Analog to Digital Converter

Overview

The ESP32 integrates two 12-bit SAR (Successive Approximation Register) ADCs supporting a total of 18 measurement channels (analog enabled pins).

The ADC driver API supports ADC1 (8 channels, attached to GPIOs 32 - 39), and ADC2 (10 channels, attached to GPIOs 0, 2, 4, 12 - 15 and 25 - 27). However, the usage of ADC2 has some restrictions for the application:

  1. ADC2 is used by the Wi-Fi driver. Therefore the application can only use ADC2 when the Wi-Fi driver has not started.

  2. Some of the ADC2 pins are used as strapping pins (GPIO 0, 2, 15) thus cannot be used freely. Such is the case in the following official Development Kits:

  • ESP32 DevKitC: GPIO 0 cannot be used due to external auto program circuits.

  • ESP-WROVER-KIT: GPIO 0, 2, 4 and 15 cannot be used due to external connections for different purposes.

Configuration and Reading ADC

The ADC should be configured before reading is taken.

Attenuation configuration is done per channel, see adc1_channel_t and adc2_channel_t, set as a parameter of above functions.

Then it is possible to read ADC conversion result with adc1_get_raw() and adc2_get_raw(). Reading width of ADC2 should be set as a parameter of adc2_get_raw() instead of in the configuration functions.

Note

Since the ADC2 is shared with the WIFI module, which has higher priority, reading operation of adc2_get_raw() will fail between esp_wifi_start() and esp_wifi_stop(). Use the return code to see whether the reading is successful.

It is also possible to read the internal hall effect sensor via ADC1 by calling dedicated function hall_sensor_read(). Note that even the hall sensor is internal to ESP32, reading from it uses channels 0 and 3 of ADC1 (GPIO 36 and 39). Do not connect anything else to these pins and do not change their configuration. Otherwise it may affect the measurement of low value signal from the sensor.

This API provides convenient way to configure ADC1 for reading from ULP. To do so, call function adc1_ulp_enable() and then set precision and attenuation as discussed above.

There is another specific function adc2_vref_to_gpio() used to route internal reference voltage to a GPIO pin. It comes handy to calibrate ADC reading and this is discussed in section Minimizing Noise.

Application Examples

Reading voltage on ADC1 channel 0 (GPIO 36):

#include <driver/adc.h>

...

    adc1_config_width(ADC_WIDTH_BIT_12);
    adc1_config_channel_atten(ADC1_CHANNEL_0,ADC_ATTEN_DB_0);
    int val = adc1_get_raw(ADC1_CHANNEL_0);

The input voltage in above example is from 0 to 1.1V (0 dB attenuation). The input range can be extended by setting higher attenuation, see adc_atten_t. An example using the ADC driver including calibration (discussed below) is available in esp-idf: peripherals/adc

Reading voltage on ADC2 channel 7 (GPIO 27):

#include <driver/adc.h>

...

    int read_raw;
    adc2_config_channel_atten( ADC2_CHANNEL_7, ADC_ATTEN_0db );

    esp_err_t r = adc2_get_raw( ADC2_CHANNEL_7, ADC_WIDTH_12Bit, &read_raw);
    if ( r == ESP_OK ) {
        printf("%d\n", read_raw );
    } else if ( r == ESP_ERR_TIMEOUT ) {
        printf("ADC2 used by Wi-Fi.\n");
    }

The reading may fail due to collision with Wi-Fi, should check it. An example using the ADC2 driver to read the output of DAC is available in esp-idf: peripherals/adc2

Reading the internal hall effect sensor:

#include <driver/adc.h>

...

    adc1_config_width(ADC_WIDTH_BIT_12);
    int val = hall_sensor_read();

The value read in both these examples is 12 bits wide (range 0-4095).

Minimizing Noise

The ESP32 ADC can be sensitive to noise leading to large discrepancies in ADC readings. To minimize noise, users may connect a 0.1uF capacitor to the ADC input pad in use. Multisampling may also be used to further mitigate the effects of noise.

