esp_hal/clock/clocks_ll/
esp32.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
use crate::{
    clock::{Clock, PllClock, XtalClock},
    peripherals::{APB_CTRL, DPORT, EFUSE, LPWR},
    rom::regi2c_write,
};

const REF_CLK_FREQ: u32 = 1000000;

const MHZ: u32 = 1000000;
const UINT16_MAX: u32 = 0xffff;

const RTC_CNTL_DBIAS_1V10: u32 = 4;
const RTC_CNTL_DBIAS_1V25: u32 = 7;

const DIG_DBIAS_80M_160M: u32 = RTC_CNTL_DBIAS_1V10;
const DIG_DBIAS_XTAL: u32 = RTC_CNTL_DBIAS_1V10;

const I2C_BBPLL: u32 = 0x66;
const I2C_BBPLL_HOSTID: u32 = 4;

const I2C_BBPLL_IR_CAL_DELAY: u32 = 0;
const I2C_BBPLL_IR_CAL_EXT_CAP: u32 = 1;
const I2C_BBPLL_OC_ENB_FCAL: u32 = 4;
const I2C_BBPLL_OC_ENB_VCON: u32 = 10;
const I2C_BBPLL_BBADC_CAL_7_0: u32 = 12;

const BBPLL_IR_CAL_DELAY_VAL: u32 = 0x18;
const BBPLL_IR_CAL_EXT_CAP_VAL: u32 = 0x20;
const BBPLL_OC_ENB_FCAL_VAL: u32 = 0x9a;
const BBPLL_OC_ENB_VCON_VAL: u32 = 0x00;
const BBPLL_BBADC_CAL_7_0_VAL: u32 = 0x00;

const I2C_BBPLL_ENDIV5: u32 = 11;

const BBPLL_ENDIV5_VAL_320M: u32 = 0x43;
const BBPLL_BBADC_DSMP_VAL_320M: u32 = 0x84;
const BBPLL_ENDIV5_VAL_480M: u32 = 0xc3;
const BBPLL_BBADC_DSMP_VAL_480M: u32 = 0x74;

const I2C_BBPLL_BBADC_DSMP: u32 = 9;
const I2C_BBPLL_OC_LREF: u32 = 2;
const I2C_BBPLL_OC_DIV_7_0: u32 = 3;
const I2C_BBPLL_OC_DCUR: u32 = 5;

pub(crate) fn esp32_rtc_bbpll_configure(xtal_freq: XtalClock, pll_freq: PllClock) {
    let rtc_cntl_dbias_hp_volt: u32 = RTC_CNTL_DBIAS_1V25
        - EFUSE::regs()
            .blk0_rdata5()
            .read()
            .rd_vol_level_hp_inv()
            .bits() as u32;
    let dig_dbias_240_m: u32 = rtc_cntl_dbias_hp_volt;

    let div_ref: u32;
    let div7_0: u32;
    let div10_8: u32;
    let lref: u32;
    let dcur: u32;
    let bw: u32;

    if matches!(pll_freq, PllClock::Pll320MHz) {
        // Raise the voltage, if needed
        LPWR::regs()
            .reg()
            .modify(|_, w| unsafe { w.dig_dbias_wak().bits(DIG_DBIAS_80M_160M as u8) });

        // Configure 320M PLL
        match xtal_freq {
            XtalClock::_40M => {
                div_ref = 0;
                div7_0 = 32;
                div10_8 = 0;
                lref = 0;
                dcur = 6;
                bw = 3;
            }

            XtalClock::_26M => {
                div_ref = 12;
                div7_0 = 224;
                div10_8 = 4;
                lref = 1;
                dcur = 0;
                bw = 1;
            }

            XtalClock::Other(_) => {
                div_ref = 12;
                div7_0 = 224;
                div10_8 = 4;
                lref = 0;
                dcur = 0;
                bw = 0;
            }
        }

        regi2c_write!(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_320M);
        regi2c_write!(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_320M);
    } else {
        // Raise the voltage
        LPWR::regs()
            .reg()
            .modify(|_, w| unsafe { w.dig_dbias_wak().bits(dig_dbias_240_m as u8) });

        // Configure 480M PLL
        match xtal_freq {
            XtalClock::_40M => {
                div_ref = 0;
                div7_0 = 28;
                div10_8 = 0;
                lref = 0;
                dcur = 6;
                bw = 3;
            }

            XtalClock::_26M => {
                div_ref = 12;
                div7_0 = 144;
                div10_8 = 4;
                lref = 1;
                dcur = 0;
                bw = 1;
            }

