Analog to Digital Converter (ADC)

ADC Channels

The ESP32 integrates 2 SAR (Successive Approximation Register) ADCs, supporting a total of 18 measurement channels (analog enabled pins).

These channels are supported:

ADC1:
  • 8 channels: GPIO32 - GPIO39

ADC2:
  • 10 channels: GPIO0, GPIO2, GPIO4, GPIO12 - GPIO15, GOIO25 - GPIO27

ADC Attenuation

Vref is the reference voltage used internally by ESP32 ADCs for measuring the input voltage. The ESP32 ADCs can measure analog voltages from 0 V to Vref. Among different chips, the Vref varies, the median is 1.1 V. In order to convert voltages larger than Vref, input voltages can be attenuated before being input to the ADCs. There are 4 available attenuation options, the higher the attenuation is, the higher the measurable input voltage could be.

Attenuation

Measurable input voltage range

ADC_ATTEN_DB_0

100 mV ~ 950 mV

ADC_ATTEN_DB_2_5

100 mV ~ 1250 mV

ADC_ATTEN_DB_6

150 mV ~ 1750 mV

ADC_ATTEN_DB_11

150 mV ~ 2450 mV

ADC Conversion

An ADC conversion is to convert the input analog voltage to a digital value. The ADC conversion results provided by the ADC driver APIs are raw data. Resolution of ESP32 ADC raw results under Single Read mode is 12-bit.

To calculate the voltage based on the ADC raw results, this formula can be used:

Vout = Dout * Vmax / Dmax       (1)

where:

Vout

Digital output result, standing for the voltage.

Dout

ADC raw digital reading result.

Vmax

Maximum measurable input analog voltage, see ADC Attenuation.

Dmax

Maximum of the output ADC raw digital reading result, which is 4095 under Single Read mode, 4095 under Continuous Read mode.

For boards with eFuse ADC calibration bits, esp_adc_cal_raw_to_voltage() can be used to get the calibrated conversion results. These results stand for the actual voltage (in mV). No need to transform these data via the formula (1). If ADC calibration APIs are used on boards without eFuse ADC calibration bits, warnings will be generated. See ADC Calibration.

ADC Limitations

注解

  • Some of the ADC2 pins are used as strapping pins (GPIO 0, 2, 15) thus cannot be used freely. Such is the case in the following official Development Kits:

  • ESP32 DevKitC: GPIO 0 cannot be used due to external auto program circuits.

  • ESP-WROVER-KIT: GPIO 0, 2, 4 and 15 cannot be used due to external connections for different purposes.

  • Since the ADC2 module is also used by the Wi-Fi, only one of them could get the preemption when using together, which means the adc2_get_raw() may get blocked until Wi-Fi stops, and vice versa.

Driver Usage

Both of the ADC units support single read mode, which is suitable for low-frequency sampling operations.

注解

ADC readings from a pin not connected to any signal are random.

ADC Single Read mode

The ADC should be configured before reading is taken.

Attenuation configuration is done per channel, see adc1_channel_t and adc2_channel_t, set as a parameter of above functions.

Then it is possible to read ADC conversion result with adc1_get_raw() and adc2_get_raw(). Reading width of ADC2 should be set as a parameter of adc2_get_raw() instead of in the configuration functions.

Single Read mode ADC example can be found in peripherals/adc/single_read directory of ESP-IDF examples.

It is also possible to read the internal hall effect sensor via ADC1 by calling dedicated function hall_sensor_read(). Note that even the hall sensor is internal to ESP32, reading from it uses channels 0 and 3 of ADC1 (GPIO 36 and 39). Do not connect anything else to these pins and do not change their configuration. Otherwise it may affect the measurement of low value signal from the sensor.

This API provides convenient way to configure ADC1 for reading from ULP. To do so, call function adc1_ulp_enable() and then set precision and attenuation as discussed above.

There is another specific function adc_vref_to_gpio() used to route internal reference voltage to a GPIO pin. It comes handy to calibrate ADC reading and this is discussed in section ADC Calibration.

注解

See ADC Limitations for the limitation of using ADC single read mode.

Minimizing Noise

The ESP32 ADC can be sensitive to noise leading to large discrepancies in ADC readings. Depending on the usage scenario, users may connect a bypass capacitor (e.g. a 100 nF ceramic capacitor) to the ADC input pad in use, to minimize noise. Besides, multisampling may also be used to further mitigate the effects of noise.

ADC noise mitigation

Graph illustrating noise mitigation using capacitor and multisampling of 64 samples.

ADC Calibration

The esp_adc_cal/include/esp_adc_cal.h API provides functions to correct for differences in measured voltages caused by variation of ADC reference voltages (Vref) between chips. Per design the ADC reference voltage is 1100 mV, however the true reference voltage can range from 1000 mV to 1200 mV amongst different ESP32s.