ADC noise mitigation

Graph illustrating noise mitigation using capacitor and multisampling of 64 samples.

ADC Calibration

The esp_adc_cal/include/esp_adc_cal.h API provides functions to correct for differences in measured voltages caused by variation of ADC reference voltages (Vref) between chips. Per design the ADC reference voltage is 1100mV, however the true reference voltage can range from 1000mV to 1200mV amongst different ESP32s.

ADC reference voltage comparison

Graph illustrating effect of differing reference voltages on the ADC voltage curve.

Correcting ADC readings using this API involves characterizing one of the ADCs at a given attenuation to obtain a characteristics curve (ADC-Voltage curve) that takes into account the difference in ADC reference voltage. The characteristics curve is in the form of y = coeff_a * x + coeff_b and is used to convert ADC readings to voltages in mV. Calculation of the characteristics curve is based on calibration values which can be stored in eFuse or provided by the user.

Calibration Values

Calibration values are used to generate characteristic curves that account for the unique ADC reference voltage of a particular ESP32. There are currently three sources of calibration values. The availability of these calibration values will depend on the type and production date of the ESP32 chip/module.

  • Two Point values represent each of the ADCs’ readings at 150mV and 850mV. To obtain more accurate calibration results these values should be measured by user and burned into eFuse BLOCK3.

  • eFuse Vref represents the true ADC reference voltage. This value is measured and burned into eFuse BLOCK0 during factory calibration.

  • Default Vref is an estimate of the ADC reference voltage provided by the user as a parameter during characterization. If Two Point or eFuse Vref values are unavailable, Default Vref will be used.

Individual measurement and burning of the eFuse Vref has been applied to ESP32-D0WD and ESP32-D0WDQ6 chips produced on/after the 1st week of 2018. Such chips may be recognized by date codes on/later than 012018 (see Line 4 on figure below).

ESP32 Chip Surface Marking

ESP32 Chip Surface Marking

If you would like to purchase chips or modules with calibration, double check with distributor or Espressif directly.

If you are unable to check the date code (i.e. the chip may be enclosed inside a canned module, etc.), you can still verify if eFuse Vref is present by running espefuse.py tool with adc_info parameter

$IDF_PATH/components/esptool_py/esptool/espefuse.py --port /dev/ttyUSB0 adc_info

Replace /dev/ttyUSB0 with ESP32 board’s port name.

A chip that has specific eFuse Vref value programmed (in this case 1093mV) will be reported as follows:

ADC VRef calibration: 1093mV

In another example below the eFuse Vref is not programmed:

ADC VRef calibration: None (1100mV nominal)

For a chip with two point calibration the message will look similar to:

ADC VRef calibration: 1149mV
ADC readings stored in efuse BLK3:
    ADC1 Low reading  (150mV): 306
    ADC1 High reading (850mV): 3153
    ADC2 Low reading  (150mV): 389
    ADC2 High reading (850mV): 3206

Application Example

For a full example see esp-idf: peripherals/adc

Characterizing an ADC at a particular attenuation:

#include "driver/adc.h"
#include "esp_adc_cal.h"

...

    //Characterize ADC at particular atten
    esp_adc_cal_characteristics_t *adc_chars = calloc(1, sizeof(esp_adc_cal_characteristics_t));
    esp_adc_cal_value_t val_type = esp_adc_cal_characterize(unit, atten, ADC_WIDTH_BIT_12, DEFAULT_VREF, adc_chars);
    //Check type of calibration value used to characterize ADC
    if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) {
        printf("eFuse Vref");
    } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) {
        printf("Two Point");
    } else {
        printf("Default");
    }

Reading an ADC then converting the reading to a voltage:

#include "driver/adc.h"
#include "esp_adc_cal.h"

...
    uint32_t reading =  adc1_get_raw(ADC1_CHANNEL_5);
    uint32_t voltage = esp_adc_cal_raw_to_voltage(reading, adc_chars);

Routing ADC reference voltage to GPIO, so it can be manually measured (for Default Vref):

#include "driver/adc.h"

...

    esp_err_t status = adc2_vref_to_gpio(GPIO_NUM_25);
    if (status == ESP_OK) {
        printf("v_ref routed to GPIO\n");
    } else {
        printf("failed to route v_ref\n");
    }

GPIO Lookup Macros

There are macros available to specify the GPIO number of a ADC channel, or vice versa. e.g.

