RF 共存
概览
ESP系列芯片最多支持三种射频收发模块: Bluetooth(BT 和 BLE), IEEE802.15.4 和 Wi-Fi, 而每款芯片只支持一路被多个射频收发模块共享的 RF,不同模块无法同时使用 RF 收发数据,因此采用时分复用的方法调节不同模块的数据包收发。
ESP32-S3 支持的共存场景
BLE |
||||||
Scan |
Advertising |
Connecting |
Connected |
|||
Wi-Fi |
STA |
Scan |
Y |
Y |
Y |
Y |
Connecting |
Y |
Y |
Y |
Y |
||
Connected |
Y |
Y |
Y |
Y |
||
SOFTAP |
TX Beacon |
Y |
Y |
Y |
Y |
|
Connecting |
C1 |
C1 |
C1 |
C1 |
||
Connected |
C1 |
C1 |
C1 |
C1 |
||
Sniffer |
RX |
C1 |
C1 |
C1 |
C1 |
|
ESP-NOW |
RX |
S |
S |
S |
S |
|
TX |
Y |
Y |
Y |
Y |
备注
Y:支持且性能稳定。 C1:不能保证性能处于稳定状态。 X:不支持。 S:在 STA 模式下支持且性能稳定,否则不支持。
共存机制与策略
共存机制
基于优先级抢占的 RF 资源分配机制,如下图所示,Bluetooth 模块和 Wi-Fi 模块向共存模块申请 RF 资源,共存模块根据二者的优先级高低裁决 RF 归谁使用。
共存策略
共存周期和时间片
Wi-Fi、BLE 二者对于 RF 的使用,主要是按照时间片来划分的。在 Wi-Fi 的时间片内,Wi-Fi 会向共存仲裁模块发出较高优先级的请求,在 Bluetooth 的时间片内,BLE 会具有较高优先级。共存周期大小和各个时间片占比根据 Wi-Fi 的状态分成四类:
IDLE 状态:RF 模块由 Bluetooth 模块控制。
CONNECTED 状态:共存周期以目标信标传输时间 (Target Beacon Transmission Time, TBTT) 点为起始点,周期大于 100 ms。
SCAN 状态:Wi-Fi 时间片以及共存周期都比在 CONNECTED 状态下的长。为了确保蓝牙的性能,蓝牙的时间片也会做相应的调整。
CONNECTING 状态:Wi-Fi 时间片比在 CONNECTED 状态下的长。为了确保蓝牙的性能,蓝牙的时间片也会做相应的调整。
共存逻辑会根据当前 Wi-Fi 和 Bluetooth 的使用场景来选取不同的共存周期和共存时间片的划分策略。对应一个使用场景的共存策略,我们称之为“共存模板”。比如,Wi-Fi CONNECTED 与 BLE CONNECTED 的场景,就对应有一个共存模板。在这个共存模板中,一个共存周期内 Wi-Fi 和 BLE 的时间片各占 50%,时间分配如下图所示:
动态优先级
共存模块为每个模块的不同状态分配不同的优先级。每种状态下的优先级并不是一成不变的,例如对于 BLE,每 N 个广播事件 (Advertising event) 中会有一个广播事件使用高优先级。如果高优先级的广播事件发生在 Wi-Fi 时间片内,RF 的使用权可能会被 BLE 抢占。
Wi-Fi 非连接模块的共存
在一定程度上,某些 Wi-Fi 非连接模块功耗参数 Window 与 Interval 的组合会导致共存模块在 Wi-Fi 时间片外申请共存优先级。这是为了按设定的功耗参数在共存时获取 RF 资源,但这会影响既定的蓝牙性能。
如果 Wi-Fi 非连接模块功耗参数为默认值时,上述动作不会发生,共存模块会按照性能稳定的模式运行。因此,除非你对特定非连接功耗参数下的共存性能有足够的测试,请在共存场景下将 Wi-Fi 非连接模块功耗参数配置为默认参数。
请参考 非连接模块功耗管理 获取更多信息。
如何使用共存功能
共存 API 的使用
在大多数共存情况下,ESP32-S3 会自动进行共存状态切换,无需调用 API 对其进行干预。但是对于 BLE MESH 和 Wi-Fi 的共存,ESP32-S3 对其提供了两个 API。当 BLE MESH 的状态发生变化时,应先调用 esp_coex_status_bit_clear
对上一个状态进行清除,然后调用 esp_coex_status_bit_set
