esp_hal/soc/esp32s2/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
//! # SOC (System-on-Chip) module (ESP32-S2)
//!
//! ## Overview
//!
//! The `SOC` module provides access, functions and structures that are useful
//! for interacting with various system-related peripherals on `ESP32-S2` chip.
//!
//! Also few constants are defined in this module for `ESP32-S2` chip:
//! * I2S_SCLK: 160_000_000 - I2S clock frequency
//! * I2S_DEFAULT_CLK_SRC: 2 - I2S clock source
use core::ptr::addr_of_mut;
use crate::rtc_cntl::SocResetReason;
crate::unstable_module! {
pub mod efuse;
#[cfg(feature = "psram")]
pub mod psram;
pub mod trng;
pub mod ulp_core;
}
pub mod gpio;
pub mod peripherals;
/// The name of the chip ("esp32s2") as `&str`
#[macro_export]
macro_rules! chip {
() => {
"esp32s2"
};
}
/// A link to the Technical Reference Manual (TRM) for the chip.
#[doc(hidden)]
#[macro_export]
macro_rules! trm_link {
() => { "https://www.espressif.com/sites/default/files/documentation/esp32-s2_technical_reference_manual_en.pdf" };
}
pub use chip;
pub(crate) mod constants {
use crate::time::Rate;
/// System clock frequency for the I2S peripheral, in Hertz.
pub const I2S_SCLK: u32 = 160_000_000;
/// Default clock source for the I2S peripheral.
pub const I2S_DEFAULT_CLK_SRC: u32 = 2;
/// Start address of the RMT (Remote Control) peripheral's RAM.
pub const RMT_RAM_START: usize = 0x3f416400;
/// The size (number of pulse codes) of each RMT channel's dedicated RAM.
pub const RMT_CHANNEL_RAM_SIZE: usize = 64;
/// Start address of the system's DRAM (low range).
pub const SOC_DRAM_LOW: usize = 0x3FFB_0000;
/// End address of the system's DRAM (high range).
pub const SOC_DRAM_HIGH: usize = 0x4000_0000;
/// Reference clock tick frequency, set to 1 MHz.
pub const REF_TICK: Rate = Rate::from_mhz(1);
}
/// Function initializes ESP32 specific memories (RTC slow and fast) and
/// then calls original Reset function
///
/// ENTRY point is defined in memory.x
/// *Note: the pre_init function is called in the original reset handler
/// after the initializations done in this function*
#[doc(hidden)]
#[no_mangle]
pub unsafe extern "C" fn ESP32Reset() -> ! {
// These symbols come from `memory.x`
extern "C" {
static mut _rtc_fast_bss_start: u32;
static mut _rtc_fast_bss_end: u32;
static mut _rtc_fast_persistent_start: u32;
static mut _rtc_fast_persistent_end: u32;
static mut _rtc_slow_bss_start: u32;
static mut _rtc_slow_bss_end: u32;
static mut _rtc_slow_persistent_start: u32;
static mut _rtc_slow_persistent_end: u32;
static mut _stack_start_cpu0: u32;
static mut __stack_chk_guard: u32;
}
// set stack pointer to end of memory: no need to retain stack up to this point
xtensa_lx::set_stack_pointer(addr_of_mut!(_stack_start_cpu0));
// copying data from flash to various data segments is done by the bootloader
// initialization to zero needs to be done by the application
// Initialize RTC RAM
xtensa_lx_rt::zero_bss(
addr_of_mut!(_rtc_fast_bss_start),
addr_of_mut!(_rtc_fast_bss_end),
);
xtensa_lx_rt::zero_bss(
addr_of_mut!(_rtc_slow_bss_start),
addr_of_mut!(_rtc_slow_bss_end),
);
if matches!(
crate::system::reset_reason(),
None | Some(SocResetReason::ChipPowerOn)
) {
xtensa_lx_rt::zero_bss(
addr_of_mut!(_rtc_fast_persistent_start),
addr_of_mut!(_rtc_fast_persistent_end),
);
xtensa_lx_rt::zero_bss(
addr_of_mut!(_rtc_slow_persistent_start),
addr_of_mut!(_rtc_slow_persistent_end),
);
}
unsafe {
let stack_chk_guard = core::ptr::addr_of_mut!(__stack_chk_guard);
// we _should_ use a random value but we don't have a good source for random
// numbers here
stack_chk_guard.write_volatile(0xdeadbabe);
}
crate::interrupt::setup_interrupts();
// continue with default reset handler
xtensa_lx_rt::Reset()
}
/// The ESP32 has a first stage bootloader that handles loading program data
/// into the right place therefore we skip loading it again.
#[doc(hidden)]
#[no_mangle]
#[rustfmt::skip]
pub extern "Rust" fn __init_data() -> bool {
false
}
/// Write back a specific range of data in the cache.
#[doc(hidden)]
#[link_section = ".rwtext"]
pub unsafe fn cache_writeback_addr(addr: u32, size: u32) {
extern "C" {
fn Cache_WriteBack_Addr(addr: u32, size: u32);
}
Cache_WriteBack_Addr(addr, size);
}
/// Invalidate a specific range of addresses in the cache.
#[doc(hidden)]
#[link_section = ".rwtext"]
pub unsafe fn cache_invalidate_addr(addr: u32, size: u32) {
extern "C" {
fn Cache_Invalidate_Addr(addr: u32, size: u32);
}
Cache_Invalidate_Addr(addr, size);
}
/// Get the size of a cache line in the DCache.
#[doc(hidden)]
#[link_section = ".rwtext"]
pub unsafe fn cache_get_dcache_line_size() -> u32 {
extern "C" {
fn Cache_Get_DCache_Line_Size() -> u32;
}
Cache_Get_DCache_Line_Size()
}
pub(crate) fn pre_init() {}