esp_hal/lcd_cam/cam.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
//! # Camera - Master or Slave Mode
//!
//! ## Overview
//! The camera module is designed to receive parallel video data signals, and
//! its bus supports DVP 8-/16-bit modes in master or slave mode.
//!
//! ## Configuration
//! In master mode, the peripheral provides the master clock to drive the
//! camera, in slave mode it does not. This is configured with the
//! `with_master_clock` method on the camera driver. The driver (due to the
//! peripheral) mandates DMA (Direct Memory Access) for efficient data transfer.
//!
//! ## Examples
//! ## Master Mode
//! Following code shows how to receive some bytes from an 8 bit DVP stream in
//! master mode.
//! ```rust, no_run
#![doc = crate::before_snippet!()]
//! # use esp_hal::lcd_cam::{cam::{Camera, Config, RxEightBits}, LcdCam};
//! # use esp_hal::dma_rx_stream_buffer;
//!
//! # let dma_buf = dma_rx_stream_buffer!(20 * 1000, 1000);
//!
//! let mclk_pin = peripherals.GPIO15;
//! let vsync_pin = peripherals.GPIO6;
//! let href_pin = peripherals.GPIO7;
//! let pclk_pin = peripherals.GPIO13;
//! let data_pins = RxEightBits::new(
//! peripherals.GPIO11,
//! peripherals.GPIO9,
//! peripherals.GPIO8,
//! peripherals.GPIO10,
//! peripherals.GPIO12,
//! peripherals.GPIO18,
//! peripherals.GPIO17,
//! peripherals.GPIO16,
//! );
//!
//! let config = Config::default().with_frequency(Rate::from_mhz(20));
//!
//! let lcd_cam = LcdCam::new(peripherals.LCD_CAM);
//! let mut camera = Camera::new(
//! lcd_cam.cam,
//! peripherals.DMA_CH0,
//! data_pins,
//! config,
//! )?
//! .with_master_clock(mclk_pin) // Remove this for slave mode
//! .with_pixel_clock(pclk_pin)
//! .with_ctrl_pins(vsync_pin, href_pin);
//!
//! let transfer = camera.receive(dma_buf).map_err(|e| e.0)?;
//!
//! # Ok(())
//! # }
//! ```
use core::{
mem::ManuallyDrop,
ops::{Deref, DerefMut},
};
use crate::{
clock::Clocks,
dma::{ChannelRx, DmaError, DmaPeripheral, DmaRxBuffer, PeripheralRxChannel, Rx, RxChannelFor},
gpio::{
interconnect::{PeripheralInput, PeripheralOutput},
InputSignal,
OutputSignal,
Pull,
},
lcd_cam::{calculate_clkm, BitOrder, ByteOrder, ClockError},
pac,
peripheral::{Peripheral, PeripheralRef},
peripherals::LCD_CAM,
system::{self, GenericPeripheralGuard},
time::Rate,
Blocking,
};
/// Generation of GDMA SUC EOF
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum EofMode {
/// Generate GDMA SUC EOF by data byte length
ByteLen,
/// Generate GDMA SUC EOF by the vsync signal
VsyncSignal,
}
/// Vsync Filter Threshold
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum VsyncFilterThreshold {
/// Requires 1 valid VSYNC pulse to trigger synchronization.
One,
/// Requires 2 valid VSYNC pulse to trigger synchronization.
Two,
/// Requires 3 valid VSYNC pulse to trigger synchronization.
Three,
/// Requires 4 valid VSYNC pulse to trigger synchronization.
Four,
/// Requires 5 valid VSYNC pulse to trigger synchronization.
Five,
/// Requires 6 valid VSYNC pulse to trigger synchronization.
Six,
/// Requires 7 valid VSYNC pulse to trigger synchronization.
Seven,
/// Requires 8 valid VSYNC pulse to trigger synchronization.
Eight,
}
/// Vsync Filter Threshold
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum ConfigError {
/// The frequency is out of range.
