded to Network interface yet).
EINVAL - invalid configuration argument. Ethernet type filter is already used by other file descriptor on that same Network interface.
ENODEV - no such Network Interface which is tried to be assigned to the file descriptor exists.
ENOSYS - unsupported operation, passed configuration option does not exists.

fcntl()

fcntl() is used to manipulate with properties of opened ESP-NETIF L2 TAP file descriptor.

The following commands manipulate the status flags associated with file descriptor:

  • F_GETFD - the function returns the file descriptor flags, the third argument is ignored.

  • F_SETFD - sets the file descriptor flags to the value specified by the third argument. Zero is returned.

On error, -1 is returned, and errno is set to indicate the error.
EBADF - not a valid file descriptor.
ENOSYS - unsupported command.

read()

Opened and configured ESP-NETIF L2 TAP file descriptor can be accessed by read() to get inbound frames. The read operation can be either blocking or non-blocking based on actual state of O_NONBLOCK file status flag. When the file status flag is set blocking, the read operation waits until a frame is received and context is switched to other task. When the file status flag is set non-blocking, the read operation returns immediately. In such case, either a frame is returned if it was already queued or the function indicates the queue is empty. The number of queued frames associated with one file descriptor is limited by CONFIG_ESP_NETIF_L2_TAP_RX_QUEUE_SIZE Kconfig option. Once the number of queued frames reach configured threshold, the newly arriving frames are dropped until the queue has enough room to accept incoming traffic (Tail Drop queue management).

On success, read() returns the number of bytes read. Zero is returned when size of the destination buffer is 0. On error, -1 is returned, and errno is set to indicate the error.
EBADF - not a valid file descriptor.
EAGAIN - the file descriptor has been marked non-blocking (O_NONBLOCK), and the read would block.

write()

A raw Data Link Layer frame can be sent to Network Interface via opened and configured ESP-NETIF L2 TAP file descriptor. User’s application is responsible to construct the whole frame except for fields which are added automatically by the physical interface device. The following fields need to be constructed by the user's application in case of Ethernet link: source/destination MAC addresses, Ethernet type, actual protocol header and user data. See below for more information about Ethernet frame structure.

+-------------------+-------------------+-------------+-------------------------------     --+
|  Destination MAC  |     Source MAC    | Type/Length | Payload (protocol header/data) ...   |
+-------------------+-------------------+-------------+-------------------------------     --+
        6B                   6B                2B                 0-1486B

In other words, there is no additional frame processing performed by the ESP-NETIF L2 TAP interface. It only checks the Ethernet type of the frame is the same as the filter configured in the file descriptor. If the Ethernet type is different, an error is returned and the frame is not sent. Note that the write() may block in current implementation when accessing a Network interface since it is a shared resource among multiple ESP-NETIF L2 TAP file descriptors and IP stack, and there is currently no queuing mechanism deployed.

On success, write() returns the number of bytes written. Zero is returned when size of the input buffer is 0. On error, -1 is returned, and errno is set to indicate the error.
EBADF - not a valid file descriptor.
EBADMSG - Ethernet type of the frame is different then file descriptor configured filter.
EIO - Network interface not available or busy.

close()

Opened ESP-NETIF L2 TAP file descriptor can be closed by the close() to free its allocated resources. The ESP-NETIF L2 TAP implementation of close() may block. On the other hand, it is thread safe and can be called from different task than the file descriptor is actually used. If such situation occurs and one task is blocked in I/O operation and another task tries to close the file descriptor, the first task is unblocked. The first's task read operation then ends with error.

On success, close() returns zero. On error, -1 is returned, and errno is set to indicate the error.
EBADF - not a valid file descriptor.

select()

Select is used in a standard way, just CONFIG_VFS_SUPPORT_SELECT needs to be enabled to be the select() function available.

SNTP API

You can find a brief introduction to SNTP in general, its initialization code and basic modes in SNTP Time Synchronization section in the System Time Document.

This section provides more details about specific use cases of SNTP service, with statically configured servers, or using DHCP provided servers, or both. The workflow is usually very simple:

  1. Initialize and configure the service using esp_netif_sntp_init().

  2. Start the service via esp_netif_sntp_start(). This step is not needed if we auto-started the service in the previous step (default). It's useful to start the service explicitly after connecting, if we want to use DHCP obtained NTP servers. (This option needs to be enabled before connecting, but SNTP service should be started after)

  3. Wait for the system time to synchronize using esp_netif_sntp_sync_wait() (only if needed).

  4. Stop and destroy the service using esp_netif_sntp_deinit().

Basic mode with statically defined server(s)

Initialize the module with the default configuration after connecting to network. Note that it's possible to provide multiple NTP servers in the configuration struct:

esp_sntp_config_t config = ESP_NETIF_SNTP_DEFAULT_CONFIG_MULTIPLE(2,
                           ESP_SNTP_SERVER_LIST("time.windows.com", "pool.ntp.org" ) );
esp_netif_sntp_init(&config);

Note

If we want to configure multiple SNTP servers, we have to update lwIP configuration CONFIG_LWIP_SNTP_MAX_SERVERS.

Use DHCP obtained SNTP server(s)

First of all, we have to enable lwIP configuration option CONFIG_LWIP_DHCP_GET_NTP_SRV. Then we have to initialize the SNTP module with the DHCP option and no NTP server:

esp_sntp_config_t config = ESP_NETIF_SNTP_DEFAULT_CONFIG_MULTIPLE(0, {} );
config.start = false;                       // start SNTP service explicitly
config.server_from_dhcp = true;             // accept NTP offer from DHCP server
esp_netif_sntp_init(&config);

Then, once we're connected, we could start the service using:

esp_netif_sntp_start();

Note

It's also possible to start the service during initialization (default config.start=true). This would likely cause the initial SNTP request to fail (since we are not connected yet) and thus some backoff time for subsequent requests.

Use both static and dynamic servers

Very similar to the scenario above (DHCP provided SNTP server), but in this configuration we need to make sure that the static server configuration is refreshed when obtaining NTP servers by DHCP. The underlying lwIP code cleans up the rest of the list of NTP servers when DHCP provided information gets accepted. Thus the ESP-NETIF SNTP module saves the statically configured server(s) and reconfigures them after obtaining DHCP lease.