  1. ADC1_CHANNEL_0_GPIO_NUM is the GPIO number of ADC1 channel 0 (36);

  2. ADC1_GPIO32_CHANNEL is the ADC1 channel number of GPIO 32 (ADC1 channel 4).

API Reference

This reference covers three components:

ADC driver

Functions

esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)

Get the gpio number of a specific ADC1 channel.

Return

  • ESP_OK if success

  • ESP_ERR_INVALID_ARG if channal not valid

Parameters
  • channel: Channel to get the gpio number

  • gpio_num: output buffer to hold the gpio number

esp_err_t adc1_config_width(adc_bits_width_t width_bit)

Configure ADC1 capture width, meanwhile enable output invert for ADC1. The configuration is for all channels of ADC1.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • width_bit: Bit capture width for ADC1

esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t width_bit)

Configure ADC capture width.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • adc_unit: ADC unit index

  • width_bit: Bit capture width for ADC unit.

esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)

Set the attenuation of a particular channel on ADC1, and configure its associated GPIO pin mux.

The default ADC full-scale voltage is 1.1V. To read higher voltages (up to the pin maximum voltage, usually 3.3V) requires setting >0dB signal attenuation for that ADC channel.

Note

For any given channel, this function must be called before the first time adc1_get_raw() is called for that channel.

Note

This function can be called multiple times to configure multiple ADC channels simultaneously. adc1_get_raw() can then be called for any configured channel.

When VDD_A is 3.3V:

  • 0dB attenuaton (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V

  • 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V

  • 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V

  • 11dB attenuation (ADC_ATTEN_DB_11) gives full-scale voltage 3.9V (see note below)

Due to ADC characteristics, most accurate results are obtained within the following approximate voltage ranges:

Note

The full-scale voltage is the voltage corresponding to a maximum reading (depending on ADC1 configured bit width, this value is: 4095 for 12-bits, 2047 for 11-bits, 1023 for 10-bits, 511 for 9 bits.)

Note

At 11dB attenuation the maximum voltage is limited by VDD_A, not the full scale voltage.

  • 0dB attenuaton (ADC_ATTEN_DB_0) between 100 and 950mV

  • 2.5dB attenuation (ADC_ATTEN_DB_2_5) between 100 and 1250mV

  • 6dB attenuation (ADC_ATTEN_DB_6) between 150 to 1750mV

  • 11dB attenuation (ADC_ATTEN_DB_11) between 150 to 2450mV

For maximum accuracy, use the ADC calibration APIs and measure voltages within these recommended ranges.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • channel: ADC1 channel to configure

  • atten: Attenuation level

int adc1_get_raw(adc1_channel_t channel)

Take an ADC1 reading from a single channel.

Note

When the power switch of SARADC1, SARADC2, HALL sensor and AMP sensor is turned on, the input of GPIO36 and GPIO39 will be pulled down for about 80ns. When enabling power for any of these peripherals, ignore input from GPIO36 and GPIO39. Please refer to section 3.11 of ‘ECO_and_Workarounds_for_Bugs_in_ESP32’ for the description of this issue.

Note

Call adc1_config_width() before the first time this function is called.

Note

For any given channel, adc1_config_channel_atten(channel) must be called before the first time this function is called. Configuring a new channel does not prevent a previously configured channel from being read.

Return

  • -1: Parameter error

  • Other: ADC1 channel reading.