Clock(ClockError),
}
/// Represents the camera interface.
pub struct Cam<'d> {
/// The LCD_CAM peripheral reference for managing the camera functionality.
pub(crate) lcd_cam: PeripheralRef<'d, LCD_CAM>,
pub(super) _guard: GenericPeripheralGuard<{ system::Peripheral::LcdCam as u8 }>,
}
/// Represents the camera interface with DMA support.
pub struct Camera<'d> {
lcd_cam: PeripheralRef<'d, LCD_CAM>,
rx_channel: ChannelRx<'d, Blocking, PeripheralRxChannel<LCD_CAM>>,
_guard: GenericPeripheralGuard<{ system::Peripheral::LcdCam as u8 }>,
}
impl<'d> Camera<'d> {
/// Creates a new `Camera` instance with DMA support.
pub fn new<P, CH>(
cam: Cam<'d>,
channel: impl Peripheral<P = CH> + 'd,
_pins: P,
config: Config,
) -> Result<Self, ConfigError>
where
CH: RxChannelFor<LCD_CAM>,
P: RxPins,
{
let rx_channel = ChannelRx::new(channel.map(|ch| ch.degrade()));
let mut this = Self {
lcd_cam: cam.lcd_cam,
rx_channel,
_guard: cam._guard,
};
this.regs()
.cam_ctrl1()
.modify(|_, w| w.cam_2byte_en().bit(P::BUS_WIDTH == 2));
this.apply_config(&config)?;
Ok(this)
}
fn regs(&self) -> &pac::lcd_cam::RegisterBlock {
self.lcd_cam.register_block()
}
/// Applies the configuration to the camera interface.
///
/// # Errors
///
/// [`ConfigError::Clock`] will be returned if the frequency passed in
/// `Config` is too low.
pub fn apply_config(&mut self, config: &Config) -> Result<(), ConfigError> {
let clocks = Clocks::get();
let (i, divider) = calculate_clkm(
config.frequency.as_hz() as _,
&[
clocks.xtal_clock.as_hz() as _,
clocks.cpu_clock.as_hz() as _,
clocks.crypto_pwm_clock.as_hz() as _,
],
)
.map_err(ConfigError::Clock)?;
self.regs().cam_ctrl().write(|w| {
// Force enable the clock for all configuration registers.
unsafe {
w.cam_clk_sel().bits((i + 1) as _);
w.cam_clkm_div_num().bits(divider.div_num as _);
w.cam_clkm_div_b().bits(divider.div_b as _);
w.cam_clkm_div_a().bits(divider.div_a as _);
if let Some(threshold) = config.vsync_filter_threshold {
w.cam_vsync_filter_thres().bits(threshold as _);
}
w.cam_byte_order()
.bit(config.byte_order != ByteOrder::default());
w.cam_bit_order()
.bit(config.bit_order != BitOrder::default());
w.cam_vs_eof_en().set_bit();
w.cam_line_int_en().clear_bit();
w.cam_stop_en().clear_bit()
}
});
self.regs().cam_ctrl1().modify(|_, w| unsafe {
w.cam_vh_de_mode_en().set_bit();
w.cam_rec_data_bytelen().bits(0);
w.cam_line_int_num().bits(0);
w.cam_vsync_filter_en()
.bit(config.vsync_filter_threshold.is_some());
w.cam_clk_inv().clear_bit();
w.cam_de_inv().clear_bit();
w.cam_hsync_inv().clear_bit();
w.cam_vsync_inv().clear_bit()
});
self.regs()
.cam_rgb_yuv()
.write(|w| w.cam_conv_bypass().clear_bit());
self.regs()
.cam_ctrl()
.modify(|_, w| w.cam_update().set_bit());
Ok(())
}
}
impl<'d> Camera<'d> {
/// Configures the master clock (MCLK) pin for the camera interface.
pub fn with_master_clock<MCLK: PeripheralOutput>(
self,
mclk: impl Peripheral<P = MCLK> + 'd,
) -> Self {
crate::into_mapped_ref!(mclk);
mclk.set_to_push_pull_output();
OutputSignal::CAM_CLK.connect_to(mclk);
self
}
/// Configures the pixel clock (PCLK) pin for the camera interface.
