esp_hal/lcd_cam/lcd/i8080.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
//! # LCD - I8080/MOTO6800 Mode.
//!
//! ## Overview
//!
//! The LCD_CAM peripheral I8080 driver provides support for the I8080
//! format/timing. The driver mandates DMA (Direct Memory Access) for
//! efficient data transfer.
//!
//! ## Examples
//!
//! ### MIPI-DSI Display
//!
//! The following example shows how to send a command to a MIPI-DSI display over
//! the I8080 protocol.
//!
//! ```rust, no_run
#![doc = crate::before_snippet!()]
//! # use esp_hal::lcd_cam::{LcdCam, lcd::i8080::{Config, I8080, TxEightBits}};
//! # use esp_hal::dma_tx_buffer;
//! # use esp_hal::dma::DmaTxBuf;
//!
//! # let mut dma_buf = dma_tx_buffer!(32678)?;
//!
//! let tx_pins = TxEightBits::new(
//! peripherals.GPIO9,
//! peripherals.GPIO46,
//! peripherals.GPIO3,
//! peripherals.GPIO8,
//! peripherals.GPIO18,
//! peripherals.GPIO17,
//! peripherals.GPIO16,
//! peripherals.GPIO15,
//! );
//! let lcd_cam = LcdCam::new(peripherals.LCD_CAM);
//!
//! let config = Config::default().with_frequency(Rate::from_mhz(20));
//!
//! let mut i8080 = I8080::new(
//! lcd_cam.lcd,
//! peripherals.DMA_CH0,
//! tx_pins,
//! config,
//! )?
//! .with_ctrl_pins(peripherals.GPIO0, peripherals.GPIO47);
//!
//! dma_buf.fill(&[0x55]);
//! let transfer = i8080.send(0x3Au8, 0, dma_buf)?; // RGB565
//! transfer.wait();
//! # Ok(())
//! # }
//! ```
use core::{
fmt::Formatter,
marker::PhantomData,
mem::{size_of, ManuallyDrop},
ops::{Deref, DerefMut},
};
use crate::{
clock::Clocks,
dma::{ChannelTx, DmaError, DmaPeripheral, DmaTxBuffer, PeripheralTxChannel, Tx, TxChannelFor},
gpio::{
interconnect::{OutputConnection, PeripheralOutput},
OutputSignal,
},
lcd_cam::{
calculate_clkm,
lcd::{ClockMode, DelayMode, Phase, Polarity},
BitOrder,
ByteOrder,
ClockError,
Instance,
Lcd,
LCD_DONE_WAKER,
},
pac,
peripheral::{Peripheral, PeripheralRef},
peripherals::LCD_CAM,
system::{self, GenericPeripheralGuard},
time::Rate,
Blocking,
DriverMode,
};
/// A configuration error.
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum ConfigError {
/// Clock configuration error.
Clock(ClockError),
}
/// Represents the I8080 LCD interface.
pub struct I8080<'d, Dm: DriverMode> {
lcd_cam: PeripheralRef<'d, LCD_CAM>,
tx_channel: ChannelTx<'d, Blocking, PeripheralTxChannel<LCD_CAM>>,
_guard: GenericPeripheralGuard<{ system::Peripheral::LcdCam as u8 }>,
_mode: PhantomData<Dm>,
}
impl<'d, Dm> I8080<'d, Dm>
where
Dm: DriverMode,
{
/// Creates a new instance of the I8080 LCD interface.
pub fn new<P, CH>(
lcd: Lcd<'d, Dm>,
channel: impl Peripheral<P = CH> + 'd,
mut pins: P,
config: Config,
) -> Result<Self, ConfigError>
where
CH: TxChannelFor<LCD_CAM>,
P: TxPins,
{
let tx_channel = ChannelTx::new(channel.map(|ch| ch.degrade()));
let mut this = Self {
lcd_cam: lcd.lcd_cam,
tx_channel,
_guard: lcd._guard,
_mode: PhantomData,
};
this.apply_config(&config)?;
pins.configure();
Ok(this)
}
fn regs(&self) -> &pac::lcd_cam::RegisterBlock {
self.lcd_cam.register_block()
}
/// Applies configuration.