ADC reference voltage comparison

Graph illustrating effect of differing reference voltages on the ADC voltage curve.

Correcting ADC readings using this API involves characterizing one of the ADCs at a given attenuation to obtain a characteristics curve (ADC-Voltage curve) that takes into account the difference in ADC reference voltage. The characteristics curve is in the form of y = coeff_a * x + coeff_b and is used to convert ADC readings to voltages in mV. Calculation of the characteristics curve is based on calibration values which can be stored in eFuse or provided by the user.

Calibration Values

Calibration values are used to generate characteristic curves that account for the variation of ADC reference voltage of a particular ESP32 chip. There are currently 3 source(s) of calibration values on ESP32. The availability of these calibration values will depend on the type and production date of the ESP32 chip/module.

  • Two Point values represent each of the ADCs’ readings at 150 mV and 850 mV. To obtain more accurate calibration results these values should be measured by user and burned into eFuse BLOCK3.

  • eFuse Vref represents the true ADC reference voltage. This value is measured and burned into eFuse BLOCK0 during factory calibration.

  • Default Vref is an estimate of the ADC reference voltage provided by the user as a parameter during characterization. If Two Point or eFuse Vref values are unavailable, Default Vref will be used.

    Individual measurement and burning of the eFuse Vref has been applied to ESP32-D0WD and ESP32-D0WDQ6 chips produced on/after the 1st week of 2018. Such chips may be recognized by date codes on/later than 012018 (see Line 4 on figure below).

    ESP32 Chip Surface Marking

    ESP32 Chip Surface Marking

    If you would like to purchase chips or modules with calibration, double check with distributor or Espressif (sales@espressif.com) directly.

    If you are unable to check the date code (i.e. the chip may be enclosed inside a canned module, etc.), you can still verify if eFuse Vref is present by running the espefuse.py tool with adc_info parameter

    $IDF_PATH/components/esptool_py/esptool/espefuse.py --port /dev/ttyUSB0 adc_info
    

    Replace /dev/ttyUSB0 with ESP32 board’s port name.

    A chip that has specific eFuse Vref value programmed (in this case 1093 mV) will be reported as follows:

    ADC VRef calibration: 1093 mV
    

    In another example below the eFuse Vref is not programmed:

    ADC VRef calibration: None (1100 mV nominal)
    

    For a chip with two point calibration the message will look similar to:

    ADC VRef calibration: 1149 mV
    ADC readings stored in efuse BLK3:
        ADC1 Low reading  (150 mV): 306
        ADC1 High reading (850 mV): 3153
        ADC2 Low reading  (150 mV): 389
        ADC2 High reading (850 mV): 3206
    

Application Extensions

For a full example see esp-idf: peripherals/adc/single_read

Characterizing an ADC at a particular attenuation:

#include "driver/adc.h"
#include "esp_adc_cal.h"

...

    //Characterize ADC at particular atten
    esp_adc_cal_characteristics_t *adc_chars = calloc(1, sizeof(esp_adc_cal_characteristics_t));
    esp_adc_cal_value_t val_type = esp_adc_cal_characterize(unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_chars);
    //Check type of calibration value used to characterize ADC
    if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) {
        printf("eFuse Vref");
    } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) {
        printf("Two Point");
    } else {
        printf("Default");
    }

Reading an ADC then converting the reading to a voltage:

#include "driver/adc.h"
#include "esp_adc_cal.h"

...
    uint32_t reading =  adc1_get_raw(ADC1_CHANNEL_5);
    uint32_t voltage = esp_adc_cal_raw_to_voltage(reading, adc_chars);

Routing ADC reference voltage to GPIO, so it can be manually measured (for Default Vref):

#include "driver/adc.h"

...

    esp_err_t status = adc_vref_to_gpio(ADC_UNIT_1, GPIO_NUM_25);
    if (status == ESP_OK) {
        printf("v_ref routed to GPIO\n");
    } else {
        printf("failed to route v_ref\n");
    }

GPIO Lookup Macros

There are macros available to specify the GPIO number of a ADC channel, or vice versa. e.g.

  1. ADC1_CHANNEL_0_GPIO_NUM is the GPIO number of ADC1 channel 0.

  2. ADC1_GPIOn_CHANNEL is the ADC1 channel number of GPIO n.

API Reference

This reference covers three components:

ADC driver

Functions

esp_err_t adc_set_i2s_data_source(adc_i2s_source_t src)

Set I2S data source.

Return

  • ESP_OK success

Parameters
  • src: I2S DMA data source, I2S DMA can get data from digital signals or from ADC.

esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel)

Initialize I2S ADC mode.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • adc_unit: ADC unit index

  • channel: ADC channel index

int hall_sensor_read(void)

Read Hall Sensor.

