esp_hal/lcd_cam/
cam.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
//! # Camera - Master or Slave Mode
//!
//! ## Overview
//! The camera module is designed to receive parallel video data signals, and
//! its bus supports DVP 8-/16-bit modes in master or slave mode.
//!
//! ## Configuration
//! In master mode, the peripheral provides the master clock to drive the
//! camera, in slave mode it does not. This is configured with the
//! `with_master_clock` method on the camera driver. The driver (due to the
//! peripheral) mandates DMA (Direct Memory Access) for efficient data transfer.
//!
//! ## Examples
//! ## Master Mode
//! Following code shows how to receive some bytes from an 8 bit DVP stream in
//! master mode.
//! ```rust, no_run
#![doc = crate::before_snippet!()]
//! # use esp_hal::lcd_cam::{cam::{Camera, Config, RxEightBits}, LcdCam};
//! # use esp_hal::dma_rx_stream_buffer;
//!
//! # let dma_buf = dma_rx_stream_buffer!(20 * 1000, 1000);
//!
//! let mclk_pin = peripherals.GPIO15;
//! let vsync_pin = peripherals.GPIO6;
//! let href_pin = peripherals.GPIO7;
//! let pclk_pin = peripherals.GPIO13;
//! let data_pins = RxEightBits::new(
//!     peripherals.GPIO11,
//!     peripherals.GPIO9,
//!     peripherals.GPIO8,
//!     peripherals.GPIO10,
//!     peripherals.GPIO12,
//!     peripherals.GPIO18,
//!     peripherals.GPIO17,
//!     peripherals.GPIO16,
//! );
//!
//! let config = Config::default().with_frequency(Rate::from_mhz(20));
//!
//! let lcd_cam = LcdCam::new(peripherals.LCD_CAM);
//! let mut camera = Camera::new(
//!     lcd_cam.cam,
//!     peripherals.DMA_CH0,
//!     data_pins,
//!     config,
//! )?
//! .with_master_clock(mclk_pin) // Remove this for slave mode
//! .with_pixel_clock(pclk_pin)
//! .with_ctrl_pins(vsync_pin, href_pin);
//!
//! let transfer = camera.receive(dma_buf).map_err(|e| e.0)?;
//!
//! # Ok(())
//! # }
//! ```

use core::{
    mem::ManuallyDrop,
    ops::{Deref, DerefMut},
};

use crate::{
    clock::Clocks,
    dma::{ChannelRx, DmaError, DmaPeripheral, DmaRxBuffer, PeripheralRxChannel, Rx, RxChannelFor},
    gpio::{
        interconnect::{PeripheralInput, PeripheralOutput},
        InputSignal,
        OutputSignal,
        Pull,
    },
    lcd_cam::{calculate_clkm, BitOrder, ByteOrder, ClockError},
    pac,
    peripheral::{Peripheral, PeripheralRef},
    peripherals::LCD_CAM,
    system::{self, GenericPeripheralGuard},
    time::Rate,
    Blocking,
};

/// Generation of GDMA SUC EOF
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum EofMode {
    /// Generate GDMA SUC EOF by data byte length
    ByteLen,
    /// Generate GDMA SUC EOF by the vsync signal
    VsyncSignal,
}

/// Vsync Filter Threshold
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum VsyncFilterThreshold {
    /// Requires 1 valid VSYNC pulse to trigger synchronization.
    One,
    /// Requires 2 valid VSYNC pulse to trigger synchronization.
    Two,
    /// Requires 3 valid VSYNC pulse to trigger synchronization.
    Three,
    /// Requires 4 valid VSYNC pulse to trigger synchronization.
    Four,
    /// Requires 5 valid VSYNC pulse to trigger synchronization.
    Five,
    /// Requires 6 valid VSYNC pulse to trigger synchronization.
    Six,
    /// Requires 7 valid VSYNC pulse to trigger synchronization.
    Seven,
    /// Requires 8 valid VSYNC pulse to trigger synchronization.
    Eight,
}

/// Vsync Filter Threshold
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum ConfigError {
    /// The frequency is out of range.
    Clock(ClockError),
}

/// Represents the camera interface.
pub struct Cam<'d> {
    /// The LCD_CAM peripheral reference for managing the camera functionality.
    pub(crate) lcd_cam: PeripheralRef<'d, LCD_CAM>,
    pub(super) _guard: GenericPeripheralGuard<{ system::Peripheral::LcdCam as u8 }>,
}

