esp_hal/rtc_cntl/sleep/
esp32s3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
use super::{
    Ext0WakeupSource,
    Ext1WakeupSource,
    TimerWakeupSource,
    WakeSource,
    WakeTriggers,
    WakeupLevel,
};
use crate::{
    gpio::{RtcFunction, RtcPin},
    peripherals::{APB_CTRL, EXTMEM, LPWR, RTC_IO, SPI0, SPI1, SYSTEM},
    rom::regi2c_write_mask,
    rtc_cntl::{sleep::RtcioWakeupSource, Clock, Rtc, RtcClock},
};

const I2C_DIG_REG: u32 = 0x6d;
const I2C_DIG_REG_HOSTID: u32 = 1;

const I2C_DIG_REG_EXT_RTC_DREG: u32 = 4;
const I2C_DIG_REG_EXT_RTC_DREG_MSB: u32 = 4;
const I2C_DIG_REG_EXT_RTC_DREG_LSB: u32 = 0;

const I2C_DIG_REG_EXT_RTC_DREG_SLEEP: u32 = 5;
const I2C_DIG_REG_EXT_RTC_DREG_SLEEP_MSB: u32 = 4;
const I2C_DIG_REG_EXT_RTC_DREG_SLEEP_LSB: u32 = 0;

const I2C_DIG_REG_EXT_DIG_DREG: u32 = 6;
const I2C_DIG_REG_EXT_DIG_DREG_MSB: u32 = 4;
const I2C_DIG_REG_EXT_DIG_DREG_LSB: u32 = 0;

const I2C_DIG_REG_EXT_DIG_DREG_SLEEP: u32 = 7;
const I2C_DIG_REG_EXT_DIG_DREG_SLEEP_MSB: u32 = 4;
const I2C_DIG_REG_EXT_DIG_DREG_SLEEP_LSB: u32 = 0;

const I2C_DIG_REG_XPD_RTC_REG: u32 = 13;
const I2C_DIG_REG_XPD_RTC_REG_MSB: u32 = 2;
const I2C_DIG_REG_XPD_RTC_REG_LSB: u32 = 2;

const I2C_DIG_REG_XPD_DIG_REG: u32 = 13;
const I2C_DIG_REG_XPD_DIG_REG_MSB: u32 = 3;
const I2C_DIG_REG_XPD_DIG_REG_LSB: u32 = 3;

// Approximate mapping of voltages to RTC_CNTL_DBIAS_WAK, RTC_CNTL_DBIAS_SLP,
// RTC_CNTL_DIG_DBIAS_WAK, RTC_CNTL_DIG_DBIAS_SLP values.
// Valid if RTC_CNTL_DBG_ATTEN is 0.
/// Digital bias setting for 0.90V.
pub const RTC_CNTL_DBIAS_0V90: u32 = 13;
/// Digital bias setting for 0.95V.
pub const RTC_CNTL_DBIAS_0V95: u32 = 16;
/// Digital bias setting for 1.00V.
pub const RTC_CNTL_DBIAS_1V00: u32 = 18;
/// Digital bias setting for 1.05V.
pub const RTC_CNTL_DBIAS_1V05: u32 = 20;
/// Digital bias setting for 1.10V.
pub const RTC_CNTL_DBIAS_1V10: u32 = 23;
/// Digital bias setting for 1.15V.
pub const RTC_CNTL_DBIAS_1V15: u32 = 25;
/// Digital bias setting for 1.20V.
pub const RTC_CNTL_DBIAS_1V20: u32 = 28;
/// Digital bias setting for 1.25V.
pub const RTC_CNTL_DBIAS_1V25: u32 = 30;
/// Digital bias setting for 1.30V. Voltage is approximately 1.34V in practice.
pub const RTC_CNTL_DBIAS_1V30: u32 = 31;
/// Default monitor debug attenuation value.
pub const RTC_CNTL_DBG_ATTEN_MONITOR_DEFAULT: u8 = 0;
/// ULP co-processor touch start wait time during sleep, set to maximum.
pub const RTC_CNTL_ULPCP_TOUCH_START_WAIT_IN_SLEEP: u16 = 0xFF;
/// ULP co-processor touch start wait time default value.
pub const RTC_CNTL_ULPCP_TOUCH_START_WAIT_DEFAULT: u16 = 0x10;
/// Default wait time for PLL buffer during startup.
pub const RTC_CNTL_PLL_BUF_WAIT_DEFAULT: u8 = 20;
/// Default wait time for CK8M during startup.
pub const RTC_CNTL_CK8M_WAIT_DEFAULT: u8 = 20;
/// Minimum sleep value.
pub const RTC_CNTL_MIN_SLP_VAL_MIN: u8 = 2;
/// Deep sleep debug attenuation setting for ultra-low power mode.
pub const RTC_CNTL_DBG_ATTEN_DEEPSLEEP_ULTRA_LOW: u8 = 15;
/// Power-up setting for other blocks.
pub const OTHER_BLOCKS_POWERUP: u8 = 1;
/// Wait cycles for other blocks.
pub const OTHER_BLOCKS_WAIT: u16 = 1;
/// WiFi power-up cycles.
pub const WIFI_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// WiFi wait cycles.
pub const WIFI_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// Bluetooth power-up cycles.
pub const BT_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// Bluetooth wait cycles.
pub const BT_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// RTC power-up cycles.
pub const RTC_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// RTC wait cycles.
pub const RTC_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// CPU top power-up cycles.
pub const CPU_TOP_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// CPU top wait cycles.
pub const CPU_TOP_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// DG wrap power-up cycles.
pub const DG_WRAP_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// DG wrap wait cycles.
pub const DG_WRAP_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// DG peripheral power-up cycles.
pub const DG_PERI_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// DG peripheral wait cycles.
pub const DG_PERI_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;
/// RTC memory power-up cycles.
pub const RTC_MEM_POWERUP_CYCLES: u8 = OTHER_BLOCKS_POWERUP;
/// RTC memory wait cycles.
pub const RTC_MEM_WAIT_CYCLES: u16 = OTHER_BLOCKS_WAIT;