The typical configuration now looks as per below, providing the specific IP_EVENT to update the config and index of the first server to reconfigure (for example setting config.index_of_first_server=1 would keep DHCP provided server at index 0, and the statically configured server at index 1).

esp_sntp_config_t config = ESP_NETIF_SNTP_DEFAULT_CONFIG("pool.ntp.org");
config.start = false;                       // start SNTP service explicitly (after connecting)
config.server_from_dhcp = true;             // accept NTP offers from DHCP server
config.renew_servers_after_new_IP = true;   // let esp-netif update configured SNTP server(s) after receiving DHCP lease
config.index_of_first_server = 1;           // updates from server num 1, leaving server 0 (from DHCP) intact
config.ip_event_to_renew = IP_EVENT_STA_GOT_IP;  // IP event on which we refresh the configuration

Then we start the service normally with esp_netif_sntp_start().

ESP-NETIF programmer's manual

Please refer to the example section for basic initialization of default interfaces:

For more specific cases please consult this guide: ESP-NETIF Custom I/O Driver.

API Reference

Header File

Functions

esp_err_t esp_netif_init(void)

Initialize the underlying TCP/IP stack.

Note

This function should be called exactly once from application code, when the application starts up.

Returns

  • ESP_OK on success

  • ESP_FAIL if initializing failed

esp_err_t esp_netif_deinit(void)

Deinitialize the esp-netif component (and the underlying TCP/IP stack)

     Note: Deinitialization is not supported yet

Returns

  • ESP_ERR_INVALID_STATE if esp_netif not initialized

  • ESP_ERR_NOT_SUPPORTED otherwise

esp_netif_t *esp_netif_new(const esp_netif_config_t *esp_netif_config)

Creates an instance of new esp-netif object based on provided config.

Parameters

esp_netif_config -- pointer esp-netif configuration

Returns

  • pointer to esp-netif object on success

  • NULL otherwise

void esp_netif_destroy(esp_netif_t *esp_netif)

Destroys the esp_netif object.

Parameters

esp_netif -- [in] pointer to the object to be deleted

esp_err_t esp_netif_set_driver_config(esp_netif_t *esp_netif, const esp_netif_driver_ifconfig_t *driver_config)

Configures driver related options of esp_netif object.

Parameters
  • esp_netif -- [inout] pointer to the object to be configured

  • driver_config -- [in] pointer esp-netif io driver related configuration

Returns

  • ESP_OK on success

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS if invalid parameters provided

esp_err_t esp_netif_attach(esp_netif_t *esp_netif, esp_netif_iodriver_handle driver_handle)

Attaches esp_netif instance to the io driver handle.

Calling this function enables connecting specific esp_netif object with already initialized io driver to update esp_netif object with driver specific configuration (i.e. calls post_attach callback, which typically sets io driver callbacks to esp_netif instance and starts the driver)

Parameters
  • esp_netif -- [inout] pointer to esp_netif object to be attached

  • driver_handle -- [in] pointer to the driver handle

Returns

  • ESP_OK on success

  • ESP_ERR_ESP_NETIF_DRIVER_ATTACH_FAILED if driver's pot_attach callback failed

esp_err_t esp_netif_receive(esp_netif_t *esp_netif, void *buffer, size_t len, void *eb)

Passes the raw packets from communication media to the appropriate TCP/IP stack.

This function is called from the configured (peripheral) driver layer. The data are then forwarded as frames to the TCP/IP stack.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • buffer -- [in] Received data

  • len -- [in] Length of the data frame

  • eb -- [in] Pointer to internal buffer (used in Wi-Fi driver)

Returns

  • ESP_OK

void esp_netif_action_start(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)

Default building block for network interface action upon IO driver start event Creates network interface, if AUTOUP enabled turns the interface on, if DHCPS enabled starts dhcp server.

Note

This API can be directly used as event handler

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • base --

  • event_id --

  • data --

void esp_netif_action_stop(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)

Default building block for network interface action upon IO driver stop event.

Note

This API can be directly used as event handler

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • base --

  • event_id --

  • data --

void esp_netif_action_connected(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)

Default building block for network interface action upon IO driver connected event.

Note

This API can be directly used as event handler

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • base --

  • event_id --

  • data --

void esp_netif_action_disconnected(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)

Default building block for network interface action upon IO driver disconnected event.

Note

This API can be directly used as event handler

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • base --

  • event_id --

  • data --

void esp_netif_action_got_ip(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)

Default building block for network interface action upon network got IP event.

Note

This API can be directly used as event handler

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • base --

  • event_id --

  • data --

void esp_netif_action_join_ip6_multicast_group(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)

Default building block for network interface action upon IPv6 multicast group join.

Note

This API can be directly used as event handler

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • base --

  • event_id --

  • data --

void esp_netif_action_leave_ip6_multicast_group(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)

Default building block for network interface action upon IPv6 multicast group leave.

Note

This API can be directly used as event handler

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • base --

  • event_id --

  • data --

void esp_netif_action_add_ip6_address(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)

Default building block for network interface action upon IPv6 address added by the underlying stack.

Note

This API can be directly used as event handler

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • base --

  • event_id --

  • data --

void esp_netif_action_remove_ip6_address(void *esp_netif, esp_event_base_t base, int32_t event_id, void *data)

Default building block for network interface action upon IPv6 address removed by the underlying stack.

Note

This API can be directly used as event handler

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • base --

  • event_id --

  • data --

esp_err_t esp_netif_set_default_netif(esp_netif_t *esp_netif)

Manual configuration of the default netif.

This API overrides the automatic configuration of the default interface based on the route_prio If the selected netif is set default using this API, no other interface could be set-default disregarding its route_prio number (unless the selected netif gets destroyed)

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

ESP_OK on success

esp_netif_t *esp_netif_get_default_netif(void)

Getter function of the default netif.

This API returns the selected default netif.