/// Represents the camera interface with DMA support.
pub struct Camera<'d> {
    lcd_cam: PeripheralRef<'d, LCD_CAM>,
    rx_channel: ChannelRx<'d, Blocking, PeripheralRxChannel<LCD_CAM>>,
    _guard: GenericPeripheralGuard<{ system::Peripheral::LcdCam as u8 }>,
}

impl<'d> Camera<'d> {
    /// Creates a new `Camera` instance with DMA support.
    pub fn new<P, CH>(
        cam: Cam<'d>,
        channel: impl Peripheral<P = CH> + 'd,
        _pins: P,
        config: Config,
    ) -> Result<Self, ConfigError>
    where
        CH: RxChannelFor<LCD_CAM>,
        P: RxPins,
    {
        let rx_channel = ChannelRx::new(channel.map(|ch| ch.degrade()));

        let mut this = Self {
            lcd_cam: cam.lcd_cam,
            rx_channel,
            _guard: cam._guard,
        };

        this.regs()
            .cam_ctrl1()
            .modify(|_, w| w.cam_2byte_en().bit(P::BUS_WIDTH == 2));

        this.apply_config(&config)?;

        Ok(this)
    }

    fn regs(&self) -> &pac::lcd_cam::RegisterBlock {
        self.lcd_cam.register_block()
    }

    /// Applies the configuration to the camera interface.
    ///
    /// # Errors
    ///
    /// [`ConfigError::Clock`] will be returned if the frequency passed in
    /// `Config` is too low.
    pub fn apply_config(&mut self, config: &Config) -> Result<(), ConfigError> {
        let clocks = Clocks::get();
        let (i, divider) = calculate_clkm(
            config.frequency.as_hz() as _,
            &[
                clocks.xtal_clock.as_hz() as _,
                clocks.cpu_clock.as_hz() as _,
                clocks.crypto_pwm_clock.as_hz() as _,
            ],
        )
        .map_err(ConfigError::Clock)?;

        self.regs().cam_ctrl().write(|w| {
            // Force enable the clock for all configuration registers.
            unsafe {
                w.cam_clk_sel().bits((i + 1) as _);
                w.cam_clkm_div_num().bits(divider.div_num as _);
                w.cam_clkm_div_b().bits(divider.div_b as _);
                w.cam_clkm_div_a().bits(divider.div_a as _);
                if let Some(threshold) = config.vsync_filter_threshold {
                    w.cam_vsync_filter_thres().bits(threshold as _);
                }
                w.cam_byte_order()
                    .bit(config.byte_order != ByteOrder::default());
                w.cam_bit_order()
                    .bit(config.bit_order != BitOrder::default());
                w.cam_vs_eof_en().set_bit();
                w.cam_line_int_en().clear_bit();
                w.cam_stop_en().clear_bit()
            }
        });
        self.regs().cam_ctrl1().modify(|_, w| unsafe {
            w.cam_vh_de_mode_en().set_bit();
            w.cam_rec_data_bytelen().bits(0);
            w.cam_line_int_num().bits(0);
            w.cam_vsync_filter_en()
                .bit(config.vsync_filter_threshold.is_some());
            w.cam_clk_inv().clear_bit();
            w.cam_de_inv().clear_bit();
            w.cam_hsync_inv().clear_bit();
            w.cam_vsync_inv().clear_bit()
        });

        self.regs()
            .cam_rgb_yuv()
            .write(|w| w.cam_conv_bypass().clear_bit());

        self.regs()
            .cam_ctrl()
            .modify(|_, w| w.cam_update().set_bit());

        Ok(())
    }
}

impl<'d> Camera<'d> {
    /// Configures the master clock (MCLK) pin for the camera interface.
    pub fn with_master_clock<MCLK: PeripheralOutput>(
        self,
        mclk: impl Peripheral<P = MCLK> + 'd,
    ) -> Self {
        crate::into_mapped_ref!(mclk);

        mclk.set_to_push_pull_output();
        OutputSignal::CAM_CLK.connect_to(mclk);

        self
    }

    /// Configures the pixel clock (PCLK) pin for the camera interface.
    pub fn with_pixel_clock<PCLK: PeripheralInput>(
        self,
        pclk: impl Peripheral<P = PCLK> + 'd,
    ) -> Self {
        crate::into_mapped_ref!(pclk);