Note

When the power switch of SARADC1, SARADC2, HALL sensor and AMP sensor is turned on, the input of GPIO36 and GPIO39 will be pulled down for about 80ns. When enabling power for any of these peripherals, ignore input from GPIO36 and GPIO39. Please refer to section 3.11 of ‘ECO_and_Workarounds_for_Bugs_in_ESP32’ for the description of this issue.

Note

The Hall Sensor uses channels 0 and 3 of ADC1. Do not configure these channels for use as ADC channels.

Note

The ADC1 module must be enabled by calling adc1_config_width() before calling hall_sensor_read(). ADC1 should be configured for 12 bit readings, as the hall sensor readings are low values and do not cover the full range of the ADC.

Return

The hall sensor reading.

Structures

struct adc_digi_pattern_table_t

ADC digital controller (DMA mode) conversion rules setting.

Public Members

uint8_t atten : 2

ADC sampling voltage attenuation configuration. Modification of attenuation affects the range of measurements. 0: measurement range 0 - 800mV, 1: measurement range 0 - 1100mV, 2: measurement range 0 - 1350mV, 3: measurement range 0 - 2600mV.

uint8_t bit_width : 2

ADC resolution.

  • 0: 9 bit;

  • 1: 10 bit;

  • 2: 11 bit;

  • 3: 12 bit.

int8_t channel : 4

ADC channel index.

uint8_t val

Raw data value

struct adc_digi_output_data_t

ADC digital controller (DMA mode) output data format. Used to analyze the acquired ADC (DMA) data.

Note

ESP32-S2: Member channel can be used to judge the validity of the ADC data, because the role of the arbiter may get invalid ADC data.

Public Members

uint16_t data : 12

ADC real output data info. Resolution: 12 bit.

ADC real output data info. Resolution: 11 bit.

uint16_t channel : 4

ADC channel index info. For ESP32-S2: If (channel < ADC_CHANNEL_MAX), The data is valid. If (channel > ADC_CHANNEL_MAX), The data is invalid.

struct adc_digi_output_data_t::[anonymous]::[anonymous] type1

When the configured output format is 12bit. ADC_DIGI_FORMAT_12BIT

uint16_t unit : 1

ADC unit index info. 0: ADC1; 1: ADC2.

struct adc_digi_output_data_t::[anonymous]::[anonymous] type2

When the configured output format is 11bit. ADC_DIGI_FORMAT_11BIT

uint16_t val

Raw data value

struct adc_digi_config_t

CONFIG_IDF_TARGET_ESP32.

ADC digital controller (DMA mode) configuration parameters.

Example setting: When using ADC1 channel0 to measure voltage, the sampling rate is required to be 1 kHz:

+---------------------+--------+--------+--------+
| sample rate         | 1 kHz  | 1 kHz  | 1 kHz  |
+---------------------+--------+--------+--------+
| conv_mode           | single |  both  |  alter |
| adc1_pattern_len    |    1   |    1   |    1   |
| dig_clk.use_apll    |    0   |    0   |    0   |
| dig_clk.div_num     |   99   |   99   |   99   |
| dig_clk.div_b       |    0   |    0   |    0   |
| dig_clk.div_a       |    0   |    0   |    0   |
| interval            |  400   |  400   |  200   |
+---------------------+--------+--------+--------+
| `trigger_meas_freq` | 1 kHz  | 1 kHz  | 2 kHz  |
+---------------------+--------+--------+--------+

Explanation of the relationship between conv_limit_num, dma_eof_num and the number of DMA outputs:

+---------------------+--------+--------+--------+
| conv_mode           | single |  both  |  alter |
+---------------------+--------+--------+--------+
| trigger meas times  |    1   |    1   |    1   |
+---------------------+--------+--------+--------+
| conv_limit_num      |   +1   |   +1   |   +1   |
| dma_eof_num         |   +1   |   +2   |   +1   |
| dma output (byte)   |   +2   |   +4   |   +2   |
+---------------------+--------+--------+--------+

Public Members

bool conv_limit_en

Enable the function of limiting ADC conversion times. If the number of ADC conversion trigger count is equal to the limit_num, the conversion is stopped.

uint32_t conv_limit_num

Set the upper limit of the number of ADC conversion triggers. Range: 1 ~ 255.

uint32_t adc1_pattern_len

Pattern table length for digital controller. Range: 0 ~ 16 (0: Don’t change the pattern table setting). The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection, resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.

uint32_t adc2_pattern_len

Refer to adc1_pattern_len

adc_digi_pattern_table_t *adc1_pattern

Pointer to pattern table for digital controller. The table size defined by adc1_pattern_len.

adc_digi_pattern_table_t *adc2_pattern

Refer to adc1_pattern

adc_digi_convert_mode_t conv_mode

ADC conversion mode for digital controller. See adc_digi_convert_mode_t.

adc_digi_output_format_t format

ADC output data format for digital controller. See adc_digi_output_format_t.

