
ESP32
ESP-SR User Guide

Release master
Espressif Systems
May 07, 2024

Table of contents

Table of contents i

1 Getting Started 3
1.1 Overview . 3
1.2 What You Need . 3

1.2.1 Hardware . 3
1.2.2 Software . 3

1.3 Compile an Example . 3

2 AFE Audio Front-end 5
2.1 Audio Front-end Framework . 5

2.1.1 Overview . 5
2.1.2 Usage Scenarios . 5
2.1.3 Select AFE Handle . 8
2.1.4 Input Audio Data . 8
2.1.5 Output Audio . 9
2.1.6 Enable Wake Word Engine WakeNet . 9
2.1.7 Enable Acoustic Echo Cancellation (AEC) . 9
2.1.8 Resource Occupancy . 10

2.2 Espressif Microphone Design Guidelines . 10
2.2.1 Microphone Electrical Performance Requirement . 10
2.2.2 Microphone Structure Design Suggestion . 10
2.2.3 Microphone Array Design Suggestion . 10
2.2.4 Microphone Leakproofness Suggestion . 11
2.2.5 Echo Reference Signal Design Suggestion . 11
2.2.6 Microphone Array Consistency Verification . 11

3 Wake Word 13
3.1 WakeNet Wake Word Model . 13

3.1.1 Overview . 13
3.1.2 Use WakeNet . 14
3.1.3 Resource Occupancy . 15

3.2 Espressif Speech Wake-up Solution Customization Process . 15
3.2.1 Wake Word Customization Process . 15
3.2.2 Requirements on Corpus . 15
3.2.3 Hardware Design and Test . 16

4 Command Word 17
4.1 MultiNet Command Word Recognition Model . 17
4.2 Commands Recognition Process . 17
4.3 Speech Commands Customization Methods . 18

4.3.1 MultiNet7 customize speech commands . 18
4.3.2 MultiNet6 customize speech commands . 18
4.3.3 MultiNet5 customize speech commands . 18
4.3.4 Customize Speech Commands Via API calls . 19

4.4 Use MultiNet . 21
4.4.1 Initialize MultiNet . 21

i

4.4.2 Run MultiNet . 21
4.4.3 MultiNet Output . 21

4.5 Resource Occupancy . 22

5 TTS Speech Synthesis Model 23
5.1 Overview . 23
5.2 Examples . 23
5.3 Programming Procedures . 24
5.4 Resource Occupancy . 24

6 Flashing Models 25
6.1 Configuration . 25

6.1.1 Use AFE . 25
6.1.2 Use WakeNet . 25
6.1.3 Use Multinet . 26

6.2 How To Use . 26
6.2.1 Load Model Data from flash . 27

7 Benchmark 29
7.1 AFE . 29

7.1.1 Resource Consumption . 29
7.2 WakeNet . 29

7.2.1 Resource Consumption . 29
7.2.2 Performance Test . 29

7.3 MultiNet . 30
7.3.1 Resource Consumption . 30
7.3.2 Word Error Rate Performance Test . 30
7.3.3 Speech Commands Performance Test . 30

7.4 TTS . 30
7.4.1 Resource Consumption . 30
7.4.2 Performance Test . 30

8 Test Method and Test Report 31
8.1 Test Room Requirement . 31
8.2 Test Case Design . 31
8.3 Espressif Test and Result . 32

8.3.1 Wake-up Rate Test . 32
8.3.2 Speech Recognition Rate Test . 33
8.3.3 False Wake-up Rate Test . 33
8.3.4 Response Accuracy Rate Under Playback . 33
8.3.5 Response Time Test . 34

9 Glossary 35
9.1 General Terms . 35
9.2 Unique Terms . 35

ii

Table of contents

This document contains ESP-SR usage for ESP32 only.

Espressif Systems 1
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Table of contents

Espressif Systems 2
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 1

Getting Started

Espressif ESP-SR helps you build AI voice solution based on ESP32 or ESP32-S3 chips. This document introduces
the algorithms and models in ESP-SR via some simple examples.

1.1 Overview

ESP-SR includes the following modules:
• Audio Front-end AFE
• Wake Word Engine WakeNet
• Speech Command Word Recognition MultiNet
• Speech Synthesis (only supports Chinese language)

1.2 What You Need

1.2.1 Hardware

• an audio development board. Recommendation: ESP32-Korvo
• USB 2.0 cable (USB A / micro USB B)
• PC (Linux)

Note: Some development boards currently have the Type C interface. Make sure you use the proper cable to connect
the board!

1.2.2 Software

• Download ESP-SKAINET, which also downloads ESP-SR as a component.
• Install the ESP-IDF version recommended in ESP-SKAINET. For detailed steps, please see Section Getting
Started in ESP-IDF Programming Guide.

1.3 Compile an Example

• Navigate to ESP-SKAINET/examples/en_speech_commands_recognition .

3

https://github.com/espressif/esp-sr
https://github.com/espressif/esp-skainet
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/index.html
https://github.com/espressif/esp-skainet/tree/master/examples/en_speech_commands_recognition

Chapter 1. Getting Started

• Compile and run an example following the instructions.
• The example only supports commands in English. Users can wake up the chip by using wake word“Hi ESP”
. Note that the chip stops listening to commands if the users wake up the chip and do not give any commands
for some time. In this case, just wake up the chip again by saying the wake word.

Espressif Systems 4
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 2

AFE Audio Front-end

2.1 Audio Front-end Framework

2.1.1 Overview

Any voice-enabled product needs to perform well in a noisy environment, and audio front-end (AFE) algorithms play
an important role in building a sensitive voice-user interface (VUI). Espressif’s AI Lab has created a set of audio
front-end algorithms that can offer this functionality. Customers can use these algorithms with Espressif’s powerful
ESP32 series of chips, in order to build high-performance, yet low-cost, products with a voice-user interface.

Name Description
AEC (Acoustic Echo
Cancellation)

Supports maximum two-mic processing, which can effectively remove the echo in
the mic input signal, and help with further speech recognition.

NS (Noise Suppression) Supports single-channel processing and can suppress the non-human noise in single-
channel audio, especially for stationary noise.

BSS (Blind Source Sepa-
ration)

Supports dual-channel processing, which can well separate the target sound source
from the rest of the interference sound, so as to extract the useful audio signal and
ensure the quality of the subsequent speech.