        pclk.init_input(Pull::None);
        InputSignal::CAM_PCLK.connect_to(pclk);

        self
    }

    /// Configures the control pins for the camera interface (VSYNC and
    /// HENABLE).
    pub fn with_ctrl_pins<VSYNC: PeripheralInput, HENABLE: PeripheralInput>(
        self,
        vsync: impl Peripheral<P = VSYNC> + 'd,
        h_enable: impl Peripheral<P = HENABLE> + 'd,
    ) -> Self {
        crate::into_mapped_ref!(vsync, h_enable);

        vsync.init_input(Pull::None);
        InputSignal::CAM_V_SYNC.connect_to(vsync);
        h_enable.init_input(Pull::None);
        InputSignal::CAM_H_ENABLE.connect_to(h_enable);

        self.regs()
            .cam_ctrl1()
            .modify(|_, w| w.cam_vh_de_mode_en().clear_bit());

        self
    }

    /// Configures the control pins for the camera interface (VSYNC, HSYNC, and
    /// HENABLE) with DE (data enable).
    pub fn with_ctrl_pins_and_de<
        VSYNC: PeripheralInput,
        HSYNC: PeripheralInput,
        HENABLE: PeripheralInput,
    >(
        self,
        vsync: impl Peripheral<P = VSYNC> + 'd,
        hsync: impl Peripheral<P = HSYNC> + 'd,
        h_enable: impl Peripheral<P = HENABLE> + 'd,
    ) -> Self {
        crate::into_mapped_ref!(vsync, hsync, h_enable);

        vsync.init_input(Pull::None);
        InputSignal::CAM_V_SYNC.connect_to(vsync);
        hsync.init_input(Pull::None);
        InputSignal::CAM_H_SYNC.connect_to(hsync);
        h_enable.init_input(Pull::None);
        InputSignal::CAM_H_ENABLE.connect_to(h_enable);

        self.regs()
            .cam_ctrl1()
            .modify(|_, w| w.cam_vh_de_mode_en().set_bit());

        self
    }

    /// Starts a DMA transfer to receive data from the camera peripheral.
    pub fn receive<BUF: DmaRxBuffer>(
        mut self,
        mut buf: BUF,
    ) -> Result<CameraTransfer<'d, BUF>, (DmaError, Self, BUF)> {
        // Reset Camera control unit and Async Rx FIFO
        self.regs()
            .cam_ctrl1()
            .modify(|_, w| w.cam_reset().set_bit());
        self.regs()
            .cam_ctrl1()
            .modify(|_, w| w.cam_reset().clear_bit());
        self.regs()
            .cam_ctrl1()
            .modify(|_, w| w.cam_afifo_reset().set_bit());
        self.regs()
            .cam_ctrl1()
            .modify(|_, w| w.cam_afifo_reset().clear_bit());

        // Start DMA to receive incoming transfer.
        let result = unsafe {
            self.rx_channel
                .prepare_transfer(DmaPeripheral::LcdCam, &mut buf)
                .and_then(|_| self.rx_channel.start_transfer())
        };

        if let Err(e) = result {
            return Err((e, self, buf));
        }

        // Start the Camera unit to listen for incoming DVP stream.
        self.regs().cam_ctrl().modify(|_, w| {
            // Automatically stops the camera unit once the GDMA Rx FIFO is full.
            w.cam_stop_en().set_bit();

            w.cam_update().set_bit()
        });
        self.regs()
            .cam_ctrl1()
            .modify(|_, w| w.cam_start().set_bit());

        Ok(CameraTransfer {
            camera: ManuallyDrop::new(self),
            buffer_view: ManuallyDrop::new(buf.into_view()),
        })
    }
}

/// Represents an ongoing (or potentially stopped) transfer from the Camera to a
/// DMA buffer.
pub struct CameraTransfer<'d, BUF: DmaRxBuffer> {
    camera: ManuallyDrop<Camera<'d>>,
    buffer_view: ManuallyDrop<BUF::View>,
}

impl<'d, BUF: DmaRxBuffer> CameraTransfer<'d, BUF> {
    /// Returns true when [Self::wait] will not block.
    pub fn is_done(&self) -> bool {
        // This peripheral doesn't really "complete". As long the camera (or anything
        // pretending to be :D) sends data, it will receive it and pass it to the DMA.
        // This implementation of is_done is an opinionated one. When the transfer is
        // started, the CAM_STOP_EN bit is set, which tells the LCD_CAM to stop
        // itself when the DMA stops emptying its async RX FIFO. This will
        // typically be because the DMA ran out descriptors but there could be other
        // reasons as well.