Returns

Handle to esp-netif instance of the default netif.

esp_err_t esp_netif_join_ip6_multicast_group(esp_netif_t *esp_netif, const esp_ip6_addr_t *addr)

Cause the TCP/IP stack to join a IPv6 multicast group.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • addr -- [in] The multicast group to join

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

  • ESP_ERR_ESP_NETIF_MLD6_FAILED

  • ESP_ERR_NO_MEM

esp_err_t esp_netif_leave_ip6_multicast_group(esp_netif_t *esp_netif, const esp_ip6_addr_t *addr)

Cause the TCP/IP stack to leave a IPv6 multicast group.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • addr -- [in] The multicast group to leave

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

  • ESP_ERR_ESP_NETIF_MLD6_FAILED

  • ESP_ERR_NO_MEM

esp_err_t esp_netif_set_mac(esp_netif_t *esp_netif, uint8_t mac[])

Set the mac address for the interface instance.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • mac -- [in] Desired mac address for the related network interface

Returns

  • ESP_OK - success

  • ESP_ERR_ESP_NETIF_IF_NOT_READY - interface status error

  • ESP_ERR_NOT_SUPPORTED - mac not supported on this interface

esp_err_t esp_netif_get_mac(esp_netif_t *esp_netif, uint8_t mac[])

Get the mac address for the interface instance.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • mac -- [out] Resultant mac address for the related network interface

Returns

  • ESP_OK - success

  • ESP_ERR_ESP_NETIF_IF_NOT_READY - interface status error

  • ESP_ERR_NOT_SUPPORTED - mac not supported on this interface

esp_err_t esp_netif_set_hostname(esp_netif_t *esp_netif, const char *hostname)

Set the hostname of an interface.

The configured hostname overrides the default configuration value CONFIG_LWIP_LOCAL_HOSTNAME. Please note that when the hostname is altered after interface started/connected the changes would only be reflected once the interface restarts/reconnects

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • hostname -- [in] New hostname for the interface. Maximum length 32 bytes.

Returns

  • ESP_OK - success

  • ESP_ERR_ESP_NETIF_IF_NOT_READY - interface status error

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS - parameter error

esp_err_t esp_netif_get_hostname(esp_netif_t *esp_netif, const char **hostname)

Get interface hostname.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • hostname -- [out] Returns a pointer to the hostname. May be NULL if no hostname is set. If set non-NULL, pointer remains valid (and string may change if the hostname changes).

Returns

  • ESP_OK - success

  • ESP_ERR_ESP_NETIF_IF_NOT_READY - interface status error

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS - parameter error

bool esp_netif_is_netif_up(esp_netif_t *esp_netif)

Test if supplied interface is up or down.

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

  • true - Interface is up

  • false - Interface is down

esp_err_t esp_netif_get_ip_info(esp_netif_t *esp_netif, esp_netif_ip_info_t *ip_info)

Get interface's IP address information.

If the interface is up, IP information is read directly from the TCP/IP stack. If the interface is down, IP information is read from a copy kept in the ESP-NETIF instance

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • ip_info -- [out] If successful, IP information will be returned in this argument.

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

esp_err_t esp_netif_get_old_ip_info(esp_netif_t *esp_netif, esp_netif_ip_info_t *ip_info)

Get interface's old IP information.

Returns an "old" IP address previously stored for the interface when the valid IP changed.

If the IP lost timer has expired (meaning the interface was down for longer than the configured interval) then the old IP information will be zero.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • ip_info -- [out] If successful, IP information will be returned in this argument.

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

esp_err_t esp_netif_set_ip_info(esp_netif_t *esp_netif, const esp_netif_ip_info_t *ip_info)

Set interface's IP address information.

This function is mainly used to set a static IP on an interface.

If the interface is up, the new IP information is set directly in the TCP/IP stack.

The copy of IP information kept in the ESP-NETIF instance is also updated (this copy is returned if the IP is queried while the interface is still down.)

Note

DHCP client/server must be stopped (if enabled for this interface) before setting new IP information.

Note

Calling this interface for may generate a SYSTEM_EVENT_STA_GOT_IP or SYSTEM_EVENT_ETH_GOT_IP event.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • ip_info -- [in] IP information to set on the specified interface

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

  • ESP_ERR_ESP_NETIF_DHCP_NOT_STOPPED If DHCP server or client is still running

esp_err_t esp_netif_set_old_ip_info(esp_netif_t *esp_netif, const esp_netif_ip_info_t *ip_info)

Set interface old IP information.

This function is called from the DHCP client (if enabled), before a new IP is set. It is also called from the default handlers for the SYSTEM_EVENT_STA_CONNECTED and SYSTEM_EVENT_ETH_CONNECTED events.

Calling this function stores the previously configured IP, which can be used to determine if the IP changes in the future.

If the interface is disconnected or down for too long, the "IP lost timer" will expire (after the configured interval) and set the old IP information to zero.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • ip_info -- [in] Store the old IP information for the specified interface

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

int esp_netif_get_netif_impl_index(esp_netif_t *esp_netif)

Get net interface index from network stack implementation.

Note

This index could be used in setsockopt() to bind socket with multicast interface

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

implementation specific index of interface represented with supplied esp_netif

esp_err_t esp_netif_get_netif_impl_name(esp_netif_t *esp_netif, char *name)

Get net interface name from network stack implementation.

Note

This name could be used in setsockopt() to bind socket with appropriate interface

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • name -- [out] Interface name as specified in underlying TCP/IP stack. Note that the actual name will be copied to the specified buffer, which must be allocated to hold maximum interface name size (6 characters for lwIP)

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

esp_err_t esp_netif_napt_enable(esp_netif_t *esp_netif)

Enable NAPT on an interface.

Note

Enable operation can be performed only on one interface at a time. NAPT cannot be enabled on multiple interfaces according to this implementation.

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

  • ESP_OK

  • ESP_FAIL

  • ESP_ERR_NOT_SUPPORTED

esp_err_t esp_netif_napt_disable(esp_netif_t *esp_netif)

Disable NAPT on an interface.

