esp_hal/analog/adc/
xtensa.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
use core::marker::PhantomData;

#[cfg(esp32s3)]
pub use self::calibration::*;
use super::{AdcCalScheme, AdcCalSource, AdcChannel, AdcConfig, AdcPin, Attenuation};
#[cfg(esp32s3)]
use crate::efuse::Efuse;
use crate::{
    peripheral::PeripheralRef,
    peripherals::{APB_SARADC, SENS},
    system::{GenericPeripheralGuard, Peripheral},
};

mod calibration;

pub(super) const NUM_ATTENS: usize = 10;

// Constants taken from:
// https://github.com/espressif/esp-idf/blob/903af13e8/components/soc/esp32s2/include/soc/regi2c_saradc.h
// https://github.com/espressif/esp-idf/blob/903af13e8/components/soc/esp32s3/include/soc/regi2c_saradc.h

cfg_if::cfg_if! {
    if #[cfg(any(esp32s2, esp32s3))] {
        const I2C_SAR_ADC: u8 = 0x69;
        const I2C_SAR_ADC_HOSTID: u8 = 1;

        const ADC_SAR1_INITIAL_CODE_HIGH_ADDR: u8 = 0x1;
        const ADC_SAR1_INITIAL_CODE_HIGH_ADDR_MSB: u8 = 0x3;
        const ADC_SAR1_INITIAL_CODE_HIGH_ADDR_LSB: u8 = 0x0;

        const ADC_SAR1_INITIAL_CODE_LOW_ADDR: u8 = 0x0;
        const ADC_SAR1_INITIAL_CODE_LOW_ADDR_MSB: u8 = 0x7;
        const ADC_SAR1_INITIAL_CODE_LOW_ADDR_LSB: u8 = 0x0;

        const ADC_SAR2_INITIAL_CODE_HIGH_ADDR: u8 = 0x4;
        const ADC_SAR2_INITIAL_CODE_HIGH_ADDR_MSB: u8 = 0x3;
        const ADC_SAR2_INITIAL_CODE_HIGH_ADDR_LSB: u8 = 0x0;

        const ADC_SAR2_INITIAL_CODE_LOW_ADDR: u8 = 0x3;
        const ADC_SAR2_INITIAL_CODE_LOW_ADDR_MSB: u8 = 0x7;
        const ADC_SAR2_INITIAL_CODE_LOW_ADDR_LSB: u8 = 0x0;
    }
}

cfg_if::cfg_if! {
    if #[cfg(esp32s3)] {
        const ADC_VAL_MASK: u16 = 0xfff;
        const ADC_CAL_CNT_MAX: u16 = 32;
        const ADC_CAL_CHANNEL: u16 = 15;

        const ADC_SAR1_ENCAL_GND_ADDR: u8 = 0x7;
        const ADC_SAR1_ENCAL_GND_ADDR_MSB: u8 = 5;
        const ADC_SAR1_ENCAL_GND_ADDR_LSB: u8 = 5;

        const ADC_SAR1_DREF_ADDR: u8 = 0x2;
        const ADC_SAR1_DREF_ADDR_MSB: u8 = 0x6;
        const ADC_SAR1_DREF_ADDR_LSB: u8 = 0x4;

        const ADC_SARADC1_ENCAL_REF_ADDR: u8 = 0x7;
        const ADC_SARADC1_ENCAL_REF_ADDR_MSB: u8 = 4;
        const ADC_SARADC1_ENCAL_REF_ADDR_LSB: u8 = 4;

        const ADC_SAR2_ENCAL_GND_ADDR: u8 = 0x7;
        const ADC_SAR2_ENCAL_GND_ADDR_MSB: u8 = 5;
        const ADC_SAR2_ENCAL_GND_ADDR_LSB: u8 = 5;

        const ADC_SAR2_DREF_ADDR: u8 = 0x5;
        const ADC_SAR2_DREF_ADDR_MSB: u8 = 0x6;
        const ADC_SAR2_DREF_ADDR_LSB: u8 = 0x4;

        const ADC_SARADC2_ENCAL_REF_ADDR: u8 = 0x7;
        const ADC_SARADC2_ENCAL_REF_ADDR_MSB: u8 = 4;
        const ADC_SARADC2_ENCAL_REF_ADDR_LSB: u8 = 4;
    }
}