pub fn with_pixel_clock<PCLK: PeripheralInput>(
self,
pclk: impl Peripheral<P = PCLK> + 'd,
) -> Self {
crate::into_mapped_ref!(pclk);
pclk.init_input(Pull::None);
InputSignal::CAM_PCLK.connect_to(pclk);
self
}
/// Configures the control pins for the camera interface (VSYNC and
/// HENABLE).
pub fn with_ctrl_pins<VSYNC: PeripheralInput, HENABLE: PeripheralInput>(
self,
vsync: impl Peripheral<P = VSYNC> + 'd,
h_enable: impl Peripheral<P = HENABLE> + 'd,
) -> Self {
crate::into_mapped_ref!(vsync, h_enable);
vsync.init_input(Pull::None);
InputSignal::CAM_V_SYNC.connect_to(vsync);
h_enable.init_input(Pull::None);
InputSignal::CAM_H_ENABLE.connect_to(h_enable);
self.regs()
.cam_ctrl1()
.modify(|_, w| w.cam_vh_de_mode_en().clear_bit());
self
}
/// Configures the control pins for the camera interface (VSYNC, HSYNC, and
/// HENABLE) with DE (data enable).
pub fn with_ctrl_pins_and_de<
VSYNC: PeripheralInput,
HSYNC: PeripheralInput,
HENABLE: PeripheralInput,
>(
self,
vsync: impl Peripheral<P = VSYNC> + 'd,
hsync: impl Peripheral<P = HSYNC> + 'd,
h_enable: impl Peripheral<P = HENABLE> + 'd,
) -> Self {
crate::into_mapped_ref!(vsync, hsync, h_enable);
vsync.init_input(Pull::None);
InputSignal::CAM_V_SYNC.connect_to(vsync);
hsync.init_input(Pull::None);
InputSignal::CAM_H_SYNC.connect_to(hsync);
h_enable.init_input(Pull::None);
InputSignal::CAM_H_ENABLE.connect_to(h_enable);
self.regs()
.cam_ctrl1()
.modify(|_, w| w.cam_vh_de_mode_en().set_bit());
self
}
/// Starts a DMA transfer to receive data from the camera peripheral.
pub fn receive<BUF: DmaRxBuffer>(
mut self,
mut buf: BUF,
) -> Result<CameraTransfer<'d, BUF>, (DmaError, Self, BUF)> {
// Reset Camera control unit and Async Rx FIFO
self.regs()
.cam_ctrl1()
.modify(|_, w| w.cam_reset().set_bit());
self.regs()
.cam_ctrl1()
.modify(|_, w| w.cam_reset().clear_bit());
self.regs()
.cam_ctrl1()
.modify(|_, w| w.cam_afifo_reset().set_bit());
self.regs()
.cam_ctrl1()
.modify(|_, w| w.cam_afifo_reset().clear_bit());
// Start DMA to receive incoming transfer.
let result = unsafe {
self.rx_channel
.prepare_transfer(DmaPeripheral::LcdCam, &mut buf)
.and_then(|_| self.rx_channel.start_transfer())
};
if let Err(e) = result {
return Err((e, self, buf));
}
// Start the Camera unit to listen for incoming DVP stream.
self.regs().cam_ctrl().modify(|_, w| {
// Automatically stops the camera unit once the GDMA Rx FIFO is full.
w.cam_stop_en().set_bit();
w.cam_update().set_bit()
});
self.regs()
.cam_ctrl1()
.modify(|_, w| w.cam_start().set_bit());
Ok(CameraTransfer {
camera: ManuallyDrop::new(self),
buffer_view: ManuallyDrop::new(buf.into_view()),
})
}
}
/// Represents an ongoing (or potentially stopped) transfer from the Camera to a
/// DMA buffer.
pub struct CameraTransfer<'d, BUF: DmaRxBuffer> {
camera: ManuallyDrop<Camera<'d>>,
buffer_view: ManuallyDrop<BUF::View>,
}
impl<'d, BUF: DmaRxBuffer> CameraTransfer<'d, BUF> {
/// Returns true when [Self::wait] will not block.
pub fn is_done(&self) -> bool {
// This peripheral doesn't really "complete". As long the camera (or anything
// pretending to be :D) sends data, it will receive it and pass it to the DMA.