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

  • ESP_OK

  • ESP_FAIL

  • ESP_ERR_NOT_SUPPORTED

esp_err_t esp_netif_dhcps_option(esp_netif_t *esp_netif, esp_netif_dhcp_option_mode_t opt_op, esp_netif_dhcp_option_id_t opt_id, void *opt_val, uint32_t opt_len)

Set or Get DHCP server option.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • opt_op -- [in] ESP_NETIF_OP_SET to set an option, ESP_NETIF_OP_GET to get an option.

  • opt_id -- [in] Option index to get or set, must be one of the supported enum values.

  • opt_val -- [inout] Pointer to the option parameter.

  • opt_len -- [in] Length of the option parameter.

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

  • ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED

  • ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED

esp_err_t esp_netif_dhcpc_option(esp_netif_t *esp_netif, esp_netif_dhcp_option_mode_t opt_op, esp_netif_dhcp_option_id_t opt_id, void *opt_val, uint32_t opt_len)

Set or Get DHCP client option.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • opt_op -- [in] ESP_NETIF_OP_SET to set an option, ESP_NETIF_OP_GET to get an option.

  • opt_id -- [in] Option index to get or set, must be one of the supported enum values.

  • opt_val -- [inout] Pointer to the option parameter.

  • opt_len -- [in] Length of the option parameter.

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

  • ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED

  • ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED

esp_err_t esp_netif_dhcpc_start(esp_netif_t *esp_netif)

Start DHCP client (only if enabled in interface object)

Note

The default event handlers for the SYSTEM_EVENT_STA_CONNECTED and SYSTEM_EVENT_ETH_CONNECTED events call this function.

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

  • ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED

  • ESP_ERR_ESP_NETIF_DHCPC_START_FAILED

esp_err_t esp_netif_dhcpc_stop(esp_netif_t *esp_netif)

Stop DHCP client (only if enabled in interface object)

Note

Calling action_netif_stop() will also stop the DHCP Client if it is running.

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

  • ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED

  • ESP_ERR_ESP_NETIF_IF_NOT_READY

esp_err_t esp_netif_dhcpc_get_status(esp_netif_t *esp_netif, esp_netif_dhcp_status_t *status)

Get DHCP client status.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • status -- [out] If successful, the status of DHCP client will be returned in this argument.

Returns

  • ESP_OK

esp_err_t esp_netif_dhcps_get_status(esp_netif_t *esp_netif, esp_netif_dhcp_status_t *status)

Get DHCP Server status.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • status -- [out] If successful, the status of the DHCP server will be returned in this argument.

Returns

  • ESP_OK

esp_err_t esp_netif_dhcps_start(esp_netif_t *esp_netif)

Start DHCP server (only if enabled in interface object)

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

  • ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED

esp_err_t esp_netif_dhcps_stop(esp_netif_t *esp_netif)

Stop DHCP server (only if enabled in interface object)

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

  • ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED

  • ESP_ERR_ESP_NETIF_IF_NOT_READY

esp_err_t esp_netif_dhcps_get_clients_by_mac(esp_netif_t *esp_netif, int num, esp_netif_pair_mac_ip_t *mac_ip_pair)

Populate IP addresses of clients connected to DHCP server listed by their MAC addresses.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • num -- [in] Number of clients with specified MAC addresses in the array of pairs

  • mac_ip_pair -- [inout] Array of pairs of MAC and IP addresses (MAC are inputs, IP outputs)

Returns

  • ESP_OK on success

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS on invalid params

  • ESP_ERR_NOT_SUPPORTED if DHCP server not enabled

esp_err_t esp_netif_set_dns_info(esp_netif_t *esp_netif, esp_netif_dns_type_t type, esp_netif_dns_info_t *dns)

Set DNS Server information.

This function behaves differently if DHCP server or client is enabled

If DHCP client is enabled, main and backup DNS servers will be updated automatically from the DHCP lease if the relevant DHCP options are set. Fallback DNS Server is never updated from the DHCP lease and is designed to be set via this API. If DHCP client is disabled, all DNS server types can be set via this API only.

If DHCP server is enabled, the Main DNS Server setting is used by the DHCP server to provide a DNS Server option to DHCP clients (Wi-Fi stations).

  • The default Main DNS server is typically the IP of the DHCP server itself.

  • This function can override it by setting server type ESP_NETIF_DNS_MAIN.

  • Other DNS Server types are not supported for the DHCP server.

  • To propagate the DNS info to client, please stop the DHCP server before using this API.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • type -- [in] Type of DNS Server to set: ESP_NETIF_DNS_MAIN, ESP_NETIF_DNS_BACKUP, ESP_NETIF_DNS_FALLBACK

  • dns -- [in] DNS Server address to set

Returns

  • ESP_OK on success

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS invalid params

esp_err_t esp_netif_get_dns_info(esp_netif_t *esp_netif, esp_netif_dns_type_t type, esp_netif_dns_info_t *dns)

Get DNS Server information.

Return the currently configured DNS Server address for the specified interface and Server type.

This may be result of a previous call to esp_netif_set_dns_info(). If the interface's DHCP client is enabled, the Main or Backup DNS Server may be set by the current DHCP lease.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • type -- [in] Type of DNS Server to get: ESP_NETIF_DNS_MAIN, ESP_NETIF_DNS_BACKUP, ESP_NETIF_DNS_FALLBACK

  • dns -- [out] DNS Server result is written here on success

Returns

  • ESP_OK on success

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS invalid params

esp_err_t esp_netif_create_ip6_linklocal(esp_netif_t *esp_netif)

Create interface link-local IPv6 address.

Cause the TCP/IP stack to create a link-local IPv6 address for the specified interface.

This function also registers a callback for the specified interface, so that if the link-local address becomes verified as the preferred address then a SYSTEM_EVENT_GOT_IP6 event will be sent.

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

  • ESP_OK

  • ESP_ERR_ESP_NETIF_INVALID_PARAMS

esp_err_t esp_netif_get_ip6_linklocal(esp_netif_t *esp_netif, esp_ip6_addr_t *if_ip6)

Get interface link-local IPv6 address.

If the specified interface is up and a preferred link-local IPv6 address has been created for the interface, return a copy of it.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • if_ip6 -- [out] IPv6 information will be returned in this argument if successful.