/// The sampling/readout resolution of the ADC.
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[allow(clippy::enum_variant_names, reason = "peripheral is unstable")]
pub enum Resolution {
    /// 13-bit resolution
    #[default]
    Resolution13Bit,
}

impl<ADCI> AdcConfig<ADCI>
where
    ADCI: RegisterAccess,
{
    /// Calibrate ADC with specified attenuation and voltage source
    pub fn adc_calibrate(atten: Attenuation, source: AdcCalSource) -> u16
    where
        ADCI: super::CalibrationAccess,
    {
        let mut adc_max: u16 = 0;
        let mut adc_min: u16 = u16::MAX;
        let mut adc_sum: u32 = 0;

        ADCI::enable_vdef(true);

        // Start sampling
        ADCI::set_en_pad(ADCI::ADC_CAL_CHANNEL as u8);
        ADCI::set_attenuation(ADCI::ADC_CAL_CHANNEL as usize, atten as u8);

        // Connect calibration source
        ADCI::connect_cal(source, true);

        ADCI::set_init_code(0);

        for _ in 0..ADCI::ADC_CAL_CNT_MAX {
            // Trigger ADC sampling
            ADCI::start_sample();

            // Wait until ADC1 sampling is done
            while !ADCI::is_done() {}

            let adc = ADCI::read_data() & ADCI::ADC_VAL_MASK;

            ADCI::reset();

            adc_sum += adc as u32;
            adc_max = adc.max(adc_max);
            adc_min = adc.min(adc_min);
        }

        let cal_val =
            (adc_sum - adc_max as u32 - adc_min as u32) as u16 / (ADCI::ADC_CAL_CNT_MAX - 2);

        // Disconnect calibration source
        ADCI::connect_cal(source, false);

        cal_val
    }
}

#[doc(hidden)]
pub trait RegisterAccess {
    fn set_attenuation(channel: usize, attenuation: u8);

    fn clear_dig_force();

    fn set_start_force();

    fn set_en_pad_force();

    fn set_en_pad(channel: u8);

    fn clear_start_sample();

    fn start_sample();

    /// Check if sampling is done
    fn is_done() -> bool;

    /// Read sample data
    fn read_data() -> u16;

    /// Set calibration parameter to ADC hardware
    fn set_init_code(data: u16);

    /// Reset flags
    fn reset();
}

impl RegisterAccess for crate::peripherals::ADC1 {
    fn set_attenuation(channel: usize, attenuation: u8) {
        SENS::regs().sar_atten1().modify(|r, w| {
            let new_value = (r.bits() & !(0b11 << (channel * 2)))
                | (((attenuation & 0b11) as u32) << (channel * 2));

            unsafe { w.sar1_atten().bits(new_value) }
        });
    }

    fn clear_dig_force() {
        SENS::regs()
            .sar_meas1_mux()
            .modify(|_, w| w.sar1_dig_force().clear_bit());
    }

    fn set_start_force() {
        SENS::regs()
            .sar_meas1_ctrl2()
            .modify(|_, w| w.meas1_start_force().set_bit());
    }

    fn set_en_pad_force() {
        SENS::regs()
            .sar_meas1_ctrl2()
            .modify(|_, w| w.sar1_en_pad_force().set_bit());
    }

    fn set_en_pad(channel: u8) {
        SENS::regs()
            .sar_meas1_ctrl2()
            .modify(|_, w| unsafe { w.sar1_en_pad().bits(1 << channel) });
    }

    fn clear_start_sample() {
        SENS::regs()
            .sar_meas1_ctrl2()
            .modify(|_, w| w.meas1_start_sar().clear_bit());
    }

    fn start_sample() {
        SENS::regs()
            .sar_meas1_ctrl2()
            .modify(|_, w| w.meas1_start_sar().set_bit());
    }

    fn is_done() -> bool {
        SENS::regs()
            .sar_meas1_ctrl2()
            .read()
            .meas1_done_sar()
            .bit_is_set()
    }

    fn read_data() -> u16 {
        SENS::regs()
            .sar_meas1_ctrl2()
            .read()
            .meas1_data_sar()
            .bits()
    }

    fn set_init_code(data: u16) {
        let [msb, lsb] = data.to_be_bytes();

        crate::rom::regi2c_write_mask!(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb as u32);
        crate::rom::regi2c_write_mask!(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb as u32);
    }

    fn reset() {
        let adc = APB_SARADC::regs();
        let sensors = SENS::regs();

        adc.int_clr().write(|w| w.adc1_done().clear_bit_by_one());

        sensors
            .sar_meas1_ctrl2()
            .modify(|_, w| w.meas1_start_sar().clear_bit());
    }
}