impl WakeSource for TimerWakeupSource {
    fn apply(
        &self,
        rtc: &Rtc<'_>,
        triggers: &mut WakeTriggers,
        _sleep_config: &mut RtcSleepConfig,
    ) {
        triggers.set_timer(true);
        let rtc_cntl = LPWR::regs();
        let clock_freq = RtcClock::slow_freq();
        // TODO: maybe add sleep time adjustlemnt like idf
        // TODO: maybe add check to prevent overflow?
        let clock_hz = clock_freq.frequency().as_hz() as u64;
        let ticks = self.duration.as_micros() as u64 * clock_hz / 1_000_000u64;
        // "alarm" time in slow rtc ticks
        let now = rtc.time_since_boot_raw();
        let time_in_ticks = now + ticks;
        unsafe {
            rtc_cntl
                .slp_timer0()
                .write(|w| w.slp_val_lo().bits((time_in_ticks & 0xffffffff) as u32));

            rtc_cntl
                .int_clr()
                .write(|w| w.main_timer().clear_bit_by_one());

            rtc_cntl.slp_timer1().write(|w| {
                w.slp_val_hi()
                    .bits(((time_in_ticks >> 32) & 0xffff) as u16)
                    .main_timer_alarm_en()
                    .set_bit()
            });
        }
    }
}

impl<P: RtcPin> WakeSource for Ext0WakeupSource<'_, P> {
    fn apply(
        &self,
        _rtc: &Rtc<'_>,
        triggers: &mut WakeTriggers,
        sleep_config: &mut RtcSleepConfig,
    ) {
        // don't power down RTC peripherals
        sleep_config.set_rtc_peri_pd_en(false);
        triggers.set_ext0(true);

        // set pin to RTC function
        self.pin
            .borrow_mut()
            .rtc_set_config(true, true, RtcFunction::Rtc);

        unsafe {
            let rtc_io = RTC_IO::regs();
            // set pin register field
            rtc_io
                .ext_wakeup0()
                .modify(|_, w| w.sel().bits(self.pin.borrow().rtc_number()));
            // set level register field
            let rtc_cntl = LPWR::regs();
            rtc_cntl
                .ext_wakeup_conf()
                .modify(|_r, w| w.ext_wakeup0_lv().bit(self.level == WakeupLevel::High));
        }
    }
}

impl<P: RtcPin> Drop for Ext0WakeupSource<'_, P> {
    fn drop(&mut self) {
        // should we have saved the pin configuration first?
        // set pin back to IO_MUX (input_enable and func have no effect when pin is sent
        // to IO_MUX)
        self.pin
            .borrow_mut()
            .rtc_set_config(true, false, RtcFunction::Rtc);
    }
}

impl WakeSource for Ext1WakeupSource<'_, '_> {
    fn apply(
        &self,
        _rtc: &Rtc<'_>,
        triggers: &mut WakeTriggers,
        sleep_config: &mut RtcSleepConfig,
    ) {
        // don't power down RTC peripherals
        sleep_config.set_rtc_peri_pd_en(false);
        triggers.set_ext1(true);