Returns

  • ESP_OK

  • ESP_FAIL If interface is down, does not have a link-local IPv6 address, or the link-local IPv6 address is not a preferred address.

esp_err_t esp_netif_get_ip6_global(esp_netif_t *esp_netif, esp_ip6_addr_t *if_ip6)

Get interface global IPv6 address.

If the specified interface is up and a preferred global IPv6 address has been created for the interface, return a copy of it.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • if_ip6 -- [out] IPv6 information will be returned in this argument if successful.

Returns

  • ESP_OK

  • ESP_FAIL If interface is down, does not have a global IPv6 address, or the global IPv6 address is not a preferred address.

int esp_netif_get_all_ip6(esp_netif_t *esp_netif, esp_ip6_addr_t if_ip6[])

Get all IPv6 addresses of the specified interface.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • if_ip6 -- [out] Array of IPv6 addresses will be copied to the argument

Returns

number of returned IPv6 addresses

void esp_netif_set_ip4_addr(esp_ip4_addr_t *addr, uint8_t a, uint8_t b, uint8_t c, uint8_t d)

Sets IPv4 address to the specified octets.

Parameters
  • addr -- [out] IP address to be set

  • a -- the first octet (127 for IP 127.0.0.1)

  • b --

  • c --

  • d --

char *esp_ip4addr_ntoa(const esp_ip4_addr_t *addr, char *buf, int buflen)

Converts numeric IP address into decimal dotted ASCII representation.

Parameters
  • addr -- ip address in network order to convert

  • buf -- target buffer where the string is stored

  • buflen -- length of buf

Returns

either pointer to buf which now holds the ASCII representation of addr or NULL if buf was too small

uint32_t esp_ip4addr_aton(const char *addr)

Ascii internet address interpretation routine The value returned is in network order.

Parameters

addr -- IP address in ascii representation (e.g. "127.0.0.1")

Returns

ip address in network order

esp_err_t esp_netif_str_to_ip4(const char *src, esp_ip4_addr_t *dst)

Converts Ascii internet IPv4 address into esp_ip4_addr_t.

Parameters
  • src -- [in] IPv4 address in ascii representation (e.g. "127.0.0.1")

  • dst -- [out] Address of the target esp_ip4_addr_t structure to receive converted address

Returns

  • ESP_OK on success

  • ESP_FAIL if conversion failed

  • ESP_ERR_INVALID_ARG if invalid parameter is passed into

esp_err_t esp_netif_str_to_ip6(const char *src, esp_ip6_addr_t *dst)

Converts Ascii internet IPv6 address into esp_ip4_addr_t Zeros in the IP address can be stripped or completely ommited: "2001:db8:85a3:0:0:0:2:1" or "2001:db8::2:1")

Parameters
  • src -- [in] IPv6 address in ascii representation (e.g. ""2001:0db8:85a3:0000:0000:0000:0002:0001")

  • dst -- [out] Address of the target esp_ip6_addr_t structure to receive converted address

Returns

  • ESP_OK on success

  • ESP_FAIL if conversion failed

  • ESP_ERR_INVALID_ARG if invalid parameter is passed into

esp_netif_iodriver_handle esp_netif_get_io_driver(esp_netif_t *esp_netif)

Gets media driver handle for this esp-netif instance.

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

opaque pointer of related IO driver

esp_netif_t *esp_netif_get_handle_from_ifkey(const char *if_key)

Searches over a list of created objects to find an instance with supplied if key.

Parameters

if_key -- Textual description of network interface

Returns

Handle to esp-netif instance

esp_netif_flags_t esp_netif_get_flags(esp_netif_t *esp_netif)

Returns configured flags for this interface.

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

Configuration flags

const char *esp_netif_get_ifkey(esp_netif_t *esp_netif)

Returns configured interface key for this esp-netif instance.

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

Textual description of related interface

const char *esp_netif_get_desc(esp_netif_t *esp_netif)

Returns configured interface type for this esp-netif instance.

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

Enumerated type of this interface, such as station, AP, ethernet

int esp_netif_get_route_prio(esp_netif_t *esp_netif)

Returns configured routing priority number.

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

Integer representing the instance's route-prio, or -1 if invalid paramters

int32_t esp_netif_get_event_id(esp_netif_t *esp_netif, esp_netif_ip_event_type_t event_type)

Returns configured event for this esp-netif instance and supplied event type.

Parameters
  • esp_netif -- [in] Handle to esp-netif instance

  • event_type -- (either get or lost IP)

Returns

specific event id which is configured to be raised if the interface lost or acquired IP address -1 if supplied event_type is not known

esp_netif_t *esp_netif_next(esp_netif_t *esp_netif)

Iterates over list of interfaces. Returns first netif if NULL given as parameter.

You can use esp_netif_next_unsafe() directly if all the system interfaces are under your control and you can safely iterate over them. Otherwise, iterate over interfaces using esp_netif_tcpip_exec(), or use esp_netif_find_if() to search in the list of netifs with defined predicate.

Note

This API doesn't lock the list, nor the TCPIP context, as this it's usually required to get atomic access between iteration steps rather that within a single iteration. Therefore it is recommended to iterate over the interfaces inside esp_netif_tcpip_exec()

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

First netif from the list if supplied parameter is NULL, next one otherwise

esp_netif_t *esp_netif_next_unsafe(esp_netif_t *esp_netif)

Iterates over list of interfaces without list locking. Returns first netif if NULL given as parameter.

Used for bulk search loops within TCPIP context, e.g. using esp_netif_tcpip_exec(), or if we're sure that the iteration is safe from our application perspective (e.g. no interface is removed between iterations)

Parameters

esp_netif -- [in] Handle to esp-netif instance

Returns

First netif from the list if supplied parameter is NULL, next one otherwise

esp_netif_t *esp_netif_find_if(esp_netif_find_predicate_t fn, void *ctx)

Return a netif pointer for the first interface that meets criteria defined by the callback.

Parameters
  • fn -- Predicate function returning true for the desired interface

  • ctx -- Context pointer passed to the predicate, typically a descriptor to compare with

Returns

valid netif pointer if found, NULL if not

size_t esp_netif_get_nr_of_ifs(void)

Returns number of registered esp_netif objects.

