MatterGenericSwitch

About

The MatterGenericSwitch class provides a generic switch endpoint for Matter networks. This endpoint works as a smart button that can send click events to the Matter controller, enabling automation triggers.

Features: * Click event reporting to Matter controller * Simple button functionality * Automation trigger support * Integration with Apple HomeKit, Amazon Alexa, and Google Home * Matter standard compliance

Use Cases: * Smart buttons * Automation triggers * Remote controls * Scene activation buttons * Event generators for smart home automation

API Reference

Constructor

MatterGenericSwitch

Creates a new Matter generic switch endpoint.

MatterGenericSwitch();

Initialization

begin

Initializes the Matter generic switch endpoint.

bool begin();

This function will return true if successful, false otherwise.

end

Stops processing Matter switch events.

void end();

Event Generation

click

Sends a click event to the Matter controller.

void click();

This function sends a click event that can be used to trigger automations in smart home apps. The event is sent immediately and the Matter controller will receive it.

Usage Example:

When a physical button is pressed and released, call this function to send the click event:

if (buttonReleased) {
    mySwitch.click();
    Serial.println("Click event sent to Matter controller");
}

Example

Generic Switch (Smart Button)

// Copyright 2025 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at

//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Matter Manager
#include <Matter.h>
#if !CONFIG_ENABLE_CHIPOBLE
// if the device can be commissioned using BLE, WiFi is not used - save flash space
#include <WiFi.h>
#endif

// List of Matter Endpoints for this Node
// Generic Switch Endpoint - works as a smart button with a single click
MatterGenericSwitch SmartButton;

// CONFIG_ENABLE_CHIPOBLE is enabled when BLE is used to commission the Matter Network
#if !CONFIG_ENABLE_CHIPOBLE
// WiFi is manually set and started
const char *ssid = "your-ssid";          // Change this to your WiFi SSID
const char *password = "your-password";  // Change this to your WiFi password
#endif

// set your board USER BUTTON pin here
const uint8_t buttonPin = BOOT_PIN;  // Set your pin here. Using BOOT Button.

// Button control
uint32_t button_time_stamp = 0;                // debouncing control
bool button_state = false;                     // false = released | true = pressed
const uint32_t debouceTime = 250;              // button debouncing time (ms)
const uint32_t decommissioningTimeout = 5000;  // keep the button pressed for 5s, or longer, to decommission

void setup() {
  // Initialize the USER BUTTON (Boot button) GPIO that will act as a smart button or to decommission the Matter Node
  pinMode(buttonPin, INPUT_PULLUP);

  Serial.begin(115200);

// CONFIG_ENABLE_CHIPOBLE is enabled when BLE is used to commission the Matter Network
#if !CONFIG_ENABLE_CHIPOBLE
  // We start by connecting to a WiFi network
  Serial.print("Connecting to ");
  Serial.println(ssid);

  // Manually connect to WiFi
  WiFi.begin(ssid, password);
  // Wait for connection
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  Serial.println("\r\nWiFi connected");
  Serial.println("IP address: ");
  Serial.println(WiFi.localIP());
  delay(500);
#endif

  // Initialize the Matter EndPoint
  SmartButton.begin();

  // Matter beginning - Last step, after all EndPoints are initialized
  Matter.begin();
  // This may be a restart of a already commissioned Matter accessory
  if (Matter.isDeviceCommissioned()) {
    Serial.println("Matter Node is commissioned and connected to the network. Ready for use.");
  }
}

void loop() {
  // Check Matter Accessory Commissioning state, which may change during execution of loop()
  if (!Matter.isDeviceCommissioned()) {
    Serial.println("");
    Serial.println("Matter Node is not commissioned yet.");
    Serial.println("Initiate the device discovery in your Matter environment.");
    Serial.println("Commission it to your Matter hub with the manual pairing code or QR code");
    Serial.printf("Manual pairing code: %s\r\n", Matter.getManualPairingCode().c_str());
    Serial.printf("QR code URL: %s\r\n", Matter.getOnboardingQRCodeUrl().c_str());
    // waits for Matter Generic Switch Commissioning.
    uint32_t timeCount = 0;
    while (!Matter.isDeviceCommissioned()) {
      delay(100);
      if ((timeCount++ % 50) == 0) {  // 50*100ms = 5 sec
        Serial.println("Matter Node not commissioned yet. Waiting for commissioning.");
      }
    }
    Serial.println("Matter Node is commissioned and connected to the network. Ready for use.");
  }

  // A builtin button is used to trigger a command to the Matter Controller
  // Check if the button has been pressed
  if (digitalRead(buttonPin) == LOW && !button_state) {
    // deals with button debouncing
    button_time_stamp = millis();  // record the time while the button is pressed.
    button_state = true;           // pressed.
  }

  // Onboard User Button is used as a smart button or to decommission it
  uint32_t time_diff = millis() - button_time_stamp;
  if (button_state && time_diff > debouceTime && digitalRead(buttonPin) == HIGH) {
    button_state = false;  // released
    // builtin button is released - send a click event to the Matter Controller
    Serial.println("User button released. Sending Click to the Matter Controller!");
    // Matter Controller will receive an event and, if programmed, it will trigger an action
    SmartButton.click();
  }

  // Onboard User Button is kept pressed for longer than 5 seconds in order to decommission matter node
  if (button_state && time_diff > decommissioningTimeout) {
    Serial.println("Decommissioning the Generic Switch Matter Accessory. It shall be commissioned again.");
    Matter.decommission();
    button_time_stamp = millis();  // avoid running decommissining again, reboot takes a second or so
  }
}