// This implementation of is_done is an opinionated one. When the transfer is
// started, the CAM_STOP_EN bit is set, which tells the LCD_CAM to stop
// itself when the DMA stops emptying its async RX FIFO. This will
// typically be because the DMA ran out descriptors but there could be other
// reasons as well.
// In the future, a user of esp_hal may not want this behaviour, which would be
// a reasonable ask. At which point is_done and wait would go away, and
// the driver will stop pretending that this peripheral has some kind of
// finish line.
// For now, most people probably want this behaviour, so it shall be kept for
// the sake of familiarity and similarity with other drivers.
self.camera
.regs()
.cam_ctrl1()
.read()
.cam_start()
.bit_is_clear()
}
/// Stops this transfer on the spot and returns the peripheral and buffer.
pub fn stop(mut self) -> (Camera<'d>, BUF) {
self.stop_peripherals();
let (camera, view) = self.release();
(camera, BUF::from_view(view))
}
/// Waits for the transfer to stop and returns the peripheral and buffer.
///
/// Note: The camera doesn't really "finish" its transfer, so what you're
/// really waiting for here is a DMA Error. You typically just want to
/// call [Self::stop] once you have the data you need.
pub fn wait(mut self) -> (Result<(), DmaError>, Camera<'d>, BUF) {
while !self.is_done() {}
// Stop the DMA as it doesn't know that the camera has stopped.
self.camera.rx_channel.stop_transfer();
// Note: There is no "done" interrupt to clear.
let (camera, view) = self.release();
let result = if camera.rx_channel.has_error() {
Err(DmaError::DescriptorError)
} else {
Ok(())
};
(result, camera, BUF::from_view(view))
}
fn release(mut self) -> (Camera<'d>, BUF::View) {
// SAFETY: Since forget is called on self, we know that self.camera and
// self.buffer_view won't be touched again.
let result = unsafe {
let camera = ManuallyDrop::take(&mut self.camera);
let view = ManuallyDrop::take(&mut self.buffer_view);
(camera, view)
};
core::mem::forget(self);
result
}
fn stop_peripherals(&mut self) {
// Stop the LCD_CAM peripheral.
self.camera
.regs()
.cam_ctrl1()
.modify(|_, w| w.cam_start().clear_bit());
// Stop the DMA
self.camera.rx_channel.stop_transfer();
}
}
impl<BUF: DmaRxBuffer> Deref for CameraTransfer<'_, BUF> {
type Target = BUF::View;
fn deref(&self) -> &Self::Target {
&self.buffer_view
}
}
impl<BUF: DmaRxBuffer> DerefMut for CameraTransfer<'_, BUF> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.buffer_view
}
}
impl<BUF: DmaRxBuffer> Drop for CameraTransfer<'_, BUF> {
fn drop(&mut self) {
self.stop_peripherals();
// SAFETY: This is Drop, we know that self.camera and self.buffer_view
// won't be touched again.
unsafe {
ManuallyDrop::drop(&mut self.camera);
ManuallyDrop::drop(&mut self.buffer_view);
}
}
}
/// Represents an 8-bit wide camera data bus.
/// Is used to configure the camera interface to receive 8-bit data.
pub struct RxEightBits {
_pins: (),
}
impl RxEightBits {
#[allow(clippy::too_many_arguments)]
/// Creates a new instance of `RxEightBits`, configuring the specified pins
/// as the 8-bit data bus.