Enumerations

enum adc_unit_t

ADC unit enumeration.

Note

For ADC digital controller (DMA mode), ESP32 doesn’t support ADC_UNIT_2, ADC_UNIT_BOTH, ADC_UNIT_ALTER.

Values:

ADC_UNIT_1 = 1

SAR ADC 1.

ADC_UNIT_2 = 2

SAR ADC 2.

ADC_UNIT_BOTH = 3

SAR ADC 1 and 2.

ADC_UNIT_ALTER = 7

SAR ADC 1 and 2 alternative mode.

ADC_UNIT_MAX
enum adc_channel_t

ADC channels handle. See adc1_channel_t, adc2_channel_t.

Note

For ESP32 ADC1, don’t use ADC_CHANNEL_8, ADC_CHANNEL_9. See adc1_channel_t.

Values:

ADC_CHANNEL_0 = 0

ADC channel

ADC_CHANNEL_1

ADC channel

ADC_CHANNEL_2

ADC channel

ADC_CHANNEL_3

ADC channel

ADC_CHANNEL_4

ADC channel

ADC_CHANNEL_5

ADC channel

ADC_CHANNEL_6

ADC channel

ADC_CHANNEL_7

ADC channel

ADC_CHANNEL_8

ADC channel

ADC_CHANNEL_9

ADC channel

ADC_CHANNEL_MAX
enum adc_atten_t

ADC attenuation parameter. Different parameters determine the range of the ADC. See adc1_config_channel_atten.

Values:

ADC_ATTEN_DB_0 = 0

No input attenumation, ADC can measure up to approx. 800 mV.

ADC_ATTEN_DB_2_5 = 1

The input voltage of ADC will be attenuated extending the range of measurement by about 2.5 dB (1.33 x)

ADC_ATTEN_DB_6 = 2

The input voltage of ADC will be attenuated extending the range of measurement by about 6 dB (2 x)

ADC_ATTEN_DB_11 = 3

The input voltage of ADC will be attenuated extending the range of measurement by about 11 dB (3.55 x)

ADC_ATTEN_MAX
enum adc_i2s_source_t

ESP32 ADC DMA source selection.

Values:

ADC_I2S_DATA_SRC_IO_SIG = 0

I2S data from GPIO matrix signal

ADC_I2S_DATA_SRC_ADC = 1

I2S data from ADC

ADC_I2S_DATA_SRC_MAX
enum adc_bits_width_t

ADC resolution setting option.

Values:

ADC_WIDTH_BIT_9 = 0

ADC capture width is 9Bit.

ADC_WIDTH_BIT_10 = 1

ADC capture width is 10Bit.

ADC_WIDTH_BIT_11 = 2

ADC capture width is 11Bit.

ADC_WIDTH_BIT_12 = 3

ADC capture width is 12Bit.

ADC_WIDTH_MAX
enum adc_digi_convert_mode_t

ADC digital controller (DMA mode) work mode.

Note

The conversion mode affects the sampling frequency: SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once. SINGLE_UNIT_2: When the measurement is triggered, only ADC2 is sampled once. BOTH_UNIT : When the measurement is triggered, ADC1 and ADC2 are sampled at the same time. ALTER_UNIT : When the measurement is triggered, ADC1 or ADC2 samples alternately.

Values:

ADC_CONV_SINGLE_UNIT_1 = 1

SAR ADC 1.

ADC_CONV_SINGLE_UNIT_2 = 2

SAR ADC 2.

ADC_CONV_BOTH_UNIT = 3

SAR ADC 1 and 2.

ADC_CONV_ALTER_UNIT = 7

SAR ADC 1 and 2 alternative mode.

ADC_CONV_UNIT_MAX
enum adc_digi_output_format_t

ADC digital controller (DMA mode) output data format option.

Values:

ADC_DIGI_FORMAT_12BIT

ADC to DMA data format, [15:12]-channel, [11: 0]-12 bits ADC data (adc_digi_output_data_t). Note: For single convert mode.

ADC_DIGI_FORMAT_11BIT

ADC to DMA data format, [15]-adc unit, [14:11]-channel, [10: 0]-11 bits ADC data (adc_digi_output_data_t). Note: For multi or alter convert mode.

