内存优化

[English]

固件应用程序的可用 RAM 在某些情况下可能处于低水平,甚至完全耗尽。为此,应调整这些情况下固件应用程序的内存使用情况。

固件应用程序通常需要为内部 RAM 保留备用空间,用于应对非常规情况,或在后续版本的更新中,适应 RAM 使用需求的变化。

背景

在进行 ESP-IDF 的内存优化前,应了解有关 ESP32 内存类型的基础知识、C 语言中静态和动态内存使用的区别、以及 ESP-IDF 中栈和堆的使用方式。以上信息均可参阅 堆内存分配

测量静态内存使用情况

idf.py 工具可用于生成应用程序静态内存的使用情况报告,请参阅 测量静态数据大小

测量动态内存使用情况

ESP-IDF 包含一系列堆 API,可以在运行时测量空闲堆内存,请参阅 堆内存调试

备注

在嵌入式系统中,除 RAM 使用总量外,也应重点关注堆碎片化问题。堆测量 API 提供了一些方法,可以测量最大空闲内存块。通过监测最大空闲内存块和总空闲字节数,可以快速了解是否存在堆碎片化问题。

静态内存优化

  • 降低应用程序的静态内存使用,会增加运行时堆的可用 RAM 空间,反之亦然。

  • 优化静态内存使用通常需要监测 .data.bss 的大小,有关工具请参阅 测量静态数据大小

  • 在 C 语言中,ESP-IDF 内部函数不会占用大量静态 RAM。在多数情况下(例如 Wi-Fi 库和蓝牙控制器),静态缓冲区仍从堆中分配。然而,这些分配只在功能初始化阶段进行一次,并在功能去初始化时释放,从而在应用程序生命周期中,优化不同阶段的可用内存。

要实现静态内存优化,请执行以下操作:

  • 由于常量数据可以存储在 flash 中,不占用 RAM,建议尽量将结构体、缓冲区或其他变量声明为 const。为此,可能需要修改固件参数,使其接收 const * 参数而非可变指针参数。以上更改还可以减少某些函数的栈内存使用。

  • 若使用 Bluedroid,请设置 CONFIG_BT_BLE_DYNAMIC_ENV_MEMORY 选项,Bluedroid 将在初始化时分配内存,并在去初始化时释放内存。这并不一定会降低内存使用峰值,但可以将使用静态内存改为运行时使用动态内存。

  • 若使用 OpenThread,请设置 CONFIG_OPENTHREAD_PLATFORM_MSGPOOL_MANAGEMENT 选项,OpenThread 将从外部 PSRAM 中分配消息池缓冲区,从而减少对内部静态内存的使用。

确定栈内存大小

在 FreeRTOS 操作系统中,任务栈通常从堆中分配。每个任务的栈大小固定,且会作为参数传递给 xTaskCreate()。每个任务可用的栈内存不得超过为其分配的栈内存大小,否则将导致栈内存溢出或堆内存损坏,使原本可用的程序崩溃。

因此,确定每个任务栈内存的最佳大小、最小化每个任务栈内存大小、以及最小化任务栈内存的整体数量,都可以大幅减少 RAM 的使用。

栈溢出检测的配置选项

栈末尾监视点

栈末尾监视点将 CPU 监视点放置在当前栈的末尾。如果该字被覆盖(例如栈溢出),则会立即触发紧急情况提示。在未使用调试器的监视点时,可以设置 CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK 选项,启用栈末尾监视点功能。

栈金丝雀字节

栈金丝雀字节功能在每个任务的栈末尾添加一组魔术字节,并在每次上下文切换时检查这些字节是否已更改。如果这些魔术字节被覆盖,则会触发紧急情况提示。可以通过 CONFIG_FREERTOS_CHECK_STACKOVERFLOW 选项启用栈金丝雀字节功能。

备注

使用栈末尾监视点或栈金丝雀字节时,栈指针可能在栈溢出时跳过监视点或金丝雀字节,损坏 RAM 的其他区域。因此,上述方法并不能检测所有的栈溢出。

任务运行时确定栈内存大小的方法

  • 调用 uxTaskGetStackHighWaterMark() 会返回任务整个生命周期中空闲栈内存的最小值,从而较好地显示出任务未使用的栈内存量。

    • 从任务本身内部调用 uxTaskGetStackHighWaterMark() 是调用该函数最容易的方式:在任务达到其栈内存使用峰值后,调用 uxTaskGetStackHighWaterMark(NULL) 获取当前任务的高水位标记,换言之,如果有主循环,请多次执行主循环来覆盖各种状态,随后调用 uxTaskGetStackHighWaterMark()

    • 通常可以用任务的栈内存总大小减去调用 uxTaskGetStackHighWaterMark() 的返回值,计算任务实际使用的栈内存大小,但应留出一定的安全余量,应对运行时栈内存使用量的小幅意外增长。

  • 调用 uxTaskGetSystemState() 来获取系统中所有任务的摘要,包括各栈内存的高水位标记值。

减少栈内存大小

  • 避免占用过多栈内存的函数。字符串格式化函数(如 printf())会使用大量栈内存,如果任务不调用这类函数,通常可以减小其占用的栈内存。

    • 启用 Newlib Nano 格式化,可以在任务调用 printf() 或其他 C 语言字符串格式化函数时,减少这类任务的栈内存使用量。

  • 避免在栈上分配大型变量。在 C 语言声明的默认作用域中,任何分配为自动变量的大型结构体或数组都会占用栈内存。要优化这些变量占用的栈内存大小,可以使用静态分配,或仅在需要时从堆中动态分配。

