esp_hal/clock/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
//! # CPU Clock Control
//!
//! ## Overview
//!
//! Clocks are mainly sourced from oscillator (OSC), RC, and PLL circuits, and
//! then processed by the dividers or selectors, which allows most functional
//! modules to select their working clock according to their power consumption
//! and performance requirements.
//!
//! The clock subsystem  is used to source and distribute system/module clocks
//! from a range of root clocks. The clock tree driver maintains the basic
//! functionality of the system clock and the intricate relationship among
//! module clocks.
//!
//! ## Configuration
//!
//! During HAL initialization, specify a CPU clock speed to configure the
//! desired clock frequencies.
//!
//! The `CPU clock` is responsible for defining the speed at which the central
//! processing unit (CPU) operates. This driver provides predefined options for
//! different CPU clock speeds, such as
#![cfg_attr(not(esp32h2), doc = "* 80MHz")]
#![cfg_attr(esp32h2, doc = "* 96MHz")]
#![cfg_attr(esp32c2, doc = "* 120MHz")]
#![cfg_attr(not(any(esp32c2, esp32h2)), doc = "* 160MHz")]
#![cfg_attr(xtensa, doc = "* 240MHz")]
//! ### Frozen Clock Frequencies
//!
//! Once the clock configuration is applied, the clock frequencies become
//! `frozen` and cannot be changed.
//!
//! ## Examples
//!
//! ### Initialize With Different Clock Frequencies
//! ```rust, no_run
#![doc = crate::before_snippet!()]
//! use esp_hal::clock::CpuClock;
//!
//! // Initialize with the highest possible frequency for this chip
//! let config = esp_hal::Config::default().with_cpu_clock(CpuClock::max());
//! let peripherals = esp_hal::init(config);
//! # Ok(())
//! # }
//! ```

#[cfg(any(esp32, esp32c2))]
use crate::rtc_cntl::RtcClock;
use crate::{
    peripheral::{Peripheral, PeripheralRef},
    time::Rate,
};

#[cfg_attr(esp32, path = "clocks_ll/esp32.rs")]
#[cfg_attr(esp32c2, path = "clocks_ll/esp32c2.rs")]
#[cfg_attr(esp32c3, path = "clocks_ll/esp32c3.rs")]
#[cfg_attr(esp32c6, path = "clocks_ll/esp32c6.rs")]
#[cfg_attr(esp32h2, path = "clocks_ll/esp32h2.rs")]
#[cfg_attr(esp32s2, path = "clocks_ll/esp32s2.rs")]
#[cfg_attr(esp32s3, path = "clocks_ll/esp32s3.rs")]
pub(crate) mod clocks_ll;

/// Clock properties
#[doc(hidden)]
pub trait Clock {
    /// Frequency of the clock in [Rate].
    fn frequency(&self) -> Rate;

    /// Frequency of the clock in Megahertz
    fn mhz(&self) -> u32 {
        self.frequency().as_mhz()
    }

    /// Frequency of the clock in Hertz
    fn hz(&self) -> u32 {
        self.frequency().as_hz()
    }
}

/// CPU clock speed
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[allow(
    clippy::enum_variant_names,
    reason = "MHz suffix indicates physical unit."
)]
#[non_exhaustive]
pub enum CpuClock {
    /// 80MHz CPU clock
    #[cfg(not(esp32h2))]
    _80MHz  = 80,

    /// 96MHz CPU clock
    #[cfg(esp32h2)]
    _96MHz  = 96,

    /// 120MHz CPU clock
    #[cfg(esp32c2)]
    _120MHz = 120,

    /// 160MHz CPU clock
    #[cfg(not(any(esp32c2, esp32h2)))]
    _160MHz = 160,

    /// 240MHz CPU clock
    #[cfg(xtensa)]
    _240MHz = 240,
}

impl Default for CpuClock {
    fn default() -> Self {
        cfg_if::cfg_if! {
            if #[cfg(esp32h2)] {
                Self::_96MHz
            } else {
                // FIXME: I don't think this is correct in general?
                Self::_80MHz
            }
        }
    }
}