ADC_DIGI_FORMAT_MAX

Functions

void adc_power_on(void)

Enable ADC power.

void adc_power_off(void)

Power off SAR ADC.

void adc_power_acquire(void)

Increment the usage counter for ADC module. ADC will stay powered on while the counter is greater than 0. Call adc_power_release when done using the ADC.

void adc_power_release(void)

Decrement the usage counter for ADC module. ADC will stay powered on while the counter is greater than 0. Call this function when done using the ADC.

esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)

Initialize ADC pad.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • adc_unit: ADC unit index

  • channel: ADC channel index

esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)

Get the GPIO number of a specific ADC1 channel.

Return

  • ESP_OK if success

  • ESP_ERR_INVALID_ARG if channel not valid

Parameters
  • channel: Channel to get the GPIO number

  • gpio_num: output buffer to hold the GPIO number

esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)

Set the attenuation of a particular channel on ADC1, and configure its associated GPIO pin mux.

The default ADC voltage is for attenuation 0 dB and listed in the table below. By setting higher attenuation it is possible to read higher voltages.

Due to ADC characteristics, most accurate results are obtained within the “suggested range” shown in the following table.

+----------+-------------+-----------------+
|          | attenuation | suggested range |
|    SoC   |     (dB)    |      (mV)       |
+==========+=============+=================+
|          |       0     |    100 ~  950   |
|          +-------------+-----------------+
|          |       2.5   |    100 ~ 1250   |
|   ESP32  +-------------+-----------------+
|          |       6     |    150 ~ 1750   |
|          +-------------+-----------------+
|          |      11     |    150 ~ 2450   |
+----------+-------------+-----------------+
|          |       0     |      0 ~  750   |
|          +-------------+-----------------+
|          |       2.5   |      0 ~ 1050   |
| ESP32-S2 +-------------+-----------------+
|          |       6     |      0 ~ 1300   |
|          +-------------+-----------------+
|          |      11     |      0 ~ 2500   |
+----------+-------------+-----------------+

For maximum accuracy, use the ADC calibration APIs and measure voltages within these recommended ranges.

Note

For any given channel, this function must be called before the first time adc1_get_raw() is called for that channel.

Note

This function can be called multiple times to configure multiple ADC channels simultaneously. You may call adc1_get_raw() only after configuring a channel.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • channel: ADC1 channel to configure

  • atten: Attenuation level

esp_err_t adc1_config_width(adc_bits_width_t width_bit)

Configure ADC1 capture width, meanwhile enable output invert for ADC1. The configuration is for all channels of ADC1.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • width_bit: Bit capture width for ADC1

int adc1_get_raw(adc1_channel_t channel)

Take an ADC1 reading from a single channel.

Note

ESP32: When the power switch of SARADC1, SARADC2, HALL sensor and AMP sensor is turned on, the input of GPIO36 and GPIO39 will be pulled down for about 80ns. When enabling power for any of these peripherals, ignore input from GPIO36 and GPIO39. Please refer to section 3.11 of ‘ECO_and_Workarounds_for_Bugs_in_ESP32’ for the description of this issue. As a workaround, call adc_power_acquire() in the app. This will result in higher power consumption (by ~1mA), but will remove the glitches on GPIO36 and GPIO39.

Note

Call adc1_config_width() before the first time this function is called.

Note

For any given channel, adc1_config_channel_atten(channel) must be called before the first time this function is called. Configuring a new channel does not prevent a previously configured channel from being read.

Return

  • -1: Parameter error

  • Other: ADC1 channel reading.

Parameters
  • channel: ADC1 channel to read

esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)

Set ADC data invert.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • adc_unit: ADC unit index

  • inv_en: whether enable data invert

esp_err_t adc_set_clk_div(uint8_t clk_div)

Set ADC source clock.

Return

  • ESP_OK success

Parameters
  • clk_div: ADC clock divider, ADC clock is divided from APB clock

esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t width_bit)

Configure ADC capture width.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • adc_unit: ADC unit index

  • width_bit: Bit capture width for ADC unit.

void adc1_ulp_enable(void)

Configure ADC1 to be usable by the ULP.

This function reconfigures ADC1 to be controlled by the ULP. Effect of this function can be reverted using adc1_get_raw() function.

Note that adc1_config_channel_atten, adc1_config_width() functions need to be called to configure ADC1 channels, before ADC1 is used by the ULP.

esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)

Get the GPIO number of a specific ADC2 channel.

Return

  • ESP_OK if success

  • ESP_ERR_INVALID_ARG if channel not valid

Parameters
  • channel: Channel to get the GPIO number

  • gpio_num: output buffer to hold the GPIO number

esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)

Configure the ADC2 channel, including setting attenuation.

The default ADC voltage is for attenuation 0 dB and listed in the table below. By setting higher attenuation it is possible to read higher voltages.

Due to ADC characteristics, most accurate results are obtained within the “suggested range” shown in the following table.

