esp_hal/timer/
systimer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
//! # System Timer (SYSTIMER)
//!
//! ## Overview
//! The System Timer is a
#![cfg_attr(esp32s2, doc = "64-bit")]
#![cfg_attr(not(esp32s2), doc = "52-bit")]
//! timer which can be used, for example, to generate tick interrupts for an
//! operating system, or simply as a general-purpose timer.
//!
//! ## Configuration
//!
//! The timer consists of two counters, `Unit0` and `Unit1`. The counter values
//! can be monitored by 3 [`Alarm`]s
//!
//! It is recommended to pass the [`Alarm`]s into a high level driver like
//! [`OneShotTimer`](super::OneShotTimer) and
//! [`PeriodicTimer`](super::PeriodicTimer). Using the System timer directly is
//! only possible through the low level [`Timer`](crate::timer::Timer) trait.

use core::fmt::Debug;

use super::{Error, Timer as _};
use crate::{
    asynch::AtomicWaker,
    interrupt::{self, InterruptHandler},
    peripheral::Peripheral,
    peripherals::{Interrupt, SYSTIMER},
    sync::{lock, RawMutex},
    system::{Cpu, Peripheral as PeripheralEnable, PeripheralClockControl},
    time::{Duration, Instant},
};

/// The configuration of a unit.
#[derive(Copy, Clone)]
pub enum UnitConfig {
    /// Unit is not counting.
    Disabled,

    /// Unit is counting unless the Cpu is stalled.
    DisabledIfCpuIsStalled(Cpu),

    /// Unit is counting.
    Enabled,
}

/// System Timer driver.
pub struct SystemTimer {
    /// Alarm 0.
    pub alarm0: Alarm,

    /// Alarm 1.
    pub alarm1: Alarm,

    /// Alarm 2.
    pub alarm2: Alarm,
}

impl SystemTimer {
    cfg_if::cfg_if! {
        if #[cfg(esp32s2)] {
            /// Bitmask to be applied to the raw register value.
            pub const BIT_MASK: u64 = u64::MAX;
            // Bitmask to be applied to the raw period register value.
            const PERIOD_MASK: u64 = 0x1FFF_FFFF;
        } else {
            /// Bitmask to be applied to the raw register value.
            pub const BIT_MASK: u64 = 0xF_FFFF_FFFF_FFFF;
            // Bitmask to be applied to the raw period register value.
            const PERIOD_MASK: u64 = 0x3FF_FFFF;
        }
    }

    /// Returns the tick frequency of the underlying timer unit.
    #[inline]
    pub fn ticks_per_second() -> u64 {
        cfg_if::cfg_if! {
            if #[cfg(esp32s2)] {
                const MULTIPLIER: u32 = 2;
                const DIVIDER: u32 = 1;
            } else if #[cfg(esp32h2)] {
                // The counters and comparators are driven using `XTAL_CLK`.
                // The average clock frequency is fXTAL_CLK/2, which is 16 MHz.
                // The timer counting is incremented by 1/16 μs on each `CNT_CLK` cycle.
                const MULTIPLIER: u32 = 1;
                const DIVIDER: u32 = 2;
            } else {
                // The counters and comparators are driven using `XTAL_CLK`.
                // The average clock frequency is fXTAL_CLK/2.5, which is 16 MHz.
                // The timer counting is incremented by 1/16 μs on each `CNT_CLK` cycle.
                const MULTIPLIER: u32 = 4;
                const DIVIDER: u32 = 10;
            }
        }
        let xtal_freq_mhz = crate::clock::Clocks::xtal_freq().as_hz();
        ((xtal_freq_mhz * MULTIPLIER) / DIVIDER) as u64
    }

    /// Create a new instance.
    pub fn new(_systimer: SYSTIMER) -> Self {
        // Don't reset Systimer as it will break `time::Instant::now`, only enable it
        PeripheralClockControl::enable(PeripheralEnable::Systimer);