impl CpuClock {
    /// Use the highest possible frequency for a particular chip.
    pub const fn max() -> Self {
        cfg_if::cfg_if! {
            if #[cfg(esp32c2)] {
                Self::_120MHz
            } else if #[cfg(any(esp32c3, esp32c6))] {
                Self::_160MHz
            } else if #[cfg(esp32h2)] {
                Self::_96MHz
            } else {
                Self::_240MHz
            }
        }
    }
}

impl Clock for CpuClock {
    fn frequency(&self) -> Rate {
        Rate::from_mhz(*self as u32)
    }
}

/// XTAL clock speed
#[instability::unstable]
#[derive(Debug, Clone, Copy)]
#[non_exhaustive]
pub enum XtalClock {
    /// 26MHz XTAL clock
    #[cfg(any(esp32, esp32c2))]
    _26M,
    /// 32MHz XTAL clock
    #[cfg(any(esp32c3, esp32h2, esp32s3))]
    _32M,
    /// 40MHz XTAL clock
    #[cfg(not(esp32h2))]
    _40M,
    /// Other XTAL clock
    Other(u32),
}

impl Clock for XtalClock {
    fn frequency(&self) -> Rate {
        match self {
            #[cfg(any(esp32, esp32c2))]
            XtalClock::_26M => Rate::from_mhz(26),
            #[cfg(any(esp32c3, esp32h2, esp32s3))]
            XtalClock::_32M => Rate::from_mhz(32),
            #[cfg(not(esp32h2))]
            XtalClock::_40M => Rate::from_mhz(40),
            XtalClock::Other(mhz) => Rate::from_mhz(*mhz),
        }
    }
}

#[allow(clippy::enum_variant_names, unused)]
#[derive(Debug, Clone, Copy, PartialEq)]
pub(crate) enum PllClock {
    #[cfg(esp32h2)]
    Pll8MHz,
    #[cfg(any(esp32c6, esp32h2))]
    Pll48MHz,
    #[cfg(esp32h2)]
    Pll64MHz,
    #[cfg(esp32c6)]
    Pll80MHz,
    #[cfg(esp32h2)]
    Pll96MHz,
    #[cfg(esp32c6)]
    Pll120MHz,
    #[cfg(esp32c6)]
    Pll160MHz,
    #[cfg(esp32c6)]
    Pll240MHz,
    #[cfg(not(any(esp32c2, esp32c6, esp32h2)))]
    Pll320MHz,
    #[cfg(not(esp32h2))]
    Pll480MHz,
}

impl Clock for PllClock {
    fn frequency(&self) -> Rate {
        match self {
            #[cfg(esp32h2)]
            Self::Pll8MHz => Rate::from_mhz(8),
            #[cfg(any(esp32c6, esp32h2))]
            Self::Pll48MHz => Rate::from_mhz(48),
            #[cfg(esp32h2)]
            Self::Pll64MHz => Rate::from_mhz(64),
            #[cfg(esp32c6)]
            Self::Pll80MHz => Rate::from_mhz(80),
            #[cfg(esp32h2)]
            Self::Pll96MHz => Rate::from_mhz(96),
            #[cfg(esp32c6)]
            Self::Pll120MHz => Rate::from_mhz(120),
            #[cfg(esp32c6)]
            Self::Pll160MHz => Rate::from_mhz(160),
            #[cfg(esp32c6)]
            Self::Pll240MHz => Rate::from_mhz(240),
            #[cfg(not(any(esp32c2, esp32c6, esp32h2)))]
            Self::Pll320MHz => Rate::from_mhz(320),
            #[cfg(not(esp32h2))]
            Self::Pll480MHz => Rate::from_mhz(480),
        }
    }
}