Parameters
  • channel: ADC1 channel to read

void adc_power_on(void)

Enable ADC power.

void adc_power_off(void)

Power off SAR ADC.

void adc_power_acquire(void)

Increment the usage counter for ADC module. ADC will stay powered on while the counter is greater than 0. Call adc_power_release when done using the ADC.

void adc_power_release(void)

Decrement the usage counter for ADC module. ADC will stay powered on while the counter is greater than 0. Call this function when done using the ADC.

esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)

Initialize ADC pad.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • adc_unit: ADC unit index

  • channel: ADC channel index

esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)

Set ADC data invert.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • adc_unit: ADC unit index

  • inv_en: whether enable data invert

esp_err_t adc_set_clk_div(uint8_t clk_div)

Set ADC source clock.

Return

  • ESP_OK success

Parameters
  • clk_div: ADC clock divider, ADC clock is divided from APB clock

esp_err_t adc_set_i2s_data_source(adc_i2s_source_t src)

Set I2S data source.

Return

  • ESP_OK success

Parameters
  • src: I2S DMA data source, I2S DMA can get data from digital signals or from ADC.

esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel)

Initialize I2S ADC mode.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • adc_unit: ADC unit index

  • channel: ADC channel index

void adc1_ulp_enable()

Configure ADC1 to be usable by the ULP.

This function reconfigures ADC1 to be controlled by the ULP. Effect of this function can be reverted using adc1_get_raw function.

Note that adc1_config_channel_atten, adc1_config_width functions need to be called to configure ADC1 channels, before ADC1 is used by the ULP.

int hall_sensor_read()

Read Hall Sensor.

Note

When the power switch of SARADC1, SARADC2, HALL sensor and AMP sensor is turned on, the input of GPIO36 and GPIO39 will be pulled down for about 80ns. When enabling power for any of these peripherals, ignore input from GPIO36 and GPIO39. Please refer to section 3.11 of ‘ECO_and_Workarounds_for_Bugs_in_ESP32’ for the description of this issue.

Note

The Hall Sensor uses channels 0 and 3 of ADC1. Do not configure these channels for use as ADC channels.

Note

The ADC1 module must be enabled by calling adc1_config_width() before calling hall_sensor_read(). ADC1 should be configured for 12 bit readings, as the hall sensor readings are low values and do not cover the full range of the ADC.

Return

The hall sensor reading.

esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)

Get the gpio number of a specific ADC2 channel.

Return

  • ESP_OK if success

  • ESP_ERR_INVALID_ARG if channal not valid

Parameters
  • channel: Channel to get the gpio number

  • gpio_num: output buffer to hold the gpio number

esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)

Configure the ADC2 channel, including setting attenuation.

The default ADC full-scale voltage is 1.1V. To read higher voltages (up to the pin maximum voltage, usually 3.3V) requires setting >0dB signal attenuation for that ADC channel.

Note

This function also configures the input GPIO pin mux to connect it to the ADC2 channel. It must be called before calling adc2_get_raw() for this channel.

When VDD_A is 3.3V:

  • 0dB attenuaton (ADC_ATTEN_0db) gives full-scale voltage 1.1V

  • 2.5dB attenuation (ADC_ATTEN_2_5db) gives full-scale voltage 1.5V

  • 6dB attenuation (ADC_ATTEN_6db) gives full-scale voltage 2.2V

  • 11dB attenuation (ADC_ATTEN_11db) gives full-scale voltage 3.9V (see note below)

Note

The full-scale voltage is the voltage corresponding to a maximum reading (depending on ADC2 configured bit width, this value is: 4095 for 12-bits, 2047 for 11-bits, 1023 for 10-bits, 511 for 9 bits.)

Note

At 11dB attenuation the maximum voltage is limited by VDD_A, not the full scale voltage.

Return

  • ESP_OK success

  • ESP_ERR_INVALID_ARG Parameter error

Parameters
  • channel: ADC2 channel to configure

  • atten: Attenuation level

esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)

Take an ADC2 reading on a single channel.

