Warning
This document is not updated for ESP32C61 yet, so some of the content may not be correct.
This warning was automatically inserted due to the source file being in the add_warnings_pages list.
SPI Interfaced LCD
Create an SPI bus. Please refer to SPI Master API doc for more details.
Currently the driver supports SPI, Quad SPI and Octal SPI (simulate Intel 8080 timing) modes.
spi_bus_config_t buscfg = { .sclk_io_num = EXAMPLE_PIN_NUM_SCLK, .mosi_io_num = EXAMPLE_PIN_NUM_MOSI, .miso_io_num = EXAMPLE_PIN_NUM_MISO, .quadwp_io_num = -1, .quadhd_io_num = -1, .max_transfer_sz = EXAMPLE_LCD_H_RES * 80 * sizeof(uint16_t), // transfer 80 lines of pixels (assume pixel is RGB565) at most in one SPI transaction }; ESP_ERROR_CHECK(spi_bus_initialize(LCD_HOST, &buscfg, SPI_DMA_CH_AUTO)); // Enable the DMA feature
Allocate an LCD IO device handle from the SPI bus. In this step, you need to provide the following information:
esp_lcd_panel_io_spi_config_t::dc_gpio_num
sets the GPIO number for the DC signal line (some LCD calls thisRS
line). The LCD driver uses this GPIO to switch between sending command and sending data.esp_lcd_panel_io_spi_config_t::cs_gpio_num
sets the GPIO number for the CS signal line. The LCD driver uses this GPIO to select the LCD chip. If the SPI bus only has one device attached (i.e., this LCD), you can set the GPIO number to-1
to occupy the bus exclusively.esp_lcd_panel_io_spi_config_t::pclk_hz
sets the frequency of the pixel clock, in Hz. The value should not exceed the range recommended in the LCD spec.esp_lcd_panel_io_spi_config_t::spi_mode
sets the SPI mode. The LCD driver uses this mode to communicate with the LCD. For the meaning of the SPI mode, please refer to the SPI Master API doc.esp_lcd_panel_io_spi_config_t::lcd_cmd_bits
andesp_lcd_panel_io_spi_config_t::lcd_param_bits
set the bit width of the command and parameter that recognized by the LCD controller chip. This is chip specific, you should refer to your LCD spec in advance.esp_lcd_panel_io_spi_config_t::trans_queue_depth
sets the depth of the SPI transaction queue. A bigger value means more transactions can be queued up, but it also consumes more memory.esp_lcd_panel_io_spi_config_t::cs_ena_pretrans
sets the amount of SPI bit-cycles which the cs should be activated before the transmission (0-16).esp_lcd_panel_io_spi_config_t::cs_ena_posttrans
sets the amount of SPI bit-cycles which the cs should stay active after the transmission (0-16).
esp_lcd_panel_io_handle_t io_handle = NULL; esp_lcd_panel_io_spi_config_t io_config = { .dc_gpio_num = EXAMPLE_PIN_NUM_LCD_DC, .cs_gpio_num = EXAMPLE_PIN_NUM_LCD_CS, .pclk_hz = EXAMPLE_LCD_PIXEL_CLOCK_HZ, .lcd_cmd_bits = EXAMPLE_LCD_CMD_BITS, .lcd_param_bits = EXAMPLE_LCD_PARAM_BITS, .spi_mode = 0, .trans_queue_depth = 10, }; // Attach the LCD to the SPI bus ESP_ERROR_CHECK(esp_lcd_new_panel_io_spi((esp_lcd_spi_bus_handle_t)LCD_HOST, &io_config, &io_handle));
Install the LCD controller driver. The LCD controller driver is responsible for sending the commands and parameters to the LCD controller chip. In this step, you need to specify the SPI IO device handle that allocated in the last step, and some panel specific configurations:
esp_lcd_panel_dev_config_t::reset_gpio_num
sets the LCD's hardware reset GPIO number. If the LCD does not have a hardware reset pin, set this to-1
.esp_lcd_panel_dev_config_t::rgb_ele_order
sets the RGB element order of each color data.esp_lcd_panel_dev_config_t::bits_per_pixel
sets the bit width of the pixel color data. The LCD driver uses this value to calculate the number of bytes to send to the LCD controller chip.esp_lcd_panel_dev_config_t::data_endian
specifies the data endian to be transmitted to the screen. No need to specify for color data within one byte, like RGB232. For drivers that do not support specifying data endian, this field would be ignored.