Returns

Number of esp_netifs

void esp_netif_netstack_buf_ref(void *netstack_buf)

increase the reference counter of net stack buffer

Parameters

netstack_buf -- [in] the net stack buffer

void esp_netif_netstack_buf_free(void *netstack_buf)

free the netstack buffer

Parameters

netstack_buf -- [in] the net stack buffer

esp_err_t esp_netif_tcpip_exec(esp_netif_callback_fn fn, void *ctx)

Utility to execute the supplied callback in TCP/IP context.

Parameters
  • fn -- Pointer to the callback

  • ctx -- Parameter to the callback

Returns

The error code (esp_err_t) returned by the callback

Type Definitions

typedef bool (*esp_netif_find_predicate_t)(esp_netif_t *netif, void *ctx)

Predicate callback for esp_netif_find_if() used to find interface which meets defined criteria.

typedef esp_err_t (*esp_netif_callback_fn)(void *ctx)

TCPIP thread safe callback used with esp_netif_tcpip_exec()

Header File

Functions

esp_err_t esp_netif_sntp_init(const esp_sntp_config_t *config)

Initialize SNTP with supplied config struct.

Parameters

config -- Config struct

Returns

ESP_OK on success

esp_err_t esp_netif_sntp_start(void)

Start SNTP service if it wasn't started during init (config.start = false) or restart it if already started.

Returns

ESP_OK on success

void esp_netif_sntp_deinit(void)

Deinitialize esp_netif SNTP module.

esp_err_t esp_netif_sntp_sync_wait(TickType_t tout)

Wait for time sync event.

Parameters

tout -- Specified timeout in RTOS ticks

Returns

ESP_TIMEOUT if sync event didn't came withing the timeout ESP_ERR_NOT_FINISHED if the sync event came, but we're in smooth update mode and still in progress (SNTP_SYNC_STATUS_IN_PROGRESS) ESP_OK if time sync'ed

Structures

struct esp_sntp_config

SNTP configuration struct.

Public Members

bool smooth_sync

set to true if smooth sync required

bool server_from_dhcp

set to true to request NTP server config from DHCP

bool wait_for_sync

if true, we create a semaphore to signal time sync event

bool start

set to true to automatically start the SNTP service

esp_sntp_time_cb_t sync_cb

optionally sets callback function on time sync event

bool renew_servers_after_new_IP

this is used to refresh server list if NTP provided by DHCP (which cleans other pre-configured servers)

ip_event_t ip_event_to_renew

set the IP event id on which we refresh server list (if renew_servers_after_new_IP=true)

size_t index_of_first_server

refresh server list after this server (if renew_servers_after_new_IP=true)

size_t num_of_servers

number of preconfigured NTP servers

const char *servers[1]

list of servers

Macros

ESP_SNTP_SERVER_LIST(...)

Utility macro for providing multiple servers in parentheses.

ESP_NETIF_SNTP_DEFAULT_CONFIG_MULTIPLE(servers_in_list, list_of_servers)

Default configuration to init SNTP with multiple servers.

Parameters
ESP_NETIF_SNTP_DEFAULT_CONFIG(server)

Default configuration with a single server.

Type Definitions

typedef void (*esp_sntp_time_cb_t)(struct timeval *tv)

Time sync notification function.

typedef struct esp_sntp_config esp_sntp_config_t

SNTP configuration struct.

Header File

Structures

struct esp_netif_dns_info_t

DNS server info.

Public Members

esp_ip_addr_t ip

IPV4 address of DNS server

struct esp_netif_ip_info_t

Event structure for IP_EVENT_STA_GOT_IP, IP_EVENT_ETH_GOT_IP events

Public Members

esp_ip4_addr_t ip

Interface IPV4 address

esp_ip4_addr_t netmask

Interface IPV4 netmask

esp_ip4_addr_t gw

Interface IPV4 gateway address

struct esp_netif_ip6_info_t

IPV6 IP address information.

Public Members

esp_ip6_addr_t ip

Interface IPV6 address

struct ip_event_got_ip_t

Event structure for IP_EVENT_GOT_IP event.

Public Members

esp_netif_t *esp_netif

Pointer to corresponding esp-netif object

esp_netif_ip_info_t ip_info

IP address, netmask, gatway IP address

bool ip_changed

Whether the assigned IP has changed or not

struct ip_event_got_ip6_t

Event structure for IP_EVENT_GOT_IP6 event

Public Members

esp_netif_t *esp_netif

Pointer to corresponding esp-netif object

esp_netif_ip6_info_t ip6_info

IPv6 address of the interface

int ip_index

IPv6 address index

struct ip_event_add_ip6_t

Event structure for ADD_IP6 event

Public Members

esp_ip6_addr_t addr

The address to be added to the interface

bool preferred

The default preference of the address

struct ip_event_ap_staipassigned_t

Event structure for IP_EVENT_AP_STAIPASSIGNED event

Public Members

esp_netif_t *esp_netif

Pointer to the associated netif handle

esp_ip4_addr_t ip

IP address which was assigned to the station

uint8_t mac[6]

MAC address of the connected client

struct bridgeif_config

LwIP bridge configuration

Public Members

uint16_t max_fdb_dyn_entries

maximum number of entries in dynamic forwarding database

uint16_t max_fdb_sta_entries

maximum number of entries in static forwarding database

uint8_t max_ports

maximum number of ports the bridge can consist of

struct esp_netif_inherent_config

ESP-netif inherent config parameters.

Public Members

esp_netif_flags_t flags

flags that define esp-netif behavior

uint8_t mac[6]

initial mac address for this interface

const esp_netif_ip_info_t *ip_info

initial ip address for this interface

uint32_t get_ip_event

event id to be raised when interface gets an IP

uint32_t lost_ip_event

event id to be raised when interface losts its IP

const char *if_key

string identifier of the interface

const char *if_desc

textual description of the interface

int route_prio

numeric priority of this interface to become a default routing if (if other netifs are up). A higher value of route_prio indicates a higher priority

bridgeif_config_t *bridge_info

LwIP bridge configuration

struct esp_netif_driver_base_s

ESP-netif driver base handle.