        #[cfg(soc_etm)]
        etm::enable_etm();

        Self {
            alarm0: Alarm::new(0),
            alarm1: Alarm::new(1),
            alarm2: Alarm::new(2),
        }
    }

    /// Get the current count of the given unit in the System Timer.
    pub fn unit_value(unit: Unit) -> u64 {
        // This should be safe to access from multiple contexts
        // worst case scenario the second accessor ends up reading
        // an older time stamp

        unit.read_count()
    }

    #[cfg(not(esp32s2))]
    /// Configures when this counter can run.
    /// It can be configured to stall or continue running when CPU stalls
    /// or enters on-chip-debugging mode.
    ///
    /// # Safety
    ///
    /// - Disabling a `Unit` whilst [`Alarm`]s are using it will affect the
    ///   [`Alarm`]s operation.
    /// - Disabling Unit0 will affect [`Instant::now`].
    pub unsafe fn configure_unit(unit: Unit, config: UnitConfig) {
        unit.configure(config)
    }

    /// Set the value of the counter immediately. If the unit is at work,
    /// the counter will continue to count up from the new reloaded value.
    ///
    /// This can be used to load back the sleep time recorded by RTC timer
    /// via software after Light-sleep
    ///
    /// # Safety
    ///
    /// - Modifying a unit's count whilst [`Alarm`]s are using it may cause
    ///   unexpected behaviour
    /// - Any modification of the unit0 count will affect [`Instant::now`]
    pub unsafe fn set_unit_value(unit: Unit, value: u64) {
        unit.set_count(value)
    }
}

/// A
#[cfg_attr(esp32s2, doc = "64-bit")]
#[cfg_attr(not(esp32s2), doc = "52-bit")]
/// counter.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Unit {
    /// Unit 0
    Unit0 = 0,
    #[cfg(not(esp32s2))]
    /// Unit 1
    Unit1 = 1,
}

impl Unit {
    #[inline]
    fn channel(&self) -> u8 {
        *self as _
    }

    #[cfg(not(esp32s2))]
    fn configure(&self, config: UnitConfig) {
        lock(&CONF_LOCK, || {
            SYSTIMER::regs().conf().modify(|_, w| match config {
                UnitConfig::Disabled => match self.channel() {
                    0 => w.timer_unit0_work_en().clear_bit(),
                    1 => w.timer_unit1_work_en().clear_bit(),
                    _ => unreachable!(),
                },
                UnitConfig::DisabledIfCpuIsStalled(cpu) => match self.channel() {
                    0 => {
                        w.timer_unit0_work_en().set_bit();
                        w.timer_unit0_core0_stall_en().bit(cpu == Cpu::ProCpu);
                        w.timer_unit0_core1_stall_en().bit(cpu != Cpu::ProCpu)
                    }
                    1 => {
                        w.timer_unit1_work_en().set_bit();
                        w.timer_unit1_core0_stall_en().bit(cpu == Cpu::ProCpu);
                        w.timer_unit1_core1_stall_en().bit(cpu != Cpu::ProCpu)
                    }
                    _ => unreachable!(),
                },
                UnitConfig::Enabled => match self.channel() {
                    0 => {
                        w.timer_unit0_work_en().set_bit();
                        w.timer_unit0_core0_stall_en().clear_bit();
                        w.timer_unit0_core1_stall_en().clear_bit()
                    }
                    1 => {
                        w.timer_unit1_work_en().set_bit();
                        w.timer_unit1_core0_stall_en().clear_bit();
                        w.timer_unit1_core1_stall_en().clear_bit()
                    }
                    _ => unreachable!(),
                },
            });
        });
    }

    fn set_count(&self, value: u64) {
        let systimer = SYSTIMER::regs();
        #[cfg(not(esp32s2))]
        {
            let unitload = systimer.unitload(self.channel() as _);
            let unit_load = systimer.unit_load(self.channel() as _);