#[allow(unused)]
#[derive(Debug, Clone, Copy)]
pub(crate) enum ApbClock {
    #[cfg(esp32h2)]
    ApbFreq32MHz,
    #[cfg(not(esp32h2))]
    ApbFreq40MHz,
    #[cfg(not(esp32h2))]
    ApbFreq80MHz,
    ApbFreqOther(u32),
}

impl Clock for ApbClock {
    fn frequency(&self) -> Rate {
        match self {
            #[cfg(esp32h2)]
            ApbClock::ApbFreq32MHz => Rate::from_mhz(32),
            #[cfg(not(esp32h2))]
            ApbClock::ApbFreq40MHz => Rate::from_mhz(40),
            #[cfg(not(esp32h2))]
            ApbClock::ApbFreq80MHz => Rate::from_mhz(80),
            ApbClock::ApbFreqOther(mhz) => Rate::from_mhz(*mhz),
        }
    }
}

/// Clock frequencies.
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
#[doc(hidden)]
pub struct Clocks {
    /// CPU clock frequency
    pub cpu_clock: Rate,

    /// APB clock frequency
    pub apb_clock: Rate,

    /// XTAL clock frequency
    pub xtal_clock: Rate,

    /// I2C clock frequency
    #[cfg(esp32)]
    pub i2c_clock: Rate,

    /// PWM clock frequency
    #[cfg(esp32)]
    pub pwm_clock: Rate,

    /// Crypto PWM  clock frequency
    #[cfg(esp32s3)]
    pub crypto_pwm_clock: Rate,

    /// Crypto clock frequency
    #[cfg(any(esp32c6, esp32h2))]
    pub crypto_clock: Rate,

    /// PLL 48M clock frequency (fixed)
    #[cfg(esp32h2)]
    pub pll_48m_clock: Rate,

    /// PLL 96M clock frequency (fixed)
    #[cfg(esp32h2)]
    pub pll_96m_clock: Rate,
}

static mut ACTIVE_CLOCKS: Option<Clocks> = None;

impl Clocks {
    pub(crate) fn init(cpu_clock_speed: CpuClock) {
        critical_section::with(|_| {
            unsafe { ACTIVE_CLOCKS = Some(Self::configure(cpu_clock_speed)) };
        })
    }

    fn try_get<'a>() -> Option<&'a Clocks> {
        unsafe {
            // Safety: ACTIVE_CLOCKS is only set in `init` and never modified after that.
            let clocks = &*core::ptr::addr_of!(ACTIVE_CLOCKS);
            clocks.as_ref()
        }
    }

    /// Get the active clock configuration.
    pub fn get<'a>() -> &'a Clocks {
        unwrap!(Self::try_get())
    }

    /// Returns the xtal frequency.
    ///
    /// This function will run the frequency estimation if called before
    /// [`crate::init()`].
    #[cfg(systimer)]
    #[inline]
    pub(crate) fn xtal_freq() -> Rate {
        if esp_config::esp_config_str!("ESP_HAL_CONFIG_XTAL_FREQUENCY") == "auto" {
            if let Some(clocks) = Self::try_get() {
                return clocks.xtal_clock;
            }
        }

        Self::measure_xtal_frequency().frequency()
    }
}

#[cfg(esp32)]
impl Clocks {
    fn measure_xtal_frequency() -> XtalClock {
        if esp_config::esp_config_str!("ESP_HAL_CONFIG_XTAL_FREQUENCY") == "auto" {
            if RtcClock::estimate_xtal_frequency() > 33 {
                XtalClock::_40M
            } else {
                XtalClock::_26M
            }
        } else {
            const {
                match esp_config::esp_config_str!("ESP_HAL_CONFIG_XTAL_FREQUENCY").as_bytes() {
                    b"auto" => XtalClock::Other(0), // Can't be `unreachable!` due to const eval.
                    b"26" => XtalClock::_26M,
                    b"40" => XtalClock::_40M,
                    other => XtalClock::Other(esp_config::esp_config_int_parse!(u32, other)),
                }
            }
        }
    }

