esp_hal/mcpwm/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
//! # Motor Control Pulse Width Modulator (MCPWM)
//!
//! ## Overview
//!
//! The MCPWM peripheral is a versatile PWM generator, which contains various
//! submodules to make it a key element in power electronic applications like
//! motor control, digital power, and so on. Typically, the MCPWM peripheral can
//! be used in the following scenarios:
//! - Digital motor control, e.g., brushed/brushless DC motor, RC servo motor
//! - Switch mode-based digital power conversion
//! - Power DAC, where the duty cycle is equivalent to a DAC analog value
//! - Calculate external pulse width, and convert it into other analog values
//! like speed, distance
//! - Generate Space Vector PWM (SVPWM) signals for Field Oriented Control (FOC)
//!
//! ## Configuration
//!
//! * PWM Timers 0, 1 and 2
//! * Every PWM timer has a dedicated 8-bit clock prescaler.
//! * The 16-bit counter in the PWM timer can work in count-up mode,
//! count-down mode or count-up-down mode.
//! * A hardware sync or software sync can trigger a reload on the PWM timer
//! with a phase register (Not yet implemented)
//! * PWM Operators 0, 1 and 2
//! * Every PWM operator has two PWM outputs: PWMxA and PWMxB. They can work
//! independently, in symmetric and asymmetric configuration.
//! * Software, asynchronously override control of PWM signals.
//! * Configurable dead-time on rising and falling edges; each set up
//! independently. (Not yet implemented)
//! * All events can trigger CPU interrupts. (Not yet implemented)
//! * Modulating of PWM output by high-frequency carrier signals, useful
//! when gate drivers are insulated with a transformer. (Not yet
//! implemented)
//! * Period, time stamps and important control registers have shadow
//! registers with flexible updating methods.
//! * Fault Detection Module (Not yet implemented)
//! * Capture Module (Not yet implemented)
#![doc = ""]
#![cfg_attr(esp32, doc = "Clock source is PWM_CLOCK")]
#![cfg_attr(esp32s3, doc = "Clock source is CRYPTO_PWM_CLOCK")]
#![cfg_attr(esp32c6, doc = "Clock source is CRYPTO_CLOCK")]
#![cfg_attr(esp32h2, doc = "Clock source is XTAL")]
#![doc = ""]
//! ## Examples
//!
//! ### Output a 20 kHz signal
//!
//! This example uses timer0 and operator0 of the MCPWM0 peripheral to output a
//! 50% duty signal at 20 kHz. The signal will be output to the pin assigned to
//! `pin`.
//!
//! ```rust, no_run
#![doc = crate::before_snippet!()]
//! # use esp_hal::mcpwm::{operator::{DeadTimeCfg, PWMStream, PwmPinConfig}, timer::PwmWorkingMode, McPwm, PeripheralClockConfig};
//! # let pin = peripherals.GPIO0;
//!
//! // initialize peripheral
#![cfg_attr(
esp32h2,
doc = "let clock_cfg = PeripheralClockConfig::with_frequency(Rate::from_mhz(40))?;"
)]
#![cfg_attr(
not(esp32h2),
doc = "let clock_cfg = PeripheralClockConfig::with_frequency(Rate::from_mhz(32))?;"
)]
//! let mut mcpwm = McPwm::new(peripherals.MCPWM0, clock_cfg);
//!
//! // connect operator0 to timer0
//! mcpwm.operator0.set_timer(&mcpwm.timer0);
//! // connect operator0 to pin
//! let mut pwm_pin = mcpwm
//! .operator0
//! .with_pin_a(pin, PwmPinConfig::UP_ACTIVE_HIGH);
//!
//! // start timer with timestamp values in the range of 0..=99 and a frequency
//! // of 20 kHz
//! let timer_clock_cfg = clock_cfg
//! .timer_clock_with_frequency(99, PwmWorkingMode::Increase,
//! Rate::from_khz(20))?; mcpwm.timer0.start(timer_clock_cfg);
//!