        // In the future, a user of esp_hal may not want this behaviour, which would be
        // a reasonable ask. At which point is_done and wait would go away, and
        // the driver will stop pretending that this peripheral has some kind of
        // finish line.

        // For now, most people probably want this behaviour, so it shall be kept for
        // the sake of familiarity and similarity with other drivers.

        self.camera
            .regs()
            .cam_ctrl1()
            .read()
            .cam_start()
            .bit_is_clear()
    }

    /// Stops this transfer on the spot and returns the peripheral and buffer.
    pub fn stop(mut self) -> (Camera<'d>, BUF) {
        self.stop_peripherals();
        let (camera, view) = self.release();
        (camera, BUF::from_view(view))
    }

    /// Waits for the transfer to stop and returns the peripheral and buffer.
    ///
    /// Note: The camera doesn't really "finish" its transfer, so what you're
    /// really waiting for here is a DMA Error. You typically just want to
    /// call [Self::stop] once you have the data you need.
    pub fn wait(mut self) -> (Result<(), DmaError>, Camera<'d>, BUF) {
        while !self.is_done() {}

        // Stop the DMA as it doesn't know that the camera has stopped.
        self.camera.rx_channel.stop_transfer();

        // Note: There is no "done" interrupt to clear.

        let (camera, view) = self.release();

        let result = if camera.rx_channel.has_error() {
            Err(DmaError::DescriptorError)
        } else {
            Ok(())
        };

        (result, camera, BUF::from_view(view))
    }

    fn release(mut self) -> (Camera<'d>, BUF::View) {
        // SAFETY: Since forget is called on self, we know that self.camera and
        // self.buffer_view won't be touched again.
        let result = unsafe {
            let camera = ManuallyDrop::take(&mut self.camera);
            let view = ManuallyDrop::take(&mut self.buffer_view);
            (camera, view)
        };
        core::mem::forget(self);
        result
    }

    fn stop_peripherals(&mut self) {
        // Stop the LCD_CAM peripheral.
        self.camera
            .regs()
            .cam_ctrl1()
            .modify(|_, w| w.cam_start().clear_bit());

        // Stop the DMA
        self.camera.rx_channel.stop_transfer();
    }
}

impl<BUF: DmaRxBuffer> Deref for CameraTransfer<'_, BUF> {
    type Target = BUF::View;

    fn deref(&self) -> &Self::Target {
        &self.buffer_view
    }
}

impl<BUF: DmaRxBuffer> DerefMut for CameraTransfer<'_, BUF> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.buffer_view
    }
}

impl<BUF: DmaRxBuffer> Drop for CameraTransfer<'_, BUF> {
    fn drop(&mut self) {
        self.stop_peripherals();

        // SAFETY: This is Drop, we know that self.camera and self.buffer_view
        // won't be touched again.
        unsafe {
            ManuallyDrop::drop(&mut self.camera);
            ManuallyDrop::drop(&mut self.buffer_view);
        }
    }
}

/// Represents an 8-bit wide camera data bus.
/// Is used to configure the camera interface to receive 8-bit data.
pub struct RxEightBits {
    _pins: (),
}

impl RxEightBits {
    #[allow(clippy::too_many_arguments)]
    /// Creates a new instance of `RxEightBits`, configuring the specified pins
    /// as the 8-bit data bus.
    pub fn new<'d>(
        pin_0: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_1: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_2: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_3: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_4: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_5: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_6: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_7: impl Peripheral<P = impl PeripheralInput> + 'd,
    ) -> Self {
        crate::into_mapped_ref!(pin_0);
        crate::into_mapped_ref!(pin_1);
        crate::into_mapped_ref!(pin_2);
        crate::into_mapped_ref!(pin_3);
        crate::into_mapped_ref!(pin_4);
        crate::into_mapped_ref!(pin_5);
        crate::into_mapped_ref!(pin_6);
        crate::into_mapped_ref!(pin_7);

        let pairs = [
            (pin_0, InputSignal::CAM_DATA_0),
            (pin_1, InputSignal::CAM_DATA_1),
            (pin_2, InputSignal::CAM_DATA_2),
            (pin_3, InputSignal::CAM_DATA_3),
            (pin_4, InputSignal::CAM_DATA_4),
            (pin_5, InputSignal::CAM_DATA_5),
            (pin_6, InputSignal::CAM_DATA_6),
            (pin_7, InputSignal::CAM_DATA_7),
        ];

        for (pin, signal) in pairs.into_iter() {
            pin.init_input(Pull::None);
            signal.connect_to(pin);
        }