            XtalClock::Other(_) => {
                div_ref = 12;
                div7_0 = 224;
                div10_8 = 4;
                lref = 0;
                dcur = 0;
                bw = 0;
            }
        }

        regi2c_write!(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_480M);
        regi2c_write!(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_480M);
    }

    let i2c_bbpll_lref = (lref << 7) | (div10_8 << 4) | (div_ref);
    let i2c_bbpll_div_7_0 = div7_0;
    let i2c_bbpll_dcur = (bw << 6) | dcur;

    regi2c_write!(I2C_BBPLL, I2C_BBPLL_OC_LREF, i2c_bbpll_lref);
    regi2c_write!(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
    regi2c_write!(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
}

pub(crate) fn esp32_rtc_bbpll_enable() {
    LPWR::regs().options0().modify(|_, w| {
        w.bias_i2c_force_pd().clear_bit();
        w.bb_i2c_force_pd().clear_bit();
        w.bbpll_force_pd().clear_bit();
        w.bbpll_i2c_force_pd().clear_bit()
    });

    // reset BBPLL configuration
    regi2c_write!(I2C_BBPLL, I2C_BBPLL_IR_CAL_DELAY, BBPLL_IR_CAL_DELAY_VAL);
    regi2c_write!(
        I2C_BBPLL,
        I2C_BBPLL_IR_CAL_EXT_CAP,
        BBPLL_IR_CAL_EXT_CAP_VAL
    );
    regi2c_write!(I2C_BBPLL, I2C_BBPLL_OC_ENB_FCAL, BBPLL_OC_ENB_FCAL_VAL);
    regi2c_write!(I2C_BBPLL, I2C_BBPLL_OC_ENB_VCON, BBPLL_OC_ENB_VCON_VAL);
    regi2c_write!(I2C_BBPLL, I2C_BBPLL_BBADC_CAL_7_0, BBPLL_BBADC_CAL_7_0_VAL);
}

pub(crate) fn esp32_rtc_update_to_xtal(freq: XtalClock, _div: u32) {
    let value = ((freq.hz() >> 12) & UINT16_MAX) | (((freq.hz() >> 12) & UINT16_MAX) << 16);
    esp32_update_cpu_freq(freq.hz());

    // set divider from XTAL to APB clock
    APB_CTRL::regs().sysclk_conf().modify(|_, w| unsafe {
        w.pre_div_cnt()
            .bits(((freq.hz()) / REF_CLK_FREQ - 1) as u16)
    });

    // adjust ref_tick
    APB_CTRL::regs().xtal_tick_conf().modify(|_, w| unsafe {
        w.xtal_tick_num()
            .bits(((freq.hz()) / REF_CLK_FREQ - 1) as u8)
    });

    // switch clock source
    LPWR::regs()
        .clk_conf()
        .modify(|_, w| w.soc_clk_sel().xtal());
    LPWR::regs()
        .store5()
        .modify(|_, w| unsafe { w.scratch5().bits(value) });

    // lower the voltage
    LPWR::regs()
        .reg()
        .modify(|_, w| unsafe { w.dig_dbias_wak().bits(DIG_DBIAS_XTAL as u8) });
}

pub(crate) fn set_cpu_freq(cpu_freq_mhz: crate::clock::CpuClock) {
    let rtc_cntl_dbias_hp_volt: u32 = RTC_CNTL_DBIAS_1V25
        - EFUSE::regs()
            .blk0_rdata5()
            .read()
            .rd_vol_level_hp_inv()
            .bits() as u32;
    let dig_dbias_240_m: u32 = rtc_cntl_dbias_hp_volt;

    const CPU_80M: u32 = 0;
    const CPU_160M: u32 = 1;
    const CPU_240M: u32 = 2;

    let mut dbias = DIG_DBIAS_80M_160M;
    let per_conf;

    match cpu_freq_mhz {
        crate::clock::CpuClock::_160MHz => {
            per_conf = CPU_160M;
        }
        crate::clock::CpuClock::_240MHz => {
            dbias = dig_dbias_240_m;
            per_conf = CPU_240M;
        }
        crate::clock::CpuClock::_80MHz => {
            per_conf = CPU_80M;
        }
    }