            unitload.hi().write(|w| w.load_hi().set((value << 32) as _));
            unitload
                .lo()
                .write(|w| w.load_lo().set((value & 0xFFFF_FFFF) as _));

            unit_load.write(|w| w.load().set_bit());
        }
        #[cfg(esp32s2)]
        {
            systimer
                .load_hi()
                .write(|w| w.load_hi().set((value << 32) as _));
            systimer
                .load_lo()
                .write(|w| w.load_lo().set((value & 0xFFFF_FFFF) as _));

            systimer.load().write(|w| w.load().set_bit());
        }
    }

    fn read_count(&self) -> u64 {
        // This can be a shared reference as long as this type isn't Sync.

        let channel = self.channel() as usize;
        let systimer = SYSTIMER::regs();

        systimer.unit_op(channel).write(|w| w.update().set_bit());
        while !systimer.unit_op(channel).read().value_valid().bit_is_set() {}

        // Read LO, HI, then LO again, check that LO returns the same value.
        // This accounts for the case when an interrupt may happen between reading
        // HI and LO values (or the other core updates the counter mid-read), and this
        // function may get called from the ISR. In this case, the repeated read
        // will return consistent values.
        let unit_value = systimer.unit_value(channel);
        let mut lo_prev = unit_value.lo().read().bits();
        loop {
            let lo = lo_prev;
            let hi = unit_value.hi().read().bits();
            lo_prev = unit_value.lo().read().bits();

            if lo == lo_prev {
                return ((hi as u64) << 32) | lo as u64;
            }
        }
    }
}

/// An alarm unit
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct Alarm {
    comp: u8,
    unit: Unit,
}

impl Alarm {
    const fn new(comp: u8) -> Self {
        Alarm {
            comp,
            unit: Unit::Unit0,
        }
    }

    /// Returns the comparator's number.
    #[inline]
    fn channel(&self) -> u8 {
        self.comp
    }

    /// Enables/disables the comparator. If enabled, this means
    /// it will generate interrupt based on its configuration.
    fn set_enable(&self, enable: bool) {
        lock(&CONF_LOCK, || {
            #[cfg(not(esp32s2))]
            SYSTIMER::regs().conf().modify(|_, w| match self.channel() {
                0 => w.target0_work_en().bit(enable),
                1 => w.target1_work_en().bit(enable),
                2 => w.target2_work_en().bit(enable),
                _ => unreachable!(),
            });
        });

        // Note: The ESP32-S2 doesn't require a lock because each
        // comparator's enable bit in a different register.
        #[cfg(esp32s2)]
        SYSTIMER::regs()
            .target_conf(self.channel() as usize)
            .modify(|_r, w| w.work_en().bit(enable));
    }

    /// Returns true if the comparator has been enabled. This means
    /// it will generate interrupt based on its configuration.
    fn is_enabled(&self) -> bool {
        #[cfg(not(esp32s2))]
        match self.channel() {
            0 => SYSTIMER::regs().conf().read().target0_work_en().bit(),
            1 => SYSTIMER::regs().conf().read().target1_work_en().bit(),
            2 => SYSTIMER::regs().conf().read().target2_work_en().bit(),
            _ => unreachable!(),
        }

        #[cfg(esp32s2)]
        SYSTIMER::regs()
            .target_conf(self.channel() as usize)
            .read()
            .work_en()
            .bit()
    }

    /// Sets the unit this comparator uses as a reference count.
    #[cfg(not(esp32s2))]
    pub fn set_unit(&self, unit: Unit) {
        SYSTIMER::regs()
            .target_conf(self.channel() as usize)
            .modify(|_, w| w.timer_unit_sel().bit(matches!(unit, Unit::Unit1)));
    }