///
/// # Errors
///
/// [`ConfigError::Clock`] variant will be returned if the frequency passed
/// in `Config` is too low.
pub fn apply_config(&mut self, config: &Config) -> Result<(), ConfigError> {
let clocks = Clocks::get();
// Due to https://www.espressif.com/sites/default/files/documentation/esp32-s3_errata_en.pdf
// the LCD_PCLK divider must be at least 2. To make up for this the user
// provided frequency is doubled to match.
let (i, divider) = calculate_clkm(
(config.frequency.as_hz() * 2) as _,
&[
clocks.xtal_clock.as_hz() as _,
clocks.cpu_clock.as_hz() as _,
clocks.crypto_pwm_clock.as_hz() as _,
],
)
.map_err(ConfigError::Clock)?;
self.regs().lcd_clock().write(|w| unsafe {
// Force enable the clock for all configuration registers.
w.clk_en().set_bit();
w.lcd_clk_sel().bits((i + 1) as _);
w.lcd_clkm_div_num().bits(divider.div_num as _);
w.lcd_clkm_div_b().bits(divider.div_b as _);
w.lcd_clkm_div_a().bits(divider.div_a as _); // LCD_PCLK = LCD_CLK / 2
w.lcd_clk_equ_sysclk().clear_bit();
w.lcd_clkcnt_n().bits(2 - 1); // Must not be 0.
w.lcd_ck_idle_edge()
.bit(config.clock_mode.polarity == Polarity::IdleHigh);
w.lcd_ck_out_edge()
.bit(config.clock_mode.phase == Phase::ShiftHigh)
});
self.regs()
.lcd_ctrl()
.write(|w| w.lcd_rgb_mode_en().clear_bit());
self.regs()
.lcd_rgb_yuv()
.write(|w| w.lcd_conv_bypass().clear_bit());
self.regs().lcd_user().modify(|_, w| {
w.lcd_8bits_order().bit(false);
w.lcd_bit_order().bit(false);
w.lcd_byte_order().bit(false);
w.lcd_2byte_en().bit(false)
});
self.regs().lcd_misc().write(|w| unsafe {
// Set the threshold for Async Tx FIFO full event. (5 bits)
w.lcd_afifo_threshold_num().bits(0);
// Configure the setup cycles in LCD non-RGB mode. Setup cycles
// expected = this value + 1. (6 bit)
w.lcd_vfk_cyclelen()
.bits(config.setup_cycles.saturating_sub(1) as _);
// Configure the hold time cycles in LCD non-RGB mode. Hold
// cycles expected = this value + 1.
w.lcd_vbk_cyclelen()
.bits(config.hold_cycles.saturating_sub(1) as _);
// 1: Send the next frame data when the current frame is sent out.
// 0: LCD stops when the current frame is sent out.
w.lcd_next_frame_en().clear_bit();
// Enable blank region when LCD sends data out.
w.lcd_bk_en().set_bit();
// 1: LCD_CD = !LCD_CAM_LCD_CD_IDLE_EDGE when LCD is in DOUT phase.
// 0: LCD_CD = LCD_CAM_LCD_CD_IDLE_EDGE.
w.lcd_cd_data_set()
.bit(config.cd_data_edge != config.cd_idle_edge);
// 1: LCD_CD = !LCD_CAM_LCD_CD_IDLE_EDGE when LCD is in DUMMY phase.
// 0: LCD_CD = LCD_CAM_LCD_CD_IDLE_EDGE.
w.lcd_cd_dummy_set()
.bit(config.cd_dummy_edge != config.cd_idle_edge);
// 1: LCD_CD = !LCD_CAM_LCD_CD_IDLE_EDGE when LCD is in CMD phase.