+----------+-------------+-----------------+
|          | attenuation | suggested range |
|    SoC   |     (dB)    |      (mV)       |
+==========+=============+=================+
|          |       0     |    100 ~  950   |
|          +-------------+-----------------+
|          |       2.5   |    100 ~ 1250   |
|   ESP32  +-------------+-----------------+
|          |       6     |    150 ~ 1750   |
|          +-------------+-----------------+
|          |      11     |    150 ~ 2450   |
+----------+-------------+-----------------+
|          |       0     |      0 ~  750   |
|          +-------------+-----------------+
|          |       2.5   |      0 ~ 1050   |
| ESP32-S2 +-------------+-----------------+
|          |       6     |      0 ~ 1300   |
|          +-------------+-----------------+
|          |      11     |      0 ~ 2500   |
+----------+-------------+-----------------+

For maximum accuracy, use the ADC calibration APIs and measure voltages within these recommended ranges.

Note

This function also configures the input GPIO pin mux to connect it to the ADC2 channel. It must be called before calling adc2_get_raw() for this channel.

Note

For any given channel, this function must be called before the first time adc2_get_raw() is called for that channel.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • channel: ADC2 channel to configure

  • atten: Attenuation level

esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)

Take an ADC2 reading on a single channel.

Note

ESP32: When the power switch of SARADC1, SARADC2, HALL sensor and AMP sensor is turned on, the input of GPIO36 and GPIO39 will be pulled down for about 80ns. When enabling power for any of these peripherals, ignore input from GPIO36 and GPIO39. Please refer to section 3.11 of ‘ECO_and_Workarounds_for_Bugs_in_ESP32’ for the description of this issue. As a workaround, call adc_power_acquire() in the app. This will result in higher power consumption (by ~1mA), but will remove the glitches on GPIO36 and GPIO39.

Note

ESP32: For a given channel, adc2_config_channel_atten() must be called before the first time this function is called. If Wi-Fi is started via esp_wifi_start(), this function will always fail with ESP_ERR_TIMEOUT.

Note

ESP32-S2: ADC2 support hardware arbiter. The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority, the low priority controller will read the invalid ADC2 data. Default priority: Wi-Fi > RTC > Digital;

Return

  • ESP_OK if success

  • ESP_ERR_TIMEOUT ADC2 is being used by other controller and the request timed out.

  • ESP_ERR_INVALID_STATE The controller status is invalid. Please try again.

Parameters
  • channel: ADC2 channel to read

  • width_bit: Bit capture width for ADC2

  • raw_out: the variable to hold the output data.

esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)

Output ADC1 or ADC2’s reference voltage to adc2_channe_t’s IO.

This function routes the internal reference voltage of ADCn to one of ADC2’s channels. This reference voltage can then be manually measured for calibration purposes.

Note

ESP32 only supports output of ADC2’s internal reference voltage.

Return

  • ESP_OK: v_ref successfully routed to selected GPIO

  • ESP_ERR_INVALID_ARG: Unsupported GPIO

Parameters
  • [in] adc_unit: ADC unit index

  • [in] gpio: GPIO number (Only ADC2’s channels IO are supported)

esp_err_t adc2_vref_to_gpio(gpio_num_t gpio)

Output ADC2 reference voltage to adc2_channe_t’s IO.

This function routes the internal reference voltage of ADCn to one of ADC2’s channels. This reference voltage can then be manually measured for calibration purposes.

Return

  • ESP_OK: v_ref successfully routed to selected GPIO

  • ESP_ERR_INVALID_ARG: Unsupported GPIO

Parameters
  • [in] gpio: GPIO number (ADC2’s channels are supported)

esp_err_t adc_digi_init(void)

ADC digital controller initialization.

Return

  • ESP_OK Success

esp_err_t adc_digi_deinit(void)

ADC digital controller deinitialization.

Return

  • ESP_OK Success

esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)

Setting the digital controller.

Return

  • ESP_ERR_INVALID_STATE Driver state is invalid.

  • ESP_ERR_INVALID_ARG If the combination of arguments is invalid.

  • ESP_OK On success

Parameters

Macros

ADC_ATTEN_0db

ADC rtc controller attenuation option.

Note

This definitions are only for being back-compatible

ADC_ATTEN_2_5db
ADC_ATTEN_6db
ADC_ATTEN_11db
ADC_WIDTH_BIT_DEFAULT

The default (max) bit width of the ADC of current version. You can also get the maximum bitwidth by SOC_ADC_MAX_BITWIDTH defined in soc_caps.h.