    /// Set the mode of the comparator to be either target or periodic.
    fn set_mode(&self, mode: ComparatorMode) {
        let is_period_mode = match mode {
            ComparatorMode::Period => true,
            ComparatorMode::Target => false,
        };
        SYSTIMER::regs()
            .target_conf(self.channel() as usize)
            .modify(|_, w| w.period_mode().bit(is_period_mode));
    }

    /// Get the current mode of the comparator, which is either target or
    /// periodic.
    fn mode(&self) -> ComparatorMode {
        if SYSTIMER::regs()
            .target_conf(self.channel() as usize)
            .read()
            .period_mode()
            .bit()
        {
            ComparatorMode::Period
        } else {
            ComparatorMode::Target
        }
    }

    /// Set how often the comparator should generate an interrupt when in
    /// periodic mode.
    fn set_period(&self, value: u32) {
        let systimer = SYSTIMER::regs();
        let tconf = systimer.target_conf(self.channel() as usize);
        unsafe { tconf.modify(|_, w| w.period().bits(value)) };
        #[cfg(not(esp32s2))]
        {
            let comp_load = systimer.comp_load(self.channel() as usize);
            comp_load.write(|w| w.load().set_bit());
        }
    }

    /// Set when the comparator should generate an interrupt in target mode.
    fn set_target(&self, value: u64) {
        let systimer = SYSTIMER::regs();
        let target = systimer.trgt(self.channel() as usize);
        target.hi().write(|w| w.hi().set((value >> 32) as u32));
        target
            .lo()
            .write(|w| w.lo().set((value & 0xFFFF_FFFF) as u32));
        #[cfg(not(esp32s2))]
        {
            let comp_load = systimer.comp_load(self.channel() as usize);
            comp_load.write(|w| w.load().set_bit());
        }
    }

    /// Set the interrupt handler for this comparator.
    fn set_interrupt_handler(&self, handler: InterruptHandler) {
        let interrupt = match self.channel() {
            0 => Interrupt::SYSTIMER_TARGET0,
            1 => Interrupt::SYSTIMER_TARGET1,
            2 => Interrupt::SYSTIMER_TARGET2,
            _ => unreachable!(),
        };

        for core in crate::system::Cpu::other() {
            crate::interrupt::disable(core, interrupt);
        }

        #[cfg(not(esp32s2))]
        unsafe {
            interrupt::bind_interrupt(interrupt, handler.handler());
        }

        #[cfg(esp32s2)]
        {
            // ESP32-S2 Systimer interrupts are edge triggered. Our interrupt
            // handler calls each of the handlers, regardless of which one triggered the
            // interrupt. This mess registers an intermediate handler that
            // checks if an interrupt is active before calling the associated
            // handler functions.

            static mut HANDLERS: [Option<extern "C" fn()>; 3] = [None, None, None];

            #[crate::ram]
            unsafe extern "C" fn _handle_interrupt<const CH: u8>() {
                if SYSTIMER::regs().int_raw().read().target(CH).bit_is_set() {
                    let handler = unsafe { HANDLERS[CH as usize] };
                    if let Some(handler) = handler {
                        handler();
                    }
                }
            }

            unsafe {
                HANDLERS[self.channel() as usize] = Some(handler.handler());
                let handler = match self.channel() {
                    0 => _handle_interrupt::<0>,
                    1 => _handle_interrupt::<1>,
                    2 => _handle_interrupt::<2>,
                    _ => unreachable!(),
                };
                interrupt::bind_interrupt(interrupt, handler);
            }
        }
        unwrap!(interrupt::enable(interrupt, handler.priority()));
    }
}

/// The modes of a comparator.
#[derive(Copy, Clone)]
enum ComparatorMode {
    /// The comparator will generate interrupts periodically.
    Period,