// 0: LCD_CD = LCD_CAM_LCD_CD_IDLE_EDGE.
w.lcd_cd_cmd_set()
.bit(config.cd_cmd_edge != config.cd_idle_edge);
// The default value of LCD_CD
w.lcd_cd_idle_edge().bit(config.cd_idle_edge)
});
self.regs()
.lcd_dly_mode()
.write(|w| unsafe { w.lcd_cd_mode().bits(config.cd_mode as u8) });
self.regs().lcd_data_dout_mode().write(|w| unsafe {
w.dout0_mode().bits(config.output_bit_mode as u8);
w.dout1_mode().bits(config.output_bit_mode as u8);
w.dout2_mode().bits(config.output_bit_mode as u8);
w.dout3_mode().bits(config.output_bit_mode as u8);
w.dout4_mode().bits(config.output_bit_mode as u8);
w.dout5_mode().bits(config.output_bit_mode as u8);
w.dout6_mode().bits(config.output_bit_mode as u8);
w.dout7_mode().bits(config.output_bit_mode as u8);
w.dout8_mode().bits(config.output_bit_mode as u8);
w.dout9_mode().bits(config.output_bit_mode as u8);
w.dout10_mode().bits(config.output_bit_mode as u8);
w.dout11_mode().bits(config.output_bit_mode as u8);
w.dout12_mode().bits(config.output_bit_mode as u8);
w.dout13_mode().bits(config.output_bit_mode as u8);
w.dout14_mode().bits(config.output_bit_mode as u8);
w.dout15_mode().bits(config.output_bit_mode as u8)
});
self.regs()
.lcd_user()
.modify(|_, w| w.lcd_update().set_bit());
Ok(())
}
/// Configures the byte order for data transmission in 16-bit mode.
/// This must be set to [ByteOrder::default()] when transmitting in 8-bit
/// mode.
pub fn set_byte_order(&mut self, byte_order: ByteOrder) -> &mut Self {
let is_inverted = byte_order != ByteOrder::default();
self.regs()
.lcd_user()
.modify(|_, w| w.lcd_byte_order().bit(is_inverted));
self
}
/// Configures the byte order for data transmission in 8-bit mode.
/// This must be set to [ByteOrder::default()] when transmitting in 16-bit
/// mode.
pub fn set_8bits_order(&mut self, byte_order: ByteOrder) -> &mut Self {
let is_inverted = byte_order != ByteOrder::default();
self.regs()
.lcd_user()
.modify(|_, w| w.lcd_8bits_order().bit(is_inverted));
self
}
/// Configures the bit order for data transmission.
pub fn set_bit_order(&mut self, bit_order: BitOrder) -> &mut Self {
self.regs()
.lcd_user()
.modify(|_, w| w.lcd_bit_order().bit(bit_order != BitOrder::default()));
self
}
/// Associates a CS pin with the I8080 interface.
pub fn with_cs<CS: PeripheralOutput>(self, cs: impl Peripheral<P = CS> + 'd) -> Self {
crate::into_mapped_ref!(cs);
cs.set_to_push_pull_output();
OutputSignal::LCD_CS.connect_to(cs);
self
}
/// Configures the control pins for the I8080 interface.
pub fn with_ctrl_pins<DC: PeripheralOutput, WRX: PeripheralOutput>(
self,
dc: impl Peripheral<P = DC> + 'd,
wrx: impl Peripheral<P = WRX> + 'd,
) -> Self {
crate::into_mapped_ref!(dc, wrx);
dc.set_to_push_pull_output();
OutputSignal::LCD_DC.connect_to(dc);
wrx.set_to_push_pull_output();
OutputSignal::LCD_PCLK.connect_to(wrx);
self
}
/// Sends a command and data to the LCD using DMA.
///
/// Passing a `Command<u8>` will make this an 8-bit transfer and a
/// `Command<u16>` will make this a 16-bit transfer.
///
/// Note: A 16-bit transfer on an 8-bit bus will silently truncate the 2nd
/// byte and an 8-bit transfer on a 16-bit bus will silently pad each
/// byte to 2 bytes.