pub fn new<'d>(
pin_0: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_1: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_2: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_3: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_4: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_5: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_6: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_7: impl Peripheral<P = impl PeripheralInput> + 'd,
) -> Self {
crate::into_mapped_ref!(pin_0);
crate::into_mapped_ref!(pin_1);
crate::into_mapped_ref!(pin_2);
crate::into_mapped_ref!(pin_3);
crate::into_mapped_ref!(pin_4);
crate::into_mapped_ref!(pin_5);
crate::into_mapped_ref!(pin_6);
crate::into_mapped_ref!(pin_7);
let pairs = [
(pin_0, InputSignal::CAM_DATA_0),
(pin_1, InputSignal::CAM_DATA_1),
(pin_2, InputSignal::CAM_DATA_2),
(pin_3, InputSignal::CAM_DATA_3),
(pin_4, InputSignal::CAM_DATA_4),
(pin_5, InputSignal::CAM_DATA_5),
(pin_6, InputSignal::CAM_DATA_6),
(pin_7, InputSignal::CAM_DATA_7),
];
for (pin, signal) in pairs.into_iter() {
pin.init_input(Pull::None);
signal.connect_to(pin);
}
Self { _pins: () }
}
}
impl RxPins for RxEightBits {
const BUS_WIDTH: usize = 1;
}
/// Represents a 16-bit wide camera data bus.
/// Is used to configure the camera interface to receive 16-bit data.
pub struct RxSixteenBits {
_pins: (),
}
impl RxSixteenBits {
#[allow(clippy::too_many_arguments)]
/// Creates a new instance of `RxSixteenBits`, configuring the specified
/// pins as the 16-bit data bus.
pub fn new<'d>(
pin_0: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_1: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_2: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_3: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_4: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_5: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_6: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_7: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_8: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_9: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_10: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_11: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_12: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_13: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_14: impl Peripheral<P = impl PeripheralInput> + 'd,
pin_15: impl Peripheral<P = impl PeripheralInput> + 'd,
) -> Self {
crate::into_mapped_ref!(pin_0);
crate::into_mapped_ref!(pin_1);
crate::into_mapped_ref!(pin_2);
crate::into_mapped_ref!(pin_3);
crate::into_mapped_ref!(pin_4);
crate::into_mapped_ref!(pin_5);
crate::into_mapped_ref!(pin_6);
crate::into_mapped_ref!(pin_7);
crate::into_mapped_ref!(pin_8);
crate::into_mapped_ref!(pin_9);
crate::into_mapped_ref!(pin_10);
crate::into_mapped_ref!(pin_11);
crate::into_mapped_ref!(pin_12);
crate::into_mapped_ref!(pin_13);
crate::into_mapped_ref!(pin_14);
crate::into_mapped_ref!(pin_15);
let pairs = [
(pin_0, InputSignal::CAM_DATA_0),
(pin_1, InputSignal::CAM_DATA_1),
(pin_2, InputSignal::CAM_DATA_2),
(pin_3, InputSignal::CAM_DATA_3),
(pin_4, InputSignal::CAM_DATA_4),
(pin_5, InputSignal::CAM_DATA_5),
(pin_6, InputSignal::CAM_DATA_6),
(pin_7, InputSignal::CAM_DATA_7),
(pin_8, InputSignal::CAM_DATA_8),
(pin_9, InputSignal::CAM_DATA_9),
(pin_10, InputSignal::CAM_DATA_10),
(pin_11, InputSignal::CAM_DATA_11),
(pin_12, InputSignal::CAM_DATA_12),
(pin_13, InputSignal::CAM_DATA_13),
(pin_14, InputSignal::CAM_DATA_14),
(pin_15, InputSignal::CAM_DATA_15),
];
for (pin, signal) in pairs.into_iter() {
pin.init_input(Pull::None);
signal.connect_to(pin);
}
Self { _pins: () }
}
}
impl RxPins for RxSixteenBits {
const BUS_WIDTH: usize = 2;
}
#[doc(hidden)]
pub trait RxPins {
const BUS_WIDTH: usize;
}
#[derive(Debug, Clone, Copy, PartialEq, procmacros::BuilderLite)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Configuration settings for the Camera interface.
pub struct Config {
/// The pixel clock frequency for the camera interface.
frequency: Rate,
/// The byte order for the camera data.
byte_order: ByteOrder,
/// The bit order for the camera data.
bit_order: BitOrder,
/// The Vsync filter threshold.
vsync_filter_threshold: Option<VsyncFilterThreshold>,
}
impl Default for Config {
fn default() -> Self {
Self {
frequency: Rate::from_mhz(20),
byte_order: Default::default(),
bit_order: Default::default(),
vsync_filter_threshold: None,
}
}
}