    /// The comparator will generate an interrupt when the unit reaches the
    /// target.
    Target,
}

impl super::Timer for Alarm {
    fn start(&self) {
        self.set_enable(true);
    }

    fn stop(&self) {
        self.set_enable(false);
    }

    fn reset(&self) {
        #[cfg(esp32s2)]
        // Run at XTAL freq, not 80 * XTAL freq:
        SYSTIMER::regs()
            .step()
            .modify(|_, w| unsafe { w.xtal_step().bits(0x1) });

        #[cfg(not(esp32s2))]
        SYSTIMER::regs()
            .conf()
            .modify(|_, w| w.timer_unit0_core0_stall_en().clear_bit());
    }

    fn is_running(&self) -> bool {
        self.is_enabled()
    }

    fn now(&self) -> Instant {
        // This should be safe to access from multiple contexts; worst case
        // scenario the second accessor ends up reading an older time stamp.

        let ticks = self.unit.read_count();

        let us = ticks / (SystemTimer::ticks_per_second() / 1_000_000);

        Instant::from_ticks(us)
    }

    fn load_value(&self, value: Duration) -> Result<(), Error> {
        let mode = self.mode();

        let us = value.as_micros();
        let ticks = us * (SystemTimer::ticks_per_second() / 1_000_000);

        if matches!(mode, ComparatorMode::Period) {
            // Period mode

            // The `SYSTIMER_TARGETx_PERIOD` field is 26-bits wide (or
            // 29-bits on the ESP32-S2), so we must ensure that the provided
            // value is not too wide:
            if (ticks & !SystemTimer::PERIOD_MASK) != 0 {
                return Err(Error::InvalidTimeout);
            }

            self.set_period(ticks as u32);

            // Clear and then set SYSTIMER_TARGETx_PERIOD_MODE to configure COMPx into
            // period mode
            self.set_mode(ComparatorMode::Target);
            self.set_mode(ComparatorMode::Period);
        } else {
            // Target mode

            // The counters/comparators are 52-bits wide (except on ESP32-S2,
            // which is 64-bits), so we must ensure that the provided value
            // is not too wide:
            #[cfg(not(esp32s2))]
            if (ticks & !SystemTimer::BIT_MASK) != 0 {
                return Err(Error::InvalidTimeout);
            }

            let v = self.unit.read_count();
            let t = v + ticks;

            self.set_target(t);
        }

        Ok(())
    }

    fn enable_auto_reload(&self, auto_reload: bool) {
        // If `auto_reload` is true use Period Mode, otherwise use Target Mode:
        let mode = if auto_reload {
            ComparatorMode::Period
        } else {
            ComparatorMode::Target
        };
        self.set_mode(mode)
    }

    fn enable_interrupt(&self, state: bool) {
        lock(&INT_ENA_LOCK, || {
            SYSTIMER::regs()
                .int_ena()
                .modify(|_, w| w.target(self.channel()).bit(state));
        });
    }

    fn clear_interrupt(&self) {
        SYSTIMER::regs()
            .int_clr()
            .write(|w| w.target(self.channel()).clear_bit_by_one());
    }

    fn is_interrupt_set(&self) -> bool {
        SYSTIMER::regs()
            .int_raw()
            .read()
            .target(self.channel())
            .bit_is_set()
    }

    fn async_interrupt_handler(&self) -> InterruptHandler {
        match self.channel() {
            0 => asynch::target0_handler,
            1 => asynch::target1_handler,
            2 => asynch::target2_handler,
            _ => unreachable!(),
        }
    }

    fn peripheral_interrupt(&self) -> Interrupt {
        match self.channel() {
            0 => Interrupt::SYSTIMER_TARGET0,
            1 => Interrupt::SYSTIMER_TARGET1,
            2 => Interrupt::SYSTIMER_TARGET2,
            _ => unreachable!(),
        }
    }

    fn set_interrupt_handler(&self, handler: InterruptHandler) {
        self.set_interrupt_handler(handler)
    }

    fn waker(&self) -> &AtomicWaker {
        asynch::waker(self)
    }
}

impl Peripheral for Alarm {
    type P = Self;

