esp_hal/analog/adc/
esp32.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
use core::marker::PhantomData;

use super::{AdcConfig, Attenuation};
use crate::{
    peripheral::PeripheralRef,
    peripherals::{ADC1, ADC2, RTC_IO, SENS},
};

pub(super) const NUM_ATTENS: usize = 10;

/// The sampling/readout resolution of the ADC.
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[allow(clippy::enum_variant_names, reason = "peripheral is unstable")]
pub enum Resolution {
    /// 9-bit resolution
    Resolution9Bit  = 0b00,
    /// 10-bit resolution
    Resolution10Bit = 0b01,
    /// 11-bit resolution
    Resolution11Bit = 0b10,
    /// 12-bit resolution
    #[default]
    Resolution12Bit = 0b11,
}

#[doc(hidden)]
pub trait RegisterAccess {
    fn set_bit_width(resolution: u8);

    fn set_sample_bit(resolution: u8);

    fn set_attenuation(channel: usize, attenuation: u8);

    fn clear_dig_force();

    fn set_start_force();

    fn set_en_pad_force();

    fn set_en_pad(channel: u8);

    fn clear_start_sar();

    fn set_start_sar();

    fn read_done_sar() -> bool;

    fn read_data_sar() -> u16;
}

impl RegisterAccess for ADC1 {
    fn set_bit_width(resolution: u8) {
        SENS::regs()
            .sar_start_force()
            .modify(|_, w| unsafe { w.sar1_bit_width().bits(resolution) });
    }

    fn set_sample_bit(resolution: u8) {
        SENS::regs()
            .sar_read_ctrl()
            .modify(|_, w| unsafe { w.sar1_sample_bit().bits(resolution) });
    }

    fn set_attenuation(channel: usize, attenuation: u8) {
        SENS::regs().sar_atten1().modify(|r, w| {
            let new_value = (r.bits() & !(0b11 << (channel * 2)))
                | (((attenuation & 0b11) as u32) << (channel * 2));

            unsafe { w.sar1_atten().bits(new_value) }
        });
    }

    fn clear_dig_force() {
        SENS::regs()
            .sar_read_ctrl()
            .modify(|_, w| w.sar1_dig_force().clear_bit());
    }

    fn set_start_force() {
        SENS::regs()
            .sar_meas_start1()
            .modify(|_, w| w.meas1_start_force().set_bit());
    }

    fn set_en_pad_force() {
        SENS::regs()
            .sar_meas_start1()
            .modify(|_, w| w.sar1_en_pad_force().set_bit());
    }

    fn set_en_pad(channel: u8) {
        SENS::regs()
            .sar_meas_start1()
            .modify(|_, w| unsafe { w.sar1_en_pad().bits(1 << channel) });
    }

    fn clear_start_sar() {
        SENS::regs()
            .sar_meas_start1()
            .modify(|_, w| w.meas1_start_sar().clear_bit());
    }

    fn set_start_sar() {
        SENS::regs()
            .sar_meas_start1()
            .modify(|_, w| w.meas1_start_sar().set_bit());
    }

    fn read_done_sar() -> bool {
        SENS::regs()
            .sar_meas_start1()
            .read()
            .meas1_done_sar()
            .bit_is_set()
    }

    fn read_data_sar() -> u16 {
        SENS::regs()
            .sar_meas_start1()
            .read()
            .meas1_data_sar()
            .bits()
    }
}

impl RegisterAccess for ADC2 {
    fn set_bit_width(resolution: u8) {
        SENS::regs()
            .sar_start_force()
            .modify(|_, w| unsafe { w.sar2_bit_width().bits(resolution) });
    }

    fn set_sample_bit(resolution: u8) {
        SENS::regs()
            .sar_read_ctrl2()
            .modify(|_, w| unsafe { w.sar2_sample_bit().bits(resolution) });
    }