  • 避免调用深度递归函数。尽管调用单个递归函数并不一定会占用大量栈内存,但若每个函数都包含大量基于栈的变量,那么调用这些函数的开销将会很高。

减少任务数量

合并任务。如果从未创建某个特定任务,就不会分配该任务的栈内存,从而极大减少 RAM 使用。如果某些任务可以与另一个任务合并,通常可以将不必要的任务删除。在应用程序中,如果满足以下条件,通常可以合并或删除任务:

  • 任务所执行的内容可以按顺序分解为多个函数调用。

  • 任务所执行的内容可以分解为较小的工作,这些工作可以通过 FreeRTOS 队列或类似机制串行化,并由工作任务执行。

内部任务栈内存大小

为进行系统维护,或操作系统功能,ESP-IDF 分配了许多内部任务,一部分在启动过程中创建,一部分在初始化特定功能时创建。

为了确保支持所有常见的使用模式,这些任务栈内存的默认设置值较大。ESP-IDF 支持配置栈内存大小,因此可以减小任务栈内存,匹配其实际运行时的栈内存使用情况。

重要

如果内部任务的栈内存设置得过小,可能会导致 ESP-IDF 发生无法预测的崩溃。即使任务栈内存溢出是导致崩溃的根本原因,在调试过程中也很难确定具体原因。因此,建议特别关注任务在负载高时的高水位标记,在必要情况下,谨慎减小内部任务的栈内存大小。如果在减小内部任务堆内存大小后,仍遇到问题,请在报告中提供以下信息,以及正在使用的具体配置。

备注

除 ESP 定时器等内置系统功能外,若固件应用程序没有初始化 ESP-IDF 中特定功能,则不会创建相关任务。此时,相关任务的栈内存使用量为零,而这些功能没有与之关联的任务,因此无需考虑其栈内存大小配置。

堆内存优化

有关分析运行时堆内存使用的函数,请参阅 堆内存调试

通常,堆内存优化包含以下几个方面:分析堆内存使用情况、撤回未使用的 malloc() 调用、缩小相应的内存使用大小、或提早释放先前分配的缓冲区。

以下是一些 ESP-IDF 配置选项,有助于在运行时实现堆内存优化:

备注

如果将某些配置选项更改为非默认值,也会增加运行时的堆内存使用。这类选项未在上文中列出,但配置选项的帮助文档中给出了相应说明。

IRAM 优化

如果应用程序分配的静态 IRAM 超过可用上限,应用程序将无法构建,并出现链接器错误,如 section '.iram0.text' will not fit in region 'iram0_0_seg'IRAM0 segment data does not fit 以及 region 'iram0_0_seg' overflowed by 84-bytes。如果发生这种情况,应找到减少静态 IRAM 使用的方法,链接应用程序。

要分析固件应用程序二进制文件中的 IRAM 使用情况,请使用 测量静态数据大小。如果固件应用程序链接失败,请参阅 Showing Size When Linker Fails 中的步骤,分析失败原因。

要对某些 ESP-IDF 功能进行 IRAM 优化,请使用以下选项:

将 SRAM1 用于 IRAM

SRAM1 内存区域通常用于 DRAM 存储,但可以设置 CONFIG_ESP_SYSTEM_ESP32_SRAM1_REGION_AS_IRAM 选项,将其中一部分用作 IRAM 存储。引入该选项前,这个内存区域通常预留给 DRAM 数据使用(如 .bss ),随后由软件引导加载程序加入到堆中。引入该选项后,引导加载程序的 DRAM 大小会减少到更接近实际需要的值。

要使用以上选项,ESP-IDF 应能够将新的 SRAM1 区域识别为有效镜像段的加载地址。部分应用程序的代码置于新扩展的 IRAM 区域,如果软件引导加载程序在引入该选项前编译,将无法加载这类应用程序。这类情况通常在进行 OTA 更新时发生,此时仅会更新应用程序。

如果 IRAM 段放置在无效区域,在启动过程中将检测到以下问题,并导致启动失败:

E (204) esp_image: Segment 5 0x400845f8-0x400a126c invalid: bad load address range

警告

若与在引入以上配置选项前编译的软件引导加载程序一同使用,使用 CONFIG_ESP_SYSTEM_ESP32_SRAM1_REGION_AS_IRAM 选项编译的应用程序很可能无法启动。若使用旧版本的引导加载程序,并进行 OTA 更新,请在提交任何更新前仔细测试。

任何最终未用于静态 IRAM 的内存都将添加到堆内存中。

在 flash 中放置 C 语言库函数

编译 ECO3 及之前的 ESP32 版本时(参阅 CONFIG_ESP32_REV_MIN),会启用 PSRAM 缓存错误的解决方法选项(参阅 CONFIG_SPIRAM_CACHE_WORKAROUND),此选项会重新编译通常位于 ROM 中的 C 语言库函数,并将其放置在 IRAM 中。对于大部分应用程序而言,可以放心将多数 C 语言库函数移到 flash 中,以节省 IRAM 空间。相应选项包括:

具体节省的 IRAM 使用量取决于应用程序实际使用的 C 语言库代码。此外,以下选项可以将更多 C 语言库代码移到 flash 中,但请知悉这可能会影响性能。同时,注意不要在禁用缓存时,从中断使用 ESP_INTR_FLAG_IRAM 标记符号分配的 C 语言库函数,详情请参阅 IRAM 安全中断处理程序。鉴于以上原因,函数 itoamemcmpmemcpymemsetstrcatstrcmpstrlen 始终置于 IRAM 中。

备注

将常用函数从 IRAM 移动到 flash,可能会增加函数的执行时间。

备注

部分配置选项可以将一些功能移动到 IRAM 中,从而提高性能,但这类选项默认不进行配置,因此未在此列出。了解启用上述选项对 IRAM 大小造成的影响,请参阅配置项的帮助文本。


此文档对您有帮助吗?