ADC_WIDTH_9Bit
ADC_WIDTH_10Bit
ADC_WIDTH_11Bit
ADC_WIDTH_12Bit

Enumerations

enum adc1_channel_t

Values:

ADC1_CHANNEL_0 = 0

ADC1 channel 0 is GPIO36

ADC1_CHANNEL_1

ADC1 channel 1 is GPIO37

ADC1_CHANNEL_2

ADC1 channel 2 is GPIO38

ADC1_CHANNEL_3

ADC1 channel 3 is GPIO39

ADC1_CHANNEL_4

ADC1 channel 4 is GPIO32

ADC1_CHANNEL_5

ADC1 channel 5 is GPIO33

ADC1_CHANNEL_6

ADC1 channel 6 is GPIO34

ADC1_CHANNEL_7

ADC1 channel 7 is GPIO35

ADC1_CHANNEL_MAX
enum adc2_channel_t

Values:

ADC2_CHANNEL_0 = 0

ADC2 channel 0 is GPIO4 (ESP32), GPIO11 (ESP32-S2)

ADC2_CHANNEL_1

ADC2 channel 1 is GPIO0 (ESP32), GPIO12 (ESP32-S2)

ADC2_CHANNEL_2

ADC2 channel 2 is GPIO2 (ESP32), GPIO13 (ESP32-S2)

ADC2_CHANNEL_3

ADC2 channel 3 is GPIO15 (ESP32), GPIO14 (ESP32-S2)

ADC2_CHANNEL_4

ADC2 channel 4 is GPIO13 (ESP32), GPIO15 (ESP32-S2)

ADC2_CHANNEL_5

ADC2 channel 5 is GPIO12 (ESP32), GPIO16 (ESP32-S2)

ADC2_CHANNEL_6

ADC2 channel 6 is GPIO14 (ESP32), GPIO17 (ESP32-S2)

ADC2_CHANNEL_7

ADC2 channel 7 is GPIO27 (ESP32), GPIO18 (ESP32-S2)

ADC2_CHANNEL_8

ADC2 channel 8 is GPIO25 (ESP32), GPIO19 (ESP32-S2)

ADC2_CHANNEL_9

ADC2 channel 9 is GPIO26 (ESP32), GPIO20 (ESP32-S2)

ADC2_CHANNEL_MAX
enum adc_i2s_encode_t

ADC digital controller encode option.

Values:

ADC_ENCODE_12BIT

ADC to DMA data format, , [15:12]-channel [11:0]-12 bits ADC data

ADC_ENCODE_11BIT

ADC to DMA data format, [15]-unit, [14:11]-channel [10:0]-11 bits ADC data

ADC_ENCODE_MAX

ADC Calibration

Functions

esp_err_t esp_adc_cal_check_efuse(esp_adc_cal_value_t value_type)

Checks if ADC calibration values are burned into eFuse.

This function checks if ADC reference voltage or Two Point values have been burned to the eFuse of the current ESP32

Note

in ESP32S2, only ESP_ADC_CAL_VAL_EFUSE_TP is supported. Some old ESP32S2s do not support this, either. In which case you have to calibrate it manually, possibly by performing your own two-point calibration on the chip.

Return

  • ESP_OK: The calibration mode is supported in eFuse

  • ESP_ERR_NOT_SUPPORTED: Error, eFuse values are not burned

  • ESP_ERR_INVALID_ARG: Error, invalid argument (ESP_ADC_CAL_VAL_DEFAULT_VREF)

Parameters
  • value_type: Type of calibration value (ESP_ADC_CAL_VAL_EFUSE_VREF or ESP_ADC_CAL_VAL_EFUSE_TP)

esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num, adc_atten_t atten, adc_bits_width_t bit_width, uint32_t default_vref, esp_adc_cal_characteristics_t *chars)

Characterize an ADC at a particular attenuation.

This function will characterize the ADC at a particular attenuation and generate the ADC-Voltage curve in the form of [y = coeff_a * x + coeff_b]. Characterization can be based on Two Point values, eFuse Vref, or default Vref and the calibration values will be prioritized in that order.

Note

For ESP32, Two Point values and eFuse Vref calibration can be enabled/disabled using menuconfig. For ESP32s2, only Two Point values calibration and only ADC_WIDTH_BIT_13 is supported. The parameter default_vref is unused.

Return

  • ESP_ADC_CAL_VAL_EFUSE_VREF: eFuse Vref used for characterization

  • ESP_ADC_CAL_VAL_EFUSE_TP: Two Point value used for characterization (only in Linear Mode)

  • ESP_ADC_CAL_VAL_DEFAULT_VREF: Default Vref used for characterization

Parameters
  • [in] adc_num: ADC to characterize (ADC_UNIT_1 or ADC_UNIT_2)

  • [in] atten: Attenuation to characterize

  • [in] bit_width: Bit width configuration of ADC

  • [in] default_vref: Default ADC reference voltage in mV (Only in ESP32, used if eFuse values is not available)

  • [out] chars: Pointer to empty structure used to store ADC characteristics

uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars)

Convert an ADC reading to voltage in mV.