Public Members

esp_err_t (*post_attach)(esp_netif_t *netif, esp_netif_iodriver_handle h)

post attach function pointer

esp_netif_t *netif

netif handle

struct esp_netif_driver_ifconfig

Specific IO driver configuration.

Public Members

esp_netif_iodriver_handle handle

io-driver handle

esp_err_t (*transmit)(void *h, void *buffer, size_t len)

transmit function pointer

esp_err_t (*transmit_wrap)(void *h, void *buffer, size_t len, void *netstack_buffer)

transmit wrap function pointer

void (*driver_free_rx_buffer)(void *h, void *buffer)

free rx buffer function pointer

struct esp_netif_config

Generic esp_netif configuration.

Public Members

const esp_netif_inherent_config_t *base

base config

const esp_netif_driver_ifconfig_t *driver

driver config

const esp_netif_netstack_config_t *stack

stack config

struct esp_netif_pair_mac_ip_t

DHCP client's addr info (pair of MAC and IP address)

Public Members

uint8_t mac[6]

Clients MAC address

esp_ip4_addr_t ip

Clients IP address

Macros

ESP_ERR_ESP_NETIF_BASE

Definition of ESP-NETIF based errors.

ESP_ERR_ESP_NETIF_INVALID_PARAMS
ESP_ERR_ESP_NETIF_IF_NOT_READY
ESP_ERR_ESP_NETIF_DHCPC_START_FAILED
ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED
ESP_ERR_ESP_NETIF_DHCP_ALREADY_STOPPED
ESP_ERR_ESP_NETIF_NO_MEM
ESP_ERR_ESP_NETIF_DHCP_NOT_STOPPED
ESP_ERR_ESP_NETIF_DRIVER_ATTACH_FAILED
ESP_ERR_ESP_NETIF_INIT_FAILED
ESP_ERR_ESP_NETIF_DNS_NOT_CONFIGURED
ESP_ERR_ESP_NETIF_MLD6_FAILED
ESP_ERR_ESP_NETIF_IP6_ADDR_FAILED
ESP_ERR_ESP_NETIF_DHCPS_START_FAILED
ESP_NETIF_BR_FLOOD

Definition of ESP-NETIF bridge controll.

ESP_NETIF_BR_DROP
ESP_NETIF_BR_FDW_CPU

Type Definitions

typedef struct esp_netif_obj esp_netif_t
typedef enum esp_netif_flags esp_netif_flags_t
typedef enum esp_netif_ip_event_type esp_netif_ip_event_type_t
typedef struct bridgeif_config bridgeif_config_t

LwIP bridge configuration

typedef struct esp_netif_inherent_config esp_netif_inherent_config_t

ESP-netif inherent config parameters.

typedef struct esp_netif_config esp_netif_config_t
typedef void *esp_netif_iodriver_handle

IO driver handle type.

typedef struct esp_netif_driver_base_s esp_netif_driver_base_t

ESP-netif driver base handle.

typedef struct esp_netif_driver_ifconfig esp_netif_driver_ifconfig_t
typedef struct esp_netif_netstack_config esp_netif_netstack_config_t

Specific L3 network stack configuration.

typedef esp_err_t (*esp_netif_receive_t)(esp_netif_t *esp_netif, void *buffer, size_t len, void *eb)

ESP-NETIF Receive function type.

Enumerations

enum esp_netif_dns_type_t

Type of DNS server.

Values:

enumerator ESP_NETIF_DNS_MAIN

DNS main server address

enumerator ESP_NETIF_DNS_BACKUP

DNS backup server address (Wi-Fi STA and Ethernet only)

enumerator ESP_NETIF_DNS_FALLBACK

DNS fallback server address (Wi-Fi STA and Ethernet only)

enumerator ESP_NETIF_DNS_MAX
enum esp_netif_dhcp_status_t

Status of DHCP client or DHCP server.

Values:

enumerator ESP_NETIF_DHCP_INIT

DHCP client/server is in initial state (not yet started)

enumerator ESP_NETIF_DHCP_STARTED

DHCP client/server has been started

enumerator ESP_NETIF_DHCP_STOPPED

DHCP client/server has been stopped

enumerator ESP_NETIF_DHCP_STATUS_MAX
enum esp_netif_dhcp_option_mode_t

Mode for DHCP client or DHCP server option functions.

Values:

enumerator ESP_NETIF_OP_START
enumerator ESP_NETIF_OP_SET

Set option

enumerator ESP_NETIF_OP_GET

Get option

enumerator ESP_NETIF_OP_MAX
enum esp_netif_dhcp_option_id_t

Supported options for DHCP client or DHCP server.

Values:

enumerator ESP_NETIF_SUBNET_MASK

Network mask

enumerator ESP_NETIF_DOMAIN_NAME_SERVER

Domain name server

enumerator ESP_NETIF_ROUTER_SOLICITATION_ADDRESS

Solicitation router address

enumerator ESP_NETIF_REQUESTED_IP_ADDRESS

Request specific IP address

enumerator ESP_NETIF_IP_ADDRESS_LEASE_TIME

Request IP address lease time

enumerator ESP_NETIF_IP_REQUEST_RETRY_TIME

Request IP address retry counter

enumerator ESP_NETIF_VENDOR_CLASS_IDENTIFIER

Vendor Class Identifier of a DHCP client

enumerator ESP_NETIF_VENDOR_SPECIFIC_INFO

Vendor Specific Information of a DHCP server

enum ip_event_t

IP event declarations

Values:

enumerator IP_EVENT_STA_GOT_IP

station got IP from connected AP

enumerator IP_EVENT_STA_LOST_IP

station lost IP and the IP is reset to 0

enumerator IP_EVENT_AP_STAIPASSIGNED

soft-AP assign an IP to a connected station

enumerator IP_EVENT_GOT_IP6

station or ap or ethernet interface v6IP addr is preferred

enumerator IP_EVENT_ETH_GOT_IP

ethernet got IP from connected AP

enumerator IP_EVENT_ETH_LOST_IP

ethernet lost IP and the IP is reset to 0

enumerator IP_EVENT_PPP_GOT_IP

PPP interface got IP

enumerator IP_EVENT_PPP_LOST_IP

PPP interface lost IP

enum esp_netif_flags

Values:

enumerator ESP_NETIF_DHCP_CLIENT
enumerator ESP_NETIF_DHCP_SERVER
enumerator ESP_NETIF_FLAG_AUTOUP
enumerator ESP_NETIF_FLAG_GARP
enumerator ESP_NETIF_FLAG_EVENT_IP_MODIFIED
enumerator ESP_NETIF_FLAG_IS_PPP
enumerator ESP_NETIF_FLAG_IS_BRIDGE
enumerator ESP_NETIF_FLAG_MLDV6_REPORT
enum esp_netif_ip_event_type