esp_lcd_panel_handle_t panel_handle = NULL; esp_lcd_panel_dev_config_t panel_config = { .reset_gpio_num = EXAMPLE_PIN_NUM_RST, .rgb_ele_order = LCD_RGB_ELEMENT_ORDER_BGR, .bits_per_pixel = 16, }; // Create LCD panel handle for ST7789, with the SPI IO device handle ESP_ERROR_CHECK(esp_lcd_new_panel_st7789(io_handle, &panel_config, &panel_handle));
API Reference
Header File
This header file can be included with:
#include "esp_lcd_io_spi.h"
This header file is a part of the API provided by the
esp_lcd
component. To declare that your component depends onesp_lcd
, add the following to your CMakeLists.txt:REQUIRES esp_lcd
or
PRIV_REQUIRES esp_lcd
Functions
-
esp_err_t esp_lcd_new_panel_io_spi(esp_lcd_spi_bus_handle_t bus, const esp_lcd_panel_io_spi_config_t *io_config, esp_lcd_panel_io_handle_t *ret_io)
Create LCD panel IO handle, for SPI interface.
- Parameters
bus -- [in] SPI bus handle
io_config -- [in] IO configuration, for SPI interface
ret_io -- [out] Returned IO handle
- Returns
ESP_ERR_INVALID_ARG if parameter is invalid
ESP_ERR_NO_MEM if out of memory
ESP_OK on success
Structures
-
struct esp_lcd_panel_io_spi_config_t
Panel IO configuration structure, for SPI interface.
Public Members
-
int cs_gpio_num
GPIO used for CS line
-
int dc_gpio_num
GPIO used to select the D/C line, set this to -1 if the D/C line is not used
-
int spi_mode
Traditional SPI mode (0~3)
-
unsigned int pclk_hz
Frequency of pixel clock
-
size_t trans_queue_depth
Size of internal transaction queue
-
esp_lcd_panel_io_color_trans_done_cb_t on_color_trans_done
Callback invoked when color data transfer has finished
-
void *user_ctx
User private data, passed directly to on_color_trans_done's user_ctx
-
int lcd_cmd_bits
Bit-width of LCD command
-
int lcd_param_bits
Bit-width of LCD parameter
-
uint8_t cs_ena_pretrans
Amount of SPI bit-cycles the cs should be activated before the transmission (0-16)
-
uint8_t cs_ena_posttrans
Amount of SPI bit-cycles the cs should stay active after the transmission (0-16)
-
unsigned int dc_high_on_cmd
If enabled, DC level = 1 indicates command transfer
-
unsigned int dc_low_on_data
If enabled, DC level = 0 indicates color data transfer
-
unsigned int dc_low_on_param
If enabled, DC level = 0 indicates parameter transfer
-
unsigned int octal_mode
transmit with octal mode (8 data lines), this mode is used to simulate Intel 8080 timing
-
unsigned int quad_mode
transmit with quad mode (4 data lines), this mode is useful when transmitting LCD parameters (Only use one line for command)
-
unsigned int sio_mode
Read and write through a single data line (MOSI)
-
unsigned int lsb_first
transmit LSB bit first
-
unsigned int cs_high_active
CS line is high active
-
struct esp_lcd_panel_io_spi_config_t::[anonymous] flags
Extra flags to fine-tune the SPI device
-
int cs_gpio_num
Type Definitions
-
typedef int esp_lcd_spi_bus_handle_t
Type of LCD SPI bus handle