esp_hal/reg_access.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
//! Utils
//!
//! # Overview
//!
//! Collection of struct which helps you write to registers.
use core::marker::PhantomData;
const U32_ALIGN_SIZE: usize = core::mem::size_of::<u32>();
pub(crate) trait EndianessConverter {
fn u32_from_bytes(bytes: [u8; 4]) -> u32;
fn u32_to_bytes(word: u32) -> [u8; 4];
}
/// Always use native endianess
#[allow(unused)] // only used in AES driver for now
pub(crate) struct NativeEndianess;
impl EndianessConverter for NativeEndianess {
fn u32_from_bytes(bytes: [u8; 4]) -> u32 {
u32::from_ne_bytes(bytes)
}
fn u32_to_bytes(word: u32) -> [u8; 4] {
u32::to_ne_bytes(word)
}
}
/// Use BE for ESP32, NE otherwise
#[derive(Debug, Clone)]
pub(crate) struct SocDependentEndianess;
#[cfg(not(esp32))]
impl EndianessConverter for SocDependentEndianess {
fn u32_from_bytes(bytes: [u8; 4]) -> u32 {
u32::from_ne_bytes(bytes)
}
fn u32_to_bytes(word: u32) -> [u8; 4] {
u32::to_ne_bytes(word)
}
}
#[cfg(esp32)]
impl EndianessConverter for SocDependentEndianess {
fn u32_from_bytes(bytes: [u8; 4]) -> u32 {
u32::from_be_bytes(bytes)
}
fn u32_to_bytes(word: u32) -> [u8; 4] {
u32::to_be_bytes(word)
}
}
// The alignment helper helps you write to registers that only accept u32
// using regular u8s (bytes). It keeps a write buffer of 4 u8 (could in theory
// be 3 but less convenient). And if the incoming data is not convertable to u32
// (i.e not a multiple of 4 in length) it will store the remainder in the
// buffer until the next call.
//
// It assumes incoming `dst` are aligned to desired layout (in future
// ptr.is_aligned can be used). It also assumes that writes are done in FIFO
// order.
#[derive(Debug, Clone)]
pub(crate) struct AlignmentHelper<E: EndianessConverter> {
buf: [u8; U32_ALIGN_SIZE],
buf_fill: usize,
phantom: PhantomData<E>,
}
impl AlignmentHelper<SocDependentEndianess> {
pub fn default() -> AlignmentHelper<SocDependentEndianess> {
AlignmentHelper {
buf: [0u8; U32_ALIGN_SIZE],
buf_fill: 0,
phantom: PhantomData,
}
}
}
// only used by AES
#[cfg(aes)]
impl AlignmentHelper<NativeEndianess> {
pub fn native_endianess() -> AlignmentHelper<NativeEndianess> {
AlignmentHelper {
buf: [0u8; U32_ALIGN_SIZE],
buf_fill: 0,
phantom: PhantomData,
}
}
}
impl<E: EndianessConverter> AlignmentHelper<E> {
pub fn reset(&mut self) {
self.buf_fill = 0;
}
pub const fn align_size(&self) -> usize {
U32_ALIGN_SIZE
}
// This function will write any remaining buffer to dst and return the
// amount of *bytes* written (0 means no write). If the buffer is not
// aligned to the size of the register destination, it will append the '0'
// value.
pub fn flush_to(&mut self, dst_ptr: *mut u32, offset: usize) -> usize {
if self.buf_fill != 0 {
for i in self.buf_fill..U32_ALIGN_SIZE {
self.buf[i] = 0;
}
unsafe {
dst_ptr
.add(offset)
.write_volatile(E::u32_from_bytes(self.buf));
}
let ret = self.align_size() - self.buf_fill;
self.buf_fill = 0;
ret
} else {
0
}
}
// This function is similar to `volatile_set_memory` but will prepend data that
// was previously ingested and ensure aligned (u32) writes.
