esp_hal/mcpwm/timer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
//! # MCPWM Timer Module
//!
//! ## Overview
//! The `timer` module provides an interface to configure and use timers for
//! generating `PWM` signals used in motor control and other applications.
use core::marker::PhantomData;
use super::PeripheralGuard;
use crate::{
mcpwm::{FrequencyError, PeripheralClockConfig, PwmPeripheral},
pac,
time::Rate,
};
/// A MCPWM timer
///
/// Every timer of a particular [`MCPWM`](super::McPwm) peripheral can be used
/// as a timing reference for every
/// [`Operator`](super::operator::Operator) of that peripheral
pub struct Timer<const TIM: u8, PWM> {
pub(super) phantom: PhantomData<PWM>,
_guard: PeripheralGuard,
}
impl<const TIM: u8, PWM: PwmPeripheral> Timer<TIM, PWM> {
pub(super) fn new() -> Self {
let guard = PeripheralGuard::new(PWM::peripheral());
Timer {
phantom: PhantomData,
_guard: guard,
}
}
/// Apply the given timer configuration.
///
/// ### Note:
/// The prescaler and period configuration will be applied immediately by
/// default and before setting the [`PwmWorkingMode`].
/// If the timer is already running you might want to call [`Timer::stop`]
/// and/or [`Timer::set_counter`] first
/// (if the new period is larger than the current counter value this will
/// cause weird behavior).
///
/// If configured via [`TimerClockConfig::with_period_updating_method`],
/// another behavior can be applied. Currently, only
/// [`PeriodUpdatingMethod::Immediately`]
/// and [`PeriodUpdatingMethod::TimerEqualsZero`] are useful as the sync
/// method is not yet implemented.
///
/// The hardware supports writing these settings in sync with certain timer
/// events but this HAL does not expose these for now.
pub fn start(&mut self, timer_config: TimerClockConfig) {
// write prescaler and period with immediate update method
self.cfg0().write(|w| unsafe {
w.prescale().bits(timer_config.prescaler);
w.period().bits(timer_config.period);
w.period_upmethod()
.bits(timer_config.period_updating_method as u8)
});
// set timer to continuously run and set the timer working mode
self.cfg1().write(|w| unsafe {
w.start().bits(2);
w.mod_().bits(timer_config.mode as u8)
});
}
/// Stop the timer in its current state
pub fn stop(&mut self) {
// freeze the timer
self.cfg1().write(|w| unsafe { w.mod_().bits(0) });
}
/// Set the timer counter to the provided value
pub fn set_counter(&mut self, phase: u16, direction: CounterDirection) {
// SAFETY:
// We only write to our TIMERx_SYNC register
let tmr = unsafe { Self::tmr() };
let sw = tmr.sync().read().sw().bit_is_set();
tmr.sync().write(|w| {
w.phase_direction().bit(direction as u8 != 0);
unsafe {
w.phase().bits(phase);
}
w.sw().bit(!sw)
});
}
/// Read the counter value and counter direction of the timer
pub fn status(&self) -> (u16, CounterDirection) {
// SAFETY:
// We only read from our TIMERx_STATUS register
let reg = unsafe { Self::tmr() }.status().read();
(reg.value().bits(), reg.direction().bit_is_set().into())
}
fn cfg0(&mut self) -> &pac::mcpwm0::timer::CFG0 {
// SAFETY:
// We only grant access to our CFG0 register with the lifetime of &mut self
unsafe { Self::tmr() }.cfg0()
}
fn cfg1(&mut self) -> &pac::mcpwm0::timer::CFG1 {
// SAFETY:
// We only grant access to our CFG0 register with the lifetime of &mut self
unsafe { Self::tmr() }.cfg1()
}
unsafe fn tmr() -> &'static pac::mcpwm0::TIMER {
let block = unsafe { &*PWM::block() };
block.timer(TIM as usize)
}
}
/// Clock configuration of a MCPWM timer
///
/// Use [`PeripheralClockConfig::timer_clock_with_prescaler`](super::PeripheralClockConfig::timer_clock_with_prescaler) or
/// [`PeripheralClockConfig::timer_clock_with_frequency`](super::PeripheralClockConfig::timer_clock_with_frequency) to it.