pub fn send<W: Into<u16> + Copy, BUF: DmaTxBuffer>(
mut self,
cmd: impl Into<Command<W>>,
dummy: u8,
mut data: BUF,
) -> Result<I8080Transfer<'d, BUF, Dm>, (DmaError, Self, BUF)> {
let cmd = cmd.into();
// Reset LCD control unit and Async Tx FIFO
self.regs()
.lcd_user()
.modify(|_, w| w.lcd_reset().set_bit());
self.regs()
.lcd_misc()
.modify(|_, w| w.lcd_afifo_reset().set_bit());
// Set cmd value
match cmd {
Command::None => {
self.regs()
.lcd_user()
.modify(|_, w| w.lcd_cmd().clear_bit());
}
Command::One(value) => {
self.regs().lcd_user().modify(|_, w| {
w.lcd_cmd().set_bit();
w.lcd_cmd_2_cycle_en().clear_bit()
});
self.regs()
.lcd_cmd_val()
.write(|w| unsafe { w.lcd_cmd_value().bits(value.into() as _) });
}
Command::Two(first, second) => {
self.regs().lcd_user().modify(|_, w| {
w.lcd_cmd().set_bit();
w.lcd_cmd_2_cycle_en().set_bit()
});
let cmd = first.into() as u32 | ((second.into() as u32) << 16);
self.regs()
.lcd_cmd_val()
.write(|w| unsafe { w.lcd_cmd_value().bits(cmd) });
}
}
let is_2byte_mode = size_of::<W>() == 2;
self.regs().lcd_user().modify(|_, w| unsafe {
// Set dummy length
if dummy > 0 {
// Enable DUMMY phase in LCD sequence when LCD starts.
w.lcd_dummy()
.set_bit()
// Configure DUMMY cycles. DUMMY cycles = this value + 1. (2 bits)
.lcd_dummy_cyclelen()
.bits((dummy - 1) as _)
} else {
w.lcd_dummy().clear_bit()
}
.lcd_2byte_en()
.bit(is_2byte_mode)
});
// Use continous mode for DMA. FROM the S3 TRM:
// > In a continuous output, LCD module keeps sending data till:
// > i. LCD_CAM_LCD_START is cleared;
// > ii. or LCD_CAM_LCD_RESET is set;
// > iii. or all the data in GDMA is sent out.
self.regs()
.lcd_user()
.modify(|_, w| w.lcd_always_out_en().set_bit().lcd_dout().set_bit());
let result = unsafe {
self.tx_channel
.prepare_transfer(DmaPeripheral::LcdCam, &mut data)
}
.and_then(|_| self.tx_channel.start_transfer());
if let Err(err) = result {
return Err((err, self, data));
}
// Setup interrupts.
self.regs()
.lc_dma_int_clr()
.write(|w| w.lcd_trans_done_int_clr().set_bit());
self.regs().lcd_user().modify(|_, w| {
w.lcd_update().set_bit();
w.lcd_start().set_bit()
});
Ok(I8080Transfer {
i8080: ManuallyDrop::new(self),
buf_view: ManuallyDrop::new(data.into_view()),
})
}
}
impl<Dm: DriverMode> core::fmt::Debug for I8080<'_, Dm> {
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
f.debug_struct("I8080").finish()
}
}
/// Represents an ongoing (or potentially finished) transfer using the I8080 LCD
/// interface
pub struct I8080Transfer<'d, BUF: DmaTxBuffer, Dm: DriverMode> {
i8080: ManuallyDrop<I8080<'d, Dm>>,
buf_view: ManuallyDrop<BUF::View>,
}
impl<'d, BUF: DmaTxBuffer, Dm: DriverMode> I8080Transfer<'d, BUF, Dm> {
/// Returns true when [Self::wait] will not block.
pub fn is_done(&self) -> bool {
self.i8080
.regs()
.lcd_user()
.read()
.lcd_start()
.bit_is_clear()
}
/// Stops this transfer on the spot and returns the peripheral and buffer.
pub fn cancel(mut self) -> (I8080<'d, Dm>, BUF) {
self.stop_peripherals();
let (_, i8080, buf) = self.wait();
(i8080, buf)
}
/// Waits for the transfer to finish and returns the peripheral and buffer.