    let value = (((80 * MHZ) >> 12) & UINT16_MAX) | ((((80 * MHZ) >> 12) & UINT16_MAX) << 16);
    DPORT::regs()
        .cpu_per_conf()
        .write(|w| unsafe { w.cpuperiod_sel().bits(per_conf as u8) });
    LPWR::regs()
        .reg()
        .modify(|_, w| unsafe { w.dig_dbias_wak().bits(dbias as u8) });
    LPWR::regs().clk_conf().modify(|_, w| w.soc_clk_sel().pll());
    LPWR::regs()
        .store5()
        .modify(|_, w| unsafe { w.scratch5().bits(value) });

    esp32_update_cpu_freq(cpu_freq_mhz.mhz());
}

/// Pass the CPU clock in MHz so that ets_delay_us
/// will be accurate. Call this function when CPU frequency is changed.
fn esp32_update_cpu_freq(mhz: u32) {
    const G_TICKS_PER_US_PRO: u32 = 0x3ffe01e0;
    unsafe {
        // Update scale factors used by esp_rom_delay_us
        (G_TICKS_PER_US_PRO as *mut u32).write_volatile(mhz);
    }
}

const DPORT_WIFI_CLK_WIFI_BT_COMMON_M: u32 = 0x000003c9;
const DPORT_WIFI_CLK_WIFI_EN_M: u32 = 0x00000406;
const DPORT_WIFI_CLK_BT_EN_M: u32 = 0x00030800;

pub(super) fn enable_phy(enable: bool) {
    // `periph_ll_wifi_bt_module_enable_clk_clear_rst`
    // `periph_ll_wifi_bt_module_disable_clk_set_rst`
    DPORT::regs().wifi_clk_en().modify(|r, w| unsafe {
        if enable {
            w.bits(r.bits() | DPORT_WIFI_CLK_WIFI_BT_COMMON_M)
        } else {
            w.bits(r.bits() & !DPORT_WIFI_CLK_WIFI_BT_COMMON_M)
        }
    });
}

pub(super) fn enable_bt(enable: bool) {
    DPORT::regs().wifi_clk_en().modify(|r, w| unsafe {
        if enable {
            w.bits(r.bits() | DPORT_WIFI_CLK_BT_EN_M)
        } else {
            w.bits(r.bits() & !DPORT_WIFI_CLK_BT_EN_M)
        }
    });
}

pub(super) fn enable_wifi(enable: bool) {
    // `periph_ll_wifi_module_enable_clk_clear_rst`
    // `periph_ll_wifi_module_disable_clk_set_rst`
    DPORT::regs().wifi_clk_en().modify(|r, w| unsafe {
        if enable {
            w.bits(r.bits() | DPORT_WIFI_CLK_WIFI_EN_M)
        } else {
            w.bits(r.bits() & !DPORT_WIFI_CLK_WIFI_EN_M)
        }
    });
}

pub(super) fn reset_mac() {
    DPORT::regs()
        .wifi_rst_en()
        .modify(|_, w| w.mac_rst().set_bit());
    DPORT::regs()
        .wifi_rst_en()
        .modify(|_, w| w.mac_rst().clear_bit());
}

pub(super) fn init_clocks() {
    // esp-idf assumes all clocks are enabled by default, and disables the following
    // bits:
    //
    // ```
    // const DPORT_WIFI_CLK_SDIOSLAVE_EN: u32 = 1 << 4;
    // const DPORT_WIFI_CLK_UNUSED_BIT5: u32 = 1 << 5;
    // const DPORT_WIFI_CLK_UNUSED_BIT12: u32 = 1 << 12;
    // const DPORT_WIFI_CLK_SDIO_HOST_EN: u32 = 1 << 13;
    // const DPORT_WIFI_CLK_EMAC_EN: u32 = 1 << 14;
    //
    // const WIFI_BT_SDIO_CLK: u32 = DPORT_WIFI_CLK_WIFI_EN_M
    //     | DPORT_WIFI_CLK_BT_EN_M
    //     | DPORT_WIFI_CLK_UNUSED_BIT5
    //     | DPORT_WIFI_CLK_UNUSED_BIT12
    //     | DPORT_WIFI_CLK_SDIOSLAVE_EN
    //     | DPORT_WIFI_CLK_SDIO_HOST_EN
    //     | DPORT_WIFI_CLK_EMAC_EN;
    // ```
    //
    // However, we can't do this because somehow our initialization process is
    // different, and disabling some bits, or not enabling them makes the BT
    // stack crash.

    DPORT::regs()
        .wifi_clk_en()
        .write(|w| unsafe { w.bits(u32::MAX) });
}

pub(super) fn ble_rtc_clk_init() {
    // nothing for this target
}

pub(super) fn reset_rpa() {
    // nothing for this target
}