        // set pins to RTC function
        let mut pins = self.pins.borrow_mut();
        let mut bits = 0u32;
        for pin in pins.iter_mut() {
            pin.rtc_set_config(true, true, RtcFunction::Rtc);
            bits |= 1 << pin.rtc_number();
        }

        unsafe {
            let rtc_cntl = LPWR::regs();
            // clear previous wakeup status
            rtc_cntl
                .ext_wakeup1()
                .modify(|_, w| w.ext_wakeup1_status_clr().set_bit());
            // set pin register field
            rtc_cntl
                .ext_wakeup1()
                .modify(|_, w| w.ext_wakeup1_sel().bits(bits));
            // set level register field
            rtc_cntl
                .ext_wakeup_conf()
                .modify(|_r, w| w.ext_wakeup1_lv().bit(self.level == WakeupLevel::High));
        }
    }
}

impl Drop for Ext1WakeupSource<'_, '_> {
    fn drop(&mut self) {
        // should we have saved the pin configuration first?
        // set pin back to IO_MUX (input_enable and func have no effect when pin is sent
        // to IO_MUX)
        let mut pins = self.pins.borrow_mut();
        for pin in pins.iter_mut() {
            pin.rtc_set_config(true, false, RtcFunction::Rtc);
        }
    }
}

impl RtcioWakeupSource<'_, '_> {
    fn apply_pin(&self, pin: &mut dyn RtcPin, level: WakeupLevel) {
        let rtcio = RTC_IO::regs();

        pin.rtc_set_config(true, true, RtcFunction::Rtc);

        rtcio.pin(pin.number() as usize).modify(|_, w| unsafe {
            w.wakeup_enable().set_bit().int_type().bits(match level {
                WakeupLevel::Low => 4,
                WakeupLevel::High => 5,
            })
        });
    }
}

impl WakeSource for RtcioWakeupSource<'_, '_> {
    fn apply(
        &self,
        _rtc: &Rtc<'_>,
        triggers: &mut WakeTriggers,
        sleep_config: &mut RtcSleepConfig,
    ) {
        let mut pins = self.pins.borrow_mut();

        if pins.is_empty() {
            return;
        }

        // don't power down RTC peripherals
        sleep_config.set_rtc_peri_pd_en(false);
        triggers.set_gpio(true);

        // Since we only use RTCIO pins, we can keep deep sleep enabled.
        let sens = crate::peripherals::SENS::regs();

        // TODO: disable clock when not in use
        sens.sar_peri_clk_gate_conf()
            .modify(|_, w| w.iomux_clk_en().set_bit());

        for (pin, level) in pins.iter_mut() {
            self.apply_pin(*pin, *level);
        }
    }
}

impl Drop for RtcioWakeupSource<'_, '_> {
    fn drop(&mut self) {
        // should we have saved the pin configuration first?
        // set pin back to IO_MUX (input_enable and func have no effect when pin is sent
        // to IO_MUX)
        let mut pins = self.pins.borrow_mut();
        for (pin, _level) in pins.iter_mut() {
            pin.rtc_set_config(true, false, RtcFunction::Rtc);
        }
    }
}