MISO (Multi Input Single
Output)

Supports dual channel input and single channel output. It is used to select a channel
of audio output with high signal-to-noise ratio when there is no WakeNet enable in
the dual mic scene.

VAD (Voice Activity De-
tection)

Supports real-time output of the voice activity state of the current frame.

AGC (Automatic Gain
Control)

Dynamically adjusts the amplitude of the output audio, and amplifies the output am-
plitude when a weak signal is input; When the input signal reaches a certain strength,
the output amplitude will be compressed.

WakeNet A wake word engine built upon neural network, and is specially designed for low-
power embedded MCUs.

2.1.2 Usage Scenarios

This section introduces two typical usage scenarios of Espressif AFE framework.

Speech Recognition

Workflow

5

Chapter 2. AFE Audio Front-end

Espressif Systems 6
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 2. AFE Audio Front-end

Data Flow
1. Use ESP_AFE_SR_HANDLE() to create and initialize AFE. Note, voice_communication_init

must be configured as false.
2. Use feed() to input audio data, which will perform the AEC algorithm inside feed() first.
3. Perform the BSS/NS algorithms inside feed() first.
4. Use fetch() to obtain processed single channel audio data and related information. Note, VAD processing

and wake word detection will be performed inside fetch(). The specific behavior depends on the configu-
ration of afe_config_t structure.

Voice Communication

Workflow

Data Flow
1. Use ESP_AFE_VC_HANDLE() to create and initialize AFE. Note, voice_communication_init

must be configured as true.
2. Use feed() to input audio data, which will perform the AEC algorithm inside feed() first.
3. Perform the BSS/NS algorithms inside feed() first. Additional MISO algorithm will be performed for dual

mic setup.
4. Use fetch() to obtain processed single channel audio data and related information. The AGC algorithm

processing will be carried out. And the specific gain depends on the config of afe_config_t structure. If
it’s dual mic, the NS algorithm processing will be carried out before AGC.

Espressif Systems 7
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 2. AFE Audio Front-end

Note:
1. The wakenet_init and voice_communication_init in afe_config_t cannot be configured to

true at the same time.
2. feed() and fetch() are visible to users, while other AFE interal tasks such as BSS/NS/MISO are not

visible to users.
3. AEC algorithm is performed in feed().
4. When aec_init is configured to false, BSS/NS algorithms are performed in feed().

2.1.3 Select AFE Handle

Espressif AFE supports both single mic and dual mic setups, and allows flexible combinations of algorithms.
• Single mic

– Internal task is performed inside the NS algorithm
• Dual mic

– Internal task is performed inside the BSS algorithm
– An additional internal task is performed inside the MISO algorithm for voice communication sce-
nario (i.e., wakenet_init = false and voice_communication_init = true)

To obtain the AFE Handle, use the commands below:
• Speech recognition

esp_afe_sr_iface_t *afe_handle = &ESP_AFE_SR_HANDLE;

• Voice communication

esp_afe_sr_iface_t *afe_handle = &ESP_AFE_VC_HANDLE;

2.1.4 Input Audio Data

Currently, Espressif AFE framework supports both single mic and dual mic setups. Users can configure the number
of channels based on the input audio (esp_afe_sr_iface_op_feed_t()).
To be specific, users can configure the pcm_config in AFE_CONFIG_DEFAULT():

• total_ch_num : total number of channels
• mic_num : number of mic channels
• ref_num : number of REF channels

When configuring, note the following requirements:
1. total_ch_num = mic_num + ref_num
2. ref_num = 0 or ref_num = 1 (This is because AEC only supports up to one reference data now)

The supported configurations are:

total_ch_num=1, mic_num=1, ref_num=0
total_ch_num=2, mic_num=1, ref_num=1
total_ch_num=2, mic_num=2, ref_num=0
total_ch_num=3, mic_num=2, ref_num=1

AFE Single Mic

• Input audio data format: 16 KHz, 16 bit, two channels (one is mic data, another is REF data). Note that if
AEC is not required, then there is no need for reference data. Therefore, users can only configure one channel
of mic data, and the ref_num can be set to 0.

Espressif Systems 8
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 2. AFE Audio Front-end

• The input data frame length varies to the algorithm modules configured by the user. Users can use
get_feed_chunksize() to get the number of sampling points (the data type of sampling points is int16).

The input data is arranged as follows:

AFE Dual Mic

• Input audio data format: 16 KHz, 16 bit, three channels (two are mic data, another is REF data). Note that if
AEC is not required, then there is no need for reference data. Therefore, users can only configure two channels
of mic data, and the ref_num can be set to 0.

• The input data frame length varies to the algorithm modules configured by the user. Users can use
get_feed_chunksize() to obtain the data size required (i.e., get_feed_chunksize() * to-
tal_ch_num * sizeof(short)).

The input data is arranged as follows:

2.1.5 Output Audio

The output audio of AFE is single-channel data. - In the speech recognition scenario, AFE outputs single-channel
data with human voice whenWakeNet is enabled. - In the voice communication scenario, AFE outputs single channel
data with higher signal-to-noise ratio.

2.1.6 Enable Wake Word Engine WakeNet

When performing AFE audio front-end processing, the user can choose whether to enable wake word engineWakeNet
to allow waking up the chip via wake words.
Users can disable WakeNet to reduce the CPU resource consumption and perform other operations after wake-up,
such as offline or online speech recognition. To do so, users can configure disable_wakenet() to enter Bypass
mode.
Users can also call enable_wakenet() to enable WakeNet later whenever needed.
ESP32 only supports one wake word. Users cannot switch between different wake words.

2.1.7 Enable Acoustic Echo Cancellation (AEC)

The usage of AEC is similar to that of WakeNet. Users can disable or enable AEC according to requirements.
• Disable AEC

afe->disable_aec(afe_data);
• Enable AEC

afe->enable_aec(afe_data);

Espressif Systems 9
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 2. AFE Audio Front-end

2.1.8 Resource Occupancy

For the resource occupancy for this model, see Resource Occupancy.

2.2 Espressif Microphone Design Guidelines

This document provides microphone design guidelines and suggestions for the ESP32 series of audio development
boards.