///
/// Note: This also clears the transfer interrupt so it can be used in
/// interrupt handlers to "handle" the interrupt.
pub fn wait(mut self) -> (Result<(), DmaError>, I8080<'d, Dm>, BUF) {
while !self.is_done() {}
// Clear "done" interrupt.
self.i8080
.regs()
.lc_dma_int_clr()
.write(|w| w.lcd_trans_done_int_clr().set_bit());
// SAFETY: Since forget is called on self, we know that self.i8080 and
// self.buf_view won't be touched again.
let (i8080, view) = unsafe {
let i8080 = ManuallyDrop::take(&mut self.i8080);
let view = ManuallyDrop::take(&mut self.buf_view);
core::mem::forget(self);
(i8080, view)
};
let result = if i8080.tx_channel.has_error() {
Err(DmaError::DescriptorError)
} else {
Ok(())
};
(result, i8080, BUF::from_view(view))
}
fn stop_peripherals(&mut self) {
// Stop the LCD_CAM peripheral.
self.i8080
.regs()
.lcd_user()
.modify(|_, w| w.lcd_start().clear_bit());
// Stop the DMA
self.i8080.tx_channel.stop_transfer();
}
}
impl<BUF: DmaTxBuffer, Dm: DriverMode> Deref for I8080Transfer<'_, BUF, Dm> {
type Target = BUF::View;
fn deref(&self) -> &Self::Target {
&self.buf_view
}
}
impl<BUF: DmaTxBuffer, Dm: DriverMode> DerefMut for I8080Transfer<'_, BUF, Dm> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.buf_view
}
}
impl<BUF: DmaTxBuffer> I8080Transfer<'_, BUF, crate::Async> {
/// Waits for [Self::is_done] to return true.
pub async fn wait_for_done(&mut self) {
use core::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
struct LcdDoneFuture {}
impl Future for LcdDoneFuture {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
if Instance::is_lcd_done_set() {
// Interrupt bit will be cleared in Self::wait.
// This allows `wait_for_done` to be called more than once.
//
// Instance::clear_lcd_done();
Poll::Ready(())
} else {
LCD_DONE_WAKER.register(cx.waker());
Instance::listen_lcd_done();
Poll::Pending
}
}
}
impl Drop for LcdDoneFuture {
fn drop(&mut self) {
Instance::unlisten_lcd_done();
}
}
LcdDoneFuture {}.await
}
}
impl<BUF: DmaTxBuffer, Dm: DriverMode> Drop for I8080Transfer<'_, BUF, Dm> {
fn drop(&mut self) {
self.stop_peripherals();
// SAFETY: This is Drop, we know that self.i8080 and self.buf_view
// won't be touched again.
let view = unsafe {
ManuallyDrop::drop(&mut self.i8080);
ManuallyDrop::take(&mut self.buf_view)
};
let _ = BUF::from_view(view);
}
}
#[derive(Debug, Clone, Copy, PartialEq, procmacros::BuilderLite)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Configuration settings for the I8080 interface.
pub struct Config {
/// Specifies the clock mode, including polarity and phase settings.
clock_mode: ClockMode,
/// The frequency of the pixel clock.
frequency: Rate,
/// Setup cycles expected, must be at least 1. (6 bits)
setup_cycles: usize,
/// Hold cycles expected, must be at least 1. (13 bits)
hold_cycles: usize,
/// The default value of LCD_CD.
cd_idle_edge: bool,
/// The value of LCD_CD during CMD phase.
cd_cmd_edge: bool,
/// The value of LCD_CD during dummy phase.
cd_dummy_edge: bool,
/// The value of LCD_CD during data phase.
cd_data_edge: bool,
/// The output LCD_CD is delayed by module clock LCD_CLK.
cd_mode: DelayMode,
/// The output data bits are delayed by module clock LCD_CLK.
output_bit_mode: DelayMode,
}
impl Default for Config {
fn default() -> Self {
Self {
clock_mode: Default::default(),
frequency: Rate::from_mhz(20),
setup_cycles: 1,
hold_cycles: 1,
cd_idle_edge: false,
cd_cmd_edge: false,
cd_dummy_edge: false,
cd_data_edge: true,
cd_mode: Default::default(),
output_bit_mode: Default::default(),
}
}
}
/// LCD_CAM I8080 command.
///
/// Can be [Command::None] if command phase should be suppressed.
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Command<T> {
/// Suppresses the command phase. No command is sent.
None,
/// Sends a single-word command.
One(T),
/// Sends a two-word command.