#[derive(Copy, Clone)]
pub struct TimerClockConfig {
frequency: Rate,
period: u16,
period_updating_method: PeriodUpdatingMethod,
prescaler: u8,
mode: PwmWorkingMode,
}
impl TimerClockConfig {
pub(super) fn with_prescaler(
clock: &PeripheralClockConfig,
period: u16,
mode: PwmWorkingMode,
prescaler: u8,
) -> Self {
let cycle_period = match mode {
PwmWorkingMode::Increase | PwmWorkingMode::Decrease => period as u32 + 1,
// The reference manual seems to provide an incorrect formula for UpDown
PwmWorkingMode::UpDown => period as u32 * 2,
};
let frequency = clock.frequency / (prescaler as u32 + 1) / cycle_period;
TimerClockConfig {
frequency,
prescaler,
period,
period_updating_method: PeriodUpdatingMethod::Immediately,
mode,
}
}
pub(super) fn with_frequency(
clock: &PeripheralClockConfig,
period: u16,
mode: PwmWorkingMode,
target_freq: Rate,
) -> Result<Self, FrequencyError> {
let cycle_period = match mode {
PwmWorkingMode::Increase | PwmWorkingMode::Decrease => period as u32 + 1,
// The reference manual seems to provide an incorrect formula for UpDown
PwmWorkingMode::UpDown => period as u32 * 2,
};
let target_timer_frequency = target_freq
.as_hz()
.checked_mul(cycle_period)
.ok_or(FrequencyError)?;
if target_timer_frequency == 0 || target_freq > clock.frequency {
return Err(FrequencyError);
}
let prescaler = clock.frequency.as_hz() / target_timer_frequency - 1;
if prescaler > u8::MAX as u32 {
return Err(FrequencyError);
}
let frequency = clock.frequency / (prescaler + 1) / cycle_period;
Ok(TimerClockConfig {
frequency,
prescaler: prescaler as u8,
period,
period_updating_method: PeriodUpdatingMethod::Immediately,
mode,
})
}
/// Set the method for updating the PWM period
pub fn with_period_updating_method(self, method: PeriodUpdatingMethod) -> Self {
Self {
period_updating_method: method,
..self
}
}
/// Get the timer clock frequency.
///
/// ### Note:
/// The actual value is rounded down to the nearest `u32` value
pub fn frequency(&self) -> Rate {
self.frequency
}
}
/// Method for updating the PWM period
#[derive(Clone, Copy)]
#[repr(u8)]
pub enum PeriodUpdatingMethod {
/// The period is updated immediately.
Immediately = 0,
/// The period is updated when the timer equals zero.
TimerEqualsZero = 1,
/// The period is updated on a synchronization event.
Sync = 2,
/// The period is updated either when the timer equals zero or on a
/// synchronization event.
TimerEqualsZeroOrSync = 3,
}
/// PWM working mode
#[derive(Copy, Clone)]
#[repr(u8)]
pub enum PwmWorkingMode {
/// In this mode, the PWM timer increments from zero until reaching the
/// value configured in the period field. Once done, the PWM timer
/// returns to zero and starts increasing again. PWM period is equal to the
/// value of the period field + 1.
Increase = 1,
/// The PWM timer decrements to zero, starting from the value configured in
/// the period field. After reaching zero, it is set back to the period
/// value. Then it starts to decrement again. In this case, the PWM period
/// is also equal to the value of period field + 1.
Decrease = 2,
/// This is a combination of the two modes mentioned above. The PWM timer
/// starts increasing from zero until the period value is reached. Then,
/// the timer decreases back to zero. This pattern is then repeated. The
/// PWM period is the result of the value of the period field × 2.
UpDown = 3,
}
/// The direction the timer counter is changing
#[derive(Debug)]
#[repr(u8)]
pub enum CounterDirection {
/// The timer counter is increasing
Increasing = 0,
/// The timer counter is decreasing
Decreasing = 1,
}
impl From<bool> for CounterDirection {
fn from(bit: bool) -> Self {
match bit {
false => CounterDirection::Increasing,
true => CounterDirection::Decreasing,
}
}
}