2.2.1 Microphone Electrical Performance Requirement

• Type: omnidirectional MEMS microphone
• Sensitivity

– Under 1 Pa sound pressure, the sensitivity should be no less than -38 dBV for analog microphones and
-26 dB for digital microphones.

– Tolerance should be within ±2 dB for microphones. And tolerance for microphone arrays should be
within ±1 dB.

• Signal-to-noise ratio (SNR)
– SNR: No less than 62 dB. Higher than 64 dB is recommended.
– Frequency response should only fluctuate within ±3 dB from 50 to 16 kHz.
– PSRR should be larger than 55 dB for microphones.

2.2.2 Microphone Structure Design Suggestion

• The aperture or width of the microphone hole is recommended to be greater than 1 mm, the pickup pipe should
be as short as possible, and the cavity should be as small as possible. All to ensure that the resonance frequency
of the microphone and structural components is above 9 kHz.

• The depth and diameter of the pickup hole are less than 2:1, and the thickness of the shell is recommended to
be 1 mm. Increase the hole size of microphone if the shell is too thick.

• The microphone hole must be protected by an anti-dust mesh.
• Silicone sleeve or foam must be added between the microphone and the device shell for sealing and damping,
and an interference fit design is required to ensure the leakproofness of the microphone.

• The microphone hole cannot be covered. The microphone in the bottom must keep some clearance from
the surfaces such as desktop. Therefore, it’s suggested to design some legs for the product to provide such
clearance.

• The microphone should be placed far away from the speaker and other objects that can produce noise or
vibration, and be isolated and buffered by rubber pads from the speaker sound cavity.

2.2.3 Microphone Array Design Suggestion

Customers can design two or three microphones in an array:
• Two-microphone solution: the distance between the microphones should be 4 ~ 6.5 cm, the axis connecting
them should be parallel to the horizontal line, and the center of the two microphones should be horizontally as
close as possible to the center of the product.

• Three-microphone solution: the microphones are equally spaced and distributed in a perfect circle with the
angle 120 °C from each other, and the spacing should be 4 ~ 6.5 cm.

There are some limitations when selecting microphones for the same array:
• Type: omnidirectional MEMS microphone. Use the same microphone models from the same manufacturer
for the array. It’s not recommended to use different microphone models in the same array.

• The sensitivity difference of all the microphones in the same array should be within 3 dB.
• The phase difference of all the microphones in the same array should be within 10°.

Espressif Systems 10
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 2. AFE Audio Front-end

• It is recommended to use the same structural design for all the microphones in the same array to ensure con-
sistency.

2.2.4 Microphone Leakproofness Suggestion

Use plasticine or similar materials to seal the microphone pickup hole and compare how much the signals collected
by the microphone decrease by before and after the seal. 25 dB is qualified, and 30 dB is recommended. Below are
the test procedures:

1. Play white noise at 0.5 meters above the microphone, and keep the volume at the microphone 90 dB.
2. Use the microphone array to record for more than 10 s, and store the recording as recording file A.
3. Use plasticine or similar materials to block the microphone pickup hole, record for more than 10 s, and store

it as recording file B.
4. Compare the frequency spectrum of the two files and make sure that the overall attenuation in the 100 ~ 8 kHz

frequency band is more than 25 dB.

2.2.5 Echo Reference Signal Design Suggestion

• It is recommended that the echo reference signal be as close to the speaker side as possible, and recover from
the DA post-stage and PA pre-stage.

• When the speaker volume is at its maximum, the echo reference signal input to the microphone should not
have saturation distortion. At the maximum volume, the speaker amplifier output Total Harmonic Distortion
(THD) is less than 10% at 100 Hz, less than 6% at 200 Hz, and less than 3% above 350 Hz.

• When the speaker volume is at its maximum, the sound pressure picked up by the microphone does not exceed
102 dB @ 1 kHz.

• The echo reference signal voltage does not exceed the maximum allowed input voltage of the ADC. If it is too
high, an attenuation circuit should be added.

• A low-pass filter should be added to introduce the reference echo signal from the output of the Class D power
amplifier. The cutoff frequency of the filter is recommended to be more than 22 kHz.

• When the volume is played at the maximum, the recovery signal peak value is -3 to -5 dB.

2.2.6 Microphone Array Consistency Verification

It is required that the difference between the sampled signals of each microphone in the same array is less than 3 dB.
Below are the test procedures.

1. Play white noise at 0.5 meters above the microphone, and keep the volume at the microphone 90 dB.
2. Use the microphone array to record for more than 10 s, and check whether the recording amplitude and audio

sampling rate of each microphone are consistent.

Espressif Systems 11
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 2. AFE Audio Front-end

Espressif Systems 12
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 3

Wake Word

3.1 WakeNet Wake Word Model

WakeNet is a wake word engine built upon neural network for low-power embedded MCUs. Currently, WakeNet
supports up to 5 wake words.

3.1.1 Overview

Please see the flow diagram of WakeNet below:

• Speech Feature We use MFCC method to extract the speech spectrum features. The input audio file has a
sample rate of 16KHz, mono, and is encoded as signed 16-bit. Each frame has a window width and step
size of 30ms.

• Neural Network Now, the neural network structure has been updated to the ninth edition, among which:
– WakeNet1, WakeNet2, WakeNet3, WakeNet4, WakeNet6, and WakeNet7 had been out of use.
– WakeNet5 only supports ESP32 chip.
– WakeNet8 and WakeNet9 only support ESP32-S3 chip, which are built upon the Dilated Convolu-
tion structure.

13

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://arxiv.org/pdf/1609.03499.pdf
https://arxiv.org/pdf/1609.03499.pdf

Chapter 3. Wake Word

The network structure of WakeNet5, WakeNet5X2 andWakeNet5X3 is the same, but WakeNetX2 andWakeNetX3
have more parameters than WakeNet5. Please refer to Resource Consumption for details.

• Keyword Triggering Method: For continuous audio stream, we calculate the average recognition results (M)
for several frames and generate a smoothing prediction result, to improve the accuracy of keyword trig-
gering. Only when the M value is larger than the set threshold, a triggering command is sent.