    /// Configure the CPU clock speed.
    pub(crate) fn configure(cpu_clock_speed: CpuClock) -> Self {
        let xtal_freq = Self::measure_xtal_frequency();

        if cpu_clock_speed != CpuClock::default() {
            let pll_freq = match cpu_clock_speed {
                CpuClock::_80MHz => PllClock::Pll320MHz,
                CpuClock::_160MHz => PllClock::Pll320MHz,
                CpuClock::_240MHz => PllClock::Pll480MHz,
            };

            clocks_ll::esp32_rtc_update_to_xtal(xtal_freq, 1);
            clocks_ll::esp32_rtc_bbpll_enable();
            clocks_ll::esp32_rtc_bbpll_configure(xtal_freq, pll_freq);
            clocks_ll::set_cpu_freq(cpu_clock_speed);
        }

        Self {
            cpu_clock: cpu_clock_speed.frequency(),
            apb_clock: Rate::from_mhz(80),
            xtal_clock: Rate::from_mhz(xtal_freq.mhz()),
            i2c_clock: Rate::from_mhz(80),
            // The docs are unclear here. pwm_clock seems to be tied to clocks.apb_clock
            // while simultaneously being fixed at 160 MHz.
            // Testing showed 160 MHz to be correct for current clock configurations.
            pwm_clock: Rate::from_mhz(160),
        }
    }
}

#[cfg(esp32c2)]
impl Clocks {
    fn measure_xtal_frequency() -> XtalClock {
        if esp_config::esp_config_str!("ESP_HAL_CONFIG_XTAL_FREQUENCY") == "auto" {
            if RtcClock::estimate_xtal_frequency() > 33 {
                XtalClock::_40M
            } else {
                XtalClock::_26M
            }
        } else {
            const {
                match esp_config::esp_config_str!("ESP_HAL_CONFIG_XTAL_FREQUENCY").as_bytes() {
                    b"auto" => XtalClock::Other(0), // Can't be `unreachable!` due to const eval.
                    b"26" => XtalClock::_26M,
                    b"40" => XtalClock::_40M,
                    other => XtalClock::Other(esp_config::esp_config_int_parse!(u32, other)),
                }
            }
        }
    }

    /// Configure the CPU clock speed.
    pub(crate) fn configure(cpu_clock_speed: CpuClock) -> Self {
        let xtal_freq = Self::measure_xtal_frequency();

        let apb_freq;
        if cpu_clock_speed != CpuClock::default() {
            let pll_freq = PllClock::Pll480MHz;

            if cpu_clock_speed.mhz() <= xtal_freq.mhz() {
                apb_freq = ApbClock::ApbFreqOther(cpu_clock_speed.mhz());
                clocks_ll::esp32c2_rtc_update_to_xtal(xtal_freq, 1);
                clocks_ll::esp32c2_rtc_apb_freq_update(apb_freq);
            } else {
                apb_freq = ApbClock::ApbFreq40MHz;
                clocks_ll::esp32c2_rtc_bbpll_enable();
                clocks_ll::esp32c2_rtc_bbpll_configure(xtal_freq, pll_freq);
                clocks_ll::esp32c2_rtc_freq_to_pll_mhz(cpu_clock_speed);
                clocks_ll::esp32c2_rtc_apb_freq_update(apb_freq);
            }
        } else {
            apb_freq = ApbClock::ApbFreq40MHz;
        }

        Self {
            cpu_clock: cpu_clock_speed.frequency(),
            apb_clock: apb_freq.frequency(),
            xtal_clock: xtal_freq.frequency(),
        }
    }
}

#[cfg(esp32c3)]
impl Clocks {
    fn measure_xtal_frequency() -> XtalClock {
        XtalClock::_40M
    }