bitfield::bitfield! {
    /// Configuration for the RTC sleep behavior.
    #[derive(Clone, Copy)]
    pub struct RtcSleepConfig(u64);
    impl Debug;
    /// force normal voltage in sleep mode (digital domain memory)
    pub lslp_mem_inf_fpu, set_lslp_mem_inf_fpu: 0;
    /// keep low voltage in sleep mode (even if ULP/touch is used)
    pub rtc_mem_inf_follow_cpu, set_rtc_mem_inf_follow_cpu: 1;
    /// power down RTC fast memory
    pub rtc_fastmem_pd_en, set_rtc_fastmem_pd_en: 2;
    /// power down RTC slow memory
    pub rtc_slowmem_pd_en, set_rtc_slowmem_pd_en: 3;
    /// power down RTC peripherals
    pub rtc_peri_pd_en, set_rtc_peri_pd_en: 4;
    /// power down Modem(wifi and ble)
    pub modem_pd_en, set_modem_pd_en: 5;
    /// power down CPU, but not restart when lightsleep.
    pub cpu_pd_en, set_cpu_pd_en: 6;
    /// Power down Internal 8M oscillator
    pub int_8m_pd_en, set_int_8m_pd_en: 7;
    /// power down digital peripherals
    pub dig_peri_pd_en, set_dig_peri_pd_en: 8;
    /// power down digital domain
    pub deep_slp, set_deep_slp: 9;
    /// enable WDT flashboot mode
    pub wdt_flashboot_mod_en, set_wdt_flashboot_mod_en: 10;
    /// set bias for digital domain, in sleep mode
    pub u32, dig_dbias_slp, set_dig_dbias_slp: 15, 11;
    /// set bias for RTC domain, in sleep mode
    pub u32, rtc_dbias_slp, set_rtc_dbias_slp: 20, 16;
    /// circuit control parameter, in monitor mode
    pub bias_sleep_monitor, set_bias_sleep_monitor: 21;
    /// voltage parameter, in sleep mode
    pub u8, dbg_atten_slp, set_dbg_atten_slp: 25, 22;
    /// circuit control parameter, in sleep mode
    pub bias_sleep_slp, set_bias_sleep_slp: 26;
    /// circuit control parameter, in monitor mode
    pub pd_cur_monitor, set_pd_cur_monitor: 27;
    /// circuit control parameter, in sleep mode
    pub pd_cur_slp, set_pd_cur_slp: 28;
    /// power down VDDSDIO regulator
    pub vddsdio_pd_en, set_vddsdio_pd_en: 29;
    /// keep main XTAL powered up in sleep
    pub xtal_fpu, set_xtal_fpu: 30;
    /// keep rtc regulator powered up in sleep
    pub rtc_regulator_fpu, set_rtc_regulator_fpu: 31;
    /// enable deep sleep reject
    pub deep_slp_reject, set_deep_slp_reject: 32;
    /// enable light sleep reject
    pub light_slp_reject, set_light_slp_reject: 33;
}

impl Default for RtcSleepConfig {
    fn default() -> Self {
        let mut cfg = Self(Default::default());
        cfg.set_deep_slp_reject(true);
        cfg.set_light_slp_reject(true);
        cfg.set_rtc_dbias_slp(RTC_CNTL_DBIAS_1V10);
        cfg.set_dig_dbias_slp(RTC_CNTL_DBIAS_1V10);
        cfg
    }
}

const SYSCON_SRAM_POWER_UP: u16 = 0x7FF;
const SYSCON_ROM_POWER_UP: u8 = 0x7;

fn rtc_sleep_pu(val: bool) {
    let rtc_cntl = LPWR::regs();
    let syscon = unsafe { &*esp32s3::APB_CTRL::ptr() };
    let bb = unsafe { &*esp32s3::BB::ptr() };
    let nrx = unsafe { &*esp32s3::NRX::ptr() };
    let fe = unsafe { &*esp32s3::FE::ptr() };
    let fe2 = unsafe { &*esp32s3::FE2::ptr() };

    rtc_cntl
        .dig_pwc()
        .modify(|_, w| w.lslp_mem_force_pu().bit(val));

    rtc_cntl
        .pwc()
        .modify(|_, w| w.slowmem_force_lpu().bit(val).fastmem_force_lpu().bit(val));

    syscon.front_end_mem_pd().modify(|_r, w| {
        w.dc_mem_force_pu()
            .bit(val)
            .pbus_mem_force_pu()
            .bit(val)
            .agc_mem_force_pu()
            .bit(val)
    });

    bb.bbpd_ctrl()
        .modify(|_r, w| w.fft_force_pu().bit(val).dc_est_force_pu().bit(val));

    nrx.nrxpd_ctrl().modify(|_, w| {
        w.rx_rot_force_pu()
            .bit(val)
            .vit_force_pu()
            .bit(val)
            .demap_force_pu()
            .bit(val)
    });

    fe.gen_ctrl().modify(|_, w| w.iq_est_force_pu().bit(val));

    fe2.tx_interp_ctrl()
        .modify(|_, w| w.tx_inf_force_pu().bit(val));