The wake words supported by Espressif chips are listed below:

Chip ESP32 ESP32S3
model WakeNet 5 WakeNet 8 WakeNet 9

WakeNet 5 WakeNet 5X2 WakeNet 5X3 Q16 Q8 Q16 Q8
Hi,Lexin √ √ √ √
nihaoxiaozhi √ √ √
nihaoxiaoxin √
xiaoaitongxue √
Alexa √ √
Hi,ESP √
Customized word √

3.1.2 Use WakeNet

• Select WakeNet model
To select WakeNet model, please refer to Section Flashing Models .
To customize wake words, please refer to Section Espressif Speech Wake-up Solution Customization
Process

• Run WakeNet
WakeNet is currently included in the AFE, which is enabled by default, and returns the detection
results through the AFE fetch interface.
If users do not need WakeNet, please use:

Espressif Systems 14
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 3. Wake Word

afe_config.wakeNet_init = False.

If users want to enable/disable WakeNet temporarily, please use:

afe_handle->disable_wakenet(afe_data)
afe_handle->enable_wakenet(afe_data)

3.1.3 Resource Occupancy

For the resource occupancy for this model, see Resource Occupancy.

3.2 Espressif Speech Wake-up Solution Customization Process

3.2.1 Wake Word Customization Process

Espressif provides users with the wake word customization :
1. Espressif has already opened some wake words for customers’commercial use, such as“HI Leixi”, or“Nihao

Xiaoxin”.
• For a complete list, see Table Publicly Available Wake Words Provided by Espressif .
• Espressif also plans to provide more wake words that are free for commercial use soon.

2. Offline wake word customization can also be provided by Espressif:
• Training corpus provided by customer

– Customer must provide at least 20,000 qualified corpus entries. See detailed requirements in Section
Requirements on Corpus .

– It usually takes two to three weeks for Espressif to train and optimize the received corpus.
– A fee will be charged for training and optimizing the corpus.

• Training corpus provided by Espressif
– Espressif provides all the corpus required for training.
– The time required to collect corpus needs to be discussed separately. After the corpus is ready, it
usually takes two to three weeks for Espressif to train and optimize the received corpus.

– A fee will be charged for training and optimizing the corpus. A separate fee will be changed for
collecting the corpus.

• The actual fee and time for your customization depend on the number of wake words you need and the
scale of your mass production. For details, please contact our sales person .

3. About Espressif wake word engine WakeNet:
• Currently, up to 5 wake words are supported by each WakeNet model.
• A wake word usually consists of 3 to 6 symbols, such as“Hi Leixin”,“xiaoaitongxue”,“nihaotianmao”
.

• More than one WakeNet models can be used together. However, more resource will be consumed when
you use more models.

• For more details, see SectionWakeNet Wake Word Model .

3.2.2 Requirements on Corpus

As mentioned above, customers can provide Espressif with training corpus collected themselves or purchased from
a third party. However, there are some limitations:

• Audio file format
– Sample rate: 16 kHz
– Encoding: 16-bit signed int
– Channel: mono
– Format: WAV

Espressif Systems 15
Submit Document Feedback

Release master

mailto:sales@espressif.com
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 3. Wake Word

1. Sampling requirement
• Number of samples: more than 500 people, includingmen andwomen of all ages and at least 100 children.
• Sampling environment: a quiet room (< 40 dB). It is recommended to use a professional audio room.
• Recording device: high-fidelity microphone.
• How to sample:

– At 1 meters away from the microphone: each person speaks the wake word out loud for 15 times
(5 times in fast speed, 5 times in normal speed, 5 times in slow speed).

– At 3 meters away from the microphone: each person speaks the wake word out loud for 15 times
(5 times in fast speed, 5 times in normal speed, 5 times in slow speed).

• File name: it is recommended to name the samples according to the age, gender, and quantity of the
collected samples, such as female_age_fast_id.wav. Or you can use a separate file to present
such information.

3.2.3 Hardware Design and Test

The voice wake-up performance heavily depends on the hardware design and cavity structure. Therefore, please pay
special attention to the following requirements:

1. Hardware Design
• Speaker designs: customers can make their own designs by modifying the reference designs
(schematic/PCB) provided by Espressif. Also, Espressif can also review customers’speaker designs
to avoid some common design issues.

• Cavity structure: cavity should be designed by acoustic specialists. Espressif does not provide ID design
reference. Customers can refer to other mainstream speaker cavity designs on the market, such as Tmall
Genie, Xiaodu Smart Speaker, and Google Smart Speaker, etc.

2. Customers can perform the following tests to verify the hardware designs. Note that it’s suggested to perform
the following tests in a professional audio room. Customers can adjust the actual tests based on their actual
testing environment.

• Recording test to verify the gain and distortion of mic and codec
– Play the sample (90 dB, 0.1meter away from themic), and adjust the gain to ensure that the recording
is not saturated.

– Use a sweep file of 0~20 KHz, and start recording using the sampling rate of 16 KHz. The recording
should not have obvious frequency aliasing.

– Record 100 samples, and feed these samples to open cloud voice recognition API. A certain recog-
nition rate must be reached.

• Playback test to verify the distortion of power amplifier (PA) and speaker
– Test PA power @ 1% Total Harmonic Distortion (THD)

• Speech algorithms test to verify the AEC, BFM and NS models
– Adjust the delays of the reference signals based on the different requirements of different AEC
algorithms.

– Test the product based on the actual use scenario. For example, play 85DB-90DB Dreamer.wav
(a song) and record.

– Analyze the processed signals to evaluate the performance of AEC, BFM, NS, etc.
• DSP performance test to identify the correct DSP parameter and minimize the nonlinear distortion in the
DSP algorithm
– Noise Suppression
– Acoustic Echo Cancellation
– Speech Enhancement

3. Customers can also send 1 or 2 pieces of hardware to Espressif and ask us to optimize the product for better
wakeup performance.

Espressif Systems 16
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 4

Command Word

4.1 MultiNet Command Word Recognition Model

MultiNet is a lightweight model designed to recognize multiple speech command words offline based on ESP32.
Currently, up to 200 speech commands, including customized commands, are supported.

• Support Chinese speech commands recognition
• Support user-defined commands
• Support adding / deleting / modifying commands during operation
• Up to 200 commands are supported
• It supports single recognition and continuous recognition
• Lightweight and low resource consumption
• Low delay, within 500ms
• The model is partitioned separately to support users to apply OTA

The MultiNet input is the audio processed by the audio-front-end algorithm (AFE), with the format of 16 KHz, 16
bit and mono. By recognizing the audio signals, speech commands can be recognized.
Please refer to Models Benchmark to check models supported by Espressif SoCs.
For details on flash models, see Section Flashing Models .