#[cfg(esp32s3)]
impl super::CalibrationAccess for crate::peripherals::ADC1 {
    const ADC_CAL_CNT_MAX: u16 = ADC_CAL_CNT_MAX;
    const ADC_CAL_CHANNEL: u16 = ADC_CAL_CHANNEL;
    const ADC_VAL_MASK: u16 = ADC_VAL_MASK;

    fn enable_vdef(enable: bool) {
        crate::rom::regi2c_write_mask!(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, enable as u8);
    }

    fn connect_cal(source: AdcCalSource, enable: bool) {
        match source {
            AdcCalSource::Gnd => {
                crate::rom::regi2c_write_mask!(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, enable as u8);
            }
            AdcCalSource::Ref => {
                crate::rom::regi2c_write_mask!(
                    I2C_SAR_ADC,
                    ADC_SARADC1_ENCAL_REF_ADDR,
                    enable as u8
                );
            }
        }
    }
}

impl RegisterAccess for crate::peripherals::ADC2 {
    fn set_attenuation(channel: usize, attenuation: u8) {
        SENS::regs().sar_atten2().modify(|r, w| {
            let new_value = (r.bits() & !(0b11 << (channel * 2)))
                | (((attenuation & 0b11) as u32) << (channel * 2));

            unsafe { w.sar2_atten().bits(new_value) }
        });
    }

    fn clear_dig_force() {
        SENS::regs()
            .sar_meas2_mux()
            .modify(|_, w| w.sar2_rtc_force().set_bit());

        APB_SARADC::regs()
            .arb_ctrl()
            .modify(|_, w| w.rtc_force().set_bit());
    }

    fn set_start_force() {
        SENS::regs()
            .sar_meas2_ctrl2()
            .modify(|_, w| w.meas2_start_force().set_bit());
    }

    fn set_en_pad_force() {
        SENS::regs()
            .sar_meas2_ctrl2()
            .modify(|_, w| w.sar2_en_pad_force().set_bit());
    }

    fn set_en_pad(channel: u8) {
        SENS::regs()
            .sar_meas2_ctrl2()
            .modify(|_, w| unsafe { w.sar2_en_pad().bits(1 << channel) });
    }

    fn clear_start_sample() {
        SENS::regs()
            .sar_meas2_ctrl2()
            .modify(|_, w| w.meas2_start_sar().clear_bit());
    }

    fn start_sample() {
        SENS::regs()
            .sar_meas2_ctrl2()
            .modify(|_, w| w.meas2_start_sar().set_bit());
    }

    fn is_done() -> bool {
        SENS::regs()
            .sar_meas2_ctrl2()
            .read()
            .meas2_done_sar()
            .bit_is_set()
    }

    fn read_data() -> u16 {
        SENS::regs()
            .sar_meas2_ctrl2()
            .read()
            .meas2_data_sar()
            .bits()
    }

    fn set_init_code(data: u16) {
        let [msb, lsb] = data.to_be_bytes();

        crate::rom::regi2c_write_mask!(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_HIGH_ADDR, msb as u32);
        crate::rom::regi2c_write_mask!(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_LOW_ADDR, lsb as u32);
    }

    fn reset() {
        let adc = APB_SARADC::regs();
        let sensors = SENS::regs();

        adc.int_clr().write(|w| w.adc2_done().clear_bit_by_one());

        sensors
            .sar_meas2_ctrl2()
            .modify(|_, w| w.meas2_start_sar().clear_bit());
    }
}