设置当前状态。
BLE MESH 共存状态描述
由于 Wi-Fi 和 Bluetooth 固件无法获知当前的上层应用的场景,一些共存模板需要应用代码调用共存的 API 才能生效。BLE MESH 的工作状态就需要由应用层通知给共存模块,用于选择共存模板。
ESP_COEX_BLE_ST_MESH_CONFIG:正在组网。
ESP_COEX_BLE_ST_MESH_TRAFFIC:正在传输数据。
ESP_COEX_BLE_ST_MESH_STANDBY:处于空闲状态,无大量数据交互。
共存 API 错误代码
所有共存 API 都有自定义的返回值,即错误代码。这些代码可分类为:
无错误,例如:返回值为 ESP_OK 代表 API 成功返回。
可恢复错误,例如: 返回值为 ESP_ERR_INVALID_ARG 代表 API 参数错误。
设置共存编译时选项
在完成共存程序编写的时候,您必须通过 menuconfig 选择 CONFIG_ESP_COEX_SW_COEXIST_ENABLE 打开软件共存配置选项,否则就无法使用上文中提到的共存功能。
为了在共存情况下获得更好的 Wi-Fi 和蓝牙的通信性能,建议将 Wi-Fi 协议栈的 task 和蓝牙 Controller 以及 Host 协议栈的 task 运行在不同的 CPU 上,您可以通过 CONFIG_BT_CTRL_PINNED_TO_CORE_CHOICE 和 CONFIG_BT_BLUEDROID_PINNED_TO_CORE_CHOICE (或者 CONFIG_BT_NIMBLE_PINNED_TO_CORE_CHOICE )选择将蓝牙 controller 以及 host 协议栈的 task 放在同一个 CPU 上,再通过 CONFIG_ESP_WIFI_TASK_CORE_ID 选择将 Wi-Fi 协议栈 task 放在另一个 CPU 上。
在 BLE 连接过程中使用了 LE Coded PHY 时,为了防止蓝牙数据包持续时间较长而对 Wi-Fi 的性能产生严重影响,您可以在 CONFIG_BT_CTRL_COEX_PHY_CODED_TX_RX_TLIM 的子选项中选择 BT_CTRL_COEX_PHY_CODED_TX_RX_TLIM_EN ,打开限制 TX/RX 最大时间的配置选项。
您可以通过修改以下 menuconfig 选项,以减小内存开销:
CONFIG_BT_BLE_DYNAMIC_ENV_MEMORY 选择打开蓝牙协议栈动态内存配置选项。
CONFIG_ESP_WIFI_STATIC_RX_BUFFER_NUM 选择减少 Wi-Fi 静态接收数据缓冲区的数量。
CONFIG_ESP_WIFI_DYNAMIC_RX_BUFFER_NUM 选择减少 Wi-Fi 动态接收数据缓冲区的数量。
CONFIG_ESP_WIFI_TX_BUFFER 选择使用动态分配发送数据缓冲区配置选项。
CONFIG_ESP_WIFI_DYNAMIC_TX_BUFFER_NUM 选择减少 Wi-Fi 动态发送数据缓冲区的数量。
CONFIG_ESP_WIFI_TX_BA_WIN 选择减少 Wi-Fi Block Ack TX 窗口的数量。
CONFIG_ESP_WIFI_RX_BA_WIN 选择减少 Wi-Fi Block Ack RX 窗口的数量。
CONFIG_ESP_WIFI_MGMT_SBUF_NUM 选择减少 Wi-Fi 管理短缓冲区的数量。
CONFIG_ESP_WIFI_RX_IRAM_OPT 选择关闭此配置选项,关闭此配置选项将会减少大约 17 KB 的 IRAM 内存。
CONFIG_LWIP_TCP_SND_BUF_DEFAULT 选择减小 TCP 套接字默认发送缓存区。
CONFIG_LWIP_TCP_WND_DEFAULT 选择减小 TCP 套接字默认接收窗口。
CONFIG_LWIP_TCP_RECVMBOX_SIZE 可配置减小 TCP 接收邮箱。接受邮箱负责缓冲 TCP 连接中的数据,确保数据流畅传输。
CONFIG_LWIP_UDP_RECVMBOX_SIZE 选择减小 UDP 接收邮箱。
CONFIG_LWIP_TCPIP_RECVMBOX_SIZE 选择减小 TCPIP 任务接收邮箱。
备注
由于共存配置选项依赖于任何两个已启用的射频收发模块的存在,请在配置任何共存功能之前,确保至少使能了两个射频收发模块。