Note: Models ending with Q8 represents the 8 bit version of the model, which is more lightweight.

4.2 Commands Recognition Process

Please see the flow diagram for commands recognition below:

Fig. 1: speech_command-recognition-system

17

Chapter 4. Command Word

4.3 Speech Commands Customization Methods

Note: Mixed Chinese and English is not supported in command words.
The command word cannot contain Arabic numerals and special characters.
Please refer to Chinese version documentation for Chinese speech commands customization methods.

4.3.1 MultiNet7 customize speech commands

MultiNet7 use phonemes for English speech commands. Please modify a text file
model/multinet_model/fst/commands_en.txt by the following format:

command_id,command_grapheme,command_phoneme
1,tell me a joke,TfL Mm c qbK
2,sing a song,Sgl c Sel

• Column 1: command ID, it should start from 1 and cannot be set to 0.
• Column 2: command_grapheme, the command sentence. It is recommended to use lowercase letters unless it
is an acronym that is meant to be pronounced differently.

• Column 3: command_phoneme, the phoneme sequence of the command which is optional. To fill this column,
please use tool/multinet_g2p.py to do the Grapheme-to-Phoneme conversion and paste the results at the third
column correspondingly (this is the recommended way).

If Column 3 is left empty, then an internal Grapheme-to-Phoneme tool will be called at runtime. But there might be
a little accuracy drop in this way due the different Grapheme-to-Phoneme algorithms used.

4.3.2 MultiNet6 customize speech commands

MultiNet6 use grapheme for English speech commands, you can add/modify speech commands by words directly.
Please modify a text file model/multinet_model/fst/commands_en.txt by the following format:

command_id,command_grapheme
1,TELL ME A JOKE
2,MAKE A COFFEE

• Column 1: command ID, it should start from 1 and cannot be set to 0.
• Column 2: command_grapheme, the command sentence. It is recommended to use all capital letters.

The extra column in the default commands_en.txt is to keep it compatible with MultiNet7, there is no need to fill the
third column when using MultiNet6.

4.3.3 MultiNet5 customize speech commands

MultiNet5 use phonemes for English speech commands. For simplicity, we use characters to denote different
phonemes. Please use tool/multinet_g2p.py to do the convention.

• Via menuconfig
1. Navigate to idf.py menuconfig > ESP Speech Recognition > Add Chinese

speech commands/Add English speech commands to add speech commands.
For details, please refer to the example in ESP-Skainet.

Please note that a single Command ID can correspond to more than one commands. For example,
“da kai kong tiao”and“kai kong tiao”have the same meaning. Therefore, users can assign the
same command id to these two commands and separate them with“,”(no space required before
and after).
2. Call the following API:

Espressif Systems 18
Submit Document Feedback

Release master

https://github.com/espressif/esp-sr/blob/7cf3a77/model/multinet_model/fst/commands_en.txt
https://github.com/espressif/esp-sr/blob/7cf3a77/tool/multinet_g2p.py
https://github.com/espressif/esp-sr/blob/7cf3a77/model/multinet_model/fst/commands_en.txt
https://github.com/espressif/esp-sr/blob/7cf3a77/tool/multinet_g2p.py
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 4. Command Word

Fig. 2: menuconfig_add_speech_commands

/**
* @brief Update the speech commands of MultiNet by menuconfig
*
* @param multinet The multinet handle
*
* @param model_data The model object to query
*
* @param langugae The language of MultiNet
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_STATE Fail
*/
esp_err_t esp_mn_commands_update_from_sdkconfig(esp_mn_iface_t␣

↪→*multinet, const model_iface_data_t *model_data);

4.3.4 Customize Speech Commands Via API calls

Alternatively, speech commands can be modified via API calls, this method works for MultiNet5, MultiNet6 and
MultiNet7.
MutiNet5 requires the input command string to be phonemes, and MultiNet6 and MultiNet7 only accepts grapheme
inputs to API calls.

• Apply new changes, the add/remove/modify/clear actions will not take effect util this function is called.

/**
* @brief Update the speech commands of MultiNet
*
* @Warning: Must be used after [add/remove/modify/clear] function,
* otherwise the language model of multinet can not be␣
↪→updated.
*
* @return

(continues on next page)

Espressif Systems 19
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 4. Command Word

(continued from previous page)
* - NULL Success
* - others The list of error phrase which can not be␣
↪→parsed by multinet.
*/
esp_mn_error_t *esp_mn_commands_update();

Note: The modifications will not be applied, thus not printed out, until you call
esp_mn_commands_update().

• Add a new speech command, will return ESP_ERR_INVALID_STATE if the input string is not in the correct
format.

/**
* @brief Add one speech commands with command string and command ID
*
* @param command_id The command ID
* @param string The command string of the speech commands
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_STATE Fail
*/
esp_err_t esp_mn_commands_add(int command_id, char *string);

• Remove a speech command, will return ESP_ERR_INVALID_STATE if the command does not exist.

/**
* @brief Remove one speech commands by command string
*
* @param string The command string of the speech commands
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_STATE Fail
*/
esp_err_t esp_mn_commands_remove(char *string);

• Modify a speech command, will return ESP_ERR_INVALID_STATE if the command does not exist.

/**
* @brief Modify one speech commands with new command string
*
* @param old_string The old command string of the speech commands
* @param new_string The new command string of the speech commands
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_STATE Fail
*/
esp_err_t esp_mn_commands_modify(char *old_string, char *new_string);

• Clear all speech commands.

/**
* @brief Clear all speech commands in linked list
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_STATE Fail
*/
esp_err_t esp_mn_commands_clear(void);

• Print cached speech commands, this function will print out all cached speech commands. Cached speech

Espressif Systems 20
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 4. Command Word

commands will be applied after esp_mn_commands_update() is called.

/**
* @brief Print all commands in linked list.
*/
void esp_mn_commands_print(void);

• Print active speech commands, this function will print out all active speech commands.

/**
* @brief Print all commands in linked list.
*/
void esp_mn_active_commands_print(void);

4.4 Use MultiNet

We suggest to useMultiNet together with audio front-end (AFE) in ESP-SR. For details, see SectionAFE Introduction
and Use .
After configuring AFE, users can follow the steps below to configure and run MultiNet.