#[cfg(esp32s3)]
impl super::CalibrationAccess for crate::peripherals::ADC2 {
    const ADC_CAL_CNT_MAX: u16 = ADC_CAL_CNT_MAX;
    const ADC_CAL_CHANNEL: u16 = ADC_CAL_CHANNEL;
    const ADC_VAL_MASK: u16 = ADC_VAL_MASK;

    fn enable_vdef(enable: bool) {
        crate::rom::regi2c_write_mask!(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, enable as u8);
    }

    fn connect_cal(source: AdcCalSource, enable: bool) {
        match source {
            AdcCalSource::Gnd => {
                crate::rom::regi2c_write_mask!(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, enable as u8);
            }
            AdcCalSource::Ref => {
                crate::rom::regi2c_write_mask!(
                    I2C_SAR_ADC,
                    ADC_SARADC2_ENCAL_REF_ADDR,
                    enable as u8
                );
            }
        }
    }
}

/// Analog-to-Digital Converter peripheral driver.
pub struct Adc<'d, ADC, Dm: crate::DriverMode> {
    _adc: PeripheralRef<'d, ADC>,
    active_channel: Option<u8>,
    last_init_code: u16,
    _guard: GenericPeripheralGuard<{ Peripheral::ApbSarAdc as u8 }>,
    _phantom: PhantomData<Dm>,
}

impl<'d, ADCI> Adc<'d, ADCI, crate::Blocking>
where
    ADCI: RegisterAccess,
{
    /// Configure a given ADC instance using the provided configuration, and
    /// initialize the ADC for use
    pub fn new(
        adc_instance: impl crate::peripheral::Peripheral<P = ADCI> + 'd,
        config: AdcConfig<ADCI>,
    ) -> Self {
        let guard = GenericPeripheralGuard::new();
        let sensors = SENS::regs();

        // Set attenuation for pins
        let attenuations = config.attenuations;

        for (channel, attenuation) in attenuations.iter().enumerate() {
            if let Some(attenuation) = attenuation {
                ADCI::set_attenuation(channel, *attenuation as u8);
            }
        }

        // Set controller to RTC
        ADCI::clear_dig_force();
        ADCI::set_start_force();
        ADCI::set_en_pad_force();
        sensors
            .sar_hall_ctrl()
            .modify(|_, w| w.xpd_hall_force().set_bit());
        sensors
            .sar_hall_ctrl()
            .modify(|_, w| w.hall_phase_force().set_bit());

        // Set power to SW power on
        #[cfg(esp32s2)]
        sensors
            .sar_meas1_ctrl1()
            .modify(|_, w| w.rtc_saradc_clkgate_en().set_bit());

        #[cfg(esp32s3)]
        sensors
            .sar_peri_clk_gate_conf()
            .modify(|_, w| w.saradc_clk_en().set_bit());

        sensors
            .sar_power_xpd_sar()
            .modify(|_, w| w.sarclk_en().set_bit());

        sensors
            .sar_power_xpd_sar()
            .modify(|_, w| unsafe { w.force_xpd_sar().bits(0b11) });

        // disable AMP
        sensors
            .sar_meas1_ctrl1()
            .modify(|_, w| unsafe { w.force_xpd_amp().bits(0b11) });
        sensors
            .sar_amp_ctrl3()
            .modify(|_, w| unsafe { w.amp_rst_fb_fsm().bits(0) });
        sensors
            .sar_amp_ctrl3()
            .modify(|_, w| unsafe { w.amp_short_ref_fsm().bits(0) });
        sensors
            .sar_amp_ctrl3()
            .modify(|_, w| unsafe { w.amp_short_ref_gnd_fsm().bits(0) });
        sensors
            .sar_amp_ctrl1()
            .modify(|_, w| unsafe { w.sar_amp_wait1().bits(1) });
        sensors
            .sar_amp_ctrl1()
            .modify(|_, w| unsafe { w.sar_amp_wait2().bits(1) });
        sensors
            .sar_amp_ctrl2()
            .modify(|_, w| unsafe { w.sar_amp_wait3().bits(1) });

        Adc {
            _adc: adc_instance.into_ref(),
            active_channel: None,
            last_init_code: 0,
            _guard: guard,
            _phantom: PhantomData,
        }
    }

    /// Start and wait for a conversion on the specified pin and return the
    /// result
    pub fn read_blocking<PIN, CS>(&mut self, pin: &mut AdcPin<PIN, ADCI, CS>) -> u16
    where
        PIN: AdcChannel,
        CS: AdcCalScheme<ADCI>,
    {
        self.start_sample(pin);