    fn set_attenuation(channel: usize, attenuation: u8) {
        SENS::regs().sar_atten2().modify(|r, w| {
            let new_value = (r.bits() & !(0b11 << (channel * 2)))
                | (((attenuation & 0b11) as u32) << (channel * 2));

            unsafe { w.sar2_atten().bits(new_value) }
        });
    }

    fn clear_dig_force() {
        SENS::regs()
            .sar_read_ctrl2()
            .modify(|_, w| w.sar2_dig_force().clear_bit());
    }

    fn set_start_force() {
        SENS::regs()
            .sar_meas_start2()
            .modify(|_, w| w.meas2_start_force().set_bit());
    }

    fn set_en_pad_force() {
        SENS::regs()
            .sar_meas_start2()
            .modify(|_, w| w.sar2_en_pad_force().set_bit());
    }

    fn set_en_pad(channel: u8) {
        SENS::regs()
            .sar_meas_start2()
            .modify(|_, w| unsafe { w.sar2_en_pad().bits(1 << channel) });
    }

    fn clear_start_sar() {
        SENS::regs()
            .sar_meas_start2()
            .modify(|_, w| w.meas2_start_sar().clear_bit());
    }

    fn set_start_sar() {
        SENS::regs()
            .sar_meas_start2()
            .modify(|_, w| w.meas2_start_sar().set_bit());
    }

    fn read_done_sar() -> bool {
        SENS::regs()
            .sar_meas_start2()
            .read()
            .meas2_done_sar()
            .bit_is_set()
    }

    fn read_data_sar() -> u16 {
        SENS::regs()
            .sar_meas_start2()
            .read()
            .meas2_data_sar()
            .bits()
    }
}

/// Analog-to-Digital Converter peripheral driver.
pub struct Adc<'d, ADC, Dm: crate::DriverMode> {
    _adc: PeripheralRef<'d, ADC>,
    attenuations: [Option<Attenuation>; NUM_ATTENS],
    active_channel: Option<u8>,
    _phantom: PhantomData<Dm>,
}

impl<'d, ADCI> Adc<'d, ADCI, crate::Blocking>
where
    ADCI: RegisterAccess,
{
    /// Configure a given ADC instance using the provided configuration, and
    /// initialize the ADC for use
    pub fn new(
        adc_instance: impl crate::peripheral::Peripheral<P = ADCI> + 'd,
        config: AdcConfig<ADCI>,
    ) -> Self {
        let sensors = SENS::regs();

        // Set reading and sampling resolution
        let resolution: u8 = config.resolution as u8;

        ADCI::set_bit_width(resolution);
        ADCI::set_sample_bit(resolution);

        // Set attenuation for pins
        let attenuations = config.attenuations;

        for (channel, attentuation) in attenuations.iter().enumerate() {
            if let Some(attenuation) = attentuation {
                ADC1::set_attenuation(channel, *attenuation as u8);
            }
        }

        // Set controller to RTC
        ADCI::clear_dig_force();
        ADCI::set_start_force();
        ADCI::set_en_pad_force();
        sensors
            .sar_touch_ctrl1()
            .modify(|_, w| w.xpd_hall_force().set_bit());
        sensors
            .sar_touch_ctrl1()
            .modify(|_, w| w.hall_phase_force().set_bit());

        // Set power to SW power on
        sensors
            .sar_meas_wait2()
            .modify(|_, w| unsafe { w.force_xpd_sar().bits(0b11) });

        // disable AMP
        sensors
            .sar_meas_wait2()
            .modify(|_, w| unsafe { w.force_xpd_amp().bits(0b10) });
        sensors
            .sar_meas_ctrl()
            .modify(|_, w| unsafe { w.amp_rst_fb_fsm().bits(0) });
        sensors
            .sar_meas_ctrl()
            .modify(|_, w| unsafe { w.amp_short_ref_fsm().bits(0) });
        sensors
            .sar_meas_ctrl()
            .modify(|_, w| unsafe { w.amp_short_ref_gnd_fsm().bits(0) });
        sensors
            .sar_meas_wait1()
            .modify(|_, w| unsafe { w.sar_amp_wait1().bits(1) });
        sensors
            .sar_meas_wait1()
            .modify(|_, w| unsafe { w.sar_amp_wait2().bits(1) });
        sensors
            .sar_meas_wait2()
            .modify(|_, w| unsafe { w.sar_amp_wait3().bits(1) });