4.4.1 Initialize MultiNet

• Load and initialize MultiNet. For details, see Section flash_model
• Customize speech commands. For details, see Section Speech Commands Customization Methods

4.4.2 Run MultiNet

Users can start MultiNet after enabling AFE and WakeNet, but must pay attention to the following limitations:
• The frame length of MultiNet must be equal to the AFE fetch frame length
• The audio format supported is 16 KHz, 16 bit, mono. The data obtained by AFE fetch is also in this format
• Get the length of frame that needs to pass to MultiNet

int mu_chunksize = multinet->get_samp_chunksize(model_data);

mu_chunksize describes the short of each frame passed to MultiNet. This size is exactly the
same as the number of data points per frame obtained in AFE.

• Start the speech recognition
We send the data from AFE fetch to the following API:

esp_mn_state_t mn_state = multinet->detect(model_data, buff);

The length of buff is mu_chunksize * sizeof(int16_t).

4.4.3 MultiNet Output

Speech command recognition must be used with WakeNet. After wake-up, MultiNet detection can start.
Afer running, MultiNet returns the recognition output of the current frame in real timemn_state, which is currently
divided into the following identification states:

• ESP_MN_STATE_DETECTING
Indicates that the MultiNet is detecting but the target speech command word has not been recog-
nized.

• ESP_MN_STATE_DETECTED
Indicates that the target speech command has been recognized. At this time, the user can call
get_results interface to obtain the recognition results.

Espressif Systems 21
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 4. Command Word

esp_mn_results_t *mn_result = multinet->get_results(model_data);

The recognition result is stored in the return value of the get_result API in the following
format:

typedef struct{
esp_mn_state_t state;
int num; // The number of phrase in list, num<=5. When␣
↪→num=0, no phrase is recognized.
int phrase_id[ESP_MN_RESULT_MAX_NUM]; // The list of phrase id.
float prob[ESP_MN_RESULT_MAX_NUM]; // The list of probability.

} esp_mn_results_t;

where,
– state is the recognition status of the current frame
– num means the number of recognized commands, num <= 5, up to 5 possible results are
returned

– phrase_id means the Phrase ID of speech commands
– prob means the recognition probability of the recognized entries, which is arranged from
large to small

Users can use phrase_id[0] and prob[0] get the recognition result with the highest proba-
bility.

• ESP_MN_STATE_TIMEOUT
Indicates the speech commands has not been detected for a long time and will exit automatically
and wait to be waked up again.

Single recognition mode and Continuous recognition mode: * Single recognition mode: exit the speech recognition
when the return status is ESP_MN_STATE_DETECTED * Continuous recognition mode: exit the speech recognition
when the return status is ESP_MN_STATE_TIMEOUT

4.5 Resource Occupancy

For the resource occupancy for this model, see Resource Occupancy.

Espressif Systems 22
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 5

TTS Speech Synthesis Model

Espressif TTS speech synthesis model is a lightweight speech synthesis system designed for embedded systems, with
the following main features:

• Currently Only supports Chinese language
• Input text is encoded in UTF-8
• Streaming output, which reduces latency
• Polyphonic pronunciation
• Adjustable output speech rate
• Digital broadcasting optimization
• Customized sound set (coming soon)

5.1 Overview

Using a concatenative method, the current version of TTS includes the following components:
• Parser: converts Chinese text (encoded in UTF-8) to phonemes.
• Synthesizer: generates wave raw data from the phonemes provided by the parser and the sound set. Default
output format: mono, 16 bit @ 16000 Hz.

Workflow:

5.2 Examples

• esp-tts/samples/xiaoxin_speed1.wav (voice=xiaoxin, speed=1): 欢迎使用乐鑫语音合成，支付宝收款 72.1
元，微信收款 643.12元，扫码收款 5489.54元

23

https://github.com/espressif/esp-sr/blob/7cf3a77/esp-tts/samples/xiaoxin_speed1.wav

Chapter 5. TTS Speech Synthesis Model

• esp-tts/samples/S2_xiaole_speed2.wav (voice=xiaole, speed=2): 支付宝收款 1111.11元

5.3 Programming Procedures

#include "esp_tts.h"
#include "esp_tts_voice_female.h"
#include "esp_partition.h"

/*** 1. create esp tts handle ***/

// initial voice set from separate voice data partition

const esp_partition_t* part=esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_
↪→PARTITION_SUBTYPE_DATA_FAT, "voice_data");
if (part==0) printf("Couldn't find voice data partition!\n");
spi_flash_mmap_handle_t mmap;
uint16_t* voicedata;
esp_err_t err=esp_partition_mmap(part, 0, part->size, SPI_FLASH_MMAP_DATA, (const␣
↪→void**)&voicedata, &mmap);
esp_tts_voice_t *voice=esp_tts_voice_set_init(&esp_tts_voice_template, voicedata);

// 2. parse text and synthesis wave data
char *text="欢迎使用乐鑫语音合成";
if (esp_tts_parse_chinese(tts_handle, text)) { // parse text into pinyin list

int len[1]={0};
do {

short *data=esp_tts_stream_play(tts_handle, len, 4); // streaming synthesis
i2s_audio_play(data, len[0]*2, portMAX_DELAY); // i2s output

} while(len[0]>0);
i2s_zero_dma_buffer(0);

}

See esp-tts/esp_tts_chinese/include/esp_tts.h for API reference and see the chinese_tts example in ESP-Skainet.

5.4 Resource Occupancy

For the resource occupancy for this model, see Resource Occupancy.

Espressif Systems 24
Submit Document Feedback

Release master

https://github.com/espressif/esp-sr/blob/7cf3a77/esp-tts/samples/S2_xiaole_speed2.wav
https://github.com/espressif/esp-sr/blob/7cf3a77/esp-tts/esp_tts_chinese/include/esp_tts.h
https://github.com/espressif/esp-skainet/tree/master/examples/chinese_tts
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 6

Flashing Models

In the AI industry, a model refers to a mathematical representation of a system or process. It is used to make
predictions or decisions based on input data. There are many types of models, such as decision trees, neural networks,
and support vector machines, each with their own strengths and weaknesses. Esprssif also provides our trained models
such as WakeNet and MultiNet (see the model data used in model)
To use our models in your project, you need to flash these models. Currently, ESP-SR supports the following methods
to flash models:
ESP32: Load directly from Flash

6.1 Configuration

Run idf.py menuconfig to navigate to ESP Speech Recognition:

Fig. 1: overview

6.1.1 Use AFE

This option is enabled by default. Users do not need to modify it. Please keep the default configuration.