This function converts an ADC reading to a voltage in mV based on the ADC’s characteristics.

Note

Characteristics structure must be initialized before this function is called (call esp_adc_cal_characterize())

Return

Voltage in mV

Parameters
  • [in] adc_reading: ADC reading

  • [in] chars: Pointer to initialized structure containing ADC characteristics

esp_err_t esp_adc_cal_get_voltage(adc_channel_t channel, const esp_adc_cal_characteristics_t *chars, uint32_t *voltage)

Reads an ADC and converts the reading to a voltage in mV.

This function reads an ADC then converts the raw reading to a voltage in mV based on the characteristics provided. The ADC that is read is also determined by the characteristics.

Note

The Characteristics structure must be initialized before this function is called (call esp_adc_cal_characterize())

Return

  • ESP_OK: ADC read and converted to mV

  • ESP_ERR_INVALID_ARG: Error due to invalid arguments

  • ESP_ERR_INVALID_STATE: Reading result is invalid. Try to read again.

Parameters
  • [in] channel: ADC Channel to read

  • [in] chars: Pointer to initialized ADC characteristics structure

  • [out] voltage: Pointer to store converted voltage

Structures

struct esp_adc_cal_characteristics_t

Structure storing characteristics of an ADC.

Note

Call esp_adc_cal_characterize() to initialize the structure

Public Members

adc_unit_t adc_num

ADC number

adc_atten_t atten

ADC attenuation

adc_bits_width_t bit_width

ADC bit width

uint32_t coeff_a

Gradient of ADC-Voltage curve

uint32_t coeff_b

Offset of ADC-Voltage curve

uint32_t vref

Vref used by lookup table

const uint32_t *low_curve

Pointer to low Vref curve of lookup table (NULL if unused)

const uint32_t *high_curve

Pointer to high Vref curve of lookup table (NULL if unused)

uint8_t version

ADC Calibration

Enumerations

enum esp_adc_cal_value_t

Type of calibration value used in characterization.

Values:

ESP_ADC_CAL_VAL_EFUSE_VREF = 0

Characterization based on reference voltage stored in eFuse

ESP_ADC_CAL_VAL_EFUSE_TP = 1

Characterization based on Two Point values stored in eFuse

ESP_ADC_CAL_VAL_DEFAULT_VREF = 2

Characterization based on default reference voltage

ESP_ADC_CAL_VAL_EFUSE_TP_FIT = 3

Characterization based on Two Point values and fitting curve coefficients stored in eFuse

ESP_ADC_CAL_VAL_MAX
ESP_ADC_CAL_VAL_NOT_SUPPORTED = ESP_ADC_CAL_VAL_MAX

GPIO Lookup Macros

Macros

ADC1_GPIO36_CHANNEL
ADC1_CHANNEL_0_GPIO_NUM
ADC1_GPIO37_CHANNEL
ADC1_CHANNEL_1_GPIO_NUM
ADC1_GPIO38_CHANNEL
ADC1_CHANNEL_2_GPIO_NUM
ADC1_GPIO39_CHANNEL
ADC1_CHANNEL_3_GPIO_NUM
ADC1_GPIO32_CHANNEL
ADC1_CHANNEL_4_GPIO_NUM
ADC1_GPIO33_CHANNEL
ADC1_CHANNEL_5_GPIO_NUM
ADC1_GPIO34_CHANNEL
ADC1_CHANNEL_6_GPIO_NUM
ADC1_GPIO35_CHANNEL
ADC1_CHANNEL_7_GPIO_NUM
ADC2_GPIO4_CHANNEL
ADC2_CHANNEL_0_GPIO_NUM
ADC2_GPIO0_CHANNEL
ADC2_CHANNEL_1_GPIO_NUM
ADC2_GPIO2_CHANNEL
ADC2_CHANNEL_2_GPIO_NUM
ADC2_GPIO15_CHANNEL
ADC2_CHANNEL_3_GPIO_NUM
ADC2_GPIO13_CHANNEL
ADC2_CHANNEL_4_GPIO_NUM
ADC2_GPIO12_CHANNEL
ADC2_CHANNEL_5_GPIO_NUM
ADC2_GPIO14_CHANNEL
ADC2_CHANNEL_6_GPIO_NUM
ADC2_GPIO27_CHANNEL
ADC2_CHANNEL_7_GPIO_NUM
ADC2_GPIO25_CHANNEL
ADC2_CHANNEL_8_GPIO_NUM
ADC2_GPIO26_CHANNEL
ADC2_CHANNEL_9_GPIO_NUM