Note

When the power switch of SARADC1, SARADC2, HALL sensor and AMP sensor is turned on, the input of GPIO36 and GPIO39 will be pulled down for about 80ns. When enabling power for any of these peripherals, ignore input from GPIO36 and GPIO39. Please refer to section 3.11 of ‘ECO_and_Workarounds_for_Bugs_in_ESP32’ for the description of this issue.

Note

For a given channel, adc2_config_channel_atten() must be called before the first time this function is called. If Wi-Fi is started via esp_wifi_start(), this function will always fail with ESP_ERR_TIMEOUT.

Return

  • ESP_OK if success

  • ESP_ERR_TIMEOUT the WIFI is started, using the ADC2

Parameters
  • channel: ADC2 channel to read

  • width_bit: Bit capture width for ADC2

  • raw_out: the variable to hold the output data.

esp_err_t adc2_vref_to_gpio(gpio_num_t gpio)

Output ADC2 reference voltage to gpio 25 or 26 or 27.

This function utilizes the testing mux exclusive to ADC 2 to route the reference voltage one of ADC2’s channels. Supported gpios are gpios 25, 26, and 27. This refernce voltage can be manually read from the pin and used in the esp_adc_cal component.

Return

  • ESP_OK: v_ref successfully routed to selected gpio

  • ESP_ERR_INVALID_ARG: Unsupported gpio

Parameters
  • [in] gpio: GPIO number (gpios 25,26,27 supported)

Macros

ADC_ATTEN_0db
ADC_ATTEN_2_5db
ADC_ATTEN_6db
ADC_ATTEN_11db
ADC_WIDTH_9Bit
ADC_WIDTH_10Bit
ADC_WIDTH_11Bit
ADC_WIDTH_12Bit

Enumerations

enum adc_atten_t

Values:

ADC_ATTEN_DB_0 = 0

The input voltage of ADC will be reduced to about 1/1

ADC_ATTEN_DB_2_5 = 1

The input voltage of ADC will be reduced to about 1/1.34

ADC_ATTEN_DB_6 = 2

The input voltage of ADC will be reduced to about 1/2

ADC_ATTEN_DB_11 = 3

The input voltage of ADC will be reduced to about 1/3.6

ADC_ATTEN_MAX
enum adc_bits_width_t

Values:

ADC_WIDTH_BIT_9 = 0

ADC capture width is 9Bit

ADC_WIDTH_BIT_10 = 1

ADC capture width is 10Bit

ADC_WIDTH_BIT_11 = 2

ADC capture width is 11Bit

ADC_WIDTH_BIT_12 = 3

ADC capture width is 12Bit

ADC_WIDTH_MAX
enum adc1_channel_t

Values:

ADC1_CHANNEL_0 = 0

ADC1 channel 0 is GPIO36

ADC1_CHANNEL_1

ADC1 channel 1 is GPIO37

ADC1_CHANNEL_2

ADC1 channel 2 is GPIO38

ADC1_CHANNEL_3

ADC1 channel 3 is GPIO39

ADC1_CHANNEL_4

ADC1 channel 4 is GPIO32

ADC1_CHANNEL_5

ADC1 channel 5 is GPIO33

ADC1_CHANNEL_6

ADC1 channel 6 is GPIO34

ADC1_CHANNEL_7

ADC1 channel 7 is GPIO35

ADC1_CHANNEL_MAX
enum adc2_channel_t

Values:

ADC2_CHANNEL_0 = 0

ADC2 channel 0 is GPIO4

ADC2_CHANNEL_1

ADC2 channel 1 is GPIO0

ADC2_CHANNEL_2

ADC2 channel 2 is GPIO2

ADC2_CHANNEL_3

ADC2 channel 3 is GPIO15

ADC2_CHANNEL_4

ADC2 channel 4 is GPIO13

ADC2_CHANNEL_5

ADC2 channel 5 is GPIO12

ADC2_CHANNEL_6

ADC2 channel 6 is GPIO14

ADC2_CHANNEL_7

ADC2 channel 7 is GPIO27

ADC2_CHANNEL_8

ADC2 channel 8 is GPIO25

ADC2_CHANNEL_9

ADC2 channel 9 is GPIO26

ADC2_CHANNEL_MAX
enum adc_channel_t

Values:

ADC_CHANNEL_0 = 0

ADC channel

ADC_CHANNEL_1

ADC channel

ADC_CHANNEL_2

ADC channel

ADC_CHANNEL_3

ADC channel

ADC_CHANNEL_4

ADC channel

ADC_CHANNEL_5

ADC channel

ADC_CHANNEL_6

ADC channel

ADC_CHANNEL_7

ADC channel

ADC_CHANNEL_8

ADC channel

ADC_CHANNEL_9

ADC channel

ADC_CHANNEL_MAX
enum adc_unit_t

Values:

ADC_UNIT_1 = 1

SAR ADC 1

ADC_UNIT_2 = 2

SAR ADC 2, not supported yet

ADC_UNIT_BOTH = 3

SAR ADC 1 and 2, not supported yet

ADC_UNIT_ALTER = 7

SAR ADC 1 and 2 alternative mode, not supported yet

ADC_UNIT_MAX
enum adc_i2s_encode_t

Values:

ADC_ENCODE_12BIT

ADC to I2S data format, [15:12]-channel [11:0]-12 bits ADC data

ADC_ENCODE_11BIT

ADC to I2S data format, [15]-1 [14:11]-channel [10:0]-11 bits ADC data

ADC_ENCODE_MAX
enum adc_i2s_source_t

Values:

ADC_I2S_DATA_SRC_IO_SIG = 0

I2S data from GPIO matrix signal

ADC_I2S_DATA_SRC_ADC = 1

I2S data from ADC

ADC_I2S_DATA_SRC_MAX

ADC Calibration

Functions

esp_err_t esp_adc_cal_check_efuse(esp_adc_cal_value_t value_type)

Checks if ADC calibration values are burned into eFuse.

This function checks if ADC reference voltage or Two Point values have been burned to the eFuse of the current ESP32

Return

  • ESP_OK: The calibration mode is supported in eFuse

  • ESP_ERR_NOT_SUPPORTED: Error, eFuse values are not burned

  • ESP_ERR_INVALID_ARG: Error, invalid argument (ESP_ADC_CAL_VAL_DEFAULT_VREF)

Parameters
  • value_type: Type of calibration value (ESP_ADC_CAL_VAL_EFUSE_VREF or ESP_ADC_CAL_VAL_EFUSE_TP)

esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num, adc_atten_t atten, adc_bits_width_t bit_width, uint32_t default_vref, esp_adc_cal_characteristics_t *chars)

Characterize an ADC at a particular attenuation.

This function will characterize the ADC at a particular attenuation and generate the ADC-Voltage curve in the form of [y = coeff_a * x + coeff_b]. Characterization can be based on Two Point values, eFuse Vref, or default Vref and the calibration values will be prioritized in that order.

Note

Two Point values and eFuse Vref can be enabled/disabled using menuconfig.

Return

  • ESP_ADC_CAL_VAL_EFUSE_VREF: eFuse Vref used for characterization

  • ESP_ADC_CAL_VAL_EFUSE_TP: Two Point value used for characterization (only in Linear Mode)

  • ESP_ADC_CAL_VAL_DEFAULT_VREF: Default Vref used for characterization

Parameters
  • [in] adc_num: ADC to characterize (ADC_UNIT_1 or ADC_UNIT_2)

  • [in] atten: Attenuation to characterize

  • [in] bit_width: Bit width configuration of ADC

  • [in] default_vref: Default ADC reference voltage in mV (used if eFuse values is not available)

  • [out] chars: Pointer to empty structure used to store ADC characteristics

uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars)

Convert an ADC reading to voltage in mV.

This function converts an ADC reading to a voltage in mV based on the ADC’s characteristics.