    syscon.mem_power_up().modify(|_r, w| unsafe {
        w.sram_power_up()
            .bits(if val { SYSCON_SRAM_POWER_UP } else { 0 })
            .rom_power_up()
            .bits(if val { SYSCON_ROM_POWER_UP } else { 0 })
    });
}

impl RtcSleepConfig {
    /// Configures the RTC for deep sleep mode.
    pub fn deep() -> Self {
        // Set up for ultra-low power sleep. Wakeup sources may modify these settings.
        let mut cfg = Self::default();

        cfg.set_lslp_mem_inf_fpu(false);
        cfg.set_rtc_mem_inf_follow_cpu(true); // ?
        cfg.set_rtc_fastmem_pd_en(true);
        cfg.set_rtc_slowmem_pd_en(true);
        cfg.set_rtc_peri_pd_en(true);
        cfg.set_modem_pd_en(true);
        cfg.set_cpu_pd_en(true);
        cfg.set_int_8m_pd_en(true);

        cfg.set_dig_peri_pd_en(true);
        cfg.set_dig_dbias_slp(0); // because of dig_peri_pd_en

        cfg.set_deep_slp(true);
        cfg.set_wdt_flashboot_mod_en(false);
        cfg.set_vddsdio_pd_en(true);
        cfg.set_xtal_fpu(false);
        cfg.set_deep_slp_reject(true);
        cfg.set_light_slp_reject(true);
        cfg.set_rtc_dbias_slp(RTC_CNTL_DBIAS_1V10);

        // because of dig_peri_pd_en
        cfg.set_rtc_regulator_fpu(false);
        cfg.set_dbg_atten_slp(RTC_CNTL_DBG_ATTEN_DEEPSLEEP_ULTRA_LOW);

        // because of xtal_fpu
        cfg.set_bias_sleep_monitor(true);
        cfg.set_pd_cur_monitor(true);
        cfg.set_bias_sleep_slp(true);
        cfg.set_pd_cur_slp(true);

        cfg
    }

    pub(crate) fn base_settings(_rtc: &Rtc<'_>) {
        // settings derived from esp_clk_init -> rtc_init
        unsafe {
            let rtc_cntl = LPWR::regs();
            let syscon = APB_CTRL::regs();
            let extmem = EXTMEM::regs();
            let system = SYSTEM::regs();

            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.wifi_force_pd().clear_bit());

            regi2c_write_mask!(I2C_DIG_REG, I2C_DIG_REG_XPD_RTC_REG, 0);
            regi2c_write_mask!(I2C_DIG_REG, I2C_DIG_REG_XPD_DIG_REG, 0);

            rtc_cntl.ana_conf().modify(|_, w| w.pvtmon_pu().clear_bit());

            rtc_cntl.timer1().modify(|_, w| {
                w.pll_buf_wait()
                    .bits(RTC_CNTL_PLL_BUF_WAIT_DEFAULT)
                    .ck8m_wait()
                    .bits(RTC_CNTL_CK8M_WAIT_DEFAULT)
            });

            // Moved from rtc sleep to rtc init to save sleep function running time
            // set shortest possible sleep time limit

            rtc_cntl
                .timer5()
                .modify(|_, w| w.min_slp_val().bits(RTC_CNTL_MIN_SLP_VAL_MIN));

            rtc_cntl.timer3().modify(|_, w| {
                w
                    // set wifi timer
                    .wifi_powerup_timer()
                    .bits(WIFI_POWERUP_CYCLES)
                    .wifi_wait_timer()
                    .bits(WIFI_WAIT_CYCLES)
                    // set bt timer
                    .bt_powerup_timer()
                    .bits(BT_POWERUP_CYCLES)
                    .bt_wait_timer()
                    .bits(BT_WAIT_CYCLES)
            });

            rtc_cntl.timer6().modify(|_, w| {
                w.cpu_top_powerup_timer()
                    .bits(CPU_TOP_POWERUP_CYCLES)
                    .cpu_top_wait_timer()
                    .bits(CPU_TOP_WAIT_CYCLES)
            });

            rtc_cntl.timer4().modify(|_, w| {
                w
                    // set rtc peri timer
                    .powerup_timer()
                    .bits(RTC_POWERUP_CYCLES)
                    .wait_timer()
                    .bits(RTC_WAIT_CYCLES)
                    // set digital wrap timer
                    .dg_wrap_powerup_timer()
                    .bits(DG_WRAP_POWERUP_CYCLES)
                    .dg_wrap_wait_timer()
                    .bits(DG_WRAP_WAIT_CYCLES)
            });

            rtc_cntl.timer6().modify(|_, w| {
                w.dg_peri_powerup_timer()
                    .bits(DG_PERI_POWERUP_CYCLES)
                    .dg_peri_wait_timer()
                    .bits(DG_PERI_WAIT_CYCLES)
            });