//! // pin will be high 50% of the time
//! pwm_pin.set_timestamp(50);
//! # Ok(())
//! # }
//! ```
use operator::Operator;
use timer::Timer;
use crate::{
clock::Clocks,
gpio::OutputSignal,
pac,
peripheral::{Peripheral, PeripheralRef},
system::{self, PeripheralGuard},
time::Rate,
};
/// MCPWM operators
pub mod operator;
/// MCPWM timers
pub mod timer;
type RegisterBlock = pac::mcpwm0::RegisterBlock;
/// The MCPWM peripheral
#[non_exhaustive]
pub struct McPwm<'d, PWM> {
_inner: PeripheralRef<'d, PWM>,
/// Timer0
pub timer0: Timer<0, PWM>,
/// Timer1
pub timer1: Timer<1, PWM>,
/// Timer2
pub timer2: Timer<2, PWM>,
/// Operator0
pub operator0: Operator<'d, 0, PWM>,
/// Operator1
pub operator1: Operator<'d, 1, PWM>,
/// Operator2
pub operator2: Operator<'d, 2, PWM>,
_guard: PeripheralGuard,
}
impl<'d, PWM: PwmPeripheral> McPwm<'d, PWM> {
/// `pwm_clk = clocks.crypto_pwm_clock / (prescaler + 1)`
// clocks.crypto_pwm_clock normally is 160 MHz
pub fn new(
peripheral: impl Peripheral<P = PWM> + 'd,
peripheral_clock: PeripheralClockConfig,
) -> Self {
crate::into_ref!(peripheral);
let guard = PeripheralGuard::new(PWM::peripheral());
#[cfg(not(esp32c6))]
{
let register_block = unsafe { &*PWM::block() };
// set prescaler
register_block
.clk_cfg()
.write(|w| unsafe { w.clk_prescale().bits(peripheral_clock.prescaler) });
// enable clock
register_block.clk().write(|w| w.en().set_bit());
}
#[cfg(esp32c6)]
{
crate::peripherals::PCR::regs()
.pwm_clk_conf()
.modify(|_, w| unsafe {
w.pwm_div_num()
.bits(peripheral_clock.prescaler)
.pwm_clkm_en()
.set_bit()
.pwm_clkm_sel()
.bits(1)
});
}
#[cfg(esp32h2)]
{
crate::peripherals::PCR::regs()
.pwm_clk_conf()
.modify(|_, w| unsafe {
w.pwm_div_num()
.bits(peripheral_clock.prescaler)
.pwm_clkm_en()
.set_bit()
.pwm_clkm_sel()
.bits(0)
});
}
Self {
_inner: peripheral,
timer0: Timer::new(),
timer1: Timer::new(),
timer2: Timer::new(),
operator0: Operator::new(),
operator1: Operator::new(),
operator2: Operator::new(),
_guard: guard,
}
}
}
/// Clock configuration of the MCPWM peripheral
#[derive(Copy, Clone)]
pub struct PeripheralClockConfig {
frequency: Rate,
prescaler: u8,
}
impl PeripheralClockConfig {
/// Get a clock configuration with the given prescaler.
///
/// With standard system clock configurations the input clock to the MCPWM
/// peripheral is `160 MHz`.
///
/// The peripheral clock frequency is calculated as:
/// `peripheral_clock = input_clock / (prescaler + 1)`
pub fn with_prescaler(prescaler: u8) -> Self {
let clocks = Clocks::get();
cfg_if::cfg_if! {
if #[cfg(esp32)] {
let source_clock = clocks.pwm_clock;
} else if #[cfg(esp32c6)] {
let source_clock = clocks.crypto_clock;
} else if #[cfg(esp32s3)] {
let source_clock = clocks.crypto_pwm_clock;
} else if #[cfg(esp32h2)] {
let source_clock = clocks.xtal_clock;
}
}
Self {
frequency: source_clock / (prescaler as u32 + 1),
prescaler,
}
}
/// Get a clock configuration with the given frequency.
///
/// ### Note:
/// This will try to select an appropriate prescaler for the
/// [`PeripheralClockConfig::with_prescaler`] method.
/// If the calculated prescaler is not in the range `0..u8::MAX`
/// [`FrequencyError`] will be returned.
///
/// With standard system clock configurations the input clock to the MCPWM
/// peripheral is `160 MHz`.