    /// Configure the CPU clock speed.
    pub(crate) fn configure(cpu_clock_speed: CpuClock) -> Self {
        let xtal_freq = Self::measure_xtal_frequency();

        let apb_freq;
        if cpu_clock_speed != CpuClock::default() {
            if cpu_clock_speed.mhz() <= xtal_freq.mhz() {
                apb_freq = ApbClock::ApbFreqOther(cpu_clock_speed.mhz());
                clocks_ll::esp32c3_rtc_update_to_xtal(xtal_freq, 1);
                clocks_ll::esp32c3_rtc_apb_freq_update(apb_freq);
            } else {
                let pll_freq = PllClock::Pll480MHz;
                apb_freq = ApbClock::ApbFreq80MHz;
                clocks_ll::esp32c3_rtc_bbpll_enable();
                clocks_ll::esp32c3_rtc_bbpll_configure(xtal_freq, pll_freq);
                clocks_ll::esp32c3_rtc_freq_to_pll_mhz(cpu_clock_speed);
                clocks_ll::esp32c3_rtc_apb_freq_update(apb_freq);
            }
        } else {
            apb_freq = ApbClock::ApbFreq80MHz;
        }

        Self {
            cpu_clock: cpu_clock_speed.frequency(),
            apb_clock: apb_freq.frequency(),
            xtal_clock: xtal_freq.frequency(),
        }
    }
}

#[cfg(esp32c6)]
impl Clocks {
    fn measure_xtal_frequency() -> XtalClock {
        XtalClock::_40M
    }

    /// Configure the CPU clock speed.
    pub(crate) fn configure(cpu_clock_speed: CpuClock) -> Self {
        let xtal_freq = Self::measure_xtal_frequency();

        let apb_freq;
        if cpu_clock_speed != CpuClock::default() {
            if cpu_clock_speed.mhz() <= xtal_freq.mhz() {
                apb_freq = ApbClock::ApbFreqOther(cpu_clock_speed.mhz());
                clocks_ll::esp32c6_rtc_update_to_xtal(xtal_freq, 1);
                clocks_ll::esp32c6_rtc_apb_freq_update(apb_freq);
            } else {
                let pll_freq = PllClock::Pll480MHz;
                apb_freq = ApbClock::ApbFreq80MHz;
                clocks_ll::esp32c6_rtc_bbpll_enable();
                clocks_ll::esp32c6_rtc_bbpll_configure(xtal_freq, pll_freq);
                clocks_ll::esp32c6_rtc_freq_to_pll_mhz(cpu_clock_speed);
                clocks_ll::esp32c6_rtc_apb_freq_update(apb_freq);
            }
        } else {
            apb_freq = ApbClock::ApbFreq80MHz;
        }

        Self {
            cpu_clock: cpu_clock_speed.frequency(),
            apb_clock: apb_freq.frequency(),
            xtal_clock: xtal_freq.frequency(),
            crypto_clock: Rate::from_mhz(160),
        }
    }
}

#[cfg(esp32h2)]
impl Clocks {
    fn measure_xtal_frequency() -> XtalClock {
        XtalClock::_32M
    }

    /// Configure the CPU clock speed.
    pub(crate) fn configure(cpu_clock_speed: CpuClock) -> Self {
        let xtal_freq = Self::measure_xtal_frequency();

        let apb_freq;
        if cpu_clock_speed != CpuClock::default() {
            if cpu_clock_speed.mhz() <= xtal_freq.mhz() {
                apb_freq = ApbClock::ApbFreqOther(cpu_clock_speed.mhz());
                clocks_ll::esp32h2_rtc_update_to_xtal(xtal_freq, 1);
                clocks_ll::esp32h2_rtc_apb_freq_update(apb_freq);
            } else {
                let pll_freq = PllClock::Pll96MHz;
                apb_freq = ApbClock::ApbFreq32MHz;
                clocks_ll::esp32h2_rtc_bbpll_enable();
                clocks_ll::esp32h2_rtc_bbpll_configure(xtal_freq, pll_freq);
                clocks_ll::esp32h2_rtc_freq_to_pll_mhz(cpu_clock_speed);
                clocks_ll::esp32h2_rtc_apb_freq_update(apb_freq);
            }
        } else {
            apb_freq = ApbClock::ApbFreq32MHz;
        }