Two(T, T),
}
impl From<u8> for Command<u8> {
fn from(value: u8) -> Self {
Command::One(value)
}
}
impl From<u16> for Command<u16> {
fn from(value: u16) -> Self {
Command::One(value)
}
}
/// Represents a group of 8 output pins configured for 8-bit parallel data
/// transmission.
pub struct TxEightBits<'d> {
pins: [PeripheralRef<'d, OutputConnection>; 8],
}
impl<'d> TxEightBits<'d> {
#[allow(clippy::too_many_arguments)]
/// Creates a new `TxEightBits` instance with the provided output pins.
pub fn new(
pin_0: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_1: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_2: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_3: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_4: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_5: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_6: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_7: impl Peripheral<P = impl PeripheralOutput> + 'd,
) -> Self {
crate::into_mapped_ref!(pin_0);
crate::into_mapped_ref!(pin_1);
crate::into_mapped_ref!(pin_2);
crate::into_mapped_ref!(pin_3);
crate::into_mapped_ref!(pin_4);
crate::into_mapped_ref!(pin_5);
crate::into_mapped_ref!(pin_6);
crate::into_mapped_ref!(pin_7);
Self {
pins: [pin_0, pin_1, pin_2, pin_3, pin_4, pin_5, pin_6, pin_7],
}
}
}
impl TxPins for TxEightBits<'_> {
fn configure(&mut self) {
const SIGNALS: [OutputSignal; 8] = [
OutputSignal::LCD_DATA_0,
OutputSignal::LCD_DATA_1,
OutputSignal::LCD_DATA_2,
OutputSignal::LCD_DATA_3,
OutputSignal::LCD_DATA_4,
OutputSignal::LCD_DATA_5,
OutputSignal::LCD_DATA_6,
OutputSignal::LCD_DATA_7,
];
for (pin, signal) in self.pins.iter_mut().zip(SIGNALS.into_iter()) {
pin.set_to_push_pull_output();
signal.connect_to(pin);
}
}
}
/// Represents a group of 16 output pins configured for 16-bit parallel data
/// transmission.
pub struct TxSixteenBits<'d> {
pins: [PeripheralRef<'d, OutputConnection>; 16],
}
impl<'d> TxSixteenBits<'d> {
#[allow(clippy::too_many_arguments)]
/// Creates a new `TxSixteenBits` instance with the provided output pins.
pub fn new(
pin_0: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_1: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_2: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_3: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_4: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_5: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_6: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_7: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_8: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_9: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_10: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_11: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_12: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_13: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_14: impl Peripheral<P = impl PeripheralOutput> + 'd,
pin_15: impl Peripheral<P = impl PeripheralOutput> + 'd,
) -> Self {
crate::into_mapped_ref!(
pin_0, pin_1, pin_2, pin_3, pin_4, pin_5, pin_6, pin_7, pin_8, pin_9, pin_10, pin_11,
pin_12, pin_13, pin_14, pin_15
);
Self {
pins: [
pin_0, pin_1, pin_2, pin_3, pin_4, pin_5, pin_6, pin_7, pin_8, pin_9, pin_10,
pin_11, pin_12, pin_13, pin_14, pin_15,
],
}
}
}
impl TxPins for TxSixteenBits<'_> {
fn configure(&mut self) {
const SIGNALS: [OutputSignal; 16] = [
OutputSignal::LCD_DATA_0,
OutputSignal::LCD_DATA_1,
OutputSignal::LCD_DATA_2,
OutputSignal::LCD_DATA_3,
OutputSignal::LCD_DATA_4,
OutputSignal::LCD_DATA_5,
OutputSignal::LCD_DATA_6,
OutputSignal::LCD_DATA_7,
OutputSignal::LCD_DATA_8,
OutputSignal::LCD_DATA_9,
OutputSignal::LCD_DATA_10,
OutputSignal::LCD_DATA_11,
OutputSignal::LCD_DATA_12,
OutputSignal::LCD_DATA_13,
OutputSignal::LCD_DATA_14,
OutputSignal::LCD_DATA_15,
];
for (pin, signal) in self.pins.iter_mut().zip(SIGNALS.into_iter()) {
pin.set_to_push_pull_output();
signal.connect_to(pin);
}
}
}
#[doc(hidden)]
pub trait TxPins {
fn configure(&mut self);
}