Values:

enumerator ESP_NETIF_IP_EVENT_GOT_IP
enumerator ESP_NETIF_IP_EVENT_LOST_IP

Header File

Functions

esp_ip6_addr_type_t esp_netif_ip6_get_addr_type(esp_ip6_addr_t *ip6_addr)

Get the IPv6 address type.

Parameters

ip6_addr -- [in] IPv6 type

Returns

IPv6 type in form of enum esp_ip6_addr_type_t

static inline void esp_netif_ip_addr_copy(esp_ip_addr_t *dest, const esp_ip_addr_t *src)

Copy IP addresses.

Parameters
  • dest -- [out] destination IP

  • src -- [in] source IP

Structures

struct esp_ip6_addr

IPv6 address.

Public Members

uint32_t addr[4]

IPv6 address

uint8_t zone

zone ID

struct esp_ip4_addr

IPv4 address.

Public Members

uint32_t addr

IPv4 address

struct _ip_addr

IP address.

Public Members

esp_ip6_addr_t ip6

IPv6 address type

esp_ip4_addr_t ip4

IPv4 address type

union _ip_addr::[anonymous] u_addr

IP address union

uint8_t type

ipaddress type

Macros

esp_netif_htonl(x)
esp_netif_ip4_makeu32(a, b, c, d)
ESP_IP6_ADDR_BLOCK1(ip6addr)
ESP_IP6_ADDR_BLOCK2(ip6addr)
ESP_IP6_ADDR_BLOCK3(ip6addr)
ESP_IP6_ADDR_BLOCK4(ip6addr)
ESP_IP6_ADDR_BLOCK5(ip6addr)
ESP_IP6_ADDR_BLOCK6(ip6addr)
ESP_IP6_ADDR_BLOCK7(ip6addr)
ESP_IP6_ADDR_BLOCK8(ip6addr)
IPSTR
esp_ip4_addr_get_byte(ipaddr, idx)
esp_ip4_addr1(ipaddr)
esp_ip4_addr2(ipaddr)
esp_ip4_addr3(ipaddr)
esp_ip4_addr4(ipaddr)
esp_ip4_addr1_16(ipaddr)
esp_ip4_addr2_16(ipaddr)
esp_ip4_addr3_16(ipaddr)
esp_ip4_addr4_16(ipaddr)
IP2STR(ipaddr)
IPV6STR
IPV62STR(ipaddr)
ESP_IPADDR_TYPE_V4
ESP_IPADDR_TYPE_V6
ESP_IPADDR_TYPE_ANY
ESP_IP4TOUINT32(a, b, c, d)
ESP_IP4TOADDR(a, b, c, d)
ESP_IP4ADDR_INIT(a, b, c, d)
ESP_IP6ADDR_INIT(a, b, c, d)
IP4ADDR_STRLEN_MAX
ESP_IP_IS_ANY(addr)

Type Definitions

typedef struct esp_ip4_addr esp_ip4_addr_t
typedef struct esp_ip6_addr esp_ip6_addr_t
typedef struct _ip_addr esp_ip_addr_t

IP address.

Enumerations

enum esp_ip6_addr_type_t

Values:

enumerator ESP_IP6_ADDR_IS_UNKNOWN
enumerator ESP_IP6_ADDR_IS_GLOBAL
enumerator ESP_IP6_ADDR_IS_SITE_LOCAL
enumerator ESP_IP6_ADDR_IS_UNIQUE_LOCAL
enumerator ESP_IP6_ADDR_IS_IPV4_MAPPED_IPV6

Header File

Functions

esp_err_t esp_vfs_l2tap_intf_register(l2tap_vfs_config_t *config)

Add L2 TAP virtual filesystem driver.

This function must be called prior usage of ESP-NETIF L2 TAP Interface

Parameters

config -- L2 TAP virtual filesystem driver configuration. Default base path /dev/net/tap is used when this paramenter is NULL.

Returns

esp_err_t

  • ESP_OK on success

esp_err_t esp_vfs_l2tap_intf_unregister(const char *base_path)

Removes L2 TAP virtual filesystem driver.

Parameters

base_path -- Base path to the L2 TAP virtual filesystem driver. Default path /dev/net/tap is used when this paramenter is NULL.

Returns

esp_err_t

  • ESP_OK on success

esp_err_t esp_vfs_l2tap_eth_filter(l2tap_iodriver_handle driver_handle, void *buff, size_t *size)

Filters received Ethernet L2 frames into L2 TAP infrastructure.

Parameters
  • driver_handle -- handle of driver at which the frame was received

  • buff -- received L2 frame

  • size -- input length of the L2 frame which is set to 0 when frame is filtered into L2 TAP

Returns

esp_err_t

  • ESP_OK is always returned

Structures

struct l2tap_vfs_config_t

L2Tap VFS config parameters.

Public Members

const char *base_path

vfs base path

Macros

L2TAP_VFS_DEFAULT_PATH
L2TAP_VFS_CONFIG_DEFAULT()

Type Definitions

typedef void *l2tap_iodriver_handle

Enumerations

enum l2tap_ioctl_opt_t

Values:

enumerator L2TAP_S_RCV_FILTER
enumerator L2TAP_G_RCV_FILTER
enumerator L2TAP_S_INTF_DEVICE
enumerator L2TAP_G_INTF_DEVICE
enumerator L2TAP_S_DEVICE_DRV_HNDL
enumerator L2TAP_G_DEVICE_DRV_HNDL