        // Wait for ADC to finish conversion
        while !ADCI::is_done() {}

        // Get converted value
        let converted_value = ADCI::read_data();
        ADCI::reset();

        // Postprocess converted value according to calibration scheme used for pin
        pin.cal_scheme.adc_val(converted_value)
    }

    /// Request that the ADC begin a conversion on the specified pin
    ///
    /// This method takes an [AdcPin](super::AdcPin) reference, as it is
    /// expected that the ADC will be able to sample whatever channel
    /// underlies the pin.
    pub fn read_oneshot<PIN, CS>(
        &mut self,
        pin: &mut super::AdcPin<PIN, ADCI, CS>,
    ) -> nb::Result<u16, ()>
    where
        PIN: super::AdcChannel,
        CS: super::AdcCalScheme<ADCI>,
    {
        if let Some(active_channel) = self.active_channel {
            // There is conversion in progress:
            // - if it's for a different channel try again later
            // - if it's for the given channel, go ahead and check progress
            if active_channel != PIN::CHANNEL {
                return Err(nb::Error::WouldBlock);
            }
        } else {
            // If no conversions are in progress, start a new one for given channel
            self.active_channel = Some(PIN::CHANNEL);

            self.start_sample(pin);
        }

        // Wait for ADC to finish conversion
        let conversion_finished = ADCI::is_done();
        if !conversion_finished {
            return Err(nb::Error::WouldBlock);
        }

        // Get converted value
        let converted_value = ADCI::read_data();
        ADCI::reset();

        // Postprocess converted value according to calibration scheme used for pin
        let converted_value = pin.cal_scheme.adc_val(converted_value);

        // Mark that no conversions are currently in progress
        self.active_channel = None;

        Ok(converted_value)
    }

    fn start_sample<PIN, CS>(&mut self, pin: &mut AdcPin<PIN, ADCI, CS>)
    where
        PIN: AdcChannel,
        CS: AdcCalScheme<ADCI>,
    {
        // Set ADC unit calibration according used scheme for pin
        let init_code = pin.cal_scheme.adc_cal();
        if self.last_init_code != init_code {
            ADCI::set_init_code(init_code);
            self.last_init_code = init_code;
        }

        ADCI::set_en_pad(PIN::CHANNEL);

        ADCI::clear_start_sample();
        ADCI::start_sample();
    }
}

#[cfg(esp32s3)]
impl super::AdcCalEfuse for crate::peripherals::ADC1 {
    fn init_code(atten: Attenuation) -> Option<u16> {
        Efuse::rtc_calib_init_code(1, atten)
    }

    fn cal_mv(atten: Attenuation) -> u16 {
        Efuse::rtc_calib_cal_mv(1, atten)
    }

    fn cal_code(atten: Attenuation) -> Option<u16> {
        Efuse::rtc_calib_cal_code(1, atten)
    }
}

#[cfg(esp32s3)]
impl super::AdcCalEfuse for crate::peripherals::ADC2 {
    fn init_code(atten: Attenuation) -> Option<u16> {
        Efuse::rtc_calib_init_code(2, atten)
    }

    fn cal_mv(atten: Attenuation) -> u16 {
        Efuse::rtc_calib_cal_mv(2, atten)
    }

    fn cal_code(atten: Attenuation) -> Option<u16> {
        Efuse::rtc_calib_cal_code(2, atten)
    }
}

mod adc_implementation {
    crate::analog::adc::impl_adc_interface! {
        ADC1 [
            (GpioPin<1>,  0),
            (GpioPin<2>,  1),
            (GpioPin<3>,  2),
            (GpioPin<4>,  3),
            (GpioPin<5>,  4),
            (GpioPin<6>,  5),
            (GpioPin<7>,  6),
            (GpioPin<8>,  7),
            (GpioPin<9>,  8),
            (GpioPin<10>, 9),
        ]
    }

    crate::analog::adc::impl_adc_interface! {
        ADC2 [
            (GpioPin<11>, 0),
            (GpioPin<12>, 1),
            (GpioPin<13>, 2),
            (GpioPin<14>, 3),
            (GpioPin<15>, 4),
            (GpioPin<16>, 5),
            (GpioPin<17>, 6),
            (GpioPin<18>, 7),
            (GpioPin<19>, 8),
            (GpioPin<20>, 9),
        ]
    }
}