///
/// Only divisors of the input clock (`160 Mhz / 1`, `160 Mhz / 2`, ...,
/// `160 Mhz / 256`) are representable exactly. Other target frequencies
/// will be rounded up to the next divisor.
pub fn with_frequency(target_freq: Rate) -> Result<Self, FrequencyError> {
let clocks = Clocks::get();
cfg_if::cfg_if! {
if #[cfg(esp32)] {
let source_clock = clocks.pwm_clock;
} else if #[cfg(esp32c6)] {
let source_clock = clocks.crypto_clock;
} else if #[cfg(esp32s3)] {
let source_clock = clocks.crypto_pwm_clock;
} else if #[cfg(esp32h2)] {
let source_clock = clocks.xtal_clock;
}
}
if target_freq.as_hz() == 0 || target_freq > source_clock {
return Err(FrequencyError);
}
let prescaler = source_clock / target_freq - 1;
if prescaler > u8::MAX as u32 {
return Err(FrequencyError);
}
Ok(Self::with_prescaler(prescaler as u8))
}
/// Get the peripheral clock frequency.
///
/// ### Note:
/// The actual value is rounded down to the nearest `u32` value
pub fn frequency(&self) -> Rate {
self.frequency
}
/// Get a timer clock configuration with the given prescaler.
///
/// The resulting timer frequency depends on the chosen
/// [`timer::PwmWorkingMode`].
///
/// #### `PwmWorkingMode::Increase` or `PwmWorkingMode::Decrease`
/// `timer_frequency = peripheral_clock / (prescaler + 1) / (period + 1)`
/// #### `PwmWorkingMode::UpDown`
/// `timer_frequency = peripheral_clock / (prescaler + 1) / (2 * period)`
pub fn timer_clock_with_prescaler(
&self,
period: u16,
mode: timer::PwmWorkingMode,
prescaler: u8,
) -> timer::TimerClockConfig {
timer::TimerClockConfig::with_prescaler(self, period, mode, prescaler)
}
/// Get a timer clock configuration with the given frequency.
///
/// ### Note:
/// This will try to select an appropriate prescaler for the timer.
/// If the calculated prescaler is not in the range `0..u8::MAX`
/// [`FrequencyError`] will be returned.
///
/// See [`PeripheralClockConfig::timer_clock_with_prescaler`] for how the
/// frequency is calculated.
pub fn timer_clock_with_frequency(
&self,
period: u16,
mode: timer::PwmWorkingMode,
target_freq: Rate,
) -> Result<timer::TimerClockConfig, FrequencyError> {
timer::TimerClockConfig::with_frequency(self, period, mode, target_freq)
}
}
/// Target frequency could not be set.
/// Check how the frequency is calculated in the corresponding method docs.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct FrequencyError;
/// A MCPWM peripheral
pub trait PwmPeripheral: crate::private::Sealed {
/// Get a pointer to the peripheral RegisterBlock
fn block() -> *const RegisterBlock;
/// Get operator GPIO mux output signal
fn output_signal<const OP: u8, const IS_A: bool>() -> OutputSignal;
/// Peripheral
fn peripheral() -> system::Peripheral;
}
#[cfg(mcpwm0)]
impl PwmPeripheral for crate::peripherals::MCPWM0 {
fn block() -> *const RegisterBlock {
Self::regs()
}
fn output_signal<const OP: u8, const IS_A: bool>() -> OutputSignal {
match (OP, IS_A) {
(0, true) => OutputSignal::PWM0_0A,
(1, true) => OutputSignal::PWM0_1A,
(2, true) => OutputSignal::PWM0_2A,
(0, false) => OutputSignal::PWM0_0B,
(1, false) => OutputSignal::PWM0_1B,
(2, false) => OutputSignal::PWM0_2B,
_ => unreachable!(),
}
}
fn peripheral() -> system::Peripheral {
system::Peripheral::Mcpwm0
}
}
#[cfg(mcpwm1)]
impl PwmPeripheral for crate::peripherals::MCPWM1 {
fn block() -> *const RegisterBlock {
Self::regs()
}
fn output_signal<const OP: u8, const IS_A: bool>() -> OutputSignal {
match (OP, IS_A) {
(0, true) => OutputSignal::PWM1_0A,
(1, true) => OutputSignal::PWM1_1A,
(2, true) => OutputSignal::PWM1_2A,
(0, false) => OutputSignal::PWM1_0B,
(1, false) => OutputSignal::PWM1_1B,
(2, false) => OutputSignal::PWM1_2B,
_ => unreachable!(),
}
}
fn peripheral() -> system::Peripheral {
system::Peripheral::Mcpwm1
}
}