    #[inline]
    unsafe fn clone_unchecked(&self) -> Self::P {
        Alarm {
            comp: self.comp,
            unit: self.unit,
        }
    }
}

impl crate::private::Sealed for Alarm {}

static CONF_LOCK: RawMutex = RawMutex::new();
static INT_ENA_LOCK: RawMutex = RawMutex::new();

// Async functionality of the system timer.
mod asynch {
    use procmacros::handler;

    use super::*;
    use crate::asynch::AtomicWaker;

    const NUM_ALARMS: usize = 3;
    static WAKERS: [AtomicWaker; NUM_ALARMS] = [const { AtomicWaker::new() }; NUM_ALARMS];

    pub(super) fn waker(alarm: &Alarm) -> &AtomicWaker {
        &WAKERS[alarm.channel() as usize]
    }

    #[inline]
    fn handle_alarm(alarm: u8) {
        Alarm {
            comp: alarm,
            unit: Unit::Unit0,
        }
        .enable_interrupt(false);

        WAKERS[alarm as usize].wake();
    }

    #[handler]
    pub(crate) fn target0_handler() {
        handle_alarm(0);
    }

    #[handler]
    pub(crate) fn target1_handler() {
        handle_alarm(1);
    }

    #[handler]
    pub(crate) fn target2_handler() {
        handle_alarm(2);
    }
}

#[cfg(soc_etm)]
pub mod etm {
    //! # Event Task Matrix Function
    //!
    //! ## Overview
    //!
    //! The system timer supports the Event Task Matrix (ETM) function, which
    //! allows the system timer’s ETM events to trigger any peripherals’ ETM
    //! tasks.
    //!
    //!    The system timer can generate the following ETM events:
    //!    - SYSTIMER_EVT_CNT_CMPx: Indicates the alarm pulses generated by
    //!      COMPx
    //! ## Example
    //! ```rust, no_run
    #![doc = crate::before_snippet!()]
    //! # use esp_hal::timer::systimer::{etm::Event, SystemTimer};
    //! # use esp_hal::timer::PeriodicTimer;
    //! # use esp_hal::etm::Etm;
    //! # use esp_hal::gpio::{
    //! #     etm::{Channels, OutputConfig},
    //! #     Level,
    //! #     Pull,
    //! # };
    //! let syst = SystemTimer::new(peripherals.SYSTIMER);
    //! let etm = Etm::new(peripherals.SOC_ETM);
    //! let gpio_ext = Channels::new(peripherals.GPIO_SD);
    //! let alarm0 = syst.alarm0;
    //! let mut led = peripherals.GPIO1;
    //!
    //! let timer_event = Event::new(&alarm0);
    //! let led_task = gpio_ext.channel0_task.toggle(
    //!     &mut led,
    //!     OutputConfig {
    //!         open_drain: false,
    //!         pull: Pull::None,
    //!         initial_state: Level::High,
    //!     },
    //! );
    //!
    //! let _configured_etm_channel = etm.channel0.setup(&timer_event,
    //! &led_task);
    //!
    //! let timer = PeriodicTimer::new(alarm0);
    //! // configure the timer as usual
    //! // when it fires it will toggle the GPIO
    //! # Ok(())
    //! # }
    //! ```

    use super::*;

    /// An ETM controlled SYSTIMER event
    pub struct Event {
        id: u8,
    }

    impl Event {
        /// Creates an ETM event from the given [Alarm]
        pub fn new(alarm: &Alarm) -> Self {
            Self {
                id: 50 + alarm.channel(),
            }
        }
    }

    impl crate::private::Sealed for Event {}

    impl crate::etm::EtmEvent for Event {
        fn id(&self) -> u8 {
            self.id
        }
    }

    pub(super) fn enable_etm() {
        SYSTIMER::regs().conf().modify(|_, w| w.etm_en().set_bit());
    }
}