            // Reset RTC bias to default value (needed if waking up from deep sleep)
            regi2c_write_mask!(
                I2C_DIG_REG,
                I2C_DIG_REG_EXT_RTC_DREG_SLEEP,
                RTC_CNTL_DBIAS_1V10
            );
            regi2c_write_mask!(I2C_DIG_REG, I2C_DIG_REG_EXT_RTC_DREG, RTC_CNTL_DBIAS_1V10);

            // Set the wait time to the default value.

            rtc_cntl.timer2().modify(|_, w| {
                w.ulpcp_touch_start_wait()
                    .bits(RTC_CNTL_ULPCP_TOUCH_START_WAIT_DEFAULT)
            });

            // LDO dbias initialization
            // TODO: this modifies g_rtc_dbias_pvt_non_240m and g_dig_dbias_pvt_non_240m.
            //       We're using a high enough default but we should read from the efuse.
            // rtc_set_stored_dbias();

            regi2c_write_mask!(I2C_DIG_REG, I2C_DIG_REG_EXT_RTC_DREG, RTC_CNTL_DBIAS_1V25);
            regi2c_write_mask!(I2C_DIG_REG, I2C_DIG_REG_EXT_DIG_DREG, RTC_CNTL_DBIAS_1V25);

            // clear CMMU clock force on

            extmem
                .cache_mmu_power_ctrl()
                .modify(|_, w| w.cache_mmu_mem_force_on().clear_bit());

            // clear clkgate force on
            syscon.clkgate_force_on().write(|w| w.bits(0));

            // clear tag clock force on

            extmem
                .dcache_tag_power_ctrl()
                .modify(|_, w| w.dcache_tag_mem_force_on().clear_bit());

            extmem
                .icache_tag_power_ctrl()
                .modify(|_, w| w.icache_tag_mem_force_on().clear_bit());

            // clear register clock force on
            SPI0::regs()
                .clock_gate()
                .modify(|_, w| w.clk_en().clear_bit());
            SPI1::regs()
                .clock_gate()
                .modify(|_, w| w.clk_en().clear_bit());

            rtc_cntl
                .clk_conf()
                .modify(|_, w| w.ck8m_force_pu().clear_bit());

            rtc_cntl
                .options0()
                .modify(|_, w| w.xtl_force_pu().clear_bit());

            rtc_cntl.ana_conf().modify(|_, w| {
                w
                    // open sar_i2c protect function to avoid sar_i2c reset when rtc_ldo is low.
                    // clear i2c_reset_protect pd force, need tested in low temperature.
                    // NOTE: this bit is written again in esp-idf, but it's not clear why.
                    .i2c_reset_por_force_pd()
                    .clear_bit()
            });

            // cancel bbpll force pu if setting no force power up

            rtc_cntl.options0().modify(|_, w| {
                w.bbpll_force_pu()
                    .clear_bit()
                    .bbpll_i2c_force_pu()
                    .clear_bit()
                    .bb_i2c_force_pu()
                    .clear_bit()
            });

            // cancel RTC REG force PU

            rtc_cntl.pwc().modify(|_, w| w.force_pu().clear_bit());

            rtc_cntl.rtc().modify(|_, w| {
                w.regulator_force_pu()
                    .clear_bit()
                    .dboost_force_pu()
                    .clear_bit()
            });

            rtc_cntl.pwc().modify(|_, w| {
                w.slowmem_force_noiso()
                    .clear_bit()
                    .fastmem_force_noiso()
                    .clear_bit()
            });

            rtc_cntl.rtc().modify(|_, w| w.dboost_force_pd().set_bit());

            // If this mask is enabled, all soc memories cannot enter power down mode
            // We should control soc memory power down mode from RTC, so we will not touch
            // this register any more

            system
                .mem_pd_mask()
                .modify(|_, w| w.lslp_mem_pd_mask().clear_bit());

            // If this pd_cfg is set to 1, all memory won't enter low power mode during
            // light sleep If this pd_cfg is set to 0, all memory will enter low
            // power mode during light sleep
            rtc_sleep_pu(false);