6.1.2 Use WakeNet

This option is enabled by default. When the user only uses AEC or BSS, etc., and does not need WakeNet or
MultiNet, please disable this option, which reduces the size of the project firmware.

25

https://github.com/espressif/esp-sr/tree/7cf3a77/model

Chapter 6. Flashing Models

Select wake words by via menuconfig by navigating to ESP Speech Recognition > Select wake
words. The model name of wake word in parentheses must be used to initialize WakeNet handle.

If you want to select multiple wake words, please select Load Multiple Wake Words

Then you can select multiple wake words at the same time:

Note: ESP32 doesn’t support multiple wake words.

For more details, please refer toWakeNet .

6.1.3 Use Multinet

This option is enabled by default. When users only use WakeNet or other algorithm modules, please disable this
option, which reduces the size of the project firmware in some cases.

Chinese Speech Commands Model

ESP32 only supports command words in Chinese:
• None
• Chinese single recognition (MultiNet2)

For more details, please refer to Section MultiNet .

6.2 How To Use

After the above-mentioned configuration, users can initialize and start using the models following the examples de-
scribed in the ESP-Skainet repo.
Here, we only introduce the code implementation, which can also be found in model_path.c .

Espressif Systems 26
Submit Document Feedback

Release master

https://github.com/espressif/esp-skainet
../src/model_path.c
https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 6. Flashing Models

ESP32 can only load model data from flash. Therefore, the model data in the code will automatically read the required
data from the Flash according to the address. Note that, ESP32 and ESP32-S3 APIs are compatible.

6.2.1 Load Model Data from flash

1. Write a partition table:

model, data, spiffs, , SIZE,

Among them, SIZE can refer to the recommended size when the user uses idf.py build to
compile, for example: Recommended model partition size: 500K

2. Initialize the flash partition: User can use esp_srmodel_init(partition_label) API to initialize
flash and return all loaded models.

• base_path: The model storage base_path is srmodel and cannot be changed
• partition_label: The partition label of the model is model, which needs to be consistent with the Name
in the above partition table

After completing the above configuration, the project will automatically generate model.bin after the project is
compiled, and flash it to the flash partition.

Espressif Systems 27
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 6. Flashing Models

Espressif Systems 28
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 7

Benchmark

7.1 AFE

7.1.1 Resource Consumption

Algorithm Type RAM Average cpu loading(compute with 2 cores) Frame Length
AEC(HIGH_PERF) 114 KB 11% 32 ms
NS 27 KB 5% 10 ms
AFE Layer 73 KB

7.2 WakeNet

7.2.1 Resource Consumption

Model Type Parameter
Num

RAM Average Running Time per
Frame

Frame
Length

Quantised WakeNet5 41 K 15 KB 5.5 ms 30 ms
Quantised Wak-
eNet5X2

165 K 20 KB 10.5 ms 30 ms

Quantised Wak-
eNet5X3

371 K 24 KB 18 ms 30 ms

7.2.2 Performance Test

Dis-
tance

Quiet Stationary Noise (SNR = 4
dB)

Speech Noise (SNR = 4
dB)

AEC I nterruption (-10
dB)

1 m 98% 96% 94% 96%
3 m 98% 96% 94% 94%

False triggering rate: once in 12 hours

Note: In this test, we used ESP32-S3-Korvo V4.0 development board and WakeNet9(Alexa) model.

29

Chapter 7. Benchmark

7.3 MultiNet

7.3.1 Resource Consumption

Model Type Internal RAM PSRAM Average Running Time per Frame Frame Length
MultiNet 2 13.3 KB 9KB 38 ms 30 ms

7.3.2 Word Error Rate Performance Test

Model Type librispeech test-clean librispeech test-other
MultiNet5-en 16.5% 41.4%
MultiNet6-en 9.0% 21.3%
MultiNet7-en 8.5% 21.3%

7.3.3 Speech Commands Performance Test

Model Type Dis-
tance

Quiet Stationary Noise (SNR=5~10dB
dB)

Speech Noise (SNR=5~10dB
dB)

MultiNet
5_en

3 m 95.4% 85.9% 82.7%

MultiNet
6_en

3 m 96.8% 87.9% 85.5%

MultiNet
7_en

3 m 97.2% 92.3% 90.6%

7.4 TTS

7.4.1 Resource Consumption

Flash image size: 2.2 MB
RAM runtime: 20 KB

7.4.2 Performance Test

CPU loading test (ESP32 @240 MHz):

Speech Rate 0 1 2 3 4 5
Times faster than real time 4.5 3.2 2.9 2.5 2.2 1.8

Espressif Systems 30
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 8

Test Method and Test Report

To ensure the DUT performance, some tests can be performed to verify the following parameters:
• Wake-up rate
• Speech recognition rate
• False wake-up rate
• Response Accuracy Rate Under Playback
• Response time

8.1 Test Room Requirement

These tests must be performed in a proper test room. The requirements for this test room include:
• Size

– Area: no smaller than 4 m * 3.2 m
– Height: no lower than 2.3 m

• Setup
– The floor should be equipped with carpet, the ceiling should be equipped with common acoustic damping
materials, and the wall should have 1 to 2 walls with curtains to prevent strong reflection.

– Room reverberation time (RT60) within the range of [125, 8k] shall be within 0.2 - 0.7 seconds.
– Do not use anechoic chamber.

• Background noise: must < 35 dBA, best < 30 dBA
• Temperature and humidity: 20±10°C, 50%±20%
• Placement of DUT, external noise and voice:

– Place the DUT, external noise and voice according the actual use scenario of your DUT.

Note: The RT60, background noise, and the placement of DUT, external noise and voice should be kept the same
in all tests.