pub fn volatile_write(&mut self, dst_ptr: *mut u32, val: u8, count: usize, offset: usize) {
let dst_ptr = unsafe { dst_ptr.add(offset) };
let mut cursor = if self.buf_fill != 0 {
for i in self.buf_fill..U32_ALIGN_SIZE {
self.buf[i] = val;
}
unsafe {
dst_ptr.write_volatile(E::u32_from_bytes(self.buf));
}
self.buf_fill = 0;
1
} else {
0
};
while cursor < count {
unsafe {
dst_ptr
.add(cursor)
.write_volatile(E::u32_from_bytes([0_u8; 4]));
}
cursor += 1;
}
}
// This function is similar to `volatile_copy_nonoverlapping_memory`,
// however it buffers up to a u32 in order to always write to registers in
// an aligned way. Additionally it will keep stop writing when the end of
// the register (defined by `dst_bound` relative to `dst`) and returns the
// remaining data (if not possible to write everything), and if it wrote
// till dst_bound or exited early (due to lack of data).
pub fn aligned_volatile_copy<'a>(
&mut self,
dst_ptr: *mut u32,
src: &'a [u8],
dst_bound: usize,
offset: usize,
) -> (&'a [u8], bool) {
assert!(dst_bound > 0);
let dst_ptr = unsafe { dst_ptr.add(offset) };
let mut nsrc = src;
let mut cursor = 0;
if self.buf_fill != 0 {
// First prepend existing data
let max_fill = U32_ALIGN_SIZE - self.buf_fill;
let (nbuf, src) = src.split_at(core::cmp::min(src.len(), max_fill));
nsrc = src;
for i in 0..max_fill {
match nbuf.get(i) {
Some(v) => {
self.buf[self.buf_fill] = *v;
self.buf_fill += 1;
}
None => return (&[], false), // Used up entire buffer before filling buff_fil
}
}
unsafe {
dst_ptr.write_volatile(E::u32_from_bytes(self.buf));
}
cursor += 1;
self.buf_fill = 0;
}
if dst_bound <= offset + cursor {
return (nsrc, true);
}
let (to_write, remaining) = nsrc.split_at(core::cmp::min(
(dst_bound - offset - cursor) * U32_ALIGN_SIZE,
(nsrc.len() / U32_ALIGN_SIZE) * U32_ALIGN_SIZE,
));
if !to_write.is_empty() {
for (i, v) in to_write.chunks_exact(U32_ALIGN_SIZE).enumerate() {
unsafe {
dst_ptr
.add(i + cursor)
.write_volatile(E::u32_from_bytes(v.try_into().unwrap()));
}
}
}
// If it's data we can't store we don't need to try and align it, just wait for
// next write Generally this applies when (src/4*4) != src
let was_bounded = (offset + cursor + to_write.len() / U32_ALIGN_SIZE) == dst_bound;
if !remaining.is_empty() && remaining.len() < 4 {
self.buf[..remaining.len()].copy_from_slice(remaining);
self.buf_fill = remaining.len();
return (&[], was_bounded);
}
(remaining, was_bounded)
}
#[allow(dead_code)]
pub fn volatile_write_regset(&mut self, dst_ptr: *mut u32, src: &[u8], dst_bound: usize) {
assert!(dst_bound > 0);
assert!(src.len() <= dst_bound * 4);
if !src.is_empty() {
for (i, v) in src.chunks_exact(U32_ALIGN_SIZE).enumerate() {
unsafe {
dst_ptr
.add(i)
.write_volatile(E::u32_from_bytes(v.try_into().unwrap()));
}
}
}
}
pub fn volatile_read_regset(&self, src_ptr: *const u32, dst: &mut [u8], dst_bound: usize) {
assert!(dst.len() >= dst_bound * 4);
let chunks = dst.chunks_exact_mut(U32_ALIGN_SIZE);
for (i, chunk) in chunks.enumerate() {
let read_val: [u8; U32_ALIGN_SIZE] =
unsafe { E::u32_to_bytes(src_ptr.add(i).read_volatile()) };
chunk.copy_from_slice(&read_val);
}
}
}