            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.dg_wrap_force_pu().clear_bit());

            rtc_cntl.dig_iso().modify(|_, w| {
                w.dg_wrap_force_noiso()
                    .clear_bit()
                    .dg_wrap_force_iso()
                    .clear_bit()
            });

            rtc_cntl.dig_iso().modify(|_, w| {
                w.wifi_force_noiso()
                    .clear_bit()
                    .wifi_force_iso()
                    .clear_bit()
            });

            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.wifi_force_pu().clear_bit());

            rtc_cntl
                .dig_iso()
                .modify(|_, w| w.bt_force_noiso().clear_bit().bt_force_iso().clear_bit());

            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.bt_force_pu().clear_bit());

            rtc_cntl.dig_iso().modify(|_, w| {
                w.cpu_top_force_noiso()
                    .clear_bit()
                    .cpu_top_force_iso()
                    .clear_bit()
            });

            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.cpu_top_force_pu().clear_bit());

            rtc_cntl.dig_iso().modify(|_, w| {
                w.dg_peri_force_noiso()
                    .clear_bit()
                    .dg_peri_force_iso()
                    .clear_bit()
            });

            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.dg_peri_force_pu().clear_bit());

            rtc_cntl.pwc().modify(|_, w| {
                w.force_noiso()
                    .clear_bit()
                    .force_iso()
                    .clear_bit()
                    .force_pu()
                    .clear_bit()
            });

            // if SYSTEM_CPU_WAIT_MODE_FORCE_ON == 0,
            // the cpu clk will be closed when cpu enter WAITI mode

            system
                .cpu_per_conf()
                .modify(|_, w| w.cpu_wait_mode_force_on().clear_bit());

            // cancel digital PADS force no iso

            rtc_cntl.dig_iso().modify(|_, w| {
                w.dg_pad_force_unhold()
                    .clear_bit()
                    .dg_pad_force_noiso()
                    .clear_bit()
            });

            // force power down modem(wifi and ble) power domain

            rtc_cntl
                .dig_iso()
                .modify(|_, w| w.wifi_force_iso().set_bit());

            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.wifi_force_pd().set_bit());

            rtc_cntl.int_ena().write(|w| w.bits(0));
            rtc_cntl.int_clr().write(|w| w.bits(u32::MAX));
        }
    }

    pub(crate) fn apply(&self) {
        // like esp-idf rtc_sleep_init()
        let rtc_cntl = LPWR::regs();

        if self.lslp_mem_inf_fpu() {
            rtc_sleep_pu(true);
        }

        if self.modem_pd_en() {
            rtc_cntl.dig_iso().modify(|_, w| {
                w.wifi_force_noiso()
                    .clear_bit()
                    .wifi_force_iso()
                    .clear_bit()
            });

            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.wifi_force_pu().clear_bit().wifi_pd_en().set_bit());
        } else {
            rtc_cntl.dig_pwc().modify(|_, w| w.wifi_pd_en().clear_bit());
        }

        if self.cpu_pd_en() {
            rtc_cntl.dig_iso().modify(|_, w| {
                w.cpu_top_force_noiso()
                    .clear_bit()
                    .cpu_top_force_iso()
                    .clear_bit()
            });

            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.cpu_top_force_pu().clear_bit().cpu_top_pd_en().set_bit());
        } else {
            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.cpu_top_pd_en().clear_bit());
        }

        if self.dig_peri_pd_en() {
            rtc_cntl.dig_iso().modify(|_, w| {
                w.dg_peri_force_noiso()
                    .clear_bit()
                    .dg_peri_force_iso()
                    .clear_bit()
            });

            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.dg_peri_force_pu().clear_bit().dg_peri_pd_en().set_bit());
        } else {
            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.dg_peri_pd_en().clear_bit());
        }

        if self.rtc_peri_pd_en() {
            rtc_cntl.pwc().modify(|_, w| {
                w.force_noiso().clear_bit();
                w.force_iso().clear_bit();
                w.force_pu().clear_bit();
                w.pd_en().set_bit()
            });
        } else {
            rtc_cntl.pwc().modify(|_, w| w.pd_en().clear_bit());
        }

        unsafe {
            regi2c_write_mask!(
                I2C_DIG_REG,
                I2C_DIG_REG_EXT_RTC_DREG_SLEEP,
                self.rtc_dbias_slp()
            );