8.2 Test Case Design

When designing test cases, it’s suggested to factor in some or all of the following parameters based on the actual
use scenarios of the product. For example,

• Different types of noises
– White noise
– Human noise
– Music

31

Chapter 8. Test Method and Test Report

– News
– ⋯⋯
– Test cases with multiple noise sources can also be added when necessary

• Different noise levels
– < 35 dBA
– 45 dBA
– 55 dBA
– 65 dBA

• Different voice levels
– 54 dBA
– 59 dBA
– 64 dBA

• Different SNR
– 9 dBA
– 4 dBA
– -1 dBA

8.3 Espressif Test and Result

In all the tests described in this section, the placement of DUT, external noise and voice can be seen in the diagrams
below.

As seen in the diagrams above, place
• The DUT 0.75 meters above the ground.
• The voice 3 meters away from the DUT and 1.5 meters above the ground.
• The external noise 45°C apart from the voice, 2 meters away from the DUT and 1.2 meters above the ground.
• The sound pressure meter right above the DUT by 0.75 meters.

8.3.1 Wake-up Rate Test

Wake-up rate: the probability of the DUT correctly wakes up to a wake word.
Espressif’s Wake-up Rate Test and Result

Espressif Systems 32
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 8. Test Method and Test Report

Test
Case

Noise Type Noise Deci-
bel

Voice Deci-
bel

SNR Wake-up
Rate

1 / / 59 dBA / 99%
2 White noise 55 dBA 59 dBA >= 4 dBA 99%
3 Human noise 55 dBA 59 dBA >= 4 dBA 99%

8.3.2 Speech Recognition Rate Test

Speech recognition rate: the probability of the DUT correctly recognizes the established command words when the
DUT is in the speech recognition state.
Espressif’s Speech Recognition Rate Test and Result

Test
Case

Noise Type Noise Deci-
bel

Voice Deci-
bel

SNR Speech
Recognition
Rate

1 / / 59 dBA / 91.5%
2 White noise 55 dBA 59 dBA >= 4 dBA 78.25%
3 Human noise 55 dBA 59 dBA >= 4 dBA 82.77%

8.3.3 False Wake-up Rate Test

False wake-up rate: the probability of the DUT incorrectly wakes up to a random word (that is not a wake word).
Espressif’s False Wake-up Rate Test and Result

Test Case Noise Type Noise Decibel Test Duration Number of False
Wake-up

1 Music 55 dBA 12 hours 1 time
2 News 55 dBA 12 hours 1 time

8.3.4 Response Accuracy Rate Under Playback

Interrupting wake-up rate: the probability of the DUT correctly responds to a wake word or a command word
while playing sounds, such as music or TTS. This test is required for products with AEC feature.
Espressif’s Interrupting Wake-up Rate Test and Result

Espressif Systems 33
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 8. Test Method and Test Report

Test Case Noise Type Noise / Voice
Decibel

SNR Wake-up
Rate

Speech
Recognition
Rate

1 Music 69 dBA / 59
dBA

>= 10 dBA 100% 96%

2 TTS 69 dBA / 59
dBA

>= 10 dBA 100% 96%

8.3.5 Response Time Test

Response time: the time required for the DUT to respond to a command word. It’s measured as the time duration
after a command word and before the DUT starts playing sound (see the diagram below).

Espressif’s Response Time Test and Result

Test Case Noise / Voice Decibel SNR Response Time
1 NA / 59 dBA / < 500 ms

Espressif Systems 34
Submit Document Feedback

Release master

https://www.espressif.com/en/company/documents/documentation_feedback?docId=4287§ions=&version=Release master

Chapter 9

Glossary

9.1 General Terms

ESP-SR reuses most of its terms in Espressif Audio Development Framework. See details in ADF English-Chinese
Glossary .

9.2 Unique Terms

ESP-SR’s unique terms are listed below.
Voice-User Interface (VUI)语音用户界面

35

https://espressif-docs.readthedocs-hosted.com/projects/esp-adf/en/latest/get-started/index.html
https://espressif-docs.readthedocs-hosted.com/projects/esp-adf/en/latest/english-chinese-glossary.html
https://espressif-docs.readthedocs-hosted.com/projects/esp-adf/en/latest/english-chinese-glossary.html

	Table of contents
	Getting Started
	Overview
	What You Need
	Hardware
	Software

	Compile an Example

	AFE Audio Front-end
	Audio Front-end Framework
	Overview
	Usage Scenarios
	Speech Recognition
	Workflow
	Data Flow

	Voice Communication
	Workflow
	Data Flow

	Select AFE Handle
	Input Audio Data
	AFE Single Mic
	AFE Dual Mic

	Output Audio
	Enable Wake Word Engine WakeNet
	Enable Acoustic Echo Cancellation (AEC)
	Resource Occupancy

	Espressif Microphone Design Guidelines
	Microphone Electrical Performance Requirement
	Microphone Structure Design Suggestion
	Microphone Array Design Suggestion
	Microphone Leakproofness Suggestion
	Echo Reference Signal Design Suggestion
	Microphone Array Consistency Verification

	Wake Word
	WakeNet Wake Word Model
	Overview
	Use WakeNet
	Resource Occupancy

	Espressif Speech Wake-up Solution Customization Process
	Wake Word Customization Process
	Requirements on Corpus
	Hardware Design and Test

	Command Word
	MultiNet Command Word Recognition Model
	Commands Recognition Process
	Speech Commands Customization Methods
	MultiNet7 customize speech commands
	MultiNet6 customize speech commands
	MultiNet5 customize speech commands
	Customize Speech Commands Via API calls

	Use MultiNet
	Initialize MultiNet
	Run MultiNet
	MultiNet Output

	Resource Occupancy

	TTS Speech Synthesis Model
	Overview
	Examples
	Programming Procedures
	Resource Occupancy

	Flashing Models
	Configuration
	Use AFE
	Use WakeNet
	Use Multinet
	Chinese Speech Commands Model

	How To Use
	Load Model Data from flash

	Benchmark
	AFE
	Resource Consumption

	WakeNet
	Resource Consumption
	Performance Test

	MultiNet
	Resource Consumption
	Word Error Rate Performance Test
	Speech Commands Performance Test

	TTS
	Resource Consumption
	Performance Test

	Test Method and Test Report
	Test Room Requirement
	Test Case Design
	Espressif Test and Result
	Wake-up Rate Test
	Speech Recognition Rate Test
	False Wake-up Rate Test
	Response Accuracy Rate Under Playback
	Response Time Test

	Glossary
	General Terms
	Unique Terms