        Self { _pins: () }
    }
}

impl RxPins for RxEightBits {
    const BUS_WIDTH: usize = 1;
}

/// Represents a 16-bit wide camera data bus.
/// Is used to configure the camera interface to receive 16-bit data.
pub struct RxSixteenBits {
    _pins: (),
}

impl RxSixteenBits {
    #[allow(clippy::too_many_arguments)]
    /// Creates a new instance of `RxSixteenBits`, configuring the specified
    /// pins as the 16-bit data bus.
    pub fn new<'d>(
        pin_0: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_1: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_2: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_3: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_4: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_5: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_6: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_7: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_8: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_9: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_10: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_11: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_12: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_13: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_14: impl Peripheral<P = impl PeripheralInput> + 'd,
        pin_15: impl Peripheral<P = impl PeripheralInput> + 'd,
    ) -> Self {
        crate::into_mapped_ref!(pin_0);
        crate::into_mapped_ref!(pin_1);
        crate::into_mapped_ref!(pin_2);
        crate::into_mapped_ref!(pin_3);
        crate::into_mapped_ref!(pin_4);
        crate::into_mapped_ref!(pin_5);
        crate::into_mapped_ref!(pin_6);
        crate::into_mapped_ref!(pin_7);
        crate::into_mapped_ref!(pin_8);
        crate::into_mapped_ref!(pin_9);
        crate::into_mapped_ref!(pin_10);
        crate::into_mapped_ref!(pin_11);
        crate::into_mapped_ref!(pin_12);
        crate::into_mapped_ref!(pin_13);
        crate::into_mapped_ref!(pin_14);
        crate::into_mapped_ref!(pin_15);

        let pairs = [
            (pin_0, InputSignal::CAM_DATA_0),
            (pin_1, InputSignal::CAM_DATA_1),
            (pin_2, InputSignal::CAM_DATA_2),
            (pin_3, InputSignal::CAM_DATA_3),
            (pin_4, InputSignal::CAM_DATA_4),
            (pin_5, InputSignal::CAM_DATA_5),
            (pin_6, InputSignal::CAM_DATA_6),
            (pin_7, InputSignal::CAM_DATA_7),
            (pin_8, InputSignal::CAM_DATA_8),
            (pin_9, InputSignal::CAM_DATA_9),
            (pin_10, InputSignal::CAM_DATA_10),
            (pin_11, InputSignal::CAM_DATA_11),
            (pin_12, InputSignal::CAM_DATA_12),
            (pin_13, InputSignal::CAM_DATA_13),
            (pin_14, InputSignal::CAM_DATA_14),
            (pin_15, InputSignal::CAM_DATA_15),
        ];

        for (pin, signal) in pairs.into_iter() {
            pin.init_input(Pull::None);
            signal.connect_to(pin);
        }

        Self { _pins: () }
    }
}

impl RxPins for RxSixteenBits {
    const BUS_WIDTH: usize = 2;
}

#[doc(hidden)]
pub trait RxPins {
    const BUS_WIDTH: usize;
}

#[derive(Debug, Clone, Copy, PartialEq, procmacros::BuilderLite)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Configuration settings for the Camera interface.
pub struct Config {
    /// The pixel clock frequency for the camera interface.
    frequency: Rate,

    /// The byte order for the camera data.
    byte_order: ByteOrder,

    /// The bit order for the camera data.
    bit_order: BitOrder,

    /// The Vsync filter threshold.
    vsync_filter_threshold: Option<VsyncFilterThreshold>,
}

impl Default for Config {
    fn default() -> Self {
        Self {
            frequency: Rate::from_mhz(20),
            byte_order: Default::default(),
            bit_order: Default::default(),
            vsync_filter_threshold: None,
        }
    }
}