            regi2c_write_mask!(
                I2C_DIG_REG,
                I2C_DIG_REG_EXT_DIG_DREG_SLEEP,
                self.dig_dbias_slp()
            );

            rtc_cntl.bias_conf().modify(|_, w| {
                w.dbg_atten_deep_slp().bits(self.dbg_atten_slp());
                w.bias_sleep_deep_slp().bit(self.bias_sleep_slp());
                w.pd_cur_deep_slp().bit(self.pd_cur_slp());
                w.dbg_atten_monitor()
                    .bits(RTC_CNTL_DBG_ATTEN_MONITOR_DEFAULT);
                w.bias_sleep_monitor().bit(self.bias_sleep_monitor());
                w.pd_cur_monitor().bit(self.pd_cur_monitor())
            });

            if self.deep_slp() {
                rtc_cntl
                    .dig_pwc()
                    .modify(|_, w| w.dg_wrap_pd_en().set_bit());

                rtc_cntl.ana_conf().modify(|_, w| {
                    w.ckgen_i2c_pu().clear_bit();
                    w.pll_i2c_pu().clear_bit();
                    w.rfrx_pbus_pu().clear_bit();
                    w.txrf_i2c_pu().clear_bit()
                });

                rtc_cntl
                    .options0()
                    .modify(|_, w| w.bb_i2c_force_pu().clear_bit());
            } else {
                rtc_cntl
                    .regulator_drv_ctrl()
                    .modify(|_, w| w.dg_vdd_drv_b_slp().bits(0xF));

                rtc_cntl
                    .dig_pwc()
                    .modify(|_, w| w.dg_wrap_pd_en().clear_bit());
            }

            // mem force pu

            rtc_cntl
                .dig_pwc()
                .modify(|_, w| w.lslp_mem_force_pu().set_bit());

            rtc_cntl
                .rtc()
                .modify(|_, w| w.regulator_force_pu().bit(self.rtc_regulator_fpu()));

            rtc_cntl
                .clk_conf()
                .modify(|_, w| w.ck8m_force_pu().bit(!self.int_8m_pd_en()));

            // enable VDDSDIO control by state machine

            rtc_cntl.sdio_conf().modify(|_, w| {
                w.sdio_force().clear_bit();
                w.sdio_reg_pd_en().bit(self.vddsdio_pd_en())
            });

            rtc_cntl.slp_reject_conf().modify(|_, w| {
                w.deep_slp_reject_en().bit(self.deep_slp_reject());
                w.light_slp_reject_en().bit(self.light_slp_reject())
            });

            // Set wait cycle for touch or COCPU after deep sleep and light
            // sleep.

            rtc_cntl.timer2().modify(|_, w| {
                w.ulpcp_touch_start_wait()
                    .bits(RTC_CNTL_ULPCP_TOUCH_START_WAIT_IN_SLEEP)
            });

            rtc_cntl
                .options0()
                .modify(|_, w| w.xtl_force_pu().bit(self.xtal_fpu()));

            rtc_cntl
                .clk_conf()
                .modify(|_, w| w.xtal_global_force_nogating().bit(self.xtal_fpu()));
        }
    }

    pub(crate) fn start_sleep(&self, wakeup_triggers: WakeTriggers) {
        unsafe {
            LPWR::regs()
                .reset_state()
                .modify(|_, w| w.procpu_stat_vector_sel().set_bit());

            // set bits for what can wake us up
            LPWR::regs()
                .wakeup_state()
                .modify(|_, w| w.wakeup_ena().bits(wakeup_triggers.0.into()));

            LPWR::regs()
                .state0()
                .write(|w| w.sleep_en().set_bit().slp_wakeup().set_bit());
        }
    }

    pub(crate) fn finish_sleep(&self) {
        // In deep sleep mode, we never get here
        unsafe {
            LPWR::regs().int_clr().write(|w| {
                w.slp_reject()
                    .clear_bit_by_one()
                    .slp_wakeup()
                    .clear_bit_by_one()
            });

            // restore config if it is a light sleep
            if self.lslp_mem_inf_fpu() {
                rtc_sleep_pu(true);
            }

            // Recover default wait cycle for touch or COCPU after wakeup.

            LPWR::regs().timer2().modify(|_, w| {
                w.ulpcp_touch_start_wait()
                    .bits(RTC_CNTL_ULPCP_TOUCH_START_WAIT_DEFAULT)
            });
        }
    }
}