Note

Characteristics structure must be initialized before this function is called (call esp_adc_cal_characterize())

Return

Voltage in mV

Parameters
  • [in] adc_reading: ADC reading

  • [in] chars: Pointer to initialized structure containing ADC characteristics

esp_err_t esp_adc_cal_get_voltage(adc_channel_t channel, const esp_adc_cal_characteristics_t *chars, uint32_t *voltage)

Reads an ADC and converts the reading to a voltage in mV.

This function reads an ADC then converts the raw reading to a voltage in mV based on the characteristics provided. The ADC that is read is also determined by the characteristics.

Note

The Characteristics structure must be initialized before this function is called (call esp_adc_cal_characterize())

Return

  • ESP_OK: ADC read and converted to mV

  • ESP_ERR_TIMEOUT: Error, timed out attempting to read ADC

  • ESP_ERR_INVALID_ARG: Error due to invalid arguments

Parameters
  • [in] channel: ADC Channel to read

  • [in] chars: Pointer to initialized ADC characteristics structure

  • [out] voltage: Pointer to store converted voltage

Structures

struct esp_adc_cal_characteristics_t

Structure storing characteristics of an ADC.

Note

Call esp_adc_cal_characterize() to initialize the structure

Public Members

adc_unit_t adc_num

ADC number

adc_atten_t atten

ADC attenuation

adc_bits_width_t bit_width

ADC bit width

uint32_t coeff_a

Gradient of ADC-Voltage curve

uint32_t coeff_b

Offset of ADC-Voltage curve

uint32_t vref

Vref used by lookup table

const uint32_t *low_curve

Pointer to low Vref curve of lookup table (NULL if unused)

const uint32_t *high_curve

Pointer to high Vref curve of lookup table (NULL if unused)

Enumerations

enum esp_adc_cal_value_t

Type of calibration value used in characterization.

Values:

ESP_ADC_CAL_VAL_EFUSE_VREF = 0

Characterization based on reference voltage stored in eFuse

ESP_ADC_CAL_VAL_EFUSE_TP = 1

Characterization based on Two Point values stored in eFuse

ESP_ADC_CAL_VAL_DEFAULT_VREF = 2

Characterization based on default reference voltage

GPIO Lookup Macros

Macros

ADC1_GPIO36_CHANNEL
ADC1_CHANNEL_0_GPIO_NUM
ADC1_GPIO37_CHANNEL
ADC1_CHANNEL_1_GPIO_NUM
ADC1_GPIO38_CHANNEL
ADC1_CHANNEL_2_GPIO_NUM
ADC1_GPIO39_CHANNEL
ADC1_CHANNEL_3_GPIO_NUM
ADC1_GPIO32_CHANNEL
ADC1_CHANNEL_4_GPIO_NUM
ADC1_GPIO33_CHANNEL
ADC1_CHANNEL_5_GPIO_NUM
ADC1_GPIO34_CHANNEL
ADC1_CHANNEL_6_GPIO_NUM
ADC1_GPIO35_CHANNEL
ADC1_CHANNEL_7_GPIO_NUM
ADC2_GPIO4_CHANNEL
ADC2_CHANNEL_0_GPIO_NUM
ADC2_GPIO0_CHANNEL
ADC2_CHANNEL_1_GPIO_NUM
ADC2_GPIO2_CHANNEL
ADC2_CHANNEL_2_GPIO_NUM
ADC2_GPIO15_CHANNEL
ADC2_CHANNEL_3_GPIO_NUM
ADC2_GPIO13_CHANNEL
ADC2_CHANNEL_4_GPIO_NUM
ADC2_GPIO12_CHANNEL
ADC2_CHANNEL_5_GPIO_NUM
ADC2_GPIO14_CHANNEL
ADC2_CHANNEL_6_GPIO_NUM
ADC2_GPIO27_CHANNEL
ADC2_CHANNEL_7_GPIO_NUM
ADC2_GPIO25_CHANNEL
ADC2_CHANNEL_8_GPIO_NUM
ADC2_GPIO26_CHANNEL
ADC2_CHANNEL_9_GPIO_NUM