        // Do *not* invert the output
        // NOTE: This seems backwards, but was verified experimentally.
        sensors
            .sar_read_ctrl2()
            .modify(|_, w| w.sar2_data_inv().set_bit());

        Adc {
            _adc: adc_instance.into_ref(),
            attenuations: config.attenuations,
            active_channel: None,
            _phantom: PhantomData,
        }
    }

    /// Request that the ADC begin a conversion on the specified pin
    ///
    /// This method takes an [AdcPin](super::AdcPin) reference, as it is
    /// expected that the ADC will be able to sample whatever channel
    /// underlies the pin.
    pub fn read_oneshot<PIN>(&mut self, _pin: &mut super::AdcPin<PIN, ADCI>) -> nb::Result<u16, ()>
    where
        PIN: super::AdcChannel,
    {
        if self.attenuations[PIN::CHANNEL as usize].is_none() {
            panic!("Channel {} is not configured reading!", PIN::CHANNEL);
        }

        if let Some(active_channel) = self.active_channel {
            // There is conversion in progress:
            // - if it's for a different channel try again later
            // - if it's for the given channel, go ahead and check progress
            if active_channel != PIN::CHANNEL {
                return Err(nb::Error::WouldBlock);
            }
        } else {
            // If no conversions are in progress, start a new one for given channel
            self.active_channel = Some(PIN::CHANNEL);

            ADCI::set_en_pad(PIN::CHANNEL);

            ADCI::clear_start_sar();
            ADCI::set_start_sar();
        }

        // Wait for ADC to finish conversion
        let conversion_finished = ADCI::read_done_sar();
        if !conversion_finished {
            return Err(nb::Error::WouldBlock);
        }

        // Get converted value
        let converted_value = ADCI::read_data_sar();

        // Mark that no conversions are currently in progress
        self.active_channel = None;

        Ok(converted_value)
    }
}

impl<ADC1> Adc<'_, ADC1, crate::Blocking> {
    /// Enable the Hall sensor
    pub fn enable_hall_sensor() {
        RTC_IO::regs()
            .hall_sens()
            .modify(|_, w| w.xpd_hall().set_bit());
    }

    /// Disable the Hall sensor
    pub fn disable_hall_sensor() {
        RTC_IO::regs()
            .hall_sens()
            .modify(|_, w| w.xpd_hall().clear_bit());
    }
}

mod adc_implementation {
    crate::analog::adc::impl_adc_interface! {
        ADC1 [
            (GpioPin<36>, 0), // Alt. name: SENSOR_VP
            (GpioPin<37>, 1), // Alt. name: SENSOR_CAPP
            (GpioPin<38>, 2), // Alt. name: SENSOR_CAPN
            (GpioPin<39>, 3), // Alt. name: SENSOR_VN
            (GpioPin<33>, 4), // Alt. name: 32K_XP
            (GpioPin<32>, 5), // Alt. name: 32K_XN
            (GpioPin<34>, 6), // Alt. name: VDET_1
            (GpioPin<35>, 7), // Alt. name: VDET_2
        ]
    }

    crate::analog::adc::impl_adc_interface! {
        ADC2 [
            (GpioPin<4>,  0),
            (GpioPin<0>,  1),
            (GpioPin<2>,  2),
            (GpioPin<15>, 3), // Alt. name: MTDO
            (GpioPin<13>, 4), // Alt. name: MTCK
            (GpioPin<12>, 5), // Alt. name: MTDI
            (GpioPin<14>, 6), // Alt. name: MTMS
            (GpioPin<27>, 7),
            (GpioPin<25>, 8),
            (GpioPin<26>, 9),
        ]
    }
}