        Self {
            cpu_clock: cpu_clock_speed.frequency(),
            apb_clock: apb_freq.frequency(),
            xtal_clock: xtal_freq.frequency(),
            pll_48m_clock: Rate::from_mhz(48),
            crypto_clock: Rate::from_mhz(96),
            pll_96m_clock: Rate::from_mhz(96),
        }
    }
}

#[cfg(esp32s2)]
impl Clocks {
    fn measure_xtal_frequency() -> XtalClock {
        XtalClock::_40M
    }

    /// Configure the CPU clock speed.
    pub(crate) fn configure(cpu_clock_speed: CpuClock) -> Self {
        let xtal_freq = Self::measure_xtal_frequency();

        if cpu_clock_speed != CpuClock::default() {
            clocks_ll::set_cpu_clock(cpu_clock_speed);
        }

        Self {
            cpu_clock: cpu_clock_speed.frequency(),
            apb_clock: Rate::from_mhz(80),
            xtal_clock: xtal_freq.frequency(),
        }
    }
}

#[cfg(esp32s3)]
impl Clocks {
    fn measure_xtal_frequency() -> XtalClock {
        XtalClock::_40M
    }

    /// Configure the CPU clock speed.
    pub(crate) fn configure(cpu_clock_speed: CpuClock) -> Self {
        let xtal_freq = Self::measure_xtal_frequency();

        if cpu_clock_speed != CpuClock::default() {
            clocks_ll::set_cpu_clock(cpu_clock_speed);
        }

        Self {
            cpu_clock: cpu_clock_speed.frequency(),
            apb_clock: Rate::from_mhz(80),
            xtal_clock: xtal_freq.frequency(),
            crypto_pwm_clock: Rate::from_mhz(160),
        }
    }
}

/// Control the radio peripheral clocks
#[cfg(any(bt, ieee802154, wifi))]
#[instability::unstable]
pub struct RadioClockController<'d> {
    _rcc: PeripheralRef<'d, crate::peripherals::RADIO_CLK>,
}

#[cfg(any(bt, ieee802154, wifi))]
impl<'d> RadioClockController<'d> {
    /// Create a new instance of the radio clock controller
    #[instability::unstable]
    pub fn new(rcc: impl Peripheral<P = crate::peripherals::RADIO_CLK> + 'd) -> Self {
        crate::into_ref!(rcc);
        Self { _rcc: rcc }
    }

    /// Enable the PHY clocks
    #[instability::unstable]
    #[cfg(phy)]
    #[inline]
    pub fn enable_phy(&mut self, enable: bool) {
        clocks_ll::enable_phy(enable);
    }

    /// Enable the Bluetooth clocks
    #[instability::unstable]
    #[cfg(bt)]
    #[inline]
    pub fn enable_bt(&mut self, enable: bool) {
        clocks_ll::enable_bt(enable);
    }

    /// Enable the WiFi clocks
    #[instability::unstable]
    #[cfg(wifi)]
    #[inline]
    pub fn enable_wifi(&mut self, enable: bool) {
        clocks_ll::enable_wifi(enable);
    }

    /// Enable the IEEE 802.15.4 peripheral clocks
    #[instability::unstable]
    #[cfg(ieee802154)]
    #[inline]
    pub fn enable_ieee802154(&mut self, enable: bool) {
        clocks_ll::enable_ieee802154(enable);
    }

    /// Reset the MAC
    #[instability::unstable]
    #[inline]
    pub fn reset_mac(&mut self) {
        clocks_ll::reset_mac();
    }

    /// Do any common initial initialization needed
    #[instability::unstable]
    #[inline]
    pub fn init_clocks(&mut self) {
        clocks_ll::init_clocks();
    }

    /// Initialize BLE RTC clocks
    #[instability::unstable]
    #[inline]
    pub fn ble_rtc_clk_init(&mut self) {
        clocks_ll::ble_rtc_clk_init();
    }

    /// Reset the Resolvable Private Address (RPA).
    #[instability::unstable]
    #[inline]
    pub fn reset_rpa(&mut self) {
        clocks_ll::reset_rpa();
    }
}